
38th International Symposium on
Computational Geometry

SoCG 2022, June 7–10, 2022, Berlin, Germany

Edited by

Xavier Goaoc
Michael Kerber

LIPIcs – Vo l . 224 – SoCG 2022 www.dagstuh l .de/ l ip i c s



Editors

Xavier Goaoc
LORIA, Université de Lorraine, France
xavier.goaoc@loria.fr

Michael Kerber
Graz University of Technology, Austria
kerber@tugraz.at

ACM Classification 2012
Theory of computation → Computational geometry; Theory of computation → Design and analysis of
algorithms; Mathematics of computing → Combinatorics; Mathematics of computing → Graph algorithms

ISBN 978-3-95977-227-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-227-3.

Publication date
June, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SoCG.2022.0

ISBN 978-3-95977-227-3 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:xavier.goaoc@loria.fr
https://orcid.org/0000-0002-8030-9299
mailto:kerber@tugraz.at
https://www.dagstuhl.de/dagpub/978-3-95977-227-3
https://www.dagstuhl.de/dagpub/978-3-95977-227-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.SoCG.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-227-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SoCG 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Xavier Goaoc, Michael Kerber, Aaron T. Becker, Sándor P. Fekete, and
Stefan Schirra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi

Conference Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xiii

Additional Reviewers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xvii

Regular Papers

Tiling with Squares and Packing Dominos in Polynomial Time
Anders Aamand, Mikkel Abrahamsen, Thomas Ahle, and
Peter M. R. Rasmussen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:17

On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem
Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler,
Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and
Hao-Tsung Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:14

On Semialgebraic Range Reporting
Peyman Afshani and Pingan Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:14

Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and
Related Problems

Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and
Micha Sharir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:14

Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs
Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and
Alexandra Weinberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:18

Edge Partitions of Complete Geometric Graphs
Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul,
Patrick Schnider, Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber . . . . . . . . 6:1–6:16

Minimum-Error Triangulations for Sea Surface Reconstruction
Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort,
Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and
Heiko Röglin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:18

Delaunay-Like Triangulation of Smooth Orientable Submanifolds by ℓ1-Norm
Minimization

Dominique Attali and André Lieutier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:16

Tighter Bounds for Reconstruction from ϵ-Samples
Håvard Bakke Bjerkevik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:17

Erdős–Szekeres-Type Problems in the Real Projective Plane
Martin Balko, Manfred Scheucher, and Pavel Valtr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:15

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

True Contraction Decomposition and Almost ETH-Tight Bipartization for
Unit-Disk Graphs

Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov,
Saket Saurabh, and Jie Xue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:16

Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin,
Henning Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and
Stijn Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:16

Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for Practical
Measures

Yair Bartal, Ora Nova Fandina, and Kasper Green Larsen . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:16

Quasi-Universality of Reeb Graph Distances
Ulrich Bauer, Håvard Bakke Bjerkevik, and Benedikt Fluhr . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:18

Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Vietoris–Rips
Filtrations

Ulrich Bauer and Fabian Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1–15:15

Acute Tours in the Plane
Ahmad Biniaz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:8

ETH-Tight Algorithms for Finding Surfaces in Simplicial Complexes of Bounded
Treewidth

Mitchell Black, Nello Blaser, Amir Nayyeri, and Erlend Raa Vågset . . . . . . . . . . . . . 17:1–17:16

Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes
Gilles Bonnet, Daniel Dadush, Uri Grupel, Sophie Huiberts, and
Galyna Livshyts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18:1–18:15

Signed Barcodes for Multi-Parameter Persistence via Rank Decompositions
Magnus Bakke Botnan, Steffen Oppermann, and Steve Oudot . . . . . . . . . . . . . . . . . . . . 19:1–19:18

Dynamic Time Warping Under Translation: Approximation Guided by
Space-Filling Curves

Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, Dániel Marx, and
André Nusser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:17

Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs
Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and
Zahra Parsaeian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:16

Computing Continuous Dynamic Time Warping of Time Series in Polynomial
Time

Kevin Buchin, André Nusser, and Sampson Wong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:16

Long Plane Trees
Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer, and
Josef Tkadlec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:17

The Universal ℓp-Metric on Merge Trees
Robert Cardona, Justin Curry, Tung Lam, and Michael Lesnick . . . . . . . . . . . . . . . . . . 24:1–24:20



Contents 0:vii

On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles in a
Homology Class

Erin Wolf Chambers, Salman Parsa, and Hannah Schreiber . . . . . . . . . . . . . . . . . . . . . . 25:1–25:15

Parameterized Algorithms for Upward Planarity
Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian,
Chrysanthi N. Raftopoulou, and Kirill Simonov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26:1–26:16

Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres
Jean Chartier and Arnaud de Mesmay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:16

Tight Lower Bounds for Approximate & Exact k-Center in Rd

Rajesh Chitnis and Nitin Saurabh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28:1–28:15

Flat Folding an Unassigned Single-Vertex Complex (Combinatorially Embedded
Planar Graph with Specified Edge Lengths) Without Flat Angles

Lily Chung, Erik D. Demaine, Dylan Hendrickson, and Victor Luo . . . . . . . . . . . . . . 29:1–29:17

Hop-Spanners for Geometric Intersection Graphs
Jonathan B. Conroy and Csaba D. Tóth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30:1–30:17

Persistent Cup-Length
Marco Contessoto, Facundo Mémoli, Anastasios Stefanou, and Ling Zhou . . . . . . . . 31:1–31:17

Three-Chromatic Geometric Hypergraphs
Gábor Damásdi and Dömötör Pálvölgyi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32:1–32:13

A Solution to Ringel’s Circle Problem
James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and
Bartosz Walczak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33:1–33:14

Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via
Zigzag Persistence and Its Applications

Tamal K. Dey, Woojin Kim, and Facundo Mémoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34:1–34:17

Tracking Dynamical Features via Continuation and Persistence
Tamal K. Dey, Michał Lipiński, Marian Mrozek, and Ryan Slechta . . . . . . . . . . . . . . . 35:1–35:17

On the Discrete Fréchet Distance in a Graph
Anne Driemel, Ivor van der Hoog, and Eva Rotenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36:1–36:18

Computing a Link Diagram from Its Exterior
Nathan M. Dunfield, Malik Obeidin, and Cameron Gates Rudd . . . . . . . . . . . . . . . . . . . 37:1–37:24

On Comparable Box Dimension
Zdeněk Dvořák, Daniel Gonçalves, Abhiruk Lahiri, Jane Tan, and
Torsten Ueckerdt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38:1–38:14

Weak Coloring Numbers of Intersection Graphs
Zdeněk Dvořák, Jakub Pekárek, Torsten Ueckerdt, and Yelena Yuditsky . . . . . . . . . . . 39:1–39:15

ε-Isometric Dimension Reduction for Incompressible Subsets of ℓp

Alexandros Eskenazis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40:1–40:14

Short Topological Decompositions of Non-Orientable Surfaces
Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay . . . . . . . . . . . . . . . . . . . . . . . . 41:1–41:16

SoCG 2022



0:viii Contents

Robust Radical Sylvester-Gallai Theorem for Quadratics
Abhibhav Garg, Rafael Oliveira, and Akash Kumar Sengupta . . . . . . . . . . . . . . . . . . . . . 42:1–42:13

Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials
Shir Peleg and Amir Shpilka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43:1–43:15

Swap, Shift and Trim to Edge Collapse a Filtration
Marc Glisse and Siddharth Pritam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44:1–44:15

Hardness and Approximation of Minimum Convex Partition
Nicolas Grelier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45:1–45:15

Parameterised Partially-Predrawn Crossing Number
Thekla Hamm and Petr Hliněný . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46:1–46:15

Approximation Algorithms for Maximum Matchings in Geometric Intersection
Graphs

Sariel Har-Peled and Everett Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47:1–47:13

The Complexity of the Hausdorff Distance
Paul Jungeblut, Linda Kleist, and Tillmann Miltzow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48:1–48:17

Dynamic Connectivity in Disk Graphs
Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr,
Wolfgang Mulzer, Liam Roditty, and Paul Seiferth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49:1–49:17

An (ℵ0, k + 2)-Theorem for k-Transversals
Chaya Keller and Micha A. Perles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50:1–50:14

Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles
Mincheol Kim, Chanyang Seo, Taehoon Ahn, and Hee-Kap Ahn . . . . . . . . . . . . . . . . . . 51:1–51:15

Point Separation and Obstacle Removal by Finding and Hitting Odd Cycles
Neeraj Kumar, Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue . . . . 52:1–52:14

A Universal Triangulation for Flat Tori
Francis Lazarus and Florent Tallerie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53:1–53:18

Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound
Hung Le, Lazar Milenković, and Shay Solomon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54:1–54:15

Minimum Height Drawings of Ordered Trees in Polynomial Time: Homotopy
Height of Tree Duals

Tim Ophelders and Salman Parsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55:1–55:16

Disjointness Graphs of Short Polygonal Chains
János Pach, Gábor Tardos, and Géza Tóth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56:1–56:12

Covering Points by Hyperplanes and Related Problems
Zuzana Patáková and Micha Sharir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57:1–57:7

The Degree-Rips Complexes of an Annulus with Outliers
Alexander Rolle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58:1–58:14

Chains, Koch Chains, and Point Sets with Many Triangulations
Daniel Rutschmann and Manuel Wettstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59:1–59:18



Contents 0:ix

Nearly-Doubling Spaces of Persistence Diagrams
Donald R. Sheehy and Siddharth S. Sheth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60:1–60:15

From Geometry to Topology: Inverse Theorems for Distributed Persistence
Elchanan Solomon, Alexander Wagner, and Paul Bendich . . . . . . . . . . . . . . . . . . . . . . . . 61:1–61:16

A Positive Fraction Erdős-Szekeres Theorem and Its Applications
Andrew Suk and Ji Zeng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62:1–62:15

Optimal Coreset for Gaussian Kernel Density Estimation
Wai Ming Tai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63:1–63:15

GPU Computation of the Euler Characteristic Curve for Imaging Data
Fan Wang, Hubert Wagner, and Chao Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64:1–64:16

Media Exposition

Space Ants: Episode II – Coordinating Connected Catoms
Julien Bourgeois, Sándor P. Fekete, Ramin Kosfeld, Peter Kramer,
Benoît Piranda, Christian Rieck, and Christian Scheffer . . . . . . . . . . . . . . . . . . . . . . . . . 65:1–65:6

A Cautionary Tale: Burning the Medial Axis Is Unstable
Erin Chambers, Christopher Fillmore, Elizabeth Stephenson, and
Mathijs Wintraecken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66:1–66:9

Visualizing and Unfolding Nets of 4-Polytopes
Satyan L. Devadoss, Matthew S. Harvey, and Sam Zhang . . . . . . . . . . . . . . . . . . . . . . . . 67:1–67:4

Visualizing WSPDs and Their Applications
Anirban Ghosh, FNU Shariful, and David Wisnosky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68:1–68:4

Subdivision Methods for Sum-Of-Distances Problems: Fermat-Weber Point,
n-Ellipses and the Min-Sum Cluster Voronoi Diagram

Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland, and Chee Yap . . . . . . . 69:1–69:6

An Interactive Framework for Reconfiguration in the Sliding Square Model
Willem Sonke and Jules Wulms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70:1–70:4

CG Challenge

Shadoks Approach to Minimum Partition into Plane Subgraphs
Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, and
Aldo Gonzalez-Lorenzo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71:1–71:8

Conflict-Based Local Search for Minimum Partition into Plane Subgraphs
Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng . . . . . . . . . . . . . . . . . . . . 72:1–72:6

Local Search with Weighting Schemes for the CG:SHOP 2022 Competition
Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège . . . . . . 73:1–73:6

SAT-Based Local Search for Plane Subgraph Partitions
André Schidler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74:1–74:8

SoCG 2022





Preface

The 38th International Symposium on Computational Geometry (SoCG 2022) was held in
Berlin, June 7–10, 2022, as part of the Computational Geometry Week (CG Week 2022).

Altogether, 174 papers were submitted to SoCG 2022. After a thorough review process,
in which each paper was evaluated by three or more independent reviewers, the program
committee accepted 64 papers for presentation at SoCG 2022. These proceedings contain
extended abstracts of the accepted papers, limited to 500 lines (excluding references). If
any supporting material does not fit in the line limit, the full paper is available at a public
repository and referenced in the corresponding extended abstract.

The Best Paper Award of SoCG 2022 goes to the paper “Chains, Koch Chains, and
Point Sets with many Triangulations” by Daniel Rutschmann and Manuel Wettstein; this
paper has been invited to submit an extended version to the Journal of the ACM. The Best
Student Presentation Award was determined and announced at the symposium, based on
ballots cast by the attendees. A selection of papers were invited to submit an extended
version to forthcoming special issues of Discrete & Computational Geometry and the Journal
of Computational Geometry dedicated to the symposium.

Two papers, “Robust Sylvester-Gallai type theorem for quadratic polynomials” and
“Robust Radical Sylvester-Gallai Theorem for Quadratics”, independently prove the same
main result with similar, but not identical techniques. The committee decided to include
them both in the proceedings, and have them presented jointly in a single talk at the
conference. The final version of each paper provides a comparison with the other paper. The
final decision for all other papers was unaffected by the decision to include both papers in
the proceedings.

The SoCG Test of Time Award of this year goes to the papers “Measuring the Re-
semblance of Polygonal Curves”, by Helmut Alt and Michael Godau, presented at SoCG 1992,
and “Efficient Partition Trees”, by Jirí Matousek, presented at SoCG 1991.

The scientific program of CG Week 2022 was enriched by two distinguished invited
speakers. An invited talk, entitled “Efficient Querying of Large-Scale Geodata”, was
delivered by Hannah Bast from University of Freiburg. A second invited talk, entitled
“Computational geometry and topology for spatial structures arising in biology”, was delivered
by Heather Harrington from University of Oxford. We thank these plenary speakers for
kindly accepting our invitation.

In addition to the technical papers, there were nine submissions to the multimedia
exposition. The submissions were reviewed, and six of them were accepted for presentation.
The extended abstracts that describe these submissions are included in this proceedings
volume. The multimedia content can be found at https://www.computational-geometry.
org.

A continuing feature in this year’s proceedings is the CG Challenge, now in its third
year being included in the proceedings. The challenge problem this year was to partition a
geometric graph in the plane into a small number of planar subgraphs. This year there were
32 teams submitting verified solutions, and these proceedings contain contributions by the
four top-placed teams describing their winning approaches.

We thank the authors of all submitted works. We are most grateful to the members of
the SoCG Program Committee, the Media Exposition Committee and the CG Challenge
Committee for their dedication, expertise, and hard work that ensured the high quality of
the works in these proceedings. We are grateful for the assistance provided by the hundreds
38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.computational-geometry.org
https://www.computational-geometry.org
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xii Preface

of reviewers; without their help it would have been nearly impossible to run the selection
process. Finally, we thank Irina Kostitsyna, who kindly accepted to be the Proceedings
Chair and did meticulous work.

Many other people contributed to the success of SoCG 2022 and the entire CG Week.
We are very grateful to the local organization committee for their work in organizing the
event, and to facilitate remote participation. Finally, we thank all the members of the Test
of Time Award, Workshop, and Young Researchers Forum Committees, the CG Challenge
Advisory Board, and the Computational Geometry Steering Committee.

Xavier Goaoc
SoCG program committee co-chair

Université de Lorraine

Michael Kerber
SoCG program committee co-chair

TU Graz

Aaron T. Becker
Media exposition chair
University of Houston

Sándor P. Fekete
CG challenge co-chair

TU Braunschweig

Stefan Schirra
CG challenge co-chair

Universität Magdeburg



Conference Organization

SoCG Program Committee

Henry Adams, Colorado State University, USA
SangWon Bae, Kyonggi University, South Korea
Édouard Bonnet, ENS Lyon, France
Timothy Chan, University of Illinois at Urbana-Champaign, USA
Hsien-Chih Chang, Darthmouth College, USA
Hu Ding, University of Science and Technology, China
Vida Dujmović, University of Ottawa, Canada
Herbert Edelsbrunner, IST, Austria
Radoslav Fulek, UC San Diego, USA
Xavier Goaoc (co-chair), Université de Lorraine, France
Stefan Huber, Salzburg University of Applied Sciences, Austria
Michael Kerber (co-chair), TU Graz, Austria
Marc van Kreveld, Utrecht University, The Netherlands
Claudia Landi, Università di Modena, Italy
Sepideh Mahabadi, Toyota Technological Institute at Chicago, USA
Yakov Nekrich, Michigan Tech, USA
Aleksandar Nikolov, University of Toronto, Canada
Gabriel Nivasch, Ariel University, Israel
Natan Rubin, Ben-Gurion University, Israel
Christiane Schmidt, Linköping University, Sweden
Haitao Wang, Utah State University, USA
Emo Welzl, ETH Zürich, Switzerland
Carola Wenk, Tulane University, USA
Andreas Wiese, Universidad de Chile
Chee Yap, New York University, USA

SoCG Proceedings Chair

Irina Kostitsyna, TU Eindhoven, Netherlands

Media Exposition Committee

Sariel Har-Peled, University of Illinois at Urbana-Champaign, USA
Sándor Fekete, TU Braunschweig, Germany
Maarten Löffler, Utrecht University, The Netherlands
Jason O’Kane, University of South Carolina, USA
Irene Parada, Technical University of Denmark, Denmark
Eli Packer, Intel Corporation, Israel
Brittany Fasy, Montana State University, USA
Aaron T. Becker (chair), University of Houston, USA

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xiv Conference Organization

CG Challenge Committee

Sándor Fekete (co-chair), TU Braunschweig, Germany
Phillip Keldenich, TU Braunschweig, Germany
Dominik Krupke, TU Braunschweig, Germany
Stefan Schirra (co-chair), Universität Magdeburg, Germany

CG Challenge Advisory Board

Bill Cook, University of Waterloo, Canada
Andreas Fabri, GeometryFactory, France
Michael Kerber, TU Graz, Austria
Philipp Kindermann, Universität Würzburg, Germany
Joe Mitchell, SUNY Stony Brook, USA
Kevin Verbeek, TU Eindhoven, The Netherlands

SoCG Test of Time Award Committee

Pankaj K. Agarwal, Duke University, USA
Dan Halperin, Tel Aviv University, Israel
Raimund Seidel, Saarland University, Germany

Workshop Committee

Ulrich Bauer, Technical University of Munich, Germany
Jie Gao, Rutgers University, USA
Wouter Meulemans, TU Eindhoven, Netherlands
David Mount (chair), University of Maryland, USA
Bei Wang, University of Utah, USA

Young Researchers Forum Program Committee

Peyman Afshani, Aarhus University, Denmark
Sergio Cabello, University of Ljubljana, Slovenia
Hsien-Chih Chang, Dartmouth College, USA
Anne Driemel (chair), Universität Bonn, Germany
André Nusser, University of Copenhagen, Denmark
Zuzana Patáková, Charles University, Czech Republic
Matias Korman, Mentor Graphics, USA
Monique Teillaud, INRIA, France

Local Organizing Committee

Benjamin Aram Berendsohn, Freie Universität Berlin, Germany
Helena Bergold, Freie Universität Berlin, Germany
Kenny Chiu, Freie Universität Berlin, Germany
Aruni Choudhary, Freie Universität Berlin, Germany
Heike Eckart, Freie Universität Berlin, Germany
Alexander Kauer, Freie Universität Berlin, Germany



Conference Organization 0:xv

Katharina Klost, Freie Universität Berlin, Germany
Kristin Knorr, Freie Universität Berlin, Germany
Wolfgang Mulzer (chair), Freie Universität Berlin, Germany
Johannes Obenaus, Freie Universität Berlin, Germany
Günter Rote, Freie Universität Berlin, Germany
Max Willert, Freie Universität Berlin, Germany

Steering Committee (2020-2022)

Mark de Berg (secretary), TU Eindhoven, Netherlands
Sándor Fekete, TU Braunschweig, Germany
Michael Hoffmann (chair), ETH Zurich, Switzerland
Matya Katz, Ben-Gurion University of the Negev, Israel
Bettina Speckmann, TU Eindhoven, Netherlands
Yusu Wang (liaison with the Society for Computational Geometry),
University of California San Diego, USA

SoCG 2022





Additional Reviewers

Ahmed Abdelkader
Peyman Afshani
Hee-Kap Ahn
Oswin Aichholzer
Elad Aigner-Horev
Hugo Akitaya
Ángel Javier Alonso
Helmut Alt
Enrique Alvarado
Sunil Arya
Ahmad Bilal Asghar
Stav Ashur
Marco Attene
Sergey Avvakumov
Martin Balko
Sayan Bandyapadhyay
Yair Bartal
Saugata Basu
Ulrich Bauer
Nicolas Berkouk
Daniel Bertschinger
Silvia Biasotti
Ahmad Biniaz
Håvard Bakke Bjerkevik
Prosenjit Bose
Magnus Bakke Botnan
Nicolas Bousquet
Karl Bringmann
Robyn Brooks
Adam Brown
Mickaël Buchet
Kevin Buchin
Maike Buchin
Boris Bukh
Michael Burr
Johnathan Bush
Sergio Cabello
Wojciech Chachólski
Dibyayan Chakraborty
Parinya Chalermsook
Erin Chambers
T-H. Hubert Chan
Amit Chattophadyay
Renjie Chen

Siu-Wing Cheng
Otfried Cheong
Samir Chowdhury
David Cohen-Steiner
Éric Colin de Verdière
Sebastiano Cultrera
Justin Curry
Guilherme D. Da Fonseca
Gábor Damásdi
Gautam K Das
Sandip Das
James Davies
Arnaud De Mesmay
Olivier Devillers
Tamal Dey
Michael Gene Dobbins
Ondrej Draganov
Anne Driemel
Loïc Dubois
Kunal Dutta
Eduard Eiben
Friedrich Eisenbrand
Nicolas El Maalouly
Alex Elchesen
David Eppstein
Esther Ezra
Chenglin Fan
Andreas Emil Feldmann
Stefan Felsner
Hendrik Fichtenberger
Christopher Fillmore
Arnold Filtser
Omrit Filtser
Benedikt Fluhr
Kyle Fox
Stefan Funke
Pawel Gawrychowski
Ishika Ghosh
Panos Giannopoulos
Barbara Giunti
Marc Glisse
Rocio Gonzalez-Diaz
Jonathan Goodman
Mayank Goswami

Lee-Ad Gottlieb
Bogdan Grechuk
Nicolas Grelier
Joachim Gudmundsson
Andrea Guidolin
Waldo Gálvez
Bernd Gärtner
Mustafa Hajij
Yassine Hamoudi
Sariel Har-Peled
Herman Haverkort
Qizheng He
Teresa Heiss
John Hershberger
Robert Hickingbotham
Hung Hoang
Michael Hoffmann
Andreas Holmsen
Tao Hou
Lingxiao Huang
Ziyun Huang
Thomas Hull
Kristof Huszar
Saeed Ilchi Ghazaan
Tanmay Inamdar
R Inkulu
Iordan Iordanov
Lars Jaffke
Shaofeng H.-C. Jiang
Alvin Jin
Michael Joswig
Dominik Kaaser
Farid Karimipour
Karthik C. S.
Lars Kastner
Matthew Katz
Maximilian Katzmann
Phillip Keldenich
Chaya Keller
Balázs Keszegh
Arindam Khan
Mincheol Kim
Minki Kim
Woojin Kim

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xviii Additional Reviewers

Sándor Kisfaludi-Bak
Felix Klesen
Fabian Klute
Dušan Knop
Benedikt Kolbe
Matias Korman
Irina Kostitsyna
Grigorios Koumoutsos
Hana Kourimska
Myroslav Kryven
Nirman Kumar
Marvin Künnemann
Elmar Langetepe
Sylvain Lazard
Francis Lazarus
Hung Le
Vadim Lebovici
Dongryeol Lee
Michael Lesnick
Jian Li
Tongyang Li
Jyh-Ming Lien
Sunhyuk Lim
Jiashuai Lu
Anna Lubiw
Benjamin Lund
Hengrui Luo
Maarten Löffler
Sushovan Majhi
Willi Mann
Mathieu Mari
Killian Meehan
Facundo Memoli
David L. Millman
Till Miltzow
Majid Mirzanezhad
Guillaume Moroz
Dmitriy Morozov
David Mount
Michael Moy
Wolfgang Mulzer
Elizabeth Munch
Tobias Mömke
Torsten Mütze
Chie Nara
Abhinandan Nath
Ofer Neiman
Eike Neumann

Stefan Neumann
Bengt J. Nilsson
Navid Nouri
André Nusser
Martin Nöllenburg
Joseph O’Rourke
Eunjin Oh
Yoshio Okamoto
Osman Okutan
Tim Ophelders
Steve Oudot
Rasmus Pagh
Peter Palfrader
Fahad Panolan
Evanthia Papadopoulou
Irene Parada
Salman Parsa
Amit Patel
Pavel Paták
Francois Petit
Seth Pettie
Jeff Phillips
Madhusudhan Reddy Pittu
Valentin Polishchuk
Marc Pouget
Siddharth Pritam
Ioannis Psarros
Dömötör Pálvölgyi
Sharath Raghvendra
Saladi Rahul
Benjamin Raichel
Rajiv Raman
Jan Rataj
Abhishek Rathod
Meghana M Reddy
Vanessa Robins
Liam Roditty
Dennis Rohde
Alexander Rolle
Pepijn Edwin Robert
Roos Hoefgeest
Günter Rote
Cameron Rudd
Florian Russold
Daniel Rutschmann
Leonie Ryvkin
Morteza Saghafian
Michael Sagraloff

Allan Sapucaia
Marcus Schaefer
Christian Scheffer
Anna Schenfisch
Manfred Scheucher
Arne Schmidt
Patrick Schnider
Jordan Schupbach
Chris Schwiegelshohn
Martina Scolamiero
Mordechai Shalom
Vikram Sharma
Nicholas Sharp
Chan-Su Shin
Devansh Shringi
Anastasios Sidiropoulos
Francesco Silvestri
Berit Singer
Isabelle Sivignon
Primoz Skraba
Michiel Smid
Pablo Soberón
József Solymosi
Bettina Speckmann
Jonathan Spreer
Frank Staals
Raphael Steiner
Elizabeth Stephenson
Miloš Stojaković
Martin Suderland
Andrew Suk
Yihan Sun
Konrad Swanepoel
Shuhao Tan
Martin Tancer
Ewin Tang
Erin Taylor
Monique Teillaud
Francesca Tombari
Csaba Tóth
Geza Tóth
Manuel Trigueros
Konstantinos Tsakalidis
Takashi Tsuboi
Jan Vahrenhold
Mikael Vejdemo-Johansson
Kevin Verbeek
Antoine Vigneron



Additional Reviewers 0:xix

Ziga Virk
Hubert Wagner
Bartosz Walczak
Zhengchao Wan
Bei Wang
Qingsong Wang
Yanhao Wang
Simon Weber
Manuel Wettstein
Max Willert
Mathijs Wintraecken

Sampson Wong
David R. Wood
Matthew Wright
Jie Xue
Sang Duk Yoon
Jingjin Yu
Joshua Zahl
Nicolò Zava
Ji Zeng
Sebastian Zeng
Shira Zerbib

Da Wei Zheng
Ling Zhou
Samson Zhou
Mark de Berg
Sarita de Berg
Stefan de Lorenzo
Vin de Silva
André van Renssen
Tom van der Zanden
Péter Ágoston
Onur Çağırıcı

SoCG 2022





Tiling with Squares and Packing Dominos in
Polynomial Time
Anders Aamand #

MIT, Cambridge, MA, US

Mikkel Abrahamsen #

BARC, University of Copenhagen, Denmark

Thomas Ahle #

BARC, University of Copenhagen, Denmark

Peter M. R. Rasmussen #

BARC, University of Copenhagen, Denmark

Abstract
A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which
may have holes. In this paper, we consider planar tiling and packing problems with polyomino
pieces and a polyomino container P . We give polynomial-time algorithms for deciding if P can be
tiled with k × k squares for any fixed k which can be part of the input (that is, deciding if P is
the union of a set of non-overlapping k × k squares) and for packing P with a maximum number
of non-overlapping and axis-parallel 2 × 1 dominos, allowing rotations by 90◦. As packing is more
general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2 × 1 dominos.

These are classical problems with important applications in VLSI design, and the related problem
of finding a maximum packing of 2 × 2 squares is known to be NP-hard [J. Algorithms 1990]. For
our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with
running times polynomial in the area or perimeter of P . However, the standard, compact way to
represent a polygon is by listing the coordinates of the corners in binary. We use this representation,
and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple
O(n log n)-time algorithm for tiling with squares, where n is the number of corners of P . We then
give a more involved algorithm that reduces the problems of packing and tiling with dominos to
finding a maximum and perfect matching in a graph with O(n3) vertices. This leads to algorithms
with running times O(n3 log3 n

log2 log n
) and O(n3 log2 n

log log n
), respectively.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases packing, tiling, polyominos

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.1

Related Version Full Version: https://arxiv.org/abs/2011.10983

Funding Anders Aamand: Supported by a DFF-International Postdoc Grant from the Independent
Research Fund Denmark.
Mikkel Abrahamsen: Supported by Starting Grant 1054-00032B from the Independent Research
Fund Denmark under the Sapere Aude research career programme. BARC is supported by the
VILLUM Foundation grant 16582.
Thomas Ahle: BARC is supported by the VILLUM Foundation grant 16582.
Peter M. R. Rasmussen: BARC is supported by the VILLUM Foundation grant 16582.

1 Introduction

A chessboard has been mutilated by removing two diagonally opposite corners, leaving 62
squares. Philosopher Max Black asked in 1946 whether one can place 31 dominos of size
1 × 2 so as to cover all of the remaining squares? Tiling problems of this sort are popular in

© Anders Aamand, Mikkel Abrahamsen, Thomas Ahle, and Peter M. R. Rasmussen;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 1; pp. 1:1–1:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aamand@mit.edu
https://orcid.org/0000-0002-0402-0514
mailto:miab@di.ku.dk
https://orcid.org/0000-0003-2734-4690
mailto:lobais@gmail.com
https://orcid.org/0000-0001-9747-0479
mailto:pmrr@di.ku.dk
https://orcid.org/0000-0001-9219-8410
https://doi.org/10.4230/LIPIcs.SoCG.2022.1
https://arxiv.org/abs/2011.10983
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Tiling with Squares and Packing Dominos in Polynomial Time

Figure 1 The chessboard polyomino envisioned by Max Black.

recreational mathematics, such as the mathematical olympiads1 and have been discussed
by Golomb [14] and Gamow and Stern [12]. The mutilated chessboard and the dominos
are examples of the type of polygon called a polyomino, which is a polygonal region of the
plane with axis-parallel edges and corners of integral coordinates. We allow polyominos to
have holes.

From an algorithmic point of view, it is natural to ask whether a given (large) polyomino
P can be tiled by copies of another fixed (small) polyomino Q, which means that P is the
union of non-overlapping copies of Q that may or may not be rotated by 90◦ and 180◦. As
the answer is often a boring no, one can ask more generally for the largest number of copies of
Q that can be packed into the given container P without overlapping. Algorithms answering
this question (for various Q) turn out to have important applications in very large scale
integration (VLSI) circuit technology. As a concrete example, Hochbaum and Maass [15]
gave the following motivation for their development of a polynomial-time approximation
scheme for packing 2 × 2 squares into a given polyomino P (using the area representation of
P , to be defined later).

“For example, 64K RAM chips, some of which may be defective, are available on a
rectilinear grid placed on a silicon wafer. 2 × 2 arrays of such nondefective chips could
be wired together to produce 256K RAM chips. In order to maximize yield, we want
to pack a maximal number of such 2 × 2 arrays into the array of working chips on a
wafer.”

Although the mentioned amounts of memory are small compared to those of present day
technology, the basic principles behind the production of computer memory are largely
unchanged, and methods for circumventing defective cells of wafers (the cells are also known
as dies in this context) is still an active area of research in semiconductor manufacturing
[7, 9, 17, 19].

The most important result in tiling is perhaps the combinatorial group theory approach
by Conway and Lagarias [8]. Their algorithmic technique is used to decide whether a given
finite region consisting of cells in a regular lattice (triangular, square, or hexagonal) can be
tiled by pieces drawn from a finite set of tile shapes. Thurston [25] gives a nice introduction
to the technique and shows how it can be used to decide if a polyomino without holes can

1 See e.g. the “hook problem” of the International Mathematical Olympiad 2004.



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:3

be tiled by dominos. The running time is O(a log a), where a is the area of P . Pak, Sheffer,
and Tassy [22] described an algorithm with running time O(p log p), where p is the perimeter
of P .

The problem of packing a maximum number of dominos into a given polyomino P was
apparently first analyzed by Berman, Leighton, and Snyder [5] who observed that this
problem can be reduced to finding a maximum matching of the incidence graph G(P ) of the
cells in P : There is a vertex for each 1 × 1 cell in P , and two vertices are connected by an
edge if the two cells share a geometrical edge. The graph G(P ) is bipartite, so the problem
can be solved in O(a3/2) time using the Hopcroft–Karp algorithm, where a is the number of
cells (i.e., the area of P ).

On the flip-side, a number of hardness results have been obtained for simple tiling and
packing problems: Beauquier, Nivat, Remila, and Robson [2] showed that if P can have holes,
the problem of deciding if P can be tiled by translates of two rectangles 1 × m and k × 1
is NP-complete as soon as max{m, k} ≥ 3 and min{m, k} ≥ 2. Pak and Yang [23] showed
that there exists a set of at most 106 rectangles such that deciding whether a given hole-free
polyomino can be tiled with translates from the set is NP-complete. Other generalizations
have even turned out be undecidable: Berger [3] proved in 1966 that deciding whether pieces
from a given finite set of polyominos can tile the plane is Turing-complete (interestingly,
Wijshoff and van Leeuwen [26] and Beauquier and Nivat [1] gave algorithms for deciding
whether a single polyomino tiles the plane). For packing, Fowler, Paterson, and Tanimoto [11]
showed already in the early 80s that deciding whether a given number of 3 × 3 squares can
be packed into a polyomino (with holes) is NP-complete, and the result was strengthened to
2 × 2 squares by Berman, Johnson, Leighton, Shor, and Snyder [4].

As it turns out, for all of the above results, it is assumed that the container P is
represented either as a list of the individual cells forming the interior of P or as a list of the
boundary cells. We shall call these representations the area representation and perimeter
representation, respectively. The area and perimeter representations correspond to a unary
rather than binary representation of integers and the running times of the existing algorithms
are thus only pseudo-polynomial. It is much more efficient and compact to represent P by the
coordinates of the corners, where the coordinates are represented as binary numbers. This is
the way one would usually represent polygons (with holes) in computational geometry: The
corners are given in cyclic order as they appear on the boundary of P , one cycle for the outer
boundary and one for each of the holes of P . We shall call such a representation a corner
representation. With a corner representation, the area and perimeter can be exponential in
the input size, so the known algorithms which rely on an area or perimeter representation to
be polynomial, are in fact exponential when using this more efficient encoding of the input.
Problems that are NP-complete in the area or perimeter representation are also NP-hard in
the corner representation, but NP-membership does not necessarily follow. In our practical
example of semiconductor manufacturing, the corner representation also seems to be the
natural setting for the problem: Hopefully, there are only few defective cells to be avoided
when grouping the chips, so the total number of corners of the usable region is much smaller
than its area.

El-Khechen, Dulieu, Iacono, and Van Omme [10] showed that even using a corner
representation for a polymino P , the problem of deciding if m squares of size 2 × 2 can be
packed into P is in NP. That was not clear before since the naive certificate specifies the
placement of each of the m squares, and so, would have exponential length. Beyond this,
we know of no other work using the corner representation for polyomino tiling or packing
problems.

SoCG 2022



1:4 Tiling with Squares and Packing Dominos in Polynomial Time

Our contribution

While the complexity of the problem of packing 2 × 2 squares into a polyomino P has thus
been settled as NP-complete, the complexity of the tiling problem was left unsettled. Tiling
and packing are closely connected in this area of geometry, but their complexities can be
drastically different. Indeed, we show in Section 3 that it can be decided in O(n log n) time
by a surprisingly simple algorithm whether P can be tiled by k × k squares for any fixed
k ∈ N which can even be part of the input. Here, n is the number of corners of P .2 With
the area and perimeter representations, it is trivial to decide if P can be tiled in polynomial
time (see Section 3), but as noted above, using the corner representation, it is not even
immediately obvious that the problem is in NP.

In Section 4, we provide and analyze a simple algorithm, which we denote simple-packer,
that can decide if m dominos (i.e., rectangles of size 1 × 2 that can be rotated 90◦) can be
packed in a given polyomino P . The algorithm works by truncating long edges of P , so that
the resulting polyomino P ′′ has area O(n4). The graph G(P ′′) induced by the unit square
cells constituting P ′′ can likewise be constructed in time O(n4). We then use a multiple-sink
multiple-source maximum flow algorithm as a black box [6, 13] to find a maximum matching
in G(P ′′), which results in a running time of O(n4 log3 n

log2 log n
). In order to decide if P can be

tiled with dominos, we can instead use a single-source shortest path algorithm [21], with
which one can find perfect matchings in bipartite planar graphs [20], and we obtain a slightly
better running time of O(n4 log2 n

log log n ). Although the truncation process of reducing the size to
O(n4) is simple, the proof of correctness is nontrivial and requires some structural lemmas
on domino packings.

In the full version of this paper, we manage to reduce the domino packing and tiling
problems to finding a maximum and perfect matching in a bipartite planar graph G∗

with O(n3) vertices, instead of O(n4) as for simple-packer. We denote this algorithm
fast-packer. The actual graph G∗ can also be constructed in time O(n3). This reduction
relies on the same structural results as are needed for simple-packer, but it is however
quite a bit more complicated, and many techniques and technical lemmas are required to
prove correctness and bound the size of G∗. We obtain running times of O(n3 log3 n

log2 log n
) and

O(n3 log2 n
log log n ) for packing and tiling, respectively. Table 1 summarises the known and new

results.

Table 1 Complexities of the four fundamental tiling and packing problems. Here, n is the number
of corners of the container P . The algorithm for tiling with squares works for any size k × k.

Shapes Tiling Packing

O(n3 log2 n
log log n

) [This paper] O(n3 log3 n
log2 log n

) [This paper]

O(n log n) [This paper] NP-complete [4, 10]

2 We assume throughout the paper that we can make basic operations (additions, subtractions, compar-
isons) on the coordinates in O(1) time. Otherwise, the time complexity of our square tiling algorithm
will be O(nt log n) and the domino packing algorithm will have complexity O(n3t + n3 log3 n

log2 log n
), where

t is the time it takes to make one such operation.



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:5

Open problems

Many interesting questions remain for slightly more complex shapes than studied in this
paper. For instance, polynomial-time algorithms are known for tiling polyominos with
larger rectangles in the area representation [18, 24]. Are there also algorithms in the corner
representation? For the problems that are NP-complete in the area representation [2, 16, 23],
which are also contained in NP in the corner representation?

Another interesting problem is to design domino tiling and packing algorithms with better
running times than our Õ(n3) in the corner representation, e.g., near-linear time algorithms.
It seems conceivable that the techniques of [22] can lead to such improvements for tiling
simply connected polyominos with dominos. Specifically, it is shown that to decide tilability
of a simply connected polyomino P , it suffices to check a certain Lipschitz condition on a
height function defined on the boundary ∂P of P , and that (essentially) this check can be
carried out by considering only O(p) pairs of boundary points, where p is the perimeter of P .
It is plausible that one could obtain a similar bound on the number of pairs to be checked in
terms of n, which would lead to a faster domino tiling algorithm for hole-free polyominos.

1.1 Our techniques
Tiling with k × k squares

We sort the corners of the given polyomino P by the x-coordinates and use a vertical sweep-
line ℓ that sweeps over P from left to right. The intuition is that the algorithm keeps track
of how the tiling looks in the region of P to the left of ℓ if a tiling exists. As ℓ sweeps over
P , we keep track of how the tiling pattern changes under ℓ. Each vertical edge of P that ℓ

sweeps over causes changes to the tiling, and we must update our data structure accordingly.

Packing dominos

The basic approach of both the simple-packer and the fast-packer algorithm is to reduce
the packing problem in the polyomino P (with n corners) to a maximum matching problem
in a graph G∗ with only polynomially many vertices and edges. We prove that a maximum
matching in G∗ corresponds to a maximum packing of dominos in P . The construction of
G∗ relies on some non-trivial structural results on domino packings.

The algorithm simple-packer first sorts the corners by x-coordinates and considers
the corners in this order c1, . . . , cn. When x(ci+1) − x(ci) > 9n, we move all the corners
ci+1, . . . , cn to the left by a distance of ≈ x(ci+1) − x(ci) − 6n, so that the new distance is
≈ 6n. We then do a similar truncation of vertical edges, and the resulting polyomino P ′′ has
area O(n4). We define G∗ as the induced graph G∗ := G(P ′′) and then compute a maximum
matching M in G∗ using a multiple-source multiple-sink maximum flow algorithm [6, 13].
The structural lemmas are used to ensure that the number of uncovered cells in maximum
domino packings of the original polyomino P and the reduced P ′′ are the same, so it follows
that a maximum domino packing in P has size |M | + area(P )−area(P ′′)

2 .
The algorithm fast-packer works by reducing the packing problem to finding a maximum

matching in a bipartite planar graph G∗ with O(n3) vertices. The number of dominos in
a maximum packing in the original polyomino P is then |M | + area(P )−|V (G∗)|

2 , where M is
a maximum matching in G∗ and V (G∗) is the set of vertices of G∗. The construction of
G∗ requires many techniques and technical lemmas regarding the particular way we define
intermediate polyominos and graphs that are used to eventually arrive at G∗. The process

SoCG 2022



1:6 Tiling with Squares and Packing Dominos in Polynomial Time

consists of five steps, and they are illustrated and described informally in Figures 2–4. We
refer the reader to the full version for a detailed description of the steps and proofs that the
algorithm works as claimed.

P1P

Figure 2 Steps 1 and 2 made by the fast-packer algorithm. Top left: In step 1, we define
P1 ⊆ P to be the maximum subpolyomino with all corner coordinates even. The removed part
P \ P1 is shown in red along the edges. Top right: In step 2, we carve channels from the holes of
P1 to the outer boundary, to get a hole-free polyomino P2. Bottom: Closeup of the region in the
dashed rectangle.

2 Preliminaries

We define a cell to be a 1 × 1 square of the form [i, i + 1] × [j, j + 1], i, j ∈ Z. A subset
P ⊆ R2 is called a polyomino if it is a finite union of cells. For a polyomino P , we define
G(P ) to be the graph which has the cells in P as vertices and an edge between two cells if
they share a (geometric) edge. We say that P is connected if G(P ) is a connected graph.
Figure 5 (a) illustrates a connected polyomino. For a simple closed curve γ ⊆ R2, we denote
by Int γ the interior of γ. An alternative way to represent a connected polyomino is by a
sequence of simple closed curves (γ0, γ1, . . . , γh) such that (1) each of the curves follows the
horizontal and vertical lines of the integral grid Z2, (2) for each i ∈ {1, . . . , h}, Int γi ⊆ Int γ0,
(3) for each distinct i, j ∈ {1, . . . , h}, Int γi ∩ Int γj = ∅, and (4) for distinct i, j ∈ {0, . . . , h},
γi ∩ γj ⊆ Z2. For a connected polyomino P , there exists a unique such sequence (up to
permutations of γ1, . . . , γh) with P = Int γ0 \ (

⋃h
i=1 Int γi). It is standard to reduce our

tiling and packing problems to corresponding tiling and packing problems for connected
polyominos, so for simplicity we will assume that the input polyominos to our algorithms



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:7

P2 QQ P3

Figure 3 Steps 3 and 4 made by the fast-packer algorithm, performed on the instance from
Figure 2. Left: In step 3, we compute the grey region Q, which is obtained by offsetting the boundary
of the hole-free polyomino P2 inwards by a distance of Θ(n). In this example, Q is connected, but
that is in general not the case. Right: In step 4, we consider the polyomino P3 := P \ Q in which all
cells have distance O(n) to the boundary. We identify long pipes (the dark, blue rectangles). These
may be exponentially long and must therefore be reduced.

x = k + 2 x = 2⌈ℓ/2⌉ − k − 2

Ti

Figure 4 In step 5, the algorithm fast-packer reduces each pipe Ti of P3, here of size ℓ × k, to
a graph of polynomial size. The part of the induced graph G(Ti) in between the dashed vertical
lines is replaced by long horizontal edges.

are connected. The corners of a polyomino P (specified by a sequence (γ0, γ1, . . . , γh)), are
the corners of the curves γ0, . . . , γh. We assume that an input polyomino with n corners
is represented using O(n) words of memory by describing the corners of each of the curves
γ0, . . . , γh in cyclic order.

γ0

γ2

(a) (b)

γ1

Figure 5 (a) A polyomino with two holes. (b) Extending a domino packing using an augmenting
path in G(P ).

In this paper we will exclusively work with the L∞-norm when measuring distances. For
two points a, b ∈ R2 we define dist(a, b) = ∥a − b∥∞. For two subsets A, B ⊆ R2 we define

dist(A, B) = inf
(a,b)∈A×B

dist(a, b).

SoCG 2022



1:8 Tiling with Squares and Packing Dominos in Polynomial Time

In our analysis, A and B will always be closed and bounded (they will in fact be polynomios),
and then the inf can be replaced by a min. Finally, we need the notion of the offset B(A, r)
of a set A ⊆ R2 by a value r ∈ R. If r ≥ 0, we define

B(A, r) :=
{

x ∈ R2 ∣∣ dist(x, A) ≤ r
}

,

and otherwise, we define B(A, r) := B(Ac, −r)c. Note that if r ≥ 0, we have A ⊆ B(A, r)
and otherwise, we have B(A, r) ⊆ A.

Note that a domino packing of P naturally corresponds to a matching of G(P ) and we
will often take this viewpoint. We therefore require some basic matching terminology and
a result on how to extend matchings. Let G be a graph and M a matching of G. A path
(v1, . . . , v2k) of G is said to be an augmenting path if v1 and v2k are unmatched in M and for
each 1 ≤ i ≤ k − 1, v2i and v2i+1 are matched to each other in M . Modifying M restricted
to {v1, . . . , v2k} by instead matching (v2i−1, v2i) for 1 ≤ i ≤ k, we obtain a larger matching
which now includes the two vertices v1 and v2k. See Figure 5 (b) for an illustration in the
context of domino packings. We require the following basic result by Berge which guarantees
that any non-maximum matching of G can always be extended to a larger matching using
an augmenting path as above.

▶ Lemma 1 (Berge). Let G be a graph and M a matching of G which is not maximum.
Then there exists an augmenting path between two unmatched vertices G.

3 Tiling with squares

3.1 Naive algorithm
The naive algorithm to decide if P can be tiled with k × k tiles works as follows. Consider
any convex corner c of P . A k × k square S must be placed with a corner at c. If S is not
contained in P , we conclude that P cannot be tiled with k ×k squares. Otherwise, we recurse
of the uncovered part P \ S. When nothing is left, we conclude that P can be tiled. This
algorithm runs in time polynomial in the area of P and also shows that if P can be tiled,
there is a unique way to do it.

3.2 Sweep-line algorithm
For the ease of presentation, we focus on the case of deciding tileability using 2 × 2 squares.
It is straightforward to adapt the algorithm to decide tileability by k × k squares for any
fixed k ∈ N, as explained in the full version.

Our algorithm for deciding if a given polyomino P can be tiled with 2 × 2 squares uses a
vertical sweep line that sweeps over P from left to right. The intuition is that the algorithm
keeps track of how the tiling looks in the region of P to the left of ℓ if a tiling exists. As ℓ

sweeps over P , we keep track of how the tiling pattern changes under ℓ. Each vertical edge
of P that ℓ sweeps over causes changes to the tiling, and we must update our data structures
accordingly.

Recall that if P is tileable, then the tiling is unique. We define T (P ) ⊆ P to be the union
of the boundaries of the tiles in the tiling of P , i.e., such that P \ T (P ) is a set of open 2 × 2
squares. If P is not tileable, we define T (P ) := ⊥.

Consider the situation where the sweep line is some vertical line ℓ with integral x-
coordinate x(ℓ). The algorithm stores a set I of pairwise interior-disjoint closed intervals
I = I1, . . . , Im ⊆ R, ordered from bottom to top. Each interval Ii has endpoints at integers



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:9

and represents the segment I ′
i := {x(ℓ)} × Ii on ℓ. In the simple case that no vertical edge

of P has x-coordinate x(ℓ) (so that no change to the set P ∩ ℓ happens at this point), the
intervals I together represent the part of ℓ in P , i.e., we have P ∩ ℓ =

⋃
i∈[m] I ′

i. If one or
more vertical edges of P have x-coordinate x(ℓ), then P ∩ ℓ changes at this point and the
intervals I must be updated accordingly.

For each interval Ii we store a parity p(Ii) ∈ {0, 1}, which encodes how the tiling must
be at I ′

i if P is tileable. To make this precise, we state the following parity invariant of the
algorithm under the assumption that P is tileable; see also Figure 6.

e2 e3

e4 e6
e3

e4

Figure 6 Two instances that cannot be tiled. Left: The edge e2 splits the only interval in I into
two smaller intervals. Then e3 introduces a new interval with a different parity than the existing
two. The edge e4 makes the algorithm conclude that P cannot be tiled since e4 overlaps an interval
with the wrong parity. Right: The edges e3 and e4 introduce new intervals that are merged with
the existing one. Edge e6 introduces an interval which is merged with the existing interval and the
result has odd length, so the algorithm concludes that P cannot be tiled.

If p(Ii) and x(ℓ) have the same parity, then I ′
i ⊆ T (P ), i.e., I ′

i follows the boundaries of
some tiles and does not pass through the middle of any tile.
Otherwise, I ′

i ∩ T (P ) consists of isolated points, i.e., I ′
i passes through the middle of some

of the tiles and does not follow the boundary of any tile.

We say that two neighboring intervals Ii, Ii+1 of I are true neighbors if Ii and Ii+1 share
an endpoint. In addition to the parity invariant, we require I to satisfy the following neighbor
invariant: Any pair of true neighbors of I have different parity.

The pseudocode of the algorithm is shown in Algorithm 1. Initially, we sort all vertical
edges after their x-coordinates and break ties arbitrarily. We then run through the edges in
this order. Each edge makes a change to the set P ∩ ℓ, and we need to update the intervals
I accordingly so that the parity and the neighbor invariants are satisfied after each edge has
been handled. Figure 6 shows examples of the two cases where the algorithm concludes that
there is not tiling.

Using the parity and neighbour invariants, it is proven in the full version that the algorithm
returns “tileable” if and only if P is tileable. Moreover, it is shown that the algorithm can
be implemented to run in O(n log n) time.

4 Simple domino packing algorithm

In this section we will present our polynomial-time algorithm simple-packer for finding the
maximum number of 1 × 2 dominos that can be packed in a polyomino P . We assume that
the dominos must be placed with axis-parallel edges, but they can be rotated by 90◦. In
any such packing, we can assume the pieces to have integral coordinates: if they do not, we

SoCG 2022



1:10 Tiling with Squares and Packing Dominos in Polynomial Time

Algorithm 1 Our simple sweep line algorithm for deciding if a polyomino (that may have
wholes) can be tiled with 2 × 2 square polyominos.

1 Let e1, . . . , ek be the vertical edges of P in sorted order.
2 for j = 1, . . . , k do
3 Let [y0, y1] be the interval of y-coordinates of ej .
4 if the interior of P is to the left of ej

5 for each Ii ∈ I that overlaps [y0, y1] do
6 if Ii and x(ej) have different parity
7 return “no tiling”
8 Remove Ii from I, let J := Ii \ [y0, y1], and if J ̸= ∅, add the interval(s) in

J to I.
9 else

10 Make a new interval I := [y0, y1] with the parity p(I) := x(ej) mod 2 and add
I to I.

11 if I has one or two true neighbors in I that also have the same parity as I

12 Merge those intervals in I.

13 if j < k and x(ej+1) > x(ej) and some Ii ∈ I has odd length
14 return “no tiling”

15 return “tileable”

can translate the pieces as far down and to the left as possible, and the corners will arrive
at positions with integral coordinates. We first describe a naive algorithm which runs in
polynomial time in the area of the polyomino.

4.1 Naive algorithm
The naive algorithm considers the graph G(P ) = (V, E) where V is the set of cells of P and
e = (u, v) ∈ E if and only if the two cells u and v have a (geometrical) edge in common.
The maximum number of 1 × 2 dominos that can be packed in P is exactly the size of a
maximum matching of G and it is well known that such a maximum matching can be found
in polynomial time in |V |, i.e., in the area of P .

4.2 Simple polynomial-time algorithm
Our polynomial-time algorithm, simple-packer, first sorts the corners of P by x-coordinates
and consider the corners in this order c1, . . . , cn. When x(ci+1) − x(ci) > 9n, we move all the
corners ci+1, . . . , cn to the left by a distance of 2⌊ x(ci+1)−x(ci)

2 ⌋ − 6n. We call this operation
a contraction. The result after all of the contractions is a polyomino P ′ with the parities
of the x-coordinates unchanged and with the difference between the x-coordinates of any
two consecutive corners at most 6n. We then consider the corners in order according to
y-coordinates and do a similar truncation of the long vertical edges. We have now reduced
the container P to an orthogonal polygon P ′′ of area at most O(n4), since the span of the
x-coordinates is O(n2), as is the span of the y-coordinates. We proceed by finding maximum
or perfect matchings in G(P ′′), as described in the introduction.

For some containers P , the graph G(P ′′) really has Ω(n4) vertices, so simple-packer
is indeed slower than fast-packer. For instance when the boundary of P consists of four
“staircases”, each consisting of n/4 vertices, where each step has width and height n; see
Figure 7 (left). Here, fast-packer will remove most of the interior, leaving a layer of cells
of thickness O(n) around the boundary, but simple-packer will not make any contractions.



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:11

P P ′

n
n

Figure 7 Left: A polyomino with area Ω(n4) that simple-packer will not reduce. Right: If we
truncate edges so that consecutive x-coordinates have difference either 1 or 2 (keeping the parities
invariant), then there may be more uncovered cells in a maximum packing of the reduced instance
than in the original.

One might be tempted to think that we can even truncate the edges so that the difference
between consecutive x- and y-coordinates is either 1 or 2, keeping the parity of all coordinates.
However, this does not work, as seen in Figure 7 (right). Two dominos can be packed in the
reduced container P ′, and the reduction decreases the area by eigth cells, so the formula
would give that the original container P has room for six dominos, but there is actually room
for seven.

4.3 Structural results on polyominos and domino packings
Building up to our structural results on domino packings, we require a few definition and
simple lemmas. We first introduce the notion of a pipe (see Figure 8) and consistent parity.

▶ Definition 2. Let P and Q be polyominos with Q ⊆ P . We say that Q is a pipe of P if
Q is rectangular and both vertical edges of Q or both horizontal edges of Q are contained
in edges of P . The width of the pipe is the distance between this pair of edges. The length
of the pipe is the distance between the other pair of edges. We say that a pipe is long if its
length is at least 3 times its width.

k
ℓ

Q

Figure 8 A pipe Q of width k and length ℓ.

▶ Definition 3. We say that a polyomino P has consistent parity if all first coordinates of
the corners of P have the same parity and likewise for the second coordinates. Equivalently,
P has consistent parity if there exists an open 2 × 2 square, S, such that for all choices of
integers i, j and S′ = S + (2i, 2j), either S′ ⊆ P or S′ ∩ P = ∅.

Variations of the following lemma are well-known. We present a proof for completeness.

▶ Lemma 4. Let P be an orthogonal polygon with n corners and h holes. P can be divided
into at most n/2 + h − 1 rectangular pieces by adding only vertical line segments to the
interior of P . If P is a polyomino, the rectangular pieces can be chosen to be polyominos too.

SoCG 2022



1:12 Tiling with Squares and Packing Dominos in Polynomial Time

Figure 9 A partition of a polyomino with two holes into rectangles using vertical line segments
(blue).

Proof. For each concave corner of the polygon we add a vertical line segment in the interior
of the polygon starting from that corner and going upwards or downwards (depending on
the rotation of the given corner). This is illustrated in Figure 9. Let s be the number
of line segments added. It is easy to check that this gives a partition of P into exactly
s − h + 1 rectangles. With h holes, the number of concave corners is n/2 + 2(h − 1), so also
s ≤ n/2 + 2(h − 1) and the result follows. ◀

Note that for a polygon with n corners, h ≤ (n − 4)/4, so we have the following trivial
corollary.

▶ Corollary 5. The number of rectangular pieces in Lemma 4 is at most 3
4 n − 2.

We next show that the property of consisting parity is preserved under integral offsets.

▶ Lemma 6. Let P be a polyomino. If P has consistent parity, then B(P, 1) and B(P, −1)
have consistent parity.

Proof. Suppose P has consistent parity. Let S be a 2 × 2 square as in Definition 3. Define
S1 = S + (1, 1). It is easy to check that for all choices of integers i, j and S′

1 := S1 + (2i, 2j),
either S′

1 ⊆ B(P, 1) or S′
1 ∩ B(P, 1) = ∅. Thus B(P, 1) has consistent parity. The argument

that B(P, −1) has consistent parity is similar. ◀

▶ Lemma 7. Let P be a connected polyomino of consistent parity and without holes. Define
L1 = B(P, 1)\P and L−1 = P \B(P, −1). Then G(L1) and G(L−1) both have a Hamiltonian
cycle of even length.

Proof. To obtain a Hamiltonian cycle of G(L1), we can simply trace P around the outside of
its boundary, visiting all cells of L1 in a cyclic order. The corresponding closed trail of G(L1)
visits each vertex at least once. The assumption of consistent parity is easily seen to imply
that we in fact visit each vertex exactly once, so the obtained trail is a Hamiltonian cycle.
The graph G(L1) is bipartite, so the cycle has even length. The argument that G(L−1) has
a Hamiltonian cycle of even length is similar. ◀

With the above in hand, we are ready to state and prove our main structural results on
domino packings. They are presented in Lemma 8 and Lemma 10.

▶ Lemma 8. Let P and P0 be polyominos such that P0 ⊆ P , P0 has no holes, and P0 has
consistent parity. Let the total number of corners of P and P0 be n. Define r = ⌊ 3

8 n⌋ and
Q = B(P0, −r). There exists a maximum packing of P with 1 × 2 dominos which restricts to
a tiling of Q.



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:13

Let us briefly pause to explain the importance of Lemma 8. Suppose that P contains a
region Q as described. Then Lemma 8 tells us that any domino tiling of Q can be extended to
a maximum domino packing of P . We can thus disregard Q and focus on finding a maximum
packing of P \ Q, thus reducing the problem to a smaller instance. This is one of our key
tools for reducing the size of the original polyomino P to a matching problem of polynomial
size.

Proof. It follows from Lemma 6 that Q has consistent parity, and it can thus be tiled with
2 × 2 squares and hence with dominos. Let Q be a tiling of Q.

P0

Q

Q

Q

Figure 10 The polyomino P0 and the offset Q (shown in green). The figure also illustrates the
“layers” Ai and their domino tilings, Ai.

Define R = P \P0 and note that R has at most n corners. It follows from Corollary 5 that
R can be partitioned into less than 3

4 n rectangular polyominos. Each of these rectangles has
a domino packing with at most one uncovered cell (which happens when the total number of
cells in the rectangle is odd). Fix such a packing R of the rectangles of R with dominos.

We next describe a tiling of P0 \ Q as follows. For integers 1 ≤ i ≤ r we define,
Ai = B(P0, −i + 1) \ B(P0, −i). Intuitively, we can construct Q from P0 by peeling off the
“layers” Ai of P0 one at a time. Let i ∈ {1, . . . , r} be fixed. As P0 has consistent parity, it
follows from Lemma 6 that B(P0, −i + 1) has consistent parity. It is also easy to check that
B(P0, −i + 1) has no holes either, and it then follows from Lemma 7 that each connected
component of G(Ai) has a Hamiltonian cycle of even length. These cycles give rise to a
natural tiling of Ai; if (v1, . . . , v2k) is the sequence of cells corresponding to such a cycle, then
{v1 ∪ v2, v3 ∪ v4, . . . , v2k−1 ∪ v2k} is a tiling of the cells of the cycle, and the union of such
tilings over all connected components in G(Ai) gives a tiling of Ai with dominos. Denote
this tiling by Ai. See Figure 10 for an illustration of this construction.

Combining the tilings A1, . . . , Ar and Q with the packing R, we obtain a domino packing,
P , of P where at most 3

4 n cells of P are uncovered. We now wish to extend this packing to
a maximum packing in a way where we do not alter the tiling Q of Q. If we can do this,
the result will follow. Let M be the matching corresponding to P in G(P ). We make the
following claim.

▷ Claim 9. Let k ≤ r. Suppose that the matching M can be extended to a matching of
size |M | + k. Then this extension can be made using a sequence C1, . . . , Ck of k augmenting
paths one after the other (that is, Ci is an augmenting path after the matching has been
extended using C1, . . . , Ci−1) such that for each i ∈ {1, . . . , k}, we have that Ci only uses
vertices of G(R ∪

⋃i
j=1 Aj).

SoCG 2022



1:14 Tiling with Squares and Packing Dominos in Polynomial Time

Before proving this claim, we first argue how the result follows. Since there are less than
3
4 n unmatched vertices in M , we can extend M to a maximum matching using at most
r = ⌊ 3

8 n⌋ augmenting paths. By the claim, these paths can be chosen so that they avoid the
vertices of G(Q). In particular, we never alter the matching of G(Q), so the final maximum
matching restricted to G(Q) is just the tiling Q.

Figure 11 Left: An alternating path between two unmatched vertices which enters a connected
component of G(Ak). Right: Modifying the alternating path using the the Hamiltonian cycle of the
connected component.

We proceed to prove the claim by induction on k. The statement is trivial for k = 0, so
let 1 ≤ k ≤ r satisfy the assumptions of the claim and suppose inductively that C1, . . . , Ck−1
can be chosen such that for each i ∈ {1, . . . , k − 1}, we have that Ci only uses vertices of
G(R ∪

⋃i
j=1 Aj). After augmenting the matching using C1, . . . , Ck−1, we have only modified

the matching restricted to G(R ∪
⋃k

j=1 Aj). By Lemma 1, we can find an augmenting path
C ′

k connecting two unmatched vertices u, v of G(P ). We will modify C ′
k to a path Ck with

Ck ⊆ R ∪
⋃k

j=1 Aj . Write C ′
k : u = u1, u2, . . . , u2ℓ = v. Let D be a Hamiltonian cycle of

one of the connected components of G(Ak); see Figure 11. If the path C ′
k ever enters the

vertices of D, we let i be minimal such that ui ∈ D and j be maximal such that uj ∈ D. We
can now replace the subpath ui, ui+1, . . . , uj of Ck with part of the Hamiltonian cycle D.
Whether we go clockwise or counterclockwise along D depends on whether ui is matched
with ui+1 in a clockwise or counterclockwise fashion in D. We do the same modification
for every Hamiltonian cycle D corresponding to a connected component of G(Ak) that C ′

k

intersects. Note that each cycle D partitions the vertices G(P ) \ D into an interior and an
exterior part. Since P0 has no holes and u, v ∈ R, the original path C ′

k enters D from the
exterior at ui and likewise leaves D into the exterior at uj . Also note that Q is contained
in the interior parts of the cycles of G(Ak). It then follows that the final resulting path Ck

avoids Q and Aj for j > k, so it is contained in R ∪
⋃k

j=1 Aj . ◀

Lemma 8 allows us to “ignore” parts of the polyomino P with distance Ω(n) to the
boundary. In order to argue that the answer output by simple-packer is correct, we also
need to argue that we can ignore long pipes (see Definition 2). This is what motivates the
following lemma which intuitively yields a reduction for shortening long pipes. We defer the
proof to the full version.

▶ Lemma 10. Let k, ℓ ∈ N with ℓ even. Let L ⊆ [−1, 0] × [0, k], R ⊆ [ℓ, ℓ + 1] × [0, k] be
polyominos and define P = L∪R ∪ ([0, ℓ] × [0, k]). Color the cells of the plane in a chessboard
like fashion and let b and w be respectively the number of black and white cells contained in
P . Assume without loss of generality that b ≥ w. If ℓ ≥ 2k, then the number of uncovered
cells in a maximum domino packing of P is exactly b − w. Moreover, there exists a maximum
domino packing such that the rectangle [k + 1, ℓ − k − 1] × [0, k] is completely covered and all
dominos intersecting the rectangle are horizontal.



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:15

ci

ci+1

v1 v2

R′
2

Q

R1

R3

v′1 v′2

Figure 12 A contraction made by the algorithm simple-packer with one fat and two skinny
rectangles. The algorithm moves all corners ci+1, . . . , cn to the left, essentially contracting the area
between the vertical lines v′

1 and v′
2 to nothing.

4.4 Correctness of the algorithm

We now verify that the number of uncovered cells in maximum packings is invariant under a
single contraction, and the correctness of the algorithm hence follows. To this end, suppose
that x(ci+1) − x(ci) > 9n, so that we move the corners ci+1, . . . , cn to the left; see Figure 12.
It is clear that a domino packing with exactly ℓ uncovered cells after the contraction gives
rise to a domino packing with exactly ℓ uncovered cells before the contraction, simply by
inserting extra horizontal dominos in the rectangles that were contracted. For the converse,
let v1 and v2 be vertical lines with x-coordinates x(ci) and x(ci+1), respectively, and let V

be the vertical strip bounded by v1 and v2. The intersection P ∩ V is a collection of disjoint
rectangles R1, . . . , Rk of width x(ci+1) − x(ci) and various heights. We define a rectangle Ri

to be fat if its height is more than 3n, and otherwise Ri is skinny. We now define a polyomino
P0 in order to apply Lemma 8. For each fat rectangle Ri, we let R′

i ⊆ Ri be the maximum
rectangle with even coordinates and add R′

i to P0. As each rectangle Ri corresponds to
exactly two horizontal edges, the number of rectangles k is at most n/4 and in particular,
the number of corners of P \ P0 is at most 2n. Letting Q := B(P0, −⌊3n/2⌋), we get from
Lemma 8 that there exists a maximum packing of P that restricted to Q is a tiling.

We define P1 := P \ Q and observe that the contraction corresponds to contracting a
set of long pipes in P1. These pipes are the skinny rectangles Ri and the parts of the fat
rectangles vertically above and below the removed part Q. We therefore get from Lemma 10
that a maximum packing before the contraction having ℓ uncovered cells, gives rise to a
packing of the contracted polyomino with exactly ℓ uncovered cells.

SoCG 2022



1:16 Tiling with Squares and Packing Dominos in Polynomial Time

References
1 Danièle Beauquier and Maurice Nivat. On translating one polyomino to tile the plane. Discrete

& Computational Geometry, 6:575–592, 1991. doi:10.1007/BF02574705.
2 Danièle Beauquier, Maurice Nivat, Eric Remila, and Mike Robson. Tiling figures of the

plane with two bars. Computational Geometry, 5(1):1–25, 1995. doi:10.1016/0925-7721(94)
00015-N.

3 Robert Berger. The undecidability of the domino problem. Memoirs of the American
Mathematical Society, 1(66), 1966. doi:10.1090/memo/0066.

4 Fran Berman, David Johnson, Tom Leighton, Peter W. Shor, and Larry Snyder. Generalized
planar matching. Journal of Algorithms, 11(2):153–184, 1990. doi:10.1016/0196-6774(90)
90001-U.

5 Francine Berman, Frank Thomson Leighton, and Lawrence Snyder. Optimal tile salvage, 1982.
Technical report, Purdue University, Department of Computer Sciences, https://docs.lib.
purdue.edu/cgi/viewcontent.cgi?article=1321&context=cstech.

6 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM Journal on Computing, 46(4):1280–1303, 2017. doi:10.1137/15M1042929.

7 Chen-Fu Chien, Shao-Chung Hsu, and Jing-Feng Deng. A cutting algorithm for optimizing the
wafer exposure pattern. IEEE Transactions on Semiconductor Manufacturing, 14(2):157–162,
2001.

8 J.H Conway and J.C Lagarias. Tiling with polyominoes and combinatorial group theory.
Journal of Combinatorial Theory, Series A, 53(2):183–208, 1990. doi:10.1016/0097-3165(90)
90057-4.

9 Dirk K. de Vries. Investigation of gross die per wafer formulas. IEEE Transactions on
Semiconductor Manufacturing, 18(1):136–139, 2005.

10 Dania El-Khechen, Muriel Dulieu, John Iacono, and Nikolaj Van Omme. Packing 2 × 2 unit
squares into grid polygons is NP-complete. In Proceedings of the 21st Canadian Conference
on Computational Geometry (CCCG 2009), pages 33–36, 2009.

11 Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Information processing letters, 12(3):133–137, 1981.

12 George Gamow and Marvin Stern. Puzzle-math. Macmillan, 1958.
13 Pawel Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in dense

distance graphs. In 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018), pages 61:1–61:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.61.

14 S. W. Golomb. Checker boards and polyominoes. The American Mathematical Monthly,
61(10):675–682, 1954. doi:10.1080/00029890.1954.11988548.

15 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985.

16 Takashi Horiyama, Takehiro Ito, Keita Nakatsuka, Akira Suzuki, and Ryuhei Uehara. Com-
plexity of tiling a polygon with trominoes or bars. Discret. Comput. Geom., 58(3):686–704,
2017. doi:10.1007/s00454-017-9884-9.

17 S. Jang, J. Kim, T. Kim, H. Lee, and S. Ko. A wafer map yield prediction based on machine
learning for productivity enhancement. IEEE Transactions on Semiconductor Manufacturing,
32(4):400–407, 2019.

18 C. Kenyon and R. Kenyon. Tiling a polygon with rectangles. In Proceedings of the 33rd
Annual Symposium on Foundations of Computer Science (FOCS 1992), pages 610–619, 1992.

19 Hanno Melzner and Alexander Olbrich. Maximization of good chips per wafer by optimization
of memory redundancy. IEEE Transactions on Semiconductor Manufacturing, 20(2):68–76,
2007.

20 Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks. SIAM
Journal on Computing, 24(5):1002–1017, 1995. doi:10.1137/S0097539789162997.

https://doi.org/10.1007/BF02574705
https://doi.org/10.1016/0925-7721(94)00015-N
https://doi.org/10.1016/0925-7721(94)00015-N
https://doi.org/10.1090/memo/0066
https://doi.org/10.1016/0196-6774(90)90001-U
https://doi.org/10.1016/0196-6774(90)90001-U
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1321&context=cstech
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1321&context=cstech
https://doi.org/10.1137/15M1042929
https://doi.org/10.1016/0097-3165(90)90057-4
https://doi.org/10.1016/0097-3165(90)90057-4
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.1080/00029890.1954.11988548
https://doi.org/10.1007/s00454-017-9884-9
https://doi.org/10.1137/S0097539789162997


A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen 1:17

21 Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs with real lengths in
O(nlog2n/loglogn) time. In 16th Annual European Symposium on Algorithms (ESA 2010),
2010. doi:10.1007/978-3-642-15781-3_18.

22 Igor Pak, Adam Sheffer, and Martin Tassy. Fast domino tileability. Discrete & Computational
Geometry, 56(2):377–394, 2016. doi:10.1007/s00454-016-9807-1.

23 Igor Pak and Jed Yang. Tiling simply connected regions with rectangles. Journal of Combina-
torial Theory, Series A, 120(7):1804–1816, 2013. doi:10.1016/j.jcta.2013.06.008.

24 Eric Rémila. Tiling a polygon with two kinds of rectangles. Discrete Comput. Geom.,
34(2):313–330, 2005. doi:10.1007/s00454-005-1173-3.

25 William P. Thurston. Conway’s tiling groups. The American Mathematical Monthly, 97(8):757–
773, 1990.

26 H.A.G. Wijshoff and J. van Leeuwen. Arbitrary versus periodic storage schemes and tessella-
tions of the plane using one type of polyomino. Information and Control, 62(1):1–25, 1984.
doi:10.1016/S0019-9958(84)80007-8.

SoCG 2022

https://doi.org/10.1007/978-3-642-15781-3_18
https://doi.org/10.1007/s00454-016-9807-1
https://doi.org/10.1016/j.jcta.2013.06.008
https://doi.org/10.1007/s00454-005-1173-3
https://doi.org/10.1016/S0019-9958(84)80007-8




On Cyclic Solutions to the Min-Max Latency
Multi-Robot Patrolling Problem
Peyman Afshani #

Department of Computer Science,
Aarhus University, Denmark

Mark de Berg #

Department of Mathematics and Computer Sci-
ence, TU Eindhoven, The Netherlands

Kevin Buchin #

Department of Computer Science,
TU Dortmund, Germany

Jie Gao #

Department of Computer Science,
Rutgers University, New Brunswick, NJ, USA

Maarten Löffler #

Department of Information and Computing Sci-
ences, Utrecht University, The Netherlands

Amir Nayyeri #

School of Electrical Engineering and Computer
Science, Oregon State University,
Corvallis, OR, USA

Benjamin Raichel #

Department of Computer Science, University of
Texas at Dallas, Richardson, TX, USA

Rik Sarkar #

School of Informatics,
University of Edinburgh, UK

Haotian Wang #

Department of Computer Science,
Rutgers University, New Brunswick, NJ, USA

Hao-Tsung Yang #

School of Informatics,
University of Edinburgh, UK

Abstract
We consider the following surveillance problem: Given a set P of n sites in a metric space and a
set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for
the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the
given order) and the latency L of a schedule is the maximum latency of any site, where the latency
of a site s is the supremum of the lengths of the time intervals between consecutive visits to s.

When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it
is NP-hard. For k ⩾ 2 (which is the version we are interested in) the problem becomes even more
challenging; for example, it is not even clear if the decision version of the problem is decidable, in
particular in the Euclidean case.

We have two main results. We consider cyclic solutions in which the set of sites must be
partitioned into ℓ groups, for some ℓ ⩽ k, and each group is assigned a subset of the robots that
move along the travelling salesman tour of the group at equal distance from each other. Our first
main result is that approximating the optimal latency of the class of cyclic solutions can be reduced
to approximating the optimal travelling salesman tour on some input, with only a 1 + ε factor
loss in the approximation factor and an O

(
(k/ε)k

)
factor loss in the runtime, for any ε > 0. Our

second main result shows that an optimal cyclic solution is a 2(1 − 1/k)-approximation of the overall
optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall.
We conjecture that this is true for k ⩾ 3 as well.

The results have a number of consequences. For the Euclidean version of the problem, for instance,
combining our results with known results on Euclidean TSP, yields a PTAS for approximating an
optimal cyclic solution, and it yields a (2(1 − 1/k) + ε)-approximation of the optimal unrestricted
(not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is
actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained
by combining our results with other known TSP algorithms in non-Euclidean metrics.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Approximation, Motion Planning, Scheduling

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.2

Related Version Full Version: http://arxiv.org/abs/2203.07280

© Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri,
Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peyman@cs.au.dk
mailto:M.T.d.Berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:kevin.buchin@tu-dortmund.de
https://orcid.org/0000-0002-3022-7877
mailto:jg1555@rutgers.edu
https://orcid.org/0000-0001-5083-6082
mailto:m.loffler@uu.nl
mailto:nayyeria@eecs.oregonstate.edu
mailto:benjamin.raichel@utdallas.edu
mailto:rsarkar@inf.ed.ac.uk
mailto:hw487@cs.rutgers.edu
mailto:haotsungyang@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.2
http://arxiv.org/abs/2203.07280
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

Funding Mark de Berg: Supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.
Jie Gao: This work is supported by NSF OAC-1939459, CCF-2118953 and CCF-1934924.
Benjamin Raichel: Partially supported by NSF CAREER Award 1750780.

1 Introduction

We study the following problem, motivated by the problem of monitoring a fixed set of
locations using autonomous robots: We are given a set P = {s1, · · · , sn} of n sites in a
metric space as well as a set R = {r1, · · · , rk} of k robots. We assume the robots have the
same maximum speed, called the unit speed, and their task is to repeatedly visit (i.e., survey)
the sites such that the maximum time during which any site is left unmonitored is minimized.
More precisely, we wish to compute a patrol schedule; that is, an infinite sequence of sites
to visit for each robot, of minimum latency. Here the latency of a site si is the supremum
of the length of the time intervals between consecutive visits of si, and the latency of the
patrol schedule is the maximum latency over all the sites.

Related Work. For k = 1, the problem reduces to the Traveling Salesman Problem. To see
this, consider the time interval [0, 3L], where L is the optimal latency, and observe that every
site is visited at least twice by the robot in this time interval. Let L′ ⩽ L be the maximum
length of time between two consecutive visits of a site. Then there exists a site that is
visited at times t0 and t0 + L′ and all other sites are visited at least once in the time interval
(t0, t0 + L′). Hence, if an optimal solution has latency L, there is a TSP tour of length at
most L. The converse is clearly true as well – by repeatedly traversing a TSP tour of length L

we obtain a patrol schedule of latency L – and so the TSP problem is equivalent to the patrol
problem for a single robot. Since TSP is NP-hard even in the Euclidean case [16] we will
focus on approximation algorithms. There are efficient approximation algorithms for TSP
and, hence, for the patrolling problem for k = 1. In particular, there is a (3/2)-approximation
for metric TSP [5] (which was slightly improved very recently [10]) and a PTAS for Euclidean
TSP [4, 15]. However, it seems difficult to generalize these solutions to the case k ⩾ 2,
because it seems non-trivial to get a grip on the structure of optimal solutions in this case.
We will mention some of the major challenges shortly.

There has been a lot of work on such surveillance problems in the robotics community [7,
9, 14, 21, 17, 18]. Most previous work, however, focused on either practical settings or aspects
of the problems other than finding the best approximation factor. There are two papers that
provide theoretical guarantees for the weighted version of the problem, where sites of higher
weight require more frequent patrols. Alamdari et al. [2] provided a O(log n)-approximation
algorithm for the weighted problem for k = 1. (Due to existence of weights, a TSP tour may
no longer be optimal for k = 1.) Afshani et al. [1] studied the problem for k ⩾ 1 and they
present an O(k2 log wmax

wmin
)-approximation algorithm, where wmax and wmin are the maximum

and the minimum weights of the sites.

Related Problems. As already mentioned, the TSP problem can be viewed as a special case
of the problem for unweighted sites and for k = 1. Another related problem is the k-path cover
problem where we want to find k paths that cover the vertices of an edge-weighted graph such
that the maximum length of the paths is minimized. This problem has a 4-approximation
algorithm [3]. Another problem is the problem of covering all the sites with k trees that
minimize the maximum length of the trees; this problem is known as the min-max tree cover



P. Afshani et al. 2:3

problem and it has constant-factor approximation algorithms [3, 13] with 8/3 being the
current record [20]. The k-cycle cover problem is similar, except that we want to use k cycles
(instead of paths or trees); again constant-factor approximation algorithms are known, with
16/3 being the current record [20]. If the goal is to minimize the sum of all cycle lengths,
there is a 2-approximation for the metric setting and a PTAS in the Euclidean setting [11, 12].
Our problem is also related to (but different from) the vehicle routing problem (VRP) [6],
which asks for k tours, starting from a given depot, that minimize the total transportation
cost under various constraints; see the surveys by Golden et al. [8] or Tóth and Vigo [19].

Our Results. All covering problems mentioned above are obviously decidable. The question
of decidability for the patrolling problem seems non-trivial. However, since patrol schedules
are infinite sequences and thus it is not even clear how to guess a solution1. To tackle this
issue, we consider the class of cyclic solutions. In a cyclic solution the set P of sites is
partitioned into ℓ ⩽ k subsets P1, · · · , Pℓ, and each subset Pi is assigned ki robots, where∑ℓ

i=1 ki = k. The ki robots are then distributed evenly along a TSP tour of Pi, and they
traverse the tour at maximum speed. Thus, the latency of the sites in Pi equals ∥Ti∥/ki,
where ∥Ti∥ is the length of the TSP tour of Pi.

The significance of this definition is that in Section 3 we prove that (in any metric
space) the best cyclic solution is a 2(1 − 1/k)-approximation of the optimal solution in
terms of maximum latency. We do this by transforming an optimal solution to a cyclic
one, with only a 2(1 − 1/k) factor loss in the approximation ratio. This proof is highly
non-trivial and involves a number of graph-theoretic arguments and carefully inspecting the
coordinated motion of the k robots, cutting them up at proper locations, and re-gluing the
pieces together to form a cyclic solution. In combination with this, in Section 4 we prove
that, given a γ-approximation algorithm for TSP, for any fixed k and ε > 0, we can obtain
a (1 + ε)γ-approximation of the best cyclic schedule in polynomial time. Therefore, in the
Euclidean setting, we can use a known PTAS to obtain a (1 + ε)-approximation to the best
cyclic solution and in the general metric setting, we can use known approximation algorithms
for TSP [10] to get a 1.5-approximation to the best cyclic solution. Together with the results
in Section 3 these lead to a (2 − 2/k + ε)-approximation algorithm for the Euclidean case,
and a (3 − 3/k)-approximation for general metrics.

We conjecture that the best cyclic solution is in fact the best overall solution. If this is
true, then our algorithm in Section 4 already gives a PTAS in the Euclidean setting. Observe
that a corollary of our result in Section 3 is that the conjecture holds for k = 2. We remark
that there is an easy proof showing the existence of a cyclic 2-approximation solution (See
Section 2.2). Our new bound 2(1 − 1/k) is a significant improvement when k is a small
constant. For example, for k = 3, we get that a cyclic 4/3 approximate solution exists, and
for k = 2 –as mentioned above– that there is a cyclic optimal solution.

2 Challenges, Notation, and Problem Statement

2.1 Notation and Problem Statement
Let (P, d) be a metric space on a set P of n sites, where the distance between two sites si, sj ∈
P is denoted by d(si, sj). Following Afshani et al. [1], we model the metric space in the
following way. We take the undirected complete graph G = (P, P ×P ), and we view each edge

1 If we assume that all distances are integers and we want to decide whether the latency is at most a
given integer ℓ, then we can guess a solution. These assumptions, however, do not hold in the Euclidean
case, even if the coordinates of sites are rational.

SoCG 2022



2:4 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

(si, sj) ∈ P ×P as an interval (that is, a continuous 1-dimensional space) of length d(si, sj) in
which the robot can travel. This transforms the discrete matric space (P, d) into a continuous
metric space C(P, d). From now on, and with a slight abuse of terminology, when we talk
about the metric space (P, d) we actually mean the continuous metric space C(P, d).

We allow the robots to “stay” on a site for any amount of time. This implies it never
helps if a robot moves slower than the maximum speed: indeed, the robot may as well move
at maximum speed towards the next site and stay a bit longer at that site. Also, it does not
help to have a robot start at time t = 0 “in the middle” of an edge, so we can assume all
robots start at some sites at the beginning. A schedule of a robot rj is defined as a continuous
function fj : R⩾0 → C(P, d), where fj(t) specifies the position of rj at time t. The unit-speed
constraint implies that a valid schedule must satisfy d(fj(t1), fj(t2)) ⩽ |t1 − t2| for all t1, t2.
A schedule for the collection R of robots, denoted by σ(R), is a collection of schedules fj ,
one for each robot rj ∈ R. Note that we allow robots to be at the same location at the same
time.

We say that a site si ∈ P is visited at time t if fj(t) = si for some robot rj . Given a
schedule σ(R), the latency Li of a site si is defined as follows.

Li = sup
0⩽t1<t2

{|t2 − t1| : si is not visited during the time interval (t1, t2)}

We only consider schedules where the latency of each site is finite. Clearly such schedules exist;
e.g., a robot can repeatedly traverse a TSP tour of the sites. Given a metric space (P, d) and a
collection R of k robots, the (multi-robot) patrol-scheduling problem is to find a schedule σ(R)
minimizing the latency L := max

i
Li, the maximum latency of any site.

2.2 Challenges
The problem of scheduling multiple robots is quite challenging and involves several subtleties,
caused by the fact that patrol schedules are infinite sequences. For example, the time intervals
between consecutive visits of any given site might increase continuously, and so we have to
define the latency of a site using the notion of supremum rather than maximum. Moreover,
for k > 1, it is not even clear if the problem is decidable: Given a set of n points in the
Euclidean plane, an integer k > 1, and a value L, is it decidable if there exists a patrol
schedule for the k robots such that the maximum latency is bounded by L? As already
mentioned, a corollary of our results in Section 3 is that for k = 2 there exists an optimal
cyclic solution and thus for k = 2 the answer to the above question is yes.

A severe challenge is that, since patrol schedules are infinite sequences, it is difficult to
rule out chaotic solutions where the robots visit the sites in a way that avoids any sort of
repeated pattern. Indeed, optimal solutions can behave so chaotically that they require an
infinite sequence of bits to describe. For instance, consider the left situation in Figure 1,

A

B

C

D

r1
r2r3

(a) (b)

r1

r2

Figure 1 (a) Four points A, B, C, and D form a short and wide rectangle. Robots r1, r2, and r3

can have infinite “unpredictable” optimal patrol schedules. (b) Robots r1 and r2 can move to the
other diagonal in two different ways.



P. Afshani et al. 2:5

where we have three robots and four points A, B, C, D that are the vertices of a thin rectangle.
To obtain the optimal latency, it suffices that r1 moves back and forth between A and B,
and r2 moves back and forth between C and D. Since r3 cannot be used to decrease the
latency – it will take r3 too much time to go from A, B to C, D – it can behave as chaotically
as it wants, thus causing the description of the patrol schedule to be arbitrarily complicated.
This is even possible using only two robots: Consider four sites that form a unit square
and two robots placed on opposite corners of the square; see the right situation in Figure 1.
An optimal schedule is then an infinite sequence of steps, where in each step both robots
move counterclockwise or both move clockwise. Such a schedule need not be cyclic and,
hence, may require an infinite sequence of bits to describe. Of course, in both cases we know
optimal cyclic solutions exist, and such solutions can be described using finitely many bits.
We conjecture that this should be true in general:

▶ Conjecture 1. For the k-robot patrolling problem with min-max latency, there is a cyclic
solution that is optimal.

It is easy to see that there exists a cyclic solution that is a 2-approximation: take an
optimal schedule with latency L, and at time L move the robots back to their respective
starting positions at time 0, and repeat. The challenge lies in getting an approximation
factor smaller than 2, which we achieve in Section 3 where we show that there is a cyclic
solution that is a 2(1 − 1/k) approximation.

3 Turning an Optimal Solution into a Cyclic Solution

The main goal of this section is to prove the following theorem.

▶ Theorem 2. Let L be the latency in an optimal solution to the k-robot patrol-scheduling
problem in a metric space (P, d). There is a cyclic solution with latency at most 2(1 − 1/k)L.

We prove the theorem by considering an optimal (potentially “chaotic”) solution and
turning it into a cyclic solution. This is done by first identifying a certain set of “bottleneck”
sites within a time interval of length L, then cutting the schedules into smaller pieces,
and then gluing them together to obtain the final cyclic solution. This will require some
graph-theoretic tools as well as several new ideas (see Appendix in the full-version paper).

Below we sketch the main ideas of the proof; the full proof can be found in Appendix of
the full-version paper.

3.1 Bidirectional sweep to find “bottleneck” sites
Consider an optimal patrol schedule with latency L, and consider a time interval I :=
[t0, t0 + L] for an arbitrary t0 > 2L. By our assumptions, every site is visited at least once
within this time interval. We assign a time interval Ii ⊆ I to every robot ri. Initially Ii = I.
To identify the important sites that are visited by the robots, using a process that we will
describe shortly, we will shrink each Ii. Shrinking is done by moving the left and right
endpoints of Ii “inward” at the same speed. This will be done in multiple stages and at the
end of each stage, an endpoint of some intervals could become fixed; a fixed endpoint does
not move anymore during the following stages. When both endpoints of Ii are fixed, we
have found the final shrunken interval for ri. Initially, all the endpoints are unfixed. For an
interval Ii = [ti, t′

i], shrinking Ii by some value ε ⩾ 0 yields the interval [ti + εφ1, t′
i − εφ2]

where φ1 (resp. φ2) is 1 if the left (resp. right) endpoint of Ii is unfixed, otherwise it is 0.
Note that an interval [x, y] with x > y is considered empty (i.e., an empty set) and thus
shrinking an interval by a large enough value will yield an empty interval (assuming at least
one endpoint is unfixed).

SoCG 2022



2:6 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

The invariant. We maintain the invariant that at the beginning of each stage of the shrinking
process, all the sites are visited during the shrunken intervals, i.e., for every site s ∈ P , there
exists a robot ri, and a value t ∈ Ii such that fi(t) = s. Observe that the invariant holds at
the beginning of the first stage of the shrinking process.

The shrinking process. Consider the j-th stage of the shrinking process. Let εj ⩾ 0 be the
largest (supremum) number such that shrinking all the intervals by εj respects the invariant.
If εj is unbounded, then this is the last stage; every interval Ii that has an unfixed endpoint is
reduced to an empty interval and we are done with shrinking, meaning, the shrinking process
has yielded some k′ ⩽ k intervals with both endpoints fixed, and k − k′ empty intervals.
Otherwise, εj is bounded and well-defined as the invariant holds for εj = 0. With a slight
abuse of the notation, let I1, · · · , Ik be the intervals shrunken by εj . See Figure 2(left).

Since εj is the largest value that respects our invariant, it follows that there must be at
least one interval Iij

and at least one of its endpoints tj such that at time tj , the robot rij

visited the site fij (tj) and this site is not visited by any other robot in the interior of their
time intervals. Now this endpoint of Iij

is marked as fixed and we continue to the next stage.
For a fixed endpoint A, let ℓ(A) be the distance of A to the corresponding boundary of

the unshrunk interval. More precisely, if A is a left endpoint then the position of A on the
time axis is t0 + ℓ(A), and if A is a right endpoint then this position is t0 + L − ℓ(A). With
our notation, if A was discovered at stage j, then ℓ(A) = ε1 + · · · + εj .

Lt0 t0 + L

ε1 ε1

Ii1

I1...

...

Ik

Lt0 t0 + L

ε1 ε1

Ii1

I1...

...

Ik

Ii2

...

ε2 ε2

Lt0 t0 + L

I1

A1 B1

`(A1)

No robot
visits f1(A1)

A robot must
visit f1(A1)

2`(A1)

r1

`(B2)

r2A2 B2

A

`(A) `(A)

B

`(B) `(B)

f1(A1)

≤ `(A1)

A

Figure 2 (left) A is fixed at stage 1. (middle) B is fixed at stage 2. (right) By the property of
the shrinking process, the site visited at A1 is not visited by any robot within the red time interval
but since the site has latency at most L, it must be visited by some robot in the blue interval.

3.2 Patrol graph, shortcut graph, and bag graph
Shortcutting idea. Figure 2 (right) explains the crucial property of our shrinking process:
Robot r1 visits the site p = f1(A1) at time A1 (which corresponds to the left endpoint of the
interval I1) but to keep the latency of p at most L, p must be visited by another robot, say
r2, sometime in the interval [t0 + L − ℓ(A1), t0 + L + ℓ(A1)], shown in blue in the figure. For
the moment, assume the right endpoint of the interval of r2 is a fixed point B2 and r2 visits
a site p′ = f2(B2) at time B2. This implies that the distance between p and p′ is at most
ℓ(A1) + ℓ(B2). Now observe that we can view this as a “shortcut” between endpoints p and
p′: for example, r2 can follow its own route from A2 to B2, then take the shortcut to A1, and
then follow r1’s route to B1. The extra cost of taking the shortcut, which is ℓ(A1) + ℓ(B2),
can also be charged to the two “shrunken” pieces of the two intervals (the purple intervals in
the picture). Our main challenge is to show that these shortcuts can be used to create a
cyclic solution with only a small increase in the latency.

To do that, we will define a number of graphs associated with the shrunken intervals. We
define a patrol graph P , a bag graph B and a shortcut graph S. The first two are multigraphs,
whereas the shortcut graph is a simple graph.



P. Afshani et al. 2:7

For examples see Figure 3 on page 7 and its discussion on page 8.
We start with the bag graph and the shortcut graph. We first shrink the intervals as

described previously. To define these graphs, consider 2k conceptual bags, two for each
interval (including the empty intervals). More precisely, for each interval we have one left bag
and one right bag. The bags are the vertices of the bag graph B (Figure 3(b)). The vertices
of the shortcut graph S are the endpoints of the non-empty intervals. To define the edges of
the two graphs, we use placements. We will present the details below but basically, every
endpoint of a non-empty interval will be placed in two bags, one in some left bag β1 and
another time in some right bag β2. After this placement, we add an edge in the bag graph
between β1 and β2. Once all the endpoints have been placed, we add edges in the shortcut
graph between every two endpoints that have been placed in the same bag (Figure 3(c)).

Lt0 t0 + L

I5

I2

I3

I4

I1
A1

A2

A2

A3

B4

B3

B2

B1

(a) After the shrinking process (b) The bag graph

A1

A1

B1

B1

A2

A2B2 B2 A3

A3 B3

B3A4B4 B4 A4

I2

I3

I4

I1
A1

A2

A3

A4 B4

B3

B2

B1

(c) The shortcut graph

I2

I3

I4

I1
A1

A2

A3

A4 B4

B3

B2

B1

(d) The patrol graph

A2, B2

A1 B1 A3 B3 A4

B4

(e) After contracting the blue edges

A2, B2

A1 B1 A3 B3 A4

B4

(f) Eulerized

Figure 3 Examples of bag, shortcut and patrol graph.

SoCG 2022



2:8 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

An example of a bag and shortcut graphs. An example is shown in Figure 3. In part (a),
we have four non-empty intervals I1 = [A1, B1], I2 = [A2, B2], I3 = [A3, B3], I4 = [A4, B4]
and an empty interval I5 (we will later explain the second appearance of each endpoint in
this picture and for now the reader can ignore the “floating” endpoints). An example of a
bag graph is shown in Figure 3(b): Every endpoint is placed twice (once in some left bag
and one is some right bag). E.g., A1 is placed in the top-left bag and the bottom-right bag
and thus the two bags are connected in the bag graph. Similarly, B1 is placed in two bags,
once at the top-right bag and the other time at the mid-left bag. In part (c) of the figure,
one can see the shortcut graph in which two endpoints are connected if and only if they are
placed in the same bag. Also, this is a simple graph and despite the fact that A4 and B4 are
placed together in two different bags, they are still connected once in the shortcut graph.

Initially, all the bags are empty. For every non-empty interval I1 = [A1, B1], we place
the left endpoint of I1 in its own left bag and the right endpoint of I1 in its own right
bag. This is the first placement. For the second placement, consider a non-empty interval
Ii1 and its left endpoint A. The position of A on the time interval is t = t0 + ℓ(A). See
Figure 2(right). By our assumptions, the robot ri1 visits the site p = fi1(t) at time t.
Consider the stage of our shrinking process when A gets fixed. For this to happen, the
site p cannot be visited by any robot in the time interval (t0 + ℓ(A), t0 + L − ℓ(A)) (the
red interval in Figure 2(right)), as otherwise, we could either shrink all the intervals by an
infinitesimal additional amount or some other endpoint would have been fixed. On the other
hand, this site has latency at most L, so it must be visited by another robot in the time
interval (t, t + L] = (t0 + ℓ(A), t0 + ℓ(A) + L]. This means that the robot rj that visits p

earliest in this interval must do so within the time interval [t0 + L − ℓ(A), t0 + L + ℓ(A)] (the
blue interval in Figure 2(right)). Note that rj could be any of the robots, including ri1 itself.
We now place A in the right bag of Ij .

A very similar strategy is applied to the right end point of I1; for details see Appendix of
the full-version paper, where we also prove the following properties.

▶ Lemma 3. The bag graph B and the shortcut graph S have the following properties.
(a) B is a bipartite graph.
(b) S is isomorphic to the line graph of B
(c) Let B′ be a connected component of B. If none of the vertices of B′ belong to empty-

intervals, then the number of vertices of B′ is equal to its number of edges.
(d) Let S ′ be a connected component of S. If S ′ has a vertex v of degree one, then it must be

the case that v corresponds to an endpoint of a non-empty interval that has been placed
(alone) in a bag of an empty interval.

The patrol graph. The above lemma, combined with the graph theoretical tools that we
outline in Appendix allows us to define the patrol graph P. Here, we only give an outline,
and for the full details see Appendix of the full version paper. An example of a patrol graph
is shown in Figure 3(d). Initially, the patrol graph, P, consists of k′ isolated black edges,
one for each non-empty interval. Observe that both P and the shortcut graph S have the
same vertex set (endpoints of the non-empty intervals). We add a subset of the edges of the
shortcut graph to P. Let us consider an “easy” case to illustrate the main idea.

An easy case. Assume B is connected and that it has an even number of edges. In this case,
we can in fact prove that an optimal cyclic solution exists. Recall that S is the line graph of
B and it is known that the line graph of a connected graph with even number of edges, has a
perfect matching. Thus, we can find a perfect matching M as a subset of edges of S. Add M

to P as “blue” edges. Now, every vertex of P is adjacent to a blue and a black edge and thus



P. Afshani et al. 2:9

P decomposes into a set of “bichromatic” cycles, i.e., cycles with alternating black-blue edges.
With a careful accounting argument, we can show that this indeed yields a cyclic solution
without increasing the latency of any of the sites. We have already mentioned the main idea
under the “shortcutting idea” paragraph, at the beginning of the section. Specifically, we
will use the following lemma.

▶ Lemma 4. Consider two adjacent vertices v and w in the shortcut graph. This means that
there are two non-empty intervals I1 and I2 such that v corresponds to an endpoint A of I1
and w corresponds to an end point B of I2 and A and B are placed in the same bag. Let
s1 be the site visited at A during I1 and s2 be the site visited at B on I2. Then, we have
d(s1, s2) ⩽ ℓ(A) + ℓ(B).

Black edges represent the routes of the robots, and blue edges are the shortcuts that
connect one route to another. So in this easy case, once the patrol graph has decomposed into
bichromatic cycles, we turn each cycle into one closed route (i.e., cycle) using the shortcuts.
All the robots that correspond to the black edges are placed evenly on this cycle. Since by
our invariant all the sites are visited at some time on the black edges, it follows that the
robots visit all the sites. A careful accounting argument shows that the cost of taking the
shortcuts is upper bounded by the value ℓ(·) of the end points involved. Since the values ℓ(·)
correspond to the length of the sub-paths of the robots that is missing due to our shrinking
process, one can show that the latency does not increase at all.

Unfortunately, B can have connected components with odd number of edges. Nonetheless,
in all cases we can build a particular patrol graph, P, with the following properties.

▶ Lemma 5. The patrol graph P consists of k′ pairwise non-adjacent black edges and a
number of blue edges. Any blue edge (v, w) in P corresponds to an edge in the shortcut graph
S. Furthermore, the set of blue edges can be decomposed into a matching and a number of
triangles. In addition, any vertex of P that is not adjacent to a blue edge can be charged to a
bag of an empty interval.

The idea covered in the above “easy case” works because it covers the black edges of P
with bichromatic edge-disjoint cycles and each cycle becomes a cyclic route. Unfortunately,
in general P might not have the structure that would allow us to do this. Here, we only
outline the steps we need to overcome this: we consider each connected component, Pi, of
P . We first contract blue edges of Pi to obtain a contracted patrol graph, Pc

i , (Figure 3(e))
then we eulerize it (Figure 3(f)), meaning, we duplicate a number of black edges such that
the resulting graph is Eulerian. This yields us an Eularized contracted patrol graph, PEc

i

(Figure 4(a)). Next, we put the contracted blue edges back in PEc
i which gives us the final

patrol graph (Figure 4(b)). In this final graph, we can show that we can cover the black edges
using bichromatic edge disjoint cycles where each connected component of the final graph
turns into one cycle (Figure 4(c)); this yields us a cyclic solution. However, the duplicated
black edges represent routes of robots that need to be traversed twice to obtain the cyclic
solution. This leads us to the final challenge: how to allocate the robots to the resulting
cycles to minimize the latency. With some careful accounting and considering a few cases, we
can show that this can be done in such a way that the resulting cyclic solution has latency
at most 2L(1 − 1/k). We do this in Appendix of the full-version paper, proving Theorem 2.

4 Cyclic Solutions

In this section we show how to approximate an optimal cyclic solution to the patrol scheduling
problem for k robots in a metric space (P, d). We start with some notation and basic
observations.

SoCG 2022



2:10 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

I3

I4

I1
A1

A3

A4 B4

B3

B1

(b)

A1 B1 A3 B3 A4

B4

(a)

A1 B1I1

A3 B3I3

1 2

3
45

1

2

3

4

5

I3

I4

I1
A1

A3

A4 B4

B3

B1

(c)

A1 B1I1

A3 B3I3

1

2

3

4

5

Figure 4 (a) An Eularized contracted patrol graph (ECPG). Duplicated edges are drawn with
dashed lines. The edges are directed and numbered according to an Euler tour. (b) The same ECPG
after “uncontracting” the blue edges. The duplicated routes (i.e., the routes that will be traversed
twice) are shown with dashed lines. The corresponding Euler tour is marked and numbered. The
shortcuts are taken in the correct direction. (c) The bichromatic cycle gives us a cyclic route. It
shows how the robots can travel along it.

For a subset Q ⊆ P , let TSP(Q) denote an optimal TSP tour of Q and let tsp(Q) denote
its total length. Let MST(Q) denote a minimum spanning tree of Q. Now consider a partition
Π = {P1, . . . , Pt} of P , where each subset Pi is assigned ki robots such that

∑t
i=1 ki = k. A

cyclic solution for this partition and distribution of robots is defined as follows. For each Pi

there is a cycle Ci such that the ki robots assigned to Pi start evenly spaced along Ci and
then traverse Ci at maximum speed in the same direction. Hence, the latency L of such a
cyclic solution satisfies L ⩾ maxi(tsp(Pi)/ki), with equality if Ci = TSP(Pi) for all i.

To prove the main theorem of this section we need several helper lemmas. Let Π =
(P1, . . . , Pt) be a partition of P and let E ⊆ P × P be a set of edges. The coarsening of Π
with respect to E is the partition Π′ of P given by the connected components of the graph
(
⋃

i MST(Pi)) ∪ E.

▶ Lemma 6. Let S be a cyclic solution with partition Π = (P1, . . . , Pt) and latency L. Let
Π′ = (P ′

1, . . . , P ′
t′) be the coarsening of Π with respect to an edge set E of total length ℓ. Then

there is a cyclic solution S′ with partition Π′ and latency L′ such that L′ ⩽ L + ℓ.

Proof. Let C1, . . . , Ct be the cycles used in S. Consider a subset P ′
i ∈ Π′, and assume

without loss of generality that P ′
i is the union of the subsets P1, . . . , Ps from Π. Then there

is a set Ei ⊆ E of k − 1 edges such that
(⋃s

j=1 Cj

)
∪ Ei is connected. Moreover, there is

a cycle C ′
i covering all sites in P ′

i traversing the edges of each Cj once and the edges of Ei

twice. Hence,

∥C ′
i∥ =

s∑
j=1

∥Cj∥ + 2 · ∥Ei∥,

where ∥ · ∥ denotes the total length of a set of edges. Since the latency in S is L, we know
that ∥Cj∥ ⩽ kjL. Hence, using

∑s
j=1 kj ⩾ 2 robots for the cycle C ′

i, the latency for the sites
in P ′

i is at most

∥C ′
i∥∑s

j=1 kj
=

∑s
j=1 ∥Cj∥ + 2 · ∥Ei∥∑s

j=1 kj
⩽

∑s
j=1 kjL + 2 · ∥Ei∥∑s

j=1 kj
⩽ L + ∥Ei∥ ⩽ L + ℓ.

Thus the latency for any subset P ′
i ∈ Π′ is at most L + ℓ. ◀



P. Afshani et al. 2:11

▶ Lemma 7. Let L∗ be the latency of an optimal cyclic solution. For any ε > 0, there exists
a cyclic solution with partition Π = (P1, . . . , Pt) and latency L < (1 + ε)L∗ such that for any
pair i ̸= j we have d(Pi, Pj) > ε · L∗/k, where d(Pi, Pj) := min{d(x, y) : x ∈ Pi and y ∈ Pj}.

Proof. Let S∗ be an optimal solution with partition Π∗ = (P ∗
1 , . . . , P ∗

q ), where q ⩽ k. Let
Eshort be the set of all edges of the complete graph of the metric space with length at
most εL∗/k. Let Π = (P1, . . . , Pt) be the partition obtained by coarsening Π∗ with respect
to Eshort, and let E∗ ⊆ Eshort be a minimal subset such that coarsening Π∗ with E∗ gives
the same partition Π. Observe that as q ⩽ k, we have |E∗| ⩽ k − 1. Lemma 6 implies that
there is a cyclic solution S with partition Π and latency at most

L∗ + |E∗| · (εL∗/k) < (1 + ε)L∗.

Moreover, since Π is a coarsening of Π∗ with respect to Eshort, the pairwise distance between
any two sets of Π is larger than εL∗/k. ◀

▶ Lemma 8. Suppose there is a cyclic solution of latency L for a given metric space (P, d)
and k robots. Then MST(P ) has fewer than k(1 + 1/α) edges of length more than αL, for
any 0 < α ⩽ 1.

Proof. Let C1, . . . , Cq be the cycles in the given cyclic solution of latency L, let ki denote
the number of robots assigned to Ci, and let Pi ⊂ P be the sites in Ci. Let E be a subset of
q − 1 ⩽ k − 1 edges from MST(P ) such that (

⋃q
i=1 Ci) ∪ E is connected. Then

q∑
i=1

∥Ci∥ > ∥MST(P )∥ − ∥E∥ = ∥MST (P ) \ E∥

Since ∥Ci∥ ⩽ kiL, we have
∑q

i=1 ∥Ci∥ ⩽ kL. Hence, ∥MST(P ) \ E∥ < kL, which implies
that MST(P ) \ E contains less than k/α edges of length more than αL. Including the edges
in E, we thus know that MST(P ) has less than k(1 + 1/α) edges of length more than αL. ◀

▶ Theorem 9. Suppose we have a γ-approximation algorithm for TSP in a metric space (P, d),
with running time τγ(n), and an algorithm for computing an MST that runs in time T ′(n).
Then there is a (1 + ε)γ-approximation algorithm for finding a minimum-latency cyclic patrol
schedule with k robots that runs in T ′(n) + (O(k/ε))k · τγ(n) time.

Proof. Let L∗ be the latency in an optimal cyclic solution. By Lemma 7 there is a solution S

with latency (1 + ε)L∗ and partition Π = {P1, . . . , Pt} such that d(Pi, Pj) > εL∗/k for all
i ̸= j. Let E be the set of edges of MST(P ) with length more than εL∗/k, and let T1, . . . , Tz

be the forest obtained from MST(P ) by removing E. Let V (Tj) denote the sites in Tj . For
any j we have V (Tj) ⊆ Pi for some i. Otherwise, there would exist two sites p, q ∈ V (Tj)
that are neighbors in Tj but stay in different sets in Π. This would lead to a contradiction:
the former implies d(p, q) ⩽ εL∗/k while the later implies d(p, q) > εL∗/k. Thus Π is a
coarsening of {V (T1), . . . , V (Tz)} with respect to some subset of E.

By Lemma 8, the number of edges of MST(P ) longer than εL∗/k is at most k
(
1 + k

ε

)
.

That is, the heaviest k
(
1 + k

ε

)
edges of MST(P ) are a superset of the set E from above. Thus

we can find the partition Π from above by first computing MST(P ), removing the heaviest
k

(
1 + k

ε

)
edges, and then trying all coarsenings determined by subsets of the removed edges.

Given a γ-approximation for TSP, below we argue how to get a γ-approximation to the
optimal cyclic solution for a given partition Π. Running this subroutine for each of the
above determined partitions and taking the best solution found will thus give latency at
most (1 + ε)γL∗.

SoCG 2022



2:12 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

Observe that the optimal cyclic solution on a given partition Π = {P1, . . . , Pt} uses
cycles determined by TSP(Pi), and chooses ki, the number of robots assigned to Pi, so as to
minimize maxi tsp(Pi)/ki. Thus we can compute a γ-approximation of the optimal solution
on Π by first computing a γ-approximation to TSP(Pi) for all i, where tsp(Pi) denotes its
corresponding value, and then selecting k′

1, . . . , k′
t so as to minimize maxi tsp(Pi)/k′

i. The
latter step of determining the k′

i can be done in O(k log k) time by initially assigning one
robot to each Pi, and then iteratively assigning each next robot to whichever set of the
partition currently has the largest ratio. The latency of the solution we find for Π is thus

max
i

{
tsp(Pi)

k′
i

}
⩽ max

i

{
tsp(Pi)

ki

}
⩽ max

i

{
γ · tsp(Pi)

ki

}
= γ ·[optimal cyclic latency for Π],

where the last inequality follows from the fact that tsp(Pi) ⩽ γ · tsp(Pi) for all i.
It remains to bound the running time. For each partition Π we approximate TSP(Pi) for

all i, and then run an O(k log k) time algorithm to determine the robot assignment. Thus
the time per partition is bounded by τγ(n), where n is the total number of sites. Here we
assume that τγ(n) = Ω(n log n) and that τγ(n) upper bounds the time for the initial MST(P )
computation.

The number of partitions we consider is determined by the number of subsets of size at
most k of the longest k(1 + k/ε) edges of MST(P ), which is bounded by(

k(1 + k/ε)
k

)
· 2k,

as the first term bounds the number of subsets of size exactly k, and for each subset the
second term accounts for the number of ways in which we can pick at most k edges from
that subset. We have the following standard upper bound on binomial coefficients.(

N

K

)
⩽

(
N · e

K

)K

.

Therefore, the total number of partitions we consider is at most(
k(1 + k/ε)

k

)
· 2k ⩽

(
k(1 + k/ε) · e

k

)k

· 2k = (2e(1 + k/ε))k = (O(k/ε))k
.

Thus the total running time is (O(k/ε))k · τγ(n) as claimed. ◀

Recently, Karlin et al. [10] presented a (3/2 − δ)-approximation algorithm for metric TSP,
where δ > 10−36 is a constant, thus slightly improving the classic (3/2)-approximation by
Christofides [5]. Furthermore TSP in Rd admits a PTAS [4, 15]. Thus we have the following.

▶ Corollary 10. For any fixed k, there is polynomial-time (3/2)-approximation algorithm for
finding a minimum-latency cyclic patrol schedule with k robots in arbitrary metric spaces,
and there is a PTAS in Rd for any fixed constant d.

Theorem 2 in Section 3 and Corollary 10 together imply the following.

▶ Theorem 11. For any fixed k and ε > 0, there is a polynomial-time (3(1 − 1/k) + ε)-
approximation algorithm for the k-robot patrol-scheduling problem in arbitrary metric spaces,
and a polynomial-time (2(1 − 1/k) + ε)-approximation algorithm in Rd (for fixed d).



P. Afshani et al. 2:13

5 Conclusion and Future Work

This is the first paper that presents rigorous analysis and approximation algorithms for
multi-robot patrol scheduling problem in general metric spaces. There are several challenging
open problems. The first and foremost is to prove or disprove the conjecture that there is
always a cyclic solution that is optimal overall. Proving this conjecture will immediately
provide a PTAS for the Euclidean multi-robot patrol-scheduling problem. It would also imply
that the decision problem is decidable. Another direction for future research is to extend the
results to the weighted setting. As has been shown for the 1-dimensional problem [1], the
weighted setting is considerably harder.

References
1 Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri,

Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang. Approximation algorithms
for multi-robot patrol-scheduling with min-max latency. In Algorithmic Foundations of Robotics
XIV, pages 107–123, 2021.

2 Soroush Alamdari, Elaheh Fata, and Stephen L Smith. Persistent monitoring in discrete envi-
ronments: Minimizing the maximum weighted latency between observations. The International
Journal of Robotics Research, 33(1):138–154, 2014.

3 Esther M Arkin, Refael Hassin, and Asaf Levin. Approximations for minimum and min-max
vehicle routing problems. Journal of Algorithms, 59(1):1–18, 2006.

4 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM (JACM), 45(5):753–782, 1998.

5 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon Univ.,
Pittsburgh, 1976.

6 George B Dantzig and John H Ramser. The truck dispatching problem. Management science,
6(1):80–91, 1959.

7 Yehuda Elmaliach, Asaf Shiloni, and Gal A. Kaminka. A realistic model of frequency-based
multi-robot polyline patrolling. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’08, pages 63–70, Richland,
SC, 2008. International Foundation for Autonomous Agents and Multiagent Systems.

8 Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The vehicle routing problem:
latest advances and new challenges, volume 43. Springer Science & Business Media, 2008.

9 L. Iocchi, L. Marchetti, and D. Nardi. Multi-robot patrolling with coordinated behaviours in
realistic environments. In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2796–2801, September 2011. doi:10.1109/IROS.2011.6094844.

10 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 32–45, 2021.

11 M Yu Khachai and ED Neznakhina. A polynomial-time approximation scheme for the Euclidean
problem on a cycle cover of a graph. Proceedings of the Steklov Institute of Mathematics,
289(1):111–125, 2015.

12 Michael Khachay and Katherine Neznakhina. Polynomial time approximation scheme for the
minimum-weight k-size cycle cover problem in Euclidean space of an arbitrary fixed dimension.
IFAC-PapersOnLine, 49(12):6–10, 2016.

13 M Reza Khani and Mohammad R Salavatipour. Improved approximation algorithms for the
min-max tree cover and bounded tree cover problems. Algorithmica, 69(2):443–460, 2014.

14 Kin Sum Liu, Tyler Mayer, Hao-Tsung Yang, Esther Arkin, Jie Gao, Mayank Goswami,
Matthew P. Johnson, Nirman Kumar, and Shan Lin. Joint sensing duty cycle scheduling
for heterogeneous coverage guarantee. In INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE, pages 1–9. IEEE, 2017.

SoCG 2022

https://doi.org/10.1109/IROS.2011.6094844


2:14 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

15 Joseph SB Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on computing, 28(4):1298–1309, 1999.

16 Christos H Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoretical computer science, 4(3):237–244, 1977.

17 D. Portugal and R. P. Rocha. On the performance and scalability of multi-robot patrolling
algorithms. In 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics,
pages 50–55, November 2011. doi:10.1109/SSRR.2011.6106761.

18 E. Stump and N. Michael. Multi-robot persistent surveillance planning as a vehicle routing
problem. In Automation Science and Engineering (CASE), 2011 IEEE Conference on, pages
569–575, August 2011. doi:10.1109/CASE.2011.6042503.

19 Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.
20 Wenzheng Xu, Weifa Liang, and Xiaola Lin. Approximation algorithms for min-max cycle

cover problems. IEEE Transactions on Computers, 64(3):600–613, 2013.
21 Hao-Tsung Yang, Shih-Yu Tsai, Kin Sum Liu, Shan Lin, and Jie Gao. Patrol scheduling

against adversaries with varying attack durations. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1179–1188, 2019.

https://doi.org/10.1109/SSRR.2011.6106761
https://doi.org/10.1109/CASE.2011.6042503


On Semialgebraic Range Reporting
Peyman Afshani #

Aarhus University, Denmark

Pingan Cheng #

Aarhus University, Denmark

Abstract
Semialgebraic range searching, arguably the most general version of range searching, is a fundamental
problem in computational geometry. In the problem, we are to preprocess a set of points in RD such
that the subset of points inside a semialgebraic region described by a constant number of polynomial
inequalities of degree ∆ can be found efficiently.

Relatively recently, several major advances were made on this problem. Using algebraic techniques,
“near-linear space” data structures [6, 18] with almost optimal query time of Q(n) = O(n1−1/D+o(1))
were obtained. For “fast query” data structures (i.e., when Q(n) = no(1)), it was conjectured that
a similar improvement is possible, i.e., it is possible to achieve space S(n) = O(nD+o(1)). The
conjecture was refuted very recently by Afshani and Cheng [3]. In the plane, i.e., D = 2, they
proved that S(n) = Ω(n∆+1−o(1)/Q(n)(∆+3)∆/2) which shows Ω(n∆+1−o(1)) space is needed for
Q(n) = no(1). While this refutes the conjecture, it still leaves a number of unresolved issues: the
lower bound only works in 2D and for fast queries, and neither the exponent of n or Q(n) seem to be
tight even for D = 2, as the best known upper bounds have S(n) = O(nm+o(1)/Q(n)(m−1)D/(D−1))
where m =

(
D+∆

D

)
− 1 = Ω(∆D) is the maximum number of parameters to define a monic degree-∆

D-variate polynomial, for any constant dimension D and degree ∆.
In this paper, we resolve two of the issues: we prove a lower bound in D-dimensions, for constant

D, and show that when the query time is no(1) + O(k), the space usage is Ω(nm−o(1)), which almost
matches the Õ(nm) upper bound and essentially closes the problem for the fast-query case, as far
as the exponent of n is considered in the pointer machine model. When considering the exponent
of Q(n), we show that the analysis in [3] is tight for D = 2, by presenting matching upper bounds
for uniform random point sets. This shows either the existing upper bounds can be improved or to
obtain better lower bounds a new fundamentally different input set needs to be constructed.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, Range Searching, Data Structures and Algorithms,
Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.3

Related Version Full Version: https://arxiv.org/abs/2203.07096

Funding Supported by DFF (Det Frie Forskningsråd) of Danish Council for Independent Research
under grant ID DFF−7014−00404.

1 Introduction

In the classical semialgebraic range searching problem, we are to preprocess a set of n

points in RD such that the subset of points inside a semialgebraic region, described by a
constant number of polynomial inequalities of degree ∆ can be found efficiently. Recently,
two major advances were made on this problem. First, in 2019, Agarwal et al. [5] showed for
polylogarithmic query time, it is possible to build a data structure of size Õ(nβ) space1, where
β is the number of parameters needed to specify a query polynomial. For example, for D = 2,

1 Ω̃(·), Õ(·), Θ̃(·) notations hide logo(1) n factors;
o

Ω(·),
o

O(·),
o

Θ(·) notations hide no(1) factors.

© Peyman Afshani and Pingan Cheng;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peyman@cs.au.dk
mailto:pingancheng@cs.au.dk
https://doi.org/10.4230/LIPIcs.SoCG.2022.3
https://arxiv.org/abs/2203.07096
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 On Semialgebraic Range Reporting

a query polynomial is in the form of
∑

i+j≤∆ aijxiyj ≤ 0 where aij ’s are specified at the
query time, and when ∆ = 4, β can be as large as 14 (technically, there are 15 coefficients but
one coefficient can always be normalized to be 1). In this case, a major conjecture was that if
this space bound could be improved to Õ(nD) (e.g., for ∆ = 4, from Õ(n14) to Õ(n2)). Very
recently, Afshani and Cheng [3] refuted this conjecture by showing an

o

Ω(n∆+1) lower bound.
However, there are two major limitations of their lower bound. First, their lower bound
only works in R2, while the upper bound in [5] holds for all dimensions. Second, their lower
bound only works for queries of form y −

∑∆
i=0 xi ≤ 0 and thus their lower bound does not

give a satisfactory answer to the problem in the general case. For example, for D = 2, ∆ = 4,
they show a

o

Ω(n5) lower bound whereas the current best upper bound is Õ(n14). In general,
their space lower bound is at most

o

Ω(n∆+1) while the upper bound of [5] can be Õ(nΘ(∆2)),
which leaves an unsolved wide gap, even for D = 2. Another problem brought by [5] is the
space-time tradeoff. When restricted to queries of the form y −

∑∆
i=0 xi ≤ 0, the current

upper bound tradeoff is S(n) = Õ(n∆+1/Q(n)2∆) [18, 5] while the lower bound in [3] is
S(n) =

o

Ω(n∆+1/Q(n)(∆+3)∆/2). Even for ∆ = 2, we observe a discrepancy between an
S(n) = Õ(n3/Q(n)4) upper and an S(n) =

o

Ω(n3/Q(n)5) lower bound.
Here, we make progress in both lower and upper bound directions. We give a general lower

bound in D dimensions that is tight for all possible values of β. Our lower bound attains the
maximum possible β value mD,∆ =

(
D+∆

D

)
− 1, e.g.,

o

Ω(n14) for D = 2, ∆ = 4. Thus, our
lower bounds almost completely settle the general case of the problem for the fast-query
case, as far as the exponent of n is concerned. This improvement is quite non-trivial and
requires significant new insights that are not avaiable in [3]. For the upper bound, we present
a matching space-time tradeoff for the two problems studied in [3] for uniform random point
sets. This shows their lower bound analysis is tight. Since for most range searching problems,
a uniform random input instance is the hardest one, our results show that current upper
bound based on the classical method might not be optimal. We develop a set of new ideas
for our results which we believe are important for further investigation of this problem.

1.1 Background

In range searching, the input is a set of points in RD for a fixed constant D. The goal is to
build a structure such that for a query range, we can report or find the points in the range
efficiently. This is a fundamental problem in computational geometry with many practical
uses in e.g., databases and GIS systems. For more information, see surveys by Agarwal [14] or
Matoušek [17]. We focus on a fundamental case of the problem where the ranges are semial-
gebraic sets of constant complexity which are defined by intersection/union/complementation
of O(1) polynomial inequalities of constant degree at most ∆ in RD.

The study of this problem dates back to at least 35 years ago [19]. A linear space
and O(n1−1/D+o(1)) query time structure is given by Agarwal, Matoušek, and Sharir [6],
due to the recent “polynomial method” breakthrough [15]. However, it is not entirely
clear what happens to the “fast-query” case: if we insist on polylogarithmic query time,
what is the smallest possible space usage? Early on, some believed that the number of
parameters plays an important role and thus Õ(nβ) space could be a reasonable conjecture [17],
but such a data structure was not found until 2019 [5]. However, after the “polynomial
method” revolution, and specifically after the breakthrough result of Agarwal, Matoušek and
Sharir [6], it could also be reasonably conjectured that Õ(nD) could also be the right bound.
However, this was refuted recently by Afshani and Cheng [3] who showed that in 2D, and for



P. Afshani and P. Cheng 3:3

polynomials for the form y −
∑∆

i=0 xi ≤ 0, there exists an
o

Ω(n∆+1) space lower bound for
data structures with query time

o

O(1). However, this lower bound does not go far enough,
even in 2D, where a semialgebraic range can be specified by bivariate monic polynomial
inequalities2 of form

∑
i,j:i+j≤∆ aijxiyj ≤ 0 with a∆0 = −1. In this case, β can be as large

as m2,∆ =
(∆+2

2
)

− 1 = Θ(∆2), and much larger than ∆ + 1 even for moderate ∆ (e.g., for
∆ = 4, “5” versus “14”, for ∆ = 5, “6” versus “20” and so on). Another main weakness is
that their lower bound is only in 2D, but the upper bound [5] works in arbitrary dimensions.

The correct upper bound tradeoff seems to be even more mysterious. Typically, the tradeoff
is obtained by combining the linear space and the polylogarithmic query time solutions.
For simplex range searching (i.e., when ∆ = 1), the tradeoff is S(n) = Õ(nD/Q(n)D) [16],
which is a natural looking bound and it is also known to be optimal. The tradeoff bound
becomes very mysterious for semialgebraic range searching. For example, for D = 2 and
when restricted to queries of the form y −

∑∆
i=0 xi ≤ 0, combining the existing solutions

yields the bound S(n) = Õ(n∆+1/Q(n)2∆) whereas the known lower bound [3] is S(n) =
o

Ω(n∆+1/Q(n)(∆+3)∆/2). One possible reason for this gap is that the lower bound construction
is based on a uniform random point set, while in practice, the input can be pathological. But
in general the uniform random point set assumption is not too restrictive for range searching
problems. Almost all known lower bounds rely on this assumption: e.g., half-space range
searching [9, 7, 8], orthogonal range searching [11, 12, 2], simplex range searching [10, 13, 1].

1.2 Our Results
Our results consist of two parts. First, we study a problem that we call “the general
polynomial slab range reporting”. Formally, let P (X) be a monic D-variate polynomial of
degree at most ∆, a general polynomial slab is defined to be the region between P (X) = 0
and P (X) = w for some parameter w specified at the query time. Unlike [3], our construction
can reach the maximum possible parameter number mD,∆. For simplicity, we use m

instead of mD,∆ when the context is clear. We give a space-time tradeoff lower bound of
S(n) =

o

Ω(nm/Q(n)Θ((∆2+D∆)m)), which is (almost) tight when Q(n) = no(1).
For the second part, we present data structures that match the lower bounds studied in

the work by Afshani and Cheng [3]. We show that their lower bounds for 2D polynomial
slabs and 2D annuli are tight for uniform random point sets. Our bound shows that current
tradeoff given by the classical method of combining extreme solutions [18, 5] might not be
tight. We shred some lights on the upper bound tradeoff and develop some ideas which could
be used to tackle the problem. Our results are summarized in Table 1.

1.3 Technical Contributions
Compared to the previous lower bound in [3], we need to wrestle with many complications
that stem from the algebraic geometry nature of the problem. In Section 3, we cover them
in greater detail, but briefly speaking, the technical heart of the results in [3] is that “two
univariate polynomials P1(x) and P2(x) that have sufficiently different leading coefficients,
cannot pass close to each other for too long. However, this claim is not true for even bivariate
polynomials, since P1(x, y) and P2(x, y) could have infinitely many roots in common and
thus we can have P1(x, y) − P2(x, y) = 0 in an unbounded region of R2. Overcoming this
requires significant innovations.

2 We define that a D-variate polynomial P (X1, X2, · · · , XD) is monic if the coefficient of X∆
2 is −1.

SoCG 2022



3:4 On Semialgebraic Range Reporting

Table 1 Our Results (marked by ∗). Our upper bounds are for uniform random point sets.

Query Types Lower Bound Upper Bound

General Polynomial Slabs(
m = mD,∆ =

(
D+∆

D

)
− 1
) S(n) =

o

Ω
(

nm

Q(n)Θ(m)

)∗
S(n) = Õ

(
nm

Q(n)Θ(m)

)
[18, 5]

When Q(n) =
o

O(1) S(n) =
o

Ω (nm)∗
S(n) = Õ (nm) [18, 5]

2D Semialgebraic Sets(
m = m2,∆ =

(2+∆
2

)
− 1
) S(n) =

o

Ω
(

nm

Q(n)m+m2(m−1)−1

)∗ S(n) = Õ
(

nm

Q(n)2m−2

)
[18, 5]

S(n) = Õ
(

nm

Q(n)3m−4

)∗

2D Polynomial Slabs S(n) =
o

Ω
(

n∆+1

Q(n)(∆+3)∆/2

)
[3]

S(n) = Õ
(

n∆+1

Q(n)2∆

)
[18, 5]

S(n) = Õ
(

n∆+1

Q(n)(∆+3)∆/2

)∗

2D Annuli S(n) =
o

Ω
(

n3

Q(n)5

)
[3]

S(n) = Õ
(

n3

Q(n)4

)
[18, 5]

S(n) = Õ
(

n3

Q(n)5

)∗

2 Preliminaries

In this section, we introduce some tools we will use in this paper. We will mainly use the
lower bound tools used in [3]. For more detailed introduction, we refer the readers to [3].

2.1 A Geometric Lower Bound Framework
We present a lower bound framework in the pointer machine model of computation. It is a
streamlined version of the framework by Chazelle [11] and Chazelle and Rosenberg [13]. In
essence, this is an encapsulation of the way the framework is used in [3].

In a nutshell, in the pointer machine model, the memory is represented as a directed
graph where each node can store one point and it has two pointers to two other nodes. Given
a query, starting from a special “root” node, the algorithm explores a subgraph that contains
all the input points to report. The size of the explored subgraph is the query time.

Intuitively, for range reporting, to answer a query fast, we need to store its output points
close to each other. If each query range contains many points to report and two ranges share
very few points, some points must be stored multiple times, thus the total space usage must
be big. We present the framework, and refer the readers to the full version of the paper for
the proof.

▶ Theorem 1. Suppose the D-dimensional geometric range reporting problems admit an S(n)
space and Q(n)+O(k) query time data structure, where n is the input size and k is the output
size. Let µD(·) denote the D-dimensional Lebesgue measure. (We call this D-measure for
short.) Assume we can find m = nc ranges R1,R2, · · · ,Rm in a D-dimensional cube CD of
side length |l| for some constant c such that (i) ∀i = 1, 2, · · · , m, µD(Ri∩CD) ≥ 4c|l|DQ(n)/n;
and (ii) µD(Ri ∩ Rj) = O(|l|D/(n2

√
log n)) for all i ̸= j. Then, we have S(n) =

o

Ω(mQ(n)).

2.2 A Lemma for Polynomials
Given a univariate polynomial and some positive value w, the following lemma from [3] upper
bounds the length of the interval within which the absolute value of the polynomial is no
more than w. We will use this lemma as a building block for some of our proofs.



P. Afshani and P. Cheng 3:5

▶ Lemma 2 (Afshani and Cheng [3]). Given a degree-∆ univariate polynomial P (x) =∑∆
i=0 aix

i where |a∆| > 0 and ∆ > 0. Let w be any positive value. If |P (x)| ≤ w for all
x ∈ [x0, x0 + t] for some parameter x0, then t = O((w/|a∆|)1/∆).

2.3 Useful Properties about Matrices
In this section, we recall some useful properties about matrices. We first recall some properties
of the determinant of matrices. One important property is that the determinant is mutilinear:

▶ Lemma 3. Let A =
[
a1 · · · an

]
be a n×n matrix where ai’s are vectors in Rn. Suppose

aj = r · w + v for some r ∈ R and w, v ∈ Rn, then the determinant of A, denoted det(A), is

det(A) = det
([

a1 · · · aj−1 aj aj+1 · · · an

])
= r · det

([
a1 · · · aj−1 w aj+1 · · · an

])
+ det

([
a1 · · · aj−1 v aj+1 · · · an

])
.

One of the special types of matrices we will use is the Vandermonde matrix which is a
square matrix where the terms in each row form a geometric series, i.e., Vij = xj−1

i for all
indices i and j. The determinant of such a matrix is det(V ) =

∏
1≤i<j≤n(xj − xi).

Given an n-tuple λ = (λ1, λ2, · · · , λn) where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, we can define a
generalized Vandermonde matrix V ∗ defined by λ, where V ∗

ij = x
λn−j+1+j−1
i . The determinant

of V ∗ is known to be the product of the determinant of the induced Vandermonde matrix
VV ∗ with Vij = xj−1

i and the Schur polynomial sλ(x1, x2, · · · , xn) =
∑

T xt1
1 · · · xtn

n , where
the summation is over all semistandard Young tableaux [20] T of shape λ. The exponents
t1, t2, · · · , tn are all nonnegative numbers. The following lemma bounds the determinant of
a generalized Vandermonde matrix.

▶ Lemma 4. Let V ∗ be a generalized Vandermonde matrix defined by λ = (λ1, λ2, · · · , λn)
where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. If n, λ1 = Θ(1), and for all i, xi = Θ(1), then det(V ∗) =
Θ(det(VV ∗)), where VV ∗ is the induced Vandermonde matrix with Vij = xj−1

i .

3 Lower Bound for Range Reporting with General Polynomial Slabs

In this section, we prove our main lower bound for general polynomial slabs.

▶ Definition 5. A general polynomial slab in RD is a triple (P, a, b) where P ∈ R[X] is a
degree-∆ D-variate polynomial and a, b are two real numbers such that a < b. A general
polynomial slab is defined as {X ∈ RD : a ≤ P (X) ≤ b}. Note that due to rescaling, we can
assume that the polynomial is monic.

Before presenting our results, we first describe the technical challenges of this problem.
We explain why the construction used in [3] cannot be generalized in an obvious way and
give some intuition behind our lower bound construction.

3.1 Technical Challenges

Our goal is a lower bound of the form
o

Ω(nm/Q(n)Θ(m)). To illustrate the challenges, consider
the case D = 2 and the unit square U = U2 = [0, 1] × [0, 1]. To use Theorem 1, we need to
generate about

o

Ω(nm) polynomial slabs such that each slab should have width approximately
Ω(Q(n)/n), and any two slabs should intersect with area approximately O(1/n). Intuitively,
this means two slabs cannot intersect over an interval of length Ω(1/Q(n)).

SoCG 2022



3:6 On Semialgebraic Range Reporting

In Lemma 2, for univariate polynomials, the observation behind their construction is that
when the leading coefficients of two polynomials differ by a large number, the length of the
interval in which two polynomials are close to each other is small. However, when we consider
general bivariate polynomials in R2, this observation is no longer true. For example, consider
P1(x, y) = (x + 1)(1000x2 + y) and P2(x, y) = (x + 1)(x2 + 1000y). The leading coefficients
are 1000 and 1 respectively, but since P1, P2 have a common factor (x + 1), their zero sets
have a common line. Thus any slab of width Q(n)/n generated for these two polynomial will
have infinite intersection area, which is too large to be useful.

At first glance, it might seem that this problem can be fixed by picking the polynomials
randomly, e.g., each coefficient is picked independently and uniformly from the interval
[0, 1], as a random polynomial in two or more variables is irreducible with probability 1.
Unfortunately, this does not work either but for some very nontrivial reasons. To see this,
consider picking coefficients uniformly at random from range [0, 1] for bivariate polynomials
P (x, y) =

∑
i+j≤∆ aijxiyj . The probability of pick a polynomial with 0 ≤ a0j ≤ 1

n for all a0j

is 1
n∆+1 . For such polynomials, 0 ≤ P (0, y) ≤ ∆+1

n for y ∈ [0, 1]. Suppose we sampled two
such polynomials, then the two slabs generated using them will contain x = 0 for y ∈ [0, 1],
meaning, the two slabs will have too large of an area (Ω(Q(n)/n)) in common, so we cannot
have that. Unfortunately, if we sample more than n∆+1 polynomials, this will happen with
probability close to one, and there seems to be no easy fix. A deeper insight into the issue is
given below.

Map a polynomial
∑

i+j≤∆ aijxiyj to the point (a00, a01, · · · , a∆0) in Rm. The above
randomized construction corresponds to picking a random point from the unit cube U in Rm.
Now consider the subset Γ of Rm that corresponds to reducible polynomials. The issue is that
Γ intersects U and thus we will sample polynomials that are close to reducible polynomials,
e.g., a sampled polynomial with a0j = 0 ∈ [0, 1

n ] is close to the reducible polynomial with
a0j = 0. Pick a large enough sample and two points will lie close to the same reducible
polynomial and thus they will produce a “large” overlap in the construction. Our main
insight is that there exists a point p in U that has a “fixed” (i.e., constant) distance to Γ;
thus, we can consider a neighborhood around p and sample our polynomials from there.
However, more technical challenges need to be overcome to even make this idea work but it
turns out, we can simply pick our polynomials from a grid constructed in the small enough
neighborhood of some such point p in Rm.

3.2 A Geometric Lemma
In this section, we show a geometric lemma which we will use to establish our lower bound. In
a nutshell, given two monic D-variate polynomials P1, P2 and a point p = (p2, p3, · · · , pD) ∈
RD−1 in the (D − 1)-dimensional subspace perpendicular to the X1-axis, we define the
distance between Z(P1)3 and Z(P2) along the X1-axis at point p to be |a − b|, where
(a, p2, · · · , pD) ∈ Z(P1) and (b, p2, · · · , pD) ∈ Z(P2). In general, this distance is not well-
defined as there could be multiple a and b’s satisfying the definition. But we can show that
for a specific set of polynomials, a, b can be made unique and thus the distance is well-defined.
For P1, P2 with “sufficiently different” coefficients, we present a lemma which upper bounds
the (D − 1)-measure of the set of points p at which the distance between Z(P1) and Z(P2)
is “small”. Intuitively, this can be viewed as a generalization of Lemma 2. We first prove the
lemma in 2D for bivariate polynomials, and then extend the result to higher dimensions.

3 Z(P ) denotes the zero set of polynomial P .



P. Afshani and P. Cheng 3:7

First, we define the notations we will use for general D-variate polynomials.

▶ Definition 6. Let ID ⊆ {(i1, i2, · · · , iD) ∈ ND}4, D ≥ 1, be a set of D-tuples where
each tuple consists of nonnegative integers. We call ID an index set (of dimension D). Let
XD = (X1, X2, · · · , XD) be a D-tuple of indeterminates. When the context is clear, we use
X for simplicity. Given an index set ID, we define

P (X) =
∑

i∈ID

AiX
i,

where Ai ∈ R is the coefficient of Xi and Xi = Xi1
1 Xi2

2 · · · XiD

D , to be a D-variate polynomial.
For any i ∈ ID, we define σ(i) =

∑D
j=1 ij . Let ∆ be the maximum σ(i) with Ai ≠ 0, and we

say P is a degree-∆ polynomial. Given a D-tuple T , we use T:j to denote a j-tuple by taking
only the first j components of T . Also, we use notation Tj to specify the j-th component
of T . Conversely, given a (D − 1)-tuple t and a value v, we define t ⊕ v to be the D-tuple
formed by appending v to the end of t.

We will consider polynomials of form

P (X) = X1 − X∆
2 +

∑
i∈ID

AiX
i,

where 0 ≤ Aij = O(ϵ) = o(1) for all σ(i) ≤ ∆ except that Ai = 0 for i = (0, ∆, 0, · · · , 0).
Intuitively, these are monic polynomials packed closely in the neighborhood of P (X) =
X1 − XD

2 . For simplicity, we call them “packed” polynomials. We will prove a property for
packed polynomials that are “sufficiently distant”. More precisely,

▶ Definition 7. Given two distinct packed degree-∆ D-variate polynomials P1, P2, we
say P1, P2 are “distant” if each coefficient of P1 − P2 has absolute value at least ξD =
δτB(ητ)(D−2)∆ > 0 if not zero for parameters δ, η, τ > 0 and ητ = O((1/ϵ)1/B), where
B =

(
b
2
)

and b = m2,∆ is the maximum number of coefficients needed to define a monic
degree-∆ bivariate polynomial.

We will use the following simple geometric observation. See the full version of the paper
for the proof.

▶ Observation 8. Let P be a packed D-variate polynomial and a = (a1, a2, · · · , aD) ∈ Z(P ).
If ai ∈ [1, 2] for all i = 2, 3, · · · , D, then there exists a unique a1 such that 0 < a1 = O(1).

With this observation, we can define the distance between the zero sets of two polynomials
along the X1-axis at a point in [1, 2]D−1 of the subspace perpendicular to the X1 axis.

▶ Definition 9. Given two packed polynomials P1, P2 and a point p = (p2, p3, · · · , pD) ∈
[1, 2]D−1, we define the distance between Z(P1) and Z(P2) at p, denoted π(Z(P1), Z(P2), p),
to be |a − b| s.t. a, b > 0, and (a, p2, p3, · · · , PD) ∈ Z(P1) and (b, p2, p3, · · · , PD) ∈ Z(P2).

Now we show a generalization of Lemma 2 to distant bivariate polynomials in 2D.

▶ Lemma 10. Let P1, P2 be two distinct distant bivariate polynomials. Let I = {y :
π(Z(P1), Z(P2), y) = O(w) ∧ y ∈ [1, 2]}, where w = δ/ηB = o(1). Then |I| = O( 1

ητ ).

4 In this paper, N = {0, 1, 2, · · · }.

SoCG 2022



3:8 On Semialgebraic Range Reporting

Proof. We prove it by contradiction. The idea is that if the claim does not hold, then we
can “tweak” the coefficients of P2 by a small amount such that the tweaked polynomial
and P1 have b common roots. Next, we show this implies that the tweaked polynomial is
equivalent to P1. Finally we reach a contradiction by noting that by assumption at least
one of the coefficients of P1 and P2 is not close. Let P1(x, y) = x − y∆ +

∑∆
i=0
∑∆−i

j=0 aijxiyj

and P2(x, y) = x − y∆ +
∑∆

i=0
∑∆−i

j=0 bijxiyj where by definition all aij ’s and bij ’s are O(ϵ).
Suppose for the sake of contradiction that |I| = ω( 1

ητ ). We pick b values y1, y2, · · · , yb in
I s.t. |yi − yj | ≥ |I|/b for all i ̸= j. Let x1, x2, · · · , xb be the corresponding values s.t.
(xk, yk) ∈ Z(P1) in the first quadrant, i.e., P1(xk, yk) = 0 for k = 1, 2, · · · , b. Note that

P1(xk, yk) = 0 ≡ xk − y∆
k +

∆∑
i=0

∆−i∑
j=0

aijxi
kyj

k = 0 =⇒ xk = y∆
k − O(ϵ),

since aij = O(ϵ) and xk, yk = O(1) by Observation 8. Since π(Z(P1), Z(P2), yk) = O(w)
for all yk ∈ I, let (xk + ∆xk, yk) be the points on Z(P2), we have P2(xk + ∆xk, yk) =
P2(xk, yk) + Θ(∆xk) = 0. Since |∆xk| = O(w), P2(xk, yk) = γk for some |γk| = O(w). We
would like to show that we can “tweak” every coefficient bij of P2(x, y) by some value dij , to
turn P2 into a polynomial Q s.t. Q(xk, yk) = 0, ∀k = 1, 2, · · · , b. If so, for every pair (xk, yk),

Q(xk, yk) = xk − y∆
k +

∆∑
i=0

∆−i∑
j=0

(bij + dij)xi
kyj

k

= P2(xk, yk) +
∆∑

i=0

∆−i∑
j=0

dijxi
kyj

k

= γk +
∆∑

i=0

∆−i∑
j=0

dij(y∆
k − O(ϵ))iyj

k

= γk +
∆∑

i=0

∆−i∑
j=0

dij(yi∆
k − O(ϵ))yj

k,

where the last equality follows from ϵ = o(1) and 1 ≤ yk ≤ 2. So to find dij ’s and to be able
to tweak P2(x, y), we need to solve the following linear system

1 y1 y2
1 · · · y∆−1

1 y∆
1 − O(ϵ) · · · y∆2

1 − O(ϵ)
1 y2 y2

2 · · · y∆−1
2 y∆

2 − O(ϵ) · · · y∆2

2 − O(ϵ)
...

...
...

. . .
...

...
. . .

...
1 yb y2

b · · · y∆−1
b y∆

b − O(ϵ) · · · y∆2

b − O(ϵ)

 ·


d00
d01

...
d∆0

 =


−γ1
−γ2

...
−γb

 ,

where the exponents of yk are generated by i∆ + j for i, j ∈ {0, 1, 2, · · · , ∆}, j ̸= ∆, and
i + j ≤ ∆. Let us call the above linear system A · d = γ.

By Lemma 3, det(A) = det(A∗) +
∑Θ(1)

l=1 det(Al), where A∗ is a generalized Vandermonde
matrix defined by an b-tuple λ = (∆2 − b, . . . , 0), and each Al is a matrix with some
columns being O(ϵ). Since b =

(2+∆
2
)

− 1 is Θ(1), by Lemma 4, we can bound det(A∗) by
Θ(det(VA∗)), where VA∗ is the induced Vandermonde matrix. Since |yi −yj | = Ω(|I|) for i ≠ j,
det(VA∗) =

∏
1≤i<j≤b(yj − yi)) = Ω(|I|B). On the other hand, for every matrix Al, there is

at least one column where the magnitude of all the entries is O(ϵ). Since all other entries are
bounded by O(1), by the Leibniz formula for determinants, | det(Al)| = O(ϵ) = O(( 1

ητ )B).
Since |I|B = ω(( 1

ητ )B), we can bound | det(A)| = Ω(|I|B) and in particular | det(A)| ̸= 0



P. Afshani and P. Cheng 3:9

and thus the above system has a solution and the polynomial Q exists. Furthermore, we
can compute d = A−1γ = 1

det(A) C · γ, where C is the cofactor matrix of A. Since all
entries of A are bounded by O(1), then the entries of C, being cofactors of A, are also
bounded by O(1). Since |γk| = O(w) and |I| = ω( 1

ητ ), for every k = 1, 2, · · · , b, we have
|dij | = O(w/|I|B) = o(w(ητ)B) = o(δτB).

However, since both Z(P1) and Z(Q) pass through these b points, both P1 and Q should
satisfy A · c1 = 0 and A · c2 = 0, where c1, c2 are their coefficient vectors respectively. But
since det(A) ̸= 0, c1 = c2, meaning, P1 ≡ Q. This means for every i, j = 0, 1, · · · , ∆, where
j ≠ ∆ and i + j ≤ ∆, |aij − bij | = dij = o(δτB). However, by assumption, if two polynomials
are not equal, then there exists at least one cij such that they differ by at least δτB, a
contradiction. So |I| = O( 1

ητ ). ◀

We now generalize Lemma 10 to higher dimensions.

▶ Lemma 11. Let P1, P2 be two distinct distant D-variate polynomials. Let S = {X :
π(Z(P1), Z(P2), X) = O(w) ∧ X ∈ [1, 2]D−1}, where w = δ/ηB = o(1). Then µD−1(S) =
O( 1

ητ ).

Proof. We prove the lemma by induction. The base case when D = 2 is Lemma 10. Now
suppose the lemma holds for dimension D − 1, we prove it for dimension D. Observe that we
can rewrite a D-variate polynomial P (X) = X1 − X∆

2 +
∑

i∈ID AiX
i as P (X) = X1 − X∆

2 +∑
j∈ID

:D−1
(fj(XD))Xj

:D−1, where fj(XD) =
∑∆−σ(j)

k=0 Aj⊕kXk
D. Consider two distinct distant

D-variate polynomials P (X) = X1 −X∆
2 +

∑
i∈ID AiX

i and Q(X) = X1 −X∆
2 +

∑
i∈ID BiX

i.
Let fj , gj be the corresponding coefficients for Xj

:D−1. Note that there exists some j such
that fj ̸≡ gj because P1, P2 are distinct. Let hj(XD) = fj(XD) − gj(XD) and observe that
hj is a univariate polynomial in XD. We show that the interval length of XD in which
|hj(XD)| < ξD−1 is upper bounded by O( 1

ητ ) for any hj(XD) ̸≡ 0. Pick any hj(XD) ̸≡ 0
and note that this means there exists at least one coefficient of hj(XD) that is nonzero.
By assumption, each coefficient of hj(XD) has absolute value at least ξD if not zero. If
the constant term is the only nonzero term, then the interval length of XD in which
|hj(XD)| < ξD−1 is 0, since |hj(XD)| ≥ ξD > ξD−1 by definition. Otherwise by Lemma 2,
the interval length |r| for XD in which |hj(XD)| < ξD−1 is upper bounded by

|r| = O

((
ξD−1

ξD

)1/∆
)

= O

((
1

(ητ)∆

)1/∆
)

= O

(
1

ητ

)
.

Since the total number of different j’s is Θ(1), the total number of hj(XD) is then Θ(1).
So the total interval length for XD within which there is some nonzero hj(XD) with
|hj(XD)| < δτD−1 is upper bounded by Θ(1) · O( 1

ητ ) = O( 1
ητ ). Since we are in a unit

hypercube, we can simply upper bound µD−1(S) by O( 1
ητ ) · Θ(1) = O( 1

ητ ). Otherwise, by
the inductive hypothesis, the (D − 2)-measure of S in [1, 2]D−2 is upper bounded by O( 1

ητ ).
Integrating over all XD, µD−1(S) is bounded by O( 1

ητ ) in this case as well. ◀

3.3 Lower Bound for General Polynomial Slabs
Now we are ready to present our lower bound construction. We will use a set S of D-variate
polynomials in R[X] of form:

P (X) = X1 − X∆
2 +

∑
i∈ID

AiX
i,

SoCG 2022



3:10 On Semialgebraic Range Reporting

where X is a D-tuple of indeterminates, ID is an index set containing all D-tuples i

satisfying σ(i) ≤ ∆, and each Ai ∈ {kξD : k = ⌊ ϵ
2ξD

⌋, ⌊ ϵ
2ξD

⌋ + 1, · · · , ⌊ ϵ
ξD

⌋} for some
ξD = δτB(ητ)(D−2)∆ to be set later, except for one special coefficient: we set Ai = 0 for
i = (0, ∆, 0, · · · , 0). Note that every pair of the polynomials in S is distant. A general
polynomial slab is defined to be a triple (P, 0, w) where P ∈ S and w is a parameter to be
set later. We need w = o(ϵ) and ϵ = o(1).

We consider a unit cube UD =
∏D

i=1[1, 2] ⊆ RD and use Framework 1. Recall that to use
Framework 1, we need to lower bound the intersection D-measure of each slab we generated
and UD, and upper bound the intersection D-measure of two slabs.

Given a slab (P, 0, w) in our construction, first note that both P and P − w are packed
polynomials. We define the width of (P, 0, w) to be the distance between Z(P ) and Z(P − w)
along the X1-axis. The following lemma shows that the width of each slab we generate will
be Θ(w) in UD. See the full version of the paper for the proof.

▶ Lemma 12. Let P1 ∈ S and P2 = P1−r for any 0 ≤ r = O(w). Then π(Z(P1), Z(P2), X) =
Θ(r) for any X ∈ [1, 2]D−1.

The following simple lemma bounds the (D − 1)-measure of the projection of the intersec-
tion of the zero set of any polynomial in our construction and UD on the (D −1)-dimensional
subspace perpendicular to X1-axis. See the full version of the paper for the proof.

▶ Lemma 13. Let P ∈ S. The projection of Z(P ) ∩ UD on the (D − 1)-dimensional space
perpendicular to the X1-axis has (D − 1)-measure Θ(1).

Combining Lemma 12 and Lemma 13, we easily bound the intersection D-measure of any
slab in our construction and UD.

▶ Corollary 14. Any slab in our construction intersects UD with D-measure Θ(w).

Combining Lemma 12 and Lemma 11, we easily bound the intersection D-measure of
two slabs in our construction in UD.

▶ Corollary 15. Any two slabs in our construction intersect with D-measure O( w
ητ ) in UD.

Since there are at most m =
(

D+∆
D

)
− 1 parameters for a degree-∆ D-variate monic

polynomial, the number of polynomial slabs we generated is then

Θ
((

ϵ

ξD

)m)
= Θ

((
n

Q(n)1+2B+(D−2)∆2((D−2)∆+2B)
√

log n

)m)
= O(nm),

by setting δ = wQ(n)B, η = Q(n), τ = 2
√

log n, ϵ = 1
Q(n)B2B

√
log n

, and w = cwQ(n)/n for a

sufficiently large constant cw. We pick cw s.t. each slab intersects UD with D-measure, by
Corollary 14, Ω(w) ≥ 4mQ(n)/n. By Corollary 15 the D-measure of the intersection of two
slabs is upper bounded by O( w

Q(n)2
√

log n
) = O( 1

n2
√

log n
). By Theorem 1, we get the lower

bound S(n) =
o

Ω
(
nm/Q(n)m+2mB+m(D−2)∆−1) . Thus we get the following result.

▶ Theorem 16. Let P be a set of n points in RD, where D ≥ 2 is an integer. Let R be the
set of all D-dimensional generalized polynomial slabs {(P, 0, w) : deg(P ) = ∆ ≥ 2, w > 0}
where P ∈ R[X1, X2, · · · , XD] is a monic degree-∆ polynomial. Let b (resp. m) be the
maximum number of parameters needed to specify a moinc degree-∆ bivariate (resp. D-
variate) polynomial. Then any data structure for P that can answer generalized polynomial
slab reporting queries from R with query time Q(n) + O(k), where k is the output size, must
use S(n) =

o

Ω
(

nm

Q(n)m+2mB+m(D−2)∆−1

)
space, where and B =

(
b
2
)
.



P. Afshani and P. Cheng 3:11

4 Data Structures for Uniform Random Point Sets

In this section, we present data structures for an input point set P uniformly randomly
distributed in a unit square U = [0, 1] × [0, 1] for semialgebraic range reporting queries in
R2. Our hope is that some of these ideas can be generalized to build more efficient data
structures for general point sets. To this end, we show two approaches based on two different
assumptions: one assumes the query curve has bounded curvature, and the other assumes
bounded derivatives. We show that for any degree-∆ bivariate polynomial inequality, we can
build a data structure with space-time tradeoff S(n) = Õ(nm/Q(n)3m−4), which is optimal
for m = 3 [3]. When the query curve has bounded derivatives for the first ∆ orders within
U , this bound sharpens to Õ(nm/Q(n)((2m−∆)(∆+1)−2)/2), which matches the lower bound
in [3] for polynomial slabs generated by inequalities of form y −

∑
i≤∆ aix

i ≥ 0. Since any
polynomial can be factorized into a product of O(1) irreducible polynomials, and we can
show that any irreducible polynomial has bounded curvature (See the full version of the
paper for details), we can express the original range by a semialgebraic set consisting of O(1)
irreducible polynomials. We mention that both data structures can be made multilevel, then
by the standard result of multilevel data structures, see e.g., [16] or [4], it suffices for us to
focus on one irreducible polynomial inequality. So the curvature-based approach works for all
semialgebraic sets. For both approaches, the main ideas are similar: we first partition U into
a Q(n) × Q(n) grid G, and then build a set of slabs in each cell of G to cover the boundary
∂R of a query range R. The boundaries of each slab consist of the zero sets of lower degree
polynomials. We build a data structure to answer degree-∆ polynomial inequality queries
inside each slab, then use the boundaries of slabs to express the remaining parts of R. This
lowers the degree of query polynomials, and then we can use fast-query data structures to
handle the remaining parts. We assume our data structure can perform common algebraic
operations in O(1) time, e.g., compute roots, compute derivatives, etc.

4.1 A Curvature-based Approach
The main observation we use is that when the total absolute curvature of ∂R is small, the
curve behaves like a line, and so we can cover it using mostly “thin” slabs, and a few “thick”
slabs when the curvature is big. See Figure 1 for an example. We use the curvature as a
“budget”: thin slabs have few points in them so we can afford to store them in a “fast” data
structure and the overhead will be small. Doing the same with the thick slabs will blow up
the space too much so instead we store them in “slower” but “smaller” data structures. The
crucial observation here is that for any given query, we only need to use a few “thick” slabs
so the slower query time will be absorbed in the overall query time.

Figure 1 Cover an Ellipse with Slabs of Different Widths.

SoCG 2022



3:12 On Semialgebraic Range Reporting

The high-level idea is to build a two-level data structure. For the bottom-level, we build
a multilevel simplex range reporting data structure [16] with query time Õ(1) + O(k) and
space S(n) = Õ(n2). For the upper-level, for each cell C in G and a parameter α = 2i/Q(n),
for i = 0, · · · , ⌊log Q(n)⌋, we generate a series of parallel disjoint slabs of width α/Q(n)
such that they together cover C. Then we rotate these slabs by angle γ = j/Q(n), for
j = 1, 2, · · · , ⌊2πQ(n)⌋. For each slab we generated during this process, we collect all the
points in it and build a Õ(Q(n)α) + O(k) query time and Õ((n/(Q(n)α))m) space data
structure by linearization [19] to Rm and using simplex range reporting [16].

The following lemma shows we can efficiently report the points close to ∂R using slabs
we constructed. For the proof of this lemma, we refer the readers to the full version of the
paper.

▶ Lemma 17. We can cut ∂R into a set S of O(Q(n)) sub-curves such that for each sub-curve
σ, we can find a set Sσ of slabs that together cover σ. Let Pσ be the subset of the input
that lies inside the query and inside the slabs, i.e., Pσ = R ∩ P ∩ (∪s∈Sσ s). Pσ can be
reported in time Q(n)Õ(κσ + 1/Q(n)) + O(|Pσ|), where κσ is the total absolute curvature of
σ. Furthermore, for any two distinct σ1, σ2 ∈ S, s1 ∩ s2 = ∅ for all s1 ∈ Sσ1 , s2 ∈ Sσ2 .

With Lemma 17, we can now bound the total query time for points close to ∂R by∑
σ Q(n)Õ(κσ + 1/Q(n)) + O(tσ) = Õ(Q(n)) + O(t1), where t1 is the output size. An

important observation is that after covering ∂R, we can express the remaining regions by the
boundaries of the slabs used and G, which are linear inequalities and so we can use simplex
range reporting. Lemma 18 characterizes the remaining regions. See the full version of the
paper for the proof.

▶ Lemma 18. There are O(Q(n)) remaining regions and each region can be expressed using
O(1) linear inequalities. These regions can be found in time O(Q(n)).

With Lemma 18, the query time for the remaining regions is Õ(Q(n)) + O(t2), where t2 is
the number of points in the remaining regions. Then the total query time is easily computed
to be bounded by Õ(Q(n)) + O(k), where k = t1 + t2.

To bound the space usage for the top-level data structure, note that we have Q(n)2 cells,
for each α, we generate Θ( 1/Q(n)

α/Q(n) ) = Θ(1/α) slabs for each of the Θ(Q(n)) angles. Since
points are distributed uniformly at random, the expected number of points in a slab of width
α/Q(n) in a cell C is O(n · 1

Q(n) · α
Q(n) ). So the space usage for the top-level data structure is

S(n) =
∑

α

Q(n)2 · Θ
(

1
α

)
· Θ(Q(n)) · Õ

O
(

n · 1
Q(n) · α

Q(n)

)
Q(n)α

m

= Õ

(
nm

Q(n)3m−4

)
.

On the other hand, we know that the space usage for the bottom-level data structure is
Õ(n2). So the total space usage is bounded by Õ( nm

Q(n)3m−4 ) for m ≥ 3.
We therefore obtain the following theorem.

▶ Theorem 19. Let R be the set of semialgebraic ranges formed by degree-∆ bivariate polyno-
mials. Suppose we have a polynomial factorization black box that can factorize polynomials into
the product of irreducible polynomials in time O(1), then for any logO(1) n ≤ Q(n) ≤ nϵ for
some constant ϵ, and a set P of n points distributed uniformly randomly in U = [0, 1] × [0, 1],
we can build a data structure of space Õ(nm/Q(n)3m−4) such that for any R ∈ R, we can
report R∩P in time Õ(Q(n))+O(k) in expectation, where m ≥ 3 is the number of parameters
needed to define a degree-∆ bivariate polynomial and k is the output size.



P. Afshani and P. Cheng 3:13

4.2 A Derivative-based Approach
If we assume that the derivative of ∂R is O(1), the previous curvature-based approach can be
easily adapted to get a derivative-based data structure. See the full version of the paper for
details. We can even do better by using slabs whose boundaries are the zero sets of higher
degree polynomials instead of linear polynomials. Using Taylor’s theorem, we show that we
can cover the boundary of the query using “thin” slabs of lower degree polynomials, similar
to the approach above. The full details are presented in the full version of the paper.

▶ Theorem 20. Let R be the set of semialgebraic ranges formed by degree-∆ bivariate
polynomials with bounded derivatives up to the ∆-th order. For any logO(1) n ≤ Q(n) ≤ nϵ for
some constant ϵ, and a set P of n points distributed uniformly randomly in U = [0, 1] × [0, 1],
we can build a data structure which uses space Õ(nm/Q(n)((2m−∆)(∆+1)−2)/2) s.t. for any
R ∈ R, we can report P ∩ R in time Õ(Q(n)) + O(k) in expectation, where m is the number
of parameters needed to define a degree-∆ bivariate polynomial and k is the output size.

▶ Remark 21. We remark that our data structure can also be adapted to support semialgebraic
range searching queries in the semigroup model.

5 Conclusion and Open Problems

In this paper, we essentially closed the gap between the lower and upper bounds of general
semialgebraic range reporting in the fast-query case at least as far as the exponent of n is
concerned. We show that for general polynomial slab queries defined by D-variate polynomials
of degree at most ∆ in RD any data structure with query time no(1) + O(k) must use at least
S(n) =

o

Ω(nm) space, where m =
(

D+∆
D

)
− 1 is the maximum possible parameters needed to

define a query. This matches current upper bound (up to an no(1) factor).
We also studied the space-time tradeoff and showed an upper bound that matches the

lower bounds in [3] for uniform random point sets.
The remaining big open problem here is proving a tight bound for the exponent of Q(n)

in the space-time tradeoff. There is a large gap between the exponents in our lower bound
versus the general upper bound. Our results show that current upper bound might not be
tight. On the other hand, our lower bound seems to be suboptimal when the query time is
nΩ(1) + O(k). Both problems seem quite challenging, and probably require new tools.

References
1 Peyman Afshani. Improved pointer machine and I/O lower bounds for simplex range reporting

and related problems. In Proceedings of the Twenty-Eighth Annual Symposium on Compu-
tational Geometry, SoCG ’12, pages 339–346, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2261250.2261301.

2 Peyman Afshani. A new lower bound for semigroup orthogonal range searching. In 35th
International Symposium on Computational Geometry, volume 129 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 3, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019.

3 Peyman Afshani and Pingan Cheng. Lower Bounds for Semialgebraic Range Searching and
Stabbing Problems. In Kevin Buchin and Éric Colin de Verdière, editors, 37th International
Symposium on Computational Geometry (SoCG 2021), volume 189 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 8:1–8:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2021.8.

4 Pankaj K. Agarwal. Simplex range searching and its variants: a review. In A journey through
discrete mathematics, pages 1–30. Springer, Cham, 2017.

SoCG 2022

https://doi.org/10.1145/2261250.2261301
https://doi.org/10.4230/LIPIcs.SoCG.2021.8


3:14 On Semialgebraic Range Reporting

5 Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. Efficient algorithm for
generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760–787,
2021. doi:10.1137/19M1268550.

6 Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic
sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.

7 Sunil Arya, Theocharis Malamatos, and David M. Mount. On the importance of idempotence.
In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
564–573. ACM, New York, 2006. doi:10.1145/1132516.1132598.

8 Sunil Arya, David M. Mount, and Jian Xia. Tight lower bounds for halfspace range searching.
Discrete Comput. Geom., 47(4):711–730, 2012. doi:10.1007/s00454-012-9412-x.

9 Hervé Brönnimann, Bernard Chazelle, and János Pach. How hard is half-space range searching?
Discrete Comput. Geom., 10(2):143–155, 1993. doi:10.1007/BF02573971.

10 Bernard Chazelle. Lower bounds on the complexity of polytope range searching. J. Amer.
Math. Soc., 2(4):637–666, 1989. doi:10.2307/1990891.

11 Bernard Chazelle. Lower bounds for orthogonal range searching. I. The reporting case. J.
Assoc. Comput. Mach., 37(2):200–212, 1990. doi:10.1145/77600.77614.

12 Bernard Chazelle. Lower bounds for orthogonal range searching. II. The arithmetic model. J.
Assoc. Comput. Mach., 37(3):439–463, 1990. doi:10.1145/79147.79149.

13 Bernard Chazelle and Burton Rosenberg. Simplex range reporting on a pointer machine.
Comput. Geom., 5(5):237–247, 1996. doi:10.1016/0925-7721(95)00002-X.

14 Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors. Handbook of discrete and
computational geometry. Discrete Mathematics and its Applications (Boca Raton). CRC Press,
Boca Raton, FL, 2018. Third edition of [ MR1730156].

15 Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the plane. Ann.
of Math. (2), 181(1):155–190, 2015. doi:10.4007/annals.2015.181.1.2.

16 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2):157–182, 1993. doi:10.1007/BF02573972.

17 Jiří Matoušek. Geometric range searching. ACM Comput. Surv., 26(4):421–461, 1994. doi:
10.1145/197405.197408.

18 Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range
searching. Discrete Comput. Geom., 54(1):22–41, 2015. doi:10.1007/s00454-015-9701-2.

19 Andrew Chi-Chih Yao and F. Frances Yao. A general approach to d-dimensional geometric
queries (extended abstract). In Robert Sedgewick, editor, Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 163–168. ACM, 1985. doi:10.1145/22145.22163.

20 A. Young. On Quantitative Substitutional Analysis. Proc. Lond. Math. Soc., 33:97–146, 1901.
doi:10.1112/plms/s1-33.1.97.

https://doi.org/10.1137/19M1268550
https://doi.org/10.1137/120890855
https://doi.org/10.1145/1132516.1132598
https://doi.org/10.1007/s00454-012-9412-x
https://doi.org/10.1007/BF02573971
https://doi.org/10.2307/1990891
https://doi.org/10.1145/77600.77614
https://doi.org/10.1145/79147.79149
https://doi.org/10.1016/0925-7721(95)00002-X
https://doi.org/10.4007/annals.2015.181.1.2
https://doi.org/10.1007/BF02573972
https://doi.org/10.1145/197405.197408
https://doi.org/10.1145/197405.197408
https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1145/22145.22163
https://doi.org/10.1112/plms/s1-33.1.97


Intersection Queries for Flat Semi-Algebraic
Objects in Three Dimensions and Related Problems
Pankaj K. Agarwal #

Department of Computer Science, Duke University, Durham, NC, USA

Boris Aronov #

Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA

Esther Ezra #

School of Computer Science, Bar Ilan University, Ramat Gan, Israel

Matthew J. Katz #

Department of Computer Science, Ben Gurion University, Beer Sheva, Israel

Micha Sharir #

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract
Let T be a set of n planar semi-algebraic regions in R3 of constant complexity (e.g., triangles, disks),
which we call plates. We wish to preprocess T into a data structure so that for a query object γ,
which is also a plate, we can quickly answer various intersection queries, such as detecting whether
γ intersects any plate of T , reporting all the plates intersected by γ, or counting them. We focus on
two simpler cases of this general setting: (i) the input objects are plates and the query objects are
constant-degree algebraic arcs in R3 (arcs, for short), or (ii) the input objects are arcs and the query
objects are plates in R3. These interesting special cases form the building blocks for the general case.

By combining the polynomial-partitioning technique with additional tools from real algebraic
geometry, we obtain a variety of results with different storage and query-time bounds, depending
on the complexity of the input and query objects. For example, if T is a set of plates and
the query objects are arcs, we obtain a data structure that uses O∗(n4/3) storage (where the
O∗(·) notation hides subpolynomial factors) and answers an intersection query in O∗(n2/3) time.
Alternatively, by increasing the storage to O∗(n3/2), the query time can be decreased to O∗(nρ),
where ρ = (2t − 3)/3(t − 1) < 2/3 and t ≥ 3 is the number of parameters needed to represent the
query arcs.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Intersection searching, Semi-algebraic range searching, Point-enclosure
queries, Ray-shooting queries, Polynomial partitions, Cylindrical algebraic decomposition, Multi-
level partition trees, Collision detection

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.4

Related Version Full Version: https://arxiv.org/abs/2203.10241 [3]

Funding Pankaj K. Agarwal: Work partially supported by NSF grants IIS-18-14493 and CCF-20-
07556.
Boris Aronov: Work partially supported by NSF Grants CCF-15-40656 and CCF-20-08551, and by
Grant 2014/170 from the US-Israel Binational Science Foundation.
Esther Ezra: Work partially supported by NSF CAREER under Grant CCF:AF-1553354 and by
Grant 824/17 from the Israel Science Foundation.
Matthew J. Katz : Work partially supported by Grant 1884/16 from the Israel Science Foundation,
and by Grant 2019715/CCF-20-08551 from the US-Israel Binational Science Foundation/US National
Science Foundation.
Micha Sharir : Work partially supported by Grant 260/18 from the Israel Science Foundation.

© Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
https://orcid.org/0000-0002-9439-181X
mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0003-3110-4702
mailto:ezraest@cs.biu.ac.il
https://orcid.org/0000-0001-8133-1335
mailto:matya@cs.bgu.ac.il
https://orcid.org/0000-0002-0672-729X
mailto:michas@tauex.tau.ac.il
https://orcid.org/0000-0002-2541-3763
https://doi.org/10.4230/LIPIcs.SoCG.2022.4
https://arxiv.org/abs/2203.10241
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Intersection Queries for Flat Semi-Algebraic Objects

Acknowledgements We thank Peyman Afshani for sharing with us problems that have motivated
our study of segment-intersection searching amid spherical caps, Ovidiu Daescu for suggesting the
collision-detection application that motivated some aspects of our work, and the reviewers of this
work for their helpful comments.

1 Introduction

This paper studies intersection-searching problems in R3, where both input and query objects
are planar semi-algebraic regions of constant complexity (e.g., triangles, disks), which we
refer to as plates.1 We also consider two simpler cases of this setup: (i) the input objects
are plates and the query objects are constant-degree algebraic arcs in R3, referred to simply
as arcs, and (ii) the input objects are arcs and the query objects are plates in R3. Besides
being interesting in their own right, the data structures for these two simpler cases form
the building blocks for handling the general case. In each case, we wish to preprocess a
set T of input objects (plates or arcs) in R3 into a data structure that supports various
intersection queries for a query object (again a plate or an arc) γ, where we want to determine
whether γ intersects any object of T (intersection-detection queries), report all objects of T
that γ intersects (intersection-reporting queries), count the number of objects of T that
γ intersects (intersection-counting queries), or, when the query object is a directed arc γ,
report the first input object intersected by γ (ray-shooting queries). Intersection queries arise
in many applications, including robotics, computer-aided design, and solid modeling.

Notwithstanding a considerable amount of work on segment-intersection or ray-shooting
queries amid triangles in R3 (see, e.g., the survey by Pellegrini [23]), little is known about
more general intersection queries in R3, e.g., how quickly one can answer arc-intersection
queries amid triangles in R3, or triangle-intersection queries amid arcs in R3. The present
work makes significant and fairly comprehensive progress on the design of efficient solutions
to general intersection-searching problems in R3.

1.1 Related work
The general intersection-searching problem asks to preprocess a set O of geometric objects
in Rd, so that one can quickly report or count all objects of O intersected by a query object γ,
or just test whether γ intersects any object of O at all. One may also want to perform some
other aggregate operations on these objects (see [2] for a general framework). Intersection
searching is a generalization of range searching (in which the input objects are points) and
point enclosure queries (in which the query objects are points).

A popular approach to answering intersection queries is to write a first-order formula
for the intersection condition between an input object and a query object. Using quantifier
elimination, intersection queries can be reduced to semi-algebraic range queries, by working
in object space, where each input object O ∈ O is mapped to a point Ô and a query object γ
is mapped to a semi-algebraic region γ̂, such that γ̂ contains a point Ô if and only if γ
intersects the corresponding input object O. Alternatively, the problem can be reduced to a
point-enclosure query, by working in query space, where now each input object O is mapped
to a semi-algebraic region Õ and each query object γ is mapped to a point γ̃, so that γ̃ lies
in Õ if and only if γ intersects O. The first approach leads to a linear-size data structure

1 Roughly speaking, a semi-algebraic set in Rd is the set of points in Rd satisfying a Boolean predicate
over a set of polynomial inequalities; the complexity of the predicate and of the set is defined in terms
of the number of polynomials involved and their maximum degree. See [11] for details.



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 4:3

with sublinear query time, and the second approach leads to a large-size data structure with
logarithmic or polylogarithmic query time; see, e.g., [6, 8, 14, 20, 26] for the first approach
and [4, 12] for the second one.

The performance of these data structures depends on the number of parameters needed to
specify the input and query objects. We refer to these numbers as the parametric dimension
(or the number of degrees of freedom (dof)) of the input and query objects, respectively.
Sometimes the performance can be improved using a multi-level data structure, where each
level uses a lower-dimensional sub-predicate [2]. One can also combine these two approaches
to obtain a query-time/storage trade-off. For example, using standard techniques (such as
in [22]), a ray-shooting or segment-intersection query amid n triangles in R3 can be answered
in O∗(n3/4) time using O∗(n) storage, in O(log n) time using O∗(n4) storage, or in O∗(n/s1/4)
time using O∗(s) storage,2 for n ≤ s ≤ n4, by combining the first two solutions [22, 23].
As in the abstract, the O∗(·) notation hides subpolynomial factors, e.g., of the form O(nε),
for arbitrarily small ε > 0, and their coefficients which depend on ε. A similar multi-level
approach yields data structures in which a ray-shooting query among n planes or spheres
in R3 can be answered in O∗(n/s1/3) time using O∗(s) storage, for n ≤ s ≤ n3 [21, 22, 23, 25].

A departure from this approach is the pedestrian approach for answering ray-shooting
queries. For instance, given a simple polygon P with n edges, a Steiner triangulation of P is
constructed so that a line segment lying inside P intersects only O(log n) triangles. A query is
answered by traversing the query ray through this sequence of triangles [19]. The pedestrian
approach has also been applied to polygons with holes in R2 [5, 19], to a convex polyhedron
in R3 [15], and to polyhedral subdivisions in R3 [5, 10]. Some of the ray-shooting data
structures combine the pedestrian approach with the above range-searching tools [1, 9, 14].

Recently, Ezra and Sharir [16] proposed a new approach for answering ray-shooting
queries amid triangles in R3, using the pedestrian approach in the context of the polynomial-
partitioning scheme of Guth [17]. Roughly speaking, they construct a partitioning polyno-
mial F of degree O(D), for a sufficiently large constant D, using the algorithm in [4]. The
zero set Z(F ) of F partitions R3 into cells, which are the connected components of R3 \Z(F ).
The partitioning scheme guarantees that, with a suitable choice of the degree, each cell τ is
intersected by at most n/D input triangles, but for only at most n/D2 of them their (relative)
boundary intersects τ .3 These latter triangles are called narrow at τ , and the other intersect-
ing triangles are called wide. For each cell τ , the algorithm of [16] recursively preprocesses
the narrow triangles of τ and constructs a secondary data structure for the wide triangles
at τ . A major technical result of [16] is to reduce a ray-shooting or intersection-detection
query among wide triangles to a similar query amid a set of planes in R3 (those supporting
the input triangles), and to use the fact that such a query amid planes can be answered
in O∗(n/s1/3) time when O∗(s) storage is available, for any n ≤ s ≤ n3; see [22, 23]. This
leads to a data structure with O∗(n3/2) storage and O∗(n1/2) query time, which improves
upon the earlier solution [22]. The approach of [16] can also support reporting queries
in O∗(n1/2 + k) time, where k is the output size, but, for certain technical reasons, it does
not support counting queries.

2 We sometimes refer to s as the “storage parameter,” to distinguish it from the actual storage being
used, which is O∗(s).

3 One actually has to construct two polynomials, one for ensuring the first property and one for the
second property, and take their product, still a polynomial of degree O(D), as the desired polynomial.

SoCG 2022



4:4 Intersection Queries for Flat Semi-Algebraic Objects

Table 1 Summary of results. Storage and query time are O∗(nα) and O∗(nβ), respectively, and
we specify the values of α and β for each result. The data structures for type (i) and (ii) intersection
queries count the number of intersection points between the input objects and the query object, and
not the number of input objects intersected by the query object.
⋆ Counts the number of triangles intersected by a query triangle in O∗(n5/9) time.
⋆⋆ This data structure does not extend to counting queries. In addition, the first term 2tQ−7

3(tQ−3) in
the bound applies when tQ is the maximum parametric dimension of the bounding arcs of the query
plates; if each plate is bounded by a single endpoint-free curve, the first term in the bound becomes

2tQ−3
3(tQ−1) .

Input Query Storage Query Time
Plates Arc/Curve 4/3 2/3
Plates Arc/Curve (t ≥ 3 dof) 3/2 (2t − 3)/3(t − 1)
Plates Planar arc (t ≥ 4 dof) 3/2 (2t − 7)/3(t − 3)
Plates Circular arc 3/2 3/5

Triangles Arc/Curve 1 4/5
Triangles Arc/Curve 11/9 2/3

Spherical caps Segment 5/4 3/4
Spherical caps Segment 3/2 27/40

Segments Plate 3/2 1/2
Arcs/Curves (t dof) Plate 3/2 3(t − 1)/4t

Triangles⋆ Triangle 3/2 1/2
Plates (tO dof)⋆⋆ Plate (tQ dof) 3/2 max{ 2tQ−7

3(tQ−3) , 3(tO−1)
4tO

}
Tetrahedra⋆ Tetrahedron 3/2 1/2

1.2 Our results

We refer to a connected path π as an (algebraic) arc if it is the restriction of a real algebraic
curve γ : I → R3 to a subinterval [a, b] ⊆ I. The parametric dimension t of π, also referred
to as the number of degrees of freedom (dof) of π, is the number of real parameters needed
to describe π. Two of these parameters specify the endpoints a and b. We assume that the
degree of the curve is also bounded by t.

We present efficient data structures for three broad classes of intersection searching in R3:
(i) the input objects are plates and the query objects are arcs in R3, (ii) the input objects
are arcs and the query objects are plates in R3, and (iii) both input and query objects are
plates in R3. Our algorithms combine the polynomial-partitioning technique of Guth [17]
and of Guth and Katz [18] with some additional tools from real algebraic geometry.

For simplicity, we mostly focus on answering intersection-detection queries. Our data
structures extend to answering intersection-reporting queries by spending additional O(k)
time, where k is the output size. For type (i) intersection queries, using the parametric-search
framework of Agarwal and Matoušek [7], our data structures can also answer arc-shooting
queries, where the goal is to find the first plate of T hit by a (directed) query arc, if such a
plate exists. Most of the data structures can be extended to answering intersection-counting
queries as well – for type (i) and (ii) intersection queries, our data structures count the
number of intersection points between the query arc/plate and the input plates/arcs, and for
type (iii) queries, our approach can count the number of intersecting pairs if both input and
query objects are triangles. Table 1 summarizes the main results of the paper. When we
say that an intersection query can be answered in O∗(t(n)) time, we mean that detection,
counting, and shooting queries can be answered in O∗(t(n)) time and reporting queries in
O∗(t(n) + k) time, where k is the output size.



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 4:5

Intersection-searching with arcs amid plates. We present several data structures for
answering arc-intersection queries amid a set T of n plates in R3 (cf. Section 2 and the full
version [3]). Our first main result is an O∗(n4/3)-size data structure that can be constructed
in O∗(n4/3) expected time and that supports arc-intersection queries in O∗(n2/3) time. The
asymptotic query time bound depends neither on the parametric dimension of the query
arc nor on that of the input plates, though the coefficients hiding in the O∗-notation do
depend on them. Although our high-level approach is similar to that of Ezra and Sharir [16],
handling wide plates in our setup is significantly more challenging because the query object
is an arc instead of a line segment. We handle wide input plates using a completely different
approach that not only generalizes to algebraic arcs but also simplifies, in certain aspects,
the technique of [16] for segment-intersection searching. Handling this much more general
setup, using a battery of tools from range searching and real algebraic geometry, is one of
the main technical contributions of this work. The most interesting among these tools is the
construction of a carefully tailored cylindrical algebraic decomposition (CAD) (see [11, 13, 24]
for details concerning this technique, which are also reviewed later in Section 3.1 in this work)
of a suitable parametric space, where the CAD is induced by the partitioning polynomial.

Next, we present a data structure for answering arc-intersection queries amid wide plates
within a cell of the polynomial partition. It reduces the query time by increasing the storage
used. Roughly, the improvement is a consequence of using a combined primal-dual range-
searching approach, where the primal part works in object space, as in the aforementioned
main algorithm. The dual part works in query space, regarding the query arc γ as a t-
dimensional point γ̃, where t is the parametric dimension of the query arcs. Each input
plate ∆ is mapped to a semi-algebraic range ∆̃ in query space, and the query reduces to a
point-enclosure query that determines whether γ̃ lies in any of these semi-algebraic ranges ∆̃.
Specifically, we build a data structure of size O∗(n3/2) with O∗

(
n

2t−3
3(t−1)

)
query time, for

parametric dimensions t ≥ 3.
Another significant contribution of this work is a general technique for reducing the

parametric dimension t by 2, for planar query arcs, eliminating the dependence of the
asymptotic query time bound on the endpoints of the arc. For example, if the query objects
are circular arcs, their parametric dimension is eight (three for specifying the supporting
plane, three for specifying the containing circle in that plane, and two for the endpoints).
We show how to improve the query time from O∗(n13/21) (the query time bound for t = 8)
to O∗(n3/5) (the bound for t = 6), with the same asymptotic storage complexity O∗(n3/2).
We note that t = 6 when the query objects are line segments in R3; by reducing this to t = 4,
we get the query time O∗(n5/9) for this case, which is slightly worse than O∗(n1/2) in [16].
This deterioration in the performance is the cost we pay for proposing a general approach
that extends to query objects being arcs, as well as to answering counting queries.

Next, if T is a set of triangles in R3, we present an alternative near-linear-size data
structure that can answer an arc-intersection query, for a constant-degree algebraic arc,
in O∗(n4/5) time. Using this result in our main algorithm, we improve the storage size
to O∗(n11/9), keeping the query time O∗(n2/3).

Intersection searching with plates amid arcs. Next, we present data structures for the
complementary setup where the input objects are arcs and we query with a plate. We
first show that we can preprocess a set T of n line segments, in expected time O∗(n3/2),
into a data structure of size O∗(n3/2), so that an intersection query with a plate can be
answered in O∗(n1/2) time. Next, we extend this result to the case where the input is a set

SoCG 2022



4:6 Intersection Queries for Flat Semi-Algebraic Objects

of n arcs of (constant degree and) parametric dimension t, and the query object remains a
plate. We obtain a data structure of size O∗(n3/2) that can answer an intersection query
in O∗

(
n

3(t−1)
4t

)
time; see the full version [3].

Intersection searching with plates amid plates. The above results can be used to provide
simple solutions for the case where both input and query objects are plates. For simplicity,
first assume that both input and query objects are triangles in R3. We observe that if a
query triangle ∆ intersects an input triangle ∆′ then ∆ ∩ ∆′ is a line segment, and each of
its endpoints is either an intersection of an edge of ∆ with ∆′ or of ∆ with an edge of ∆′.
The former (resp., latter) kind of intersection can be detected using type (i) intersection
queries (resp., type (ii) queries). Using O∗(n3/2) storage, this results in the query time bound
O∗(n1/2), if we use the data structure from [16] for type (i) queries. For counting queries,
we have to use our arc-intersection data structure, leading to a query time of O∗(n5/9).

The technique can be extended to the case where both input and query objects are
arbitrary plates. In this case, the boundary of a plate consists of O(1) algebraic arcs of
constant complexity. Let tO and tQ be the parametric dimensions of the boundary arcs of
input and query plates, respectively. We obtain a data structure of O∗(n3/2) size with query
time O∗(nρ), where ρ = max

{
2tQ−7

3(tQ−3) ,
3(tO−1)

4tO

}
.4

Our data structure for the plate-plate case also works if the input and query objects are
constant-complexity, not necessarily convex three-dimensional polyhedra. This is because
an intersection between two polyhedra occurs when their boundaries meet, unless one of
them is fully contained in the other, and the latter situation can be easily detected. We can
therefore just triangulate the boundaries of both input and query polyhedra and apply the
triangle-triangle intersection-detection machinery.

The case of spherical caps. Finally, we present an application of our technique to an
instance where the input objects are not flat. Specifically, we show how to answer segment-
intersection queries amid spherical caps (each being the intersection of a sphere with a
halfspace), using either a data structure with O∗(n5/4) storage and O∗(n3/4) query time, or
a structure with O∗(n3/2) storage and O∗(n27/40) query time.

2 Intersection searching with query arcs amid plates

Let T be a set of n plates in R3, and let Γ be a family of algebraic arcs that has parametric
dimension t for some constant t ≥ 3. We present algorithms for preprocessing T into a data
structure that can answer an arc-intersection query for an arc γ ∈ Γ efficiently. We begin by
describing a basic data structure, and then show how its performance can be improved.

2.1 The overall data structure
Our primary data structure consists of a partition tree Ψ on T , which is constructed using
the polynomial-partitioning technique of Guth [17]. More precisely, let X ⊆ T be a subset of
m plates and let D > 1 be a parameter. Using the result by Guth, a real polynomial F of

4 The first term 2tQ−7
3(tQ−3) in the bound applies only when the query plate is bounded by more than one arc,

of maximum parametric dimension tQ. When the query plates are bounded by a single endpoint-free
curve (such as circular or elliptical disks) with parametric dimension tQ, the term becomes 2tQ−3

3(tQ−1) .



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 4:7

degree at most c1D can be constructed, where c1 > 0 is an absolute constant, such that each
open connected component (called a cell) of R3 \ Z(F ) is crossed by boundary arcs (which
we refer to as edges from now on) of at most m/D2 plates of X and by at most m/D plates
of X ; the number of cells is at most c2D

3 for some absolute constant c2 > 0. Agarwal et
al. [4] showed that such a partitioning polynomial can be constructed in O(m) expected time
if D is a constant. Using such polynomial partitionings, Ψ can be constructed recursively in
a top-down manner as follows.

Each node v ∈ Ψ is associated with a cell τv of some partitioning polynomial and a
subset Tv ⊆ T . If v is the root of Ψ, then τv = R3 and Tv = T . Set nv = |Tv|. We set
a threshold parameter n0 ≤ n, which may depend on n, and we fix a sufficiently large
constant D. For the basic data structure described here, we set n0 = n1/3; the value of n0
will change when we later modify the structure.

Suppose we are at a node v. If nv ≤ n0 then v is a leaf and we store Tv at v. Otherwise,
we construct a partitioning polynomial Fv of degree at most c1D, as described above, and
store Fv at v. We construct a secondary data structure Σ0

v on Tv for answering arc-intersection
queries with an arc γ ∈ Γ that is contained in Z(Fv). Σ0

v is constructed in an analogous
manner as Ψ by using the polynomial-partitioning scheme of Agarwal et al. [4], which, given
a (constant) parameter D1 ≫ D, constructs a polynomial G of degree at most c1D1 so that
each cell of Z(F ) \Z(G) intersects at most nv/D1 plates of Tv and the boundaries of at most
nv/D

2
1 plates. Further details of Σ0

v (see [3]) are omitted from this version, and we conclude:

▶ Proposition 2.1. For a partitioning polynomial F of sufficiently large constant degree and
a set T of n plates, one can construct, in O∗(n) expected time, a data structure of size O∗(n)
that can answer an arc-intersection query with an arc contained in Z(F ) in O∗(n2/3) time.

Next, we compute (semi-algebraic representations of) all cells of R3 \ Z(Fv) [11]. Let τ
be such a cell. We create a child wτ of v associated with τ . We classify each plate ∆ ∈ Tv

that crosses τ as narrow (resp., wide) at τ if an edge of ∆ crosses τ (resp., ∆ crosses τ , but
none of its edges does). Let Wτ (resp., Tτ ) denote the set of the wide (resp., narrow) plates
at τ . We construct a secondary data structure Σ1

τ on Wτ , as described in Section 3 below,
for answering arc-intersection queries amid the plates of Wτ with arcs of Γ that lie inside
τ . Σ1

τ is stored at the child wτ of v. The construction of Σ1
τ for handling the wide plates is

the main technical step in our algorithm. By Proposition 3.2 in Section 3, Σ1
τ uses O∗(|Wτ |)

space, can be constructed in O∗(|Wτ |) expected time, and answers an arc-intersection query
in O∗(|Wτ |2/3) time. Finally, we set Twτ

= Tτ , and recursively construct a partition tree
for Twτ

and attach it as the subtree rooted at wτ . Note that two secondary structures are
attached at each node v, namely, Σ1

v and Σ0
v, for handling wide plates and for handling query

arcs that are contained in Z(Fv), respectively.
Denote by S(m) the maximum storage used by the data structure for a subproblem

involving at most m plates. For m ≤ n0, S(m) = O(m). For m > n0, Propositions 2.1
and 3.2 imply that S(m) obeys the recurrence:

S(m) ≤ c2D
3S(m/D2) +O∗(m), (1)

where c2 is the constant as defined above. Since the recursion terminates at m ≤ n0 = n1/3,
it can be shown that the solution to the above recurrence is S(m) = O∗(m3/2/n1/6 + m).
Hence, the overall size of the data structure (for m = n) is O∗(n4/3). A similar analysis
shows that the expected preprocessing time is also O∗(n4/3).

SoCG 2022



4:8 Intersection Queries for Flat Semi-Algebraic Objects

2.2 The query procedure
Let γ ∈ Γ be a query arc. We answer an arc-intersection query, say, intersection-detection,
for γ by searching through Ψ in a top-down manner. Suppose we are at a node v of Ψ. Our
goal is to determine whether γv := γ ∩ τv intersects any plate of Tv. For simplicity, assume
that γv is connected, otherwise we query with each connected component of γv.

If v is a leaf, we answer the intersection query naïvely, in O(n0) time, by inspecting all
plates in Tv. If γv ⊂ Z(Fv), then we query the secondary data structure Σ0

v with γv and
return the answer. So assume that γv ̸⊂ Z(Fv). We compute all cells of R3 \ Z(Fv) that γv

intersects; there are at most c3D such cells for some absolute constant c3 > 0 [11]. Let τ be
such a cell. We first use the secondary data structure Σ1

τ to detect whether γv intersects any
plate of Wτ , the set of wide plates at τ . We then recursively query at the child wτ to detect
an intersection between γ and Tτ , the set of narrow plates at τ .

For intersection-detection queries, the query procedure stops as soon as an intersection
between γ and T is found. For reporting/counting queries, we follow the above recursive
scheme, and at each node v visited by the query procedure, we either report all the plates
of Tv intersected by the query arc, or add up the intersection counts returned by various
secondary structures and recursive calls.

Denote by Q(m) the maximum query time for a subproblem involving at most m plates.
Then Q(m) = O(m) for m ≤ n0. For m > n0, Propositions 2.1 and 3.2 imply that Q(m)
obeys the recurrence:

Q(m) ≤ c3DQ(m/D2) +O∗(m2/3), (2)

where c3 is the constant as defined above. Again, using the fact that the recursion terminates
at m ≤ n0 = n1/3, it can be shown that Q(m) = O∗(m2/3 +m1/2n1/6) = O∗(m1/2n1/6). For
m = n we get Q(n) = O∗(n2/3). Putting together everything, we obtain the following:

▶ Theorem 2.2. A given set T of n plates in R3 can be preprocessed, in expected time
O∗(n4/3), into a data structure of size O∗(n4/3) so that an arc-intersection query amid T
can be answered in O∗(n2/3) time.

In the full version [3], we present a different technique for preprocessing a set T of triangles,
in expected time O∗(n), into a data structure of O∗(n) size that can answer arc-intersection
queries in O∗(n4/5) time. Using this data structure, we can modify our main structure Ψ,
as follows: We set n0 = n5/9, i.e., a node v is a leaf if nv ≤ n5/9. We construct the above
structure at each leaf of Ψ. The recursion now terminates at depth i satisfying n/D2i ≈ n5/9,
or Di = n2/9. The overall query procedure is the same as above except that we use at each
leaf the aforementioned improved procedure. This can be shown to yield:

▶ Theorem 2.3. A set T of n triangles in R3 can be processed, in expected time O∗(n11/9),
into a data structure of size O∗(n11/9) so that an arc-intersection query amid the triangles
of T can be answered in O∗(n2/3) time.

2.3 Space/query-time trade-offs
As we show in the full version [3], we can improve the query time for the secondary structure
on wide plates by increasing the size of the structure. Specifically, we show that a set Wτ

of n wide plates at some partition cell τ can be preprocessed, in expected time O∗(n3/2),
into a data structure of size O∗(n3/2), so that the query time improves to O∗

(
n

2t−3
3(t−1)

)
,

where t ≥ 3 is the parametric dimension of the query arcs. We adapt our primary data



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 4:9

structure Ψ, as follows: (a) we now set n0 to be a sufficiently large constant; and (b) we
apply a standard primal-dual range-searching algorithm for the wide plates, instead of the
primal-only approach of [20] used in the basic solution. Omitting all the details, we conclude:

▶ Theorem 2.4. Let T be a set of n plates in R3, and let Γ be a family of arcs of parametric
dimension t ≥ 3. T can be preprocessed, in expected time O∗(n3/2), into a data structure
of size O∗(n3/2), so that an arc intersection query with an arc in Γ can be answered in
O∗(n

2t−3
3(t−1) ) time.

3 Handling wide plates

Let T be a set of n plates in R3, Γ a family of arcs, and F a partitioning polynomial, as
described in Section 2. In this section we describe the algorithm for preprocessing the set of
wide plates, Wτ , for each cell τ of R3 \ Z(F ), for intersection queries with arcs of Γ. Fix a
cell τ . Let ∆ ∈ Wτ be a plate that is wide at τ , and let h∆ be the plane supporting ∆. Since
∆ is wide at τ , each connected component of ∆ ∩ τ is also a connected component of h∆ ∩ τ
(though some connected components of h∆ ∩τ may be disjoint from ∆). Roughly speaking, by
a careful construction of a cylindrical algebraic decomposition (CAD) Ξ of F (see Section 3.2),
we decompose ∆ ∩ τ into O(1) pseudo-trapezoids, each contained in a connected component
of ∆ ∩ τ . We collect these pseudo-trapezoids of all wide plates at τ and cluster them into
O(1) families, using Ξ so that, for each family Φ, all pseudo-trapezoids within Φ can be
represented by a fixed constant-complexity semi-algebraic expression (that is, predicate).
Each such predicate only depends on F and on the (coefficients of the) plane supporting the
pseudo-trapezoid φ (but not on the boundary of the plate containing φ). Roughly speaking,
the predicate is of the form σ(a, b, c, x, y), so that a plane z = a0x + b0y + c0 contains a
pseudo-trapezoid φσ so that σ(a0, b0, c0, x, y) holds precisely for those points (x, y, z) in that
plane that lie in φσ; see Section 3.3. This semi-algebraic representation of Φ enables us
to reduce the arc-intersection query on Φ to semi-algebraic range searching in only three
dimensions (Section 3.4).

3.1 An overview of cylindrical algebraic decomposition
We begin by giving a brief overview of cylindrical algebraic decomposition (CAD), also known
as Collins’ decomposition, after its originator Collins [13]. This tool is a central ingredient of
our algorithm – see Section 3.2. A detailed description can be found in [11, Chapter 5]; a
possibly more accessible treatment is given in [24, Appendix A].

Given a finite set F = {f1, . . . , fs} of d-variate polynomials, a cylindrical algebraic
decomposition induced by F , denoted by Ξ(F), is a (recursive) decomposition of Rd into a
finite collection of relatively open simply-shaped semi-algebraic cells of dimensions 0, . . . , d,
each homeomorphic to an open ball of the respective dimension. These cells refine the
arrangement A(F) of the zero sets of the polynomials in F , as described next.

Set F =
∏s

i=1 fi. For d = 1, let α1 < α2 < · · · < αt be the distinct real roots of F .
Then Ξ(F) is the collection of cells {(−∞, α1), {α1}, (α1, α2), . . . , {αt}, (αt,+∞)}. For d > 1,
regard Rd as the Cartesian product Rd−1 ×R and assume that xd is a good direction, meaning
that for any fixed a ∈ Rd−1, F (a, xd), viewed as a polynomial in xd, has finitely many roots.

Ξ(F) is defined recursively from a “base” (d− 1)-dimensional CAD Ξd−1, as follows. One
constructs a suitable set E := E(F) of polynomials in x1, . . . , xd−1 (denoted by ElimXk

(F)
in [11] and by Qb in [24]). Roughly speaking, the zero sets of polynomials in E , viewed
as subsets of Rd−1, contain the projection onto Rd−1 of all intersections Z(fi) ∩ Z(fj),
1 ≤ i < j ≤ s, as well as the projection of the loci in each Z(fi) where Z(fi) has a tangent

SoCG 2022



4:10 Intersection Queries for Flat Semi-Algebraic Objects

hyperplane parallel to the xd-axis, or a singularity of some kind. The actual construction of
E , based on subresultants of F , is somewhat complicated, and we refer to [11, 24] for more
details.

One recursively constructs Ξd−1 = Ξ(E) in Rd−1, which is a refinement of A(E) into
topologically trivial open cells of dimensions 0, 1, . . . , d− 1. For each cell τ ∈ Ξd−1, the sign
of each polynomial in E is constant (zero, positive, or negative) and the (finite) number of
distinct real xd-roots of F (x, xd) is the same for all x ∈ τ . Ξ(F) is then defined in terms
of Ξd−1, as follows. Fix a cell τ ∈ Ξd−1. Let τ × R denote the cylinder over τ . There is an
integer t ≥ 0 such that for all x ∈ τ , there are exactly t distinct real roots ψ1(x) < · · · < ψt(x)
of F (x, xd) (regarded as a polynomial in xd), and these roots are algebraic functions that
vary continuously with x ∈ τ . Let ψ0, ψt+1 denote the constant functions −∞ and +∞,
respectively. Then we create the following cells that decompose the cylinder over τ :

σ = {(x, ψi(x)) | x ∈ τ}, for i = 1, . . . , t; σ is a section of the graph of ψi over τ , and
σ = {(x, y) | x ∈ τ, y ∈ (ψi(x), ψi+1(x))}, for 0 ≤ i ≤ t; σ is a portion (‘layer’) of the
cylinder τ × R between the two consecutive graphs ψi, ψi+1.

The main property of Ξ is that, for each cell τ ∈ Ξ, the sign of each polynomial in F is
constant for all x ∈ τ . Omitting all further details (for which see [11, 13, 24]), we have the
following lemma:

▶ Lemma 3.1. Let F = {f1, . . . , fs} be a set of s d-variate polynomials of degree at most D
each. Then, assuming that all coordinates are good directions, Ξ(F) consists of O(Ds)2d

cells, and each cell can be represented semi-algebraically by O(D)2d polynomials of degree at
most O(D)2d−1 . Ξ(F) can be constructed in time (Ds)2O(d) in a suitable standard model of
algebraic computation.

3.2 Constructing a CAD of the partitioning polynomial
Let E3 denote the space of all planes in R3. More precisely, E3 is the (dual) three-dimensional
space where each plane h : z = ax+by+c is mapped to the point (a, b, c). For (a0, b0, c0) ∈ E3,
we use h(a0, b0, c0) to denote the plane z = a0x+ b0y + c0. We consider the five-dimensional
parametric space E := E3 × R2 with coordinates (a, b, c, x, y). We construct in E a CAD of
the single 5-variate polynomial F (x, y, ax+ by + c). We use a generic choice of coordinates
to ensure that all the axes of the coordinate frame are in good directions for the construction
of the CAD, coming up next. Such a generic choice of coordinates also allows us to assume
that none of the input plates lies in a vertical plane.

The construction of the CAD recursively eliminates the variables in the order y, x, c, b, a.
That is, unfolding the recursive definition given in Section 3.1, each cell of the CAD is given
by a sequence of equalities or inequalities (one from each row) of the form:

a = a0 or a−
0 < a < a+

0

b = f1(a) or f−
1 (a) < b < f+

1 (a)
c = f2(a, b) or f−

2 (a, b) < c < f+
2 (a, b) (3)

x = f3(a, b, c) or f−
3 (a, b, c) < x < f+

3 (a, b, c)
y = f4(a, b, c;x) or f−

4 (a, b, c;x) < y < f+
4 (a, b, c;x),

where a0, a−
0 , a+

0 are real parameters, and f1, f
−
1 , f

+
1 , . . . , f4, f

−
4 , f

+
4 are constant-degree

continuous algebraic functions (any of which can be ±∞), so that, whenever we have an
inequality involving two reals or two functions, we then have a−

0 < a+
0 , and/or f−

1 (a) < f+
1 (a),

f−
2 (a, b) < f+

2 (a, b), f−
3 (a, b, c) < f+

3 (a, b, c), and f−
4 (a, b, c;x) < f+

4 (a, b, c;x), over the cell
defined by the preceding set of equalities and inequalities in (3).



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 4:11

Let Ξ5 = Ξ5(F ) denote the five-dimensional CAD just defined, and let Ξ3 denote the
projection of Ξ5 onto E3, which we refer to as the base of Ξ5 and which itself is a CAD of a
suitable set of polynomials. Each base cell of Ξ3 is given by a set of equalities and inequalities
from the first three rows of (3), one per row. For a point (a0, b0, c0) ∈ E3, let Ξ2(a0, b0, c0)
denote the decomposition in the xy-subspace that is induced by Ξ5 over (a0, b0, c0). This is
the decomposition of the xy-plane into pseudo-trapezoids, each of which is given by equalities
and/or inequalities from the last two rows of (3), with a = a0, b = b0, c = c0. We refer to
Ξ2(a0, b0, c0) as the two-dimensional fiber of Ξ5 over (a0, b0, c0). As a matter of fact, and
this is the main rationale for the CAD construction, Ξ2(a0, b0, c0) can be identified with
the xy-projection of a refinement of the partition induced by Z(F ) in the plane h(a0, b0, c0).
That is, each 2-cell of this two-dimensional fiber of Ξ5 is contained in the projection of a
single connected component of h(a0, b0, c0) \Z(F ), and each 0-cell, as well as each 1-cell that
is not y-vertical, of the fiber is contained in the projection of a portion of Z(F ) ∩h(a0, b0, c0).
See Figure 1 for an illustration.

The topology of the partition induced by Z(F ) in h(a0, b0, c0) does not change as long as
(a0, b0, c0) stays in the same cell C0 of Ξ3, and changes in the topology occur only when we
cross between cells of Ξ3. In particular, each cell C of Ξ5 can be associated with a fixed cell
of R3 \Z(F ), denoted as τC , such that for all points (a0, b0, c0) in the base cell C↓ ⊂ E3 of C,
which is the projection of C onto E3, the two-dimensional portion C2 of the fiber Ξ2(a0, b0, c0)
for which {(a0, b0, c0)} × C2 ⊆ C is the xy-projection of a pseudo-trapezoid of a connected
component of h(a0, b0, c0)∩τC . This property will be useful in constructing the data structure
to answer arc-intersection queries amid the wide plates at τ .

(a0, b0, c0)

C0

Z(F )

Ξ2(a0, b0, c0)

Figure 1 An illustration of the CAD construction. C0 is a three-dimensional cell of Ξ3. For a
point (a0, b0, c0) ∈ C0, its two-dimensional fiber Ξ2(a0, b0, c0) is shown. Formally, the purple curve
is the xy-projection of Z(F ) ∩ h(a0, b0, c0).

3.3 Decomposing wide plates into pseudo-trapezoids
We are now ready to describe how to decompose each plate ∆ ∈ Wτ , for each cell τ
of R3 \Z(F ), into pseudo-trapezoids, and how to cluster the resulting pseudo-trapezoids. Let
∆ ∈ T be a plate, let h∆ be the plane supporting ∆, and let ∆∗ = (a0, b0, c0) be the point in

SoCG 2022



4:12 Intersection Queries for Flat Semi-Algebraic Objects

the abc-subspace E3 dual to h∆. We locate (in constant time, by brute force) the cell C0 of Ξ3
(in E3) that contains ∆∗. Let φ be a cell of Ξ2(∆∗), let φ↑ = {(x, y, a0x+b0y+c0) | (x, y) ∈ φ}
be the lifting of φ onto h∆, and let C be the cell of Ξ5 that contains {∆∗} ×φ. We determine
whether φ↑ is fully contained in ∆, lies fully outside ∆, or intersects ∂∆. We keep φ only
if φ↑ is contained in ∆, and associate φ↑, as well as the plate ∆, with C. (In general, ∆ is
associated with many cells C, one for each cell φ of Ξ2(∆∗) whose lifting is contained in ∆.)
In this case, we use ∆C to denote the pseudo-trapezoid φ↑, which is uniquely determined by
∆ and C and which lies in a connected component of ∆ ∩ τC . For a cell C ∈ Ξ5, let TC ⊆ T
be the subset of plates that are associated with C, and let ΦC = {∆C | ∆ ∈ TC} be the
subset of pseudo-trapezoids associated with C. Finally, for a plate ∆ ∈ T , let Ξ∆ be the set
of all cells of Ξ5 with which ∆ is associated. Again, see Figure 1 for an illustration.

The advantage of this approach is that for each plate ∆ ∈ T , the set ∆∥ := {∆C | C ∈ Ξ∆}
is a refinement into pseudo-trapezoids of those cells of h∆ \ Z(F ), referred to as inner cells,
that lie fully inside ∆. Furthermore, the set Ξ∆ provides an operational “labeling” scheme for
the pseudo-trapezoids in ∆∥ – the pseudo-trapezoid ∆C is labeled with C, or rather with the
semi-algebraic representation that it inherits from C. That is, each such pseudo-trapezoid
φ↑ on the plate ∆, with the point ∆∗ belongs to some base cell C0 of Ξ3, is represented by
equalities and inequalities of the form

x = f3(∆∗) or f−
3 (∆∗) < x < f+

3 (∆∗) and y = f4(∆∗) or f−
4 (∆∗) < y < f+

4 (∆∗),

where f3, f
−
3 , f

+
3 , f4, f

−
4 , f

+
4 are constant-degree continuous algebraic functions over the

corresponding domains, as in (3). This is a simple semi-algebraic representation, of constant
complexity, of the xy-projection φ of φ↑, which does not explicitly depend on ∆ (but only on
its plane h∆). Moreover, this representation is fixed for all plates ∆ for which the points ∆∗

lie in the same cell of Ξ3, and is therefore also independent of h∆,5 as long as ∆∗ belongs
to that cell. See Figure 2 for an illustration. This constant-size “labeling” is used for
clustering the pseudo-trapezoids into which the inner cells of h∆, for ∆ ∈ T , are partitioned.
Namely, we put all pseudo-trapezoids labeled with the same cell C of Ξ5 into one cluster,
and {ΦC | C ∈ Ξ5} is the desired clustering of the pseudo-trapezoids.

3.4 Reduction to semi-algebraic range searching

Fix a cell C of Ξ5. For an arc γ ∈ Γ, contained in the cell τC of R3 \ Z(F ), we wish
to answer an arc-intersection query on ∆C with γ. To this end, we define the predicate
ΠC : Γ × E3 → {0, 1} so that ΠC(γ; a, b, c) is 1 if and only if γ crosses h(a, b, c) at a point
(x, y, z) such that (x, y) belongs to C (that is, (a, b, c, x, y) ∈ C), and (x, y, z) lies in τC .
It is easy to verify that ΠC(γ; a, b, c) is a semi-algebraic predicate of constant complexity
(that depends on D and t, the parametric dimension of arcs in Γ). We now define the semi-
algebraic range QC,γ := {(a, b, c) | ΠC(γ; a, b, c) = 1}, which is of constant complexity too.
By construction, γ crosses ∆C if and only if the point ∆∗ ∈ QC,γ . Set T ∗

C := {∆∗ | ∆ ∈ TC}.
For each cell C ∈ Ξ5, we preprocess T ∗

C ⊂ E3, in O(|TC | log n) expected time, into a
data structure ΣC of size O(|TC |), using the range-searching mechanism of Matoušek and
Patáková [20] (see also [8]). For a query range QC,γ , the range query on T ∗

C can be answered
in O∗(|TC |2/3) time.

5 More precisely, its dependence on h∆ is only in terms of the coefficients (a, b, c) of h∆ that are substituted
in the fixed semi-algebraic predicate given above.



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 4:13

C0

Z(F )
h∆

∆

φC

h∗
∆

Figure 2 The labeling scheme provided by the CAD (the plate depicted in this figure is a triangle).
The cell C labels, by an explicit semi-algebraic expression, the highlighted inner pseudo-trapezoidal
subcell φC within the plate ∆. Another inner subcell, with a different label, in a different partition
cell τ , is also highlighted.

Finally, for a cell τ of R3 \ Z(F ), let Ξτ = {C ∈ Ξ5 | τC = τ} be the set of all CAD
cells associated with τ . We store the structures ΣC , for all C ∈ Ξτ , at τ as the secondary
structure Σ1

τ . To test whether an arc γ ∈ Γ, which lies inside τ , intersects a plate of Wτ , we
query each of the structures ΣC stored at τ with QC,γ and return yes if any of them returns
yes. Putting everything together, we obtain the following:

▶ Proposition 3.2. A set W of n wide plates at some cell τ can be preprocessed into a
data structure of size O∗(n), in O∗(n) expected time, so that an arc-intersection query, for
intersections within τ , can be answered in O∗(n2/3) time.

This at last completes the analysis for the wide plates, which implies the main result of
this paper.

References
1 P. K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing

number. SIAM J. Comput., 21(3):540–570, 1992.
2 P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through Discrete

Mathematics: A Tribute to Jiří Matoušek, pages 1–30. Springer Verlag, Berlin-Heidelberg,
2017.

3 P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir. Intersection queries for flat
semi-algebraic objects in three dimensions and related problems. arXiv:2203.10241.

4 P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized
polynomial partitioning and its applications. SIAM J. Comput., 50:760–787, 2021. Also in
Proc. Sympos. on Computational Geometry (SoCG), 2019, 5:1–5:14. Also in arXiv:1812.10269.

5 P. K. Agarwal, B. Aronov, and S. Suri. Stabbing triangulations by lines in 3D. In Proc. 11th
Annu. Sympos. on Computational Geometry, pages 267–276, 1995.

6 P. K. Agarwal and J. Matousek. On range searching with semialgebraic sets. Discret. Comput.
Geom., 11:393–418, 1994.

SoCG 2022

http://arxiv.org/abs/2203.10241
https://arxiv.org/abs/1812.10269


4:14 Intersection Queries for Flat Semi-Algebraic Objects

7 P. K. Agarwal and J. Matoušek. Ray shooting and parameric search. SIAM J. Comput.,
22:794–806, 1993.

8 P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets II.
SIAM J. Comput., 42:2039–2062, 2013. Also in arXiv:1208.3384.

9 P. K. Agarwal and Micha Sharir. Ray shooting amidst convex polyhedra and polyhedral
terrains in three dimensions. SIAM J. Comput., 25(1):100–116, 1996.

10 B. Aronov and S. Fortune. Approximating minimum-weight triangulations in three dimensions.
Discrete Comput. Geom., 21(4):527–549, 1999.

11 S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Algorithms and
Computation in Mathematics 10. Springer-Verlag, Berlin, 2003.

12 B. Chazelle. Fast searching in a real algebraic manifold with applications to geometric
complexity. In Colloquium on Trees in Algebra and Programming, pages 145–156, 1985.

13 G. E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical
algebraic decomposition. In Proc. 2nd GI Conf. Automata Theory and Formal Languages,
volume 33 of LNCS, pages 134–183. Springer, 1975.

14 M. de Berg, D. Halperin, M. H. Overmars, J. Snoeyink, and M. J. van Kreveld. Efficient ray
shooting and hidden surface removal. Algorithmica, 12(1):30–53, 1994.

15 D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theor. Comput.
Sci., 27:241–253, 1983.

16 E. Ezra and M. Sharir. On ray shooting for triangles in 3-space and related problems. SIAM J.
Comput., in press. Also in Proc. 37th Sympos. on Computational Geometry (2021), 34:1–34:15.
Also in arXiv:2102.07310.

17 L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Camb. Phil. Soc.,
159:459–469, 2015. Also in arXiv:1410.8871.

18 L. Guth and N. H. Katz. On the Erdős distinct distances problem in the plane. Annals Math.,
181:155–190, 2015. Also in arXiv:1011.4105.

19 J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk.
J. Algorithms, 18(3):403–431, 1995.

20 J. Matoušek and Z. Patáková. Multilevel polynomial partitions and simplified range searching.
Discrete Comput. Geom., 54:22–41, 2015.

21 S. Mohaban and M. Sharir. Ray shooting amidst spheres in 3 dimensions and related problems.
SIAM J. Comput., 26:654–674, 1997.

22 M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471–494, 1993.
23 M. Pellegrini. Ray shooting and lines in space. In Handbook on Discrete and Computational

Geometry, chapter 41, pages 1093–1112. CRC Press, Boca Raton, Florida, 3rd edition, 2017.
24 J. T. Schwartz and M. Sharir. On the Piano Movers’ problem: II. General techniques

for computing topological properties of real algebraic manifolds. Advances in Appl. Math.,
4:298–351, 1983.

25 M. Sharir and H. Shaul. Ray shooting and stone throwing with near-linear storage. Comput.
Geom. Theory Appls., 30:239–252, 2005.

26 A. C. Yao and F. F. Yao. A general approach to d-dimensional geometric queries (extended
abstract). In Proc. 17th Annu. ACM Symp. Theory of Computing, pages 163–168, 1985.

https://arxiv.org/abs/1208.3384
https://arxiv.org/abs/2102.07310
https://arxiv.org/abs/1410.8871
https://arxiv.org/abs/1011.4105


Twisted Ways to Find Plane Structures in Simple
Drawings of Complete Graphs
Oswin Aichholzer #

Institute of Software Technology, Technische Universität Graz, Austria

Alfredo García #

Departamento de Métodos Estadísticos and IUMA, University of Zaragoza, Spain

Javier Tejel #

Departamento de Métodos Estadísticos and IUMA, University of Zaragoza, Spain

Birgit Vogtenhuber #

Institute of Software Technology, Technische Universität Graz, Austria

Alexandra Weinberger #

Institute of Software Technology, Technische Universität Graz, Austria

Abstract
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges
share at most one point (a proper crossing or a common endpoint). We introduce a special kind of
simple drawings that we call generalized twisted drawings. A simple drawing is generalized twisted
if there is a point O such that every ray emanating from O crosses every edge of the drawing at
most once and there is a ray emanating from O which crosses every edge exactly once.

Via this new class of simple drawings, we show that every simple drawing of the complete
graph with n vertices contains Ω(n 1

2 ) pairwise disjoint edges and a plane path of length Ω( log n
log log n

).
Both results improve over previously known best lower bounds. On the way we show several
structural results about and properties of generalized twisted drawings. We further present different
characterizations of generalized twisted drawings, which might be of independent interest.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Mathematics of
computing → Graph theory

Keywords and phrases Simple drawings, simple topological graphs, disjoint edges, plane matching,
plane path

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.5

Related Version Some results of this work have been presented at the Computational Geome-
try: Young Researchers Forum in 2021 [3] and at the Encuentros de Geometría Computacional
2021 [4].
Extended Version: https://arxiv.org/abs/2203.06143v1

Funding Oswin Aichholzer : Partially supported by the Austrian Science Fund (FWF): W1230 and
by H2020-MSCA-RISE project 734922 – CONNECT.
Alfredo García: Supported by H2020-MSCA-RISE project 734922 – CONNECT and Gobierno de
Aragón project E41-17R.
Javier Tejel: Supported by H2020-MSCA-RISE project 734922 – CONNECT, Gobierno de Aragón
project E41-17R and project PID2019-104129GB-I00 / AEI / 10.13039/501100011033 of the Spanish
Ministry of Science and Innovation.
Birgit Vogtenhuber : Partially supported by Austrian Science Fund within the collaborative DACH
project Arrangements and Drawings as FWF project I 3340-N35 and by H2020-MSCA-RISE project
734922 – CONNECT.
Alexandra Weinberger : Supported by the Austrian Science Fund (FWF): W1230 and by H2020-
MSCA-RISE project 734922 – CONNECT.

© Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and
Alexandra Weinberger;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oaich@ist.tugraz.at
https://orcid.org/0000-0002-2364-0583
mailto:olaverri@unizar.es
https://orcid.org/0000-0002-6519-1472
mailto:jtejel@unizar.es
https://orcid.org/0000-0002-9543-7170
mailto:bvogt@ist.tugraz.at
https://orcid.org/0000-0002-7166-4467
mailto:weinberger@ist.tugraz.at
https://orcid.org/0000-0001-8553-6661
https://doi.org/10.4230/LIPIcs.SoCG.2022.5
https://arxiv.org/abs/2203.06143v1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

1 Introduction

Simple drawings are drawings of graphs in the plane such that vertices are distinct points
in the plane, edges are Jordan arcs connecting their endpoints, and edges intersect at most
once either in a proper crossing or in a shared endpoint. The edges and vertices of a drawing
partition the plane (or, more exactly, the plane minus the drawing) into regions, which are
called the cells of the drawing. If a simple drawing is plane (that is, crossing-free), then its
cells are classically called faces.

In the past decades, there has been significant interest in simple drawings. Questions
about plane subdrawings of simple drawings of the complete graph on n vertices, Kn, have
attracted particularly close attention.

Rafla [18] conjectured that every simple drawing of Kn contains a plane Hamiltonian
cycle. The conjecture has been shown to hold for n ≤ 9 [1], as well as for several special
classes of simple drawings, like straight-line, monotone, and cylindrical drawings, but remains
open in general. If Rafla’s conjecture is true, then this would immediately imply that every
simple drawing of the complete graph contains a plane perfect matching. However, to-date
even the existence of such a matchging is still unknown.

Ruiz-Vargas [20] showed in 2017 that every simple drawing of Kn contains Ω(n 1
2 −ε)

pairwise disjoint edges for any ε > 0, which improved over a series of previous results:
Ω((log n) 1

6 ) in 2003 [15], Ω( log n
log log n ) in 2005 [16], Ω((log n)1+ε) in 2009 [9], and Ω(n 1

3 ) in
2013 and 2014 [10, 12, 21].

Pach, Solymosi, and Tóth [15] showed that every simple drawing of Kn contains a
subdrawing of K

c log
1
8 n

, for some constant c, that is either convex or twisted1. They further
showed that every simple drawing of Kn contains a plane subdrawing isomorphic to any
fixed tree with up to c log

1
6 n vertices, for some constant c. This implies that every simple

drawing of Kn contains a plane path of length Ω((log n) 1
6 ), which has been the best lower

bound known prior to this paper.
Concerning general plane substructures, it follows from a result of Ruiz-Vargas [20] that

every simple drawing of Kn contains a plane subdrawing with at least 2n − 3 edges. Further,
García, Pilz, and Tejel [13] showed that every maximal plane subdrawing of a simple drawing
of Kn is biconnected. Note that, in contrast to straight-line drawings, simple drawings of Kn

in general do not contain triangulations, that is, plane subdrawings where all faces (except
at most one) are 3-cycles.

In this paper, we introduce a new family of simple drawings, which we call generalized
twisted drawings. The name stems from the fact that one can show that any twisted drawing
is weakly isomorphic to a generalized twisted drawing (but not every generalized twisted
drawing is weakly isomorphic to a twisted drawing). It follows, that for any n there exists a
generalized twisted drawing. Two drawings D and D′ are weakly isomorphic if there is a
bijection between the vertices and edges of D and D′ such that a pair of edges in D crosses
exactly when the corresponding pair of edges in D′ crosses.

▶ Definition 1. A simple drawing D is c-monotone (short for circularly monotone) if there
is a point O such that any ray emanating from O intersects any edge of D at most once.

A simple drawing D of Kn is generalized twisted if there is a point O such that D

is c-monotone with respect to O and there exists a ray r emanating from O that intersects
every edge of D.

1 In their definition for simple drawings, convex means that there is a labeling of the vertices to v1, v2, ..., vn

such that (vi, vj) (i < j) crosses (vk, vl) (k < l) if and only if i < k < j < l or k < i < l < j, and twisted
means that there is a labeling of the vertices to v1, v2, ..., vn such that (vi, vj) (i < j) crosses (vk, vl)
(k < l) if and only if i < k < l < j or k < i < j < l.



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:3

v1

v3

v2v4
v5

O

r

Figure 1 A generalized twisted drawing of K5. All edges cross the (red) ray r.

We label the vertices of c-monotone drawings v1, . . . , vn in counterclockwise order
around O. In generalized twisted drawings, they are labeled such that the ray r emerges
from O between the ray to v1 and the one to vn. Figure 1 shows an example of a generalized
twisted drawing of K5.

Generalized twisted drawings turn out to have quite surprising structural properties.
We show some crossing properties of generalized twisted drawings in Section 2 and with
that also prove that they always contain plane Hamiltonian paths (Theorem 3). This
result is an essential ingredient for showing that any simple drawing of Kn contains Ω(

√
n)

pairwise disjoint edges (Theorem 9 in Section 3), as well as a plane path of length Ω( log n
log log n )

(Theorem 10 in Section 4). In Section 5, we present different characterizations of generalized
twisted drawings that are of independent interest. We conclude with an outlook on further
work and open problems in Section 6. Full proofs are available at arXiv:2203.06143.

2 Twisted preliminaries

In this section, we show some properties of generalized twisted drawings, which will be used
in the following sections.

▶ Lemma 2. Let D be a generalized twisted drawing of K4, with vertices {v1, v2, v3, v4}
labeled counterclockwise around O. Then the edges v1v3 and v2v4 do not cross.

Proof Sketch. Assume, for a contradiction, that the edge v1v3 crosses the edge v2v4. There
are (up to strong isomorphism) two possibilities to draw the crossing edges v1v3 and v2v4,
depending on whether v1v3 crosses the (straight-line) segment from O to v4 or not; cf.
Figure 2. In both cases, there is only one way to draw v1v2 such that the drawing stays
generalized twisted, yielding two regions bounded by all drawn edges (v1v3, v2v4, v1v2). The
vertices v3 and v4 lie in the same region. It is well-known that every simple drawing of K4 has
at most one crossing. Thus, the edge v3v4 cannot leave this region. However, it is impossible
to draw v3v4 without leaving the region such that it is c-monotone and crosses the ray r (see
the dotted arrows in Figure 2 for necessary emanating directions of v3v4). ◀

Using the crossing property of Lemma 2, it follows directly that generalized twisted
drawings always contain plane Hamiltonian paths.

SoCG 2022

https://arxiv.org/abs/2203.06143v1


5:4 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

O

v1

v2v3

v4

r

v1

v2

v4

O

v3

r

Figure 2 The two possibilities to draw v1v3 and v2v4 crossing and generalized twisted.

▶ Theorem 3. Every generalized twisted drawing of Kn contains a plane Hamiltonian path.

Proof of Theorem 3. Let D be a generalized twisted drawing of Kn. Consider the Hamilto-
nian path v1, v⌈ n

2 ⌉+1, v2, v⌈ n
2 ⌉+2, v3, . . . , v⌈ n

2 ⌉−1, vn, v⌈ n
2 ⌉ if n is odd or the Hamiltonian path

v1, v⌈ n
2 ⌉+1, v2, v⌈ n

2 ⌉+2, v3, . . . , vn−1, v⌈ n
2 ⌉, vn if n is even. See for example the Hamiltonian

path v1, v4, v2, v5, v3 in Figure 1. Take any pair of edges (vi, vj) and (vk, vl) of the path,
where we can assume without loss of generality that i < j and k < l. If the two edges share
an endpoint, they are adjacent and do not cross. Otherwise, if they do not share an endpoint,
either i < k < j < l or k < i < l < j by definition of the path. In any of the two cases,
(vi, vj) and (vk, vl) cannot cross by Lemma 2. Therefore, no pair of edges cross, and the
Hamiltonian path is plane. ◀

Analogous to the proof of Theorem 3, one can argue that in every generalized twisted draw-
ing of Kn with n odd, the Hamiltonian cycle v1, v⌈ n

2 ⌉+1, v2, v⌈ n
2 ⌉+2, . . . , v⌈ n

2 ⌉−1, vn, v⌈ n
2 ⌉, v1

is plane. We strongly conjecture that every generalized twisted drawing of Kn contains a
plane Hamiltonian cycle, but its structure for even n is still an open problem.

Theorem 3 will be used heavily in the next two sections. Further, the following statement,
which has been implicitly shown in [10] and [12], will be used in all remaining sections.

▶ Lemma 4. Let D be a simple drawing of a complete graph containing a subdrawing D′,
which is a plane drawing of K2,n. Let A = {a1, a2, . . . , an} and B = {b1, b2} be the sides of
the bipartition of D′. Let DA be the subdrawing of D induced by the vertices of A. Then DA

is weakly isomorphic to a c-monotone drawing. Moreover, if all edges in DA cross the edge
b1b2, then DA is weakly isomorphic to a generalized twisted drawing.

3 Disjoint edges in simple drawings

In this section, we show that every simple drawing of Kn contains at least
⌊√

n
48

⌋
pairwise

disjoint edges, improving the previously known best bound of Ω(n 1
2 −ε), for any ε > 0, by

Ruiz-Vargas [20]. In addition to the properties of generalized twisted drawings from Section 2,
we use the following theorems and observations to prove this new lower bound.

▶ Theorem 5 ([13]). For n ≥ 3, every maximal plane subdrawing of any simple drawing
of Kn is biconnected.



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:5

The following theorem is a direct consequence of Corollary 5 in [19].

▶ Theorem 6. Let D be a simple drawing of Kn with n ≥ 3. Let H be a connected plane
subdrawing of D containing at least two vertices, and let v be a vertex in D \ H. Then D

contains two edges incident to v that connect v with H and do not cross any edges of H.

▶ Observation 7. For any n ≥ 3, the number of edges in a planar graph with n vertices is
at most 3n − 6.

A drawing is outerplane if it is plane, and all vertices lie on the unbounded face of the
drawing. A graph is outerplanar if it can be drawn outerplane. Outerplanar graphs have a
smaller upper bound on their number of edges than planar graphs.

▶ Observation 8. For any n ≥ 3, the number of edges in an outerplanar graph with n vertices
is at most 2n − 3.

▶ Theorem 9. Every simple drawing of Kn contains at least
⌊√

n
48

⌋
pairwise disjoint edges.

Proof. Let D be a simple drawing of Kn, and let M be a maximal plane matching of D. If
m := |M | ≥

√
n
48 , then Theorem 9 holds. So assume that |M | <

√
n
48 . We will show how to

find another plane matching, whose size is at least ⌊
√

n
48 ⌋.

The overall idea is the following: Let H be a maximal plane subdrawing of D whose vertex
set is exactly the vertices matched in M and that contains M . We will find a face f in H

that contains much more unmatched vertices inside than matched vertices on its boundary.
Then we will show that there exists a subset of the vertices inside that face, which induces a
subdrawing of D that is weakly isomorphic to a generalized twisted drawing and contains
enough vertices to guarantee the desired size of the plane matching.

We start towards finding the face f . By Theorem 5, H is biconnected. Thus, H partitions
the plane into faces, where the boundary of each face is a simple cycle. Note that the vertices
of H are exactly the vertices that are matched in M , and the vertices inside faces are the
vertices that are unmatched in M . Let U be the set of vertices of D that are not matched by
any edge of M . We denote the set of vertices of U inside a face fi by U(fi), the number of
vertices in U(fi) by u(fi), and the number of vertices on the boundary of the face fi by |fi|.

We next show that there exists a face f of H such that u(f) ≥
√

48n
12 |f |. Assume for a

contradiction that for every face fi it holds that

u(fi) <

√
48n

12 |fi|.

There are exactly n − 2m unmatched vertices. As every unmatched vertex is in the interior
of a face of H (that might be the unbounded face), we can count the unmatched vertices by
summing over the number of vertices in each face (including the unbounded face). Thus,

n − 2m ≤
∑
fi

u(fi) <

√
48n

12
∑
fi

|fi|. (1)

The number of edges in H is 1
2

∑
fi

|fi|. Since H is plane, we can use Observation 7 to bound
the number of edges of H by 3n′ − 6, where n′ is the number of vertices in H . As the vertices
of H are exactly the matched vertices, their number is n′ = 2m. Hence,∑

fi

|fi| ≤ 6 · 2m − 12.

SoCG 2022



5:6 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

From m <
√

n
48 it follows that

∑
fi

|fi| < 12
√

n

48 − 12 (2)

and

n − 2
√

n

48 < n − 2m. (3)

Putting equations (1) to (3) together we obtain that

n − 2
√

n

48 <

√
48n

12 (12
√

n

48 − 12) = n −
√

48n.

However, this inequality cannot be fulfilled by any n ≥ 0. Thus, there exists at least one
face fi with u(fi) ≥

√
48n
12 |fi|. We call that face f . (If there are several such faces, we take

an arbitrary one of them and call it f .)
As a next step, we will find two vertices on the boundary of f to which many vertices

inside f are connected via edges that do not cross each other or H. From f and the set
U(f), we construct a plane subdrawing H ′ as follows; cf. Figure 3 (left). We add the vertices
and edges on the boundary of f . Then we iteratively add all the vertices in U(f), where
for each added vertex v we also add two edges of D incident to v such that the resulting
drawing stays plane. Two such edges exist by Theorem 6. Since the matching M is maximal,
any edges between two unmatched vertices must cross at least one edge of M and thus must
cross the boundary of f . Hence, no edge in H ′ can connect two vertices of U(f) (as they are
unmatched). Consequently, every vertex in U(f) is connected in H ′ to exactly two vertices
that both lie on the boundary of f .

v

w

ff

v

w

Figure 3 Left: The face f in H containing the plane drawing H ′ (blue lines) inside. Right: We
can obtain an outerplane drawing from H ′ by interpreting bundles of edge pairs incident to the
same black vertices as plane edges.

We consider the edges in H ′ that connect a vertex in U(f) as a pair of edges. Every edge
in such a pair is contained in exactly one pair, since it is incident to exactly one unmatched
vertex. Thus, we can see every such pair of edges as one long edge incident to two vertices
on the boundary of f . If several of those long edges have the same endpoints, we call them a
bundle of edges; see Figure 3 (right).

From the long edges, we can define a graph G′ as follows. The vertices of G′ are the
vertices of D that lie on the boundary of f . Two vertices u and v are connected in G′ if
there is at least one long edge in H ′ that connects them. By the definition of long edges, G′

is outerplanar (as can be observed in Figure 3 (right)). Note that every unmatched vertex in



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:7

U(f) defines a long edge, so the number of long edges is u(f) ≥
√

48n
12 |f |. From Observation 8,

it follows that G′ has at most 2|f | − 3 edges. As a consequence, there is a pair of vertices on
the boundary of f such that the number of long edges in its bundle is at least

1
(2|f | − 3)

√
48n

12 |f | >

√
48n

24 .

This implies that there are two vertices, say v and w, to which more than
√

48n
24 vertices

inside f have two plane incident edges. We call the set of vertices in U(f) that have plane
edges to both vertices v and w the set Uvw. This set is marked in Figure 4 (left). We denote
the subdrawing of D induced by Uvw by Dvw; see Figure 4 (right).

v

w

f

vw

Uvw

v

w

vw

v1 v2
vk−1

vk

Figure 4 The subdrawing D′ induced by Uvw and the edges in Dvw. Left: The set Uvw. Right:
The edges adjacent to the leftmost vertex, v1, are drawn (in red).

We show that all edges between vertices in Uvw cross the edge vw. Let x and y be two
vertices of Dvw. Let R1 be the region bounded by the edges xv, vy, yw, and wx that lies
inside the face f ; see Figure 5. We show that xy and vw lie completely outside R1. The edge
xy has to lie either completely inside or completely outside R1, because it is adjacent to all
edges on the boundary of R1. As M is maximal and the edge xy connects two unmatched
vertices, it has to cross at least one matching edge. Thus, xy has to lie completely outside R1.
(There can be no matching edges in R1, as R1 is contained inside the face f .) As H is a
maximal plane subdrawing, vw cannot lie inside the face f and thus has to be outside R1.
Since both edges vw and xy lie completely outside R1 and the vertices along the boundary of
R1 are sorted vxwy, the two edges have to cross. Thus, all edges of Dvw cross the edge vw.

v

w

vw

f

x y
R1

Figure 5 The edge xy has to cross the edge vw.

Since the edges from vertices in Uvw to v and w are plane, it follows from Lemma 4 that
Dvw is weakly isomorphic to a generalized twisted drawing. Thus, Dvw contains at least
⌊ 1

2

√
48n
24 ⌋ pairwise disjoint edges by Theorem 3. Hence, D contains at least ⌊

√
n
48 ⌋ pairwise

disjoint edges. ◀

SoCG 2022



5:8 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

4 Plane paths in simple drawings

In the previous section, we used generalized twisted drawings to improve the lower bound
on the number of disjoint edges in simple drawings of Kn. In this section, we show that
generalized twisted drawings are also helpful to improve the lower bound on the length of
the longest path in such drawings, where the length of a path is the number of its edges, to
Ω( log n

log log n ). This improves the previously known best bound of Ω((log n) 1
6 ), which follows

from a result of Pach, Solymosi, and Tóth [15].

▶ Theorem 10. Every simple drawing D of Kn contains a plane path of length Ω( log n
log log n ).

To prove the new lower bound, we first show that all c-monotone drawings on n vertices
contain either a generalized twisted drawing on

√
n vertices or a drawing weakly isomorphic

to an x-monotone drawing on
√

n vertices. We know that drawings weakly isomorphic to
generalized twisted drawings or x-monotone drawings contain plane Hamiltonian paths (by
Theorem 3 and Observation 11 below). We conclude that c-monotone drawings contain plane
paths of the desired size. We then show that every simple drawing of the complete graph
contains either a c-monotone drawing or a plane d-ary tree. With easy observations about
the length of the longest path in d-ary trees and by putting all results together, we obtain
that every simple drawing D of Kn contains a plane path of length Ω( log n

log log n ).

4.1 Plane paths in c-monotone drawings
A simple drawing is x-monotone if any vertical line intersects any edge of the drawing at most
once (see Figure 6b). This family of drawings has been studied extensively in the literature
(see for example [2, 5, 7, 11, 17]). By definition, c-monotone drawings in which there exists
a ray emanating from O, which crosses all edges of the drawing, are generalized twisted.
In contrast, consider a c-monotone drawing D such that there exists a ray r emanating
from O that crosses no edge of D. Then it is easy to see that D is strongly isomorphic to an
x-monotone drawing. (A c-monotone drawing on the sphere can be cut along the ray r and
the result drawn on the plane such that all rays are vertical lines and the ray r is to the very
left of the drawing.) Figure 6a shows a c-monotone drawing D of K5 where no edge crosses
the ray r, and Figure 6b shows an x-monotone drawing of K5 strongly isomorphic to D. We
will call simple drawings that are strongly isomorphic to x-monotone drawings monotone
drawings. In particular, any c-monotone drawing for which there exists a ray emanating
from O that crosses no edge of the drawing is monotone.

It is well-known that any x-monotone drawing of Kn contains a plane Hamiltonian path.
For instance, assuming that the vertices are ordered by increasing x-coordinates, the set of
edges v1v2, v2v3 . . . , vn−1vn form a plane Hamiltonian path.

▶ Observation 11. Every monotone drawing of Kn contains a plane Hamiltonian path.

We will show that c-monotone drawings contain plane paths of size
√

n, by showing that
any c-monotone drawing of Kn contains a subdrawing of K√

n that is either generalized
twisted or monotone. To do so, we will use Dilworth’s Theorem on chains and anti-chains
in partially ordered sets. A chain is a subset of a partially ordered set such that any two
distinct elements are comparable. An anti-chain is a subset of a partially ordered set such
that any two distinct elements are incomparable.

▶ Theorem 12 (Dilworth’s Theorem, [8]). Let P be a partially ordered set of at least
(s−1)(t−1)+1 elements. Then P contains a chain of size s or an antichain of size t.



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:9

v1

v3

v2v4

v5

O

r

(a) A c-monotone drawing D of K5 such
that the ray r crosses no edge of D.

v1

v2

v3

v4

v5

(b) An x-monotone drawing of K5 strongly
isomorphic to D of Figure 6a.

Figure 6 Two strongly isomorphic monotone drawings of K5.

vj

vi

vk

O

r

vj

vi

vk

O

r

Figure 7 If edges vivj and vjvk cross r in a c-monotone drawing, then vivk must also cross r.

▶ Theorem 13. Let s, t be two integers, 1 ≤ s, t ≤ n, such that (s − 1)(t − 1) + 1 ≤ n. Let D

be a c-monotone drawing of Kn. Then D contains either a generalized twisted drawing of Ks

or a monotone drawing of Kt as subdrawing. In particular, if s = t = ⌈
√

n⌉, D contains a
complete subgraph Ks whose induced drawing is either generalized twisted or monotone.

Proof Sketch. Without loss of generality we may assume that the vertices of D appear
counterclockwise around O in the order v1, v2, . . . , vn. Let r be a ray emanating from O,
keeping v1 and vn on different sides. We define an order, ⪯, in this set of vertices as follows:
vi ⪯ vj if and only if either i = j or i < j and the edge (vi, vj) crosses r.

We show that ⪯ is a partial order. The relation is clearly reflexive and antisymmetric.
Besides, if vi ⪯ vj and vj ⪯ vk, then vi ⪯ vk, because i < j and j < k imply i < k, and if
vivj and vjvk cross r, then vivk also crosses r (see Figure 7). Hence, the relation is transitive.

In this partial order ⪯, a chain consists of a subset vi1 , . . . , vis−1 of pairwise comparable
vertices, that is, a subset of vertices such that their induced subdrawing is generalized twisted
(all edges cross r). An antichain, vj1 , . . . , vjt−1 , consists of a subset of pairwise incomparable
vertices, that is, a subset of vertices such that their induced subdrawing is monotone (no
edge crosses r). Therefore, the first part of the theorem follows from applying Theorem 12
to the set of vertices of D and the partial order ⪯.

Finally, observe that if s = t ≤ ⌈
√

n⌉, then (s − 1)(t − 1) + 1 ≤ n. Thus, D contains
a complete subgraph K⌈

√
n⌉ whose induced subdrawing is either generalized twisted or

monotone. ◀

SoCG 2022



5:10 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Combining Theorems 3 and 13 with Observation 11, we obtain the following theorem.

▶ Theorem 14. Every c-monotone drawing of Kn contains a plane path of length Ω(
√

n).

4.2 Plane paths in simple drawings
To show that any simple drawing of Kn contains a plane path of length Ω( log n

log log n ), we will
use d-ary trees. A d-ary tree is a rooted tree in which no vertex has more than d children. It
is well-known that the height of a d-ary tree on n vertices is Ω( log n

log d ).

Proof of Theorem 10. Let v be a vertex of D and let S(v) be the star centered at v, that
is, the set of edges of D incident to v. S(v) can be extended to a maximal plane subdrawing
H that must be biconnected by Theorem 5. See Figure 8 for a depiction of S(v) and H.

v

Figure 8 A simple drawing of K7. The red edges show the star S(v), the red and blue edges
together form a maximal plane subdrawing H. Dashed edges are edges of K7 that are not in H.

Assume first that there is a vertex w in H \ v that has degree at least (log n)2 in H. Let
Uvw be the set of vertices neighboured in H to both, v and w. Note that |Uvw| ≥ (log n)2.
The subdrawing H ′ of H consisting of the vertices in Uvw, the vertices v, and w, and the
edges from v to vertices in Uvw, and from w to vertices in Uvw is a plane drawing of K2,|Uvw|.
From Lemma 4, it follows that the subdrawing of D induced by Uvw is weakly isomorphic to
a c-monotone drawing. Therefore, by Theorem 14, the subdrawing induced by Uvw contains
a plane path of length Ω(

√
|Uvw|) = Ω(log n).

Assume now that the maximum degree in H\v is less than (log n)2. Since H is biconnected,
H \ v contains a plane tree T of order n − 1 whose maximum degree is at most (log n)2. Thus,
considering that T is rooted, the diameter of T is at least Ω( log n

log log n ). Therefore, since T is
plane, it contains a plane path of length at least Ω( log n

log log n ) and the theorem follows. ◀

5 Characterizing generalized twisted drawings

In previous sections, we have seen how generalized twisted drawings were used to make
progress on open problems of simple drawings. In addition to this, generalized twisted
drawings are also interesting in their own right and have some quite surprising structural
properties. Despite the fact that research on generalized twisted drawings is rather recent
and still ongoing, there are already several interesting characteristics and structural results.
Some of them will be presented in this section.

One characterization involves curves crossing every edge once. From the definition of
generalized twisted drawing (see Figure 1), there always exists a simple curve that crosses all
edges of the drawing exactly once (for instance, a curve that starts at O and follows r until



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:11

it reaches a point Z on r in the unbounded cell). In Theorem 15, we show that the converse
is also true. That is, every simple drawing D of Kn in which we can add a simple curve that
crosses every edge of D exactly once is weakly isomorphic to a generalized twisted drawing.

Another characterization is based on what we call antipodal vi-cells. For any three vertices
in a simple drawing D of Kn, the three edges connecting them form a simple cycle which we
call a triangle. Every such triangle partitions the plane (or sphere) into two disjoint regions
which are the sides of the triangle (in the plane a bounded and an unbounded one). Two
cells of D are called antipodal if for each triangle of D, they lie on different sides. Further,
we call a cell with a vertex on its boundary a vertex-incident-cell or, for short, a vi-cell.

By definition, every generalized twisted drawing D contains two antipodal cells, namely,
the cell containing the starting point of the ray r and the unbounded cell. This follows from
the fact that the ray r crosses every edge exactly once. Hence, r crosses the boundary of any
triangle exactly three times, so the cells containing the “endpoints” of r must be on different
sides of the triangle.

1

2

3
4

6

5

1

2

3
4

6

5

Figure 9 Two weakly isomorphic drawings of K6 that are not weakly isomorphic to any generalized
twisted drawing. Antipodal cells are marked in blue.

It turns out that the converse (existence of two antipodal cells implies weakly isomorphic
to generalized twisted) is not true. Figure 9 (left) shows a drawing of K6 that contains
two antipodal cells, but no antipodal vi-cells. From Theorem 15 bellow it will follow that
such drawings cannot be weakly isomorphic to a generalized twisted drawing. However, we
observed that for all generalized twisted drawings of Kn with n ≤ 6, both, the cell containing
the startpoint of the ray r and the unbounded cell, are vi-cells. Figure 10 shows all (up to
strong isomorphism) simple drawings of K6 that are weakly isomorphic to generalized twisted
drawings. We show that this is true in general. More than that, we show in Theorem 16 that
every drawing of Kn that is weakly isomorphic to a generalized twisted drawing contains a
pair of antipodal vi-cells. In the other direction, we show in Theorem 15 that every simple
drawing containing a pair of antipodal vi-cells is weakly isomorphic to a generalized twisted
drawing.

The final characterization is based on the extension of a given drawing of the complete
graph to a drawing containing a spanning, plane bipartite graph that has all vertices of the
original drawing on one side of the bipartition. From the definition of generalized twisted
drawings, it follows that any genereralized twisted drawing D of Kn can be extended to a
simple drawing D′ of Kn+2 including new vertices O and Z such that D′ contains a plane
drawing of a spanning bipartite graph. One side of the bipartition consists of all vertices
in D and the other side of the bipartition consists of the new vertices O and Z. Moreover,

SoCG 2022



5:12 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

v1

v2

v3v4

v5

v6 v1

v2

v3
v4

v5

v6v1

v2

v3v4

v5

v6

O O O

Figure 10 All different generalized twisted drawings of K6 (up to weak isomorphism). The
rightmost drawing is twisted.

the edge OZ crosses all edges of D. One way to add the new vertices and edges incident to
them is to draw (1) the vertex O at point O, (2) the vertex Z in the unbounded cell on the
ray r, (3) the edge OZ straight-line (along the ray r), (4) edges from O to the vertices of
D straight-line (along the inner segment of the rays crossing through the vertices), and (5)
edges from Z to the vertices of D first far away in a curve and the final part straight-line
(along the outer segment of the rays crossing through the vertices). The converse, that every
drawing that can be extended like this is weakly isomorphic to a generalized twisted drawing,
has already been shown in Lemma 4.

We show the following characterizations.

▶ Theorem 15 (Characterizations of generalized twisted drawings). Let D be a simple drawing
of Kn. Then, the following properties are equivalent.
Property 1 D is weakly isomorphic to a generalized twisted drawing.
Property 2 D contains two antipodal vi-cells.
Property 3 D can be extended by a simple curve c such that c crosses every edge of D exactly

once.
Property 4 D can be extended by two vertices, O and Z, and edges incident to the new

vertices such that D together with the new vertices and edges is a simple drawing
of Kn+2, the edge OZ crosses every edge of D, and no edge incident to O crosses
any edge incident to Z.

To prove Theorem 15, we will first show that Property 1 implies Property 2 (Theorem 16).
We next show that Property 2 implies Property 3 (Theorem 17). Then, we show that
Property 3 implies Property 4 (Theorem 18). By Lemma 4, Property 4 implies Property 1.
Thus, all properties are equivalent. In a full version of this work, we will extend the theorem
to show that also strong isomorphism to a generalized twisted drawing is equivalent to
the properties of Theorem 15. We show this by proving that any simple drawing of Kn

fulfilling Property 4 is strongly isomorphic to a generalized twisted drawing. However, the
reasoning for strong isomorphism is quite lengthy and would exceed the space constraints of
this submission.

▶ Theorem 16. Every simple drawing of Kn which is weakly isomorphic to a generalized
twisted drawing of Kn, with n ≥ 3, contains a pair of antipodal vi-cells. In generalized twisted
drawings the cell containing O and the unbounded cell form such a pair.



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:13

vi

vk
vl

R

x

r

O

vivi+1

vj

vk

ri
ri+1

rj

rk

rk′

vk′

vj′
rj′

O

r

Figure 11 Left: If there is a vertex vl in R, it cannot be connected to vi without crossing r

before x. Right: If the edge vjvk crosses the segment Ovi and the edge vj′ vk′ crosses the segment
Ovi+1, then there is no way of connecting vi+1 and vj′ .

Proof sketch. We first show that every generalized twisted drawing D of Kn, with n ≥ 3,
contains a pair of antipodal vi-cells, where O lies in a cell of that pair. Let c be the segment
OZ, where Z is a point on r in the unbounded cell. By definition of generalized twisted, c

crosses every edge of D once, so O and Z are in two antipodal cells C1 and C2, respectively.
To prove that C1 is a vi-cell, we use the following properties. First, if we take the first

edge vivk that crosses c (as seen from O) at point x, then we can prove that k = i + 1
and the bounded region R defined by the edge vivi+1 and the segments Ovi and Ovi+1 is
empty (see Figure 11, left). Second, using this empty region we can prove that D cannot
contain simultaneously an edge vjvk crossing Ovi and another edge vj′vk′ crossing Ovi+1
(see Figure 11, right). Therefore, at least one of the segments Ovi and Ovi+1 is uncrossed,
and O necessarily lies in a vi-cell (with either vi or vi+1 on the boundary). Finally, arguing
on the last edge crossing c and the unbounded cell, we can show that Z also lies in a vi-cell.

To show that also every drawing which is weakly isomorphic to a generalized twisted
drawing contains a pair of antipodal vi-cells, we use Gioan’s Theorem [6, 14]. By Gioan’s
Theorem, any two weakly isomorphic drawings of Kn can be transformed into each other
with a sequence of triangle-flips and at most one reflection of the drawing. A triangle-flip is
an operation which transforms a triangular cell △ that has no vertex on its boundary by
moving one of its edges across the intersection of the two other edges of △. We show that if
a drawing D1 contains two antipodal vi-cells, then after performing a triangle flip on D1, the
resulting drawing D2 still has two antipodal vi-cells. The main argument is that triangle-flips
are only applied to cells without vertices on their boundary, and thus the antipodality of the
vi-cells cannot change. ◀

▶ Theorem 17. In any simple drawing D of Kn that contains a pair of antipodal vi-cells, it
is possible to draw a curve c that crosses every edge of D exactly once.

Proof sketch. Let (C1, C2) be a pair of antipodal vi-cells of D. Let v1 be a vertex on the
boundary of C1 and v2 a vertex on the boundary of C2. We construct the curve as follows:
First, we draw a simple curve c from C1 to C2 such that (1) it emanates from v1 in C1 and
ends in C2 very close to v2, (2) does not cross any edge incident to v1, (3) only intersects
edges of D in proper crossings, and (4) has the minimum number of crossings with edges of
D among all curves that fulfill (1), (2) and (3). This curve c always exists since S(v1) is a
plane drawing that has only a face in which both v1 and v2 lie (see Figure 12, left).

SoCG 2022



5:14 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

v1

v2

c C2

C1

v1

v2

c C2

C1

Figure 12 Building a curve such that it crosses every edge of D once and its endpoints do not lie
on any edges or vertices of D.

C1

v1

v2

w2
w3

v1

v2

w2
w3

c c

C2 C2

C1

Figure 13 Decreasing the number of crossings between c and the edge w2w3.

Then, we prove that c crosses every edge w2w3 in D that is not incident to v1 exactly
once. On the one hand, since c connects two antipodal cells, the endpoints of c have to be
on two different sides of the triangle T formed by v1, w2 and w3. Thus, c has to cross w2w3
an odd number of times because it does not cross S(v1) and must cross the boundary of T

an odd number of times. On the other hand, if c crosses w2w3 at least three times, then we
can prove that c can be redrawn as shown in Figure 13, decreasing the number of crossings,
which contradicts (4). Therefore, c crosses every edge w2w3 at most twice and, consequently,
only once.

Finally, we change the end of c from v1 to a point in C1 in the following way (see Figure 12,
right). From some point of c sufficiently close to v1 and inside C1, we reroute c by going
around v1 such that only the edges incident to v1 are crossed, and end at a point in C1. ◀

▶ Theorem 18. Let D be a simple drawing of Kn in which it is possible to draw a simple
curve c that crosses every edge of D exactly once. Then, D can be extended by two vertices
O and Z (at the position of the endpoints of the curve), and edges incident to those vertices
such that the obtained drawing is a simple drawing of Kn+2, no edge incident to O crosses
any edge incident to Z, and all edges in D cross the edge OZ.

Proof sketch. Let c = OZ be the curve crossing every edge of D once, oriented from O to Z.
Let wu be an edge of D, oriented from w to u, crossing OZ at a point x. We say that wu is
a top (respectively bottom) edge if the clockwise order of w, Z, u and O around x is w, Z, u, O

(respectively w, O, u, Z). See Figure 14. With these definitions, we can prove that there is a
vertex w1 in D such that all the oriented edges emanating from w1 are top in relation to c.



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:15

O Z

w

O
Z

w

x

u

O
Z

w

x

u

Figure 14 Top and bottom edges. For simplicity, the curve OZ is drawn as a horizontal line.
Left: A top edge wu. Centre: A bottom edge wu. Right: The (black) top and (blue) bottom edges
of S(w).

O Z

w1

O Z

wi−1

wi

O Z

wi−1

wi

x y

O

Z

wn−1

wn

Figure 15 Building the (dashed) edges wiO and wiZ.

Thus, by removing w1 and all its incident edges from D, there is a vertex w2 in the new
drawing such that all its incident edges are top, and so on. As a consequence, there is a
natural order w1, w2, . . . , wn of the vertices of D such that for any vertex wi, the edges wiwj

with j > i are top, and the edges wiwj with j < i are bottom.

Given the natural order w1, w2, . . . , wn, our construction of the extended drawing is as
follows. Let D′

0 be the simple drawing formed by the vertices and edges of D, O and Z

as new vertices, and c as the edge connecting O and Z. From D′
0, we build new drawings

D′
1, D′

2, . . . , D′
n, by adding in step i the edges wiO and wiZ. These two edges are added very

close to some edges in D′
i−1. Figure 15 illustrates how these two edges are added in each

step.

SoCG 2022



5:16 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

In the first step, the edge Ow1 follows the curve OZ until the crossing point between
OZ and the first top edge w1u emanating from w1, and then it follows this top edge until
reaching w1. The edge Zw1 is built in an analogous way, taking the last top edge emanating
from w1. See Figure 15 top-left. For i = 2, . . . , n − 1, in step i we do different constructions
depending on whether the first and last top edges of S(wi) cross the edges wi−1O and wi−1Z.
If the first top edge wiu1 crosses wi−1O at a point x and the last top edge wiuk crosses
wi−1Z at a point y (see Figure 15 top-right), then Owi follows Owi−1 until x, and then it
follows u1wi until wi. The edge Zwi is built following Zwi−1 until y and then following
ukwi. On the contrary, if the first and the last top edges of S(wi) only cross one of wi−1O

and wi−1Z, say wi−1Z (see Figure 15 bottom-left), then Owi follows OZ until the crossing
point between OZ and the last bottom edge of S(wi), and then it follows this bottom edge
until wi. The edge Zwi is built as in the first step, using the last top edge of S(wi). In the
last step, we build Own and Zwn as in the first step, but using the first and the last bottom
edges of S(wn) instead of the first and last top edges. See Figure 15 bottom-right.

By a detailed analysis of cases, we can prove for i = 1, . . . , n that D′
i is a simple drawing

such that no edge incident to O crosses any edge incident to Z. Therefore, D′
n is the drawing

of Kn+2 satisfying the required properties. ◀

6 Conclusion and outlook

Generalized twisted drawings have a suprisingly rich structure and many useful properties. We
showed several of those properties in Section 2 and different characterizations of generalized
twisted drawings in Section 5. We have proven in Section 2 that every generalized twisted
drawing on an odd number of vertices contains a plane Hamiltonian cycle, and therefore one
especially interesting open question is the following.

▶ Conjecture 19. Every generalized twisted drawing of Kn contains a plane Hamiltonian
cycle.

Using properties of generalized twisted drawings has turned out to be helpful for inves-
tigating simple drawings in general. We first improved the lower bound on the number of
disjoint edges in simple drawings of Kn to Ω(

√
n) (Section 3). Then generalized twisted

drawings played the central role to improve the lower bound on the length of plane paths
contained in every simple drawing of Kn to Ω( log n

log log n ) (Section 4).
On the other hand, from Theorem 17 it immediately follows that no drawing that is weakly

isomorphic to a generalized twisted drawing can contain three interior-disjoint triangles
(since the endpoints of the curve crossing every edge once must be on opposite sides of
every triangle, the maximum number of interior-disjoint triangles is two). Up to strong
isomorphism, there are only two simple drawings of K4. The plane drawing contains three
interior-disjoint triangles. Thus, (up to strong isomorphism) the only drawing of K4 that is
weakly isomorphic to a generalized twisted drawing, is the drawing with a crossing. Hence,
in every generalized twisted drawing all subdrawings induced by 4 vertices contain a crossing
and thus every generalized twisted drawing is crossing maximal. Up to strong isomorphism,
there are two crossing maximal drawings of K5: the convex drawing of K5 and the twisted
drawing of K5. Since the convex drawing contains three interior-disjoint triangles, the only
(up to strong isomorphism) drawing of K5 that is weakly isomorphic to a generalized twisted
drawing is the twisted drawing of K5 (that is drawn generalized twisted in Figure 1).

It is part of our ongoing work to show that for n ≥ 7, a drawing is weakly isomorphic to a
generalized twisted drawing if and only if all subdrawings induced by five vertices are weakly
isomorphic to the twisted K5. Interestingly, the n ≥ 7 is necessary as there is a drawing



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 5:17

with 6 vertices that contains only twisted drawings of K5 but is not weakly isomorphic
to a generalized twisted drawing (see the drawings in Figure 9). There are (up to strong
isomorphism) three more simple drawings of K6 that consist of only twisted drawings of K5
and they are all weakly isomorphic to generalized twisted drawings (see Figure 10).

References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Thomas Hackl, Jür-
gen Pammer, Alexander Pilz, Pedro Ramos, Gelasio Salazar, and Birgit Vogtenhuber.
All good drawings of small complete graphs. In Proc. 31st European Workshop on Com-
putational Geometry EuroCG ’15, pages 57–60, Ljubljana, Slovenia, 2015. URL: http:
//www.ist.tu-graz.ac.at/files/publications/geometry/aafhpprsv-agdsc-15.pdf.

2 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, and
Gelasio Salazar. Shellable drawings and the cylindrical crossing number of Kn. Discrete &
Computational Geometry, 52(4):743–753, 2014. doi:10.1007/s00454-014-9635-0.

3 Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger.
Plane matchings in simple drawings of complete graphs. In Abstracts of the Computational
Geometry: Young Researchers Forum, pages 6–10, 2021. URL: https://cse.buffalo.edu/
socg21/files/YRF-Booklet.pdf#page=6.

4 Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger.
Plane paths in simple drawings of complete graphs. In Abstracts of XIX Encuentros de
Geometría Computacional, page 4, 2021. URL: https://quantum-explore.com/wp-content/
uploads/2021/06/Actas_egc21.pdf#page=11.

5 Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Gelasio Salazar, and Birgit Vogtenhuber.
Deciding monotonicity of good drawings of the complete graph. In Abstracts XVI Spanish
Meeting on Computational Geometry (XVI EGC), pages 33–36, 2015.

6 Alan Arroyo, Dan McQuillan, R. Bruce Ritcher, and Gelasio Salazar. Drawings of Kn with the
same rotation scheme are the same up to Reidemeister moves (Gioan’s theorem). Australasian
Journal of Combinatorics, 67:131–144, 2017.

7 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing numbers and combinatorial char-
acterization of monotone drawings of Kn. Discrete Comput. Geom., 53(1):107–143, 2015.
doi:10.1007/s00454-014-9644-z.

8 Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51(1):161–166, 1950. doi:10.2307/1969503.

9 Jacob Fox and Benny Sudakov. Density theorems for bipartite graphs and related ramsey-type
results. Combinatorica, 29(2):153–196, 2009. doi:10.1007/s00493-009-2475-5.

10 Radoslav Fulek. Estimating the number of disjoint edges in simple topological graphs via
cylindrical drawings. SIAM Journal on Discrete Mathematics, 28(1):116–121, 2014. doi:
10.1137/130925554.

11 Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Hanani-Tutte,
monotone drawings, and level-planarity. In Thirty essays on geometric graph theory, pages
263–287. Springer, New York, NY, 2013. doi:10.1007/978-1-4614-0110-0_14.

12 Radoslav Fulek and Andres J. Ruiz-Vargas. Topological graphs: empty triangles and disjoint
matchings. In Proceedings of the 29th Annual Symposium on Computational Geometry
(SoCG’13), pages 259–266, 2013. doi:10.1145/2462356.2462394.

13 Alfredo García, Alexander Pilz, and Javier Tejel. On plane subgraphs of complete topological
drawings. ARS MATHEMATICA CONTEMPORANEA, 20:69–87, 2021. doi:10.26493/
1855-3974.2226.e93.

14 Emeric Gioan. Complete graph drawings up to triangle mutations. In Graph-Theoretic
Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787, pages
139–150. Springer, 2005. doi:10.1007/11604686_13.

SoCG 2022

http://www.ist.tu-graz.ac.at/files/publications/geometry/aafhpprsv-agdsc-15.pdf
http://www.ist.tu-graz.ac.at/files/publications/geometry/aafhpprsv-agdsc-15.pdf
https://doi.org/10.1007/s00454-014-9635-0
https://cse.buffalo.edu/socg21/files/YRF-Booklet.pdf#page=6
https://cse.buffalo.edu/socg21/files/YRF-Booklet.pdf#page=6
https://quantum-explore.com/wp-content/uploads/2021/06/Actas_egc21.pdf#page=11
https://quantum-explore.com/wp-content/uploads/2021/06/Actas_egc21.pdf#page=11
https://doi.org/10.1007/s00454-014-9644-z
https://doi.org/10.2307/1969503
https://doi.org/10.1007/s00493-009-2475-5
https://doi.org/10.1137/130925554
https://doi.org/10.1137/130925554
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1145/2462356.2462394
https://doi.org/10.26493/1855-3974.2226.e93
https://doi.org/10.26493/1855-3974.2226.e93
https://doi.org/10.1007/11604686_13


5:18 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

15 János Pach, József Solymosi, and Gézak Tóth. Unavoidable configurations in complete topolog-
ical graphs. Discrete Comput Geometry, 30:311–320, 2003. doi:10.1007/s00454-003-0012-9.

16 János Pach and Géza Tóth. Disjoint edges in topological graphs. In Proceedings of the
2003 Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory (IJC-
CGGT’03), volume 3330, pages 133–140, 2005. doi:10.1007/978-3-540-30540-8_15.

17 János Pach and Géza Tóth. Monotone crossing number. In Graph Drawing, pages 278–289.
Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-25878-7_27.

18 Nabil H. Rafla. The good drawings Dn of the complete graph Kn. PhD thesis, McGill University,
Montreal, 1988. URL: https://escholarship.mcgill.ca/concern/file_sets/cv43nx65m?
locale=en.

19 Andres J. Ruiz-Vargas. Empty triangles in complete topological graphs. In Discrete Computa-
tional Geometry, volume 53, pages 703–712, 2015. doi:10.1007/s00454-015-9671-4.

20 Andres J. Ruiz-Vargas. Many disjoint edges in topological graphs. Computational Geometry,
62:1–13, 2017. doi:10.1016/j.comgeo.2016.11.003.

21 Andrew Suk. Disjoint edges in complete topological graphs. Discrete & Computational
Geometry, 49(2):280–286, 2013. doi:10.1007/s00454-012-9481-x.

https://doi.org/10.1007/s00454-003-0012-9
https://doi.org/10.1007/978-3-540-30540-8_15
https://doi.org/10.1007/978-3-642-25878-7_27
https://escholarship.mcgill.ca/concern/file_sets/cv43nx65m?locale=en
https://escholarship.mcgill.ca/concern/file_sets/cv43nx65m?locale=en
https://doi.org/10.1007/s00454-015-9671-4
https://doi.org/10.1016/j.comgeo.2016.11.003
https://doi.org/10.1007/s00454-012-9481-x


Edge Partitions of Complete Geometric Graphs
Oswin Aichholzer #

Institute of Software Technology,
Technische Universität Graz, Austria

Johannes Obenaus #

Department of Computer Science,
Freie Universität Berlin, Germany

Joachim Orthaber #

Institute of Software Technology,
Technische Universität Graz, Austria

Rosna Paul #

Institute of Software Technology,
Technische Universität Graz, Austria

Patrick Schnider # Ñ

Department of Mathematical Sciences,
University of Copenhagen, Denmark

Raphael Steiner # Ñ

Department of Computer Science,
ETH Zürich, Switzerland

Tim Taubner #

Department of Computer Science,
ETH Zürich, Switzerland

Birgit Vogtenhuber #

Institute of Software Technology,
Technische Universität Graz, Austria

Abstract
In this paper, we disprove the long-standing conjecture that any complete geometric graph on 2n

vertices can be partitioned into n plane spanning trees. Our construction is based on so-called
bumpy wheel sets. We fully characterize which bumpy wheels can and in particular which cannot be
partitioned into plane spanning trees (or even into arbitrary plane subgraphs).

Furthermore, we show a sufficient condition for generalized wheels to not admit a partition into
plane spanning trees, and give a complete characterization when they admit a partition into plane
spanning double stars.

Finally, we initiate the study of partitions into beyond planar subgraphs, namely into k-planar and
k-quasi-planar subgraphs and obtain first bounds on the number of subgraphs required in this setting.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Mathematics of
computing → Graph theory

Keywords and phrases edge partition, complete geometric graph, plane spanning tree, wheel set

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.6

Related Version Full Version: https://arxiv.org/abs/2108.05159
Full Version: https://arxiv.org/abs/2112.08456

Funding Oswin Aichholzer : Partially supported by the Austrian Science Fund (FWF): W1230 and
the European Union H2020-MSCA-RISE project 73499 – CONNECT.
Johannes Obenaus: Supported by ERC StG 757609.
Rosna Paul: Supported by the Austrian Science Fund (FWF): W1230.
Patrick Schnider : Supported by ERC StG 716424 – CASe.
Raphael Steiner : Supported by an ETH Zurich Postdoctoral Fellowship.
Birgit Vogtenhuber : Partially supported by the Austrian Science Fund (FWF): I 3340-N35.

Acknowledgements Research on this work has been initiated in March 2021, at the 5th research
workshop of the collaborative D-A-CH project Arrangements and Drawings, which was funded by the
DFG, the FWF, and the SNF. We thank the organizers and all participants for fruitful discussions.
Further, we thank the anonymous reviewers for their insightful comments and suggestions.

© Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul, Patrick Schnider,
Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oaich@ist.tugraz.at
https://orcid.org/0000-0002-2364-0583
mailto:johannes.obenaus@fu-berlin.de
https://orcid.org/0000-0002-0179-125X
mailto:joachim.orthaber@student.tugraz.at
https://orcid.org/0000-0002-9982-0070
mailto:ropaul@ist.tugraz.at
https://orcid.org/0000-0002-2458-6427
mailto:ps@math.ku.dk
http://people.inf.ethz.ch/schnpatr
https://orcid.org/0000-0002-2172-9285
mailto:raphaelmario.steiner@inf.ethz.ch
https://sites.google.com/view/raphael-mario-steiner/startseite
https://orcid.org/0000-0002-4234-6136
mailto:tim.taubner@inf.ethz.ch
https://orcid.org/0000-0001-5786-4756
mailto:bvogt@ist.tugraz.at
https://orcid.org/0000-0002-7166-4467
https://doi.org/10.4230/LIPIcs.SoCG.2022.6
https://arxiv.org/abs/2108.05159
https://arxiv.org/abs/2112.08456
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Edge Partitions of Complete Geometric Graphs

1 Introduction

A geometric graph G = G(P, E) is a drawing of a graph in the plane where the vertex set is
drawn as a point set P in general position (that is, no three points are collinear) and each
edge of E is drawn as a straight-line segment between its vertices. A geometric graph G is
plane if no two of its edges cross (that is, share a point in their relative interior). A partition
(also called edge partition) of a graph G is a set of edge-disjoint subgraphs of G whose union
is G. A subgraph of (a connected graph) G is spanning if it is connected and its vertex set is
the same as the one of G. In 2003, Ferran Hurtado shared the following long-standing open
question, which has commonly been conjectured to have a positive answer (see [9, 6]):

▶ Question 1 ([6]). Can every complete geometric graph on 2n vertices be partitioned into n

plane spanning trees?

Note that with 2n > 0 vertices, the complete graph has exactly the right number of edges
to admit a partition into n spanning trees, while this is not the case for 2n + 1 vertices.
In the following, we consider complete geometric graphs to have 2n vertices unless stated
otherwise. Further, we denote the complete geometric graph on a point set P as K(P ).

Related work. Several approaches have been made to answer Question 1. When P is
in convex position it follows from a result of Bernhart and Kainen [4] that K(P ) can be
partitioned into plane spanning paths, implying a positive answer. Further, Bose et al. [6]
gave a complete characterization of all possible partitions into plane spanning trees for convex
point sets. Similarly, when P = W2n is a regular wheel set (the vertex set of a regular
(2n − 1)-gon plus its center), Aichholzer et al. [2] showed how to partition K(P ) into plane
spanning double stars (trees with at most two vertices of degree ≥ 2), and Trao et al. [14]
recently characterized all possible partitions (into arbitrary plane spanning trees). Further,
Aichholzer et al. [2] provide a positive answer to Question 1 for all point sets of (even)
cardinality at most 10, obtained by exhaustive computations.

Relaxing the requirement that the trees must be spanning, Bose et al. [6] showed that if
for a general point set P , there exists an arrangement of k lines in which every cell contains
at least one point from P , then the complete geometric graph on P admits a partition into
2n − k plane trees, k of which are plane double stars. This result implies that Question 1
has a positive answer if P contains n pairwise crossing segments, which is the case if and
only if P has exactly n halving lines [10] (a line through two points of P is called halving
line if it has exactly n − 1 points of P on either side and the corresponding edge is called
halving edge).

For the related packing problem where not all edges of the underlying graphs must
be covered, Biniaz and García [5] showed that ⌊n/3⌋ plane spanning trees can be packed
in any complete geometric graph on n vertices, which is currently the best lower bound.
Further, in [1] and [2], packing plane spanning graphs with short edges and spanning paths,
respectively, have been considered.

Contribution. In this work, we provide a negative answer to Question 1 (refuting the
prevalent conjecture). We even provide a negative answer to the following weaker question:

▶ Question 2. Can every complete geometric graph on 2n vertices be partitioned into n

plane subgraphs?



O. Aichholzer et al. 6:3

Figure 1 Left: A partition of W8 into n = 4 plane spanning trees. Right: The bumpy wheel BW5,3.

Note that the problem of partitioning a geometric graph into plane subgraphs is equivalent
to a classic edge coloring problem, where each edge should be assigned a color in such a way
that no two edges of the same color cross (of course using as few colors as possible). This
problem received considerable attention from a variety of perspectives (see for example [11]
and references therein) and is also the topic of the CG:SHOP challenge 2022 [7].

The point sets in our construction, so-called bumpy wheel sets, have been introduced
in [12, 13]. For positive odd1 integers k and ℓ, the bumpy wheel BWk,ℓ is derived from the
regular wheel Wk+1 by replacing each of the k hull vertices by a group of ℓ vertices as follows.
All vertices (except the center) lie on the convex hull and the vertices within each group are
ε-close for some (small enough) ε > 0. In particular, the convex hull of any k+1

2 consecutive
groups does not contain the center vertex (see Figure 1 for an illustration). Slightly abusing
notation, BWk,ℓ refers to the underlying point set as well as the complete geometric graph
interchangeably. Note that for ℓ = 1 we obtain a regular wheel set and for k = 1 a point set
in convex position and hence we assume k, ℓ ≥ 3 in the following.

Our motivation to study bumpy wheels stemmed from the fact that Schnider [12] showed
that BW3,3 cannot be partitioned into plane double stars. In contrast, this is always possible
for complete geometric graphs on regular wheel sets [2], as well as complete geometric graphs
on point sets admitting n pairwise crossing edges [6] (which also includes convex point sets).

Our first main contribution in this work is to fully characterize for which (odd) parameters
k and ℓ, the bumpy wheel BWk,ℓ can and in particular cannot be partitioned into plane
spanning trees or plane subgraphs (note that also in the setting of partitioning into plane
subgraphs we are only interested in partitions into n subgraphs). Surprisingly, allowing
arbitrary subgraphs instead of spanning trees does not help much, as it turns out that BW3,5
is the only bumpy wheel that can be partitioned into plane subgraphs but not into plane
spanning trees.

▶ Theorem 3. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned into
n = kℓ+1

2 plane spanning trees if and only if ℓ > 3.

▶ Theorem 4. For odd parameters k, ℓ ≥ 3, the edges of BWk,ℓ cannot be partitioned into
n = kℓ+1

2 plane subgraphs if and only if ℓ > 5 or (ℓ = 5 and k > 3).

1 We require k and ℓ to be odd for an even number of vertices in total (k has to be odd anyway, since
otherwise Wk+1 would not be in general position).

SoCG 2022

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/#problem-description


6:4 Edge Partitions of Complete Geometric Graphs

We further consider the more general case of complete geometric graphs on point sets
with exactly one point inside the convex hull. In this generalized setting, we show a sufficient
condition for the non-existence of a partition into plane spanning trees (Theorem 16), and
give a complete characterization for partitions into plane double stars (Theorem 17). As
both results need more notation, their statements are deferred to their section (the same
holds for the remaining results).

Given the negative answers to Questions 1 and 2, a natural generalization is to study
partitions into beyond planar subgraphs, that is, subgraphs in which certain restricted
crossing patterns are allowed. We initiate this study for two important classes of beyond
planar graphs, namely, k-planar subgraphs (where every edge is crossed by at most k other
edges) and k-quasi-planar subgraphs (in which no k edges pairwise cross). For the former, we
show bounds on the number of subgraphs required for partitioning K(P ) for P in convex
position (Proposition 19 and Theorem 20). For the latter, we show that a partition into
3-quasi-planar spanning trees is possible for any P with |P | even (Lemma 23). This is best
possible, as 2-quasi-planar graphs are plane. We further present bounds on the partition of
any K(P ) into k-quasi-planar subgraphs for general k (Theorem 25).

We remark that it is straightforward to model the problem of partitioning into (plane)
subgraphs as an integer linear program (ILP), which easily computes solutions for point sets
up to roughly 25 points. None of the proofs in this paper rely on the computer assisted ILP,
but it served as a great source of inspiration (see the full version [8] for further details).

Organization of the paper. In Section 2, we prove Theorem 3 and Theorem 4, where we
focus on the part showing the non-existence of partitions. In Section 3, we generalize our
ideas from Section 2 about regular bumpy wheels to general wheel sets, proving Theorem 16
and Theorem 17. Finally, Sections 4 and 5 are dedicated to the more general setting of
partitioning into k-planar and k-quasi-planar subgraphs, respectively.

2 Bumpy wheels

For a graph in (bumpy) wheel configuration we denote the center vertex by v0 and the
remaining vertices by v1, . . . , v2n−1 in clockwise order. We also enumerate the groups in
clockwise order: for i ∈ {1, . . . , k}, Gi denotes the i’th group (G1 contains v1, Gk contains
v2n−1)2. An edge having v0 as an endpoint is called a radial edge, an edge on the convex
hull is called a boundary edge and all other edges are called diagonal edges. For a non-radial
edge e, we define e− to be the open halfplane defined by (the supporting line through) e and
not containing v0, and similarly e+ to be the open halfplane containing v0.

Additionally, we define a partial order <c on the set of non-radial edges, where e <c f if
(the relative interior of) e completely lies in f− (that is, f is “closer” to the center vertex v0
than e). Two non-radial edges e, f are incomparable with respect to <c, if neither e <c f nor
f <c e holds (we omit “with respect to <c” if it is clear from the context). In the following,
when speaking of an edge e lying in f− or in f+ for another edge f , we always refer to the
relative interior of e (that is, an endpoint of e may lie on the line through f – which actually
means to coincide with an endpoint of f). A non-radial edge e is maximal in some set of
edges E, if there is no other edge e′ ∈ E such that e <c e′ (in the following we often consider
maximal diagonal edges of plane spanning trees). Minimal edges are defined similarly. See
Figure 2 for an illustration. Let us emphasize that we never use <c for radial edges.

2 We will consider the index of a group Gx always modulo k, but tacitly mean ((x − 1) mod k) + 1 (since
our indexing starts with 1). The same holds for any other objects, e.g., the vertices on the convex hull.



O. Aichholzer et al. 6:5

v0f

f ′

e

e′

v1

v`

v`+1

. . .

...

G1

G2

Gkvk·`

v(k−1)·`+1

. . .

Figure 2 Example of a plane spanning tree on the bumpy wheel set BW5,5. The diagonal edges f

and f ′ are maximal. The edges e and e′ are boundary edges (they are also the only minimal edges).

2.1 Partition into plane spanning trees
In this section, we prove Theorem 3. We remark that the non-existence direction almost
follows from Theorem 4 (not even a partition into plane subgraphs is possible). The only case
that is not covered is BW3,5, which one can easily verify using computer assistance. However,
since the proof of Theorem 3 is more instructive and intuitive, we decided to present it
anyway and limit the proof of Theorem 4 to the essentials. We start with the non-existence:

▶ Theorem 5. For any odd parameters k ≥ 3 and ℓ ≥ 5, the edges of BWk,ℓ cannot be
partitioned into n = kℓ+1

2 plane spanning trees.

Towards the proof of Theorem 5, we will first prove several structural results concerning
the number and arrangement of radial and diagonal edges in the spanning trees of a potential
partition (some of which have a similar flavor as those by Trao et al. [14]). We show that
radial edges must lie between maximal diagonal edges and those maximal diagonal edges
need to fulfill certain distance constraints. We will show that this cannot be satisfied if ℓ ≥ 5.
Due to space constraints, we postpone the proofs of most preliminary results to the full
version of this paper [8].

The following observation follows immediately from the construction of bumpy wheel sets
and the definition of the partial order <c.

▶ Observation 6. For two non-radial, non-crossing, incomparable edges e, f the vertices in
e− and f− are disjoint and neither e− nor f− contains an endpoint of the other edge.

Note that e and f in the above observation may share an endpoint. Furthermore, for any
set of edges E, two maximal edges e, e′ ∈ E are always incomparable.

▶ Lemma 7. Let T be a plane spanning tree of BWk,ℓ. Then the following properties hold:
(i) for any diagonal edge e ∈ E(T ), T contains at least one boundary edge in e−,
(ii) for any pair of incomparable diagonal edges e, f ∈ E(T ), the boundary edges of T in e−

and f− are distinct, and
(iii) if T contains exactly one maximal diagonal edge, T contains at least ( k−1

2 ℓ + 1)
consecutive radial edges (in particular, all radial edges of k−1

2 consecutive groups).

SoCG 2022



6:6 Edge Partitions of Complete Geometric Graphs

Note that any spanning tree in a partition of BWk,ℓ contains a maximal diagonal edge,
since the star around v0 clearly cannot be used in such a partition.

▶ Proposition 8. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it
exists). Then exactly one of those trees, say T0, contains a single boundary edge and a single
maximal diagonal edge and all other n − 1 trees contain exactly two boundary edges and
exactly two maximal diagonal edges each. In particular, any diagonal edge e ∈ E(Ti) contains
exactly one boundary edge of Ti in e−.

From now on, T0 always denotes the spanning tree with exactly one boundary edge (when
considering a partition into plane spanning trees). Further, we let all radial edges {v0, vi}
for i ∈ {1, 2, . . . , k−1

2 ℓ + 1} be part of T0 (which we can assume without loss of generality
due to symmetry).

For two non-radial, non-crossing edges e, f , define the span of e and f to be the (closed)
area between the two edges, that is,

span(e, f) =
{

cl(e+ ∩ f+) if e and f are incomparable
cl(e+ ∩ f−) if e <c f,

where cl(·) denotes the closure. The shaded area in Figure 3 for instance defines the span of
two incomparable edges e and f .

Note, however, that we are more interested in the vertices and edges contained in the
span, rather than the area itself. If we want to emphasize this, we may use the notation
V (span(e, f)) or E(span(e, f)). In the following we are mostly interested in the span of
maximal diagonal edges of some plane spanning tree.

▶ Lemma 9. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it exists)
and e, f be the maximal diagonal edges of some Ti (i ̸= 0). Then, all edges of Ti in the span
of e and f are radial (except e and f).

Define the distance dist(e) of a non-radial edge e to be the number of vertices in e− plus one
(or in other words, the number of boundary edges in cl(e−)). Clearly, 1 ≤ dist(e) ≤ k+1

2 ℓ − 1
holds for any non-radial edge e and dist(f) < dist(e) holds for any edge f ⊆ e−. It will be
convenient to define, for i ∈ {1, . . . , k+1

2 ℓ − 1}:

di = k + 1
2 ℓ − i. (1)

We define it in this (slightly counter-intuitive) way, d1 being the largest distance, since we
mostly deal with edges of large distances and thereby aim to improve the readability.

▶ Lemma 10. Consider a plane spanning tree T of a partition of BWk,ℓ and let e be a
diagonal edge in T of distance d = dist(e) > 1. Then T also contains exactly one of the edges
of distance d − 1 in e−.

We need a little more preparation towards the proof of Theorem 5. We call the first and
last vertex of each group outmost vertices (and the corresponding radial edges outmost radial
edges). Note that there are exactly 2k outmost radial edges in BWk,ℓ. Every hull vertex or
radial edge that is not outmost, is called an inside vertex or an inside radial edge.

Furthermore, define two groups Gi, Gj to be opposite if |i − j| = k−1
2 or |i − j| = k+1

2 . In
particular, each group has two opposite groups and two consecutive groups have exactly one
opposite group in common (we call that group the opposite group of a pair of consecutive
groups).



O. Aichholzer et al. 6:7

v0

vj`

vj`+1

e

f

Figure 3 All outmost radial edges are depicted in gray. The maximal diagonal edges e and f

(connecting opposite groups) form a special wedge. Their span is shaded blue.

Let e, f be two maximal (non-crossing) diagonal edges which have an endpoint in a
common group. Then the set of vertices of span(e, f) in the common group is called apex.
Note that any apex contains at least one vertex (and this lower bound is attained if the
endpoints of e and f coincide).

Moreover, two maximal (non-crossing) diagonal edges e = {u, v} and f = {u′, v′} form a
special wedge if two endpoints (say u and u′) are consecutive outmost vertices of different
groups (that is, u = vjℓ and u′ = vjℓ+1 for some j) and v and v′ are inside vertices lying in
the opposite group of Gj and Gj+1. See Figure 3 for an illustration of these terms.

▶ Proposition 11. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it
exists) and let Ti (i ̸= 0) be a spanning tree that does not use any outmost radial edge. Then
the two maximal diagonal edges e, f of Ti form a special wedge and Ti has to use all radial
edges incident to the apex of this wedge.

Proof. We first argue that all but exactly two radial edges in span(e, f) must be part
of Ti. The subgraph of Ti induced by V (span(e, f)) needs to form a tree. Moreover,
span(e, f) contains |V (span(e, f))| − 1 radial edges. Since Ti uses the two diagonal edges
e, f ∈ E(span(e, f)) and all other edges in the span need to be radial (Lemma 9), it has to
use exactly all but two radial edges.

Furthermore, since we cannot have two maximal diagonal edges between the same pair of
groups, the span of e and f contains at least two outmost vertices, namely in two different
groups which contain an endpoint of e and f , respectively. On the other hand, span(e, f) can
neither contain a third outmost vertex nor an outmost vertex in its interior, since otherwise
Ti has to use an outmost radial edge (by Lemma 9 and above argument). In particular, e

and f share a common group and the apex does not contain any outmost vertex (hence, e

and f form a special wedge, as depicted in Figure 3).
Moreover, since Ti has to use all but two radial edges in the span, it clearly has to use all

radial edges incident to the apex. ◀

Note that for two spanning trees Ti, Tj (i ≠ j) not using an outmost radial edge, their
apexes must be disjoint.

SoCG 2022



6:8 Edge Partitions of Complete Geometric Graphs

▶ Proposition 12. Let T0, . . . , Tn−1 be a partition of BWk,ℓ into plane spanning trees (if it
exists). Then for each pair G, G′ of opposite groups and each j ∈ {1, . . . , ℓ} there is a unique
diagonal edge (connecting G and G′) of distance dj (recall Equation (1)) that is maximal in
its tree.

Proof. Observe first that for any j ∈ {1, . . . , ℓ} there are exactly j edges of distance dj

(between G and G′) and all edges of the same distance (between G and G′) pairwise cross.
Also note, for any two edges e, e′ (between G and G′) with dist(e) > dist(e′), either e′ ⊆ e−

holds or they cross. In particular, if they do not cross and belong to the same tree, the
shorter is not a maximal edge.

Consider now for some j ∈ {2, . . . , ℓ} the distance dj and let c1, . . . , cj be the colors3 used
for all edges of this distance. By Lemma 10, there are j − 1 edges of (the larger) distance
dj−1 using the same color as an edge of distance dj , w.l.o.g. c1, . . . , cj−1. By the above
arguments the corresponding edges of distance dj cannot be maximal.

On the other hand, the color cj cannot be used by any edge of larger distance, since again
by Lemma 10 this color would have to appear in dj−1 as well. Hence, indeed the only edge
of distance dj that is maximal in its tree is the one of color cj .

Lastly, for j = 1 observe that the single edge of distance d1 is clearly maximal. ◀

Finally, we are ready to prove Theorem 5, which we restate here for the ease of readability:

▶ Theorem 5. For any odd parameters k ≥ 3 and ℓ ≥ 5, the edges of BWk,ℓ cannot be
partitioned into n = kℓ+1

2 plane spanning trees.

Proof. Assume to the contrary that there is such a partition T0, . . . , Tn−1. There are 2k

outmost radial edges and T0 uses (at least) k of them (see the remark after Proposition 8).
Hence, there are at most k + 1 spanning trees (including T0) containing an outmost radial
edge.

Next, let us count how many spanning trees not containing an outmost radial edge we can
have. Since, by Proposition 11, the apex of such a tree cannot use any outmost vertex nor
any vertex already incident to a radial edge in T0, there remain k+1

2 (ℓ − 2) possible vertices
(to be used by apexes), namely the inside vertices of the last k+1

2 groups G k+1
2

, . . . , Gk (which
are not fully connected to v0 by radial edges in T0). Also recall that each apex contains at
least one vertex.

It is crucial to emphasize that among those last k+1
2 groups, group G k+1

2
and group Gk

are opposite (the only opposite pair). Therefore, by Proposition 11, two spanning trees with
an apex in group G k+1

2
and group Gk respectively, must each have a maximal diagonal edge

between these two groups. Hence, by Proposition 12, we can have at most (ℓ − 2) spanning
trees with apex in one of these two groups (instead of 2(ℓ − 2)); see Figure 4.

So, in total there can be at most k−1
2 (ℓ − 2) spanning trees which do not use an outmost

radial edge. Hence, whenever

k + 1 + k − 1
2 (ℓ − 2) <

kℓ + 1
2

holds, we cannot find enough spanning trees. Rearranging terms, this inequality is equivalent
to ℓ > 3. ◀

3 Instead of always spelling out that an edge belongs to a plane subgraph, we associate edges with colors.



O. Aichholzer et al. 6:9

v1

v`
v2n−1

vk−1
2 `+1

T0

v0

Figure 4 In the black stripes (the darker one is the crucial one) the maximal diagonal edges (of
those trees without outmost radial edge) need to have distinct distances. That allows ℓ − 2 many for
each stripe. Two spanning trees (red and orange) with apex in group G k+1

2
and group Gk both need

to have a maximal diagonal edge in the dark stripe.

Next, we prove the other direction of Theorem 3:

▶ Theorem 13. For any odd parameter k ≥ 3, the edges of BWk,3 can be partitioned into
plane spanning trees.

We only sketch the construction very briefly (the details can be found in the full version [8]).

Proof sketch. Our construction consists of three steps. In the first step, we give an explicit
construction of a partial partition that covers all radial edges, each (partial) tree in the
partition covers exactly its span, and between any pair of opposite groups exactly one
diagonal edge of each distance d1, d2, d3 is covered.

After that we extend this partial partition in two steps (these extensions actually work
for arbitrary ℓ, but we stick to ℓ = 3 for now). First we show that there is a unique way
to extend the partial partition to one that covers all diagonal edges of distance d1, . . . , d3.
Roughly speaking, whenever we want to include some edge of distance di (between a certain
pair of groups) we have two choices to which tree we can join it (see Lemma 10). However,
since by construction exactly one edge of each distance is already covered, this determines
the orientation how we can include the other edges of the same distance.

Once we covered all edges down to distance d3, there are precisely 2n − 1 edges of each
following distance and no edge of any smaller distance is already covered. Therefore, in each
iteration (considering some distance dj < d3) we have the choice to fix some orientation
(“left” or “right”) which determines how we need to extend all edges of distance dj . Hence,
in this second extension step there are 2

3(k−1)
2 −1 possible extensions. ◀

SoCG 2022



6:10 Edge Partitions of Complete Geometric Graphs

2.2 Partition into plane subgraphs
In the previous section, we gave a classification of which bumpy wheels can be partitioned
into plane spanning trees and which cannot. Surprisingly it turns out that allowing arbitrary
plane subgraphs does not help much. The only bumpy wheel that can be partitioned into
plane subgraphs but not into plane spanning trees is BW3,5.

Note that before we also heavily exploited the structure enforced by spanning trees. This
is not possible anymore for the case of arbitrary plane subgraphs. We cannot make any
assumptions on the number of edges, not even about connectedness. The only property we
can (and will) exploit is the fact that we still have maximal diagonal edges and radial edges
may only be contained in their span.

We split the proof of Theorem 4 into two parts, first focusing on the case ℓ > 5.

▶ Theorem 14. For any odd parameters k ≥ 3 and ℓ > 5, the edges of BWk,ℓ cannot be
partitioned into n = kℓ+1

2 plane subgraphs.

The proof is more technical than for spanning trees. We give a detailed overview of the
main ideas and postpone the full proof to the full version [8].

Proof sketch. Assume D0, . . . , Dn−1 is a partition into plane subgraphs. Then, a crucial
insight is that between any pair of opposite groups and any distance di = k+1

2 ℓ − i (for
1 ≤ i ≤ ℓ) there have to be at least i diagonal edges of distance at least di which are maximal
in their subgraph. This follows from the fact that all edges of distance di between a fixed
pair of opposite groups G, G′ form a crossing family. In particular, all of them get a different
color and are either maximal or have another (larger) maximal edge between G and G′.

Further, this enables us to define a set Eforced of exactly k ·ℓ forced diagonal edges fulfilling
the just mentioned distance constraints. In particular,

∑
e∈Eforced

dist(e) ≥ k
ℓ∑

i=1

(
k + 1

2 ℓ − i

)
holds. Our goal will be to argue that we cannot accommodate all these forced diagonal edges
and all radial edges at the same time.

To this end, note that we cannot have too many pairwise incomparable edges in a plane
subgraph, more precisely their distance sums to at most 2n − 2. In fact, it turns out that
again we have one subgraph, say D0, containing exactly one forced diagonal edge, while all
other n − 1 subgraphs contain exactly two of them.

Now the pairs of forced diagonal edges in our subgraphs again form a span (similar as in
the spanning tree setting). Furthermore, radial edges may only be contained in this span
(be careful, we are not assuming that there are radial edges in the span, but if the subgraph
wants to use a radial edge it has to be in the span). We noted above that the distances of
forced diagonal edges in the subgraph Di sum up to at most 2n − 2, say they sum up to
2n − 2 − xi for some xi (and dist(e) = d1 − x0 for the single forced diagonal edge e of D0).
Then these xi’s allow some additional margin to accommodate radial edges in the spans (or
additional vertices as we call them). However, and this is the second crucial insight, we show
that this additional margin is at most

n−1∑
i=0

xi ≤ ℓ − 1
2 .



O. Aichholzer et al. 6:11

G1

G k−1
2

G k+1
2

G k+3
2

Gk

G2 Gk−1

e

Figure 5 High level overview of the proof of Theorem 15. We have at most 5−1
2 = 2 additional

vertices in total and the blue stripe (which contains the single forced diagonal edge e of D0) has
to use both of them. Then, in the grey stripes we must use all forced diagonal edges of distances
d2, d3, d4. Finally, since the two red stripes intersect (k ≥ 5), there will not be enough forced diagonal
edges left to pair all 6 forced diagonal edges of distances d2, d3, d4 from the red stripes.

Finally, we consider only the 2ℓ − 4 inside radial edges of the opposite pair of groups G, G′

containing the endpoints of e (the single forced diagonal edge of D0). Any subgraph with
an apex in one of the two groups also has a forced diagonal edge between them. Putting
everything together, this implies that we can cover at most

(ℓ − 1) + ℓ − 1
2 = 3

2(ℓ − 1)

of these 2ℓ − 4 inside radial edges. In other words, whenever 3
2 (ℓ − 1) < 2ℓ − 4 holds, we

cannot cover all edges. This inequality is equivalent to ℓ > 5. ◀

For the case ℓ = 5, we need to go even deeper into the structure of our plane subgraphs.

▶ Theorem 15. For any odd parameter k ≥ 5, the edges of BWk,5 cannot be partitioned into
n = 5k+1

2 plane subgraphs.

Figure 5 gives a brief sketch of the proof from a high level view. The full proof can also
be found in the full version [8].

Finally, using Theorem 3, it only remains to show that there is a partition for BW3,5,
which is easy to compute (using computer assistance), and can be found in the full version [8].

3 Generalized wheels

In this section we generalize our construction to non-regular wheel sets. We give a sufficient
condition in the setting of plane spanning trees and a full characterization for partitioning into
plane double stars. For N = [n1, . . . , nk] and integers ni ≥ 1, GWN denotes the generalized
wheel with group sizes ni (in the given circular order). As before, the arrangement of the k

groups resembles a regular k-gon around the center vertex, the vertices within each group are
ε-close, and k is odd (see Figure 6). And for our purpose we also require

∑
i ni to be odd.

SoCG 2022



6:12 Edge Partitions of Complete Geometric Graphs

Figure 6 Illustration of a generalized wheel (GW[2,3,3,4,5]).

Note that the geometric regularity of generalized wheels is not strictly required (but
eases the proofs). In fact, one can show that for any point set P (in general position) with
exactly one point inside its convex hull, there is a generalized wheel with the exact same set
of crossing edge pairs (further details can be found in the full version [8]).

▶ Theorem 16. Let GWN be a generalized wheel with k groups and 2n vertices. Then GWN

cannot be partitioned into plane spanning trees if each family of k−1
2 consecutive groups

contains (strictly) less than n − 2 vertices.

The proof, which is similar to the one of Theorem 5, can be found in the full version [8].

Plane double stars. Considering the other side of the story, it turns out that many
generalized wheels can already be partitioned into plane double stars4:

▶ Theorem 17. Let GWN be a generalized wheel with k groups and 2n vertices. Then GWN

cannot be partitioned into plane spanning double stars if and only if there are three families
of k−1

2 consecutive groups, each of which contains at most n − 2 vertices, such that each
group is in at least one family.

The proof requires several tools introduced by Schnider [13]. In a first step we identify
conditions under which a point set admits a so-called spine matching – the collection of spine
edges from a partition into double stars. Using these conditions we show that a generalized
wheel GWN cannot be partitioned into plane double stars if and only if GWN has three bad
halfplanes whose intersection is empty (for a non-radial halving edge e, the closure of e−

defines a bad halfplane). All details can be found in the full version [8].
We phrased Theorem 17 this way to make it consistent with Theorem 16; however, let us

rephrase it in a way that better indicates the gap between the two theorems. Let Fi denote
the family of k−1

2 consecutive groups starting at Gi in clockwise order (whenever speaking
of a family without further specification, we refer to such a family of k−1

2 groups for the
remainder of this section). Two families Fi and Fi+1 are called consecutive and |Fi| denotes
the number of vertices in Fi. If |Fi| ≤ n − 2 holds, we call Fi small, and otherwise large.

▶ Corollary 18. Let GWN be a generalized wheel with k groups and 2n vertices. Then GWN

can be partitioned into plane spanning double stars if and only if there are k−1
2 consecutive

families each containing (strictly) more than n − 2 vertices.

4 All double stars in this section are spanning (which we may not always spell out for readability).



O. Aichholzer et al. 6:13

Proof. If, for the one direction, there are k−1
2 large consecutive families, then there is a

group G⋆ (namely the one that is contained in all these k−1
2 families) such that any family

containing G⋆ is large. In particular, there cannot be three small families covering all groups.
Hence, by Theorem 17, there is a partition into plane double stars.

On the other hand, if there are no k−1
2 large consecutive families, we can find three small

families as follows. Note first that every group is contained in some small family. Pick a small
family F arbitrarily and let G be the first group after F (in clockwise order). Among all
small families containing G, pick the one that is “furthest” from F , that is, has least overlap
with F , and call it F ′. Let G′ again be the first group after F ′ and among all small families
containing G′ pick the one furthest from F ′ and call it F ′′. Since F ′′ cannot contain G, we
conclude that the three small families F, F ′, F ′′ cover all groups. ◀

4 Partitions into k-planar subgraphs

In this section, we consider a generalization to partitioning into k-planar subgraphs (for
k = 0 this amounts to the previous partitioning into plane subgraphs). We focus on the
special case where the input point set is in convex position. Our first result fully resolves
this problem for k = 1. Note that we do not require even sized point sets.

▶ Proposition 19. For a point set P in convex position with |P | = n ≥ 5, K(P ) can be
partitioned into

⌈
n
3

⌉
1-planar subgraphs and

⌈
n
3

⌉
subgraphs are required in every 1-planar

partition.

The proof can be found in the full version [3]. More generally, we show the following
bounds:

▶ Theorem 20. For an n-point set P in convex position and every k ∈ N, K(P ) admits a
partition into at most n√

2k
k-planar subgraphs. More precisely, for every integer s ≥ 2, K(P )

admits a (s−1)(s−2)
2 -planar partition into ⌈ n

s ⌉ subgraphs.
Conversely, for every k ∈ N, at least n−1

4.93
√

k
subgraphs are required in any k-planar

partition of K(P ).

For the proofs of Proposition 19 and Theorem 20 (in particular for the lower bounds) it
will be necessary to understand how many edges a single color class, or in other words, how
many edges a k-planar subgraph of a convex geometric Kn, can maximally have. Once such
bounds are established, we will be able to lower-bound the number of colors required in any
k-planar partition of a convex geometric Kn by considering the “largest” color class.

We postpone this analysis, which also includes an improvement of the well-known crossing
lemma for convex geometric graphs, to the full version [3] and only state the main ingredient
that we need for the proof of Theorem 20:

▶ Theorem 21. For every k ≥ 5, every convex k-plane graph G on n vertices has at most√
243
40 k · n edges.

Proof of Theorem 20. Let us first prove the upper bound. To this end, suppose that s ≥ 2
is such that (s−1)(s−2)

2 ≤ k, and let us show that K(P ) can be partitioned into ⌈ n
s ⌉ k-planar

subgraphs. W.l.o.g. assume that the points in P form a regular n-gon. Consider all possible
n slopes of segments and sort those in circular order. Next, partition this list of slope values
into ⌈ n

s ⌉ (contiguous) intervals of size at most s. Then, define a color class for all edges
whose slopes fall into a common interval of this partition, see Figure 7(a).

SoCG 2022



6:14 Edge Partitions of Complete Geometric Graphs

(a) (b) (c) (d) (e)

Figure 7 (a) Partition into 1-planar subgraphs by composing groups of (at most) 3 consecutive
slopes each. (b)-(e) Edges with slope distance 1/2/3/4 intersect at most 0/1/2/3 times.

We show that all these subgraphs are (s−1)(s−2)
2 -planar. To this end, define the slope

distance to be the distance between two slope values in the circularly sorted list of slopes.
Note that edges cannot be crossed by other edges of the same slope or slope distance 1;
by at most one edge of slope distance 2, by at most two edges of slope distance 3, etc.
(see Figure 7(b)-(e)). Hence, if an edge e has color i, and if the slope of e is the j-th slope
(j ∈ {1, . . . , s}) in its circular interval of slopes, then e can cross with at most the following
amount of edges of color i:∑

1≤k<j−1
(j − k − 1) +

∑
j+1<k≤s

(k − j − 1) = (j − 1)(j − 2)
2 + (s − j)(s − j − 1)

2 =

= (s − 1)(s − 2)
2 − (s − j)(j − 1) ≤ (s − 1)(s − 2)

2 .

For the lower bound, note that K(P ) has n(n−1)
2 edges, and that in every k-planar

partition of K(P ), every color class induces a convex k-plane subgraph on n vertices. Hence,
by Theorem 21, every color class has size at most

√
243
40 k · n. So, the number of colors

required in any k-planar partition is at least(
n(n−1)

2

)
√

243
40 k · n

≥ n − 1
4.93

√
k

.

This concludes the proof. ◀

The following intriguing question is left open by our study.

▶ Question 22. Is the upper bound in Theorem 20 tight up to lower-order terms?

More generally, it would be interesting to shed some more light on the “in-between-cases”
coming out of the upper bound in Theorem 20, where the term (s−1)(s−2)

2 covers only the
values 0, 1, 3, 6, 10, . . .. For instance, can we partition convex complete geometric graphs
with fewer colors into 2-planar subgraphs than we need for the 1-planar partition? More
generally, for (s−1)(s−2)

2 < k < s(s−1)
2 , can we improve upon the ⌈ n

s ⌉ bound from Theorem 20
for k-planar partitions? This question is surprisingly difficult (even for k = 2)5 and we do
not know of any improvements of the bounds for these “in-between-cases”.

5 Using computer assistance, we can show that 3n
10 colors are required for any 2-planar partition (almost

matching the n
3 bound from the 1-planar partition). We omit this computer assisted result as it is a very

special case and not even answering the question whether or not the bound can be improved for k = 2.



O. Aichholzer et al. 6:15

5 Partitions into k-quasi-planar subgraphs and spanning trees

In this section, we develop bounds on the number of colors required in a k-quasi-planar
partition for point sets in general position (for k = 2 this again amounts to the setting of
plane subgraphs, hence we assume k ≥ 3 in the following). The setting of spanning trees is
easily resolved by the following lemma (whose proof can be found in the full version [3]).

▶ Lemma 23. Let P be a point set of size 2n, then the complete geometric graph K(P ) can
be partitioned into n 3-quasi-planar spanning trees.

So, we turn our attention to the subgraph setting. The main ingredient towards the
proof of Theorem 25 is the following lemma concerning point sets admitting a perfect cross-
matching, that is, a crossing family of size |P |/2. Note that in this case any edge in the
crossing family determines a halving line [10].

▶ Lemma 24. Let P be a point set of size 2n, with a crossing family of size n, then ⌈ n
k−1 ⌉

colors are required and sufficient to partition K(P ) into k-quasi-planar subgraphs.

Again, due to space constraints, we postpone the proof to the full version [3].

▶ Theorem 25. Let P be a set of n points in general position and denote the size of a
largest crossing family on P by m. Also let k ≥ 3 s.t. k ≤ m (otherwise one color is always
sufficient). Then, at least ⌈ m

k−1 ⌉ colors are required and at most ⌈ m
k−1 ⌉ + ⌈ n−2m

k−1 ⌉ colors are
needed to partition the complete geometric graph K(P ) into k-quasi-planar subgraphs.

Proof. Let P ′ ⊆ P be the subset of endpoints induced by a largest crossing family of size m.
Then, the lower bound follows immediately from Lemma 24 applied on P ′.
For the upper bound, divide the point set P \ P ′ into disjoint subsets Q1, . . . , Qc of

size k − 1, where c = ⌈ n−2m
k−1 ⌉. For each edge with an endpoint in some Qi assign it the

color i (for edges that have two choices, pick one arbitrarily). Certainly, each color class is
k-quasi-planar, since it consists of (at most) the union of k − 1 stars. Together with K(P ′),
which we can clearly partition by using ⌈ m

k−1 ⌉ colors, the upper bound follows. ◀

6 Conclusion

We showed that there are complete geometric graphs that cannot be partitioned into plane
spanning trees and gave a full characterization of partitionability for bumpy wheels (even in
the much broader setting of partitioning into plane subgraphs). Also, for generalized wheels
we gave sufficient and necessary conditions. There are two natural directions for further
research in this setting. On the one hand, one could try to further classify which point sets can
be partitioned and which cannot (this might also be a useful approach towards the question
concerning the complexity of the decision problem whether a given complete geometric graphs
admits a partition into plane spanning trees). On the other hand, we initiated the study of
partitions into broader classes of subgraphs, namely k-planar and k-quasi-planar.

The intriguing question to determine how far we may get from the |P |
2 bound is still open:

▶ Question 26 ([6]). Can any complete geometric graph on n vertices be partitioned into n
c

plane subgraphs for some constant c > 1?

SoCG 2022



6:16 Edge Partitions of Complete Geometric Graphs

References
1 Oswin Aichholzer, Thomas Hackl, Matias Korman, Alexander Pilz, André van Renssen, Marcel

Roeloffzen, Günter Rote, and Birgit Vogtenhuber. Packing plane spanning graphs with short
edges in complete geometric graphs. Comput. Geom., 82:1–15, 2019. doi:10.1016/j.comgeo
.2019.04.001.

2 Oswin Aichholzer, Thomas Hackl, Matias Korman, Marc Van Kreveld, Maarten Löffler,
Alexander Pilz, Bettina Speckmann, and Emo Welzl. Packing plane spanning trees and paths
in complete geometric graphs. Information Processing Letters, 124:35–41, 2017.

3 Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul, Patrick Schnider,
Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber. Edge Partitions of Complete Geometric
Graphs (Part 2), 2021. arXiv:2112.08456.

4 Frank Bernhart and Paul C Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

5 Ahmad Biniaz and Alfredo García. Packing plane spanning trees into a point set. Comput.
Geom., 90:101653, 2020. doi:10.1016/j.comgeo.2020.101653.

6 Prosenjit Bose, Ferran Hurtado, Eduardo Rivera-Campo, and David R. Wood. Partitions
of complete geometric graphs into plane trees. Comput. Geom., 34(2):116–125, 2006. doi:
10.1016/j.comgeo.2005.08.006.

7 https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/#problem-description.
8 Johannes Obenaus and Joachim Orthaber. Edge partitions of complete geometric graphs

(part 1), 2021. arXiv:2108.05159.
9 http://www.openproblemgarden.org/op/partition_of_complete_geometric_graph_into_

plane_trees.
10 János Pach and József Solymosi. Halving lines and perfect cross-matchings. Contemporary

Mathematics, 223:245–250, 1999.
11 Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michal Lason, Piotr Micek, William T.

Trotter, and Bartosz Walczak. Triangle-free intersection graphs of line segments with large
chromatic number. J. Comb. Theory, Ser. B, 105:6–10, 2014. doi:10.1016/j.jctb.2013.11
.001.

12 Patrick Schnider. Partitions and packings of complete geometric graphs with plane spanning
double stars and paths. Master’s thesis, ETH Zürich, 2015.

13 Patrick Schnider. Packing plane spanning double stars into complete geometric graphs. In
Proc. 32nd European Workshop on Computational Geometry (EuroCG’16), pages 91–94, 2016.

14 Hazim Michman Trao, Gek L Chia, Niran Abbas Ali, and Adem Kilicman. On edge-partitioning
of complete geometric graphs into plane trees. arXiv preprint arXiv:1906.05598, 2019.

https://doi.org/10.1016/j.comgeo.2019.04.001
https://doi.org/10.1016/j.comgeo.2019.04.001
http://arxiv.org/abs/2112.08456
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/j.comgeo.2020.101653
https://doi.org/10.1016/j.comgeo.2005.08.006
https://doi.org/10.1016/j.comgeo.2005.08.006
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022/#problem-description
http://arxiv.org/abs/2108.05159
http://www.openproblemgarden.org/op/partition_of_complete_geometric_graph_into_plane_trees
http://www.openproblemgarden.org/op/partition_of_complete_geometric_graph_into_plane_trees
https://doi.org/10.1016/j.jctb.2013.11.001
https://doi.org/10.1016/j.jctb.2013.11.001


Minimum-Error Triangulations for Sea Surface
Reconstruction
Anna Arutyunova #

Institute for Computer Science,
Universität Bonn, Germany

Anne Driemel
Hausdorff Center for Mathematics,
Universität Bonn, Germany

Jan-Henrik Haunert
Institute of Geodesy and Geoinformation,
Universität Bonn, Germany

Herman Haverkort
Institute for Computer Science,
Universität Bonn, Germany

Jürgen Kusche
Institute of Geodesy and Geoinformation,
Universität Bonn, Germany

Elmar Langetepe
Institute for Computer Science,
Universität Bonn, Germany

Philip Mayer #

Institute for Computer Science,
Universität Bonn, Germany

Petra Mutzel
Institute for Computer Science,
Universität Bonn, Germany

Heiko Röglin
Institute for Computer Science,
Universität Bonn, Germany

Abstract
We apply state-of-the-art computational geometry methods to the problem of reconstructing a
time-varying sea surface from tide gauge records. Our work builds on a recent article by Nitzke et
al. (Computers & Geosciences, 157:104920, 2021) who have suggested to learn a triangulation D of
a given set of tide gauge stations. The objective is to minimize the misfit of the piecewise linear
surface induced by D to a reference surface that has been acquired with satellite altimetry. The
authors restricted their search to k-order Delaunay (k-OD) triangulations and used an integer linear
program in order to solve the resulting optimization problem.

In geometric terms, the input to our problem consists of two sets of points in R2 with elevations:
a set S that is to be triangulated, and a set R of reference points. Intuitively, we define the
error of a triangulation as the average vertical distance of a point in R to the triangulated surface
that is obtained by interpolating elevations of S linearly in each triangle. Our goal is to find the
triangulation of S that has minimum error with respect to R.

In our work, we prove that the minimum-error triangulation problem is NP-hard and cannot be
approximated within any multiplicative factor in polynomial time unless P = NP . At the same
time we show that the problem instances that occur in our application (considering sea level data
from several hundreds of tide gauge stations worldwide) can be solved relatively fast using dynamic
programming when restricted to k-OD triangulations for k ≤ 7. In particular, instances for which
the number of connected components of the so-called k-OD fixed-edge graph is small can be solved
within few seconds.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Minimum-Error Triangulation, k-Order Delaunay Triangulations, Data
dependent Triangulations, Sea Surface Reconstruction, fixed-Edge Graph

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.7

Related Version Full Version: http://arxiv.org/abs/2203.07325

Supplementary Material Software (Source Code and Information about the Data Acquisition):
https://github.com/PhilipMayer94/dynamic-programming-for-min-error-triangulations

archived at swh:1:dir:a009b56de67b3679c496449aff63f6b343593a8d

© Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort,
Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arutyunova@uni-bonn.de
mailto:mayer@cs.uni-bonn.de
https://doi.org/10.4230/LIPIcs.SoCG.2022.7
http://arxiv.org/abs/2203.07325
https://github.com/PhilipMayer94/dynamic-programming-for-min-error-triangulations
https://github.com/PhilipMayer94/dynamic-programming-for-min-error-triangulations
https://archive.softwareheritage.org/swh:1:dir:a009b56de67b3679c496449aff63f6b343593a8d;origin=https://github.com/PhilipMayer94/dynamic-programming-for-min-error-triangulations;visit=swh:1:snp:df1699dab1df66089ea102bb975d0f83a299ee70;anchor=swh:1:rev:1930cde486b1e84d0c509acfd01a240bb9372b05
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Minimum-Error Triangulations for Sea Surface Reconstruction

51
°N

51°N

54
°N

54°N

57
°N

57°N

60
°N

60°N

3°W

3°W

0°

0°

3°E

3°E

6°E

6°E

9°E

9°E

12°E

12°E

Figure 1 Left: A minimum-error triangulation of the North Sea data (June 2010) with 34 tide
gauge stations computed with the approach in [24]. Right: Locations of all tide gauge stations in
the PSMSL database (www.psmsl.org/products/data_coverage).

Funding This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813 and DFG grant RO
5439/1-1.

Acknowledgements We thank the anonymous reviewers for their insightful comments and suggestions.

1 Introduction

Reconstructing the sea level for the past is of paramount importance for understanding the
influences of climate change. Two types of observational data are often used for this task:
(1) data from tide gauge stations, which are usually located at the sea shore, and (2) gridded
altimeter data acquired from satellites. The tide gauge data is available from the 18th century
from stations that are sparsely distributed globally (e.g., the RLR database given by the
PSMSL contains 1 548 stations). The gridded altimeter data, which has been acquired since
1993, admits much more accurate reconstructions of the sea surface for the last 29 years.
We build on the work by Nitzke et al. [24], who suggested an approach for combining these
two types of data using integer linear programming techniques. The approach is to learn a
plausible triangulation of the tide gauge stations for an epoch E for which the altimeter data
is available, and then use that triangulation to reconstruct the sea surface in another epoch,
where gauge data is available, but no altimeter data. Given the gauge and altimeter data for
E, the task is to compute a minimum-error triangulation of the gauge stations, that is, a
triangulation that minimizes the sum of squared differences between the reference (altimeter)
data and the piecewise linear surface defined with the triangulation.

For piecewise linear surfaces, Delaunay triangulations are often chosen, since they have
many desirable properties. However, they are unique and so they do not have potential
for optimization. On the other hand, computing a minimum-error triangulation among
the set of all triangulations can lead to badly shaped triangles, which can cause large
interpolation errors for epochs other than the training epoch. Therefore, Nitzke et al. [24]
suggested computing a triangulation of minimum error among all k-order Delaunay (k-OD)
triangulations [16]. A k-OD triangulation consists of triangles with up to k points inside
each triangle’s circumcircle (k = 0 corresponds to Delaunay triangles). This creates room for
optimization while ensuring (reasonably) well-shaped triangles. Moreover, restricting the
solution to the set of k-order Delaunay triangulations has computational advantages. Nitzke
et al. [24] modeled their approach as an integer linear program (ILP) and evaluated it on the
North Sea dataset with up to 40 stations and k ≤ 3, whose locations are projected on the

www.psmsl.org/products/data_coverage


A. Arutyunova et al. 7:3

plane; see Figure 1. The evaluation showed that the k-OD minimum-error triangulation is
substantially more effective than the method based on the Delaunay triangulation suggested
in [25] for Sea Surface Anomaly reconstructions of up to 19 years back in time.

The aim of our work is to speed up the above approach using computational geometry in
order to apply it to areas of global extent (instances with up to 800 tide gauge stations).

Our contribution.
We first show that the minimum-error triangulation problem is NP-hard and that it is
even NP-hard to approximate an optimal solution.
We discuss an alternative optimization approach to the ILP-based one by Nitzke et al. [24].
Our approach is based on the dynamic programming (DP) algorithm by Silveira and Van
Krefeld [28]. The runtime of the DP algorithm depends on the Delaunay order k; since
we are only interested in small orders, we are able to calculate minimum-error order-k
Delaunay triangulations for the datasets given by the sea surface reconstruction problem.
The algorithm’s runtime depends on a subgraph of the Delaunay triangulation, which we
call the order-k fixed-edge graph. It is known that for order 1 the fixed-edge graph is
connected [16]. We investigate the fixed-edge graph for orders k = 2, 3. We show that for
k = 2 no vertex can be isolated and give an example where the fixed-edge graph is not
connected. For k ≥ 3 we give an example where ⌊ n

6 ⌋ connected components are inside a
face of the fixed-edge graph, which implies exponential runtime for the algorithm. This
complements the observations by Silveira et al. given in [28].
We perform experiments with different projections of the tide gauge dataset to analyze
the structure of the fixed-edge graphs for a real-world dataset. Our experiments confirm
the assumption by Silveira and Van Krefeld [28] that the DP algorithm can be used to
solve practical problems for medium-sized datasets, if the order is small (k ≤ 7).
Lastly, we perform the reconstruction task that was given in [24] for the global dataset.
Our evaluation shows that on the used global dataset with up to 800 stations the quality
improves with growing k, which contrasts with the findings in [24] on the local North Sea
dataset with about 40 stations, where k = 2 consistently delivered the best reconstructions.

The paper is organized as follows. First, we outline the formal definitions of the triangu-
lation problem in Section 2. After that, we discuss related works in Section 3. In Section 4
we present our NP-hardness proof for the minimum-error triangulation problem. Section 5
presents the DP algorithm by Silveira et al. [28] and discusses our findings regarding the
fixed-edge graphs. In Section 6 we provide the application of the DP algorithm to the sea
surface reconstruction problem. Finally, we give our conclusion in Section 7.

2 The triangulation problem

Let S ⊂ R2 be a set of n points and f : S → R. We call S the set of triangulation points
and f(s) the measurement value of s ∈ S. Additionally, we are given a set R ⊂ conv(S) of
m points and a function h : R → R. We refer to R as the set of reference points and to h(r)
as the reference value of r ∈ R.

A triangulation D of S is given by a maximal set of non-crossing straight-line edges between
points in S. We can extend the function f on the points in conv(S) by linearly interpolating
f in every triangle. In this way we obtain a piece-wise linear function sD : conv(S) → R.
The minimum-error triangulation problem asks for a triangulation D of S that minimizes
the squared error between the reference values and the interpolation, i.e.,

ErrD(R) =
∑
r∈R

(sD(r) − h(r))2.

SoCG 2022



7:4 Minimum-Error Triangulations for Sea Surface Reconstruction

For the dynamic programming algorithm used in our approach and discussed in Section 5,
we transform the minimum-error triangulation problem to the minimum triangle-weighted
triangulation problem. Let T be the set of all O(n3) possible triangles that may be used in
any triangulation of S. Then we can assign the weight

wT (R) =
∑
r∈T

(sT (r) − h(r))2

to every triangle T ∈ T, where sT is the linear interpolation given by the triangle T . If we
assume that no reference point lies on any triangulation edge, we get

ErrD(R) =
∑
r∈R

(sD(r) − h(r))2 =
∑
T ∈D

∑
r∈T

(sT (r) − h(r))2 =
∑
T ∈D

wT (R).

To get rid of the previous assumption we assign points that lie on an edge uv only to the
triangles left of −→uv. Points coinciding with triangulation points can be ignored.

Using these weights our cost function becomes a decomposable measure as discussed by
Bern and Eppstein in [6]. Broadly speaking, decomposable measures are all measures that
easily allow computation using dynamic programming approaches for triangulations.

3 Related works

Sea level reconstruction. Conventional methods for sea level reconstruction use global base
functions (empirical orthogonal base functions) which are learned within the altimeter decades
[10]. Olivieri and Spada suggested the first triangulation-based reconstruction approach [25].
However, this approach does not use the altimeter data in any way and generates a Delaunay
triangulation of the station data. Nevertheless, the resulting reconstruction of the sea surface
was quite promising. The approach suggested by Nitzke et al. [24] marries the conventional
thinking and the triangulation method. The authors proposed the use of data-dependent
triangulations which were introduced in [12] by Dyn, Levin and Rippa. The particular focus
of Nitzke et al. were the minimum-error triangulations. Since they also want to reconstruct
the sea level in the pre-altimetry era, they formulate the reconstruction as a learning task
and use higher-order Delaunay constraints, which were introduced in [16] by Gudmundsson,
Hammar and van Kreveld, as regularizer.

Triangulating point sets. Triangulating point sets in the plane is a fundamental task of
computational geometry. It is of high relevance for data interpolation and surface modeling
tasks, where for every data point a data value (or height) is given in addition to the point’s two
coordinates. The Delaunay triangulation is most often applied as it optimizes several criteria
and can be computed efficiently. In particular, it maximizes the minimum angle among all
the angles of all the triangles. Data-dependent triangulations have been defined in [12] as
triangulations that are computed under consideration of the data values. As optimization
criteria the authors have considered (1) smoothness criteria, (2) criteria based on three-
dimensional properties of the triangles, (3) variational criteria, and (4) the minimum-error
criterion, which is optimized by the previously defined minimum-error triangulation.

There are many heuristics for computing data-dependent triangulations [3, 8, 12, 29],
which are usually based on Lawson’s edge flip algorithm [21]. For small instances, the
problem can be solved to optimality based on integer linear programming [24]. There are
multiple fixed-parameter-tractable algorithms using dynamic programming for the minimum-
weight triangulation (MWT) problem [19, 9, 7, 4, 15] that can be adapted for decomposable
measures [6]. Using problem specific structural properties the MWT problem has been solved
for instances with up to 30 million points [17, 14].



A. Arutyunova et al. 7:5

v1 v2 v3 v4

v1 ∨ v2 ∨ v4

v1 ∨ v2 ∨ v3

v1 ∨ v3 ∨ v4

Figure 2 Embedding of the 3SAT formula (v1 ∨ v2 ∨ v4) ∧ (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v3 ∨ v4).

In [11, 27] heuristics and higher-order Delaunay constraints were used for terrain approxi-
mation. Using established techniques, exact polynomial-time algorithms can be obtained
for restricted cases with higher-order Delaunay constraints [16, 28]. However, prior to our
work, little was known about the complexity of computing or approximating minimum-error
triangulations in the general case. For related problems some hardness results exist [2, 23].

4 Minimum-error triangulation is NP-hard

The zero-error triangulation problem asks for a triangulation D of S with sD(r) = h(r) for
all r ∈ R, or equivalently ErrD(R) = 0. We prove that this problem is NP-hard.

▶ Theorem 1. The zero-error triangulation problem is NP-hard. Thus the minimum-error
triangulation problem cannot be approximated within any multiplicative factor in polynomial
time unless P=NP.

We prove this by a reduction from the planar 3SAT problem, which is NP-complete [22]. An
instance of this problem can be embedded into the plane, where every clause is represented
by a vertex and every variable by a box placed on the horizontal axis. A box is connected to
a vertex via a rectilinear edge if the respective variable is contained in the clause. For an
example, see Figure 2. Such an embedding is also used, for example, in [20].

For every instance of the planar 3SAT problem we construct an instance for the zero-error
triangulation problem by replacing the boxes, vertices and edges of its rectilinear embedding
in the plane by a set of triangulation points and reference points. For this purpose we handle
each component of the 3SAT embedding individually. We construct the variable gadgets
which replace the boxes, the wire gadgets, which replace the rectilinear edges and finally the
clause gadgets and the negation gadgets, where the first replace the vertices and the second
can be attached to variable gadgets to handle negated variables in a clause. The combination
of these gadgets then constitutes an instance to the zero-error triangulation problem.

We ensure that there are two possible zero-error triangulations on the points belonging
to a variable gadget and the attached negation gadgets and wire gadgets as follows. Points
from S together with their measurement value can be seen as points in R3. We ensure that
they lie on a paraboloid in R3 and exploit the properties of the paraboloid (its convexity and
the correspondence of planes in R3 to circles in R2) to limit possible zero-error triangulations.
Any such triangulation then corresponds to the assignment of value 0 (negative) or 1 (positive)
to any variable. We claim that the instance can be triangulated with zero error if and only if
the 3SAT instance is solvable.

SoCG 2022



7:6 Minimum-Error Triangulations for Sea Surface Reconstruction

Figure 3 Example of a reference point r with coupled circle Cr and its positive/negative edges
crossing at r. Lifting the red and blue points to R3, with their measurement values as third
coordinate, we see that these points lie on both the paraboloid and the plane containing (r, hCr (r)).

4.1 Notation and local properties
Our triangulation instance consists of a set of triangulation points with integral coordinates
S ⊂ Z2 and a set R ⊂ conv(S) of reference points. The measurement value of a point
p = (p1, p2) ∈ S is given by f(p) = p2

1 + p2
2. In contrast, reference values are not determined

by one single function. Instead we define a set of functions, one for every circle in R2, and
choose for every reference point one of these functions which determines the reference value
of this point. Concretely, let C be a circle around a point x = (x1, x2) with radius ρ. We
denote with IC = {y ∈ R2 | ∥x − y∥2 < ρ} the interior of C and with OC = R2\(C ∪ IC) the
exterior of C. Here ∥·∥2 denotes the Euclidean norm. For a reference point r = (r1, r2) ∈ R
we define the function

hC(r) = 2x1r1 + 2x2r2 − x2
1 − x2

2 + ρ2.

The function graph of f is the unit paraboloid {(p1, p2, p2
1 + p2

2) | (p1, p2) ∈ R2} and the
function graph of hC is the plane containing the lifting of C onto the paraboloid (Figure 3).

Every point r ∈ R is then coupled to a circle, which we denote by Cr. It will be defined
during the construction of the gadgets and determines the reference value h(r) = hCr (r). Let
an edge e = st denote the convex hull of two points (its vertices) s, t ∈ R2. For each r ∈ R
we define a positive edge e+

r and a negative edge e−
r both having triangulation points lying

on Cr as endpoints and intersecting each other at r (i.e., e+
r ∩ e−

r = {r}). Figure 3 shows the
whole construction. We say for a triangulation D that the signal at r ∈ R is positive if D

contains edge e+
r and negative if it contains e−

r , otherwise we call it ambiguous. Similarly for
every set M ⊂ R we call D positive on M if the signal at all r ∈ M is positive and negative
on M if the signal at all r ∈ M is negative. The error incurred by D on M is given by

ErrD(M) =
∑
r∈M

(sD(r) − h(r))2.

A triangle T is the convex hull of three points s, t, u ∈ R2, which we call the vertices of T .
We say that a triangle T is in D if all of its edges st, tu, us are in D and T does not contain
further points from S, i.e., T ∩ S = {s, t, u}. We say that r ∈ R is represented with zero
error by T if r ∈ T and the value at r of the linear interpolation of f on T equals h(r).



A. Arutyunova et al. 7:7

▶ Lemma 2. Let r be a point of R and let T ⊂ R2 be a triangle with vertices s, t, u and
r ∈ conv({s, t, u} ∩ Cr). Then r is represented with zero error by T .

If the 3SAT instance is satisfiable, we argue that there is a triangulation containing one of
e±

r for every reference point r. Lemma 2 states that such a triangulation has in fact zero
error (see also Figure 3). To represent r with zero error in any other way, we need at least
one triangulation point inside and one outside Cr. This follows from the convexity of f .

▶ Lemma 3. Let T ⊂ R2 be a triangle with vertices s, t, u representing r ∈ R with zero error.
If r /∈ conv({s, t, u} ∩ Cr), then {s, t, u} has a non-empty intersection with ICr

and OCr
.

We guarantee during the construction that only few triangulation points lie in ICr
for each

reference point r. With a concise case analysis we rule out that any of them can be used
together with a point in OCr

to form a triangle that represents r with zero error, which limits
the choice to triangles containing one of e±

r . This ensures that every zero-error triangulation
yields a solution to the 3SAT instance.

Our triangulation instance contains a set of mandatory edges that we require to be part of
any feasible triangulation of S. Mandatory edges are not part of the zero-error triangulation
problem as defined in Section 2, but they can be eliminated by an additional construction.

4.2 The gadgets
At the core of our reduction lies the design of the gadgets that constitute the triangulation
instance. Before we dedicate ourselves to the more complicated gadgets we construct smaller
elements called bits and segments which then are combined into the larger gadgets.

A bit at r ∈ Z2 occupies a small construction around the central point r, which is also
the only reference point of this bit, and can be oriented either horizontally or vertically. We
describe the horizontal bit. Point r is coupled to a circle Cr which is centered on r and
has radius

√
2. The integer grid points on this circle, that is, the points r + (±1, ±1), are

triangulation points. Moreover r + (0, 1) and r + (0, −1) are triangulation points, whereas
r + (−2, 0), r + (−1, 0), r + (1, 0) and r + (2, 0) are not. Therefore, we call the latter points
forbidden. Furthermore we define the positive and negative edge as

e+
r = conv(r + (−1, −1), r + (1, 1)), e−

r = conv(r + (−1, 1), r + (1, −1)).

As r + (±1, ±1) ∈ Cr, any triangle containing either e+
r or e−

r represents r with zero error by
Lemma 2. For the vertical bit we switch the definition of the positive and negative edge and
rotate the whole construction by π

2 . Figure 4 illustrates both constructions.

▶ Lemma 4. Suppose the instance contains a bit at r. If S ⊂ Z2 and S does not contain
forbidden points of the bit, any triangulation D of S with ErrD(r) = 0 contains one of e±

r .

The next larger components are the wire segment and the multiplier segment, which we
build from bits. They can be combined at specified reference points, which we call anchor
points. These points are always reference points of bits.

A wire segment connects two points x, y ∈ Z2 lying on the same horizontal or vertical
line. We place a horizontal or vertical bit on x, y and all integral points lying between these
on the line connecting x and y. The anchor points of this segment are x, y.

A multiplier segment at a point x ∈ Z2 consist of two horizontal bits at x ± (2, 0) and two
vertical bits at x ± (0, 2). These four points are simultaneously anchor points. Furthermore
we add four inner reference points x ± (0, 1), x ± (1, 0) whose coupled circle is of radius

√
5

and centered around x. So the circle contains the points x + (±2, ±1), x + (±1, ±2). Figure 5

SoCG 2022



7:8 Minimum-Error Triangulations for Sea Surface Reconstruction

r

Cr

r

Cr

e+r

e−r

e+r

e−r

Figure 4 The (horizontal/vertical) bit at r with the positive edge in red and the negative edge in
blue. The black points are triangulation points and the white points are forbidden.

x y x

Figure 5 Example of a horizontal wire segment on the left and a multiplier segment with
mandatory edges on the right. The red or blue edges indicate the positive or negative edges of the
crossing points, respectively. All white points and all reference points are forbidden. The green
points are anchor points.

shows the wire segment and the multiplier segment including mandatory edges and the
positive/negative edges of the inner reference points. To obtain the larger variable gadget
and wire gadget we combine wire segments with multiplier segments. Two segments can be
combined if they share a common anchor point. By the combination of two segments we
mean the union of their reference points and triangulation points. A point is forbidden in
the combination if it is forbidden in at least one of the segments. Thus it is not allowed to
combine two segments if a triangulation point of one is forbidden in the other. The set of
anchor points of the combination is defined as the symmetric difference of anchor point sets
of both segments. This way we can combine arbitrarily many segments.

Remember that the wire gadget replaces the rectilinear edges of the 3SAT embedding,
so it has to connect two points x = (x1, x2), y = (y1, y2) ∈ Z2. It consists of a multiplier
segment placed on either (x1, y2) or (y1, x2) to form a corner, which is connected on two of
its anchor points via two wire segments to both x and y. A variable gadget at v ∈ Z2 consists
of ℓ multiplier segments at sufficiently large distance α ∈ Z, which we do not specify further.
Here ℓ denotes the number of clauses. Concretely, we place a multiplier segment on each of



A. Arutyunova et al. 7:9

rc

a1

a3

T3

T1

T2

a2

Figure 6 The clause gadget, where the red/blue edges indicate the positive/negative edges of the
crossing points. The triangles T1, T2, T3 are orange and the anchor points a1, a2, a3 green.

the points v + (kα, 0) with 0 ≤ k ≤ ℓ − 1 and connect them via horizontal wire segments at
their anchor points. The multiplier segments ensure that the gadget can later be connected
at its anchor points to multiple clause gadgets. We observe that the described combinations
of segments for both gadgets are allowed and that they have the following crucial property.

▶ Lemma 5. Suppose the instance contains a wire/variable gadget and let R̃ be the reference
points of this gadget. If S ⊂ Z2 and S does not contain forbidden points of the gadget, any
triangulation D of S with ErrD(R̃) = 0 is either positive or negative on R̃.

Now we define the clause gadget at a point c ∈ Z2, which combines three signals. To this
end we add a reference point rc = c + (0, 11). Instead of a positive/negative edge it comes
with three triangles T1, T2, T3 whose vertices lie on Crc

, each triangulating rc with zero error.
The clause gadget can be connected to other gadgets at three anchor points a1, a2, a3. With
an additional construction we block the triangle Ti if the signal at ai is positive for i = 1, 2
and T3 if the signal at a3 is negative. For the construction we refer to Figure 6 and [5].

▶ Lemma 6. Suppose the instance contains a clause gadget and let R̃ be its reference points.
If S ⊂ Z2 and S does not contain forbidden points of the gadget, any triangulation D of S
with ErrD(R̃) = 0 must be negative on one of the anchor points a1, a2 or positive on a3.

The last gadget, the negation gadget, is discussed in the full version [5]. It is constructed out
of wires, multipliers and simplified clause gadgets. Finally, we replace the mandatory edges
by an additional construction and argue that all gadgets keep their crucial properties. Using
them we construct the zero-error triangulation instance and prove Theorem 1 in [5].

5 Higher-order Delaunay optimization

In the previous section we established that finding a minimum-error triangulation is NP-hard.
Moreover, the experiments in [24] by Nitzke et al. suggest, that general minimum-error
triangulations do not yield the most promising reconstructions of the sea surface. In their
paper they used higher-order Delaunay (HOD) triangulations which allow a trade-off between
a well shaped triangulation and a good approximation of the training dataset.

SoCG 2022



7:10 Minimum-Error Triangulations for Sea Surface Reconstruction

Figure 7 A 2-OD triangulation; in blue the 1-OD and
in red the 2-OD triangles; e1 is a useful 2-OD edge and e2

is a useful 1-OD edge.

Figure 8 In black a (degenerate) poly-
gon with connected components; in red
one set H of connections.

In this section we summarize the algorithm given by Silveira et al. in [28]. Additionally,
we extend upon their work by investigating the fixed-edge graphs in more detail.

We only consider point sets S in general position, i.e., no four points lie on a circle and
we denote the circle defined by three vertices u, v, w ∈ S by C(u, v, w). A triangle Tu,v,w is
called an order-k Delaunay (k-OD) triangle, if C(u, v, w) contains at most k points from S in
the interior. A triangulation is called k-OD triangulation, if all of its triangles have order k

and an edge is called useful k-OD edge, if some k-OD triangulation of S uses it; see Figure 7.
The minimum-error measure ErrD(R) can be optimized using dynamic programming,

since it is decomposable after pre-processing the triangle weights; see [6] for a formal definition.
The well known DP algorithm that was independently proposed by Klincsek in [19] and
Gilbert in [15] can be used to optimize polygon triangulations for decomposable measures in
O(n3) time. In [28] the runtime of the DP algorithm is improved to O(nk2), if the algorithm
only considers pre-processed k-OD edges and triangles instead of all possible ones.

Furthermore, Silveira et al. [28] extend the algorithm to the class of polygons P containing
h connected components C1, . . . , Ch; see Figure 8. The algorithm performs an exhaustive
search on a collection H of sets of edges H, such that the planar graph

⋃
i Ci ∪ P ∪ H is

connected for each H ∈ H and at least one H is used in the optimal triangulation. One of
the main results in [28] is the existence of such a collection with size O(k)h.

▶ Theorem 7 (from [28]). An optimal k-OD triangulation with respect to ErrD(R) of a
(degenerate) polygon with n boundary vertices and h ≥ 1 components inside can be computed
in O(kn log n) + O(k)h+2n expected time.

We can apply this algorithm to point sets by finding subgraphs F of the optimal triangulation
[9, 28] and applying the DP algorithm to the faces of F .

5.1 The order-k fixed-edge graph
A subgraph that is naturally given by HOD constraints is the fixed-edge graph which was
first discussed in [28]. The order-k Delaunay (k-OD) fixed-edge graph Fk of a pointset S is
given by all useful k-OD edges that are not intersected by any other useful k-OD edge.

▶ Observation 8. Let S be a set of n points. Let DT denote the Delaunay triangulation.
We have DT = F0 ⊃ F1 ⊃ F2 ⊃ ... ⊃ Fm = ... = Fn ⊃ conv(S) for some m ≤ n.

In Figure 9 a sequence of fixed-edge graphs is illustrated. Fk decomposes the pointset
into degenerate polygons P1, . . . , Pm that may contain some connected components. An
example is given in Figure 10. We can compute optimal solutions Di for all Pi with the DP



A. Arutyunova et al. 7:11

Figure 9 A sequence of fixed-edge graphs F1, . . . , F7 for an example point set.

algorithm. Since ErrD(R) is decomposable, the optimal triangulation of S is given by
⋃

i Di.
Therefore, the runtime of the algorithm is dominated by the polygon with the maximum
number of connected components cmax. The application of Theorem 7 results in:

▶ Corollary 9. An optimal k-OD triangulation of a point set S with respect to ErrD(R) can
be computed in O(kn log n) + O(k)cmax+2n expected time.

Next, we give some theoretical results with respect to the structure of F2 and F3.
Let v ∈ S be a triangulation point. We call the graph N given by all edges of its incident

Delaunay triangles its Delaunay neighbourhood, all of its incident edges in N its connecting
edges and all other edges of N its boundary edges. A useful 2-OD edge that intersects a
connecting edge is called separation edge; see Figure 11.

▶ Theorem 10. Let S be a set of points. Then every vertex in F2 is adjacent to at least one
other vertex of S.

Proof. (Sketch; the complete proof is given in the full version of the paper [5]) It is sufficient
to prove that for every vertex v ∈ S at least one connecting edge cannot be intersected by
a separation edge. For the sake of contradiction we assume that there exists a set E of
separation edges such that every connecting edge is intersected by at least one e ∈ E.

Figure 10 The decomposition of a fixed-edge graph into polygons. We have c1 = 4, c2 = 0, c3 = 1
and c4 = 1 for the number of components in each polygon. Thus, we have cmax = 4. Note that the
component inside P4 is not counted towards c3, but to c4.

SoCG 2022



7:12 Minimum-Error Triangulations for Sea Surface Reconstruction

Figure 11 The Delaunay Neighbourhood of a point v and a cycle of separation edges given in red.

In a first step we can prove that at least one endpoint of any e ∈ E must be part of the
Delaunay neighbourhood of v. Additionally, we can show that no boundary edge uw can be
intersected by a separation edge for vu and a separation edge for vw. These observations
imply that we can order the edges in E, such that for all i the separation edge ei intersects
ei−1 and ei+1, i.e., the separation edges form a cycle as depicted in Figure 11.

Next, we show that every pair of consecutive separation edges (uivi, ui+1vi+1) must satisfy
a special property, i.e., it must hold that ui+1 ∈ C(ui, vi, vi+1) and vi+1 ∈ C(ui, vi, ui+1).
Finally, we show that this is not possible which leads to a contradiction. ◀

It is well known [28, 16] that F1 is connected (cmax = 0). Silveira et al. stated in [28] that
for k > 1 the value cmax can be larger than 0. But their experiments do not yield any
example for which F2 is not connected. We complement the discussion by such an example.
Additionally, we show for all k ≥ 3 there are examples with cmax ∈ Ω(n).

▶ Observation 11.
There exist point sets with cmax > 0 for F2; see Figure 12.
For every n and k ≥ 3 there are point sets of size n with cmax = ⌊ n

6 ⌋ for Fk; see Figure 13.

Open question. Is there a constant d, such that F2 has cmax ≤ d for every point set?

Practical implications. Our results are interesting from a theoretical point of view, but the
experiments in [28] with random point sets by Silveira et al. and also our own preliminary
experiments indicate that for practical datasets cmax is small for k ≤ 7. Next, we confirm
this assumption for the tide gauge dataset which is used for the sea surface reconstruction.

6 Experiments

We start this section by discussing the datasets. Next, we discuss the fixed-edge graphs of the
tide gauge dataset. Afterwards, we provide the reconstruction process and our experimental
setup. Finally, we present our results regarding the runtime and quality.

Figure 12 An example with disconnected F2. Figure 13 An example with cmax = n
6 for F3.



A. Arutyunova et al. 7:13

6.1 The datasets
The triangulation points for the minimum-error triangulation problem are given by the
monthly tide-gauge time series from the Permanent Service for Mean Sea Level (PSMSL) [26],
which is further discussed in [18]. We use the revised local reference (RLR) datasets.
Furthermore, we remove some stations which do not have any values in our time-frame. This
results in a dataset with 1502 stations, but not all of them record monthly. Thus, we only
use between 513 and 804 different stations at once for a reconstruction.

As reference data R we use the satellite altimeter datasets provided by the ESA Sea
Level Climate Change Initiative (SLCCI), which are given in [13] and are further discussed
in [1]. They are given as monthly gridded sea level anomalies with a spatial resolution of
0.25 degrees and are available for the timespan January 1993 to December 2015.

We assume that both datasets are given in radial coordinates. Since we focus on planar
triangulations, we need to use a global map projection. We chose the Lambert azimuthal
projection (LAP) which unfolds the sphere onto the plane starting at an anchor point (λ0, ϕ0).
For our experiments the LAP has one advantage: The projection results in significantly
different distributions of the stations for sufficiently different anchor points (λ0, ϕ0). This
allows us to perform the fixed-edge graph experiments for a wide variety of point distributions.

It is important to note that the experiments in this paper focus on the runtime of the
DP algorithm for a real world application. Thus, we only de-mean the tide gauge data as
discussed in [24] and do not apply any additional corrections.

6.2 The fixed-edge graphs of the tide gauge set
For our experiments with respect to the fixed-edge graphs we use the complete RLR dataset,
i.e., all 1502 stations. We use the LAP with anchors (λ0, ϕ0) on an uniform 2-D 20 × 20 grid
to generate 400 distributions of the dataset. In Table 1 the experiments are summarized. The
values avgcmax are given by the average value of cmax over all samples. Additionally, we have
min and max that depict the minimal and maximal value of cmax for all samples. The results
roughly coincide with the experiments performed on random point sets by Silveira et al.
in [28] and our own preliminary experiments. The experiments suggest, that we can expect
the DP algorithm to compute optimal solutions for k ≤ 7 in reasonable time. Since Nitzke et
al. suggest very small k for the reconstruction in [24], these experiments are promising.

6.3 Sea surface reconstruction
The reconstruction process can be summarized as follows: We learn a minimum-error
triangulation D in some epoch i and then use it to reconstruct the sea surface at some other
point in time j, by using the triangulation D with the height values of epoch j. Since not all
tide gauge stations provide data for every epoch i, we need to consider the set Gij which is
given by all stations that have reasonable values for epoch i as well as for j. We denote the
optimal triangulation using Gij and the reference points Ai by Dij

M . For comparison we use
the Delaunay triangulation Dij

D of the set Gij which has already been successfully used for

Table 1 The average of cmax and the min/max value of cmax for the projections of the RLR data.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
avgcmax 0.00 0.00 0.45 1.20 2.05 3.68 7.11 15.88 33.16

min/max 0/0 0/0 0/2 0/3 1/5 2/12 3/18 6/38 11/82

SoCG 2022



7:14 Minimum-Error Triangulations for Sea Surface Reconstruction

0 2 4 6 8 10 12 14 16 18 20 22
d in years

14

12

10

8

6

4

2

0

q(
d)

 in
 c

m
2

order 1
order 2
order 3
order 4
order 5
order 6
order 7

Figure 14 Averaged q(∆d) of our approach w.r.t. the epoch difference ∆d for different order k.

the sea surface reconstruction task in [25]. If we have altimeter data available for epoch j,
we can evaluate the quality of our approximation. Overall the reconstruction for epoch j

using i and order k can be performed as follows:

1. Compute the set Gij and the k-OD triangles Tij as described in [28].
2. Compute the weights wT (Ai) of all T ∈ Tij with respect to Ai as discussed in Section 2.
3. Compute the optimal k-OD triangulation Dij

M with the DP algorithm given in Section 5
and also compute the Delaunay triangulation Dij

D.
4. Evaluate the quality of the triangulations with respect to Aj .
For the evaluation we compute the empirical variance of a triangulation

σ2
ij(D) = 1

n − 1
∑
T ∈D

∑
a∈Aj ,a∈T

(sT (a) − hj(a))2,

where n is the number of altimeter points in conv(D). Note that this is exactly the average
minimum error. Additionally, we define the variance reduction of a reconstruction by

∆σ2
ij = σ2

ij(Dij
M ) − σ2

ij(Dij
D).

Next, we can group together reconstructions for epochs i, j and i′, j′ where |i − j| = |i′ − j′|.
This allows us to define the average variance reduction of a temporal difference ∆d by

q(∆d) = 1
|D(∆d)|

∑
(i,j)∈D(∆d)

∆σ2
ij .

The set D(∆d) is given by all tuples (i, j) with |i−j| = ∆d. Using the temporal difference, we
can investigate how far back in time our optimized triangulation outperforms the Delaunay
triangulation (DT). Nitzke et al.[24] noticed that q has a seasonal behaviour, i.e., q has local
maxima every 12 month. Thus, we only use datasets with j = i ± 12l with l ∈ N for the
reconstruction. A more in depth discussion of the evaluation methods can be found in [24].

Reconstruction quality. For all of the experiments we choose an LAP anchored in the
Atlantic Ocean, namely (−40, 16). We compute all possible reconstructions for epochs i and j

with i ≥ j for the orders k ≤ 7, i.e., we use every epoch i for training and validate the learned
triangulation on all possible epochs j with j = i − 12l. Next, we group them with respect to
∆d. In Figure 14 the q(∆d) values are depicted. Recall that our approach performs better
than the DT, if q(∆d) < 0. It should be mentioned, however, that for ∆d ≥ 18 the quality of
the experiments deteriorates, since only few samples span this epoch difference.



A. Arutyunova et al. 7:15

1 2 3 4 5 6 7
order k

100

101

102

103

104

105

op
tim

iza
tio

n 
tim

e 
in

 m
s

Figure 15 Optimization time depending on
the order.

Figure 16 Optimization time depending on
cmax.

Note that the variance reductions for ∆d = 0 are far better than for larger ∆d, since the
reconstruction epoch is the same as the training epoch. The variance reductions for order 1
and order 2 are smoother, but also worse than the ones for higher orders. For ∆d > 10
the variance reductions for the orders 3–6 are very similar and even order 7 is comparable.
The aforementioned orders also share local extrema at ∆d = 10, 11, 18, 20. For order 7 the
extrema become more pronounced which leads to better minima but also to worse maxima.
Note that calculating the empirical variances σ2

ij(Dij
D) for all epochs yields values between

80cm2 and 120cm2. Hence, for example, an absolute variance reduction of 2cm2 roughly
coincides with a relative variance reduction of 2%.

The overall variance reduction gets better for higher orders. This is contrary to the results
by Nitzke et al. [24], who suggested k = 1, 2 for the reconstruction. This difference may have
geometric reasons, i.e., the points in the North Sea dataset used in [24] more or less trace
a polygon without inner points and our global datasets have a more arbitrary distribution.
Moreover, the LAP distorts distances as well as angles which may also contribute to the
different results for the local and global datasets.

Runtime. For the experiments we used a machine with an AMD Ryzen 5 3600 6-Core
Processor clocked at 4.4 GHz and 16 GB RAM. We did not implement the geometric pre-
processing as discussed in [16]. Our pre-processing has roughly cubic runtime (3–4 seconds
per reconstruction). For larger orders k we expect the optimization to dominate the runtime.

The optimization time with respect to the order is given in Figure 15. Note that the
optimization time for k ≤ 5 is at most 30ms. For k = 6 the average runtime is still low with
roughly 50ms. For k = 7 most datasets can be optimized in a few seconds, but some need
around 20 minutes for the optimization and five datasets reach a cut-off time of one hour.

The box-plot in Figure 16 depicts the runtime with respect to the number of connected
components cmax. The logarithmic scaling nicely illustrates the exponential increase. If we
also consider the distribution of cmax for the different datasets and orders, we can easily
connect the two box-plots. For k ≤ 4 all of the datasets have cmax ≤ 2. Thus, the maximal
runtime for orders k ≤ 4 matches the worst runtime for cmax ≤ 2. For orders k = 5, 6, 7 the
cmax distributions are illustrated in Figure 17. Note that for k = 5 and k = 6 most datasets
still have cmax ≤ 2 which results in the very low average runtime. For k = 7 the distribution
starts to shift towards higher cmax which results in the higher average runtime.

In summary, our experiments show that for our datasets we can compute k-OD min-error
triangulations for k ≤ 6 and also for k = 7 except for a few samples in reasonable time.

SoCG 2022



7:16 Minimum-Error Triangulations for Sea Surface Reconstruction

0 1 2 3 4 5 6 7 8 91011
max. nr. of connected components

0

500

1000
nu

m
be

r o
f s

am
pl

es

0 1 2 3 4 5 6 7 8 91011
max. nr. of connected components

0

500

1000

nu
m

be
r o

f s
am

pl
es

0 1 2 3 4 5 6 7 8 91011
max. nr. of connected components

0

250

500

750

1000

nu
m

be
r o

f s
am

pl
es

Figure 17 The cmax distribution of the reconstruction datasets for orders k = 5, 6, 7.

7 Conclusion

We prove that it is NP-hard to approximate an optimal solution to the minimum-error
triangulation problem. Our results also imply the inapproximability of the following general-
ization: minimizing the distance between sD and h on R for any metric on Rm, especially the
Lp-metric

( ∑
r∈R |sD(r)−h(r)|p

)1/p for p ∈ [1, ∞) and the L∞-metric maxr∈R |sD(r)−h(r)|.
Additionally, we apply the dynamic programming algorithm by Silveira et al. [28] to minimum-
error triangulations and extend their experiments, regarding the fixed edges to a real world
dataset. We further investigate the fixed-edge graphs for order k = 2 and give a worst-case
example for k = 3. Finally, we perform the dynamic sea surface reconstruction similar to
Nitzke et al. in [24] for significantly larger datasets using a new algorithmic approach.

A future line of research is the extension of the dynamic programming algorithm to
datasets on the sphere, i.e., spherical triangulations. This would allow a more realistic
reconstruction of the global dynamic sea surface. A combination with ILP techniques will be
a further step [14]. It would also be interesting to include multiple datasets for the learning
of the reconstruction triangulation. We believe that our work will open the door for the
application of optimal triangulation approaches to the problem of multi-decadal global sea
level reconstructions from tide gauge data. In addition, with the growing amount of satellite
and in-situ ocean sensors (buoys, Argo floats, ...) we see potential for a more widespread
application of triangulation methods in generating gridded ocean data products.

References
1 M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes,

O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot,
M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste.
Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change
Initiative project. Ocean Science, 11(1):67–82, 2015. doi:10.5194/os-11-67-2015.

2 Pankaj K. Agarwal and Subhash Suri. Surface approximation and geometric partitions. In
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94,
pages 24–33, USA, 1994. Society for Industrial and Applied Mathematics.

3 Lyuba Alboul, Gertjan Kloosterman, Cornelis Traas, and Ruud van Damme. Best data-
dependent triangulations. Journal of Computational and Applied Mathematics, 119(1):1–12,
2000. doi:10.1016/S0377-0427(00)00368-X.

4 Efthymios Anagnostou and Derek Corneil. Polynomial-time instances of the minimum
weight triangulation problem. Computational Geometry, 3(5):247–259, 1993. doi:10.1016/
0925-7721(93)90016-Y.

5 Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche,
Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin. Minimum-error triangulations
for sea surface reconstruction. 2022. arXiv:2203.07325v1.

https://doi.org/10.5194/os-11-67-2015
https://doi.org/10.1016/S0377-0427(00)00368-X
https://doi.org/10.1016/0925-7721(93)90016-Y
https://doi.org/10.1016/0925-7721(93)90016-Y
http://arxiv.org/abs/2203.07325v1


A. Arutyunova et al. 7:17

6 Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In Computing
in Euclidean Geometry, 1992. doi:10.1142/9789814355858_0002.

7 Magdalene Borgelt, Christian Borgelt, and Christos Levcopoulos. Fixed parameter algorithms
for the minimum weight triangulation problem. Int. J. Comput. Geometry Appl., 18:185–220,
June 2008. doi:10.1142/S0218195908002581.

8 Jeffrey L. Brown. Vertex based data dependent triangulations. Computer Aided Geometric
Design, 8(3):239–251, 1991. doi:10.1016/0167-8396(91)90008-Y.

9 Siu-Wing Cheng, Mordecai J. Golin, and Jeffrey Tsang. Expected case analysis of {221}-
skeletons with applications to the construction of minimum-weight triangulations. Master’s
thesis, Hong Kong University of Science and Technology, 1995.

10 John A. Church, Neil J. White, Richard Coleman, Kurt Lambeck, and Jerry X. Mitrovica.
Estimates of the Regional Distribution of Sea Level Rise over the 1950–2000 Period. Journal
of Climate, 17(13):2609–2625, July 2004. doi:10.1175/1520-0442(2004)017<2609:EOTRDO>
2.0.CO;2.

11 Thierry de Kok, Marc van Kreveld, and Maarten Löffler. Generating realistic terrains with
higher-order Delaunay triangulations. Computational Geometry, 36(1):52–65, 2007. Special
Issue on the 21st European Workshop on Computational Geometry. doi:10.1016/j.comgeo.
2005.09.005.

12 Nira Dyn, David Levin, and Samuel Rippa. Data Dependent Triangulations for Piecewise
Linear Interpolation. IMA Journal of Numerical Analysis, 10(1):137–154, January 1990.
doi:10.1093/imanum/10.1.137.

13 ESA. Sea level CCI ECV dataset: Time series of gridded sea level anomalies(sla),
2021. European Space Agency (ESA). URL: https://catalogue.ceda.ac.uk/uuid/
142052b9dc754f6da47a631e35ec4609.

14 S.P. Fekete, A. Haas, Y. Lieder, E. Niehs, M. Perk, V. Sack, and C. Scheffer. On hard instances
of the minimum-weight triangulation problem. In 36th European Workshop on Computational
Geometry (EuroCG 2020), March 2020.

15 P. Gilbert. New results on planar triangulations. Master’s thesis, University of Illinois,
Coordinated Science Lab, Urbana, IL, USA, 1979.

16 Joachim Gudmundsson, Mikael Hammar, and Marc van Kreveld. Higher order Delaunay
triangulations. Computational Geometry, 23(1):85–98, 2002. doi:10.1016/S0925-7721(01)
00027-X.

17 Andreas Haas. Solving large-scale minimum-weight triangulation instances to provable opti-
mality. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International Symposium
on Computational Geometry, SoCG 2018, volume 99 of LIPIcs, pages 44:1–44:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.SoCG.2018.44.

18 Simon J. Holgate, Andrew Matthews, Philip L. Woodworth, Lesley J. Rickards, Mark E.
Tamisiea, Elizabeth Bradshaw, Peter R. Foden, Kathleen M. Gordon, Svetlana Jevrejeva, and
Jeff Pugh. New Data Systems and Products at the Permanent Service for Mean Sea Level. Jour-
nal of Coastal Research, 29(3):493–504, December 2012. doi:10.2112/JCOASTRES-D-12-00175.
1.

19 G.T. Klincsek. Minimal triangulations of polygonal domains. In Peter L. Hammer, editor,
Combinatorics 79, volume 9 of Annals of Discrete Mathematics, pages 121–123. Elsevier, 1980.
doi:10.1016/S0167-5060(08)70044-X.

20 Donald E. Knuth and Arvind Raghunathan. The problem of compatible representatives. SIAM
Journal on Discrete Mathematics, 5(3):422–427, 1992.

21 Charles L. Lawson. Software for C1 surface interpolation. In John R. Rice, editor, Mathematical
Software, pages 161–194. Academic Press, 1977. doi:10.1016/B978-0-12-587260-7.50011-X.

22 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11:329–343,
1982.

23 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. Journal of the
ACM, 55(2):1–29, May 2008. doi:10.1145/1346330.1346336.

SoCG 2022

https://doi.org/10.1142/9789814355858_0002
https://doi.org/10.1142/S0218195908002581
https://doi.org/10.1016/0167-8396(91)90008-Y
https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2
https://doi.org/10.1016/j.comgeo.2005.09.005
https://doi.org/10.1016/j.comgeo.2005.09.005
https://doi.org/10.1093/imanum/10.1.137
https://catalogue.ceda.ac.uk/uuid/142052b9dc754f6da47a631e35ec4609
https://catalogue.ceda.ac.uk/uuid/142052b9dc754f6da47a631e35ec4609
https://doi.org/10.1016/S0925-7721(01)00027-X
https://doi.org/10.1016/S0925-7721(01)00027-X
https://doi.org/10.4230/LIPIcs.SoCG.2018.44
https://doi.org/10.2112/JCOASTRES-D-12-00175.1
https://doi.org/10.2112/JCOASTRES-D-12-00175.1
https://doi.org/10.1016/S0167-5060(08)70044-X
https://doi.org/10.1016/B978-0-12-587260-7.50011-X
https://doi.org/10.1145/1346330.1346336


7:18 Minimum-Error Triangulations for Sea Surface Reconstruction

24 Alina Nitzke, Benjamin Niedermann, Luciana Fenoglio-Marc, Jürgen Kusche, and Jan-Henrik
Haunert. Reconstructing the dynamic sea surface from tide gauge records using optimal
data-dependent triangulations. Computers & Geosciences, 157:104920, 2021. doi:10.1016/j.
cageo.2021.104920.

25 Marco Olivieri and Giorgio Spada. Spatial sea-level reconstruction in the Baltic Sea and
in the Pacific Ocean from tide gauges observations. Annals of Geophysics, 59(3), 2016.
doi:10.4401/ag-6966.

26 Permanent service for mean sea level (PSMSL), 2021. Retrieved 19 Apr 2021 from http:
//www.psmsl.org/data/obtaining/.

27 Natalia Rodríguez and Rodrigo I. Silveira. Implementing data-dependent triangulations with
higher order Delaunay triangulations. ISPRS International Journal of Geo-Information, 6(12),
2017. doi:10.3390/ijgi6120390.

28 Rodrigo I. Silveira and Marc van Kreveld. Optimal higher order Delaunay triangulations of
polygons. Computational Geometry, 42(8):803–813, 2009. Special Issue on the 23rd European
Workshop on Computational Geometry. doi:10.1016/j.comgeo.2008.02.006.

29 Kai Wang, Chor-Pang Lo, George A. Brook, and Hamid R. Arabnia. Comparison of existing
triangulation methods for regularly and irregularly spaced height fields. International Journal
of Geographical Information Science, 15(8):743–762, 2001. doi:10.1080/13658810110074492.

https://doi.org/10.1016/j.cageo.2021.104920
https://doi.org/10.1016/j.cageo.2021.104920
https://doi.org/10.4401/ag-6966
http://www.psmsl.org/data/obtaining/
http://www.psmsl.org/data/obtaining/
https://doi.org/10.3390/ijgi6120390
https://doi.org/10.1016/j.comgeo.2008.02.006
https://doi.org/10.1080/13658810110074492


Delaunay-Like Triangulation of Smooth Orientable
Submanifolds by ℓ1-Norm Minimization
Dominique Attali #

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France

André Lieutier #

Dassault systèmes, Aix-en-Provence, France

Abstract
In this paper, we focus on one particular instance of the shape reconstruction problem, in which the
shape we wish to reconstruct is an orientable smooth submanifold of the Euclidean space. Assuming
we have as input a simplicial complex K that approximates the submanifold (such as the Čech
complex or the Rips complex), we recast the reconstruction problem as a ℓ1-norm minimization
problem in which the optimization variable is a chain of K. Providing that K satisfies certain
reasonable conditions, we prove that the considered minimization problem has a unique solution
which triangulates the submanifold and coincides with the flat Delaunay complex introduced and
studied in a companion paper [3]. Since the objective is a weighted ℓ1-norm and the contraints are
linear, the triangulation process can thus be implemented by linear programming.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases manifold reconstruction, Delaunay complex, triangulation, sampling condi-
tions, optimization, ℓ1-norm minimization, simplicial complex, chain, fundamental class

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.8

Related Version Full Version: https://arxiv.org/abs/2203.06008

Acknowledgements We are grateful to the anonymous referees for carefully reading the paper and
many helpful suggestions.

1 Introduction

In many practical situations, the shape of interest is only known through a finite set of data
points. Given these data points as input, it is then natural to try to construct a triangulation
of the shape, that is, a set of simplices whose union is homeomorphic to the shape. This
paper focuses on one particular instance of this problem, in which the shape we wish to
reconstruct is a smooth d-dimensional submanifold of the Euclidean space. We show that,
when the submanifold is orientable and under appropriate conditions, a triangulation of that
submanifold can be expressed as the solution of a weighted ℓ1-norm minimization problem
under linear constraints. This formulation gives rise to new algorithms for the triangulation
of manifolds, in particular when the manifolds have large codimensions.

Variational formulation of Delaunay triangulation and generalizations. Our work is based
on the observation that when we consider a point cloud P in Rd, its Delaunay complex can
be expressed as the solution of a particular ℓp-norm minimization problem. This fact is best
explained by lifting the point set P vertically onto the paraboloid P ⊆ Rd+1 whose equation
is xd+1 =

∑d
i=1 x2

i . It is well-known that the Delaunay complex of P is isomorphic to the
boundary complex of the lower convex hull of the lifted points P̂ .

Starting from this equivalence, Chen has observed in [16] that the Delaunay complex of P

minimizes the ℓp-norm of the difference between two functions over all triangulations T of P .
The graph of the first function is the lifted triangulation T̂ and the graph of the second one is

© Dominique Attali and André Lieutier;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Dominique.Attali@grenoble-inp.fr
mailto:andre.lieutier@3ds.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.8
https://arxiv.org/abs/2203.06008
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Delaunay-Like Triangulation of Submanifolds by Minimization

the paraboloid P. This variational formulation has been successfully exploited in [1, 14, 17]
for the generation of Optimal Delaunay Triangulations. When p = 1, the ℓp-norm associated
to T is what we call in this paper the Delaunay energy of T and, can be interpreted as the
volume enclosed between the lifted triangulation T̂ and the paraboloid P.

Our contribution. While it seems difficult to extend the lifting construction when points of
P sample a d-dimensional submanifold of RN , our main result is to show that nonetheless,
the induced variational formulation can still be transposed.

Consider a set of points P that sample a d-dimensional submanifold M. When searching
for a triangulation of M from P , it seems reasonable to restrict the search within a simplicial
complex K built from P . A first crucial ingredient in our work is to embed the triangulations
that one can build using simplices of K inside the vector space formed by simplicial d-cycles1

of K over the field R. In spirit, this is similar to what is done in the theory of minimal
surfaces, when oriented surfaces are considered as particular elements of a much larger set,
namely the space of currents [25], that enjoys the nice property of being a vector space.
Going back to the case of points in the Euclidean space, if one minimizes the Delaunay energy
in the larger set of simplicial chains with real coefficients and under adequate boundary
constraints, one obtains a particular chain with coefficients in {0, 1} whose simplices, roughly
speaking, do not “overlap”. The support of that chain, that is the set of simplices with
coefficient 1, coincides with the Delaunay triangulation. The proof is quite direct and relies
on the geometric interpretation provided by the lifting construction [18, 31].

We show that when transposing this to the case of points P that sample a d-dimensional
submanifold M, minimizing the Delaunay energy provides indeed a triangulation of M. The
proof requires us to introduce a more elaborate construction, the Delloc complex of P , as a
tool to describe the solution. The d-simplices of that complex possess exactly the property
that we need for our analysis. In a companion paper [3] we show that the Delloc complex
indeed provides a triangulation of the manifold, assuming the set of sample points P to be
sufficiently dense, safe, and not too noisy. Incidently, the Delloc complex coincides with the
flat Delaunay complex introduced in our companion paper [3] and is akin to the tangential
Delaunay complex introduced and studied in [5, 6]. When the manifold is sufficiently densely
sampled by the data points, all three constructions are locally isomorphic to a (weighted)
Delaunay triangulation computed in a local tangent space to the manifold. Intuitively, this
indicates that the Delaunay energy should locally reach a minimum for all three constructions
and, therefore ought to be also a global minimum. Actually, turning this intuitive reasoning
into a correct proof turns out to be more tricky than it appears and is the main purpose of
the present paper. In particular, we need to globally compare the Delaunay energy of the
cycle carrying the Delloc complex with that of alternate d-cycles, and this requires us to
carefully distribute the Delaunay energy along barycentric coordinates (see Section 6).

Algorithms. Several authors, with computational topology or topological data analysis
motivations, have considered the computation of ℓ1-minimum homology representative cycles,
[13, 9, 19, 10, 20], generally for integers or integers modulo p coefficients. The celebrated
sparsity of ℓ1-minima manifests itself in this context by the fact that the support of such
minima is sparse, in other words it is non-zero only on a small subset of simplices of K.

Note that an alternative algorithm to the one proposed in this paper could be to compute a
triangulation of M by returning such a minimal sparse representative. Indeed, when the data
points sample sufficiently densely and accurately the manifold compared to the reach of the

1 Or relative d-cycles when the considered domain has a boundary.



D. Attali and A. Lieutier 8:3

manifold, one could – in theory – take either the Čech complex or the Vietoris-Rips complex
as the complex K, since it is known that by choosing the scale parameter of these complexes
carefully, they are guaranteed to have the same homotopy type as M [12, 11, 4, 29, 24].
Recall that, when M is orientable and connected, its d-homology group with real coefficients
is one-dimensional, and a normalized generator of it is called the manifold fundamental
class. Hence, when K and M are homotopy equivalent, the d-homology group of K is also
one-dimensional. It follows that extracting any non-boundary cycle of K (using standard
linear algebra operations on the boundary operators ∂d and ∂d+1 of K) provides a d-cycle γ0
which is, up to a multiplicative constant, a representative of a generator of the fundamental
class of M. An alternate algorithm could then search, among chains homologous to γ0,
for the one with the minimal Delaunay energy. The solution of the corresponding linear
optimization problem would then be a chain which carries the Delloc complex. While elegant
in theory, the size required for the (d + 1)-skeleton of the Čech or Vietoris-Rips complex may
be prohibitive in practice.

Instead, we describe a procedure that only requires the milder condition on K to be
a simplicial complex large enough to contain the Delloc complex, at the cost of adding a
certain form of normalization constraint. For the purpose of the proof, it is convenient to first
consider a rather artificial problem, where, besides the sample P , the manifold M is known.
In the full version [2], we show how to turn this problem into a more realistic one that takes
as input only the sample of the unknown manifold, and is correct assuming that reasonable
sampling conditions hold. While we do not yet explore practical efficient algorithms in this
paper, the minimization of a ℓ1-norm under linear constraints in Rn, where n is the number of
d-simplices in the considered simplicial complex K, can be turned into a linear optimization
problem in the standard form through slack variables, and can be addressed by standard
linear programming techniques such as the simplex algorithm.

The missing proofs may be found in the full version [2].

2 Preliminaries

In this section, we review the necessary background and explain some of our terms.

2.1 Subsets and submanifolds

Given a subset A ⊆ RN , the affine space spanned by A is denoted by aff A and the convex
hull of A by conv A. The medial axis of A, denoted as axis(A), is the set of points in RN that
have at least two closest points in A. By definition, the projection map πA : RN \axis(A) → A

associates to each point x its unique closest point in A. The reach of A is the infimum
of distances between A and its medial axis, and is denoted as reach A. By definition, the
projection map πA is well-defined on every subset of RN that does not intersect the medial
axis of A. In particular, recalling that the r-tubular neighborhood of A is the set of points
A⊕r = {x ∈ RN | d(x, A) ≤ r}, the projection map πA is well-defined on every r-tubular
neighborhood of A with r < reach A. We denote the ball centered at x ∈ RN and with radius
ρ ∈ R by B(x, ρ). For short, we say that a subset σ ⊆ RN is ρ-small if it can be enclosed in
a ball of radius ρ.

Throughout the paper, M designates a compact connected orientable C2 d-dimensional
submanifold of RN for d < N . For any point m ∈ M, the tangent plane to m at M is
denoted as TmM. Because M is C2 and therefore C1,1, the reach of M is positive [23]. We
let R be a fixed finite constant such that 0 < R ≤ reach M.

SoCG 2022



8:4 Delaunay-Like Triangulation of Submanifolds by Minimization

2.2 Simplicial complexes
In this section, we review some background notation on simplicial complexes [27]. We also
introduce the concept of faithful reconstruction which encapsulates what we mean by a
“desirable” approximation of a manifold.

All simplices and simplicial complexes that we consider in the paper are abstract. Each
abstract simplex σ ⊆ RN is naturally associated to a geometric simplex defined as conv σ.
The dimension of conv σ is the dimension of the affine space aff σ, and cannot be larger than
the dimension of the abstract simplex σ. When the dimension of the geometric simplex conv σ

coincides with that of the abstract simplex σ, we say that σ is non-degenerate. Equivalently,
the vertices of σ form an affinely independent set of points. The star of x ∈ RN in a simplicial
complex K is St(x, K) = {σ ∈ K | x ∈ conv σ}.

Given a set of simplices Σ with vertices in RN (not necessarily forming a simplicial
complex), we let Σ[d] designate the d-simplices of Σ. We define the shadow of Σ as the subset
of RN covered by the relative interior of the geometric simplices associated to the abstract
simplices in Σ, |Σ| =

⋃
σ∈Σ relint(conv σ). We shall say that Σ is geometrically realized (or

embedded) if (1) dim(σ) = dim(aff σ) for all σ ∈ Σ, and (2) conv(α ∩ β) = conv α ∩ conv β

for all α, β ∈ Σ.

▶ Definition 1 (Faithful reconstruction). Consider a subset A ⊆ RN whose reach is positive,
and a simplicial complex K with a vertex set in RN . We say that K reconstructs A faithfully
(or is a faithful reconstruction of A) if the following three conditions hold:
Embedding: K is geometrically realized;
Closeness: |K| is contained in the r-tubular neighborhood of A for some 0 ≤ r < reach A;
Homeomorphism: The restriction of πA : RN \ axis(A) → A to |K| is a homeomorphism.

2.3 Height, circumsphere and smallest enclosing ball
The height of a simplex σ is height(σ) = minv∈σ d(v, aff(σ \{v})). The height of σ vanishes if
and only if σ is degenerate. If σ is non-degenerate, then, letting d = dim σ = dim aff σ, there
exists a unique (d − 1)-sphere that circumscribes σ and therefore at least one (N − 1)-sphere
that circumscribes σ. Hence, if σ is non-degenerate, it makes sense to define S(σ) as the
smallest (N − 1)-sphere that circumscribes σ. Let Z(σ) and R(σ) denote the center and
radius of S(σ), respectively. Let cσ and rσ denote the center and radius of the smallest N -ball
enclosing σ, respectively. Clearly, rσ ≤ R(σ) and both cσ and Z(σ) belong to aff σ. The
intersection S(σ) ∩ aff σ is a (d − 1)-sphere which is the unique (d − 1)-sphere circumscribing
σ in aff σ.

2.4 Delaunay complexes
Consider a finite point set Q ⊆ RN . We say that σ ⊆ Q is a Delaunay simplex of Q if there
exists an (N − 1)-sphere S that circumscribes σ and such that no points of Q belong to the
open ball whose boundary is S. The set of Delaunay simplices form a simplicial complex
called the Delaunay complex of Q and denoted as Del(Q).

▶ Definition 2 (General position). Let d = dim(aff Q). We say that Q ⊆ RN is in general
position if no d + 2 points of Q lie on a common (d − 1)-dimensional sphere.

▶ Lemma 3. When Q is in general position, Del(Q) is geometrically realized.

Let us recall a famous result which says that building a Delaunay complex in RN is
topologically equivalent to building a lower convex hull in RN+1. For simplicity, we shall
identify each point x ∈ RN with a point (x, 0) in RN+1. Consider the paraboloid P ⊆ RN+1



D. Attali and A. Lieutier 8:5

defined as the graph of the function ∥ · ∥2 : RN → R, x 7→ ∥x∥2, where ∥ · ∥ designates
the Euclidean norm. For each point x ∈ RN , its vertical projection onto P is the point
x̂ = (x, ∥x∥2) ∈ RN+1, which we call the lifted image of x. Similarly, the lifted image of
Q ⊆ RN is Q̂ = {q̂ | q ∈ Q}. Recall that the lower convex hull of Q̂ is the portion of conv Q̂

visible to a viewer standing at xd+1 = −∞. A classical result says that σ is a Delaunay
simplex of Q if and only if conv σ̂ is contained in the lower convex hull of Q̂ [22].

2.5 Delaunay energy for triangulations
We recall that a triangulation T of Q designates a simplicial complex with vertex set Q

which is geometrically realized and whose shadow covers conv Q. It is well-known that
the Delaunay complex of Q optimizes many functionals over the set of triangulations of
Q [8, 30, 28], one of them being the Delaunay energy that we shall now define [15]. Let
d = dim(aff Q). Given a triangulation T of Q, the Delaunay energy Edel(T ) of T is defined as
the (d + 1)-volume between the d-manifold |T̂ | =

⋃
σ∈T conv σ̂ and the paraboloid P. Let us

derive an expression for this (d+1)-volume. Consider a point x ∈ conv Q. By construction, x

belongs to at least one geometric d-simplex conv σ for some σ ∈ T . Erect an infinite vertical
half-line going up from x. This half-line intersects the paraboloid P at point x̂ and the lifted
geometric d-simplex conv σ̂ at point x∗

σ. We have

Edel(T ) =
∑

σ

∫
x∈conv σ

∥x̂ − x∗
σ∥ dx.

▶ Theorem 4 (Delaunay complex by a variational approach). When Q is in general position,
the triangulation of Q that minimizes the Delaunay energy is unique and equals Del(Q).

Theorem 4 is a direct consequence of the lifting construction [28, 16].

2.6 Delaunay weight
To each non-degenerate d-dimensional abstract simplex α ∈ RN we assign a non-negative real
number that we call the Delaunay weight of α. The reasons for this will become clear shortly.
Let α ⊆ RN be a non-degenerate abstract simplex. We recall that the power distance of
point x ∈ RN from S(α) is Powerα(x) = ∥x − Z(α)∥2 − R(α)2.

▶ Definition 5 (Delaunay weight). The Delaunay weight of a non-degenerate simplex α is:

ω(α) = −
∫

x∈conv α

Powerα(x) dx.

Easy computations show that Powerα(x) = −∥x̂ − x⋆
α∥; see for instance [21]. Hence, if

d = dim(α), we see that ω(α) represents the (d + 1)-volume between the lifted geometric
simplex conv σ̂ and the paraboloid P. Therefore the Delaunay energy can be expressed
as Edel(T ) =

∑
α ω(α), where α ranges over all d-simplices of T . Below, we give a closed

expression for the Delaunay weight due to Chen and Holst in [14]. Writing vol(α) for the
d-dimensional volume of conv α, we have:

▶ Lemma 6 ([14]). The weight of the non-degenerate d-simplex α = {a0, . . . , ad} is

ω(α) = 1
(d + 1)(d + 2) vol(α)

 ∑
0≤i<j≤d

∥ai − aj∥2

 .

SoCG 2022



8:6 Delaunay-Like Triangulation of Submanifolds by Minimization

The expression of the Delaunay weight given in Lemma 6 shows that two simplices that are
isometric have the same Delaunay weight. Hence, a Delaunay energy can be straightforwardly
associated to any “soup” Σ of d-simplices living in RN by setting E(Σ) =

∑
σ∈Σ ω(σ). It is

then tempting to ask what would happen if one minimizes this energy when the vertices of Σ
sample a d-manifold.

2.7 Chains and weighted norms
In this section, we recall some standard notation concerning chains. Chains play an important
role in this work as they provide a tool to embed the discrete set of candidate solutions
(faithful reconstructions of M) into a larger continuous space. Consider an abstract simplicial
complex K and assume that each simplex σ in K is given an arbitrary orientation. A d-chain
of K with coefficients in R is a formal sum γ =

∑
σ γ(σ)σ, where σ ranges over all d-simplices

of K and γ(σ) ∈ R is the value (or the coordinate) assigned to the oriented d-simplex σ. The
set of such d-chains is a vector space denoted by Cd(K,R). Recall that the ℓ1-norm of γ

is defined by ∥γ∥1 =
∑

σ |γ(σ)|. Let W be a weight function which assigns a non-negative
weight W (σ) to each d-simplex σ of K. The W -weighted ℓ1-norm of γ is expressed as
∥γ∥1,W =

∑
σ W (σ)|γ(σ)|. We shall say that a chain γ is carried by a subcomplex D of K if

γ has value 0 on every simplex that is not in D. The support of γ is the set of simplices on
which γ has a non-zero value. It is denoted by Supp γ.

3 Delloc complex

Given a finite set of points P in RN , a dimension d, and a scale parameter ρ, we introduce
a construction which we call the d-dimensional Delloc complex of P at scale ρ. First, we
define the property for a simplex to be delloc.

▶ Definition 7 (Delloc complex). We say that a simplex σ is delloc in P at scale ρ if
σ ∈ Del(πaff σ(P ∩ B(cσ, ρ))). The d-dimensional Delloc complex of P at scale ρ is the set
of d-simplices that are delloc in P at scale ρ together with all their faces, and is denoted by
Dellocd(P, ρ).

We now state a theorem which establishes conditions under which the Delloc complex is
a faithful reconstruction of M. The theorem can be seen as a corollary of the main theorem
that we establish in the companion paper [3]. We need some notations and definitions.

▶ Definition 8 (Dense, accurate, and separated). We say that P is an ε-dense sample of M if
for every point m ∈ M, there is a point p ∈ P with ∥p−m∥ ≤ ε or, equivalently, if M ⊆ P ⊕ε.
We say that P is a δ-accurate sample of M if for every point p ∈ P , there is a point m ∈ M
with ∥p − m∥ ≤ δ or, equivalently, if P ⊆ M⊕δ. Let separation(P ) = minp ̸=q∈P ∥p − q∥.

We stress that our definition of a protected simplex differs slightly from the one in [7, 6].

▶ Definition 9 (Protection). We say that a non-degenerate simplex σ ⊆ RN is ζ-protected
with respect to Q ⊆ RN if for all q ∈ Q \ σ, we have d(q, S(σ)) > ζ.

Let H(σ) = {TmM | m ∈ πM(conv σ)} ∪ {aff σ}, and Θ(σ) = maxH0,H1∈H(σ) ∠(H0, H1).
To the pair (P, ρ) we now associate three quantities that describe the quality of P at scale ρ:

height(P, ρ) = minσ height(σ), where the minimum is over all ρ-small d-simplices σ ⊆ P ;
Θ(P, ρ) = maxσ Θ(σ), where σ ranges over all ρ-small d-simplices of P ;
protection(P, ρ) = minσ minq d(q, S(σ)), where the minima are over all ρ-small d-simplices
σ ⊆ P and all points q ∈ πaff σ(P ∩ B(cσ, ρ)) \ σ.



D. Attali and A. Lieutier 8:7

▶ Theorem 10 (Faithful reconstruction by a geometric aproach). Let ε, δ, ρ, θ ≥ 0 and set
A = 4δθ + 4ρθ2. Assume that θ ≤ π

6 , δ ≤ ε and 16ε ≤ ρ < R
4 . Suppose that P is a δ-accurate

ε-dense sample of M that satisfies the following safety conditions:

1. Θ(P, ρ) ≤ θ − 2 arcsin
(

ρ+δ
R

)
;

2. separation(P ) > 2A + 6δ + 2ρ2

R ;

3. height(P, ρ) > 0 and protection(P, 3ρ) > 2A
(

1 + 4dε
height(P,ρ)

)
.

Then D = Dellocd(P, ρ) enjoys the following properties:
Faithful reconstruction: D is a faithful reconstruction of M;
Circumradii: For all d-simplices σ ∈ D, we have that R(σ) ≤ ε;
Local behaviour: For all x ∈ |D|, πTxM(St(x, D)) is geometrically realized.

Incidentally, under the assumption of Theorem 10, Dellocd(P, ρ) coincides FlatDelM(P, ρ),
the complex introduced and studied in the companion paper [3]. Since all the results in this
paper are based on the delloc property, we find it more enlightening to formulate the results
of this paper using the Delloc complex. We recall that the safety conditions can be met in
practice by assuming P to be a sample of M sufficiently dense and sufficiently accurate, and
then perturbing the point set P as explained in the companion paper [3].

▶ Remark 11. It is easy to see that if 2R(σ) ≤ ρ, then a delloc simplex σ in P at scale ρ is
also a Gabriel simplex of P , by which we mean that its smallest circumsphere S(σ) does not
enclose any point of P in its interior. In particular, if 2R(σ) ≤ ρ, the delloc simplex σ is a
Delaunay simplex of P . Hence, under the assumptions of Theorem 10, we have the inclusion
Dellocd(P, ρ) ⊆ Del(P ).

4 Statement of main result

In this section, we state our main result. Hereafter, we suppose that K is a simplicial complex
whose vertices are the points of P .

Orienting and signing. We also assume that M together with all d-simplices of K have
received an (arbitrary) orientation. For each d-simplex α ∈ K such that Θ(α) < π

2 , we define
the sign of α with respect to M as follows:

signM(α) =
{

1 if the orientation of α is consistent with that of M,
−1 otherwise.

We refer the reader to the full version [2] for a formal definition of consistency and more
details. We associate to any subcomplex D ⊆ K the d-chain γD of K whose coordinates are:

γD(α) =
{

signM(α) if α ∈ D[d],
0 otherwise.

▶ Lemma 12. If D is a faithful reconstruction of M and, for all x ∈ |D|, πTxM(St(x, D)) is
geometrically realized, then γD is a cycle. In particular, this is true when D = Dellocd(P, ρ)
under the assumptions of Theorem 10.

SoCG 2022



8:8 Delaunay-Like Triangulation of Submanifolds by Minimization

Least ℓ1-norm problem. We define the Delaunay energy of the chain γ ∈ Cd(K,R) to be
its ω-weighted ℓ1-norm:

Edel(γ) = ∥γ∥1,ω =
∑

α

ω(α) · |γ(α)| =
∑

α

(∫
x∈conv α

− Powerα(x) dx

)
· |γ(α)|, (1)

where ω is the Delaunay weight function defined in Section 2 and α ranges over all d-simplices
of K. Given a d-manifold A, a point a ∈ A, a set of simplices Σ ⊆ K and a d-chain γ of K,
we also introduce the real number:

loada,A,Σ(γ) =
∑

σ∈Σ[d]

γ(σ) signA(σ)1πA(conv σ)(a)

and call it the load of γ on A at a restricted to Σ. Letting m0 be a generic2 point on M, we
are interested in the following optimization problem over the set of chains in Cd(K,R):

minimize
γ

Edel(γ)

subject to ∂γ = 0, (⋆)
loadm0,M,K(γ) = 1

Problem (⋆) is a convex optimization problem and as such is solvable by linear pro-
gramming. More precisely, it is a least-norm problem whose constraint functions ∂ and
loadm0,M,K are clearly linear. The first constraint ∂γ = 0 expresses the fact that we are
searching for d-cycles. The second constraint loadm0,M,K(γ) = 1 can be thought of as a kind
of normalization of γ. It forbids the zero chain to belong to the feasible set and we shall see
that, under the assumptions of our main theorem, it forces the solution to take its coordinate
values in {0, +1, −1}.

In Problem (⋆), besides the simplicial complex K that one can build from P , the knowledge
of the manifold M seems to be required as well for expressing the normalization constraint.
What we call a realistic algorithm is an algorithm that takes only the point set P as input. In
the full version [2], we explain how to transform Problem (⋆) into an equivalent problem that
does not refer to M anymore, thus providing a realistic algorithm. Roughly, we replace the
constraint loadm0,M,K(γ) = 1 by a constraint of the form loadp0,Π,Σ(γ) = 1, where p0 ∈ P ,
Π is a d-flat that “approximates” M near p0 and Σ are simplices of K “close” to p0.

Main theorem. In our main theorem (see below), there is a constant Ω(∆d) that depends
only upon the dimension d and whose definition is given in the proof of Lemma 20.

▶ Theorem 13 (Faithful reconstruction by a variational approach). Let ε, δ, ρ and θ be
non-negative real-numbers such that θ ≤ π

6 , δ ≤ ε and 16ε ≤ ρ < R
4 . Set

J = (R + ρ)d

(R − ρ)d (cos θ)min{d,N−d} − 1 and A = 4δθ + 4ρθ2.

Let ζ = protection(P, 3ρ) and suppose that P is a δ-accurate ε-dense sample of M that
satisfies the following safety conditions:

2 Generic in the sense that it is not in the projection on M of the convex hull of any (d − 1)-simplex of K.



D. Attali and A. Lieutier 8:9

1. Θ(P, ρ) ≤ θ − 2 arcsin
(

ρ+δ
R

)
.

2. separation(P ) > 2A + 6δ + 3ρ2

R ;

3. height(P, ρ) > 0 and ζ > 2A
(

1 + 4dε
height(P,ρ)

)
;

4. ζ2 + ζ separation(P ) > 10ρ sin θ(ε + ρ sin θ);
5. Jρ2 < (1 + J)−1 (d+2)(d−1)!

4
(
ζ2 + ζ separation(P )

)
Ω(∆d).

Suppose that Dellocd(P, ρ) ⊆ K and that the d-simplices of K are ρ-small. Then Problem (⋆)
has a unique solution which is γDellocd(P,ρ). The support of that solution together with all its
faces coincides with Dellocd(P, ρ) and is a faithful reconstruction of M.

One may ask about the feasability of realizing the assumptions of Theorem 13. While
assuming the sample to be ε-dense and δ-accurate seems realistic enough (perhaps after
filtering outliers), the safety conditions seem less likely to be satisfied by natural data. In the
full version [2], we show how to apply Moser Tardos Algorithm ([26] and [6, Section 5.3.4])
as a perturbation scheme to enforce the safety conditions of Theorem 13.

Choosing the simplicial complex K. Recall that the Čech complex of P at scale ρ, denoted
as C(P, ρ), is the set of simplices of P that are ρ-small. The Rips complex of P at scale
ρ, denoted as R(P, ρ), is a more easily-computed version which consists of all simplices of
P with diameter at most 2ρ. We stress that our main theorem applies to any simplicial
complex K such that Dellocd(P, ρ) ⊆ K ⊆ C(P, ρ). Since C(P, r) ⊆ R(P, r) ⊆ C(P,

√
2r)

and Dellocd(P, ρ) ⊆ C(P, ε), it applies to any K = R(P, r) with ε ≤ r ≤ ρ√
2 . This choice

of K is well-suited for applications in high dimensional spaces. Observe that under the
assumptions of Theorem 13, Dellocd(P, ρ) ⊆ Del(P ) ∩ C(P, ε) (see Remark 11) and choosing
K = Del(P ) ∩ C(P, r) for any ε ≤ r ≤ ρ may then be more suited for applications in low
dimensional spaces.

5 Technical lemma

The proof of our main theorem relies on a technical lemma which we now state and prove.

▶ Lemma 14. Let D ⊆ RN be a d-manifold (with or without boundary) and K a simplicial
complex with vertices in RN . Assume that there is a map φ : |K| → D. Suppose that for each
d-simplex α ∈ K, we have two positive weights W (α) ≥ Wmin(α) and that there exists a map
f : D → R such that Wmin(α) =

∫
φ(conv α) f . Consider the d-chain γmin on K defined by

γmin(α) =
{

1 if Wmin(α) = W (α),
0 otherwise.

Suppose that
∑

α∈K[d] γmin(α)1φ(conv α)(x) = 1, for almost all x ∈ D. Then the ℓ1-like norm
∥γ∥1,W attains its minimum over all d-chains γ such that∑

α∈K[d]

γ(α)1φ(conv α)(x) = 1, for almost all x ∈ D (2)

if and only if γ = γmin.

SoCG 2022



8:10 Delaunay-Like Triangulation of Submanifolds by Minimization

Proof. We write α̃ = φ(conv α) throughout the proof for a shorter notation. We prove the
lemma by showing that for all d-chains γ on K that satisfy constraint (2), we have:

∥γ∥1,W ≥ ∥γ∥1,Wmin ≥
∫

D
f = ∥γmin∥1,Wmin = ∥γmin∥1,W , (3)

with the first inequality being an equality if and only if γ = γmin. Clearly, ∥γ∥1,W ≥ ∥γ∥1,Wmin

because W (α) ≥ Wmin(α). To obtain the second inequality, recall that we have assumed∑
α γ(α)1α̃(x) = 1 almost everywhere in D. We use this to write that:

∥γ∥1,Wmin ≥
∑

α

γ(α)
∫

α̃

f =
∑

α

γ(α)
∫

D
f1α̃ =

∫
D

f
∑

α

γ(α)1α̃ =
∫

D
f, (4)

where sums are over all d-simplices α in K. Setting γ = γmin in (4), we observe that the
inequality in (4) becomes an equality because none of the coefficients of γmin are negative
by construction. It follows that

∫
D f = ∥γmin∥1,Wmin . Finally, ∥γmin∥1,Wmin = ∥γmin∥1,W

because γmin has been defined so that for all simplices α in its support, Wmin(α) = W (α).
We have thus established (3). Suppose now that γ ̸= γmin and let us prove that ∥γ∥1,W >

∥γ∥1,Wmin , or equivalently that∑
α∈Supp γ

|γ(α)| (W (α) − Wmin(α)) > 0.

Since none of the terms in the above sum are negative, it suffices to show that there
exists at least one simplex α ∈ Supp γ for which W (α) > Wmin(α). By contradiction,
assume that for all α ∈ Supp γ, W (α) = Wmin(α). By construction, we thus have the
implication: γ(α) ̸= 0 =⇒ γmin(α) = 1, and therefore Supp γ ⊆ Supp γmin. But, since∑

α γmin(α)1α̃(x) = 1 for almost all x ∈ D and coefficients of γmin are either 0 or 1, it follows
that for almost all x ∈ D, point x is covered by a unique d-simplex in the support of γmin.
Hence, the simplices in Supp γmin have pairwise disjoint interiors while their union covers
D. Since

∑
α γ(α)1α̃(x) = 1 for almost all x ∈ D, the simplices in Supp γ must also cover D

while using only a subset of simplices in Supp γmin. The only possibility is that γ = γmin,
yielding a contradiction. ◀

6 Comparing power distances

The goal of this section is to relate the two maps Powerα(x) and Powerβ(y) for two d-simplices
α ∈ Dellocd(P, ρ) and β ⊆ P , and for two points x ∈ conv α and y ∈ conv β, such that
πM(x) = πM(y). The main result of the section is stated in the following lemma:

▶ Lemma 15. Let ε, δ, ρ ≥ 0 such that 0 ≤ 2ε ≤ ρ, and 16δ ≤ ρ ≤ R
3 . Suppose that P ⊆ M⊕δ.

Let ζ = protection(P, 3ρ) and assume that Θ(P, ρ) ≤ π
6 , separation(P ) > 3ρ2

R + 3δ and

10ρ Θ(P, ρ) · (ε + ρ Θ(P, ρ)) < ζ2 + ζ separation(P ).

Then, for every ε-small d-simplex α ∈ Dellocd(P, ρ), every ρ-small d-simplex β ⊆ P , every
x ∈ conv α, and every y ∈ conv β such that πM(x) = πM(y):

Powerβ(y) ≤ Powerα(x) − 1
2

(
ζ2 + ζ separation(P )

) ∑
b∈β\α

µb,

where µb ≥ 0 are real numbers such that y =
∑

b∈β µbb and
∑

b∈β µb = 1.



D. Attali and A. Lieutier 8:11

To prove the lemma, we need a few auxiliary results. We start by recalling a useful
expression of the power distance of a point x from the circumsphere S(α) of α when x is an
affine combination of the vertices of α.

▶ Lemma 16. Let α ⊆ RN . If x =
∑

a∈α λaa with
∑

a∈α λa = 1, then for every z ∈ RN

Powerα(x) = ∥x − z∥2 −
∑
a∈α

λa∥a − z∥2.

Figure 1 Notation for the proof of Lemma 17.

▶ Lemma 17. Let α and β be two non-degenerate abstract d-simplices in RN . Suppose that
α ∈ Del(πaff α(α ∪ β)) and it is ζ-protected with respect to πaff α(α ∪ β). Suppose furthermore
that the map πaff α

∣∣
α∪β

is injective. Then for every convex combination y =
∑

b∈β µbb with
µb ≥ 0 and

∑
b∈β µb = 1, we have

Powerβ(y) ≤ Powerα(πaff α(y)) − (ζ2 + 2ζR(α))
∑

b∈β\α

µb.

Proof. See Figure 1. Let Z(α) be the radius of the (d − 1)-dimensional circumsphere of α.
Clearly, ∥a − Z(α)∥ = R(α) for all a ∈ α. Let Q = πaff α(α ∪ β). Since α ∈ Del(Q) and is
ζ-protected with respect to Q, we get:

(R(α) + ζ)2 < ∥πaff α(b) − Z(α)∥2, for all b ∈ β \ α,

R(α)2 = ∥πaff α(b) − Z(α)∥2, for all b ∈ β ∩ α.

Multiplying both sides of each equation above by µb and summing over all b ∈ β, we obtain:

R(α)2 + (ζ2 + 2ζR(α))
∑

b∈β\α

µb ≤
∑
b∈β

µb∥πaff α(b) − Z(α)∥2. (5)

For short, write y′ = πaff α(y) and β′ = πaff α(β). Noting that y′ =
∑

b∈β µbb′ and applying
Lemma 16 with z = Z(α), we get that

Powerβ′(y′) = ∥y′ − Z(α)∥2 −
∑
b∈β

µb∥πaff α(b) − Z(α)∥2.

SoCG 2022



8:12 Delaunay-Like Triangulation of Submanifolds by Minimization

Substracting ∥y′ − Z(α)∥2 from both sides of (5) and using the above expression, we obtain

− Powerα(y′) + (ζ2 + 2ζR(α))
∑

b∈β\α

µb ≤ − Powerβ′(y′).

Applying Lemma 16 again, with Z = y′ and Z = y respectively, we get that:

− Powerβ′(y′) =
∑
b∈β

µb∥πaff α(b) − πaff α(y)∥2 ≤
∑
b∈β

µb∥b − y∥2 = − Powerβ(y),

which concludes the proof. ◀

▶ Lemma 18. Let α and β be two non-degenerate abstract d-simplices in RN . Suppose that
α ∈ Del(πaff α(α ∪ β)) and α is ζ-protected with respect to πaff α(α ∪ β). Suppose that the
map πaff α

∣∣
α∪β

is injective and that both conv α and conv β are contained in the ρ-tubular
neighborhood of M. Suppose furthermore that β is ρ-small. If Θ(α) < π

6 and

5ρ sin Θ(α) · (2R(α) + 2ρ sin Θ(α)) < ζ2 + 2ζR(α),

then for every x ∈ conv α and every y ∈ conv β with πM(x) = πM(y), we have

Powerβ(y) ≤ Powerα(x) − 1
2(ζ2 + 2ζR(α))

∑
b∈β\α

µb,

where µb ≥ 0 are real numbers such that y =
∑

b∈β µbb and
∑

b∈β µb = 1.

7 Proving the main result

Suppose that K is a simplicial complex with vertex set P . Write D = Dellocd(P, ρ), D = |D|
and K = |K| for short. In this section, we prove our main theorem by applying Lemma 14.
This requires us to define two maps φ : K → D and f : D → R, two weights W (α) and
Wmin(α) for each d-simplex α ∈ K, and to check that these maps and weights satisfy the
requirements of Lemma 14. For each α ∈ K, let W (α) = ω(α) be the Delaunay weight of α.
To be able to define φ, f , and Wmin, we assume that the following conditions are met:
(1) D is a faithful reconstruction of M;
(2) For every d-simplex σ ⊆ K, the map πM

∣∣
conv σ

is well-defined and injective.
These conditions are easily derived from the assumptions of the main theorem. We are
now ready to introduce additional notation. Consider a subset X ⊆ RN and suppose that
the map πM

∣∣
X

is well-defined and injective. Then it is possible to define a bijective map
πX→M : X → πM(X). Because D is a faithful reconstruction of M, the map πD→M is
well-defined and bijective. Similarly, for every d-simplex σ ∈ K, the map πconv σ→M is well-
defined and bijective. We now introduce the map φ : K → D defined by φ = [πD→M]−1 ◦ πM
and let f : D → R be the map defined by:

f(x) = min
σ

(
− Powerσ([πconv σ→M]−1 ◦ πM(x))

)
, (6)

where the minimum is taken over all d-simplices σ ∈ K such that x ∈ φ(conv σ). Note that
f(x) can be defined equivalently as the minimum of − Powerβ(y) over all d-simplices β ∈ K

and all points y ∈ conv β such that πM(x) = πM(y). Given a d-simplex σ ∈ K, we associate
to σ the weight:

Wmin(σ) =
∫

x∈φ(conv σ)
f(x) dx. (7)



D. Attali and A. Lieutier 8:13

▶ Lemma 19. Under the assumptions of Theorem 13:
For every d-simplex α ∈ D and every point x ∈ conv α, we have f(x) = − Powerα(x).
For every d-simplex α ∈ D, we have Wmin(α) = W (α).

Proof. Consider a d-simplex α ∈ D, a d-simplex β ∈ K, x ∈ conv α and y ∈ conv β

such that πM(x) = πM(y). Applying Lemma 15, we obtain that Powerβ(y) ≤ Powerα(x) or
equivalently Powerβ([πconv β→M]−1◦πM(x)) ≤ Powerα(x) and therefore f(x) = − Powerα(x).
To establish the second item of the lemma, notice that for all α ∈ D, the restriction of φ

to conv α is the identity function, φ| conv α = Id and therefore φ(conv α) = conv α. Since we
have just established that f(x) = − Powerα(x), we get that

Wmin(α) =
∫

x∈φ(conv α)
f(x) dx =

∫
x∈conv α

− Powerα(x) dx = ω(α) = W (α),

which concludes the proof. ◀

▶ Lemma 20. Under the assumptions of Theorem 13, for every d-simplex β ∈ K \ D, we
have Wmin(β) < W (β).

Proof. We need some notation. Given α and β in K, we write conv|α β for the set of
points y ∈ conv β for which there exists a point x ∈ conv α such that πM(x) = πM(y). We
define the map φβ→α : conv|α β → conv|β α as φβ→α(y) = [πconv α→M]−1 ◦ πconv β→M(y).
Note that φβ→α is invertible and its inverse is φα→β . Also, note that J in Theorem 13
has been chosen precisely so that one can apply Lemma 38 in [2] and guarantee that
| det(Jφβ→α)(y)| ∈ [ 1

1+J , 1 + J ] for all α, β ∈ K and all y ∈ conv|α β. Consider a d-simplex
β ∈ K \ D. By Lemma 19, f(x) = − Powerα(x) and therefore:

Wmin(β) =
∑

α∈D[d]

∫
x∈conv|β α

− Powerα(x) dx.

For any convex combination y of points in β, let {µβ
b (y)}b∈β designate the family of non-

negative real numbers summing up to 1 such that y =
∑

b∈β µβ
b (y)b. Plugging in the upper

bound on − Powerα(x) provided by Lemma 15, letting

c = 1
2

(
ζ2 + ζ separation(P )

)
,

and making the change of variable x = φβ→α(y), we upper bound Wmin(β) as follows:

Wmin(β) ≤
∑

α∈D[d]

∫
x∈conv|β α

− Powerβ(φα→β(x)) − c
∑

b∈β\α

µb
β(φα→β(x))

 dx

=
∑

α∈D[d]

∫
y∈conv|α β

− Powerβ(y) − c
∑

b∈β\α

µb
β(y)

 | det(Jφβ→α)(y)| dy

≤ (1 + J)W (β) − (1 + J)−1c
∑

α∈D[d]

∫
y∈conv|α β

∑
b∈β\α

µb
β(y) dy.

A key observation is that, because β ̸= α, then β \ α ̸= ∅. Therefore the sum
∑

b∈β\α µb
β(y)

is always lower bounded by infb∈β µb
β(y). Associating the quantity

Ω(β) =
∫

y∈conv β

inf
b∈β

µb
β(y) dy,

SoCG 2022



8:14 Delaunay-Like Triangulation of Submanifolds by Minimization

to β we thus obtain that Wmin(β) ≤ (1+J)W (β)−(1 + J)−1
c Ω(β). Hence, Wmin(β) < W (β)

as long as

JW (β) < (1 + J)−1c Ω(β). (8)

Using a change of variable, it is not too difficult to show that Ω(β) = d! vol(β)Ω(∆d), where
∆d = {λ ∈ Rd |

∑d
i=1 λi ≤ 1; λi ≥ 0, i = 1, 2, . . . , d} represents the standard d-simplex.

Remark that Ω(∆d) is a constant that depends only upon the dimension d and is thus
universal. Plugging in Ω(β) = d! vol(β)Ω(∆d) on the right side of (8), and the expression of
W (β) = ω(β) given by Lemma 6 on the left side of (8), and recalling that β is ρ-small, we
find that condition (8) is implied by the following condition:

Jρ2 < (1 + J)−1 (d + 2)(d − 1)!
4

(
ζ2 + ζ separation(P )

)
Ω(∆d),

which we have assumed to hold. ◀

Proof of Theorem 13. We start with pointing out that Problem (⋆) is invariant under
change of orientation of d-simplices in K and thus we may assume that every d-simplex α

in K has an orientation that is consistant with that of M, that is, signM(α) = 1 for all
α ∈ K [d]. Let D = Dellocd(P, ρ), D = |D| and K = |K|. Theorem 10 ensures that D is a
d-manifold and πM : D → M is a homeomorphism. Define φ : K → D, f : D → R, W , and
Wmin as explained at the beginning of the section. Consider the d-chain γmin on K:

γmin(α) =
{

1 if Wmin(α) = W (α),
0 otherwise.

By Lemma 19 and Lemma 20, the following property holds: for all α ∈ K, Wmin(α) = W (α)
if and only if α is a d-simplex of D. It follows that γmin = γD. Furthermore, we have∑

α∈K[d] γmin(α)1φ(conv α)(x) =
∑

α∈D[d] 1conv α(x) = 1 for almost all x ∈ D. Recalling that
W = ω and therefore ∥γ∥1,W = Edel(γ), and applying Lemma 14, we deduce that γmin = γD

is the unique solution to the following optimization problem over the set of chains in Cd(K,R):

minimize
γ

Edel(γ)

subject to
∑

α∈K[d]

γ(α) signM(α)1φ(conv α)(x) = 1, for almost all x ∈ D (⋆⋆)

One can see that Problem (⋆⋆) remains unchanged if one replaces the constraint with∑
α∈K[d]

γ(α) signM(α)1πM(conv α)(m) = 1, for almost all m ∈ M. (9)

Let m0 be the arbitrary generic point of M, as in Problem (⋆). By Lemma 48 in [2], the
above constraint is equivalent to the following set of constraints:{

∂γ = 0,∑
α∈K[d] γ(α) signM(α)1πM(conv α)(m0) = 1.

We deduce that Problem (⋆) and Problem (⋆⋆) are equivalent, and we get the result. ◀



D. Attali and A. Lieutier 8:15

References
1 Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational

tetrahedral meshing. ACM Transactions on Graphics (TOG), 24(3):617–625, 2005.
2 D. Attali and A. Lieutier. Delaunay-like triangulation of smooth orientable submanifolds by

ℓ1-norm minimization, 2022. arXiv:2203.06008.
3 D. Attali and A. Lieutier. Flat delaunay complexes for homeomorphic manifold reconstruction,

2022. arXiv:2203.05943.
4 D. Attali, A. Lieutier, and D. Salinas. Vietoris–rips complexes also provide topologically

correct reconstructions of sampled shapes. Computational Geometry: Theory and Applications,
46(4):448–465, 2013.

5 J.-D. Boissonnat and A. Ghosh. Manifold reconstruction using tangential delaunay complexes.
Discrete & Computational Geometry, 51(1):221–267, 2014.

6 Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and topological
inference, volume 57. Cambridge University Press, 2018.

7 Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. The stability of delaunay triangula-
tions. International Journal of Computational Geometry & Applications, 23(04n05):303–333,
August 2013. doi:10.1142/s0218195913600078.

8 Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic geometry. Cambridge university
press, 1998.

9 Glencora Borradaile, William Maxwell, and Amir Nayyeri. Minimum Bounded Chains and
Minimum Homologous Chains in Embedded Simplicial Complexes. In Sergio Cabello and
Danny Z. Chen, editors, 36th International Symposium on Computational Geometry (SoCG
2020), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–
21:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.SoCG.2020.21.

10 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homologous
cycles. In Proceedings of the 25th Annual Symposium on Computational Geometry - SCG ’09,
page 377, Aarhus, Denmark, 2009. ACM Press. doi:10.1145/1542362.1542426.

11 F. Chazal, D. Cohen-Steiner, and A. Lieutier. A sampling theory for compact sets in Euclidean
space. Discrete and Computational Geometry, 41(3):461–479, 2009.

12 F. Chazal and A. Lieutier. Smooth Manifold Reconstruction from Noisy and Non Uniform
Approximation with Guarantees. Computational Geometry: Theory and Applications, 40:156–
170, 2008.

13 Chao Chen and Daniel Freedman. Hardness Results for Homology Localization. Discrete &
Computational Geometry, 45(3):425–448, April 2011. doi:10.1007/s00454-010-9322-8.

14 L. Chen and M. Holst. Efficient mesh optimization schemes based on optimal delaunay
triangulations. Computer Methods in Applied Mechanics and Engineering, 200(9):967–984,
2011.

15 Long Chen. Mesh smoothing schemes based on optimal delaunay triangulations. In Pro-
ceedings of the 13th International Meshing Roundtable, IMR 2004, Williamsburg, Virginia,
USA, September 19-22, 2004, pages 109–120, 2004. URL: http://imr.sandia.gov/papers/
abstracts/Ch317.html.

16 Long Chen and Jin-chao Xu. Optimal delaunay triangulations. Journal of Computational
Mathematics, pages 299–308, 2004.

17 Zhonggui Chen, Wenping Wang, Bruno Lévy, Ligang Liu, and Feng Sun. Revisiting optimal
delaunay triangulation for 3d graded mesh generation. SIAM Journal on Scientific Computing,
36(3):A930–A954, 2014.

18 David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Regular triangulations as lexico-
graphic optimal chains. Preprint HAL, 2019. URL: https://hal.archives-ouvertes.fr/
hal-02391285.

SoCG 2022

http://arxiv.org/abs/2203.06008
http://arxiv.org/abs/2203.05943
https://doi.org/10.1142/s0218195913600078
https://doi.org/10.4230/LIPIcs.SoCG.2020.21
https://doi.org/10.4230/LIPIcs.SoCG.2020.21
https://doi.org/10.1145/1542362.1542426
https://doi.org/10.1007/s00454-010-9322-8
http://imr.sandia.gov/papers/abstracts/Ch317.html
http://imr.sandia.gov/papers/abstracts/Ch317.html
https://hal.archives-ouvertes.fr/hal-02391285
https://hal.archives-ouvertes.fr/hal-02391285


8:16 Delaunay-Like Triangulation of Submanifolds by Minimization

19 Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal Homologous Cycles, Total
Unimodularity, and Linear Programming. SIAM Journal on Computing, 40(4):1026–1044,
January 2011. doi:10.1137/100800245.

20 Tamal K. Dey, Tao Hou, and Sayan Mandal. Computing minimal persistent cycles: Polynomial
and hard cases. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’20, pages 2587–2606, USA, January 2020. Society for Industrial and
Applied Mathematics.

21 H. Edelsbrunner. Geometry and topology for mesh generation. Cambridge Univ Pr, 2001.
22 Herbert Edelsbrunner and Nimish R Shah. Incremental topological flipping works for regular

triangulations. Algorithmica, 15(3):223–241, 1996.
23 H. Federer. Curvature measures. Trans. Amer. Math. Soc, 93:418–491, 1959.
24 Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman. Homo-

topy reconstruction via the cech complex and the vietoris-rips complex. arXiv preprint, 2019.
arXiv:1903.06955.

25 Frank Morgan. Geometric measure theory: a beginner’s guide. Academic press, 2016.
26 Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.

Journal of the ACM (JACM), 57(2):1–15, 2010.
27 J.R. Munkres. Elements of algebraic topology. Perseus Books, 1993.
28 Oleg R Musin. Properties of the delaunay triangulation. In Proceedings of the thirteenth

annual symposium on Computational geometry, pages 424–426, 1997.
29 P. Niyogi, S. Smale, and S. Weinberger. Finding the Homology of Submanifolds with High

Confidence from Random Samples. Discrete Computational Geometry, 39(1-3):419–441, 2008.
30 Samuel Rippa. Minimal roughness property of the delaunay triangulation. Computer Aided

Geometric Design, 7(6):489–497, 1990.
31 Julien Vuillamy. Simplification planimétrique et chaînes lexicographiques pour la reconstruction

3D de scènes urbaines. PhD thesis, Université Côte d’Azur, 2021.

https://doi.org/10.1137/100800245
http://arxiv.org/abs/1903.06955


Tighter Bounds for Reconstruction from ϵ-Samples
Håvard Bakke Bjerkevik #

Institute of Geometry, Technische Universität Graz, Austria

Abstract
We show that reconstructing a curve in Rd for d ≥ 2 from a 0.66-sample is always possible using
an algorithm similar to the classical NN-Crust algorithm. Previously, this was only known to be
possible for 0.47-samples in R2 and 1

3 -samples in Rd for d ≥ 3. In addition, we show that there is
not always a unique way to reconstruct a curve from a 0.72-sample; this was previously only known
for 1-samples. We also extend this non-uniqueness result to hypersurfaces in all higher dimensions.

2012 ACM Subject Classification Mathematics of computing → Geometric topology

Keywords and phrases Curve reconstruction, surface reconstruction, ϵ-sampling

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.9

Related Version Full Version: https://arxiv.org/abs/2112.03656v2 [8]

Funding The author is supported by the Austrian Science Fund (FWF) grant number P 33765-N.

Acknowledgements The author would like to thank Michael Kerber for insights into the size of
Delaunay triangulations, and Stefan Ohrhallinger and Scott A. Mitchell for answering my questions
about the state of the art of curve and surface reconstruction.

1 Introduction

The main problem considered in this paper is that of curve reconstruction. Given a (finite)
set of points S in Rd, we assume that this is a subset of a union C of closed curves, and we
want to reconstruct C knowing only S. Reconstructing C exactly from a finite set of points is
unfeasible, so we restrict the problem to finding the graph GC(S) on S induced by C: there
is an edge in GC(S) between two points in S if you can walk from one to the other along C
without meeting another point of S.

To do this, one needs an assumption on S and C. Some work on curve reconstruction
and similar problems uses global assumptions for instance related to the maximum curvature
[5, 7, 12, 21, 24, 25]. A weakness of this approach is that it may force you to sample the
whole curve densely even if just a small portion of it has large curvature. An influential
paper by Amenta, Bern and Eppstein [3] introduced the Crust algorithm along with a local
sampling condition allowing the sampling density to vary depending on the local distance to
the medial axis of C. To be precise, they guarantee correct reconstruction for any ϵ-sampled
curve in the plane whenever ϵ < 0.252. The condition that a curve is ϵ-sampled is weaker
the larger ϵ is, so we would like to guarantee correct reconstruction for ϵ-sampled curves for
as large an ϵ as possible.

There followed a number of papers seeking to improve the sampling conditions of [3]:
Dey and Kumar [15] introduced NN-Crust (NN = nearest neighbor), which allows curves
in higher-dimensional space, and prove that correct reconstruction is guaranteed for ϵ < 1

3 ;
Lenz [20] defines a family of algorithms of which NN-Crust is a special case and conjectures
that ϵ ≤ 0.48 is sufficient for correctness in another special case; and Ohrhallinger et al. [22]
introduce HNN-Crust, proving correct reconstruction for ϵ < 0.47, and also for ρ < 0.9,
where ρ is a reach-based parameter that is related to (but different from) the parameter ϵ. It
is shown in [3, Observation 6] that correct reconstruction cannot be guaranteed for ϵ ≥ 1.

© Håvard Bakke Bjerkevik;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bjerkevik@tugraz.at
https://orcid.org/0000-0001-9778-0354
https://doi.org/10.4230/LIPIcs.SoCG.2022.9
https://arxiv.org/abs/2112.03656v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Tighter Bounds for Reconstruction from ϵ-Samples

In addition, there have been several papers improving on [3] in other ways: Gold [18]
simplified the Crust algorithm; Dey et al. [16] gave an algorithm allowing open curves;
and Dey and Wenger [17] considered curves with corners. Finally, we mention that [2]
ties the ϵ-sampling condition to a completely different approach to curve reconstruction
by showing that a solution of the traveling salesman problem on the sample points gives a
correct reconstruction from an ϵ-sample for ϵ < 0.1. For further references, we refer to the
recent survey of Ohrhallinger et al. [23] on curve reconstruction in the plane.

Moving up to higher dimensions, one can consider the problem of submanifold recon-
struction [1, 10, 13, 14, 21]. Instead of working with samples of a curve, one assumes that
the points are sampled from a submanifold in Rd for d ≥ 3; the case of surfaces in R3 is of
particular interest. While this is not the main focus of the paper, we note that this problem
is important from a practical point of view; see for instance [6] for a survey covering the
literature related to 3D scannings with imperfections. So far, the results using ϵ-sampling
have been much weaker for surface reconstruction than for curve reconstruction. For d = 3,
correct surface reconstruction is only known to be possible to guarantee for ϵ ≤ 0.06 [4].

1.1 Our contributions
The question we study is: For which ϵ is it possible to guarantee correct curve reconstruction
using an ϵ-sample? Despite the popularity of ϵ-sampling as a sampling condition in the
literature and the body of work aiming to weaken sampling conditions, there is still a large
gap between the ϵ for which we know that reconstruction is always possible and the ϵ for
which we know that it is not always possible: For any ϵ ∈ (0.47, 1), it is as far as the author
knows an open question if it is possible to guarantee correct reconstruction of a curve (or
union of curves) in R2 using an ϵ-sample. For curves in Rd, d ≥ 3, the same is true for
ϵ ∈ ( 1

3 , 1). We improve this situation drastically in both ends. First we describe algorithms
that guarantee correct reconstruction for ϵ = 0.66 for all d ≥ 2. Algorithm 1 runs in O(n2) for
any fixed d, and Algorithm 2 runs in O(n log n) for d = 2. While we have not implemented
our algorithms, we believe that the speed of Algorithm 2 in practice is comparable to that of
the algorithms in [15] and [22] because of their similarities.

Secondly, we give an example demonstrating that one cannot in general guarantee correct
reconstruction using 0.72-samples for any d ≥ 2. Thus, the interval of ϵ for which it is
unknown if an ϵ-sample is enough for reconstruction is reduced from (0.47, 1) (or ( 1

3 , 1) for
d ≥ 3) to (0.66, 0.72).

By a straightforward generalization, we use our example to prove that a 0.72-sample is
not in general enough to guarantee correct reconstruction of a manifold of any dimension.
We do not show any positive results in higher dimensions, but we hope that since we do not
put any restriction on the ambient dimension of the set of samples, our ideas can be useful
also for reconstruction of higher-dimensional manifolds.

A serious alternative to the ϵ-sampling condition is the ρ-sampling condition of [22]. The
authors of [22] argue that ϵ-sampling with ϵ ≤ 0.47 requires more sample points than what
ρ-sampling does. With our new bounds on ϵ, the situation changes somewhat. An in-depth
discussion of the relationship between ϵ-sampling and ρ-sampling is beyond the scope of this
paper (as is the question of whether the two sampling conditions can be combined in a way
that exploits the advantages of both of them), but we study some instructive examples in
the full version of the paper [8, Appendix B]. To summarize, ρ-sampling seems to do better
for curves with slowly changing curvature, while ϵ does better in some examples with rapidly
changing curvature. Both our upper and lower bounds for ϵ help us understand the relative
strengths of ϵ- and ρ-sampling.



H. Bakke Bjerkevik 9:3

We begin by introducing necessary definitions and notation in Section 2, before we prove
the main theorem in Section 3. In Section 4, we show that correct reconstruction from
0.72-samples is not always possible, and we finish off by generalizing the example to higher
dimensions in Section 5.

2 Definitions and notation

Throughout most of the paper, we work with a finite, disconnected union C of closed curves
in Rd for some fixed d ≥ 2, and a finite subset S of C. We will call the elements of S sample
points. By a closed curve, we mean the image of an injective map from the circle. Sometimes
it will be convenient to fix an orientation of (a connected component of) C. The notation
a→ b means that we have chosen an orientation of a connected component of C containing
a, b ∈ S and that by starting at a and moving along C following this orientation, the next
element of S one encounters is b. We use the shorthand a → b → c when we mean a → b

and b→ c. For p, q in the same connected component of C, we define [p, q] as {p} if p = q,
and as the image of any injective path from p to q that is consistent with the orientation
of C if p ̸= q. We define [a, b), (a, b] and (a, b) similarly depending on whether a and/or b
are included or not. By a midpoint of [a, b] we mean a point p ∈ [a, b] with d(p, a) = d(p, b),
where d(x, y) denotes Euclidean distance.

If (a→)b→ c or c→ b(→ a), we say that (a,) b and c are consecutive. We define GC(S)
as the graph on S with an edge between a and b if and only if a and b are consecutive.

For X ⊂ Rd, let d(x,X) := infy∈X d(x, y). The medial axis M [9] is the set of points
in Rd that do not have a unique closest point in C. For p ∈ C, the local feature size lfs(p)
is defined as d(p,M). For ϵ > 0, we say that S ⊂ C is an ϵ-sample (of C) if for all p ∈ C,
d(p,S) < ϵ lfs(p). Note that being an ϵ-sample is a stronger condition the smaller ϵ is.
Throughout the paper we will assume that S is an ϵ-sample, but our assumptions on ϵ will
vary.

We define cl : Rd \M → C by letting cl(x) be the point in C closest to x; i.e., cl(x) =
arg minp∈C d(x, p). It follows immediately from the definition of M that cl is well-defined.
We prove that cl is continuous in Lemma 2.

We use the notation Bx(r) for the closed ball with radius r centered at x ∈ Rd. For
x, y ∈ Rd, the closed line segment from x to y is denoted by xy.

We often restrict our attention to a plane Π ⊂ Rd, which we identify with R2. This way,
we can associate canonical coordinates (x, y) to each point p ∈ Π.

3 Proof that 0.66-samples allow reconstruction

This section is devoted to giving a proof of the main theorem:

▶ Theorem 1. Let C be a union of closed curves in Rd for some d ≥ 2, and let S be a
0.66-sample of C containing n points. Given S as input, NN-compatible and Compatible-
crust both compute GC(S). The former runs in O(n2), and for d = 2, the latter runs in
O(n log n).

The algorithms are rather simple, and are similar to the previous Crust-type algorithms.
To be specific, Compatible-crust borrows the idea from [3] of only selecting edges from
the Delaunay triangulation1, and both algorithms use the idea from [15] of including an edge

1 For an introduction to Delaunay triangulations in the plane, see [11, Chapter 9].

SoCG 2022



9:4 Tighter Bounds for Reconstruction from ϵ-Samples

between each sample point and its nearest neighbor (called “closest” in the algorithms) in
addition to the nearest neighbor satisfying some condition related to the angle between the
resulting two edges (called “clComp” in the algorithms). The new ingredient in our algorithm
is that we require triples of consecutive points to be compatible (see Figure 3), which is
a different criterion than those used in previous algorithms. We define this compatibility
property in Section 3.3. This criterion has the advantage over criteria used in previous papers
in that it is the optimal local criterion for when a triple of points can be consecutive: If a
triple is not compatible, it cannot be consecutive, while if it is compatible, there is a curve
passing through the three points that does not violate the sampling condition locally. It
will be clear from the definition that checking if a triple (a, b, c) ∈ S3 is compatible can be
done in constant time. The separation into two algorithms is done to optimize the running
time: For d = 2, computing the Delaunay triangulation saves us time, while for d ≥ 3, a
more straightforward approach is at least as efficient in the worst case.

Algorithm 1 NN-compatible.

Input: 0.66-sample S ⊂ Rd of C for d ≥ 2
Output: GC(S)
Initialize G← {}
foreach x ∈ S do

closest← arg miny∈S\{x}{d(x, y)}
CompNeigh← {y ∈ S | (closest, x, y) is compatible}
clComp← arg miny∈CompNeigh{d(x, y)}
G← G ∪ {{x, closest}, {x, clComp}}

return G

In NN-compatible, we run through the for-loop n times. Each line in the loop can be
executed in O(n), which gives a total running time of O(n2).

Algorithm 2 Compatible-crust.

Input: 0.66-sample S ⊂ Rd of C for d ≥ 2
Output: GC(S)
Compute the 1-skeleton D1(S) of a Delaunay triangulation of S.
Initialize G← {}
foreach x ∈ S do

Neigh← the set of vertices in D1(S) adjacent to x
closest← arg miny∈Neigh{d(x, y)}
CompNeigh← {y ∈ Neigh | (closest, x, y) is compatible}
clComp← arg miny∈CompNeigh{d(x, y)}
G← G ∪ {{x, closest}, {x, clComp}}

return G

Computing a Delaunay triangulation in the plane can be done in O(n log n) [11, Theo-
rem 9.12]. The total number of edges in D1(S) is O(n), so the sum of the sizes of all the
Neigh over all x ∈ S is O(n). Thus, the total running time of the for-loop is O(n). This
gives a running time for Compatible-crust of O(n log n+ n) = O(n log n) for d = 2. For
d ≥ 3, the Delaunay triangulation may have a size as large as Θ(n⌈d/2⌉) [19, Chapter 27.1],
in which case Compatible-crust does not do better than NN-compatible for d ∈ {3, 4}
and does worse for d ≥ 5.



H. Bakke Bjerkevik 9:5

It remains to be proved that the algorithms output GC(S). Since Compatible-crust
restricts itself to the set of edges of the Delaunay triangulation, we need to know that this
set contains the edges of GC(S). In the planar case, this is proved in [3, Lemma 11]. We
extend the result to higher ambient dimensions in Corollary 5.

Finally, we need to prove that the closest and “closest compatible” neighbors to a sample
point are indeed the adjacent vertices in GC(S). As the proof is rather long and technical,
we devote a full section to it, which we split into three subsections: In Section 3.1, we prove
a sequence of lemmas about the local behavior of S and C. Then, in Section 3.2, we prove
lower bounds on the angle between certain triples of points on C; in particular, Lemma 11
implies that consecutive triples of points have to be compatible. Lastly, in Section 3.3, we
use the results from the first two subsections to prove that the edges constructed by the
algorithms are indeed exactly the edges in GC(S). Some of the proofs are omitted and appear
only in the appendix of the full version of the paper [8].

3.1 Basic observations about S and C
Recall that S is assumed to be an ϵ-sample of C. In this subsection, we assume ϵ ≤ 1. Later,
we will restrict ϵ to smaller values and state our assumptions on ϵ explicitly in each case.

For p ∈ C, define dp = d(p,S). By definition of cl and ϵ-sample, cl is defined in Bp

(
dp

ϵ

)
.

Since we assume ϵ ≤ 1, cl is in particular defined in Bp(dp). We will use the following lemma
throughout the paper without referring to it explicitly.

▶ Lemma 2. cl is continuous.

Proof. Let x ∈ Rd \M, and let x1, x2, . . . be a sequence of points in Rd \M that converges
to x. To show that cl is continuous, it is enough to show that the image of the sequence under
cl converges to cl(x). Let y be an accumulation point in C of the sequence cl(x1), cl(x2), . . . ,
which exists by compactness of C. Then d(x, y) ≤ d(x, y′) for any y′ ∈ C, so y = cl(x).
Thus, cl(x) is the only accumulation point of cl(x1), cl(x2), . . . , so by compactness of C, the
sequence converges to cl(x). ◀

▶ Lemma 3. Let x ∈ Rd and q ∈ C be such that xq does not intersect the medial axis. Let
p = cl(x). Then the interior of Bx(d(x, q)) contains either [p, q) or (q, p].

Proof. By continuity of cl and connectedness of xq, cl(xq) must contain either [p, q] or [q, p].
Suppose the former. Then for any z ∈ [p, q), z = cl(i) for some i ∈ xq. Thus,

d(x, q) = d(x, i) + d(i, q) > d(x, i) + d(i, z) ≥ d(x, z).

The statement follows, and the argument for [q, p] is exactly the same. ◀

▶ Lemma 4. Let a→ b and p ∈ (a, b). Then dp = min{d(p, a), d(p, b)}, and dp < d(p, s) for
all s ∈ S \ {a, b}.

Proof. Suppose s /∈ {a, b} is a point in S minimizing the distance to p, so dp = d(p, s).
Then Bp(d(p, s)) = Bp(dp) and thus ps does not intersect the medial axis. Since cl(p) = p,
Lemma 3 (with x = p and q = s) shows that the interior of Bp(dp) contains either a or b,
which is a contradiction, as then either d(p, a) or d(p, b) would be smaller than d(p, s). Thus,
dp is equal to either d(p, a) or d(p, b). ◀

As a step in proving the correctness of Compatible-crust, we need to show that for
a → b, there is an edge between a and b in the Delaunay triangulation of S. Since we do
not assume that S is in general position, we do not know that there is a unique Delaunay

SoCG 2022



9:6 Tighter Bounds for Reconstruction from ϵ-Samples

a

b

x yp

Bp

(
dp

ϵ

)

C

Figure 1 The planar case with X(a, b) = {x, y}. The shaded area is U(a, b) and contains [a, b] by
Lemma 8 (iii). By Lemma 8 (ii), Bp

(
dp

ϵ

)
contains X(a, b), where p is the midpoint on [a, b].

triangulation of S. Still, we know that if there is a closed ball B such that B ∩ S = {a, b},
then any Delaunay triangulation of S has an edge between a and b. In the special case of
curves in the plane, the following was proved in [3, Lemma 11].

▶ Corollary 5. Let a → b. Then there is an edge between a and b in any Delaunay
triangulation of S.

Proof. Let p be a midpoint on [a, b]. By Lemma 4, Bp(dp) ∩ S = {a, b}, so there is an edge
between a and b in the Delaunay triangulation of S. ◀

For x, y ∈ Rd, let E(x, y) be the set of points in Rd that are equidistant from x and y.

▶ Lemma 6. Let b ∈ S, let a ̸= b be in the same connected component of C as b, let p
be either the midpoint on [a, b] or equal to a, and assume dp = d(p, b). Then for every
x ∈ Bp

(
dp

ϵ

)
∩ E(a, b),

(i) cl(x) ∈ (a, b),
(ii) (a, b) ⊂ Bx(d(x, b)).

Proof. (i): Let B = Bp

(
dp

ϵ

)
, and let m be the midpoint on [a, b]. If p = a, then by Lemma 3,

m ∈ B. Trivially, m ∈ B also holds if p = m. Since S is an ϵ-sample, B does not intersect
the medial axis, so cl : B → C is well-defined. Clearly, cl(m) = m, and a, b /∈ cl(B ∩ E(a, b)),
as d(a, x) = d(b, x) for every x ∈ E(a, b). Since cl is continuous and B ∩ E(a, b) connected,
we get that cl(B ∩ E(a, b)) ⊂ (a, b).

(ii): Since xb ⊂ Bp

(
dp

ϵ

)
, Lemma 3 tells us that [cl(x), b) is in the interior of Bx(d(x, b))

(since a ∈ (b, cl(x)] is not in the interior of Bx(d(x, b)) = Bx(d(x, a))), and so must (a, cl(x)]
by a symmetric argument. ◀

▶ Definition 7. For a ≠ b ∈ Rd, let X(a, b) be the set of x such that d(x, a) = d(x, b) = d(a,b)
ϵ
√

4−ϵ2 ,

and let U(a, b) =
⋂

x∈X(a,b) Bx

(
d(a,b)

ϵ
√

4−ϵ2

)
, which is equal to

⋂
x∈X(a,b) Bx (d(x, a)).

▶ Lemma 8. Let a→ b.
(i) Let p′ ∈ E(a, b) ∩ ∂U(a, b), and let x be the point in X(a, b) maximizing the distance to

p′. Then d(p′, a) = ϵd(p′, x), d(p′, x) = d(a, x) and 2∠axp′ = ∠axb.
(ii) Let p be the midpoint of [a, b]. Then X(a, b) ⊂ Bp

(
dp

ϵ

)
.

(iii) (a, b) ⊂ U(a, b).
See Figure 1 for an illustration of (ii) and (iii). We prove the lemma in [8, Appendix A.1].



H. Bakke Bjerkevik 9:7

3.2 Restrictions of angles between points on C
With help from the results of the previous subsection, we now prove results that essentially
limit the curvature of C locally.

▶ Proposition 9. Let ϵ ≤ 0.765, and let a → b → c with p ∈ (a, b) and d(p, b) ≤ d(p, a).
Then for any x such that d(x, p) = d(x, b) = dp

ϵ , (b, c] ∩Bx

(
dp

ϵ

)
= ∅.

The rough idea of the proof is to assume there is a c′ ∈ (b, c] ∩Bx

(
dp

ϵ

)
and consider a line

segment xm, where x satisfies the conditions in the lemma and m is the midpoint on bc′.
One can show that cl is defined on xm, that cl(x) ∈ (p, b), and that cl(m) ∈ (b, c′) and derive
that cl(xm) is disconnected, which is a contradiction by continuity of cl. We give the full
details in [8, Appendix A.2].

▶ Corollary 10. Let ϵ ≤ 0.66, let a→ b→ c, and let p be the midpoint of [a, b] and q ∈ (b, c].
Then

∠pbq > 70.73◦ + arccos
(

0.33d(q, b)
d(p, b)

)
.

In particular, if d(p, b) ≥ d(q, b), then ∠pbq > 141◦.

Proof. We restrict our attention to a plane containing p, b and q and assume without loss
of generality that p = (0,−1), b = (0, 0) and that q is not to the left of the y-axis. By
Proposition 9, q cannot be in the disc D with radius 1

ϵ with p and b on the boundary and
center x to the right of the y-axis. Under this condition, we have ∠pbq > ∠pbq′, where q′ is
on the boundary of D above the x-axis and d(q′, b) = d(q, b). As illustrated in Figure 2a,
cos∠pbx = 1/2

1/ϵ ≤ 0.33. Similarly, cos∠xbq′ = d(q′,b)/2
1/ϵ ≤ 0.33d(q′, b). Since arccos is

decreasing, we get

∠pbq > ∠pbq′

= ∠pbx+ ∠xbq′

≥ arccos(0.33) + arccos(0.33d(q′, b))
> 70.73◦ + arccos(0.33d(q′, b)).

If we do not assume d(p, b) = 1, we have to replace d(q′, b) with d(q′,b)
d(p,b) in the last expression.

Since d(q′, b) = d(q, b), this yields the wanted inequality. If d(p, b) ≥ d(q, b), then this lower
bound is weakest when d(q, b) = d(p, b). In this case the right-hand side is > 141.46◦. ◀

▶ Lemma 11. Let ϵ ≤ 0.765, and let a → b → c. Then (b, c] ∩ Bx(d(x, a)) = ∅ for all
x ∈ X(a, b).

This proof is similar to that of Proposition 9; see [8, Appendix A.3] for the details.

▶ Definition 12. We call a triple (a, b, c) of sample points compatible if c /∈ Bx(d(x, b)) for
all x ∈ X(a, b) and a /∈ By(d(y, b)) for all y ∈ X(b, c).

See Figure 3. Lemma 11 then implies that if a→ b→ c, then (a, b, c) is compatible.

▶ Lemma 13. Let ϵ ≤ 0.66 and suppose (a, b, c) is compatible. Then

∠abc > 51.45◦ + arccos
(

0.6231 d(c, b)
d(a, b)

)
.

In particular, ∠abc > 102.9◦.

SoCG 2022



9:8 Tighter Bounds for Reconstruction from ϵ-Samples

p

b

x

q′

ϕ

ψ

ϵ−1

(a) If d(p, b) = 1, then cos ϕ = 1/2
1/ϵ .

a

b

x

c′

ϕ

ψ

1
ϵ
√

4−ϵ2

(b) If d(a, b) = 1, then cos ϕ = ϵ
√

4−ϵ2

2 .

Figure 2

a

b

x y

Figure 3 The planar case with X(a, b) = {x, y}. If d(b, c) ≤ d(a, b), then (a, b, c) is compatible if
and only if c is in the shaded area.

Proof. We use an argument very similar to that in the proof of Corollary 10. We restrict
our attention to the plane spanned by a, b and c and assume without loss of generality that
a = (0,−1), b = (0, 0) and that c is not to the left of the y-axis. By definition of compatibility,
c /∈ Bx(d(x, a)), where x is the element of X(a, b) to the right of the y-axis. Under this
condition, we have ∠abc > ∠abc′, where c′ satisfies d(c, b) = d(c′, b) and is on the boundary
of Bx(d(x, a)) above the x-axis. By definition of X(a, b), we have cos∠abx = ϵ

√
4−ϵ2

2 , as
illustrated in Figure 2b. Similar considerations show that cos∠xbc′ = ϵ

√
4−ϵ2d(c′,b)
2d(a,b) . We

have d(c′, b) = d(c, b) by assumption, and ϵ
√

4−ϵ2

2 ≤ 0.66
√

4−0.662

2 < 0.6231. Since arccos is
decreasing, this yields

∠abc > ∠abc′

= ∠abx+ ∠xbc′

> arccos(0.6231) + arccos
(

0.6231 d(c, b)
d(a, b)

)
and then the wanted inequality follows from arccos(0.6231) > 51.45◦.



H. Bakke Bjerkevik 9:9

p

b

a

x

q q′

(a) The discs Bp

(
d(p,b)

ϵ

)
(red) and Bq′ (d(q, q′) − ϵ−1)

(blue) cover the relevant area except a small part close
to x.

p

b

x

q q′
z

(b) The distance from z to Bq(ϵ−1) is slightly
smaller than d(z, x).

Figure 4

(a, b, c) is compatible if and only (c, b, a) is, so the inequality holds also if we switch a

and b. Thus, we can assume d(a, b) ≥ d(c, b). Under this assumption, the right-hand side is
smallest when d(c, b) = d(a, b). Thus,

∠abc > 2 arccos(0.6231) > 102.9◦. ◀

3.3 The closest compatible neighbors are the correct neighbors
In the runtime analysis of our algorithms, we stated that checking if a triple (a, b, c) of points
is compatible can be done in constant time. Since we only need to consider the geometry of
three fixed points, this is clear; to be precise, by arguments similar to those in the proof of
Lemma 13, what we need to check is if

∠abc > arccos
(

0.66
√

4− 0.662

2

)
+ arccos

(
0.66
√

4− 0.662d(c, b)
2d(a, b)

)
and the same with a and c switching places.

Recall that our algorithms construct edges from b ∈ S to a and c, where a is the
closest point in S to b, and c is the closest point in S to b such that (a, b, c) is compatible.
(Compatible-crust is restricted to the Delaunay neighbors, which by Corollary 5 is not a
problem.) Since b has exactly two adjacent vertices in GC(S), it is sufficient to prove that
a, b and c are consecutive. This is exactly the statement of Proposition 16 below, which
therefore finishes the proof of Theorem 1.

▶ Lemma 14. Let ϵ ≤ 0.66 and a→ b, let p be the midpoint on [a, b], and let c be a point on
C \ [a, b] with d(b, c) ≤ d(a, b). Then ∠pbc > 117.3◦.

Proof. Assume ∠pbc ≤ 117.3◦, and let us restrict ourselves to a plane containing p, b, c.
Without loss of generality, we can assume that p = (0,−1), b = (0, 0), and that c is not to
the left of the y-axis. Let q be the point to the left of the y-axis such that d(q, b) = d(q, p) =

SoCG 2022



9:10 Tighter Bounds for Reconstruction from ϵ-Samples

ϵ−1, and let q′ be the reflection of q across the y-axis. By Lemma 6 (i), cl(q′) ∈ (p, b),
and by Lemma 6 (ii) (choose a = p in the lemma), (p, b) ⊂ Bq(ϵ−1). It follows that
c /∈ Bq′(d(q, q′)− ϵ−1).

We have two remaining possibilities under the assumptions ∠pbc ≤ 117.3◦ and d(b, c) ≤
d(a, b):

(i) c ∈ Bb(d(a, b)) ∩Bp

(
d(p,b)

ϵ

)
,

(ii) c ∈ Bb(d(a, b)) \
(
Bp

(
d(p,b)

ϵ

)
∪Bq′(d(q, q′)− ϵ−1)

)
,

To show that (i) is impossible, first assume that c is below or on the line l through q and
q′. If cq does not intersect ab, let I = cq. Otherwise, let I = cq′. c is closer to any point on
I than a is, so a /∈ cl(I). Since no point on I is above l, b /∈ cl(I), as p is always at least
as close as b. But clearly, cl(c) = c, and we have already observed that cl(q′) ∈ (p, b), and
cl(q) ∈ (p, b) holds for the same reason. Thus, cl(I) is disconnected, which contradicts the
continuity of cl.

If instead c is above l, let I = cq′ and use a similar argument with a and b exchanged.
Finally, we assume (ii), which is the case that requires the most care. Let z =

(1.244,−0.1351). Some calculation shows that z ∈ Bp(ϵ−1) = Bp

(
dp

ϵ

)
. Let I = zq′.

Since I ⊂ Bp

(
dp

ϵ

)
, I does not intersect the medial axis of C.

Let x be the intersection of the ray from b into the first quadrant with angle ∠117.3◦

with the boundary of Bb(2). As Figure 4a illustrates, c must be in an area close to x,
and x is the point in this area furthest away from z. Some more calculation shows that
d(z, x) < 1.18 < d(z, q)− ϵ−1; see Figure 4b. This means that z is closer to c than to any
point on [p, b], since [p, b] ⊂ Bq(ϵ−1), as we have observed. Thus, cl(z) /∈ [p, b]. In addition,
cl(q′) ∈ (p, b) by Lemma 6 (i). But all points on I are closer to c than to both p and b (it is
enough to check the endpoints of I), so p, b /∈ cl(I). Thus, cl(I) is disconnected, which is
impossible, as cl is continuous. ◀

▶ Proposition 15. Let ϵ ≤ 0.66, and let a be a sample point and b a closest neighbor to a

among the other sample points. Then a and b are consecutive.

Proof. Suppose for a contradiction that x, a and y are consecutive and b /∈ {x, y}. Let p be
the midpoint of [x, a] and q the midpoint of [a, y]. By Corollary 10, ∠paq > 141◦, and by
Lemma 14, both ∠pab and ∠qab are greater than 117.3◦, as d(x, a), d(y, a) ≥ d(a, b). The
sum of these angles is greater than 360◦, which is impossible. ◀

▶ Proposition 16. Let ϵ ≤ 0.66. Let b be a sample point, a a closest sample point to b, and c
the closest sample point to b such that (a, b, c) is compatible. Then a, b and c are consecutive.

In particular, there is a unique closest point c to a such that (a, b, c) is compatible.
The idea of the proof is as follows: We let a, b and c be as in the proposition, suppose

there is a c′ ̸= c such that a, b and c′ are consecutive, let q be the midpoint of [b, c′], and
carefully pick a point p ∈ [a, b]. We get lower bounds on ∠qbc and ∠pbq by Lemma 14 and
Proposition 9 depending on the distances from q, c and p to b. This gives an upper bound
on ∠cbp, which leads to a contradiction by an argument similar to the one in the proof of
Lemma 14. However, the proof is complicated by the degrees of freedom we have in choosing
the distances from the various points to b. We give the details in [8, Appendix A.4].



H. Bakke Bjerkevik 9:11

a

b

c

d

a′

b′

c′

d′

•

•

•

•

•

•

•

•

S1

S2

C

S′
1

S′
2

C′

Figure 5 The first step in the construction of the curves of Theorem 17.

4 Counterexample to curve reconstruction for ϵ = 0.72

In this section, we prove the following theorem, which says that correct curve reconstruction
using 0.72-samples is not in general possible, even in R2. Moreover, one cannot determine
whether the (union of) curve(s) has more than one connected component, and the recon-
struction problem remains impossible also under the assumption that the sample is taken
from a single connected curve.

▶ Theorem 17. There is a finite set S ⊂ R2 that is a 0.72-sample of C1, C2, C3 and C4,
where C1 and C2 are connected closed curves and C3 and C4 are disconnected unions of closed
curves, and GCi

(S) ̸= GCj
(S) for all i ̸= j.

As we will construct subsets of the curves before we construct the complete curves, we
extend the definition of ϵ-sampling to unions of closed curves in the obvious way.

Let a = (0,−1), b = (0, 0), c = (−1.008, 0.614), d = (−1.008, 1.614). Let S1 and S2 be
the two tangent circles with the same radius such that a, b ∈ S1, c, d ∈ S2 and the tangent
point is the midpoint q between b and c. Let C be the union of the part of S1 running from
a to q through b and the part of S2 running from q to d through c.

Next, let a′, b′, c′, d′ be the points, S′
1, S

′
2 the circles and C′ the curve we get by translating

the whole construction horizontally to the right so that d(b, c) = d(b, c′); see Figure 5. Let T
be the set of midpoints of [a, b], [b, c], [c, d], [a′, b′], [b′, c′] and [c′, d′].

▶ Lemma 18. If {a, b, c, d, a′, b′, c′, d′} is not a 0.72-sample of C ∪ C′, then there is a t ∈ T
such that Bt

(
dt

0.72
)

intersects the medial axis of C ∪ C′.

Proof. By definition, if {a, b, c, d, a′, b′, c′, d′} is not a 0.72-sample of C ∪ C′, then there is a
p ∈ C ∪ C′ such that Bp

(
dp

0.72

)
intersects the medial axis of C ∪ C′. Thus, it is enough to

show that for every p ∈ C ∪ C′ \ T , there is a t ∈ T such that Bp

(
dp

0.72

)
⊂ Bt

(
dt

0.72
)
.

Let p ∈ (x, y) ⊂ C for some x→ y. We know that dp = d(p, x) or dp = d(p, y) by Lemma 4.
Suppose dp = d(p, y) (dp = d(p, x) is similar), and pick p′ ∈ (p, y). Let B = Bp

(
dp

0.72

)
and

B′ = Bp′

(
dp′

0.72

)
. If B ⊈ B′, there is a point on the ray from p through p′ in B′ \B, which

means that dp

0.72 < d(p, p′) + dp′

0.72 , or equivalently

dp − dp′

d(p, p′) < 0.72.

SoCG 2022



9:12 Tighter Bounds for Reconstruction from ϵ-Samples

p

p′

y
≈ dp − dp′

d(p, p′)

Figure 6 Assuming d(p, p′) ≪ d(p, y), we have cos(∠p′py) ≈ dp−dp′
d(p,p′) . The dotted lines represent

that we have collapsed a large part of the figure.

Observe that if we let p′ approach p, then dp−dp′

d(p,p′) approaches cos∠p′py; see Figure 6. One
can check that ∠p′py < 40◦ for the possible p and p′ in our example (by a large margin),
while arccos(0.72) > 43◦. Thus,

arccos(0.72) > arccos
(
dp − dp′

d(p, p′)

)
for p′ sufficiently close to p, so 0.72 < dp−dp′

d(p,p′) , a contradiction. This proves that as p moves

along C or C′ from a point in T towards a point in {a, b, c, d}, the disc Bp

(
dp

0.72

)
decreases

(in the sense that later discs are contained in earlier discs), proving the lemma. ◀

▶ Lemma 19. {a, b, c, d, a′, b′, c′, d′} is a 0.72-sample of C ∪ C′.

Proof. By Lemma 18, what we need to show is that for any t ∈ T , Bt

(
dt

0.72
)

does not
intersect the medial axis.

To reduce the problem, observe that we have symmetry around the midpoint between b

and c′, as
−→
bc = −

−→
c′b′ and

−→
cd = −

−→
b′a′. Thus, we can restrict ourselves to the midpoints p, q

and r of [a, b], [b, c] and [c, d], respectively. For the rest of the proof, assume t ∈ {p, q, r}.
We extend cl to a set-valued map from R2 to C ∪ C′ by letting cl(p) be the set of points

in C ∪ C′ that minimize the distance to p. Let m be a point such that cl(m) contains at
least two points in C ∪ C′, and let x and y be distinct points in cl(m). We will show that for
t ∈ {p, q, r}, m /∈ Bt

(
dt

0.72
)
.

There are the following cases to consider:
x, y ∈ C,
x, y ∈ C′,
x ∈ C and y ∈ C′.

In the first case, m is on the medial axis of C. This has two connected components: one is a
curve starting at the center s1 of S1 and going leftwards and downwards from there, and the
other is the mirror image through q of the first one. Because of symmetry, we only have to
consider the first component. On this curve, s1 minimizes the distance to p and q, and r is
far away from the whole curve. One can check that the radius of S1 is greater than 0.82,
that dq = d(q, b) < 0.59 and that dq > dp. Thus,

d(s1, p) = d(s1, q) > 0.82 > dq

0.72 >
dp

0.72 ,

so we conclude that Bt

(
dt

0.72
)

does not intersect the medial axis of C.
Next, we assume that x, y ∈ C′. Then there is a point m′ on the line segment mt such

that cl(m′) intersects both C and C′, so m′ is on the medial axis. If m ∈ Bt

(
dt

0.72
)
, then

m′ ∈ Bt

(
dt

0.72
)
, so we have reduced the second case to the third case.



H. Bakke Bjerkevik 9:13

p

q

r

•

•

•

•

•

•

•
C

C′

l

Figure 7 Illustration for the proof of Lemma 19.

c

d

e

f

r

s

•

•

•

•

•

•
S3

S4

Figure 8 C is extended from d through e to f , where the tangent is vertical.

Lastly, assume that x ∈ C and y ∈ C′; see Figure 7. Let l be the perpendicular bisector of
s1 and the center s′

2 of S′
2. If y ∈ S′

2, then m is either on l or to the right of l (the latter can
only happen if x ∈ S2). By numerical calculation, one can check that l ∩Bt

(
dt

0.72
)

= ∅, so in
this case, m /∈ Bt

(
dt

0.72
)
. At the same time, if y ∈ S′

1, then d(t, y) > 2dt

0.72 , so if m ∈ Bt

(
dt

0.72
)
,

then y /∈ S′
1, as t is closer to m than S′

1 is. ◀

Now we want to extend this construction. See Figure 8 for what follows. We add a point
e such that d is the midpoint between c and e. Next, we put a circle S3 with radius dr

0.72 so
that it is tangent to S2 at d, and a circle S4 with the same radius as S3 tangent to S3 such
that e lies on S4. If we extend C such that it contains [d, e] along S3 and S4 in the obvious
way, then {a, b, c, d, e} is a 0.72-sample of C. To see this, note that if s is the midpoint of
[d, e], then the difference in x-coordinate between s and d is less than that between r and d,
so ds < dr. The closest points on the medial axis to s are the centers of S3 and S4, which
have a distance of dr

0.72 >
ds

0.72 to s.
The tangent of C at d is much closer to being vertical than the tangent at e, and if we

add another point f such that e is the midpoint between d and f , then we can extend C
to f similarly to how we extended C from d to e in such a way that {a, b, c, d, e, f} is a
0.72-sample, and such that the tangent of C at f is vertical.

SoCG 2022



9:14 Tighter Bounds for Reconstruction from ϵ-Samples

a

b

c

d

e

f

f ′

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•••

(a) C and C′ are extended and tied
together. At f and f ′, the tangents
of the curve are vertical.

••• ••• •••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(b) Together with the black semicircles, the blue and red curves
both give a valid reconstruction under the 0.72-sampling condi-
tion.

Figure 9

We can do the same below a, adding two points such that C can be extended downwards
and the tangent of C at the lowest point is vertical. Now do the same for C′, and add a
sequence of points densely sampling a semicircle to connect C and C′ as shown in Figure 9a.
Again, the points shown make up a 0.72-sample of the curve. Next, we put many copies
of this construction next to each other as shown in Figure 9b. Each copy is translated
horizontally such that d(b, c′) is equal to the distance between b′ in one copy and c in the
copy on its right. If we ignore what happens to the far right or left, there are two ways to
draw a set of curves with endpoints among the bottom points such that the set of points is a
0.72-sample of the union of curves.

We now take this long strip of points and curves and bend it slightly upwards such that
they are contained in an annulus and the ends meet; see Figure 10. As the length of this
strip goes to infinity, the distances from points on the curve to the closest sample point
and the medial axis are distorted by a factor that approaches 1 when we bend it into the
annulus. Our arguments for the the set of points being a 0.72-sample works equally well for
an ϵ > 0.72 sufficiently close to 0.72, so after turning the (sufficiently long) strip into an
annulus, the point set stays a δ-sample for some δ > 0.72.

Finally, we consider two such annuli with “the ends tied together”, meaning that we
draw curves between endpoints in the first annulus and endpoints in the second annulus, and
sample the curves densely; see Figure 10. In each of the two annuli, we have two choices of
how to draw the curve, as illustrated in Figure 9b, which gives four different choices. Exactly
two of these choices result in a connected curve, and in all four cases, the set of points is a
0.72-sample of the curve or union of curves. Summing up, we get Theorem 17.

5 Counterexample to hypersurface reconstruction for ϵ = 0.72

We have not defined what “correct reconstruction” means in higher dimensions. But assuming
that preserving the number of connected components is required, we show that correct
reconstruction of hypersurfaces in Rd using 0.72-samples is impossible for any d ≥ 2.



H. Bakke Bjerkevik 9:15

Figure 10 A reconstruction of the whole point set with the two annuli in grey. One can make
sure that the curve is connected, and the point set is a 0.72-sample of it.

▶ Theorem 20. For any d ≥ 2, there is a finite point set S ⊂ Rd that is a 0.72-sample of
two manifolds C and C′ without boundary of dimension d − 1 with a different number of
connected components.

Proof. The case d = 2 follows immediately from Theorem 17. For any point p = (x, y) ∈
(0,∞)×R, let p◦ be the circle centered at (0, y) containing p. For any set X ⊂ (0,∞)×R, let
X◦ =

⋃
p∈X p◦. Let Ci be as in Theorem 17 for 1 ≤ i ≤ 4, and let Scurve be the 0.72-sample

as constructed in the previous section. Pick a constant R and translate Ci so that it is
contained in (R,∞)× R. Similarly to how we bent a strip into a large annulus earlier, by
choosing R large, we can make sure that a sufficiently dense subset S of S◦

curve is a δ-sample
of Ci for some δ > 0.72. Choosing i = 1 and i = 3, the theorem for d = 3 follows. To get the
theorem for larger d, one can iterate the construction we used to get from d = 2 to d = 3. ◀

6 Discussion

We have only considered unions of closed curves. An obvious question is if our work
generalizes to open curves. We expect that this can be dealt with by a slight tweak of the
algorithms when the endpoints are far apart: Instead of immediately connecting a point to
its “correct” neighbors (i.e., its closest and closest “compatible” neighbors), one should add
an edge between two points only when both points consider the other as a “correct” neighbor.
However, we have not tried to turn this intuition into a precise statement.

Though this paper is mainly about curve reconstruction, we hope that it can also be a
step towards improving the sampling conditions for surface reconstruction. Our arguments
are valid for samples in any ambient dimension, and we expect many of our intermediate
results to carry over to points on surfaces instead of curves. We consider generalizing our
approach to surface reconstruction to be a promising direction of future research.

SoCG 2022



9:16 Tighter Bounds for Reconstruction from ϵ-Samples

References
1 Ahmed Abdelkader, Chandrajit L. Bajaj, Mohamed S. Ebeida, Ahmed H. Mahmoud, Scott A.

Mitchell, John D. Owens, and Ahmad A. Rushdi. Sampling Conditions for Conforming Voronoi
Meshing by the VoroCrust Algorithm. In 34th International Symposium on Computational
Geometry (SoCG 2018), pages 1:1–1:16, 2018.

2 Ernst Althaus and Kurt Mehlhorn. Traveling salesman-based curve reconstruction in polyno-
mial time. SIAM Journal on Computing, 31(1):27–66, 2001.

3 Nina Amenta, Marshall Bern, and David Eppstein. The crust and the β-skeleton: Combinatorial
curve reconstruction. Graphical models and image processing, 60(2):125–135, 1998.

4 Nina Amenta, Sunghee Choi, Tamal K. Dey, and Naveen Leekha. A simple algorithm for
homeomorphic surface reconstruction. In Proceedings of the sixteenth annual symposium on
Computational geometry (SCG 2000), pages 213–222, 2000.

5 Dominique Attali. r-regular shape reconstruction from unorganized points. Computational
Geometry, 10(4):239–247, 1998.

6 Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gael Guennebaud,
Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. A survey of surface reconstruction from
point clouds. Computer Graphics Forum, 36(1):301–329, 2017.

7 Fausto Bernardini and Chandrajit L. Bajaj. Sampling and reconstructing manifolds using
alpha-shapes. In Proceedings of the 9th Canadian Conference on Computational Geometry
(CCCG 1997), pages 193–198, 1997.

8 Håvard Bakke Bjerkevik. Tighter bounds for reconstruction from ϵ-samples. arXiv preprint
v2, 2022. arXiv:2112.03656.

9 Harry Blum. A transformation for extracting new descriptors of shape. In Models for the
Perception of Speech and Visual Form, pages 362–380. MIT Press, Cambridge, 1967.

10 Frédéric Chazal and André Lieutier. Smooth manifold reconstruction from noisy and non-
uniform approximation with guarantees. Computational Geometry, 40(2):156–170, 2008.

11 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

12 Luiz Henrique De Figueiredo and Jonas de Miranda Gomes. Computational morphology of
curves. The Visual Computer, 11(2):105–112, 1994.

13 Tamal K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis,
volume 23. Cambridge University Press, 2006.

14 Tamal K. Dey, Joachim Giesen, Edgar A. Ramos, and Bardia Sadri. Critical points of distance
to an ε-sampling of a surface and flow-complex-based surface reconstruction. International
Journal of Computational Geometry & Applications, 18(1–2):29–61, 2008.

15 Tamal K. Dey and Piyush Kumar. A simple provable algorithm for curve reconstruction. In
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999),
volume 99, pages 893–894, 1999.

16 Tamal K. Dey, Kurt Mehlhorn, and Edgar A. Ramos. Curve reconstruction: Connecting dots
with good reason. Computational Geometry, 15(4):229–244, 2000.

17 Tamal K. Dey and Rephael Wenger. Fast reconstruction of curves with sharp corners.
International Journal of Computational Geometry & Applications, 12(05):353–400, 2002.

18 Christopher Gold. Crust and anti-crust: a one-step boundary and skeleton extraction algorithm.
In Proceedings of the fifteenth annual symposium on Computational geometry (SCG 1999),
pages 189–196, 1999.

19 Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Toth. Handbook of Discrete and
Computational Geometry. CRC press, 3rd edition, 2017.

20 Tobias Lenz. How to sample and reconstruct curves with unusual features. In EWCG: Proc.
of the 22nd European Workshop on Computational Geometry, pages 29–32. Citeseer, 2006.

21 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–
441, 2008.

http://arxiv.org/abs/2112.03656


H. Bakke Bjerkevik 9:17

22 Stefan Ohrhallinger, Scott A. Mitchell, and Michael Wimmer. Curve reconstruction with many
fewer samples. Computer Graphics Forum, 35(5):167–176, 2016.

23 Stefan Ohrhallinger, Jiju Peethambaran, Amal D. Parakkat, Tamal K. Dey, and Ramanathan
Muthuganapathy. 2d points curve reconstruction survey and benchmark. Computer Graphics
Forum, 40(2):611–632, 2021.

24 Peer Stelldinger. Topologically correct surface reconstruction using alpha shapes and relations
to ball-pivoting. In 19th International Conference on Pattern Recognition (ICPR 2008), pages
1–4, 2008.

25 Peer Stelldinger and Leonid Tcherniavski. Provably correct reconstruction of surfaces from
sparse noisy samples. Pattern Recognition, 42(8):1650–1659, 2009.

SoCG 2022





Erdős–Szekeres-Type Problems in the Real
Projective Plane
Martin Balko #

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Manfred Scheucher #

Institut für Mathematik, Technische Universität Berlin, Germany

Pavel Valtr #

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Abstract

We consider point sets in the real projective plane RP2 and explore variants of classical extremal
problems about planar point sets in this setting, with a main focus on Erdős–Szekeres-type problems.

We provide asymptotically tight bounds for a variant of the Erdős–Szekeres theorem about point
sets in convex position in RP2, which was initiated by Harborth and Möller in 1994. The notion of
convex position in RP2 agrees with the definition of convex sets introduced by Steinitz in 1913.

For k ≥ 3, an (affine) k-hole in a finite set S ⊆ R2 is a set of k points from S in convex position
with no point of S in the interior of their convex hull. After introducing a new notion of k-holes
for points sets from RP2, called projective k-holes, we find arbitrarily large finite sets of points
from RP2 with no projective 8-holes, providing an analogue of a classical result by Horton from
1983. We also prove that they contain only quadratically many projective k-holes for k ≤ 7. On the
other hand, we show that the number of k-holes can be substantially larger in RP2 than in R2 by
constructing, for every k ∈ {3, . . . , 6}, sets of n points from R2 ⊂ RP2 with Ω(n3−3/5k) projective
k-holes and only O(n2) affine k-holes. Last but not least, we prove several other results, for example
about projective holes in random point sets in RP2 and about some algorithmic aspects.

The study of extremal problems about point sets in RP2 opens a new area of research, which we
support by posing several open problems.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Theory of computation → Computational geometry; Mathematics of computing →
Combinatorics; Mathematics of computing → Probability and statistics; Information systems →
Data structures

Keywords and phrases real projective plane, point set, convex position, k-gon, k-hole, Erdős–Szekeres
theorem, Horton set, random point set

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.10

Related Version Full Version: https://arxiv.org/abs/2203.07518

Funding Martin Balko: supported by the grant no. 21-32817S of the Czech Science Foundation
(GAČR), by the Center for Foundations of Modern Computer Science (Charles University project
UNCE/SCI/004). This article is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 810115).
Manfred Scheucher : supported by the DFG Grant SCHE 2214/1-1.
Pavel Valtr : supported by the grant no. 21-32817S of the Czech Science Foundation (GAČR).

© Martin Balko, Manfred Scheucher, and Pavel Valtr;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lastname@kam.mff.cuni.cz
https://orcid.org/0000-0001-9688-9489
mailto:lastname@math.tu-berlin.de
https://orcid.org/0000-0002-1657-9796
mailto:lastname@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.SoCG.2022.10
https://arxiv.org/abs/2203.07518
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Erdős–Szekeres-Type Problems in the Real Projective Plane

1 Introduction

1.1 Erdős-Szekeres-type results in the Euclidean plane
Throughout the whole paper, we consider each set S of points from the Euclidean plane R2

to be finite and in general position, that is, no three points of S lie on a common line. We
say that a set S of k points in the Euclidean plane is in convex position if S forms the vertex
set of a convex polygon, which we call a k-gon or an affine k-gon.

In 1935, Erdős and Szekeres [16] showed that, for every integer k ≥ 3, there is a smallest
positive integer ES(k) such that every finite set of at least ES(k) points in the plane in
general position contains a subset of k points in convex position. This result, known as
the Erdős–Szekeres theorem, was one of the starting points of both discrete geometry and
Ramsey theory. It motivated various lines of research that led to several important results as
well as to many difficult open problems. For example, there were many efforts to determine
the growth rate of the function ES(k). Erdős and Szekeres [16] showed ES(k) ≤

(2k−4
k−2

)
+ 1

and conjectured that ES(k) = 2k−2 + 1 for every k ≥ 2. This conjecture, known as the
Erdős–Szekeres conjecture, was later supported by Erdős and Szekeres [17], who proved the
matching lower bound ES(k) ≥ 2k−2 + 1. The Erdős–Szekeres conjecture was verified for
k ≤ 6 [37] (see also [29, 33]), but is still open for k ≥ 7. In fact, Erdős even offered $500
reward for its solution. The currently best upper bound ES(k) ≤ 2k+O(

√
k log k) is due to

Holmsen, Mojarrad, Pach, and Tardos [25], who improved an earlier breakthrough by Suk [36]
who showed ES(k) ≤ 2k+O(k2/3 log k). Altogether, these estimates give, for every k ≥ 2,

2k−2 + 1 ≤ ES(k) ≤ 2k+O(
√

k log k). (1)

Several variations of the Erdős–Szekeres theorem have been studied in the literature.
In the 1970s, Erdős [15] asked whether there is a smallest positive integer h(k) such that
every set S of at least h(k) points in the plane in general position contains an (affine) k-hole,
which is a convex polygon spanned by a subset of k points from S that does not contain any
point from S in its interior. In other words, a k-hole in a finite points set S in the plane
in general position is a k-gon which is empty in S, that is, its interior does not contain any
point from S. After Horton [26] constructed arbitrarily large point sets with no 7-hole, it
took more than 20 years until Gerken [21] and Nicolas [31] independently showed that every
sufficiently large set of points contains a 6-hole. Therefore, h(k) is finite if and only if k ≤ 6.

Estimating the minimum number of k-holes is another example of a classical Erdős–
Szekeres-type problem. For a fixed integer k ≥ 3 and a positive integer n, let hk(n) be the
minimum number of k-holes in any finite set of n points in the plane. The growth rate of the
function hk(n) was also studied extensively. Horton’s result implies hk(n) = 0 for k ≥ 7. The
minimum numbers of 3- and 4-holes are known to be quadratic in n, but we only have the
bounds Ω(n log4/5 n) ≤ h5(n) ≤ O(n2) and Ω(n) ≤ h6(n) ≤ O(n2) [3, 9] for 5- and 6-holes,
respectively. However, it is widely conjectured that h5 and h6 are also both quadratic in n.

In this paper, we consider analogous Erdős–Szekeres-type problems in the real projective
plane RP2. We define notions of convex position, k-gons, and k-holes in RP2 and study the
corresponding extremal problems, providing several new results as well as numerous open
problems in this new line of research.

1.2 Convex sets in the real projective plane
As in the planar case, we consider only sets P of points from the real projective plane RP2

that are finite and in general position, that is, no three points from P lie on a common
projective line. We say that P is in projective convex position if it is a set in convex position



M. Balko, M. Scheucher, and P. Valtr 10:3

in some Euclidean plane ρ ⊂ RP2. Recall that by removing a projective line from RP2 one
obtains a Euclidean plane. Following the notation introduced by Steinitz [35], we say that a
subset X of RP2 is semiconvex if any two points of X can be joined by a line segment fully
contained in X. The set X is convex if it is semiconvex and does not contain some projective
line, that is, X is contained in a plane ρ ⊂ RP2; see also [13]. A projective convex hull of
a set Y ⊂ RP2 is an inclusion-wise minimal convex subset of RP2 containing Y . We note
that, unlike the situation in the plane, a projective convex hull of Y does not have to be
determined uniquely; see Figure 1.

(a) (b) (c)

Figure 1 An example of three projective 4-gons determined by the same subset of four points
from a set P of six points in RP2. The projective 4-gons in (a) and (b) are not projective 4-holes in
P , but the projective 4-gon in (c) is a projective 4-hole in P .

▶ Definition 1 (A projective k-gon). For a positive integer k and a finite set P of points
from RP2 in general position, a projective k-gon determined by P is a projective convex hull
of a set I of k points from P which contains all points of I on its boundary; see Figure 1.

The notion “projective k-gon” in RP2 is a natural analogue of the notion “affine k-gon”
in R2, since projective k-gons in RP2 are exactly those subsets of RP2 which are convex
k-gons in some of the planes contained in RP2.

Since a projective convex hull is not determined uniquely, a set of k points in RP2 can
determine several projective k-gons. In particular, it is not difficult to verify that

(i) any three points in general position in RP2 determine four projective 3-gons,
(ii) any four points in general position in RP2 determine three projective 4-gons,
(iii) any five points in general position in RP2 determine exactly one projective 5-gon, and
(iv) any k ≥ 6 points in general position in RP2 determine at most one projective k-gon.

We also introduce the following natural analogue of holes in the real projective plane.

▶ Definition 2 (A projective k-hole). For an integer k ≥ 3 and a finite set P of points from
RP2 in general position, a projective k-hole in P is a projective k-gon determined by points
from P that does not contain any point from P in its interior; see Figure 1.

The notion of a “projective k-hole” in RP2 is a natural analogue of the notion of an
“(affine) k-hole” in R2, since projective k-holes in RP2 are exactly those subsets of RP2 which
are (affine) k-holes in some of the planes contained in RP2.

We note that, again, a single set of k ∈ {3, 4} points in general position in RP2 can
determine several different projective k-holes. Also note that, if H is a projective k-hole in
a finite set P of points from RP2 in general position, then in every affine plane ρ ⊂ RP2

containing H, the set H is an affine k-hole. A subset of RP2 is a projective hole in P if it is
a projective k-hole in P for some integer k ≥ 3.

We also describe the following alternative view on projective k-gons and k-holes via planar
point sets. A double chain [27] is a set S = A ∪ B of k points from R2 with A = {s1, . . . , sm}
and B = {sm+1, . . . , sk} for some m with 1 ≤ m ≤ k − 1 such that, for every i = 1, . . . , k, the

SoCG 2022



10:4 Erdős–Szekeres-Type Problems in the Real Projective Plane

line sisi+1 separates A \ {si, si+1} from B \ {si, si+1} (indices modulo k); see Figure 2. The
sets A and B are the chains of the double chain. For a line ℓ not separating A, let HA

ℓ be the
closed half-plane bounded by ℓ that contains A and we similarly define HB

ℓ . The double chain
k-wedge of S is the union WA ∪ WB where WA =

⋂m
i=0 HA

sisi+1
and WB =

⋂k
i=m HB

sisi+1
.

▶ Observation 3. Let P be a set of k points from RP2 in general position and let ρ ⊂ RP2

be an affine plane containing P . A convex set G in RP2 is a projective k-gon determined
by P if and only if, in ρ, G is either a convex polygon with k vertices (that is, an affine
k-gon) or a double chain k-wedge. ◀

s1
s2 s3

s4

s5
s6

s7 s8
s9

WA

WB

Figure 2 A double chain S on 9 points and the corresponding double chain 9-wedge.

▶ Observation 4. Let P be a set of k points from RP2 in general position and let ρ ⊂ RP2

be an affine plane containing P . A convex set H in RP2 is a projective k-hole in P if and
only if, in ρ, H is either a convex polygon with k vertices that is empty in P (that is, an
affine k-hole) or a double chain k-wedge that is empty in P . ◀

Convex sets in the real projective plane were considered by many authors [10, 13, 14, 23, 28]
and their study goes back more than 100 years to Steinitz [35]. Besides the article of Harborth
and Möller [24], which introduced the notion of projective k-gons, we are not aware of any
further literature on projective k-gons or projective k-holes. Thus, our goal is to conduct a
first extensive study of extremal properties of point sets in RP2.

2 Our results

First, we consider an analogue of the Erdős–Szekeres theorem in the real projective plane.
For an integer k ≥ 2, let ESp(k) be the minimum positive integer N such that every set
of at least N points in RP2 in general position contains k points in projective convex
position. Interestingly, due to Observation 3, ESp(k) equals the minimum positive integer
such that every set of at least ESp(K) points in R2 in general position contains either
k points in convex position or a double chain of size k. As already noted in [24], one
immediately gets ESp(k) ≤ ES(k). On the other hand, ESp(k) ≥ ES(⌈k/2⌉), since the
largest chain of a double chain of size k has at least ⌈k/2⌉ points. Thus, by (1), we have
2⌈k/2⌉−2 + 1 ≤ ESp(k) ≤ 2k+O(

√
k log k) for every k ≥ 2 and, in particular, the numbers

ESp(k) are finite. As our first result, we prove an almost matching lower bound on ESp(k).

▶ Theorem 5. There are constants c, c′ > 0 such that, for every integer k ≥ 2,

2k−c log k ≤ ESp(k) ≤ 2k+c′
√

k log k.

The precise value of ESp(k) is known for small values of k. For k ≤ 5, all sets of k

points from RP2 determine a projective k-gon by properties (i)–(iii) below Definition 1 and
thus ESp(k) = k. Using SAT-solver-based computations, we have also verified the value



M. Balko, M. Scheucher, and P. Valtr 10:5

ESp(6) = 9, which was determined by Harborth and Möller [24]. This value can also be
verified with an exhaustive search, or by using the database of order types of planar point
sets [1, 2] or the database of (acyclic) oriented matroids [19, 20]. We also found sets of 17
points from RP2 with no projective 7-gon, witnessing ESp(7) ≥ 18.

Now, we focus on extremal problems about holes in the real projective plane. As our first
result, we show that the existence of projective 8-holes is not guaranteed in large point sets
in RP2, proving an analogue of the result by Horton [26].

▶ Theorem 6. For every n ∈ N, there exist sets of n points from RP2 in general position
with no projective 8-hole.

We recall that Theorem 6 implies that there are arbitrarily large finite sets of points
from RP2 in general position with no projective k-holes for any k ≥ 8. The proof of Theorem 6
uses Horton sets defined by Valtr [38] as a generalization of a construction of Horton [26] of
an arbitrarily large planar point set in general position (so-called perfect Horton set) with no
7-hole; see Section 5 for the definition of Horton sets. Horton sets contain no affine 7-holes
in R2 and we actually show that, if they are embedded in RP2, they contain no projective
8-holes. Moreover, we show quadratic bounds on the number of projective k-holes in Horton
sets for k ≤ 7.

▶ Theorem 7. Let H be a Horton set of size n in R2 ⊂ RP2. Then H has Θ(n2) projective
k-holes for every k ≤ 7. Moreover, if H is the perfect Horton set of size n = 2z, then the
number of projective 3-holes in H equals

4.25 · 22z + 2z(−3z2/2 − z/2 − 5.5) − 4z + 2 = 4.25n2 − 1.5n log2 n − Θ(n log n).

For positive integers k ≥ 3 and n, let hp
k(n) be the minimum number of projective k-holes

in any set of n points in RP2 in general position. Theorem 7 gives hp
k(n) ≤ O(n2) for every

k ≤ 7 and Theorem 6 gives hp
k(n) = 0 for every k > 7.

In contrast to the planar case, each sufficiently large Horton set in RP2 contains a
projective 7-hole. We do not have examples of large point sets in RP2 without projective
7-holes, thus it is natural to ask whether there are projective 7-holes in every sufficiently large
point set in RP2. We believe this to be the case; see Subsection 3 for more open problems.

We also prove that every set of at least 7 points in RP2 contains a projective 5-hole
while there are sets of 6 points in RP2 with no projective 5-hole. Interestingly, every set of
5 points in RP2 contains a projective 5-hole. This is in contrast with the situation in the
plane, where we have hk(n) ≤ hk(n + 1) for every k and n, which can be seen by removing a
vertex of the convex hull of a set S of n + 1 points from R2 with hk(n + 1) affine k-holes.

▶ Proposition 8. Every set of at least 7 points in general position in RP2 contains a projective
5-hole. Also, hp

5(5) = 1 and hp
5(6) = 0.

The proof of Proposition 8 can be found in [7]. The following theorem shows that for
some point sets the number of holes is substantially larger in RP2 than in R2.

▶ Theorem 9. For every k ∈ {3, . . . , 6} and every positive integer n, there is a set Sk(n)
of n points in general position in R2 ⊂ RP2 such that Sk(n) has O(n2) affine k-holes in R2

and Ω(n3− 5
3k ) projective k-holes.

More generally, for every k ∈ {3, . . . , 6}, every real number α ∈ [0, k − 2], and each
positive integer n, there is a set Sα

k (n) of n points in general position in R2 ⊂ RP2 such that
Sα

k (n) has O(n2+α) affine k-holes in R2 and Ω(n2+β) projective k-holes, where

β :=
{

1 − 5
3k + α · k−1

k if 0 ≤ α ≤ 2k−5
3 ,

(1 + α) k−2
k−1 if 2k−5

3 < α ≤ k − 2.

SoCG 2022



10:6 Erdős–Szekeres-Type Problems in the Real Projective Plane

The following result shows a significant difference between the number of holes of all sizes
in the plane and in the real projective plane.

▶ Theorem 10. For any two positive integers n and x with x ≤ 2n/2, there is a set S(n, x)
of n points in general position in R2 ⊂ RP2 containing at most O(x + n2) affine holes in R2

and at least Ω(x2) projective holes.

In general, we can show that every set P of n points from R2 ⊂ RP2 contains at least
quadratically many projective holes which are not affine holes in R2.

▶ Proposition 11. Let P be a set of n points in R2 ⊂ RP2 in general position, and let hp
k(P )

be the number of projective k-holes in P . Then,

hp
3(P ) ≥ h3(P ) + 1

3

(
n

2

)
and hp

4(P ) ≥ h4(P ) + 1
2

((
n

2

)
− 3n + 3

)
,

where hk(P ) is the number of affine k-holes in P in the plane R2.

The proof of Proposition 11 can be found in [7]. Together with the best known lower
bounds on h3(n) and h4(n) by Aichholzer et al. [3], the estimates from Proposition 11 give

hp
3(n) ≥ 7

6n2 + Ω(n log2/3 n) and hp
4(n) ≥ 3

2n2 + Ω(n log3/4 n).

We also discuss random point sets in the real projective plane and provide the following
analogue to results for random point sets in the plane [8, 40]. This gives an alternative proof
of the upper bound hp

3(n) ≤ O(n2). The proof of Theorem 12 can be found in [7].

▶ Theorem 12. Let K be a compact convex subset in R2 of unit area. If P is a set of n

points chosen uniformly and independently at random from K ⊂ R2 ⊂ RP2, then the expected
number of projective 3-holes in P is in Θ(n2). Moreover, the expected number of projective
holes in P , which are not affine holes in R2, is in Θ(n2).

Last but not least, we discuss the computational complexity of determining the number of
k-gons and k-holes in a given point set. Mitchell et al. [30] gave an O(mn3) time algorithm
to compute, for all k = 3, . . . , m, the number of k-gons and k-holes in a given set S of n

points in the Euclidean plane. Their algorithm also counts k-islands in O(k2n4) time. Here,
an (affine) k-island in a finite point set S in the plane in general position is the convex hull
of a k-tuple I of points from S that does not contain any point from S \ I. Note that a
convex set in R2 is a k-hole in S if and only if it is a k-gon and a k-island in S.

Here, we consider the algorithmic aspects of the analogous problems in the real projective
plane. By modifying the algorithm by Mitchell et al. [30], we can efficiently compute the
number of projective k-gons, k-holes, and k-islands of a finite set in the real projective plane.
Here, a projective k-island in a finite set P of points from RP2 in general position is a
projective convex hull of a k-tuple I of points from P that does not contain any point from
P \ I. Note that, similarly as in the affine case, a convex set in RP2 is a projective k-hole
in P if and only if it is a projective k-gon and a projective k-island in P .

▶ Theorem 13. Let P be a set of n points in R2 ⊂ RP2 in general position. Assuming a
RAM model of computation which can perform arithmetic operations on integers in constant
time, we can compute the total number of projective k-gons and k-holes in P for k = 3, . . . , m

in O(mn4) time and O(mn2) space. The number of projective k-islands in P for k = 3, . . . , m

can be computed in O(m2n5) time and O(m2n3) space.



M. Balko, M. Scheucher, and P. Valtr 10:7

3 Discussion

The study of extremal questions about finite point sets in RP2 suggests a wealth of interesting
open problems and topics one can consider. Here, we draw attention to some of them.

By Theorem 6, there are arbitrarily large finite point sets in RP2 that avoid k-holes
for any k ≥ 8. On the other hand, the result by Gerken [21] and Nicolas [31] implies that
every sufficiently large finite subset of RP2 contains a projective k-hole for any k ≤ 6, as an
analogous statement is true already in the affine setting. The existence of projective 7-holes
in sufficiently large finite subsets of RP2 remains an intriguing open problem and we believe
that projective 7-holes can be always found in large points sets in RP2.

▶ Conjecture 14. Every sufficiently large point set in RP2 contains a projective 7-hole.

As we already mentioned, point sets in the plane satisfy hk(n) ≤ hk(n + 1) for all k and n.
By Proposition 8, this is no longer true in the real projective plane. However, we do not
know any other example violating this inequality except of the single case for 5-holes in RP2.
Thus, it is natural to ask the following question.

▶ Problem 15. Is it true that for every integer k ≥ 3 there is n0 = n0(k) such that
hp

k(n + 1) ≥ hp
k(n) for every n ≥ n0?

We have shown in Theorem 7 that Horton sets only contain Θ(n2) projective k-holes.
Since Horton sets only contain Θ(n2) affine k-islands [18], which is asymptotically minimal,
we wonder whether the same bound applies to projective k-islands.

▶ Problem 16. For every fixed integer k ≥ 3, is the minimum number of projective k-islands
among all sets of n points from RP2 in general position in Θ(n2)?

We have shown in Theorem 12 that the expected number of 3-holes in random sets of n

points from RP2 is in Θ(n2). In the plane, we know that the expected number of k-holes
and k-islands is in Θ(n2) for any fixed k [5, 6]. Can analogous estimates be obtained also in
the real projective plane? We note that the lower bound Ω(n2) follows from the planar case.

▶ Problem 17. Let K be a compact convex subset in R2 of unit area and let k ≥ 3. Is the
expected number of projective k-holes and k-islands in a set of n points, which is chosen
uniformly and independently at random from K ⊂ R2 ⊂ RP2, in Θ(n2)?

Besides all these Erdős–Szekeres-type problems related to k-gons, k-holes and k-islands,
many other classical problems have natural analogues in the projective plane. In the following,
we discuss the problem of crossing families. Let P be a finite set of points in the plane.
For a positive integer n, let T (n) be the largest number such that any set of n points in
general position in the plane determines at least T (n) pairwise crossing segments. The
problem of estimating T (n) was introduced in the 1990s by Erdős et al. [4] who proved
T (n) ≥ Ω(

√
n). Since then it was widely conjectured that T (n) ∈ Θ(n). However, nobody

has been able to improve the lower bound from [4] until a recent breakthrough by Pach,
Rubin, and Tardos [32] who showed T (n) ≥ n1−o(1).

In RP2, every pair of points determines a projective line that can be divided into two
projective line segments. Given 2n points p1, . . . , pk, q1, . . . , qk from RP2, we say that they
form projective crossing family of size k if, for each i, we can choose a projective line segment
si between pi and qi such that for any pair i, j with 1 ≤ i < j ≤ k the projective line segments
si and sj intersect. We can then ask about the maximum size T p(n) of a projective crossing
family in a set P of n points from RP2. Note that any set of k pairwise crossing segments
of P , which live in a plane ρ ⊂ RP2, gives a projective crossing family of size k in P . Thus,
proving a linear lower bound might be simpler for T p(n) than for T (n).

SoCG 2022



10:8 Erdős–Szekeres-Type Problems in the Real Projective Plane

▶ Problem 18. Is the maximum size T p(n) of a projective crossing family in a set of n

points from RP2 in general position in Θ(n)?

All the notions we discussed (general position, convex position, k-gons, k-holes, k-islands,
crossing families, and various others) naturally extend to higher dimensional Euclidean
spaces and also to higher dimensional projective spaces. In fact, k-gons and k-holes in higher
dimensional Euclidean spaces are currently quite actively studied:

One central open problem in higher dimensions is to determine the largest value H(d)
such that every sufficiently large set in Rd contains an H(d)-hole. While H(2) = 6 is
known, the gap between the upper and the lower bound for H(d) remains huge for d ≥ 3.
[11, 12, 34, 39]
For sets of n points sampled independently and uniformly at random from a unit-volume
convex body in Rd, the expected number of k-holes and k-islands is in Θ(nd). [5, 6]
While the k-gons and k-holes can be counted efficiently in the Euclidean plane, determining
the size of the largest gon or hole is NP-hard already in R3. [22]

These analogues in RP2 and in high dimensional projective spaces are interesting by
themselves, but they might also shed new light on the original problems. We plan to address
further such analogues and we hope to also motivate some readers for this line of research.

4 Proof of Theorem 5

Here, we show, for every integer k ≥ 2, almost matching bounds on the minimum size ESp(k)
that guarantees the existence of a projective k-gon in every set of at least ESp(k) points
from RP2. More precisely, we prove that there are constants c, c′ > 0 such that

2k−c log k ≤ ESp(k) ≤ 2k+c′
√

k log k.

The upper bound follows from (1), thus it remains to prove the lower bound on ESp(k). To do
so, we construct sets of 2k−c log k points in RP2 with no projective k-gon. By Observation 3,
it suffices to show that S contains no k points in convex position and no double chain of
size k. To obtain such sets, we employ a recursive construction by Erdős and Szekeres [16].
By choosing c sufficiently large, we can assume k ≥ 7.

Let X and Y be finite sets of points in the Euclidean plane. We say that X lies deep
below Y and Y lies high above X if each point of X lies below every line through two points
of Y , and each point of Y lies above every line through two points of X. For k ≥ 2, we say
that a set C of k points in the plane is a k-cup if its points lie on the graph of a convex
function and we call C a k-cap if its points lie on the graph of a concave function.

We now construct the set S inductively as follows. For a ≤ 2 or u ≤ 2, let Sa,u be a set
consisting of a single point from R2 and note that Sa,u then does not contain a 2-cap nor a 2-
cup. For integers a, u ≥ 3, we let Sa,u be a set obtained by placing a copy of Sa,u−1 to the left
and deep below a copy of Sa−1,u. It follows by induction that |Sa,u| =

(
a+u−4

a−2
)

=
(

a+u−4
u−2

)
and

that Sa,u does not contain an a-cap nor a u-cup; see [16]. Finally, we let S = S⌊k/2⌋−1,⌊k/2⌋−1.
Since k ≥ 7, we have ⌊k/2⌋ − 1 ≥ 2 and thus the set S is well-defined.

Note that |S| =
(⌊k/2⌋+⌊k/2⌋−4

⌊k/2⌋−2
)

≥ 2k−c log k for some constant c > 0. The set S does not
contain k points in convex position, as such a k-tuple contains either a (⌊k/2⌋ − 1)-cap or a
(⌊k/2⌋ − 1)-cup. Thus, it remains to show that S does not contain a double chain of size k.

Suppose for contradiction that W is a double chain k-wedge with A ∪ B in S with
A = {s1, . . . , sm} and B = {r1, . . . , rk−m} for some m with 1 ≤ m ≤ k − 1; using the
notation from Subsection 1.2. We let ℓ1 be the line s1rk−m and ℓ2 be the line smr1. Let



M. Balko, M. Scheucher, and P. Valtr 10:9

a ≤ ⌊k/2⌋ − 1 and u ≤ ⌊k/2⌋ − 1 be two numbers such that W has all vertices in Sa,u

but it does not have all vertices in Sa−1,u nor in Sa,u−1. Let D and U be the copies of
Sa−1,u and Sa,u−1, respectively, forming Sa,u. We can assume without loss of generality
that |{s1, sm, r1, rk−m} ∩ D| ≥ 2, as the other case |{s1, sm, r1, rk−m} ∩ U | ≥ 2 is treated
analogously. We distinguish the following two cases.

Case 1. Assume |{s1, sm, r1, rk−m} ∩ D| = 2. Then two points from {s1, sm, r1, rk−m} are
in D and the other two points are in U . By symmetry, we can assume s1 ∈ U . We distinguish
the following two subcases, which are shown in Figure 3. Note that, since the line segments
s1rk−m and smr1 cross, the cases s1, rk−m ∈ U and r1, sm ∈ D cannot occur.

s1 sm

r1 sm

r1
s1 s1

Case 1a: Case 1b: Case 2:
s1

U U U U

rk−mrk−m

D D D D

sm
sm

rk−m

r1
rk−m

r1

Figure 3 The cases in the proof of Theorem 5.

Case 1a. Assume s1, sm ∈ U and r1, rk−m ∈ L. We assume that s1 is to the left of sm,
otherwise we reverse the order of the elements in A and B which, in particular, exchanges
the roles of s1 and sm. Since U is high above D, the line s1rk−m is almost vertical and
separates sm from r1, where s1 is to the left of sm and r1 is to the left of rk−m. All
points of A \ {s1} lie to the right of s1rk−m and to the left of smrk−m. Since D is deep
below U , no point of D satisfies these two conditions. Hence all points of A lie in U . An
analogous argument shows that all points of B lie in D. Since A forms an m-cup in U

and B forms a (k − m)-cap in D, we have m ≤ u − 1 and k − m ≤ a − 1. Consequently,
k = m + (m − k) ≤ a + u − 2 ≤ ⌊k/2⌋ + ⌊k/2⌋ − 4 < k, which is impossible.

Case 1b. Assume s1, r1 ∈ U and sm, rk−m ∈ L. We assume that s1 is to the left of r1,
as otherwise we exchange the roles of A and B which, in particular, exchanges the roles of
s1 and r1. Since U is high above D, the line s1rk−m is almost vertical and separates sm

from r1 and sm is to the left of rk−m. All points of A \ {s1} lie to the left of the almost
vertical line s1rk−m and to the right of the almost vertical line s1sm. Hence, A ∩ U = {s1}
and all points from A \ {s1} lie in D. The set A \ {s1} forms an (m − 1)-cup in D and
thus m − 1 ≤ u − 1. An analogous argument shows that B \ {r1} forms a (k − m − 1)-cap
in D and thus (k − m) − 1 ≤ a − 1. In total, we obtain k = (m − 1) + (k − m − 1) + 2 ≤
(u − 1) + (a − 1) + 2 ≤ ⌊k/2⌋ + ⌊k/2⌋ − 2 < k, which is again impossible.

Case 2. Assume |{s1, sm, r1, rk−m} ∩ D| = 3. We can assume that either s1 or sm lies in U ,
as otherwise we exchange the roles of A and B. Furthermore, we can assume that s1 ∈ U , as
otherwise we reverse the order of the elements in A and B. Since U is high above D, the
line s1rk−m is almost vertical and separates r1 and sm. Since all vertices of W lie either to
the left of the almost vertical line s1sm and to the right of the almost vertical line s1r1 or to

SoCG 2022



10:10 Erdős–Szekeres-Type Problems in the Real Projective Plane

the right of s1sm and to the left of s1r1, the point s1 is the only vertex of W in U . Hence,
the points S \ {s1} lie in D and form an (m − 1)-cup in D. Thus, m − 1 ≤ u. The points
of B all lie in D and form a (k − m)-cap in D. Thus, k − m ≤ a − 1. Altogether, we have
k = (m − 1) + 1 + (k − m) ≤ u + 1 + a − 1 ≤ ⌊k/2⌋ + ⌊k/2⌋ − 2 < k, which is impossible.

Since there is no case left, we have a contradiction with the assumption that W is a
double chain k-wedge with vertices in S. This completes the proof of Theorem 5.

5 Sketch of the proofs of Theorem 6 and Theorem 7

Here, we sketch the proof of the fact that there are arbitrarily large finite sets of points
from RP2 in general position with no projective 8-hole and with only quadratically many
projective k-holes for every k ≤ 7. For the full proof see [7].

The construction uses so-called Horton sets defined by Valtr [38]. Let H be a set of n

points p1, . . . , pn from R2, sorted according to increasing x-coordinates. Let H0 be the set of
points pi with odd i and let H1 be the set of points pi with even i. The set H is Horton if
either |H| ≤ 1 or if |H| ≥ 2, H0 and H1 are both Horton and H0 lies deep below or high
above H1. In the second case, we call H0 and H1 the layers of H. As in Section 4, we say
that H0 lies deep below H1 and H1 lies high above H0 if each point of H0 lies below every
line spanned by two points of H1, and each point of H1 lies above every line spanned by two
points of H0. For a nonempty subset A of H, we define the base of A in H as the smallest
recursive layer of H containing A.

As in Section 4, we use the terms k-cup and k-cap. A cap is a set that is a k-cap for
some integer k and, analogously, a cup is a set that is a k-cup for some k. A cap C is open
in a set S ⊆ R2 if there is no point of S below C, that is, for each pair of points c1, c2 from
C, no point of S has its coordinate between x(c1) and x(c2) and lies below the line c1c2.
Analogously, a cup in S is open in S if there is no point of S above it.

5.1 Quadratic upper bounds on the number of k-holes
We show that any Horton set on n points embedded in the real projective plane does
not contain 8-holes and that H has at most O(n2) k-holes for every k ∈ {3, . . . , 7}. By
Observation 4, it suffices to show that any Horton set H on n points in the plane does not
contain 8-holes nor an empty double chain 8-wedge and that, for every k ∈ {3, . . . , 7}, H

contains only at most O(n2) k-holes and empty double chain k-wedges. Valtr [38] showed
that any Horton set in the plane does not contain 7-holes and that it does not contain any
open 4-cap nor an open 4-cup. Bárány and Valtr [9] showed that the number of k-holes
in any Horton set of size n is at most O(n2) for every k ∈ {3, . . . , 6}. Thus, it suffices to
estimate the number of double chain k-wedges in Horton sets.

Let H be a Horton set with n points in the plane. We first show that the number of open
caps in every Horton set H with n points in the plane is at most O(n) and that analogous
statement is true for open cups. To prove this claim, it suffices to consider only open 2-caps
and 3-caps, as H does not contain open 4-caps.

We proceed by induction on log2 n and show that the number t2(H) of open 2-caps equals
2n − log2 (n) − 2 and that the number t3(H) of open 3-caps in H equals n − log2 (n) − 1 if n

is a power of 2. Both expressions hold for n = 1 and thus we assume n ≥ 2. Let p1, . . . , pn

be the points of H ordered according to increasing coordinates and let H0 = L(H) and
H1 = U(H) be the sets that partition H such that H0 is deep below H1. Every line segment
pipi+1 forms an open 2-cap in H and there is no other open 2-cap in H with points in H0



M. Balko, M. Scheucher, and P. Valtr 10:11

and H1, as there is a point of H1 above any such line segment pipj with j > i + 1. Since no
two points from H1 form an open 2-cap in H, we have t2(H0) + n − 1 open 2-caps in H . By
the induction hypothesis, it follows t2(H) = 2n − log2 (n) − 2.

To determine the number of open 3-caps in H , note that every triple pipi+1pi+2 with odd
i forms an open 3-cap in H. In fact, there is no other open 3-cap in H with a point in H0
and also in H1, as there is a point of H1 above any such line segment pipj with j > i + 1.
Since no three points in H1 form an open 3-cap in H , we obtain t3(H0) + n/2 − 1 open 3-caps
in H. The induction hypothesis then gives t3(H) = n − log2 (n) − 1.

If n is not a power of two, we consider a Horton set H ′ of size m instead, where m is as the
smallest power of 2 larger than n, and denote its leftmost n points by H ′′. Since H ′′ is also a
Horton set of n points and contains the same open caps as H, we obtain t2(H) ≤ t2(H ′) < 4n

and t3(H) ≤ t3(H ′) < 2n. Overall, the number of open caps in H is at most O(n). With an
analogous argument we obtain the same upper bound on the number of open cups in H.

We now proceed with the proof by induction on n. Clearly, the claims about the double
chain k-wedges are true in any Horton set with one or two points, so we assume n ≥ 3. For
some integer k ≥ 3, let W ⊆ H be a double chain k-wedge that is empty in H . We will show
that k ≤ 7 and estimate the number of such double chain k-wedges for each k ∈ {3, . . . , 7}.

If W is contained in H0 or in H1, then k ≤ 7 by the induction hypothesis. Thus, we
assume that W contains a point from H0 and also from H1. An elaborate case analysis
shows that H contains no double chain 8-wedge that is empty in H and that has points in
H0 and H1; see [7]. By the induction hypothesis, the sets H0 and H1 do not contain any
double chain 8-wedge that is empty in H0 and in H1, respectively. Since every double chain
8-wedge that is contained in Hi and is empty in H is also empty in Hi for every i ∈ {0, 1},
we see that there is no double chain 8-wedge in H that is empty in H. This completes the
proof of Theorem 6.

Let k ∈ {3, . . . , 7}. For the quadratic upper bounds, it can be shown that there is a
constant c such that H contains at most cn2 double chain k-wedges that are empty in H

and that have points in H0 and H1 (again, see [7]). Altogether, the number wk(H) of
empty double chain k-wedges in H satisfies wk(H) ≤ wk(H0) + wk(H1) + cn2. Solving this
linear recurrence with the initial condition wk(H ′) = 0 for any set H ′ with |H ′| = 1 gives
wk(H) ≤ O(n2). This completes the proof of the first part of Theorem 7.

6 Outline of the construction giving Theorems 9 and 10

Here we outline the construction giving Theorems 9 and 10. For the full proof, see [7].
We are given a k ∈ {3, . . . , 6} and a positive integer n. Our construction uses two

integer parameters a, b ≥ 2 satisfying a ≤ n1/3 and ab ≤ n. In the proof of Theorem 9,
these parameters depend on the value of the parameter α in the theorem. For the proof of
Theorem 10, where we are given an integer parameter x, we choose a := 2 and b ≈ log2(x).

Assuming
√

n is an integer, we start the construction with the
√

n ×
√

n integer lattice
in the plane, denoted by L(

√
n ×

√
n), and we fix a subset C3 of Θ(n1/3) points in convex

position in L(
√

n ×
√

n). We then perturb the lattice to get a so-called random squared
Horton set, denoted by H(

√
n ×

√
n), which is a randomized version [9] of the lattice version

of so-called Horton sets [38], which generalize the famous construction of Horton [26] of
planar point sets in general position with no 7-holes. The random squared Horton set is
described in [9, Section 2] and denoted by Λ∗ there.

We consider the |C3|-element subset CH
3 of H(

√
n ×

√
n) corresponding to C3. Since C3

is in convex position, the set CH
3 is also in convex position. We fix an a-element subset C

of CH
3 , where a is the above mentioned parameter. For each c ∈ C, we take a set Sc of b

SoCG 2022



10:12 Erdős–Szekeres-Type Problems in the Real Projective Plane

points lying in a very small neighborhood of c and on a unit circle touching the polygon
conv CH

3 in the point c. Since the points of Sc are placed very close together on a unit circle,
they are almost collinear. We consider the set H(

√
n ×

√
n) ∩ conv CH

3 , and denote its union
with the sets Sc, c ∈ C, by T = T (a, b); see Figure 4. The set T has at most n + ab ≤ 2n

points, and it is just a little technicality to adjust its size to n at the right place in the proof.

c

Sc

H(
√
n×
√
n) ∩ convCH

3

Figure 4 An illustration of the set T (a, b) for a = 3 and b = 5 (we assume each c lies in Sc).

We now sketch a proof that the set T satisfies Theorems 9 and 10 for properly chosen
parameters a and b. The random squared Horton set of size n has O(n2) affine holes [9, 38].
Likewise, using the condition ab ≤ n and two additional facts, it can be argued that the set
T has at most O(n2) affine holes that do not lie completely in some Sc. The two additional
facts are that (i) the expected number of affine holes containing a fixed point of C is at most
O(n) and (ii) the expected number of affine holes containing a fixed pair of points of C is at
most O(n). The number of affine k-holes that lie completely in one of the sets Sc is clearly
a
(

b
k

)
< abk. Thus, the total number of affine k-holes in T = T (a, b) is at most O(n2 + abk).

Due to the construction, any (k − 1)-element subset of any set Sc, together with any
point of T \ Sc, forms a projective k-hole. There are a sets Sc and each of them has size b.
Thus, there are at least a ·

(
b

k−1
)

· (|T | − b) = Θ(abk−1n) projective k-holes in T .
Now, Theorem 9 is obtained from the above construction by setting the parameters a, b

carefully with respect to α. Namely, for α ∈ [0, 2k−5
3 ] we set a ≈ n1/3 and b := n(5/3+α)/k,

and for α ∈ ( 2k−5
3 , k − 2] we set a ≈ n1−(1+α)/(k−1) and b := n(1+α)/(k−1). We remark

that in the range α ∈ [0, 2k−5
3 ], the parameter a corresponds to its maximum possible size

which is the maximum size of a subset in the lattice L(
√

n ×
√

n) in convex position, and
the parameter b grows with α, since increased α allows bigger affine holes. In the range
α ∈ ( 2k−5

3 , k − 2], the parameter b continues to grow with α but a is decreasing to keep the
size ab of S below n.

To obtain Theorem 10 from the above construction, we set a := 2 and b ≈ log2 x. Then
the number of affine holes contained in one of the two sets Sc is ≈ a2b = Θ(x) and the
number of other affine holes in T is again in O(n2). Any subset of the (ab =)2b-element
union of the two sets Sc is in convex position or is a double chain, determining a projective
hole. Thus, T = T (2, b) has at least Θ(22b) = Θ(x2) projective holes. Theorem 10 follows.



M. Balko, M. Scheucher, and P. Valtr 10:13

7 Proof of Theorem 13

Let S be a set of n points in the Euclidean plane in general position. Mitchell et al. [30]
use a dynamic programming approach to determine, for every point p ∈ S, the number of
k-gons and k-holes for k = 3, . . . , m, which have p as the bottom-most point. The algorithm
performs in O(mn2) time and space. They also determine the number of k-islands in S, which
have p as the bottom-most point, in O(m2n3) time and space. Note that the bottom-most
point is unique without loss of generality, as otherwise we perform an affine transformation
which does not affect the number of k-gons, k-holes, and k-islands.

Here, we introduce an algorithm that efficiently computes the number of projective k-gons,
k-holes, and k-islands of a finite set P of n points from R2 ⊂ RP2. First, we discuss how to
determine the number of projective k-gons in P .

Let G be a projective k-gon with k ≥ 3 and let p1, p2 be two vertices that are consecutive
on the boundary of G. If we start at p1 and trace the boundary of G in the direction of p2,
we obtain a unique cyclic permutation p1, . . . , pk of the vertices of G. By starting at p2
and tracing in the direction of p1, we obtain the reversed cyclic permutation. It is crucial
that, independently from the starting point and the direction, only the k pairs {pi, pi+1} for
i = 1, . . . , k (indices modulo k) appear as consecutive vertices along the boundary of G.

For every pair of points {s, t} ∈ P , the algorithm will count (with multiplicities) the
number of projective k-gons in P , which have s and t as consecutive vertices on the boundary.
Since each projective k-gon is counted exactly k times, we can then derive the number
projective k-gons in P by a simple division by k.

For a pair {s, t} of distinct points from P , we can choose a line ℓ+
s,t (ℓ−

s,t) which is parallel
to the line st and lies very close and to the left (right) of st. By removing ℓ+

s,t and ℓ−
s,t,

respectively, from RP2, we obtain two planes ρ+
s,t ⊂ RP2 and ρ−

s,t ⊂ RP2. Now, every
projective k-gon G of P , which has s and t as consecutive vertices on its boundary, is a
convex k-gon either in ρ+

s,t or in ρ−
s,t, but not in both. Note that in both planes ρ+

s,t and ρ−
s,t,

s and t lie on the boundary of the convex hull of P . Moreover, we can assume that s is the
bottom-most point in both planes ρ+

s,t and ρ−
s,t, as otherwise we apply a suitable rotation.

For each of the
(

n
2
)

pairs {s, t} of distinct points from P , we now count the number of
convex k-gons in the planes ρ+

s,t and ρ−
s,t, which have s and t as consecutive vertices on the

boundary. This counting can be done in O(mn2) time and space by using the algorithm
of Mitchell et al. [30] with the slight modification that, in the initial phase, we only count
3-gons of the form p1 = s, p2 = t, p3; see equation (3) in [30]. Since each projective k-gon G is
now counted precisely k times, once for each pair of consecutive vertices along the boundary
of G, this completes the argument for projective k-gons.

Similarly, we count projective k-holes and k-islands. The time and space requirements of
the algorithm from [30] for counting projective k-holes, which are incident to the bottom-most
point, are the same as for projective k-gons. For counting projective k-islands, which are
incident to the bottom-most point, the algorithm from [30] uses O(m2n3) time and space.

References

1 O. Aichholzer, F. Aurenhammer, and H. Krasser. Data base of order types for small point
sets. http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/.

2 O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for small point
sets with applications. Order, 19(3):265–281, 2002. doi:10.1023/A:1021231927255.

3 O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, and
B. Vogtenhuber. A superlinear lower bound on the number of 5-holes. Journal of Combinatorial
Theory, Series A, 173:Paper No. 105236, 2020. doi:10.1016/j.jcta.2020.105236.

SoCG 2022

http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
https://doi.org/10.1023/A:1021231927255
https://doi.org/10.1016/j.jcta.2020.105236


10:14 Erdős–Szekeres-Type Problems in the Real Projective Plane

4 B. Aronov, P. Erdős, W. Goddard, D. J. Kleitman, M. Klugerman, J. Pach, and L. J. Schulman.
Crossing families. Combinatorica, 14(2):127–134, 1994.

5 M. Balko, M. Scheucher, and P. Valtr. Holes and islands in random point sets. Random
Structures & Algorithms, 2021. doi:10.1002/rsa.21037.

6 M. Balko, M. Scheucher, and P. Valtr. Tight bounds on the expected number of holes in
random point sets, 2021. arXiv:2111.12533.

7 M. Balko, M. Scheucher, and P. Valtr. Erdős–Szekeres-type problems in the real projective
plane, 2022. arXiv:2203.07518.

8 I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical Bulletin,
30(4):436–445, 1987. doi:10.4153/cmb-1987-064-1.

9 I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons.
Studia Scientiarum Mathematicarum Hungarica, 41(2):243–266, 2004. doi:10.1556/sscmath.
41.2004.2.4.

10 J. Bracho and G. Calvillo. Homotopy classification of projective convex sets. Geometriae
Dedicata, 37:303–306, 1991. doi:10.1007/BF00181406.

11 B. Bukh, T. Chao, and R. Holzman. On convex holes in d-dimensional point sets, 2020.
arXiv:2007.08972.

12 D. Conlon and J. Lim. Fixing a hole. http://arXiv.org/abs/2108.07087, 2021. arXiv:
2108.07087.

13 J. de Groot and H. de Vries. Convex sets in projective space. Compositio Mathematica,
13:113–118, 1958. URL: http://www.numdam.org/item/CM_1956-1958__13__113_0/.

14 D. Dekker. Convex regions in projective n-space. The American Mathematical Monthly,
62(6):430–431, 1955.

15 P. Erdős. Some more problems on elementary geometry. Australian Mathematical Society
Gazette, 5:52–54, 1978. URL: http://www.renyi.hu/~p_erdos/1978-44.pdf.

16 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,
2:463–470, 1935. URL: http://www.renyi.hu/~p_erdos/1935-01.pdf.

17 P. Erdős and G. Szekeres. On some extremum problems in elementary geometry. Annales
Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae, Sectio Mathematica,
3–4:53–63, 1960.

18 R. Fabila-Monroy and C. Huemer. Covering Islands in Plane Point Sets. In Computational
Geometry: XIV Spanish Meeting on Computational Geometry, EGC 2011, volume 7579
of Lecture Notes in Computer Science, pages 220–225. Springer, 2012. doi:10.1007/
978-3-642-34191-5_21.

19 L. Finschi and K. Fukuda. Generation of oriented matroids–a graph theoretical approach.
Discrete & Computational Geometry, 27(1):117–136, 2002. doi:10.1007/s00454-001-0056-5.

20 Lukas Finschi. Webpage: Homepage of oriented matroids. http://www.ist.tugraz.at/
aichholzer/research/rp/triangulations/ordertypes/.

21 T. Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational Geometry,
39(1):239–272, 2008. doi:10.1007/s00454-007-9018-x.

22 P. Giannopoulos, C. Knauer, and D. Werner. On the computational complexity of Erdős–
Szekeres and related problems in R3. In Algorithms – ESA 2013, pages 541–552. Springer,
2013. doi:10.1007/978-3-642-40450-4_46.

23 B. P. Haalmeyer. Bijdragen tot de theorie der elementairoppervlakken. PhD thesis, Amsterdam,
1917.

24 H. Harborth and M. Möller. The Esther-Klein-problem in the projective plane. Journal of
Combinatorial Mathematics and Combinatorial Computing, 15, 1993.

25 A. F. Holmsen, H. N. Mojarrad, J. Pach, and G. Tardos. Two extensions of the Erdős-
Szekeres problem. Journal of the European Mathematical Society, 22:3981–3995, 2020. doi:
doi/10.4171/JEMS/1000.

26 J. D. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26:482–484,
1983. doi:10.4153/CMB-1983-077-8.

https://doi.org/10.1002/rsa.21037
http://arxiv.org/abs/2111.12533
http://arxiv.org/abs/2203.07518
https://doi.org/10.4153/cmb-1987-064-1
https://doi.org/10.1556/sscmath.41.2004.2.4
https://doi.org/10.1556/sscmath.41.2004.2.4
https://doi.org/10.1007/BF00181406
http://arxiv.org/abs/2007.08972
http://arXiv.org/abs/2108.07087
http://arxiv.org/abs/2108.07087
http://arxiv.org/abs/2108.07087
http://www.numdam.org/item/CM_1956-1958__13__113_0/
http://www.renyi.hu/~p_erdos/1978-44.pdf
http://www.renyi.hu/~p_erdos/1935-01.pdf
https://doi.org/10.1007/978-3-642-34191-5_21
https://doi.org/10.1007/978-3-642-34191-5_21
https://doi.org/10.1007/s00454-001-0056-5
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
https://doi.org/10.1007/s00454-007-9018-x
https://doi.org/10.1007/978-3-642-40450-4_46
https://doi.org/doi/10.4171/JEMS/1000
https://doi.org/doi/10.4171/JEMS/1000
https://doi.org/10.4153/CMB-1983-077-8


M. Balko, M. Scheucher, and P. Valtr 10:15

27 F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete & Computational
Geometry, 22(3):333–346, 1999. doi:10.1007/PL00009464.

28 H. Kneser. Eine Erweiterung des Begriffes “konvexer Körper”. Mathematische Annalen,
82(3):287–296, 1921. In German. URL: https://eudml.org/doc/158850.

29 F. Marić. Fast formal proof of the Erdős–Szekeres conjecture for convex polygons with at most 6
points. Journal of Automated Reasoning, 62:301–329, 2019. doi:10.1007/s10817-017-9423-7.

30 J. S. B. Mitchell, G. Rote, G. Sundaram, and G. Woeginger. Counting convex polygons in planar
point sets. Information Processing Letters, 56(1):45–49, 1995. doi:10.1016/0020-0190(95)
00130-5.

31 C. M. Nicolas. The empty hexagon theorem. Discrete & Computational Geometry, 38(2):389–
397, 2007. doi:10.1007/s00454-007-1343-6.

32 J. Pach, N. Rubin, and G. Tardos. Planar point sets determine many pairwise crossing segments.
Advances in Mathematics, 386:Paper No. 107779, 2021. doi:10.1016/j.aim.2021.107779.

33 M. Scheucher. Two disjoint 5-holes in point sets. Computational Geometry, 91:Paper No.
101670, 2020. doi:10.1016/j.comgeo.2020.101670.

34 M. Scheucher. A SAT attack on higher dimensional Erdős–Szekeres numbers. In Extended
Abstracts EuroComb 2021, pages 103–110. Springer, 2021. doi:10.1007/978-3-030-83823-2_
17.

35 E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. Journal für die reine und
angewandte Mathematik, 143:128–176, 1913. In German. URL: http://eudml.org/doc/
149403.

36 A. Suk. On the Erdős-Szekeres convex polygon problem. Journal of the AMS, 30:1047–1053,
2017. doi:10.1090/jams/869.

37 G. Szekeres and L. Peters. Computer solution to the 17-point Erdős–Szekeres problem.
Australia and New Zealand Industrial and Applied Mathematics, 48(2):151–164, 2006. doi:
10.1017/S144618110000300X.

38 P. Valtr. Convex independent sets and 7-holes in restricted planar point sets. Discrete &
Computational Geometry, 7(2):135–152, 1992. doi:10.1007/bf02187831.

39 P. Valtr. Sets in Rd with no large empty convex subsets. Discrete Mathematics, 108(1):115–124,
1992. doi:10.1016/0012-365x(92)90665-3.

40 P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Scientiarum
Mathematicarum Hungarica, pages 155–163, 1995. URL: https://refubium.fu-berlin.de/
handle/fub188/18741.

SoCG 2022

https://doi.org/10.1007/PL00009464
https://eudml.org/doc/158850
https://doi.org/10.1007/s10817-017-9423-7
https://doi.org/10.1016/0020-0190(95)00130-5
https://doi.org/10.1016/0020-0190(95)00130-5
https://doi.org/10.1007/s00454-007-1343-6
https://doi.org/10.1016/j.aim.2021.107779
https://doi.org/10.1016/j.comgeo.2020.101670
https://doi.org/10.1007/978-3-030-83823-2_17
https://doi.org/10.1007/978-3-030-83823-2_17
http://eudml.org/doc/149403
http://eudml.org/doc/149403
https://doi.org/10.1090/jams/869
https://doi.org/10.1017/S144618110000300X
https://doi.org/10.1017/S144618110000300X
https://doi.org/10.1007/bf02187831
https://doi.org/10.1016/0012-365x(92)90665-3
https://refubium.fu-berlin.de/handle/fub188/18741
https://refubium.fu-berlin.de/handle/fub188/18741




True Contraction Decomposition and Almost
ETH-Tight Bipartization for Unit-Disk Graphs
Sayan Bandyapadhyay #

University of Bergen, Norway

William Lochet #

LIRMM, Université de Montpellier, CNRS, France

Daniel Lokshtanov #

University of California, Santa Barbara, CA, USA

Saket Saurabh #

Institute of Mathematical Sciences, Chennai, India

Jie Xue #

New York University Shanghai, China

Abstract
We prove a structural theorem for unit-disk graphs, which (roughly) states that given a set D
of n unit disks inducing a unit-disk graph GD and a number p ∈ [n], one can partition D into p

subsets D1, . . . , Dp such that for every i ∈ [p] and every D′ ⊆ Di, the graph obtained from GD by
contracting all edges between the vertices in Di\D′ admits a tree decomposition in which each bag
consists of O(p + |D′|) cliques. Our theorem can be viewed as an analog for unit-disk graphs of the
structural theorems for planar graphs and almost-embeddable graphs proved very recently by Marx
et al. [SODA’22] and Bandyapadhyay et al. [SODA’22].

By applying our structural theorem, we give several new combinatorial and algorithmic results for
unit-disk graphs. On the combinatorial side, we obtain the first Contraction Decomposition Theorem
(CDT) for unit-disk graphs, resolving an open question in the work Panolan et al. [SODA’19]. On
the algorithmic side, we obtain a new FPT algorithm for bipartization (also known as odd cycle
transversal) on unit-disk graphs, which runs in 2O(

√
k log k) · nO(1) time, where k denotes the solution

size. Our algorithm significantly improves the previous slightly subexponential-time algorithm given
by Lokshtanov et al. [SODA’22] (which works more generally for disk graphs) and is almost optimal,
as the problem cannot be solved in 2o(

√
k) · nO(1) time assuming the ETH.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases unit-disk graphs, tree decomposition, contraction decomposition, bipartization

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.11

Funding Daniel Lokshtanov: Supported by BSF award 2018302 and NSF award CCF-2008838.
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416), and Swarnajayanti
Fellowship (No. DST/SJF/MSA01/2017-18).

1 Introduction

For a set D of unit disks in the plane, the unit-disk graph GD induced by D has the unit
disks in D as its vertices, where two vertices are connected by an edge whenever the two
corresponding unit disks intersect. As one of the simplest but most important classes of
geometric intersection graphs, unit-disk graphs have been extensively studied in various
areas (e.g., computational geometry, graph theory, algorithms) and find applications such as
modeling the topology of ad-hoc communication networks [27, 49]. The research on unit-disk
graphs focused on both combinatorial aspects and algorithmic aspects.

© Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh,
and Jie Xue;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sayan.bandyapadhyay@gmail.com
mailto:william.lochet@gmail.com
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:jiexue@nyu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 CDT and Bipartization for UDGs

In this paper, we establish a structural theorem for unit-disk graphs, which leads to
interesting new results in both combinatorial and algorithmic aspects. Our theorem can be
viewed as a unit-disk-graph analog of the very recent theorems proved for planar graphs [39]
and more generally for the so-called “almost-embeddable” graphs [5]. Thus, before introducing
our theorem, let us first briefly review their results. Specifically, it was shown in [5, 39] that
for a planar graph G = (V, E) and a number p ∈ [n] where n = |V |, one can partition V into
V1, . . . , Vp such that for every i ∈ [p] and V ′ ⊆ Vi, the graph obtained from G by contracting
all edges between the vertices in Vi\V ′ has treewidth O(p + |V ′|). Unfortunately, one can
easily see that such a statement cannot hold for unit-disk graphs1. However, if we use the
number of cliques (instead of vertices) in the bags of the tree decomposition to define its
width, this statement is actually true for unit-disk graphs!

Let D be a set of n unit disks and p ∈ [n] be any number. Our theorem (roughly)
states that one can partition D into p subsets D1, . . . ,Dp such that for every i ∈ [p] and
every D′ ⊆ Di, the graph obtained from the unit-disk graph GD by contracting all edges
between the vertices in Di\D′ admits a tree decomposition in which each bag consists of
O(p + |D′|) cliques. Furthermore, this partition can be computed in polynomial time. The
formal statement of our theorem is more technical, and will be presented in Theorem 2 after
we introduce some preliminaries in Section 2. Note that the notion of tree decomposition
with bags consisting of cliques is not new. In fact, this kind of tree decomposition has been
widely applied on unit-disk graphs and other geometric intersection graphs to design efficient
algorithms; see for example [12, 21, 43]. In what follows, we discuss the new combinatorial
and algorithmic results derived from our main theorem.

Combinatorial application: the first CDT on unit-disk graphs. In graph theory, a Con-
traction Decomposition Theorem (CDT) is a statement of the following form: given a graph
G = (V, E) from some graph class, for any p ∈ N, one can partition E into E1, . . . , Ep such
that contracting the edges in each Ei in G yields a graph of treewidth at most f(p), for some
function f : N→ N. CDT is classical tool useful in designing efficient approximation and pa-
rameterized algorithms in certain classes of graphs. Graph classes for which CDTs are known
include planar graphs [31, 32], graphs of bounded genus [15], and H-minor free graphs [14].
However, little was known about CDTs on geometric intersection graphs. Recently, Panolan
et al. [44] made the first progress towards proving a CDT for unit-disk graphs. Specifically,
they gave a weak version of CDT (which they call a relaxed CDT), in which the edge sets
E1, . . . , Ep need not to be disjoint; instead, it is required that each edge e ∈ E is contained
in O(1) sets in E1, . . . , Ep. It remains open whether unit-disk graphs admit a “true” CDT
(where E1, . . . , Ep is a partition of E). In this paper, by applying our main theorem, we
give the first CDT for unit-disk graphs and hence resolve an open question of [44] (and also
Hajiaghayi [26]). The function f in our CDT is quadratic, i.e., f(p) = O(p2), matching the
bound in the weak CDT of [44].

Algorithmic application: almost ETH-tight bipartization on unit-disk graphs. Designing
efficient algorithms on unit-disk graphs is a central topic in the study of unit-disk graphs.
Many classical algorithmic problems have been studied on unit-disk graphs. Polynomial-time
solvable problems include shortest paths [7, 8, 47], diameter computing [9, 24], maximum
clique [10], etc. Compared to these problems, NP-hard problems received more attentions

1 Indeed, the clique Kn is a unit-disk graph, and if we partition the vertices of Kn into p parts for p ≥ 2,
after contracting the smallest part, we get a clique of size at least n/2 which has treewidth Ω(n).



S. Bandyapadhyay, W. Lochet, D. Lokshtanov, S. Saurabh, and J. Xue 11:3

on unit-disk graphs. In particular, studying parametrized algorithms [11] for these hard
problems on unit-disk graphs (or other geometric intersection graphs) is one of the most
active themes in recent years [2, 3, 20, 21, 22, 23, 43] (also see the survey [44]). A well-
known fact about parametrized complexity on planar graphs (or more generally, bounded-
genus graphs and H-minor-free graphs) is the so-called “square root phenomenon”: many
problems on planar graphs admit algorithms with running time 2Õ(

√
k)nO(1) or nÕ(

√
k),

where k is the parameter (usually the solution size), and also admit (almost) matching
lower bounds [6, 13, 16, 18, 19, 33, 34, 40, 42, 46]. Recently, it was shown that such a
“square root phenomenon” also appears in many problems on unit disk graphs. Specifically,
algorithms with running time 2Õ(

√
k)nO(1) or nÕ(

√
k) were obtained on unit-disk graphs

for Vertex Cover [12], Independent Set [41], Feedback Vertex Set [4, 20], k-
Path/Cycle [20, 22], etc. and (almost) matching lower bounds were also known [12]. In this
paper, we apply our main theorem to add another classical problem to this family, namely,
Bipartization.

In the Bipartization problem, one aims to make a graph bipartite by deleting few
vertices. Formally, the input of Bipartization is a graph G = (V, E) and a number k, and
the goal is to determine whether there exists X ⊆ V of size at most k such that G − X

is bipartite. In the literature, Bipartization is also called Odd Cycle Transversal,
as making a graph bipartite is equivalent to hitting all its odd cycles. As one of the
most fundamental NP-complete problems in graph theory [48], Bipartization has been
studied extensively over years [1, 17, 25, 28, 29, 30, 35, 45]. The best existing algorithm
for Bipartization on general graphs runs in 2.3146knO(1) time [36]. On planar graphs,
a randomized algorithm with running time 2O(

√
k log k)nO(1) was known [38, 39], and the

same running time was achieved also for bounded-genus graphs and H-minor-free graphs
very recently [5]. However, little was known about Bipartization on geometric intersection
graphs. In fact, even achieving slightly subexponential-time parameterized algorithm for
Bipartization on unit-disk graphs was a long-standing open problem, prior to the very
recent work by Lokshtanov et al. [37]. The authors of [37] gave a randomized algorithm
running in 2O(k

27
28 log k)nO(1) time for Bipartization on disk graphs (and thus unit-disk

graphs), achieving the first 2o(k) bound for the problem. This result, however, is still far
away from showing the “square root phenomenon” for Bipartization on unit-disk graphs.

By applying our main theorem, we solve Bipartization on unit-disk graphs with a ran-
domized algorithm running in 2O(

√
k log k)nO(1) time, significantly improving the 2O(k

27
28 log k)

bound given by [37]. On the other hand, we establish an almost matching lower bound,
showing that the problem cannot be solved in in 2o(

√
k)nO(1) time, assuming the Exponential

Time Hypothesis (ETH). Our results thus add Bipartization to the “square root” family
of problems on unit-disk graphs. In terms of techniques, our algorithm solves the problem by
first constructing the partition {D1, . . . ,Dp} of the unit-disk set D in our main theorem for
p =
√

k and then applying the well-known Baker’s technique on D1, . . . ,Dp together with a
DP procedure similar to the one in [5] on tree decomposition. Such a scheme based on our
theorem can possibly also be applied to solve other problems on unit-disk graphs. To give an
example, we extend our algorithm to the problem of Group Feedback Vertex Set with
non-identity labels, with the same running time.

Due to limited space, some proofs/details are omitted in this version, and will
appear in the full paper.

SoCG 2022



11:4 CDT and Bipartization for UDGs

U

D

Figure 1 The boundary and outer boundary of U (the heavier curve is the outer boundary).

2 Preliminaries

The canonical grid. Consider the grid formed by vertical lines {x = i : i ∈ N} and horizontal
lines {y = i : i ∈ N}. We shall use it as the canonical grid throughout this paper (in the rest
of the paper, we shall refer it as “the grid”). Each cell in the grid is a unit square, and we
usually use the notation □ to denote a cell. For a unit disk D, we denote by □D the grid cell
that contains the center of D. For a set D of unit disks and a cell □, we denote by D ⋒□ the
subset of unit disks in D whose centers lie in □. We say a subset D′ ⊆ D is grid-respecting if
for any cell □ such that D′ ⋒ □ ≠ ∅, we have D′ ⋒ □ = D ⋒ □. A partition {D1, . . . ,Dp} of
D is grid-respecting if D1, . . . ,Dp are all grid-respecting subsets of D.

Basic graph notions. Let G = (V, E) be a graph. For a subset V ′ ⊆ V , the subgraph of
G induced by V ′ is the graph consisting of the vertices in V ′ and the edges in E with both
endpoints in V ′. An induced subgraph of G is a subgraph of G induced by a subset of V .
A vertex v ∈ V is neighboring to a subset V ′ ⊆ V in G if there exists v′ ∈ V ′ such that
(v, v′) ∈ E. A subset V ′ ⊆ V is neighboring to another subset V ′′ ⊆ V if there exist v′ ∈ V ′

and v′′ ∈ V ′′ such that (v′, v′′) ∈ E.

Unit disks and unit-disk graphs. Let D be a set of unit disks in the plane. For D ∈ D,
we denote by ctr(D) the center of the unit disk D. The union U =

⋃
D∈D D is a closed

region in the plane, whose boundary consists of a set of disjoint closed curves. The outer
boundary of U is defined as the part of the boundary of U that is incident to the unbounded
connected component of R2\U ; see Figure 1 for an illustration. The exposed unit disks in
D refers to the unit disks in D that intersect the outer boundary of U . In Figure 1, all
unit disks in D are exposed. We denote by Exp(D) the set of exposed unit disks in D. The
unit-disk graph induced by D, denoted by GD, has the unit disks in D as its vertices, where
two vertices are connected by an edge whenever the two corresponding unit disks intersect.
We use ED to denote the edge set of GD. Note that for a cell □, the unit disks in D ∩ □
pairwise intersect and hence form a clique in GD, which we call a cell clique. We denote by
E∗

D ⊆ ED the set of edges in all cell cliques in GD. For a subset D′ ⊆ D, the unit-disk graph
GD′ is canonically isomorphic to the subgraph of GD induced by D′. Thus, for convenience,
we shall not distinguish between them: we shall also use GD′ to denote the induced subgraph
of GD and use ED′ to denote the set of edges in GD between the vertices in D′.



S. Bandyapadhyay, W. Lochet, D. Lokshtanov, S. Saurabh, and J. Xue 11:5

Tree decomposition and treewidth. A tree decomposition of a graph G = (V, E) is a pair
(T, β) where T is a tree and β : T → 2V maps the nodes of T to subsets of V such that
(i)

⋃
t∈T β(t) = V , (ii) for each edge (u, v) ∈ E, there exists t ∈ T with u, v ∈ β(t), and

(iii) for each vertex v ∈ V , the nodes t ∈ T with v ∈ β(t) form a connected subset in T .
Conventionally, we call β(t) the bag of the node t ∈ T . The width of the tree decomposition
(T, β) is maxt∈T |β(t)| − 1. The treewidth of a graph G, denoted by tw(G) is the minimum
width of a tree decomposition of G. It is sometimes more convenient to consider rooted trees.
Thus, throughout this paper, we always view the tree in a tree decomposition as a rooted
tree. A tree decomposition (T, β) is binary if T is binary.

Edge contraction. From a graph G = (V, E), one can obtain a new graph via a so-called
edge contraction operation. Specifically, by contracting an edge e = (u, v) ∈ E, we merge u

and v into one vertex with edges connecting to both the neighbors of u and the neighbors of v

in V \{u, v}. More generally, we can contract a subset E0 ⊆ E of edges simply by contracting
these edges “one-by-one”. Formally, the resulting graph by contracting E0 in G, which we
denote by G/E0, is defined as follows. The vertices of G/E0 one-to-one corresponds to the
connected components of the graph G0 = (V, E0), and two vertices have an edge connecting
them whenever the corresponding two connected components of G0 are neighboring in G.
Let V0 denote the vertex set of G/E0. Associated to this edge contraction, there is a natural
map π : V → V0 which maps each vertex v ∈ V to the vertex of G/E0 corresponding to
the connected component of G0 that contains v. We call π the quotient map of the edge
contraction. The following fact is a well-known (and can be easily verified).

▶ Fact 1. Let G = (V, E) be a graph obtained from another graph G′ = (V ′, E′) via edge
contraction with quotient map π : V ′ → V . The following statements are true.

(i) If (T, β) is a tree decomposition of G, then (T, β′) is a tree decomposition of G′ where
β′(t) = π−1(β(t)) for all nodes t ∈ T .

(ii) If (T ′, β′) is a tree decomposition of G′, then (T ′, β) is a tree decomposition of G where
β(t) = π(β′(t)) for all nodes t ∈ T ′.

3 The main theorem

In this section, we present the main theorem of this paper, which establishes a structural
property of unit-disk graphs. Formally, the theorem is the following.

▶ Theorem 2 (main theorem). Given a set D of n unit disks and an integer p ∈ [n], one can
compute in polynomial time a grid-respecting partition {D1, . . . ,Dp} of D such that for every
i ∈ [p] and every D′ ⊆ Di, tw(GD/(E∗

D ∪ EDi\D′)) = O(p + |D′|).

Recall that in Section 1, we gave an informal version of the above theorem, which
states that GD/EDi\D′ admits a tree decomposition in which each bag contains O(p + |D′|)
cliques. One may ask how Theorem 2 implies this statement. To see this, observe that
GD/(E∗

D ∪EDi\D′) can be viewed as a graph obtained from GD/EDi\D′ via edge contraction.
Thus, if we start from a tree decomposition of GD/(E∗

D ∪ EDi\D′) of width O(p + |D′|) and
apply Fact 1 to obtain a tree decomposition of GD/EDi\D′ , one can check that each bag
of the latter tree decomposition consists of O(p + |D′|) cliques. We omit the details of this
argument as it is not important. The rest of this section is dedicated to proving Theorem 2.

SoCG 2022



11:6 CDT and Bipartization for UDGs

3.1 A layering for the unit disks
The first step of proving Theorem 2 is to compute a layering for the unit disks in D, that
is, a decomposition of D into layers. We shall use a function ℓ : D → N to represent the
layering: the unit disks which are mapped to i by ℓ form the i-th layer of D. This layering ℓ

respects the grid partition of D in the sense that ℓ−1({i}) is a grid-respecting subset of D
for all i ∈ N. Besides, ℓ possesses some nice properties which will be used later to prove
Theorem 2. Algorithm 1 presents the procedure for computing ℓ. In words, it iteratively
finds the exposed unit disks in D (line 4) and removes from D the unit disks whose centers
lie in the same cells as the centers of the exposed ones (line 5 and 7), and finally combines
the unit disks removed in every 100 iterations into one layer (line 8).

Algorithm 1 Layering(D). ▷ Output a layering ℓ : D → N.

1: q ← 0
2: while D ̸= ∅ do
3: q ← q + 1
4: X ← Exp(D)
5: X+ =

⋃
X∈X (D ⋒ □X)

6: TagX ← q for all X ∈ X+

7: D ← D\X+

8: return ℓ : D 7→ ⌈TagD/100⌉

It is clear that the layering ℓ returned by Algorithm 1 respects the cell partition of D,
because in line 6 we always assign the same tag to all unit disks with centers in the cells
□D. We write Li = ℓ−1({i}) and call it the i-th layer of D. Suppose there are in total m

layers. We define L>i =
⋃m

j=i+1 Lj , L≥i =
⋃m

j=i Lj , L<i =
⋃i−1

j=1 Lj , L≤i =
⋃i

j=1 Lj , and
L[i,i′] =

⋃i′

j=i Lj . Next, we establish some nice properties of the layering ℓ.

▶ Lemma 3. The layering ℓ and the layers L1, . . . ,Lm satisfy the following three properties.
(i) For any D, D′ ∈ D such that D ∩D′ ̸= ∅, we have |ℓ(D)− ℓ(D′)| ≤ 1.
(ii) For a connected component of GL>i

with vertex set C ⊆ L>i, the unit disks in Li

neighboring to C lie in the same connected component of GLi
.

(iii) For any i, i′ ∈ [m] with i ≤ i′, tw
(

GL[i,i′]

/
E∗

L[i,i′]

)
= O(i′ − i + 1).

We remark that the construction of our layering ℓ on unit-disk graphs is analogous to
(and also inspired by) the outerplanarity layering on planar graphs (which is obtained by
iteratively removing the vertices on the boundary of the outer face of the planar graph).
While for the outerplanarity layering the three properties in Lemma 3 follow easily, it requires
considerably more work to show them for our layering on unit-disk graphs.

In the rest of this section, we prove Lemma 3. We begin with introducing some notations
for ease of exposition. Since D changes during Algorithm 1, we denote by D(q) the set D at
the beginning of the q-th iteration of the while-loop (line 2-7). Define X (q) = Exp(D(q)) and
U (q) as the union of the unit disks in D(q).

Verifying property (i). Let D, D′ ∈ D such that D∩D′ ̸= ∅. To show |ℓ(D)− ℓ(D′)| ≤ 1, it
suffices to show |TagD −TagD′ | ≤ 100. Let q = TagD and q′ = TagD′ . If q = q′, we are done.
If q ̸= q′, we may assume q < q′ without loss of generality. Since TagD = q, D ∈ D ⋒ □X

for some X ∈ X (q). By the definition of X (q), X intersects the outer boundary of U (q) and



S. Bandyapadhyay, W. Lochet, D. Lokshtanov, S. Saurabh, and J. Xue 11:7

thus there exists a point x ∈ X that is on the outer boundary of U (q). Let σ be the segment
connecting x and d′ = ctr(D′). We say a cell □ is relevant if there exists a unit disk in D ⋒□
that intersects σ. We observe that there are at least q′ − q + 1 relevant cells.

▶ Observation 4. For each i ∈ {q, . . . , q′}, there exists a unit disk Di ∈ D with TagDi
= i

that intersects σ. Thus, the number of relevant cells is at least q′ − q + 1.

Note that the length of σ is at most 3 because D∩D′ ̸= ∅ and D∩X ̸= ∅. As such, there
can be no more than 100 relevant cells (actually much fewer), because each relevant cell must
contain a point with distance at most 1 from σ. Thus, q′−q +1 ≤ 100 and |ℓ(D)− ℓ(D′)| ≤ 1.
Property (i) in Lemma 3 holds.

Verifying property (ii). Consider a connected component of GL>i
with vertex set C ⊆ L>i.

Define Q = {q : ⌈q/100⌉ = i}. For a fixed q ∈ Q, the outer boundary of D(q) consists of some
closed curves in the plane, each of which encloses a region that is topologically homeomorphic
to a disk. These regions are clearly disjoint; we call the union of these regions the domain of
D(q). We claim that one of these regions should contain all unit disks in C. First, observe
that the domain of D(q) contains all unit disks in D(q), and hence contains all disks in C
since C ⊆ L>i = D(100i+1) ⊆ D(q). Furthermore, because the regions are disjoint but GC is
connected, all unit disks in C must lie in the same region. We denote by Rq the region that
contains the unit disks in C. We do this for all q ∈ Q, and thus obtain a set {Rq}q∈Q of
regions. We observe that these regions are nested.

▶ Observation 5. Rq ⊆ Rq′ for all q, q′ ∈ Q with q ≥ q′.

To prove property (ii), consider two unit disks D, D′ ∈ Li that are neighboring to C. Let
q = TagD (resp., q′ = TagD′), then the tag of any unit disk in D ⋒ □D (resp., D ⋒ □D′) is q

(resp., q′). As D, D′ ∈ Li, we have q, q′ ∈ Q and we assume q ≥ q′ without loss of generality.
Since D is neighboring to C and TagD = q, D must be contained in Rq and thus all unit
disks in D ⋒ □D are contained in Rq. Furthermore, there exists a unit disk X ∈ D ⋒ □D

which is exposed in D(q), i.e., X ∈ X (q). Note that X must intersect the boundary of Rq,
because X intersects the outer boundary of U (q) and is contained in Rq. Similarly, there
exists a unit disk X ′ ∈ D ⋒ □D′ exposed in D(q′) which intersects the boundary of Rq′ .

▶ Observation 6. D′ ∪X ′ intersects the boundary of Rq.

Now both D ∪X and D′ ∪X ′ are connected and intersect the boundary of Rq. Note
that the unit disks in D(q) that intersect the boundary of Rq form a connected unit-disk
graph. Thus, the unit-disk graph induced by these unit disks together with D, X, D′, X ′

is also connected. All these unit disks belong to Li, and are hence in the same connected
component of GLi

. In particular, D and D′ are in the same connected component of GLi
.

Property (ii) in Lemma 3 holds.

Verifying property (iii). We notice that, in order to verify property (iii), it suffices to
show that tw(GL≤j

/E∗
L≤j

) = O(j) for all j ∈ [m], because L[i,i′] is nothing but the first
j = i′ − i + 1 layers of the unit-disk set L≥i. To this end, we first construct a drawing of the
graph GL≤j

/E∗
L≤j

on the plane (possibly with edge crossings). The vertices of GL≤j
/E∗

L≤j

one-to-one correspond to the cells □ for which L≤j ⋒ □ ≠ ∅, and we denote by v(□) the
vertex corresponding to the cell □. We draw each vertex v(□) at an arbitrary point inside
the cell □ that lies in the intersection of all unit disks in D ⋒ □ (such a point always exists,
e.g., the center of □). For simplicity, we also use v(□) to denote the point in the plane where

SoCG 2022



11:8 CDT and Bipartization for UDGs

we draw the vertex v(□). For each edge e = (v(□), v(□′)) of GL≤j
/E∗

L≤j
, we draw it as a

polyline (or polygonal chain) in the plane connecting v(□) and v(□′) as follows. Since v(□)
and v(□′) are connected by an edge in GL≤j

/E∗
L≤j

, there exist unit disks D ∈ L≤j ⋒ □ and
D′ ∈ L≤j ⋒ □′ such that D ∩D′ ̸= ∅. We choose an arbitrary point x ∈ D ∩D′ and let σ

be the segment connecting x and v(□), and σ′ be the segment connecting x and v(□′). We
then draw the edge e as the two-piece polyline consisting of the segments σ and σ′, and
denote this polyline by γe. See the left part of Figure 2 for an illustration. Note that γe is
contained in D ∪D′. In this way, we obtain a plane drawing of GL≤j

/E∗
L≤j

(possibly with
edge crossings), and denote this drawing by η. For convenience, we call the polylines γe edge
curves. Let Γ be the image of η in the plane, which is equal to the union of all edge curves
and all v(□); see the right part of Figure 2. By our construction, Γ is contained in the union
of all unit disks in D. Next, we establish some properties of Γ , which will be used later for
bounding tw(GL≤j

/E∗
L≤j

). For two points a, b ∈ R2, a path from a to b is a continuous map
f : [0, 1]→ R2 with f(0) = a and f(1) = b. We write ∆(f, Γ ) = |{x ∈ [0, 1] : f(x) ∈ Γ}|; if
{x ∈ [0, 1] : f(x) ∈ Γ} is not finite, we simply set ∆(f, Γ ) =∞.

D

D′

�

�′

γe

v(�)

v(�′)
x η

Figure 2 Illustrating the drawing η. The left part is the construction of one edge curve ηe and
the right part is an example of how the drawing η finally looks like.

▶ Observation 7. For any two points a, b ∈ R2 with distance O(1), there exists a path
f : [0, 1]→ R2 from a to b such that ∆(f, Γ ) = O(1).

▶ Observation 8. For any point a ∈ R2, there exists a point b in the unbounded connected
component of R2\Γ and a path f : [0, 1]→ R2 from a to b such that ∆(f, Γ ) = O(j).

Proof sketch. We sketch a quick proof of this observation. First, by using Observation 7,
one can easily see that for any point a ∈ R2, there is a path f from a to a vertex v(□) of
GL≤j

/E∗
L≤j

with ∆(f, Γ ) = O(1). So it suffices to consider the case where a = v(□) for
some vertex v(□) of GL≤j

/E∗
L≤j

. Let q be the tag of the unit disks in D ⋒ □. We show the
existence of a path f with ∆(f, Γ ) = O(1) from v(□) to some other vertex v(□′) such that
the tag of the unit disks in D ⋒□′ is smaller than q. Combining this with a simple induction
argument completes the proof of the lemma. There are two cases: there exists such a vertex
v(□′) with distance O(1) from v(□) or there does not exist. In the former case, we directly
apply Observation 7 to obtain the path f from v(□) to v(□′) with ∆(f, Γ ) = O(1). In the
latter case, we know there is no unit disk in D\D(q) that is “close” to v(□). However, some
unit disk in D⋒□ is exposed in D(q) but not D(q−1). That means v(□) is close to a bounded
connected component C of R2\

⋃
D∈D D, which is contained in the unbounded connected

component of R2\U (q). In this case, we must have another vertex v(□′) close to C such that



S. Bandyapadhyay, W. Lochet, D. Lokshtanov, S. Saurabh, and J. Xue 11:9

η (P, η0)

Figure 3 Illustrating the planar graph P obtained by adding vertices to the crossings of η.

the tag of the unit disks in D⋒□′ is smaller than q. We then construct the path f from v(□)
to v(□′) by first moving from v(□) into C, then moving inside C to get close to v(□′), and
finally moving out from C to v(□′). This summarizes the basic idea of the proof (though the
complete proof is more complicated). ◀

The plane drawing η of GL≤j
/E∗

L≤j
naturally induces a planar graph P as follows. The

vertex set of P consists of the vertices of GL≤j
/E∗

L≤j
and the edge-crossing points in the

drawing η (called crossings for short). Two vertices of P are connected by an edge if they are
“adjacent” on some edge curve γe. Formally, consider an edge e = (v(□), v(□′)) of GL≤j

/E∗
L≤j

.
Suppose the crossings on γe are c1, . . . , cr, ordered from the v(□) end to the v(□′) end. Then
we include in P the edges (v(□), c1), (c1, c2), . . . , (cr−1, cr), (cr, v(□′)). After considering all
edges of GL≤j

/E∗
L≤j

, we complete the construction of P . Note that η naturally induces a
planar drawing of P (thus P is planar), which we denote by η0. Clearly, the image of η0 is
equal to the image of η, which is Γ . See Figure 3 for an illustration of the construction of P .
The following observation gives a relation between the treewidths of GL≤j

/E∗
L≤j

and P .

▶ Observation 9. tw(GL≤j
/E∗

L≤j
) ≤ O(tw(P )).

Based on the above observation, it now suffices to show that tw(P ) = O(j). To this
end, we need to introduce a notion called vertex-face incidence graph. We consider the
plane-embedded graph (P, η0). The vertex-face incidence graph P + of (P, η0) is a bipartite
graph defined as follows. One part of P + consists of the vertices of (P, η0), while the other
part consists of the faces of (P, η0). A vertex v of (P, η0) and a face F of (P, η0) are connected
by an edge in P + if v is incident to F . Let o be the outer face of (P, η0), which is a vertex of
P +. The depth of a vertex v in (P, η0) is defined as the shortest-path distance between o and
v in P +. It is well-known that tw(P ) is linear in the maximum depth of a vertex in (P, η0);
see for example [5]. So we only need to show the depth of each vertex in (P, η0) is O(j).

Consider a vertex v of (P, η0). By Observation 8, there exists a point b in the unbounded
connected component of R2\Γ and a path f : [0, 1]→ R2 from v to b such that ∆(f, Γ ) = O(j).
Suppose {x ∈ [0, 1] : f(x) ∈ Γ} = {x1, . . . , xk} where k = O(j) and x1 < · · · < xk. We
have x1 = 0 because f(0) = v ∈ Γ . Let Ii = {x : xi < x < xi+1} for i ∈ [k − 1] and
Ik = {x : xk < x ≤ 1}. Since f is continuous, the image of each Ii under f is connected and
disjoint from Γ , and hence lies in one face of (P, η0), which we denote by Fi. We say two
faces of (P, η0) are adjacent if they are incident to a common vertex of (P, η0). Clearly, the
shortest-path distance between two adjacent faces of (P, η0) in P + is 2. Note that for each
i ∈ [k − 1], Fi and Fi+1 are adjacent, as they are both incident to the point f(xi+1) ∈ Γ ,
which is either a vertex of (P, η0) or on an edge e of (P, η0); in the latter case, Fi and Fi+1

SoCG 2022



11:10 CDT and Bipartization for UDGs

are both incident to the two endpoints of e. Therefore, the shortest-path distance between
F1 and Fk in P + is at most 2k − 2, which is O(j). Now F1 is incident to f(x1) = f(0) = v

and Fk is the outer face o of (P, η0) since b ∈ Fk. It follows that the shortest-path distance
between v and o is O(j), and thus the depth of v is O(j). This implies tw(P ) = O(j) and
hence tw(GL≤j

/E∗
L≤j

) = O(j) by Observation 9. Property (iii) in Lemma 3 holds.

3.2 Constructing the partition {D1, . . . , Dp}
Given the layering ℓ of D presented in the previous section, we are able to construct the
partition {D1, . . . ,Dp} of D in Theorem 2. The basic idea is similar to that used in Baker’s
technique: combining the congruent layers modulo p. Recall that L1, . . . ,Lm are the layers
of D. We define Di =

⋃⌊(m−i)/p⌋
j=0 Ljp+i, i.e., Di consists of all layers whose index is congruent

to i modulo p. Clearly, D1, . . . ,Dp can be computed in polynomial time. As {L1, . . . ,Lm} is
a partition of D, {D1, . . . ,Dp} is also a partition of D. Also, since each Li is a grid-respecting
subset of D, the partition {D1, . . . ,Dp} of D is grid-respecting. To prove Theorem 2, it
suffices to show tw(GD/(E∗

D ∪ EDi\D′)) = O(p + |D′|) for any i ∈ [p] and D′ ⊆ Di.

3.3 Bounding the treewidth when D′ = ∅
We first consider a special case of the treewidth bound in Theorem 2 where D′ = ∅. In other
words, we prove tw(GD/(E∗

D ∪EDi
)) = O(p) for any i ∈ [p]. The argument for this is similar

to the one used in [5] for planar graphs. So we only sketch the high-level ideas and the
details will appear in the full paper. For simplicity, let us just consider the case i = p. Define
r = ⌊m/p⌋+ 1 and ij = (j− 1) · p for j ∈ N. So we have Dp =

⋃r
j=1 Lij . We define a support

tree Tsupp as follows. The depth of Tsupp is r. The root (i.e., the node at the 0-th level) of
Tsupp is a dummy node. For all j ∈ [r], the nodes at the j-th level of Tsupp are one-to-one
corresponding to the connected components of GL>ij

. The parent of the nodes at the first
level is just the root. Consider a node t ∈ Tsupp at the j-th level for j ≥ 2. Since GL>ij

is a
subgraph of GL>ij−1

, the connected component of GL>ij
corresponding to t is contained in a

unique connected component of GL>ij
, which corresponds to a node t′ at the (j − 1)-th level

of Tsupp. We then define the parent of t as t′. For each node t ∈ Tsupp, we associate to t a set
At ⊆ D defined as follows. If t is the root, At = ∅. Suppose t is at the j-th level for j ∈ [r]
and let Ct ⊆ L>ij be the vertex set of the connected component of GL>ij

corresponding
to t. Then we define At = {D ∈ Ct : ij < ℓ(D) ≤ ij+1}, i.e., At consists of all unit disks
in Ct which lie in the layers Lij+1, . . . ,Lij+1 . We then carefully use the three properties
shown in Lemma 3 to argue that {At}t∈Tsupp is a grid-respecting partition of D, and GAt

is adjacent to GAt′ only if t and t′ is adjacent in T . Property (iii) implies that each graph
Jt = GAt/(E∗

At
∪EAt∩Dp) has treewidth O(p). Using this fact, we construct an O(p)-width

tree decomposition for GD/(E∗
D ∪EDi

) by “gluing” O(p)-width tree decompositions for the
graphs Jt along the edges of Tsupp. This eventually implies tw(GD/(E∗

D ∪ EDp)) = O(p).

3.4 Handling the general case
In the previous section, we have proved that the partition {D1, . . . ,Dp} satisfies the condition
in Theorem 2 for the special case where D′ = ∅. In this section, we shall consider the
general case and complete the proof for Theorem 2. Let i ∈ [p]. Our goal is to show
tw(GD/(E∗

D∪EDi\D′)) = O(p+|D′|) for every D′ ⊆ Di, knowing tw(GD/(E∗
D∪EDi

)) = O(p).
For convenience, we denote by V the vertex set of GD/(E∗

D ∪ EDi) and V ′ the vertex
set of GD/(E∗

D ∪ EDi\D′). Since GD/(E∗
D ∪ EDi

) is obtained from GD via edge contraction,
there is a corresponding quotient map π : D → V . Similarly, there is a quotient map



S. Bandyapadhyay, W. Lochet, D. Lokshtanov, S. Saurabh, and J. Xue 11:11

D D

RR\{D}

Figure 4 The three components of GR\{D} hit by D are merged into one connected component
in GR, while the others remain the same.

π′ : D → V ′ corresponding to the edge contraction for obtaining GD/(E∗
D ∪ EDi\D′). Note

that E∗
D ∪EDi\D′ ⊆ E∗

D ∪EDi
. So there exists a unique map ρ : V ′ → V such that π = ρ◦π′,

and GD/(E∗
D ∪ EDi

) can be viewed as a graph obtained from GD/(E∗
D ∪ EDi\D′) via edge

contraction with quotient map ρ.
As tw(GD/(E∗

D∪EDi
)) = O(p), there exists a tree decomposition (T, β) of GD/(E∗

D∪EDi
)

of width O(p). We define a map β′ : T → 2V ′ as β′(t) = ρ−1(β(t)) for all nodes t ∈ T . By
Fact 1, (T, β′) is a tree decomposition of GD/(E∗

D ∪EDi\D′). Now it suffices to show that the
width of this tree decomposition is O(p + |D′|). To this end, we establish a basic property of
unit-disk graphs. For a graph G, we use the notation ∥G∥ to denote the number of connected
components of G. We have the following lemma.

▶ Lemma 10. For a set R of unit disks and R′ ⊆ R, ∥GR\R′∥ − ∥GR∥ = O(|R′|).

Proof. We show that ∥GR\{D}∥ − ∥GR∥ = O(1) for any unit disk D ∈ R. Then the lemma
can be proved via a simple induction argument. We say D hits a connected component of
GR\{D} if D intersects some unit disk in this connected component. Note that all connected
components of GR\{D} hit by D are merged into one connected component in GR, and all the
other connected components of GR\{D} remain the same in GR. See Figure 4 for an example.
Thus, the quantity ∥GR\{D}∥ − ∥GR∥ is equal to the number of connected components of
GR\{D} hit by D minus 1. So it suffices to show that D only hits O(1) connected components
of GR\{D}. Suppose D hits k connected components of GR\{D}. Pick a unit disk from each
such connected component, and let D1, . . . , Dk be these unit disks. Note that D1, . . . , Dk

are disjoint as they are from different connected components of GR\{D}. On the other hand,
D1, . . . , Dk are all contained in the disk D+ centered at ctr(D) of radius 3, as they intersect
D. The area of D+ is 9π, so it can contain at most 9 disjoint unit disks. Thus, k = O(1). ◀

Using the above lemma, we show that |ρ−1(U)| = O(|U |+ |D′|) for any U ⊆ V . Since
Di is a grid-respecting subset of D, for each v ∈ V , π−1({v}) is either (the vertex set of)
a cell clique of GD that is disjoint from Di or (the vertex set of) a connected component
of GDi ; we say v is a type-1 vertex in the former case and a type-2 vertex in the latter
case. Let U1 (resp., U2) be the type-1 (resp., type-2) vertices in U . For each u ∈ U1, we
have |ρ−1({u})| = |π′(π−1({u}))| = 1, as every cell clique of GD is contracted into one
vertex in GD/(E∗

D ∪ EDi\D′). Thus, |ρ−1(U1)| = |U1|. To bound |ρ−1(U2)|, we consider
π−1(U2) ⊆ D. By definition, π−1({u}) is a connected component of GDi

for each u ∈ U2,
and thus ∥Gπ−1(U2)∥ = |U2|. Set I = π−1(U2) ∩ D′. By Lemma 10, we have

∥Gπ−1(U2)\D′∥ − ∥Gπ−1(U2)∥ = ∥Gπ−1(U2)\I∥ − ∥Gπ−1(U2)∥ = O(|I|),

SoCG 2022



11:12 CDT and Bipartization for UDGs

which implies ∥Gπ−1(U2)\D′∥ = O(|U2|+ |D′|) because |I| ≤ |D′|. Since π−1(U2)\D′ ⊆ Di\D′,
π′ maps the vertices in each connected component of Gπ−1(U2)\D′ to the same vertex in V ′.
Therefore, |π′(π−1(U2)\D′)| ≤ ∥Gπ−1(U2)\D′∥ = O(|U2|+ |D′|). Now we have the inequality

|π′(π−1(U2))| ≤ |π′(π−1(U2)\D′)|+ |π′(D′)| = O(|U2|+ |D′|).

It follows that |ρ−1(U2)| = O(|U2|+ |D′|), and thus |ρ−1(U)| = O(|U |+ |D′|). As a result,
for all t ∈ T , |β′(t)| = |ρ−1(β(t))| = O(|β(t)| + |D′|) = O(p + |D′|). So (T, β′) is a tree
decomposition of GD/(E∗

D∪EDi\D′) of width O(p+ |D′|), completing the proof of Theorem 2.

4 Applications

4.1 Contraction decomposition for unit-disk graphs
In this section, we use Theorem 2 to prove the first Contraction Decomposition Theorem
(CDT) for unit-disk graphs, which is shown below.

▶ Theorem 11 (Contraction Decomposition Theorem). Given a set D of n unit disks and
an integer p ∈ [n], one can compute in polynomial time a partition {E1, . . . , Ep} of ED such
that for every i ∈ [p], tw(GD/Ei) = O(p2).

To prove the above theorem, it suffices to compute in polynomial time p disjoint subsets
E1, . . . , Ep ⊆ ED such that tw(GD/Ei) = O(p2) for every i ∈ [p] (that is, we do not require
{E1, . . . , Ep} to be a partition of ED), as contracting more edges only decreases the treewidth.

We start by applying the algorithm of Theorem 2 on D to obtain in polynomial time a
grid-respecting partition {D1, . . . ,Dp} of D. Consider any i ∈ [p]. Setting D′ = ∅ in Theorem
2 gives us tw(GD/(E∗

D ∪ EDi
)) = O(p). We are going to use this fact later in our analysis.

Next, we state a lemma which will be used in our construction of the edge sets E1, . . . , Ep.

▶ Lemma 12. The edge set of a clique K of size larger than 4p can be partitioned in
polynomial time into p parts such that each part contains a spanning tree of K.

We construct the edge sets E1, . . . , Ep in the following way. Consider any edge e =
(u, v) ∈ ED. If u ∈ Di and v ∈ Dj for i ̸= j, then we totally ignore e (i.e., do not add it to
any of E1, . . . , Ep). Otherwise, let u, v ∈ Di for some i ∈ [p]. If e is not a part of any cell
clique, we add e to the part Ei. If e is a part of a cell clique of size at most 4p, we also add
e to the part Ei. The only remaining edges are those in the cell cliques of size larger than 4p.
Consider any such cell clique K. Using the algorithm in Lemma 12, we partition the edge set
of K into exactly p parts H1, . . . , Hp each of which contains a spanning tree of K, and then
add the edges in Hi to Ei for i ∈ [p]. This completes the construction of E1, . . . , Ep ⊆ ED.
It is clear that E1, . . . , Ep are disjoint. Now it suffices to bound tw(GD/Ei) for every i ∈ [p].

▶ Lemma 13. For all i ∈ [p], tw(GD/Ei) = O(p2).

4.2 Near-optimal bipartization for unit-disk graphs
In this section, we use Theorem 2 to solve Bipartization on unit-disk graphs. Due to
limited space, we only provide a high-level description of our algorithm with details omitted.
Let D be a set of n unit disks and k be the parameter. Recall that we want to find X ⊆ D
of size at most k such that GD\X is bipartite. We refer to such a set X as an OCT.

An easy but crucial remark is that, for every clique K in GD, an OCT contains all vertices
of K except at most two. We start by checking if there is some cell clique in GD with size
at least k + 3, in which case it trivially answers NO. From now on, we may assume all cell



S. Bandyapadhyay, W. Lochet, D. Lokshtanov, S. Saurabh, and J. Xue 11:13

cliques have size at most k + 2. The first step of our algorithm is to apply the following
randomized algorithm to obtain a small candidate set Cand ⊆ D for OCT. This can be done
via the technique of representative sets, see Lemma 5 in [5] for more details.

▶ Lemma 14. Given a graph G = (V, E) and a number k, one can compute Cand ⊆ V of
size kO(1) such that G has an OCT of size k iff G has an OCT of size k that is a subset of
Cand, using a polynomial-time randomized algorithm with success probability 1− 1/2|V |.

By the above lemma, |Cand| = kO(1) and it suffices to find an OCT X ⊆ Cand of GD of
size at most k. Suppose such an OCT X exists (but is unknown to us). Next, we apply the
algorithm of Theorem 2 with p = ⌊

√
k⌋ to obtain the grid-respecting partition {D1, . . . ,Dp}

of D in polynomial time. As |X | ≤ k and {D1, . . . ,Dp} is a partition of D, there exists an
index i ∈ [p] such that |Di ∩ X | ≤ k/p. By trying all indices in [p], we can assume that the
algorithm knows the index i. Moreover, we know that Di∩X ⊆ Di∩Cand as X ⊆ Cand. Thus,
by trying all the subsets of Di ∩ Cand of size at most k/p, we can assume that the algorithm
knows S = Di ∩ X ; note that the number of such subsets is |Cand|O(k/p) = 2O(

√
k log k). The

above is a variant of Baker’s technique, which is also used in [5].
Now it suffices to find an OCT X of size at most k which contains S but is disjoint from

Di\S. By Theorem 2, we have tw(GD/(E∗
D ∪EDi\S)) = O(p + |S|) = O(

√
k). Let (T, β∗) be

a tree decomposition of GD/(E∗
D ∪EDi\S) of width O(

√
k). We can then use Fact 1 to obtain

a tree decomposition (T, β) of GD from (T, β∗). Then we compute the OCT X via dynamic
programming on (T, β). The main difficulty here is that although the width of (T, β∗) is
O(
√

k), the width of (T, β) is unbounded. Fortunately, we can exploit the O(
√

k) width of
(T, β∗) to show that the size of the DP table at each node t ∈ T as well as the total number
of different DP configurations to be considered are both bounded by 2O(

√
k log k). The main

reason is that (essentially) each vertex of GD/(E∗
D∪EDi\S) corresponds to either a cell clique

in GD or a connected component of GDi\S . A cell clique K can have O(k2) different possible
configurations in the solution as by assumption the size of K is O(k) and at most two vertices
in K are not in the OCT. A connected component of GDi\S can only have two different
configurations as nothing in Di\S is contained in the OCT and a connected graph can have
at most two different 2-colorings. As such, we can do DP on (T, β) in 2O(

√
k log k)nO(1) time

despite of its unbounded width. The details of our algorithm will appear in the full paper.
Also, the generalization of our algorithm to Group Feedback Vertex Set is deferred to
the full version.

▶ Theorem 15. There exists a randomized algorithm that solves, for given a set D of n unit
disks in the plane and a number k, the Bipartization problem on GD in 2O(

√
k log k)nO(1)

time, with success probability at least 1− 1/2|D|.

We show that the algorithm in the above theorem is near optimal. Specifically, we cannot
hope for a 2o(

√
k)nO(1) running time, assuming ETH.

▶ Theorem 16. Assuming the ETH, Bipartization on unit-disk graphs cannot be solved in
2o(

√
k)nO(1) time, where k is the solution size and n is the number of vertices.

References
1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. o(

√
log n)

approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
573–581, 2005.

2 Jochen Alber, Henning Fernau, and Rolf Niedermeier. Graph separators: a parameterized
view. J. Comput. Syst. Sci., 67(4):808–832, 2003. doi:10.1016/S0022-0000(03)00072-2.

SoCG 2022

https://doi.org/10.1016/S0022-0000(03)00072-2


11:14 CDT and Bipartization for UDGs

3 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004. doi:10.1016/j.
jalgor.2003.10.001.

4 Shinwoo An and Eunjin Oh. Feedback vertex set on geometric intersection graphs. In Hee-Kap
Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and
Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages
47:1–47:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ISAAC.2021.47.

5 Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh, and Jie Xue.
Subexponential parameterized algorithms for cut and cycle hitting problems on h-minor-free
graphs. CoRR, to appear in SODA 2022, abs/2111.14196, 2021. arXiv:2111.14196.

6 Thang Nguyen Bui and Andrew Peck. Partitioning planar graphs. SIAM J. Comput.,
21(2):203–215, 1992. doi:10.1137/0221016.

7 Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Computa-
tional Geometry, 48(4):360–367, 2015.

8 Timothy M Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. In Workshop on Algorithms and Data Structures, pages 253–264. Springer, 2017.

9 Timothy M Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles
in weighted unit-disk graphs. Journal of Computational Geometry (Old Web Site), 10(2):3–20,
2019.

10 Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. Discrete
mathematics, 86(1-3):165–177, 1990.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

12 Mark de Berg, Hans L Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C van der
Zanden. A framework for eth-tight algorithms and lower bounds in geometric intersection
graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 574–586, 2018.

13 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

14 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction
decomposition in h-minor-free graphs and algorithmic applications. In Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 441–450, 2011.

15 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Bojan Mohar. Approximation algorithms
via contraction decomposition. Combinatorica, 30(5):533–552, 2010.

16 Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. Inf.
Comput., 233:60–70, 2013. doi:10.1016/j.ic.2013.11.006.

17 Samuel Fiorini, Nadia Hardy, Bruce Reed, and Adrian Vetta. Planar graph bipartization in
linear time. Discrete Applied Mathematics, 156(7):1175–1180, 2008.

18 Fedor V. Fomin, Daniel Lokshtanov, Sudeshna Kolay, Fahad Panolan, and Saket Saurabh.
Subexponential algorithms for rectilinear steiner tree and arborescence problems. ACM Trans.
Algorithms, 16(2):21:1–21:37, 2020. doi:10.1145/3381420.

19 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
and Saket Saurabh. Subexponential parameterized algorithms for planar and apex-minor-
free graphs via low treewidth pattern covering. In Irit Dinur, editor, IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 515–524. IEEE Computer Society, 2016.
doi:10.1109/FOCS.2016.62.

https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.4230/LIPIcs.ISAAC.2021.47
https://doi.org/10.4230/LIPIcs.ISAAC.2021.47
http://arxiv.org/abs/2111.14196
https://doi.org/10.1137/0221016
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1016/j.ic.2013.11.006
https://doi.org/10.1145/3381420
https://doi.org/10.1109/FOCS.2016.62


S. Bandyapadhyay, W. Lochet, D. Lokshtanov, S. Saurabh, and J. Xue 11:15

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Decomposition of map graphs with applications. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.60.

21 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discret.
Comput. Geom., 62(4):879–911, 2019. doi:10.1007/s00454-018-00054-x.

22 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Eth-tight algorithms for long path and cycle on unit disk graphs. In Sergio Cabello and
Danny Z. Chen, editors, 36th International Symposium on Computational Geometry, SoCG
2020, June 23-26, 2020, Zürich, Switzerland, volume 164 of LIPIcs, pages 44:1–44:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.44.

23 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Excluded grid minors and efficient
polynomial-time approximation schemes. J. ACM, 65(2):10:1–10:44, 2018. doi:10.1145/
3154833.

24 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and
its applications. SIAM Journal on Computing, 35(1):151–169, 2005.

25 Michel X Goemans and David P Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica, 18(1):37–59, 1998.

26 MohammadTaghi Hajiaghayi. Contraction and minor graph decomposition and their algorith-
mic applications. Filmed Talk at Microsoft Research, 2016.

27 William K Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

28 Falk Hüffner. Algorithm engineering for optimal graph bipartization. Journal of Graph
Algorithms and Applications, 13(2):77–98, 2009.

29 Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A deterministic polyno-
mial kernel for odd cycle transversal and vertex multiway cut in planar graphs. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume
126 of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.STACS.2019.39.

30 Ken-ichi Kawarabayashi and Bruce Reed. An (almost) linear time algorithm for odd cycles
transversal. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 365–378. SIAM, 2010.

31 Philip N. Klein. A subset spanner for planar graphs, : with application to subset TSP. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA,
May 21-23, 2006, pages 749–756, 2006. doi:10.1145/1132516.1132620.

32 Philip N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs
with edge-weights. SIAM J. Comput., 37(6):1926–1952, 2008. doi:10.1137/060649562.

33 Philip N. Klein and Dániel Marx. Solving planar k -terminal cut in O(nc
√

k) time. In
Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages
569–580. Springer, 2012. doi:10.1007/978-3-642-31594-7_48.

34 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for subset
TSP on planar graphs. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 1812–1830. SIAM, 2014. doi:10.1137/1.9781611973402.131.

SoCG 2022

https://doi.org/10.4230/LIPIcs.ICALP.2019.60
https://doi.org/10.4230/LIPIcs.ICALP.2019.60
https://doi.org/10.1007/s00454-018-00054-x
https://doi.org/10.4230/LIPIcs.SoCG.2020.44
https://doi.org/10.1145/3154833
https://doi.org/10.1145/3154833
https://doi.org/10.4230/LIPIcs.STACS.2019.39
https://doi.org/10.1145/1132516.1132620
https://doi.org/10.1137/060649562
https://doi.org/10.1007/978-3-642-31594-7_48
https://doi.org/10.1137/1.9781611973402.131


11:16 CDT and Bipartization for UDGs

35 Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial
kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014. doi:
10.1145/2635810.

36 Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms (TALG), 11(2):1–31, 2014.

37 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponen-
tial parameterized algorithms on disk graphs. to appear in SODA 2022, 2021.

38 Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential parameterized
odd cycle transversal on planar graphs. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar
Radhakrishnan, editors, IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India,
volume 18 of LIPIcs, pages 424–434. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.FSTTCS.2012.424.

39 Dániel Marx, Pranabendu Misra, Daniel Neuen, and Prafullkumar Tale. A framework for
parameterized subexponential algorithms for generalized cycle hitting problems on planar
graphs. CoRR, to appear in SODA 2022, abs/2110.15098, 2021. arXiv:2110.15098.

40 Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On subexponential parameterized
algorithms for steiner tree and directed subset TSP on planar graphs. In Mikkel Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 474–484. IEEE Computer Society, 2018. doi:10.
1109/FOCS.2018.00052.

41 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. In Nikhil Bansal and Irene Finocchi, editors,
Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16,
2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 865–877. Springer,
2015. doi:10.1007/978-3-662-48350-3_72.

42 Jesper Nederlof. Detecting and counting small patterns in planar graphs in subexponential
parameterized time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1293–1306.
ACM, 2020. doi:10.1145/3357713.3384261.

43 Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Contraction decomposition in unit disk
graphs and algorithmic applications in parameterized complexity. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1035–1054. SIAM, 2019.
doi:10.1137/1.9781611975482.64.

44 Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Parameterized computational geome-
try via decomposition theorems. In Gautam K. Das, Partha Sarathi Mandal, Krishnendu
Mukhopadhyaya, and Shin-Ichi Nakano, editors, WALCOM: Algorithms and Computation
- 13th International Conference, WALCOM 2019, Guwahati, India, February 27 - March 2,
2019, Proceedings, volume 11355 of Lecture Notes in Computer Science, pages 15–27. Springer,
2019. doi:10.1007/978-3-030-10564-8_2.

45 Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

46 Siamak Tazari. Faster approximation schemes and parameterized algorithms on (odd-)h-minor-
free graphs. Theor. Comput. Sci., 417:95–107, 2012. doi:10.1016/j.tcs.2011.09.014.

47 Haitao Wang and Jie Xue. Near-optimal algorithms for shortest paths in weighted unit-disk
graphs. Discrete & Computational Geometry, 64(4):1141–1166, 2020.

48 Mihalis Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing, pages 253–264, 1978.

49 Yu-Shuan Yeh, Joanne C Wilson, and Stuart C Schwartz. Outage probability in mobile tele-
phony with directive antennas and macrodiversity. IEEE transactions on vehicular technology,
33(3):123–127, 1984.

https://doi.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424
http://arxiv.org/abs/2110.15098
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1145/3357713.3384261
https://doi.org/10.1137/1.9781611975482.64
https://doi.org/10.1007/978-3-030-10564-8_2
https://doi.org/10.1016/j.tcs.2011.09.014


Unlabeled Multi-Robot Motion Planning with
Tighter Separation Bounds
Bahareh Banyassady #

Zuse Institute Berlin, Germany

Mark de Berg #

TU Eindhoven, The Netherlands

Karl Bringmann #

Universität des Saarlandes, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarbrücken, Germany

Kevin Buchin #

TU Dortmund, Germany

Henning Fernau #

Universität Trier, Germany

Dan Halperin #

Tel Aviv University, Israel

Irina Kostitsyna #

TU Eindhoven, The Netherlands

Yoshio Okamoto #

The University of Electro-Communications, Tokyo, Japan

Stijn Slot #

Adyen, Amsterdam, The Netherlands

Abstract
We consider the unlabeled motion-planning problem of m unit-disc robots moving in a simple
polygonal workspace of n edges. The goal is to find a motion plan that moves the robots to a given
set of m target positions. For the unlabeled variant, it does not matter which robot reaches which
target position as long as all target positions are occupied in the end.

If the workspace has narrow passages such that the robots cannot fit through them, then the
free configuration space, representing all possible unobstructed positions of the robots, will consist
of multiple connected components. Even if in each component of the free space the number of
targets matches the number of start positions, the motion-planning problem does not always have
a solution when the robots and their targets are positioned very densely. In this paper, we prove
tight bounds on how much separation between start and target positions is necessary to always
guarantee a solution. Moreover, we describe an algorithm that always finds a solution in time
O(n log n + mn + m2) if the separation bounds are met. Specifically, we prove that the following
separation is sufficient: any two start positions are at least distance 4 apart, any two target positions
are at least distance 4 apart, and any pair of a start and a target positions is at least distance 3
apart. We further show that when the free space consists of a single connected component, the
separation between start and target positions is not necessary.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases motion planning, computational geometry, simple polygon

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.12

Related Version Full Version: https://arxiv.org/abs/2205.07777

Funding Mark de Berg: Supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.

© Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau,
Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bahareh.banyassady@fu-berlin.de
https://orcid.org/0000-0002-3422-9028
mailto:m.t.d.berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:bringmann@cs.uni-saarland.de
mailto:kevin.buchin@tu-dortmund.de
https://orcid.org/0000-0002-3022-7877
mailto:fernau@uni-trier.de
https://orcid.org/0000-0002-4444-3220
mailto:danha@post.tau.ac.il
https://orcid.org/0000-0002-3345-3765
mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:okamotoy@uec.ac.jp
https://orcid.org/0000-0002-9826-7074
mailto:slot.stijn@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.12
https://arxiv.org/abs/2205.07777
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

Dan Halperin: Supported in part by the Israel Science Foundation (grant no. 1736/19), by NSF/US-
Israel-BSF (grant no. 2019754), by the Israel Ministry of Science and Technology (grant no. 103129),
by the Blavatnik Computer Science Research Fund, and by the Yandex Machine Learning Initiative
for Machine Learning at Tel Aviv University.
Yoshio Okamoto: JSPS KAKENHI Grant Numbers JP20H05795 and JP20K11670.

Acknowledgements This research was initiated at the Lorentz-Center Workshop on Fixed-Parameter
Computational Geometry, 2018. We thank Gerhard Woeginger for discussions during the workshop.

1 Introduction

Multi-robot systems are already playing a central role in manufacturing, warehouse logistics,
inspection of large structures (e.g., bridges), monitoring of natural resources, and in the future
they are expected to expand to other domains such as space exploration, search-and-rescue
tasks and more. One of the key ingredients necessary for endowing multi-robot systems
with autonomy is the ability to plan collision-free motion paths for their constituent robots
towards desired target positions.

In the basic multi-robot motion-planning (MRMP) problem several robots are operating
in a common environment. We are given a set of start positions and a set of desired target
positions for these robots, and we wish to compute motions that will bring the robots to
the targets while avoiding collisions with obstacles and the other robots. We distinguish
between two variants of MRMP, labeled and unlabeled, depending on whether each robot has
to reach a specific target. In labeled robot motion planning, each robot has a designated
target position. In contrast, in the unlabeled variant, which we study here, each robot only
needs to reach some target position; it does not matter which robot reaches which target as
long as at the end each target position is occupied by a robot.

MRMP is an extension of the extensively studied single robot motion-planning problem
(see, e.g., [3, 6, 13]). The multi-robot case is considerably harder [7, 8, 23], since the dimension
of the configuration space grows with the number of robots in the system. The configuration
space of a robot system is a parametric representation of all the possible configurations of
the system, which are determined by specifying a real value for each independent parameter
(degree of freedom) of the system.

The system we study consists of unit-disc robots moving in the plane; see below for a
more formal problem statement. Not only is this a reasonably faithful representation of
existing robot systems (e.g., in logistics), but it already encapsulates the essential hardships of
MRMP, as MRMP for planar systems with simply-shaped robots are known to be hard [8, 20].
Surprisingly, when we assume some minimum spacing between the start and target positions,
the problem for robots moving in a simple polygon always has a solution, and the solution
can be found in polynomial time, as shown by Adler et al. [1]. The separation, the minimum
distance between the start and target positions, thus plays a key role in the difficulty of
the problem. However the separation bounds assumed by Adler et al. are not proven to be
tight, so the question remains for what separation bounds the problem is always solvable. In
this paper we determine the minimal separation needed to ensure that the motion-planning
problem has a solution, improving on the bounds obtained by Adler et al. We also describe
an algorithm that plans such motions efficiently, relying on the new bounds that we obtain.

Related work. The multi-robot motion planning problem has received much attention over
the years. Already in 1983, the problem was described in a paper on the Piano Mover’s
problem by Schwartz and Sharir [15]. Later that year, an algorithm for the case of two or



B. Banyassady et al. 12:3

three disc robots moving in a polygonal environment with n polygon vertices was described,
running in O(n3) and O(n13) time respectively [16]. This was later improved by Yap [28] to
O(n2) and O(n3) for two and three robots respectively, using the retraction method. A general
approach using cell decomposition was later developed in 1991 by Sharir and Sifrony [17]
that could deal with a variety of robot pairs in O(n2) time.

Unfortunately, when the number of robots increases beyond a fixed constant, the problem
becomes hard. In 1984, a labeled case of the multi-robot motion planning with disc robots and
a simple polygonal workspace was shown to be strongly NP-hard [23]. This is a somewhat
weaker result than the PSPACE-hardness for many other motion planning problems. For
rectangular robots in a rectangular workspace, however, the problem was shown to be
PSPACE-hard [8]. This result has later been refined to show that for PSPACE-completeness
it is sufficient to have only 1 × 2 or 2 × 1 robots in a rectangular workspace [7].

The hardness results for the general problem, as well as the often complex algorithms that
solve the problem exactly [6], led to the development of more practical solutions, which often
trade completeness of the solution for simplicity and speed, and can successfully cope with
motion-planning problems with many degrees of freedom. Most notable among the practical
solutions are sampling-based (SB) techniques. These include the celebrated Probabilistic
Roadmaps (PRM) [9], the Rapidly Exploring Random Trees (RRT) [12], and their numerous
variants [3, 5, 13]. The probabilistic roadmaps can be widely applied to explore the high-
dimensional configuration space, such as settings with a large number of robots or robots with
many degrees of freedom. However, in experiments by Sanchez and Latombe [14] already for
6 robots with a total of 36 degrees of freedom the algorithm requires prohibitively long time
to find a solution. Svestka and Overmars [25] suggested an SB algorithm specially tailored
to many robots. Their solution still requires exorbitantly large roadmaps and is restricted to
a small number of robots. Solovey et al. [21] devised a more economical approach, dRRT (for
discrete RRT), which is capable of coping with a larger number of robots, and which was
extended to produce asymptotically optimal solutions [18], namely converging to optimal
(e.g., shortest overall distance) solution as the number of samples tends to infinity.

Regarding separability bounds, Solomon and Halperin [19] studied the labeled version of
the unit-disc problem among polygonal obstacles in the plane, and showed that a solution
always exists under a more relaxed separation: each start or target position has an aura,
namely it resides inside a not-necessarily-concentric disc of radius 2, and the auras of two
positions (each being start or target) may overlap, as long as the aura of one robot does not
intersect the other robot. They do not however make the distinction between monochromatic
and bichromatic separation, and impose the same conditions for all auras.

With respect to unlabeled motion planning, the problem was first considered by Kloder
and Hutchinson [10] in 2006. In their paper they provide a sampling-based algorithm which is
able to solve the problem. In 2016, Solovey and Halperin [20] have shown that for unit square
robots the problem is PSPACE-hard using a reduction from non-deterministic constraint logic
(NCL) [7]. This PSPACE-hardness result also extends to the labeled variant for unit square
robots. Just recently, the unlabeled variant for two classes of disc robots with different radii
was also shown to be PSPACE-hard [2], with a similar reduction from NCL. In the reduction
the authors use robots of radius 1

2 and 1. In contrast, the earlier NP-hardness result for disc
robots by Spirakis and Yap [23] required discs of many sizes with large differences in radii.

Fortunately, an efficient (polynomial-time) algorithm can still exist when some additional
assumptions are made on the problem. Turpin, Michael, and Kumar [26] consider a variant
of the unlabeled motion-planning problem where the collection of free positions surrounding
every start or target position is star-shaped. This allows them to create an efficient algorithm

SoCG 2022



12:4 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

for which the path-length is minimized. In the paper by Adler et al. [1], an O(n log n+mn+m2)
algorithm is given for the unlabeled variant, assuming the workspace is a simple polygon
and the start and target positions are well-separated, which is defined as minimum distance
of four between any start or target position. Their algorithm is based on creating a motion
graph on the start and target positions and then treating this as an unlabeled pebble game,
which can be solved in O(S2) where S is the number of pebbles [11]. Furthermore, in the
paper by Adler et al. [1] the separation bound 4

√
2 − 2 (≈ 3.646) is shown to be sometimes

necessary for the problem to always have a solution. When the workspace contains obstacles,
Solovey et al. [22] describe an approximation algorithm which is guaranteed to find a solution
when one exists, assuming also that the start and target positions are well-separated and a
minimum distance of

√
5 between a start or target position and an obstacle.

Finally, we mention that multi-pebble motion on graphs, already brought up above, is
part of a large body of work on motion planning in discrete domains, sometimes called
multi-agent path finding (MAPF), and often adapted to solving continuous problems; see [24]
for a review, and [4, 27, 29, 30] for a sample of recent results.

Contributions. We distinguish between two types of separability bounds: monochromatic,
denoted by µ, the separation between two start positions or between two target positions,
and bichromatic, denoted by β, between a start and a target position (see Figure 1).

After introducing necessary definitions and notation in Section 2, we begin with a lower
bound construction for the monochromatic and bichromatic separation in Section 3. We
prove that for µ = 4 − ε or for β = 3 − ε (for arbitrarily small positive ε) the solution to the
unlabeled multi-robot motion-planning problem in a simple polygon may not always exist.

We devote the remainder of the paper to showing a matching upper bound. We prove
that the unlabeled MRMP problem for unit-disc robots in a simple polygon is always solvable
for monochromatic separation µ = 4 and bichromatic separation β = 3, assuming that the
number of start and target positions match in each free space component. For the case of
a single free space component, we show an even stronger result that the problem is always
solvable for µ = 4 and β = 0.

Specifically, in Section 4 we devise an efficient algorithm for MRMP for µ = 4 and β = 2
in the case of a single free space component, and then extend it to also work for µ = 4
and β = 0. In Section 5 we extend the algorithm to the case of a free space with multiple
components and µ = 4 and β = 3. Our algorithm runs in O(n log n + mn + m2) time, where
n is the size of the polygon, and m is the number of robots.

Our results improve upon the results by Adler et al. [1], who describe an algorithm with
the same running time that always solves the problem assuming separation of µ = β = 4.
Similarly to their approach, we restrict the robots to move one at a time on a motion graph
that has the start and target positions as vertices. Separation of µ = β = 4 ensures that the
connectivity of the motion graph never changes. However, in our case, the lower bichromatic
separation results in a dynamic motion graph: existence of some edges may depend on
whether specific nodes are occupied by the robots. Furthermore, the lower bichromatic
separation in the case of multiple free space components leads to more intricate dependencies
between the components. Nonetheless, we show that there is always an order in which we
can process the components, and devise a schedule for the robots to reach their targets.

Due to space restrictions, some proofs are omitted and can be found in the full version of
this paper.



B. Banyassady et al. 12:5

W
F

s1 t1

t2 s2

t3

s3

t4

s4

β = 3
µ = 4

Figure 1 Basic definitions. The workspace W is the rectilinear polygon, the free space F is the
inner gray area. The aura of a start or target position is shown as a dashed circle of radius two (for
unit-disc robots). The monochromatic separation µ = 4, the bichromatic separation β = 3.

2 Definitions and notation

We consider the problem of m indistinguishable unit-disc robots moving in a simple polygonal
workspace W ⊂ R2 with n edges. The obstacle space O is the complement of the workspace,
that is, O = R2 \ W. We refer to points x ∈ W as positions, and we say that a robot is at
position x when its center is positioned at point x ∈ W .

For given x ∈ R2 and r ∈ R+, we define Dr(x) to be the open disc of radius r centered
at x. The unit-disc robots are defined to be open sets. Thus, a robot collides with the
obstacle space O if and only if its center is at a distance strictly less than 1 from O. We
can now define the free space F to be all positions where a unit-disc robot does not collide
with obstacle space, or, more formally, F = {x ∈ R2 | D1(x) ∩ O = ∅}. The free space is
therefore a closed set. We refer to the connected components of F as free space components.

As the robots are defined to be open sets, two robots collide if the distance between their
positions is strictly less than 2. In other words, if a robot occupies a position x then no other
robot can be at a position y ∈ D2(x); we call D2(x) the aura of the robot at position x. In
our figures the auras are indicated by dashed circles (see Figure 1).

Unlabeled multi-robot motion-planning problem. Given a set S of m start positions and a
set T of m target positions, where S, T ⊂ F , the goal is to plan a collision-free motion for m

robots from S to T , such that by the end of the motion every target position in T is occupied
by some robot. Since the robots are indistinguishable (i.e., unlabeled), it does not matter
which robot ends up at which target position. More formally, we wish to find continuous
paths πi : [0, 1] → F , for 1 ≤ i ≤ m, such that πi(0) = si and {πi(1) | 1 ≤ i ≤ m} = T .
Furthermore, we require that, at any moment in time τ ∈ [0, 1], for all robots i, no other
robot j is in the aura of robot i, πj(τ) ̸∈ D2(πi(τ)). In our figures we indicate start positions
by green unit discs centered at points in S, and target positions by purple unit discs centered
at points in T .

For a subset Q ⊂ F of the free space, we use S(Q) = S ∩ Q to denote the set of start
positions that reside in Q, and similarly T (Q) = T ∩ Q to denote the set of target positions
in Q. We define the charge q(Q) as the difference between the number of start and target
positions in Q, q(Q) = |S(Q)| − |T (Q)|. For each free space component Fi, we require that
q(Fi) = 0, i.e., there needs to be an equal number of start and target positions.

Finally, we state below a few useful properties proven by Adler et al. [1].

SoCG 2022



12:6 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

4− ε
2s1 s2

t1 t2

2

A B < 2

3− ε

s2 t2

s1 t1

2

BA

C

< 2

(i) (ii)

Figure 2 (i) An instance for µ = 4 − ϵ with one free space component. The robots are blocking
each other from entering the corridor. (ii) An instance for β < 3 − ϵ. The distance |AB| < 2 is too
small for a robot to pass through, thus there are two free space components. The robot in the top
component is blocking the one in the bottom component.

▶ Lemma 1 ([1]). Each component Fi of the free space is simply connected.

▶ Lemma 2 ([1]). For any x ∈ F , let Fi be the connected component of the free space
containing x. Then the set D2(x) ∩ Fi is connected.

3 Tighter separation bounds

In this section we explore the separation between the start and target positions that is
necessary for the problem to always have a solution. We show that, without a certain amount
of monochromatic separation (µ) and bichromatic separation (β), there are instances of the
problem that cannot be solved, thus certain separation is necessary for the problem to always
have a solution. We first prove that a separation of µ = 4 is necessary. This bound is tight
and it improves a previous lower bound of µ = 4

√
2 − 2 (≈ 3.646) [1]. We then show that

β = 3 is also necessary.
The following lemma is proven using the construction in Figure 2 (i).

▶ Lemma 3. For µ < 4 a solution does not always exist, even if the free space consists of a
single connected component containing two start and two target positions.

Thus, for a solution to always exist, a monochromatic separation of µ = 4 is necessary. Since
the problem for µ = β = 4 always has a solution, the monochromatic separation is tight.
Hence, we aim to reduce the bichromatic separation β. The proof of the following lemma
uses the construction in Figure 2 (ii).

▶ Lemma 4. For β < 3 a solution does not always exist, even if there are only two free space
components, each containing one start and one target position.

The lower bound construction for β < 3 has two free space components with one robot in
each. A robot in the top free space component is blocking the motion of a robot in the
bottom component, no matter which position it is in. Thus, the lower bound is not applicable
if the free space has only one component. Indeed, as we show in the next section, in this
case no bichromatic separation is necessary.



B. Banyassady et al. 12:7

F

s t
F

s1 s2

t1

r1

r2r3
(i) (ii)

Figure 3 (i) When β < 4, a robot cannot cross the intersection of the auras of s and t (in red) if
either s or t is occupied. (ii) D−

2 (t1) consists of multiple connected components (remote in red and
non-remote in blue). Remote components r1 and r2 are blocking areas associated with blocker t1.

4 A single free space component

In this section we consider the multi-robot motion-planning problem for the case where
the free space consists of a single component F . Initially, for simplicity, we assume µ = 4
and β = 2. That is, no start/target position can be inside the aura of another start/target
position. We later modify the algorithm to handle the case with no bichromatic separation.

The algorithm by Adler et al. [1] uses the separation assumption µ = β = 4, and cannot
be applied if β < 4. Their algorithm greedily moves the robots to the target positions, and
may not always be able to find a solution in our case. Indeed, a pair of a start and a target
positions whose auras intersect can possibly block the path for robots who need to go through
the intersection of these auras (see Figure 3(i)). Therefore, in our algorithm we need to
handle such blocking positions.

4.1 Preliminaries
Remote components. Let A(S) =

⋃
s∈S D2(s) be the union of all auras of the start positions

S. For a target position t ∈ T , let D−
2 (t) = (D2(t) ∩ F ) \ A(S) be the portion of F within

the aura of t minus the auras of the start positions in S (see Figure 3(ii)). Note that even
though, by Lemma 2, D2(x) ∩ F is always connected for any x ∈ F , the region D−

2 (t) may
consist of multiple connected components (split by the auras of start positions). One of these
components contains t (shown in blue in the figure). A component of D−

2 (t) that does not
contain t is called a remote component of t (shown in red in the figure). Let R be the set of
remote components for all target positions in T .

Blockers and blocking areas. Consider the example in Figure 3 (ii). If t1 is occupied, its
remote components r1, r2, and r3 cannot be crossed by a moving robot. Crossing the remote
component r3 can be avoided by moving along its boundary. However remote components r1
and r2 pose a problem, as they cut the free space, and thus crossing them cannot be avoided.
We call such remote components blocking areas.

For a target position t ∈ T , a blocking area is a remote component of t that partitions F

into multiple components. If t is associated with at least one blocking area, we refer to t as a
blocker. A blocker might have multiple associated blocking areas (as in Figure 3 (ii)). Let
B ⊆ R be the set of blocking areas for all target positions in T .

SoCG 2022



12:8 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

s2

s1

t1 s3 t2

t3
F3

F2

F1

F1 F3

F4

F4

F2

Figure 4 An example with two blockers t1 and t2, and their associated blocking areas shown in
red. The corresponding residual components graph H is illustrated on the right side. Note that
there is no edge between F4 and F3, since the blocker t2 is not located in either of them.

For a blocking area b ∈ B associated with position t, let the blocking path be any path
π ⊂ D2(t) connecting b to t. By Lemma 2, π exists, and by definition of the blocking area, π

crosses the aura of at least one start position. We further show in the following lemma that
this path does not intersect any other blocking area.

▶ Lemma 5. For a blocking area bx ∈ B and its associated blocker x, there exists some
blocking path π such that π ⊂ D2(x) and π does not intersect a blocking area by of any other
blocker y.

Residual components. Let F = F \
⋃

R be the portion of the free space F that does
not intersect any remote component in R. By definition, a blocking area partitions F into
multiple connected components. Since some remote components are blocking areas, F may
consist of multiple connected components. We refer to the connected components of F as
residual components. Next, let F ∗ = F \ A(S) be the portion of the free space F that does
not intersect either the aura of a start position or a remote component of a target position.

▶ Lemma 6. Given m starting and target positions in a polygonal workspace of size n,
the subsets F and F ∗ of the free space, and the remote components R, all have complexity
O(m + n) and can be computed in O((m + n) log(m + n)) time.

Residual components graph. We define the residual components graph as H = (V H , EH)
where V H contains one vertex for each residual component of F (see Figure 4). There is an
edge between two vertices v1, v2 ∈ V H if their respective residual components are separated
by a single blocking area b ∈ B and its associated blocker t resides in the respective residual
component of either v1 or v2. Although a single blocking area in B can divide F into more
than two connected components, such a blocking area does not create a cycle in H. This is
due to the definition of an edge in H which requires the associated blocker to be in one of
the two components. Next lemma follows directly from Lemma 5.

▶ Lemma 7. Any blocking area b ∈ B shares a boundary with the residual component
containing its associated blocker t.

Next we show that H is a tree by construction.

▶ Lemma 8. The residual components graph H is a tree.



B. Banyassady et al. 12:9

The general idea of our algorithm is to use the residual components graph H to help us
split the problem into smaller subproblems. Using the graph H, we will iteratively choose a
leaf residual component F i with a non-positive charge (recall that the charge of a component
is the number of start positions minus the number of the target positions), and solve the
subproblem restricted to that component using its motion graph, which we define shortly.
If afterwards F i will require more robots, they will be moved from a neighboring residual
component, ensuring that the blocking area is free for the robots to pass.

4.2 The motion graph
We now introduce the motion graph, which captures adjacencies between the start/target
positions. Similarly to [1], the underlying idea of our algorithm is to always have the robots
positioned on start or target positions and, using the motion graph, to move one robot at a
time between these positions until all target positions are occupied.

Recall that for now we assume that the free space consists of one connected component
F . For a free space F with start positions S and target positions T , we define the motion
graph G = (V G, EG), where V G = S ∪ T . The edges EG in G are of two types: guaranteed
or blockable, which we formally define below. Guaranteed edges correspond to so called
guaranteed paths, where a path in the free space F between u, v ∈ S ∪ T is said to be
guaranteed if it does not intersect the aura of any position other than u and v.

Unlike guaranteed, blockable edges correspond to paths in F that must cross blocking
areas. Our algorithm requires the motion graph G to be connected. However, as β < 4,
without blockable edges the motion graph may be disconnected. Introducing blockable edges
ensures that G is connected.

Guaranteed edges. First, we define the guaranteed edges in EG and show how to construct
corresponding guaranteed paths. Recall that we define the set F ∗ to be the free space minus
the auras of the start positions and the remote components, F ∗ = F \ (

⋃
s∈S D2(s) ∪

⋃
R).

s1

s2
s3

s4
s5

t1

t2
t3

t4

pt3
ps4 ps5

pt4

pt2

ps2

s1

s2
s3

s4
s5

t1

t2
t3

t4

ps3

pt1

ps1

F ∗
j

Figure 5 An illustration of generating the guaranteed edges in a single component F ∗
j . Component

F ∗
j is shown in dark grey; Λj is ⟨ps1 , pt1 , ps2 , ps3 , ps5 , pt4 , pt3 , ps4 ⟩. A path between a pair of adjacent

positions is shown in red. The motion graph is shown on the right.

SoCG 2022



12:10 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

Consider a connected component F ∗
j ⊂ F ∗. Note that F ∗

j may not be simply-connected, as
it may contain holes due to subtracted auras of start positions. Abusing the notation, by
∂F ∗

j we refer to the outer boundary of F ∗
j . For ∂F ∗

j , we create an ordered circular list Λj of
points along ∂F ∗

j as follows (see Figure 5).

(i) For each target position t ∈ T ∩ F ∗
j whose aura intersects ∂F ∗

j , we pick a set of
representative points Pt such that Pt contains one point on each connected component
of ∂F ∗

j ∩ D2(t). The points Pt are stored in Λj based on their ordering along ∂F ∗
j .

(ii) For each position x which is (1) either a target position in F ∗
j whose aura does not

intersect ∂F ∗
j , or (2) a start position corresponding to a hole in F ∗

j , we shoot a ray
vertically upwards until it hits either ∂F ∗

j or the aura of another position y. In the
former case the first intersection point px is added to Λj as a representative point of x.
In the latter case a guaranteed edge is added to EG connecting x and y.

(iii) Now, consider a start position s whose aura shares a boundary with ∂F ∗
j . Note that

∂F ∗
j ∩ D2(s) is connected. If we can pick a representative point ps on ∂F ∗

j ∩ D2(s) such
that there exists an unobstructed path in F connecting s to ps, then we insert ps to
Λj based on its ordering along ∂F ∗

j . Otherwise, if for every choice of ps ∈ ∂F ∗
j ∩ D2(s)

any path connecting s to ps crosses an aura of some target position t, then we add a
guaranteed edge to EG connecting s and t (for every such target position t). Observe,
that by the definition of remote components, if a path connecting s to ps crosses the
aura of t, it must cross it through the non-remote component of t. Thus, there must
exist a guaranteed path connecting s and t.

Now that Λj is generated, we add a guaranteed edge to the motion graph between any two
nodes in G whose representative points are consecutive in Λj . If multiple edges between two
vertices and self-loops are generated, we remove them in a post-processing step. We repeat
this procedure for every connected component F ∗

j ⊂ F ∗.

Blockable edges. For any blocking area b ∈ B and its associated blocker t, each section
of ∂b is either shared with (1) the boundary of the aura of t, (2) with the boundary of the
aura of some start position in S, or (3) with ∂F . See Figure 6 for an illustration. We call a
section of ∂b which is shared with ∂F a free boundary segment of b. For any free boundary
segment of b with endpoints x and y, we assign a set of incident positions in S ∪ T to x and
to y (see below for details). We then add a blockable edge to the motion graph between
every pair of incident positions of x and y respectively. Consider an endpoint x of a free
boundary segment of b. The set of incident positions of x is defined as follows.

t1
t3

s1

s2

s3

t1
t3

t2
s1

s2

s3

t2

F ∗
1

F ∗
2

F ∗
3

Figure 6 An illustration of a blocking area (in red) with its free boundary (in blue). On the right,
the motion graph is shown, with the guaranteed edges (in black) and blockable edges (in blue).



B. Banyassady et al. 12:11

s

t

s′

t′

x x′y y′

Figure 7 The special case when a blockable edge is added across two blocking areas.

(i) If x is also an endpoint of a section of ∂b that is shared with ∂D2(s) for s ∈ S, then s

is the only incident position for x.
(ii) If x is also an endpoint of a section of ∂b that is shared with ∂D2(t), then x lies on the

boundary of a component of F ∗. Let that component be F ∗
j . Based on the position of

x on ∂F ∗
j , using Λj , we find the predecessor and the successor points of x in Λj . By

construction of Λj , these points are representative of some positions in S ∪ T . We select
those positions as the incident positions for x. The special case that Λj is empty, is
handled separately and is explained next.

For the special case when Λj of F ∗
j is empty, if b is the only blocking area incident to ∂F ∗

j ,
then F ∗

j does not contain any position in S ∪ T , and can be ignored. Otherwise, if F ∗
j is

adjacent to another blocking area b′ (of some blocker t′), then from x we follow ∂F ∗
j until we

reach ∂b′ at x′, which must be the endpoint of a free boundary segment of b′ (see Figure 7).
Let y′ be the other endpoint of that free boundary segment. We now select the incident
positions of y′ as the incident positions of x, i.e., we add a blockable edge between the
incident positions of y and those of y′. This results in blockable edges associated with two
blocking areas b and b′.

Translating motion graph edges to free space paths. Consider a component F ∗
j ⊂ F ∗,

and let Λj be the circular list of representative positions constructed for F ∗
j . Let u and v be

two positions whose representative points are adjacent in Λj . By definition, (u, v) ∈ EG is a
guaranteed edge, and we claim that there exists a guaranteed path between u and v in F .
We construct such a path πuv in the following way.

(i) First, πuv connects u to its representative point pu by either following an unobstructed
path from u to pu within u’s aura, or by following the vertical ray used to generate pu

outside of u’s aura.
(ii) Next, πuv connects pu to the representative point pv of v by following ∂F ∗

j .
(iii) Finally, πuv connects pv to v similarly to (i).

Now consider the case when a guaranteed edge (u, v) is constructed without adding the
representative points to Λj . If (u, v) is constructed according to the case (ii) of the definition
of the guaranteed edges, and without loss of generality the vertical ray emanates from u,
then the guaranteed path πuv consists of the vertical segment upu and an unobstructed
path connecting the representative point pu to the node v within the aura of v. If (u, v) is
constructed in case (iii), and without loss of generality u ∈ S and v ∈ T , then the guaranteed
path πuv consists of a path from u until the first intersection with the aura of v and an
unobstructed path to v within its aura.

The paths for blockable edges are constructed in the following way. Each endpoint of a
free boundary segment is incident to at most two representative points in some list Λi. Thus,
each free boundary segment (x, y) of every blocking area b contributes up to four edges to
the motion graph. Consider a blockable edge (ux, vy) between an incident position ux of x

and an incident position vy of y. The corresponding path consists of three parts.

SoCG 2022



12:12 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

(i) From ux to x. This part is generated similarly to the part (i) for guaranteed edges.
(ii) From x to y. This part follows the free boundary of b between x and y.
(iii) From y to vy. This part is generated similarly to the part (iii) for guaranteed edges.

The following proposition, lists five properties of the motion graph, which will be used to
derive the correctness and the complexity of the algorithm.

▶ Proposition 9. The following properties of a motion graph G hold.
1. There exists a guaranteed path in F for each guaranteed edge in G.
2. There exists a path in G consisting solely of guaranteed edges between any two positions

inside the same residual component F j ∈ F .
3. G is connected.
4. The number of edges |EG| in G is bounded by O(m).
5. Between any two vertices of G, we can find a path in O(m) time, and the corresponding

path in the free space has complexity of O(m + n).
6. The motion graph G can be created in O(mn + m2) time.

4.3 The algorithm
We are now ready to describe our algorithm. We use the residual components graph H,
which is a tree, in order to split the problem into smaller subproblems, and recursively solve
them. Using H we select a particular residual component of the free space, and solve the
subproblem restricted to it using the motion graph. Proposition 9 will help us ensure that
such reconfiguration is always possible. One key point is to select a vertex of H, such that,
after solving the subproblem in the corresponding residual component, no robots need to
move across the incident blocking areas. That is, we need to choose the residual components
in such an order that we can ignore blockers in the solved residual components.

Recall that a charge q(Q), for some Q ⊆ F , is the difference between the numbers of the
start positions and the target positions in Q. Initially, if there is an edge e ∈ EH such that
removing e splits H into two subtrees with zero total charge each, then we remove e from H

and recurse on the two subtrees.
Let us now assign an orientation to the edges of H in the following way. For each edge

e = (u, v), let Hu and Hv be the two trees of H \ {e} containing u and v, respectively. We
orient e from u to v if q(Hu) > 0 > q(Hv), and from v to u if q(Hu) < 0 < q(Hv).

▶ Lemma 10. There exists at least one sink vertex in the directed acyclic graph H.

Using Lemma 10, our algorithm selects a sink node σ of H . The respective residual component
F σ is solved as follows. First, all robots inside F σ are moved to unoccupied target positions.
Since all incident edges of σ in H are directed inwards, each edge requires one or more
robot(s) to move into F σ. The exact number can be computed from the charges of the
subtrees of the adjacent residual components. We then move the required number of robots
the adjacent residual components (and farther residual components if needed) to F σ over
the corresponding blocking areas. Consider the blocker t associated with a blocking area b

incident to F σ. If t is occupied before the charge of F σ becomes zero, then t has to reside
in F σ, as the adjacent residual components were not yet processed by the algorithm. Then
we move the robot from t to another unoccupied target in F σ, and the now unoccupied
blocker position t is the last target to become occupied by a robot moving across b.

Once all target positions of F σ are filled, σ and its incident edges are removed from H,
and we recurse on the remaining subtrees. Due to the way we select σ, and the number of
robots that are moved into F σ, each subtree has a total zero-charge.



B. Banyassady et al. 12:13

▶ Theorem 11. When the free space consists of a single connected component, our algorithm
finds a solution to the unlabeled motion planning problem for unit-disc robots in a simple
workspace, assuming monochromatic separation µ = 4 and bichromatic separation β = 2.
This takes O(n log n + mn + m2) time.

We now show how to extend our approach to β = 0. In the above algorithm, we use the
bichromatic separation β = 2 to ensure that at every moment in time any subset of nodes of
the motion graph can be occupied by robots. If β < 2 we can no longer assume that any
start position and any target position can be occupied at the same time. Nevertheless, even
when β = 0, observe that, due to µ = 4, for a pair of start and target positions si and tj

such that |sitj | < 2, no other target position tk can lie in D2(si), and no other start position
sℓ can lie in D2(tj). Thus, there is a guaranteed path from si to tj . This can be exploited to
adjust the motion graph and the algorithms for β = 0. Specifically, for each pair of such si

and tj , we create a single target node in our motion graph, we move the robot from si to tj ,
and adjust our algorithm to work for the case of different number of start and target nodes
in the motion graph.

▶ Theorem 12. When the free space F consists of a single component, the algorithm finds a
solution to the unlabeled motion planning problem for unit-disc robots in a simple workspace,
assuming monochromatic separation µ = 4. This takes O(n log n + mn + m2) time.

5 Multiple free space components

In this section we consider the case where the free space F consists of multiple connected
components. Since a separation of β = 3 is necessary to guarantee a solution, we now assume
separation bounds of µ = 4 and β = 3.

s2
t2

t1
s1

Figure 8 An example of a position (s2) blocking movement (s1 to t1) in another free space
component.

Within each free space component we can use the algorithm from Section 4. However,
paths, that are otherwise valid, may be blocked by a robot from another component (see
Figure 8). In this example, there is a simple solution: Move the robot away from s2 toward
t2 in the upper component, before moving the robot from s1 to t1 in the lower component.
In the following we prove that there always exists an order on the free space components
such that the motion planning problem can be solved by solving the problem component by
component in that order.

Let F, F ′ be two distinct components of F , and let x ∈ F be such that D2(x) ∩ F ′ ̸= ∅.
Since the workspace is simple, it is sufficient to prove that for any such pair of components
there is an order between them such that we can first solve one component and then the
other. There are two reasons why such an ordering may not exist.

SoCG 2022



12:14 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

Firstly, there might be a start position s ∈ F and a start position s′ ∈ F ′ such that
D2(s) ∩ F ′ ̸= ∅ and D2(s′) ∩ F ̸= ∅, that is, a start position in F interferes with paths in
F ′ and vice versa. However, Adler et al. [1] proved that with µ = 4, this cannot be the case.
Likewise it cannot happen that a target position in F interferes with paths in F ′ and at the
same time a target position in F ′ interferes with paths in F .

Secondly, there might be a start and target positions s, t ∈ F both interfering with paths
in F ′. Because we only have a separation bound of β = 3 between s and t, this may actually
occur. However, interference does not always affect the connectivity of the affected free space
component. Therefore, we define a position x (start or target) to be a remote blocker of
a free space component F ′ if (1) x ̸∈ F ′, and (2) D2(x) intersects ∂F ′ in more than one
connected component.

▶ Lemma 13. If the unlabeled motion planning problem has no remote blockers, then there
is always a solution.

Now the key geometric observation is that if auras of both s and t intersect F ′, they
cannot be both remote blockers of F ′, and as a consequence we can still always find an order
to resolve F and F ′.

▶ Theorem 14. We are given m unit-disc robots in a simple polygonal workspace W ⊂ R2,
with start and target positions S, T and separation constraints µ = 4 and β = 3. Assuming
each connected component F of the free space F for a single unit-disc robot in W contains
an equal number of start and target positions, there exists a collision-free motion plan for the
robots starting at S such that all target positions in T are occupied after execution.

6 Conclusion

In this paper we presented an efficient algorithm for the unlabeled motion planning problem
for unit-disc robots with sufficient separation in a simple polygon. Our result is optimal, in
the sense that with less separation a solution may not exist. Nevertheless, there remain a
number of challenging open problems.

To prove the tightness of the separation bounds, we first constructed domains with
straight-line segments and circular arcs as boundaries, and then obtained simple polygons by
approximating these. This results in polygons of high complexity. An open question remains
whether it is possible to prove the separation bounds with constant-complexity polygons.

Of course, a solution may still exist even if the separation bounds are violated. The
complexity of the problem in this setting remains a challenging open problem. The general
unlabeled motion planning problem in a polygonal environment with holes is PSPACE-
complete [2, 20]. Does the restriction to unit-disc robots and/or simple domains make the
problem tractable, in particular if we still enforce some small separation bound?

What challenges arise when the workspace is no longer simple, but rather contains
obstacles? Intuitively, obstacles seem to pose an issue when defining an ordering for solving
multiple free space components, since positions can interfere between components at multiple
locations. Are there conditions, similar to the separation bounds, which can guarantee a
solution (together with an efficient algorithm) for unlabeled multi-robot motion planning
amidst obstacles?



B. Banyassady et al. 12:15

References
1 Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion

planning for unlabeled discs in simple polygons. In Algorithmic Foundations of Robotics XI,
pages 1–17. Springer, 2015.

2 Thomas Brocken, G. Wessel van der Heijden, Irina Kostitsyna, Lloyd E. Lo-Wong, and
Remco J. A. Surtel. Multi-robot motion planning of k-colored discs is PSPACE-hard. In
10th International Conference on Fun with Algorithms (FUN 2021), volume 157 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 15:1–15:16, 2020.

3 Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Ly-
dia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and
Implementation. MIT Press, 2005.

4 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch.
SIAM Journal on Computing, 48(6):1727–1762, 2019.

5 Dan Halperin, Lydia Kavraki, and Kiril Solovey. Robotics. In Jacob E. Goodman, Joseph
O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry,
chapter 51, pages 1343–1376. Chapman & Hall/CRC, 3rd edition, 2018.

6 Dan Halperin, Micha Sharir, and Oren Salzman. Algorithmic motion planning. In Jacob E.
Goodman, Joseph O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 50, pages 1311–1342. Chapman & Hall/CRC, 3rd edition, 2018.

7 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theoretical
Computer Science, 343:72–96, 2005.

8 John E. Hopcroft, Jacob Theodore Schwartz, and Micha Sharir. On the complexity of motion
planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem”.
The International Journal of Robotics Research, 3(4):76–88, 1984.

9 Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

10 Stephen Kloder and Seth Hutchinson. Path planning for permutation-invariant multirobot
formations. IEEE Transactions on Robotics, 22(4):650–665, 2006.

11 Daniel M. Kornhauser, Gary Miller, and Paul Spirakis. Coordinating pebble motion on graphs,
the diameter of permutation groups, and applications. Master’s thesis, MIT, Dept. of Electrical
Engineering and Computer Science, 1984.

12 James J. Kuffner and Steven M. Lavalle. RRT-Connect: An efficient approach to single-query
path planning. In IEEE International Conference on Robotics and Automation (ICRA), pages
995–1001, 2000.

13 Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
14 Gildardo Sanchez and Jean-Claude Latombe. Using a PRM planner to compare centralized and

decoupled planning for multi-robot systems. In IEEE International Conference on Robotics
and Automation, volume 2, pages 2112–2119. IEEE, 2002.

15 Jacob T. Schwartz and Micha Sharir. On the “piano movers” problem. II. General techniques for
computing topological properties of real algebraic manifolds. Advances in Applied Mathematics,
4(3):298–351, 1983.

16 Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: III. coordinating the
motion of several independent bodies: The special case of circular bodies moving amidst
polygonal barriers. The International Journal of Robotics Research, 2(3):46–75, 1983.

17 Micha Sharir and Shmuel Sifrony. Coordinated motion planning for two independent robots.
Annals of Mathematics and Artificial Intelligence, 3(1):107–130, 1991.

18 Rahul Shome, Kiril Solovey, Andrew Dobson, Dan Halperin, and Kostas E. Bekris. dRRT*:
Scalable and informed asymptotically-optimal multi-robot motion planning. Autonomous
Robots, 44(3-4):443–467, 2020.

SoCG 2022



12:16 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

19 Israela Solomon and Dan Halperin. Motion planning for multiple unit-ball robots in Rd. In
Marco Morales, Lydia Tapia, Gildardo Sánchez-Ante, and Seth Hutchinson, editors, Proc.
13th Workshop on the Algorithmic Foundations of Robotics, WAFR, volume 14 of Springer
Proceedings in Advanced Robotics, pages 799–816. Springer, 2018.

20 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning.
The International Journal of Robotics Research, 35(14):1750–1759, 2016.

21 Kiril Solovey, Oren Salzman, and Dan Halperin. Finding a needle in an exponential haystack:
Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. Interna-
tional Journal of Robotics Research, 35(5):501–513, 2016.

22 Kiril Solovey, Jingjin Yu, Or Zamir, and Dan Halperin. Motion planning for unlabeled discs
with optimality guarantees. In Robotics: Science and Systems XI. Robotics: Science and
Systems Foundation, 2015.

23 Paul Spirakis and Chee K. Yap. Strong NP-hardness of moving many discs. Information
Processing Letters, 19(1):55–59, 1984.

24 Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski.
Multi-agent pathfinding: Definitions, variants, and benchmarks. In Pavel Surynek and William
Yeoh, editors, Proc. 12th International Symposium on Combinatorial Search, SOCS, pages
151–159. AAAI Press, 2019.

25 Petr Svestka and Mark H. Overmars. Coordinated path planning for multiple robots. Robotics
and Autonomous Systems, 23(3):125–152, 1998.

26 Matthew Turpin, Nathan Michael, and Vijay Kumar. Concurrent assignment and planning of
trajectories for large teams of interchangeable robots. In IEEE International Conference on
Robotics and Automation, pages 842–848. IEEE, 2013.

27 Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot path planning.
Artificial Intelligence, 219:1–24, 2015.

28 Chee Yap. Coordinating the motion of several discs. Courant Institute of Mathematical
Sciences, 1984.

29 Jingjin Yu. Constant factor time optimal multi-robot routing on high-dimensional grids. In
Hadas Kress-Gazit, Siddhartha S. Srinivasa, Tom Howard, and Nikolay Atanasov, editors,
Robotics: Science and Systems XIV, 2018.

30 Jingjin Yu and Steven M. LaValle. Optimal multirobot path planning on graphs: Complete
algorithms and effective heuristics. IEEE Transactions on Robotics, 32(5):1163–1177, 2016.



Optimality of the Johnson-Lindenstrauss
Dimensionality Reduction for Practical Measures
Yair Bartal #

Hebrew University, Jerusalem, Israel

Ora Nova Fandina #

Aarhus University, Denmark

Kasper Green Larsen #

Aarhus University, Denmark

Abstract
It is well known that the Johnson-Lindenstrauss dimensionality reduction method is optimal for
worst case distortion. While in practice many other methods and heuristics are used, not much is
known in terms of bounds on their performance. The question of whether the JL method is optimal
for practical measures of distortion was recently raised in [8] (NeurIPS’19). They provided upper
bounds on its quality for a wide range of practical measures and showed that indeed these are best
possible in many cases. Yet, some of the most important cases, including the fundamental case of
average distortion were left open. In particular, they show that the JL transform has 1 + ϵ average
distortion for embedding into k-dimensional Euclidean space, where k = O(1/ϵ2), and for more
general q-norms of distortion, k = O(max{1/ϵ2, q/ϵ}), whereas tight lower bounds were established
only for large values of q via reduction to the worst case.

In this paper we prove that these bounds are best possible for any dimensionality reduction
method, for any 1 ≤ q ≤ O( log(2ϵ2n)

ϵ
) and ϵ ≥ 1√

n
, where n is the size of the subset of Euclidean

space.
Our results also imply that the JL method is optimal for various distortion measures commonly

used in practice, such as stress, energy and relative error. We prove that if any of these measures is
bounded by ϵ then k = Ω(1/ϵ2), for any ϵ ≥ 1√

n
, matching the upper bounds of [8] and extending

their tightness results for the full range moment analysis.
Our results may indicate that the JL dimensionality reduction method should be considered

more often in practical applications, and the bounds we provide for its quality should be served as a
measure for comparison when evaluating the performance of other methods and heuristics.

2012 ACM Subject Classification Theory of computation → Random projections and metric embed-
dings; Theory of computation → Computational geometry; Theory of computation → Unsupervised
learning and clustering

Keywords and phrases average distortion, practical dimensionality reduction, JL transform

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.13

Related Version Full Version: https://arxiv.org/abs/2107.06626

Funding Yair Bartal: Supported in part by a grant from the Israeli Science Foundation (1817/17).
Kasper Green Larsen: Supported by Independent Research Fund Denmark (DFF) Sapere Aude
Research Leader grant No 9064-00068B.

1 Introduction

Dimensionality reduction is a key tool in numerous fields of data analysis, commonly used as
a compression scheme to enable reliable and efficient computation. In metric dimensionality
reduction subsets of high-dimensional spaces are embedded into a low-dimensional space,
attempting to preserve metric structure of the input. There is a large body of theoretical
and applied research on such methods spanning a wide range of application areas such as
online algorithms, computer vision, network design, machine learning, to name a few.

© Yair Bartal, Ora Nova Fandina, and Kasper Green Larsen;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yair@cs.huji.ac.il
mailto:fandina@cs.au.dk
mailto:larsen@cs.au.dk
https://doi.org/10.4230/LIPIcs.SoCG.2022.13
https://arxiv.org/abs/2107.06626
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Optimality of the JL Dimensionality Reduction for Practical Measures

Metric embedding has been extensively studied by mathematicians and computer scientists
over the past few decades (see [18, 25, 19] for surveys). developing a rich theory, and some
original and elegant techniques have been developed and successfully applied in various fields
of algorithmic research. See [27, 18, 34] for exposition of some applications.

The vast majority of these methods have been designed to optimize the worst-case
distance error incurred by embedding. For metric spaces (X, dX) and (Y, dY ) an injective
map f : X → Y is an embedding. It has (a worst-case) distortion α ≥ 1 if there is a positive
constant c satisfying for all u ̸= v ∈ X, dY (f(u), f(v)) ≤ c · dX(u, v) ≤ α · dY (f(u), f(v)). A
cornerstone result in metric dimensionality reduction is the celebrated Johnson-Lindenstrauss
lemma [21]. It states that any n-point subset of Euclidean space can be embedded, via
a linear transform, into a O(log n/ϵ2)-dimensional subspace with 1 + ϵ distortion. It has
been recently shown to be optimal in [24] and in [6] (improving upon [5]). Furthermore, it
was shown in [26] that there are Euclidean pointsets in Rd for which any embedding into
k-dimensions must have nΩ(1/k) distortion, effectively ruling out dimensionality reduction
into a constant number of dimensions with a constant worst-case distortion.

Metric embedding and in particular dimensionality reduction have also gained significant
attention in applied community. Practitioners have frequently employed classic tools of
metric embedding as well as have designed new techniques to cope with high-dimensional
data. A large number of dimensionality reduction heuristics have been developed for a variety
of practical settings, eg. [33, 28, 7, 36]. However, most of these heuristics have not been
rigorously analyzed in terms of the incurred error. Recent papers [11] and [8] initiate the
formal study of practically oriented analysis of metric embedding.

Practical distortion measures. In contrast to the worst case distortion the quality of
practically motivated embedding is often determined by its average performance over all
pairs, where an error per pair is measured as an additive error, a multiplicative error or a
combination of both. There is a huge body of applied research investigating such notions of
quality. For the list of citations and a more detailed account on the theoretical and practical
importance of average distortion measures see [8].

In this paper we consider the most basic and commonly used in practical applications
notions of average distortion, which we define in the following. Moment of distortion was
defined in [4], and studied in various papers since then.

▶ Definition 1 (ℓq-distortion). For u ≠ v ∈ X let expansf (u, v) = dY (f(u), f(v))/dX(u, v)
and contractf (u, v) = dX(u, v)/dY (f(u), f(v)). Let distf (u, v) = max{expansf (u, v),
contractf (u, v)}. For any q ≥ 1 the q-th moment of distortion is defined by

ℓq-dist(f) =

 1(|X|
2
) ∑

u̸=v∈X

(distf (u, v))q

1/q

.

Additive average distortion measures are often used when a nearly isometric embedding is
expected. Such notions as energy, stress and relative error measure (REM) are common
in various statistic related applications. For a map f : X → Y , for a pair u ̸= v ∈ X let
du,v := dX(u, v) and let d̂uv := dY (f(u), f(v)). For all q ≥ 1

▶ Definition 2 (Additive measures).

Energyq(f) =

 1(|X|
2
) ∑

u ̸=v∈X

(
|d̂uv − duv|

du,v

)q
 1

q

=

 1(|X|
2
) ∑

u̸=v∈X

∣∣expansf (u, v) − 1
∣∣q 1

q

.



Y. Bartal, O. N. Fandina, and K. G. Larsen 13:3

Stressq(f) =
(∑

u̸=v∈X |d̂uv − duv|q∑
u̸=v∈X(duv)q

) 1
q

, Stress∗
q(f) =

(∑
u̸=v∈X |d̂uv − duv|q∑

u̸=v∈X(d̂uv)q

) 1
q

.

REM q(f) =

 1(|X|
2
) ∑

u ̸=v∈X

(
|d̂uv − duv|

min{d̂uv, duv}

)q
 1

q

.

▷ Claim 3 ([8]). For all q ≥ 1, ℓq-dist(f) − 1 ≥ REM q(f) ≥ Energyq(f).

In the full version we also address the machine learning motivated σ-distortion [12].
In [8] the authors rigorously analyzed dimensionality reduction for the above distortion

measures. The central question they studied is: What dimensionality reduction method is
optimal for these quality measures and what are the optimal bounds achievable ? In particular,
is the Johnson-Lindenstrauss (JL) transform also optimal for the average quality criteria?

Their analysis of the Gaussian implementation of the JL embedding [20] shows that any
Euclidean subset can be embedded with 1 + ϵ average distortion (ℓ1-dist) into k = O(1/ϵ2)
dimensions. And for more general case of the q-moment of distortion, the dimension is
k = O(max{1/ϵ2, q/ϵ}). However, tight lower bounds were proved only for large values of q,
leaving the question of optimality of the most important case of small q, and particularly the
most basic case of q = 1, unresolved.

For the additive average measures (stress, energy and others) they prove that a bound
of ϵ can be achieved in dimension k = O(q/ϵ2). They showed a tight lower bound on the
required dimension only for q ≥ 2, leaving the basic case of q = 1 also unresolved.

In this paper, we prove that indeed the Johnson-Lindenstrauss bounds are best possible
for any dimensionality reduction for the full range of q ≥ 1, for all the average distortion
measures defined in this paper. We believe that besides theoretical contribution this statement
may have important implications for practical considerations. In particular, it may affect the
way the JL method is viewed and used in practice, and the bounds we give may serve a basis
for comparison for other methods and heuristics.

Our results. We show that the guarantees given by the Gaussian JL implementation are
the best possible for the average distortion measures. In particular, we prove

▶ Theorem 4. Given any integer n and Ω( 1√
n

) < ϵ < 1, there exists a Θ(n)-point subset of
Euclidean space such that any map f of it into ℓk

2 with ℓ1-dist(f) ≤ 1+ϵ requires k = Ω(1/ϵ2).

▶ Theorem 5. Given any integer n, and Ω( 1√
n

) < ϵ < 1, and 1 ≤ q <= O(log(ϵ2n)/ϵ),
there exists a Θ(n)-point subset of Euclidean space such that any embedding of it into ℓk

2 with
ℓq-distortion at most 1 + ϵ requires k = Ω(q/ϵ).

As ℓq-distortion is monotonically increasing as a function of q, the theorems imply the
lower bound of k = Ω

(
max

{
1/ϵ2, q/ϵ

})
. For the additive distortion measures we prove:

▶ Theorem 6. Given any integer n and Ω( 1√
n

) < ϵ < 1, there exists a Θ(n)-point subset of
Euclidean space such that any embedding of it into ℓk

2 with any of Energy1, Stress1, Stress∗
1,

REM1 or σ-distortion bounded above by ϵ requires k = Ω(1/ϵ2).

Our main proof is of the lower bound for Energy1 measure, which we show to imply the
bound in Theorem 4 and for all measures in Theorem 6, with some small modifications for the
stress measures. Furthermore, since all additive measures are monotonically increasing with

SoCG 2022



13:4 Optimality of the JL Dimensionality Reduction for Practical Measures

q the bounds hold for all q ≥ 1. Therefore Theorems 4 and 5 together provide a tight bound
of Ω(max{1/ϵ2, q/ϵ}) for the ℓq-distortion. Additionally combined with the lower bounds
of [8] for q ≥ 2, Theorem 6 provides a tight bound of Ω(q/ϵ2) for all additive measures.

Techniques. The proofs of the lower bounds in all the theorems are based on counting
argument, as in the lower bound for the worst case distortion proven by [24]. We extend
the framework of [24] to the entire range of q moments of distortion, including the average
distortion. As in the original proof we show that there exists a large family P of metric
spaces that are quite different from each other so that if one can embed all of these into
a Euclidean space with a small average distortion the resulting image spaces are different
too. This implies that if the target dimension k is too small there is not enough space to
accommodate all the different metric spaces from the family.

Let us first describe the framework of [24].1 The main idea is to construct a large
family of n-point subspaces I ⊆ ℓ

Θ(n)
2 so that each subspace in the family can be uniquely

encoded using a small number of bits, assuming that each I can be embedded with 1 + ϵ

worst-case distortion in ℓk
2 . The sets they construct are such that the information on the

inner products between all the points in I, even if distorted by an additive error of O(ϵ),
enables full reconstruction of the points in the set. In particular, each I consists of a zero
vector together with the standard basis vectors E and an additional set of vectors denoted
by Y. The set Y is defined in such a way that ⟨y, e⟩ ∈ {0, cϵ}, for a constant c > 1, for all
(y, e) ∈ Y × E. The authors then show that a 1 + ϵ distortion embedding f of I must map all
the points into the ball of radius 2 while preserving all the inner products up to an additive
error Θ(ϵ), which enables to recover the vectors in Y. The next step is to show that all
image points can be encoded using a small number of bits, while preserving the inner product
information up to an Θ(ϵ) additive error. This can be achieved by carefully discretizing
the ball, and applying a map f̃ mapping every point to its discrete image approximation so
that ⟨f(v), f(u)⟩ = ⟨f̃(v), f̃(u)⟩ ± Θ(ϵ). For this purpose one may use the method of [6] who
showed2 that randomly rounding the image points to the points in a small enough grid will
preserve all the pairwise inner products within Θ(ϵ) additive error with constant probability,
and this in turn allows to derive a short binary encoding for each input point. This implies
the lower bound on k = Ω(log(ϵ2n)/ϵ2), for ϵ = Ω(1/

√
n).

Let us now explain the challenges in applying this method to the case of bounded average
distortion and q-moments. Assuming f : I → ℓk

2 has 1 + ϵ average distortion neither implies
that all images are in a ball of constant radius nor that f preserves all pairwise inner products.
The bounded average distortion also does not guarantee the existence of a large subset of I
with the properties above. We suggest the following approach to overcoming these issues.
First, we add to I a large number of ”copies” of 0 vectors which enables to argue that a
large subset Î ⊆ I will be mapped into a constant radius ball, such that the average additive
distortion is Θ(ϵ). The next difficulty is that if the images would be rounded to the points in
a grid using a mapping which would preserve all pairwise inner products with Θ(ϵ) additive
error, then the resulting grid would be too large, which would’t allow a sufficiently short
encoding. We therefore round the images to a grid with Θ(ϵ) additive approximation to the
average of the inner products of Î and thus reduce the size of the grid (and the encoding).
The next step is showing that the above guarantees imply the existence of a large enough

1 The description is based on combining the methods of [24, 6], and can be also viewed as our q-moments
bound with q = Θ(log(ϵ2n)/ϵ).

2 The original proof of [24] uses a different elegant discretization argument.



Y. Bartal, O. N. Fandina, and K. G. Larsen 13:5

subset of pairs Z ⊆
(I

2
)

of special structure, which allows to encode the entire set I with a few
bits even if only the partial information about the inner products within Z is approximately
preserved. In particular, we show that there is a large subset YG ⊆ Y such that for each
point y ∈ YG there is a large enough subset Ey ⊆ E such that all pairwise inner products
⟨y, e⟩, where y ∈ YG and e ∈ Ey, are additively preserved up to Θ(ϵ) in the grid embedding,
and therefore all the discretized images of these points have short binary encoding. The last
step is to argue that this subset is sufficiently large so the knowledge of its approximate inner
products possesses enough information in order to recover the entire point set I from our
small size encoding. As this set still covers only a constant fraction of the pairs, and encoding
the rest of the points is far more costly, this forces the dimension and number of points in our
instance to be set to d = Θ(n) = Θ(1/ϵ2), implying a lower bound of k = Ω(1/ϵ2). Finally,
we prove that this can extend to arbitrary large subspaces via metric composition techniques.
To extend these ideas to the general case of q-moments of distortion we prove that similar
additive approximation distortion bounds hold with high probability of at least 1 − e−Θ(ϵq).
This means that a smaller fraction of the pairs require a more costly encoding, and allows us
to set d = Θ(n) = Θ(1/ϵ2) · eΘ(ϵq), implying a lower bound of k = Ω(q/ϵ).

Related work. The study of ”beyond the worst-case” distortion analysis of metric embedding
initiated in [22] by introducing partial and scaling distortions. This has generated a rich line
of follow up work, [1, 4, 2] just to name a few. The notions of average distortion and ℓq-
distortion were introduced in [4] who gave bounds on embedding general metrics in normed
spaces. Other notions of refined distortion analysis considered in the literature include
such notions as Ramsey type embeddings [9], local distortion embeddings [3], terminal and
prioritized distortion [15, 14], and recent works on distortion of the q-moments3[29, 30, 23].

In applied community, various notions of average distortion are frequently used to infer
the quality of heuristic methods [17, 16, 32, 13, 31, 35, 10].

However, the only work rigorously analyzing these notions we are aware of is that of
[8]. They proved lower bounds of k = Ω(1/ϵ) for the all additive measures average (1-norm)
version, and for the average distortion measure (ℓ1-distortion), which we improve here to the
tight Ω(1/ϵ2) bound. For q ≥ 2 they gave tight bounds of Ω(q/ϵ2) for all additive measures.
For ℓq-dist they have shown that for q = Ω(log(1/ϵ)/ϵ) the tight bound of k = Ω(q/ϵ) follows
from the black-box reduction to the lower bound on the worst case distortion.

2 Lower bound for average distortion and additive measures

In this section we prove Theorems 4 and Theorem 6. Using Claim 3, we may focus on proving
the lower bound for Energy1(f) in order to obtain similar lower bounds for REM1(f) and
ℓ1-dist(f). In full version of the paper we show how to change this proof in order to obtain
lower bound on Stress1(f), and further show that the lower bounds for all the additive
measures follow from the lower bounds on Energy and Stress.

We present here the proof of an existence of a bad metric space of size n̂ = Θ(1/ϵ2),
while construction of a metric space of an arbitrary size n ≥ n̂, based on a similar technique
appearing in [8] via metric composition [9], is given in the full version of the paper.

3 The notion in these papers, also studied [4, 8], computes the ratio between the average of (or q-moments)
of new distances to that of original distances, in contrast to the average distortion (or q-moments of
distortion) measure in Definition 1, which measures the average (or q-moments) of pairwise distortions.

SoCG 2022



13:6 Optimality of the JL Dimensionality Reduction for Practical Measures

We construct a large family P of metric spaces, such that each I ∈ P can be completely
recovered by computing the inner products between the points in I. For a given ϵ < 0, let
l = ⌈ 1

γ2ϵ2 ⌉, for some large constant γ > 1 to be determined later. We will prove k ≥ c
γ2

1
ϵ2 ,

for c < 1, and so we may assume w.l.o.g. that ϵ ≤ 1/γ, otherwise the statement trivially
holds. We construct point sets I ⊂ ℓd

2, where d = 2l, each I of size 3d = 6l = Θ(1/ϵ2).
Define a set O = {oj}d

j=1 of d arbitrary near zero vectors in ℓd
2, i.e., a set of d different

vectors such that for all oj ∈ O, ∥oj∥2 ≤ ϵ/100. Let E = {e1, e2, . . . , ed} denote the
vectors of the standard basis of Rd. For a set S of l indices from {1, 2, . . . , d}, we define
yS = 1√

l

∑
j∈S ej . For a sequence of d index sets (possibly with repetitions) S1, S2, . . . , Sd,

let Y[S1, . . . , Sd] = {yS1 , . . . , ySd
}. Each point set I[S1, . . . , Sd] ∈ P is defined as the union of

the sets defined above4, i.e., I[S1, . . . , Sd] = O ∪ E ∪ Y[S1, . . . , Sd]. The size of the family is
|P| =

(
d
l

)d. Note that each I ∈ P is contained in B2(1), the unit ball of ℓd
2, and has diameter

diam(I) =
√

2. Additionally, for all ej ∈ E and yS ∈ Y the value of the inner product ⟨ej , yS⟩
determines whether ej ∈ span{ei|i ∈ S}. In particular, if ⟨ej , yS⟩ = 0 then j ̸∈ S, and if
⟨ej , yS⟩ = 1/

√
l ≥ (1/2)γϵ then j ∈ S.

Assume that for each I ∈ P there is an embedding f : I → ℓk
2 , with Energy1(f) ≤ ϵ.

We prove that this implies that k = Ω(1/ϵ2). The strategy is to produce a unique binary
encoding of each I in the family based on the embedding f . Let length(I) denote the length
of the encoding for each I, we will show that length(I) ≲ l2 + l · k log( 1

ϵk ). Since the encoding
defines an injective map from P to {0, 1}length(I), the number of different sets that can be
recovered by decoding is at most 2length(I). Now, because |P| =

(
d
l

)d ≥ 22l2 we get that
k log( 1

ϵk ) ≳ l and show that this implies the bound on k ≥ Ω(l).
We are now set to describe the encoding for each I and to bound its length. First, in the

following lemma, we show that there exists a large subset Î ⊆ I that is mapped by f into a
ball of a constant radius in k-dimensional space and that the average of the errors in the
inner products incurred by f on the subset Î is bounded by Θ(ϵ).

▶ Lemma 7. For any I ∈ P let f : I → ℓk
2 be an embedding with Energy1(f) ≤ ϵ, with

ϵ ≤ 1/36. Let 0 < α ≤ 1/16 be a parameter. There is a subset Î ⊆ I of size
∣∣̂I∣∣ ≥ (1 − α)|I|

such that f (̂I) ⊂ B2
(
1 + 3.01ϵ

α

)
, and 1

|( Î
2)|

∑
(u,v)∈( Î

2)
∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩

∣∣ ≤ (10 + 1
2α )ϵ.

Proof. By assumption we have that the following condition holds:

Energy1(f) = 1∣∣(I
2
)∣∣ ∑

(u,v)∈(I
2)

∣∣expansf (u, v) − 1
∣∣ ≤ ϵ. (1)

This bound implies that
1

|O|(|I| − 1)
∑

oj∈O

∑
v∈I,v ̸=oj

∣∣expansf (oj , v) − 1
∣∣ ≤ 1

|O|(|I| − 1)
∑

u̸=v∈I

∣∣expansf (u, v) − 1
∣∣

≤ 3d(3d − 1)
d(3d − 1) ϵ = 3ϵ.

From which follows that

min
oj∈O

1
|I| − 1

∑
v∈I,v ̸=oj

∣∣expansf (oj , v) − 1
∣∣ ≤ 3ϵ. (2)

4 We will omit [S1, . . . Sd] from notation for a fixed choice of the sets.



Y. Bartal, O. N. Fandina, and K. G. Larsen 13:7

Let ô ∈ O denote the point at which the minimum is obtained. We assume without loss of
generality that f(ô) = 0. Let Î be the set of all v ∈ I such that

∣∣expansf (ô, v) − 1
∣∣ ≤ 3ϵ

α .
By Markov’s inequality, |Î| ≥ (1 − α)

∣∣I∣∣. We have that for all v ∈ Î, |expansf (v, ô) − 1| =
| ∥f(v)∥2

∥v−ô∥2
− 1| ≤ 3ϵ

α , and using ∥v − ô∥2 ≤ ∥v∥2 + ∥ô∥2 ≤ 1 + ϵ/100, so that ∥f(v)∥2 ≤
(1 + 3ϵ

α )(1 + ϵ/100) ≤ 1 + 3.002ϵ
α , implying that f(v) ∈ B2

(
1 + 3.01ϵ

α

)
.

For all (u, v) ∈
(

Î
2
)

we have:∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤ 1

2

[∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣+
∣∣∥f(v)∥2

2 − ∥v∥2
2
∣∣]

+ 1
2

[∣∣∥f(u) − f(v)∥2
2 − ∥u − v∥2

2
∣∣] .

We can bound each term as follows:∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣ =

= |∥f(u) − f(ô)∥2
2 − ∥u − ô∥2

2 + ∥u − ô∥2
2 − ∥u∥2

2|
≤ |∥f(u) − f(ô)∥2 − ∥u − ô∥2| · (∥f(u) − f(ô)∥2 + ∥u − ô∥2)
+ |∥u − ô∥2 − ∥u∥2| · (∥u − ô∥2 + ∥u∥2)
≤ ∥u − ô∥2 · |expansf (u, ô) − 1| · (∥f(u)∥2 + ∥u − ô∥2) + ∥ô∥2 · (∥u − ô∥2 + ∥u∥2)

≤
(

1 + ϵ

100

)
|expansf (u, ô) − 1|

(
1 + 3.002ϵ

α
+ 1 + ϵ

100

)
+ ϵ

100 ·
(

2 + ϵ

100

)
≤

(
2 + 3.01ϵ

α

)
|expansf (u, ô) − 1| + ϵ

40 ≤
(

2 + 1
9α

)
|expansf (u, ô) − 1| + ϵ

40 ,

where we have used ∥ô∥ ≤ ϵ/100, ∥u − ô∥2 ≤ ∥u∥2 + ∥ô∥2 ≤ 1 + ϵ/100, and the bound on the
norms of the embedding within Î. Additionally, we have that∣∣∥f(u) − f(v)∥2

2 − ∥u − v∥2
2
∣∣ =

= |∥f(u) − f(v)∥2 − ∥u − v∥2|(∥f(u) − f(v)∥2 + ∥u − v∥2)
≤ ∥u − v∥2 |expansf (u, v) − 1|(∥f(u)∥2 + ∥f(v)∥2 + ∥u − v∥2)

≤
√

2
(

2
(

1 + 3.002ϵ

α

)
+

√
2
)

|expansf (u, v) − 1| ≤
(

5 + 1
4α

)
|expansf (u, v) − 1|,

where the second to last inequality holds since ∥u − v∥2 ≤ diam(I) =
√

2. It follows that:
1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)

∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤ (3)

≤
(

2 + 1
9α

)
· 1

|
(

Î
2
)
|

(
|Î| − 1

2

) ∑
u∈Î,u ̸=ô

|expansf (u, ô) − 1|

+ 1
2

(
5 + 1

4α

)
· 1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|expansf (u, v) − 1| + ϵ

40 .

By definition of Î, and using (2) we have that

1
|
(

Î
2
)
|

(
|Î| − 1

2

) ∑
u∈Î,u ̸=ô

|expansf (u, ô) − 1| = 1
|Î|

∑
u∈Î,u ̸=ô

|expansf (u, ô) − 1|

≤ 1
|I|

∑
u∈I,u ̸=ô

|expansf (u, ô) − 1| ≤ 3ϵ.

SoCG 2022



13:8 Optimality of the JL Dimensionality Reduction for Practical Measures

Therefore (3) yields that

1
|
(

Î
2
)
|

∑
(u,v)∈(Î

2)

∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤

≤
(

2 + 1
9α

)
· 3ϵ + 1

2

(
5 + 1

4α

)
· 1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|expansf (u, v) − 1| + ϵ

40

≤ 1
2

(
5 + 1

4α

)
· 1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|expansf (u, v) − 1| +

(
7 + 1

3α

)
ϵ.

Now, we have that
1

|
(

Î
2
)
|

∑
(u,v)∈(Î

2)
|(expansf (u, v)) − 1| ≤ 6

5
1

|
(

I
2
)
|

∑
(u,v)∈(I

2)
|(expansf (u, v)) − 1| ≤ 6

5ϵ,

using |Î| ≥ (1 − α)|I|, so that α ≤ 1/16 we have |
(

Î
2
)
| ≥ (1 − 1

3(1−α)d )(1 − α)2 · |
(

I
2
)
| ≥ 5

6 |
(

I
2
)
|

and applying (1). Finally, we obtain

1
|
(

Î
2
)
|

∑
(u,v)∈(Î

2)

∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩
∣∣ ≤ 6

5 · 1
2

(
5 + 1

4α

)
ϵ +

(
7 + 1

3α

)
ϵ ≤

(
10 + 1

2α

)
ϵ.◀

We have shown thus far that for the large subset Î of the set I, the average of the inner
products between the images equals up to an additive factor Θ(ϵ) to the average of the
inner products between the original points. Moreover, all the images of Î are in the constant
radius ball. We next show that rounding these images to the (randomly chosen) points of
the sufficiently small grid will not change the sum of the inner products too much, implying
that instead of encoding the original images f (̂I) we can encode its rounded counterpart. To
show this, we use a technique of randomized rounding as proposed in [6].

▶ Lemma 8. Let X ⊂ ℓk
2 such that X ⊂ B2(r). For δ < r/

√
k let Gδ ⊆ B2(r) denote

the intersection of the δ-grid with B2(r). There is a mapping g : X → Gδ such that
1

|(X
2 )|

∑
(u,v)∈(X

2 )|⟨g(u), g(v)⟩ − ⟨u, v⟩| ≤ 3δr, and the points of the grid can be represented

using LGδ
= k log(4r/(δ

√
k)) bits.

Proof. For each point v ∈ X randomly and independently match a point ṽ = g(v) on the
grid by rounding each of its coordinates vi to one of the closets integral multiplies of δ in
such a way that E[ṽi] = vi. This distribution is given by assigning

⌈
vi

δ

⌉
δ with probability

p =
(

vi

δ −
⌊

vi

δ

⌋)
, and assigning

⌊
vi

δ

⌋
δ with probability 1 − p. For any u ̸= v ∈ X we have:

E [|⟨ũ, ṽ⟩ − ⟨u, v⟩|] ≤ E [|⟨ũ − u, v⟩|] + E [|⟨ũ, ṽ − v⟩|]

≤
(
E
[
(⟨ũ − u, v⟩)2])1/2 +

(
E
[
(⟨ũ, ṽ − v⟩)2])1/2

,

where the last inequality is by Jensen’s. We bound each term separately.

E[(⟨ũ − u, v⟩)2] = E

( k∑
i=1

(ũi − ui)vi

)2 =

=
k∑

i=1
v2

i E
[
(ũi − ui)2]+ 2

∑
1≤i̸=j≤k

vivjE[ũi − ui]E[ũj − uj ] ≤ δ2 ∥v∥2
2



Y. Bartal, O. N. Fandina, and K. G. Larsen 13:9

since |ũi − ui| ≤ δ and E[ũi] = ui. Similarly, for the second term we have

E
[
(⟨ũ, ṽ − v⟩)2] = E

( k∑
i=1

ũi(ṽi − vi)
)2 ≤

k∑
i=1

E
[
ũ2

i

]
E
[
(ṽi − vi)2] (4)

+ 2
∑

1≤i̸=j≤k

E[ũiũj(ṽi − vi)]E[ṽj − vj ] ≤ δ2
k∑

i=1
E[ũ2

i ],

because the random variables ũi and ṽi are independent. We also have that

k∑
i=1

E[ũ2
i ] =

k∑
i=1

E[(ui +(ũi −ui))2] =
k∑

i=1

(
u2

i + 2uiE[ũi − ui] + E[(ũi − ui)2]
)

≤ ∥u∥2
2 +δ2k.

Therefore, putting all together, E [|⟨ũ, ṽ⟩ − ⟨u, v⟩|] ≤ δr + δ(r2 + δ2k)1/2 ≤ 2δr + δ2
√

k ≤ 3δr.
The bound on the average difference in inner product in the lemma follows by the linearity

of expectation, and the implied existence of a mapping with bound at most the expectation.
The upper bound on the representation of the grid points was essentially given in [6]: The
ith coordinate of a point x on the grid is given by a sign and an absolute value niδ, where
0 ≤ ni ≤ r/δ are integers satisfying

∑
1≤i≤k n2

i ≤ (r/δ)2. So can be represented by the sign
and their binary representation of size at most

∑k
i=1(log(ni) + 1), which is maximized when

all n2
i ’s are equal, which gives the bound of k log(4r/(δ

√
k)). ◀

Combining the lemmas we obtain:

▶ Corollary 9. For any I ∈ P let f : I → ℓk
2 be a map with Energy1(f) ≤ ϵ, for ϵ ≤ 1/36. Let

0 < α ≤ 1/16. There is Î ⊆ I of size
∣∣Î∣∣ ≥ (1−α)|I| such that there is a set G ⊂ ℓk

2 and a map
g : Î → G such that 1∣∣(Î

2)
∣∣ ∑(u,v)∈(Î

2)
∣∣⟨g(f(u)), g(f(v))⟩−⟨u, v⟩

∣∣ ≤
(
13 + 0.76

α

)
ϵ, and the points

in G can be uniquely represented by binary strings of length at most LG = k log(4r/(ϵ
√

k))
bits, where r < 1 + 0.09 1

α .

Proof. The corollary follows by applying Lemma 7 followed by Lemma 8 with X = Î and
δ = ϵ. Note that we may assume that ϵ = δ < 1/

√
k < r/

√
k, as otherwise we are done. ◀

We are now ready to obtain the main consequence which will imply the lower bound.

▶ Corollary 10. For any I ∈ P let f : I → ℓk
2 be an embedding with Energy1(f) ≤ ϵ, with

ϵ ≤ 1/36. Let 0 < α ≤ 1/16 and 0 < β be parameters. There is a subset of points G that
satisfies the following: there is a subset YG ⊆ Y of size

∣∣YG
∣∣ ≥ (1 − 3α − 3√

2 β)|Y | such
that for each y ∈ YG there is a subset EG

y ⊆ E of size
∣∣EG

y

∣∣ ≥ (1 − 3α − 3√
2 β)
∣∣E∣∣ such that

for all pairs (y, e) ∈ YG × EG
y we have:

∣∣⟨g(f(y)), g(f(e))⟩ − ⟨y, e⟩
∣∣ ≤ 1

β2

(
13 + 0.76

α

)
ϵ, where

g : YG ∪ {EG
y }y∈YG → G. Moreover, the points in G can be uniquely represented by binary

strings of length at most LG = k log(4r/(ϵ
√

k)) bits, where r < 1 + 0.09 1
α .

Proof. Applying Corollary 9 and Markov’s inequality there are at most β2 fraction of
pairs (u, v) ∈

( Î
2
)

such that
∣∣⟨g(f(u)), g(f(v))⟩ − ⟨u, v⟩

∣∣ > 1
β2

(
13 + 0.76

α

)
ϵ. It follows that the

number of pairs in Y ×E that are in
(

Î
2
)

and have this property is at most β2· 3d(3d−1)
2 ≤ 9

2 β2·d2.
Therefore there can be at most 3√

2 βd points in u ∈ Y such that there are more than 3√
2 βd

points in v ∈ E with this property. Since there are at most 3αd points in each of Y and E

which may not be in Î we obtain the stated bounds on the sizes of |YG| and |EG
y |. ◀

SoCG 2022



13:10 Optimality of the JL Dimensionality Reduction for Practical Measures

2.1 Encoding algorithm
Let t = 8. We set α = 1/(12t), β = 1/(

√
2t), which implies that r ≤ 10. Therefore,

by Corollary 10, we can find a subset G ⊆ B2(10), and a mapping g : f(I) → G, and
a subset YG ⊆ Y , with |YG| ≥

(
1 − 1

t

)
|Y |, where for all y ∈ YG we can find a susbet

EG
y ⊆ E with |EG

y | ≥
(
1 − 1

t

)
|E|, such that for all pairs (e, y) ∈ YG × EG

y the inner products∣∣⟨g(f(y)), g(f(e))⟩ − ⟨y, e⟩
∣∣ ≤ 12000ϵ. Moreover, each point in G can be uniquely encoded

using at most LG = k log(40/(ϵ
√

k)) bits.
We first encode all the points Y \ YG. For each yS ∈ Y \ YG we explicitly write down

a bit for each ei ∈ E indicating whether ei ∈ S. This requires d bits for each yS and in
total at most

( 1
t

)
d2 bits for the subset Y \ YG. The next step is to encode all the points

in {EG
y }y∈YG in a way tat will enable to recover all the vectors in the set together with the

indeces. We can do that by writing an ordered list containing d strings (one for each vector
in the set E, according to its order). Each string is of length LG bits, where each point
ei ∈ {EG

y }y∈YG is encoded by its representation in G, i.e., g(f(ei)), and rest of points (if
there are any) are encoded by zeros. This gives an encoding of total length dLG bits.

Now we can encode the points in YG. Each yS ∈ YG is encoded by the encoding of
g(f(yS)) using LG bits, and in addition we add the encoding of the set of indices of the points
in E \ EG

yS
, using at most log

(
d

(1/t)d

)
≤ (1/t)d log(et) bits. Note that this information is not

enough in order to recover the vector yS , as we can’t deduce whether i ∈ S for ei ∈ E \ EG
yS

.
So we add this information explicitly, by writing down whether i ∈ S for each ei ∈ E \ EG

yS
,

using at most (1/t)d bits. In total, it takes LG + (1/t)d log(et) + (1/t)d bits per point in YG.
Therefore, each instance I ∈ P can be encoded using at most

(1/t)d2 + dLG + |YG| · (LG + d(1/t) log(et) + (1/t)d) ≤ (1/t)d2(2 + log(et)) + 2dLG

bits, since |YG| ≤ d. For our choice of t = 8, this is at most 7
8 d2 + 2dLG.

2.2 Decoding algorithm
To recover a set I given the encoding it is enough to recover the set Y , as the sets O and
E are the same in each I. We first recover Y \ YG in a straightforward way from its naive
encoding. To recover a point yS ∈ YG we need to know for each ei ∈ E whether i ∈ S.
An important implication of Corollary 10 is that given g(f(ei)) and g(f(yS)) of any pair
(ei, yS) ∈ YG × EG

yS
, we can decide whether i ∈ S by computing ⟨g(f(ei)), g(f(yS))⟩. Recall

that if i ̸∈ S then ⟨ei, yS⟩ = 0, and if i ∈ S then ⟨ei, yS⟩ ≥ (1/2)γϵ. Therefore, by setting
γ = 48001 we have that if ⟨g(f(ei)), g(f(yS))⟩ ≤ 12000ϵ, then i ̸∈ S, and i ∈ S otherwise.
We can recover each g(f(yS)) for yS ∈ YG from its binary representation. Next, we recover
the set of indices of the points in E \ EG

yS
, from which we deduce the set of indices of the

points ei ∈ EG
yS

. This gives the information about the set {g(f(ei))}ei∈EG
yS

. At this stage we
have all the necessary information to compute the inner products ⟨g(f(yS)), g(f(ei))⟩ for all
the pairs yS and ei that enable us to correctly decide whether i ∈ S. Finally, for the rest
points e ∈ E \ EG

yS
we have a naive encoding which explicitly states whether e is a part of yS .

2.3 Deducing the lower bound
From the counting argument, the maximal number of different sets that can be recovered from
the encoding of length at most ρ = 7

8 d2+2dLG is at most 2ρ. This implies 7
8 d2+2dLG ≥ log|P|.

On the other hand, the size of the family is |P| =
(

d
l

)d. Recall that we have set d = 2l so

we have that |P| ≥
(2l

l

)2l ≥
(

2(2l−1)/
√

l
)2l

≥ 24l2−2l log l ≥ 23.9l2 , where the last estimate



Y. Bartal, O. N. Fandina, and K. G. Larsen 13:11

follows from our assumption on ϵ. Therefore, 7
2 l2 + 4lLG ≥ 3.9l2, implying LG ≥ (1/10)l,

where LG = k log(40/(ϵ
√

k)) = 1
2 k log

(
16( 10

ϵ )2 1
k

)
. This implies that k log

(
16
( 10

ϵ

)2 1
k

)
≥

(1/5)l ≥ 1/(5γ2 · ϵ2). Setting x = k · (5γ2 · ϵ2) we have that

1 ≤ x log
(

0.5
x

· 214γ2
)

= x log(0.5/x) + x log
(
214γ2) ≤ 1/2 + 2x(7 + log γ),

where the last inequality we have used x log(0.5/x) ≤ 0.5/(e ln 2) < 1/2 for all x. This
implies the desired lower bound on the dimension: k ≥ 1/(20γ2(7 + log γ) · ϵ2).

3 Lower bounds for q-moments of distortion

In this section we prove Theorem 5 which provides a lower bound for q-moments of distortion.
Similarly, to the proof for ℓ1-distortion in Section 2, we prove the theorem first for metric
space of fixed size n̂ = O(1/ϵ2) · eO(ϵq), which can be extended for metric spaces of size Θ(n)
for any n via metric composition [9, 8], as described in the full version of the paper.

Assume w.l.o.g that q ≥ 3
ϵ , otherwise the theorem follows from Theorem 4 by monotonicity

of the ℓq-distortion. The proof strategy has exactly the same structure as in the proof of
Section 2, however the sets I are constructed using different parameters. For a given ϵ < 0, let
l = ⌈ 1

γ2ϵ2 ⌉ be an integer for some large constant γ > 1 to be determined later. We construct
point sets I ⊂ ℓd

2, where d = lτ , τ = eϵq, and |I| = 3d. Assume that for all I ∈ P there is a
map f : I → ℓk

2 , with ℓq-dist(f) ≤ 1 + ϵ. We show that this implies that k = Ω(q/ϵ).
As before the strategy is to produce a unique binary encoding of I of length length(I). We

will obtain that |P| =
(

d
l

)d ≥ (d/l)ld, which will give that length(I) ≥ dl log(d/l) = dl log(τ).
We will show that this implies the bound on k ≥ Ω(l log(τ)) = Ω(1/ϵ2 · ϵq) = Ω(q/ϵ).

As in the proof of Theorem 4, we can assume w.l.o.g. that ϵ ≤ 1/γ, which by the choice
of γ later on implies ϵ < 1/36.

▶ Lemma 11. For any I ∈ P let f : I → ℓk
2 be an embedding with ℓq-dist(f) ≤ 1 + ϵ, for

ϵ < 1/36. There is a subset Î ⊆ I of size
∣∣Î∣∣ ≥ (1 − 3/τ4)|I| such that f(Î) ⊂ B2 (1 + 6.02ϵ),

and for 1 − 2/τ4 fraction of the pairs (u, v) ∈
(

Î
2
)

it holds that
∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩

∣∣ ≤ 32ϵ.

Proof. By assumption we have (ℓq-dist(f))q = 1∣∣(I
2)
∣∣ ∑(u,v)∈(I

2) (distf (u, v))q ≤ (1 + ϵ)q.

By the Markov inequality there are at least 1−1/τ4 fraction of the pairs (u, v) ∈
∣∣(I

2
)∣∣ such

that (distf (u, v))q ≤ τ4(1 + ϵ)q ≤ (1 + ϵ)q ·e4ϵq, implying that distf (u, v) ≤ 1 +6ϵ. Therefore,∣∣expansf (u, v) − 1
∣∣ ≤ max{expansf (u, v) − 1, 1/expansf (u, v) − 1} = distf (u, v) − 1 ≤ 6ϵ.

For every oj ∈ O, let Fj be the set of points v ∈ I\{oj} such that
∣∣expansf (oj , v) − 1

∣∣ > 6ϵ.
Then the total number of pairs (u, v) ∈

(
I
2
)

with the property that
∣∣expansf (u, v) − 1

∣∣ > 6ϵ

is at least
∑d

j=1 |Fj |/2, implying that there must be a point ô = oj∗ ∈ O such that
|Fj∗| ≤ 1

τ4 · 3d(3d−1)
d ≤ 3

τ4 (3d−1). Define Î = I \Fj∗ to be the complement of this set, so that
|Î| ≤ (1− 3

τ4 )|I|. We assume without loss of generality that f(ô) = 0. Let Ô = O∩ Î. We have
that |expansf (v, ô) − 1| = | ∥f(v)∥2

∥v−ô∥2
− 1| ≤ 6ϵ, and using ∥v − ô∥2 ≤ ∥v∥2 + ∥ô∥2 ≤ 1 + ϵ/100,

so that ∥f(v)∥2 ≤ (1 + 6ϵ)(1 + ϵ/100) ≤ 1 + 6.02ϵ, implying that f(v) ∈ B2 (1 + 6.02ϵ).
Denote by Ĝ the set of pairs (u, v) ∈

(
Î
2
)

satisfying that
∣∣expansf (u, v) − 1

∣∣ ≤ 6ϵ. To
bound the fraction of these pairs from below, we can first bound |Î| ≥ (1 − 3

τ4 )|I| ≥ 5
2 d and

|Î| − 1 ≥ 2d, using that τ > 3 by our assumption on q. Therefore, we have that the fraction
of pairs (u, v) ∈

(
Î
2
)

\ Ĝ is at most 1
τ4 · 3d(3d−1)

|Î|(|Î|−1) ≤ 1
τ4 · 9

5 ≤ 2
τ4 .

SoCG 2022



13:12 Optimality of the JL Dimensionality Reduction for Practical Measures

Finally, to estimate the absolute difference in inner products over the set of pairs Ĝ we
recall some of the estimates from the proof of Section 2. For all (u, v) ∈ Ĝ we have:∣∣⟨f(u), f(v)⟩ − ⟨u, v⟩

∣∣ ≤ 1
2

[∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣+
∣∣∥f(v)∥2

2 − ∥v∥2
2
∣∣]

+ 1
2

[∣∣∥f(u) − f(v)∥2
2 − ∥u − v∥2

2
∣∣] .

We can bound each term as follows:∣∣∥f(u)∥2
2 − ∥u∥2

2
∣∣ =

= |∥f(u) − f(ô)∥2
2 − ∥u − ô∥2

2 + ∥u − ô∥2
2 − ∥u∥2

2|
≤ |∥f(u) − f(ô)∥2 − ∥u − ô∥2| · (∥f(u) − f(ô)∥2 + ∥u − ô∥2)
+ |∥u − ô∥2 − ∥u∥2| · (∥u − ô∥2 + ∥u∥2)
≤ ∥u − ô∥2 |expansf (u, ô) − 1| · (∥f(u)∥2 + ∥u − ô∥2) + ∥ô∥2 · (∥u − ô∥2 + ∥u∥2)

≤
(

1 + ϵ

100

)
|expansf (u, ô) − 1|

(
1 + 6.02ϵ + 1 + ϵ

100

)
+ ϵ

100 ·
(

2 + ϵ

100

)
≤ (2 + 6.06ϵ) |expansf (u, ô) − 1| + ϵ

40 ≤ (2 + 6.06ϵ) · 6ϵ + ϵ

40 ≤ 14ϵ,

where we have used ∥ô∥ ≤ ϵ/100, ∥u − ô∥2 ≤ ∥u∥2 + ∥ô∥2 ≤ 1 + ϵ/100, the bound on the
norms of the embedding within Î, and the property of pairs in Ĝ. Additionally, we have that∣∣∥f(u) − f(v)∥2

2 − ∥u − v∥2
2
∣∣ =

= |∥f(u) − f(v)∥2 − ∥u − v∥2| · (∥f(u) − f(v)∥2 + ∥u − v∥2)
≤ ∥u − v∥2 |expansf (u, v) − 1| · (∥f(u)∥2 + ∥f(v)∥2 + ∥u − v∥2)

≤
√

2
(

2 (1 + 6.02ϵ) +
√

2
)

|expansf (u, v) − 1| ≤ 6|expansf (u, v) − 1| ≤ 36ϵ,

since ∥u − v∥2 ≤ diam(I) =
√

2, and the last step follows using the property of pair in Ĝ.
We conclude that for all (u, v) ∈ Ĝ: |⟨f(u), f(v)⟩ − ⟨u, v⟩| ≤ 1

2 (2 · 14ϵ + 36ϵ) = 32ϵ. ◀

As before, the goal is to encode the images of the embedding using a sufficiently small
number of bits, by rounding them to the points of a grid of the Euclidean ball via the
randomized rounding technique of [6] as to preserve the inner product gap. The following
lemma provides the probability that this procedure fails.

▶ Lemma 12. Let X ⊂ ℓk
2 such that X ⊂ B2(r). For δ ≤ r/

√
k let Gδ ⊆ B2(r) denote the

intersection of the δ-grid with B2(r). There is a mapping g : X → Gδ such that for any η ≥ 1,
there is a 1−4e−η2 fraction of the pairs (u, v) ∈

(
X
2
)

such that |⟨g(u), g(v)⟩−⟨u, v⟩| ≤ 3
√

2ηδr,
and the points of the grid can be represented using LGδ

= k log(4r/(δ
√

k)) bits.

Proof. For each point v ∈ X randomly and independently match a point ṽ on the grid by
rounding each of its coordinates vi to one of the closest integral multiplies of δ in such a
way that E[ṽi] = vi. For any u ̸= v ∈ X we have: |⟨ũ, ṽ⟩ − ⟨u, v⟩| ≤ |⟨ũ − u, v⟩| + |⟨ũ, ṽ − v⟩|.
Now, E[⟨ũ − u, v⟩] =

∑k
i=1 E[ũi − ui]vi = 0 and E[⟨ũ, ṽ − v⟩] =

∑k
i=1 E[ũi]E[ṽi − vi] = 0.

Next, we wish to make use of the Hoeffding bound. We therefore bound each of the terms
|(ũi − ui)vi| ≤ δ|vi| and the sum

∑k
i=1 δ2v2

i = δ2r, and |ũi(ṽi − vi)| ≤ δ(|ui| + δ), so that

k∑
i=1

δ2(vi+δ)2 = δ2
k∑

i=1
(v2

i +2δvi+δ2) ≤ δ2(r+2δ ∥vi∥1+δ2k) ≤ δ2(r2+2δr
√

k+δ2k) ≤ 4δ2r2.

Applying the Hoeffding bound we get that Pr[|⟨ũ − u, v⟩| >
√

2ηδr] ≤ 2e−η2 and
Pr[|⟨ũ, ṽ −v⟩| > 2

√
2ηδr] ≤ 2e−η2 , and therefore Pr[|⟨ũ, ṽ⟩−⟨u, v⟩| > 3

√
2ηδr] ≤ 4e−η2 . This



Y. Bartal, O. N. Fandina, and K. G. Larsen 13:13

probability also bounds the expected number of pairs with this property so there must exist
an embedding to the grid where the bound stated in the lemma holds. The bound on the
representation size is the same as in Lemma 8. ◀

Combining the lemmas we obtain:

▶ Corollary 13. For any I ∈ P let f : I → ℓk
2 be an embedding with ℓq-dist(f) ≤ 1 + ϵ, with

ϵ ≤ 1/36. There is a subset Î ⊆ I of size
∣∣Î∣∣ ≥ (1 − 3/τ4)|I| such that for a fraction of at

least 1 − 6/τ4 of the pairs (u, v) ∈
(

Î
2
)

it holds that:
∣∣⟨g(f(u)), g(f(v))⟩ − ⟨u, v⟩

∣∣ ≤ 42ϵ, where
g : Î → G. Moreover, the points in G can be uniquely represented by binary strings of length
at most LG = k log(5

√
q/(ϵk)) bits.

Proof. The corollary follows by applying Lemma 11 followed by Lemma 12 with X = Î

with δ = 2
√

ϵ/q and η =
√

ln(τ). Note that we may assume that indeed 2
√

ϵ/q = δ <

1/
√

k < r/
√

k, since otherwise we are done. Therefore, the increase in the absolute difference
of the inner products due to the grid embedding is at most: 3

√
2ηδr = 6r

√
2 ln(τ)ϵ/q =

6r
√

2(ϵq)ϵ/q ≤ 10ϵ. The bound on representation of the grid follows from Lemma 12:
LG = k log(4r/(δ

√
k)) = k log(4r

√
q/(ϵk)) ≤ k log(5

√
q/(ϵk)). ◀

We are ready to obtain the main technical consequence which will imply the lower bound:

▶ Corollary 14. For any I ∈ P let f : I → ℓk
2 be an embedding with ℓq-dist(f) ≤ ϵ, with

ϵ ≤ 1/36. There is a subset of points G that satisfies the following: there is a subset YG ⊆ Y

of size
∣∣YG

∣∣ ≥ (1 − 6/τ2)|Y | such that for each y ∈ YG there is a subset EG
y ⊆ E of size∣∣EG

y

∣∣ ≥ (1 − 6/τ2)
∣∣E∣∣ such that for all pairs (y, e) ∈ YG × EG

y we have:
∣∣⟨g(f(y)), g(f(e))⟩ −

⟨y, e⟩
∣∣ ≤ 42ϵ, where g : YG ∪ {EG

y }y∈YG → G. Moreover, the points in G can be uniquely
represented by binary strings of length at most LG = k log(5

√
q/(ϵk)) bits.

Proof. Applying Corollary 13 we have that there are at most 6/τ4 pairs (u, v) ∈
(

Î
2
)

such
that

∣∣⟨g(f(u)), g(f(v))⟩ − ⟨u, v⟩
∣∣ > 42ϵ. It follows that the number of pairs in Y × E that

are in
(

Î
2
)

and have this property is at most 6
τ4 · 3d(3d−1)

2 ≤ 27
τ4 · d2. Therefore there can be at

most 3
√

3
τ2 · d points in u ∈ Y such that there are more than 3

√
3

τ2 d points in v ∈ E with this
property. Since there at most 3

τ4 · d < 0.5
τ2 · d points in each of Y and E which may not be in

Î we obtain the stated bounds on the sizes of |YG| and |EG
y |. ◀

3.1 Encoding and decoding

For a set I ∈ P let f : I → ℓk
2 be a map with ℓq-dist(f) = 1 + ϵ, where Ω

(
1√
n

)
≤ ϵ < 1/36,

and q = O(log(ϵ2n)/ϵ). Let t = τ2/6. Therefore, by Corollary 14, we can find a subset
G ⊆ B2(2), and a mapping g : f(I) → G, and a subset YG ⊆ Y , with |YG| ≥

(
1 − 1

t

)
|Y |,

where for all y ∈ YG we can find a susbet EG
y ⊆ E with |EG

y | ≥
(
1 − 1

t

)
|E|, such that for all

pairs (e, y) ∈ YG × EG
y the inner products

∣∣⟨g(f(y)), g(f(e))⟩ − ⟨y, e⟩
∣∣ ≤ 42ϵ. Moreover, each

point in G can be uniquely encoded using at most LG = k log(5
√

q/(ϵk)) bits.
The encoding is done according to the description in Section 2.1 so we similarly obtain

the following bound on the bit length of the encoding: (1/t)d2(2 + log(et)) + 2dLG.
The decoding works in the same way as before for an appropriate choice of γ = 169.

SoCG 2022



13:14 Optimality of the JL Dimensionality Reduction for Practical Measures

3.2 Deducing the lower bound
In this subsection we show that k = Ω(q/ϵ), proving the desired lower bound for the case of
n = 3d = O(1/ϵ2) ·eO(ϵq). From the counting argument, the maximal number of different sets
that can be recovered from the encoding of length at most ρ = (1/t)d2(2 + log(et)) + 2dLG

is at most 2ρ. This implies (1/t)d2(2 + log(et)) + 2dLG ≥ log|P|. On the other hand, the
size of the family is |P| =

(
d
l

)d ≥ (d/l)ld = τ ld, so that log(|P|) = ld log(τ). We therefore
derive the following inequality

(1/t)d2(2 + log(et)) + 2dLG ≥ ld log(τ) ⇒ LG ≥ (1/4)l log(τ),

as (1/t)d(2+log(et)) ≤ d(2 log(τ)+4)/τ2 ≤ d/(2τ) log(τ) = l log(τ)/2, using that log(τ) > 4.
Recall that LG = k log(5

√
q/(ϵk)) = 1

2 k log (25(q/(ϵk))). This implies that

k log
(

25
( q

ϵk

))
≥ (1/2)l log(τ) ≥ 1/(2γ2 · ϵ2) · ϵq = 1/(2γ2) · q/ϵ.

Setting x = k · (2γ2 · ϵ/q) we have that

1 ≤ x log
(

0.5
x

· 100γ2
)

= x log(0.5/x) + x log
(
100γ2) ≤ 1/2 + 2x log(10γ),

where the last inequality we have used x log(0.5/x) ≤ 0.5/(e ln 2) < 1/2 for all x. This
implies the desired lower bound on the dimension: k ≥ 1/(8γ2 log(10γ)) · q/ϵ.

References
1 Ittai Abraham, Yair Bartal, T-H. Hubert Chan, Kedar Dhamdhere Dhamdhere, Anupam

Gupta, Jon Kleinberg, Ofer Neiman, and Aleksandrs Slivkins. Metric embeddings with
relaxed guarantees. In Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’05, pages 83–100, USA, 2005. IEEE Computer Society. doi:
10.1109/SFCS.2005.51.

2 Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 502–511, USA, 2007.
Society for Industrial and Applied Mathematics.

3 Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion. In Proceedings of the 18th annual
ACM-SIAM symposium on Discrete algorithms, SODA ’07, pages 502–511, Philadelphia, PA,
USA, 2007. Society for Industrial and Applied Mathematics. URL: http://portal.acm.org/
citation.cfm?id=1283383.1283437.

4 Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. Advances
in Mathematics, 228(6):3026–3126, 2011. doi:10.1016/j.aim.2011.08.003.

5 Noga Alon. Perturbed identity matrices have high rank: Proof and applications. Combinatorics,
Probability & Computing, 18(1-2):3–15, 2009. doi:10.1017/S0963548307008917.

6 Noga Alon and Bo’az Klartag. Optimal compression of approximate inner products and
dimension reduction. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 639–650, 2017. doi:10.1109/FOCS.2017.65.

7 Ehsan Amid and Manfred K. Warmuth. Trimap: Large-scale dimensionality reduction using
triplets, 2019. arXiv:1910.00204.

8 Yair Bartal, Nova Fandina, and Ofer Neiman. Dimensionality reduction: theoretical perspective
on practical measures. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada, pages 10576–10588, 2019. URL: https://proceedings.
neurips.cc/paper/2019/hash/94f4ede62112b790c91d5e64fdb09cb8-Abstract.html.

https://doi.org/10.1109/SFCS.2005.51
https://doi.org/10.1109/SFCS.2005.51
http://portal.acm.org/citation.cfm?id=1283383.1283437
http://portal.acm.org/citation.cfm?id=1283383.1283437
https://doi.org/10.1016/j.aim.2011.08.003
https://doi.org/10.1017/S0963548307008917
https://doi.org/10.1109/FOCS.2017.65
http://arxiv.org/abs/1910.00204
https://proceedings.neurips.cc/paper/2019/hash/94f4ede62112b790c91d5e64fdb09cb8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/94f4ede62112b790c91d5e64fdb09cb8-Abstract.html


Y. Bartal, O. N. Fandina, and K. G. Larsen 13:15

9 Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phenom-
ena. Annals of Mathematics, 162(2):643–709, 2005. URL: http://www.jstor.org/stable/
20159927.

10 A. Censi and D. Scaramuzza. Calibration by correlation using metric embedding from
nonmetric similarities. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(10):2357–2370, October 2013. doi:10.1109/TPAMI.2013.34.

11 Leena Chennuru Vankadara and Ulrike von Luxburg. Measures of distortion for machine
learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 4891–4900.
Curran Associates, Inc., 2018.

12 Leena Chennuru Vankadara and Ulrike von Luxburg. Measures of distortion for ma-
chine learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

13 Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and Robert Morris. Practical, distributed
network coordinates. SIGCOMM Comput. Commun. Rev., 34(1):113–118, January 2004.
doi:10.1145/972374.972394.

14 Michael Elkin, Arnold Filtser, and Ofer Neiman. Prioritized metric structures and embedding.
In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing,
STOC ’15, pages 489–498, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2746539.2746623.

15 Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal Embeddings. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-
/RANDOM 2015), volume 40 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 242–264, 2015.

16 Patrick J. F. Groenen, Rudolf Mathar, and Willem J. Heiser. The majorization approach to
multidimensional scaling for minkowski distances. Journal of Classification, 12(1):3–19, 1995.

17 W. J Heiser. Multidimensional scaling with least absolute residuals. In In H. H. Bock (Ed.)
Classification and related methods, pages 455–462. Amsterdam: NorthHolland, 1988a.

18 P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proceedings of
the 42nd IEEE Symposium on Foundations of Computer Science, FOCS ’01, page 10, USA,
2001. IEEE Computer Society.

19 Piotr Indyk and Jiri Matousek. Low-distortion embeddings of finite metric spaces. In in
Handbook of Discrete and Computational Geometry, pages 177–196. CRC Press, 2004.

20 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM. doi:10.1145/
276698.276876.

21 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. In Conference in modern analysis and probability (New Haven, Conn., 1982), pages
189–206. American Mathematical Society, Providence, RI, 1984.

22 Jon Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and embedding using small
sets of beacons. J. ACM, 56(6):32:1–32:37, September 2009. doi:10.1145/1568318.1568322.

23 Deepanshu Kush, Aleksandar Nikolov, and Haohua Tang. Near neighbor search via efficient
average distortion embeddings. In 37th International Symposium on Computational Geometry,
SoCG 2021, June 7-11, 2021, Buffalo, NY, USA (Virtual Conference), pages 50:1–50:14, 2021.
doi:10.4230/LIPIcs.SoCG.2021.50.

24 Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-lindenstrauss lemma. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
633–638, 2017. doi:10.1109/FOCS.2017.64.

SoCG 2022

http://www.jstor.org/stable/20159927
http://www.jstor.org/stable/20159927
https://doi.org/10.1109/TPAMI.2013.34
https://proceedings.neurips.cc/paper/2018/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://doi.org/10.1145/972374.972394
https://doi.org/10.1145/2746539.2746623
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/1568318.1568322
https://doi.org/10.4230/LIPIcs.SoCG.2021.50
https://doi.org/10.1109/FOCS.2017.64


13:16 Optimality of the JL Dimensionality Reduction for Practical Measures

25 N. Linial. Finite metric spaces- combinatorics, geometry and algorithms. In Proceedings of the
ICM, 2002.

26 Jiří Matoušek. Bi-Lipschitz embeddings into low-dimensional Euclidean spaces. Commentat.
Math. Univ. Carol., 31(3):589–600, 1990.

27 Jiří Matoušek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2002.

28 Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform
manifold approximation and projection. Journal of Open Source Software, 3(29):861, 2018.
doi:10.21105/joss.00861.

29 Assaf Naor. Comparison of metric spectral gaps. Analysis and Geometry in Metric Spaces,
2:2:1–52, 2014.

30 Assaf Naor. An average John theorem. Geometry and Topology, 25(4):1631–1717, 2021.
doi:10.2140/gt.2021.25.1631.

31 Puneet Sharma, Zhichen Xu, Sujata Banerjee, and Sung-Ju Lee. Estimating network proximity
and latency. Computer Communication Review, 36(3):39–50, 2006. doi:10.1145/1140086.
1140092.

32 Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding network distances in
euclidean space. IEEE/ACM Trans. Netw., 12(6):993–1006, December 2004. doi:10.1109/
TNET.2004.838597.

33 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. URL: http://jmlr.org/papers/v9/
vandermaaten08a.html.

34 Santosh Srinivas Vempala. The random projection method, volume 65 of DIMACS series in
discrete mathematics and theoretical computer science. Providence, R.I. American Mathematical
Society, 2004. URL: http://opac.inria.fr/record=b1101689.

35 J. Fernando Vera, Willem J. Heiser, and Alex Murillo. Global optimization in any minkowski
metric: A permutation-translation simulated annealing algorithm for multidimensional scaling.
J. Classif., 24(2):277–301, September 2007.

36 Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding how
dimension reduction tools work: An empirical approach to deciphering t-sne, umap, trimap,
and pacmap for data visualization, 2020. arXiv:2012.04456.

https://doi.org/10.21105/joss.00861
https://doi.org/10.2140/gt.2021.25.1631
https://doi.org/10.1145/1140086.1140092
https://doi.org/10.1145/1140086.1140092
https://doi.org/10.1109/TNET.2004.838597
https://doi.org/10.1109/TNET.2004.838597
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://opac.inria.fr/record=b1101689
http://arxiv.org/abs/2012.04456


Quasi-Universality of Reeb Graph Distances
Ulrich Bauer #

Department of Mathematics and Munich Data Science Institute,
Technische Universität München, Germany

Håvard Bakke Bjerkevik #

Institute of Geometry, Technische Universität Graz, Austria

Benedikt Fluhr #

Department of Mathematics, Technische Universität München, Germany

Abstract
We establish bi-Lipschitz bounds certifying quasi-universality (universality up to a constant factor)
for various distances between Reeb graphs: the interleaving distance, the functional distortion
distance, and the functional contortion distance. The definition of the latter distance is a novel
contribution, and for the special case of contour trees we also prove strict universality of this distance.
Furthermore, we prove that for the special case of merge trees the functional contortion distance
coincides with the interleaving distance, yielding universality of all four distances in this case.

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Mathematics
of computing → Trees; Theory of computation → Computational geometry

Keywords and phrases Reeb graphs, contour trees, merge trees, distances, universality, interleaving
distance, functional distortion distance, functional contortion distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.14

Related Version Full Version: https://arxiv.org/abs/2112.00720 [1]

Funding Ulrich Bauer : DFG SFB/TRR 109 Discretization in Geometry and Dynamics.
Håvard Bakke Bjerkevik: Austrian Science Fund (FWF) grant number P 33765-N.

1 Introduction

The Reeb graph is a topological signature of real-valued functions, first considered in the
context of Morse theory [11] and subsequently applied to the analysis of geometric shapes
[9, 13]. It describes the connected components of level sets of a function, and for Morse
functions on compact manifolds or PL functions on compact polyhedra it turns out to be a
finite topological graph with a function that is monotonic on the edges. If the domain of
the function is simply-connected, then the Reeb graph is contractible, hence a tree, and is
therefore often called a contour tree. In topological data analysis, Reeb graphs are used for
surveying functions, and also in a discretized form termed Mapper [14] for the analysis of
point cloud data, typically high-dimensional or given as an abstract finite metric space.

An important requirement for topological signatures is the ability to quantify their
similarity, which is typically achieved by means of an extended pseudometric on the set of
isomorphism classes of signatures under consideration, referred to as a distance. In order
for such a distance to be practical, it should be resilient to noise and perturbations of the
input data, which is formalized by the property of stability: small perturbations of the data
lead to small perturbations of the signature. Mathematically speaking, the signature is a
Lipschitz-continuous map between metric spaces, and often the Lipschitz constant is assumed
to be 1, meaning that the map is non-expansive. Previous examples of distances between
Reeb graphs satisfying stability include the functional distortion distance [2], the interleaving
distance [8], and the Reeb graph edit distance [4]. While stability guarantees that similarity

© Ulrich Bauer, Håvard Bakke Bjerkevik, and Benedikt Fluhr;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ulrich.bauer@tum.de
https://orcid.org/0000-0002-9683-0724
mailto:bjerkevik@tugraz.at
https://orcid.org/0000-0001-9778-0354
mailto:fluhr@ma.tum.de
https://orcid.org/0000-0002-5730-0106
https://doi.org/10.4230/LIPIcs.SoCG.2022.14
https://arxiv.org/abs/2112.00720
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Quasi-Universality of Reeb Graph Distances

of data sets is preserved, it does not provide any guarantees regarding the discriminativity
of the distance on the signature. Indeed, a certain loss of information is inherent and even
desired for most signatures; in fact, a key strength of topological signatures is their invariance
to reparametrizations or isometries of the input data, independent of the metric used to
distinguish non-isomorphic signatures. Thus, given any signature map defined on some
metric space of possible data, such as the space of real-valued functions on a fixed domain
with the uniform metric, one stable distance is considered more discriminative than another
if it assigns larger or equal distances to all possible pairs of signatures. For example, the
functional distortion distance is an upper bound for the interleaving distance and thus more
discriminative in that sense; in fact, the two distances are bi-Lipschitz equivalent [5]. One
may now ask if a given distance is universal, meaning that it is both stable and an upper
bound for all stable distances, and thus the most discriminative among all stable distances.
This can be expressed by the universal property of a quotient metric [7, 12], giving rise to
the name “universal”. Since there is only one such distance, we refer to it as the universal
distance. Perhaps surprisingly, neither the interleaving distance nor the functional distortion
distance are universal, while the Reeb graph edit distance [4] turns out to be universal.

These results raise the question of whether the mentioned distances are quasi-universal,
i.e., bi-Lipschitz equivalent to the universal distance. We address this question by proving
lower and upper Lipschitz bounds relating all three mentioned distances, together with the
novel functional contortion distance, a slight variation of the functional distortion distance. It
has a simple definition, is more discriminative than the functional distortion and interleaving
distances while still being stable, and in fact coincides with the universal distance when
restricted to contour trees, as we also show in this paper. Furthermore, we show that the
interleaving distance of merge trees, considered as a special case of Reeb graphs, coincides
with the functional contortion distance, establishing the universality of all four distances in
this particular setting.

Previous results relating the distances considered in this paper were obtained in [2, 3, 5, 8].
We discuss these results in detail in Section 2. In [4], an edit distance is introduced and shown
to be universal, and an example is given showing that the functional distortion distance is not
universal. Furthermore, in [6], an ℓp-generalization of the interleaving distance is introduced
for unbounded merge trees with finitely many nodes, for all p ∈ [1,∞]. It satisfies a universal
property analogous to the one considered. The case p = ∞ yields a variant of our universality
result for the interleaving distance between unbounded merge trees with finitely many nodes.

2 Preliminaries

▶ Definition 1 (Reeb graph). A Reeb graph is a pair (F, f) where F is a non-empty connected
topological space and f : F → R a continuous function, such that F admits the structure of a
1-dimensional CW complex for which

f restricts to an embedding on each 1-cell, and
for every bounded interval I ⊂ R, the preimage f−1(I) intersects a finite number of cells.

We often refer to F as a Reeb graph without referring explicitly to the function f . A morphism
(isomorphism) of Reeb graphs is a value-preserving continuous map (homeomorphism).

▶ Remark 2. Suppose (F, f) is a Reeb graph, let I ⊆ R be a closed interval, and fix the
structure of a CW complex on F as in Definition 1. As we may subdivide any 1-cell whose
interior intersects f−1(∂I), the preimage f−1(I) also admits the structure of a CW complex.
Thus, the preimage f−1(I) is locally path-connected and therefore the connected components
and the path-components of f−1(I) coincide.



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:3

▶ Definition 3 (Contour tree). A contour tree is a contractible Reeb graph.

Contour trees further specialize to merge trees, which can be thought of as upside down
trees in the sense that its root is at the top and its branches grow from top to bottom.

▶ Definition 4 (Merge tree). A merge tree is a Reeb graph (F, f), such that F admits the
structure of a 1-dimensional CW complex as in Definition 1 with the additional property that
each 0-cell is the lower boundary point of at most a single 1-cell.

We note that this definition allows for both unbounded merge trees, which is an implied
necessity of the definition in [10], and bounded merge trees.

▶ Definition 5 (Induced Reeb graph). Let X be a topological space, f : X → R a continuous
function. Let RX be the quotient space X/∼f , with x ∼f y iff x and y belong to the same
connected component of some level set of f : X → R, and let qRX : X → RX be the natural
quotient map, and let Rf : RX → R be the unique continuous map such that the diagram

X RX

R

qRX

f Rf

commutes. If (RX,Rf) is a Reeb graph, we say that it is the Reeb graph induced by (X, f).

We say that two or more points are connected in some space if there is a connected
component of that space containing all those points. For t ∈ R and δ ≥ 0, let

Iδ(t) := [t− δ, t+ δ] ⊂ R

denote the closed interval of radius δ centered at t.
Let f : X → R be a continuous function and let δ ≥ 0. We define the δ-thickening of X as

TδX := X × [−δ, δ], Tδf : TδX → R, (p, t) 7→ f(p) + t.

Moreover, let

τ δX : X → TδX, p 7→ (p, 0)

be the natural embedding of X into its δ-thickening. Now let g : G → R be a Reeb graph
and consider its δ-thickening Tδg : TδG → R. We define the δ-smoothing of G as

UδG := RTδG, Uδg := RTδg : RTδG → R.

Moreover, let

qUδG : TδG → UδG = RTδG

be the natural quotient map as in Definition 5, and let

ζδG : G
τδ

G // TδG
qUδG

// UδG

be the natural map of G into its δ-smoothing, which is the composition of τ δG and qUδG.

SoCG 2022



14:4 Quasi-Universality of Reeb Graph Distances

Now suppose f : F → R is another Reeb graph and that ϕ : F → UδG is a continuous map.
Identifying points in UδG = RTδG with subsets of TδG via the quotient map qRG : TδG →
UδG, the map ϕ induces a set-valued map

Φ := prG ◦ ϕ : F → P(G)

from F to the power set of G, where prG : TδG = G× [−δ, δ] → G, (q, t) 7→ q is the projection
onto G. Moreover, suppose ψ : G → UδF is another continuous map, and define the set-valued
map analogously as

Ψ := prF ◦ ψ : G → P(F ).

▶ Definition 6 (Interleaving distance dI [8]). We say that the pair of maps ϕ : F → UδG and
ψ : G → UδF is a δ-interleaving of (F, f) and (G, g) if the triangles

F UδG

R

ϕ

f Uδg

and
G UδF

R

ψ

g Uδf

commute and the following two conditions are satisfied:
For any x ∈ F , x and Ψ(Φ(x)) are connected in f−1(I2δ(f(x))).
For any y ∈ G, y and Φ(Ψ(y)) are connected in g−1(I2δ(g(y))).

The interleaving distance, denoted dI(F,G), is defined as the infimum of the set of δ admitting
a δ-interleaving between (F, f) and (G, g).

Note that for any t ∈ R the map f−1(Iδ(t)) → (Tδf)−1(t) given by x 7→ (x, t− f(x)) is a
homeomorphism, with the inverse given by the restriction of prF : TδF → F . In particular,
the points of UδF , which are the connected components of level sets of Tδf , are in bijection
with connected components of interlevel sets of f . Hence, the connectedness condition for an
interleaving is equivalent to requiring that ψδ ◦ ϕ = τ2δ

F and ϕδ ◦ ψ = τ2δ
G , where ϕδ is the

induced map UδF → U2δG, [x, s] 7→ [ϕ(x), s] and similarly for ψδ.

▶ Definition 7 (Functional distortion distance dFD [2]). Let (F, f) and (G, g) be two Reeb
graphs. Given a pair (ϕ, ψ) of maps ϕ : F → G and ψ : G → F , consider the correspondence

C(ϕ, ψ) = {(x, y) ∈ F ×G | ϕ(x) = y or x = ψ(y)}.

The pair (ϕ, ψ) is a δ-distortion pair if ∥f − g ◦ ϕ∥∞ ≤ δ, ∥f ◦ ψ − g∥∞ ≤ δ, and for all
(x, y), (x′, y′) ∈ C(ϕ, ψ) we have

|df (x, x′) − dg(y, y′)| ≤ 2δ,

where df (x, x′) denotes the infimum length of any interval I such that x and x′ are connected
in f−1(I), and similarly for dg. The functional distortion distance, denoted dFD(F,G), is
defined as the infimum of all δ admitting a δ-distortion pair between (F, f) and (G, g).

▶ Definition 8 (Functional contortion distance dFC). Let (F, f) and (G, g) be two Reeb graphs.
A pair (ϕ, ψ) of maps ϕ : F → G and ψ : G → F is a δ-contortion pair between (F, f) and
(G, g) if the following symmetric conditions are satisfied.



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:5

−2

−1

0

1

2

x z y

F G

Figure 1 Reeb graphs (F, f) and (G, g). If ϕ : F → G and ψ : G → F are a 1-distortion pair, we
allow ϕ(x) = y and ψ(y) = z because there is a path from x to z in f−1[−2, 0]. However, in this case
(ϕ, ψ) is not a 1-contortion pair, because x and z are not connected in f−1(I1(g(y))) = f−1[−1, 1].

For any x ∈ F and y ∈ ψ−1(x), the points ϕ(x) and y are connected in g−1(Iδ(f(x)).
For any y ∈ G and x ∈ ϕ−1(y), the points ψ(y) and x are connected in f−1(Iδ(g(y)).

The functional contortion distance, denoted dFC(F,G), is defined as the infimum of the set
of δ admitting a δ-contortion pair between (F, f) and (G, g).

The definition of dFC is arguably easier to work with than that of dFD, since to verify that
(ϕ, ψ) is a δ-contortion pair, one only has to check one condition for each element of C(ϕ, ψ),
while to verify that (ϕ, ψ) is a δ-distortion pair, one needs to check a condition for each pair
of elements of C(ϕ, ψ). We prove that dFC satisfies the triangle inequality in [1, Appendix A].
In [1, Appendix B], we give a simple example showing that dFC and dFD are not the same.
▶ Remark 9. Let (ϕ, ψ) be a δ-contortion pair between (F, f) and (G, g). For any x ∈ F we
have ϕ(x) ∈ g−1(Iδ(f(x))), which implies ∥f(x)−g◦ϕ(x)∥ ≤ δ. It follows that ∥f−g◦ϕ∥∞ ≤ δ,
and by a symmetric argument we also get ∥g − f ◦ ψ∥∞ ≤ δ.

▶ Definition 10 (Universal distance dU [7, 4]). Let (F, f) and (G, g) be two Reeb graphs. The
universal distance, denoted dU (F,G), is defined as the infimum of ∥f̃ − g̃∥∞ taken over all
spaces Z and functions f̃ , g̃ : Z → R such that (RZ,Rf̃) ∼= (F, f) and (RZ,Rg̃) ∼= (F, g).

The distance dU is readily seen to be universal. Recall that the Reeb graph edit distance [4]
is also universal, providing an alternative explicit construction for the universal distance.

If d and d′ are distances on Reeb graphs and c ∈ [0,∞), we use the notation d ≤ cd′ to
express that for all Reeb graphs (F, f) and (G, g), the inequality d(F,G) ≤ cd′(F,G) holds.

▶ Theorem 11 (Quasi-universality of Reeb graph distances). The functional contortion distance
dFC , the functional distortion distance dFD, and the interleaving distance dI on Reeb graphs
are quasi-universal (bi-Lipschitz equivalent to the universal distance). Specifically, we have

dFC ≤ dU ≤ 3dFC dFD ≤ dU ≤ 3dFD dI ≤ dU ≤ 5dI
dFD ≤ dFC ≤ 3dFD dI ≤ dFC ≤ 3dI dI ≤ dFD ≤ 3dI .

Of these, only dI ≤ dFD ≤ 3dI [5], dI ≤ dU , and dFD ≤ dU were known, the latter two
being equivalent to stability of dI [8] and of dFD [2]. See Figure 2a for a visualization of
the inequalities in Theorem 11. In fact, one can easily check that all the inequalities in the
theorem follow from only six of them, namely

dI ≤ dFD ≤ dFC ≤ dU dU ≤ 3dFD dU ≤ 5dI dFC ≤ 3dI .

In future work, we plan to show that all these bounds are indeed tight.

SoCG 2022



14:6 Quasi-Universality of Reeb Graph Distances

dI

dFD

dFC

dU

3

3

53

3

3

(a) Inequalities for Reeb graphs.

dI

dFD

dFC = dU

3

3

3

(b) Inequalities for contour trees.

Figure 2 An arrow from d to d′ labeled cmeans that the inequalities d′(F,G) ≤ d(F,G) ≤ cd′(F,G)
hold for all Reeb graphs (in (a)) or contour trees (in (b)).

▶ Theorem 12 (Universality of the functional contortion distance for contour trees). The
functional contortion distance is universal for contour trees: given two contour trees (F, f)
and (G, g), we have

dFC(F,G) = dU (F,G).

This theorem gives us a simpler set of inequalities for contour trees than what we have
for general Reeb graphs; see Figure 2b. Finally, for merge trees, the hierarchy collapses:

▶ Theorem 13 (Universality of the interleaving distance for merge trees). The interleaving
distance is universal for merge trees: given two merge trees (F, f) and (G, g), we have

dI(F,G) = dFD(F,G) = dFC(F,G) = dU (F,G).

Previously, only the equality dI(F,G) = dFD(F,G) was known [3]. We prove Theorem 11
in Section 3, Theorem 12 in Section 4, and Theorem 13 in Section 5.

3 Bi-Lipschitz bounds for Reeb graph distances

This section is devoted to proving Theorem 11. In Section 3.1 we prove dI ≤ dFD ≤ dFC ≤ dU ,
in Section 3.2 we prove dU ≤ 3dFD, in Section 3.3 we prove dU ≤ 5dI , and in Section 3.4 we
prove dFC ≤ 3dI . As mentioned before, these inequalities together imply the theorem.

3.1 The inequalities dI ≤ dF D ≤ dF C ≤ dU

The following lemma and its proof are similar to [4, Proposition 3], but without the assumption
that X is compact.

▶ Lemma 14. Let (F, f) be a Reeb graph induced by a map f̂ : X → R, let q : X → F be the
associated quotient map, and suppose K ⊆ F is connected. Then q−1(K) is connected.

Proof. Suppose the lemma is false. Then q−1(K) = X1 ⊔X2, where X1 and X2 are nonempty
and contained in disjoint open subsets of X. Since F is equipped with the quotient topology
of q, q(X1) and q(X2) are both open subsets of q(X1) ∪ q(X2) = K. Because K is connected,
we must have q(X1) ∩ q(X2) ̸= ∅.



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:7

Let x ∈ q(X1) ∩ q(X2), so V1 := q−1(x) ∩X1 and V2 := q−1(x) ∩X2 are both nonempty.
Since X1 and X2 are open and disjoint subsets of X1 ∪X2, V1 and V2 are open and disjoint
subsets of V1 ∪ V2 = q−1(x). But by definition of induced Reeb graph, q−1(x) is connected,
so we have a contradiction. ◀

▶ Theorem 15. Given any two Reeb graphs (F, f) and (G, g), we have

dFC(F,G) ≤ dU (F,G).

Proof. Let X be a topological space with functions f̂ , ĝ : X → R that induce Reeb graphs
(F, f) and (G, g), respectively, and let qF : X → F , qG : X → G denote the corresponding
Reeb quotient maps. Suppose ∥f̂ − ĝ∥∞ = δ ≥ 0. For any ϵ > 0, we will construct functions
ϕ : F → G and ψ : G → F that form a (δ + 2ϵ)-contortion pair; the theorem follows.

Fix ϵ > 0. Pick a discrete subset S ⊆ F containing all the 0-cells of F such that for each
1-cell C and each connected component K of C \ S, the image f(K) is contained in some
interval [a, b] of length b− a = ϵ. Pick a subset T ⊆ G analogously. Define a map ϕ : S → G

by picking an element ϕ(s) ∈ qG(q−1
F (s)) for each s ∈ S.

Let L be the closure of a connected component of F \ S. Observe that L is contained
in a single 1-cell C and is homeomorphic to a closed interval, with endpoints z, z′ ∈ S.
By our assumptions on S, L is contained in a connected component of f−1[a, b] for some
a < b with b − a = ϵ. By Lemma 14, q−1

F (L) is connected, and by continuity of qG,
J := qG(q−1

F (L)) is connected, too. Since J is connected, we can extend ϕ continuously to
L by choosing a path from ϕ(z) to ϕ(z′) in J . Moreover, because ∥f̂ − ĝ∥∞ = δ, we have
J ⊆ g−1[a− δ, b+ δ] ⊆ g−1(Iδ+ϵ(f(x))). It follows that for every x ∈ L, ϕ(x) and qG(q−1

F (x))
are connected in g−1(Iδ+ϵ(f(x))). We do this for every L as described and get a continuous
map ϕ : F → G. Analogously, we get a continuous map ψ : G → F such that for any y ∈ G,
ψ(y) and qF (q−1

G (y)) are connected in f−1(Iδ+ϵ(g(y))).
Pick an x ∈ L, where L is as in the previous paragraph, and let y = ϕ(x). By construction,

y ∈ qG(q−1
F (x′)) for some x′ ∈ L. Thus, x′ ∈ qF (q−1

G (y)), which, as noted, is in the same
connected component of f−1(Iδ+ϵ(g(y))) as ψ(y). But x and x′ are connected in f−1[a, b] for
some a < b with b− a = ϵ, so it follows that x and ψ(y) are connected in f−1(Iδ+2ϵ(g(y))).
Along with the symmetric statement that follows by a similar argument, this is exactly what
is needed for (ϕ, ψ) to be a (δ + 2ϵ)-contortion pair. ◀

▶ Theorem 16. Given any two Reeb graphs (F, f) and (G, g), we have

dFD(F,G) ≤ dFC(F,G).

Proof. Suppose ϕ : F → G and ψ : G → F form a δ-contortion pair for some δ ≥ 0. Then

||f − g ◦ ϕ||∞, ||g − f ◦ ψ||∞ ≤ δ (1)

by Remark 9. Let (x, y), (x′, y′) ∈ C(ϕ, ψ), where C(ϕ, ψ) is as in Definition 7. We claim
that if x and x′ are connected in f−1[a, b] for some a ≤ b, then y and y′ are connected in
g−1[a− δ, b+ δ]. Together with the symmetric statement and Equation (1), this is enough to
show that (ϕ, ψ) is a δ-distortion pair, from which the lemma follows.

Assume that x and x′ lie in the same connected component K of f−1[a, b]. We have that
ϕ(K) is connected, and it follows from Equation (1) that ϕ(K) ⊆ g−1[a − δ, b + δ]. Since
ϕ(x), ϕ(x′) ∈ ϕ(K), ϕ(x) and ϕ(x′) are connected in g−1[a−δ, b+δ]. By definition of C(ϕ, ψ),
either y is equal to ϕ(x), or y ∈ ψ−1(x). In the latter case, y and ϕ(x) are connected in

SoCG 2022



14:8 Quasi-Universality of Reeb Graph Distances

g−1(Iδ(f(x))) ⊆ g−1[a − δ, b + δ] by definition of δ-contortion. Similarly, y′ and ϕ(x′) are
also connected in g−1[a− δ, b+ δ]. Putting everything together, y and y′ are connected in
g−1[a− δ, b+ δ], which completes the proof. ◀

▶ Theorem 17 ([5, Lemma 8]). Given any two Reeb graphs (F, f) and (G, g), we have

dI(F,G) ≤ dFD(F,G).

The setting of [5] is slightly different than ours, but the proof of the result carries over.

3.2 Relating universal and functional distortion distance
We denote the connected component of a point p in a space X by Kp(X).

▶ Theorem 18. Given any two Reeb graphs (F, f) and (G, g), we have

dU (F,G) ≤ 3dFD(F,G).

Proof. Assume that ϕ : F → G and ψ : G → F form a δ-distortion pair. We construct a
subspace Z ⊆ F ×G such that the canonical projections prF : F ×G → F , prG : F ×G →
G restrict to Reeb quotient maps qF : Z → F , qG : Z → G of f ◦ qF and g ◦ qG, and
∥f ◦ qF − g ◦ qG∥∞ ≤ 3δ, proving that dU ≤ 3dFD.

For x ∈ F , let

C(x) = Kx(f−1[a, a+ 2δ]),

where a is chosen such that C(x) contains ψ ◦ ϕ(x). By definition of δ-distortion, such an a

always exists, though it does not have to be unique. We define C(y) analogously for y ∈ G:

C(y) = Ky(g−1[a′, a′ + 2δ])

for some a′, and C(y) contains ϕ ◦ ψ(y). Now define

Z =
⋃
x∈F

C(x) × ϕ(C(x)) ∪
⋃
y∈G

ψ(C(y)) × C(y) ⊆ F ×G

and the functions f̂ = f ◦ prF , ĝ = g ◦ prG : Z → R.
To show that ∥f̂ − ĝ∥∞ ≤ 3δ, by symmetry it suffices to show that for every x ∈ F and

every (z, y) ∈ C(x) ×ϕ(C(x)) we have |f(z) − g(y)| ≤ 3δ. Pick w ∈ C(x) such that ϕ(w) = y.
We have |f(z) − f(w)| ≤ 2δ by construction of C(x), and |f(w) − g(y)| ≤ δ by definition of
δ-distortion. Together, we have |f(z) − g(y)| ≤ 3δ as claimed.

To show that qF : Z → F is surjective, simply observe that for any x ∈ F ,

(x, ϕ(x)) ∈ C(x) × ϕ(C(x)) ⊆ Z.

A similar argument shows that also qG : Z → G is surjective.
It remains to show that the fibers of qF are connected; by symmetry, the same is then

true for qG as well. The fiber of z ∈ F is of the form q−1
F (z) = {z} × Gz ⊆ Z, where

Gz = qG(q−1
F (z)) ⊆ G is a subspace, homeomorphic to the fiber. Note that Gz has the

explicit description

Gz =
⋃
x∈F
z∈C(x)

ϕ(C(x)) ∪
⋃
y∈G

z∈ψ(C(y))

C(y).



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:9

Now ϕ(z) is contained in any ϕ(C(x)) with x ∈ F and z ∈ C(x), and in any C(y) with
y ∈ ψ−1(z), and each of these subspaces is connected. Thus,

G′
z =

⋃
x∈F
z∈C(x)

ϕ(C(x)) ∪
⋃

y∈ψ−1(z)
z∈ψ(C(y))

C(y)

is connected and contains ψ−1(z) as a subset. Clearly, if z ∈ ψ(C(y)), then C(y) contains an
element of ψ−1(z), so C(y) intersects G′

z. As C(y) is connected, it follows that

G′
z ∪

⋃
y∈G

z∈ψ(C(y))

C(y) = Gz

is connected. ◀

3.3 Relating universal and interleaving distance
▶ Lemma 19. Let (ϕ, ψ) be a δ-interleaving of (F, f) and (G, g) for some δ ≥ 0. If K ⊆ F

(K ′ ⊆ G) is connected, then Φ(K) (Ψ(K ′)) is connected.

Proof. By continuity of ϕ, ϕ(K) ⊆ UδG is connected. Thus, by Lemma 14,

C := q−1
UδG

(ϕ(K)) ⊆ TδG

is connected. We have that Φ(K) is exactly the image of C under the projection prG : TδG →
G. Since this projection is continuous and C is connected, Φ(K) is connected.

The statement for K ′ and Ψ follows by symmetry. ◀

▶ Theorem 20. Given any two Reeb graphs (F, f) and (G, g), we have

dU (F,G) ≤ 5dI(F,G).

Proof. Let (ϕ, ψ) be a δ-interleaving of (F, f) and (G, g), so to any x ∈ F , there is associated
a subset Φ(x) ⊆ G that is a connected component of g−1(Iδ(f(x))). Similarly, for any y ∈ G,
Ψ(y) is a connected component of f−1(Iδ(g(y))). We construct a subspace Z ⊆ F × G

and two functions f̂ , ĝ : Z → R with ∥f̂ − ĝ∥∞ ≤ 5δ such that the canonical projections
prF : F × G → F , prG : F × G → G restrict to Reeb quotient maps qF : Z → F of f̂ and
qG : Z → G of ĝ, proving that dU ≤ 5dI .

For x ∈ F and y ∈ G, let

C(x) = Kx(f−1(I2δ(f(x)))), C(y) = Ky(g−1(I2δ(g(y)))),

and let

Z =
⋃
x∈F

C(x) × Φ(C(x)) ∪
⋃
y∈G

Ψ(C(y)) × C(y) ⊆ F ×G.

To show that ∥f̂ − ĝ∥∞ ≤ 5δ, by symmetry it suffices to show that for every x ∈ F and every
(z, y) ∈ C(x) × Φ(C(x)) we have |f(z) − g(y)| ≤ 5δ. Pick w ∈ C(x) such that y ∈ Φ(w).
We have |f(z) − f(w)| ≤ 4δ by construction of C(x), and |f(w) − g(y)| ≤ δ by definition of
δ-interleaving. Together, we have |f(z) − g(y)| ≤ 5δ as claimed.

To show that qF : Z → F is surjective, simply observe that for any x ∈ F and y ∈ Φ(x),

(x, y) ∈ C(x) × Φ(C(x)) ⊆ Z.

A similar argument shows that also qG : Z → G is surjective.

SoCG 2022



14:10 Quasi-Universality of Reeb Graph Distances

It remains to show that the fibers of qF are connected; by symmetry, the same is then
true for qG as well. The fiber of z ∈ F is of the form q−1

F (z) = {z} × Gz ⊆ Z, where
Gz = qG(q−1

F (z)) ⊆ G is a subspace, homeomorphic to the fiber. Note that Gz has the
explicit description

Gz =
⋃
x∈F
z∈C(x)

Φ(C(x)) ∪
⋃
y∈G

z∈Ψ(C(y))

C(y).

Clearly, Φ(z) is contained in any Φ(C(x)) with x ∈ F and z ∈ C(x). In addition, Φ(z) ⊆ C(y)
for any y ∈ G such that z ∈ Ψ(y), as Φ(Ψ(y)) ⊆ C(y) by definition of interleaving. By
Lemma 19, Φ(C(x)) is connected. Thus,

G′
z =

⋃
x∈F
z∈C(x)

Φ(C(x)) ∪
⋃
y∈G
z∈Ψ(y)

C(y) ⊆ Gz

is connected, since it is a union of connected sets that all contain Ψ(z). To complete the
proof that Gz is connected, it suffices to show that C(y) intersects G′

z for all y ∈ G such
that z ∈ Ψ(C(y)). To see this, observe that there is a w ∈ C(y) such that z ∈ Ψ(w), and
w ∈ C(w) ⊆ G′

z. ◀

3.4 Relating functional contortion and interleaving distance
▶ Theorem 21. Given any two Reeb graphs (F, f) and (G, g), we have

dFC(F,G) ≤ 3dI(F,G).

Proof. Let (ϕ, ψ) be a δ-interleaving of (F, f) and (G, g) for some δ ≥ 0. We will show that
for an arbitrary ϵ > 0, there are µ : F → G and ν : G → F with functional contortion 3δ+ 3ϵ.

Pick a discrete subset S ⊂ F containing all the 0-cells of F such that for each 1-cell C
and connected component I of C \S, the interval f(I) has length less than ϵ. Pick a discrete
subset T ⊂ G with the same properties.

For each x ∈ S, pick an arbitrary y ∈ Φ(x) and define µ(x) = y. Similarly, for each y ∈ T ,
let ν(y) ∈ Ψ(y). Let I be a connected component of F \ S. Observe that I is contained in a
single 1-cell C, and that its closure I contains two points z, z′ ∈ S. By our assumptions on
I, I is contained in a connected component of f−1[a, b] for some a < b with b− a = ϵ. By
Lemma 19, it follows that Φ(I) is contained in a connected component K of g−1[a− δ, b+ δ].
We can therefore use a a path from µ(z) to µ(z′) in K to extend µ continuously to I; see
Figure 3. This implies that for all x ∈ I, µ(x) and Φ(x) are both contained in K and thus
also in the same component of g−1(Iδ+ϵ(f(x)), as

g−1[a− δ, b+ δ] ⊆ g−1(Iδ+ϵ(f(x)).

We do the same for all connected components of F \ S and define ν similarly on G \ T .
Let δ′ = δ + ϵ. We now prove that (µ, ν) is a 3δ′-contortion pair. By symmetry, it is

enough to show that for any x ∈ F , x and ν(µ(x)) are connected in f−1(I3δ′(g(µ(x)))). The
δ-interleaving (Φ,Ψ) induces a δ′-interleaving (Φ′,Ψ′) canonically: For x ∈ F , Φ′(x) is the
connected component of g−1(Iδ′(f(x)) containing Φ(x) as a subset, and Ψ′(y) is defined
similarly for y ∈ G. We observed that µ(x) and Φ(x) are connected in g−1(Iδ′(f(x)), so



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:11

δ

δ

ϵ

F G

Figure 3 Construction of a functional contortion pair for Theorem 21. The points of S are shown
as black dots. The arrows and the red segments in F and G show µ applied to two points in S and
how we can extend µ to the segment between the points.

µ(x) ∈ Φ′(x). Similarly, ν(µ(x)) ∈ Ψ′(µ(x)). Putting the two together, we get ν(µ(x)) ∈
Ψ′(Φ′(x)). By definition of interleaving, we have Ψ′(Φ′(x)) ⊆ Kx(f−1(I2δ′(f(x)))). Since
|f(x) − g(µ(x))| ≤ δ′, we have

f−1(I2δ′(f(x))) ⊆ f−1(I3δ′(g(µ(x)))),

so

ν(µ(x)) ∈ Ψ′(Φ′(x)) ⊆ Kx(f−1(I3δ′(g(µ(x))))),

which is what we wanted to prove. ◀

4 Contour trees

Proof of Theorem 12. We know dFC(F,G) ≤ dU (F,G) by Theorem 15, so it remains to
prove dFC(F,G) ≥ dU (F,G).

Assume that there is a δ-contortion (ϕ, ψ) between F and G. We construct a subspace
Z ⊆ F × G and two functions f̂ , ĝ : Z → R with ∥f̂ − ĝ∥∞ ≤ δ such that the canonical
projections prF : F ×G → F , prG : F ×G → G restrict to Reeb quotient maps qF : Z → F

of f̂ and qG : Z → G of ĝ, proving that dFC(F,G) ≥ dU (F,G).
Let x ̸= x′ ∈ F , and let ρ : [0, 1] → F be an injective path from x to x′. Since F is a

contour tree and therefore a contractible 1-dimensional CW complex, the image of this path
is uniquely determined, so we can define B(x, x′) = im(ρ). Observe that z ∈ B(x, x′)\{x, x′}
if and only if x and x′ are in different connected components of F \ {z}. B(y, y′) for y, y′ ∈ G

is defined similarly.
Let Z ⊆ F ×G be given by

Z =

 ⋃
x∈F,y∈ψ−1(x)

{x} ×B(ϕ(x), y)

 ∪

 ⋃
y∈G,x∈ϕ−1(y)

B(ψ(y), x) × {y}

 .

SoCG 2022



14:12 Quasi-Universality of Reeb Graph Distances

To show that ∥f̂ − ĝ∥∞ ≤ δ, by symmetry it suffices to show that for every x ∈ F ,
y ∈ ψ−1(x) and y′ ∈ B(ϕ(x), y), |f(x) − g(y′)| ≤ δ. But by definition of δ-contortion, ϕ(x)
and y are connected in g−1[f(x) − δ, f(x) + δ], so B(ϕ(x), y) ⊆ g−1[f(x) − δ, f(x) + δ], and
the statement follows.

For any x ∈ F , we have

(x, ϕ(x)) ∈ B(ψ ◦ ϕ(x), x) × {ϕ(x)} ⊆ Z,

and it follows immediately that qF : Z → F is surjective, and similarly for qG : Z → G.
It remains to show that the fibers of qF and qG are connected. By symmetry, we only

need to prove this for qF . The fiber of x ∈ F is of the form q−1
F (x) = {x} ×Gx ⊆ Z, where

Gx = qG(q−1
F (x)) ⊆ G is a subspace, homeomorphic to the fiber. To follow the arguments

that follow, we suggest keeping an eye on Figure 4. Let

Ux = {ϕ(x)} ∪
⋃

y∈ψ−1(x)

B(ϕ(x), y) ⊆ G.

(Including {ϕ(x)} only makes a difference if ϕ−1(x) is empty.) Since Ux is a union of connected
sets intersecting in the point ϕ(x), Ux is connected. Moreover, Ux ⊆ Gx by construction, as
we have already observed that (x, ϕ(x)) ∈ q−1

F (x).
Let Dx = {ϕ(x)} ∪ ψ−1(x). Note that Dx ⊆ Ux. Let y ∈ Gx \ Ux. Then there is an

x′ ∈ ϕ−1(y) such that x ∈ B(ψ(y), x′). Equivalently, x′ and ψ(y) are in different connected
components F1 and F2, respectively, of F \ {x}. (Since y /∈ Dx, neither x′ nor ψ(y) is equal
to x.) Since Dx is closed, so is ϕ−1(Dx). This means that we can pick an x′′ ∈ ϕ−1(Dx)
such that

B := B(x′, x′′) \ {x′′}

does not intersect ϕ−1(Dx). It follows that B ⊆ F1, since x /∈ B. It also follows that
ψ ◦ ϕ(B) ⊆ F2, since x /∈ ψ ◦ ϕ(B) and ψ(y) ∈ ψ ◦ ϕ(B). Thus, for all z ∈ B, we have
x ∈ B(ψ ◦ ϕ(z), z); i.e.,

(x, ϕ(z)) ∈ B(ψ ◦ ϕ(z), z) × {ϕ(z)} ⊆ Z,

so ϕ(B) ⊆ Gx. This means that there is a path in Gx from y = ϕ(x′) to ϕ(x′′) ∈ Ux. Since y
was an arbitrary point in Gx and Ux is connected, it follows that Gx is connected. ◀

5 Merge trees

In this section, we focus on merge trees, which are a special case of contour trees that also
arise from the connected components of the sublevel set filtration of a function.

The merge trees obtained this way carry a function that is unbounded above, and they
are characterized by the property that the canonical map from the merge tree to the Reeb
graph of its epigraph is an isomorphism [10]. Our definition is more general and also admits
bounded functions, and in Section 5.1 we develop an analogous characterization for these
general merge trees via the property that said canonical map is an embedding. Relating this
property to our definition is not straightforward, and we defer the proofs to [1, Appendix C].

Our goal in Section 5.2 is to prove that the interleaving distance for merge trees is
universal. By Theorem 12, it suffices to construct a δ-contortion pair from a δ-interleaving of
merge trees. Summarizing the idea for the simpler special case of a merge tree G unbounded
above, the key insight behind the proof is that the δ-smoothing of G is isomorphic to an
upward δ-shift of G. Composing the interleaving morphisms with the isomorphisms obtained
this way yields the desired δ-contortion pair in the unbounded case.



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:13

F

x

x′

x′′

ψ(y)

ψ ◦ ϕ(B)

B

F2

F1

G

ϕ(x′′)

y = ϕ(x′)

Ux

ϕ(B)

ϕ(x)

Figure 4 Illustration of constructions used to prove connectedness of fibers of qF .

5.1 The epigraph and merge trees

We formally characterize merge trees using a construction based on epigraphs, as previously
suggested by Morozov et al. [10].

▶ Definition 22 (Epigraph). Let f : X → R be a continuous function. We define the epigraph
of f as the space EX := X×[0,∞) equipped with the function Ef : EX → R, (p, t) 7→ f(p) + t.

While this is not the usual definition of the epigraph {(p, y) ∈ X × R | f(p) ≤ y}, we
note that the map Ef : EX → R and the projection of the ordinary epigraph to the second
component are isomorphic as R-spaces. Our definition has the benefit that we have the strict
equality δ + Ef = E(δ + f) : EX → R for any δ ∈ R.

Now suppose that (G, g) is a Reeb graph, and let m := supp∈G g(p) ∈ (−∞,∞]. We now
define the map ρ̃G : EG → EG, (p, t) 7→ (p,min{t,m− g(p)}), which makes the diagram

(Eg)−1(−∞,m] (Eg)−1(−∞,m]

EG EG

R R

ρ̃G

Eg Eg

min{−,m}

commute. We state the following immediate consequence of this definition.

▶ Lemma 23. For each t ∈ R the map ρ̃G : EG → EG restricts to a homeomorphism between
the fibers (Eg)−1(t) and (Eg)−1(min{t,m}).

SoCG 2022



14:14 Quasi-Universality of Reeb Graph Distances

G REG

iG−−−−−−−−−−−−→

Figure 5 The embedding iG : G → REG of a merge tree G into its unbounded variant REG.

By the universal property of the quotient topology, there is a unique continuous map
Rρ̃G : REG → REG making the following diagram commute:

EG EG

REG REG

R R

ρ̃G

qREG

Eg

qREG

Eg

Rρ̃G

REg REg

min{−,m}

(2)

▶ Corollary 24. For each t ∈ R the map Rρ̃G : REG → REG restricts to a bijection between
the fibers (REg)−1(t) and (REg)−1(min{t,m}).

Let κX : X → X × [0,∞) = EX, p 7→ (p, 0) denote the natural embedding of X into the
epigraph of f . We state several properties (see [1, Appendix C] for the proofs) of the map

iG : G κG // EG
qREG // REG.

▶ Lemma 25. The images of the maps iG : G → REG and Rρ̃G : REG → REG are identical.

▶ Lemma 26. A Reeb graph (G, g) is a merge tree iff the map iG : G → REG is an embedding.

Now suppose that (G, g) is a merge tree. The composite map

iG : G κG // EG
qREG // REG



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:15

is non-surjective iff g : G → R is bounded above. We define ρG : REG → G to be the unique
continuous map – which exists by Lemmas 25 and 26 – making the diagram

G REG

EG REG

κG

ρG

Rρ̃G

qREG

(3)

commute. As an immediate corollary of Corollary 24, we obtain the following observation.

▶ Corollary 27. For each t ∈ R, the map ρG : REG → G restricts to a bijection between the
fibers (REg)−1(t) and g−1(min{t,m}).

5.2 Interleavings, contortions, and merge trees
Let f : X → R be an arbitrary continuous function and let δ ≥ 0. We define the map

κδX : TδX → EX, (p, t) 7→ (p, t+ δ),

which makes the diagram

TδX EX

R R

κδ
X

Tδf Ef

(−)+δ

commute. Now let (G, g) be a merge tree. By the universal property of the quotient topology,
there is a unique continuous map RκδG : UδG → REG making the diagram

TδG EG

UδG REG

R R

κδ
G

qUδG

Tδg

qREG

Eg

Rκδ
G

Uδg REg

(−)+δ

(4)

commute.

▶ Lemma 28. The map RκδG : UδG → REG is injective.

As in the previous subsection, let m := supp∈G g(p) ∈ (−∞,∞], let p ∈ G, and let δ′ = δ

or δ′ ∈ [−δ, δ] if g(p) = m.

▶ Lemma 29. The composite map

G× [−δ, δ] = TδG
qUδG

// UδG
Rκδ

G // REG
ρG // G

maps (p,−δ′) to p.

SoCG 2022



14:16 Quasi-Universality of Reeb Graph Distances

Proof of Theorem 13. Suppose (F, f) and (G, g) are merge trees and that

ϕ : F → UδG and ψ : G → UδF

form a δ-interleaving (of Reeb graphs). We show that the composite maps

ϕ̃ : F ϕ
// UδG

Rκδ
G // REG

ρG // G, ψ̃ : G ψ
// UδF

Rκδ
F // REF

ρF // F

form a δ-contortion pair. Together with Theorem 12, this proves the claim.
Let x ∈ F and let y ∈ ψ̃−1(x). We have to show that y and ϕ̃(x) are connected in

g−1(Iδ(f(x))). By the symmetry of Definition 8, this is also sufficient. By the commutativity
of the lower parallelogram in (4) the value of RκδF (ψ(y)) under REf is

(Uδf)(ψ(y)) + δ = g(y) + δ.

In conjunction with the commutativity of (3) and the lower parallelogram in (2) we obtain

f(x) =
(
f ◦ ψ̃

)
(y) = min{g(y) + δ,m′},

where m′ := supp∈F f(p), and hence

f(x) − g(y) = min{g(y) + δ,m′} − g(y) = min{δ,m′ − g(y)}.

Moreover, g(y) = (Uδf)(ψ(y)) ≤ m′ + δ, so in conjunction with Lemma 29 we obtain that

G× [−δ, δ] = TδG
qUδG

// UδG
Rκδ

G // REG
ρG // G

maps (x, g(y) − f(x)) to x. Thus, the composite map

UδG
Rκδ

G // REG
ρG // G

maps both qUδF (x, g(y) − f(x)) and ψ(y) to x. By Lemma 28 and Corollary 27 this implies

qUδF (x, g(y) − f(x)) = ψ(y).

Completely analogously we obtain that qUδG

(
ϕ̃(x), f(x)−

(
g◦ϕ̃

)
(x)

)
= ϕ(x). Thus, y and ϕ̃(x)

are connected in g−1(I2δ(g(y))) by Definition 6. It remains to show that y and ϕ̃(x) are
connected in g−1(Iδ(f(x))). To this end, let t := min{g(y) + 2δ,m}, where m := supp∈G g(p).

▷ Claim 30. We have
(
g ◦ ϕ̃

)
(x) = t.

Proof. We first consider the case
(
f ◦ ψ̃

)
(y) = f(x) < m′. In this case, we have

f(x) =
(
f ◦ ψ̃

)
(y) = g(y) + δ and thus

(
g ◦ ϕ̃

)
(x) = t. Now suppose f(x) = m′. Since

ϕ̃(x) ∈ g−1(I2δ(g(y))), we must have
(
g ◦ ϕ̃

)
(x) ≤ t. Now suppose

(
g ◦ ϕ̃

)
(x) < t ≤ m.

Then
(
g ◦ ϕ̃

)
(x) = f(x) + δ = m′ + δ. In particular, we have m′ + δ < t ≤ m. Now let

s ∈ (m′ + δ,m). Then we have (Uδf)−1(s) = ∅ while g−1(s) ̸= ∅, a contradiction to the
existence of the map ψ|g−1(s) : g−1(s) → (Uδf)−1(s). ◁



U. Bauer, H. B. Bjerkevik, and B. Fluhr 14:17

We obtain the connectivity of y and ϕ̃(x) in g−1(Iδ(f(x))) from their connectivity in
g−1(I2δ(g(y))) by define a retraction σ : g−1(I2δ(g(y))) → g−1(t) as a composition of maps

g−1(I2δ(g(y)))

g−1(−∞, g(y) + 2δ]

(Eg)−1(−∞, g(y) + 2δ]

(Eg)−1[t, g(y) + 2δ]

(REg)−1[t, g(y) + 2δ]

g−1(t),

κG

σ̃

qREG

ρG

where

σ̃ : (Eg)−1(−∞, g(y) + 2δ] → (Eg)−1[t, g(y) + 2δ], (p, s) 7→ (p,max{s, t− g(p)}).

By the defintion of σ̃ the map σ : g−1(I2δ(g(y))) → g−1(t) is indeed a retraction. As
ϕ̃(x) ∈ g−1(t) by Claim 30 the points σ(y) and ϕ̃(x) are connected in the fiber g−1(t).
Since the fibers of g are discrete, this implies that σ(y) = ϕ̃(x). Defining the path

γ : [0, 1] → EG, s 7→ (y, s(t− g(y)))

the composition

[0, 1] γ
// EG

qREG // REG
ρG // G

yields a path from y to σ(y) = ϕ̃(x) in g−1(Iδ(f(x))). ◀

References
1 Ulrich Bauer, Håvard Bakke Bjerkevik, and Benedikt Fluhr. Quasi-universality of Reeb graph

distances. Preprint, 2021. arXiv:2112.00720.
2 Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. In

Computational geometry (SoCG’14), pages 464–473. ACM, New York, 2014.
3 Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. Extended

version of conference paper, 2016. arXiv:1307.2839v2.
4 Ulrich Bauer, Claudia Landi, and Facundo Mémoli. The Reeb graph edit distance is universal.

Found. Comput. Math., 21(5):1441–1464, 2021. doi:10.1007/s10208-020-09488-3.
5 Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong equivalence of the interleaving

and functional distortion metrics for Reeb graphs. In 31st International Symposium on
Computational Geometry, volume 34 of LIPIcs. Leibniz Int. Proc. Inform., pages 461–475.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015.

6 Robert Cardona, Justin Curry, Tung Lam, and Michael Lesnick. The universal ℓp-metric on
merge trees. Preprint, 2021. arXiv:2112.12165.

SoCG 2022

http://arxiv.org/abs/2112.00720
http://arxiv.org/abs/1307.2839v2
https://doi.org/10.1007/s10208-020-09488-3
http://arxiv.org/abs/2112.12165


14:18 Quasi-Universality of Reeb Graph Distances

7 Michele d’Amico, Patrizio Frosini, and Claudia Landi. Natural pseudo-distance and optimal
matching between reduced size functions. Acta Appl. Math., 109(2):527–554, 2010. doi:
10.1007/s10440-008-9332-1.

8 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete Comput.
Geom., 55(4):854–906, 2016. doi:10.1007/s00454-016-9763-9.

9 Masaki Hilaga, Yoshihisa Shinagawa, Taku Komura, and Tosiyasu L. Kunii. Topology
matching for fully automatic similarity estimation of 3d shapes. In Lynn Pocock, editor,
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 2001, Los Angeles, California, USA, August 12-17, 2001, pages 203–212. ACM,
2001. doi:10.1145/383259.383282.

10 Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between
merge trees. Presented at TopoInVis’13. Manuscript, 2013. URL: https://www.mrzv.org/
publications/interleaving-distance-merge-trees/.

11 Georges Reeb. Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une
fonction numérique. C. R. Acad. Sci. Paris, 222:847–849, 1946.

12 Luis N. Scoccola. Locally persistent categories and metric properties of interleaving distances.
PhD thesis, The University of Western Ontario, 2020. URL: https://ir.lib.uwo.ca/etd/
7119.

13 Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing a Reeb graph automatically
from cross sections. IEEE Computer Graphics and Applications, 11(6):44–51, 1991. doi:
10.1109/38.103393.

14 Gurjeet Singh, Facundo Mémoli, and Gunnar E. Carlsson. Topological methods for the
analysis of high dimensional data sets and 3d object recognition. In Mario Botsch, Renato
Pajarola, Baoquan Chen, and Matthias Zwicker, editors, 4th Symposium on Point Based
Graphics, PBG@Eurographics 2007, Prague, Czech Republic, September 2-3, 2007, pages
91–100. Eurographics Association, 2007. doi:10.2312/SPBG/SPBG07/091-100.

https://doi.org/10.1007/s10440-008-9332-1
https://doi.org/10.1007/s10440-008-9332-1
https://doi.org/10.1007/s00454-016-9763-9
https://doi.org/10.1145/383259.383282
https://www.mrzv.org/publications/interleaving-distance-merge-trees/
https://www.mrzv.org/publications/interleaving-distance-merge-trees/
https://ir.lib.uwo.ca/etd/7119
https://ir.lib.uwo.ca/etd/7119
https://doi.org/10.1109/38.103393
https://doi.org/10.1109/38.103393
https://doi.org/10.2312/SPBG/SPBG07/091-100


Gromov Hyperbolicity, Geodesic Defect, and
Apparent Pairs in Vietoris–Rips Filtrations
Ulrich Bauer # Ñ

Department of Mathematics and Munich Data Science Institute,
Technische Universität München, Germany

Fabian Roll # Ñ

Department of Mathematics, Technische Universität München, Germany

Abstract
Motivated by computational aspects of persistent homology for Vietoris–Rips filtrations, we generalize
a result of Eliyahu Rips on the contractibility of Vietoris–Rips complexes of geodesic spaces for a
suitable parameter depending on the hyperbolicity of the space. We consider the notion of geodesic
defect to extend this result to general metric spaces in a way that is also compatible with the
filtration. We further show that for finite tree metrics the Vietoris–Rips complexes collapse to
their corresponding subforests. We relate our result to modern computational methods by showing
that these collapses are induced by the apparent pairs gradient, which is used as an algorithmic
optimization in Ripser, explaining its particularly strong performance on tree-like metric data.

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Mathematics
of computing → Trees; Theory of computation → Computational geometry

Keywords and phrases Vietoris–Rips complexes, persistent homology, discrete Morse theory, apparent
pairs, hyperbolicity, geodesic defect, Ripser

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.15

Related Version Extended Version: https://arxiv.org/abs/2112.06781

Funding This research has been supported by the DFG Collaborative Research Center SFB/TRR
109 Discretization in Geometry and Dynamics.

Acknowledgements We thank Michael Bleher, Lukas Hahn, and Andreas Ott for stimulating
discussions about applications of Vietoris–Rips complexes to the topological study of coronavirus
evolution motivating our interest in the persistence of tree metrics, the organizers and participants
of the AATRN Vietoris–Rips online seminar for sparking our interest in the Contractibility Lemma,
and the anonymous reviewers for valuable feedback.

1 Introduction

The Vietoris–Rips complex is a fundamental construction in algebraic, geometric, and applied
topology. For a metric space X and a threshold t > 0, it is defined as the simplicial complex
consisting of nonempty and finite subsets of X with diameter at most t:

Ripst(X) = {∅ ̸= S ⊆ X | S finite, diamS ≤ t}.

First introduced by Vietoris [27] in order to make homology applicable to general compact
metric spaces, it has also found important applications in geometric group theory [16] and
topological data analysis [26]. The role of the threshold in these three application areas is
notably different. The homology theory defined by Vietoris arises in the limit t → 0. In
contrast, the key applications in geometric group theory rely on the fact that the Vietoris–
Rips complex of a hyperbolic geodesic space is contractible for a sufficiently large threshold.

© Ulrich Bauer and Fabian Roll;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@ulrich-bauer.org
www.ulrich-bauer.org
https://orcid.org/0000-0002-9683-0724
mailto:fabian.roll@tum.de
https://www.roll.science
https://orcid.org/0000-0002-3604-4545
https://doi.org/10.4230/LIPIcs.SoCG.2022.15
https://arxiv.org/abs/2112.06781
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Rips Filtrations

This observation, originally due to Rips and first published in Gromov’s seminal paper on
hyperbolic groups [16], is a fundamental result about the topology of Vietoris–Rips complexes
and plays a central role in the theory of hyperbolic groups.

▶ Lemma 1 (Contractibility Lemma; Rips, Gromov [16]). Let X be a δ-hyperbolic geodesic
metric space. Then the complex Ripst(X) is contractible for every t > 0 with t ≥ 4δ.

Here, a metric space (X, d) is called geodesic if for any two points x, y ∈ X there exists an
isometric map [0, d(x, y)] → X such that 0 7→ x and d(x, y) 7→ y, and it is called δ-hyperbolic
(in the sense of Gromov [16]) for δ ≥ 0 if for any four points w, x, y, z ∈ X we have

d(w, x) + d(y, z) ≤ max{d(w, y) + d(x, z), d(w, z) + d(x, y)} + 2δ. (1)

Finally, in applications of Vietoris–Rips complexes to topological data analysis, one is typically
interested in the persistent homology of the entire filtration of complexes for all possible
thresholds. A notable difference to the classical applications is that the metric spaces under
consideration are typically finite, and in particular not geodesic. This motivates the interest
in a meaningful generalization of the Contractibility Lemma to finite metric spaces. Based
on the notion of a discretely geodesic space defined by Lang [22], which is the natural setting
for hyperbolic groups, and motivated by techniques used in that paper, we consider the
following quantitative geometric property (called ν-almost geodesic in [10, p. 271]).

▶ Definition 2. A metric space X is ν-geodesic if for all x, y ∈ X and r, s ≥ 0 with
r + s = d(x, y) there exists a point z ∈ X with d(x, z) ≤ r + ν and d(y, z) ≤ s + ν. The
geodesic defect of X, denoted by ν(X), is the infimum over all ν such that X is ν-geodesic.

Our first main result is a generalization of the Contractibility Lemma that also applies to
non-geodesic spaces using our notion of geodesic defect, and further produces collapses that
are compatible with the Vietoris–Rips filtration above the collapsibility threshold.

▶ Theorem 3. Let X be a finite δ-hyperbolic ν-geodesic metric space. Then there exists a
discrete gradient that induces, for every u > t ≥ 4δ + 2ν, a sequence of collapses

Ripsu(X) ↘ Ripst(X) ↘ {∗}.

▶ Example 4. An important special case is given by a finite tree metric space (V, d), where V
is the vertex set of a positively weighted tree T = (V,E), and where the edge weights are
taken as lengths and d is the associated path length metric, i.e., for two points x, y ∈ V their
distance is the infimum total weight of any path starting in x and ending in y. The geodesic
defect is ν(V ) = 1

2 maxe∈E l(e), where l(e) is the length of the edge e. Moreover, (V, d) is
0-hyperbolic (see [13, Theorems 3.38 and 3.40] for a characterization of 0-hyperbolic spaces).

This example is of particular relevance in the context of evolutionary biology, where persistent
Vietoris–Rips homology has been successfully applied to identify recombinations and recurrent
mutations [11, 24, 8]. The metrics arising as genetic distances of aligned RNA or DNA
sequences are typically very similar to trees, capturing the phylogeny of the evolution. This
motivates our interest in the particular case of tree metrics. These metric spaces are known
to have acyclic Vietoris–Rips homology in degree > 0, and so any homology is an indication
of some evolutionarily relevant phenomenon.

Our second main result is a strengthened version of Theorem 3 for the special case of tree
metric spaces that connects the collapses of the Vietoris–Rips filtration to the construction
of apparent pairs, which play an important role as a computational shortcut in the software



U. Bauer and F. Roll 15:3

Ripser [6]. This result depends on a particular ordering of the vertices: we say that a total
order of V is compatible with the tree T if it extends the unique tree partial order resulting
from choosing some arbitrary root vertex as the minimal element.

▶ Theorem 5. Let V be a finite tree metric space for a weighted tree T = (V,E), whose
vertices are totally ordered in a compatible way. Then the apparent pairs gradient for the
lexicographically refined Vietoris–Rips filtration induces a sequence of collapses

Ripsu(V ) ↘ Ripst(V ) ↘ Tt

for every u > t > 0 such that no edge e ∈ E has length l(e) ∈ (t, u], where Tt is the subforest
with vertices V and all edges of E with length at most t. In particular, the persistent homology
of the Vietoris–Rips filtration is trivial in degree > 0.

In the special case of trees with unit edge length, the proofs in [1, Proposition 2.2] and [2,
Proposition 3] are similar in spirit to our proof of Theorem 25, which is based on discrete
Morse theory. Related results about implications of the geometry of a metric space on the
homotopy types of the associated Vietoris–Rips complexes can be found in [3, 4, 23].

▶ Remark 6. Given a vertex order ≤, the lexicographic order on simplices for the reverse
vertex order ≥ coincides with the reverse colexicographic order for the original order ≤,
which is used for computations in Ripser. As a consequence, when the input is a tree metric
with the points ordered in reverse order of the distances to some arbitrarily chosen root, then
Ripser will identify all non-tree simplices in apparent pairs, requiring not a single column
operation to compute its trivial persistent homology. In practice, we observe that on data
that is almost tree-like, such as genetic evolution distances, Ripser exhibits exceptionally
good computational performance. The results of this paper provide a partial geometric
explanation for this behavior and yield a heuristic for preprocessing tree-like data by sorting
the points to speed up the computation in such cases. In the application to the study
of SARS-CoV-2 described in [8], ordering the genome sequences in reverse chronological
order, as an approximation of the reverse tree order for the phylogenetic tree, lead to a huge
performance improvement, bringing down the computation time for the persistence barcode
from a full day to about 2 minutes.

2 Preliminaries

2.1 Discrete Morse theory and the apparent pairs gradient
A simplicial complex K on a vertex set VertK is a collection of nonempty finite subsets
of VertK such that for any set σ ∈ K and any nonempty subset ρ ⊆ σ one has ρ ∈ K. A
set σ ∈ K is called a simplex, and dim σ = cardσ− 1 is its dimension. Moreover, ρ is said to
be a face of σ and σ a coface of ρ. If dim ρ = dim σ − 1, then we call ρ a facet of σ and σ a
cofacet of ρ. The star of σ, Stσ, is the set of cofaces of σ in K, and the closure of σ, Cl σ, is
the set of its faces. For a subset E ⊆ K, we write StE =

⋃
e∈E St e.

Generalizing the ideas of Forman [14], a function f : K → R is a discrete Morse function
[7, 15] if f is monotonic, i.e., for any σ, τ ∈ K with σ ⊆ τ we have f(σ) ≤ f(τ), and there
exists a partition of K into intervals [ρ, ϕ] = {ψ ∈ K | ρ ⊆ ψ ⊆ ϕ} in the face poset such that
f(σ) = f(τ) for any σ ⊆ τ if and only if σ and τ belong to a common interval in the partition.
The collection of regular intervals, [ρ, ϕ] with ρ ≠ ϕ, is called the discrete gradient of f , and
any singleton interval [σ, σ], as well as the corresponding simplex σ, is called critical.

SoCG 2022



15:4 Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Rips Filtrations

▶ Proposition 7 (Hersh [18, Lemma 4.1]; Jonsson [20, Lemma 4.2]). Let K be a finite
simplicial complex, and {Kα}α∈A a set of subcomplexes covering K, each equipped with a
discrete gradient Vα, such that for any simplex of K

there is a unique minimal subcomplex Kα containing that simplex, and
the simplex is critical for the discrete gradients of all other such subcomplexes.

Then the regular intervals in the Vα are disjoint, and their union is a discrete gradient on K.

An elementary collapse K ↘ K \ {σ, τ} is the removal of a pair of simplices, where σ is a
facet of τ , with τ the unique proper coface of σ. A collapse K ↘ L onto a subcomplex L is a
sequence of elementary collapses starting in K and ending in L. An elementary collapse can
be realized continuously by a strong deformation retraction and therefore collapses preserve
the homotopy type. A discrete gradient can encode a collapse.

▶ Proposition 8 (Forman [14]; see also [21, Theorem 10.9]). Let K be a finite simplicial
complex and let L ⊆ K be a subcomplex. Assume that V is a discrete gradient on K such that
the complement K \ L is the union of intervals in V . Then there exists a collapse K ↘ L.

Let f : K → R be a monotonic function. Assume that the vertices of K are totally
ordered. The f -lexicographic order is the total order ≤f on K given by ordering the simplices

by their value under f ,
then by dimension,
then by the lexicographic order induced by the total vertex order.

We call a pair (σ, τ ) of simplices in K a zero persistence pair if f(σ) = f(τ). An apparent
pair (σ, τ ) with respect to the f -lexicographic order is a pair of simplices in K such that σ is
the maximal facet of τ , and τ is the minimal cofacet of σ. The collection of apparent pairs
forms a discrete gradient [6, Lemma 3.5], called the apparent pairs gradient.

Assume that K is finite and f : K → R a discrete Morse function with discrete gradient V .
Refine V to another discrete gradient

Ṽ = {(ψ \ {v}, ψ ∪ {v}) | ψ ∈ [ρ, ϕ] ∈ V, v = min(ϕ \ ρ)}

by doing a minimal vertex refinement on each interval.

▶ Lemma 9. The zero persistence apparent pairs with respect to the f-lexicographic order
are precisely the gradient pairs of Ṽ .

Proof. Let (σ, τ) be a zero persistence apparent pair. Then f(σ) = f(τ), and σ and τ are
contained in the same regular interval I = [ρ, ϕ] of V . Let v be the minimal vertex in ϕ \ ρ.
By assumption, σ is the maximal facet of τ , and τ is the minimal cofacet of σ. Hence, σ
is lexicographically maximal among all facets of τ in I, and τ is lexicographically minimal
under all cofacets of σ in I. By the assumption that (σ, τ) forms an apparent pair, we
cannot have v ∈ σ, as otherwise τ \ {v} would be a larger facet of τ than σ. Similarly, we
cannot have v /∈ τ , as otherwise σ ∪ {v} would be a smaller cofacet of σ than τ . This means
that τ = σ ∪ {v} and therefore {σ, τ} ∈ Ṽ .

Conversely, assume that {σ, τ} ∈ Ṽ holds. Consider the interval I = [ρ, ϕ] of V
with {σ, τ} ⊆ I and let v be the minimal vertex in ϕ \ ρ. By construction of Ṽ , σ = τ \ {v}
is the lexicographically maximal facet of τ in I and τ = σ ∪ {v} is the lexicographically
minimal cofacet of σ in I. Therefore, (σ, τ) is a zero persistence apparent pair. ◀



U. Bauer and F. Roll 15:5

2.2 Rips’ Contractibility Lemma via the injective hull
In this section, we recall some known facts about embeddings of metric spaces into their
injective hull. We adapt these results using our notion of geodesic defect to prove a version
of the Contractibility Lemma for finite δ-hyperbolic ν-geodesic metric spaces, following [25].

Let Y be a metric space. The Čech complex of a subspace X ⊆ Y for radius r > 0 is the
nerve of the collection of closed balls in Y with radius r centered at points in X:

Čechr(X,Y ) = {∅ ̸= S ⊆ X | S finite,
⋂

x∈S

Dr(x) ̸= ∅},

where Dr(x) = {y ∈ Y | d(x, y) ≤ r} denotes the closed ball in Y of radius r centered at x.
A metric space is hyperconvex [12] if it is geodesic and if any collection of closed balls has

the Helly property, i.e., if any two of these balls have a nonempty intersection, then all balls
have a nonempty intersection. The following lemma is a direct consequence of this definition.

▶ Lemma 10. If Y is hyperconvex and X ⊆ Y is a subspace, then Čechr(X,Y ) = Rips2r(X).

Let X be a metric space. We describe its injective hull E(X), following Lang [22].
A function f : X → R with f(x) + f(y) ≥ d(x, y) for all x, y ∈ X is extremal if f(x) =
supy∈X(d(x, y) − f(y)) for every x ∈ X. The difference between any two extremal functions
turns out to be bounded, and so we can equip the set E(X) of extremal functions with the
metric induced by the supremum norm, i.e., d(f, g) = supx∈X |f(x) − g(x)|. We define an
isometric embedding e : X → E(X) by y 7→ dy, where dy(x) = d(y, x).

▶ Remark 11. E(X) is a hyperconvex space. In particular, E(X) is contractible, and
nonempty intersections of closed metric balls are contractible [22, 19]. Moreover, nonempty
intersections of open metric balls are also contractible [25, Proposition 2.8 and Lemma 2.15].

The following theorem is essentially due to Lang [22]. Originally, it has been stated for a
special case, but the proof applies verbatim to the below statement involving our notion of
the geodesic defect, which indeed provided the motivation for our definition. Note that the
definition of δ-hyperbolic used in [22] differs from the one used here by a factor of 2.

▶ Proposition 12 (Lang [22, Proposition 1.3]). Let X be a δ-hyperbolic ν-geodesic metric
space. Then the injective hull E(X) is δ-hyperbolic, and every point in E(X) has distance at
most 2δ + ν to e(X).

Now we prove a generalization of the Contractibility Lemma using the injective hull
analogously to the proof for geodesic spaces in [25, Corollary 8.4].

▶ Theorem 13. Let X be a finite δ-hyperbolic ν-geodesic metric space. Then the com-
plex Ripst(X) is contractible for every t ≥ 4δ + 2ν.

Proof. By Proposition 12, we know that for r > t
2 ≥ 2δ + ν the collection of open balls

with radius r centered at the points in e(X) covers E(X). By finiteness of X, there exists
an r > t

2 such that the nerve of this cover is isomorphic to Čech t
2
(e(X), E(X)). As e is an

isometric embedding, Lemma 10, Remark 11, and the Nerve Theorem [17, Section 4.G] imply

Ripst(X) = Ripst(e(X)) = Čech t
2
(e(X), E(X)) ≃ E(X) ≃ ∗. ◀

SoCG 2022



15:6 Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Rips Filtrations

3 Filtered collapsibility of Vietoris–Rips complexes

In this section, we revisit the original proof of the Contractibility Lemma in [16], adapted to
the language of discrete Morse theory [14]. Focusing on the finite case, which also constitutes
the key part of the original proof, we extend the statement beyond geodesic spaces using
our notion of geodesic defect, strengthen the assertion of contractibility to collapsibility, and
further extend the result to become compatible with the Vietoris–Rips filtration.

▶ Theorem 14. Let X be a finite δ-hyperbolic ν-geodesic metric space. Then for every
t ≥ 4δ + 2ν there exists a discrete gradient that induces a collapse Ripst(X) ↘ {∗}.

Proof. Without loss of generality, assume that δ > 0; if X is 0-hyperbolic, then it is also
ϵ-hyperbolic for any ϵ > 0, and for sufficiently small ϵ > 0 we have Rips4ϵ+2ν(X) = Rips2ν(X).

Choose a reference point p ∈ X and order the points according to their distance to p,
choosing a total order p = x1 < · · · < xn on X such that xi < xj implies d(xi, p) ≤ d(xj , p).
Let t ≥ 4δ + 2ν and consider the filtration

{p} = K1 ⊆ · · · ⊆ Kn = Ripst(X),

where Ki = Ripst(Xi) for Xi := {x1, . . . , xi}. We prove that for i ∈ {2, . . . , n} there exists a
discrete gradient Vi on Ki inducing a collapse Ki ↘ Ki−1.

First assume d(xi, p) < t. Then for any vertex xk of Ki we have k ≤ i and d(xk, p) ≤
d(xi, p) < t, so Ki is a simplicial cone with apex p. Pairing the simplices containing p with
those not containing p, we obtain a discrete gradient inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {p}, σ ∪ {p}) | σ ∈ Ki \Ki−1}.

Now assume d(xi, p) ≥ t. We show that there exists a point z ∈ Xi−1 such that for every
simplex σ ∈ Ki \ Ki−1, the union σ ∪ {z} is also a simplex in Ki \ Ki−1. To this end, we
show that any vertex y of σ has distance d(y, z) ≤ t to z. For r = d(xi, p) − 2δ − ν and
s = 2δ + ν we have r + s = d(xi, p), and therefore, by the assumption that X is a ν-geodesic
space, there exists a point z ∈ X with d(z, p) ≤ r + ν = d(xi, p) − 2δ, implying z < xi, and
d(z, xi) ≤ s + ν = 2δ + 2ν. By assumption t ≥ 4δ + 2ν, and thus we get d(z, xi) ≤ t − 2δ.
Note that y ∈ Xi implies d(y, p) ≤ d(xi, p), and y, xi ∈ σ implies d(y, xi) ≤ diam σ ≤ t. The
four-point condition (1) now yields

d(y, z) ≤ max{d(y, xi) + d(z, p), d(y, p) + d(z, xi)} + 2δ − d(xi, p)
= max{d(y, xi)︸ ︷︷ ︸

≤t

+ d(z, p) − d(xi, p)︸ ︷︷ ︸
≤−2δ

, d(y, p) − d(xi, p)︸ ︷︷ ︸
≤0

+ d(z, xi)︸ ︷︷ ︸
≤t−2δ

} + 2δ ≤ t. (2)

Similarly to the above, pairing the simplices containing z with those not containing z yields
a discrete gradient inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {z}, σ ∪ {z}) | σ ∈ Ki \Ki−1}.

Finally, by Proposition 7, the union V =
⋃

i Vi is a discrete gradient on Ripst(X) and by
Proposition 8 it induces a collapse Ripst(X) ↘ {p}. ◀

▶ Remark 15. For a simplicial complex K, a particular type of simplicial collapse called an
elementary strong collapse from K to K \ St v is defined in [5] for the case where the link of
the vertex v is a simplicial cone. The proof of Theorem 14 actually shows that for t ≥ 4δ+ 2ν
there exists a sequence of elementary strong collapses from Ripst(X) to {∗}.



U. Bauer and F. Roll 15:7

We can now extend the proof strategy of Theorem 14 to obtain a filtration-compatible
strengthening of the Contractibility Lemma.

Proof of Theorem 3. As in the proof of Theorem 14, we can assume that δ > 0, and order
the points in X according to their distance to a chosen reference point p = x1 < · · · < xn.

As X is finite, we can enumerate the values of pairwise distances by 0 = r0 < · · · < rl. For
every rm > 4δ + 2ν we construct a discrete gradient Wm inducing a collapse Ripsrm

(X) ↘
Ripsrm−1

(X). This will prove the theorem, because it follows from Theorem 14 that there
exists a discrete gradient V that induces a collapse Rips4δ+2ν(X) ↘ {∗}, and an application
of Proposition 7 assembles these gradients into a single gradient W = V ∪

⋃
m Wmon Cl(X)

inducing collapses Ripsu(X) ↘ Ripst(X) ↘ {∗} for every u > t ≥ 4δ + 2ν.
Let m be arbitrary such that rm > 4δ + 2ν. Consider the filtration

Ripsrm−1
(X) = K1 ⊆ · · · ⊆ Kn = Ripsrm

(X),

where Ki = Ripsrm−1(X) ∪ Ripsrm
(Xi) for Xi := {x1, . . . , xi}. We prove that for i ∈

{2, . . . , n} there exists a discrete gradient Vi on Ki inducing a collapse Ki ↘ Ki−1. Note
that Ki \Ki−1 consists of all simplices of diameter rm that contain xi as the maximal vertex.

First assume d(xi, p) < rm. Let σ ∈ Ki \ Ki−1. As xi is the maximal vertex of σ, we
have d(v, p) ≤ d(xi, p) < rm for all v ∈ σ. Since σ has diameter rm, this implies that σ ∪ {p}
also has diameter rm. Moreover, this implies that there exists an edge e ⊆ σ \ {p} ⊆ σ

not containing p with diam e = rm. Therefore, σ \ {p} also has diameter rm. As p < xi,
both simplices σ \ {p} and σ ∪ {p} contain xi as the maximal vertex and are thus contained
in Ki \Ki−1. Pairing the simplices containing p with those not containing p, we obtain a
discrete gradient inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {p}, σ ∪ {p}) | σ ∈ Ki \Ki−1}.

Now assume d(xi, p) ≥ rm. We show that there exists a point z ∈ Xi−1 such that for
every simplex σ ∈ Ki \Ki−1, the simplices σ \{z} and σ∪{z} are also contained in Ki \Ki−1.
To this end, we show first that any vertex y of σ has distance d(y, z) ≤ rm to z. As in the
proof of Theorem 14, there exists a point z ∈ X with d(z, p) ≤ d(xi, p) − 2δ, implying z < xi,
and d(z, xi) ≤ 2δ + 2ν. By assumption rm > 4δ + 2ν, and thus we get d(z, xi) < rm − 2δ.
Similar to Equation (2), we have the following estimate

d(y, z) ≤ max{d(y, xi)︸ ︷︷ ︸
≤rm

+ d(z, p) − d(xi, p)︸ ︷︷ ︸
≤−2δ

, d(y, p) − d(xi, p)︸ ︷︷ ︸
≤0

+ d(z, xi)︸ ︷︷ ︸
<rm−2δ

} + 2δ ≤ rm,

and if d(y, xi) < rm, then d(y, z) < rm. Hence, diam(σ ∪ {z}) = rm, and diam σ = rm

implies diam σ \ {z} = rm, by an argument similar to the above. As z < xi, both simplices
σ \ {z} and σ ∪ {z} contain xi as the maximal vertex and are thus contained in Ki \Ki−1.
Pairing the simplices containing z with those not containing z, we obtain a discrete gradient
inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {z}, σ ∪ {z}) | σ ∈ Ki \Ki−1}.

By Proposition 7 the union Wm =
⋃
Vi is a discrete gradient on Ripsrm

(X), and by
Proposition 8 it induces a collapse Ripsrm

(X) ↘ Ripsrm−1
(X). ◀

SoCG 2022



15:8 Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Rips Filtrations

4 Collapsing Vietoris–Rips complexes of trees by apparent pairs

In this section, we analyze the Vietoris–Rips filtration of a tree metric space (V, d) for a
positively weighted finite tree T = (V,E), with the goal of proving the collapses in Theorem 5
using the apparent pairs gradient. To this end, we introduce two other discrete gradients: the
canonical gradient, which is independent of any choices, and the perturbed gradient, which
coarsens the canonical gradient and can be interpreted as a gradient that arises through a
symbolic perturbation of the edge lengths. We then show that the intervals in the perturbed
gradient are refined by apparent pairs of the lexicographically refined Vietoris–Rips filtration,
with respect to a particular total order on the vertices.

We write Dr(x) = {y ∈ V | d(x, y) ≤ r} and Sr(x) = {y ∈ V | d(x, y) = r}.

▶ Lemma 16. Let x, y ∈ V be two distinct points at distance d(x, y) = r. Then we
have diamDr(x)∩Dr(y) = r. Furthermore, if a, b ∈ Dr(x)∩Dr(y) are points with d(a, b) = r,
then these points are contained in the union Sr(x) ∪ Sr(y).

Proof. We start by showing the first claim. Let a, b ∈ Dr(x) ∩Dr(y) be any two points. We
show that d(a, b) ≤ r holds, implying diamDr(x) ∩Dr(y) ≤ r. Because x, y ∈ Dr(x) ∩Dr(y)
we also have diamDr(x) ∩Dr(y) ≥ r, proving equality.

Write [n] = {1, . . . , n} and let γ : ([n], {{i, i+1} | i ∈ [n−1]}) → T be the unique shortest
path x ⇝ y. Moreover, let Ψa and Ψb be the unique shortest paths x ⇝ a and x ⇝ b,
respectively. Consider the largest numbers ta, tb ∈ [n] with γ(ta) = Ψa(ta) and γ(tb) = Ψb(tb)
and assume without loss of generality ta ≤ tb. Note that the unique shortest path a⇝ b is
then given by the concatenation a⇝ γ(ta)⇝ γ(tb)⇝ b, where γ(ta)⇝ γ(tb) is the restricted
path γ|[ta,tb]. By assumption, we have d(a, y) ≤ r and this implies the inequality

d(a, γ(ta)) + d(γ(ta), y) = d(a, y) ≤ r = d(x, y) = d(x, γ(ta)) + d(γ(ta), y),

which is equivalent to d(a, γ(ta)) ≤ d(x, γ(ta)). Similarly, the assumption d(x, b) ≤ r implies
d(γ(tb), b) ≤ d(γ(tb), y). Thus, the distance d(a, b) satisfies

d(a, b) = d(a, γ(ta)) + d(γ(ta), γ(tb)) + d(γ(tb), b)
≤ d(x, γ(ta)) + d(γ(ta), γ(tb)) + d(γ(tb), y) = d(x, y) = r, (3)

which finishes the proof of the first claim.
We now show the second claim; assume d(a, b) = r. From the inequalities (3) and

d(a, γ(ta)) ≤ d(x, γ(ta)), d(γ(tb), b) ≤ d(γ(tb), y) together with the assumption d(a, b) = r,
we deduce the equalities d(a, γ(ta)) = d(x, γ(ta)) and d(γ(tb), b) = d(γ(tb), y). Hence,

d(a, y) = d(a, γ(ta)) + d(γ(ta), y) = d(x, γ(ta)) + d(γ(ta), y) = d(x, y) = r

and similarly d(x, b) = r, proving the second claim. ◀

Enumerate the values of pairwise distances by 0 = r0 < · · · < rl = diam V . Let
Km := Ripsrm−1

(V ) ∪ Trm
. We show that the complement Cm := Ripsrm

(V ) \ Km is the
set of all cofaces of non-tree edges of length rm. We further show that it is partitioned into
regular intervals in the face poset, and that this constitutes a discrete gradient.

▶ Lemma 17. Every edge e ∈ Ripsrm
(V ) \ Ripsrm−1

(V ) is contained in a unique maximal
simplex ∆e ∈ Ripsrm

(V ) \ Ripsrm−1(V ). Moreover, if e is a tree edge of length rm, then
∆e = e, and if e ∈ Cm, then ∆e ∈ Cm and e ⊊ ∆e.



U. Bauer and F. Roll 15:9

Proof. By definition, e corresponds to two points x, y ∈ V at distance d(x, y) = rm. If e
is contained in the simplex ∆ ∈ Ripsrm

(V ), then the points in ∆ lie in the intersection
Drm

(x) ∩Drm
(y), which has diameter rm by Lemma 16. Hence, the maximal simplex ∆e is

spanned by all the points in Drm(x) ∩Drm(y).
If e is a tree edge of length rm, then this intersection only contains x and y, and hence

∆e = e. If e ∈ Cm, then this intersection contains at least one vertex different from x and y

that lies on the unique shortest path x⇝ y. This implies e ⊊ ∆e. ◀

For every maximal simplex ∆ ∈ Cm ⊆ Ripsrm
(V ), we write E∆ for the set of edges e ∈ Cm

with ∆e = ∆. Note that E∆ is the set of non-tree edges of length rm contained in ∆.

4.1 Generic tree metrics
Before dealing with the general case, let us focus on the special case where the metric
space (V, d) is generic, meaning that the pairwise distances are distinct. In this case,
Lemma 17 implies that the diameter function diam: Cl(V ) → R is a discrete Morse function,
defined on the full simplicial complex on V , with discrete gradient

{[e,∆e] | non-tree edge e ⊆ Cl(V )},

which we call the generic gradient, and only the vertices V and the tree edges E are critical.
Together with Proposition 8, this yields the following theorem.

▶ Theorem 18. If the tree metric space (V, d) is generic, then the generic gradient induces,
for every m ∈ {1, . . . , l}, a sequence of collapses

Ripsrm
(V ) ↘ (Ripsrm−1

(V ) ∪ Trm
) ↘ Trm

.

Moreover, it follows from Lemma 9 that for the Vietoris–Rips filtration, refined lexico-
graphically with respect to an arbitrary total order on the vertices, the zero persistence
apparent pairs refine the generic gradient, and therefore also induce the above collapses.

▶ Theorem 19. If the tree metric space (V, d) is generic, then the apparent pairs gradient
induces, for every m ∈ {1, . . . , l}, a sequence of collapses

Ripsrm
(V ) ↘ (Ripsrm−1(V ) ∪ Trm

) ↘ Trm
.

4.2 Arbitrary tree metrics
We now turn to the general case, where Lemma 9 is not directly applicable anymore, as the
diameter function is not necessarily a discrete Morse function. Nevertheless, we show that
Theorem 19 is still true without the genericity assumption, if the vertices V are ordered in a
compatible way. Let ∆ be a maximal simplex ∆ ∈ Cm ⊆ Ripsrm

(V ).

▶ Lemma 20. We have StE∆ = Cm ∩ Cl ∆.

Proof. The inclusion StE∆ ⊆ Cm ∩ Cl ∆ holds by definition of E∆. To show the inclusion
StE∆ ⊇ Cm ∩ Cl ∆, let σ ∈ Cm ∩ Cl ∆ be any simplex. As the Vietoris–Rips complex is a
clique complex, there exists an edge e ⊆ σ ⊆ ∆ with diam e = rm. By Lemma 17, this edge
can not be a tree edge end hence e ∈ Cm. Therefore, e ∈ E∆ and σ ∈ St e ⊆ StE∆. ◀

▶ Lemma 21. If two distinct maximal simplices ∆,∆′ ∈ Cm = Ripsrm
(V ) \Km intersect in

a common face ∆ ∩ ∆′, then this face is contained in Km.

SoCG 2022



15:10 Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Rips Filtrations

Proof. Assume for a contradiction that ∅ ≠ ∆ ∩ ∆′ /∈ Km, implying ∆ ∩ ∆′ ∈ Cm. By
Lemma 20, there exists an edge e ∈ E∆ ⊆ Cm with e ⊆ ∆ ∩ ∆′, and therefore ∆ = ∆′ by
uniqueness of the maximal simplex containing e (Lemma 17), a contradiction. ◀

We denote by L∆ the set of all vertices of ∆ that are not contained in any edge in E∆.

▶ Lemma 22. Let e = {u,w} ∈ E∆ be an edge. Then any point x ∈ V \{u,w} on the unique
shortest path u⇝ w of length rm in T is contained in L∆. In particular, L∆ is nonempty.

Proof. By assumption, we have d(u, x) < rm, d(w, x) < rm and d(u,w) = rm. Therefore,
diam{u,w, x} = rm and x ∈ {u,w, x} ⊆ ∆e = ∆. Assume for a contradiction that x is
contained in an edge in E∆. Then it follows from Lemma 16 that we have d(u, x) = rm or
d(w, x) = rm, contradicting the above. We conclude that x ∈ L∆. ◀

4.2.1 The canonical gradient
We now describe a discrete gradient that is compatible with the diameter function and
induces the same collapses as in Theorem 18 even if the tree metric is not generic. This
construction is canonical in the sense that it does not depend on the choice of an order on
the vertices, in contrast to the subsequent constructions.

▶ Lemma 23. For any two edges f, e ∈ E∆ and any vertex v ∈ f there exists a vertex z ∈ e

such that {v, z} ∈ E∆ is an edge in E∆.

Proof. Let f = {v, w}, e = {x, y}; note that d(v, w) = d(x, y) = rm. Since f and e are
both contained in the maximal simplex ∆, we have v, w ∈ Drm

(x) ∩ Drm
(y). Both {v, x}

and {v, y} are contained in {v, x, y} ⊆ ∆ and Lemma 16 implies that at least one of these two
edges is contained in Ripsrm

(V ) \ Ripsrm−1
(V ); call this edge ev. It follows from Lemma 17

that ev is not a tree edge, and therefore ev ∈ E∆. ◀

▶ Lemma 24. The set StE∆ = Cm ∩ Cl ∆ is partitioned by the intervals

W∆ = {[∪S, (∪S) ∪ L∆] | ∅ ̸= S ⊆ E∆}, (4)

and these form a discrete gradient on Cl ∆ inducing a collapse Cl ∆ ↘ (Km ∩ Cl ∆).

Proof. The intervals in W∆ are disjoint and contained in StE∆ by construction. They are
regular, because L∆ is nonempty (by Lemma 22). By Proposition 8, it remains to show that
the intervals in W∆ partition StE∆ = Cl ∆ \ (Km ∩ Cl ∆) and that W∆ is a discrete gradient.

To show the first claim, it suffices to prove that any simplex σ ∈ StE∆ is contained in a
regular interval of W∆. Consider the simplex τ = σ \ L∆ ⊆ σ. As σ ∈ StE∆, there exists
an edge e ∈ E∆ with e ⊆ σ. By the definition of L∆, we have e ⊆ σ \ L∆ = τ . Any other
vertex v ∈ τ \ e is also contained in one of the edges E∆. By Lemma 23, there exists an edge
ev = {v, w} ∈ E∆, where w ∈ e. Then τ = e ∪

⋃
v∈τ\e ev and σ ∈ [τ, τ ∪ L∆] ∈ W∆.

The second claim now follows from the observation that the function

σ 7→

{
dim(σ ∪ L∆) σ ∈ StE∆

dim σ σ /∈ StE∆

is a discrete Morse function with discrete gradient W∆. ◀

Consider the union Wm =
⋃

∆ W∆, where ∆ runs over all maximal simplices in Cm and
W∆ is as in (4). We call W =

⋃
m Wm the canonical gradient.



U. Bauer and F. Roll 15:11

▶ Theorem 25. The canonical gradient is a discrete gradient on Cl(V ). For every m ∈
{1, . . . , l}, it induces a sequence of collapses

Ripsrm
(V ) ↘ Ripsrm−1(V ) ∪ Trm ↘ Trm .

Proof. Let ∆ be a maximal simplex in ∆ ∈ Cm = Ripsrm
(V ) \ Km, where Km =

Ripsrm−1(V ) ∪ Trm . It follows from Lemma 24 that the set W∆ is a discrete gradient
on the full subcomplex Cl ∆ ⊆ Ripsrm

(V ) that partitions StE∆ = Cl ∆ \ (Km ∩ Cl ∆) and
that induces a collapse Cl ∆ ↘ (Km ∩ Cl ∆).

It follows directly from Lemma 21 and Proposition 7 that the union Wm =
⋃

∆ W∆ is
a discrete gradient on Ripsrm

(V ). Again by Proposition 7, the union W =
⋃

m Wm is a
discrete gradient on Cl(V ).

By construction of the W∆, the union Wm partitions the complement Ripsrm
(V ) \Km.

Hence, by Proposition 8, it induces a collapse Ripsrm
(V ) ↘ Km = Ripsrm−1(V ) ∪Trm . Since

only the vertices and the tree edges are critical for W , this also yields the collapse to Trm
. ◀

4.2.2 The perturbed gradient
Assume that V is totally ordered. We construct a coarsening of the canonical gradient to
the perturbed gradient, such that under a specific total order of V the perturbed gradient is
refined by the zero persistence apparent pairs of the diam-lexicographic order < on simplices.

Consider a maximal simplex ∆ ∈ Cm, where m ∈ {1, . . . , l}. Note that all edges in E∆
have length rm and thus are ordered lexicographically. Enumerate them as e1 < · · · < eq.
Every simplex σ ∈ Cm ∩ Cl ∆ contains a maximal edge eσ ∈ Cl σ ∩ E∆.

▶ Lemma 26. For every edge ei ∈ E∆ the union Σi =
⋃

eσ=ei
σ ⊆ ∆ is a simplex in Cm

and the maximal edge among Cl Σi ∩ E∆ is ei.

Proof. Note that Σi ⊆ ∆ ∈ Ripsrm
(V ) is a simplex and it is contained in Cm, because it is

a coface of the non-tree edge ei of length rm.
To prove the second claim, let ej ∈ Cl Σi ∩E∆ be any edge. Write ei = {x, y} with x < y

and ej = {a, b} with a < b. By construction of Σi, there exist simplices σa, σb ∈ Cm ∩ Cl ∆
with a ∈ σa, b ∈ σb and eσa

= eσb
= ei. Note that {x, y, a} ⊆ σa and {x, y, b} ⊆ σb.

By Lemma 16, we have x, y ∈ Srm(a) ∪ Srm(b) and therefore d(a, y) = rm (implying
a ̸= y) or d(b, y) = rm (implying b ̸= y). As {a, y} ⊆ σa and {b, y} ⊆ σb, this implies
{a, y} ≤ eσa = ei = {x, y} or {b, y} ≤ eσb

= ei = {x, y}, respectively. In particular, we have
a ≤ x or a < b ≤ x, and if a = x, then ej ⊆ σb. In any case, ej < ei = eσb

as claimed. ◀

This lemma implies that N∆ = {[ei,Σi]}q
i=1 is a collection of disjoint intervals. It follows

from Lemma 24 that for each j ∈ {1, . . . , q} the interval [ej ,Σj ] is the union

[ej ,Σj ] =
⋃

{[∪S, (∪S) ∪ L∆] | S ⊆ E∆, ej maximal element of Cl(∪S) ∩ E∆} (5)

and that N∆ partitions Cm ∩ Cl ∆. Moreover, it is the discrete gradient of the function

f∆ : Cl ∆ → R, σ 7→

{
i σ ∈ [ei,Σi]
dim σ − dim ∆ σ ∈ Km

(6)

and the intervals are regular, because L∆ is nonempty (Lemma 22). By Proposition 8, N∆
induces a collapse Cl ∆ ↘ Km ∩ Cl ∆. Therefore, the total order on V induces a symbolic
perturbation scheme on the edges, establishing the situation of a generic tree metric as
in Section 4.1.

SoCG 2022



15:12 Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Rips Filtrations

Consider the union Nm =
⋃

∆ N∆, where ∆ runs over all maximal simplices in Cm. We
call N =

⋃
m Nm the perturbed gradient. By (5), the perturbed gradient N coarsens the

canonical gradient W . Analogously to Theorem 25, we obtain the following result.

▶ Theorem 27. The perturbed gradient is a discrete gradient on Cl(V ). For every m ∈
{1, . . . , l}, it induces a sequence of collapses

Ripsrm
(V ) ↘ Ripsrm−1(V ) ∪ Trm ↘ Trm .

▶ Remark 28. As the lower bounds of the intervals in the perturbed gradient are edges, it
follows from Theorem 27 that these collapses can be expressed as edge collapses [9], a notion
that is similar to the elementary strong collapses described in Remark 15.

4.2.3 The apparent pairs gradient
Finally, we show that for a specific total order of V , which we describe next, the perturbed
gradient is refined by the zero persistence apparent pairs of the diam-lexicographic order.

From now on, assume that the tree T is rooted at an arbitrary vertex and orient every
edge away from this point. Let ≤V be the partial order on V where u is smaller than w if
there exists an oriented path u ⇝ w. In particular, we have the identity path id : u ⇝ u.
Note that for any two vertices u,w ∈ V the unique shortest unoriented path u↭ w can be
written uniquely as a zig-zag u γ

⇝z
η
⇝ w, where z is the greatest point with z ≤V u, z ≤V w,

and γ, η are oriented paths in T that intersect only in z. If w↭ p is another unique shortest
unoriented path with the zig-zag w φ

⇝z′ µ
⇝ p, then we can form the following diagram

z′′

z z′

u w p,

ξ λ

γ η φ µ

(7)

where z′′ is the greatest point with z′′ ≤V z, z′′ ≤V z′. Moreover, as T has no cycles, it
follows that either ξ or λ is the identity path and φ ◦ λ = η or η ◦ ξ = φ, respectively.

Extend the partial order ≤V on V to a total order < and consider the diam-lexicographic
order on simplices. As this total order on the simplices extends < under the identification
v 7→ {v}, we will also denote it by <. The following lemma directly implies Theorem 5.

▶ Lemma 29. The intervals in the perturbed gradient N are refined by apparent pairs with
respect to <. For every m ∈ {1, . . . , l}, the zero persistence apparent pairs induce the collapse

Ripsrm
(V ) ↘ Ripsrm−1

(V ) ∪ Trm
.

Proof. Consider a maximal simplex ∆ ∈ Cm. Recall that N∆ is the discrete gradient of the
function f∆ : Cl ∆ → R defined in (6), using the same vertex order as above. By Lemma 9,
the zero persistence apparent pairs with respect to the f∆-lexicographic order <f∆ are
precisely the gradient pairs of the minimal vertex refinement of N∆.

We next show that each apparent pair (σ, τ = σ ∪ {v}) ⊆ [ei,Σi] with respect to <f∆ ,
where v is the minimal vertex in Σi \ ei, is an apparent pair with respect to <. Clearly,
these pairs have persistence zero with respect to the diameter function, as they appear in
the same interval of the perturbed gradient. As the apparent pairs of <f∆ , taken over all ∆,



U. Bauer and F. Roll 15:13

yield a partition of Cm = Ripsrm
(V ) \ (Ripsrm−1(V ) ∪ Trm), the same is then true for the

apparent pairs of <. Thus, by Proposition 8, the apparent pairs gradient induces a collapse
Ripsrm

(V ) ↘ Ripsrm−1
(V ) ∪ Trm

.
First, let σ ∪ {p} ∈ Cm be a cofacet of σ not equal to τ . We show that we must

have τ < σ ∪ {p}, proving that τ is the minimal cofacet of σ with respect to <: If p ∈ Σi,
then p ∈ Σi \ ei, as p /∈ σ ⊇ ei, and the statement is true by minimality of v in the minimal
vertex refinement. Now assume that p /∈ Σi and write ei = {u,w} with u < w. By (5), we
have L∆ ⊆ Σi and hence it follows that p /∈ L∆ and that the point p is contained in an edge
in E∆, by definition of L∆. It follows from Lemma 16 that p together with at least one
vertex of ei forms an edge in E∆. Call this edge g; if there are two such edges, consider the
larger one, and call it g. From {u,w, p} ⊆ ∆ and p /∈ Σi we get ei < g: The edge ei is not
the maximal edge of the two simplex {u,w, p}, since otherwise p would be contained in Σi.
Hence, one of the two other edges is maximal, and that edge is g by definition. Considering
the two possible cases g = {u, p} and g = {w, p}, we must have u < p. We will argue that
v < p holds, which proves τ = σ ∪ {v} < σ ∪ {p}.

Consider the diagram (7). If γ ≠ id, then it follows from the fact that ei = {u,w} is
not a tree edge that along the unique shortest path u↭ w there exists a vertex x distinct
from u and w with x < u < p. Then x ∈ L∆ ⊆ Σi \ ei by Lemma 22, and as v is the minimal
element in Σi \ ei, we get v ≤ x < p.

If γ = id, then u = z, and it follows from d(w, p) ≤ rm and p /∈ ei = {u,w} that we must
have λ ̸= id and ξ = id: Otherwise λ = id and u = z lies on φ. Therefore, u lies on the unique
shortest path from w to p and d(w, p) = d(w, u) + d(u, p) = rm + d(u, p) > rm, yielding a
contradiction. Thus, the unique shortest path (u = z) ↭ p decomposes as u ⇝ z′ ⇝ p,
where u⇝ z′ is contained in u⇝ z′ ⇝ w. Note that u ̸= z′, because λ ̸= id. Hence, as ei

is not a tree edge, the immediate successor x of u on the path u ⇝ w is distinct from u

and w with x ≤ z′. This point satisfies x ≤ z′ ≤ p, and it follows from Lemma 22 that we
have x ∈ L∆ ⊆ Σi \ ei. Because p /∈ L∆ we even have x < p. Therefore, as v is the minimal
vertex in Σi \ ei, it follows that v ≤ x < p.

It remains to prove that σ is the maximal facet of τ with respect to <. We write ei = {u,w}
with u < w and τ = {b0, . . . , bdim τ } with b0 < · · · < bdim τ . As ei ⊆ τ , there are indices
k1 < k2 with u = bk1 < bk2 = w. If k1 > 0, then v = b0, so σ is of the form {b1, . . . , bdim τ }
and is the maximal facet of τ with respect to < as claimed. Now assume k1 = 0. If τ contains
no edges e ∈ E∆ other than ei, then the facets τ \ {u} and τ \ {w} are both contained in
Ripsrm−1(V ), because they do not contain any edge of length rm, and the maximal facet of
τ is τ \ {x} with x the minimal vertex in τ \ ei. By assumption, we have x = v and hence
τ \ {x} = τ \ {v} = σ. If τ contains other edges e ̸= ei with e ∈ E∆, label them s1, . . . , sa.
As ei ⊆ τ ⊆ Σi, it follows from Lemma 26 that we have sb < ei for all b. Because of this and
our assumption k1 = 0, i.e., u is the minimal vertex of τ , we have sb = {u, xb} < {u,w} = ei

with u < xb < w. Therefore, the facet {b1, . . . , bdim τ } contains no edges in E∆ and hence
it is contained in Ripsrm−1

(V ). The facet {b0, b2, . . . , bdim τ } of τ contains ei, hence it is
an element of Cm, and so it is maximal among the facets containing b0, implying that it
is the maximal facet of τ with respect to <. Because b1 is the minimal vertex in τ \ ei

and v ∈ τ \ ei, it follows from the minimality of v ∈ Σi \ ei that we have b1 = v, implying
{b0, b2, . . . , bdim τ } = σ. Therefore, σ is the maximal facet of τ with respect to <. ◀

▶ Remark 30. The preceding Lemma 29 also implies Theorem 3 in the special case of tree
metrics: if u > t ≥ 2ν(V ) = maxe∈E l(e) are real numbers, then Tt = T is the entire tree,
and we obtain collapses Ripsu(V ) ↘ Ripst(V ) ↘ T ↘ {∗}. If all edges of T have the same
length, it turns out that the collapse T ↘ {∗} is also induced by the apparent pairs gradient
for the same order <.

SoCG 2022



15:14 Gromov Hyperbolicity, Geodesic Defect, and Apparent Pairs in Rips Filtrations

References
1 Michał Adamaszek. Clique complexes and graph powers. Israel J. Math., 196(1):295–319,

2013. doi:10.1007/s11856-012-0166-1.
2 Michał Adamaszek, Henry Adams, Ellen Gasparovic, Maria Gommel, Emilie Purvine, Radmila

Sazdanovic, Bei Wang, Yusu Wang, and Lori Ziegelmeier. On homotopy types of Vietoris–Rips
complexes of metric gluings. J. Appl. Comput. Topol., 4(3):425–454, 2020. doi:10.1007/
s41468-020-00054-y.

3 Dominique Attali, André Lieutier, and David Salinas. Vietoris-Rips complexes also provide
topologically correct reconstructions of sampled shapes. Comput. Geom., 46(4):448–465, 2013.
doi:10.1016/j.comgeo.2012.02.009.

4 Dominique Attali, André Lieutier, and David Salinas. When convexity helps collapsing
complexes. In 35th International Symposium on Computational Geometry, volume 129 of
LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 11, 15. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2019. doi:10.4230/LIPIcs.SoCG.2019.11.

5 Jonathan Ariel Barmak and Elias Gabriel Minian. Strong homotopy types, nerves and collapses.
Discrete Comput. Geom., 47(2):301–328, 2012. doi:10.1007/s00454-011-9357-5.

6 Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl.
Comput. Topol., 5(3):391–423, 2021. doi:10.1007/s41468-021-00071-5.

7 Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of Čech and Delaunay complexes.
Trans. Amer. Math. Soc., 369(5):3741–3762, 2017. doi:10.1090/tran/6991.

8 Michael Bleher, Lukas Hahn, Juan Angel Patino-Galindo, Mathieu Carriere, Ulrich Bauer, Raul
Rabadan, and Andreas Ott. Topology identifies emerging adaptive mutations in SARS-CoV-2.
Preprint, 2021. arXiv:2106.07292.

9 Jean-Daniel Boissonnat and Siddharth Pritam. Edge collapse and persistence of flag complexes.
In 36th International Symposium on Computational Geometry, volume 164 of LIPIcs. Leibniz
Int. Proc. Inform., pages Art. No. 19, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2020. doi:10.4230/LIPIcs.SoCG.2020.19.

10 M. Bonk and O. Schramm. Embeddings of Gromov hyperbolic spaces. In Selected works of
Oded Schramm. Volume 1, 2, Sel. Works Probab. Stat., pages 243–284. Springer, New York,
2011. With a correction by Bonk. doi:10.1007/978-1-4419-9675-6_10.

11 Joseph Minhow Chan, Gunnar Carlsson, and Raul Rabadan. Topology of viral evolution.
Proceedings of the National Academy of Sciences, 110(46):18566–18571, 2013. doi:10.1073/
pnas.1313480110.

12 R. Espínola and M. A. Khamsi. Introduction to hyperconvex spaces. In Handbook of metric
fixed point theory, pages 391–435. Kluwer Acad. Publ., Dordrecht, 2001. doi:10.1007/
978-94-017-1748-9_13.

13 Steven N. Evans. Probability and real trees, volume 1920 of Lecture Notes in Mathematics.
Springer, Berlin, 2008. Lectures from the 35th Summer School on Probability Theory held in
Saint-Flour, July 6–23, 2005. doi:10.1007/978-3-540-74798-7.

14 Robin Forman. Morse theory for cell complexes. Adv. Math., 134(1):90–145, 1998. doi:
10.1006/aima.1997.1650.

15 Ragnar Freij. Equivariant discrete Morse theory. Discrete Math., 309(12):3821–3829, 2009.
doi:10.1016/j.disc.2008.10.029.

16 M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst.
Publ., pages 75–263. Springer, New York, 1987. doi:10.1007/978-1-4613-9586-7_3.

17 Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
18 Patricia Hersh. On optimizing discrete Morse functions. Adv. in Appl. Math., 35(3):294–322,

2005. doi:10.1016/j.aam.2005.04.001.
19 J. R. Isbell. Six theorems about injective metric spaces. Comment. Math. Helv., 39:65–76,

1964. doi:10.1007/BF02566944.
20 Jakob Jonsson. Simplicial complexes of graphs, volume 1928 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 2008. doi:10.1007/978-3-540-75859-4.

https://doi.org/10.1007/s11856-012-0166-1
https://doi.org/10.1007/s41468-020-00054-y
https://doi.org/10.1007/s41468-020-00054-y
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.4230/LIPIcs.SoCG.2019.11
https://doi.org/10.1007/s00454-011-9357-5
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1090/tran/6991
http://arxiv.org/abs/2106.07292
https://doi.org/10.4230/LIPIcs.SoCG.2020.19
https://doi.org/10.1007/978-1-4419-9675-6_10
https://doi.org/10.1073/pnas.1313480110
https://doi.org/10.1073/pnas.1313480110
https://doi.org/10.1007/978-94-017-1748-9_13
https://doi.org/10.1007/978-94-017-1748-9_13
https://doi.org/10.1007/978-3-540-74798-7
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1016/j.disc.2008.10.029
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1016/j.aam.2005.04.001
https://doi.org/10.1007/BF02566944
https://doi.org/10.1007/978-3-540-75859-4


U. Bauer and F. Roll 15:15

21 Dmitry N. Kozlov. Organized collapse: an introduction to discrete Morse theory, volume 207
of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2020.

22 Urs Lang. Injective hulls of certain discrete metric spaces and groups. J. Topol. Anal.,
5(3):297–331, 2013. doi:10.1142/S1793525313500118.

23 Janko Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold.
Arch. Math. (Basel), 77(6):522–528, 2001. doi:10.1007/PL00000526.

24 Michael Lesnick, Raúl Rabadán, and Daniel I. S. Rosenbloom. Quantifying genetic innovation:
mathematical foundations for the topological study of reticulate evolution. SIAM J. Appl.
Algebra Geom., 4(1):141–184, 2020. doi:10.1137/18M118150X.

25 Sunhyuk Lim, Facundo Memoli, and Osman Berat Okutan. Vietoris-Rips Persistent Homology,
Injective Metric Spaces, and The Filling Radius. Preprint, 2020. arXiv:2001.07588.

26 Vin de Silva and Gunnar Carlsson. Topological estimation using witness complexes. In
Markus Gross, Hanspeter Pfister, Marc Alexa, and Szymon Rusinkiewicz, editors, SPBG’04
Symposium on Point - Based Graphics 2004. The Eurographics Association, 2004. doi:
10.2312/SPBG/SPBG04/157-166.

27 Leopold Vietoris. Über den höheren Zusammenhang kompakter Räume und eine Klasse
von zusammenhangstreuen Abbildungen. Math. Ann., 97(1):454–472, 1927. doi:10.1007/
BF01447877.

SoCG 2022

https://doi.org/10.1142/S1793525313500118
https://doi.org/10.1007/PL00000526
https://doi.org/10.1137/18M118150X
http://arxiv.org/abs/2001.07588
https://doi.org/10.2312/SPBG/SPBG04/157-166
https://doi.org/10.2312/SPBG/SPBG04/157-166
https://doi.org/10.1007/BF01447877
https://doi.org/10.1007/BF01447877




Acute Tours in the Plane
Ahmad Biniaz # Ñ

School of Computer Science, University of Windsor, Canada

Abstract
We confirm the following conjecture of Fekete and Woeginger from 1997: for any sufficiently large
even number n, every set of n points in the plane can be connected by a spanning tour (Hamiltonian
cycle) consisting of straight-line edges such that the angle between any two consecutive edges is at
most π/2. Our proof is constructive and suggests a simple O(n log n)-time algorithm for finding such
a tour. The previous best-known upper bound on the angle is 2π/3, and it is due to Dumitrescu,
Pach and Tóth (2009).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases planar points, acute tour, Hamiltonian cycle, equitable partition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.16

Funding Supported by NSERC.

Acknowledgements I am very grateful to the anonymous reviewer who meticulously verified our
proof, and provided valuable feedback that reduced the number of subcases to two (which was three
in our original proof) and improved the bound on n to 20 (which was 36 originally).

1 Introduction

The Euclidean traveling salesperson problem (TSP) is a well-studied and fundamental problem
in combinatorial optimization and computational geometry. In this problem we are given
a set of points in the plane and our goal is to find a shortest tour that visits all points.
Motivated by applications in robotics and motion planning, in recent years there has been
an increased interest in the study of tours with bounded angles at vertices, rather than
bounded length of edges; see e.g. [2, 3, 13, 14, 15] and references therein. Bounded-angle
structures (tours, paths, trees) are also desirable in the context of designing networks with
directional antennas [6, 7, 11, 19]. Bounded-angle tours (and paths), in particular, have
received considerable attention following the PhD thesis of S. Fekete [14] and the seminal
work of Fekete and Woeginger [15].

Consider a set P of at least three points in the plane. A spanning tour is a directed
Hamiltonian cycle on P that is drawn with straight-line edges. When three consecutive
vertices pi, pi+1, pi+2 of the tour are traversed in this order, the rotation angle at pi+1
(denoted by ∠pipi+1pi+2) is the angle in [0, π] that is determined by the segments pipi+1 and
pi+1pi+2. If all rotation angles in a tour are at most π/2 then it is called an acute tour.

In 1997, Fekete and Woeginger [15] raised many challenging questions about bounded-
angle tours and paths. In particular they conjectured that for any sufficiently large even
number n, every set of n points in the plane admits an acute spanning tour (a tour with
rotation angles at most π/2). They stated the conjecture specifically for n ⩾ 8. The point set
illustrated in Figure 1(a) (also described in [15]) shows that the upper bound π/2 is the best
achievable. The conjecture does not hold if n is allowed to be an odd number; for example if
the n points are on a line then in any spanning tour one of the rotation angles must be π.
The conjecture also does not hold if n is allowed to be small. For instance the 4-element
point set consisting of the 3 vertices of an equilateral triangle with its center, must have a

© Ahmad Biniaz;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 16; pp. 16:1–16:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahmad.biniaz@gmail.com
https://cglab.ca/~biniaz/
https://orcid.org/0000-0002-6396-4494
https://doi.org/10.4230/LIPIcs.SoCG.2022.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Acute Tours in the Plane

rotation angle 2π/3 in any spanning tour. Also the 6-element point set of Figure 1(b) (also
illustrated in [15] and [13]) must have a rotation angle of at least 2π/3 − ϵ in any spanning
tour, for some arbitrary small constant ϵ.

2π
3

(a) (b)

Figure 1 (a) a general lower bound example, and (b) a lower bound example for 6 points.

In 2009, Dumitrescu, Pach and Tóth [13] took the first promising steps towards proving
the conjecture. They confirmed the conjecture for points in convex position. For general
point sets, they obtained the first partial result by showing that any point set (with even
number of points) admits a spanning tour in which each rotation angle is at most 2π/3.

In this paper we prove the conjecture of Fekete and Woeginger for general point sets.

▶ Theorem 1. Let n ⩾ 20 be an even integer. Then every set of n points in the plane admits
an acute spanning tour. Such a tour can be computed in linear time after finding an equitable
partitioning of points with two orthogonal lines.

Due to our desire of having a short proof, we prove the conjecture for n ⩾ 20. Perhaps
with detailed case analysis one could extend the range of n to a number smaller than 20.

Difficulties towards a proof. Fekete and Woeginger [15] exhibited an arbitrary-large even-
size point set for which an algorithm (or a proof technique), that always outputs the longest
tour or includes the diameter in the solution, does not achieve an acute tour; the point set is
similar to that of Figure 1(b) but has more than 6 points. This somehow breaks the hope for
finding an acute tour by using greedy techniques. Therefore, to prove the conjecture one
might need to employ some nontrivial ideas.

Related problems
Another interesting conjecture of Fekete and Woeginger [15] is that any set of points in the
plane admits a spanning path in which all rotation angles are at least π/6.1 In 2008, Bárány,
Pór, and Valtr [8] obtained the first constant lower bound of π/9, thereby gave a partial
answer to the conjecture. The full conjecture was then proved, although not yet written in a
paper format, by J. Kynčl [16] (see also the note added in the proof of [8]).

Fekete and Woeginger [15] showed that any set of points in the plane admits an acute
spanning path (where all intermediate rotation angles are at most π/2). Such a path can be
obtained simply by starting from an arbitrary point and iteratively connecting the current
point to its farthest among the remaining points. Notice that the resulting path always
contains the diameter and by the difficulties mentioned above it cannot be completed to
an acute tour. Carmi et al. [11] showed how to construct acute paths with shorter edges;
again no guarantee to be completed to an acute tour. Aichholzer et al. [4] studied a similar
problem with an additional constraint that the path should be plane (i.e., its edges do not

1 This bound is the best achievable as the three vertices of an equilateral triangle together with its center
do not admit a path with rotation angles greater than π/6.



A. Biniaz 16:3

cross each other). Among other results, they showed that any set of points in the plane in
general position admits a plane spanning path with rotation angles at most 3π/4. They also
conjectured that this upper bound could be replaced by π/2.

The bounded-angle minimum spanning tree (also known as α-MST) is a related problem
that asks for a Euclidean minimum spanning tree in which all edges incident to every vertex
lie in a cone of angle at most α. This problem is motivated by replacing omni-directional
antennas – in a wireless network – with directional antennas which are more secure, require
lower transmission ranges, and cause less interference; see e.g. [6, 7, 9, 10, 19].

Another related problem (with an objective somewhat opposite to ours) is to minimize
the total turning angle of the tour [2].2 Similar problems also studied under pseudo-convex
tours and paths (that make only right turns) [15] and reflexivity of a point set (the smallest
number of reflex vertices in a simple polygonalization of the point set) [1, 5].

The so-called Tverberg cycle is a cycle with straight-line edges such that the diametral
disks3 induced by the edges have nonempty intersection. Recently, Pirahmad et al. [17]
showed how to construct a spanning Tverberg cycle on any set of points in the plane.
Although the constructed cycle has many acute angles, it is still far from being fully acute.

▶ Remark. It is worth mentioning that having a tour with many acute angles, does not
necessarily help in getting a fully acute tour because one can simply get a tour with at least
n − 2 acute angles by interconnecting the endpoints of acute paths obtained in [11, 15].

2 Preliminaries for the proof

A set of four points in the plane is called a quadruple. If the four points are in convex
position then the quadruple is called convex, otherwise it is called concave; the quadruple in
Figure 2(a) is convex while the quadruples in Figures 2(b) and 2(c) are concave. We refer to
the interior point of a concave quadruple as its center. By connecting the center of a concave
quadruple to its other three points we obtain three angles. If one of these angles is at most
π/2 then the quadruple is called concave-acute, otherwise all the angles are larger than π/2
and the quadruple is called concave-obtuse; the quadruple in Figure 2(b) is concave-acute
while the one in Figure 2(c) is concave-obtuse.

A path, that is drawn by straight-line edges, is called acute if all the angles determined
by its adjacent edges are at most π/2. For two directed paths P1 and P2, where P1 ends at
the same vertex at which P2 starts, we denote their concatenation by P1 ⊕ P2.

For two distinct points p and q in the plane, we say that p is to the left of q if the
x-coordinate of p is not larger than the x-coordinate of q. Analogously, we say that p is
below q if the y-coordinate of p is not larger than the y-coordinate of q.

It is known that any set of n points in the plane can be split into four parts of equal size
using two orthogonal lines (see e.g. [18] or [12, Section 6.6]); such lines can be computed in
Θ(n log n) time [18]. The following is a restatement of this result that is borrowed from [13].

▶ Lemma 2. Given a set S of n points in the plane (n even), one can always find two
orthogonal lines ℓ1, ℓ2 and a partition S = S1 ∪ S2 ∪ S3 ∪ S4 with |S1| = |S3| = ⌊ n

4 ⌋ and
|S2| = |S4| = ⌈ n

4 ⌉ such that S1 and S3 belong to two opposite closed quadrants determined by
ℓ1 and ℓ2, and S2 and S4 belong to the other two opposite closed quadrants.

2 The turning angle at a vertex v is the change in the direction of motion at v when traveling on the tour.
It is essentially π minus the rotation angle at v.

3 The diametral disk induced by an edge pq is the disk that has pq as its diameter.

SoCG 2022



16:4 Acute Tours in the Plane

Our proof of Theorem 1 shares some similarities with that of Dumitrescu et al. [13] (for
points in convex position) in the sense that both proofs employ the equitable partitioning
of Lemma 2. However, there are major differences between the two proofs mainly because
simple structures, that appear in points in convex position, do not necessarily appear in
general point sets. Therefore one needs to extract complex structures from general point sets
and combine them to establish a proof.

3 Proof of Theorem 1

Throughout this section we assume that n is an even integer. We show how to construct
an acute tour on any set of n ⩾ 20 points in the plane, and thus proving Theorem 1. In
Subsection 3.1 we describe the setup for our construction, and then in Subsection 3.2 we
construct the tour.

3.1 The proof setup
Let S be a set of n ⩾ 20 points in the plane. Let {S1, S2, S3, S4} be an equitable partitioning
of S with two orthogonal lines ℓ1 and ℓ2 that satisfies the conditions of Lemma 2. After a
suitable rotation and translation we may assume that ℓ1 and ℓ2 coincide with the x and y

coordinate axes, respectively. Also, after a suitable relabeling we may assume that all points
of Si belong the ith quadrant determined by the axes as depicted in Figure 2(a).

p2
p1

p4

p3

x

S2 S1

S4S3

`2

`1

S2 S1

S4S3

p1

p3

p2

p4

≤ π
2

p

q
r

s

(a) Convex quadruple (b) Concave-acute quadruple (c) Concave-obtuse quadruple

Figure 2 Illustration of (a) Lemma 3 where P is convex and ∠p1xp2 ⩾ π/2, (b) Lemma 3 where
P is concave-acute and ∠p1p2p4 ⩽ π/2, and (c) Lemma 4 where all the three angles at s are obtuse.

Based on the above partitioning we introduce four types of quadruples. Let P =
{p1, p2, p3, p4} be a quadruple such that pi ∈ Si for all i = 1, 2, 3, 4. We say that P is upward
if the path p2p4p3p1 (or equivalently p1p3p4p2) is acute, downward if the path p3p1p2p4 (or
equivalently p4p2p1p3) is acute, leftward if the path p2p4p1p3 (or equivalently p3p1p4p2) is
acute, and rightward if the path p1p3p2p4 (or equivalently p4p2p3p1) is acute. Such paths are
referred to as “hooks” in [13]. The following lemmas and observation, although very simple,
play important roles in our proof.

▶ Lemma 3. Let P = {p1, p2, p3, p4} be a quadruple such that pi ∈ Si for all i = 1, 2, 3, 4. If
P is convex or concave-acute then it is upward and downward or it is leftward and rightward.

Proof. First assume that P is convex. Let x denote the intersection point of the diagonals
p1p3 and p2p4. If ∠p1xp2 ⩾ π/2 then the paths p2p4p3p1 and p3p1p2p4 are acute and thus
P is upward and downward; see Figure 2(a). If ∠p1xp4 > π/2 then the paths p2p4p1p3 and
p1p3p2p4 are acute and thus P is leftward and rightward.



A. Biniaz 16:5

Now assume that P is concave-acute. Without loss of generality we assume that p2 is
the center of P . Observe that in this case ∠p1p2p3 is obtuse. This and the fact that P

is concave-acute imply that one of ∠p1p2p4 and ∠p3p2p4 is acute. If ∠p1p2p4 is acute as
depicted in Figure 2(b) then the paths p2p4p3p1 and p3p1p2p4 are acute and thus P is upward
and downward (observe that ∠p2p1p3 + ∠p1p3p4 + ∠p3p4p2 = ∠p1p2p4 ⩽ π/2). Analogously,
if ∠p3p2p4 is acute then the paths p2p4p1p3 and p1p3p2p4 are acute and thus P is leftward
and rightward. ◀

▶ Lemma 4. Let {p, q, r, s} be a concave-obtuse quadruple with center s. Then all angles
∠pqs, ∠qps, ∠qrs, ∠rqs, ∠rps, and ∠prs are acute.

Proof. See Figure 2(c). In each of the triangles △spq, △sqr, and △srp the angle at s is
larger than π/2. Thus the other two angles are acute. ◀

▶ Lemma 5. Let P = {p1, p2, p3, p4} be a quadruple such that pi ∈ Si for all i = 1, 2, 3, 4. If
P is concave-obtuse then it is upward, downward, leftward, or rightward.

Proof. Without loss of generality assume that p2 is the center of P . See Figure 2(c) where
p2 = s. In the triangle △p1p3p4 the angle at p1 or the angle at p3 is acute. If the angle
at p1 is acute then the path p2p4p1p3 is acute and thus P is leftward (∠p2p4p1 is acute by
Lemma 4). If the angle at p3 is acute then the path p2p4p3p1 is acute and thus P is upward
(∠p2p4p3 is acute by Lemma 4). ◀

▶ Observation 6. Let p, q, and r be any three points in S such that q and r lie in the
quadrant that is opposite to the quadrant containing p. Then the angle ∠qpr is acute.

3.2 The tour construction
In this section we show how to construct an acute tour on S where |S| ⩾ 20. By Lemma 2
each Si with i ∈ {1, 2, 3, 4} has at least ⌊20/4⌋ = 5 points. From each Si we select an arbitrary
subset of 5 points, and then we partition (the total 20) selected points into 5 quadruples
such that each quadruple contains exactly one point from each Si. Let Q denote the set
of these quadruples. For any quadruple X in Q we denote the points of X by x1, x2, x3, x4
where xi ∈ Si for all i = 1, 2, 3, 4.

Since |Q| ⩾ 5, by the pigeonhole principle Q has three quadruples that are vertical (i.e.
upward, downward, or both upward and downward) or three that are horizontal (i.e. leftward,
rightward, or both leftward and rightward). Without loss of generality assume that Q has
three vertical quadruples. If two of these vertical quadruples are of opposite types, i.e. one
upward and one downward, then we construct a tour as in case 1 below. Otherwise, the
three quadruples are concave-obtuse and of the same type in which case we construct a tour
as in case 2 below. Our constructions take linear time in both cases.

Case 1: Q contains two quadruples such that one is upward and the other is downward. Let
P and Q be such quadruples where P is upward and Q is downward. Since P is upward,
the path p1p3p4p2 is acute. Since Q is downward, the path q4q2q1q3 is acute; see Figure 3.
Let S2S4 be a polygonal path starting from p2, ending in q4, alternating between S2 and
S4, and containing all points of S2 ∪ S4 except for q2 and p4. Let S3S1 be a polygonal path
starting from q3, ending in p1, alternating between S3 and S1, and containing all points
of S3 ∪ S1 except for p3 and q1. Such polygonal paths exist because by Lemma 2 we have

SoCG 2022



16:6 Acute Tours in the Plane

|S2| = |S4| and |S1| = |S3|. All intermediate angles of these two polygonal paths are acute
by Observation 6. Then the tour p1p3p4p2 ⊕ S2S4 ⊕ q4q2q1q3 ⊕ S3S1 is acute, and it spans
S. Notice that the angles at p1, p2, q3 and q4 are acute by Observation 6.

p2
p1

p4
p3

q2

q1

q4
q3

S1S2

S3 S4

Figure 3 Illustration of Case 1.

Case 2: Q contains three concave-obtuse quadruples of the same type. Let P , Q and R be
such quadruples, and without loss of generality assume that they are upward. Thus, the
paths p2p4p3p1 and q2q4q3q1 and r2r4r3r1 are acute. Since P , Q and R are concave-obtuse
their centers should lie at endpoints of these paths (the centers cannot be interior vertices of
acute paths). Thus the center of P is either p1 or p2, the center of Q is either q1 or q2, and
the center of R is either r1 or r2. This means that the centers lie in quadrants 1 and 2. By
the pigeonhole principle, and after a suitable reflection, we may assume that at least two of
the centers lie in quadrant 2. After a suitable relabeling assume that the centers of P and Q

(i.e. p2 and q2) lie in quadrant 2. The center of R lies either in quadrant 2 (i.e. it is r2) or in
quadrant 1 (i.e. it is r1).

After a suitable relabeling assume that p2 lies below q2, as in Figure 4. Now we build our
tour as follows. First we connect p2 to p1 and q1. The point p2 is below p1 because p2 lies
below the segment p1p3. The point p2 is also below q1 because p2 is below q2 which is in turn
below q1 (as q2 lies below the segment q1q3). Thus p2 is below both p1 and q1. Also notice
that p2 is to the left of both p1 and q1. Thus, the angle ∠p1p2q1 is acute (imagine moving
the origin to p2, then both p1 and q1 would lie in the first quadrant). Then we connect q3 to
q1 and q4. The angle ∠q4q3q1 is acute because Q is upward (i.e. the path q2q4q3q1 is acute).
The angle ∠p2q1q3 is acute because both p2 and q3 lie below and to the left of q1. Therefore,
the path p1p2q1q3q4 is acute; see Figure 4. In the rest of the construction we distinguish two
subcases, depending on the center of R.

Subcase 2.1: The center of R is r1. This case is depicted in Figure 4(a). We connect r4 to
r2 and r3. The resulting path r2r4r3 is acute (because R is upward, i.e. the path r2r4r3r1 is
acute). Let S4S2 be a polygonal path starting from q4, ending in r2, alternating between S4
and S2, containing all points of S4 ∪ S2 except for r4, p2, and having q4q2 as its first edge.
Let S3S1 be a polygonal path starting from r3, ending in p1, alternating between S3 and S1,
containing all points of S3 ∪ S1 except for q3, q1, and having r3r1 as its first edge and p3p1



A. Biniaz 16:7

r1

q1
p1

p4

r4
p3

q3

r3

S1S2

S3 S4

q2

q4

r2 S1

p2

r1

q1
p1

p4

r2

r4
p3

q3

r3

S1S2

S3 S4

q4

p2

q2

(a) (b)

Figure 4 Illustration of Case 2. Three concave-obtuse quadruples P , Q and R that are upward,
and the centers of P and Q lie in quadrant 2. (a) Subcase 2.1 where the center of R is in quadrant 1.
(b) Subcase 2.2 where the center of R is in quadrant 2.

as its last edge. All intermediate angles of these two paths are acute by Observation 6. By
interconnecting the constructed paths we obtain the tour p1p2q1q3q4 ⊕ S4S2 ⊕ r2r4r3 ⊕ S3S1
which is acute, and it spans S. The angles at p1, r3, q4 are acute by Lemma 4, and the angle
at r2 is acute by Observation 6.

Subcase 2.2: The center of R is r2. This case is depicted in Figure 4(b). We connect r3 to
r4 and r1. The resulting path r4r3r1 is acute (because R is upward, i.e. the path r2r4r3r1 is
acute). Let S4S2S4 be a polygonal path starting from q4, ending in r4, alternating between
S4 and S2, containing all points of S4 ∪ S2 except for p2, and having q4q2 as its first edge
and r2r4 as its last edge. Let S1S3S1 be a polygonal path starting from r1, ending in p1,
alternating between S1 and S3, containing all points of S1 ∪ S3 except for q1, q3, r3, and
having p3p1 as its last edge. Intermediate angles of these paths are acute by Observation 6.
Thus p1p2q1q3q4 ⊕ S4S2S4 ⊕ r4r3r1 ⊕ S1S3S1 is an acute spanning tour. The angles at q4, r4,
and p1 are acute by Lemma 4, and the angle at r1 is acute by Observation 6. This finishes
our proof of Theorem 1.

4 Concluding remarks

We showed how to construct an acute tour on any set of n points in the plane, where n is
even and at least 20. Our construction uses at most 12 points in each case (namely the points
of quadruples P , Q and R). One might be interested to extend the range of n (to smaller
even numbers) by taking advantage of the 8 unused points, although this may require some
case analysis.

References
1 Eyal Ackerman, Oswin Aichholzer, and Balázs Keszegh. Improved upper bounds on the

reflexivity of point sets. Computational Geometry: Theory and Applications, 42(3):241–249,
2009.

SoCG 2022



16:8 Acute Tours in the Plane

2 Alok Aggarwal, Don Coppersmith, Sanjeev Khanna, Rajeev Motwani, and Baruch Schieber.
The angular-metric traveling salesman problem. SIAM Journal on Computing, 29(3):697–711,
1999. Also in SODA’97.

3 Oswin Aichholzer, Anja Fischer, Frank Fischer, J. Fabian Meier, Ulrich Pferschy, Alexander
Pilz, and Rostislav Staněk. Minimization and maximization versions of the quadratic travelling
salesman problem. Optimization, 66(4):521–546, 2017.

4 Oswin Aichholzer, Thomas Hackl, Michael Hoffmann, Clemens Huemer, Attila Pór, Francisco
Santos, Bettina Speckmann, and Birgit Vogtenhuber. Maximizing maximal angles for plane
straight-line graphs. Computational Geometry: Theory and Applications, 46(1):17–28, 2013.

5 Esther M. Arkin, Sándor P. Fekete, Ferran Hurtado, Joseph S. B. Mitchell, Marc Noy, Vera
Sacristán, and Saurabh Sethia. On the reflexivity of point sets. In B. Aronov, S. Basu,
J. Pach, and M. Sharir, editors, Discrete and Computational Geometry: The Goodman-Pollack
Festschrift, pages 139–156. Springer, 2003.

6 Rom Aschner and Matthew J. Katz. Bounded-angle spanning tree: Modeling networks with
angular constraints. Algorithmica, 77(2):349–373, 2017. Also in ICALP’14.

7 Rom Aschner, Matthew J. Katz, and Gila Morgenstern. Do directional antennas facilitate in
reducing interferences? In Proceedings of the 13th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), pages 201–212, 2012.

8 Imre Bárány, Attila Pór, and Pavel Valtr. Paths with no small angles. SIAM Journal on
Discrete Mathematics, 23(4):1655–1666, 2009. Also in LATIN’08.

9 Ahmad Biniaz, Prosenjit Bose, Anna Lubiw, and Anil Maheshwari. Bounded-angle minimum
spanning trees. Algorithmica, 84(1):150–175, 2022. Also in SWAT’20.

10 Ahmad Biniaz, Majid Daliri, and Amir Hossein Moradpour. A 10-approximation of the π
2 -MST.

In 39th International Symposium on Theoretical Aspects of Computer Science (STACS), 2022.
11 Paz Carmi, Matthew J. Katz, Zvi Lotker, and Adi Rosén. Connectivity guarantees for wireless

networks with directional antennas. Computational Geometry: Theory and Applications,
44(9):477–485, 2011.

12 R. Courant and H. Robbins. What is Mathematics? An Elementary Approach to Ideas and
Methods. Oxford University Press, New York, 1979.

13 Adrian Dumitrescu, János Pach, and Géza Tóth. Drawing Hamiltonian cycles with no large
angles. The Electronic Journal of Combinatorics, 19(2):P31, 2012. Also in GD’09.

14 Sándor P. Fekete. Geometry and the Traveling Salesman Problem. Phd thesis, University of
Waterloo, 1992.

15 Sándor P. Fekete and Gerhard J. Woeginger. Angle-restricted tours in the plane. Computational
Geometry: Theory and Applications, 8:195–218, 1997.

16 Jan Kynčl. Personal communication, 2019.
17 Olimjoni Pirahmad, Alexandr Polyanskii, and Alexey Vasilevskii. On a Tverberg graph. CoRR,

abs/2108.09795, 2021. arXiv:2108.09795.
18 Sambuddha Roy and William Steiger. Some combinatorial and algorithmic applications of the

borsuk-ulam theorem. Graphs and Combinatorics, 23(Supplement-1):331–341, 2007.
19 Tien Tran, Min Kyung An, and Dung T. Huynh. Antenna orientation and range assignment

algorithms in directional WSNs. IEEE/ACM Transaction on Networking, 25(6):3368–3381,
2017. Also in INFOCOM’16.

http://arxiv.org/abs/2108.09795


ETH-Tight Algorithms for Finding Surfaces in
Simplicial Complexes of Bounded Treewidth
Mitchell Black #

School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA

Nello Blaser #

Department of Informatics, University of Bergen, Norway

Amir Nayyeri #

School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA

Erlend Raa Vågset #

Department of Informatics, University of Bergen, Norway

Abstract
Given a simplicial complex with n simplices, we consider the Connected Subsurface Recognition
(c-SR) problem of finding a subcomplex that is homeomorphic to a given connected surface with
a fixed boundary. We also study the related Sum-of-Genus Subsurface Recognition (SoG)
problem, where we instead search for a surface whose boundary, number of connected components,
and total genus are given. For both of these problems, we give parameterized algorithms with respect
to the treewidth k of the Hasse diagram that run in 2O(k log k)nO(1) time. For the SoG problem, we
also prove that our algorithm is optimal assuming the exponential-time hypothesis. In fact, we prove
the stronger result that our algorithm is ETH-tight even without restriction on the total genus.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology; Theory of computation → Design and analysis of algorithms

Keywords and phrases Computational Geometry, Surface Recognition, Treewidth, Hasse Diagram,
Simplicial Complexes, Low-Dimensional Topology, Parameterized Complexity, Computational Com-
plexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.17

Related Version Full Version: https://arxiv.org/abs/2203.07566 [5]

Funding Mitchell Black: This author was supported in part by NSF grants CCF-1941086 and
CCF-1816442.
Amir Nayyeri: This author was supported in part by NSF grants CCF-1941086 and CCF-1816442.
Erlend Raa Vågset: This author was supported in part by the Research Council of Norway grant
“Parameterized Complexity for Practical Computing (PCPC)” (NFR, no. 274526).

1 Introduction

Simplicial complexes are a generalization of graphs that give a discrete representation of
higher-dimensional spaces. A natural and interesting class of such spaces are manifolds. A
d-manifold is a space that is “locally d-dimensional”, meaning each point has a neighborhood
homeomorphic to Rd. Circles and spheres are prototypical examples of 1- and 2-manifolds
respectively. Manifolds are important in both mathematics and computer science. For
example, triangular meshes in computer graphics are typically 2-manifolds, and the manifold
hypothesis in machine learning is the assumption that real-world data often lie on low-
dimensional submanifolds of high-dimensional spaces.

© Mitchell Black, Nello Blaser, Amir Nayyeri, and Erlend Raa Vågset;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blackmit@oregonstate.edu
mailto:nello.blaser@uib.no
https://orcid.org/0000-0001-9489-1657
mailto:nayyeria@eecs.oregonstate.edu
mailto:erlend.vagset@uib.no
https://orcid.org/0000-0003-2289-2268
https://doi.org/10.4230/LIPIcs.SoCG.2022.17
https://arxiv.org/abs/2203.07566
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 ETH-Tight Algorithms for Finding Surfaces

Since manifolds are so important, it is natural to ask if a given simplicial complex is a
manifold, or whether two manifolds are homeomorphic. There are fascinating complexity
results on these problems. While both recognizing and classifying a 2-manifold have poly-
nomial algorithms, this problem becomes much harder for arbitrary d-manifolds. Deciding
whether two manifolds are homeomorphic is undecidable for d ≥ 4 [20]. Deciding whether or
not a simplicial complex is homeomorphic to the d-sphere is undecidable for d ≥ 5 (see [13]),
which implies deciding whether or not a simplicial complex is an n-manifold is undecidable
for d ≥ 6.

We consider several variants of the problem of finding subcomplexes homeomorphic to 2-
manifolds, or surfaces, in simplicial complexes. While there are polynomial time algorithms for
deciding if a simplicial complex is homeomorphic to a surface or deciding the homeomorphism
class of a surface, it is a hard problem deciding whether or not a simplicial complex contains
a surface as a subcomplex. In particular, Ivanov proved that it is NP-Hard to decide if a
simplicial complex contains a 2-sphere [19], and Burton et al. proved that finding a 2-sphere
is W[1]-hard when parameterized by solution size [9]. The complexity of this problem is
analogous to the graph isomorphism problem. While there is a quasipolynomial algorithm to
determine if two graphs are isomorphic [3], it is NP-Hard to determine if one graph contains
a subgraph isomorphic to another graph [14].

As this problem is NP-Hard, it is natural to ask whether there are any class of simplicial
complexes for which polynomial time algorithms exist. In this paper, we consider the
parameterized complexity of this problem and related problems with respect to the treewidth
of the Hasse diagram. A tree decomposition of the Hasse diagram defines a recursive series
of subcomplexes of K that we can use to incrementally build our surfaces. We also give tight
lower bounds for a subset of our algorithms based on the Exponential Time Hypothesis.

1.1 Subsurface recognition problems

Figure 1 A solution to an instance of the Subsurface Recognition problem where we have
found an orientable surface consisting of seven connected components with genus 0, 1, 1, 2, 3, 3
and 4 respectively.

We consider several variants of the following generic problem: given a 2-dimensional
simplicial complex K and a 1-dimensional subcomplex B ⊂ K, does K contain a subcomplex
homeomorphic to a surface with boundary B? Note that this includes finding surfaces
without boundary, as we can set B = ∅.

The Subsurface Recognition (SR) problem places the most restrictions on the manifold
we are looking for. In this problem, we are asked to find a subcomplex of K homeomorphic
to a given (possibly disconnected) surface X. Figure 1 shows an example of SR.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:3

▶ Problem 1. The Subsurface Recognition (SR) problem:
Input: A simplicial complex K, a subcomplex B ⊂ K, and a surface X.
Question: Does K contain a subcomplex homeomorphic to X with boundary B?

Although there is no known FPT algorithm for SR, several variants of SR with looser
requirements admit FPT algorithms. One special case of SR requires the surface X to
be connected. This variant is called the Connected Subsurface Recognition (c-SR)
problem. The extra requirement of connectivity allows us to find an FPT algorithm.

▶ Problem 2. The Connected Subsurface Recognition (c-SR) problem:
Input: A simplicial complex K, a subcomplex B ⊂ K, and a connected surface X.
Question: Does K contain a subcomplex homeomorphic to X with boundary B?

We can also ask for a surface of a certain genus and orientability in K, which is a slightly
weaker criterion than finding a surface up to homeomorphism. For a disconnected surface, we
define its total genus to be the sum of the genus of each of its connected components1. While
a connected surface is characterized up to homeomorphism by its genus and orientability,
this is not true for disconnected surfaces. As an example, consider a surface X that is a
genus 2 surface and a surface Y that is the disjoint union of two tori. The two surfaces both
have total genus 2, but they are not homeomorphic.

▶ Problem 3. The Sum-of-Genus Subsurface Recognition (SoG) problem:
Input: A simplicial complex K, a subcomplex B ⊂ K, and integers g and c.
Question: Does K contain a surface X of total genus g with c connected components and
with boundary B?

The Subsurface Packing problem asks to find any set of c disjoint surfaces. In
particular, no restriction is placed on the genus or orientability of these surfaces.

▶ Problem 4. The Subsurface Packing (SP) problem:
Input: A simplicial complex K, a subcomplex B, and an integer c.
Question: Does K contain a surface X with c connected components and boundary B?

1.2 Our results

Table 1 Upper and ETH lower bounds for times to solve the different problems considered in
this manuscript. Here n is the number of simplices and k is the treewidth of the Hasse diagram.
The results of this paper are highlighted.

Problem SR c-SR SoG SP
Upper 2O(n) 2O(k log k)nO(1) 2O(k log k)nO(1) 2O(k log k)nO(1)

Lower 2o(k log k)nO(1) NP-Hard [19] 2o(k log k)nO(1) 2o(k log k)nO(1)

We consider the parameterized complexity of the above problems with respect to the
treewidth k of the Hasse diagram. Table 1 summarizes the known upper and lower bounds.
The results of this paper are highlighted. We give FPT algorithms for c-SR, SoG, and SP,
and ETH-based lower bounds for SR, SP, and SoG. In fact, we show that these lower bounds
are true even when k is the pathwidth of the Hasse diagram. The algorithms for SoG and
SP are ETH-tight.

1 If any connected component of a surface is non-orientable, we will add twice the genus of any orientable
components.

SoCG 2022



17:4 ETH-Tight Algorithms for Finding Surfaces

1.3 Related work
Tree decompositions and simplicial complexes

Tree decompositions have seen much success as an algorithmic tool on graphs. Often, graphs
having tree decompositions of bounded-width admit polynomial-time solutions to otherwise
hard problems. A highlight of the algorithmic application of tree decompositions is Courcelle’s
Theorem [15], which states that any problem that can be stated in monadic second order
logic can be solved in linear time on graphs with bounded treewidth. We recommend [16,
Chapter 7] for an introduction to the algorithmic use of tree decompositions.

While tree decompositions have long been successful for algorithms on graphs, they have
only recently seen attention for algorithms on simplicial complexes. Existing algorithms use
tree decompositions of a variety of graphs associated with a simplicial complex. The most
commonly used graph is the dual graph of combinatorial d-manifolds [4, 10, 11, 12]. Other
graphs that have been used are level d of the Hasse diagram [11, 7, 6], the adjacency graph
of the d-simplices [7], and the 1-skeleton [4]. Our algorithm uses a tree decomposition of the
entire Hasse diagram. As far as we know, we are the first to consider tree decompositions
of the full Hasse diagram. The condition on vertex links that makes a simplicial complex a
surface is dependent on the incidence of vertices and triangles (see Section 2.2), so considering
only one level of the Hasse diagram would likely not be sufficient for our problem.

Normal surface theory

Normal surface theory is the study of which surfaces exist as submanifolds of a given 3-
manifold. Many algorithms on 3-manifolds, like those for unknot recognition [18] and 3-sphere
recognition [21, 22], use normal surface theory. While normal surface theory appears to be
similar to our problems, the distinction is that the surfaces in normal surface theory are
not subcomplexes of the 3-manifold and can instead intersect 3-simplices in the manifold.
Accordingly, the techniques in normal surface theory are quite different from the algorithms
we present in this paper.

2 Background

2.1 Simplicial complexes and directed graphs
A simplicial complex is a set K such that (1) each element σ ∈ K is a finite set and (2) for
each σ ∈ K, if τ ⊂ σ, then τ ∈ K. An element σ ∈ K is a simplex. A simplex σ is a face
of a simplex τ if σ ⊂ τ . Likewise, τ is a coface of σ. The simplices σ and τ are incident.
Two simplices σ1 and σ2 are adjacent if they are both the face or coface of a simplex τ .

A simplex σ with |σ| = d + 1 is a d-simplex. The set of all d-simplices in K is denoted
Kd. The dimension of a simplicial complex is the largest integer d such that K contains a
d-simplex. A d-dimensional simplicial complex K is pure if each simplex in K is a face of
d-simplex. We call a 0-simplex a vertex, a 1-simplex an edge, and a 2-simplex a triangle.

The Hasse diagram of K is a graph H with vertex set K and edges between each
d-simplex σ ∈ K and each (d − 1)-dimensional face of σ for all d > 0.

Let Σ ⊂ K. The closure of Σ is cl Σ := {τ ⊂ σ | σ ∈ Σ}. Note that the closure of Σ is a
simplicial complex, even if Σ is not. Note also that the closure cl Σ is defined only by the set
Σ and not the complex K. The star of Σ is stK Σ := {σ ∈ K | ∃ τ ∈ Σ such that τ ⊂ σ}.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:5

The link of a simplex σ is lkK σ = cl stK σ − stK cl σ. Alternatively, the link lkK σ is all
simplices in cl stK σ that do not intersect σ. Note that for any simplex τ ∈ lkK σ that σ and
τ are incident to a common coface in stK σ.

A simple path is a 1-dimensional simplicial complex P = {{v1}, {v1, v2}, {v2}, . . . , {vl}}
such that the vertices {vi} are distinct. The vertices {v1}, {vl} are the endpoints of P . We
will denote a simple cycle as a tuple P = (v1, . . . , vl) as the edges are implied by the vertices.
A simple cycle is a simple path, with the exception that the endpoints v1 = vl. We denote
a simple cycle with an overline, e.g. (v1, . . . , vl).

A directed graph D consists of a set of vertices and a set of directed edges, i.e. ordered
pairs of vertices (u, v) := uv so that uv ̸= vu. A directed simple cycle C in D (not to be
confused with a simple cycle) is a sequence of directed edges (v1v2, v2v3, . . . , vlv1) where all
the vertices vi are all distinct. We say that C has the vertex set {v1, . . . , vl}. Two cycles, C

and C ′, are said to be vertex disjoint if their vertex sets are disjoint. A family of cycles is
said to be vertex disjoint if they are pairwise vertex disjoint.

v

lkSv

v

lkSv

Figure 2 Left: A combinatorial surface. The vertex v is an interior vertex. Right: A vertex v

with link that is neither a simple path or cycle. We conclude that S is not a combinatorial surface.
The point v has no neighborhood homeomorphic to the plane or half-plane, so S is not “locally
2-dimensional” at v.

2.2 Surfaces
Informally, a surface with boundary is a compact topological space where each point has
a neighborhood homeomorphic to the plane or the half plane, and the boundary of the
surface is all points with a neighborhood homeomorphic to the half plane. Intuitively, a
surface is “locally 2-dimensional”.

Any connected surface with boundary can be constructed by adding handles, crosscaps,
and boundary components to a sphere. A handle is constructed by removing two disjoint
disks from a surface and identifying the boundaries of the removed disks. A crosscap is
constructed by taking the disjoint union of the surface and the real projective plane, removing
a disk from each, and identifying the boundaries of the removed disks. A boundary
component is constructed by removing a disk from a surface. A surface is non-orientable
if it has a crosscap and orientable otherwise. The genus of an orientable surface is the
number of handles on the surface, and the genus of a non-orientable surface is the number of
crosscaps plus twice the number of handles.

In this paper, we are only concerned with surfaces that are also simplicial complexes,
which we call combinatorial surfaces. A combinatorial surface with boundary is a pure
2-dimensional simplicial complex S such that the link of each vertex is a simple path or a
simple cycle. The condition on the link of the vertices is the combinatorial way of saying
that a combinatorial surface is “locally 2-dimensional”. A vertex v ∈ S such that lkS v is a
simple path is a boundary vertex. A vertex v ∈ S such that lkS v is a simple cycle is an
interior vertex. Figure 2 shows examples of an interior vertex and a vertex that is neither

SoCG 2022



17:6 ETH-Tight Algorithms for Finding Surfaces

an interior or boundary vertex. It follows from the condition on the links of the vertices that
each edge e ∈ S has link lkS e that is either one or two vertices. An edge e ∈ S such that
lkS e is a single vertex is a boundary edge. An edge e ∈ S such that lkS e is two vertices
is an interior edge. A triangle t ∈ S has empty link lkS t = ∅ as S is a 2-dimensional
simplicial complex. We denote the set of boundary vertices and boundary edges ∂S. The
boundary ∂S is a collection of simple cycles.

2.3 Tree decompositions

Let G = (V, E) be a graph. A tree decomposition of G is a tuple (T, X), where T = (I, F )
is a tree with nodes I and edges F , and X = {Xt ⊂ V | t ∈ I} such that (1) ∪t∈IXt = V ,
(2) for any {v1, v2} ∈ E, {v1, v2} ⊂ Xt for some t ∈ I, and (3) for any v ∈ V , the subtree
of T induced by the nodes {t ∈ I | v ∈ Xt} is connected. A set Xt is the bag of T . The
width of (T, X) is maxt∈I |Xt| − 1. The treewidth of a graph G is the minimum width
of any tree decomposition of G. Computing the treewidth of a graph is NP-hard [2], but
there are algorithms to compute tree decompositions that are within a constant factor of the
treewidth, e.g. [8].

Tree decompositions are used to perform dynamic programs on graphs, and a certain type
of tree decomposition, called a nice tree decomposition, makes defining dynamic programs
easier. A nice tree decomposition is a tree decomposition with a specified root r ∈ I

such that (1) Xr = ∅, (2) Xl = ∅ for all leaves l ∈ I, and (3) all non-leaf nodes are
either an introduce node, a forget node, or a join node, which are defined as follows. An
introduce node is a node t ∈ I with exactly one child t′, and for some w ∈ V , w /∈ Xt′ and
Xt = Xt′ ∪ {w}. We say t introduces w. A forget node is a node t ∈ I with exactly one
child t′, and for some w ∈ V , w /∈ Xt and Xt ∪{w} = Xt′ . We say t forgets w. A join node
is a node t ∈ I with exactly two children t′ and t′′ where Xt = Xt′ = Xt′′ . The following
lemma proves that we can convert any tree decomposition to a nice tree decomposition
without increasing width.

▶ Lemma 1 (Lemma 7.4 of [16]). Given a tree decomposition (T = (I, F ), X) of width k of
a graph G = (V, E), a nice tree decomposition of width k with O(kn) nodes can be computed
in O(k2 max{|V |, |I|}) time.

Figure 3 Left: A graph. Right and Center: A (not nice) tree decomposition of the graph of
width 3. Each node of the tree corresponds to a subset of the vertices of the graph.

A path decomposition is a special kind of tree decomposition (T, X) where T is a
path. A nice path decomposition is a tree decomposition without join nodes, i.e. where
every node is either an introduce node or a forget node. The pathwidth of a graph G is the
smallest width of any path decomposition of G. As any path decomposition is also a tree
decomposition, the treewidth of G is at most the pathwidth of G.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:7

2.4 The exponential time hypothesis
When a new algorithm is discovered it is natural to ask if it is possible to improve it. To
prove that the algorithm was sub-optimal it is enough to find a new and better algorithm.
On the other hand, if the algorithm is actually the best possible, then the situation becomes
more complicated. Although there are optimality results for a few problems in P,2 none are
known for algorithms solving NP-complete problems. Such a result would imply P ̸= NP,
which remains famously unproven.

This theoretical barrier does not make the question of optimality less relevant. No one
wants to spend years searching for improvements to an algorithm that cannot be improved!
For instance, the algorithms in this paper need 2O(k log k)nO(1) time, which may prompt the
question “Why were you unable to deliver a 2O(k)n time solution?”.

A pragmatic and popular response to these kinds of questions is to prove that you have
optimality under the Exponential Time Hypothesis (ETH). The ETH is a conjecture stating
that there is no sub-exponential algorithm for 3-SAT. More precisely, let n be the number of
variables in a given instance of 3-SAT.

▶ Hypothesis 1 (ETH). 3-SAT cannot be solved in time 2o(n).

Similar to NP-hardness, an ETH-lower bound is a way of connecting the hardness of a
new and often poorly understood problem to problems we already have a good understanding
of. The idea is to show that an improvement on the runtime of the currently best algorithm
for a new problem would disprove the ETH. Although the ETH remains unproven, the
continued absence of any algorithm for 3-SAT fast enough to disprove the ETH is itself
strong empirical evidence in support of the hypothesis.

3 Overview of the algorithms

Our algorithms are all dynamic programs on a tree decomposition (T, X) of the Hasse
diagram of a simplicial complex K. For each node t ∈ T , starting at the leaves of T and
moving towards the root, we compute a set of candidate solutions to our problem, where a
candidate solution is a subcomplex of K that might be a subcomplex of a solution to our
problem. We recursively use candidate solutions at the children of t to build the candidate
solutions at t. At the end of the algorithm, candidate solutions at the root of t will be
solutions to our problem. In this section, we explore how a candidate solution to our problem
is defined, and how we can effectively store representations of these candidate solutions so
that our final algorithm is FPT.

Certain nice tree decompositions3 (T, X) of the Hasse diagram of a simplicial complex
K define a recursively-nested set of subcomplexes of K. Recall that each bag of the tree
decomposition is a set of simplices of K. For each node t ∈ T , the subcomplex Kt ⊂ K is
the union of the bags of each descendant of t minus the triangles in the bag of t. These
subcomplexes have the property that if t′ is a child of t, then Kt′ ⊂ Kt.

We use this set of subcomplexes to recursively build solutions to our problems. Our
algorithm computes a set of candidate solutions at each node t. The exact definition
of candidate solution is given in Section 3.5 of the extended version of this paper [5], but

2 One such example is sorting, which we know can at best be done in Ω(n log n) time.
3 Certain here means “closed”, which is a type of tree decomposition of the Hasse diagram we define in

Section 3.3 of the the extended version of this paper [5]. In particular, the set Kt as defined above is a
simplicial complex in a closed tree decomposition, which is not true for general tree decompositions.

SoCG 2022



17:8 ETH-Tight Algorithms for Finding Surfaces

intuitively, a candidate solution at a node t is a subcomplex of Kt that could be a subcomplex
of a combinatorial surface in K. In particular, the link of each vertex in a candidate solution
must be a subset of a simple path or simple cycle. Our definition of candidate solution works
recursively: if Σ is a candidate solution at t, then for each child t′ of t, the complex Σ ∩ Kt′

is a candidate solution at t′. Our algorithm uses this fact to find candidate solutions at t.
Specifically, our algorithm attempts to build candidate solutions at t by growing candidate
solutions at t′.

The main challenge with this approach is storing candidate solutions. There can be an
exponential number of candidate solutions at a given node t, so we cannot simply store all
candidate solutions. Generally, dynamic programs on tree decompositions work by storing
some local representation of candidate solutions at t, where a local representation is a
description of a candidate solution only in terms of vertices and edges in the bag Xt. Two
candidate solutions with the same local representation are typically interchangeable in the
sense that one candidate solution can be extended to a complete solution if and only if the
other can too. The number of these local representations at t is typically a function of the
size of Xt, which allows for FPT algorithms parameterized by the treewidth.

The local representation of candidate solutions for our problems should have several
properties. First, they should represent a candidate solution using only simplices in Xt.
Second, they should retain enough information that we can verify that a subcomplex is a
candidate solution, i.e. it could be extended to a surface in K. In particular, we should be
able to deduce information about the links of simplices in Xt from the local representation.
The first and second properties are at odds, as even if a simplex σ is contained in Xt, the link
of σ need not be contained in Xt. Finally, we should be able to deduce the homeomorphism
class of a candidate solution from the local representation. Again, this property is at odds
with the first property, as topological properties like the genus and orientability of a surface
are global, not local, properties of a surface. One of our contributions is introducing a data
structure to store local representations of candidate solution with each of these properties
called the annotated cell complex.

A (non-annotated) cell complex is an algebraic representation of a surface that was
originally introduced by Ahlfors and Sario [1] to prove the Classification Theorem of Compact
Surfaces. Intuitively, a cell complex is a collection of disks, called faces, joined by shared
edges in their boundaries. The faces in a cell complex differ from triangles in a simplicial
complex as the faces in a cell complex can have more than three edges in their boundary. A
definition of cell complex and a discussion of their properties can be found in Section 3.2 of
the extended version of this paper [5].

The advantage of using cell complexes rather than simplicial complexes to store surfaces is
that there is a simple equivalence relation that partitions cell complexes into homeomorphism
classes. This is of obvious benefit as the surface S we are looking for may be specified by its
homeomorphism class, but there is a secondary benefit. We define a set of equivalence-
preserving moves, operations on cell complexes that preserve their homeomorphism class.
We use these moves to compress the local representation of each candidate solution we keep
during our algorithm. The most important benefit that these moves provide is the ability to
merge two faces that share an edge.

To see why merging faces is helpful, suppose that we have a candidate solution Σ at a
node t that is represented as a cell complex. We would like to store a local representation of
Σ using only edges in Xt. There would then be a bounded number of local representations
of candidate solutions at a node t, as there are a bounded number of edges in Xt. To this
end, each time we forget an edge e, we would like to merge the two faces incident to e into a
single face. See Figure 4, left panel.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:9

e

e

Figure 4 Left: The edge e is removed by merging the two incident faces. Right: The edge e

appears twice on the boundary of the same face, so e cannot be removed by merging incident faces
as this would make the interior of the face an annulus. We use annotated cell complexes to remove e.

The idea of merging faces when we forget e works unless e is incident to the same face
twice; the right panel of Figure 4 gives an example. After merging some faces, it is possible
that a face may have two edges on its boundary identified. If two edges on the boundary
of the same face are identified, then we can no longer remove these edges by merging their
incident faces, as then the interior of this face would no longer be a disk.

We therefore modify the definition of cell complex to allow for a more general type of
face. Our first change is to allow a face to be a disk with multiple boundary components like
in Figure 4, but we need to go a step further. Topological features like handles, crosscaps,
and boundaries in cell complexes are the result of a single face having edges on its boundary
identified in certain ways; thus, we need a way of removing the edges that constitute these
topological features. An annotated cell complex annotates each face with the number of
topological features like handles, crosscaps, and boundaries on this face, rather than storing
these features explicitly with edges. In effect, an annotated cell complex is a representation
of a surface where the interior of a face is allowed to be any compact connected surface.

4 Overview of the lower bounds

Here we present the main ideas that go into the proof of our lower bounds. The omitted
details can be found in Section 4 of the extended version of this paper [5].

▶ Theorem 2. Assuming the ETH, no algorithm can solve Subsurface Recognition,
Sum-of-Genus Subsurface Recognition or Subsurface Packing in 2o(k log k)nO(1)

time. The parameter k denotes the width of a given (nice) path decomposition of the Hasse
diagram of the input simplicial complex.

Since every path decomposition is also a tree decompositions, the treewidth of a graph is
never higher than its pathwidth. Theorem 2 therefore implies that none of our problems can
be solved in 2o(k log k)nO(1) time, where k is now the treewidth of the Hasse diagram.

We focus on proving the result for Subsurface Recognition. After this, it will be easy
to modify our arguments to prove similar results for the two other problems. At a conceptual
level there are two parts to the proof.

1. Define a reduction from Directed Cycle Packing to Subsurface Recognition.
2. Show that the reduction can always be chosen so that the pathwidth of the output space

is bounded by some linear function of the pathwidth of the input graph.

4.1 The reduction
Directed Cycle Packing asks us to find as many vertex disjoint cycles in a graph as
possible (see Figure 5). This problem is essentially a directed, 1-dimensional version of the
SP problem, since we know that the only compact 1-manifolds are circles (cycles) and closed
intervals (paths).

SoCG 2022



17:10 ETH-Tight Algorithms for Finding Surfaces

▶ Problem 5. The Directed Cycle Packing (DCP) problem
INPUT: A directed graph D on n vertices and an integer ℓ.
PARAMETER: The pathwidth k of D.
QUESTION: Does D contain ℓ vertex disjoint cycles?

v2

v1 v3

v4 v6

v5 v7

v2

v1 v3

v4 v6

v5 v7

v2

v1 v3

v4 v6

v5 v7

Figure 5 A directed graph D (left), two vertex disjoint cycles contained in D (middle) and two
cycles in D intersecting at a common vertex (right). This will be a guiding example for this section.

The DCP problem is a good starting point for our reduction not only because of its
similarity to the SP problem but also because of the following theorem.

▶ Theorem 3 ([17]). Assuming the ETH, the DCP problem cannot be solved in 2o(k log k)nO(1)

time, where the parameter k denotes the width of a given (nice) path decomposition of the
input graph.

Given a digraph D, the reduction will construct a 2-dimensional simplicial complex Y

that contains ℓ disjoint tori if and only if D contains ℓ vertex disjoint cycles. In fact, we
show that the only connected subsurfaces without boundary in Y are tori and that these are
in a bijection with the directed cycles in D. Furthermore, any pair of these tori are disjoint
if and only if the corresponding directed cycles are vertex disjoint.

In Figure 6 we introduce some shorthand notation that will help make the reduction
clearer. Each column of the figure shows a different component that we will use when
constructing the space Y . The first row shows the shorthand notation. The second row shows
the “topological space” that the notation represents. The third and fourth row indicate
which triangulation we use to represent this space.

The first column shows a cylinder, S1. The second column shows a space S2 consisting
of two cylinders, X ′

1 and X ′
2. These cylinders are glued together at a single interior point,

called a (0-dimensional) singularity. The third column shows a space S3 consisting of three
cylinders X ′′

1 , X ′′
2 and X ′′

3 , each with a single boundary component attached to the same circle.
The fourth and final column shows the space S4, obtained by gluing S2 and S3 together. More
precisely, S4 also consists of three cylinders, X1 = X ′

1 ∪ X ′′
1 , X2 = X ′

2 ∪ X ′′
2 and X3 = X ′′

3 ,
each having a single boundary component attached to the same circle. Additionally, X1 ∪ X2
contains a 0-dimensional singularity.

We establish some important properties of the spaces S1, S2, S3 and S4 from Figure 6. In
order to describe these properties we temporarily extend the notion of a “boundary”, a term
usually reserved for manifolds, to the world of simplicial complexes. In the remainder of this
section, the word boundary will refer to the closure of the set of 1-simplices in X that only
have a single coface. We denote this subcomplex by ∂(X).

▶ Remark 4. Let S1, S2, S3 and S4 be the spaces introduced in Figure 6.
1. The only (non-empty) 2-manifold X ⊆ S1 where ∂(X) ⊆ ∂(S1) is S1 itself.
2. The only 2-manifolds X ⊆ S2 where ∂(X) ⊆ ∂(S2) are X ′

1 and X ′
2.

3. The only 2-manifolds X ⊆ S3 where ∂(X) ⊆ ∂(S3) are X ′′
1 ∪ X ′′

2 , X ′′
1 ∪ X ′′

3 and X ′′
2 ∪ X ′′

3 .
4. The only 2-manifolds X ⊆ S4 where ∂(X) ⊆ ∂(S4) are X1 ∪ X3 and X2 ∪ X3.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:11

Notation

Space

Simplicial
Complex

S1

X ′
1

X ′
2 X ′′

2

X ′′
1

X ′′
3

X2

X1
X3

Simplicial
Complex

Unfolded

S2 S3 S4

Detailed &

Name

Figure 6 Shorthand notation for specific triangulations of S1, . . . , S4 that we will use frequently
throughout the section.

That these properties holds is intuitively obvious. Formally, this can be proved easily by
brute force: Simply go through all the 2-simplices in Si and assume that it is contained in a
submanifold X. It is then easy to see which adjacent 2-simplices must necessarily also be
contained in the same submanifold. Whenever a choice has to be made, simply branch and
try all possibilities.

The reduction is perhaps best understood in terms of vertex gadgets and edge gadgets.
In particular, Figure 7 shows how a vertex ξ is mapped to the vertex gadget Y ξ, using the
notation from Figure 6. The figure also shows six edge gadgets (in black), three corresponding
to the edges entering ξ and three corresponding to the edges leaving ξ. The edge gadgets are
unlabeled in the figure but can be identified by the vertex gadgets they are attached to. We
think of each vertex gadget as composed of two sub-cylinders, one half for the incoming edge
gadgets and the other half for outgoing edge gadgets. To better see this separation we draw
the vertex gadget with a U-turn at the location of this divide in our figures.

a b c

α β γ

ξ

Y a Y b Y c

Y α Y β Y γ

Y ξ

a b c

α β γ

ξ

Y a Y b Y c

Y α Y β Y γ

Y ξ

Figure 7 A local view of how a vertex ξ is mapped to its vertex gadget Y ξ (left) and an illustration
of how a directed cycle passing through the vertex ξ is mapped to a submanifold in the space (right).

SoCG 2022



17:12 ETH-Tight Algorithms for Finding Surfaces

Each edge gadget is connected to the vertex gadgets corresponding to each of its two
ends through a copy of S4. The edge gadget contains the cylinder X1 while the vertex
gadget contains the other cylinders X2 and X3. Both the incoming and outgoing part of the
vertex gadget consists primarily of a sequence of smaller cylinders, X2 ∪ X3, one for each
incoming/outgoing edge. The boundary of the X3 corresponding to one edge is attached to the
boundary of the copy of X2 corresponding to the next edge. The boundary of the “last” X3
of the incoming edges is attached to one boundary component of a single additional cylinder,
while the “last” X3 of the outgoing edges is attached to the other boundary component.

By repeated use of property 4, any potential manifold contained in this space must contain
precisely one incoming and one outgoing edge gadget per vertex, assuming the manifold is
not allowed to have a boundary. This is illustrated in Figure 8. This figure also shows the
importance of the 0 dimensional singularities in the reduction. The resulting space could
otherwise contain tori that do not correspond to any directed cycle. An example of the
correspondence between disjoint tori and vertex disjoint directed cycles is shown in Figure 9.

a b c

α β γ

ξSINGULARITIES

a b c

α β γ

ξ

Y a Y b Y c

Y α Y β Y γ

Y ξ

Y a Y b Y c

Y α Y β Y γ

Figure 8 The leftmost figure shows how the singularities keeps “badly behaved” subcomplexes
from becoming manifolds. The rightmost figure shows how the reduction would fail without the use
of singularities between the vertex gadgets and edge gadgets.

We see in Figure 9 that we can associate any pair of vertex disjoint cycles in the input
graph to a pair of non-intersecting tori in the output space in an obvious way. Concretely,
a cycle is mapped to a torus by sending the edges to edge gadgets and by then connecting
these through the vertex gadgets. This association turns out to be a bijection with an inverse
that maps a submanifold to the set of edges whose edge gadgets intersects the submanifold.
That this inverse is well-defined is proved for the pathwidth-preserving reduction in Section
4.5 of the extended version of the paper; see [5].

SINGULARITIES

Figure 9 An illustration of how the graph from Figure 5 is mapped to spaces and how valid/invalid
subsets of edges are mapped to manifolds/non-manifolds respectively.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:13

4.2 Pathwidth preservation
The main idea of this section can be summarized in a single sentence: By carefully choosing
the order in which we attach edge/vertex gadgets to each other, we can make a space that
has a similar structure to a nice path decomposition of the input graph. This is an absolutely
necessary “fine tuning” of the reduction we saw in the previous subsection. Without it, we
have no guarantee that the Hasse diagram of the space we construct will have low pathwidth.
In fact, if the ordering is chosen in an adversarial way, we may end up mapping a graph of
bounded pathwidth to spaces whose Hasse diagram has arbitrarily large pathwidth.

We discuss this in detail in Section 4.4.1 of the extended version of the paper [5], but the
rough idea is captured in Figure 10. Here we see a graph of pathwidth 2 being mapped to
two very different spaces. While both are constructed in a way that is compatible with the
reduction described in Section 4.1, intuitively it is the topmost space that has retained most
of the “pathlikeness” of the input graph. This intuition is reflected in the fact that the Hasse
diagram of the lower figure really is higher than that of the one above it.

9321 654 87

9321 654 87

9321 654 87

Figure 10 A directed graph of pathwidth 2 (top) together with a “sensible” version of the
reduction explained in Section 4.1 (middle) and an “adversarial” version of the reduction (bottom).

It can be quite hard to prove lower bounds on the path-/treewidth of graphs/spaces, but
for this particular family it is reasonably straightforward. Once you generalize the above
“adversarial” layout for any input graph on n2 + 1 vertices there is a nice geometric argument
that the Hasse diagram of the outputted space will always contain an n × n-grid as a graph
minor. It is well known that such graphs have treewidth at least n which gives us our desired
lower bound.

If we are given a less structured graph than the one we saw in Figure 10, it might be
hard to see how we can best glue the gadgets together. Our way around this is to construct
a space where the order in which vertex gadgets are attached to each other is determined
by the order in which the nodes are forgotten in the nice path decomposition of the input
graph. The idea is that a vertex gadget is attached to a neighbouring vertex gadget in the
current bag when it (or its neighbour) is forgotten, see Figure 11.

The way we make the above idea precise is rather technical. It is in essence all about
structural induction over the given nice path decomposition, which we use to construct a nested
sequence of spaces Y0 ⊂ · · · ⊂ Yr, one for each bag. We also compute an accompanying path
decomposition for the Hasse diagram of each of the nested spaces. These path decompositions

SoCG 2022



17:14 ETH-Tight Algorithms for Finding Surfaces

X6X0 X1 X2 X3 X4 X5 X7 X8 X9 X10 X11 X12 X13 Xr

Figure 11 An illustration of how the graph from Figure 5 (top left) is mapped to a space (bottom)
having the same “structure”/“order” as the given nice path decomposition (top right) of the graph.

R0 R3 R4R2R1 R5 R6

Y6
Y5

Y4

Y3Y2Y1Y0

R3+1
2

R4+1
2

R0 R1R0 R1 R1 R2

R5R
3+1

2
R6R3 R

4+1
2

R4 R4 R4 R5R5

∪ ∪

∪∪∪

R2 R2∪R3 R3

R6∪ ∪

Figure 12 The space Y6 (top) associated to bag X6 in the nice path decomposition of the graph
in Figure 11. The location of the sub complexes Y0 ⊂ · · · ⊂ Y5 are indicated. Below is the path
decomposition of Y6. Path decomposition of the other spaces Yi, 0 ≤ i ≤ 5 are all present as the
path decomposition induced by “sub-paths” starting at the bag containing R0 and ending at the
bag containing Ri.

are not optimal, but their width is bounded above by the width of the inputted nice path
decomposition times a constant, which is sufficient for our purposes. The induction involves
going trough a lot of elementary claims about the space we have constructed at each step.
For details on this, see Section 4.4.2 of the extended version of this paper [5]. The space Y6
and its path decomposition are shown in Figure 12.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:15

5 Conclusion

In this paper, we consider the parameterized complexity of several variants of the problem
of finding surfaces in 2-dimensional simplicial complexes with respect to the treewidth of
the Hasse diagram. We give ETH-optimal algorithms for the Sum-of-Genus Subsurface
Recognition and Subsurface Packing problems. We also give an ETH-based lower
bound for Subsurface Recognition and an FPT algorithm for Connected Subsurface
Recognition. Several questions surrounding subsurface recognition remain open, such as

whether the algorithm presented in this paper for Connected Subsurface Recogni-
tion is ETH-optimal;
whether or not the Subsurface Recognition Problem is W[1]-hard when parameterized by
the treewidth of the Hasse diagram.

Future work could either attempt to find better parameterized algorithms or prove stronger
lower bounds for these problems.

References
1 L.V. Ahlfors and L. Sario. Riemann Surfaces. Princeton mathematical series. Princeton

University Press, 2015. URL: https://books.google.com/books?id=4C4PAAAAIAAJ.
2 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-

beddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
doi:10.1137/0608024.

3 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings
of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages
684–697, New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/
2897518.2897542.

4 Bhaskar Bagchi, Basudeb Datta, Benjamin A. Burton, Nitin Singh, and Jonathan Spreer.
Efficient Algorithms to Decide Tightness. In Sándor Fekete and Anna Lubiw, editors, 32nd
International Symposium on Computational Geometry (SoCG 2016), volume 51 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1–12:15, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SoCG.2016.12.

5 Mitchell Black, Nello Blaser, Amir Nayyeri, and Erlend Raa Vågset. ETH-tight algorithms for
finding surfaces in simplicial complexes of bounded treewidth. CoRR, abs/2203.07566, 2022.
arXiv:2203.07566.

6 Nello Blaser, Morten Brun, Lars M. Salbu, and Erlend Raa Vågset. The parameterized
complexity of finding minimum bounded chains. CoRR, 2021. arXiv:2108.04563.

7 Nello Blaser and Erlend Raa Vågset. Homology localization through the looking-glass of
parameterized complexity theory, 2020. arXiv:2011.14490.

8 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

9 Benjamin Burton, Sergio Cabello, Stefan Kratsch, and William Pettersson. The Parameterized
Complexity of Finding a 2-Sphere in a Simplicial Complex. In Heribert Vollmer and Brigitte
Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017),
volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:14,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.STACS.2017.18.

10 Benjamin Burton and Rodney Downey. Courcelle’s theorem for triangulations. Journal of
Combinatorial Theory, Series A, 146, March 2014. doi:10.1016/j.jcta.2016.10.001.

11 Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized
complexity of discrete Morse theory. ACM Transactions on Mathematical Software, 42(1):1–24,
March 2016. doi:10.1145/2738034.

SoCG 2022

https://books.google.com/books?id=4C4PAAAAIAAJ
https://doi.org/10.1137/0608024
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.4230/LIPIcs.SoCG.2016.12
http://arxiv.org/abs/2203.07566
http://arxiv.org/abs/2108.04563
http://arxiv.org/abs/2011.14490
https://doi.org/10.1137/130947374
https://doi.org/10.4230/LIPIcs.STACS.2017.18
https://doi.org/10.4230/LIPIcs.STACS.2017.18
https://doi.org/10.1016/j.jcta.2016.10.001
https://doi.org/10.1145/2738034


17:16 ETH-Tight Algorithms for Finding Surfaces

12 Benjamin A. Burton and Jonathan Spreer. The complexity of detecting taut angle structures
on triangulations. Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 2013. doi:10.1137/1.9781611973105.13.

13 A.V. Chernavsky and V.P. Leksine. Unrecognizability of manifolds. Annals of Pure and
Applied Logic, 141(3):325–335, 2006. Papers presented at the Second St. Petersburg Days of
Logic and Computability Conference on the occasion of the centennial of Andrey Andreevich
Markov, Jr. doi:10.1016/j.apal.2005.12.011.

14 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY,
USA, 1971. Association for Computing Machinery. doi:10.1145/800157.805047.

15 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

16 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Interna-
tional Publishing, 2015. doi:10.1007/978-3-319-21275-3.

17 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

18 Wolfgang Haken. Theorie der normalflächen. Acta Mathematica, 105(3):245–375, September
1961. doi:10.1007/BF02559591.

19 Sergei Ivanov. Computational complexity. MathOverflow. URL: https://mathoverflow.net/
q/118428.

20 A. Markov. The insolubility of the problem of homeomorphy. Dokl. Akad. Nauk USSR,
12(2):218–220, 1958.

21 Hyam Rubinstein. The solution to the recognition problem for S3. Lecture, 1992.
22 Abigail Thompson. Thin position and the recognition problem for S3. Mathematical Research

Letters, 1(5):613–630, 1994.

https://doi.org/10.1137/1.9781611973105.13
https://doi.org/10.1016/j.apal.2005.12.011
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1007/BF02559591
https://mathoverflow.net/q/118428
https://mathoverflow.net/q/118428


Asymptotic Bounds on the Combinatorial Diameter
of Random Polytopes
Gilles Bonnet #

University of Groningen, The Netherlands

Daniel Dadush #

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Uri Grupel #

Universität Innsbruck, Austria

Sophie Huiberts #

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Galyna Livshyts #

Georgia Institute of Technology, Atlanta, GA, USA

Abstract

The combinatorial diameter diam(P ) of a polytope P is the maximum shortest path distance between
any pair of vertices. In this paper, we provide upper and lower bounds on the combinatorial diameter
of a random “spherical” polytope, which is tight to within one factor of dimension when the number
of inequalities is large compared to the dimension. More precisely, for an n-dimensional polytope
P defined by the intersection of m i.i.d. half-spaces whose normals are chosen uniformly from the
sphere, we show that diam(P ) is Ω(nm

1
n−1 ) and O(n2m

1
n−1 + n54n) with high probability when

m ≥ 2Ω(n).

For the upper bound, we first prove that the number of vertices in any fixed two dimensional
projection sharply concentrates around its expectation when m is large, where we rely on the
Θ(n2m

1
n−1 ) bound on the expectation due to Borgwardt [Math. Oper. Res., 1999]. To obtain the

diameter upper bound, we stitch these “shadows paths” together over a suitable net using worst-case
diameter bounds to connect vertices to the nearest shadow. For the lower bound, we first reduce
to lower bounding the diameter of the dual polytope P ◦, corresponding to a random convex hull,
by showing the relation diam(P ) ≥ (n − 1)(diam(P ◦) − 2). We then prove that the shortest path
between any “nearly” antipodal pair vertices of P ◦ has length Ω(m

1
n−1 ).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Random Polytopes, Combinatorial Diameter, Hirsch Conjecture

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.18

Related Version Full Version: https://arxiv.org/abs/2112.13027

Funding Gilles Bonnet: Funded by the DFG Priority Program (SPP) 2265 Random Geometric
Systems, project P23.
Daniel Dadush: Supported by the ERC Starting grant QIP–805241.

Acknowledgements This work was done in part while the authors were participating in the Prob-
ability, Geometry and Computation in High Dimensions semester at the Simons Institute for the
Theory of Computing and in the Interplay between High-Dimensional Geometry and Probability
trimester at the Hausdorff Institute for Mathematics.

© Gilles Bonnet, Daniel Dadush, Uri Grupel, Sophie Huiberts, and Galyna Livshyts;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.f.y.bonnet@rug.nl
mailto:dadush@cwi.nl
mailto:uri.grupel@uibk.ac.at
mailto:s.huiberts@cwi.nl
mailto:glivshyts6@math.gatech.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.18
https://arxiv.org/abs/2112.13027
https://spp2265.wias-berlin.de/index.php
https://spp2265.wias-berlin.de/index.php
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

1 Introduction

When does a polyhedron have small (combinatorial) diameter? This question has fascinated
mathematicians, operation researchers and computer scientists for more than half a century.
In a letter to Dantzig in 1957, motivated by the study of the simplex method for linear
programming, Hirsch conjectured that any n-dimensional polytope with m facets has diameter
at most m − n. While recently disproved by Santos [29] (for unbounded polyhedra, counter-
examples were already given by Klee and Walkup [20]), the question of whether the diameter
is bounded from above by a polynomial in n and m, known as the polynomial Hirsch
conjecture, remains wide open. In fact, the current counter-examples violate the conjectured
m − n bound by at most 25 percent.

The best known general upper bounds on the combinatorial diameter of polyhedra are
the 2n−3m bound by Barnette and Larman [3, 23, 4], which is exponential in n and linear
in m, and the quasi-polynomial mlog2 n+1 bound by Kalai and Kleitman [19]. The Kalai-
Kleitman bound was recently improved to (m−n)log2 n by Todd [33] and (m−n)log2 O(n/ log n)

by Sukegawa [32]. Similar diameter bounds have been established for graphs induced by
certain classes of simplicial complexes, which vastly generalize 1-skeleta of polyhedra. In
particular, Eisenbrand et al [16] proved both Barnette-Larman and Kalai-Kleitman bounds
for so-called connected-layer families (see Theorem 20), and Labbé et al [22] extended the
Barnette-Larman bound to pure, normal, pseudo-manifolds without boundary.

Moving beyond the worst-case bounds, one may ask for which families of polyhedra
does the Hirsch conjecture hold, or more optimistically, are there families for which we can
significantly beat the Hirsch conjecture? Many interesting classes induced by combinatorial
optimization problems are known, including the class of polytopes with vertices in {0, 1}n [25],
Leontief substitution systems [18], transportation polyhedra and their duals [1, 10, 9], as
well as the fractional stable-set and perfect matching polytopes [24, 28].

Relatedly, there has been progress on obtaining diameter bounds for classes of “well-
conditioned” polyhedra. If P is a polytope defined by an integral constraint matrix A ∈ Zm×n

with all square submatrices having determinant of absolute value at most ∆, then diameter
bounds polynomial in m, n and ∆ have been obtained [15, 5, 11, 26]. The best current
bound is O(n3∆2 log(∆)), due to [11]. Extending on the result of Naddef [25], strong
diameter bounds have been proved for polytopes with vertices in {0, 1, . . . , k}n [21, 13, 14].
In particular, [21] proved that the diameter is at most nk, which was improved to nk − ⌈n/2⌉
for k ≥ 2 [13] and to nk − ⌈2n/3⌉ − (k − 2) for k ≥ 4 [14].

1.1 Diameter of Random Polytopes
With a view of beating the Hirsch bound, the main focus of this paper will be to analyze
the diameter of random polytopes, which one may think of as well-conditioned on “average”.
Coming both from the average case and smoothed analysis literature [6, 7, 31, 34, 12], there
is tantilizing evidence that important classes of random polytopes may have very small
diameters.

In the average-case context, Borgwardt [6, 7] proved that for P (A) := {x ∈ Rn : Ax ≤ 1},
A ∈ Rm×n, where the rows of A are drawn from any rotational symmetric distribution
(RSD), that the expected number of edges in any fixed 2 dimensional projection of P – the
so-called shadow bound – is O(n2m

1
n−1 ). Borgwardt also showed that this bound is tight

up to constant factors when the rows of A are drawn uniformly from the sphere, that is,
the expected shadow size is Θ(n2m

1
n−1 ). In the smoothed analysis context, A has the form

Ā + σG, where Ā is a fixed matrix with rows of ℓ2 norm at most 1 and G has i.i.d. standard



G. Bonnet, D. Dadush, U. Grupel, S. Huiberts, and G. Livshyts 18:3

normally distributed entries and σ > 0. Bounds on the expected size of the shadow in this
context were first studied by Spielman and Teng [31], later improved by [34, 12], where the
best current bound is O(n2√

log m/σ2) due to [12] when σ ≤ 1√
n log m

.
From the perspective of short paths, these results imply that if one samples objectives

v, w uniformly from the sphere, then there is a path between the vertices maximizing v and w

in P of expected length O(n2m
1

n−1 ) in the RSD model, and expected length O(n2√
log m/σ2)

in the smoothed model. That is, “most pairs” of vertices (with respect to the distribution in
the last sentence), are linked by short expected length paths. Note that both of these bounds
scale either sublinearly or logarithmically in m, which is far better than m − n. While these
bounds provide evidence, they do not directly upper bound the diameter, since this would
need to work for all pairs of vertices rather than most pairs.

A natural question is thus whether the shadow bound is close to the true diameter. In
this paper, we show that this is indeed the case, in the setting where the rows of A are
drawn uniformly from the sphere and when m is (exponentially) large compared to n. More
formally, our main result is as follows:

▶ Theorem 1. Suppose n, m ∈ N satisfy n ≥ 2 and m ≥ 2Ω(n). Let AT := (a1, . . . , aM ) ∈
Rn×M , where M is Poisson distributed with E[M ] = m, and a1, . . . , aM are sampled indepen-
dently and uniformly from Sn−1. Then, letting P (A) := {x ∈ Rn : Ax ≤ 1}, with probability
at least 1 − m−n, we have that

Ω(nm
1

n−1 ) ≤ diam(P (A)) ≤ O(n2m
1

n−1 + n54n).

Figure 1 A diameter achieving path for a random spherical polytope with 100 constraints.

In the above, we note that the number of constraints M is chosen according to a Poisson
distribution with expectation m. This is only for technical convenience (it ensures useful
independence properties) and with small modifications, our arguments also work in the case
where M := m deterministically. Also, since the constraints are chosen from the sphere, M

is almost surely equal to the number of facets of P (A) above (i.e., there are no redundant
inequalities).

From the bounds, we see that diam(P (A)) ≤ O(n2m
1

n−1 ) with high probability as long
as m ≥ 2Ω(n2). This shows that the shadow bound is indeed close to an upper bound for
the expected diameter when m is sufficiently large. Furthermore, the shadow bound is tight
to within one factor of dimension in this regime. We note that the upper bound is already
non-trivial when m ≥ Ω(n54n), since then O(n2m

1
n−1 + n54n) ≤ m − n.

While our bounds are only interesting when m is exponential, the bounds are nearly tight
asymptotically, and as far as we are aware, they represent the first non-trivial improvements
over worst-case upper bounds for a natural class of polytopes defined by random halfspaces.

SoCG 2022



18:4 Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

Our work naturally leaves two interesting open problems. The first is whether the shadow
bound upper bounds the diameter when m is polynomial in n. The second is to close the
factor n gap between upper and lower bound in the large m regime.

1.2 Prior work
Lower bounds on the diameter of P (A), AT = (a1, . . . , am) ∈ Rn×m, were studied by
Borgwardt and Huhn [8]. They examined the case where each row of A is sampled from

a RSD with radial distribution Pra[∥a∥2 ≤ r] =
∫ r

0
(1−t2)βtn−1dt∫ 1

0
(1−t2)βtn−1dt

, for r ∈ [0, 1], β ∈ (−1, ∞).

Restricting their results to the case β → −1, corresponding to the uniform distribution on the
sphere (where the bound is easier to state), they show that E[diam(P (A))] ≥ Ω(m

1
n + 1

n(n−1)2 ).
We improve their lower bound to Ω(nm1/(n−1)) when m ≥ 2Ω(n), noting that m1/(n−1) = O(1)
for m = 2O(n).

In terms of upper bounds, the diameter of a random convex hull of points, instead of a
random intersection of halfspaces, has been implicitly studied. Given AT = (a1, . . . , am) ∈
Rn×m, let us define

Q(A) := conv({a1, . . . , am}) (1)

to be the convex hull of the rows of A. When the rows of A are sampled uniformly from Bn
2 ,

the question of when the diameter of Q(A) is exactly 1 (i.e., every pair of distinct vertices
is connected by an edge) was studied by Bárány and Füredi[2]. They proved that with
probability 1 − o(1), diam(Q(A)) = 1 if m ≤ 1.125n and diam(Q(A)) > 1 if m ≥ 1.4n.

In dimension 3, letting a1, . . . , aM ∈ S2 be chosen independently and uniformly from
the 2-sphere, where M is Poisson distributed with E[M ] = m, Glisse, Lazard, Michel and
Pouget [17] proved that with high probability the maximum number of edges in any 2-
dimensional projection of Q(A) is Θ(

√
m). This in particular proves that the combinatorial

diameter is at most O(
√

m) with high probability.
It is important to note that the geometry of P (A) and Q(A) are strongly related. Indeed,

as long as m = Ω(n) and the rows of A are drawn from a symmetric distribution, P (A) and
Q(A) are polars of each other. That is, Q(A)◦ = P (A) and P (A)◦ := {x ∈ Rn : ⟨x, y⟩ ≤
1, ∀y ∈ P (A)} = Q(A)1.

As we will see, our proof of Theorem 1 will in fact imply similarly tight diameter bounds
for diam(Q(A)) as for diam(P (A)), yielding analogues and generalizations of the above
results, when AT = (a1, . . . , aM ) ∈ Rn×M and M is Poisson with E[M ] = m. More precisely,
we will show that for m ≥ 2Ω(n), with high probability

Ω(m
1

n−1 ) ≤ diam(Q(A)) ≤ O(nm
1

n−1 + n54n).

In essence, for m large enough, our bounds for diam(Q(A)) are a factor Θ(n) smaller than
our bounds for diam(P (A)). This relation will be explained in Section 4.

1.3 Proof Overview
In this section, we give the high level overview of our approach.

1 Precision: P (A) = Q(A)◦ always holds and P (A)◦ = Q(A) requires that 0 ∈ Q(A) which, as a direct
consequence of Wendel’s theorem [30, Theorem 8.2.1], happens with probability 1 − o(1) when m ≥ cn
for any fixed c > 2. In general P (A)◦ = conv(A ∪ {0}) holds.



G. Bonnet, D. Dadush, U. Grupel, S. Huiberts, and G. Livshyts 18:5

1.3.1 The Upper Bound

In this overview, we will say that an event holds with high probability if it holds with
probability 1 − m−Ω(n). To prove the upper bound on the diameter of P (A), we proceed
as follows. For simplicity, we will only describe the high level strategy for achieving a
O(n2m

1
n−1 + 2O(n)) bound. To begin, we first show that the vertices of P (A) maximizing

objectives in a suitable net N of the sphere Sn−1, are all connected to the vertex maximizing e1,
with a path of length O(n2m

1
n−1 +2O(n)) with high probability. Second, we will show that with

high probability, for all v ∈ Sn−1, there is a path between the vertex of P (A) maximizing v and
the corresponding maximizer of closest objective v′ ∈ N of length at most 2O(n) log m. Since
every vertex of P (A) maximizes some objective in Sn−1, by stitching at most 4 paths together,
we get that the diameter of P (A) is at most O(n2m

1
n−1 + 2O(n) log m) = O(n2m

1
n−1 + 2O(n))

with high probability.
We only explain the strategy for the first part, as the second part follows easily from the

same techniques. The key estimate here is the sharp Θ(n2m
1

n−1 ) bound on the expected
number of vertices in a fixed two dimensional projection due to Borgwardt [6, 7], the so-called
shadow bound, which allows one to bound the expected length of paths between vertices
maximizing any two fixed objectives (see Section 3 for a more detailed discussion). We first
strengthen this result by proving that the size of the shadow sharply concentrates around its
expectation when m is large (Theorem 9), allowing us to apply a union bound on a suitable
net of shadows, each corresponding to a two dimensional plane spanned by e1 and some
element of N above. To obtain such concentration, we show that the shadow decomposes
into a sum of nearly independent “local shadows”, corresponding to the vertices maximizing
a small slice of the objectives in the plane, allowing us to apply concentration results on
sums of nearly independent random variables.

Independence via Density

We now explain the local independence structure in more detail. For this purpose, we
examine the smallest ϵ > 0 such that rows of A are ϵ-dense on Sn−1, that is, such that every
point in Sn−1 is at distance at most ϵ from some row of A. Using standard estimates on the
measure of spherical caps and the union bound, one can show with high probability that
ϵ := Θ((log m/m)1/m) and that any spherical cap of radius tϵ contains at most O(tn−1 log m)
rows of A for any fixed t ≥ 1.

We derive local independence from the fact that the vertex v of P (A) maximizing a unit
norm objective w is defined by constraints a ∈ A which are distance at most 2ϵ from w (see
Lemma 15 for a more general statement). This locality implies that the number of vertices
in a projection of P (A) onto a two dimensional subspace W ∋ w maximizing objectives
at distance ϵ from w (i.e., the slice of objectives) depends only on the constraints in A

at distance at most O(ϵ) from w. In particular, the number of relevant constraints for all
objectives at distance ϵ from w is at most 2O(n) log m by the estimate in the last paragraph.
By the independence properties of Poisson processes, one can in fact conclude that this local
part of the shadow on W is independent of the constraints in A at distance more than O(ϵ)
from w.

Given the above, we decompose the shadow onto W into k = O(1/ϵ) pieces, by placing
k equally spaced objectives w0, . . . , wk−1, wk = w0 on Sn−1 ∩ W , so that ∥wi − wi+1∥2 ≤ ϵ,
0 ≤ i ≤ k − 1, and defining Ki ≥ 0, 0 ≤ i ≤ k − 1, to be the number of vertices maximizing
objectives in [wi, wi+1]. This subdivision partitions the set of shadow vertices, so Borgwardt’s
bound applies to the expected sum: E[

∑k−1
i=0 Ki] = O(n2m1/(n−1)). Furthermore, as argued

SoCG 2022



18:6 Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

above, each Ki is (essentially) independent of all Kj ’s with |i − j mod k| = Ω(1). This
allows us to apply a Bernstein-type concentration bound for sums of nearly-independent
bounded random variables to

∑k−1
i=0 Ki.

Unfortunately, the worst-case upper bounds we have for each Ki, 0 ≤ i ≤ k −1, are rather
weak. Namely, we only know that in the worst-case, Ki is bounded by the total number of
vertices induced by constraints relevant to the interval [wi, wi+1], where ∥wi − wi+1∥ ≤ ϵ.
As mentioned above, the number of relevant constraints is 2O(n) log m and hence the number
of vertices is at most (2O(n) log m)n. With these estimates, we can show high probability
concentration of the shadow size around its mean when m ≥ 2Ω(n3). One important technical
aspect ignored above is that both the independence properties and the worst-case upper
bounds on each Ki crucially relies only on conditioning A to be “locally” ϵ-dense around
[wi, wi+1] (see Definition 16 and Lemma 19 for more details).

Abstract Diameter Bounds to the Rescue

To allow tight concentration to occur for m = 2Ω(n2), we adapt the above strategy by
successively following shortest paths instead of the shadow path on W . More precisely,
between the maximizer vi of wi and vi+1 of wi+1, 0 ≤ i ≤ k − 1, we follow the shortest path
from vi to vi+1 in the subgraph induced by the vertices v of P (A) satisfying ⟨v, wi+1⟩ ≥
⟨vi, wi+1⟩. We now let Ki, 0 ≤ i ≤ k−1, denote the length of the corresponding shortest path.
For such local paths, one can apply the abstract Barnette–Larman style bound of [16] to
obtain much better worst-case bounds. Namely, we can show Ki ≤ 2O(n) log m, 0 ≤ i ≤ k −1,
instead of (2O(n) log m)n (see Lemma 21). Crucially, the exact same independence and
locality properties hold for these paths as for the shadow paths, due to the generality of our
main locality lemma (Lemma 15). Furthermore, as these paths are only shorter than the
corresponding shadow paths, their expected sum is again upper bounded by Borgwardt’s
bound. With the improved worst-case bounds, our concentration estimates are sufficient to
show that all paths indexed by planes in the net N have length O(n2m

1
n−1 + 2O(n)) with

high probability.

1.3.2 The Lower Bound
For the lower bound, we first reduce to lower bounding the diameter of the polar polytope
P (A)◦ = Q(A), where we show that diam(P (A)) ≥ (n − 1)(diam(Q(A)) − 2) (see Lemma 23).
This relation holds as long as P (A) is a simple polytope containing the origin in its interior
(which holds with probability 1 − 2−Ω(m)). To prove it, we show that given any path between
vertices v1, v2 of P (A) of length D, respectively incident to distinct facets F1, F2 of P (A),
one can extract a facet path, where adjacent facets share an n − 2-dimensional intersection
(i.e., a ridge), of length at most D/(n − 1) + 2. Such facet paths exactly correspond to paths
between vertices in Q(A), yielding the desired lower bound.

For m ≥ 2Ω(n), proving that diam(P (A)) ≥ Ω(nm1/(n−1)) reduces to showing that
diam(Q(A)) ≥ m1/(n−1) with high probability. For the Q(A) lower bound, we examine the
length of paths between vertices of Q(A) maximizing antipodal objectives, e.g., −e1 and e1.
From here, one can one easily derive an Ω((m/ log m)

1
n−1 ) lower bound on the length of such

a path, by showing that every edge of Q(A) has length ϵ := Θ((log m/m)
1

n−1 ) and that the
vertices in consideration are at distance Ω(1). This is a straightforward consequence of Q(A)
being tightly sandwiched by Euclidean balls, namely (1 − ε2/2)Bn

2 ⊆ Q(A) ⊆ Bn
2 (Lemma 11)

with high probability. This sandwiching property is itself a consequence of the rows of A

being ϵ-dense on Sn−1, as mentioned in the previous section.



G. Bonnet, D. Dadush, U. Grupel, S. Huiberts, and G. Livshyts 18:7

Removing the extraneous logarithmic factor (which makes the multiplicative gap between
our lower and upper bound go to infinity as m → ∞), requires a much more involved
argument as we cannot rely on a worst-case upper bound on the length of edges. Instead, we
first associate any antipodal path above to a continuous curve on the sphere from −e1 to
e1 (Lemma 26), corresponding to objectives maximized by vertices along the path. From
here, we decompose any such curve into Ω(m

1
n−1 ) segments whose endpoints are at distance

Θ(m−1/(n−1)) on the sphere. Finally, by appropriately bucketing the breakpoints (Lemma 27)
and applying a careful union bound, we show that for any such curve, an Ω(1) fraction of the
segments induce at least 1 edge on the corresponding path with overwhelming probability
(Theorem 28). For further details on the lower bound, including how we discretize the set of
curves, we refer the reader to Section 4.

1.4 Organization
In Section 2 and the appendix, we introduce some basic notation as well as estimates on
the measure of spherical caps. In Section 3, we prove the upper bound. Halfway into that
section, we also prove Theorem 9, a tail bound on the shadow size that is of independent
interest. We prove the lower bound in Section 4. Most proofs are organized in the different
sections of the appendix. Any proof not present in the text can be found in the appendix.

2 Preliminaries

For notational simplicity in the sequel, it will be convenient to treat A as a subset of Sn−1

instead of a matrix. For A ⊆ Sn−1, we will slightly abuse notation and let P (A) := {x ∈
Rn : ⟨x, a⟩ ≤ 1, ∀a ∈ A} and Q(A) := conv(A). We denote the indicator of a random event
X by 1[X], i.e., 1[X] = 1 if X and 1[X] = 0 otherwise. For k ∈ N we write [k] := {1, . . . , k}.

Our objects of interest are defined as follows:

▶ Definition 2. For any polyhedron P ⊆ Rn, a path is a sequence v1, v2, . . . , vk ∈ P of
vertices, such that each line segment [vi, vi+1], i ∈ [k −1], is an edge of P . A path is monotone
with respect to an inner product ⟨w, ·⟩ if ⟨w, vi+1⟩ ≥ ⟨w, vi⟩ for every i ∈ [k − 1].

The distance between vertices v1, v2 ∈ P is the minimum number k such that there exists a
path v′

1, v′
2, . . . , v′

k+1 with v1 = v′
1 and v′

k+1 = v2. The diameter of P is the maximal distance
between any two of its vertices.

2.1 Density Estimates
In this section, we give bounds on the fineness of the net induced by a Poisson distributed
subset of Sn−1. Roughly speaking, if the set A follows a Pois(Sn−1, m) distribution then A

will be Θ((log m/m)1/(n−1))-dense, see Definition 3. While this estimate is standard in the
stochastic geometry, it is not so easy to find a reference giving quantitative probabilistic
bounds, as more attention has been given to establishing exact asymptotics as m → ∞
(see [27]). We provide a simple proof of this fact here, together with the probabilistic estimates
that we will need.

▶ Definition 3. For w ∈ Sn−1 and r ≥ 0, we denote by C(w, r) = {x ∈ Sn−1 : ∥w − x∥ ≤ r}
the spherical cap of radius r centered at w.

We say A ⊆ Sn−1 is ε-dense in the sphere for ε > 0 if for every w ∈ Sn−1 there exists
a ∈ A such that a ∈ C(w, ε).

SoCG 2022



18:8 Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

▶ Lemma 4. For m ≥ n ≥ 2 and 0 < p < m−n, have ε = ε(m, n, p) > 0 satisfy σ(C(v, ε)) =
3e log(1/p)/m < 1/12. Then, for A ∼ Pois(Sn−1, m),

Pr[∃v ∈ Sn−1 : C(v, ε) ∩ A = ∅] ≤ p

and for every t ≥ 1,

Pr[∃v ∈ Sn−1 : |C(v, tε) ∩ A| ≥ 45 log(1/p)tn−1] ≤ p.

We now give effective bounds on the density estimate ε above. Note that taking the
(n − 1)th root of the bounds for εn−1 below yields ε = Θ((log m/m)1/(n−1)) for m = nΩ(1)

and p = 1/m−n.

▶ Corollary 5. Let ε > 0 be as in Lemma 4, i.e., satisfying σ(C(v, ε)) = 3e log(1/p)/m ≤ 1/12.
Then ε ∈ [0,

√
2(1 − 2√

n
)] and

12e log(1/p)/m ≤ εn−1 ≤ (
√

2)n−1 · 18
√

n log(1/p)/m.

3 Shadow size and upper bounding the diameter

In the first part of this section, we prove a concentration result on the number of shadow
vertices of P (A). This addresses an open problem from [6]. In the second part, we use the
resulting tools to prove Theorem 10, our high-probability upper bound on the diameter of
P (A). We start by defining a useful set of paths for which we know their expected lengths.

▶ Definition 6. Let P ⊆ Rn be a polyhedron and W ⊆ Rn be a two-dimensional linear
subspace. We denote by S(P, W ) the set of shadow vertices: the vertices of P that maximize
a non-zero objective function ⟨w, ·⟩ with w ∈ W .

From standard polyhedral theory, we get a characterization of shadow vertices:

▶ Lemma 7. Let P (A) be a polyhedron given by A ⊆ Rn and w ∈ Rn \ {0}. A vertex
v ∈ P (A) maximizes ⟨w, ·⟩ if and only if wR+ ∩ conv{a ∈ A : ⟨a, v⟩ = 1} ̸= ∅.

Hence for W ⊆ Rn a two-dimensional linear subspace, a vertex v ∈ P (A) is a shadow
vertex v ∈ S(P (A), W ) if and only if conv{a ∈ A : ⟨a, v⟩ = 1} ∩ W \ {0} ̸= ∅.

The set of shadow vertices for a fixed plane W induces a connected subgraph in the graph
consisting of vertices and edges of P , and so any two shadow vertices are connected by a
path of length at most |S(P, W )|. As such, for nonzero w1, w2 ∈ W , we might speak of a
shadow path from w1 to w2 to denote a path from a maximizer of ⟨w1, ·⟩ to a maximizer
of ⟨w2, ·⟩ that stays inside S(P, W ) and is monotonous with respect to ⟨w2, ·⟩. The shadow
path was studied by Borgwardt:

▶ Theorem 8 ([6, 7]). Let m ≥ n and fix a two-dimensional linear subspace W ⊆ Rn. Pick
any probability distribution on Rn that is invariant under rotations and let the entries of
A ⊆ Rn, |A| = m, be independently sampled from this distribution. Then, almost surely, for
any linearly independent w1, w2 ∈ W there is a unique shadow path from w1 to w2. Moreover,
the vertices in S(P (A), W ) are in one-to-one correspondence to the vertices of πW (P (A)),
the orthogonal projection of P (A) onto W . The expected length of the shadow path from w1
to w2 is at most

E[|S(P (A), W )|] = O(n2m
1

n−1 ).

This upper bound is tight up to constant factors for the uniform distribution on Sn−1.



G. Bonnet, D. Dadush, U. Grupel, S. Huiberts, and G. Livshyts 18:9

We prove a tail bound for the shadow size when A ∼ Pois(Sn−1, m). This result answers
a question of Borgwardt in the asymptotic regime, regarding whether bounds on higher
moments of the shadow size can be given. To obtain such concentration, we show that the
shadow decomposes into a sum of nearly independent “local shadows”, using that A will be
ε-dense per Lemma 4, allowing us to apply standard concentration results for sums of nearly
independent random variables.

▶ Theorem 9 (Shadow Size Concentration). Let e
−m

18
√

n(76
√

2)n−1 < p < m−2n and let

tp := max
(√

O(Un2m
1

n−1 log(1/p)), O(U log(1/p))
)

for U := O(n2n2(log(1/p))n). If A ∼ Pois(Sn−1, m) then the shadow size satisfies

Pr
[∣∣∣|S(P (A), W )| − E[|S(P (A), W )|]

∣∣∣ > tp

]
≤ 4p.

In the second part of this section, we extend the resulting tools to obtain our upper
bound on the diameter.

▶ Theorem 10 (Diameter Upper Bound). Assume that p satisfies e
−m

18
√

n(76
√

2)n−1 < p < m−2n.
If A = {a1, . . . , aM } ∈ Sn−1, where M is Poisson with E[M ] = m, and a1, . . . , aM are
uniformly and independently distributed in Sn−1. Then, we have that

Pr[diam(P (A)) > O(n2m
1

n−1 + n4n log2(1/p))] ≤ O(√p).

3.1 Only “nearby” constraints are relevant
We will start by showing that, with very high probability, constraints that are “far away”
from a given point on the sphere will not have any impact on the local shape of paths. That
will result in a degree of independence between different parts of the sphere, which will be
essential in getting concentration bounds on key quantities.

▶ Lemma 11. If A ⊆ Sn−1 is ε-dense for ε ∈ [0,
√

2) then Bn
2 ⊆ P (A) ⊆

(
1 − ε2

2

)−1
Bn

2 .

▶ Lemma 12. If w ∈ Sn−1, α < 1, ∥v∥ ≤ (1 − α)−1 and ⟨v, w⟩ ≥ 1 then ∥v/∥v∥ − w∥2 ≤ 2α.

Proof. We have 1 ≤ ⟨v, w⟩ = ∥v∥ · ⟨v/∥v∥, w⟩ ≤ (1 − α)−1⟨v/∥v∥, w⟩. Hence 1 − ∥v/∥v∥ −
w∥2/2 = ⟨v/∥v∥, w⟩ ≥ 1 − α, which exactly implies that ∥v/∥v∥ − w∥2 ≤ 2α as required. ◀

We will use the above lemmas to prove the main technical estimate of this subsection: if
A ⊆ Sn−1 is ε-dense and w1, w2 ∈ Sn−1 satisfy ∥w1 − w2∥ ≤ 2ε/n then any vertex on any
path on P (A) starting at a maximizer of ⟨w1, ·⟩ that is non-decreasing with respect to ⟨w2, ·⟩
can only be tight at constraints ⟨a, x⟩ = 1 induced by a ∈ A ∩ C(w2, (2 + 2/n)ε). All other
constraints are strictly satisfied by every vertex on such a monotone path.

▶ Lemma 13. Let ε ∈ [0, 1] and assume that w1, w2 ∈ Sn−1 satisfy ∥w1−w2∥ ≤ (1−ε2/2). Let
v1, v ∈ Rn satisfy ⟨w1, v1⟩ ≥ 1 and ⟨w2, v⟩ ≥ ⟨w2, v1⟩, and assume ∥v1∥, ∥v∥ ≤ (1 − ε2/2)−1.
Last, let a ∈ Sn−1 satisfy ⟨a, v⟩ ≥ 1. Then we have ∥w2 − a∥ ≤ 2ε + ∥w1 − w2∥.

To round out this subsection, we prove that the conclusion of Lemma 13 holds whenever
v, v1 ∈ P (A) and A is ε-dense in a neighbourhood around w2.

▶ Definition 14. Given sets A, C ⊆ Sn−1 and ε > 0, we say that A is ε-dense for C if for
every c ∈ C there exists a ∈ A such that ∥a − c∥ ≤ ε.

SoCG 2022



18:10 Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

▶ Lemma 15. Let A ⊆ Sn−1 be compact and ε-dense for C(w2, 4ε), ε > 0. Let v1, v ∈ P (A)
and w1, w2 ∈ Sn−1 satisfying ⟨w1, v1⟩ ≥ 1, ⟨w2, v⟩ ≥ ⟨w2, v1⟩ and ∥w1 − w2∥ ≤ ε. Now
let a ∈ Sn−1 satisfy ⟨a, v⟩ ≥ 1. Then we have ∥v1∥, ∥v∥ ≤ (1 − ε2/2)−1 and ∥w2 − a∥ ≤
2ε + ∥w1 − w2∥.

Note also the contrapositive of the above statement: for w1, w2, v1, v, A satisfying the
conditions above, we have for a ∈ Sn−1 that ∥w2 − a∥ > 2ε + ∥w1 − w2∥ implies ⟨a, v⟩ < 1.

3.2 Locality, independence, and concentration
With an eye to Lemma 15, this subsection is concerned with proving concentration for sums
of random variables that behave nicely when A is dense in given neighbourhoods. The
specific random variables that we will use this for are the paths between the maximizers of
nearby objective vectors w1, w2 ∈ Sn−1.

▶ Definition 16. Given m, n, p, let ε = ε(m, n, p) > 0 be as in Lemma 4 and A ⊆ Rn be a
random finite set. For x, y ∈ Sn−1 define the event Ex,y as:

A is ε-dense for C(x, ∥x − y∥ + 4ε), and
for every z ∈ [x, y] we have∣∣∣∣A ∩ C( z

∥z∥
, (2 + 2/n)ε)

∣∣∣∣ ≤ 45e2n log(1/p)

A random variable K is called (x, y)-local if Ex,y implies that K is a function of A∩C(x, 5ε+
∥x − y∥).

In particular, we will use that if K is (x, y)-local then K1[Ex,y] is a function of A ∩ C(x, 5ε +
∥x − y∥).

To help prove that certain paths are local random variables, we will use the following
helper lemma.

▶ Lemma 17. Let w1, w2 ∈ Sn−1, and have w1 = v1, v2, . . . , vk+1 = w2 be equally spaced on
a shortest geodesic segment on Sn−1 connecting w1 and w2. Then for every i ∈ [k] we have
∥w1 − w2∥/k ≤ ∥vi − vi+1∥ ≤ π∥w1 − w2∥/k.

Many paths on P (A) turn out to be such local random variables. One example are short
segments of the shadow paths from Theorem 8.

▶ Lemma 18. Let w1, w2 ∈ Sn−1 satisfy ∥w1 − w2∥ ≤ ε. Then the length of the shadow path
on P (A) from w1 to w2 is a (w1, w2)-local random variable. If ∥w1 − w2∥ ≤ ε then Ew1,w2

implies that this path has length at most 2n(45e2n log(1/p))n.

▶ Lemma 19. Let 0 < p < m−2n and let ε = ε(m, n, p) < 1/76 be as in Lemma 4 and let
k ≥ 2π/ε be the smallest number divisible by 76. Let W ⊆ Rn be a fixed 2D linear subspace
and let w1, . . . , wk, wk+1 = w1 ∈ W ∩ Sn−1 be equally spaced around the circle. Assume for
every i ∈ [k] that Ki ≥ 0 is a (wi, wi+1)-local random variable and there exists U ≤ mn such
that Ki ≤ U whenever Ewi,wi+1 . Furthermore assume that E[

∑k
i=1 Ki] ≤ O(n2m

1
n−1 ). Then

Pr
[ ∣∣∣∣∣∣

∑
i∈[k]

Ki − E
[ ∑

i∈[k]

Ki

]∣∣∣∣∣∣ ≥ tp

]
≤ 4p

for tp = max
(√

O(Un2m
1

n−1 log(1/p)), O(U log(1/p))
)

.



G. Bonnet, D. Dadush, U. Grupel, S. Huiberts, and G. Livshyts 18:11

3.3 Upper bound on the diameter
In this section we prove our high probability upper bound on diam(P (A)). We start by
proving that for fixed W the vertices in S(P (A), W ) are connected by short paths, where we
aim for an error term smaller than that of Theorem 9. We require the following abstract
diameter bound from [16]. We will only need the Barnette–Larman style bound.

▶ Theorem 20. Let G = (V, E) be a connected graph, where the vertices V of G are subsets
of {1, . . . , k} of cardinality n and the edges E of G are such that for each u, v ∈ V there
exists a path connecting u and v whose intermediate vertices all contain u ∩ v.

Then the following upper bounds on the diameter of G hold:

2n−1 · k − 1 (Barnette–Larman), k1+log n − 1 (Kalai–Kleitman).

To confirm that the above theorem indeed gives variants of the Barnette–Larman and
Kalai–Kleitman bounds, let A = {a1, ..., am} ⊆ Sn−1 be in general position. For a vertex
x ∈ P (A), we denote Ax = {a ∈ A : ⟨a, x⟩ = 1}. Consider the following sets

V = {Ax : x is a vertex of P (A)},

E = {{Ax, Ay} : [x, y] is an edge of P (A)}.

One can check that G = (V, E) satisfies almost surely the assumptions of Theorem 20
which therefore shows that the combinatorial diameter of P (A) is less than min(2n−1 · m −
1, m1+log n − 1). Up to a constant factor difference, these bounds correspond to the same
bounds described in the introduction.

Now we use the Barnette–Larman style bound to bound the length of the local paths.

▶ Lemma 21. Let w1, w2 ∈ Sn−1 satisfy ∥w1 − w2∥ ≤ ε, where ε = ε(m, n, p) is as in
Lemma 4. Furthermore, let K denote the maximum over all w ∈ [w1, w2] of the length of
the shortest path from a maximizer vw ∈ P (A) of ⟨w, ·⟩ to the maximizer of ⟨w2, ·⟩ of which
every vertex v ∈ P (A) on the path satisfies ⟨w2, v⟩ ≥ ⟨w2, vw⟩. Then K is a (w1, w2)-local
random variable and Ew1,w2 implies that Ki is at most 45en4n log(1/p).

▶ Theorem 22. Let 0 < p < m−2n and let

tp = max
(√

O(Un2m
1

n−1 log(1/p)), O(U log(1/p))
)

for U = O(n4n log(1/p)). If W ⊆ Rn is a fixed 2D linear subspace and A ∼ Pois(Sn−1, m),
the largest distance T between any two shadow vertices satisfies

Pr[T ≥ O(n2m
1

n−1 ) + tp] ≤ 4p

Proof. Let w1, . . . , wk be as in Lemma 19 and let Ki denote the maximum over all w ∈
[wi, wi+1] of the length of the shortest path from a shadow vertex vw maximizing ⟨w, ·⟩ to
a vertex maximizing ⟨wi+1, ·⟩ such that every vertex v on this path satisfies ⟨wi+1, v⟩ ≥
⟨wi+1, vw⟩. From Lemma 21 we know that Ki is a (wi, wi+1)-local random variable and
Ki ≤ 45en4n log(1/p) whenever Ewi,wi+1 . Now recall Theorem 8. Observe that T ≤∑

i∈[k] Ki almost surely by concatenating the above-mentioned paths, and note that that∑
i∈[k] Ki ≤ S(P (A), W ) holds almost surely, which implies E[

∑
i∈[k] Ki] = O(n2m

1
n−1 ). We

apply Lemma 19 to
∑

i∈[k] Ki and get the desired result. ◀

SoCG 2022



18:12 Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

▶ Theorem 10 (Diameter Upper Bound). Assume that p satisfies e
−m

18
√

n(76
√

2)n−1 < p < m−2n.
If A = {a1, . . . , aM } ∈ Sn−1, where M is Poisson with E[M ] = m, and a1, . . . , aM are
uniformly and independently distributed in Sn−1. Then, we have that

Pr[diam(P (A)) > O(n2m
1

n−1 + n4n log2(1/p))] ≤ O(√p).

4 Lower Bounding the Diameter of P (A)

To begin, we first reduce to lower bounding the diameter of the polar polytope P ◦, corre-
sponding to a convex hull of m uniform points on Sn−1, via the following simple lemma.

▶ Lemma 23 (Diameter Relation). For n ≥ 2, let P ⊆ Rn be a simple bounded polytope
containing the origin in its interior and let Q = P ◦ := {x ∈ Rn : ⟨x, y⟩ ≤ 1, ∀y ∈ P} denote
the polar of P . Then, diam(P ) ≥ (n − 1)(diam(Q) − 2).

We then associate any “antipodal” path to a continuous curve on the sphere corresponding
to objectives maximized by vertices along the path. From here, we decompose any such
curve into Ω(m

1
n−1 ) segments whose endpoints are at distance Θ(m−1/(n−1)) on the sphere.

Finally, we apply a suitable union bound, to show that for any such curve, an Ω(1) fraction
of the segments induce at least 1 edge on the corresponding path.

Building on Lemma 23, we turn to proving the lower bound for Q(A).
For a discrete set N ⊆ Sn−1, a point x0 ∈ N and a positive number ε > 0 we denote by

Xk := Xk(N, x0, ε) = {x ∈ Nk : xi ̸= xj and 6ε ≤ ∥xi −xi+1∥ ≤ 8ε for any 0 ≤ i < j ≤ k}

the set of all sequences of k distinct points in N with jumps of length between 6ε and 8ε

(including an extra initial jump between x0 and x1).

▶ Lemma 24. Let ε > 0. If N ⊆ Sn−1 is a maximal ε-separated set, then

|Xk| ≤ (17n−1)k.

Note that a maximal ε-separated set is also an ε-net.

▶ Lemma 25. Let f : [0, 1] → Sn−1 be a continuous function. Let ε > 0 and N ⊆ Sn−1

be an ε-net, such that f(0) ∈ N . There exist k ∈ N0, 0 ≤ t0 < t1 < · · · < tk ≤ 1 and
x0, . . . , xk ∈ N such that
1. ∥f(ti) − xi∥ ≤ ε for any i ∈ {0, . . . , k},
2. ∥f(t) − xi∥ ≥ ε for any i ∈ {0, . . . , k} and t > ti,
3. (x1, . . . , xk) ∈ Xk(N, x0, ε),
4. ∥xk − f(1)∥ < 7ε.

▶ Lemma 26. Let A ⊆ Sn−1 be a finite subset of the sphere. Let [a0, a1], [a1, a2], . . . ,
[aℓ−1, aℓ] be a path along the edges of Q(A). There exists a continuous function f : [0, 1] →
Sn−1 and 0 = s0 < s1 < · · · < sℓ+1 = 1 such that f(0) = a0, f(1) = aℓ, and for any
i ∈ {0, 1, . . . , ℓ} and any t ∈ [si, si+1],

ai ∈ argmina∈A(∥f(t) − a∥).

▶ Lemma 27. Let A ⊆ Sn−1 be a finite subset of the sphere, containing two points a+, a− ∈ A

such that ∥a+ − a−∥ ≥ 1. Let ε > 0 and N ⊆ Sn−1 be a maximal ε-separated set, such that
a+ ∈ N . Set x0 = a+ and k0 = ⌈1/8ε⌉ − 1. It holds that

diam(Q(A)) ≥ min
k≥k0

min
x∈Xk(N,x0,ε)

∑
0≤i≤k−1

1[C(xi, ε/2) ∩ A ̸= ∅]1[C(xi+1, ε/2) ∩ A ̸= ∅].



G. Bonnet, D. Dadush, U. Grupel, S. Huiberts, and G. Livshyts 18:13

▶ Theorem 28 (Lower Bound for Q(A)). There exist positive constants c2 < 1 and c3 > 1
independent of n ≥ 3 and m such that the following holds. Let A = {a1, . . . , aM } ∈ Sn−1,
where M is Poisson with E[M ] = m, and a1, . . . , aM are uniformly and independently
distributed in Sn−1. Then, with probability at least 1 − e−cn−1

3 m1/(n−1) , the combinatorial
diameter of Q(A) is at least c2m1/(n−1).

Proof. Without loss of generality m ≥ (1/c2)n−1 since otherwise the statement of the
theorem is trivial.

In this proof the constants 1 < c3 < c4 < c5 < c6 < c−1
2 are large enough constants,

independent from n and m.
We set ε = c6m−1/(n−1), and want to apply Lemma 27. Let N be an ε-net, obtained from

a maximal ε-separated set, such that it contains a point a+ from the set A. For independence
properties needed later we take a+ randomly and uniformly from the set A. With probability
1 − e−m/2 we have that A intersects the halfsphere {u ∈ Sn−1 : ⟨a+, u⟩ ≤ 0}. In which case
there exists a point a− ∈ A such that ∥a+ − a−∥ ≥

√
2 ≥ 1. Therefore we can apply Lemma

27 with x0 = a+. Combined with the union bound, we get

Pr
(

diam Q(A) ≤ c2m1/(n−1)
)

≤ e−m/2 +
∑

k≥k0
x∈Xk(N,x0,ε)

Pr

 ∑
0≤i≤k−1

Bi ≤ c2m1/(n−1)

 ,

where

k0 = ⌈1/8ε⌉ + 1 ≥ 1/8ε = m1/(n−1)/8c6,

and the summands in the probability are Bernoulli random variables

Bi = 1[C(xi, ε/2) ∩ A ̸= ∅]1[C(xi+1, ε/2) ∩ A ̸= ∅].

For 1 ≤ i ≤ k − 1, they are identically distributed, with failure probability

Pr(Bi = 0) ≤ 2 Pr(C(xi, ε/2) ∩ A = 0) = 2 exp (−mσ(C(xi, ε/2)))

≤ 2 exp
(

−m (ε/4)n−1
)

= 2 exp
(

−
(c6

4

)n−1
)

=: 1 − p.

Note that we lower bounded the volume of the cap σ(C(xi, ε/2)) ≥ (ε/4)n−1σ(C(xi, 2)).
Since N forms a maximal ε-separated set and the xi are distinct, the caps C(xi, ε/2) are
disjoint and therefore the random variables B1, B3, B5, ... are independent. Next we exploit
this independence. Let k ≥ k0, and set K = ⌊k/2⌋. Note that K ≥ 1/16ε = m1/(n−1)/16c6.
Assuming that c2 ≤ 1/32c6, we have

Pr

 ∑
0≤i≤k−1

Bi ≤ c2m1/(n−1)

 ≤ Pr

 ∑
1≤i≤K

B2i−1 ≤ K

2

 =
∑

1≤i≤⌊K/2⌋

(
K

i

)
pi(1 − p)K−i.

Now we bound p by 1, (1 − p)K−i by (1 − p)K/2 and
∑ (

K
i

)
by 2K , which provides us the

bound

Pr

 ∑
0≤i≤k−1

Bi ≤ c2m−1/(n−1)

 ≤ (2(1 − p)1/2)K ≤
(

e(−cn−1
5 )

)K

.

SoCG 2022



18:14 Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes

Thus, with the bound |Xk| ≤ (17n−1)k from lemma 24, and the fact that K ≥ k/2, we get

Pr
(

diam Q(A) ≤ c2m−1/(n−1)
)

≤ e−m/2 +
∑

k≥k0

(
e(− 1

2 (c5)n−1+(n−1) ln 17)
)k

≤ e−m/2 +
∑

k≥k0

(e−(c4)n−1
)k

= e−m/2 + e−k0cn−1
4

1 − e−(c4)n−1

≤ e−m/2 + e− m1/(n−1)
8c6

cn−1
4

1 − e−cn−1
4

≤ e−cn−1
3 m1/(n−1)

. ◀

References
1 Michel L Balinski. The Hirsch conjecture for dual transportation polyhedra. Mathematics of

Operations Research, 9(4):629–633, 1984.
2 Imre Bárány and Zoltán Füredi. On the shape of the convex hull of random points. Probability

Theory and Related Fields, 77(2):231–240, February 1988. doi:10.1007/bf00334039.
3 David Barnette. Wv paths on 3-polytopes. Journal of Combinatorial Theory, 7(1):62–70, July

1969. doi:10.1016/s0021-9800(69)80007-4.
4 David Barnette. An upper bound for the diameter of a polytope. Discrete Mathematics,

10(1):9–13, 1974. doi:10.1016/0012-365x(74)90016-8.
5 Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier.

On sub-determinants and the diameter of polyhedra. Discrete & Computational Geometry,
52(1):102–115, 2014.

6 Karl Heinz Borgwardt. The simplex method: a probabilistic analysis, volume 1 of Algorithms
and Combinatorics: Study and Research Texts. Springer-Verlag, Berlin, 1987. doi:10.1007/
978-3-642-61578-8.

7 Karl Heinz Borgwardt. Erratum: A sharp upper bound for the expected number of shadow
vertices in lp-polyhedra under orthogonal projection on two-dimensional planes. Mathematics
of Operations Research, 24(4):925–984, 1999. URL: http://www.jstor.org/stable/3690611.

8 Karl Heinz Borgwardt and Petra Huhn. A lower bound on the average number of pivot-steps
for solving linear programs valid for all variants of the simplex-algorithm. Mathematical
Methods of Operations Research, 49(2):175–210, April 1999. doi:10.1007/s186-1999-8373-5.

9 Steffen Borgwardt, Jesús A De Loera, and Elisabeth Finhold. The diameters of network-flow
polytopes satisfy the Hirsch conjecture. Mathematical Programming, 171(1):283–309, 2018.

10 Graham Brightwell, Jan Van den Heuvel, and Leen Stougie. A linear bound on the diameter
of the transportation polytope. Combinatorica, 26(2):133–139, 2006.

11 Daniel Dadush and Nicolai Hähnle. On the shadow simplex method for curved polyhedra. Dis-
crete Computational Geometry, 56(4):882–909, June 2016. doi:10.1007/s00454-016-9793-3.

12 Daniel Dadush and Sophie Huiberts. A friendly smoothed analysis of the simplex method.
SIAM Journal on Computing, 49(5):STOC18–449, 2019.

13 Alberto Del Pia and Carla Michini. On the diameter of lattice polytopes. Discrete &
Computational Geometry, 55(3):681–687, 2016.

14 Antoine Deza and Lionel Pournin. Improved bounds on the diameter of lattice polytopes.
Acta Mathematica Hungarica, 154(2):457–469, 2018.

15 Martin Dyer and Alan Frieze. Random walks, totally unimodular matrices, and a randomised
dual simplex algorithm. Mathematical Programming, 64(1):1–16, 1994.

16 Friedrich Eisenbrand, Nicolai Hähnle, Alexander Razborov, and Thomas Rothvoss. Diameter
of polyhedra: Limits of abstraction. Mathematics of Operations Research, 35(4):786–794, 2010.

https://doi.org/10.1007/bf00334039
https://doi.org/10.1016/s0021-9800(69)80007-4
https://doi.org/10.1016/0012-365x(74)90016-8
https://doi.org/10.1007/978-3-642-61578-8
https://doi.org/10.1007/978-3-642-61578-8
http://www.jstor.org/stable/3690611
https://doi.org/10.1007/s186-1999-8373-5
https://doi.org/10.1007/s00454-016-9793-3


G. Bonnet, D. Dadush, U. Grupel, S. Huiberts, and G. Livshyts 18:15

17 Marc Glisse, Sylvain Lazard, Julien Michel, and Marc Pouget. Silhouette of a random polytope.
Journal of Computational Geometry, 7(1):14, 2016.

18 Richard C Grinold. The Hirsch conjecture in Leontief substitution systems. SIAM Journal on
Applied Mathematics, 21(3):483–485, 1971.

19 Gil Kalai and Daniel J. Kleitman. A quasi-polynomial bound for the diameter of
graphs of polyhedra. Bull. Amer. Math. Soc., 26(2):315–317, July 1992. doi:10.1090/
s0273-0979-1992-00285-9.

20 Victor Klee, David W Walkup, et al. The d-step conjecture for polyhedra of dimension d < 6.
Acta Mathematica, 117:53–78, 1967.

21 Peter Kleinschmidt and Shmuel Onn. On the diameter of convex polytopes. Discrete mathe-
matics, 102(1):75–77, 1992.

22 Jean-Philippe Labbé, Thibault Manneville, and Francisco Santos. Hirsch polytopes with
exponentially long combinatorial segments. Mathematical Programming, 165(2):663–688, 2017.

23 D.G. Larman. Paths on polytopes. Proc. London Math. Soc. (3), s3-20(1):161–178, January
1970. doi:10.1112/plms/s3-20.1.161.

24 Carla Michini and Antonio Sassano. The Hirsch Conjecture for the fractional stable set
polytope. Mathematical Programming, 147(1):309–330, 2014.

25 Denis Naddef. The Hirsch conjecture is true for (0, 1)-polytopes. Mathematical Programming:
Series A and B, 45(1-3):109–110, 1989.

26 Hariharan Narayanan, Rikhav Shah, and Nikhil Srivastava. A spectral approach to polytope
diameter, 2021. arXiv:2101.12198.

27 A Reznikov and EB Saff. The covering radius of randomly distributed points on a manifold.
International Mathematics Research Notices, 2016(19):6065–6094, 2016.

28 Laura Sanità. The diameter of the fractional matching polytope and its hardness implications.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
910–921. IEEE, 2018.

29 Francisco Santos. A counterexample to the Hirsch Conjecture. Annals of Mathematics,
176(1):383–412, July 2012. doi:10.4007/annals.2012.176.1.7.

30 Rolf Schneider and Wolfgang Weil. Stochastic and integral geometry. Probability and its
Applications (New York). Springer-Verlag, Berlin, 2008. doi:10.1007/978-3-540-78859-1.

31 Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

32 Noriyoshi Sukegawa. An asymptotically improved upper bound on the diameter of polyhedra.
Discrete & Computational Geometry, 62(3):690–699, 2019.

33 Michael J Todd. An improved Kalai–Kleitman bound for the diameter of a polyhedron. SIAM
Journal on Discrete Mathematics, 28(4):1944–1947, 2014.

34 Roman Vershynin. Beyond Hirsch conjecture: walks on random polytopes and smoothed
complexity of the simplex method. SIAM J. Comput., 39(2):646–678, 2009. Preliminary
version in FOCS ‘06. doi:10.1137/070683386.

SoCG 2022

https://doi.org/10.1090/s0273-0979-1992-00285-9
https://doi.org/10.1090/s0273-0979-1992-00285-9
https://doi.org/10.1112/plms/s3-20.1.161
http://arxiv.org/abs/2101.12198
https://doi.org/10.4007/annals.2012.176.1.7
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1137/070683386




Signed Barcodes for Multi-Parameter Persistence
via Rank Decompositions
Magnus Bakke Botnan #

Vrije Universiteit Amsterdam, The Netherlands

Steffen Oppermann #

Norwegian University of Science and Technology, Trondheim, Norway

Steve Oudot #

Inria, Palaiseau, France

Abstract
In this paper we introduce the signed barcode, a new visual representation of the global structure of the
rank invariant of a multi-parameter persistence module or, more generally, of a poset representation.
Like its unsigned counterpart in one-parameter persistence, the signed barcode encodes the rank
invariant as a Z-linear combination of rank invariants of indicator modules supported on segments in
the poset. It can also be enriched to encode the generalized rank invariant as a Z-linear combination
of generalized rank invariants in fixed classes of interval modules. In the paper we develop the theory
behind these rank decompositions, showing under what conditions they exist and are unique – so
the signed barcode is canonically defined. We also illustrate the contribution of the signed barcode
to the exploration of multi-parameter persistence modules through a practical example.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases Topological data analysis, multi-parameter persistent homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.19

Related Version Full Version: https://arxiv.org/abs/2107.06800

1 Introduction

1.1 Context and motivation
One of the central questions in the development of multi-parameter persistence theory is
to find a proper generalization of the concept of a persistence barcode, which plays a key
part in the one-parameter instance of the theory. Given a one-parameter persistence module,
i.e. a functor M from some subposet P ⊆ R to the vector spaces over a fixed field k, the
(persistence) barcode Dgm M is a multi-set of intervals in P that fully characterizes the
module M . Its role in applications is motivated by the fact that Dgm M provides a compact
encoding of the so-called rank invariant Rk M , a complete invariant that captures the ranks
of the internal morphisms of M , more precisely:

Rk M(s, t) = rank [M(s)→M(t)] for every s ≤ t ∈ P. (1.1)

The encoding decomposes Rk M as a Z-linear combination of rank invariants of interval
modules, i.e. indicator modules supported on intervals:

Rk M =
∑

I∈Dgm M

Rk kI = Rk

 ⊕
I∈Dgm M

kI

 , (1.2)

where each interval I ∈ Dgm M is considered with multiplicity, and where kI denotes the
interval module supported on I. Coefficients in the Z-linear combination are all positive.

© Magnus Bakke Botnan, Steffen Oppermann, and Steve Oudot;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.b.botnan@vu.nl
mailto:steffen.oppermann@ntnu.no
mailto:steve.oudot@inria.fr
https://doi.org/10.4230/LIPIcs.SoCG.2022.19
https://arxiv.org/abs/2107.06800
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Signed Barcodes for Multi-Parameter Persistence

k
( 10 ) // k2

( 0 1 ) // k
( 01 ) // k2

( 1 0
0 1 ) // k2

1 2 3 4 5

R

2− 4+

Figure 1 A one-parameter persistence module M (top) indexed over {1, 2, 3, 4, 5}, and its barcode
(in blue). The corresponding rank decomposition is Rk M = Rk kJ1,2K + Rk kJ2,5K + Rk kJ4,5K. The
rank Rk M(2, 4) = 1 is given by the one bar (thickened) connecting the down-set 2− to the up-set 4+.

−

Rk( (⊕ ⊕

Rk ( (

=

k id // k // 0

k

id

OO

[ 10 ] // k2

[ 1 0 ]

OO

[ 1 1 ] // k

OO

0

OO

// k

[ 01 ]

OO

id // k

id

OO

Rk ( ( • // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

⊕
• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

⊕
• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

Figure 2 The indecomposable module M on the left does not have the same rank invariant as
any direct sum of interval modules on the 3 × 3 grid. However, Rk M is equal to the difference
between the rank invariants of the two direct sums of interval modules shown on the right. Blue is
for intervals counted positively in the decomposition, while red is for intervals counted negatively.

The encoding in (1.2) is unique, i.e. there is no other way to decompose Rk M as a Z-linear
combination, with positive coefficients, of rank invariants of interval modules. This is because
M itself decomposes essentially uniquely as a direct sum of interval modules [6]:

M ≃
⊕

I∈Dgm M

kI . (1.3)

Since the intervals in Dgm M are line segments – possibly closed, open, or half-open,
Dgm M can be represented graphically as an actual barcode (see Figure 1) that reveals the
global structure of the rank invariant Rk M , as well as of the module M itself.

Major difficulties arise when trying to generalize the concept of barcode to multi-parameter
persistence modules – i.e. functors M from Rd (equipped with the product order) to the
vector spaces over k. Foremost, while a direct-sum decomposition of M into indecomposables
still exists and is essentially unique [3], the summands may no longer be interval modules as
in (1.3), where intervals in Rd are defined to be connected convex subsets in the product
order. For instance, the module on the left-hand side of Figure 2 is indecomposable yet not
an interval module nor even an indicator module – its pointwise dimension is not everywhere
≤ 1. One may then ask whether rank decompositions such as (1.2) exist nonetheless. The
answer is unfortunately negative: still in Figure 2, the module M on the left-hand side does
not have the same rank invariant as any direct sum of interval modules, therefore it cannot
decompose as in (1.2). Nevertheless, Rk M can be expressed as the difference between the



M. B. Botnan, S. Oppermann, and S. Oudot 19:3

t

t+

s

s−

RkM(s, t) = 1

Figure 3 Left: the signed barcode corresponding to the rank decomposition of Figure 2. Each
bar is the diagonal with positive slope of one of the rectangles involved in the decomposition, with
the same color code (blue for positive sign, red for negative sign). Right: computing Rk M(s, t) for
a pair of indices s ≤ t – the thick bar is the only one connecting the down-set s− to the up-set t+.

rank invariants of two direct sums of interval modules, as illustrated in the same figure.
In other words, Rk M decomposes as a Z-linear combination of rank invariants of interval
modules, with possibly negative coefficients.

The fact that the signed rank decomposition of the module M in Figure 2 involves only
rectangles is not mere chance: the point of our work is to show that such decompositions of the
rank invariant (1.1) exist, and furthermore that they are essentially unique – which may not
be the case for decompositions of this invariant using larger classes of intervals. Uniqueness
in the case of rectangles comes from the known fact that the rank invariant is complete on
direct sums of rectangle modules, i.e. interval modules supported on rectangles [4, 8].

Rectangles are also interesting because they are entirely determined by their upper bound
and lower bound. They therefore allow for an alternative representation of the signed rank
decomposition as a signed barcode, where each bar is the diagonal (with positive slope) of a
particular rectangle in the decomposition, with the same sign. As illustrated in Figure 3,
the signed barcode encodes visually the global structure of the rank invariant (1.1), and it
gives access to the same information as the signed rank decomposition. For instance, the
rank Rk M(s, t) between a pair of indices s ≤ t is given by the number of positive bars that
connect the down-set s− = {u ∈ P | u ≤ s} to the up-set t+ = {u ∈ P | u ≥ t}, minus the
number of negative bars that connect s− to t+.

1.2 Our setting
We work more generally over a partially ordered set P , considered as a category in the
obvious way, and we let k be an arbitrary but fixed field. Closed rectangles in Rd now become
closed segments in P , defined by ⟨s, t⟩ = {u ∈ P | s ≤ u ≤ t}. Intervals in P are defined
as non-empty subsets I that are both convex and connected in the partial order. Denote
by Rep P the functor category consisting of all functors M : P → Veck where Veck is the
category of vector spaces over k. We shall refer to such a functor M either as a representation
of P or as a persistence module over P , without distinction. Let rep P be the subcategory of
pointwise finite-dimensional (pfd) representations, i.e. functors taking their values in the
finite-dimensional vector spaces over k. Denoting by {≤P } = {(a, b) ∈ P ×P | a ≤ b} the set
of pairs defining the partial order in P , we see the rank invariant (1.1) as a map {≤P } → N
(in the literature, the rank invariant is sometimes defined as a map on P × P that vanishes
outside {≤P }; such a map clearly holds the same information as our rank invariant). For
I ⊆ P , M |I denotes M ◦ ι where ι : I ↪→ P is the canonical inclusion.

SoCG 2022



19:4 Signed Barcodes for Multi-Parameter Persistence

Since the usual rank invariant is incomplete, even on the subcategory of interval-
decomposable modules (i.e. modules isomorphic to direct sums of interval modules), we will
consider a generalization of the rank invariant that probes the existence of “features” in the
module across arbitrary intervals I ⊆ P , not just across closed segments. This generalization
is known to be complete on interval-decomposable modules – see [8] or our Proposition 2.8:

▶ Definition 1.1. Let M ∈ Rep P . Given an interval I ⊆ P , the generalized rank of M over
I, denoted by RkI M , is defined by:

RkI M = rank
[
lim←−M |I → lim−→M |I

]
.

Given a collection I of intervals, the generalized rank invariant of M over I is the map
RkI M : I → N ∪ {∞} defined by RkI M(I) = RkI M .

▶ Remark 1.2. To see that Definition 1.1 generalizes the standard rank invariant, ob-
serve that when I is a closed segment ⟨i, j⟩ = {u ∈ P | i ≤ u ≤ j}, we have RkI M =
rank [M(i)→M(j)]. Hence, taking I = {⟨i, j⟩ | i ≤ j ∈ P} ≃ {≤P } in the above definition
gives RkI M = Rk M , the usual rank invariant of M .

In this work we focus on the subcategory repI P of representations M that have a finite
generalized rank invariant over a fixed collection I of intervals, i.e. such that RkI M ∈ N for
all I ∈ I. Our setting considers in fact arbitrary functions I → Z. Note that repI P ⊇ rep P ,
since the morphism lim←−M |I → lim−→M |I factors through the internal spaces of M |I .

▶ Definition 1.3. Given a collection I of intervals in P , and a function r : I → Z, a (signed)
rank decomposition of r over I is given by the following kind of identity:

r = RkI kR − RkI kS ,

where R and S are multi-sets of elements taken from I such that kR and kS lie in repI P ,
and where by definition kR =

⊕
R∈R kR and kS =

⊕
S∈S kS (note that elements R ∈ R and

S ∈ S are considered with multiplicity). By extension, we call the pair (R,S) itself a rank
decomposition of r over I. It is minimal if R and S are disjoint as multi-sets.

Note that RkI kR(I) = 1R⊇I for any I ∈ I and R ∈ R (Proposition 2.1), so RkI kR(I)
counts the number of elements in R that contain I. This number is requested to be finite in
the definition (kR ∈ repI P ): a sufficient condition for this is that R is pointwise finite, i.e.
that every index in P belongs to only finitely many elements of R, for then kR ∈ rep P .

An important consequence of having RkI kR(I) = 1R⊇I is that adding the same in-
terval I ∈ I to both R and S does not change the difference RkI kR − RkI kS , so rank
decompositions cannot be unique. This motivates the notion of minimal rank decomposition.

1.3 Contributions and structure of the paper
In Section 2 we study the existence and uniqueness of minimal rank decompositions. We
show in Theorem 2.9 and Corollary 2.10 that a minimal rank decomposition (R,S) of a
given map r : I → Z exists as soon as at least one rank decomposition of r exists, that it is
always unique, and that it satisfies a universality property justifying its name. To complete
the picture, in Corollary 2.5 we provide mild sufficient conditions for the existence of rank
decompositions in the first place. Our proofs emphasize the role played by the family of
generalized rank invariants (RkI kI)I∈I , which acts as a generalized basis (Theorem 2.4).

In Section 3 we reformulate our results in the specific context of multi-parameter persis-
tence. We thus obtain existence and uniqueness results for minimal rank decompositions of
finitely presented persistence modules over Rd (Theorem 3.3), and of pfd persistence modules



M. B. Botnan, S. Oppermann, and S. Oudot 19:5

over finite grids (Corollary 3.2). In the latter case, we derive an explicit inclusion-exclusion
formula to compute the coefficients in the minimal rank decompositions, which generalizes
the known formula for counting multiplicities in persistence diagrams in the one-parameter
case. We also discuss the stability of the minimal rank decompositions, and propose a
metric in which to compare them, based on the matching (pseudo-)distance from [9]. In this
metric we show that the minimal rank decompositions are the ones maximizing the distance
(Proposition 3.8), and that replacing the modules by their rank decompositions does not
expand their pairwise distances (Theorem 3.7).

In Section 4 we introduce the signed barcode as a visual representation of the minimal rank
decomposition of the usual rank invariant. We explain how the signed barcode reflects the
global structure of the usual rank invariant, and how its role in multi-parameter persistence
is similar to the one played by the unsigned barcode in one-parameter persistence. We
also discuss its extension to generalized rank invariants, for which it takes the form of a
“decorated” signed barcode with similar properties and extra information. The use of these
barcodes is illustrated on a practical example coming from 2-parameter clustering.

1.4 Related work
Rank decompositions have strong ties with the concept of generalized persistence diagram,
introduced by Patel [14] and further studied in [2, 8, 11]. This diagram is defined from the rank
invariant via a Möbius inversion, from which our inclusion-exclusion formula for computing
the coefficients in the minimal rank decomposition derives. Indeed, in the full version of
this paper [5] we show that, whenever it is defined, the generalized persistence diagram does
correspond to the minimal rank decomposition. However, our framework allows us to prove
the existence and uniqueness of the minimal rank decomposition using direct arguments
that: (1.) emphasize the role played by the family of rank invariants of interval modules
as a generalized basis for the space of maps I → Z, and (2.) hold in more general settings
where the Möbius inversion is not defined. It also allows us to derive stability results for rank
decompositions in general (not just minimal ones), in terms of the matching distance dmatch [9],
and to introduce the signed barcodes as a practical graphical representation of minimal rank
decompositions – hence of generalized persistence diagrams as well.

2 Rank Decompositions: Existence and Uniqueness

Let P be an arbitrary poset. The following result will be instrumental throughout our analysis.
It generalizes [8, Proposition 3.17] by dropping the assumption of local finiteness of the
poset P and allowing for generalized ranks, moreover it is given a more direct proof – see the
full version of this paper [5]. Note that the result is immediate when working with segments.

▶ Proposition 2.1. Let R be a multi-set of intervals of P . Then, for any interval I ⊆ P :

RkI(kR) = #{R ∈ R | I ⊆ R}.

▶ Corollary 2.2. Let I be a collection of intervals in P . For a multi-set R of intervals, we
have that kR ∈ repI P if and only if #{R ∈ R | I ⊆ R} <∞ for all I ∈ I.

2.1 The locally finite case
Let I be a locally finite collection of intervals in P . That is, for any two comparable intervals
in I, there are only finitely many intervals in I between the two. We say a map I → Z has
locally finite support if its restriction to the up-set of any element of I has finite support.

SoCG 2022



19:6 Signed Barcodes for Multi-Parameter Persistence

▶ Remark 2.3. For any fixed I ∈ I, the map RkI kI : J 7→ RkJ kI has locally finite support,
by the description in Proposition 2.1. More generally, for any multi-set R of elements in
I, if kR ∈ repI P then the map RkI kR has locally finite support: for any fixed I ∈ I, by
Corollary 2.2 R only contains finitely many elements containing I, and these are the only
ones relevant when considering the restriction of RkI kR to the up-set of I.

▶ Theorem 2.4. Let I be a locally finite collection of intervals in P . Then any function
r : I → Z with locally finite support can uniquely be written as a (possibly infinite, but
pointwise finite) Z-linear combination of the functions RkI kI with I ∈ I.

Proof. Existence: Given I ∈ I we let SI = {J ⊇ I | ∃K ⊇ J with r(K) ̸= 0}. Since r is
locally finite, its support restricted to the up-set of I is finite, and so is SI since I is locally
finite. Now we can define a collection of scalars αI ∈ Z for I ∈ I, inductively on the size
of SI . If SI = ∅ we set αI = 0. Otherwise we set

αI = r(I)−
∑

J∈SI \{I}

αJ .

Note that for J ∈ SI \ {I} we have SJ ⊊ SI , so the terms in the sum are already defined.
Now, using the description of the map RkI kI in Proposition 2.1, one immediately verifies

that r =
∑

I∈I αI RkI kI . Note in particular that this infinite sum is pointwise finite – on a
given interval J the only possibly non-zero terms are the ones in SJ – hence well-defined.

Uniqueness: subtracting two different Z-linear combinations realizing r from each other,
we get a single linear combination

∑
I∈I αI RkI kI with non-zero coefficients which sums up

to zero. Note that there is at least one maximal I ∈ I such that αI ̸= 0, for otherwise the sum
would not be defined. It follows, again using Proposition 2.1, that (

∑
J∈I αJ RkI kJ)(I) =

αI ̸= 0, contradicting our assumption. ◀

▶ Corollary 2.5. Let I be a locally finite collection of intervals in P . Then, for any map
r : I → Z with locally finite support, there is a unique pair R,S of disjoint multi-sets of
elements of I such that r = RkI kR − RkI kS and kR, kS both lie in repI P .

Proof. By Theorem 2.4, there is a unique (possibly infinite, but pointwise finite) Z-linear
combination of functions r =

∑
I∈I αI RkI kI . Let then R = {I ∈ I | αI > 0} with

multiplicities I 7→ αI , and S = {I ∈ I | αI < 0} with multiplicities I 7→ |αI |. It follows
from the pointwise-finiteness of the linear combination that R and S satisfy the condition in
Corollary 2.2, so in particular kR and kS lie in repI P . ◀

Specializing Theorem 2.4 and Corollary 2.5 to the case where P is finite and I = {⟨i, j⟩ |
i ≤ j ∈ P} ≃ {≤P } yields the following results – where RkI becomes the usual rank
invariant Rk according to Remark 1.2:

▶ Corollary 2.6. If P is finite, then the maps Rk k⟨a,b⟩ for all a ≤ b ∈ P is a basis of Z{≤P }.

▶ Corollary 2.7. Given a finite poset P , for any map r : {≤P } → Z there is a unique pair
R,S of disjoint finite multi-sets of closed segments such that r = Rk kR − Rk kS .

2.2 The general case
We now drop our previous finiteness assumptions and consider arbitrary maps r : I → Z
over an arbitrary collection I of intervals in an arbitrary poset P . Our first result shows
that RkI is a complete invariant when restricted to interval-decomposable representations
supported on intervals in I. In fact, we show that the rank invariant is complete on a slightly
larger collection of intervals. This generalizes [8, Theorem 3.14].



M. B. Botnan, S. Oppermann, and S. Oudot 19:7

▶ Proposition 2.8. Given a collection I of intervals in P , let Î ⊇ I be the collection of
limit intervals (which by construction are also intervals):

Î :=
{ ⋃

x∈X

Ix | X totally ordered, Ix ∈ I and Ix ⊆ Iy ∀x ≤ y ∈ X

}
.

If R and R′ are two multi-sets of elements in Î, such that RkI kR = RkI kR′ and this
common rank invariant is finite, then R = R′.

Proof. Since the rank of a direct sum is the sum of the ranks we may remove the common
elements from R and R′, and thus assume that the two multi-sets are disjoint. It follows
from the description of multi-sets giving rise to finite ranks in Corollary 2.2 that R ∪R′

contains at least one maximal element, say J . Without loss of generality we assume J ∈ R.
By definition of Î we have J =

⋃
x∈X Jx with Jx ∈ I and Jx ⊆ Jy for all x ≤ y ∈ X. Now,

by assumption, for every x ∈ X we have

RkJx
kR′ = RkJx

kR ≥ RkJx
kJ ,

which is at least 1 by Proposition 2.1. It also follows from Proposition 2.1 that, for each
x ∈ X, there is some interval Ix ∈ R′ such that Jx ⊆ Ix. Since RkI kR′ is finite, Corollary 2.2
says that there are actually only finitely many choices for Ix. Hence, there is an I ∈ R′

independent of x such that Jx ⊆ I for all x ∈ X. Thus J ⊆ I. If this is a proper inclusion then
it contradicts the maximality of J , otherwise it contradicts the disjointness of R and R′. ◀

We can now show minimal rank decompositions satisfy a universality property when they exist.

▶ Theorem 2.9. Let R,S,R∗,S∗ be multi-sets of elements of Î, whose corresponding
representations lie in repI P , and such that R∗ ∩ S∗ = ∅. If

RkI kR − RkI kS = RkI kR∗ − RkI kS∗

then R ⊇ R∗, S ⊇ S∗, and R \R∗ = S \ S∗.

Proof. Rewriting the equation yields RkI kR + RkI kS∗ = RkI kR∗ + RkI kS , and by
additivity of the rank invariant, RkI(kR ⊕ kS∗) = RkI(kR∗ ⊕ kS). It follows then by
Proposition 2.8 that R ∪ S∗ = R∗ ∪ S. As R∗ ∩ S∗ = ∅, we conclude that R ⊇ R∗, S ⊇ S∗,
and R \R∗ = S \ S∗. ◀

As an immediate consequence of Theorem 2.9, we obtain uniqueness and conditional
existence of minimal rank decompositions:

▶ Corollary 2.10. The minimal rank decomposition (R∗,S∗) of any map r : I → Z is unique
if it exists. Furthermore, it exists as soon as any rank decomposition (R,S) of r does, being
obtained from it by removing common intervals, that is: (R∗,S∗) = (R \R ∩ S, S \R ∩ S).

We also get a connection between the various rank decompositions of a map I → Z:

▶ Corollary 2.11. R∪S ′ = R′ ∪S for any rank decompositions (R,S), (R′,S ′) of r : I → Z.

Proof. Let (R∗,S∗) be the minimal rank decomposition of r. By Theorem 2.9, we have
R = R∗∪T and S = S∗∪T for some finite multi-set T of elements of I, while R′ = R∗∪T ′

and S ′ = S∗ ∪ T ′ for some multi-set T ′. Then, R ∪ S ′ = R∗ ∪ S∗ ∪ T ∪ T ′ = R′ ∪ S. ◀

SoCG 2022



19:8 Signed Barcodes for Multi-Parameter Persistence

−

RkI( (⊕ ⊕

RkI ( (

=

k id // k // 0

k

id

OO

[ 10 ] // k2

[ 1 0 ]

OO

[ 1 1 ] // k

OO

0

OO

// k

[ 01 ]

OO

id // k

id

OO

RkI ( ( • // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

⊕
• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

⊕
• // • // •

• //

OO

• //

OO

•

OO

• //

OO

• //

OO

•

OO

Figure 4 Minimal rank decomposition of the generalized rank invariant of the module M from
Figure 2 over the full collection I of intervals in the 3 × 3 grid. Blue is for intervals in R, red is for
intervals in S.

d

a

b

c

kRkI ( (RkI=

f e ( (⊕

d

a

k
k

c

ff e

b

d

f e

d

e

k( RkI− (
Figure 5 Taking I to be the collection of all intervals with one generator and at most two

cogenerators (which includes in particular all rectangles), the generalized rank invariant of the
interval 2-parameter persistence module kI on the left-hand side decomposes minimally as the
difference between the generalized rank invariants of the two modules on the right-hand side. Blue
is for intervals in R, red is for intervals in S.

3 Application to multi-parameter persistence

Here the poset P under consideration is either Rd, viewed as a product of d copies of the
totally ordered real line, or a subposet of Rd – usually Zd or some finite grid

∏d
i=1 J1, niK.

The role of segments is played by rectangles, i.e. products of 1-d intervals.

3.1 The finite grid case
In this case, Corollary 2.5 reformulates as follows:

▶ Corollary 3.1. Given an arbitrary collection I of intervals in a finite grid G =
∏d

i=1J1, niK ⊂
Rd, the generalized rank invariant RkI M of any pfd persistence module M indexed over G

admits a unique minimal rank decomposition (R,S) over I.

Taking I to be the collection of all closed rectangles in the grid G yields the following
reformulation of Corollary 2.7:

▶ Corollary 3.2. The usual rank invariant of any pfd persistence module M indexed over a
finite grid G =

∏d
i=1J1, niK ⊂ Rd admits a unique minimal rank decomposition (R,S), where

R and S are finite multi-sets of (closed) rectangles in G.

Figures 4 and 5 illustrate Corollary 3.1, while Figures 2 and 6 illustrate Corollary 3.2.



M. B. Botnan, S. Oppermann, and S. Oudot 19:9

d

a

b

c

kRk ( ( Rk=

f e ( (⊕

d

a

k

a

k

e

⊕

d

b

k ⊕

b

k

e

⊕

Rk− (a k

k

⊕

d

k⊕ k

e

⊕

b

k (
c

f

f f

c c

Figure 6 The usual rank invariant of the interval module kI on the left-hand side decomposes
minimally as the difference between the usual rank invariants of the two rectangle-decomposable
modules on the right-hand side. Blue is for rectangles in R, red is for rectangles in S.

Computation
Given RkI M , computing its minimal rank decomposition can be done by applying the
inclusion-exclusion formula defining the so-called generalized persistence diagram of M – see
e.g. Definition 3.13 in [8]. Indeed, whenever it exists, the generalized persistence diagram
of M coincides with the minimal rank decomposition of RkI(M). This connection happens
as both objects derive from the Möbius inversion of the generalized rank invariant – see
Section 3 in the full version of our paper [5] for the details. While simple, this approach does
not scale up well because the inclusion-exclusion formula must be applied for every interval
in the collection I, whose size can be up to exponential in the size of the indexing grid G,
even in two dimensions [1].

In the special case of the usual rank invariant however, the approach scales up reasonably
as the number of rectangles is at most quadratic in the size of the grid G. To be more specific,
the inclusion-exclusion formula writes as follows in this case, where α⟨s,t⟩ is the coefficient
assigned to Rk k⟨s,t⟩ in the minimal rank decomposition of Rk M :

∀s ≤ t ∈ G, α⟨s,t⟩ =
∑
s′≤s

∥s′−s∥∞≤1

∑
t′≥t

∥t′−t∥∞≤1

(−1)∥s′−s∥1+∥t′−t∥1 Rk M(s′, t′). (3.1)

By applying (3.1) successively to every pair of comparable indices s ≤ t in the grid
G =

∏d
i=1J1, niK ⊂ Rd, one computes the minimal rank decomposition of Rk M in time

O
(
22d #{≤G}

)
, assuming constant-time access to the ranks Rk M(s′, t′) and constant-time

arithmetic operations1. This bound is in O
(

22d
∏d

i=1 n2
i

)
, and when d is fixed, it is linear in

the size of the encoding of the usual rank invariant as a map {≤G} → Z. When the module M

comes from a simplicial filtration over the grid G with n = maxi ni simplices in total, the
usual rank invariant itself can be pre-computed and stored, e.g. by naively computing the
ranks Rk M(s, t) for each pair s ≤ t ∈ G independently, which takes O(n2d+ω) time in
total, where 2 ≤ ω < 2.373 is the exponent for matrix multiplication [12]. Adding in the

1 We are considering an implementation that iterates over the indices s′, t′ such that ∥s′ − s∥∞ ≤ 1 and
∥t′ − t∥∞ ≤ 1 by increasing order of the 1-norms ∥s′ − s∥1 and ∥t′ − t∥1, so that the 1-norms do not
have to be re-computed from scratch at each step. Such an implementation boils down to iterating over
the vertices of the unit hypercube in Rd by increasing order of the number of 1’s in their coordinates.

SoCG 2022



19:10 Signed Barcodes for Multi-Parameter Persistence

Rk ( ( Rk ( (⊕
a

k

b

k ⊕ ⊕

Rk− (
c

k ⊕ (

c

i

k k2

k

[ 1 -1 ]

d f i

e

g

c ca

i i

b

c

k

g

f

h

h

= k
k

k

[
0
1

]

[
1
0

]

Figure 7 Left: an indecomposable persistence module with 2 generators, at a and b, and a
relation equating them at h (indices d, e, f, g, i lie at infinity). Right: minimal rank decomposition
of the usual rank invariant of the module, over the right-open rectangles. Blue is for rectangles in R,
red is for rectangles in S. Solid boundaries belong to the rectangles while dotted boundaries do not.

computation time for the minimal rank decomposition yields a bound in O(n2d+ω + (2n)2d).
While naive, this approach already compares favorably, in terms of running time, to the
computation of other (stronger) invariants such as for instance the direct-sum decomposition
of M – for which the best known algorithm runs in O(nd(2ω+1)) time [7]. Moreover, the
running time of computing the minimal rank decomposition is dominated by the running
time of pre-computing the usual rank invariant, for which there is room for improvement.
In the special case where d = 2 for instance, assuming the filtration is 1-critical (i.e. each
simplex has a unique minimal time of appearance in the filtration), there is an O(n4)-time
algorithm to compute the usual rank invariant [4, 13], and computing its minimal rank
decomposition also takes O(n4) time. By comparison, the best known algorithm to compute
the direct-sum decomposition of M in this setting takes O(n2ω+1) time [7], and computing
the line arrangement data structure in RIVET takes O(n5) time in the worst case [10].

3.2 The Rd case
The rectangles in this context are right-open rectangles, i.e. products

∏d
i=1[ai, bi) of right-open

intervals of the real line (ai < bi ∈ R ∪ {∞} for each i = 1, · · · , d).

▶ Theorem 3.3. The usual rank invariant of every finitely presented persistence module M

over Rd admits a unique minimal rank decomposition over the right-open rectangles in Rd.

This result, illustrated in Figure 7, follows from Corollary 2.10 and from the fact that
rank decompositions of finitely presented persistence modules over Rd exist in the first place
– this fact itself is a consequence of the existence of so-called rank-exact resolutions of such
modules, which are the subject of Section 4 in the full version of the paper [5].

3.3 Restrictions to lines
A line ℓ in Rd is called monotone if it can be parametrized by λ 7→ (1 − λ)s + λt where
s ≤ t ∈ Rd are fixed. If si < ti in every dimension i = 1, · · · , d, then ℓ is called strictly
monotone. The restriction of M to ℓ is a one-parameter persistence module and thus has a
well-defined barcode called the fibered barcode. We shall now see that the fibered barcode of
M |ℓ can be obtained by a rank decomposition of M . In the following we employ the notation
R|ℓ = {R ∩ ℓ : R ∈ R}. Note that the elements of R|ℓ are intervals in ℓ.



M. B. Botnan, S. Oppermann, and S. Oudot 19:11

k

Rk ( ( Rk ( ( Rk ( (= −
`

`
`

k4 k3 k2 k k3 k2 k
a a a

Figure 8 Restricting an interval module kI to a monotone line ℓ (left) yields a restriction of the
minimal rank decomposition of Rk kI to ℓ (right) – for clarity, the rectangles’ boundaries are shown
with different line styles. Here, the restricted rank decomposition is not minimal, as the two interval
summands of kS|ℓ

cancel out with two of the three interval summands of kR|ℓ
.

▶ Proposition 3.4. Let M be a pfd persistence module over Rd such that the usual rank
invariant Rk M admits a rank decomposition (R,S). Then, for any monotone line ℓ in Rd,
(R,S) restricts to a rank decomposition (R|ℓ,S|ℓ) of Rk M|ℓ.

Proof. Observe that Rk kR|ℓ = Rk kR∩ℓ (and likewise for S). Thus, Rk M |ℓ = Rk kR|ℓ −
Rk kS |ℓ = Rk kR∩ℓ − Rk kS∩ℓ. ◀

▶ Remark 3.5. For a general discussion on restrictions of rank decompositions to subposets,
see Section 5 in the full version of the paper [5].

Note that the restriction of a minimal decomposition may not be minimal, as different
rectangles in R and S may restrict to the same 1-d interval – see Figure 8 for an illustration.
However, by Corollary 2.10, the minimal rank decomposition (R∗,S∗) of Rk M|ℓ is easily
obtained by removing all the common elements in R|ℓ and S|ℓ. Furthermore, as illustrated
in Figure 8 and formalized in the following result, (R∗,S∗) actually coincides with the
persistence barcode of the one-parameter module M |ℓ.

▶ Corollary 3.6. Every pfd persistence module M over R admits a unique minimal rank
decomposition (R,S), given by R = Dgm M , the persistence barcode of M , and S = ∅.

Proof. Follows from (1.3) and Corollary 2.10. ◀

3.4 Stability
We conclude this section by saying a few words about the stability of our rank decompo-
sitions. Recall from Corollary 2.11 that we have kR ⊕ kS′ ≃ kR′ ⊕ kS for any two rank
decompositions (R,S) and (R′,S ′) of the same persistence module M , or of two persistence
modules M, M ′ sharing the same (usual) rank invariant. In effect, this is telling us that
two rank decompositions are equivalent whenever their ground modules have the same rank
invariant. Using the matching (pseudo-)distance dmatch from [9], we can derive a metric
version of this statement (Theorem 3.7), which bounds the defect of equivalence between two
rank decompositions in terms of the fibered distance between the rank invariants of their
ground modules. Recall that the matching distance between two pfd persistence modules
M, N in Rd is defined as follows:

dmatch(M, N) = sup
ℓ strictly monotone

ω(ℓ) db(M |ℓ, N |ℓ), (3.2)

where db denotes the usual bottleneck distance between one-parameter persistence modules,
and where the weight of ℓ (parametrized as in Section 3.3) is

ω(ℓ) = (min
i

ti − si)/(max
i

ti − si) > 0.

SoCG 2022



19:12 Signed Barcodes for Multi-Parameter Persistence

▶ Theorem 3.7. Let M, M ′ be pfd persistence modules indexed over Rd. Then, for any rank
decompositions (R,S) and (R′,S ′) of M and M ′ respectively, we have:

dmatch(kR ⊕ kS′ , kR′ ⊕ kS) ≤ dmatch(M, M ′).

Proof. Take any strictly monotone line ℓ in Rd. By (3.2), we have:

db(M|ℓ, M ′
|ℓ) ≤ ω(ℓ)−1 dmatch(M, M ′).

Meanwhile, by Corollary 3.4, (R|ℓ,S|ℓ) is a rank decomposition of M|ℓ, and (R′
|ℓ,S

′
|ℓ) is

a rank decomposition of M ′
|ℓ. By Proposition 2.8, we then have M|ℓ ⊕ kS|ℓ

≃ kR|ℓ
and

M ′
|ℓ ⊕ kS′

|ℓ
≃ kR′

|ℓ
, from which we deduce:

db(M|ℓ, M ′
|ℓ) ≥ db(M|ℓ ⊕ kS|ℓ

⊕ kS′
|ℓ

, M ′
|ℓ ⊕ kS|ℓ

⊕ kS′
|ℓ

) = db(kR|ℓ
⊕ kS′

|ℓ
, kR′

|ℓ
⊕ kS|ℓ

).

Combined with the previous equation, this gives:

db(kR|ℓ
⊕ kS′

|ℓ
, kR′

|ℓ
⊕ kS|ℓ

) ≤ ω(ℓ)−1 dmatch(M, M ′).

The result follows then by taking the supremum on the left-hand side over all possible choices
of strictly monotone lines ℓ. ◀

Note that different choices of rank decompositions (R,S) and (R′,S ′) for M and M ′

may yield different values for the matching distance dmatch(kR ⊕ kS′ , kR′ ⊕ kS). It turns
out that the rank decompositions maximizing this distance are precisely the minimal rank
decompositions, which therefore also satisfy a universal property in terms of the metric:

▶ Proposition 3.8. Let M, M ′ be pfd persistence modules indexed over Rd. Then, for any
rank decompositions (R,S) and (R′,S ′) of M and M ′ respectively, we have:

dmatch(kR ⊕ kS′ , kR′ ⊕ kS) ≤ dmatch(kR∗ ⊕ kS′∗ , kR′∗ ⊕ kS∗),

where (R∗,S∗) and (R′∗,S ′∗) are the minimal rank decompositions of M and M ′ respectively
– which exist as soon as (R,S) and (R′,S ′) do, by Corollary 2.10.

Proof. Let T := R \ R∗ = S \ S∗, and T ′ := R′ \ R′∗ = S ′ \ S ′∗. Note that T , T ′ are
well-defined by Theorem 2.9. Then, for any strictly monotone line ℓ, we have:

db(kR|ℓ
⊕ kS′

|ℓ
, kR′

|ℓ
⊕ kS|ℓ

) = db(kR∗|ℓ
⊕ kS′∗|ℓ

⊕ kT|ℓ
⊕ kT ′

|ℓ
, kR′∗|ℓ

⊕ kS∗|ℓ
⊕ kT|ℓ

⊕ kT ′
|ℓ

)

≤ db(kR∗|ℓ
⊕ kS′∗|ℓ

, kR′∗|ℓ
⊕ kS∗|ℓ

).

The result follows then after multiplying by ω(ℓ) and taking the supremum on both sides
over all possible choices of strictly monotone lines ℓ. ◀

4 Signed barcodes and prominence diagrams

In the context of topological data analysis, the minimal rank decomposition (R,S) of Rk M

encodes visually the structure of the rank invariant of M : Rd → Veck. However, representing
rectangles as rectangles quickly leads to arrangements that are hard to read – see e.g. Figure 8.



M. B. Botnan, S. Oppermann, and S. Oudot 19:13

Figure 9 From left to right: signed barcodes corresponding to the usual rank decompositions of
Figures 6, 7, and 8 respectively. Blue bars are diagonals of rectangles in R and therefore counted
positively, while red bars are diagonals of rectangles in S and therefore counted negatively. The
bars’ endpoints are marked in green (as a solid dot when the endpoint lies in the rectangle, as a
circled dot when it does not – e.g. when it lies at infinity), to discriminate them from intersections.
The thick red line segment in the center picture shows the overlap between a shorter red bar and a
longer red bar sharing the same lower endpoint and slope.

s

t

s−

t+

RkM(s, t) = 2− 1 = 1

`

Figure 10 Left: computing Rk M(s, t) for a pair of indices s ≤ t – the thick bars are the ones
connecting the down-set s− to the up-set t+. Right: restricting the minimal rank decomposition
of Rk M to a strictly monotone line ℓ – the thick blue and red bars are the ones projecting to
non-empty bars along ℓ, and among those projections, the thick gray bars get cancelled out during
the simplification while the thick black bar remains in the barcode of M |ℓ.

4.1 Signed barcodes
An alternate representation of the rectangles is by their diagonal with positive slope. We
call this representation the signed barcode of Rk M , where each bar is the diagonal (with
positive slope) of a particular rectangle in R or S, and where the sign is positive for bars
coming from R and negative for bars coming from S – see Figure 9 for an illustration. Like
the rectangles, the bars are considered with multiplicity. The signed barcode of Rk M gives
direct access to the same pieces of information as the rectangular representation, as shown
in Figure 10. Furthermore, the signed barcode makes it possible to visually grasp the global
structure of the usual rank invariant Rk M , and in particular, to infer the directions along
which topological features have the best chances to persist.

When the collection I of intervals under consideration contains more than just the
rectangles, the intervals involved in the corresponding minimal rank decomposition (R,S)
of M are no longer described by a single diagonal. Nevertheless, each interval I ∈ R ⊔ S is
still uniquely described by the signed barcode of the corresponding interval module kI . We

SoCG 2022



19:14 Signed Barcodes for Multi-Parameter Persistence

d

a

b

c

f e

Figure 11 Decorated signed barcode corresponding to the generalized rank decomposition (R,S)
of Figure 5. The orange squares indicate how the bars are grouped together according to their
originating element I ∈ R ⊔ S.

(2)

(2)

(2)

∆ ∆ ∆

Figure 12 The signed prominence diagrams corresponding to the signed barcodes of Figure 9,
in the same order. Blue dots correspond to blue bars (hence to rectangles in R), while red dots
correspond to red bars (hence to rectangles in S). Multiplicities differring from 1 are indicated
explicitly. The union ∆ of the two coordinate axes plays the role of the diagonal.

can then collate all these signed barcodes together, negating the ones coming from intervals
in S, which yields a global decorated signed barcode for RkI M , where the decoration groups
the bars according to which element I ∈ R ⊔ S they originate from – see Figure 11.

4.2 Signed prominence diagrams
To each bar with endpoints s ≤ t in the (undecorated) signed barcode of Rk M , we can
associate its signed prominence, which is the d-dimensional vector t− s if the bar corresponds
to a rectangle in R, or s − t if the bar corresponds to a rectangle in S. We call signed
prominence diagram of M the resulting collection of vectors in Rd – see Figure 12.

In a signed prominence diagram, the union ∆ of the hyperplanes perpendicular to the
coordinate axes and passing through the origin plays the role of the diagonal: a bar whose
signed prominence lies close to ∆ can be viewed as noise, whereas a bar whose signed
prominence lies far away from ∆ can be considered significant for the structure of Rk M .
The right way to formalize this intuition is via smoothings, as in the one-parameter case.

▶ Definition 4.1. Given ε ∈ Rd
≥0, the ε-shift M [ε] is the persistence module defined pointwise

by M [ε](t) = M(t + ε) and M [ε](s ≤ t) = M(s + ε ≤ t + ε). There is a canonical morphism
of persistence modules M →M [ε], whose image Mε is called the ε-smoothing of M .

▶ Example 4.2. The ε-shift of a rectangle module kR is kR−ε, where by definition R− ε is
the shifted rectangle {t− ε | t ∈ R}. The ε-smoothing of kR is kRε , where by definition Rε

is the rectangle R ∩ (R− ε), obtained from R by shifting its upper-right corner by -ε.



M. B. Botnan, S. Oppermann, and S. Oudot 19:15

d

a

b

c

f e

ε

(2)

(2)

(2)

ε
a

b

c

d

f e

∆

Figure 13 Behavior of the signed barcode and prominence diagram under ε-smoothing. Left: the
input module M from Figure 6, overlaid with its signed barcode. Center: the ε-smoothing Mε of M

(in dark gray), overlaid with its own signed barcode – obtained by shifting the right endpoints in the
signed barcode of M by -ε. Right: effect of the ε-smoothing on the signed prominence diagram.

As it turns out, rank decompositions of the usual rank invariant commute with smoothings:

▶ Lemma 4.3. If (R,S) is a rank decomposition of Rk M , then, for any ε ∈ Rd
≥0, the pair

(Rε,Sε) where Rε = {Rε | R ∈ R} and Sε = {Sε | S ∈ S} is a rank decomposition of Rk Mε.
If (R,S) is minimal, then so is (Rε,Sε) after removing the empty rectangles from Rε and Sε.

See our full version [5] for an elementary proof of this result, which says that the effect of
ε-smoothing M on its signed barcode is to shift the right endpoints of the bars by -ε, removing
those bars for which the shifted right endpoint is no longer greater than or equal to the left
endpoint. The effect on its signed prominence diagram is to shift the positive vectors by -ε
and the negative vectors by ε, removing those vectors that cross ∆. Alternatively, one can
inflate ∆ by ε, and remove the vectors that lie in the inflated ∆, as illustrated in Figure 13.

4.3 A practical example: two-parameter clustering
We consider the point set P shown in Figure 14, which consists of N = 90 planar points
sampled from three different Gaussian distributions. We build the Vietoris–Rips bifiltration
from this dataset, given by VR(P )r,s := VR(f−1

ε (−∞, s])r, where VR(·)r denotes the usual
Vietoris-Rips complex of parameter r, and where fε : P → R is a local co-density estimator:

fε(p) = #{q ∈ P : d(p, q) > ϵ}, for a fixed parameter ϵ ≥ 0.

As the Vietoris-Rips complex VR(P )r,s can be hard to visualize, we replace it in our plots

by a proxy union of balls, Ur,s =
{

z ∈ R2 : min
p∈P,fε(p)≤s

||p− z|| ≤ r/2.

}
, which is known to

be interleaved multiplicatively with it.
Applying simplicial 0-homology with coefficients in the field Z2 yields a bipersistence

module M : M(r, s) = H0(VR(P )r,s). In practice we discretize M over a 10 × 10 regular
grid G, which we identify with the grid {0, 1, . . . , 9} × {0, 1, . . . , 9} in our plots. We know
that2, if (R,S) is a rank decomposition of M , then (R|G,S|G) is a rank decomposition of M |G.
Note that the persistence module thus obtained is not interval-decomposable. Geometrically,
this is due to three clusters A, B, C merging in three different ways at incomparable grades,
as shown in the highlighted squares of Figure 14, so that we have the following diagrams:

2 This comes from an extension of Proposition 3.4 to lattices, proven in the full version of the paper [5].

SoCG 2022



19:16 Signed Barcodes for Multi-Parameter Persistence

k2

k2

k3

[ 1 0 0
0 1 1 ]

OO

[ 1 1 0
0 0 1 ]

>>

[ 1 0 1
0 1 0 ]

// k2

∼=

k

k

k2

[ 1 1 ]

OO

[ 1 0 ]

??

[ 0 1 ]
// k

⊕
k

k

k

1

OO

1

??

1
// k

radius

co
-d
en

si
ty

AB
C

CA
B

Figure 14 The bifiltration in our experiment. The highlighted black squares show that three
clusters (named A, B, C) merge in three different ways at incomparable scales. The lifespan of each
one of these three clusters is marked by an interval with matching color.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

(4)

(2)

2 4 6 8 10

2

4

6

8

10

-2

-4

-6

-8

-10 -2-4-6-8 0

0
(3)

Figure 15 Left: signed barcode of our experiment over the 10 × 10 grid G, where thicker bars
overlap with another bar. Right: corresponding prominence diagram, where the bars coming from
the lifespans of A, B, C are separated from the rest of the bars by the dashed curves. Each bar with
endpoints s ≤ t in the barcode (and diagram) has an intensity proportional to min{tx − sx, ty − sy}.



M. B. Botnan, S. Oppermann, and S. Oudot 19:17

AB

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9
C

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Figure 16 Lifespans of A, B (left) and C (right) in the signed barcode.

The resulting signed barcode is shown in Figure 15. As expected, the lifespans of the
three clusters A, B, C appear as separate subsets of the bars, as shown in Figure 16. Checking
whether one of these three subsets does correspond to the lifespan of some feature can be
done by computing the coefficient assigned to the corresponding interval in the generalized
rank decomposition of M . The decorated barcode would provide this information as well.

References

1 Hideto Asashiba, Mickaël Buchet, Emerson G. Escolar, Ken Nakashima, and Michio Yoshiwaki.
On interval decomposability of 2d persistence modules, 2018. arXiv:1812.05261.

2 Hideto Asashiba, Emerson G Escolar, Ken Nakashima, and Michio Yoshiwaki. On ap-
proximation of 2d persistence modules by interval-decomposables. arXiv preprint, 2019.
arXiv:1911.01637.

3 Magnus Botnan and William Crawley-Boevey. Decomposition of persistence modules. Pro-
ceedings of the American Mathematical Society, 148(11):4581–4596, 2020.

4 Magnus Bakke Botnan, Vadim Lebovici, and Steve Oudot. On Rectangle-Decomposable
2-Parameter Persistence Modules. In Sergio Cabello and Danny Z. Chen, editors, 36th
International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2020.22.

5 Magnus Bakke Botnan, Steffen Oppermann, and Steve Oudot. Signed barcodes for multi-
parameter persistence via rank decompositions and rank-exact resolutions. arXiv preprint,
2021. arXiv:2107.06800.

6 William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules.
Journal of Algebra and its Applications, 14(05):1550066, 2015.

7 Tamal K Dey and Cheng Xin. Generalized persistence algorithm for decomposing multi-
parameter persistence modules. arXiv preprint, 2019. arXiv:1904.03766.

8 Woojin Kim and Facundo Memoli. Generalized persistence diagrams for persistence modules
over posets. arXiv preprint, 2018. arXiv:1810.11517.

9 Claudia Landi. The rank invariant stability via interleavings. In Research in computational
topology, pages 1–10. Springer, 2018.

10 Michael Lesnick and Matthew Wright. Interactive visualization of 2-d persistence modules.
arXiv preprint, 2015. arXiv:1512.00180.

11 Alexander McCleary and Amit Patel. Edit distance and persistence diagrams over lattices,
2021. arXiv:2010.07337.

SoCG 2022

http://arxiv.org/abs/1812.05261
http://arxiv.org/abs/1911.01637
https://doi.org/10.4230/LIPIcs.SoCG.2020.22
http://arxiv.org/abs/2107.06800
http://arxiv.org/abs/1904.03766
http://arxiv.org/abs/1810.11517
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/2010.07337


19:18 Signed Barcodes for Multi-Parameter Persistence

12 Nikola Milosavljević, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology
in matrix multiplication time. In Proceedings of the twenty-seventh annual symposium on
Computational geometry, pages 216–225. ACM, 2011.

13 Dmitriy Morozov. Homological illusions of persistence and stability. PhD thesis, Duke
University, 2008.

14 Amit Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology,
1(3):397–419, 2018.



Dynamic Time Warping Under Translation:
Approximation Guided by Space-Filling Curves
Karl Bringmann #

Universität des Saarlandes, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Sándor Kisfaludi-Bak #

Aalto University, Espoo, Finland

Marvin Künnemann
Institute for Theoretical Studies, ETH Zürich, Switzerland

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

André Nusser #

BARC, University of Copenhagen, Denmark

Abstract
The Dynamic Time Warping (DTW) distance is a popular measure of similarity for a variety of
sequence data. For comparing polygonal curves π, σ in Rd, it provides a robust, outlier-insensitive
alternative to the Fréchet distance. However, like the Fréchet distance, the DTW distance is not
invariant under translations. Can we efficiently optimize the DTW distance of π and σ under
arbitrary translations, to compare the curves’ shape irrespective of their absolute location?

There are surprisingly few works in this direction, which may be due to its computational
intricacy: For the Euclidean norm, this problem contains as a special case the geometric median
problem, which provably admits no exact algebraic algorithm (that is, no algorithm using only
addition, multiplication, and k-th roots). We thus investigate exact algorithms for non-Euclidean
norms as well as approximation algorithms for the Euclidean norm.

For the L1 norm in Rd, we provide an O(n2(d+1))-time algorithm, i.e., an exact polynomial-time
algorithm for constant d. Here and below, n bounds the curves’ complexities. For the Euclidean
norm in R2, we show that a simple problem-specific insight leads to a (1 + ε)-approximation in
time O(n3/ε2). We then show how to obtain a subcubic Õ(n2.5/ε2) time algorithm with significant
new ideas; this time comes close to the well-known quadratic time barrier for computing DTW for
fixed translations. Technically, the algorithm is obtained by speeding up repeated DTW distance
estimations using a dynamic data structure for maintaining shortest paths in weighted planar
digraphs. Crucially, we show how to traverse a candidate set of translations using space-filling curves
in a way that incurs only few updates to the data structure.

We hope that our results will facilitate the use of DTW under translation both in theory and
practice, and inspire similar algorithmic approaches for related geometric optimization problems.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Dynamic Time Warping, Sequence Similarity Measures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.20

Related Version Full Version: https://arxiv.org/abs/2203.07898

Funding Karl Bringmann: This work is part of the project TIPEA that has received funding from
the European Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No. 850979).
Sándor Kisfaludi-Bak: Part of this research was conducted while the author was at the Max Planck
Institute for Informatics, and part of it while he was at the Institute for Theoretical Studies, ETH
Zürich.

© Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, Dániel Marx, and
André Nusser;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bringmann@cs.uni-saarland.de
mailto:sandor.kisfaludi-bak@aalto.fi
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:anusser@mpi-inf.mpg.de
https://orcid.org/0000-0002-6349-869X
https://doi.org/10.4230/LIPIcs.SoCG.2022.20
https://arxiv.org/abs/2203.07898
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 (Approximation) Algorithms for Dynamic Time Warping Under Translation

Marvin Künnemann: Research supported by Dr. Max Rössler, by the Walter Haefner Foundation,
and by the ETH Zürich Foundation.
Dániel Marx: Research supported by the European Research Council (ERC) consolidator grant
No. 725978 SYSTEMATICGRAPH.
André Nusser : Part of this research was conducted while the author was at Saarbrücken Graduate
School of Computer Science and Max Planck Institute for Informatics. The author is supported by
the VILLUM Foundation grant 16582.

Acknowledgements We thank Christian Wulff-Nilsen for making us aware of an improved offline
dynamic shortest paths data structure.

1 Introduction

Fast algorithms for computing similarity measures for sequence data enable a number of
applications such as signature/handwriting recognition [39, 18], map matching [8, 37], analysis
of GPS tracking data [9] and many more. For polygonal curves in Rd, a popular measure is
the Fréchet distance [4, 20] – we refer to [25] for an overview over the extensive literature.
Unfortunately, the Fréchet distance is very sensitive to outliers, as the distance value may
easily be dominated by erroneous samplings of the curves. Consequently, some contexts would
profit from a measure that is more robust to outliers, such as the average/integral Fréchet
distance (see [14, 31]) or the well-known dynamic time warping (DTW) distance. The DTW
distance is particularly popular for audio sequences (such as speech recognition) and other
domains, but has seen an increasing number of uses for geometric curves [33, 39, 18, 38, 9].

Given two polygonal curves π = (π1, . . . , πn) and σ = (σ1, . . . , σm) in Rd, their DTW
distance dDTW(π, σ) can be defined as follows: We imagine a dog walking on π and its owner
walking on σ. Both owner and dog start at the beginning of their curves, and in each step
independently decide to either stay in place or jump to the next vertex, until both of them
have reached the end of their curves. Formally, this yields a traversal T = ((i1, j1), . . . , (it, jt))
where i1 = j1 = 1, it = n, jt = m and (iℓ+1, jℓ+1) ∈ {(iℓ + 1, jℓ), (iℓ, jℓ + 1), (iℓ + 1, jℓ + 1)}.
We define the cost of this traversal as the sum of distances of dog and owner during the
traversal, i.e.,

∑t
ℓ=1∥πiℓ

− σjℓ
∥. The corresponding DTW distance dDTW(π, σ) is defined as

the minimum cost of such a traversal.1 Note that this measure depends on the metric space
we use for our curves π, σ. For any metric that we can evaluate in constant time, a simple
dynamic programming approach computes dDTW(π, σ) in time O(nm), i.e., time O(n2) when
both curves have at most n vertices. While one can achieve mild improvements over this
running time [23], one can rule out O(n2−ε)-time algorithms under the Strong Exponential
Time Hypothesis, already for curves in R [1, 11]. Even for constant-factor approximations,
no strongly subquadratic algorithms are known, see [30] for (sub)polynomial approximation
guarantees and [3, 38] for approximation algorithms on restricted input models.

Unfortunately, the DTW distance is not translation-invariant: Distant copies of the same
curve may have a much larger distance than differently shaped curves that stay close to each
other, see Figure 1. For certain curve similarity applications such as signature recognition,
it is thus frequently argued (sometimes implicitly) that a translation-invariant measure is
desirable, see e.g. [33, 19, 35, 39, 17].

1 For comparison, to obtain the discrete Fréchet distance of π and σ, we would minimize, over all
traversals T , the maximum distance of the dog and its owner during T – one may think of the smallest
leash length required to connect dog and owner while traversing their curves.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:3

π σ π

σ

Figure 1 Curves with similar shape but large DTW distance (left) and different shape but small
DTW distance (right).

Arguably the most natural way to make any curve distance measure translation-invariant is
to take its minimum under translations of the curves: correspondingly, DTW under translation
is defined as dT

DTW(π, σ) := minτ∈Rd dDTW(π, σ + τ). Unfortunately, for computing this
translation-invariant measure, much less is known than, e.g., for the Fréchet distance under
translation. This state of the art, which we review below, is the starting point for our work.

Translation-invariant curve similarity measures. For the continuous Fréchet distance, the
earliest algorithmic work studying its translation-invariant version dates back to 2001 [19, 5],
with algorithms running in time Õ(n10) and Õ(n8), respectively. For the discrete Fréchet
distance under translation, algorithms have been improved from Õ(n6) [26], via Õ(n5) [7], to
Õ(n4.667) [13], with a conditional lower bound of n4−o(1) based on the Strong Exponential
Time Hypothesis [13]. These theoretical results have been complemented by an algorithm
engineering study [12]. Approximation algorithms have been given by [19, 5], including a
(1 + ε)-approximation in time O(n2/ε2). Other works study related settings, such as more
general transformations than translations [36, 32], or data structure variants [24].

Unfortunately, we are not aware of algorithmic works with rigorous analyses for DTW
under translation, but only heuristic approaches or works on related but different measures.
Qiao and Yasuhara [39] experimentally evaluate an iterative method for DTW distance
under transformations including translation, rotation and scaling, but provide no theoretical
guarantees. Vlachos, Kollios, and Gunopulos [35] study a closely related measure, a variation
of the Longest Common Subsequence distance for geometric curves that is translation-
invariant. This measure is similar to the DTW distance under translation using a binary
distance metric with d(x, y) = 0 if ∥x − y∥∞ ≤ ε and d(x, y) = 1 otherwise. For their
measure, Vlachos et al. provide both exact and approximation algorithms. Munich and
Perona [33] define another translation-invariant measure that roughly speaking minimizes
differences in direction and velocity changes over traversals of the curves. Efrat, Fan, and
Venkatasubramanian [18] study further variants of this measure.

One of the reasons for this lack of rigorous algorithmic work for DTW under translation
may be its computational intricacy: Already when π = (π1, . . . , πn) is a polygonal curve
in Rd and σ = (σ1) consists of a single point σ1 ∈ Rd, we obtain the geometric median
problem as a special case. Specifically, the task simplifies to finding a point x ∈ Rd such
that

∑n
i=1∥πi − x∥ is minimized. This problem provably has no exact algebraic algorithm

already for n = 5 and d = 2 [6] (that is, no algorithm using only addition, multiplication,
and k-th roots). We refer to [15] for a recent near-linear time approximation algorithm
and an overview of the literature on geometric median. By this lack of an exact, efficient
algorithm for geometric median, we can thus hardly expect to solve DTW under translation
in Euclidean spaces exactly. This motivates to study the problem for norms other than
Euclidean, as well as to study approximation algorithms for the Euclidean norm.

SoCG 2022



20:4 (Approximation) Algorithms for Dynamic Time Warping Under Translation

1.1 Our results
Exact algorithms for non-Euclidean norms. For the L1 norm in Rd, we give a polynomial-
time exact algorithm whenever d is constant.

▶ Theorem 1. For the L1-norm in Rd we can solve DTW under translation in
time O(n2(d+1)).

Since in R2 we can transform the L∞ norm to the L1 norm by rotating the input by π
2 and

scaling by 1/
√

2, this also yields an O(n6) time algorithm for L∞ in R2. We prove the result
in the full version.

Approximation algorithms for the Euclidean norm. The main focus in this paper is DTW
under translation in the Euclidean plane. Since there is no exact algebraic algorithm due to
the special case of geometric median, we focus on developing an approximation algorithm.

As a first baseline, we observe that DTW under translation is at least as hard to
compute as DTW for a fixed translation, even for approximation (we prove this in the full
version). Since exactly computing DTW for a fixed translation requires time n2−o(1) under
the Strong Exponential Time Hypothesis [1, 11], and no subquadratic-time constant-factor
approximation algorithm is known, the best we could hope for with current techniques would
be a f(1/ε)n2-time algorithm. Can we reach this baseline or does optimizing over translations
in R2 increase the problem’s complexity (and if so, by how much)?

For the discrete Fréchet distance, optimizing over a translation increases the time com-
plexity from n2±o(1) [20, 10] to at least n4−o(1) and at most O(n4.667) [13] (where the lower
bounds are based on the Strong Exponential Time Hypothesis). For (1 + ε)-approximations,
a simple algorithm indeed manages to match the baseline of O(n2/ε2), see [5]. Does the
same hold true for the DTW distance?

Similar arguments to [5] only achieve an Õ(n4/ε2) time bound for DTW under translation.
Using an insight specific to the nature of the DTW distance, we present a surprisingly simple
Õ(n3/ε2) time algorithm. We describe both approaches in Section 1.2. Our most important
contribution is to obtain a subcubic Õ(n2.5/ε2) time bound via a sophisticated approach that
exploits geometric arguments (specifically, a traversal via space-filling curves) to reduce our
problem to maintaining shortest paths in a dynamically changing directed grid graph.

▶ Theorem 2. For the Euclidean norm in R2, we can solve (1 + ε)-approximate DTW under
translation in time Õ(n2.5/ε2).

Our techniques strengthen the paradigm of using dynamic algorithms for geometric opti-
mization problems, for which we see a growing number of applications (besides classical
examples such as [34], see, e.g., recent work for the Fréchet distance under translation [7, 13]
or polygon placement [29]). Finally, only a sublinear factor of Õ(

√
n) to the baseline of

Õ(n2/ε2) remains, which one might hope to decrease by further developing our ideas.

1.2 Technical overview
In this section, we describe the main ideas for our approximation algorithm for DTW under
translation. To keep this exposition as simple as possible, we assume that both curves have
the same complexity; let these curves be denoted by π = (π1, . . . , πn) and σ = (σ1, . . . , σn)
throughout this section. The proof in Section 3 gives the slightly more detailed arguments
for possibly different complexities of the curves. We start off with a simple algorithm
that achieves a rather modest approximation guarantee: Let τstart := π1 − σ1 denote the



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:5

translation of σ that aligns the first points of π and σ + τ . It is straightforward to prove
that the resulting DTW distance δstart := dDTW(π, σ + τstart) yields a 2n-approximation to
DTW under translation, i.e., dT

DTW(π, σ) ∈ [δstart/(2n), δstart]. This follows from the fact that
dDTW(π, σ +τ) is (2n−1)-Lipschitz with respect to τ , and that τ∗ := argminτ dDTW(π, σ +τ)
satisfies ∥τstart − τ∗∥ ≤ dT

DTW(π, σ), see Lemma 4. (Analogous arguments are known to give
a 2-approximation for the Fréchet distance under translation [5, 12].)

With this rough approximation, the main task for approximating DTW under translation
is to design an approximate decider with the following guarantee: Given the polygonal
curves π, σ, a threshold δ > 0 and approximation parameter ε > 0, output a verdict
“dT

DTW(π, σ) ≤ (1 + ε)δ” or “dT
DTW(π, σ) > δ” in time T (n, ε). In any case, the returned

verdict has to be correct, i.e., if δ < dT
DTW(π, σ) ≤ (1+ε)δ any output is admissible, otherwise

it is uniquely determined. Given such an approximate decider, it is straightforward to obtain
a (1 + ε)-approximation algorithm with running time O(T (n, ε/3) log(n/ε)) via binary search
in the interval [δstart/(2n), δstart], see Theorem 11. We thus focus on the approximate decider
for the remainder of this section.

A simple O(n4/ε2) solution. Let B be the square of side length 2δ centered at τstart =
π1 − σ1. To approximately decide whether dDTW(π, σ) ≤ δ, we only need to consider
translations in B, as any other translation τ incurs a DTW distance larger than δ by
dDTW(π, σ + τ) ≥ ∥π1 − (σ1 + τ)∥ = ∥τstart − τ∥ > δ. Note that we can discretize this
bounding box by a set Q of O((n/ε)2) translations such that for each translation τ∗ ∈ B,
there is a close translation τ ∈ Q with ∥τ∗ − τ∥ ≤ εδ

2n . Thus, if there is a translation τ∗ with
dDTW(π, σ + τ∗) ≤ δ, then by (2n − 1)-Lipschitzness (Lemma 3), there is a translation τ ∈ Q

with dDTW(π, σ + τ) ≤ dDTW(π, σ + τ∗) + (2n − 1) · ∥τ∗ − τ∥ ≤ (1 + ε)δ. Consequently, by
deciding dDTW(π, σ + τ) ≤ (1 + ε)δ for all τ ∈ Q using the exact O(n2)-time algorithm, we
obtain an approximate decider with running time T (n, ε) = O(n4/ε2).

Note that the above arguments simplify the problem as follows: Find a set Q of translations
such that if there is some witness translation τ∗, i.e., dDTW(π, σ + τ∗) ≤ δ, then there is
some τ ∈ Q with ∥τ − τ∗∥ ≤ εδ

2n . By computing dDTW(π, σ + τ) for all τ ∈ Q, we can then
approximately decide whether dT

DTW(π, σ) ≤ δ.

A more careful O(n3/ε2) solution. It turns out that we can significantly reduce the size of
the set Q by analyzing the properties of good DTW traversals more closely. Consider a DTW
traversal ((i1, j1), . . . , (it, jt)) of π and σ + τ∗, with traversal cost

∑t
ℓ=1∥πiℓ

− (σjℓ
+ τ∗)∥ ≤

δ. Then, by a simple Markov argument, there can be at most n/2 pairs πiℓ
, σjℓ

with
∥πiℓ

− (σjℓ
+ τ∗)∥ ≥ 2δ/n, since otherwise already these pairs would lead to a traversal

cost of more than δ. Since the traversal has t ≥ n steps, it follows that there are at least
t−n/2 ≥ n/2 pairs πiℓ

, σjℓ
with ∥πiℓ

−(σjℓ
+τ∗)∥ ≤ 2δ/n. Since πℓ−(σℓ+τ∗) = (πℓ−σℓ)−τ∗,

this yields an important restriction on τ∗:

For any τ∗ such that π and σ + τ∗ have DTW distance at most δ,
there exist at least n/2 pairs πi, σj with ∥(πi − σj) − τ∗∥ ≤ 2δ/n.

This property immediately gives a simple randomized Õ(n3/ε2) algorithm: Simply draw a
pair (i, j) uniformly at random from [n]2 and test all translations τ given by O(1/ε2) equally-
spaced points in a [− 2δ

n , 2δ
n ]2-box Ci,j centered at πi − σj . If there is some τ∗ ∈ Ci,j with

dDTW(π, σ + τ∗) ≤ δ, one of the checked translations τ achieves dDTW(π, σ + τ) ≤ (1 + ε)δ.
By the above property, we have that τ∗ ∈ Ci,j with probability at least (n/2)/n2 = 1/(2n).
Thus, it suffices to repeat this process Õ(n) times to find a good translation with high
probability, if one exists. This yields a total running time of Õ(n · 1

ε2 · n2) = Õ(n3/ε2).

SoCG 2022



20:6 (Approximation) Algorithms for Dynamic Time Warping Under Translation

π

σ + τ∗1

σ + τ∗n

...

σ
σ + τ∗2

...

ε

ε

Figure 2 If π is given by a regular n-gon and σ is a 3n-vertex curve in a small [0, ε]2 area, where
ε is small, then the DTW under translation distance can have Ω(n) local optima, each of which is
near-optimal. These local optima correspond to translating σ towards each vertex of π.

In order to leverage this property deterministically, define the multiset P := {πi − σj |
i, j ∈ [n]} of n2 points. Recall that B is the square of side length 2δ centered at τstart = π1−σ1.
We impose a grid on the bounding box B where each grid cell has side length 2δ/n. Consider
a translation τ∗ in some grid cell C such that π and σ + τ∗ have DTW distance at most δ.
Then there must be n/2 points p ∈ P with ∥p − τ∗∥ ≤ 2δ/n – these points are distributed
among C and at most 3 neighboring cells of C.2 Thus, for any witness translation τ∗, there
must be a neighboring (including itself) grid cell containing at least n/8 points from P – we
call such a cell dense. Thus, we only need to check for translations that are inside a dense
cell or neighboring a dense cell. Since |P | = n2, there can be at most |P |/(n/8) = 8n dense
cells, resulting in O(n) cells to check for a good translation.

Since each grid cell has side length O(δ/n), we can discretize each relevant cell C by
O(1/ε2) many translations QC such that if any τ∗ ∈ C achieves dDTW(π, σ + τ∗) ≤ δ, then
there is a τ ∈ QC with ∥τ∗ − τ∥ ≤ εδ/(2n) and thus dDTW(π, σ + τ) ≤ (1 + ε)δ. Thus,
by letting Q be the union of QC for all O(n) cells C that we need to check, we obtain
|Q| = O(n/ε2), significantly improving over the previous bound of O(n2/ε2). Computing the
DTW distance for each translation in Q, we obtain a deterministic O(n3/ε2)-time algorithm.

Beating O(n3/ε2). Can we improve over the previous algorithm? A first idea would be to
try to reduce the size of Q even further, below Θ(n · poly(1/ε)). However, there is evidence
that this route is rather difficult: One can construct instances with Ω(n) many near-optimal
local optima that are well-separated from each other, see Figure 2. It thus appears quite
challenging to avoid a check of Ω(n) regions of translations.

A different route is to speed up the computation of DTW distances dDTW(π, σ + τ)
over all τ ∈ Q, avoiding the naive time bound of O(|Q| · n2). Such approaches have been
proven successful for related geometric optimization problems, such as Fréchet distance under
translation [7, 13] or polygon placement [29]. Crucially, one needs to exploit that the |Q|
distance computations are related (for solving |Q| independent instances, a conditional lower
bound of (|Q|n2)1−o(1) can be shown based on the quadratic-time hardness for DTW [1, 11]).
To this end, we open up the black-box O(n2)-algorithm for DTW.

2 Here, we say that two cells are neighboring if they share a common vertex.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:7

GDTWinput curves

σ2 σ3

σ4

σ :

π : π1

π2 π3

π4

π5

σ1

σ5

w4,2

1 2 3 4 5

1

2

3

4

5

Figure 3 An example of two curves π, σ and their dynamic time warping graph GDTW.

Given π = (π1, . . . , πn) and σ = (σ1, . . . , σn), let GDTW denote the node-weighted directed
grid graph with vertex set V = {(i, j) | i, j ∈ [n]} and edge set E consisting of horizontal
edges from (i, j) to (i+1, j), vertical edges from (i, j) to (i, j+1) and diagonal edges from (i, j)
to (i + 1, j + 1). Each node (i, j) receives the weight wi,j = ∥πi − σj∥. Then it is not difficult
to see that dDTW(π, σ) is equal to the distance from (1, 1) to (n, n) in GDTW. As such, we
can exploit algorithmic results on maintaining shortest paths in weighted planar digraphs
under weight updates (here, one usually considers edge-weighted graphs, which subsumes the
node-weighted setting). Unfortunately, when translating σ by τ , Ω(n2) weights may change
in GDTW so that even constant-time updates would lead to an Ω(n3/ε2) time solution. In
contrast, work on the Fréchet distance under translation [7, 13] considers translations in an
order that incurs only O(1) updates per translation.

Surprisingly, one can indeed reduce the number of weight updates below O(n2) when we
resort to approximating each weight wi,j by an estimate ∥πi − (σj + τ)∥/(1 + ε) ≤ wi,j ≤
(1 + ε) · ∥πi − (σj + τ)∥. Specifically, we show how to traverse the O(n/ε2) translations in
Q in an order specified by a space-filling curve such that we only need to update Õ(n2/ε2)
weights in total to maintain approximate weights. This statement and its analysis is one of
the most interesting technical contributions of this paper and is proven in Section 3.2. It
remains to report the shortest distance from (1, 1) to (n, n) in the directed grid graph GDTW
for O(n/ε2) queries and Õ(n2/ε2) weight updates. For this task, we use the data structure
due to Das et al. [16] whose parameters can be set to give query time Õ(N3/4) and update
time Õ(N1/4) for weighted planar digraphs with N vertices. Since N = n2, we obtain a
total running time of Õ(n2.5/ε2), which improves polynomially over the previous Õ(n3/ε2)
solution. We believe that our approach of maintaining approximate weights efficiently using a
space-filling curve traversal may turn out useful for further improvements in similar contexts
of geometric optimization problems.

2 Preliminaries & notation

To denote index sets we use the notation [n] := {1, . . . , n}. Let π = (π1, π2, . . . , πn) and
σ = (σ1, σ2, . . . , σm) be two sequences of points in Rd. We assume n ≥ m without loss
of generality. To define the Dynamic Time Warping distance (DTW), we first introduce
traversals. A sequence of index pairs T = ((i1, j1), (i2, j2), . . . , (iL, jL)) is a traversal of

SoCG 2022



20:8 (Approximation) Algorithms for Dynamic Time Warping Under Translation

two curves of complexity n and m if (i1, j1) = (1, 1), (iL, jL) = (n, m), and (iℓ+1, jℓ+1) ∈
{(iℓ + 1, jℓ), (iℓ, jℓ + 1), (iℓ + 1, jℓ + 1)} for each ℓ ∈ [L − 1]. We call L the number of steps
of the traversal T . Let Tn,m be the set of all traversals of curves of length n and m. The
Dynamic Time Warping distance between π and σ is then defined as

dDTW(π, σ) := min
T ∈T

∑
(i,j)∈T

d(πi, σj),

where for the metric d(·, ·), we use the Lp-norm d(x, y) = ∥x − y∥p throughout this paper.
In the remainder, we omit the p as it is either clear from the context, or the statement holds
for all p ∈ [1, ∞). Furthermore, we often use bounds on the number of steps of the traversal.
To that end, note that for m ≤ n, any traversal in Tn,m consists of at least n and at most
n + m − 1 steps.

For a sequence π = (π1, . . . , πn) with πi ∈ Rd and a translation τ ∈ Rd, we define the
translated sequence as π + τ := (π1 + τ, π2 + τ, . . . , πn + τ). Dynamic Time Warping Under
Translation is then defined as dT

DTW(π, σ) := minτ∈Rd dDTW(π, σ + τ). Recall that a function
f : Rd → R is called L-Lipschitz (with respect to norm ∥.∥) if for any τ, τ ′ ∈ Rd we have
|f(τ) − f(τ ′)| ≤ L · ∥τ − τ ′∥. We prove the following lemma in the full version.

▶ Lemma 3. dDTW(π, σ + τ) is (n + m − 1)-Lipschitz in τ .

The following lemma gives a simple (n + m)-approximation for DTW under translation
and is a straightforward adaption of a corresponding 2-approximation for the Fréchet distance
under translation [12, Observation 2]. Note that one can create simple examples where this
approximation ratio is almost tight. Again, we defer the proof to the full version.

▶ Lemma 4. Let τstart = π1 − σ1. Then dDTW(π, σ + τstart) ≤ (n + m) · dT
DTW(π, σ).

As discussed in Section 1, DTW corresponds to a grid graph problem. We now formally
define this. Given a DTW instance with curves π = (π1, . . . , πn) and σ = (σ1, . . . , σm),
we define a directed graph GDTW = (V, E, w) on a node-weighted grid (including certain
diagonals) with node set V := {(i, j) | i ∈ [n], j ∈ [m]}, edge set

E := {((i, j), (i + 1, j)) | i ∈ [n − 1], j ∈ [m]} ∪ {((i, j), (i, j + 1)) | i ∈ [n], j ∈ [m − 1]}
∪ {((i, j), (i + 1, j + 1)) | i ∈ [n − 1], j ∈ [m − 1]},

and weights w : V → R with w((i, j)) := ∥πi − σj∥. To simplify notation, we write wi,j

instead of w((i, j)) to denote the weight of node (i, j). Note that finding a shortest path in
this graph from (1, 1) to (n, m) is equivalent to finding the minimum cost traversal.

In order to define the order of the updates and queries in the dynamic graph problem
that we introduce in Section 3, we use a space-filling curve on a grid. Let

GR := {i · R | i ∈ Z} × {j · R | j ∈ Z}.

be an infinite grid with resolution R ∈ R. For our purpose, a space-filling curve is a
hierarchical traversal of a finite grid: we partition this grid into four parts and, in some fixed
order of the parts, recursively traverse each subgrid exhaustively before traversing the next
one. More precisely, we define the curve on the 2k × 2k grid Ck

0,0 := GR ∩ [0, (2k − 1)R]2 for
some R, and we recursively split Cℓ

i,j into the boxes Cℓ−1
2i,2j , Cℓ−1

2i,2j+1, Cℓ−1
2i+1,2j , Cℓ−1

2i+1,2j+1 until
they only contain a single grid point, i.e., until ℓ = 0. This leads to the following definition:

Cℓ
i,j := {(i2ℓ + s)R | s ∈ {0, . . . , 2ℓ − 1}} × {(j2ℓ + s)R | s ∈ {0, . . . , 2ℓ − 1}}.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:9

Figure 4 The traversal of the z-curve for k = 1, k = 2, and k = 3.

For each cell Cℓ
i,j with ℓ > 0, the space-filling curve then traverses the points of the children

in a way such that for each child all points are traversed in a continuous piece. For example,
we first traverse all points of Cℓ−1

2i,2j+1, then Cℓ−1
2i+1,2j+1, then Cℓ−1

2i,2j , and finally Cℓ−1
2i+1,2j .

Recursively applying this leads to a sequence z1, . . . , z22k of all points in GR ∩ [0, (2k − 1)R]2.
This sequence is called the z-curve, see Figure 4. (However, any other order to traverse the
children also works for our purpose.)

To argue about the space-filling curve traversals, it is sometimes useful to view the grid
of points GR equivalently as a grid of cells, i.e., as a set of squares partitioning R2. To switch
between these views, build the Voronoi diagram of the point grid to obtain the cell grid, and
conversely, use the center of each cell to obtain the point grid. We will freely use whichever
view is most convenient in any context.

3 Approximating DTW under translation in Lp

In this section we present an Õ(n2.5/ε2) algorithm for the problem of (1 + ε)-approximating
DTW under translation in the Euclidean plane. The algorithm that we present consists of
two parts. First, we reduce to a dynamic shortest path problem on a grid graph. Second, we
show that with the resulting number of updates and queries, we can use an existing dynamic
graph algorithm to then obtain a subcubic algorithm for the problem at hand.

Recall that we consider the approximate decision problem: Given sequences π =
(π1, . . . , πn) and σ = (σ1, . . . , σm) with πi, σj ∈ R2, a distance δ ∈ R, and an approxi-
mation parameter ε > 0, either decide that dT

DTW(π, σ) ≤ (1 + ε)δ or that dT
DTW(π, σ) > δ.

Recall that we assume n ≥ m. We first present a basic cubic algorithm that already captures
some important properties of the subcubic algorithm that we subsequently present.

3.1 Cubic algorithm
We now present the cubic algorithm that was already outlined in Section 1.2. First, if δ = 0,
we make a precise decision by testing for dDTW(π, σ + τstart) = 0 with τstart = π1 − σ1. To
facilitate the presentation, we furthermore assume that ε is given such that n

ε = 2k for some
k ∈ N. We can easily achieve this by rounding the input ε down to the largest value that
fulfils this constraint, which changes the value of ε by at most a factor of 2.

In another preprocessing step, we round the coordinates of the points of π and σ to the
closest multiple of δ

4n ε. This is feasible as it changes the DTW distance by less than

(n + m) · δ

4n
ε ≤ δ

ε

2 .

The multiset of translations from any point in σ to any point in π is then defined as

P := {πi − σj | i ∈ [n] and j ∈ [m]}.

SoCG 2022



20:10 (Approximation) Algorithms for Dynamic Time Warping Under Translation

Note that by construction also all coordinates of all points in P are multiples of δ
4n ε.

Furthermore, as P is a multiset, we have |P | = nm. We now define a set of boxes that
enables us to find dense regions. Consider the square B := [−δ, δ]2 + τstart. Partition B into
n2 boxes B1, . . . , Bn2 of size 2δ

n × 2δ
n (note that their boundaries might intersect). We now

formally define the notion of a dense box already introduced intuitively in Section 1.2.

▶ Definition 5 (Dense Box). A box Bi is dense if at least n
18 points of P are contained in Bi.

As |P | = nm, we obtain the following observation:

▶ Observation 6. There are at most 18m dense boxes.

Note that we can find the dense boxes in time Õ(|P |) by associating each point with the tuple
of indices in [n] × [n] of its containing box and then sorting these tuples. Now, let N(Bi) be
the neighborhood of a box Bi, i.e., N(Bi) := {Bj | Bj ∩ Bi ̸= ∅}. Note that Bi ∈ N(Bi), so
each box has (up to) 9 neighbors. The crucial property of dense boxes is that any witness
translation τ with dDTW(π, σ + τ) ≤ δ has to be in the neighborhood of a dense box:

▶ Lemma 7. If dT
DTW(π, σ) ≤ δ, then there exists a dense box Bj, a neigbor Bi ∈ N(Bj),

and a τ ∈ Bi such that dDTW(π, σ + τ) ≤ δ.

The proof is deferred to the full version.
As we have to approximately decide whether dDTW(π, σ + τ) ≤ δ for any τ that is

neighboring a dense box, we intersect each of these boxes with an 8ε × 8ε grid and this gives
us the set of points Q that we have to evaluate. More precisely, let G := G δ

4n ε ∩ B, where
again B = [−δ, δ]2 + τstart. Note that all points of G are still integer multiples of δ

4n ε. We
now define our set of evaluation points to be

Q := {G ∩ Bi | Bi ∈ N(Bj) for some dense box Bj}.

Note that from Observation 6 and the bound |G ∩ Bi| ∈ O( 1
ε2 ), it follows that |Q| ∈ O( m

ε2 ).
Computing dDTW(π, σ + q) for each q ∈ Q suffices to implement an approximate decider.

Indeed, if for some q ∈ Q we find dDTW(π, σ + q) ≤ (1 + ε)δ, then we conclude that
dT

DTW(π, σ) ≤ (1 + ε)δ. Otherwise, if dDTW(π, σ + q) > (1 + ε)δ for all q ∈ Q, then we
conclude that dT

DTW(π, σ) > δ, by the following lemma proven in the full version.

▶ Lemma 8 (Correctness). If dDTW(π, σ + q) > (1 + ε)δ for all q ∈ Q, then dT
DTW(π, σ) > δ.

If we just evaluate each point in Q naively, then the running time is O(nm2 ( 1
ε

)2), as there
are O(m) dense cells, each of them with

( 1
ε

)2 grid points, and each DTW evaluation takes
time O(nm). In the next section, instead of naively recomputing DTW for each translation,
we dynamically update the DTW graph weights and then query for the shortest path.

3.2 Reduction to dynamic graph problem
Now we present the first step in solving DTW under translation in subcubic time. To this
end, we transform our problem into a dynamic shortest path problem on a grid graph.

Dynamic graph problem

Recall that computing DTW for a fixed translation is a shortest path problem on a grid graph,
see Section 2. More precisely, in the grid graph with node weights wi,j = ∥πi − (σj + q)∥ the
shortest path distance from (1, 1) to (n, m) is equal to dDTW(π, σ + q). However, as we only
want to compute a (1 + ε)-approximation, we can relax the condition on the node weights to:

∥πi − (σj + q)∥
(1 + ε) ≤ wi,j ≤ (1 + ε)∥πi − (σj + q)∥. (1)



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:11

Observe that for such node weights the shortest path distance from (1, 1) to (n, m) is equal
to dDTW(π, σ + q) up to a factor (1 + ε).

We choose the same set of query translations Q as in Section 3.1. We iterate over all
q ∈ Q, and for each q we first update the node weights in the grid graph in order to satisfy
(1) and then we query the shortest path distance from (1, 1) to (n, m) in the grid graph,
obtaining a (1+ε)-approximation of dDTW(π, σ+q). As in Section 3.1, this yields a (1+O(ε))-
approximation of dT

DTW(π, σ) (and after scaling ε this becomes a (1 + ε)-approximation).
Note that we did not fix the ordering of the query translations q ∈ Q yet. In the following,
we first fix this ordering, and then argue that our ordering guarantees that the total number
of node weight updates is small, and furthermore we can efficiently determine which node
weight updates have to be performed.

Query ordering

Consider the z-curve over the grid G = G δ
4n ε ∩ [−2δ, 2δ)2 + τstart. Note that this z-curve has

depth log2(16 n
ε ), and recall that n

ε is a power of 2. The points of Q lie on the z-curve, as
π, σ are rounded and the grid has resolution δ

4n ε. Thus, the z-curve induces an ordering of
Q, and this is the ordering that we choose.

Updates

We now describe how we determine the node weight updates in the dynamic grid graph
problem, to ensure that when we run the shortest path query corresponding to q ∈ Q the
node weights satisfy (1). We first argue why the total number of node weight updates is
small, and subsequently discuss how to compute the sequence of node weight updates.

▶ Lemma 9. Consider the sequence of points τ1, . . . , τ(16n/ε)2 given by the z-curve on
the grid G, and fix i, j. Using only O( 1

ε2 log n
ε ) updates to the node weight wi,j, we can

maintain wi,j as a (1 + ε)-approximation of the distance ∥πi − (σj + τk)∥ while iterating over
k = 1, . . . , (16n/ε)2.

Proof. Note that for p := πi − σj we have ∥p − τ∥ = ∥πi − (σj + τ)∥, and thus the distance
that we want to maintain is ∥p − τk∥. Additionally, note that p lies on the z-curve as the
coordinates of the curves are rounded to δ

4n ε and, furthermore, if p is further than δ from
τstart = π1 − σ1, then using the pair i, j in the traversal would incur a distance of more than
δ for all q ∈ Q and thus we can just set wi,j = ∞.

Now, consider the following process on the recursive definition of the z-curve: Starting
with the root C0,0, recursively explore all children of each cell. Stop the process at a cell C

if there is an ℓ ∈ Z such that all points τ ∈ C have a distance

(1 + ε)ℓ−1 ≤ ∥p − τ∥ ≤ (1 + ε)ℓ+1.

In this case, for all points in C the value (1 + ε)ℓ is a valid (1 + ε)-approximation for the
distance to p, so we associate the distance (1 + ε)ℓ with C.

Note that the process is well-defined, since at the lowest level of the recursion a cell
contains only a single point of G, and thus at the latest on this level the process will stop.
The process partitions the grid G into cells C1, . . . , Ct, which are exhaustively explored in
this order by the z-curve, see Figure 5 for an illustration. In particular, the value of t is
an upper bound on the number of updates needed to approximately maintain ∥p − τk∥
while iterating over all points in G in z-order. We next bound the diameter of the cells for
a specific associated distance, to subsequently show that this induces a small number of

SoCG 2022



20:12 (Approximation) Algorithms for Dynamic Time Warping Under Translation

p

Figure 5 The partition of cells induced by the point p on the recursively defined cells of the
z-curve such that for each cell a single update suffices to ensure a (1 + ε)-approximation on the
distance to p. Note that the cells become larger when further away from p.

cells in the partition. To this end, consider a specific cell Cr and its associated distance
(1 + ε)ℓ. As we continued exploring the children of the parent cell C of Cr, there have to
be two points z1, z2 ∈ C such that either ∥z1 − p∥ < (1 + ε)ℓ−1 and ∥z2 − p∥ > (1 + ε)ℓ, or
∥z1 − p∥ < (1 + ε)ℓ and ∥z2 − p∥ > (1 + ε)ℓ+1. By triangle inequality, C has diameter at least

∥z1 −z2∥ ≥ ∥z2 −p∥−∥z1 −p∥ > (1+ε)ℓ −(1+ε)ℓ−1 = (1+ε)ℓ−1((1+ε)−1) = (1+ε)ℓ−1ε.

In the recursive definition of the z-curve, the diameter of a cell decreases at most by a
constant factor from parent to child if the child is not a single point. Thus Cj has diameter
Ω((1 + ε)ℓε) if |Cj | > 1. If |Cj | = 1, then the Voronoi cell of Cj of the Voronoi diagram of
G has diameter Ω((1 + ε)ℓε). Thus, for both cases it holds that there is a square with area
Ω((1 + ε)2ℓε2) that only contains points from Cj but no other cell Cj′ , j′ ̸= j.

Recall that the area of a ball of radius R in the Lρ-norm is equal to νρR2, where νρ

depends only on the Lρ-norm and is thus a constant for our purpose. Hence, the area of all
points between distance (1 + ε)ℓ−1 and (1 + ε)ℓ+1 from p is equal to

νρ(1 + ε)2(ℓ+1) − νρ(1 + ε)2(ℓ−1) = νρ(1 + ε)2(ℓ−1)((1 + ε)4 − 1) = O((1 + ε)2ℓε).

Thus, there can be at most

O((1 + ε)2ℓε)
Ω((1 + ε)2ℓε2) = O

(
1
ε

)
cells associated with distance (1 + ε)ℓ. Finally, there are at most O(log1+ε

n
ε ) = O( 1

ε log n
ε )

different associated distances, as the minimum non-zero distance is Ω( δ
n ε) and the largest

distance is O(δ). Consequently, the total number of updates can be bounded by O( 1
ε2 log n

ε ).
◀



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:13

We now discuss how we explicitly compute the updates. Note that explicitly checking for
updates in each node of the traversal of the z-curve is prohibitive. Thus, we have to devise a
non-naive way of computing the updates. Indeed, Lemma 9 can be turned into an algorithm.

▶ Lemma 10. The updates in Lemma 9 can explicitly be computed in time O
( 1

ε2 · log n
ε

)
.

Proof. Lemma 9 already is constructive, as we associated updates to cells and thereby we
can simply perform these updates at the first point of such cells. It therefore only remains
to bound the running time of all steps. The running time for exploring the z-curve tree is
dominated by the number of cells in the partition, i.e., by the number of updates, multiplied
with the running time of deciding whether to explore further or not. If the point p = πi − σj

of Lemma 9 is contained in the currently considered cell, then we have to continue exploring.
Otherwise, we can check if all points lie in a (1 + ε)ℓ−1 to (1 + ε)ℓ+1 distance window for
any ℓ ∈ Z by computing the distance to the closest and furthest point in the cell from p.
All of the above steps can be done in O(1) time. Finally, note that no sorting of the
updates is necessary, as exploring the z-curve tree via depth-first search in the order of the
z-curve already constructs the updates in sorted order. Hence, the running time of explicitly
computing the updates is dominated by the number of updates itself. ◀

We can directly use Lemma 10 to compute the updates for all node weights wi,j . However,
computing them separately would additionally incur the cost of merging them into a sorted
order. We can avoid this sorting step by constructing the updates for all node weights wi,j in
parallel using a single DFS on the z-order tree. During the DFS, we maintain a set E of pairs
(i, j) for which recursing further is necessary; in the top cell, this is set to [n] × [m]. Then
for each cell in the DFS, we need to decide for each pair (i, j) ∈ E whether a single weight
wi,j = (1 + ε)ℓ suffices to approximate the distance in this cell, which in total takes time
O(|E|). If for (i, j) ∈ E this is the case, then we add an update of wi,j to (1 + ε)ℓ for the first
point τ in this cell, and remove (i, j) from E for the recursive calls that explore the children
of this cell. (We add back (i, j) after the exploration.) This process creates the updates in
order and thus we do not have to sort them in a postprocessing step. It follows that the
updates for all node weights wi,j can explicitly be computed in time O

(
nm 1

ε2 · log n
ε

)
.

Main theorem

Finally, we obtain our main theorem.

▶ Theorem 11. Assume a data structure for approximate shortest paths in a directed grid
graph with N vertices and fixed vertices s, t, supporting updates of an edge weight in time
U(N) and (1+ε)-approximate s-t-distance queries in time Q(N). We can (1+ε)-approximate
DTW under translation in Lp-norm in time O(U(nm) nm

ε2 log2 n
ε + Q(nm) m

ε2 log n
ε ).

The proof is deferred to the full version; it follows easily by combining the above arguments.

3.3 Solving the dynamic graph problem
Consider the data structure assumed in Theorem 11 for maintaining shortest paths in a
directed grid graph. Das et al. [16] obtain a trade-off of update time U(N) = Õ(Nr) and
query time Q(N) = Õ(N1−r) even for exact distance queries in directed planar graphs where
r ∈ [0, 1

2 ] is an adjustable parameter, all updates are given in advance, and all edge-weights
are non-negative (both are the case in our setting). The aforementioned result improves

SoCG 2022



20:14 (Approximation) Algorithms for Dynamic Time Warping Under Translation

bounds due to Fakcharoenphol and Rao [21] and Klein [28], also see [27, 22], by considering
the offline setting. For tight conditional lower bounds for the offline setting, we refer to [2].
By setting r such that Nr =

√
m (which satisfies r ∈ [0, 1

2 ]), we obtain the following corollary.

▶ Corollary 12. We can (1+ε)-approximate DTW under translation in R2 under the Lp-norm
in time Õ(nm1.5/ε2).

Note that for n = m this becomes Õ(n2.5/ε2). It is straightforward to generalize our
algorithm to Rd for constant d. To this end, we have to replace the 2-dimensional ε-grid
and the 2-dimensional space-filling curve by their d-dimensional counterparts and adapt the
analysis accordingly. The running time then merely increases with respect to the dependency
on ε. See the full version for the proof of the following corollary.

▶ Corollary 13. We can (1+ε)-approximate DTW under translation in Rd under the Lp-norm
with d ∈ O(1) in time Õ(nm1.5/εd).

4 Conclusion and open problems

We give the first rigorous algorithms for Dynamic Time Warping under translation, specifically
an exact O(n2(d+1))-time algorithm for the L1 norm in Rd, as well as a (1 + ε)-approximate
Õ(n2.5/ε2)-time algorithm for the Lp-norm in R2.

The most interesting open problem is to determine whether under the L2-norm, DTW
under translation admits an Õ(n2f(1/ε))-time approximation scheme. In fact, one might be
able to improve over our Õ(n2.5/ε2)-time algorithm via purely graph-theoretic improvements
for dynamic shortest path algorithms in grid graphs, applying Theorem 11 as a black
box. Specifically, we showed how to reduce (1 + ε)-approximate DTW under translation to
(approximately) maintaining the s-t distance in a directed grid graph undergoing edge-weight
updates. Our precise bound follows from plugging in a data structure due to Das et al. [16]
that maintains all exact distances. In fact, compared to their setting, our target problem has
several important restrictions that may help to design faster algorithms:

Instead of exact distances, our application only requires a (1 + ε)-approximation.
Our restriction to directed grid graphs might turn out significantly simpler than general
planar digraphs.
We only ever query the distance between a single source-sink pair.

Finally, if no further algorithmic improvements can be found, can we give improved conditional
hardness results, going beyond our reduction from DTW for a fixed translation?

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 59–78. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar
graph algorithms. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 477–486. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.58.

3 Pankaj K. Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences. In Sándor P. Fekete and Anna
Lubiw, editors, 32nd International Symposium on Computational Geometry, SoCG 2016, June
14-18, 2016, Boston, MA, USA, volume 51 of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.6.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2016.58
https://doi.org/10.4230/LIPIcs.SoCG.2016.6


K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:15

4 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5(1–2):78–99, 1995.

5 Helmut Alt, Christian Knauer, and Carola Wenk. Matching polygonal curves with respect to
the Fréchet distance. In Proc. 18th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’01), pages 63–74, 2001.

6 Chandrajit L. Bajaj. The algebraic degree of geometric optimization problems. Discret.
Comput. Geom., 3:177–191, 1988. doi:10.1007/BF02187906.

7 Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. A faster algorithm for the discrete
Fréchet distance under translation. ArXiv preprint, 2015. arXiv:1501.03724.

8 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle
tracking data. In Proc. 31st International Conf. Very Large Data Bases (VLDB’05), pages
853–864, 2005.

9 Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser, Aleksandr Popov, and Sampson
Wong. (k, l)-medians clustering of trajectories using continuous dynamic time warping. In
Chang-Tien Lu, Fusheng Wang, Goce Trajcevski, Yan Huang, Shawn D. Newsam, and
Li Xiong, editors, SIGSPATIAL ’20: 28th International Conference on Advances in Geographic
Information Systems, Seattle, WA, USA, November 3-6, 2020, pages 99–110. ACM, 2020.
doi:10.1145/3397536.3422245.

10 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proc. 55th Ann. IEEE Symposium on Foundations
of Computer Science (FOCS’14), pages 661–670, 2014.

11 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 79–97. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.15.

12 Karl Bringmann, Marvin Künnemann, and André Nusser. When Lipschitz walks your
dog: Algorithm engineering of the discrete Fréchet distance under translation. In Fabrizio
Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium
on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume
173 of LIPIcs, pages 25:1–25:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ESA.2020.25.

13 Karl Bringmann, Marvin Künnemann, and André Nusser. Discrete Fréchet distance under
translation: Conditional hardness and an improved algorithm. ACM Trans. Algorithms,
17(3):25:1–25:42, 2021. doi:10.1145/3460656.

14 Maike Buchin. On the computability of the Fréchet distance between triangulated surfaces.
PhD thesis, Freie Universität Berlin, 2007. PhD Thesis.

15 Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Daniel Wichs and Yishay Mansour, editors, Proc. 48th Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2016), pages 9–21. ACM, 2016.
doi:10.1145/2897518.2897647.

16 Debarati Das, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen. A near-optimal
offline algorithm for dynamic all-pairs shortest paths in planar digraphs. In Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3482–3495, 2022.
doi:10.1137/1.9781611977073.138.

17 Mark de Berg and Atlas F. Cook. Go with the flow: The direction-based Fréchet distance of
polygonal curves. In Alberto Marchetti-Spaccamela and Michael Segal, editors, Theory and
Practice of Algorithms in (Computer) Systems - First International ICST Conference, TAPAS
2011, Rome, Italy, April 18-20, 2011. Proceedings, volume 6595 of Lecture Notes in Computer
Science, pages 81–91. Springer, 2011. doi:10.1007/978-3-642-19754-3_10.

18 Alon Efrat, Quanfu Fan, and Suresh Venkatasubramanian. Curve Matching, Time Warping,
and Light Fields: New Algorithms for Computing Similarity between Curves. Journal of Math-
ematical Imaging and Vision, 27(3):203–216, April 2007. doi:10.1007/s10851-006-0647-0.

SoCG 2022

https://doi.org/10.1007/BF02187906
http://arxiv.org/abs/1501.03724
https://doi.org/10.1145/3397536.3422245
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.ESA.2020.25
https://doi.org/10.1145/3460656
https://doi.org/10.1145/2897518.2897647
https://doi.org/10.1137/1.9781611977073.138
https://doi.org/10.1007/978-3-642-19754-3_10
https://doi.org/10.1007/s10851-006-0647-0


20:16 (Approximation) Algorithms for Dynamic Time Warping Under Translation

19 Alon Efrat, Piotr Indyk, and Suresh Venkatasubramanian. Pattern matching for sets of
segments. In Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01),
pages 295–304, 2001.

20 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

21 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.jcss.2005.
05.007.

22 Pawel Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in dense
distance graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 61:1–61:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.
61.

23 Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. ACM Trans. Algorithms, 14(4):50:1–50:17, 2018. doi:10.1145/3230734.

24 Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Translation
invariant Fréchet distance queries. Algorithmica, 83(11):3514–3533, 2021. doi:10.1007/
s00453-021-00865-0.

25 Sariel Har-Peled. Geometric approximation algorithms, chapter Fréchet distance: How to walk
your dog, pages 383–412. American Mathematical Society, 2017. Online chapter.

26 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with discrete
Fréchet distance. J. Bioinformatics and Computational Biology, 6(01):51–64, 2008.

27 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries
in monge matrices and partial monge matrices, and their applications. ACM Trans. Algorithms,
13(2):26:1–26:42, 2017. doi:10.1145/3039873.

28 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver,
British Columbia, Canada, January 23-25, 2005, pages 146–155. SIAM, 2005. URL: http:
//dl.acm.org/citation.cfm?id=1070432.1070454.

29 Marvin Künnemann and André Nusser. Polygon placement revisited: (Degree of Freedom
+ 1)-SUM hardness and an improvement via offline dynamic rectangle union. In Proc. 33rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’22), 2022. To appear.

30 William Kuszmaul. Dynamic time warping in strongly subquadratic time: Algorithms for the
low-distance regime and approximate evaluation. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 80:1–80:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.80.

31 Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer. Approximating the integral
Fréchet distance. Comput. Geom., 70-71:13–30, 2018. doi:10.1016/j.comgeo.2018.01.001.

32 Axel Mosig and Michael Clausen. Approximately matching polygonal curves with respect to
the Fréchet distance. Computational Geometry: Theory and Applications, 30(2):113–127, 2005.

33 Mario E. Munich and Pietro Perona. Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification. In Proceedings of the
International Conference on Computer Vision, Kerkyra, Corfu, Greece, September 20-25, 1999,
pages 108–115. IEEE Computer Society, 1999. doi:10.1109/ICCV.1999.791205.

34 Mark H. Overmars and Chee-Keng Yap. New upper bounds in klee’s measure problem. SIAM
J. Comput., 20(6):1034–1045, 1991. doi:10.1137/0220065.

35 Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Elastic Translation Invariant
Matching of Trajectories. Machine Learning, 58(2):301–334, February 2005. doi:10.1007/
s10994-005-5830-9.

https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.1145/3230734
https://doi.org/10.1007/s00453-021-00865-0
https://doi.org/10.1007/s00453-021-00865-0
https://doi.org/10.1145/3039873
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.4230/LIPIcs.ICALP.2019.80
https://doi.org/10.4230/LIPIcs.ICALP.2019.80
https://doi.org/10.1016/j.comgeo.2018.01.001
https://doi.org/10.1109/ICCV.1999.791205
https://doi.org/10.1137/0220065
https://doi.org/10.1007/s10994-005-5830-9
https://doi.org/10.1007/s10994-005-5830-9


K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, D. Marx, and A. Nusser 20:17

36 Carola Wenk. Shape matching in higher dimensions. PhD thesis, Freie Universität Berlin,
2003. PhD Thesis.

37 Carola Wenk, Randall Salas, and Dieter Pfoser. Addressing the need for map-matching
speed: Localizing globalb curve-matching algorithms. In 18th International Conference on
Scientific and Statistical Database Management, SSDBM 2006, 3-5 July 2006, Vienna, Austria,
Proceedings, pages 379–388. IEEE Computer Society, 2006. doi:10.1109/SSDBM.2006.11.

38 Rex Ying, Jiangwei Pan, Kyle Fox, and Pankaj K. Agarwal. A simple efficient approximation
algorithm for dynamic time warping. In Siva Ravada, Mohammed Eunus Ali, Shawn D.
Newsam, Matthias Renz, and Goce Trajcevski, editors, Proceedings of the 24th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, GIS 2016,
Burlingame, California, USA, October 31 - November 3, 2016, pages 21:1–21:10. ACM, 2016.
doi:10.1145/2996913.2996954.

39 Yu Qiao and M. Yasuhara. Affine Invariant Dynamic Time Warping and its Application
to Online Rotated Handwriting Recognition. In 18th International Conference on Pattern
Recognition (ICPR’06), volume 2, pages 905–908, August 2006. ISSN: 1051-4651. doi:
10.1109/ICPR.2006.228.

SoCG 2022

https://doi.org/10.1109/SSDBM.2006.11
https://doi.org/10.1145/2996913.2996954
https://doi.org/10.1109/ICPR.2006.228
https://doi.org/10.1109/ICPR.2006.228




Towards Sub-Quadratic Diameter Computation in
Geometric Intersection Graphs
Karl Bringmann #

Universität des Saarlandes, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Sándor Kisfaludi-Bak #

Aalto University, Espoo, Finland

Marvin Künnemann #

Institute for Theoretical Studies, ETH Zürich, Switzerland

André Nusser #

BARC, University of Copenhagen, Denmark

Zahra Parsaeian #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
We initiate the study of diameter computation in geometric intersection graphs from the fine-grained
complexity perspective. A geometric intersection graph is a graph whose vertices correspond to
some shapes in d-dimensional Euclidean space, such as balls, segments, or hypercubes, and whose
edges correspond to pairs of intersecting shapes. The diameter of a graph is the largest distance
realized by a pair of vertices in the graph.

Computing the diameter in near-quadratic time is possible in several classes of intersection
graphs [Chan and Skrepetos 2019], but it is not at all clear if these algorithms are optimal, especially
since in the related class of planar graphs the diameter can be computed in Õ(n5/3) time [Cabello
2019, Gawrychowski et al. 2021].

In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection
graphs, i.e., algorithms of running time O(n2−δ) for some δ > 0. In particular, there are no
sub-quadratic algorithms already for fat objects in small dimensions: unit balls in R3 or congruent
equilateral triangles in R2. For unit segments and congruent equilateral triangles, we can even rule
out strong sub-quadratic approximations already in R2. It seems that the hardness of approximation
may also depend on dimensionality: for axis-parallel unit hypercubes in R12, distinguishing between
diameter 2 and 3 needs quadratic time (ruling out (3/2−ε)- approximations), whereas for axis-parallel
unit squares, we give an algorithm that distinguishes between diameter 2 and 3 in near-linear time.

Note that many of our lower bounds match the best known algorithms up to sub-polynomial
factors. Ultimately, this fine-grained perspective may enable us to determine for which shapes we
can have efficient algorithms and approximation schemes for diameter computation.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Hardness in P, Geometric Intersection Graph, Graph Diameter, Orthogonal
Vectors, Hyperclique Detection

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.21

Related Version Full Version: https://arxiv.org/abs/2203.03663

Funding Karl Bringmann: This work is part of the project TIPEA that has received funding from
the European Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No. 850979).
Sándor Kisfaludi-Bak: Part of this research was conducted while the author was at the Max Planck
Institute for Informatics, and part of it while he was at the Institute for Theoretical Studies, ETH
Zürich.

© Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra
Parsaeian;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bringmann@cs.uni-saarland.de
mailto:sandor.kisfaludi-bak@aalto.fi
mailto:marvin.kuennemann@eth-its.ethz.ch
mailto:anusser@mpi-inf.mpg.de
https://orcid.org/0000-0002-6349-869X
mailto:zparsaei@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://arxiv.org/abs/2203.03663
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Towards Sub-Quadratic Diameter in Intersection Graphs

Marvin Künnemann: Research supported by Dr. Max Rössler, by the Walter Haefner Foundation,
and by the ETH Zürich Foundation. Part of this research was conducted while the author was at
the Max Planck Institute for Informatics.
André Nusser : Part of this research was conducted while the author was at Saarbrücken Graduate
School of Computer Science and Max Planck Institute for Informatics. The author is supported by
the VILLUM Foundation grant 16582.

1 Introduction

The diameter of a simple graph G = (V, E) is the largest distance realized by a pair of its
vertices; formally, it is diam(G) = maxu,v∈V distG(u, v), where distG(u, v) is the number
of edges on a shortest path from u to v. It is one of the crucial parameters of a graph
that can be computed in polynomial time. Geometric intersection graphs are the standard
model for wireless communication networks [34], but more abstractly, they can be used
to represent networks where the connection of nodes relies on proximity in some metric
space. For a (slightly oversimplified) example, consider a set of devices in the plane capable
of receiving and transmitting information in a range of radius 2. These devices form a
communication network that is a unit disk graph. Indeed, two devices can communicate
with each other if and only if their distance is at most 2, i.e., if the unit disks centered at
the devices have a non-empty intersection. For our purposes, the underlying metric space
will be d-dimensional Euclidean space (henceforth denoted by Rd), and we will consider
intersection graphs of common objects such as balls and segments. For a set F of objects in
Rd (that is, F ⊂ 2Rd), the corresponding intersection graph G[F ] has vertex set F and edge
set {uv | u, v ∈ F, u ∩ v ̸= ∅}.

Computing the diameter in geometric intersection graphs is an important task: if the
graph represents a communication network, then the diameter of the network can help
estimate the time required to spread information in the network, as the information needs
to go through up to diam(G) links to reach its destination. In large networks, it is also
indispensable to have near-linear time algorithms; it is therefore natural to study if a given
class of geometric intersection graphs admits a near-linear time algorithm for exact or
approximate diameter computation.

The extensive literature on diameter computation serves as a good starting point. The
diameter of an n-vertex (unweighted) graph can be computed in O(nω log n) expected time,
where ω < 2.37286 is the exponent of matrix multiplication [41]. If the graph has m edges,
then the diameter can also be computed in O(mn) time [42], which gives a near-quadratic
running time of Õ(n2) in case of sparse graphs, i.e., when m = Õ(n). In fact, these algorithms
are capable of computing not only the diameter, but also all pairwise distances in a graph,
known as the all pairs shortest paths problem.

On the negative side, we know that computing the diameter of a graph cannot be done
in O(n2−ε) time under the Orthogonal Vectors Hypothesis1 (OV); in fact, deciding if the
diameter of a sparse graph is at most 2 or at least 3 requires n2−o(1) time under OV [40]2,
which rules out sub-quadratic (3/2 − ε)-approximations for all ε > 0.

In special graph classes however it is possible to compute the diameter in sub-quadratic
time. In planar graphs, an algorithm with running time O(n2) is very easy: one can just run
n breadth-first searches, each of which take linear time because the number of edges is O(n).

1 See Section 2 for the definitions and some background on the hypotheses used in our lower bounds.
2 More precisely, Roditty and Vassilevska-Williams [40] give a reduction from k-Dominating Set, which

can be adapted to a reduction from OV as described in the beginning of Section 4.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, and Z. Parsaeian 21:3

It has been a long-standing open problem whether a truly sub-quadratic algorithm exists for
diameter computation, until the breakthrough of Cabello [12], who used Voronoi diagrams in
planar graphs. The technique was later improved by Gawrychowski et al. [29], who obtained
a running time of Õ(n5/3).

Certain geometric intersections graphs often behave similarly to planar graphs. The
most widely studied classes, (unit) disk and ball graphs admit approximation schemes for
maximum independent set, maximum dominating set, and several other problems [30, 31, 14],
with techniques similar to planar graphs. Unlike planar graphs, geometric intersection graphs
can have arbitrarily large cliques, but at least the maximum clique can be approximated
efficiently [7]. In fact, planar graphs are special disk intersection graphs by the circle packing
theorem [33]. When it comes to computing the diameter, the similarity with planar graphs
is not so easy to see. Even getting near-quadratic diameter algorithms is non-trivial, as
geometric intersection graphs can be arbitrarily dense.

Chan and Skrepetos [16] provide near-quadratic (Õ(n2)) APSP algorithms for several
graph classes, including disks, axis-parallel segments, and fat triangles in the plane, and cubes
and boxes in constant-dimensional space. Unit disk graphs have a “weakly” sub-quadratic
algorithm (that is poly-logarithmically faster than O(n2)) [15]. We are not aware of any
O(n2−ε) algorithms for computing the diameter in intersection graphs of any planar shape.

Further related work. While computing the diameter is known to require time n2±o(1)

already on sparse graphs (assuming the OV Hypothesis), an extensive line of research includ-
ing [3, 40, 19, 13, 5, 25, 9, 24, 37, 8, 23] studies the (non-)existence of faster approximation
algorithms. On the positive side, this includes in particular a folklore 2-approximation in
time Õ(m) and a 3/2-approximation in time Õ(m3/2) [3, 40, 19], both already for weighted
digraphs. Remarkably, these algorithms can be shown to be tight: [40, 5] establish that the
3/2-approximation in time Õ(m3/2) cannot be improved in either approximation guarantee
or running time (assuming the k-OV Hypothesis), already for unweighted undirected graphs.
The near-linear time 2-approximation is conditionally optimal as well: For unweighted
directed graphs, this has been proven independently in [24, 37]. For unweighted undirected
graphs, following further work [8], a resolution has been announced only very recently [23].
Thus, approximating the diameter in sparse graphs is quite well understood, including de-
tailed insights into the full accuracy-time trade-off. In the context of our work, the challenge
is to obtain a similar understanding for our setting of unweighted, undirected geometric
graphs, which are non-sparse in general.

Note that for graph classes that are non-sparse, a natural question is whether diameter
can be computed in O(m+n) time, i.e., linear time in the number of edges plus vertices. The
question has been studied by several authors: using a variant of breadth-first search called
lexicographic breadth-first search, one can find a vertex of very large eccentricity. In some
classes, we now know that there is an O(m+ n) algorithm for diameter: notably, this holds in
interval graphs as well as {claw,asteroidal triple}-free graphs [27, 10]. In many other graph
classes (such as chordal graphs and asteroidal-triple-free graphs) we can get approximations
for the diameter that differ only by a small additive constant from the optimum [27, 26, 21].
See [22] for an overview on the connection of lexicographic BFS and diameter, and see [20]
for a survey on lexicographic BFS.

Another related direction is to consider edge weighted graph classes. In some classes of
geometric intersection graphs there is a natural weighting to consider: for example in ball
graphs, it is customary to draw the graph edges with straight segments that connect the
centers of the two adjacent disks. The edges then have a natural weighting by their Euclidean

SoCG 2022



21:4 Towards Sub-Quadratic Diameter in Intersection Graphs

length. This was considered for unit disk graphs in the plane by Gao and Zhang [28], who
obtained a (1 + ε)-approximation for Diameter in O(n3/2) time for any fixed ε > 0. A
faster (1 + ε)-approximation with running time O(n log2 n) for any fixed ε > 0 was given by
Chan and Skrepetos [17]. Since the underlying graph is not changed by this weighting, it is
natural to think that similar results should be possible also for unweighted unit disk graphs.
It remains an open question whether the complexity of diameter computation is influenced
by the presence of these Euclidean weights.

Our results. In this article, we show that most of the results of Chan and Skrepetos [16]
cannot be significantly improved under standard complexity-theoretic assumptions, even if
we are only interested in the diameter instead of all pairs shortest paths. In particular, we
rule out sub-quadratic diameter algorithms for fat triangles and axis-aligned segments in
the plane, as well as for unit cubes in R3, leaving only their Õ(n7/3) algorithm for arbitrary
segments in R2 as well as their Õ(n2) algorithm for disks without a matching lower bound.

The Diameter problem has as input a set of geometric objects in Rd and a number k;
the goal is to decide whether the diameter of the intersection graph of the objects is at most
k. The Diameter-t problem is the same problem, but with k set to the constant number t.
We show the following lower bounds.

▶ Theorem 1. For all δ > 0 there is no O(n2−δ) time algorithm for
Diameter-3 in intersection graphs of unit segments in R2 under the OV Hypothesis.
Diameter-3 in intersection graphs of congruent equilateral triangles in R2 under the
OV Hypothesis.
Diameter in intersection graphs of unit balls in R3 under the OV Hypothesis.
Diameter in intersection graphs of axis-parallel unit cubes in R3 under the OV Hypoth-
esis.
Diameter in intersection graphs of axis-parallel line segments in R2 under the OV
Hypothesis.
Diameter-2 in intersection graphs of axis-parallel hypercubes in R12 under the Hyper-
clique Hypothesis.

Our results imply lower bounds for approximations. (See Section 4.2 for a short proof.)

▶ Corollary 2. Under the Orthogonal Vectors and Hyperclique Hypotheses, for all δ, ε > 0
there is no O(n2−δ) time (4/3 − ε)-approximation for Diameter in intersection graphs of
unit segments or congruent equilateral triangles in R2, and no (3/2 − ε)-approximation in
intersection graphs of axis-parallel hypercubes in R⩾12. Furthermore, for all δ > 0 there is
no O(n2−δpoly(1/ε)) time approximation scheme that provides a (1 + ε)-approximation for
Diameter for any ε > 0 in intersection graphs of axis-parallel unit segments in R2, or unit
balls or axis-parallel unit cubes in R3.

Theorem 1 shows that sub-quadratic algorithms in many intersection graphs classes are
unlikely to exist; one must wonder if such algorithms are possible at all? A notable case
missing from our lower bounds are the case of unit disks; indeed, it is possible that unit disk
graphs enjoy sub-quadratic diameter computation. More generally, it is an interesting open
question whether intersection graphs of so-called pseudodisks admit sub-quadratic diameter
algorithms. (Pseudodisks are objects bounded by Jordan curves such that the boundaries of
any pair of objects have at most two intersection points.) We make a step towards resolving
this problem with the following theorem for intersection graphs of axis-parallel unit squares –
since axis-parallel unit squares are pseudodisks.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, and Z. Parsaeian 21:5

▶ Theorem 3. There is an O(n log n) algorithm for Diameter-2 in unit square graphs.

The algorithm is based on the insight that the problem can be simplified to the following:
given skylines A, B and a list of axis-parallel squares S, check whether each pair (a, b) ∈ A×B

is covered by some square s ∈ S. Since any axis-parallel square s ∈ S covers intervals in A

and B, this problem in turn reduces to checking whether the union of |S| rectangles covers
the A × B grid. Using near-linear skyline computation [35], and a line sweep for the grid
covering problem, we obtain a surprisingly simple O(n log n) time algorithm (in contrast to
the quadratic-time hardness in higher dimensions).

Organization. After some preliminaries and the introduction of the complexity-theoretic
hypotheses used in the paper, we present our algorithm for unit squares in Section 3.
Section 4 showcases our lower bound techniques. The lower bounds for unit segments,
congruent equilateral triangles as well as for axis-parallel unit segments have a structure
similar to two other lower bounds in Section 4, and they can be found in the full version.

2 Preliminaries

Let G = (V, E) be a graph, and u and v be vertices in G. The distance from u to v is denoted
by distG(u, v), and equals the number of edges on the shortest path from u to v in G. The
diameter of G is denoted by diam(G) and equals to maxu,v∈V distG(u, v). The open and
closed neighborhood of a vertex v are N(v) = {u ∈ V | uv ∈ E} and N [v] = {v} ∪ N(v),
respectively. Let A, B ⊆ V be sets of vertices. The diameter of A and B is denoted by
diamG(A, B) = max(a,b)∈A×B distG(a, b). Finally, let [n] denote the set {1, . . . , n}.

2.1 Hardness assumptions
We use two hypotheses from fine-grained complexity theory for our lower bounds. For an
overview of this field, we refer to the survey [44].

Orthogonal Vectors Hypothesis. Let OV denote the following problem: Given sets A, B

of n vectors in {0, 1}d, determine whether there exists an orthogonal pair a ∈ A, b ∈ B, i.e.,
for all i ∈ [d] we have (a)i = 0 or (b)i = 0. Exhaustive search yields an O(n2d) algorithm,
which can be improved for small dimension d = c log n to O(n2−1/O(log(c))) [2, 18]. For larger
dimensions d = ω(log n), it is known [45] that no O(n2−ϵ)-time algorithm can exist unless
the Strong Exponential Time Hypothesis [32] fails. Thus, the Strong Exponential Time
Hypothesis implies the following (so-called “moderate-dimensional”) OV Hypothesis.

▶ Hypothesis 4 (Orthogonal Vectors Hypothesis). For no ϵ > 0, there is an algorithm that
solves OV in time O(poly(d)n2−ε).

By now, there is an extensive list of problems with tight lower bounds (including sub-
quadratic equivalences) based on this assumption, see [44].

Hyperclique Hypothesis. For k ≥ 4, let 3-uniform k-Hyperclique denote the following
problem: Given a 3-uniform hypergraph G = (V, E), determine whether there exists a
hyperclique of size k, i.e., a set S ⊆ V such that for all e ∈

(
S
3
)
, we have e ∈ E. By exhaustive

search, we can solve this problem in time O(nk) where n = |V |. Unlike the usual k-Clique
problem in graphs, for which a O(nωk/3+O(1)) algorithm exists [39], no techniques are known
that would beat exhaustive search by a polynomial factor for the problem in hypergraphs.
This has lead to the hypothesis that exhaustive search is essentially best possible.

SoCG 2022



21:6 Towards Sub-Quadratic Diameter in Intersection Graphs

(a) (b)

Figure 1 The skylines (or fronts) of a point set P . In figure (a), the points on the blue curve are
BRF(P ) and on the red curve are TLF(P ). In figure (b), the points on the green curve are TRF(P )
and on the orange curve are BLF(P ).

▶ Hypothesis 5 (Hyperclique Hypothesis). For no ϵ > 0 and k ≥ 4, there is an algorithm
that would solve 3-uniform k-Hyperclique in time O(nk−ϵ).

See [38] for a detailed description of the plausibility of this hypothesis. Tight conditional
lower bounds (including fine-grained equivalences) have been obtained, e.g., in [1, 11, 36, 4].

3 Solving the Diameter-2 problem on unit square graphs

In this section, we are going to present an algorithm with running time O(n log n) for the
Diameter-2 problem for unit square graphs. For each unit square v ∈ V , we consider the
center of v, denoted v̇, as the point representing v in the plane; for a square set X ⊂ V ,
we use Ẋ to denote the set of corresponding centers. Let Ġ = (V̇ , E) denote the graph on
centers of squares in G. Hence, for all {u, v} ∈ E(G), there is an edge between u̇ and v̇. Note
that we will often use Ġ and G interchangeably.

Notice that a graph has diameter at most two if and only if for every pair of vertices
u, v ∈ V : N [u] ∩ N [v] ̸= ∅, i.e., there is a square w that both u and v have an intersection
with or they intersect each other. Equivalently, the square of side length 2 centered at ẇ

must cover both u̇ and v̇. For a square w, let w2 denote the side-length-2 square of center
ẇ. Thus, in order to decide whether diam(G) ⩽ 2, it is sufficient to check whether for every
u, v ∈ V there exists w ∈ V such that u̇, v̇ ∈ w2.

For a set of points P we define the top-left front, TLF(P ), and bottom-right front, BRF(P )
as follows (see Figure 1a).

TLF(P ) = {p ∈ P | ∀q ∈ P : px ⩽ qx or py ⩾ qy}
BRF(P ) = {p ∈ P | ∀q ∈ P : px ⩾ qx or py ⩽ qy}

Similarly, we define the top-right front, TRF(P ), and bottom-left front, BLF(P ) as follows
(see Figure 1b).

TRF(P ) = {p ∈ P | ∀q ∈ P : px ⩾ qx or py ⩾ qy}
BLF(P ) = {p ∈ P | ∀q ∈ P : px ⩽ qx or py ⩽ qy}

▶ Lemma 6. The graph G has diameter at most 2 if and only if

max
(

diamĠ(BLF(V̇ ), TRF(V̇ )), diamĠ(TLF(V̇ ), BRF(V̇ ))
)
⩽ 2.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, and Z. Parsaeian 21:7

b′

a

b

a′

Figure 2 Any square covering a′ and b′ also covers a and b.

Proof. If G has diameter at most two, then clearly any pair of subsets of V̇ have diameter
at most 2 in Ġ. For the other direction, consider any pair a, b ∈ V̇ , and assume that ax ⩽ bx

and ay ⩽ by. We prove that distĠ(a, b) ⩽ 2.
Select a′ ∈ BLF(V̇ ) such that a′

x ⩽ ax and a′
y ⩽ ay, see Figure 2. Similarly, select

b′ ∈ TRF(V̇ ) such that bx ⩽ b′
x and by ⩽ b′

y. Then we can observe that the minimum
bounding box of {a′, b′} covers the minimum bounding box of {a, b}. Since distĠ(a′, b′) ⩽
diamĠ(BLF(V̇ ), TRF(V̇ )) ⩽ 2, there exists a square w ∈ V such that w2 covers {a′, b′}.
Consequently, w2 also covers {a, b}, and thus distĠ(a, b) ⩽ 2.

Finally, the case ax > bx and ay > by is symmetric, and the cases ax > bx, ay ⩽ by and
ax⩽bx, ay >by are analogous with TLF and BRF instead of TRF and BLF. ◀

Using Lemma 6, we are able to prove Theorem 3.

Proof of Theorem 3. We start our algorithm by computing TLF(V̇ ), TRF(V̇ ), BLF(V̇ ), and
BRF(V̇ ) in O(n log n) time [35]. Let Ṗ = BLF(V̇ ) and Q̇ = TRF(V̇ ). By Lemma 6, it is
sufficient to show that in O(n log n) time we can decide whether diamĠ(Ṗ , Q̇) ⩽ 2; using the
same algorithm for BRF(V̇ ) and TLF(V̇ ) will then get the desired running time.

In order to check whether N [ṗ] ∩ N [q̇] ̸= ∅ for all (ṗ, q̇) ∈ Ṗ × Q̇, we do the following:
Consider Ṗ = {ṗ1, . . . , ṗ|Ṗ |} and Q̇ = {q̇1, . . . , q̇|Q̇|} in x-order. Also, let GRID = [|Ṗ |] × [|Q̇|]
be a grid where ṗi corresponds to the i-th row and q̇j corresponds to the j-th column.

For each square v ∈ V , recall that v2 denotes the square with the same center but twice
the side length. For each v ∈ V , define Iv ⊆ {1, 2, . . . , |Ṗ |} such that i ∈ Iv iff v2 contains ṗi.
Similarly, Jv ⊆ {1, 2, . . . , |Q̇|} such that j ∈ Jv iff v2 contains q̇j . Since v2 is an axis-parallel
square, it covers intervals from both Ṗ and Q̇, thus Iv and Jv consist of consecutive integers.
Therefore, we can think of the sets Iv × Jv as rectangles in GRID.

▷ Claim 7. We have N [ṗ] ∩ N [q̇] ̸= ∅ for all (ṗ, q̇) ∈ Ṗ × Q̇ if and only if the union of Iv × Jv

over all squares v ∈ V covers GRID.

Proof. If the union of all rectangles covers the whole grid, then for any pair (ṗi, q̇j) ∈ Ṗ × Q̇

of centers, there is a rectangle Iv × Jv that covers (i, j). Therefore, v2 covers both ṗi and q̇j .
Thus, v̇ is a shared neighbor of ṗ and q̇.

If N [ṗ] ∩ N [q̇] ̸= ∅ for all (ṗ, q̇) ∈ Ṗ × Q̇, then for each pair (ṗi, q̇j) there is at least
one square vij such that v2

ij contains both ṗi and q̇j . Hence, (i, j) ∈ Ivij × Jvij for each
(i, j) ∈ GRID. As a result, the union of Iv × Jv over all squares v2 covers GRID. ◁

Note that the problem in Claim 7 corresponds to determining whether a union of
rectangles covers the full grid. This problem can be solved in O(n log n) time with a plane
sweep [6, 43]. The time needed to construct the rectangles in GRID is O(n log n) as there
are O(n) rectangles. This concludes the proof of Theorem 3. ◀

SoCG 2022



21:8 Towards Sub-Quadratic Diameter in Intersection Graphs

4 Lower bounds based on the Orthogonal Vectors Hypothesis

In this section, we prove lower bounds for finding the diameter in various intersection graphs.
For a comparison to similar results on sparse graphs, let us briefly describe the result

ruling out a (3/2 − ϵ)-approximation in time O(n2−δ), for any ε, δ > 0, due to Roditty and
Vassilevska-Williams [40]. While it is originally stated as a reduction from k-Dominating
Set, we adapt it to give a reduction from OV: Given sets A, B ⊆ {0, 1}d, introduce vector
nodes for each a ∈ A and b ∈ B as well as coordinate nodes for k ∈ [d]. Without loss of
generality (see Section 4.1), one may assume that all vectors a ∈ A have (a)d−1 = 1 and
all vectors b ∈ B have (b)d = 1. We connect each vector node v ∈ A ∪ B to the coordinate
node k ∈ [d] iff (v)k = 1, and make all coordinate nodes a clique by adding all possible edges
between coordinate nodes. The important observation is that (1) a pair a ∈ A, b ∈ B has
distance at most 2 iff there is a k ∈ [d] such that (a)k = (b)k = 1, i.e., a, b do not form
an orthogonal pair, and (2) all other types of node pairs have distance at most 2. Thus,
A, B contains an orthogonal pair iff the diameter of the constructed graph is at least 3.
Since the reduction produces a sparse graph with O(n + d) nodes and O(nd) edges in time
O(nd), any O(m2−δ)-time algorithm distinguishing between diameter 2 and 3 would give a
O(n2−δpoly(d))-time OV algorithm, refuting the OV Hypothesis.

Generally speaking, implementing this reduction using low-dimensional geometric graphs
is problematic: we must be able to implement an arbitrary bipartite graph on a vertex set
L × R where |L| = n and |R| = d. Instead, in this section we implement two different types
of reductions via geometric graphs; the main ideas are as follows:

Diameter-3 graphs (Section 4.1 and full version). Instead of coordinate nodes, we introduce
1-entry nodes (v)k for all v ∈ A ∪ B, k ∈ [d] with (v)k = 1. This increases the number of
nodes only to O(nd), while allowing us to geometrically implement edges of the form {v, (v)k}
for all v ∈ A ∪ B, k ∈ [d] with (v)k = 1 and {(v)k, (v′)k} for all v, v′ ∈ A ∪ B, k ∈ [d] with
(v)k = (v′)k = 1. Now, a witness of non-orthogonality of a, b is a 3-path a−(a)k −(b)k −b. By
showing that all other distances are bounded by 3, we obtain hardness for the Diameter-3
problem. See Section 4.1 and the full version for details, including the use of an additional
node to make all 1-entry nodes sufficiently close in distance.

(Non-sparse) Diameter-Θ(d) graphs (Section 4.2 and full version). Instead of coordinate
nodes or 1-entry nodes, we introduce vector-coordinate nodes (v)k for all v ∈ A ∪ B, k ∈ [d],
irrespective of whether (v)k = 1. As opposed to previously, we do not create a constant
diameter instance: The idea is to create an instance where the most distant pairs are of
the form (a)1, (b)d for a ∈ A, b ∈ B, and a non-orthogonality witness is a path of the form
(a)1 ⇝ · · ·⇝ (a)k ⇝ (b)k ⇝ · · ·⇝ (b)d with (a)k = (b)k = 1. This construction requires us
to implement perfect matchings between vector-coordinate gadgets (a)k for a ∈ A and (a′)k+1
for a′ ∈ A if a = a′, as well as a gadget for implementing short connections for (a)k ⇝ (b)k

that check whether (a)k = (b)k = 1. Interestingly, this type of reduction generally produces
dense graphs with Ω(n2) edges, so this approach crucially exploits the expressive power of
geometric graphs to give a subquadratic reduction. See Section 4.2 and the full version for
details, including a description of auxiliary nodes not mentioned here.

Finally, we remark that the reduction for unit hypercubes given in Section 5 has the most
similar structure to the reduction by Roditty and Vassilevska-Williams [40], despite starting
from a different hypothesis, and has similarities to [4, Theorem 14]. We crucially exploit
properties of the hyperclique problem to implement it using hypercube graphs.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, and Z. Parsaeian 21:9

e′
j,k

ei,k

ā1 ā2 ā3 āi ān

ℓ
w1 w2 w3 wk wd−1 wd

b̄1 b̄2 b̄3 b̄j b̄n

Figure 3 Reducing orthogonal vectors to Diameter-3 in intersection graphs of line segments.

4.1 The Diameter-3 problem for line segment intersection graphs
In this section, we are going to present a lower bound on the running time of the algorithm
for the Diameter-3 problem for line segment intersection graphs, such that vertices are
line segments with any length, and there is an edge between a pair of line segments if they
intersect. This serves as a warm-up for the slightly more complicated reductions below.

▶ Theorem 8. For all ϵ > 0, there is no O(n2−ϵ) time algorithm for the Diameter-3
problem for line segment intersection graphs, unless the OV Hypothesis fails.

Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} be two sets of n vectors in {0, 1}d. We
construct a set of segments such that the diameter of the corresponding intersection graph is
at most 3 if and only if there is no orthogonal pair (a, b) ∈ A × B.

Without loss of generality, we assume that for each ai ∈ A and bj ∈ B,
(
(ai)d−1, (ai)d

)
=

(1, 0) and
(
(bj)d−1, (bj)d

)
= (0, 1), by adding two coordinates to the ends of the vectors. Note

that adding these coordinates does not change whether vectors a, b are orthogonal or not.
For each vector ai ∈ A, let āi denote a zero-length line segment from (i, 1) to (i, 1).

Analogously, for each vector bj ∈ B, let b̄j denote a line segment from (j, −1) to (j, −1).
Furthermore, let ℓ be a line segment from (1, 0) to (d, 0), and let {w1, w2, . . . , wd} be d

different points on ℓ such that for all k ∈ [d], wk is located at (k, 0). Moreover, for each
ai ∈ A, if (ai)k = 1, we define a line segment ei,k from āi to wk (i.e., from (i, 1) to (k, 0)).
Analogously, for each bj ∈ B, if (bj)k′ = 1, we define a line segment e′

j,k′ from b̄j to wk′ (i.e.,
from (j, −1) to (k′, 0)). Let V̄ be the set of constructed line segments, and let G be their
intersection graph (see Figure 3).

▶ Lemma 9. The sets A and B contain an orthogonal pair if and only if diam(G) ⩾ 4.

Let Ā be the set of line segments corresponding to vectors in A. Analogously, let B̄ be the
set of line segments corresponding to vectors in B. To prove the lemma, we show that each
pair of vertices is within distance at most 3, unless it is in Ā × B̄ (see Claim 10 below and
see the full version for its proof). The pairs in Ā × B̄ have distance 4 or 3 depending on
whether their corresponding vectors in A × B are orthogonal or not.

▷ Claim 10. dist(ū, v̄) ⩽ 3 for all (ū, v̄) ∈ (V̄ × V̄ ) \ (Ā × B̄ ∪ B̄ × Ā).

Proof of Lemma 9. If ai and bj are not orthogonal, then there is at least one k ∈ [d] such
that (ai)k = (bj)k = 1. Hence, the path āi − ei,k − e′

j,k − b̄j exists, and it has length 3. If ai

and bj are orthogonal, then there is no index k such that (ai)k = (bj)k = 1. Consequently,
there is no path of length 3 from āi to b̄j , and dist(āi, b̄j) ⩾ 4. Together with Claim 10 this
proves the lemma. ◀

SoCG 2022



21:10 Towards Sub-Quadratic Diameter in Intersection Graphs

CT
1 CT

2 CT
3 CT

4 CT
2d

MT
1 MT

2 MT
d

q1 q2 qd

MB
1 MB

2 MB
d

CB
1 CB

2 CB
3 CB

2d−1 CB
2d

Figure 4 Schematic picture of the graph G(A).

Proof of Theorem 8. The above reduction creates a set of N = O(nd) segments in O(nd)
time. If there is an algorithm solving Diameter-3 in O(N2−δ) time in segment intersection
graphs, then combining this algorithm with the reduction would solve OV in time O(nd) +
O((nd)2−δ) = O(n2−δpoly(d)), refuting the OV Hypothesis. ◀

4.2 The diameter problem for unit ball graphs
▶ Theorem 11. For all ϵ > 0, there is no O(n2−ϵ) time algorithm for solving Diameter in
unit ball graphs in R3 under the Orthogonal Vectors Hypothesis.

Let A = {a1, a2, . . . , an} be a given set of vectors from {0, 1}d. First, we construct graph
G(A) and show that G(A) has diameter ⩾ 2d + 5 if and only if there is an orthogonal pair of
vectors in A. Next, we show how G(A) can be realized as an intersection graph of unit balls
in R3. Without loss of generality, assume that the all-one vector is an element of A (if it is
not in A, then adding the all-one vector does not change whether there is an orthogonal pair.)

We construct a graph G(A) as follows. Let CT
1 , . . . , CT

2d and CB
1 , . . . , CB

2d be cliques,
such that for all k ∈ [2d], CT

k = {vT
k,1, . . . , vT

k,n}, CB
k = {vB

k,1, . . . , vB
k,n}, and vT

k,i and vB
k,i

correspond to ai for all i ∈ [n], see Figure 4. We add a perfect matching between each pair
CT

k and CT
k+1 for all k ∈ [2d − 1] such that there is an edge incident to vT

k,i and vT
k+1,i for all

i ∈ [n]. Analogously, there is a perfect matching between each pair CB
k and CB

k+1.
Let MT

1 , . . . , MT
d be cliques such that if (ai)k = 1, then there is a vertex mT

k,i in MT
k that

is adjacent to vT
k,i. Similarly, let MB

1 , . . . , MB
d be cliques such that if (ai)k = 1, then there is

a vertex mB
k,i in MB

k that is adjacent to vB
k,i. Notice that because of the addition of the all

ones vector, the cliques MT
k and MB

k are all non-empty.
Finally, let Q = {q1, q2, . . . , qd} be a set of vertices such that qk has edges to all vertices

in MT
k and MB

k for all k ∈ [d].

▶ Lemma 12. The graph G(A) has diameter at most 2d + 4 iff A has no orthogonal pair.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, and Z. Parsaeian 21:11

Proof. Assume that there is an orthogonal pair (ai, aj) ∈ A such that i ̸= j. Hence,∑n
k=1(ai)k(aj)k = 0, which means that there is no k ∈ [n] such that (ai)k = (aj)k = 1.

Consequently, for all k ∈ [d], the distance from vT
2k,i ∈ CT

2k to vB
2k−1,j ∈ CB

2k−1 is at least 5.
Therefore, 2d + 4 < dist(vT

1,i, vB
2d,j) ≤ diam(G(A)).

Now suppose that A has no orthogonal pair. We want to prove that diam(G(A)) ⩽ 2d + 4.
Since A has no orthogonal pair, for each pair (ai, aj) there is at least one k ∈ [n] such that
(ai)k = (aj)k = 1. Therefore, there are cliques MT

k and MB
k that have the vertices mT

k,i and
mB

k,j respectively. Since all vertices in MT
k and MB

k have an edge to qk, we can reach qk

from vT
1,i by a path of length 2k − 1 + 2. Simultaneously, we can reach qk from vB

2d,j by a
path of length 2d − 2k + 1 + 2. In total, this gives a path of length 2d + 4 between vT

1,i and
vB

2d,j . Furthermore, it is easy check that the distance of any pair of vertices where at least
one vertex is outside CT

1 ∪ CB
2d is at most 2d + 4. As a result, diam(G(A)) ⩽ 2d + 4. ◀

▶ Lemma 13. G(A) can be realized as an intersection graph of unit balls in R3.

Proof. For converting G(A) into an intersection graph of unit balls, we should consider
each vertex in G(A) as the center of a unit diameter ball, and for those vertices that are
adjacent, their corresponding unit balls should intersect. To this end, we choose the following
coordinates for the centers of the unit balls in R3:

For all k ∈ [2d] and i ∈ [n], the center point of vT
k,i ∈ CT

k is (k, i
n , 0).

For all k ∈ [d] and i ∈ [n], if mT
k,i ∈ MT

i exists, then its center point is (2k, i
n , −1).

For all k ∈ [d], the center point of qk ∈ Q is (2k, 1
2 , −1.6).

For all k ∈ [d] and i ∈ [n], if mB
i,j ∈ MB

i exists, its center point is (2k, i
n , −2.2).

For all k ∈ [2d] and i ∈ [n], the center point of vB
k,i ∈ CB

k is (k, i
n , −3.2).

The distance between center points that correspond to adjacent vertices should be at most 1.
For each two vertices in the same clique in CT

k , CB
k , MT

k , and MB
k their center points differ

only in the y-coordinate. Since this difference is at most 1 − 1/n < 1, they form a clique.
For each two adjacent vertices in two different cliques, their center points differ either only
in the x-, or only in the z-coordinate, by exactly 1, hence, they intersect. For a vertex in Q

and MT
k , if mT

k,i exists, the distance between mT
k,i and qk is√

(2k − 2k)2 + ( i
n − 1

2 )2 + (−1 − (−1.6))2 =
√

( i
n − 1

2 )2 + (0.6)2 ⩽
√

( 1
2 )2 + (0.6)2 < 1

The same argument holds for adjacent vertices in Q and MB . One can easily check that the
non-adjacent vertices have distance strictly greater than 1. ◀

Proof of Theorem 11. The construction creates a set of N = O(nd) balls in O(nd) time. If
there is an algorithm to solve Diameter in O(N2−δ) time in ball graphs, then we could
combine this construction with the algorithm, and solve the Orthogonal Vectors problem
in O(nd) + O((nd)2−δ) = O(n2−δpoly(d)) time. This contradicts the Orthogonal Vectors
Hypothesis, and concludes the theorem. ◀

A simple transformation of this construction shows that we can realize G(A) also as an
intersection graph of axis-parallel unit cubes.

▶ Corollary 14. For all ϵ > 0, there is no O(n2−ϵ) time algorithm for solving Diameter in
intersection graphs of axis-parallel unit cubes in R3 under the Orthogonal Vectors Hypothesis.

Proof. Let P denote the set of centers constructed for unit balls. We rotate P by π/4 around
the y axis, and scale P by a factor of

√
2. Let P ′ be the resulting set of points. Note that

in P , all inter-clique edges were realized by a horizontal or vertical point pair of distance

SoCG 2022



21:12 Towards Sub-Quadratic Diameter in Intersection Graphs

exactly 1. In P ′, the corresponding pairs are diagonal segments in some plane perpendicular
to the y-axis, therefore the unit side-length cubes centered at the corresponding pair of points
will have a touching edge. It is routine to check that the unit side-length cubes centered at
P ′ realize the intersection graph G(A). ◀

Proof of Corollary 2. The lower bounds regarding constant-approximations in sub-quadratic
time are immediate consequences of our lower bounds for Diameter-2 and Diameter-3.
Notice that our proofs for unit balls and axis-parallel unit cubes in R3, as well as axis-parallel
unit segments in R2 use a construction where the resulting intersection graph has diameter
d∗ = Θ(d). Under OV, there exists no (1 + ε)-approximation for these problems that would
run in n2−δpoly(1/ε) time, as setting ε = 1/d∗ = Θ(1/d) would enable us to decide OV in
n2−δpoly(d) time. ◀

5 The Diameter-2 problem for hypercube graphs: a hyperclique lower
bound

▶ Theorem 15. For all ϵ > 0 there is no O(n2−ϵ) algorithm for Diameter-2 in unit
hypercube graphs in R12, unless the Hyperclique Hypothesis fails.

Proof. Observe that under the Hyperclique Hypothesis, it requires time n6−o(1) to find a
hyperclique of size 6 in a given 3-uniform hypergraph G = (V, E). In fact, using a standard
color-coding argument, we can assume without loss of generality that G is 6-partite: We
have V = V1 ∪ · · · ∪ V6 for disjoint sets Vi of size n each, and any 6-hyperclique must choose
exactly one vertex from each Vi. By slight abuse of notation, we view each Vi as a disjoint
copy of [n], i.e., node j ∈ [n] in Vi is different from node j in Vi′ with i′ ≠ i. Furthermore,
by complementing the edge set, we arrive at the equivalent task of determining whether G

has an independent set of size 6, i.e., whether there are (v1, . . . , v6) ∈ V1 × · · · × V6 such that
{vi, vj , vk} /∈ E for all distinct i, j, k ∈ [6]. Finally, for technical reasons, we assume without
loss of generality that for each vi ∈ Vi and distinct j, k ∈ [6] \ {i}, there are vj ∈ Vj , vk ∈ Vk

with {vi, vj , vk} ∈ E: To this end, simply add, for every ℓ ∈ [6], a dummy vertex v′
ℓ to Vℓ, and

add, for every i, j, k and vj ∈ Vj , vk ∈ Vk, the edge {v′
i, vj , vk} to E, i.e., each dummy vertex

is connected to all other pairs of vertices (including other dummy vertices). Observe that this
yields an equivalent instance, since no dummy vertex can be contained in an independent set.

The reduction is given by constructing a set of O(n3) unit hypercubes in R12, which we
specify by their centers. These (hyper)cubes are of three types: left-half cubes representing a
choice of the vertices (x1, x2, x3) ∈ V1 × V2 × V3, right-half cubes representing a choice of the
vertices (y1, y2, y3) ∈ V4 × V5 × V6 and edge cubes representing an edge {vi, vj , vk} ∈ E. In
particular, the choice of a vertex in Vi will be encoded in the dimensions 2i − 1 and 2i.

Specifically, for each (x1, x2, x3) ∈ V1 × V2 × V3 such that {x1, x2, x3} /∈ E, we define the
center of the left-half cube Xx1,x2,x3 as(

x1

n + 1 , 1 − x1

n + 1 ,
x2

n + 1 , 1 − x2

n + 1 ,
x3

n + 1 , 1 − x3

n + 1 , 2, . . . , 2
)

.

Similarly, for each (y1, y2, y3) ∈ V4 × V5 × V6 such that {y1, y2, y3} /∈ E, we define the center
of the right-half cube Yy1,y2,y3 as(

2, . . . , 2,
y1

n + 1 , 1 − y1

n + 1 ,
y2

n + 1 , 1 − y2

n + 1 ,
y3

n + 1 , 1 − y3

n + 1

)
.



K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, and Z. Parsaeian 21:13

Finally, for each edge e = {vi, vj , vk} ∈ E not already in V1 × V2 × V3 ∪ V4 × V5 × V6,
we define a corresponding edge cube Evi,vj ,vk

with the following center point: We set the
2i − 1-th coordinate to 1 + vi

n+1 , the 2i-th coordinate to 2 − vi

n+1 , and similarly we set the
coordinates 2j − 1, 2j, 2k − 1, 2k to 1 + vj

n+1 , 2 − vj

n+1 , 1 + vk

n+1 , 2 − vk

n+1 , respectively, and we
set all remaining coordinates to 1. For example, if i = 1, j = 2, k = 4, the center point of
Ev1,v2,v4 is(

1 + v1

n + 1 , 2 − v1

n + 1 , 1 + v2

n + 1 , 2 − v2

n + 1 , 1, 1, 1 + v4

n + 1 , 2 − v4

n + 1 , 1, 1, 1, 1
)

.

Let S denote the set of all unit cubes Xx1,x2,x3 , Yy4,y5,y6 , Evi,vj ,vk
constructed above

and let GS denote the geometric intersection graph of the unit cubes. We prove that
diam(GS) ≤ 2 if and only if there is no independent set (v1, . . . , v6) ∈ V1 × · · · × V6 in the
3-uniform hypergraph G = (V1 ∪ · · · ∪ V6, E):
1. Intra-set distances: We have that the left- and right-half cubes as well as the edge

cubes form cliques, i.e., distGS
(Xx1,x2,x3 , Xx′

1,x′
2,x′

3
) ≤ 1, distGS

(Yy1,y2,y3 , Yy′
1,y′

2,y′
3
) ≤ 1

and distGS
(Ev1,v2,v3 , Ev′

1,v′
2,v′

3
) ≤ 1: Observe that the center of each Xx1,x2,x3 is contained

in [0, 1]6 ×{2}6 and thus in a hypercube of side length at most 1. Thus, all cubes Xx1,x2,x3

intersect each other, proving distGS
(Xx1,x2,x3 , Xx′

1,x′
2,x′

3
) ≤ 1. The remaining claims

follow analogously by observing that the centers of Yy1,y2,y3 and Ev1,v2,v3 are contained
in {2}6 × [0, 1]6 and [1, 2]12, respectively, and thus also in hypercubes of side length at
most 1.

2. Equality checks: Let x1 ∈ V1, x2 ∈ V2, x3 ∈ V3 and vi ∈ Vi, vj ∈ Vj , vk ∈ Vk. Then
distGS

(Xx1,x2,x3 , Evi,vj ,vk
) = 1 iff vℓ = xℓ whenever ℓ ∈ {1, 2, 3} ∩ {i, j, k}: Consider

ℓ ∈ {1, 2, 3}∩{i, j, k}. Then the dimensions (2ℓ−1, 2ℓ) of Xx1,x2,x3 and Evi,vj ,vk
are equal

to ( xℓ

n+1 , 1 − xℓ

n+1 ) and (1 + vℓ

n+1 , 2 − vℓ

n+1 ), respectively. Note that (1 + vℓ

n+1 ) − xℓ

n+1 ≤ 1
and (2 − vℓ

n+1 ) − (1 − xℓ

n+1 ) ≤ 1 hold simultaneously iff xℓ = vℓ. All other dimensions
ℓ′ /∈ {1, 2, 3} ∩ {i, j, k} are trivially within distance 1, since dimensions (2ℓ′ − 1, 2ℓ′) of
Xx1,x2,x3 and Evi,vj ,vk

are (2, 2) and in [1, 2]2, respectively (if ℓ′ /∈ {1, 2, 3}), or in [0, 2]2
and (1, 1), respectively (if ℓ′ /∈ {i, j, k}). The analogous claim holds for distances between
Yy1,y2,y3 and Evi,vj ,vk

.
3. Edge distances: We have that distGS

(Xx1,x2,x3 , Evi,vj ,vk
) ≤ 2: By our technical as-

sumption, we have that there is an edge {x1, v′
4, v′

5} ∈ E for some vertices v′
4 ∈ V4 and

v′
5 ∈ V5. Thus, by the previous properties, we obtain that

distGS
(Xx1,x2,x3 , Evi,vj ,vk

) ≤ distGS
(Xx1,x2,x3 , Ex1,v′

4,v′
5
)+distGS

(Ex1,v′
4,v′

5
, Evi,vj ,vk

) ≤ 2.

4. Distances of left- and right-half cubes: Let x1 ∈ V1, x2 ∈ V2, x3 ∈ V3 and y1 ∈
V4, y2 ∈ V5, y3 ∈ V6 such that {x1, x2, x3}, {y1, y2, y3} /∈ E (thus, the left-half/right-half
cubes for {x1, x2, x3}, {y1, y2, y3} exist). Then we have that distGS

(Xx1,x2,x3 , Yy1,y2,y3) >

2 iff (x1, x2, x3, y1, y2, y3) is an independent set in G: If the tuple (x1, x2, x3, y1, y2, y3) is
not an independent set, then there must be an edge {xi, yj , yk} or {xi, xj , yk} with i, j, k ∈
[3], since {x1, x2, x3} and {y1, y2, y3} are non-edges. Consider the first case, the other is
symmetric. Then by the equality-check property, that distGS

(Xx1,x2,x3 , Exi,xj ,yk
) = 1 and

distGS
(Exi,xj ,yk

, Yy1,y2,y3) = 1, which yields distGS
(Xx1,x2,x3 , Yy1,y2,y3) ≤ 2. It remains

to consider the case that the tuple (x1, x2, x3, y1, y2, y3) is an independent set. Since there
cannot be any edge between a left-half cube Xx′

1,x′
2,x′

3
– which is contained in (0, 1)6×{2}6 –

and a right-half cube Yy′
1,y′

2,y′
3

– which is contained in {2}6×(0, 1)6 –, the only way to reach
Yy1,y2,y3 from Xx1,x2,x3 via a path of length 2 would have to use some edge cube Evi,vj ,vk

.
However, by the equality-check property, a path Xx1,x2,x3 − Evi,vj ,vk

− Yy1,y2,y3 would

SoCG 2022



21:14 Towards Sub-Quadratic Diameter in Intersection Graphs

imply that the vertices chosen by (x1, x2, x3, y1, y2, y3) would agree with vi, vj , vk in the
sets Vi, Vj , Vk. Thus, we would have found an edge {vi, vj , vk} among (x1, x2, x3, y1, y2, y3),
contradicting the assumption that it is an independent set.

Finally, observe that given a 3-uniform hypergraph G, we can construct the corresponding
cube set S, containing O(n3) nodes, in time O(n3). Thus, if we had an O(N2−ϵ)-time
algorithm for determining whether an N -vertex unit cube graph GS has a diameter of at
most 2, we could detect existence of an independent set (or equivalently, hyperclique) of size
6 in G in time O(n6−3ϵ), which would refute the Hyperclique Hypothesis. ◀

References
1 Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences of

falsifying SETH and the orthogonal vectors conjecture. In Ilias Diakonikolas, David Kempe,
and Monika Henzinger, editors, Pro. 50th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2018), pages 253–266. ACM, 2018. doi:10.1145/3188745.3188938.

2 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method
to algorithm design. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 218–230. SIAM, 2015.

3 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–
1181, 1999. doi:10.1137/S0097539796303421.

4 Haozhe An, Mohit Jayanti Gurumukhani, Russell Impagliazzo, Michael Jaber, Marvin Kün-
nemann, and Maria Paula Parga Nina. The fine-grained complexity of multi-dimensional
ordering properties. In Petr A. Golovach and Meirav Zehavi, editors, Proc. 16th International
Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 3:1–3:15, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.IPEC.2021.3.

5 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Toward tight approximation bounds for graph diameter and eccentricities. SIAM J. Comput.,
50(4):1155–1199, 2021. doi:10.1137/18M1226737.

6 J. L. Bentley. Solutions to Klee’s rectangle problems. Unpublished manuscript, 1977.
7 Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Giannopoulos,

Eun Jung Kim, Pawel Rzazewski, Florian Sikora, and Stéphan Thomassé. EPTAS and
subexponential algorithm for maximum clique on disk and unit ball graphs. J. ACM, 68(2):9:1–
9:38, 2021. doi:10.1145/3433160.

8 Édouard Bonnet. 4 vs 7 sparse undirected unweighted diameter is SETH-hard at time
n4/3. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 34:1–34:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.34.

9 Édouard Bonnet. Inapproximability of diameter in super-linear time: Beyond the 5/3 ratio. In
Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical
Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual
Conference), volume 187 of LIPIcs, pages 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.17.

10 Andreas Brandstädt and Feodor F. Dragan. On linear and circular structure of (claw, net)-free
graphs. Discret. Appl. Math., 129(2-3):285–303, 2003. doi:10.1016/S0166-218X(02)00571-1.

11 Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of Schaefer’s
theorem in P: dichotomy of ∃k∀-quantified first-order graph properties. In Amir Shpilka,
editor, Proc. 34th Computational Complexity Conference (CCC 2019), volume 137 of LIPIcs,
pages 31:1–31:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.CCC.2019.31.

https://doi.org/10.1145/3188745.3188938
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.4230/LIPIcs.IPEC.2021.3
https://doi.org/10.1137/18M1226737
https://doi.org/10.1145/3433160
https://doi.org/10.4230/LIPIcs.ICALP.2021.34
https://doi.org/10.4230/LIPIcs.STACS.2021.17
https://doi.org/10.1016/S0166-218X(02)00571-1
https://doi.org/10.4230/LIPIcs.CCC.2019.31
https://doi.org/10.4230/LIPIcs.CCC.2019.31


K. Bringmann, S. Kisfaludi-Bak, M. Künnemann, A. Nusser, and Z. Parsaeian 21:15

12 Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances
in planar graphs. ACM Trans. Algorithms, 15(2):21:1–21:38, 2019. doi:10.1145/3218821.

13 Massimo Cairo, Roberto Grossi, and Romeo Rizzi. New bounds for approximating extremal
distances in undirected graphs. In Robert Krauthgamer, editor, Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 363–376. SIAM, 2016. doi:10.1137/1.9781611974331.ch27.

14 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

15 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs
in slightly subquadratic time. In Seok-Hee Hong, editor, 27th International Symposium
on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Australia,
volume 64 of LIPIcs, pages 24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ISAAC.2016.24.

16 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. J. Comput. Geom., 10:27–41, 2019.

17 Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in
weighted unit-disk graphs. J. Comput. Geom., 10(2):3–20, 2019. doi:10.20382/jocg.v10i2a2.

18 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’16, pages 1246–1255. SIAM, 2016.

19 Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert Endre Tarjan, and
Virginia Vassilevska Williams. Better approximation algorithms for the graph diameter. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1041–1052.
SIAM, 2014. doi:10.1137/1.9781611973402.78.

20 Derek G. Corneil. Lexicographic breadth first search - A survey. In Juraj Hromkovic, Manfred
Nagl, and Bernhard Westfechtel, editors, Graph-Theoretic Concepts in Computer Science,
30th International Workshop,WG 2004, Bad Honnef, Germany, June 21-23, 2004, Revised
Papers, volume 3353 of Lecture Notes in Computer Science, pages 1–19. Springer, 2004.
doi:10.1007/978-3-540-30559-0_1.

21 Derek G. Corneil, Feodor F. Dragan, Michel Habib, and Christophe Paul. Diameter de-
termination on restricted graph families. Discret. Appl. Math., 113(2-3):143–166, 2001.
doi:10.1016/S0166-218X(00)00281-X.

22 Derek G. Corneil, Feodor F. Dragan, and Ekkehard Köhler. On the power of BFS to determine
a graph’s diameter. Networks, 42(4):209–222, 2003. doi:10.1002/net.10098.

23 Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams. Hardness of approximate
diameter: Now for undirected graphs. CoRR, abs/2106.06026, 2021. arXiv:2106.06026.

24 Mina Dalirrooyfard and Nicole Wein. Tight conditional lower bounds for approximating
diameter in directed graphs. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, pages 1697–1710. ACM, 2021. doi:10.1145/3406325.3451130.

25 Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole Wein. Tight
approximation algorithms for bichromatic graph diameter and related problems. In Christel
Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019,
Patras, Greece, volume 132 of LIPIcs, pages 47:1–47:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.47.

26 Feodor F. Dragan. Almost diameter of a house-hole-free graph in linear time via LexBFS.
Discret. Appl. Math., 95(1-3):223–239, 1999. doi:10.1016/S0166-218X(99)00077-3.

27 Feodor F. Dragan, Falk Nicolai, and Andreas Brandstädt. LexBFS-orderings and powers of
graphs. In Fabrizio d’Amore, Paolo Giulio Franciosa, and Alberto Marchetti-Spaccamela,
editors, Graph-Theoretic Concepts in Computer Science, pages 166–180, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

SoCG 2022

https://doi.org/10.1145/3218821
https://doi.org/10.1137/1.9781611974331.ch27
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.4230/LIPIcs.ISAAC.2016.24
https://doi.org/10.20382/jocg.v10i2a2
https://doi.org/10.1137/1.9781611973402.78
https://doi.org/10.1007/978-3-540-30559-0_1
https://doi.org/10.1016/S0166-218X(00)00281-X
https://doi.org/10.1002/net.10098
http://arxiv.org/abs/2106.06026
https://doi.org/10.1145/3406325.3451130
https://doi.org/10.4230/LIPIcs.ICALP.2019.47
https://doi.org/10.1016/S0166-218X(99)00077-3


21:16 Towards Sub-Quadratic Diameter in Intersection Graphs

28 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and
its applications. SIAM J. Comput., 35(1):151–169, 2005. doi:10.1137/S0097539703436357.

29 Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi
diagrams on planar graphs, and computing the diameter in deterministic Õ(n5/3) time. SIAM
J. Comput., 50(2):509–554, 2021. doi:10.1137/18M1193402.

30 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985. doi:10.1145/2455.
214106.

31 Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J.
Rosenkrantz, and Richard Edwin Stearns. NC-approximation schemes for NP- and PSPACE-
hard problems for geometric graphs. J. Algorithms, 26(2):238–274, 1998. doi:10.1006/jagm.
1997.0903.

32 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

33 Paul Koebe. Kontaktprobleme der konformen Abbildung. Hirzel, 1936.
34 Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad hoc networks beyond unit disk

graphs. Wirel. Networks, 14(5):715–729, 2008. doi:10.1007/s11276-007-0045-6.
35 H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the maxima of a set of

vectors. J. ACM, 22(4):469–476, 1975. doi:10.1145/321906.321910.
36 Marvin Künnemann and Dániel Marx. Finding small satisfying assignments faster than

brute force: A fine-grained perspective into boolean constraint satisfaction. In Shubhangi
Saraf, editor, Proc. 35th Computational Complexity Conference (CCC 2020), volume 169
of LIPIcs, pages 27:1–27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.27.

37 Ray Li. Settling SETH vs. approximate sparse directed unweighted diameter (up to
(NU)NSETH). In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 1684–1696. ACM, 2021. doi:10.1145/3406325.3451045.

38 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for short-
est cycles and paths in sparse graphs. In Artur Czumaj, editor, Proc. 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2018), 2018. doi:10.1137/1.9781611975031.80.

39 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985.

40 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 515–524. ACM, 2013. doi:10.1145/2488608.2488673.

41 Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J.
Comput. Syst. Sci., 51(3):400–403, 1995. doi:10.1006/jcss.1995.1078.

42 Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear
time. J. ACM, 46(3):362–394, 1999. doi:10.1145/316542.316548.

43 Jan van Leeuwen and Derick Wood. The measure problem for rectangular ranges in d-space.
J. Algorithms, 2(3):282–300, 1981. doi:10.1016/0196-6774(81)90027-4.

44 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the International Congress of Mathematicians, ICM ’18, pages 3447–3487,
2018.

45 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005.

https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1137/18M1193402
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1007/s11276-007-0045-6
https://doi.org/10.1145/321906.321910
https://doi.org/10.4230/LIPIcs.CCC.2020.27
https://doi.org/10.4230/LIPIcs.CCC.2020.27
https://doi.org/10.1145/3406325.3451045
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1006/jcss.1995.1078
https://doi.org/10.1145/316542.316548
https://doi.org/10.1016/0196-6774(81)90027-4


Computing Continuous Dynamic Time Warping of
Time Series in Polynomial Time
Kevin Buchin #

Department of Computer Science, TU Dortmund, Germany

André Nusser #

BARC, University of Copenhagen, Denmark

Sampson Wong #

School of Computer Science, University of Sydney, Australia

Abstract
Dynamic Time Warping is arguably the most popular similarity measure for time series, where
we define a time series to be a one-dimensional polygonal curve. The drawback of Dynamic Time
Warping is that it is sensitive to the sampling rate of the time series. The Fréchet distance is an
alternative that has gained popularity, however, its drawback is that it is sensitive to outliers.

Continuous Dynamic Time Warping (CDTW) is a recently proposed alternative that does not
exhibit the aforementioned drawbacks. CDTW combines the continuous nature of the Fréchet
distance with the summation of Dynamic Time Warping, resulting in a similarity measure that
is robust to sampling rate and to outliers. In a recent experimental work of Brankovic et al., it
was demonstrated that clustering under CDTW avoids the unwanted artifacts that appear when
clustering under Dynamic Time Warping and under the Fréchet distance. Despite its advantages,
the major shortcoming of CDTW is that there is no exact algorithm for computing CDTW, in
polynomial time or otherwise.

In this work, we present the first exact algorithm for computing CDTW of one-dimensional
curves. Our algorithm runs in time O(n5) for a pair of one-dimensional curves, each with complexity
at most n. In our algorithm, we propagate continuous functions in the dynamic program for CDTW,
where the main difficulty lies in bounding the complexity of the functions. We believe that our result
is an important first step towards CDTW becoming a practical similarity measure between curves.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Computational Geometry, Curve Similarity, Fréchet distance, Dynamic Time
Warping, Continuous Dynamic Time Warping

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.22

Related Version Full Version: https://arxiv.org/abs/2203.04531

Funding André Nusser : Part of this research was conducted while the author was at Saarbrücken
Graduate School of Computer Science and Max Planck Institute for Informatics. The author is
supported by the VILLUM Foundation grant 16582.

1 Introduction

Time series data arises from many sources, such as financial markets [39], seismology [43],
electrocardiography [5] and epidemiology [7]. Domain-specific questions can often be answered
by analysing these time series. A common way of analysing time series is by finding
similarities. Computing similarities is also a fundamental building block for other analyses,
such as clustering, classification, or simplification. There are numerous similarity measures
considered in literature [4, 19, 23, 26, 37, 40], many of which are application dependent.

© Kevin Buchin, André Nusser, and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kevin.buchin@tu-dortmund.de
https://orcid.org/0000-0002-3022-7877
mailto:anusser@mpi-inf.mpg.de
https://orcid.org/0000-0002-6349-869X
mailto:swon7907@uni.sydney.edu.au
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.SoCG.2022.22
https://arxiv.org/abs/2203.04531
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

(a) Top: The optimal alignment under a discrete
similarity measure, e.g. DTW. Bottom: The
optimal alignment under a continuous similarity
measure.

(b) Top: The optimal simplification under
a bottleneck measure, e.g., Fréchet distance.
Bottom: The optimal simplification under a
summation-based similarity measure.

Figure 1 Issues with discrete (left) and bottleneck (right) measures as opposed to continuous,
summed measures.

Dynamic Time Warping (DTW) is arguably the most popular similarity measure for
time series, and is widely used across multiple communities [2, 24, 30, 32, 33, 34, 38, 41, 42].
Under DTW, a minimum cost discrete alignment is computed between a pair of time series.
A discrete alignment is a sequence of pairs of points, subject to the following four conditions:
(i) the first pair is the first sample from both time series, (ii) the last pair is the last sample
from both time series, (iii) each sample must appear in some pair in the alignment, and (iv)
the alignment must be a monotonically increasing sequence for both time series. The cost
of a discrete alignment, under DTW, is the sum of the distances between aligned points.
A drawback of a similarity measure with a discrete alignment is that it is sensitive to the
sampling rates of the time series. As such, DTW is a poor measure of similarity between
a time series with a high sampling rate and a time series with a low sampling rate. For
such cases, it is more appropriate to use a similarity measure with a continuous alignment.
In Figure 1a, we provide a visual comparison of a discrete alignment versus a continuous
alignment, for time series with vastly different sampling rates.

The Fréchet distance is a similarity measure that has gained popularity, especially in the
theory community [3, 13, 20, 36]. To apply the Fréchet distance to a time series, we linearly
interpolate between sampled points to obtain a continuous one-dimensional polygonal curve.
Under the Fréchet distance, a minimum cost continuous alignment is computed between the
pair of curves. A continuous alignment is a simultaneous traversal of the pair of curves that
satisfies the same four conditions as previously stated for DTW. The cost of a continuous
alignment, under the Fréchet distance, is the maximum distance between a pair of points in
the alignment. The Fréchet distance is a bottleneck measure in that it only measures the
maximum distance between aligned points. As a result, the drawback of the Fréchet distance
is that it is sensitive to outliers. For such cases, a summation-based similarity measure is
significantly more robust. In Figure 1b, we illustrate a high complexity curve, and its low
complexity “simplification” that is the most similar to the original curve, under either a
bottleneck or summation similarity measure. The simplified curve under the Fréchet distance
is sensitive to and drawn towards its outlier points.

Continuous Dynamic Time Warping (CDTW) is a recently proposed alternative that does
not exhibit the aforementioned drawbacks. It obtains the best of both worlds by combining
the continuous nature of the Fréchet distance with the summation of DTW. CDTW was
first introduced by Buchin [17], where it was referred to as the average Fréchet distance.



K. Buchin, A. Nusser, and S. Wong 22:3

Figure 2 Clustering of the c17 pigeon’s trajectories under the DTW (left), Fréchet (middle), and
CDTW (right) distances. Figures were provided by the authors of [9].

CDTW has also been referred to as the summed, or integral, Fréchet distance. CDTW is
similar to the Fréchet distance in that a minimum cost continuous alignment is computed
between the pair of curves. The cost of a continuous alignment, under CDTW, is the integral
of the distances between pairs of points in the alignment. We provide a formal definition in
Section 2. Other definitions were also given under the name CDTW [22, 35], see Section 1.1.

Compared to existing popular similarity measures, CDTW is robust to both the sampling
rate of the time series and to its outliers. CDTW has been used in applications where
this robustness is desirable. In Brakatsoulas et al. [8], the authors applied CDTW to map-
matching of vehicular location data. The authors highlight two common errors in real-life
vehicular data, that is, measurement errors and sampling errors. Measurement errors result in
outliers whereas sampling errors cause discrepancies in sampling rates between input curves.
Their experiments show an improvement in map-matching when using CDTW instead of the
Fréchet distance. In a recent paper, Brankovic et al. [9] applied CDTW to clustering of bird
migration data and handwritten character data. The authors used (k, ℓ)-center and medians
clustering, where each of the k clusters has a (representative) center curve of complexity
at most ℓ. Low complexity center curves are used to avoid overfitting. Compared to DTW
and the Fréchet distance, Brankovic et al. [9] demonstrated that clustering under CDTW
produced centers that were more visually similar to the expected center curve. Under DTW,
the clustering quality deteriorated for small values of ℓ, whereas under the Fréchet distance,
the clustering quality deteriorated in the presence of outliers.

Brankovic et al.’s [9] clustering of a pigeon data set [28] is shown in Figure 2. The Fréchet
distance is paired with the center objective, whereas DTW and CDTW are paired with the
medians objective. Under DTW (left), the discretisation artifacts are visible. The blue center
curve is jagged and visually dissimilar to its associated input curves. Under the Fréchet
distance (middle), the shortcoming of the bottleneck measure and objective is visible. The
red center curve fails to capture the shape of its associated input curves, in particular, it
misses the top-left “hook” appearing in its associated curves. Under CDTW (right), the
center curves are smooth and visually similar to their associated curves.

Despite its advantages, the shortcoming of CDTW is that there is no exact algorithm
for computing it, in polynomial time or otherwise. Heuristics were used to compute CDTW
in the map-matching [8] and clustering [9] experiments. Maheshwari et al. [27] provided a
(1 + ε)-approximation algorithm for CDTW in O(ζ4n3/ε2) time, for curves of complexity n

and spread ζ, where the spread is the ratio between the maximum and minimum interpoint

SoCG 2022



22:4 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

distances. Existing heuristic and approximation methods [8, 9, 27] use a sampled grid on
top of the dynamic program for CDTW, introducing an inherent error that depends on the
fineness of the sampled grid, which is reflected in the dependency on ζ in [27].

In this work, we present the first exact algorithm for computing CDTW for one-dimensional
curves. Our algorithm runs in time O(n5) for a pair of one-dimensional curves, each with
complexity at most n. Unlike previous approaches, we avoid using a sampled grid and
instead devise a propagation method that solves the dynamic program for CDTW exactly.
In our propagation method, the main difficulty lies in bounding the total complexity of our
propagated functions. Showing that CDTW can be computed in polynomial time fosters
hope for faster polynomial time algorithms, which would add CDTW to the list of practical
similarity measures for curves.

1.1 Related work
Algorithms for computing popular similarity measures, such as DTW and the Fréchet distance,
are well studied. Vintsyuk [41] proposed Dynamic Time Warping as a similarity measure for
time series, and provided a simple dynamic programming algorithm for computing the DTW
distance that runs in O(n2) time, see also [6]. Gold and Sharir [24] improved the upper
bound for computing DTW to O(n2/ log log n). For the Fréchet distance, Alt and Godau [3]
proposed an O(n2 log n) time algorithm for computing the Fréchet distance between a pair
of curves. Buchin et al. [13] improved the upper bound for computing the Fréchet distance
to O(n2√

log n(log log n)3/2). Assuming SETH, it has been shown that there is no strongly
subquadratic time algorithm for computing the Fréchet distance or DTW [1, 10, 11, 12, 16].

Our definition of CDTW was originally proposed by Buchin [17], and has since been used
in several experimental works [8, 9]. We give Buchin’s [17] definition formally in Section 2.
Other definitions under the name CDTW have also been considered. We briefly describe the
main difference between these definitions and the one used in this paper.

To the best of our knowledge, the first continuous version of DTW was by Serra and
Berthod [35]. The same definition was later used by Munich and Perona [31]. Although
a continuous curve is used in their definition, the cost of the matching is still a discrete
summation of distances to sampled points. Our definition uses a continuous summation
(i.e. integration) of distances between all points on the curves, and therefore, is more robust
to discrepancies in sampling rate. Efrat et al. [22] proposed a continuous version of DTW
that uses integration. However, their integral is defined in a significantly different way to
ours. Their formulation minimises the change of the alignment and not the distance between
aligned points. Thus, their measure is translational invariant and designed to compare the
shapes of curves irrespective of their absolute positions in space.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. To continuously measure the similarity of time series,
we linearly interpolate between sampled points to obtain a one-dimensional polygonal curve.
A one-dimensional polygonal curve P of complexity n is given by a sequence of vertices,
p1, . . . , pn ∈ R, connected in order by line segments. Furthermore, let || · || be the norm
in the one-dimensional space R. In higher dimensions, the Euclidean L2 norm is the most
commonly used norm, but other norms such as L1 and L∞ may be used.

Consider a pair of one-dimensional polygonal curves P = p1, . . . , pn and Q = q1, . . . , qm.
Let ∆(n, m) be the set of all sequences of pairs of integers (x1, y1), . . . , (xk, yk) satisfying
(x1, y1) = (1, 1), (xk, yk) = (n, m) and (xi+1, yi+1) ∈ {(xi + 1, yi), (xi, yi + 1), (xi + 1, yi + 1)}.



K. Buchin, A. Nusser, and S. Wong 22:5

The DTW distance between P and Q is defined as

dDT W (P, Q) = min
α∈∆(n,m)

∑
(x,y)∈α

||px − qy||.

The discrete Fréchet distance between P and Q is defined as

ddF (P, Q) = min
α∈∆(n,m)

max
(x,y)∈α

||px − qy||.

Let p and q be the total arc lengths of P and Q respectively. Define the parametrised
curve {P (z) : z ∈ [0, p]} to be the one-dimensional curve P parametrised by its arc length.
In other words, P (z) is a piecewise linear function so that the arc length of the subcurve
from P (0) to P (z) is z. Define {Q(z) : z ∈ [0, q]} analogously. Let Γ(p) be the set of all
continuous and non-decreasing functions α : [0, 1] → [0, p] satisfying α(0) = 0 and α(1) = p.
Let Γ(p, q) = Γ(p) × Γ(q). The continuous Fréchet distance between P and Q is defined as

dF (P, Q) = inf
(α,β)∈Γ(p,q)

max
z∈[0,1]

||P (α(z)) − Q(β(z))||,

The CDTW distance between P and Q is defined as

dCDT W (P, Q) = inf
(α,β)∈Γ(p,q)

∫ 1

0
||P (α(z)) − Q(β(z))|| · ||α′(z) + β′(z)|| · dz.

For the definition of CDTW, we additionally require that α and β are differentiable. The
original intuition behind dCDT W (P, Q) is that it is a line integral in the parameter space,
which we will define in Section 2.1. The term ||α′(z) + β′(z)|| implies that we are using the
L1 metric in the parameter space, but other norms have also been considered [26, 27].

2.1 Parameter space under CDTW
The parameter space under CDTW is analogous to the free space diagram under the
continuous Fréchet distance. Similar to previous work [17, 26, 27], we transform the problem
of computing CDTW into the problem of computing a line integral in the parameter space.

Recall that the total arc lengths of P and Q are p and q respectively. The parameter
space is defined to be the rectangular region R = [0, p] × [0, q] in R2. The region is imbued
with a metric || · ||R. The L1, L2 and L∞ norms have all been considered, but L1 is the
preferred metric as it is the easiest to work with [26, 27]. At every point (x, y) ∈ R we define
the height of the point to be h(x, y) = ||P (x) − Q(y)||.

Next, we provide the line integral formulation of dCDT W , which is the original motivation
behind its definition. To make our line integral easier to work with, we parametrise our line
integral path γ in terms of its L1 arc length in R. The following lemma is a consequence of
Section 6.2 in [17]. We provide a proof sketch of the result for the sake of self-containment.

▶ Lemma 1.

dCDT W (P, Q) = inf
γ∈Ψ(p,q)

∫ p+q

0
h(γ(z)) · dz,

where Ψ(p, q) is the set of all functions γ : [0, p + q] → R satisfying γ(0) = (0, 0), γ(p + q) =
(p, q), γ is differentiable and non-decreasing in both x- and y-coordinates, and ||γ′(z)||R = 1.

SoCG 2022



22:6 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

Proof (Sketch). We provide a full proof in [15]. We summarise the main steps. Recall that
the formula for CDTW is inf(α,β)∈Γ(p,q)

∫ 1
0 ||P (α(z)) − Q(β(z))|| · ||α′(z) + β′(z)|| · dz. If

we define γ(t) = (α(t), β(t)), then the first term of the integrand is equal to h(γ(t)). Next,
we reparametrise γ(t) in terms of its L1 arc length in R. For our reparametrised γ, we get
||α′(z) + β′(z)|| = 1, so the second term of the integrand is equal to 1. Finally, we prove that
the parameter z ranges from 0 to p + q, and note that γ(0) = (0, 0), γ(p + q) = (p, q), γ is
differentiable and non-decreasing, and ||γ′(z)||R = 1. This gives us the stated formula. ◀

2.2 Properties of the parameter space
Before providing the algorithm for minimising our line integral, we first provide some
structural insights of our parameter space R = [0, p] × [0, q]. Recall that P : [0, p] → R maps
points on the x-axis of R to points on the one-dimensional curve P , and analogously for Q

and the y-axis. Hence, each point (x, y) ∈ R is associated with a pair of points P (x) and
Q(y), so that the height function h(x, y) = ||P (x) − Q(y)|| is simply the distance between
the associated pair of points. Divide the x-axis of R into n − 1 segments that are associated
with the n − 1 segments p1p2, . . . , pn−1pn of P . Divide the y-axis of R into m − 1 segments
analogously. In this way, we divide R into (n − 1)(m − 1) cells, which we label as follows:

▶ Definition 2 (cell). Cell (i, j) is the region of the parameter space associated with segment
pipi+1 on the x-axis, and qjqj+1 on the y-axis, where i ∈ [n − 1] and j ∈ [m − 1].

For points (x, y) restricted to a single cell (i, j), the functions P (x) and Q(y) are linear.
Hence, P (x) − Q(y) is also linear, so h(x, y) = ||P (x) − Q(y)|| is a piecewise linear surface
with at most two pieces. If h(x, y) consists of two linear surface pieces, the boundary of these
two pieces is along a segment where h(x, y) = 0. Since we are working with one-dimensional
curves, we have two cases for the relative directions of the vectors −−−−→pipi+1 and −−−−→qjqj+1. If the
vectors are in the same direction, since −−−−→pipi+1 and −−−−→qjqj+1 are both parametrised by their arc
lengths, they must be travelling in the same direction and at the same rate. Therefore, the
line satisfying h(x, y) = 0 has slope 1 in R. Using a similar argument, if −−−−→pipi+1 and −−−−→qjqj+1
are in opposite direction, then the line satisfying h(x, y) = 0 has slope −1 in R.

The line with zero height and slope 1 will play an important role in our algorithm. We
call these lines valleys. If a path γ travels along a valley, the line integral accumulates zero
cost as long as it remains on the valley, since the valley has zero height.

▶ Definition 3 (valley). In a cell, the set of points (x, y) satisfying h(x, y) = 0 forms a line,
moreover, the line has slope 1 or −1. If the line has slope 1, we call it a valley.

3 Algorithm

Our approach is a dynamic programming algorithm over the cells in the parameter space,
which we defined in Section 2.1. To the best of our knowledge, all the existing approximation
algorithms and heuristics [8, 9, 26] use a dynamic programming approach, or simply reduce
the problem to a shortest path computation [27]. Next, we highlight the key difference
between our approach and previous approaches.

In previous algorithms, sampling is used along cell boundaries to obtain a discrete set
of grid points. Then, the optimal path between the discrete set of grid points is computed.
The shortcoming of previous approaches is that an inherent error is introduced by the grid
points, where the error depends on the fineness of the grid that is used.



K. Buchin, A. Nusser, and S. Wong 22:7

In our algorithm, we consider all points along cell boundaries, not just a discrete subset.
However, this introduces a challenge whereby we need to compute optimal paths between
continuous segments of points. To overcome this obstacle, we devise a new method of
propagating continuous functions across a cell. The main difficulty in analysing the running
time of our algorithm lies in bounding the total complexity of the propagated continuous
functions, across all cells in the dynamic program.

Our improvement over previous approaches is in many ways similar to previous algorithms
for the weighted region problem [29], and the partial curve matching problem [14]. In all
three problems, a line integral is minimised over a given terrain, and an optimal path is
computed instead of relying on a sampled grid. However, our problem differs from that
of [29] and [14] in two important ways. First, in both [29] and [14], the terrain is a piecewise
constant function, whereas in our problem, the terrain is a piecewise linear function. Second,
our main difficulty is bounding the complexity of the propagated functions. In [29], a different
technique is used that does not propagate functions. In [14], the propagated functions are
concave, piecewise linear and their complexities remain relatively low. In our algorithm,
the propagated functions are piecewise quadratic and their complexities increase at a much
higher, albeit bounded, rate.

3.1 Dynamic program
Our dynamic program is performed with respect to the following cost function.

▶ Definition 4 (cost function). Let (x, y) ∈ R, we define

cost(x, y) = inf
γ∈Ψ(x,y)

∫ x+y

0
h(γ(z)) · dz.

Recall from Lemma 1 that dCDT W (P, Q) = infγ∈Ψ(p,q)
∫ p+q

0 h(γ(z)) · dz, which implies
that cost(p, q) = dCDT W (P, Q). Another way of interpreting Definition 4 is that cost(x, y)
is equal to dCDT W (Px, Qy), where Px is the subcurve from P (0) to P (x), and Qy is the
subcurve from Q(0) to Q(y).

Recall from Section 2.2 that the parameter space is divided into (n − 1)(m − 1) cells. Our
dynamic program solves cells one at a time, starting from the bottom left cell and working
towards the top right cell. A cell is considered solved if we have computed the cost of every
point on the boundary of the cell. Once we solve the top right cell of R, we obtain the cost
of the top right corner of R, which is cost(p, q) = dCDT W (P, Q), and we are done.

In the base case, we compute the cost of all points lying on the lines x = 0 and y = 0.
Note that if x = 0 or y = 0, then the function cost(x, y) is simply a function in terms of y or
x respectively. In general, the function along any cell boundary – top, bottom, left or right –
is a univariate function in terms of either x or y. We call these boundary cost functions.

▶ Definition 5 (boundary cost function). A boundary cost function is cost(x, y), but restricted
to a top, bottom, left or right boundary of a cell. If it is restricted to a top or bottom (resp.
left or right) boundary, the boundary cost function is univariate in terms of x (resp. y).

In the propagation step, we use induction to solve the cell (i, j) for all 1 ≤ i ≤ n − 1
and 1 ≤ j ≤ m − 1. We assume the base case. We also assume as an inductive hypothesis
that, if i ≥ 2, then the cell (i − 1, j) is already solved, and if j ≥ 2, then the cell (i, j − 1) is
already solved. Our assumptions ensure that we receive as input the boundary cost function
along the bottom and left boundaries of the cell (i, j). In other words, we use the boundary
cost functions along the input boundaries to compute the boundary cost functions along the
output boundaries.

SoCG 2022



22:8 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

▶ Definition 6 (input/output boundary). The input boundaries of a cell are its bottom and
left boundaries. The output boundaries of a cell are its top and right boundaries.

We provide details of the base case in Section 3.2, and the propagation step in Section 3.3.

3.2 Base case
The base case is to compute the cost of all points along the x-axis. The y-axis can be handled
analogously. Recall that cost(x, y) = infγ∈Ψ(x,y)

∫ x+y

0 h(γ(z)) ·dz. Therefore, for points (x, 0)
on the x-axis, we have cost(x, 0) = infγ∈Ψ(x,0)

∫ x

0 h(γ(z)) · dz. Since γ(z) is non-decreasing
in x- and y-coordinates, and ||γ′(z)|| = 1, we must have that γ′(z) = (1, 0). By integrating
from 0 to z, we get γ(z) = (z, 0), which implies that cost(x, 0) =

∫ x

0 h(z, 0) · dz.
Consider, for 1 ≤ i ≤ n−1, the bottom boundary of the cell (i, 1). The height function h(z)

is a piecewise linear function with at most two pieces, so its integral cost(x, 0) =
∫ x

0 h(z, 0) ·dz

is a continuous piecewise quadratic function with at most two pieces. Similarly, since the
height function along x = 0 is a piecewise linear function with at most 2(n − 1) pieces, the
boundary cost function along x = 0 is a continuous piecewise quadratic function with at
most 2(n − 1) pieces. For boundaries not necessarily on the x- or y-axis, we claim that the
boundary cost function is still a continuous piecewise-quadratic function.

▶ Lemma 7. The boundary cost function is a continuous piecewise-quadratic function.

We defer the proof of Lemma 7 to the full version of this paper [15]. Although the
boundary cost function has at most two pieces for cell boundaries on the x- or y-axis, in the
general case it may have more than two pieces. As previously stated, the main difficulty in
bounding our running time analysis in Section 3.4 is to bound complexities of the boundary
cost functions.

3.3 Propagation step
First, we define optimal paths in the parameter space. We use optimal paths to propagate
the boundary cost functions across cells in the parameter space. Note that the second part
of Definition 8 is a technical detail to ensure the uniqueness of optimal paths. Intuitively, the
optimal path from s to t is the path minimising the path integral, and if there are multiple
such paths, the optimal path is the one with maximum y-coordinate.

▶ Definition 8 (optimal path). Given t = (xt, yt) ∈ R, its optimal path is a path γ ∈ Ψ(xt, yt)
minimising the integral

∫ xt+yt

0 h(γ(z)) · dz. If there are multiple such curves that minimise
the integral, the optimal path is the one with maximum y-coordinate (or formally, the one
with maximum integral of its y-coordinates).

Suppose t is on the output boundary of the cell (i, j). Consider the optimal path γ that
starts at (0, 0) and ends at t. Let s be the first point where γ enters the cell (i, j). We
consider the subpath from s to t, which is entirely contained in the cell (i, j). In the next
lemma, we show that the shape of the subpath from s to t is restricted, in particular, there
are only three types of paths that we need to consider.

▶ Lemma 9. Let t be a point on the output boundary of a cell. Let s be the first point where
the optimal path to t enters the cell. There are only three types of paths from s to t:
(A) The segments of the cell are in opposite directions. Then all paths between s and t have

the same cost.



K. Buchin, A. Nusser, and S. Wong 22:9

(B) The segments of the cell are in the same direction and the optimal path travels towards
the valley, then along the valley, then away from the valley.

(C) The segments of the cell are in the same direction and the optimal path travels towards
the valley, then away from the valley.

For an illustration of these three types of paths, see Figure 3.

(A)

s

t

(B)

s

t

(C)

s

t

Figure 3 The three types of optimal paths through a cell.

Proof (Sketch). A similar proof can be found in Lemma 4 of Maheswari et al. [27].
Nonetheless, due to slight differences, we provide a full proof in the full version [15].
Specifically, we consider one-dimensional curves, and use the L1 norm in parameter space to
obtain a significantly stronger statement for type (A) paths.

We summarise the main steps here. Define γ1 to be an optimal path to s, followed by
any path from s to t. Define γ2 to be an optimal path to s, followed by either a type (A),
(B) or (C) path from s to t. If the segments are in opposite directions, we use a type (A)
path, whereas if the segments are in the same direction, we use either a type (B) or type (C)
path. The main step is to show that h(γ1(z)) ≥ h(γ2(z)), as this would imply that γ2 is an
optimal path from s to t. In fact, if the segments are in the opposite directions, we get that
h(γ1(z)) = h(γ2(z)), implying that all type (A) paths from s to t have the same cost. ◀

We leverage Lemma 9 to propagate the boundary cost function from the input boundaries
to the output boundaries of a cell. We provide an outline of our propagation procedure in
one of the three cases, that is, for type (B) paths. These paths are the most interesting
to analyse, and looking at this special case provides us with some intuition for the other
cases. For type (B) paths, we compute the cost function along the output boundary in three
consecutive steps. We first list the steps, then we describe the steps in detail.

1. We compute the cost function along the valley in a restricted sense.
2. We compute the cost function along the valley in general.
3. We compute the cost function along the output boundary.

In the first step, we restrict our attention only to paths that travel from the input
boundary towards the valley. This is the first segment in the type (B) path as defined in
Lemma 9. We call this first segment a type (B1) path, see Figure 4. Define the type (B1)
cost function to be the cost function along the valley if we can only use type (B1) paths from
the input boundary to the valley. The type (B1) cost function is simply the cost function
along the bottom or left boundary plus the integral of the height function along the type
(B1) path. The height function along the type (B1) path is a linear function, so the integral
is a quadratic function. To obtain the type (B1) cost function, we add the quadratic function
for the type (B1) path to the cost function along an input boundary. We combine the type
(B1) cost functions along the bottom and the left boundaries by taking their lower envelope.

SoCG 2022



22:10 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

(B1) (B2)

Figure 4 The type (B1) and type (B2) paths from the bottom boundary to the valley.

In the second step, we compute the cost function along the valley in general. It suffices to
consider paths that travel from the input boundary towards the valley, and then travel along
the valley. This path is the first two segments in a type (B) path as defined in Lemma 9. We
call these first two segments a type (B2) path, see Figure 4. Since the height function is zero
along the valley, if we can reach a valley point with a particular cost with a type (B1) path,
then we can reach all points on the valley above and to the right of it with a type (B2) path
with the same cost. Therefore, the type (B2) cost function is the cumulative minimum of
the type (B1) cost function, see Figure 5. Note that the type (B2) cost function may have
more quadratic pieces than the type (B1) cost function. For example, in Figure 5, the type
(B2) cost function has twice as many quadratic pieces as the type (B1) cost function, since
each quadratic piece in the type (B1) cost function splits into two quadratic pieces in the
type (B2) cost function – the original quadratic piece plus an additional horizontal piece.

(B1)

(B2)

cost

V

Figure 5 The type (B2) cost function plotted over its position along the valley V . The type (B2)
cost function is the cumulative minimum of the type (B1) cost function.

In the third step, we compute the cost function along the output boundary, given the
type (B2) cost function along the valley. A type (B) path is a type (B2) path appended
with a horizontal or vertical path from the valley to the boundary. The height function of
the appended path is a linear function, so its integral is a quadratic function. We add this
quadratic function to the type (B2) function along the valley to obtain the output function.
This completes the description of the propagation step in the type (B) paths case.

Using a similar approach, we can compute the cost function along the output boundary
in the type (A) and type (C) paths as well. The propagation procedure differs slightly for
each of the three path types, for details see the full version [15]. Recall that due to the
second step of the type (B) propagation, each quadratic piece along the input boundary may
propagate to up to two pieces along the output boundary. In general, we claim that each
quadratic piece along the input boundary propagates to at most a constant number of pieces
along the output boundary. Moreover, given a single input quadratic piece, this constant
number of output quadratic pieces can be computed in constant time.



K. Buchin, A. Nusser, and S. Wong 22:11

▶ Lemma 10. Each quadratic piece in the input boundary cost function propagates to at
most a constant number of pieces along the output boundary. Propagating a quadratic piece
takes constant time.

We prove Lemma 10 in the full version [15]. We can now state our propagation step in
general. Divide the input boundaries into subsegments, so that for each subsegment, the cost
function along that subsegment is a single quadratic piece. Apply Lemma 10 to a subsegment
to compute in constant time a piecewise quadratic cost function along the output boundary.
Apply this process to all subsegments to obtain a set of piecewise quadratic cost functions
along the output boundary. Combine these cost functions by taking their lower envelope.
Return this lower envelope as the boundary cost function along the output boundary. This
completes the statement of our propagation step. Its correctness follows from construction.

3.4 Running time analysis
We start the section with a useful lemma. Essentially the same result is stated without proof
as Observation 3.3 in [14]. For the sake of completeness, we provide a proof sketch.

▶ Lemma 11. Let γ1, γ2 be two optimal paths. These paths cannot cross, i.e., there are no
z1, z2 such that γ1(z1) is below γ2(z1) and γ1(z2) is above γ2(z2).

Proof (Sketch). We provide a full proof in [15]. We summarise the main steps. Let u be
the first point where a pair of optimal paths crosses. We show that the crossing paths, up to
u, must have been identical, so the paths cannot cross at u. ◀

Define N to be the total number of quadratic pieces in the boundary cost functions over
all boundaries of all cells. We will show that the running time of our algorithm is O(N).

▶ Lemma 12. The running time of our dynamic programming algorithm is O(N).

Proof. The running time of the dynamic program is dominated by the propagation step. Let
Ii,j denote the input boundaries of the cell (i, j). Let |Ii,j | denote the number of quadratic
functions in the input boundary cost function. By Lemma 10, each piece only propagates
to a constant number of new pieces along the output boundary, and these pieces can be
computed in constant time. The final piecewise quadratic function is the lower envelope of
all the new pieces, of which there are O(|Ii,j |) many.

We use Lemma 11 to speed up the computation of the lower envelope, so that this step
takes only O(|Ii,j |) time. Since optimal paths do not cross, it implies that the new pieces
along the output boundary appear in the same order as their input pieces. We perform the
propagation in order of the input pieces. We maintain the lower envelope of the new pieces
in a stack. For each newly propagated piece, we remove the suffix that is dominated by the
new piece and then add the new piece to the stack. Since each quadratic piece can be added
to the stack at most once, and removed from the stack at most once, the entire operation
takes O(|Ii,j |) time. Summing over all cells, we obtain an overall running time of O(N). ◀

Note that Lemma 12 does not yet guarantee that our algorithm runs in polynomial
time as we additionally need to bound N by a polynomial. Lemma 10 is of limited help.
The lemma states that each piece on the input boundary propagates to at most a constant
number of pieces on the output boundary. Recall that in Section 3.3, we illustrated a type
(B) path that resulted in an output boundary having twice as many quadratic pieces as its
input boundary. The doubling occurred in the second step of the propagation of type (B)
paths, see Figure 5. If this doubling behaviour were to occur for all our cells in our dynamic

SoCG 2022



22:12 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

program, we would get up to N = Ω(2n+m) quadratic pieces in the worst case, where n and
m are the complexities of the polygonal curves P and Q. To obtain a polynomial running
time, we show that although this doubling behaviour may occur, it does not occur too often.

3.5 Bounding the cost function’s complexity
Our bound comes in two parts. First, we subdivide the boundaries in the parameter space
into subsegments and show, in Lemma 13, that there are O((n + m)3) subsegments in total.
Second, in Lemma 15, we show that each subsegment has at most O((n + m)2) quadratic
pieces. Putting this together in Theorem 16 gives N = O((n + m)5).

We first define the O((n + m)3) subsegments. The intuition behind the subsegments is
that for any two points on the subsegment, the optimal path to either of those two points is
structurally similar. We can deform one of the optimal paths to the other without passing
through any cell corner, or any points where a valley meets a boundary.

Formally, define Ak to be the union of the input boundaries of the cells (i, j) such that
i + j = k. Alternatively, Ak is the union of the output boundaries of the cells (i, j) such
that i + j + 1 = k. Next, construct the partition Ak := {Ak,1, Ak,2, . . . , Ak,L} of Ak into
subsegments. Define the subsegment Ak,ℓ to be the segment between the ℓth and (ℓ + 1)th

critical point along Ak. We define a critical point to be either (i) a cell corner, (ii) a point
where the valley meets the boundary, or (iii) a point where the optimal path switches from
passing through a subsegment Ak−1,ℓ′ to a different subsegment Ak−1,ℓ′′ .

Let |Ak| denote the number of piecewise quadratic cost functions Ak,ℓ along Ak. Let |Ak,ℓ|
denote the number of pieces in the piecewise quadratic cost function along the subsegment Ak,ℓ.
Thus, we can rewrite the total number of quadratic functions N as:

N =
n+m−1∑

k=2

|Ak|∑
ℓ=1

|Ak,ℓ|.

We first show that the number of subsegments |Ak| is bounded by O(k2) and then proceed
to show that |Ak,ℓ| is bounded by O(k2) for all k, ℓ.

▶ Lemma 13. For any k ∈ [n + m], we have |Ak| ≤ 2k2.

Proof. We prove the lemma by induction. Since the cell (1, 1) has at most one valley, and since
the input boundary A2 has one cell corner, we have |A2| ≤ 3. For the inductive step, note that
there are at most 2k cell corners on Ak, and there are at most k points where a valley meets
a boundary on Ak. By the inductive hypothesis, there are at most 2(k − 1)2 subsegments on
Ak−1. And as optimal paths do not cross by Lemma 11, each subsegment of Ak−1 contributes
at most once to the optimal path switching from one subsegment to a different one on Ak.
Thus, for k ≥ 3, we obtain |Ak| ≤ 2(k − 1)2 + 2k + k + 1 = 2k2 − k + 3 ≤ 2k2. ◀

Next, we show that |Ak,ℓ| is bounded by O(k2) for all k, ℓ. We proceed by induction.
Recall that, due to the third type of critical point, all optimal paths to Ak,ℓ pass through
the same subsegment of Ak−1, namely Ak−1,ℓ′ for some ℓ′. Our approach is to assume the
inductive hypothesis for |Ak−1,ℓ′ |, and bound |Ak,ℓ| relative to |Ak−1,ℓ′ |. We already have
a bound of this form, specifically, Lemma 10 implies that |Ak,ℓ| ≤ c · |Ak−1,ℓ′ |, for some
constant c > 1. Unfortunately, this bound does not rule out an exponential growth in the
cost function complexity. We instead prove the following improved bound:



K. Buchin, A. Nusser, and S. Wong 22:13

▶ Lemma 14. Let |Ak,ℓ| be a subsegment on Ak, and suppose all optimal paths to |Ak,ℓ| pass
through subsegment |Ak−1,ℓ′ | on Ak−1. Then

|Ak,ℓ| ≤ |Ak−1,ℓ′ | + D(Ak−1,ℓ′),
D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1,

where D(·) counts, for a given subsegment, the number of distinct pairs (a, b) over all
quadratics ax2 + bx + c in the boundary cost function for that subsegment.

We prove Lemma 14 in [15]. The lemma obtains a polynomial bound on the growth
of the number of quadratic pieces by showing, along the way, a polynomial bound on the
growth of the number of distinct (a, b) pairs over the quadratics ax2 + bx + c.

As we consider this lemma to be one of the main technical contributions of the paper, we
will briefly outline its intuition. It is helpful for us to revisit the doubling behaviour of type
(B) paths. Recall that in our example in Figure 5, we may have |Ak,ℓ| = 2|Ak−1,ℓ′ |. This
doubling behaviour does not contradict Lemma 14, so long as all quadratic functions along
Ak−1,ℓ′ have distinct (a, b) pairs. In fact, for |Ak,ℓ| = 2|Ak−1,ℓ′ | to occur, each quadratic
function in |Ak−1,ℓ′ | must create a new horizontal piece in the cumulative minimum step.
But for any two quadratic functions with the same (a, b) pair, only one of them can to create
a new horizontal piece, since the horizontal piece starts at the x-coordinate − b

2a . Therefore,
we must have had that all quadratic functions along Ak−1,ℓ′ have distinct (a, b) pairs. In [15],
we generalise this argument and prove |Ak,ℓ| ≤ |Ak−1,ℓ′ | + D(Ak−1,ℓ′).

We perform a similar analysis in the special case of type (B) paths to give the intuition
behind D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1. For type (B) paths, the number of distinct (a, b) pairs
changes only in the cumulative minimum step. All pieces along Ak,ℓ can either be mapped
to a piece along Ak−1,ℓ′ , or it is a new horizontal piece. However, all new horizontal pieces
have an (a, b) pair of (0, 0), so the number of distinct (a, b) pairs increases by only one. For
the full proof of Lemma 14 for all three path types, refer to the full version [15].

With Lemma 14 in mind, we can now prove a bound on |Ak,ℓ| by induction.

▶ Lemma 15. For any k ∈ [n + m] and Ak,ℓ ∈ Ak we have |Ak,ℓ| ≤ k2.

Proof. Note that in the base case D(A2,ℓ) ≤ 2 and |A2,ℓ| ≤ 4 for any A2,ℓ ∈ A2. By
Lemma 14, we get D(Ak,ℓ) ≤ D(Ak−1,ℓ′) + 1, for some subsegment Ak−1,ℓ′ on Ak−1. By a
simple induction, we get D(Ak,ℓ) ≤ k for any k ∈ [n + m]. Similarly, assuming |Ak−1,ℓ| ≤
(k − 1)2 for any Ak−1,ℓ ∈ Ak−1, we use Lemma 14 to inductively obtain |Ak,ℓ| ≤ |Ak−1,ℓ′ | +
D(Ak−1,ℓ′) + 1 ≤ |Ak−1,ℓ′ | + k ≤ (k − 1)2 + k − 1 + 1 ≤ k2 for any Ak,ℓ ∈ Ak. ◀

Using our lemmas, we can finally bound N , and thereby the overall running time.

▶ Theorem 16. The Continuous Dynamic Time Warping distance between two 1-dimensional
polygonal curves of length n and m, respectively, can be computed in time O((n + m)5).

Proof. Using Lemmas 13 and 15, we have

N =
n+m−1∑

k=2

|Ak|∑
ℓ=1

|Ak,ℓ| ≤
n+m∑
k=2

|Ak|∑
ℓ=1

k2 ≤
n+m∑
k=2

2k4 ≤ 2(n + m)5.

Thus, the overall running time of our algorithm is O((n + m)5), by Lemma 12. ◀

SoCG 2022



22:14 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

4 Conclusion

We presented the first exact algorithm for computing CDTW of one-dimensional curves,
which runs in polynomial time. Our main technical contribution is bounding the total
complexity of the functions which the algorithm propagates, to bound the total running
time of the algorithm. One direction for future work is to improve the upper bound on the
total complexity of the propagated functions. Our O(n5) upper bound is pessimistic, for
example, we do not know of a worst case instance. Another direction is to compute CDTW
in higher dimensions. In two dimensions, the Euclidean L2 norm is the most commonly used
norm, however, this is likely to result in algebraic issues similar to that for the weighted
region problem [18]. One way to avoid these algebraic issues is to use a polyhedral norm,
such as the L1, L∞, or an approximation of the L2 norm [21, 25]. This would result in an
approximation algorithm similar to [27], but without a dependency on the spread.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, pages 59–78. IEEE Computer Society, 2015.

2 Pankaj K. Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences. In Sándor P. Fekete and Anna Lubiw,
editors, 32nd International Symposium on Computational Geometry, SoCG 2016, volume 51
of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995.

4 Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-temporal data mining: A survey
of problems and methods. ACM Comput. Surv., 51(4):83:1–83:41, 2018.

5 Selcan Kaplan Berkaya, Alper Kursat Uysal, Efnan Sora Gunal, Semih Ergin, Serkan Gunal,
and M Bilginer Gulmezoglu. A survey on ECG analysis. Biomedical Signal Processing and
Control, 43:216–235, 2018.

6 Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in time
series. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, Knowledge Discovery in
Databases: Papers from the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994.
Technical Report WS-94-03, pages 359–370. AAAI Press, 1994.

7 Krishnan Bhaskaran, Antonio Gasparrini, Shakoor Hajat, Liam Smeeth, and Ben Armstrong.
Time series regression studies in environmental epidemiology. International Journal of
Epidemiology, 42(4):1187–1195, 2013.

8 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle
tracking data. In Proceedings of the 31st International Conference on Very Large Data Bases,
VLDB 2005, pages 853–864. ACM, 2005.

9 Milutin Brankovic, Kevin Buchin, Koen Klaren, André Nusser, Aleksandr Popov, and Sampson
Wong. (k, ℓ)-medians clustering of trajectories using continuous dynamic time warping. In
SIGSPATIAL ’20: 28th International Conference on Advances in Geographic Information
Systems, pages 99–110. ACM, 2020.

10 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, pages 661–670. IEEE Computer Society, 2014.

11 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, pages 79–97. IEEE Computer Society, 2015.

12 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance. J.
Comput. Geom., 7(2):46–76, 2016.



K. Buchin, A. Nusser, and S. Wong 22:15

13 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discret. Comput. Geom.,
58(1):180–216, 2017.

14 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the fréchet distance. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2009, pages 645–654. SIAM, 2009.

15 Kevin Buchin, André Nusser, and Sampson Wong. Computing continuous dynamic time
warping of time series in polynomial time. CoRR, abs/2203.04531, 2022.

16 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2887–2901. SIAM,
2019.

17 Maike Buchin. On the computability of the Fréchet distance between triangulated surfaces.
PhD thesis, Freie Universität Berlin, 2007.

18 Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, Megan Owen, and Michiel H. M.
Smid. A note on the unsolvability of the weighted region shortest path problem. Comput.
Geom., 47(7):724–727, 2014.

19 Ian R Cleasby, Ewan D Wakefield, Barbara J Morrissey, Thomas W Bodey, Steven C Votier,
Stuart Bearhop, and Keith C Hamer. Using time-series similarity measures to compare animal
movement trajectories in ecology. Behavioral Ecology and Sociobiology, 73(11):1–19, 2019.

20 Anne Driemel, Amer Krivosija, and Christian Sohler. Clustering time series under the Fréchet
distance. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, pages 766–785. SIAM, 2016.

21 Richard M Dudley. Metric entropy of some classes of sets with differentiable boundaries.
Journal of Approximation Theory, 10(3):227–236, 1974.

22 Alon Efrat, Quanfu Fan, and Suresh Venkatasubramanian. Curve matching, time warping,
and light fields: New algorithms for computing similarity between curves. J. Math. Imaging
Vis., 27(3):203–216, 2007.

23 Philippe Esling and Carlos Agón. Time-series data mining. ACM Comput. Surv., 45(1):12:1–
12:34, 2012.

24 Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. ACM Trans. Algorithms, 14(4):50:1–50:17, 2018.

25 Sariel Har-Peled and Mitchell Jones. Proof of Dudley’s convex approximation. arXiv preprint,
2019. arXiv:1912.01977.

26 Koen Klaren. Continuous dynamic time warping for clustering curves. Master’s thesis,
Eindhoven University of Technology, 2020.

27 Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer. Approximating the integral
Fréchet distance. Comput. Geom., 70-71:13–30, 2018.

28 Jessica Meade, Dora Biro, and Tim Guilford. Homing pigeons develop local route stereotypy.
Proceedings of the Royal Society B: Biological Sciences, 272(1558):17–23, 2005.

29 Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted region problem: Finding
shortest paths through a weighted planar subdivision. J. ACM, 38(1):18–73, 1991.

30 Meinard Müller. Dynamic time warping. In Information Retrieval for Music and Motion,
pages 69–84. Springer, 2007.

31 Mario E. Munich and Pietro Perona. Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification. In Proceedings of the
International Conference on Computer Vision, 1999, pages 108–115. IEEE Computer Society,
1999.

32 Cory Myers, Lawrence Rabiner, and Aaron Rosenberg. Performance tradeoffs in dynamic time
warping algorithms for isolated word recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 28(6):623–635, 1980.

SoCG 2022

http://arxiv.org/abs/1912.01977


22:16 Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time

33 Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49,
1978.

34 Pavel Senin. Dynamic time warping algorithm review. Information and Computer Science
Department University of Hawaii at Manoa Honolulu, USA, 855(1-23):40, 2008.

35 Bruno Serra and Marc Berthod. Subpixel contour matching using continuous dynamic
programming. In Conference on Computer Vision and Pattern Recognition, CVPR 1994,
pages 202–207. IEEE, 1994.

36 E. Sriraghavendra, K. Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In 9th International Conference on Document
Analysis and Recognition, ICDAR 2007, pages 461–465. IEEE Computer Society, 2007.

37 Yaguang Tao, Alan Both, Rodrigo I Silveira, Kevin Buchin, Stef Sijben, Ross S Purves,
Patrick Laube, Dongliang Peng, Kevin Toohey, and Matt Duckham. A comparative analysis
of trajectory similarity measures. GIScience & Remote Sensing, pages 1–27, 2021.

38 Charles C. Tappert, Ching Y. Suen, and Toru Wakahara. The state of the art in online
handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(8):787–808, 1990.

39 Stephen J Taylor. Modelling financial time series. World Scientific, 2008.
40 Kevin Toohey and Matt Duckham. Trajectory similarity measures. ACM SIGSPATIAL Special,

7(1):43–50, 2015.
41 Taras K Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,

1968.
42 Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and

Eamonn J. Keogh. Experimental comparison of representation methods and distance measures
for time series data. Data Min. Knowl. Discov., 26(2):275–309, 2013.

43 Öz Yilmaz. Seismic data analysis: Processing, inversion, and interpretation of seismic data.
Society of exploration geophysicists, 2001.



Long Plane Trees
Sergio Cabello #

Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Michael Hoffmann #

Department of Computer Science, ETH Zürich, Switzerland

Katharina Klost #

Institut für Informatik, Freie Universität Berlin, Germany

Wolfgang Mulzer #

Institut für Informatik, Freie Universität Berlin, Germany

Josef Tkadlec #

Department of Mathematics, Harvard University, Cambridge, MA, USA

Abstract
In the longest plane spanning tree problem, we are given a finite planar point set P, and our task is
to find a plane (i.e., noncrossing) spanning tree TOPT for P with maximum total Euclidean edge
length |TOPT|. Despite more than two decades of research, it remains open if this problem is NP-hard.
Thus, previous efforts have focused on polynomial-time algorithms that produce plane trees whose
total edge length approximates |TOPT|. The approximate trees in these algorithms all have small
unweighted diameter, typically three or four. It is natural to ask whether this is a common feature
of longest plane spanning trees, or an artifact of the specific approximation algorithms.

We provide three results to elucidate the interplay between the approximation guarantee and the
unweighted diameter of the approximate trees. First, we describe a polynomial-time algorithm to
construct a plane tree TALG with diameter at most four and |TALG| ≥ 0.546 · |TOPT|. This constitutes
a substantial improvement over the state of the art. Second, we show that a longest plane tree
among those with diameter at most three can be found in polynomial time. Third, for any candidate
diameter d ≥ 3, we provide upper bounds on the approximation factor that can be achieved by a
longest plane tree with diameter at most d (compared to a longest plane tree without constraints).

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems; Theory of computation → Approximation algorithms analysis; Theory of computation →
Computational geometry; Mathematics of computing → Trees

Keywords and phrases geometric network design, spanning trees, plane straight-line graphs, approx-
imation algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.23

Related Version Full Version: https://arxiv.org/abs/2101.00445 [11]

Funding Sergio Cabello: Supported by the Slovenian Research Agency (P1-0297, J1-9109, J1-8130,
J1-8155, J1-1693, J1-2452).
Michael Hoffmann: Supported by the Swiss National Science Foundation within the collaborative
DACH project Arrangements and Drawings as SNSF Project 200021E-171681.
Wolfgang Mulzer : Supported in part by ERC StG 757609.

1 Introduction

Geometric network design is a common and well-studied task in computational geometry
and combinatorial optimization [18, 21, 24, 25]. In this family of problems, we are given a set
P of points, and our task is to connect P into a (geometric) graph that has certain favorable
properties. Not surprisingly, this general question has captivated the attention of researchers

© Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer, and
Josef Tkadlec;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergio.cabello@fmf.uni-lj.si
https://orcid.org/0000-0002-3183-4126
mailto:hoffmann@inf.ethz.ch
https://orcid.org/0000-0001-5307-7106
mailto:kathklost@inf.fu-berlin.de
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
mailto:tkadlec@math.harvard.edu
https://orcid.org/0000-0002-1097-9684
https://doi.org/10.4230/LIPIcs.SoCG.2022.23
https://arxiv.org/abs/2101.00445
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Long Plane Trees

for a long time, and we can find countless variants, depending on which restrictions we put on
the graph that connects P and which criteria of this graph we would like to optimize. Typical
graph classes of interest include matchings, paths, cycles, trees, or general plane (noncrossing)
graphs, i.e., graphs, whose straight-line embedding on P does not contain any edge crossings.
Typical quality criteria include the total edge length [3, 15, 23, 28], the maximum length
(bottleneck) edge [6,17], the maximum degree [4,12,19,31], the dilation [18,26,29], or the
stabbing number [27,33] of the graph. Many famous problems from computational geometry
fall into this general setting. For example, if our goal is to minimize the total edge length,
while restricting our considerations to paths, trees, or triangulations, respectively, we are
faced with the venerable problems of finding an optimum TSP tour [21], a Euclidean minimum
spanning tree [15], or a minimum weight triangulation [28] for P. These three examples
also illustrate the wide variety of complexity aspects that we may encounter in geometric
network design problems: the Euclidean TSP is known to be NP-hard [30], but it admits a
PTAS [3,23]. On the other hand, it is possible to find a Euclidean minimum spanning tree
for P in polynomial time [15] (even though, curiously, the associated decision problem is not
known to be solvable by a polynomial-time Turing machine, see, e.g., [9]). The minimum
weight triangulation problem is also known to be NP-hard [28], but the existence of a PTAS
is still open; however, a QPTAS is known [32].

In this work, we are interested in the interaction of two specific requirements for a
geometric network design problem, namely the two objectives of obtaining a plane graph
and of optimizing the total edge length. For the case that we want to minimize the total
edge length of the resulting graph, these two goals are often in perfect harmony: the shortest
Euclidean TSP tour and the shortest Euclidean minimum spanning tree are automatically
plane, as can be seen by a simple application of the triangle inequality. In contrast, if our
goal is to maximize the total edge length, while obtaining a plane graph, much less is known.

This family of problems was studied by Alon, Rajagopalan, and Suri [1], who considered
computing a longest plane matching, a longest plane Hamiltonian path, and a longest plane
spanning tree for a planar point set P in general position. They conjectured that all three
problems are NP-hard, but as far as we know, this is still open. The situation is similar
for the problem of finding a maximum weight triangulation for P: here, we have neither an
NP-hardness proof nor a polynomial time algorithm [13]. If we omit the planarity condition,
then the problem of finding a longest Hamiltonian path (the geometric maximum TSP
problem) is known to be NP-hard in dimension three and above, while the two-dimensional
case remains open [5]. On the other hand, we can find a longest (typically not plane) tree on
P in polynomial time, using classic greedy algorithms [14, Chapters 16.4, 23].

Longest plane spanning trees. We focus on the specific problem of finding a longest plane
(i.e. noncrossing) tree for a given set P of n ≥ 3 points in the plane in general position (i.e.,
no three points in P are collinear). Such a tree is necessarily spanning. The general position
assumption was also used in previous work [1, 16]; without it, one should specify whether
overlapping edges are allowed, an additional complication that we would like to avoid.

If P is in convex position, the longest plane tree for P can be found in polynomial time
on a real RAM, by adapting standard dynamic programming methods for plane structures
on convex point sets [20, 22]. On the other hand, for an arbitrary point set P, the problem
is conjectured – but not known – to be NP-hard [1]. Hence, past research has focused on
designing polynomial-time approximation algorithms. Typically, these algorithms construct
several “simple” spanning trees for P of small (unweighted) diameter, and one then argues
that at least one such tree is sufficiently long. In a seminal work, Alon et al. [1] showed that a



S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:3

longest star (a plane tree with diameter two) on P yields a 0.5-approximation for the longest
(not necessarily plane) spanning tree of P . They further argued that this bound is essentially
tight for point sets that consist of two large clusters far away from each other. Dumitrescu
and Tóth [16] refined this algorithm by adding two additional families of candidate trees,
now with diameter four. They showed that at least one member of this extended set of
candidates provides a 0.502-approximation, which was further improved to 0.503 by Biniaz
et al. [8]. In all these results, the approximation factor is analyzed by comparing the output
of the algorithm with the length of a longest (not necessarily plane) spanning tree. Such a
tree may be longer by a factor of up to π/2 > 1.5 than a maximum-length plane tree [1], as
witnessed by, e.g., a large set of points spaced uniformly on a unit circle. While the ratio
between the lengths of the longest plane tree and the longest (possibly crossing) tree is an
interesting number in itself, the objective is to construct longest plane trees and thus it is
better to compare the length of the constructed plane trees against the true optimum, that
is, against the length of the longest plane tree. Considering certain trees of diameter at most
five, a superset of the authors of this paper managed to compare against the longest plane
tree and pushed the approximation factor to 0.512 [10]. This was subsequently improved
even further to 0.519 by Biniaz [7].

Our results. We provide a deeper study of the interplay between the approximation factor
and the diameter of the candidate trees. First, we give a polynomial-time algorithm to find
a tree of diameter at most four that guarantees an approximation factor of roughly 0.546, a
substantial improvement over the previous bounds.

▶ Theorem 1. For any finite point set P in general position (no three points collinear), we
can compute in polynomial time a plane tree of Euclidean length at least f · |TOPT|, where
|TOPT| denotes the length of a longest plane tree on P and f > 0.5467 is the fourth smallest
real root of the polynomial P (x) = −80 + 128x + 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

The algorithm “guesses” a longest edge of TOPT and then constructs six trees: four stars
and two more trees of diameter at most four. We show that one of these trees is always
sufficiently long. The algorithm is very simple but its analysis uses several geometric insights.
The polynomial P (x) comes from optimizing the constants in the proof.

Second, we characterize longest plane trees for convex point sets. A caterpillar is a tree
T that contains a path S, the spine, so that every vertex of T \ S is adjacent to a vertex in S.
A tree T that is straight-line embedded on a convex point set P is a zigzagging caterpillar if
its edges split the convex hull of P into faces that are all triangles.

▶ Theorem 2. If P is convex then every longest plane tree on P is a zigzagging caterpillar.

▶ Theorem 3. For any caterpillar C, there is a convex point set P such that the unique
longest tree for P is isomorphic to C.

In particular, the diameter of a (unique) longest plane tree is not bounded by any constant.
As a consequence, we obtain an upper bound on the approximation factor BoundDiam(d)
that can be achieved by a plane tree of diameter at most d.

▶ Theorem 4. For any d ≥ 2, there is a convex point set P so that every plane tree of
diameter at most d on P is at most

BoundDiam(d) ≤ 1 − 6
(d + 1)(d + 2)(2d + 3) = 1 − Θ(1/d3)

times as long as the length |TOPT| of a longest (unconstrained) plane tree on P.

SoCG 2022



23:4 Long Plane Trees

For small values of d, we have better bounds. For example, it is easy to see that
BoundDiam(2) ≤ 1/2: put two groups of roughly half of the points sufficiently far from each
other. For d = 3, we can show BoundDiam(3) ≤ 5/6.

▶ Theorem 5. For any ε > 0, there is a convex point set P such that every longest plane
tree on P of diameter 3 is at most (5/6) + ε times as long as a longest (general) plane tree.

Third, we give polynomial-time algorithms for finding a longest plane tree among those
of diameter at most three and among a special class of trees of diameter at most four. Note
that in contrast to diameter two, the number of spanning trees of diameter at most three is
exponential in the number of points.

▶ Theorem 6. For any set P of n points in general position, a longest plane tree of diameter
at most three on P can be computed in O(n4) time.

▶ Theorem 7. For any set P of points in general position and any three specified points on
the boundary of the convex hull of P, we can compute in polynomial time a longest plane tree
such that each edge is incident to at least one of the three specified points.

The algorithms are based on dynamic programming. Even though the length |T 3
OPT| of

a longest plane tree of diameter at most three can be computed in polynomial time, we
do not know the corresponding approximation factor BoundDiam(3). The best bounds we
are aware of are 1/2 ≤ BoundDiam(3) ≤ 5/6. The lower bound follows from [1], the upper
bound is from Theorem 5. We conjecture that |T 3

OPT| actually gives a better approximation
factor than the tree constructed in Theorem 1 – but we are unable to prove this.

Fourth, a natural way to design an algorithm for the longest plane spanning tree problem
is the following local search heuristic [34]: start with an arbitrary plane tree T , and while
it is possible, apply the following local improvement rule: if there are two edges e, f on P
such that (T \ {e}) ∪ {f} is a plane spanning tree for P that is longer than T , replace e by f .
Once no further local improvements are possible, output the current tree T . We show that
for some point sets, this algorithm fails to compute the optimum answer as it may “get stuck”
in a local optimum (see Lemma 17 in Section 5). This holds regardless of how the edges that
are swapped are chosen. This suggests that a natural local search approach does not yield
an optimal algorithm for the problem.

Preliminaries and notation. Let P ⊂ R2 be a set of n points in the plane, so that no three
points in P are collinear. For any spanning tree T on P , we denote by |T | the total Euclidean
edge length of T . Let TOPT be a plane (i.e., noncrossing) spanning tree on P with maximum
Euclidean edge length. As the previous algorithms [1,7,8, 10,16], we make extensive use of
stars. The star Sp rooted at some point p ∈ P is the tree that connects p to all other points
of P.

We also need the notion of “flat” point sets. A point set P is flat if diam(P) ≥ 1 and
all y-coordinates in P are essentially negligible, that is, their absolute values are bounded
by an infinitesimal ε > 0. For flat point sets, we can approximate the length of an edge
by subtracting the x-coordinates of its endpoints: the error becomes arbitrarily small as
ε → 0. Lastly, D(p, r) denotes a closed disk with center p and radius r, while ∂D(p, r) is its
boundary: a circle of radius r centered at p.



S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:5

a

Sa Ta,b

ba

Figure 1 A tree Sa and a tree Ta,b.

2 An improved approximation algorithm

We present a polynomial-time algorithm that yields an f
.= 0.5467-approximation of a longest

plane tree for general point sets and a (2/3)-approximation for flat point sets. We consider
the following trees Ta,b, for a, b ∈ P (see Figure 1): let Pa be the points of P closer to a than
to b, and let Pb = P \ Pa. First, connect a to every point in Pb. Then, connect each point of
Pa \ {a} to some point of Pb without introducing crossings. This yields a tree of diameter at
most four. In general, Ta,b and Tb,a are different and neither is uniquely determined, but for
Pa = {a} both Ta,b and Tb,a coincide with the star Sa.

Our algorithm AlgSimple(P) computes all stars Sa and the tree Ta,b, for each ordered
pair a, b ∈ P , and it returns a longest one. The algorithm runs in polynomial time, as there
are O(n2) relevant trees, each of which can be found in polynomial time.

Given multiple trees that all contain a common edge ab, we direct all other edges towards
ab and assign to each point in P \ {a, b} its unique outgoing edge. The edge ab remains
undirected. Denote the length of the edge assigned to p ∈ P \ {a, b} in such a tree T by
ℓT (p).

Theorem 1 states that for any P , we have |TALG| > 0.5467 · |TOPT|. As a warm-up for the
full proof, we first show a stronger result for the special case of flat point sets: if P is flat,
we have |TALG| ≥ (2/3) · |Tcr|, where Tcr is a longest (possibly crossing) tree. In fact, the
constant 2/3 is tight when comparing to Tcr:

▶ Observation 8. There is an infinite family of point sets P1, P2, . . . with |Pn| = 2n and

lim
n→∞

|TOPT|
|Tcr|

≤ 2
3 .

Proof. Let Pn = {p1, . . . , p2n} be a flat point set where the points pi are spaced evenly on
a convex arc with x-coordinates 1, . . . , 2n, see Figure 2. It can be shown inductively, that
the star Sp1 is a longest plane spanning tree and thus |TOPT| = |Sp1 | =

∑2n−1
i=1 i = 2n2 − n.

On the other hand, the right side in Figure 2 shows a crossing spanning tree of total length
(2n − 1) + 2

∑2n−2
i=n i = 3n2 − 3n + 1 ≤ |Tcr|. ◀

TOPT Tcr

p1

p2

p2n

Figure 2 The point set Pn of 2n points with equally spaced x-coordinates 1, 2, . . . , 2n, with a
longest plane and the longest general spanning tree.

▶ Theorem 9. Suppose P is flat. Then,

|TALG| ≥ 2
3 |Tcr| ≥ 2

3 |TOPT|.

SoCG 2022



23:6 Long Plane Trees

a b

p′ p

Figure 3 By triangle inequality and symmetry, we have ∥pp′∥ + ∥pb∥ ≥ ∥p′b∥ = ∥pa∥.

Proof. As |Tcr| ≥ |TOPT|, it suffices to show the first inequality. Denote the diameter of P
by ab (see Figure 3). Consider the four trees Sa, Ta,b, Tb,a, Sb. It suffices to show that there
exists a β ∈ (0, 1/2) such that

(1/2 − β)|Sa| + β|Ta,b| + β|Tb,a| + (1/2 − β)|Sb| ≥ 2
3 · |Tcr|.

Here we fix β = 1
3 and equivalently show:

|Sa| + 2|Ta,b| + 2|Tb,a| + |Sb|
6 ≥ 2

3 · |Tcr| (1)

which is enough, as

max{|Sa|, |Ta,b|, |Tb,a|, |Sb|} ≥ 1
6(|Sa| + 2|Ta,b| + 2|Tb,a| + |Sb|)

The trees Sa, Ta,b, Tb,a, Sb all contain the edge ab, and since that edge realizes the
diameter, we can assume that Tcr also contains ab. We fix a p ∈ P \ {a, b}, assume without
loss of generality that ∥pa∥ ≥ ∥pb∥, and denote by p′ the reflection of p at the perpendicular
bisector of ab (see Figure 3). Using the notation ℓT (p) from above,

1
6

(
ℓSa

(p) + 2ℓTa,b
(p) + 2ℓTb,a

(p) + ℓSb
(p)

)
≥ 1

6
(
∥pa∥ + 2∥pa∥ + ∥pp′∥ + ∥pb∥

)
≥ 1

6
(
3∥pa∥ + ∥p′b∥

)
= 2

3 · ∥pa∥ ≥ 2
3 · ℓTcr(p).

Here, we used in the first step that ℓSa
(p) = ℓTa,b

(p) = ∥pa∥, ℓTb,a
(p) ≥ ∥p′p∥/2, and

ℓSb
(p) = ∥pb∥. In the second and third step, we used the triangle inequality ∥pp′∥ + ∥pb∥ ≥

∥p′b∥ and the symmetry ∥p′b∥ = ∥pa∥. The final step follows since P is flat and hence
ℓTcr(p) ≤ max{∥pa∥, ∥pb∥} = ∥pa∥. Now, (1) follows by summing over all p ∈ P \ {a, b}. ◀

▶ Theorem 1. For any finite point set P in general position (no three points collinear), we
can compute in polynomial time a plane tree of Euclidean length at least f · |TOPT|, where
|TOPT| denotes the length of a longest plane tree on P and f > 0.5467 is the fourth smallest
real root of the polynomial P (x) = −80 + 128x + 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

Proof. We outline the proof strategy, referring to lemmas that will formally be stated later
in this section. Without loss of generality, suppose P has diameter 2. Consider a longest
edge ab of TOPT and denote its length by 2d (we have d ≤ 1).

Let u, v ∈ P be two points realizing the diameter of P. Note that in general the longest
edge of TOPT does not realize the diameter and thus a, b and u, v differ. If 2df ≤ 1, it follows
from previous work that one of Su or Sv is long enough (see [10, Lemma 2.1]). Thus, we
henceforth assume that 2df > 1. Note that P lies in the lens L = D(a, 2) ∩ D(b, 2) and that
the points a and b are in L. Choose a coordinate system with a = (−d, 0) and b = (d, 0), and
let s, s′ be the two points on the y-axis with ∥sa∥ = ∥sb∥ = ∥s′a∥ = ∥s′b∥ = 2df , where s is



S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:7

the point above the x-axis. Since 2df > 1, the circles k = ∂D(s, 2df) and k′ = ∂D(s′, 2df)
intersect the boundary of L. Let u, v and u′, v′ be the intersection points above and below
the x-axis respectively, so that u and u′ are to the left of the y-axis. The far region consists
of the points in L above the arc of k between u and v in clockwise direction and of the points
in L below the arc of k′ between u′ and v′ in counter-clockwise direction. The truncated lens
contains the remaining points, see Figure 4a.

d d

c

2df

kpu
u

︸ ︷︷ ︸
O
︸ ︷︷ ︸pa pb

a

s

v

p = [x, y]

O

b

(a) The lens is split into the far region (green)
and the truncated lens.

s

a b
l

O

u

2df

d d

t

D
(l, 2d)

k

r

v

EN

S

pu

pa pb

(b) The truncated lens is further subdivided into
three regions E, N and S.

Figure 4 Subdivision of the lens.

In Lemma 10, we argue that if the far region contains a point c ∈ P , then one of the three
stars Sa, Sb, or Sc is long enough. Otherwise, if all of P lies in the truncated lens, we claim
that one of the trees Sa, Ta,b, Tb,a, or Sb is long enough. These four trees all contain the edge
ab. Thus, we can again use the notation ℓT (p) from above to define for any p ∈ P \ {a, b}
and for any β ∈ (0, 1/2), the weighted average

avg(p, β) = (1/2 − β) · ℓSa
(p) + β · ℓTa,b

(p) + β · ℓTb,a
(p) + (1/2 − β) · ℓSb

(p).

To finish the argument, we aim to find a β ∈ (0, 1/2) so that for any p ∈ P \ {a, b}, we
have avg(p, β) ≥ f · ℓTOPT(p) (note that ℓTOPT(p) is defined, since ab is an edge of TOPT). In
contrast to the proof for Theorem 9, this now requires much more work. After that, the
approximation guarantee follows by considering the sum

∑
p∈P\{a,b} avg(p, β), as before.

For proving avg(p, β) ≥ f · ℓTOPT(p), we can without loss of generality assume that
p = (x, y), with x, y ≥ 0. The following definitions are illustrated in Figure 4a. Let pa

be the point with x-coordinate −(2 − d) on the ray pa. If x < d, let pb be the point with
x-coordinate 2 − d on the ray pb. Otherwise, the ray pb does not intersect the vertical
line with x-coordinate 2 − d, and we set pb = b. Additionally, define pu to be the furthest
point from p on the portion of the boundary of the far region that is contained in the circle
k = ∂D(s, 2df). The proof now proceeds in the following steps:
1. we show that ℓTOPT(p) ≤ min

{
2d, max{∥ppa∥, ∥ppb∥, ∥ppu∥}

}
(Lemma 11);

2. we show that the term ∥ppb∥ in this upper bound can be omitted (Lemma 12);
3. we establish a lower bound on avg(p, β) (Lemma 13); and
4. we use this lower bound to find constraints on β that ensure avg(p, β) ≥ f ·min{2d, ∥ppa∥}

and avg(p, β) ≥ f · min{2d, ∥ppu∥}, respectively (Lemmas 14 and 15).

SoCG 2022



23:8 Long Plane Trees

It then remains to show that there exists a β that satisfies both the constraints from Lemma 14
and from Lemma 15. It turns out that this holds for any β ∈ (0, 1/2) with

(2f − 1)/
(

2
√

5 − 8f − 1
)

≤ β ≤ 1 − f
√

4f2 − 1 − 2f2. (2)

Our choice of f ensures that the two expressions in (2) have the same value (≈ 0.1604). Setting
β accordingly, we get the desired approximation (cf. the full version for the calculation). ◀

It remains to prove Lemmas 10 to 15. Their statements rely on the notation introduced
in the proof outline of Theorem 1, so we recommend to first consult the paragraphs above.

▶ Lemma 10. Let ab (with ∥ab∥ = 2d) be the longest edge of TOPT. If P contains a point c

in the far region, then max{|Sa|, |Sb|, |Sc|} ≥ f · |TOPT|.

Proof. By the definition of the far region, the triangle abc is acute-angled and its circumradius
R satisfies R ≥ 2df . Let g = 1

|P0|
∑

p∈P0
p be the center of mass of the point set P0 ≡

P \ {a, b, c}, see Figure 5. Since the triangle abc is acute-angled, it has a vertex v with
∥vg∥ ≥ R. By definition of g, we have

∑
p∈P0

−→vp = |P0| · −→vg, and the triangle inequality

d da b

c

P0

g

Figure 5 Lemma 10. In the illustration, P0 consists of 6 points and we can take v = a. The
common point of the three black circles is the circumcenter of triangle abc.

gives
∑

p∈P0
∥vp∥ ≥ |P0| · ∥vg∥ ≥ (n − 3) · R. As ∥va∥ + ∥vb∥ + ∥vc∥ ≥ 2R holds in any

acute-angled triangle, we obtain |Sv| ≥ (n − 1) · R ≥ (n − 1) · 2df ≥ f · |TOPT|. ◀

▶ Lemma 11. For every point p = (x, y) with x, y ≥ 0 in the truncated lens, we have
ℓTOPT(p) ≤ min{2d, max{∥ppa∥, ∥ppb∥, ∥ppu∥}}.

Proof Sketch. (Full proof in the full version) Let l = (d − 2, 0) and r = (2 − d, 0) be the left–
and rightmost points of D(a, 2) ∩ D(b, 2). We divide the truncated lens into further regions
(see Figure 4b): the region E lies inside the truncated lens but outside of D(l, 2d), and the
remainder of the truncated lens is divided into the part N above the line us and the part
S below us. If p ∈ E, then min{2d, max{∥ppa∥, ∥ppb∥, ∥ppu∥} = 2d, and we are done, since
ℓTOPT(p) ≤ 2d. Next, assume that p ∈ N ∪ S, and let pf be the furthest point from p in the
truncated lens. An exhaustive case distinction over the quadrant containing pf shows that
∥ppf ∥ ≤ max{∥ppa∥, ∥ppb∥, ∥ppu∥}, which proves the lemma. ◀



S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:9

This bound can be simplified by using the following lemma:

▶ Lemma 12. For every point p = (x, y) with x, y ≥ 0 in the truncated lens, if ∥ppa∥ ≤ 2d,
then ∥ppb∥ ≤ ∥ppa∥.

The algebraic proof can be found in the full version.
Now we give a general lower bound on avg(p, β) that we will use in Lemmas 14 and 15.

▶ Lemma 13. Let p = (x, y) ∈ R2 be a point with x, y ≥ 0, and let β ∈ (0, 1/2). Then,

avg(p, β) ≥ d · (1 − β) + x · 2β

d + x
· ∥pa∥.

Proof Sketch. (Full proof in the full version) We expand the definition and replace the ℓT (p)-
terms by ∥pa∥, ∥pb∥, and x, respectively. By similar geometric arguments as in Theorem 9,

avg(p, β) ≥ (1/2) · ∥pa∥ + (β/2) · ∥pa∥ + ((1/2) − (3/2)β) · ∥pb∥.

Using ∥pb∥ ≥ d−x
d+x · ∥pa∥, we get the desired

avg(p, β) ≥ (1 + β)(d + x) + (1 − 3β)(d − x)
2(d + x) · ∥pa∥ = (1 − β) · d + 2β · x

d + x
· ∥pa∥. ◀

▶ Lemma 14. Let p = (x, y) be any point in the truncated lens with x, y ≥ 0. Then, if
2f−1
5−8f ≤ β ≤ 1

2 · f , we have avg(p, β) ≥ f · min{2d, ∥ppa∥}.

Proof Sketch. (Full proof in the full version) We show that if x ≥ 3d − 2, then avg(p, β) ≥
f · 2d, and if x ≤ 3d − 2, then avg(p, β) ≥ f · ∥ppa∥. Using Lemma 13, both cases reduce to
the following inequality, which holds by the assumption on β:

β · (5d − 4) ≥ β · (5d − 8df) ≥ 2f − 1
5 − 8f

· d · (5 − 8f) = d(2f − 1). ◀

▶ Lemma 15. Let p = (x, y) be any point in the truncated lens with x, y ≥ 0. Suppose that
β < 151

304 · f and that 1
2 ≤ f ≤ 19

32 , then avg(p, β) ≥ f · min{2d, ∥ppu∥}, if

2f − 1
2
√

5 − 8f − 1
≤ β ≤ 1 − f

√
4f2 − 1 − 2f2.

Proof Sketch. (Full proof in the full version) By Lemma 13, it suffices to show that

λ = d · (1 − β) + x · 2β

d + x
· ∥pa∥ ≥ f · min{2d, ∥ppu∥}. (3)

Case 1: y ≤ y(u). λ is an increasing function in y and ∥ppu∥ is a decreasing function
in y, for y ≤ y(u). Thus, it suffices to show (3) for y = 0. In this case, λ becomes
λ0 = d · (1 − β) + x · 2β, which is positive. Let q = (qx, 0), qx ≥ 0, be the point on the
x-axis with ∥qs∥ = 2d(1 − f). For p = q, we have ∥ppu∥ ≤ ∥ps∥ + ∥spu∥ = 2d.
Case 1a: 0 ≤ x ≤ qx. The Pythagorean theorem and the bounds on β yield λ0 ≥ f ·∥ppu∥.
Case 1b: qx < x. It suffices to show λ0 ≥ f · 2d, for x = qx. This follows from Case 1a.

Case 2: y > y(u) Now, ∥ppu∥ = ∥pu∥ ≤ ∥uv∥. Also, we have x(u) ≥ −d and x ≤ d, which
gives min{2d, ∥ppu∥} = ∥ppu∥. Thus, (3) becomes λ ≥ f · ∥ppu∥. From y > y(u), we get
∥pa∥ ≥ ∥ppu∥, so we need λ/∥pa∥ ≥ f . This follows by straightforward algebra. ◀

SoCG 2022



23:10 Long Plane Trees

3 Convex and flat convex point sets

We present two results for convex point sets: (i) if P is convex, any longest plane tree is a
caterpillar, and any caterpillar appears as the unique longest plane tree of a convex point set;
and (ii) by looking at suitable flat convex sets, we prove upper bounds on the approximation
factor achieved by the longest plane tree among those with diameter at most d.

Convex sets and caterpillars. A tree C is called caterpillar if it contains a path P such
that every node in C \ P is adjacent to a node on P . We consider trees that span a given
convex point set P. We call (a drawing of) such a tree T a zigzagging caterpillar if T is a
caterpillar and the dual graph T ⋆ of T is a path, where T ⋆ is defined as follows: consider a
smooth closed curve through all points of P . The curve bounds a convex region that is split
by the n − 1 edges of T into n subregions. Then T ⋆ has a node for each such subregion and
two nodes are connected if their subregions share an edge of T (see Figure 6).

T2

T ?
2

T1 T3

T ?
3

Figure 6 T1 is spanning P but it is not a caterpillar. T2 is a caterpillar but it is not zigzagging.
T3 is a zigzagging caterpillar, since the dual tree T ⋆

3 is a path.

▶ Theorem 2. If P is convex then every longest plane tree on P is a zigzagging caterpillar.

Proof. Let TOPT be a longest plane tree. We prove that T ⋆
OPT is a path. Suppose not, and

consider a node in T ⋆
OPT of degree at least 3. Let ab, bc, cd be three corresponding edges of

TOPT. As abcd is a convex quadrilateral, the triangle inequality gives ∥ab∥+∥cd∥ < ∥ac∥+∥bd∥,
so ∥ab∥ < ∥ac∥ or ∥cd∥ < ∥bd∥ (or both). Now, T1 = TOPT ∪ ac \ ab and T2 = TOPT ∪ bd \ cd

are plane trees, and at least one of them is longer than TOPT, a contradiction. ◀

Note that as P is assumed to be convex in this context, an optimal caterpillar can be
found by applying the dynamic programming approach for the convex case described in
Section 4.

Conversely, for every caterpillar C we construct a convex set PC whose longest plane tree
is isomorphic to C. In fact, PC will be a flat arc: a flat convex point set {ai = (xi, yi)}m+1

i=1 ,
where xi < xj , for i < j. The sequence G(PC) = {gi}m

i=1 = {|xi+1−xi|}m
i=1 is the gap sequence

of PC . Given a spanning tree T for PC , we define its cover sequence Cov(T ) = {ci}m
i=1 where

ci denotes the number of times gap gi is “covered”, see Figure 7. Then, |T | =
∑m

i=1 ci · gi.

▶ Lemma 16. Consider a flat arc {a1, . . . , am+1} and a zigzagging caterpillar T containing
the edge a1am+1. Then the sequence Cov(T ) is a unimodal permutation of {1, 2, . . . , m}.

Proof. We show this lemma by induction on m. The case m = 1 is clear. Fix m ≥ 2. By
the definition of a zigzagging caterpillar, the dual graph T ⋆ of T is a path. Since, by the
assumption of the lemma, a1am+1 is an edge of T , either a1am or a2am+1 is an edge of T too.
Without loss of generality assume a1am is an edge of T . Then T \ {a1am+1} is a zigzagging
caterpillar on m points a1, . . . , am containing the edge a1am, hence by induction its cover



S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:11

T

Cov(T ): 1 2 5 6 4 3

G(P) 1 2 2 3 2 1

a1 am+1

Figure 7 A tree with its gap and cover sequence.

sequence is a unimodal permutation of {1, 2, . . . , m − 1}. Adding the omitted edge a1am+1
adds 1 to each of the m − 1 elements and appends a 1 to the list, giving rise to a unimodal
permutation of {1, 2, . . . , m}. This completes the proof. ◀

▶ Theorem 3. For any caterpillar C, there is a convex point set P such that the unique
longest tree for P is isomorphic to C.

Proof. Consider a flat arc P = {a1, . . . , am+1}, with a yet unspecified gap sequence {gi}m
i=1,

and let T be a drawing of C onto P that contains the edge a1am+1 and is zigzagging (such a
drawing always exists). By Lemma 16, the cover sequence Cov(T ) = {ci}m

i=1 is a unimodal
permutation of {1, 2, . . . , m}. The total length of T can be expressed as |T | =

∑m
i=1 ci · gi.

Now we specify the gap sequence: for i = 1, . . . , m, set gi = ci. It remains to show that
T constitutes the longest plane tree TOPT of P.

By Theorem 2, TOPT is a zigzagging caterpillar. Also, a1am+1 is an edge of TOPT: suppose
not. Since a1am+1 does not cross any other edge, adding it to TOPT produces a plane graph
with a single cycle C. All edges of TOPT are shorter than a1am+1, so omitting any other edge
from C yields a longer plane tree, a contradiction. We can thus apply Lemma 16 to see that
Cov(TOPT) is a unimodal permutation π of {1, 2, . . . , m} and that |TOPT| =

∑m
i=1 πi · gi. As

ci and gi match and as c, g, and π are permuations, the Cauchy-Schwarz inequality gives

|TOPT| =
m∑

i=1
πi ·gi ≤

√√√√ m∑
i=1

π2
i ·

m∑
i=1

g2
i =

m∑
i=1

c2
i = |T |, with equality iff πi = ci, for all i. (4)

Therefore TOPT is unique and TOPT = T as desired. ◀

Upper bounds on BoundDiam(d). The algorithms for approximating |TOPT| often produce
trees with small diameter. Given d ≥ 2 and a point set P, let T d

OPT(P) be a longest plane
tree on P among those with diameter at most d. We ask what is the approximation ratio

BoundDiam(d) = inf
P

|T d
OPT(P)|

|TOPT(P)| .

For d = 2, this question concerns the performance of stars. A result of Alon, Rajagopalan,
and Suri [1, Theorem 4.1] can be restated as BoundDiam(2) = 1/2. We show a crude upper
bound on BoundDiam(d) for general d and a specific upper bound for the case d = 3. (Note
that Theorem 6 shows that for any fixed P we can compute |T 3

OPT(P)| in polynomial time.)
Our proofs use the notions of flat arc, gap sequence, and cover sequence defined above.

SoCG 2022



23:12 Long Plane Trees

▶ Theorem 4. For any d ≥ 2, there is a convex point set P so that every plane tree of
diameter at most d on P is at most

BoundDiam(d) ≤ 1 − 6
(d + 1)(d + 2)(2d + 3) = 1 − Θ(1/d3)

times as long as the length |TOPT| of a longest (unconstrained) plane tree on P.

Proof. Let P be a flat arc on d+2 points with gap sequence G = (1, 3, 5, . . . , d+1, . . . , 6, 4, 2).
Since G is unimodal, we can argue as in the proof of Theorem 3 to see that TOPT is the
zigzagging caterpillar whose cover sequence is G, i.e., a path with d + 1 edges (and diameter
d + 1). Moreover, this path is the only optimal plane tree spanning the flat arc because of
Theorem 2 and the Cauchy-Schwarz inequality; see the argument leading to (4). Therefore,
any other plane spanning tree T ̸= TOPT, zigzagging caterpillar or not, has an integer length
less than |TOPT|. Using |TOPT| =

∑d+1
i=1 i2 = 1

6 (d + 1)(d + 2)(2d + 3) = 1
3 d3 + o(d3), we obtain

BoundDiam(d) ≤ |TOPT| − 1
|TOPT|

= 1 − 6
(d + 1)(d + 2)(2d + 3) = 1 − Θ(1/d3). ◀

For d = 3, Theorem 4 gives BoundDiam(3) ≤ 29/30. By tailoring the point set size, the
gap sequence {gi}m

i=1, and by considering non-arcs, we improve this to BoundDiam(3) ≤ 5/6.

▶ Theorem 5. For any ε > 0, there is a convex point set P such that every longest plane
tree on P of diameter 3 is at most (5/6) + ε times as long as a longest (general) plane tree.

Proof (Sketch). (Full proof in the full version) Let P4k+2 consist of two flat arcs, symmetric
with respect to a horizontal line, each with a gap sequence 1, . . . , 1︸ ︷︷ ︸

k×

, 2k + 1, 1, . . . , 1︸ ︷︷ ︸
k×

). In

other words, P4k+2 consists of two diametrically opposing points, four unit-spaced arcs of k

points each, and a large central gap of length 2k + 1 (see Figure 8).

P4k+2

1 1 1 1 1 12k + 1

TL

1 1 1 1 1 12k + 1

TS

Figure 8 An illustration of the point set P4k+2 when k = 3, with trees TL (red) and TS (green).

On the one hand, straightforward counting gives |TOPT| ≥ |TL| = 12k2 + 6k + 1, where
TL is the tree depicted in Figure 8. On the other hand, any tree with diameter at most 3 is
either a star or it contains an edge ab such that each other point of P is connected either to
a or to b. For a star T , simple computation gives |T | ≤ 8k2 + 6k + 1. For the other case, one
can show that the longest tree is obtained when points a, b lie on the opposite sides of the
large central gap and at least one of them lies on the boundary of this gap, as is the case for
instance for the tree TS depicted in Figure 8. We have |TS | = 10k2 + 6k + 1, thus

BoundDiam(3) ≤ 10k2 + 6k + 1
12k2 + 6k + 1 ,

which tends to 5/6 as k → ∞. ◀



S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:13

a b a

qq

kp,q

p p

b

Lp,q Lp,q
Rp,q Rp,qkp,q

Figure 9 Fixing kp,q gives two possible triangular regions where edges are forced.

4 Polynomial time algorithms for small diameter

We show how to compute a longest tree of diameter at most three in polynomial time,
using dynamic programming. The main challenge is to devise an appropriate partition into
independent subproblems. Our approach bears some resemblance to the polynomial time
plane matching algorithm of Aloupis et al. [2]. The main challenge in our case is the efficient
implementation of the dynamic program.

Our approach extends to a certain class of diameter-four trees, see the full version of this
paper. Every tree of diameter two or three is a bistar, that is, it contains two vertices a and
b so that every edge is incident to at least one of a or b. To prove Theorem 6, we note that
there are Θ(n2) choices for a and b, and we show how to compute a longest bistar rooted at
a fixed pair a, b in O(n2) time.

Without loss of generality, we can assume that the points a and b lie on a horizontal line
with a to the left of b. As no edge will cross this line, we can also assume that all points lie
above this line.

The subproblems for the dynamic program are indexed by ordered pairs p, q of distinct
points from P, so that the line segments ap and bq do not cross. A pair that satisfies this
condition is a valid pair. For each valid pair p, q, the segments ap, pq, qb, and ba form
a simple (possibly non-convex) quadrilateral. Let Q(p, q) be the (convex) portion of this
quadrilateral below the horizontal line y = min{y(p), y(q)}. We define the value Z(p, q) as
the length of the longest plane bistar rooted at a and b on the points in the interior of Q(p, q),
without counting ∥ab∥. If there are no points of P within the quadrilateral Q(p, q), we set
Z(p, q) = 0.

If the quadrilateral Q(p, q) contains some points from P , we let kp,q be the highest point
of P inside of Q(p, q). If we connect kp,q to a, we force all points in the triangle Lp,q defined
by the edges ap and akp,q and the line y = y(kp,q) to be connected to a. Similarly, when
connecting kp,q to b, we force the triangle Rp,q defined by bq, bkp,q and the line y = y(kp,q);
see Figure 9. In the former case, we are left with the subproblem defined by the valid pair
kp,q, q, while in the latter case we are left with the subproblem defined by the valid pair
p, kp,q. This yields the following recurrence for each valid pair p, q:

Z(p, q) =


0, if no point of P is in Q(p, q),

max

{
Z(kp,q, q) + ∥akp,q∥ +

∑
l∈Lp,q

∥al∥
Z(p, kp,q) + ∥bkp,q∥ +

∑
r∈Rp,q

∥br∥
, otherwise.

Using the values Z(p, q), for all valid p, q, together with a specialized approach to solve
the relevant range searching problems, we can show that a longest plane bistar for a fixed
pair a, b of vertices can be computed in O(n2) time; for details see the full version.

SoCG 2022



23:14 Long Plane Trees

5 Local improvements fail

One could hope that the longest plane spanning tree problem could perhaps be solved by
either a greedy approach or by a local search approach [34]. It is easy to find point sets on
as few as 5 points where the obvious greedy algorithm fails to find the longest plane tree. In
this section, we show that the following natural local search algorithm AlgLocal(P) fails
too:

Algorithm 1 AlgLocal(P).

1. Construct an arbitrary plane spanning tree T on P.
2. While there exists a pair of points a, b such that T ∪ {ab} contains an edge cd with

|cd| < |ab| and T ∪ {ab} \ {cd} is a plane spanning tree:
a. Set T → T ∪ {ab} \ {cd}. // tree T ∪ {ab} \ {cd} is longer than T

3. Output T .

p

r s
q

t

(a) A tree which cannot be locally improved. (b) A tree where each pair of edges in the same color
is at least as long as the matching pair in Figure 10a.

Figure 10 The algorithm AlgLocal(P) can get stuck.

▶ Lemma 17. There are point sets P for which the algorithm AlgLocal(P) fails to compute
the longest plane tree.

Proof. We construct a point set P consisting of 9 points to show the claim. The points are
placed on three concentric equilateral which are slightly rotated, see Figure 10.

Now consider the tree on this point set depicted by the solid edges in Figure 10a. Note
that the green, blue and yellow edges are rotational symmetric. A simple case distinction,
using the dashed edges as prototype for different non-edges shows that AlgLocal(P) stops
at this tree. On the other hand, in the tree depicted in Figure 10b each pair of the same
colored edges is longer than its counterpart in Figure 10a. Therefore AlgLocal(P) does not
yield a correct result. ◀

We remark that point sets with the same property exist on any number n ≥ 9 of points: it
suffices to (repeatedly) duplicate the edge qt and perturb its endpoint t.



S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:15

6 Conclusions

We leave several open questions:
1. What is the correct approximation factor of the algorithm AlgSimple(P) presented in

Section 2? While each single lemma in Section 2 is tight for some case, it is hard to
believe that the whole analysis, leading to the approximation factor f

.= 0.5467, is tight.
We conjecture that the algorithm has a better approximation guarantee.

2. What is the approximation factor BoundDiam(3) achieved by the polynomial time
algorithm that outputs the longest plane tree with diameter 3? By Theorem 5 it is at
most 5/6 (and by [1] it is at least 1/2).

3. For a fixed d ≥ 4, is there a polynomial-time algorithm that outputs the longest plane
tree with diameter at most d? By Theorem 6 we know the answer is yes when d = 3. And
Theorem 7 gives a positive answer for special classes of trees with diameter 4. Note that
a hypothetical polynomial-time approximation scheme (PTAS) has to consider trees of
unbounded diameter because of Theorem 4. It is compatible with our current knowledge
that computing an optimal plane tree of diameter, say, O(1/ε) would give a PTAS.

4. Is the general problem of finding the longest plane tree in P? A similar question can be
asked for several other plane objects, such as paths, cycles, matchings, perfect matchings,
or triangulations. The computational complexity in all cases is open.

References
1 Noga Alon, Sridhar Rajagopalan, and Subhash Suri. Long non-crossing configurations in the

plane. Fundam. Inform., 22(4):385–394, 1995. doi:10.3233/FI-1995-2245.
2 Greg Aloupis, Jean Cardinal, Sébastien Collette, Erik D. Demaine, Martin L. Demaine,

Muriel Dulieu, Ruy Fabila-Monroy, Vi Hart, Ferran Hurtado, Stefan Langerman, Maria
Saumell, Carlos Seara, and Perouz Taslakian. Matching points with things. In Alejandro
López-Ortiz, editor, LATIN 2010: Theoretical Informatics, volume 6034, pages 456–467, 2010.
doi:10.1007/978-3-642-12200-2_40.

3 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

4 Sanjeev Arora and Kevin L. Chang. Approximation schemes for degree-restricted MST
and red-blue separation problems. Algorithmica, 40(3):189–210, 2004. doi:10.1007/
s00453-004-1103-4.

5 Alexander I. Barvinok, Sándor P. Fekete, David S. Johnson, Arie Tamir, Gerhard J. Woeginger,
and Russell Woodroofe. The geometric maximum traveling salesman problem. J. ACM,
50(5):641–664, 2003. doi:10.1145/876638.876640.

6 Ahmad Biniaz. Euclidean bottleneck bounded-degree spanning tree ratios. In Proc. 31st
Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 826–836, 2020. doi:10.1137/
1.9781611975994.50.

7 Ahmad Biniaz. Improved approximation ratios for two Euclidean maximum spanning tree
problems, 2020. arXiv:2010.03870.

8 Ahmad Biniaz, Prosenjit Bose, Kimberly Crosbie, Jean-Lou De Carufel, David Eppstein,
Anil Maheshwari, and Michiel Smid. Maximum plane trees in multipartite geometric graphs.
Algorithmica, 81(4):1512–1534, 2019. doi:10.1007/s00453-018-0482-x.

9 Johannes Blömer. Computing sums of radicals in polynomial time. In Proc. 32nd Annu. IEEE
Sympos. Found. Comput. Sci. (FOCS), pages 670–677, 1991. doi:10.1109/SFCS.1991.185434.

10 Sergio Cabello, Aruni Choudhary, Michael Hoffmann, Katharina Klost, Meghana M Reddy,
Wolfgang Mulzer, Felix Schröder, and Josef Tkadlec. A better approximation for longest
noncrossing spanning trees. In 36th European Workshop on Computational Geometry (EuroCG),
2020.

SoCG 2022

https://doi.org/10.3233/FI-1995-2245
https://doi.org/10.1007/978-3-642-12200-2_40
https://doi.org/10.1145/290179.290180
https://doi.org/10.1007/s00453-004-1103-4
https://doi.org/10.1007/s00453-004-1103-4
https://doi.org/10.1145/876638.876640
https://doi.org/10.1137/1.9781611975994.50
https://doi.org/10.1137/1.9781611975994.50
http://arxiv.org/abs/2010.03870
https://doi.org/10.1007/s00453-018-0482-x
https://doi.org/10.1109/SFCS.1991.185434


23:16 Long Plane Trees

11 Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer, and Josef Tkadlec.
Long plane trees. arXiv preprint, 2021. arXiv:2101.00445.

12 Timothy M. Chan. Euclidean bounded-degree spanning tree ratios. Discrete Com-
put. Geom., 32(2):177–194, 2004. URL: http://www.springerlink.com/index/10.1007/
s00454-004-1117-3.

13 Francis Y. L. Chin, Jianbo Qian, and Cao An Wang. Progress on maximum weight triangulation.
In Proc. 10th Annu. Int. Conf. Computing and Combinatorics (COCOON), pages 53–61, 2004.
doi:10.1007/978-3-540-27798-9_8.

14 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms. MIT Press, 3rd edition, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

15 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
geometry. Algorithms and applications. Springer-Verlag, Berlin, third edition, 2008. doi:
10.1007/978-3-540-77974-2.

16 Adrian Dumitrescu and Csaba D. Tóth. Long non-crossing configurations in the plane. Discrete
Comput. Geom., 44(4):727–752, 2010. doi:10.1007/s00454-010-9277-9.

17 Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001. doi:10.1007/s00453-001-0016-8.

18 David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia,
editors, Handbook of Computational Geometry, pages 425–461. North Holland / Elsevier, 2000.
doi:10.1016/b978-044482537-7/50010-3.

19 Andrea Francke and Michael Hoffmann. The Euclidean degree-4 minimum spanning tree
problem is NP-hard. In Proceedings of the 25th ACM Symposium on Computational Geometry,
pages 179–188. ACM, 2009. doi:10.1145/1542362.1542399.

20 P. D. Gilbert. New results in planar triangulations. Technical Report R–850, Univ. Illinois
Coordinated Science Lab, 1979.

21 Sariel Har-Peled. Geometric approximation algorithms, volume 173 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2011. doi:10.1090/surv/173.

22 Gheza Tom Klincsek. Minimal triangulations of polygonal domains. Ann. Discrete Math.,
9:121–123, 1980.

23 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

24 Joseph S. B. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 607–641. Chapman and
Hall/CRC, 2nd edition, 2004. doi:10.1201/9781420035315.ch27.

25 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

26 Wolfgang Mulzer. Minimum dilation triangulations for the regular n-gon. Master’s thesis,
Freie Universität Berlin, Germany, 2004.

27 Wolfgang Mulzer and Johannes Obenaus. The tree stabbing number is not monotone. In
Proceedings of the 36th European Workshop on Computational Geometry (EWCG), pages
78:1–78:8, 2020.

28 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. J. ACM,
55(2):11:1–11:29, 2008. doi:10.1145/1346330.1346336.

29 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press,
Cambridge, 2007. doi:10.1017/CBO9780511546884.

30 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theor.
Comput. Sci., 4(3):237–244, 1977. doi:10.1016/0304-3975(77)90012-3.

http://arxiv.org/abs/2101.00445
http://www.springerlink.com/index/10.1007/s00454-004-1117-3
http://www.springerlink.com/index/10.1007/s00454-004-1117-3
https://doi.org/10.1007/978-3-540-27798-9_8
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/s00454-010-9277-9
https://doi.org/10.1007/s00453-001-0016-8
https://doi.org/10.1016/b978-044482537-7/50010-3
https://doi.org/10.1145/1542362.1542399
https://doi.org/10.1090/surv/173
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1201/9781420035315.ch27
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://doi.org/10.1145/1346330.1346336
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1016/0304-3975(77)90012-3


S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:17

31 Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related to the
traveling salesman problem. J. Algorithms, 5(2):231–246, 1984. doi:10.1016/0196-6774(84)
90029-4.

32 Jan Remy and Angelika Steger. A quasi-polynomial time approximation scheme for minimum
weight triangulation. J. ACM, 56(3):15:1–15:47, 2009. doi:10.1145/1516512.1516517.

33 Emo Welzl. On spanning trees with low crossing numbers. In Data structures and efficient
algorithms, volume 594 of Lecture Notes in Comput. Sci., pages 233–249. Springer, Berlin,
1992. doi:10.1007/3-540-55488-2_30.

34 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. doi:10.1017/CBO9780511921735.

SoCG 2022

https://doi.org/10.1016/0196-6774(84)90029-4
https://doi.org/10.1016/0196-6774(84)90029-4
https://doi.org/10.1145/1516512.1516517
https://doi.org/10.1007/3-540-55488-2_30
https://doi.org/10.1017/CBO9780511921735




The Universal ℓp-Metric on Merge Trees
Robert Cardona #

University at Albany, State University of New York (SUNY), NY, USA

Justin Curry1
#

University at Albany, State University of New York (SUNY), NY, USA

Tung Lam #

University at Albany, State University of New York (SUNY), NY, USA

Michael Lesnick #

University at Albany, State University of New York (SUNY), NY, USA

Abstract
Adapting a definition given by Bjerkevik and Lesnick for multiparameter persistence modules, we
introduce an ℓp-type extension of the interleaving distance on merge trees. We show that our distance
is a metric, and that it upper-bounds the p-Wasserstein distance between the associated barcodes.
For each p ∈ [1, ∞], we prove that this distance is stable with respect to cellular sublevel filtrations
and that it is the universal (i.e., largest) distance satisfying this stability property. In the p = ∞
case, this gives a novel proof of universality for the interleaving distance on merge trees.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Unsupervised learning and clustering; Theory of computation → Computational
geometry

Keywords and phrases merge trees, hierarchical clustering, persistent homology, Wasserstein dis-
tances, interleavings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.24

Related Version Full Version: https://arxiv.org/abs/2112.12165

Funding Justin Curry: Supported by NSF CCF-1850052 and NASA 80GRC020C0016.

Acknowledgements While Håvard Bjerkevik was not directly involved in this project, he has had a
major influence on it, via his collaboration with ML on presentation distances for multiparameter
persistence modules [9]. In particular, Håvard kindly agreed to share an early draft of [9] with our
group in July 2020, which inspired many of the ideas in our paper.

1 Introduction

1.1 Overview
A merge tree, also known as a barrier tree [34] or a join tree [18], encodes the connectivity
of the sublevel sets of a function f : X → R in terms of a graph Mf equipped with a map
π : Mf → R; see Figure 1. Merge trees are readily computed in practice, and have found
applications in topography [39, 36], chemistry [34], visualization [19, 46], cluster analysis
[37, 17, 22] and stochastic processes [31, 44, 45]. As a fundamental topological descriptor,
merge trees also play a central role in topological data analysis (TDA).

Merge trees are closely related to persistent homology, the most widely studied and applied
TDA method. Persistent homology provides invariants of data called barcodes; a barcode is
simply a collection of intervals in R. Each merge tree M has an associated barcode B(M),

1 Corresponding Author

© Robert Cardona, Justin Curry, Tung Lam, and Michael Lesnick;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rlcardona@albany.edu
mailto:jmcurry@albany.edu
https://orcid.org/0000-0003-2504-8388
mailto:tlam@albany.edu
mailto:mlesnick@albany.edu
https://orcid.org/0000-0003-1924-3283
https://doi.org/10.4230/LIPIcs.SoCG.2022.24
https://arxiv.org/abs/2112.12165
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 The Universal ℓp-Metric on Merge Trees

f(x)

Mf B(Mf )

R

Figure 1 Graph of function f : R → R, its associated merge tree Mf and the barcode B(Mf )
obtained from Mf via branch decomposition.

which is obtained via a branch decomposition known as the elder rule. This barcode is in
fact the same as the sublevel set persistence barcode in homological degree 0 considered in
TDA [25].

The question of how to metrize the collection of merge trees is a fundamental one: Metrics
are needed to study the continuity and stability of the merge tree construction, and to
quantify sensitivity to noise. Many metrics on merge trees have been proposed in prior work,
as we discuss in detail below.

In particular, metrics called interleaving distances, which generalize the well-known
Hausdorff distance on subsets of a metric space, play a major role in TDA theory. Interleaving
distances were first introduced by Chazal et al. [21]; subsequently, the definition has been
extended in several different directions [14, 40, 12, 48, 28, 27, 38, 29]. Morozov et al. observed
that there is a natural definition of an interleaving distance for merge trees, denoted dI , and
used this to prove the following stability properties of merge trees and their barcodes [41,
Theorems 2 and 3]:

▶ Theorem 1.1 (Stability properties of merge trees [41]).
(i) For any functions f, g : X → R where X is a topological space, we have that

dI(Mf , Ng) ≤ ||f − g||∞, where ||f − g||∞ = sup
x∈X

|f(x) − g(x)|.

(ii) For any merge trees M and N , we have that

dB(B(M),B(N)) ≤ dI(M,N),

where dB denotes the bottleneck distance between barcodes; see Definition 4.9.

While dB is the most common metric on barcodes in the TDA literature, it has a property
that is undesirable in some settings: Informally, dB is sensitive only to the largest difference
between two barcodes and not to smaller differences. To avoid such undesirable behavior,
many applications of persistent homology and some theoretical works [23, 52, 49] consider
a generalization of dB called the p-Wasserstein distance, denoted dpW; see Page 14 for the
definition. Here p ∈ [1,∞] is a parameter and for p = ∞ we have that d∞

W = dB.2 As the

2 There are various definitions of the p-Wasserstein distance in the TDA literature, which differ from each
other by at most a factor of 2 [23, 13]. In this paper, we use the version introduced by Robinson and
Turner [47], and studied in [49, 9].



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:3

parameter p decreases, the distances dpW become more sensitive to small differences between
a pair of barcodes. Because of this, the distances dpW with small p, typically p = 1 or 2, are
often preferred in practical applications; see [9, Section 1] for a list of applications.

Both the bottleneck distance dB and the merge tree interleaving distance dI turn out
to be instances of a general categorical definition of interleaving distances introduced by
Bubenik and Scott [14]; this is shown for dB in [6] and for dI in [26, Proposition 3.11].
As such, the two distances are closely related. It is perhaps unsurprising, then, that the
undesirable properties of dB mentioned above carry over to dI : That is, dI is only sensitive
to the largest difference between a pair of merge trees, and is insensitive to the smaller
differences between them.

With this in mind, it is natural to ask whether we can define an ℓp-type distance on
merge trees analogous to the distance dpW on barcodes, with similar theoretical properties as
those given by Theorem 1.1. In this paper, we introduce such a distance, the p-presentation
distance, for each p ∈ [1,∞]. This distance is an analogue of the ℓp-distance on multiparameter
persistence modules recently introduced in [9], and several of our main results are merge tree
analogues of results from [9].

To state an analogue of Theorem 1.1 for presentation distances, we will need some
definitions: Let X be a regular cell complex. Following [49], we say f : X → R is cellular if
it is constant on each cell of X; and we say f is monotone if, in addition, its value on any
cell σ is greater than or equal to the values on ∂σ. Ordering the cells of X arbitrarily, we
may identify f with an element of R| Cells(X)|, so that the ℓp-norm ∥f∥p is well defined.

▶ Theorem 1.2 (ℓp-stability properties of merge trees). For all p ∈ [1,∞],
(i) any pair of monotone cellular functions f, g : X → R satisfies

dpI(Mf , Ng) ≤ ||f − g||p,

(ii) any pair of merge trees M and N satisfies

dpW(B(M),B(N)) ≤ dpI(M,N).

Theorem 1.2 refines the degree-0 case of a fundamental ℓp-stability result for persistent
homology, due to Skraba and Turner [49]. We also establish the following universality result
for dpI , which parallels a result on 1- and 2-parameter persistence modules proved in [9].

▶ Theorem 1.3. For any p ∈ [0,∞], if d is any metric on merge trees satisfying the stability
property of Theorem 1.2 (i), then d ≤ dpI .

Several ℓ∞-type distances in the TDA literature have been shown to satisfy similar
universal properties [40, 10, 5, 3]. In particular, [5] gives a universality result for a metric on
Reeb graphs, which are closely related to merge trees.

In addition, we show the following:

▶ Theorem 1.4. d∞
I = dI , i.e., the ∞-presentation distance and interleaving distance on

merge trees are equal.

Together, Theorems 1.3 and 1.4 give us a universality result for the interleaving distance
on merge trees. A version of this result also appears in [8], and was previously announced in
a 2019 workshop talk [2]. Whereas our paper only considers merge trees with finitely many
nodes, [8] establishes universality of the interleaving distance for locally finite merge trees.

In view of the good theoretical properties of the distances dpI , the question of whether
these distances can be efficiently computed is interesting. Indeed, if they could be computed,
then they could likely be used in practical applications in much the same ways that the

SoCG 2022



24:4 The Universal ℓp-Metric on Merge Trees

Wasserstein distance on barcodes is commonly used. It is known that computing dI = d∞
I

on merge trees is NP hard [1], but is fixed-parameter tractable [33]; we would like to know
whether these results extend to dpI for all p < ∞, but we leave this to future work.

1.2 Other metrics on merge trees

While our p-presentation distance on merge trees is novel, many metrics on merge trees have
been considered. Recall that Morozov’s interleaving distance dI [41], discussed above, is
one example. We mention several others: Various forms of edit distances on Merge trees
have been proposed [50, 46, 51]. Since merge trees can be viewed as metric spaces in their
own right, the Gromov-Hausdorff distance on metric spaces can be used to compare merge
trees [1]. A Fréchet-like distance between rooted trees was introduced in [32], along with an
algorithm to compute this distance. This distance was then applied to merge trees.

The p-cophenetic distance [15] is a metric on labeled merge tress which is similar to dpI ;
see Definition 5.1. In the p = ∞ case, an extension to unlabeled merge trees [42, 35] was
shown to be equal to dI . Consequently, by Theorem 1.4, the ∞-cophenetic distance and
the ∞-presentation distance are the same. However, for p < ∞, dpI is a lower bound for the
p-cophenetic distance. Example 5.2 illustrates how they differ and demonstrates that the
p-cophenetic distance lacks the stability of Theorem 1.2 (i).

In addition, several metrics on Reeb graphs have been studied; since the geometric
realization (Definition 2.9) of every merge tree is a Reeb graph, any metric on Reeb graphs
specializes to a metric on merge trees. A definition of interleavings different from that in [41]
was used to define a metric on Reeb graphs in [28]. A family of truncated interleaving
distances generalizing this was introduced in [20]. The functional distortion distance on
Reeb graphs [4] was shown to satisfy stability properties analogous to Theorem 1.1 and to
be strongly equivalent to the interleaving distance [7]. Edit distances on Reeb graphs were
defined in [30, 5], and [5] showed that its Reeb graph edit distance is universal. Recent
work [11] surveys these metrics on Reeb graphs and their relationships. Finally, the contortion
distance [8] was shown to be strongly equivalent to each of the distances considered in [28], [4],
and [5], and to be universal on contour trees.

2 Merge trees

In this section, we define merge trees. We work primarily with a categorical definition, which
is convenient for defining the interleaving and presentation distances. Recall that we may
regard any partially ordered set (P,⪯) as a category with one object for each element p ∈ P

and a morphism from p to q whenever p ⪯ q. We will be particularly interested in the posets
R and [n] = {0, 1, . . . , n}.

▶ Definition 2.1. Given a topological space X and function f : X → R, the sublevel set
filtration of f is the functor S↑f : R → Top given by S↑f(t) = f−1(−∞, t], with S↑f(s ≤ t)
the inclusion S↑f(s) ↪→ S↑f(t).

▶ Definition 2.2 (cf. [43, 25]). A persistent set is a functor M : R → Set.

▶ Example 2.3. Letting π0 : Top → Set denote the connected components functor, the
composition π0 ◦ S↑f is a persistent set.



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:5

▶ Definition 2.4 (cf. [43]). We say a persistent set M is constructible if there exists a set

τ := {s0 < s1 < · · · < sn} ⊂ R such that

1. If M ̸= ∅, then τ ̸= ∅ and M(t) = ∅ for all t < s0,
2. M(s ≤ t) is an isomorphism whenever s, t ∈ [si, si+1), and also for s, t ∈ [sn,∞).

If M is constructible, then we call the minimal such τ the set of critical times of M ,
and denote it τM . For si ∈ τ , we call M(si) a critical set.

Note that to specify a constructible merge tree M (up to ismorphism), it suffices to specify
τM , the critical sets M(si), and the functions mi := M(si ≤ si+1).
▶ Remark 2.5. Equivalently, one can define constructibility using categorical language: A
persistent set M is constructible if it is isomorphic to the left Kan extension of some functor
M ′ : [n] → Set along an order preserving map j : [n] ↪→ R.

▶ Definition 2.6. A merge forest is a constructible persistent set M where each M(t) is
finite. A merge tree is a merge forest where M(t) = {∗} for t sufficiently large.

We denote the category of merge forests by Forest and the category of merge trees by Merge.
The categorical perspective on merge trees was previously considered in [12, 43, 25] and
offers the advantage of a streamlined definition of the interleaving distance; Definition 4.6.
▶ Remark 2.7. Applying the usual disjoint union of sets at each index, we obtain a well
defined notion of disjoint union of persistent sets. The disjoint union of finitely many merge
forests is itself a merge forest.

The next example is fundamental, as it provides a notion of generators for merge trees.

▶ Example 2.8. A (closed) strand born at s, written Fs : R → Set, is the persistent set

Fs(t) :=
{

∅ if t < s,

{∗} if t ≥ s.

Closed strands are clearly constructible. The analogous open strands, where Fs(t) = {∗}
if and only if t > s, are not constructible. Our strands will always be closed strands. For
m ∈ Z>0, we let Fms denote the disjoint union of m copies of Fs.

Following [26], we define the geometric realization of a constructible persistent set; this
relates our categorical definition of a merge tree to the topological and graph-theoretic
definitions that one typically sees in the literature. Our definition is equivalent to that of
[26, Definition A.3] in the constructible setting, though slightly different in the details.

▶ Definition 2.9 (Geometric realization). Given a constructible persistent set M , the geomet-
ric realization of M is a pair |M | = (X, γ) where X is a topological space and γ : X → R
is a continuous function. We take the set underlying X to be ⊔t∈RMt, and for x ∈ Mt, we
define γ(x) = t. It remains to specify the topology on X. We regard X as a poset, with x ≼ y

iff both γ(x) ≤ γ(y) and M(γ(x) ≤ γ(y))(x) = y. For x ∈ X, let

Cx = {y ∈ X | y and x are comparable}.

We declare a set U ⊂ X to be open if and only if for each x ∈ U , there exists V ⊂ R open
such that (γ−1(V ) ∩ Cx) ⊂ U . It is easily verified that this indeed defines a topology on X,
and that γ is continuous with respect to this topology.

SoCG 2022



24:6 The Universal ℓp-Metric on Merge Trees

Abusing terminology slightly, we say that a function f : Y → R is constructible if
π0 ◦ S↑f is constructible. One can check that if f is constructible and continuous, then
|π0 ◦ S↑f | is equivalent to the topological construction of a merge tree considered in [41].

A point u is an ancestor of a point v if v ≼ u. The least common ancestor LCA(v, w)
of nodes v and u is the common ancestor of v and w with minimal height. LCA(v, w) may
not exist, but if it exists it is unique.

▶ Example 2.10. We specify a merge tree M by taking τM = {0, 1, 2, 3, 5}, M0 := {0},
M1 := {0, 1}, M2 := {0, 1, 2}, M3 = {0, 2}, and M5 = {0},

m2 :


0 7→ 0
1 7→ 0
2 7→ 2

and m3 :
{

0 7→ 0
2 7→ 0

and the remaining mi to be inclusions. The diagram

M0 M1 M2 M3 M5
m0 m1 m2 m3

can be represented pictorially by:

0 1 2 3 5

The geometric realization of M can be drawn as follows:

0 1 2 3 5

Barcodes of merge trees

Fix a field k. A persistence module is a functor N : R → Vect, where Vect denotes the
category of k-vector spaces. Every persistent set M : R → Set has an associated persistent
homology module H0(M) : R → Vect given by the free functor from Set to Vect.

Recall that a barcode is a multiset of intervals in R. According to a well-known structure
theorem [24], there is a unique barcode B(N) associated to any pointwise finite dimensional
(PFD) persistence module N . Thus, any merge tree M has a well-defined barcode B(M) :=
B(H0(M)). As suggested in the introduction, B(M) = B(H0(S↑f)) where |M | = (X, f)
is the geometric realization of M . Moreover, if f : X → R is a constructible continuous
function, then B(π0 ◦ S↑f) = B(H0(S↑f)) [25].



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:7

3 Presentations of merge trees

We now define presentations of merge trees. Recall that, in the usual algebraic setting,
presentations are defined in terms of generators and relations. For merge trees, generators
correspond to closed strands, as defined in Example 2.8, which can be thought of as starting
branches that emanate from each leaf node. An internal/merge node above leaf nodes i and
j witnesses the equality branchi = branchj by mapping a relating strand into the generating
strands for i and j. Each presentation PM of a merge tree M then gives rise to a matrix
that encodes which generators are identified by which relation. We show that any pair of
merge trees can be given presentations so that these matrices are identical – we call these
“compatible presentations.”

▶ Definition 3.1 (Coequalizer). Given sets A,B, the coequalizer of a pair of functions
α, β : A⇒ B is the set of equivalence classes C := B/ ∼, where ∼ is the equivalence relation
on B generated taking α(x) ∼ β(x) for all x ∈ A. Let q : B → C denote the quotient map. C
satisfies the following universal property: Given a function γ : B → D such that γ ◦β = γ ◦α,
there is a unique function δ : C → D such that γ = δ ◦ q. The definition of a coequalizer
extends pointwise to persistent sets: Given persistent sets A and B, the coequalizer of a pair
of natural transformations α, β : A⇒ B is the persistent set C such that for all t ∈ R, C(t)
is the coequalizer of α(t), β(t) : A(t) ⇒ B(t), with the maps internal to C given by universal
properties. The universal property of coequalizers of persistent sets is completely analogous.

▶ Definition 3.2 (Presentation). A collection of strands {Gi} and {Rj} – called generators
and relations, respectively – and merge functions fj , gj : Rj → G := ⊔iGi define a
presentation of M if M is the coequalizer in Forest of the following diagram, written PM ,

⊔
j Rj

⊔
iGi M.

f

g

The maps f and g are induced by the merge functions fj , gj and the universal mapping
property of disjoint unions.

Although this definition is cloaked in category theory, coequalizers and disjoint unions
formalize gluing constructions in topology, which are more generally cast in terms of colimits.
Intuitively, relating strands indicate where generating strands are glued together; see Figure 2.

G1

G2

R

f

g

0 01 12 23 34 4

Figure 2 Presenting a merge tree with two branches as a coequalizer.

We can encode a presentation by the presentation matrix and its label vector.

SoCG 2022



24:8 The Universal ℓp-Metric on Merge Trees

▶ Definition 3.3 (Presentation matrix and label vector). Given a presentation PM of a merge
tree M with k generators and l relations,

⊔l
j=1 Rj

⊔k
i=1 Gi M,

f

g

we can pick an ordering of generators and relations to obtain a (k× l) presentation matrix
where the i-th row corresponds to the i-th generator Gi and the j-th column corresponds to the
j-th relation Rj. The (i, j)-entry of the presentation matrix is 1 if either of fj , gj : Rj → G

maps to Gi and 0 otherwise.
The label vector of PM is the (k + l)-vector L(PM ) where the first k entries encode the

birth times of each generating strand and the remaining l entries encode the birth times of
each of the relating strands. We will separate the row (generator) birth times from the column
(relation) birth times by a semi-colon for legibility.

We now give several examples of presentations, presentation matrices, and their label
vectors. We will see in particular that presentations are not unique. Indeed, one can always
modify an existing presentation by introducing an extra generating strand that is then killed
by an identical relating strand, as in Examples 3.4 and 3.5. Example 3.6 shows that once two
generators have been merged, any further merge event can be encoded by a merge function
that maps to either generator.

▶ Example 3.4 (Tree with one leaf node). If M is a merge tree with one leaf node born at
time s, then there is a presentation PM given by

Fs Fs M.
id

id

The corresponding presentation matrix and label vector are, respectively,

s( )
s 1 and L(PM ) = [s; s].

One can also obtain a presentation P ′
M of M with one generator Fs and no relations. In this

case, the presentation matrix of P ′
M is an (empty) 1 × 0 matrix, but whose label vector is

L(P ′
M ) = [s].

▶ Example 3.5 (Adding a trivial generator and relation). Let M be a merge tree with two
leaves born at times 0 and 1 that merge at time 2. The presentation PM in Figure 2 uses
two generators and one relation

F2 F0 ⊔ F1 M,
f

g

where f : F2 → F0, and g : F2 → F1 are Merge functions. One can modify PM to obtain a
presentation P ′

M by introducing an extra generator and relation Fa, for any a ∈ [1, 2),

Fa ⊔ F2 F0 ⊔ F1 ⊔ Fa M,
f1⊔f2

g1⊔g2



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:9

with f1 : Fa → Fa, g1 : Fa → F1 and f2 : F2 → F1, g2 : F2 → F0; see Figure 3. The
corresponding presentation matrices and label vectors for PM and P ′

M are then, respectively,

2( )
0 1
1 1

L(PM ) = [0, 1; 2] and

2 a 0 1 0
1 1 1
a 0 1

L(P ′
M ) = [0, 1, a; 2, a].

F0

F1

F2

f

g

0 01 12 23 34 4

F0

F1

F2

g2

f2

Fa

Fa

g1

f1

Figure 3 Presentations PM (left) and P ′
M (right) of the merge tree from Figure 2.

▶ Example 3.6 (Different merge functions). Consider the merge tree from Example 2.10 with
three leaf nodes and two least common ancestors. Since one least common ancestor occurs
after the other, there is a choice as to which generator you choose to attach to. Figure 4
shows these two possible choices. The corresponding presentation matrices for these are

0 01 12 23 35 5

G1

G2

G3

R1

R2

f1

g1

f2

g2

(a)

G1

G2

G3

R1

R2

f1

g1 f2

g2

(b)

Figure 4 Two different presentations for the merge tree introduced in Example 2.10. R2 can be
matched with either G1 or G2 since after R1 they have already merged into one component.

3 5 1 1 0
0 1 1
3 0 1

and

3 5 1 1 1
0 1 0
3 0 1

,

but both of these presentations have the same label vector L = [1, 0, 3; 3, 5].

SoCG 2022



24:10 The Universal ℓp-Metric on Merge Trees

We now present two key lemmas.

▶ Lemma 3.7. Every merge tree with n leaf nodes has a presentation with n generators and
n− 1 relations.

Proof. We proceed by induction on the number of leaf nodes: Example 3.5 shows that
the claim holds for n = 2. Suppose that the claim is true for some k > 2 and M is a
merge tree of k + 1 leaf nodes. Let t be the highest merge time of M , there exists m
groups of k1, k2, . . . , km > 0 leaf nodes whose merge times are not larger than t. Notice
that each i-th group of ki leaf nodes can be realized as a merge tree whose presentation
consists of ki generators and ki − 1 relations. Let Gi be a representative strand of the
i-th group, (1 ≤ i ≤ m), by pairwise relating G1 and Gi at the time t (2 ≤ i ≤ m ), one
obtains a presentation that consists of k + 1 generators. The number of relations is given by
(k1 − 1) + . . .+ (km − 1) + (m− 1), which is k. ◀

We say that two presentations PM and PN are compatible if their underlying matrices
PM and PN are the same.

▶ Lemma 3.8. Any pair of merge trees M and N have compatible presentations.

Proof. Given presentations of M and N , we may add extra generators and relations to one of
them, to obtain presentations PM and PN for M and N , respectively, with the same number
of generators. Write the matrices underlying PM and PN as PM and PN , respectively, and
denote their numbers of relations by m and n. Since M and N are merge trees, there exists
t ∈ R such that Mt′ and Nt′ are singleton sets for all t′ ≥ t. We construct compatible
presentations for P̃M and P̃N with underlying matrix

(
P̄M P̄N

)
: For P̃M , we take the row

labels and the first m column labels to be the same as for PM , with each of the last n column
labels equal to t; and for P̃N , we take the row labels and the last n column labels be the
same as for PN , with each of first m column labels equal to t. Since at time t all the strands
of M have been related to each other, P̃M is indeed a presentation for M . Similarly, P̃M is a
presentation for N . ◀

▶ Remark 3.9. More generally, two merge forests have compatible presentations if and only
if they have the same number of connected components.

4 Presentation metric on merge trees

We next introduce the p-presentation metrics merge trees, adapting the definnitions of [9].
We first define a semi-metric on merge-trees (Definition 4.1) which measures the difference
between merge trees in terms of the ℓp-distance between the birth times of the generators
and relations in a compatible presentation of M and N . Unfortunately, as Example 4.2
shows, Definition 4.1 fails to satisfy the triangle inequality, so we pass to sequences of merge
trees in Definition 4.3 to get a genuine (pseudo)metric.

▶ Definition 4.1 (p-presentation semi-distance). If PM and PN are compatible presentations
for merge trees M and N , then for any p ∈ [1,∞] we define the p-label distance to be
∥L(PM ) − L(PN )∥p. The p-presentation semi-distance between merge trees M and N is

d̂pI(M,N) = inf{∥L(PM ) − L(PN )∥p | PM and PN are compatible}.



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:11

N

M

Q

0 1 2 r

Figure 5 Counterexample to the triangle inequality for d̂p
I .

▶ Example 4.2. The following is a close analogue of [9, Example 3.1]. In Figure 5 we have
three merge trees M,N and Q. We claim that for r large enough

d̂pI(M,N) ≤ 1, d̂pI(M,Q) = r, and d̂pI(N,Q) = p
√

(r − 1)p + 2rp.

From this it follows that

d̂pI(N,Q) ≥ p
√

(r − 1)p + 2rp > 1 + r ≥ d̂pI(N,M) + d̂pI(M,Q),

and hence the triangle inequality does not hold for d̂pI .
Consider the following compatible presentations

PM :=

ϵ( )
0 1
ϵ 1

, PN :=

1( )
0 1
0 1

, PQ :=

r + ϵ( )
r 1

r + ϵ 1
.

It is easy to see that d̂pI(M,Q) = r by choosing compatible presentations with a single
generator and no relations. To see that d̂pI(M,N) ≤ 1, observe that

d̂pI(M,N) ≤ ∥L(PM ) − L(PN )∥p = p
√

|1 − ϵ|p + ϵp.

Setting ϵ = 0 for the presentation of Q shows that d̂pI(N,Q) ≤ p
√

(r − 1)p + 2rp. Any pair
of compatible presentations P ′

N and P ′
Q for N and Q must contain a subpresentation of

the form PQ, since PN is minimal. However, for all ϵ ≥ 0, the label vector difference
∥L(P ′

M ) − L(P ′
N )∥p will be greater than p

√
rp + (r + ϵ)p + (r + ϵ− 1)p, which is minimized

at ϵ = 0.

Although Example 4.2 shows that d̂pI is not a metric, we can repair this as follows:

▶ Definition 4.3 (p-presentation distance). For merge trees M and N and p ∈ [1,∞] we
define the p-presentation distance as

dpI(M,N) := inf
n−1∑
i=0

d̂pI(Qi, Qi+1),

where we infimize over all finite sequences of merge trees M = Q0, . . . , Qn = N .

SoCG 2022



24:12 The Universal ℓp-Metric on Merge Trees

The following result is a close analogue of [9, Proposition 3.6]. It has essentially the same
proof and will play a similarly important role in our arguments.

▶ Lemma 4.4 (Largest bounded metric).
(i) dpI is a metric on isomorphism classes of merge trees.
(ii) dpI is the largest such metric bounded above by d̂pI .

Proof. By Lemma 3.8, the presentation distance between any two merge trees is finite. It
then follows from [9, Rmk. 3.4], which is reproduced as Lemma A.1 in the full version of this
paper [16], that dpI is the largest pseudometric bounded above by d̂pI . Finally, Lemma A.2 in
the full version shows that if dpI(M,N) = 0, then M is isomorphic to N , which finishes the
proof. ◀

To formalize how varying p increases the sensitivity of this distance, we recall the
fundamental property of ℓp-norms: for any vector x, ∥x∥p ≥ ∥x∥q whenever p ≤ q.

▶ Proposition 4.5. For any pair of merge trees M and N and for all 1 ≤ p ≤ q ≤ ∞, we
have dpI(M,N) ≥ dqI(M,N).

4.1 Equality of the ∞-presentation distance and interleaving distance
We now prove Theorem 1.4, which says that the ∞-presentation distance is equal to the
interleaving distance. First, we define the interleaving distance.

▶ Definition 4.6. For ϵ > 0, there is a shift functor Sϵ : R → R given by t 7→ t + ϵ. An
ϵ-interleaving between persistent sets M and N is given by a pair of natural transformations
φ : M → NSϵ and ψ : N → MSϵ so that the following diagrams commute for all s ∈ R,

M(s) M(s+ ϵ) M(s+ 2ϵ)

N(s) N(s+ ϵ) N(s+ 2ϵ).

The interleaving distance between two persistent sets M and N , and hence two merge
trees, is defined as

dI(M,N) := inf{ϵ | M and N are ϵ-interleaved}.

Proof of Theorem 1.4. Let M and N be two merge trees. By Lemma 4.4(ii) it suffices
to prove that d̂∞

I = dI because dI satisfies the triangle inequality and d∞
I is the largest

pseudometric bounded above by d̂∞
I .

Suppose there exists an ϵ-interleaving between M and N : φ : M → NSϵ and ψ : N →
MSϵ. Let PM (resp. PN ) be the underlying matrix for a presentation of M (resp. N),
whose generators and relations are GM and RM (resp. GN and RN ). Here we slightly abuse
notation by using generators and relations as row and column labels. We define a matrix PZ
as follows,

PZ :=

RM RN GMSϵ GNSϵ( )
GM PM 0 I Pψ
GN 0 PN Pφ I



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:13

where Pψ is defined by

(i, j) 7→

{
1 if ψ(πGNi )(gNi ) = gMj ,

0 otherwise,

and Pφ is defined by

(i, j) 7→

{
1 if φ(πGMi )(gMi ) = gNj ,

0 otherwise.

Here gNi represents the element of N(πGNi ) representing the strand GNi . Moreover GMSϵ
denotes the collection of strands in GM that are obtained by ϵ-shifting, likewise for GNSϵ.
By construction, Pψ and Pφ have exactly one nonzero entry per column. Using this matrix
PZ , one can obtain a pair of compatible presentations PM and PN for M and N respectively
by relabeling PZ as follows:

PM :=

RM RNSϵ GMS2ϵ GNSϵ( )
GM PM 0 I Pψ
GNSϵ 0 PN Pφ I

,

and

PN :=

RMSϵ RN GMSϵ GNS2ϵ( )
GMSϵ PM 0 I Pψ
GN 0 PN Pφ I

.

Since each of the generator and relation birth times for PM and PN differ exactly by ϵ, we can
conclude that ∥L(PM ) − L(PN )∥∞ = ϵ. Hence we have shown that dI(M,N) ≥ d̂∞

I (M,N).
Now suppose that there exists a pair of compatible presentations PM and PN for M and

N respectively, such that ∥L(PM ) −L(PN )∥∞ = ϵ. This hypothesis guarantees generators of
PM are born within ϵ of generators of PN , and likewise for their relations. This allows us to
construct functorial mappings:⊔

RMi
⊔
GMi M

⊔
RNi Sϵ

⊔
GNi Sϵ NSϵ

α β φ

where α and β are defined by taking GMi 7→ GNi Sϵ and RMj 7→ RNj Sϵ. Here φ : M → NSϵ is
obtained via the universal property of the coequalizer. Commutativity of the left square in the
diagram follows from the fact that PM and PN have the same underlying matrix. Similarly,
we obtain a map ψ : N → MSϵ. The uniqueness of the universal property guarantees (φ,ψ)
to be an interleaving pair. This shows that there exists a ϵ-interleaving between M and N ,
that is, dI(M,N) ≤ d̂∞

I (M,N). ◀

4.2 Comparison with Wasserstein distance on barcodes
Now that metric properties of the p-presentation distance dpI have been established, we turn
our attention to the relation between this distance and the p-Wasserstein distance dpW on
barcodes. Specifically, we prove Theorem 1.2 (ii), which says that for p ∈ [1,∞] and any
merge trees M and N , we have

dpW(B(M),B(N)) ≤ dpI(M,N).

SoCG 2022



24:14 The Universal ℓp-Metric on Merge Trees

▶ Lemma 4.7. For merge trees M and N ,

dpI(M,N) ≥ dpI
(
H0(M), H0(N)

)
,

where dpI
(
H0(M), H0(N)

)
denotes the ℓp-distance on persistent modules, as defined in [9].

Proof. Let M and N be merge trees. We first show that d̂pI(M,N) ≥ d̂pI(H0(M), H0(N)),
where d̂pI

(
H0(M), H0(N)

)
denotes the p-presentation semi-distance on persistent modules,

as defined in [9]. If PM , PN are compatible presentations for M and N ,

⊔
iR

M
i

⊔
j G

M
j M,

fM

gM

and
⊔
iR

N
i

⊔
j G

N
j N,

fN

gN

applying H0 will yield compatible presentations for H0(M) and H0(N),

⊕
iH0(RMi )

⊕
j H0(GMj ) H0(M),

⊕
iH0(RNi )

⊕
j H0(GNj ) H0(N),

fM ∗−gM ∗

fN ∗−gN ∗

whose p-distance is ∥L(PM ) − L(PN )∥p. This implies that d̂pI(M,N) ≥ d̂pI
(
H0(M), H0(N)

)
.

This is sufficient to prove the statement because we know that d̂pI(H0(M), H0(N)) ≥
dpI(H0(M), H0(N)), by [9, Prop. 3.3]. Since dpI(H0(•), H0(•)) is a pseudometric on merge
trees, Lemma 4.4(ii) implies that dpI(M,N) ≥ dpI(H0(M), H0(N)). ◀

▶ Remark 4.8. The inequality from Lemma 4.7 can be strict because non-isomorphic merge
trees can have isomorphic persistent homology modules. This was demonstrated in [25],
where the following example was considered.

T1

T2

0 1 2 3 4 5 0 1 2 3 4 5

Continuing our comparison of the p-presentation distance on merge trees with metrics in
persistent homology, we recall the definition of the Wasserstein distance on barcodes.

▶ Definition 4.9. A barcode B is a finite collection of intervals {I} in R. A matching
between barcodes B and C consists of a choice of subsets B′ ⊂ B,and C′ ⊂ C and a bijection
σ : B′ → C′. For any p ∈ [1,∞] we define the p-cost of σ as

cost(σ, p) =



 ∑
I∈B,
σ(I)=J

∥I − J∥pp +
∑
I∈∆

∥I − mid(I)∥pp


1/p

, when 1 ≤ p < ∞

max

 max
I∈B,
σ(I)=J

∥I − J∥∞ ,max
I∈∆

∥I − mid(I)∥∞

 , when p = ∞,


,



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:15

where ∥I − J∥p is the ℓp-norm between intervals I = [a, b) and J = [c, d) viewed as vectors
(a, b) and (c, d) in R2, mid(I) :=

[
a+b

2 , a+b
2

)
is the empty interval at the midpoint of I, and

∆ denotes all the intervals unmatched by σ in B ⊔ C. The Wasserstein p-distance between
barcodes B and C is then defined as the infimum of p-costs over all possible matchings, i.e.,

dpW(B, C) = inf
σ

cost(σ, p).

The distance d∞
W is called the bottleneck distance.

Lemma 4.7 and [9, Theorem 1.1] together establish Theorem 1.2 (ii).

5 Stability and universality

In this section we consider two of the most important properties of the p-presentation
metric on merge trees: stability and universality. To motivate stability, we consider another
matrix-based distance on merge trees known as the p-cophenetic distance, which we show is
not stable for p ∈ [1,∞).

Comparison with cophenetic distances

▶ Definition 5.1. Given a merge tree M together with a surjective ordered leaf node labelling
π = {G1, . . . , Gk}, a cophenetic vector CπM is an upper triangular matrix whose (i, j)-entry
is the earliest merge time (height of the least common ancestor) of nodes Gi and Gj. For a
pair of merge trees M and N together with a labelling π, the labeled p-cophenetic distance
is defined as ∥CπM − CπN∥p, where we view these matrices as length k(k + 1)/2-vectors. One
can then define the p-cophenetic distance between two merge trees as

dpC(M,N) = inf
π∈Π

∥CπM − CπN∥p,

where Π denotes the set of all surjective, ordered leaf labelings of M and N .

We now give a counterexample to stability of the cophenetic p-distance, when p ̸= ∞, for
cellular monotone functions; see Page 3, Section 1.1 for a reminder.

▶ Example 5.2. Let X be the barycentric subdivision of the geometric 1-simplex. Consider
the monotone cellular functions f, g : X → R where f ≡ 0 and g is 0 on 0-cells and 1 on
1-cells. By inspection, the merge tree M = π0S

↑f has one leaf node and N = π0S
↑g has

three leaf nodes, one for each 0-cell, and a single internal node; see Figure 6.

M

0 1 2

N

0 1 2

a b c

X

Figure 6 Two merge trees are shown at left, associated to two functions on the cell complex X,
at right. In Example 5.2 these give a counterexample to stability of the p-cophenetic distance.

By allowing redundant labels for the one leaf node in M , we have cophenetic vectors

CM =

0 0 0
∗ 0 0
∗ ∗ 0

 and CN =

0 1 1
∗ 0 1
∗ ∗ 0

 .

SoCG 2022



24:16 The Universal ℓp-Metric on Merge Trees

From [35] we know that d∞
C (Mf ,Mg) = dI(Mf ,Mg), which is stable [41], i.e.,

d∞
C (Mf ,Mg) = dI(Mf ,Mg) ≤ ∥f − g∥∞.

However, for p ∈ [1,∞), we have dpC(Mf , Ng) = p
√

3, which is larger than ∥f − g∥p = p
√

2.

5.1 Stability

▶ Definition 5.3. A distance d on merge trees is said to be p-stable if whenever f and g are
monotone cellular functions on a regular cell complex, the associated merge trees M = π0S

↑f

and N = π0S
↑g satisfy d(M,N) ≤ ∥f − g∥p.

We show that p-presentation distance is p-stable.

Proof of Theorem 1.2(i). We start by labeling vertices of X by σ1, . . . , σk and edges by
τ1, . . . , τl. Consider the (k × l)-matrix P where

P (i, j) :=
{

1 if σi ⊆ τj ,

0 otherwise.

We then define labeled matrices PM , PN with underlying matrix P ,

PM :=

ρM1 · · · ρMl γM1
...
γMk

and PN :=

ρN1 · · · ρNl γN1
...
γNk

,

where γMi = f(σi) and ρMj = f(τj), likewise for PN . By definition of a regular cell complex
each column of PM and PN must have exactly two ones. Moreover, PM and PN are compatible
presentation matrices of their respective merge trees: Monotonicity guarantees that we can
obtain presentations for merge trees M , N with the generators and relations as described in
PM and PN . By construction we have that ∥L(PM ) −L(PN )∥p ≤ ∥f − g∥p and by definition
of d̂pI it follows that dpI(M,N) ≤ d̂pI(M,N) ≤ ∥f − g∥p. ◀

▶ Example 5.4. If we present the merge trees M and N from Example 5.2 using three
generators and two relations, the corresponding presentation matrices are

PM :

0 0 0 1 0
0 1 1
0 0 1

and PN :

1 1 0 1 0
0 1 1
0 0 1

and the label vectors are L(PM ) := [0, 0, 0; 0, 0] and L(PM ) := [0, 0, 0; 1, 1]. Thus the p-label
distance is p

√
2, which equals the ℓp-distance between f and g. Consequently, d̂pI(Mf , Ng) ≤

p
√

2 = ∥f − g∥p. Hence, dpI(Mf , Ng) ≤ ∥f − g∥p, thus illustrating one advantage of this metric
over the cophenetic p-distance.



R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:17

5.2 Universality
In this section we prove that the p-presentation metric is universal among p-stable metrics.
Here “universal” can be interpreted as maximal or final in a certain poset category of
pseudometrics. In order to prove Theorem 1.3, we need the following lemma:

▶ Lemma 5.5 (Geometric lifting). If M and N are merge trees with compatible presentations
PM and PN such that ∥L(PM ) − L(PN )∥p = ϵ, then there exists a regular cell complex X
and monotone cellular functions f : X → R and g : X → R such that

(i) M ∼= π0S
↑f , N ∼= π0S

↑g, and
(ii) ∥f − g∥p = ϵ.

Proof. Let PM and PN be compatible presentations for M and N with presentation matrices

PM :=

ρM1 · · · ρMl γM1
...
γMk

and PN :=

ρN1 · · · ρNl γN1
...
γNk

.

Using the underlying matrix for either presentation we construct a cell complex X as follows:
For each row i, add a 0-cell σi to X, and for each column j, attach a 1-cell τj so that
PM (i, j) = 1 ⇒ σi ⊆ τj . We then construct cellular functions f, g : X → R using the
birth times for the generators and relations for PM and PN , respectively. More precisely,
f(σi) = γMi and f(τj) = ρMj , likewise for g. Since ∥L(PM ) − L(PN )∥p = ϵ we have that
∥f − g∥p = ϵ as well. ◀

Proof of Theorem 1.3. It suffices to prove that for any p-stable distance d, we have d ≤ d̂pI .
Let M,N be merge trees with d̂pI(M,N) = ϵ and let ϵ′ > ϵ be arbitrary. By Lemma 5.5, we
can find f, g : X → R such that M ∼= π0S

↑f , N ∼= π0S
↑g, and ∥f − g∥p = ϵ′. By assumption

d(M,N) ≤ ∥f − g∥p = ϵ′ and by letting ϵ′ → ϵ, we have that d(M,N) ≤ d̂pI(M,N). By
Lemma 4.4, we know that d ≤ dpI . ◀

References
1 Pankaj K Agarwal, Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang.

Computing the Gromov-Hausdorff distance for metric trees. ACM Transactions on Algorithms
(TALG), 14(2):1–20, 2018. doi:10.1145/3185466.

2 Ulrich Bauer. The space of Reeb graphs. Workshop on Topology, Computation, and Data
Analysis, Schloss Dagstuhl, 2019.

3 Ulrich Bauer, Magnus Bakke Botnan, and Benedikt Fluhr. Universality of the bottleneck
distance for extended persistence diagrams. arXiv preprint, 2020. arXiv:2007.01834.

4 Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. In
Proceedings of the thirtieth annual symposium on Computational geometry, pages 464–473,
2014. doi:10.1145/2582112.2582169.

5 Ulrich Bauer, Claudia Landi, and Facundo Mémoli. The Reeb graph edit distance is
universal. Foundations of Computational Mathematics, pages 1–24, 2020. doi:10.1007/
s10208-020-09488-3.

6 Ulrich Bauer and Michael Lesnick. Persistence diagrams as diagrams: A categorification
of the stability theorem. In Topological Data Analysis, pages 67–96. Springer International
Publishing, 2020. doi:10.1007/978-3-030-43408-3_3.

SoCG 2022

https://doi.org/10.1145/3185466
http://arxiv.org/abs/2007.01834
https://doi.org/10.1145/2582112.2582169
https://doi.org/10.1007/s10208-020-09488-3
https://doi.org/10.1007/s10208-020-09488-3
https://doi.org/10.1007/978-3-030-43408-3_3


24:18 The Universal ℓp-Metric on Merge Trees

7 Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong equivalence of the interleaving
and functional distortion metrics for Reeb graphs. In 31st International Symposium on
Computational Geometry (SoCG 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015. doi:10.4230/LIPIcs.SOCG.2015.461.

8 Ulrich J Bauer, Håvard Bakke Bjerkevik, and Benedikt Fluhr. Quasi-universality of Reeb
graph distances. arXiv preprint, 2021. arXiv:1705.01690.

9 Håvard Bakke Bjerkevik and Michael Lesnick. ℓp-distances on multiparameter persistence
modules. arXiv preprint, 2021. arXiv:2106.13589.

10 Andrew J Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance.
arXiv preprint, 2017. arXiv:1705.01690.

11 Brian Bollen, Erin W. Chambers, Joshua A. Levine, and Elizabeth Munch. Reeb graph metrics
from the ground up. arXiv preprint, 2021. arXiv:2110.05631.

12 Peter Bubenik, Vin de Silva, and Jonathan Scott. Metrics for generalized persistence mod-
ules. Foundations of Computational Mathematics, 15(6):1501–1531, 2015. doi:10.1007/
s10208-014-9229-5.

13 Peter Bubenik, Jonathan Scott, and Donald Stanley. Exact weights, path metrics, and algebraic
Wasserstein distances. arXiv preprint, 2018. arXiv:1809.09654.

14 Peter Bubenik and Jonathan A Scott. Categorification of persistent homology. Discrete &
Computational Geometry, 51(3):600–627, 2014. doi:10.1007/s00454-014-9573-x.

15 Gabriel Cardona, Arnau Mir, Francesc Rosselló, Lucia Rotger, and David Sánchez. Cophenetic
metrics for phylogenetic trees, after Sokal and Rohlf. BMC bioinformatics, 14(1):1–13, 2013.
doi:10.1186/1471-2105-14-3.

16 Robert Cardona, Justin Curry, Tung Lam, and Michael Lesnick. The universal ℓp-metric on
merge trees. arXiv preprint, 2021. arXiv:2112.12165.

17 Gunnar Carlsson and Facundo Mémoli. Characterization, stability and convergence of hierar-
chical clustering methods. Journal of Machine Learning Research, 11(47):1425–1470, 2010.
URL: http://jmlr.org/papers/v11/carlsson10a.html.

18 Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
Computational Geometry, 24(2):75–94, 2003. doi:10.1016/S0925-7721(02)00093-7.

19 Hamish Carr, Jack Snoeyink, and Michiel van de Panne. Simplifying flexible isosurfaces
using local geometric measures. In IEEE Visualization 2004, pages 497–504, 2004. doi:
10.1109/VISUAL.2004.96.

20 Erin Wolf Chambers, Elizabeth Munch, and Tim Ophelders. A family of metrics from the
truncated smoothing of Reeb graphs. In 37th International Symposium on Computational
Geometry, 2021. doi:10.4230/LIPIcs.SoCG.2021.22.

21 Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J Guibas, and Steve Y Oudot.
Proximity of persistence modules and their diagrams. In Proceedings of the twenty-fifth annual
symposium on Computational geometry, pages 237–246, 2009. doi:10.1145/1542362.1542407.

22 Yen-Chi Chen. Generalized cluster trees and singular measures. The Annals of Statistics,
47(4):2174–2203, 2019. doi:10.1214/18-AOS1744.

23 David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz
functions have Lp-stable persistence. Foundations of computational mathematics, 10(2):127–
139, 2010. doi:10.1007/s10208-010-9060-6.

24 William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence mod-
ules. Journal of Algebra and its Applications, 14(05):1550066, 2015. doi:10.1142/
S0219498815500668.

25 Justin Curry. The fiber of the persistence map for functions on the interval. Journal of Applied
and Computational Topology, 2(3):301–321, 2018. doi:10.1007/s41468-019-00024-z.

26 Justin Curry, Haibin Hang, Washington Mio, Tom Needham, and Osman Berat Okutan.
Decorated merge trees for persistent topology. To Appear in the Journal of Applied and
Computational Topology, 2022. arXiv:2103.15804.

https://doi.org/10.4230/LIPIcs.SOCG.2015.461
http://arxiv.org/abs/1705.01690
http://arxiv.org/abs/2106.13589
http://arxiv.org/abs/1705.01690
http://arxiv.org/abs/2110.05631
https://doi.org/10.1007/s10208-014-9229-5
https://doi.org/10.1007/s10208-014-9229-5
http://arxiv.org/abs/1809.09654
https://doi.org/10.1007/s00454-014-9573-x
https://doi.org/10.1186/1471-2105-14-3
http://arxiv.org/abs/2112.12165
http://jmlr.org/papers/v11/carlsson10a.html
https://doi.org/10.1016/S0925-7721(02)00093-7
https://doi.org/10.1109/VISUAL.2004.96
https://doi.org/10.1109/VISUAL.2004.96
https://doi.org/10.4230/LIPIcs.SoCG.2021.22
https://doi.org/10.1145/1542362.1542407
https://doi.org/10.1214/18-AOS1744
https://doi.org/10.1007/s10208-010-9060-6
https://doi.org/10.1142/S0219498815500668
https://doi.org/10.1142/S0219498815500668
https://doi.org/10.1007/s41468-019-00024-z
http://arxiv.org/abs/2103.15804


R. Cardona, J. Curry, T. Lam, and M. Lesnick 24:19

27 Justin Michael Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of
Pennsylvania, 2014.

28 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete &
Computational Geometry, 55(4):854–906, 2016. doi:10.1007/s00454-016-9763-9.

29 Vin de Silva, Elizabeth Munch, and Anastasios Stefanou. Theory of interleavings on categories
with a flow. Theory and Applications of Categories, 33(21):583–607, 2018. URL: http:
//www.tac.mta.ca/tac/volumes/33/21/33-21.pdf.

30 Barbara Di Fabio and Claudia Landi. The edit distance for Reeb graphs of surfaces. Discrete
& Computational Geometry, 55(2):423–461, 2016. doi:10.1007/s00454-016-9758-6.

31 Thomas Duquesne and Jean-François Le Gall. Random trees, Lévy processes and spatial
branching processes. Number 281 in Astérisque. Société mathématique de France, 2002. URL:
http://www.numdam.org/item/AST_2002__281__R1_0/.

32 Elena Farahbakhsh Touli. Fréchet-like distances between two rooted trees. Journal of
Algorithms and Computation, 53(1):1–12, 2021. doi:10.22059/JAC.2021.81145.

33 Elena Farahbakhsh Touli and Yusu Wang. FPT-algorithms for computing Gromov-Hausdorff
and interleaving distances between trees. In European Symposium on Algorithms, 2019.
doi:10.4230/LIPIcs.ESA.2019.83.

34 Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wolfinger. Barrier trees
of degenerate landscapes. Zeitschrift für Physikalische Chemie, 2002. doi:10.1524/zpch.
2002.216.2.155.

35 Ellen Gasparovic, Elizabeth Munch, Steve Oudot, Katharine Turner, Bei Wang, and Yusu Wang.
Intrinsic interleaving distance for merge trees. arXiv preprint, July 2019. arXiv:1908.00063.

36 Christopher Gold and Sean Cormack. Spatially ordered networks and topographic recon-
structions. International Journal of Geographical Information Systems, 1(2):137–148, 1987.
doi:10.1080/02693798708927800.

37 John A. Hartigan . Consistency of single linkage for high-density clusters. Journal of
the American Statistical Association, 76(374):388–394, 1981. doi:10.1080/01621459.1981.
10477658.

38 Masaki Kashiwara and Pierre Schapira. Persistent homology and microlocal sheaf the-
ory. Journal of Applied and Computational Topology, 2(1):83–113, 2018. doi:10.1007/
s41468-018-0019-z.

39 In So Kweon and Takeo Kanade . Extracting topographic terrain features from elevation maps.
CVGIP: Image Understanding, 59(2):171–182, 1994. doi:10.1006/ciun.1994.1011.

40 Michael Lesnick. The theory of the interleaving distance on multidimensional persistence
modules. Foundations of Computational Mathematics, 15(3):613–650, 2015. doi:10.1007/
s10208-015-9255-y.

41 Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between merge
trees. Proceedings of Topology-Based Methods in Visualization, 2013.

42 Elizabeth Munch and Anastasios Stefanou. The l∞-cophenetic metric for phylogenetic trees as
an interleaving distance. In Research in Data Science, pages 109–127. Springer International
Publishing, 2019. doi:10.1007/978-3-030-11566-1_5.

43 Amit Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology,
1(3):397–419, 2018. doi:10.1007/s41468-018-0012-6.

44 Daniel Perez. On C0-persistent homology and trees. arXiv preprint, 2020. arXiv:2012.02634.
45 Daniel Perez. On the persistent homology of almost surely C0 stochastic processes. arXiv

preprint, 2020. arXiv:2012.09459.
46 Mathieu Pont, Jules Vidal, Julie Delon, and Julien Tierny. Wasserstein distances, geodesics

and barycenters of merge trees. IEEE Transactions on Visualization and Computer Graphics,
28(1):291–301, 2021. doi:10.1109/TVCG.2021.3114839.

47 Andrew Robinson and Katharine Turner. Hypothesis testing for topological data analysis.
Journal of Applied and Computational Topology, 1(2):241–261, December 2017. doi:10.1007/
s41468-017-0008-7.

SoCG 2022

https://doi.org/10.1007/s00454-016-9763-9
http://www.tac.mta.ca/tac/volumes/33/21/33-21.pdf
http://www.tac.mta.ca/tac/volumes/33/21/33-21.pdf
https://doi.org/10.1007/s00454-016-9758-6
http://www.numdam.org/item/AST_2002__281__R1_0/
https://doi.org/10.22059/JAC.2021.81145
https://doi.org/10.4230/LIPIcs.ESA.2019.83
https://doi.org/10.1524/zpch.2002.216.2.155
https://doi.org/10.1524/zpch.2002.216.2.155
http://arxiv.org/abs/1908.00063
https://doi.org/10.1080/02693798708927800
https://doi.org/10.1080/01621459.1981.10477658
https://doi.org/10.1080/01621459.1981.10477658
https://doi.org/10.1007/s41468-018-0019-z
https://doi.org/10.1007/s41468-018-0019-z
https://doi.org/10.1006/ciun.1994.1011
https://doi.org/10.1007/s10208-015-9255-y
https://doi.org/10.1007/s10208-015-9255-y
https://doi.org/10.1007/978-3-030-11566-1_5
https://doi.org/10.1007/s41468-018-0012-6
http://arxiv.org/abs/2012.02634
http://arxiv.org/abs/2012.09459
https://doi.org/10.1109/TVCG.2021.3114839
https://doi.org/10.1007/s41468-017-0008-7
https://doi.org/10.1007/s41468-017-0008-7


24:20 The Universal ℓp-Metric on Merge Trees

48 Luis N Scoccola. Locally persistent categories and metric properties of interleaving distances.
PhD thesis, The University of Western Ontario, 2020.

49 Primoz Skraba and Katharine Turner. Wasserstein stability for persistence diagrams. arXiv
preprint, 2021. arXiv:2006.16824.

50 Raghavendra Sridharamurthy, Talha Bin Masood, Adhitya Kamakshidasan, and Vijay Natara-
jan. Edit distance between merge trees. IEEE Transactions on Visualization and Computer
Graphics, 26(3):1518–1531, 2020. doi:10.1109/TVCG.2018.2873612.

51 Raghavendra Sridharamurthy and Vijay Natarajan. Comparative analysis of merge trees using
local tree edit distance. IEEE Transactions on Visualization and Computer Graphics, 2021.

52 Katharine Turner. Medians of populations of persistence diagrams. Homology, Homotopy and
Applications, 22(1):255–282, 2020. doi:10.4310/HHA.2020.v22.n1.a15.

http://arxiv.org/abs/2006.16824
https://doi.org/10.1109/TVCG.2018.2873612
https://doi.org/10.4310/HHA.2020.v22.n1.a15


On Complexity of Computing Bottleneck and
Lexicographic Optimal Cycles in a Homology Class
Erin Wolf Chambers # Ñ

Saint Louis University, MO, USA

Salman Parsa #

University of Utah, Salt Lake City, UT, USA

Hannah Schreiber #

Saint Louis University, MO, USA

Abstract
Homology features of spaces which appear in applications, for instance 3D meshes, are among the
most important topological properties of these objects. Given a non-trivial cycle in a homology class,
we consider the problem of computing a representative in that homology class which is optimal. We
study two measures of optimality, namely, the lexicographic order of cycles (the lex-optimal cycle)
and the bottleneck norm (a bottleneck-optimal cycle). We give a simple algorithm for computing
the lex-optimal cycle for a 1-homology class in a closed orientable surface. In contrast to this, our
main result is that, in the case of 3-manifolds of size n2 in the Euclidean 3-space, the problem of
finding a bottleneck optimal cycle cannot be solved more efficiently than solving a system of linear
equations with an n × n sparse matrix. From this reduction, we deduce several hardness results.
Most notably, we show that for 3-manifolds given as a subset of the 3-space of size n2, persistent
homology computations are at least as hard as rank computation (for sparse matrices) while ordinary
homology computations can be done in O(n2 log n) time. This is the first such distinction between
these two computations. Moreover, it follows that the same disparity exists between the height
persistent homology computation and general sub-level set persistent homology computation for
simplicial complexes in the 3-space.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Mathematics
of computing → Geometric topology; Theory of computation → Computational geometry

Keywords and phrases computational topology, bottleneck optimal cycles, homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.25

Related Version Full Version: https://arxiv.org/abs/2112.02380

Funding Erin Wolf Chambers: This author was funded in part by the National Science Foundation
through grants CCF-1614562, CCF-1907612, CCF-2106672, and DBI-1759807.
Salman Parsa: This author was funded in part by the Saint Louis University Research Institute and
by NSF grant CCF-1614562.
Hannah Schreiber : This author was funded in part by the National Science Foundation through
grant DBI-1759807.

1 Introduction

Topological features of a space are those features that remain invariant under continuous,
invertible deformations of the space. Homology groups are one of the most important topolo-
gical features which, while not a complete invariant of shape, nevertheless are computationally
feasible and capture important structure, in the following sense. Let K denote our space,
which we will assume is a simplicial complex. For any dimension d, there is a homology

© Erin Wolf Chambers, Salman Parsa, and Hannah Schreiber;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:erin.chambers@slu.edu
https://cs.slu.edu/~chambers/
mailto:sparsa@sci.utah.edu
mailto:hannah.schreiber.k@gmail.com
https://orcid.org/0000-0002-8564-415X
https://doi.org/10.4230/LIPIcs.SoCG.2022.25
https://arxiv.org/abs/2112.02380
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles

Figure 1 The blue cycle is homologous (with Z2 coefficients) to the red cycle.

group1 Hd(K) that captures the d-dimensional structure present. The zero dimensional group
encodes the connected components of K; the group H1(K) contains information about the
closed curves in K which can not be “filled” in the space (often described as handles); and
the group H2(K) captures the voids in the space that could not be filled, etc.2 For example,
a hollow torus contains a single void and two classes of curves that are not “filled” in the
space, and these features remain under continuous, invertible deformations of the shape.

Although the above intuitive description of the homology features is useful in many
applications, in general, homology groups are algebraic objects defined for a simplicial
complex (or a topological space) which do not easily translate to a canonical geometric
feature. An element of a d-dimensional homology group is a homology class, and a homology
class by definition contains a set of d-cycles, where cycles which are in the same class are
called homologous to each other. Assume our complex K is a 3D mesh and d = 1. A cycle
under homology is a set of edges in the mesh, such that each vertex is incident to an even
number of edges. A fixed cycle therefore corresponds to a fixed geometric feature of the mesh,
while the homology class contains a large collection of these cycles. Cycles in the same class
could be very different geometrically, see figure 1. Consequently, the knowledge of homology
groups or Betti numbers (which are the dimensions of the homology groups) does not directly
provide us with geometric features that lend themselves to interpretations that are necessary
for many applications, especially in topological data analysis. Therefore, it is desirable to
assign unique cycles, or those with known geometric features, to a homology class in a natural
way. Much recent work has sought to define measures or weights on the cycles and then
represent each homology class by some (ideally unique) cycle which optimizes that measure.
This problem has been well-studied in the literature with many different measures proposed;
see Section 1.2 for an overview of relevant results. Interestingly, sometimes optimizing the
cycle is NP-hard and sometimes polynomial-time, depending on the measure, the classes of
spaces one allows in the input, and the type of homology calculation. One of the more widely
studied versions gives each edge a weight and then seeks the representative with minimum
total length in the homology class. This problem is known as homology localization, and even
its complexity varies widely depending on the space and the type of homology calculation.
There is also a rich body of work that seeks to compute optimal cycles in persistent homology
classes; again, we refer to Section 1.2 for details and citations.

In most of the paper we fix a simplicial complex K, a fixed d, and a weight function given
on d-simplices of K. However, unlike traditional homology localization, for most of our work,
it suffices to think of the weight function as an ordering of the simplices. We then consider

1 In this work, we will always use Z2 coefficients, so that the homology groups are also vector spaces.
2 Note that this is a high level, intuitive description; we refer the reader to [27, 24] for more precise

definitions.



E. W. Chambers, S. Parsa, and H. Schreiber 25:3

two measures that this ordering induces on the set of d-cycles. The first, already defined
and studied in Cohen-Steiner et al. [11], is the lexicographic ordering on the chains. The
second is a minmax measure we call the bottleneck norm, which assigns to each chain the
maximum weight of a simplex in it. We note that computing the lexicographic-optimal cycle
is at least as hard as computing a bottleneck-optimal cycle in a given homology class, as the
lexicographic-optimal cycle is always bottleneck-optimal (but the reverse is not always true).
In the rest of the paper, we often shorten lexicographical-optimal to lex-optimal.

1.1 Contributions
It is proved in [11] that the persistent homology boundary matrix reduction can be used to
compute the lex-optimal cycle in any given homology class in cubic time in the size of the
complex, for any dimension. In this paper, we begin by presenting a new simple algorithm
that, given a (closed orientable) surface and a 1-dimensional cycle, computes a lex-optimal
cycle homologous to the input cycle in O(m log m) time, where m is the size of a triangulation
of the surface. We note that an algorithm with slightly better running-time (O(nα(n)), where
α(n) is the inverse Ackermann function) is also given in [11] although their algorithm only
works for cycles which are homologous to a boundary and satisfy some other restrictions, see
[11, Problem 17].

The simplest setting after surfaces is perhaps 3-manifolds embedded in Euclidean 3-space,
for instance solid 3D meshes. For simplifying run-time comparisons, we denote the sizes of the
complexes in R3 by n2. Our main contribution in this paper is that given a system Ax = b of
linear equations with A a sparse3 0-1 matrix, it is possible to construct in O(n2 log n) time a
3-manifold embedded in R3 of size O(n2) such that solving the system for a solution x is
equivalent to computing a bottleneck-optimal cycle in a given homology class. Our reductions
remain true for integer homology and other fields Zp (with an appropriate definition of
optimal cycles), albeit with slight changes in the run-time of the reductions.

In [13], Dey presents an algorithm for computing the persistent diagram of a height
function for a complex in R3 (of size n2) in O(n2 log n) time. In addition, in the same
running time a set of generators can be computed. From our reduction, it follows that, if the
given function on the complex (which is a mesh in R3) is not a height function, then these
computations cannot be done faster than rank computation for a sparse 0-1 matrix. This
gives a first answer to the main question asked in [13], asking if efficient algorithms exist for
the non-height functions. In other words, our results show that there is a disparity between
the efficiency of algorithms for computing sub-level-set persistence for 3D meshes of height
and of general functions.

Ordinary Betti numbers for complexes in R3 (of size n2) can be computed in O(n2 log n)
time [12] (if a triangulation of the complement is also given). It follows from our reduction
that computing persistence Betti numbers for an arbitrary function for complexes in R3 is
as hard as computing the rank of a sparse 0-1 n × n matrix (even if a triangulation of the
complement is given). To our knowledge, this is the first such distinction between persistent
and ordinary homology computations.

We should also mention that the significance of the reductions, like the ones presented
in Section 4, is not giving a lower bound for the problem in the complexity theoretic sense,
as we have not done this, since we do not know if solving a sparse system has a non-trivial
lower bound. Rather, the reductions show that the geometry of the problem does not help

3 By a sparse n × n matrix we mean that the number of non-zeros is at most cn for some constant c.

SoCG 2022



25:4 On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles

in improving trivial deterministic algorithms. For instance, one of our theorems tells a
researcher of geometric methods that it is futile to try to find a deterministic O(m log m)
algorithm that computes persistent Betti numbers for meshes in 3D if that researcher is not
interested in improving the best run-time for matrix rank computation for sparse matrices.
As mentioned before, an O(m log(m)) algorithm exists if we are interested only in height
functions. Here, m is size of the input mesh.

1.2 Related work

The Optimal Homologous Chain Problem (OHCP) is a well studied problem in computational
topology, which specifies a particular cycle or homology class and asks for the “optimal” cycle
in the same homology class. Similarly, the problem of homology localization [30] specifies
a topological “feature” (usually a homology class, such as a handle or void), and asks for
a representative of that class. Such representatives can be used for simplification, mesh
parametrization, surface mapping, and many other problems.

Of course, computability and practicality often depend on the exact definition of “optimal”,
with a wide range of variants. One natural notion of optimal is simply to assume the input
complex has weights on the simplices, and to compute the representative of minimum length,
area, or volume (depending on the dimension). Here, length (or area or volume) of a chain
is computed as a weighted summation of the weights of its simplices; it then remains to
specify the coefficients used when computing these objects, since the choice of coefficient
can greatly affect the results. The resulting trade-offs can be quite subtle and surprising.
For example, minimum length homologous cycles with Z coefficients in the homology class
of highest dimension, if homology is torsion free, reduces to linear programming and hence
is solvable in polynomial time [15, 7]. In contrast, with Z2 coefficients the problem is
NP-hard to compute, even on 2-manifolds [6, 5]. In fact, homology localization is NP-hard
to approximate for Z2 coefficients within a constant factor even when the Betti number is
constant [9], and APX-Hard but fixed parameter tractable with respect to the size of the
optimal cycle [2, 3]. When coefficients are over Zk, the problem becomes Unique Games
Conjecture hard to approximate [22]. Homology localization has also been studied under the
lens of parameterized complexity, where it is fixed parameter tractable in treewidth of the
underlying complex [1].

There has been considerable followup work on different variants of homology localization.
One major line of work focuses on persistent homology generators, which are often related to
homology localization but seek generators in a filtration which realize a particular persistent
homology class [8, 4, 25, 28, 13, 17, 16]; again, there is high variance on notions of optimality
for these generators and on input assumptions, both of which affect complexity. More directly
related to this paper, as noted in the introduction, lexicographic minimum cycles under some
ordering on the simplices have also been studied [11].

Hardness of computing ordinary homology for complexes in Euclidean spaces is discussed
in [19], where a reduction to rank computation of sparse matrices is presented; the results of
this paper thus in a sense extend those of [19].

We note that there are randomized and probabilistic algorithms for sparse matrix opera-
tions in almost quadratic time [29, 10]. As a result, our reductions do not apply for these
types of algorithms, since they take O(n2 log(n)) time for a matrix with O(n) non-zeros. It
is natural to ask for a reduction that is linear in the size of the input A; indeed, this presents
an interesting direction of future research.



E. W. Chambers, S. Parsa, and H. Schreiber 25:5

2 Bottleneck and lex-optimal cycles

Let K be a simplicial complex and Kd = {σ0, . . . , σm} be the set of d-dimensional simplices
of K. A weight function w on Kd is an arbitrary function w : Kd → R>0 = {r ∈ R | r > 0}.
Thus w is defined on the generators of the chain group Cd(K). For simplicity, we assume
that w is injective, i.e., simplices have distinct weights. For our purposes, such a weight
function is equivalent to one with co-domain N − {0}, or a total ordering of the simplices. If
the weight function is not injective, then the edges with the same weight have exactly the
same potential to appear in the optimal cycle and adding some small perturbations to their
weights to distinguish them will not affect the consistency of the end result.

We extend w to the function bw : Cd(K) → N as follows: for a chain c ∈ Cd(K) of the
form c =

∑m
i=0 tiσi, where, ∀i, ti ∈ Z2, we set

bw(c) =

max0⩽i⩽m
ti=1

{w(σi)} if c ̸= 0

0 if c = 0.

In other words, if we view a chain c ∈ Cd(K) as a set of simplices, bw assigns to c the
maximum weight of a simplex in c. We call bw the bottleneck norm on Cd(K).

By the maximum simplex, we mean the simplex with the largest weight in the chain.
Although Cd(K) is a finite vector space, the function bw has properties analogous to a

norm. First, it is non-negative. Second, assume x and y are chains and σx and σy are their
maximum simplices. The maximum simplex of x+y has weight at most max{w(σx), w(σy)} ≤
w(σx) + w(σy). Hence bw satisfies the triangle inequality. And third, clearly if bw(c) = 0
then c = 0.

One can also define a lexicographic ordering on the d-chains based on the given weight
function w, see also [11]. For this purpose, we order the d-simplices such that σ < σ′ if
and only if w(σ) < w(σ′). We assume that the subscript of the σi respects the order. Let
c =

∑
tjσj and c′ =

∑
t′
jσj . We define c <L c′ if there exists an index j0 such that for

j > j0, tj = 1 if and only if t′
j = 1, and tj0 = 0, t′

j0
= 1. We write c ≤L c′ if c <L c′ or c = c′.

2.1 Problem definitions

In this section, we give formal definitions for our two main problems, the Bottleneck-Optimal
Homologous Cycle Problem (Bottleneck-OHCP) and the Lexicographic-Optimal Homologous
Cycle Problem (Lex-OHCP) [11], as well as defining optimal bases for homology groups.

Bottleneck-OHCP. Given a weight function w on Kd, and a cycle ζ ∈ Zd(K), compute a
cycle z∗ such that [z∗] = [ζ] and such that z∗ minimizes the bottleneck norm. More formally,
find z∗ such that bw(z∗) = min{bw(z) | z ∈ Zd(K), ∃c ∈ Cd+1(K), z + ζ = ∂c}.

In other words, the weight of the maximum simplex in z∗ is minimized in the homology
class of ζ. Therefore, we can also define the bottleneck weight function b∗

w : Hd(K) → R≥0
on the homology classes by using the minimum [ζ] 7→ bw(z∗). Thus the problem can also
be formulated as computing the cycle which achieves b∗

w(h) given any representative of the
homology class h.

SoCG 2022



25:6 On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles

Lex-OHCP. Given a weight function w on Kd, and a cycle ζ ∈ Zd(K), compute the cycle
z∗ such that [z∗] = [ζ] and for any d-cycle y, if [y] = [ζ] then z∗ ≤L y.

We note that by our convention on the weight function, the lex-optimal cycle is always
unique. Moreover, the lex-optimal cycle is also bottleneck-optimal, however, the converse
is not true. Our reductions and hardness results are formulated for the bottleneck norm.
Counter-intuitively, considering this intermediate problem simplifies our reductions and
hardness proofs.

Optimal basis. For any suitable measure or weight function on the cycles we can define the
corresponding optimal basis. Let ≤p be some pre-order on the set of d-cycles Zd(K) such
that every subset A ⊂ Zd(K) has some chain a, such that ∀z ∈ A, a ≤p z.

With respect to this pre-order, we define the optimal basis for d-homology, as a set of
cycles B ⊂ Zd(K), representing the homology classes generating Hd(K), as follows. Put the
smallest non-zero element of Zd(K) in B. Now, repeat the following until B is a representative
basis for d-homology: let A be the union of the cycles in the classes that are not in the
subspace generated by the classes represented in B. Put the smallest cycle of A in B.

In Section 3, we will describe a simple algorithm for computing the lex-optimal basis for
the 1-dimensional homology of a surface.

2.2 The Sub-level bottleneck weight function
We defined the bottleneck weight function b∗

w : Hd(K) → N on homology classes using a weight
function on d-simplices for some fixed dimension d. Here we give a second, more natural
definition of a generalization of this weight function. Let ω : |K| → R be a generic simplex-wise
linear function. The sub-level set of a value r ∈ R is the set |K|≤r = {x ∈ |K| | ω(x) ≤ r}. For
any d-cycle ζ ∈ Zd(K), define bω(ζ) := min{r ∈ R | ∃z ∈ Zs

d(K≤r), ∃y ∈ Cs
d+1(K), ζ + z =

∂y}, where Cs
• denotes the singular chain complex. Intuitively, bω(ζ) is the smallest value of

r such that a chain homologous to ζ in K appears in the sub-level-set. This value of course
depends only on the homology class of ζ. Thus, we have a weight function b∗

ω : Hd(K) → R.

▶ Lemma 1. For any weight function w on d-simplices of K, there is a generic simplex-wise
linear function ω on the barycentric subdivision of K, such that for any homology class
h ∈ Hd(K), b∗

ω(h′) = b∗
w(h), where h′ is the image of h in the subdivision.

Proof. Let K′ denote the subdivision of K. Recall that for each simplex σ of K there is a
vertex v(σ) in K′. If σ is a d-simplex, we set ω(v(σ)) = w(σ). For all other vertices v of
K′ we define bω(v) to be a very small positive number. We then replace these weights with
positive integers while maintaining their order. It is easy to check that our function satisfies
the statement of the lemma. ◀

Note that we use the barycentric subdivision simply to give a finer level of granularity
on the sub-level sets. This subdivision appears to be necessary for the construction of the
function ω.

2.3 Bottleneck weight function and persistent homology
A homology class h ∈ H(K) is a set of cycles such that the difference of any two of the cycles
is a boundary chain. Homology classes are intuitively referred to as homological features.
Persistent homology tries to measure the importance of these features. For details see [18].



E. W. Chambers, S. Parsa, and H. Schreiber 25:7

Let the set of simplices of K be ordered such that for each simplex σ, the simplices on
the boundary of σ appear before σ in the ordering. For instance, this ordering can be given
by the time that a simplex is added, if we are building the complex K by adding a simplex
at a time. Of course, we need the boundary of a simplex to be present before adding it. Let

∅ = K0 ⊂ K1 · · · ⊂ Kn−1 ⊂ Kn = K

be the sequence of complexes such that Ki consists of the first i simplices in the ordering.
Such a sequence is called a filtration. For j ≥ i, let f i,j : Ki ⊂ Kj be the inclusion and f i,j

♯

the induced homomorphism on the chain groups. The homology groups Hd(Ki) change as
we add simplices. We want to track homology features during these additions.

For 0 ≤ i ≤ j ≤ n, the d-dimensional persistent homology group Hi,j
d is the quotient

Hi,j
d =

f i,j
♯ (Zd(Ki))

Bd(Kj) ∩ f i,j
♯ (Zd(Ki))

.

In words, this is the group of those homology classes of Hd(Kj) which contain cycles already
existing in Ki.

We give now an alternate description of the persistent homology classes. The cycles
representing homology features allow us to relate the classes of different spaces to each other.
We will consider, in each Ki, a basis of homology and assign to each homology class in these
bases a cycle which we call a p-representative cycle. Consider Ki and let σ be a d-simplex
such that Ki ∪ {σ} = Ki+1. There are two possibilities for the change that adding σ causes
in the homology groups of Ki.
1. [∂d(σ)] = 0 in Ki. This implies there is a d-chain b such that ∂d(b) = ∂d(σ). Therefore,

∂d(b + σ) = 0. It is easily seen that the cycle z = b + σ is not a boundary in Ki+1. We
say that the cycle b + σ and the class h = [b + σ] are born at time i + 1 or at Ki+1. It
follows that Hk(Ki+1) = Hk(Ki) for k ̸= d and Hd(Ki+1) = Hd(Ki) ⊕ ([z]), where (x)
means the Z2-vector space generated by x. We take the cycle z to be the p-representative
for the class h in Ki+1. Moreover, If z′ is a (inductively defined) p-representative for a
homology class of Ki we transfer it to be the p-representative of its class in Ki+1.

2. [∂d(σ)] ̸= 0 in Ki. In this case, adding the simplex σ causes the class h = [∂(σ)] to
become trivial. In other words, each z ∈ [∂(σ)] is now a boundary and this class is merged
with the class 0. Since the p-representatives form a basis of homology, h can be written
as a summation of these. The Elder Rule tells us that we declare that the youngest
p-representative in this representation dies entering Ki+1. Any other class still can be
written as summation of existing p-representatives. Note that each p-representative now
represents a possibly larger class.

For 0 ≤ i ≤ j ≤ n, the d-dimensional persistent homology group Hi,j
d consists of the

classes, in Hd(Kj), of those d-dimensional p-representatives which are born at or before Ki.
Therefore, the p-representatives persist through the filtration. At any i, they form a basis of
the homology groups of Ki, and their lifetime can be depicted using barcodes. The persistence
diagram encodes the birth and death indices of p-representatives. Note that the non-trivial
homology classes of K are born at some index but never die. From the above explanation
the following can be observed. We omit the proof.

▶ Proposition 2. Let h ∈ Hd(Ki) be a homology class and assume h =
∑

tj [zj ] where tj ∈ Z2
and the zj are p-representatives. Then

∑
tjzj is a bottleneck optimal cycle for h (with respect

to the ordering giving rise to the filtration).

SoCG 2022



25:8 On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles

Notice that there is a choice of b in the first case of the case analysis above. In general,
the p-representatives are not lex-optimal cycles. However, if we choose b to be lex-optimal the
p-representatives form a lex-optimal basis. This set of basis elements can be computed using
the persistent homology boundary matrix reduction algorithm [18], as shown in [11]. This
algorithm runs in O(m2ℓ) time where ℓ is the number of d-simplices and m is the number of
d + 1 simplices. Also using this basis, a lex-optimal cycle can be computed in any given class
in O(ℓ2) time [11]. Of course, these algorithms also compute a bottleneck optimal cycle for
any given homology class.

3 An efficient algorithm for 2-dimensional manifolds

In this section, we present a simple algorithm that, given a combinatorial 2-manifold
K, weights on the edges, and a 1-dimensional homology class, computes a lex-optimal
representative cycle in the given class. For simplicity, we consider only orientable manifolds
without boundary.

Our input K is an edge-weighted, orientable combinatorial 2-manifold, therefore, S := |K|
is an orientable surface without boundary. Let m be the complexity of K. Let z be an input
cycle on the 1-skeleton. Note that if we want an input cycle zS in S and not in K, i.e. the
cycle is not on the 1-skeleton, then we can compute an homologous cycle z on the 1-skeleton
with less than m edges in O(ℓ) time, where ℓ is the number of intersections of zS with the
edges of K.

We first construct a minimum spanning tree T of the 1-skeleton of K with respect to the
given weights. Let G be the dual graph of the 1-skeleton of K. The weight of an edge in G is
equal to the weight of its corresponding dual in K. Let Q be the maximum spanning co-tree
of K in G and let Q∗ be the edges of K whose duals are in Q. As shown in [20, Lemma 1]
T and Q∗ are disjoint. Let L be the edges that are not in T nor in Q∗, and recall that the
triple (T, Q, L) determines a polygonal schema P of 4g sides for S, where g is the genus of
the surface. See Figure 2 as example. This means that if we cut the surface at T ∪ L we
obtain a disk D, and there is an identification map g : D → S which will “re-glue” the disk
into a surface. Each edge of T ∪ L appears twice around the disk, and each edge of Q∗ is a
diagonal of this disk, connecting two vertices of the disk. The cutting of the edges of T ∪ L

and computing the disk D can be done in linear time. The two vertices of the disk that the
edges in Q∗ connect can also be computed in linear time, using previous work on computing
the minimal homotopic paths [14, 21].

During our algorithm, we maintain a data structure Z which stores a circular list of
elements of Z2. The circular list contains a node for each boundary edge of the disk D. Note
that any edge of T ∪ L corresponds to two edges on the boundary of D and thus two nodes
of Z.

Algorithm. We compute the lex-optimal cycle z∗ in the homology class of the input cycle z

as follows: We start with every node of Z at value 0. Then, for every edge e in z in T ∪ L,
we set one of the two nodes corresponding to e to 1 and keep the other one at 0. Finally,
for all remaining edges e in z, which therefore are in Q∗, let a(e) be one vertex and b(e) be
the other vertex which e connects in D. We add 1 to any node whose corresponding edge of
∂D is between a(e) and b(e) in clockwise order. At the end, we define the cycle z∗ to be the
cycle consisting of edges whose two corresponding nodes in Z sum to 1.



E. W. Chambers, S. Parsa, and H. Schreiber 25:9

Figure 2 From left to right: a tree co-tree decomposition of a weighted, triangulated torus (with
spanning tree shown in red, co-tree shown in green, and the set L in blue); the same torus cut along
T ∪ L; a redrawing of the resulting polygon.

Implementation of Z. The data structure Z has a single modifying operations: adding
a value 1 to any node between two given nodes (inclusive) in clockwise order. In brief, to
get a constant-per-operation run-time we accumulate the operations and update the data
structure in a single pass. We give now more detail. Z consists of an array A, whose cells
are denoted by “nodes” to avoid any confusion with complex cells. Each node represents an
edge of the boundary ∂D of D in the right order. For any edge e of z in Q∗, let a′(e) be
the first edge on the clockwise path between a(e) and b(e) in ∂D and b′(e) the last edge.
Additionally to a 0-1 value, each node c in A stores two values s(c) and f(c), where s(c) resp.
f(c) is the number of edges e of z in Q∗ whose a′(e) resp. b′(e) corresponds to c. For each e,
the cost of updating these two numbers is constant. The final cycle can be computed by first
computing the value of the first node A[0] and then walking along A and updating the value
as A[i] = A[i − 1] + s(A[i]) − f(A[i − 1]).

Correctness. Let L = {ℓ1, . . . , ℓ2g}, where the ℓi’s are sorted by increasing weight. Each
edge ℓi defines a unique cycle when added to the tree T , let these cycles be denoted by
Λ = {λ1, . . . , λ2g}. The following lemma is the key to our algorithm’s correctness.

▶ Lemma 3. Let q ∈ Q∗. Then there is a 1-chain c <L q in T ∪ L, and a 2-chain d such
that ∂d = q + c.

Proof. The union of the edges in T and L form a cut graph G of the surface, in the sense
that the closure of S − |G| is a topological disk D. Every edge of T ∪ L appears twice on
the boundary of D, and any q ∈ Q∗ is a diagonal in the polygon D. Let p1 and p2 be the
two arcs such that ∂D = p1 ∪ p2 and the endpoints of p1 and p2 coincide with those of q.
Let p̃i ∈ C1(K) be the 1-chain corresponding to pi, i = 1, 2, i.e., p̃i = g♯(pi). Recall that g♯

is the induced map on chain groups. Let d1 be the 2-chain bounded by p1 and q and let
d̃1 = g♯(d1). We have ∂d̃ = q + p̃1, where by q we denote this edge in D and S. We now
claim that every edge in p̃1 is smaller than q. Note that p̃1 is a chain of T ∪ L. We consider
two cases. First, assume p̃1 consists only of edges of T . In this case, it equals the unique path
in T defined by the endpoints of q. Since T is a minimum spanning tree our claim is proved.

Second, assume that p̃1 is not entirely in T . In this case we argue as follows. Let ℓ ∈ L

and let ℓ1 and ℓ2 be the two copies of ℓ on ∂D. We claim that if ℓ1 and ℓ2 are on both of the
arcs p1 and p2 (that is, if ℓ1 ∈ p1 and ℓ2 ∈ p2 or ℓ2 ∈ p1 and ℓ1 ∈ p2) then ℓ < q. Assume
for the sake of contradiction that ℓ > q. Under these conditions, if we remove the dual of q

SoCG 2022



25:10 On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles

from Q and add the dual of ℓ, we have reconnected the spanning co-tree split by removing
q (since the effect of removing q from Q is adding it to L and thus cutting the disk D at q

while the effect of adding ℓ to Q − {q} is merging the resulting disks at ℓ1 and ℓ2, thus again
forming a single disk). Thus we have increased the weight of the spanning co-tree which is
not possible. Therefore, ℓ < q or the two copies of ℓ appear on one of p1 or p2. It follows
that every edge of L (which appears once) in p̃1 is smaller than q (since appearing twice
cancels an edge). To finish the proof in this case, we claim that for every edge t ∈ T ∩ p̃1
there is an edge ℓ ∈ L ∩ p̃1 such that t < ℓ. It then follows that p̃1 < q.

To prove the claim we argue as follows. T ∪ L is a graph on the 1-skeleton of K and it is
standard and easy to show that any homology class 0 ̸= h ∈ H1(K) contains exactly one
cycle of T ∪ L. Let z = q + x be the cycle formed by adding q to T , where x is the path on T .
We have z + ∂d̃1 = z + p̃1 + q = p̃1 + x =: z′ and z′ is a non-empty cycle in T ∪ L (If z′ were
empty then p̃1 = x, this is not possible since x is in T and p̃1 is not in T by assumption).
Thus z′ can also be written as a non-empty summation of the λi. Each λi has the property
that its unique edge ℓi ∈ L is larger than its edges in T . Since these ℓi are never cancelled, it
follows that for each edge t ∈ z′ ∩ T there is an edge ℓ ∈ z′ ∩ L such that t < ℓ. Since the
L-edges are in p̃1 and not in x our claim is proved. ◀

With some abuse of notation we also denote the chain on ∂D defined by the nodes of Z
with value 1 by Z. Note that in the beginning of the algorithm g♯(Z) = z. The algorithm
then repeatedly updates Z by adding the chain p1 returned by the above lemma to Z and
adding the chain p̃1 = g♯(p1) to z. It updates Z such that at any time g♯(Z) = z. To finish
the proof of correctness, it remains to show that the final cycle, namely the unique cycle z∗
of T ∪ L in the class of z, is indeed the lex-min cycle. To see this, assume on the contrary
that there is a cycle y such that [y] = [z] and y < z∗. Since there is a unique cycle of any
class in T ∪ L, y has to contain an edge of Q∗ hence can be made smaller, which contradicts
minimality of y. Therefore, the cycles of T ∪ L are indeed the lex-min representatives of
homology classes.

▶ Theorem 4. Let K be a simplicial complex which is a closed orientable combinatorial
2-manifold and let m be its number of simplices. There is an algorithm that computes a
lex-optimal basis for the 1-dimensional homology of K in O(m log(m)) time. Moreover, we
can compute a lex-optimal representative for any given 1-homology class within the same
run-time.

Proof. We have proved that the algorithm correctly computes the lex-optimal cycle homo-
logous to z. We show that the basis Λ is lex-optimal basis. First note that by Lemma 3
every non-trivial cycle y is homologous to a cycle y′ ≤L y such that y′ is a subset of T ∪ L.
Since these must contain some ℓi, it follows that the smallest non-trivial cycle contains only
ℓ1 and edges of T , and hence is λ1.

Assume inductively that Λi = {λ1, . . . , λi} is a lex-optimal basis for the vector space
(Λi) ⊂ H1(K). We claim that λi+1 is the smallest cycle in classes in the set H1 − (Λi).
Consider any non-trivial cycle y and decrease it to y′ as above. To see that λi+1 is the
smallest cycle, note that y′ ∩L must contain some lj larger than λi, since otherwise [y] ∈ (Λi);
the smallest cycle with this property is λi+1.

Constructing T , the dual graph and Q takes at most O(m log m) time. Since we perform
one update operation on Z per edges of Q the total running time is O(m log m). ◀



E. W. Chambers, S. Parsa, and H. Schreiber 25:11

Figure 3 This figure is a link diagram for the reduction of the indicated linear system. The thick
round circles are the λi, and the link components are drawn in thin black and red. For all of the
crossings between Li, the vertical strand goes over the horizontal strand. In other words, these
are not linked with each other. Note that in this example we are using integer matrix and integer
linking number to showcase how the reduction works for integers. In the text we are concerned with
0-1 matrices. One also sees here how the need for generating large linking numbers (in absolute
value) increases the complexity of the reduction.

4 Reductions

In this section, we first reduce solving a system of linear equation Ax = b, with A sparse,
to computing the bottleneck-optimal homologous cycle problem for a 3-manifold given as a
subset of the Euclidean 3-space. We then use this reduction to deduce hardness results for
similar homological computations for 3-manifolds and 2-complexes in 3-space. Due to space
constraints, some proofs of this section can only be found in the full version of the paper.

Let A = (aij), i, j ∈ {1, . . . , n}, be an n × n square matrix with values in Z2. Let Ai

denote the i-th column, and At
i denote the i-the row of A. Let x = (x1, . . . , xn) be the vector

of the n variables of the system Ax = b, and b = (b1, . . . , bn).
From the given system Ax = b, we first construct a link diagram L′. We start by drawing

n round circles in the plane, whose collection we denote by Λ′ = {λ′
1, . . . , λ′

n}; see the thick
circles in the Figure 3 for an illustration. For each row At

i of A, we draw a component of the
link L′, denoted L′

i, such that its linking number is non-zero with λ′
j if and only if aij = 1;

this can be accomplished simply by linking L′
i appropriately with λ′

i depending on the value
of aij . As we wish the Li’s to not link with each other, any crossings between a fixed Li and
Lj are simply set to be all over (or all under), so that they will remain unlinked. Again, we
refer to Figure 3, where example knots L′

1, L′
2, and L′

3 are depicted by thin black lines. We
add one final knot, which we denote as ζ ′, to the link L′ so that its linking number with λ′

i

is non-zero if and only if bi = 1; this can be accomplished by linking ζ ′ once with each L′
i.

See the top knot shown in red in Figure 3 for an illustration.

▶ Lemma 5. Let A be such that each row of A has at most c non-zero entries. Then the
link diagram L′ has O(cn2) crossings.

In the next step, we construct a spatial link L from the link diagram L′, such that the
knots appear in the 1-skeleton of a triangulation of a 3-ball. This is standard and can be
done in O(m log(m))-time where m is the number of crossings of the link diagram L′ [23,

SoCG 2022



25:12 On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles

Lemma 7.1]. The resulted space has complexity O(m). Our diagram has O(n2) many
crossings, therefore this construction takes O(n2 log n) time and we obtain triangulation of a
ball with complexity O(n2). The spatial link L corresponding to L′ is a set of disjoint simple
closed curves in the 1-skeleton of a triangulation of a 3-ball B3. We denote the spatial knots
corresponding to L′

i by Li, and analogously we name other components of L.
Consider the sub-link N of L consisting of the components Li. We define the manifold

M to be the link-complement of the link N . This link-complement, by definition, is obtained
by removing the interior of a thin polyhedral tubular neighborhood of each component of N .
This construction is again standard, and a triangulation of M can be constructed in linear
time form the spatial link [23]. Therefore, the 3-manifold M is a subset of a 3-ball B3, and
has n boundary components. By extra subdivisions, if necessary, we can make sure that in
the interior of M , ζ, λi and b are simple, disjoint, closed curves in the 1-skeleton. To do this,
it is enough to make sure this property holds in every tetrahedron.

The cycle ζ is the input cycle in our instance of the bottleneck-optimal homologous cycle
problem. We still need to define our edge weights, which will be based on an ordering of the
edges of M . Let {eij} be the set of edges in the cycle λi. First, we make sure that every
edge not in some λi is larger than any eij . Second, if i < i′, we make sure that, for all j, j′,
eij is smaller than ei′j′ . This finishes construction of our problem instance.

Let µi, i ∈ {1, . . . , n}, be meridians of the knots Li in M . This is a circle on the boundary
component of M corresponding to Li. It is well-known that the homology group H1(M) is a
Z2-vector space with the basis {[µ1], . . . , [µn]} isomorphic to Zn

2 .

▶ Lemma 6. The following hold:
1. If there is a vector x ∈ Zn

2 such that Ax = b then any bottleneck-optimal cycle in the class
[ζ] is a summation of the cycles λj.

2. If there exists a bottleneck-optimal cycle z∗ in the class [ζ] such that z∗ =
∑n

i=1 xiλi then
the vector x = (x1, . . . , xn)t is a solution to Ax = b.

Proof. First, observe that for the class [λj ] we have [λi] =
∑n

j=1 aji[µj ]. The left of Figure 4
depicts a 2-chain realizing this relation. If we map the basis element [µj ] to the j-th standard
basis element ej , then we have defined an isomorphism H1(M) ∼= Zn

2 in which the class [λi]
maps to the column Ai. Second, note that, with a similar argument, [ζ] =

∑n
i=1 bj [µj ], see

Figure 4 right. Thus [ζ] maps to b under the isomorphism. It follows that Ax = b if and
only if

∑
xj [λj ] = [ζ]. The second statement follows.

If x is a solution to Ax = b, then the cycle z =
∑

xjλj belongs to the class [ζ]. Any
cycle which is not entirely a subset of the edges of the λi’s, and hence a summation of the
λi, contains some edge which is larger than all the edges of the λi’s and therefore has weight
more than z. It follows that any bottleneck-optimal cycle is a summation of the λi or, a
subset of them, since these are disjoint simple cycles. This proves the first statement. ◀

▶ Theorem 7. Solving the system of equations Ax = b where A is a sparse Z2-matrix reduces
in O(n2 log n) time to the bottleneck-optimal homologous cycle problem with Z2-coefficients
for a 3-manifold of size O(n2) given as a subset of R3.

Proof. Given the system Ax = b we have already constructed our instance. If the bottleneck-
optimal cycle z∗ returned by any algorithm that solves the Bottleneck-OHCP problem uses
only edges in

⋃
λi, then the second statement of Lemma 6 implies that we can find a solution

by determining which λi appear in z∗. This can be done in linear time. On the other hand, if
z∗ uses some edge not in

⋃
λi, then there is no solution to the system by the first statement

of Lemma 6. ◀



E. W. Chambers, S. Parsa, and H. Schreiber 25:13

Figure 4 ∂Di = λi +
∑

j
ajiµj (left), ∂D = ζ +

∑
j

bjµj (right).

Although we have not defined the integer homology groups, it is almost immediate that
the above reduction works also with Z-coefficients.

▶ Corollary 8. The (1-dimensional) lex-optimal homologous cycle problem for 3-manifolds in
R3 of size n2 cannot be solved more efficiently than the time required to solve a system of
equations Ax = b with A a sparse n × n matrix, if the latter time is Ω(n2 log(n)).

As noted before, the persistent boundary reduction algorithm can compute a lex-optimal
cycle in O(lm2) time [11], where m is the number of d + 1-simplices and l is the number of
d-simplices. Although a set of persistent generators can be computed in matrix multiplication
time [26], we do not know that the lex-optimal cycle can be found in matrix multiplication
time, as it is unclear if the divide and conquer strategy from [26] would work on our problem.

▶ Corollary 9. A set of sub-level-set persistent homology generators for a 3-manifold M or a
2-complex K of size n2 in R3 and a generic simplex-wise linear function f : M → R cannot
be computed more efficiently than the time required to compute a maximal set of independent
columns in an n × n sparse matrix A, if the latter time is Ω(n2 log(n)).

As noted in the introduction, the above results are in a strong contrast with the results
of Dey [13]. In other words, if the complex is of size O(n2) and the given function on the
simplicial complex K is a height function then one can compute the generators in O(n2 log n)
time, whereas, for a general function, one cannot do better than computing a maximal set of
independent columns for a given sparse matrix A of size n. To the best of our knowledge,
the best deterministic algorithm for this operation takes at least O(nω) time, where ω is the
exponent of matrix multiplication.

▶ Corollary 10. The persistence diagram for a 2-complex or a 3-manifold of size n2 in R3

and a generic simplex-wise linear function f : |K| → R cannot be computed more efficiently
than the time required to compute the rank of a sparse n × n matrix A, if the latter time is
Ω(n2 log(n)).

Again the above theorem should be compared with results of [13], where the persistence
is computed in O(n2 log n) time for a 2-complex in 3-space of size n2 and a height function.

SoCG 2022



25:14 On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles

References
1 Nello Blaser and Erlend Raa Vågset. Homology localization through the looking-glass of

parameterized complexity theory, 2020. arXiv:2011.14490.
2 Glencora Borradaile, William Maxwell, and Amir Nayyeri. Minimum bounded chains and

minimum homologous chains in embedded simplicial complexes. In Proceedings of the 36th
International Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

3 Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu Wang. Annotating
simplices with a homology basis and its applications. In Fedor V. Fomin and Petteri Kaski,
editors, Algorithm Theory – SWAT 2012, pages 189–200, 2012.

4 Oleksiy Busaryev, Tamal K. Dey, and Yusu Wang. Tracking a generator by persistence. In
My T. Thai and Sartaj Sahni, editors, Computing and Combinatorics, pages 278–287, 2010.

5 Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri. Minimum cuts in surface
graphs, 2019. arXiv:1910.04278.

6 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homologous
cycles. In Proceedings of the 25th International Symposium on Computational Geometry
(SoCG 2009). ACM Press, 2009. doi:10.1145/1542362.1542426.

7 Erin W. Chambers and Mikael Vejdemo-Johansson. Computing minimum area homologies.
Computer Graphics Forum, 34(6):13–21, November 2014. doi:10.1111/cgf.12514.

8 Chao Chen and Daniel Freedman. Measuring and computing natural generators for homology
groups. Computational Geometry, 43(2):169–181, 2010. Special Issue on the 24th European
Workshop on Computational Geometry (EuroCG’08). doi:10.1016/j.comgeo.2009.06.004.

9 Chao Chen and Daniel Freedman. Hardness results for homology localization. Discrete &
Computational Geometry, 45(3):425–448, January 2011. doi:10.1007/s00454-010-9322-8.

10 Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and
applications. Journal of the ACM, 60(5), October 2013. doi:10.1145/2528404.

11 David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic Optimal Homologous
Chains and Applications to Point Cloud Triangulations. In 36th International Symposium on
Computational Geometry (SoCG 2020), pages 32:1–32:17. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.32.

12 Cecil Jose A. Delfinado and Herbert Edelsbrunner. An incremental algorithm for Betti numbers
of simplicial complexes on the 3-sphere. Computer Aided Geometric Design, 12(7):771–784,
1995. doi:10.1016/0167-8396(95)00016-Y.

13 Tamal K. Dey. Computing height persistence and homology generators in R3 efficiently. In
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019),
pages 2649–2662, USA, 2019. Society for Industrial and Applied Mathematics.

14 Tamal K. Dey and Sumanta Guha. Transforming curves on surfaces. Journal of Computer
and System Sciences, 58(2):297–325, 1999. doi:doi.org/10.1006/jcss.1998.1619.

15 Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homologous cycles, total
unimodularity, and linear programming. SIAM Journal on Computing, 40(4):1026–1044,
January 2011. doi:10.1137/100800245.

16 Tamal K. Dey, Tao Hou, and Sayan Mandal. Persistent 1-cycles: Definition, computation, and
its application, 2018. arXiv:1810.04807.

17 Tamal K. Dey, Tao Hou, and Sayan Mandal. Computing minimal persistent cycles: Polynomial
and hard cases. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2020), pages 2587–2606, USA, 2020. Society for Industrial and Applied
Mathematics.

18 Herbert Edelsbrunner and John Harer. Computational Topology: an Introduction. American
Mathematical Society, 2010.

19 Herbert Edelsbrunner and Salman Parsa. On the computational complexity of betti numbers:
Reductions from matrix rank. In Proceedings of the 25th Annual ACM-SIAM Symposium

http://arxiv.org/abs/2011.14490
http://arxiv.org/abs/1910.04278
https://doi.org/10.1145/1542362.1542426
https://doi.org/10.1111/cgf.12514
https://doi.org/10.1016/j.comgeo.2009.06.004
https://doi.org/10.1007/s00454-010-9322-8
https://doi.org/10.1145/2528404
https://doi.org/10.4230/LIPIcs.SoCG.2020.32
https://doi.org/10.1016/0167-8396(95)00016-Y
https://doi.org/doi.org/10.1006/jcss.1998.1619
https://doi.org/10.1137/100800245
http://arxiv.org/abs/1810.04807


E. W. Chambers, S. Parsa, and H. Schreiber 25:15

on Discrete Algorithms (SODA 2014), pages 152–160. Society for Industrial and Applied
Mathematics, 2014. doi:10.1137/1.9781611973402.11.

20 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pages 599–608.
Society for Industrial and Applied Mathematics, 2003.

21 Jeff Erickson and Kim Whittlesey. Transforming curves on surfaces redux. In Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013). Society for
Industrial and Applied Mathematics, January 2013. doi:10.1137/1.9781611973105.118.

22 Joshua A. Grochow and Jamie Tucker-Foltz. Computational topology and the unique games
conjecture. In Proceedings of 34th International Symposium on Computational Geometry
(SoCG 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

23 Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of
knot and link problems. Journal of the ACM (JACM), 46(2):185–211, 1999.

24 A. Hatcher. Algebraic Topology. Cambridge University Press, 2002. URL: https://pi.math.
cornell.edu/~hatcher/AT/AT.pdf.

25 Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue,
and Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent
homology. Proceedings of the National Academy of Sciences, 113(26):7035–7040, June 2016.
doi:10.1073/pnas.1520877113.

26 Nikola Milosavljević, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology
in matrix multiplication time. In Proceedings of the 27th International Symposium on
Computational Geometry (SoCG 2011), pages 216–225, New York, NY, USA, 2011. ACM.
doi:10.1145/1998196.1998229.

27 James R. Munkres. Elements of algebraic topology. CRC press, 2018.
28 Ippei Obayashi. Volume-optimal cycle: Tightest representative cycle of a generator in persistent

homology. SIAM Journal on Applied Algebra and Geometry, 2(4):508–534, January 2018.
doi:10.1137/17m1159439.

29 Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions
on Information Theory, 32(1):54–62, 1986. doi:10.1109/TIT.1986.1057137.

30 Afra Zomorodian and Gunnar Carlsson. Localized homology. Computational Geometry,
41(3):126–148, November 2008. doi:10.1016/j.comgeo.2008.02.003.

SoCG 2022

https://doi.org/10.1137/1.9781611973402.11
https://doi.org/10.1137/1.9781611973105.118
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://doi.org/10.1073/pnas.1520877113
https://doi.org/10.1145/1998196.1998229
https://doi.org/10.1137/17m1159439
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1016/j.comgeo.2008.02.003




Parameterized Algorithms for Upward Planarity
Steven Chaplick #

Maastricht University, The Netherlands

Emilio Di Giacomo #

Università degli Studi di Perugia, Italy

Fabrizio Frati #

Roma Tre University, Rome, Italy

Robert Ganian # Ñ

Technische Universität Wien, Austria

Chrysanthi N. Raftopoulou #

National Technical University of Athens, Greece

Kirill Simonov #

Technische Universität Wien, Austria

Abstract
We obtain new parameterized algorithms for the classical problem of determining whether a directed
acyclic graph admits an upward planar drawing. Our results include a new fixed-parameter algorithm
parameterized by the number of sources, an XP-algorithm parameterized by treewidth, and a fixed-
parameter algorithm parameterized by treedepth. All three algorithms are obtained using a novel
framework for the problem that combines SPQR tree-decompositions with parameterized techniques.
Our approach unifies and pushes beyond previous tractability results for the problem on series-parallel
digraphs, single-source digraphs and outerplanar digraphs.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Human-centered computing → Graph drawings

Keywords and phrases Upward planarity, parameterized algorithms, SPQR trees, treewidth, treedepth

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.26

Related Version Full Version: https://arxiv.org/abs/2203.05364

Funding Emilio Di Giacomo: MIUR, grant 20174LF3T8, Dip. Ing. – UNIPG, grants RICBA19FM
and RICBA20EDG.
Fabrizio Frati: MIUR, grant 20174LF3T8.
Robert Ganian: Austrian Science Fund (FWF) Project Y1329.
Chrysanthi N. Raftopoulou: NTUA research program ΠEBE 2020.
Kirill Simonov: Austrian Science Fund (FWF) Project P31336.

Acknowledgements The authors thank Fabrizio Montecchiani and Giuseppe Liotta for fruitful
discussions on the topic of upward planarity. This research was initiated at Dagstuhl Seminar 21293:
Parameterized Complexity in Graph Drawing [19].

1 Introduction

A digraph is called upward planar if it admits an upward planar drawing, that is, a planar
drawing where all edges are oriented upward. The problem of upward planarity testing
(Upward Planarity) and constructing an associated upward planar drawing arises, among
others, in the context of visualization of hierarchical network structures; application domains
include project management, visual languages and software engineering [2]. Upward planarity

© Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian,
Chrysanthi N. Raftopoulou, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.chaplick@maastrichtuniversity.nl
https://orcid.org/0000-0003-3501-4608
mailto:emilio.digiacomo@unipg.it
https://orcid.org/0000-0002-9794-1928
mailto:frati@dia.uniroma3.it
https://orcid.org/0000-0001-5987-8713
mailto:rganian@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/rganian/
https://orcid.org/0000-0002-7762-8045
mailto:crisraft@mail.ntua.gr
https://orcid.org/0000-0001-6457-516X
mailto:ksimonov@ac.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2022.26
https://arxiv.org/abs/2203.05364
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Parameterized Algorithms for Upward Planarity

is the most prominent notion of planarity that is inherently directed, and also has classical
connections to the theory of ordered sets: the orders arising from the transitive closure of
upward planar single-source digraphs have bounded dimension [30].

Since the introduction of the notion, Upward Planarity has become the focus of
extensive theoretical research. The problem has been shown to be NP-complete more than 25
years ago [20, 21], but the first polynomial-time algorithms for restricted variants of Upward
Planarity have been published even earlier [25, 26]. Among others, the problem is known
to be polynomial-time tractable when G is provided with a planar embedding [3] (which
also implies polynomial-time tractability for triconnected DAGs, since these admit a single
planar embedding), or when restricted to the class of outerplanar DAGs [28], DAGs whose
underlying graph is series-parallel [13], and most prominently single-source DAGs [2, 5, 26].

In spite of the number of results on Upward Planarity that analyze the classical
complexity of the problem on specific subclasses of instances, the problem was up to now
mostly unexplored from the more fine-grained perspective of parameterized complexity
analysis [10, 15]. In particular, while it was known that Upward Planarity is fixed-
parameter tractable when parameterized by the cyclomatic number of the input DAG (or,
equivalently, the feedback edge number of the underlying undirected graph) [7], by the
number of triconnected components and cut vertices [23], or the number of triconnected
components plus the maximum diameter of a split component [13], the complexity of the
problem under classical structural parameterizations has remained completely open.

Contribution. We develop a novel algorithmic framework for solving Upward Planarity
which combines parameterized dynamic programming with the SPQR-tree decompositions of
planar graphs [12, 22, 24]. In essence, our framework uses a characterization of the “shapes”
of faces in an upward planar drawing that is inspired by earlier work on the notion of
spirality [3, 13] and reduces Upward Planarity to the task of handling the “rigid” nodes
in these decompositions. Informally, the task that needs to be handled there can be stated as
follows: what are all the possible ways to combine the possible shapes of the children of a rigid
node to obtain an upward planar drawing for the node itself? The framework is formalized
in the form of a general “Interface Lemma” (Lemma 13) which can be complemented with
numerous parameterizations as well as other algorithmic approaches.

In the remainder of this article, we use this framework to push the boundaries of tractability
for Upward Planarity. Our first result in this direction is a fixed-parameter algorithm
for Upward Planarity parameterized by the number of sources in the input graph. This
result generalizes the polynomial-time tractability of the single-source case [2, 5] and answers
an open question from a recent Dagstuhl seminar [19]. On a high level, we use the Interface
Lemma to reduce the problem to a case where almost all children of a rigid node have a
simple shape, and we show how this can be handled via a flow network approach.

Having established the tractability of instances with few sources, we turn towards
understanding which structural properties of the underlying undirected graph can be used
to solve Upward Planarity efficiently. In this context, apart from the fixed-parameter
tractability of Upward Planarity parameterized by the feedback edge number [7], nothing
was known about whether the more widespread “decompositional” parameters can be used
to solve the problem. The parameters that will be of interest here are treewidth [29], the
most prominent structural graph parameter, and treedepth [27], the arguably best known
parameter that lies below treewidth in the parameter hierarchy (see, e.g., [1, Figure 1]).

To obtain new boundaries of tractability for Upward Planarity with respect to these
two parameters, we first show that the problem posed by the Interface Lemma can be
restated as a purely combinatorial problem on a suitable combinatorization of the embedding



S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:3

of the graph represented by the rigid node, and – crucially – that a bound on the input
graph’s treewidth also implies a bound for the treewidth of this combinatorization. Once
that is done, we design a non-trivial dynamic program that exploits this treewidth bound to
handle the rigid nodes, which together with the Interface Lemma allows us to solve Upward
Planarity. This yields an XP-algorithm for Upward Planarity parameterized by the
treewidth of the underlying undirected graph – a result which unifies and generalizes the
polynomial-time tractability of Upward Planarity on outerplanar as well as series-parallel
graphs [13, 28]. Furthermore, a more detailed analysis of the dynamic program reveals that
the same algorithm runs in fixed-parameter time when parameterized by treedepth.

Due to space limitations some proofs are omitted and can be found in [8].

2 Preliminaries

We refer to the usual sources for graph drawing and parameterized complexity terminology [10,
11, 14, 15]. We use NG(v) to denote the set of vertices adjacent to a vertex v in a graph G.

Upward planar drawings and embeddings. A planar embedding is an equivalence class of
planar drawings of a graph, where two drawings are equivalent if the clockwise order of the
edges incident to each vertex is the same and the outer faces are delimited by the same walk.

A vertex in a digraph is a switch if it is a source or a sink, and it is a non-switch otherwise.
The underlying graph of a digraph is the undirected graph obtained from the digraph by
ignoring the edge directions. A drawing of a digraph is upward if every edge is represented
by a Jordan arc monotonically increasing from the source to the sink of the edge, and it is
upward planar if it is both upward and planar. A digraph is upward planar if it admits an
upward planar drawing; we use Upward Planarity to denote the problem of determining
whether a digraph is upward planar; w.l.o.g., we assume that the input digraph is connected.

In an upward planar drawing Γ of a digraph G, an angle represents an incidence between
a vertex v and a face f . The angle is either flat (if precisely one of the two edges incident to
v and f is incoming at v), large (if v is a switch vertex and the angle has more than 180◦

in Γ), or small (otherwise) [3]; the latter two cases are jointly called switch angles. Then Γ
defines an angle assignment, which assigns the value −1, 0, and 1 to each small, flat, and
large angle, respectively, in every face of Γ. The angle assignment, together with the planar
embedding of the underlying graph of G in Γ, constitutes an upward planar embedding of G.

The angle assignments that enhance a planar embedding into an upward planar embedding
have been characterized by Didimo et al. [13], building on the work by Bertolazzi et al. [3].
Note that, once the planar embedding E of a digraph G is specified, then so are the angles of
the faces of E ; in particular, whether an angle is flat or switch only depends on E . Consider
an angle assignment for E . If v is a vertex of G, we denote by ni(v) the number of angles at
v that are labeled i, with i ∈ {−1, 0, 1}. If f is a face of G, we denote by ni(f) the number
of angles of f that are labeled i, with i ∈ {−1, 0, 1}. The cited characterization is as follows.

▶ Theorem 1 ([3, 13]). Let G be a digraph, E be a planar embedding of the underlying graph
of G, and λ be an assignment of each angle of each face in E to a value in {−1, 0, 1}. Then
E and λ define an upward planar embedding of G if and only if the following properties hold:
UP0 If α is a switch angle, then λ(α) ∈ {−1, 1}, and if α is a flat angle, then λ(α) = 0.
UP1 If v is a switch vertex of G, then n1(v) = 1, n−1(v) = deg(v) − 1, n0(v) = 0.
UP2 If v is a non-switch vertex of G, then n1(v) = 0, n−1(v) = deg(v) − 2, n0(v) = 2.
UP3 If f is a face of G, then n1(f) = n−1(f) − 2 if f is an internal face and n1(f) =

n−1(f) + 2 if f is the outer face.

SoCG 2022



26:4 Parameterized Algorithms for Upward Planarity

Treewidth and Treedepth. Here we consider the treewidth and treedepth of the underlying
graphs1. A tree-decomposition T of a graph G = (V,E) is a pair (T, χ), where T is a tree
(whose vertices we call nodes) rooted at a node r and χ is a function that assigns each node
t a set χ(t) ⊆ V such that the following holds: for every uv ∈ E there is a node t such
that u, v ∈ χ(t), and for every vertex v ∈ V , the set of nodes t satisfying v ∈ χ(t) forms a
nonempty subtree of T . The width of a tree-decomposition (T, χ) is the size of a largest set
χ(t) minus 1, and the treewidth of the graph G, denoted tw(G), is the minimum width of a
tree-decomposition of G. The second structural parameter that we will be considering here
is the treedepth of a graph G, denoted td(G) [27]. A useful way of thinking about graphs of
bounded treedepth is that they are (sparse) graphs with no long paths.

Expansion. In our algorithms, we will employ a linear-time preprocessing step called
expansion to simplify the input digraphs so that every vertex has at most one incoming edge
(in which case it is a top vertex) or at most one outgoing edge (in which case it is a bottom
vertex) [2]. The expansion is obtained by replacing each non-switch vertex v with two new
vertices v1 and v2, which inherit the incoming and outgoing edges of v, respectively, and
the edge (v1, v2) (called the special edge of v1 and v2). It is known that expansion preserves
upward planarity, and it is possible to observe that it preserves biconnectivity, does not
create new sources, and only increases treewidth and treedepth by at most a factor of 2.

SPQR-tree decomposition. Let G be a biconnected undirected graph. A pair of vertices is
a separation pair if its removal disconnects G. A split pair is either a separation pair or a
pair of adjacent vertices. A split component of G with respect to a split pair {u, v} is either
an edge (u, v) or a maximal subgraph Guv ⊂ G such that {u, v} is not a split pair of Guv. A
split pair {s′, t′} of G is maximal with respect to a split pair {s, t} of G, if for every other
split pair {s∗, t∗} of G, there is a split component that includes the vertices s′, t′, s and t.

An SPQR-tree T of G with respect to an edge e∗ is a rooted tree that describes a
recursive decomposition of G induced by its split pairs [12]. Each node µ of T is associated
with a split pair {u, v} of G, where u and v are the poles of µ, with a subgraph Gµ of G,
called the pertinent graph of µ, which consists of one or more split components of G with
respect to {u, v}, and with a multigraph sk(µ), called the skeleton of µ, which represents
the arrangement of such split components in Gµ. The edges of sk(µ) are called virtual
edges. Each node µ of T whose pertinent graph is not a single edge has some children, each
corresponding to a split components of G in Gµ. Each of these children is the root of a
subtree of T . The nodes of T are of four types S, P, Q, and R. Q-nodes correspond to edges
of G, while S-, P- and R-nodes correspond to so-called series, parallel and rigid compositions
of the pertinent graphs of the children of the given node [12].

Note that each virtual edge ei in the skeleton of a node µ of T corresponds to the pertinent
graph Gνi

of a child νi of µ. We say that Gνi
is a component of Gµ. Figs. 1a and 1b show a

planar graph and its SPQR-tree. To simplify our algorithms, we assume that every S-node
of T has two children. If this is not the case, we can modify T to achieve this property (see
Fig. 1c). An SPQR-tree T of an n-vertex planar graph has O(n) Q-, S-, P-, and R-nodes.
Also, the total number of vertices of the skeletons for the nodes in T is O(n) [12].

When talking about an SPQR-tree T of a biconnected directed graph G, we mean an
SPQR-tree of its underlying graph. Let µ be a node of T with poles u and v. A uv-external
upward planar embedding of Gµ is an upward planar embedding of Gµ such that u and v

1 Directed alternatives to treewidth exist, but are typically not well-suited for algorithmic applications [18].



S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:5

2

1

3

4
5

6

7

8

9
10

11

12 13

14

(a)

(3,4)

(1,3)

(1,14)

(7,11)

S

R

(4,5) (1,5) (4,7)

P

S

(1,2)

P

(2,3)

S

S S

P

(5,6) (6,7) (5,8) (10,7)

(8,10)

(8,9)

P

(9,10)

S

(11,12)(12,14) (11,13)(13,14)

S S

5 4

7

1

14

11

7

5
3

1

1

4
3

1

3
2

5

7

6

8

10

9

10

8

5

7
10
8

11

14
1311

14
12

1

14
11
7

(b)

(3,4)

(1,3)

(1,14)

(7,11)

S

R

(4,5) (1,5) (4,7)

P

S

(1,2)

P

(2,3)

S

S S

P

(5,6) (6,7) (5,8)

(10,7)

(8,10)

(8,9)

P

(9,10)

S

(11,12)(12,14) (11,13)(13,14)

S S

5 4

7

1

14

11

7

5
3

1

1

4
3

1

3
2

5

7
6

8

10
9

10

8

11

14
1311

14
12S

S

1

14
11

1

11
7

5

7
8

8

7
10

(c)

Figure 1 (a) A planar DAG G. (b) An SPQR-tree of G. For each node that is not a Q-node, the
skeleton is depicted together with a dashed edge to represent the rest of the graph; for each Q-node,
the corresponding edge is shown. (c) An SPQR-tree of G whose S-nodes have exactly two children.

are incident to the outer face. In our algorithms, when testing the upward planarity of a
digraph G, the fact that its SPQR-tree T is rooted at an edge e∗ of G corresponds to the
requirement that e∗ is incident to the outer face of the upward planar embedding E of G we
are looking for. For each node µ of T , the restriction of E to the vertices and edges of the
pertinent graph Gµ of µ is a uv-external upward planar embedding of Gµ.

3 The Shapes of Components

Let G be a biconnected DAG, let T be an SPQR-tree of G rooted at an edge e∗, let µ be a node
of T with poles u and v, and let Eµ be a uv-external upward planar embedding of Gµ. Let λ be
the angle assignment defined by Eµ. The poles u and v identify two paths on the boundary of
the outer face f0 of Eµ: the left outer path Pl = ⟨v0 = u, v1, . . . , vk = v⟩ is the path that leaves
f0 on the left when walking from u to v; the right outer path Pr = ⟨w0 = u,w1, . . . , wh = v⟩
of Eµ is the path that leaves f0 on the right when walking from u to v; see Fig. 2. For
i = 0, 1, . . . , k, let αi denote the angle at vi inside f0 and, for i = 0, 1, . . . , h, let βi denote the
angle at wi inside f0. The left-turn-number τl(Eµ, u, v) of Eµ is defined as

∑k−1
i=1 λ(αi), while

the right-turn-number τr(Eµ, u, v) of Eµ is
∑h−1

i=1 λ(βi). Note that α0 = β0 and αk = βh are
the angles at u and v inside f0, respectively. The values λ(α0) and λ(αk) are also denoted by

SoCG 2022



26:6 Parameterized Algorithms for Upward Planarity

λ(Eµ, u) and λ(Eµ, v), respectively. Finally, given a vertex w ∈ {u, v}, let ρl(Eµ, w) denote
the orientation of the edge el of Pl incident to w, that is, ρl(Eµ, w) = in if el is an incoming
edge for w, ρl(Eµ, w) = out otherwise. Analogously, let ρr(Eµ, w) denote the orientation
of the edge er of Pr incident to w. The shape description of Eµ is the tuple ⟨τl(Eµ, u, v),
τr(Eµ, u, v), λ(Eµ, u), λ(Eµ, v), ρl(Eµ, u), ρr(Eµ, u), ρl(Eµ, v), ρr(Eµ, v)⟩; see Fig. 2.

u v
00

0

0

1

1

1

1

11

0

−1

−1

−1

−1

Figure 2 An upward planar embedding of a split component Gµ with poles u and v and shape
description ⟨3, 0, 0, −1, out, in, out, out⟩. The left (right) outer path is shown in green (orange).

There are some dependencies between the values of a shape description. For example,
ρl(Eµ, u) ̸= ρr(Eµ, u) if λ(Eµ, u) = 0. As a further example, we have the following observation,
which comes from Property UP3 of Theorem 1 and uses the notation of this theorem.

▶ Observation 2. We have τl(Eµ, u, v) + τr(Eµ, u, v) + λ(Eµ, u) + λ(Eµ, v) = 2.

Recall that if u is a top or bottom vertex of G, then it has at most one incoming edge or
at most one outgoing edge, respectively, which is called the special edge of u. If Gµ contains
this edge, then Gµ is a special component for u, otherwise we say that Gµ is a normal
component for u. Note that, if u is a source or a sink of G, then it has no special component.

▶ Lemma 3. We have τr(Eµ, u, v) = −τl(Eµ, u, v) + h, with h ∈ {0, 1, 2, 3, 4}.

4 General Algorithm

Let G be an n-vertex biconnected expanded DAG whose underlying graph is planar and
let T be an SPQR-tree of G. Let τmin and τmax be two integers with τmin ≤ τmax and
let τ = τmax − τmin + 1. We present a general algorithm to compute all possible shape
descriptions of G with respect to T , and such that the left- and right-turn numbers of all
shape descriptions for all pertinent graphs of T are in the range [τmin, τmax]. We visit the
nodes of T bottom-up and we compute for each node µ its feasible set Fµ, i.e., the set of all
realizable shape descriptions of its pertinent graph Gµ. If Fµ = ∅, the process stops and G is
not upward planar (under the above restrictions), otherwise we continue the traversal of T .

Storing feasible sets. For each node µ of T we associate a matrix M(µ) of size (τmax −
τmin + 1) × 5 where the element M(µ)[i, j] of the matrix contains all shape descriptions of
Gµ with left turn-number τl = τmin + i and right-turn-number τr = −τl + j. Note that by
Lemma 3, τr can only take values in [−τl,−τl + 4].

▶ Lemma 4. There are at most 18 shape descriptions with given left- or right-turn-number.

We describe how to compute the feasible set Fµ of a node µ of T depending on its type.



S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:7

Q-node. The pertinent graph Gµ is either the edge (u, v) or (v, u). Hence, the feasible set
consists of the tuple ⟨0, 0, 1, 1, out, out, in, in⟩ or ⟨0, 0, 1, 1, in, in, out, out⟩, respectively.

▶ Lemma 5. Let µ be a Q-node of T . The feasible set Fµ can be computed in O(1) time.

S-node. Let ν1 and ν2 be the children of µ, with poles u, w and w, v, respectively. Let ⟨τ1
l ,

τ1
r , λ

1
u, λ

1
w, ρ

1
l,u, ρ

1
r,u, ρ

1
l,w, ρ

1
r,w⟩ be a tuple in Fν1 and let ⟨τ2

l , τ
2
r , λ

2
w, λ

2
v, ρ

2
l,w, ρ

2
r,w, ρ

2
l,v, ρ

2
r,v⟩ be

a tuple in Fν2 . Let αl (resp. αr) be the angle at w created by the two left (resp. right) outer
paths of Gν1 and Gν2 (see Fig. 3). We assign the labels λl and λr to αl and αr respectively
as follows: λl = 0 if ρ1

l,w ̸= ρ2
l,w otherwise λl ∈ {−1, 1}, and λr = 0 if ρ1

r,w ̸= ρ2
r,w otherwise

λr ∈ {−1, 1}. Note that, by UP1 it must be λl + λr < 2. For all possible values of λl and
λr satisfying the previous constraints, we construct a candidate tuple ⟨τl, τr, λu, λv, ρl,u, ρr,u,

ρl,v, ρr,v⟩ with: (i) τl = τ1
l + τ2

l + λl, (ii) τr = τ1
r + τ2

r + λr, (iii) λu = λ1
u, (iv) λv = λ2

v, (v)
ρl,u = ρ1

l,u, (vi) ρr,u = ρ1
r,u, (vii) ρl,v = ρ2

l,v, (viii) ρr,v = ρ2
r,v. We accept the candidate tuple

if and only if it satisfies Observation 2.

u

w
v

Gν1

Gν2

αl

αr

⟨2, 0,−1, 1, in, in, out, out⟩

⟨1, 2, 0,−1, out, in, out, out⟩

Figure 3 Series composition. The resulting shape description is ⟨2, 2, −1, −1, in, in, out, out⟩.

▶ Lemma 6. Let µ be an S-node of T with children ν1 and ν2. The feasible set Fµ can be
computed in O(τ + |Fν1 | · |Fν2 |) time.

P-node. Let µ be a P-node with poles u and v and k children ν1, ν2 . . . , νk. Let N ′ be
a subset of the children of µ and let G′

µ be the subgraph of Gµ consisting of components
Gν′ for ν′ ∈ N ′. Consider a uv-external upward planar embedding E ′

µ of G′
µ. Denote by S′

the sequence of shape descriptions of the components of G′
µ in the clockwise order in which

they appear around u starting from the outer face. The sequence S′ is the shape sequence of
G′

µ with respect to E ′
µ. To describe S′ we write: a∗∗∗ (resp. a+++) to denote a subsequence of

S′ consisting of 0 (resp. 1) or more elements equal to a. We say that a shape description
s′ of G′

µ corresponds to S′ if there exists an upward planar embedding of G′
µ with shape

description s′ and whose shape sequence is S′. Let S be a sequence of shape descriptions;
the reduced sequence of S is obtained from S by replacing each maximal subsequence a+++ of
S with the single element a. The size of S is the number of elements in its reduced sequence.

▶ Lemma 7. Let S′ be a sequence of shape descriptions from the feasible sets of every
Gν′ , with ν′ ∈ N ′. We can decide whether S′ is a shape sequence of G′

µ and compute the
corresponding shape descriptions of G′

µ in O(r3) time, where r is the size of S′. Furthermore
there are O(r2) computed shape descriptions of G′

µ.

Let ν be a child of Gµ with ν ̸∈ N ′, let s be a shape description of Gν , and let G′′
µ be the

union of Gν and G′
µ. We say that S′ can be extended with s to a shape sequence S′′ of G′′

µ if
S′′ is a shape sequence of G′′

µ, s belongs to S′′, and removing s from S′′ we obtain S′.

SoCG 2022



26:8 Parameterized Algorithms for Upward Planarity

▶ Lemma 8. Let S′ be a shape sequence of G′
µ. Given a shape description s of Gν , we can

decide whether S′ can be extended with s to a shape sequence S′′ of G′′
µ and compute the

corresponding shape descriptions of G′′
µ in O(r4) time, where r is the size of S′.

Suppose that Gµ is upward planar and consider a uv-external upward planar embedding
Eµ of Gµ. We remove the special components of u and v and the normal components Gν

whose shape description labels the angle at u or v with −1. There are at most two such
components, as each one labels an internal angle at a pole with 1. Let G′

µ be the subgraph
of Gµ obtained after this removal; G′

µ is the thin subgraph of Gµ with respect to Eµ. In the
next lemma, if w ∈ {u, v} is a top vertex then ρw = out, otherwise ρw = in.

▶ Lemma 9. Let µ be a P -node such that Gµ is upward planar and let Eµ be a uv-external
upward planar embedding of Gµ such that the left-turn-number of G′

µ is c. Then the shape
sequence of G′

µ with respect to Eµ is [s1
+++, s2

∗∗∗, s3
∗∗∗], with s1 = ⟨c,−c, 1, 1, ρu, ρu, ρv, ρv⟩,

s2 = ⟨c− 2,−c+ 2, 1, 1, ρu, ρu, ρv, ρv⟩, s3 = ⟨c− 4,−c+ 4, 1, 1, ρu, ρu, ρv, ρv⟩.

Based on Lemma 9, our algorithm computes in three steps the shape descriptions of Gµ

that match some fixed left-turn-number cl and right-turn-number cr. Let c′
l be equal to cl or

cl − 1, depending on whether exactly one of u and v is a bottom vertex or not. For the first
step, we consider all sequences S′ = [s1

∗∗∗, s2
∗∗∗, s3

∗∗∗] where si = ⟨c′
l − 2(i− 1),−c′

l + 2(i− 1),
1, 1, ρu, ρu, ρv, ρv⟩, for i = 1, 2, 3. For each of them we identify a maximal subgraph G′

µ of
Gµ such that S′ is a shape sequence of G′

µ. For each child νi of µ (with i = 1, 2, . . . , k), we
check whether the feasible set Fνi

contains shape descriptions of S′ in the order that they
appear in S′; if so, we choose it for Gνi

. This greedy process does not necessarily produce
the desired sequence S′. By reassigning at most two components of G′

µ either we get S′ or
no subgraph G′

µ has S′ as its shape sequence.
For the second step, we focus on the children of µ that, when considering a shape sequence

S′, have not been assigned a shape description so far. There are at most two such children,
say ν and ν′, otherwise Gµ does not admit an upward planar embedding whose thin subgraph
has S′ as its shape sequence. Let sν (resp. sν′) be a shape description in Fν (resp. Fν′).
Using Lemma 8 we compute all possible extensions of S′ with sν and sν′ to shape sequences
of Gµ (in O(1) time since the size r of S′ is at most 3). For every computed shape sequence
S of Gµ we check whether it matches cl and cr. If so, we add to Fµ all shape descriptions of
Gµ that correspond to S (in O(1) time since the size r of S is at most 5). Otherwise, we
proceed to the third step with S.

To complete the procedure, we perform a case analysis to handle situations where one
or both of cl and cr are not matched. Intuitively, our goal is to find a component of the
thin subgraph G′

µ, remove its current shape description from S and use another one from its
feasible set at the beginning or at the end of the sequence in order to match cl or cr. If none
of the components of G′

µ can be used for this purpose, we conclude that the pair cl and cr

cannot be realized. Otherwise, using Lemma 7 (where the size r is at most 5), we compute
all corresponding shape descriptions of Gµ and add them to Fµ.

▶ Lemma 10. Let µ be an P-node of T with k children. The feasible set Fµ can be computed
in O(τ · k) time.

R-node. The R-nodes will be handled differently in Sections 6 and 7 depending on the
parameter we use. To complete the description of our framework we introduce the notion of
an R-node subprocedure. Formally, an R-node subprocedure is an algorithm which takes as



S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:9

input an R-node µ of T and a mapping Sµ which assigns each child of µ to its feasible set,
and computes the feasible set Fµ in at most α(Gµ,Sµ) time. For a DAG G with SPQR-tree
T , α(G) =

∑
R-node µ

α(Gµ,Sµ) is the total time complexity of the R-node subprocedure for G.

Root node. The root node r corresponds to an edge e = (u, v) of G that lies on its outer
face and has only one child µ with poles u and v. Since Gµ = G \ e, node r can be treated
as a P-node with poles u and v and two children; one of them is µ and the other one is a
Q-node for the edge (u, v). By Lemma 10, we can compute the feasible set of r in O(τ) time.

▶ Lemma 11. The feasible set Fr of the root node r of T can be computed in O(τ) time.

Combining Lemmata 5, 6, 10 and 11, we obtain the following lemma.

▶ Lemma 12. Let G be a biconnected DAG with n vertices and let T be an SPQR-tree of G
rooted at a Q-node corresponding to an edge e = (u, v). Let τmin and τmax be two given integer
values, and let τ = τmax − τmin + 1. Given an R-node subprocedure with total time complexity
α(G), it is possible to compute in time O(α(G) + τ2 · n) the shape descriptions of every
upward planar embedding with e on the outer face, such that the left- and right-turn-numbers
of the pertinent graph of every node of T are in the range [τmin, τmax].

5 Extension to the Single-Connected Case

In this section, we establish the Interface Lemma, which reduces the task of solving Upward
Planarity to the one of obtaining an R-node subprocedure, for all graphs including single-
connected ones. To formalize the lemma, we call a digraph G [τmin, τmax]-turn-bounded if
every upward planar embedding of G has the following property: the pertinent graphs of any
SPQR-tree of each biconnected component in G have left- and right-turn numbers in the
range [τmin, τmax].

▶ Lemma 13 (Interface Lemma). Let G be an n-vertex digraph, and τmin, τmax be integers
such that G is [τmin, τmax]-turn-bounded. Given an R-node subprocedure with total time
complexity α(G), it is possible to determine whether G admits an upward planar embedding
in time O(n(α(G) + τ2 · n)) where τ = τmax − τmin + 1.

Note that, for a single-connected graph G, we define the total time complexity α(G) of
an R-node subprocedure to be the sum of α(B) over all biconnected components B of G.

To give an intuition of the proof, consider a fixed rooting of the block-cut tree of G. The
core of our algorithm is a procedure that, given suitable embeddings of leaf components
containing the same cut-vertex, attaches these embeddings to an arbitrary upward planar
embedding of the rest of the graph. This allows us to process the block-cut tree upwards:
we iteratively verify that there exist desired embeddings for a group of leaf blocks via the
biconnected algorithm (Lemma 12), and reduce to a smaller tree by removing these blocks.

6 An Algorithm Parameterized by the Number of Sources

Let G be an acyclic digraph with n vertices and σ sources, whose underlying graph is planar.
In order to obtain an algorithm for Upward Planarity parameterized by σ, in view of
Lemma 13, we devise an R-node subprocedure whose runtime depends on σ and, polynomially,
on n. We hence assume that G is biconnected and that has been expanded. Let e∗ be any
edge of G; we compute an SPQR-tree T of G rooted at the Q-node representing e∗ in O(n)
time [12, 22]. A key ingredient of our algorithm is the following.

SoCG 2022



26:10 Parameterized Algorithms for Upward Planarity

vi

ui

(a)

vi

ui

(b)

vi

ui

(c)

vi

ui

(d)

vi

ui

(e)

Figure 4 Shape descriptions of boring components.

▶ Lemma 14. Let µ be a node of T , let u and v be the poles of µ, let σµ be the number of
sources of Gµ different from its poles, and let Eµ be any uv-external upward planar embedding
of Gµ. The left- and right-turn-numbers of Eµ are in the interval [−2σµ − 1, 2σµ + 1].
Furthermore, the size of the feasible set Fµ of µ is at most 72σµ + 54.

Let µ be an R-node of T with children ν1, . . . , νk. Let u and v be the poles of µ, σµ be
the number of sources of Gµ different from its poles; for i = 1, . . . , k, let ui and vi be the
poles of νi and ei be the virtual edge representing νi in the skeleton sk(µ) of µ. We give an
algorithm that computes Fµ from the feasible sets Fν1 , . . . ,Fνk

in O(σ1.45σ · k log3 k) time.
We introduce two classifications of the components of Gµ. A component Gνi

is interesting
if it contains sources other than its poles, and boring otherwise. Because G has σ sources, at
most σ components among Gν1 , . . . , Gνk

are interesting, while any number of components
can be boring. Second, a component Gνi is extreme if ei is incident to a pole of µ and is
incident to the face containing u and v of any planar embedding of sk(µ), and non-extreme
otherwise. Note that there are four extreme components among Gν1 , . . . , Gνk

, because there
are exactly two virtual edges incident to each of u and v in the considered face. We can order
Gν1 , . . . , Gνk

in O(k log k) time so that all the extreme or interesting components come first.
Despite their name, boring components play an important role in our algorithm. A key

feature is that a uivi-external upward planar embedding of a boring component Gνi
can

only have one of O(1) shape descriptions: the sausage ⟨0, 0, 1, 1, out, out, in, in⟩, see Fig. 4a;
the inverted-sausage ⟨0, 0, 1, 1, in, in, out, out⟩, see Fig. 4a with ui and vi inverted; the
right-wing ⟨0, 1, 1, 0, out, out, in, out⟩, see Fig. 4b; the inverted-right-wing ⟨1, 0, 0, 1, out,
in, out, out⟩, see Fig. 4b with ui and vi inverted; the left-wing ⟨1, 0, 1, 0, out, out, out, in⟩,
see Fig. 4c; the inverted-left-wing ⟨0, 1, 0, 1, out, in, out, out⟩, see Fig. 4c with ui and vi

inverted; the hat ⟨−1, 1, 1, 1, out, out, out, out⟩, see Fig. 4d; the inverted-hat ⟨1,−1, 1, 1,
out, out, out, out⟩, see Fig. 4d with ui and vi inverted; the heart ⟨1, 1, 1,−1, out, out, out,
out⟩, see Fig. 4e; and the inverted-heart ⟨1, 1,−1, 1, out, out, out, out⟩, see Fig. 4e with ui

and vi inverted. Furthermore, we can prove that not all such shape descriptions can occur
simultaneously in the feasible set of a node νi and that some shape descriptions are “better”
than others. This allows us to assume that the feasible set of a node νi contains: only the
sausage, or only the inverted-sausage, or only the left-wing and the right-wing, or only the
inverted-left-wing and the inverted-right-wing, or only the hat and the inverted-hat, or only
the heart, or only the inverted-heart, or only the heart and the inverted-heart.

We test independently whether each shape description s = ⟨τl, τr, λu, λv, ρl,u, ρr,u, ρl,v,

ρr,v⟩, where τl ∈ [−2σµ − 1, 2σµ + 1], τr ∈ [−τl,−τl + 4], λu ∈ {−1, 0, 1}, λv ∈ {−1, 0, 1},
ρl,u ∈ {in, out}, ρr,u ∈ {in, out}, ρl,v ∈ {in, out}, and ρr,v ∈ {in, out} belongs to Fµ or not.
Note that τl ∈ [−2σµ − 1, 2σµ + 1] and τr ∈ [−τl,−τl + 4] can be assumed without loss of
generality by Lemmata 14 and 3, respectively, thus the number of shape descriptions to be
tested is in O(σµ). We select shape descriptions s1 ∈ Fν1 , . . . , sh ∈ Fνh

for the extreme or
interesting components Gν1 , . . . , Gνh

of Gµ. Clearly, the number ℓ of ways this selection can



S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:11

be done is ℓ =
∏h

i=1 |Fνi
|; by exploiting the bound on |Fνi | given by Lemma 14, we can

prove that ℓ ∈ O(1.45σ). We also fix Sµ to be a planar embedding of the skeleton sk(µ) of µ
in which u and v are incident to the outer face. Since µ is an R-node, there are two such
planar embeddings, which are flips of each other. The goal now becomes the one of testing
whether Gµ admits a uv-external upward planar embedding Eµ such that: (P1) the shape
description of Eµ is s; (P2) for i = 1, . . . , h, the uivi-external upward planar embedding Eνi

of Gνi
in Eµ has shape description si; and (P3) the planar embedding of sk(µ) induced by

Eµ is Sµ. Then we have that s belongs to Fµ if and only if this test is successful for at least
one selection of the shape descriptions s1, . . . , sh and of the planar embedding Sµ.

We now borrow ideas from an algorithm by Bertolazzi et al. [3] for testing the upward
planarity of a digraph D with a prescribed planar embedding E . The algorithm in [3]
constructs a bipartite flow network N (S, T,A), where each source sw ∈ S corresponds to a
switch vertex w of D, each sink tf ∈ T corresponds to a face f of E , and A has an arc from
sw to tf if w is incident to f . A unit of flow passing from sw to tf corresponds to a large
angle at w in f . Each source supplies 1 unit of flow, each arc has capacity 1, and each sink
tf demands nf/2 − 1 units of flow if f is an internal face of E and nf/2 + 1 if f is the outer
face of E , where nf is the number of switch angles incident to f . Then D has an upward
planar embedding which respects E if and only if N has a flow in which each sink is supplied
with a number of units of flow equal to its demand.

After some preliminary checks, which ensure that the values s, s1, . . . , sh,Sµ are “coherent”
with each other, we also construct a flow network N (S, T,A). Note that the skeleton sk(µ)
of our R-node µ has a prescribed planar embedding Sµ. However, the edges of sk(µ) are
not actual edges, but rather virtual edges that correspond to components of Gµ. These
components introduce new sources, sinks, and arcs in N , and contribute to the demands of
their incident faces. As we have already fixed the shape description si of each extreme or
interesting component Gνi

, we know the excess of large angles with respect to small angles
“on the sides” of Gνi

, as these are the first two values of si. These values introduce sources (if
they are positive) and contribute to the demands of the faces of Sµ incident to ei. Handling
non-extreme boring components is more challenging. Each boring component has at most
two shape descriptions in its feasible set, however the number of such components is not, in
general, bounded by a function of σ only, hence we cannot try all possible combinations for
their shape descriptions. Rather, we plug the freedom of choosing a shape description for each
non-extreme boring component directly into the flow network. For example, a component
Gνi

such that Fνi
contains the hat and the inverted-hat is modeled by a source with two

incident arcs to the faces of Sµ incident to ei, reflecting the fact that each of the two shape
descriptions provides a large angle in a different face incident to ei. As another example,
a component Gνi such that Fνi contains the left-wing and the right-wing also provides a
large angle in a different face incident to ei depending on the choice of the shape description,
however in this case the choice might also affect whether a pole of the component creates a
switch angle in a face of Sµ or not, which affects the demand of the face. This is solved either
by “ignoring” the component, or by transfering its effect to an adjacent non-switch vertex.

Figure 5 shows an example of the construction of N . We have that N has O(k) nodes
and arcs. We test whether every sink has a non-negative demand and whether N admits a
flow in which every sink receives an amount of flow equal to its demand. The latter can be
done in O(k log3 k) time by means of an algorithm by Borradaile et al. [4]. We conclude that
Gµ admits a uv-external upward planar embedding satisfying Properties P1–P3 if and only
if the tests are successful. This leads to the following.

SoCG 2022



26:12 Parameterized Algorithms for Upward Planarity

u

v

f

ba c

d

g

* *
*

〈1, 0, 0, 1, in, out, in, in〉

〈−1, 1, 1, 1, in, in, in, in〉

*

〈0, 0, 1, 1, out, out, in, in〉

〈1, 1,−1, 1, in, in, in, in〉

〈3, 0, 0,−1, in, out, in, in〉
〈0, 0, 1, 1, out, out, in, in〉

*

*

*
*

,{ }

{ , }

* *

* *

,{ }
*

*

*
*

*
* e *

*

*

(a)
u

v

f

ba c

d

g

e

tv1

1

3

1

1

1

1

1

1

1

1

1

tl tr

1
1

1

1

4

1

1

2

1

22

1

(b)

u

v

f

ba c

d

g

e

tv1

1

3

1

1

1

1

1

1

1

1

1

tl tr

1
1

1

1

4

1

1

2

1

22

1

(c)

u

a b

c
d

e

f

g

v

(d)

Figure 5 The construction of a flow network N that allows us to determine whether a shape
description s = ⟨1, 0, −1, 0, in, out, in, in⟩ belongs to Fµ. (a) shows the input: a shape description si

for each extreme or interesting component Gνi of Gµ and the feasible set Fνi for each non-extreme
boring component Gνi of Gµ. (b) shows N ; arc capacities are not shown (each of them is equal to
the supply of the source of the arc). (c) shows a flow for N in which every sink receives an amount
of flow equal to its demand; each shown arc is traversed by a flow equal to its capacity. (d) shows a
uv-external upward planar embedding of Gµ with shape description s corresponding to the flow.

▶ Lemma 15. The feasible set Fµ of an R-node µ of T can be computed in O(σ1.45σ ·k log3 k)
time, where k is the number of children of µ in T and σ is the number of sources of G.

Lemmata 13 and 15 imply the following main result.

▶ Theorem 16. Upward Planarity can be solved in O(σ1.45σ · n2 log3 n) time for a
digraph with n vertices and σ sources.

7 An Algorithm Parameterized by Treewidth

The aim of this section is to provide an R-node subprocedure which yields parameterized
algorithms for Upward Planarity when parameterized by treewidth and treedepth. The
idea behind this is to obtain a combinatorization of the task that is asked in the subprocedure.
This will be done by extending the skeleton of the R-node with additional information,
notably via a so-called embedding graph2. The R-node subprocedure is then obtained by
performing dynamic programming over the embedding graph. However, to obtain the desired
runtime, we will first have to show that the embedding graph has bounded treewidth.

2 Note that this notion differs from the embedding graphs used in recent drawing extension problems [16,
17]; unlike in those problems, here it seems impossible to use Courcelle’s Theorem [9].



S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:13

A Combinatorial Representation of the Skeleton. Let G be a connected graph with a
planar embedding G, and let F be the set of faces of G. Let G− be the graph obtained
from G by subdividing each edge e once, creating the vertex ve. We define the embedding
graph G̃ of G as the graph obtained from G− by adding a vertex f for each face in F , and
connecting f to each vertex in G− incident to f . Observe that G̃ is tripartite, and we call
the three sets of vertices that occur in the definition of V (G̃) the true vertices, face-vertices
and edge-vertices of G̃, respectively. An illustration is shown in Fig. 6.

G

(a)
G̃

(b)

Figure 6 (a) A planar graph G. (b) The embedding graph G̃ of G. True-, face-, and edge-vertices
are shown in black, green, and orange, respectively.

Our aim in this section is to show that tw(G̃) is linearly bounded by tw(G). To do so, we
identify the faces that are, in some sense, “relevant” for a bag in a tree decomposition of
G−, and prove that (1) the number of such relevant faces is linearly bounded by the width
of that decomposition and (2) adding these faces to the decomposition of G− results in a
tree-decomposition of G̃. We can then prove:

▶ Theorem 17. Let G be a graph with a planar embedding of treewidth k where k ≥ 1. Then
the embedding graph G̃ has treewidth at most 11k − 4 ∈ O(k).

Problem Reformulation. Our second task is to formulate the problem we have to solve on
a given embedding graph. First of all, the R-node subprocedure required by Lemma 13 can
be straightforwardly reduced to the task of checking whether a specific shape description ψ

can be achieved at the R-node. This reduction takes at most O(τ) time by Lemma 4. At
this point, the input consists of (1) an R-node µ of T with skeleton H, (2) a mapping Sµ

which assigns each virtual edge in H to its feasible set, (3) a bound κ on the treewidth of
the embedding graph H̃ obtained from H, and (4) a target shape description ψ.

The combinatorial reformulation we obtain can be stated as follows: Determine if there
exists an angle mapping α and shape selector β which is valid, where

an angle mapping α maps each switch vertex v ∈ V (H̃) to a vertex in N
H̃

(v); intuitively,
this describes where the large angle at v is in the upward planar embedding of the
pertinent graph (this may be in a face between two virtual edges–and α maps v to the
corresponding face vertex – or in a virtual edge–and α maps v to that virtual edge),
a shape selector β maps each edge-vertex ve obtained from the virtual edge e of H to a
shape description that occurs in a feasible set in the range of Sµ(e), and
intuitively, a pair (α, β) is valid if it satisfies three Validity Conditions: (1) all face-vertices
receive the correct number of small and large angles from α and β, (2) for each true-vertex
v and adjacent edge-vertex w, α(v) is consistent with the requirements of the shape
selected by β(w), and (3) the shape of the outer face is consistent with ψ.

SoCG 2022



26:14 Parameterized Algorithms for Upward Planarity

▶ Lemma 18. There is an upward planar embedding of Gµ with the shape description ψ if
and only if there is a valid pair (α, β).

Finding Valid Pairs Using Treewidth. At this point, what is left to do is solve this
combinatorial problem. For the runtime analysis of the algorithm we will develop, we let
ζ be the maximum over n1(f) and n−1(f) (see Theorem 1), over all faces f of all possible
planar embeddings of the pertinent graph Gµ of µ. Recalling that no path in G can have
length greater than 2td(Gµ) [27], we obtain:

▶ Observation 19. ζ ≤ V (Gµ), and moreover ζ ≤ 2td(Gµ).

We can now design a dynamic program that solves the task at hand. The program
computes sets of records for each node of a tree-decomposition in a leaf-to-root fashion,
where each record is a tuple of the form (angle, shape, score, left, right) where angle
and shape contain snapshots of α and β in the given bag, respectively; score keeps track
of the sum of large and small angles for each face in the given bag; and left, right store
information about the left-and right-turn-numbers of the outer face.

▶ Lemma 20. There is an algorithm that runs in time ζO(tw(H)) · (|V (H)| + |Sµ|) and either
computes a valid pair, or correctly determines that no such pair exists.

We now have an R-node subprocedure that runs in XP-time parameterized by treewidth
and fixed-parameter time parameterized by treedepth. By invoking Lemma 13, we conclude:

▶ Theorem 21. It is possible to solve Upward Planarity in time nO(tw(G)) and time
2O(td(G)2) · n2, where n is the number of vertices of the input digraph G.

8 Concluding Remarks

The presented results show that the combination of SPQR-trees with parameterized techniques
is a promising algorithmic tool for geometric graph problems. Indeed, for the case of upward
planarity, our framework allows us to reduce the general problem to a similar one on 3-
connected graphs, at which point it is possible to use parameter-specific approaches such as
dynamic programming or flow networks to obtain a solution. We believe not only that the
framework developed here can help obtain other algorithms for Upward Planarity, but
that the idea behind the framework can be adapted to solve other problems of interest as
well – a candidate problem in this regard would be constrained level planarity testing [6].

All algorithms and arguments given within this paper are constructive and can be extended
to output an upward planar drawing for each yes-instance of Upward Planarity. An open
problem is whether Upward Planarity is W[1]-hard when parameterized by treewidth, or
fixed-parameter tractable. Another question is whether the fixed-parameter tractability of
Upward Planarity parameterized by the number of sources can be lifted to parameterizing
by the maximum turn number of a face in the final drawing.

References
1 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy

distinguishes treewidth from pathwidth. In 28th Annual European Symposium on Algorithms,
ESA 2020, volume 173 of LIPIcs, pages 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.14.

2 Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM J. Comput., 27(1):132–169, 1998.

https://doi.org/10.4230/LIPIcs.ESA.2020.14


S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:15

3 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994.

4 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM J. Comput., 46(4):1280–1303, 2017.

5 Guido Brückner, Markus Himmel, and Ignaz Rutter. An SPQR-tree-like embedding repre-
sentation for upward planarity. In Daniel Archambault and Csaba D. Tóth, editors, 27th
International Symposium on Graph Drawing and Network Visualization, GD 2019, volume
11904 of Lecture Notes in Computer Science, pages 517–531. Springer, 2019.

6 Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Philip N.
Klein, editor, 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages
2000–2011. SIAM, 2017.

7 Hubert Y. Chan. A parameterized algorithm for upward planarity testing. In Susanne Albers
and Tomasz Radzik, editors, 12th Annual European Symposium on Algorithms, ESA 2004,
volume 3221 of Lecture Notes in Computer Science, pages 157–168. Springer, 2004.

8 Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N.
Raftopoulou, and Kirill Simonov. Parameterized algorithms for upward planarity. CoRR,
abs/2203.05364, 2022. URL: https://arxiv.org/abs/2203.05364.

9 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

12 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996.

13 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward spirality and upward
planarity testing. SIAM J. Discret. Math., 23(4):1842–1899, 2009.

14 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

15 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

16 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
partial 1-planar drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, volume
168 of LIPIcs, pages 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

17 Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-
optimal extension of simple drawings. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, volume 198 of LIPIcs, pages 72:1–72:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

18 Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Obdrzálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? J. Comb. Theory, Ser. B,
116:250–286, 2016.

19 Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized
Complexity in Graph Drawing (Dagstuhl Seminar 21293). Dagstuhl Reports, 11(6):82–123,
2021.

20 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. In Roberto Tamassia and Ioannis G. Tollis, editors, DIMACS International
Workshop on Graph Drawing, GD ’94, volume 894 of Lecture Notes in Computer Science,
pages 286–297. Springer, 1994.

SoCG 2022

https://arxiv.org/abs/2203.05364
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1


26:16 Parameterized Algorithms for Upward Planarity

21 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

22 Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In Joe
Marks, editor, 8th International Symposium on Graph Drawing, GD ’00, volume 1984 of
Lecture Notes in Computer Science, pages 77–90. Springer, 2000.

23 Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing
upward planarity. Int. J. Found. Comput. Sci., 17(5):1095–1114, 2006. doi:10.1142/
S0129054106004285.

24 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

25 Michael D. Hutton and Anna Lubiw. Upward planar drawing of single source acyclic di-
graphs. In Alok Aggarwal, editor, 2nd Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, SODA 1991, pages 203–211. ACM/SIAM, 1991.

26 Michael D. Hutton and Anna Lubiw. Upward planar drawing of single-source acyclic digraphs.
SIAM J. Comput., 25(2):291–311, 1996. doi:10.1137/S0097539792235906.

27 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

28 Achilleas Papakostas. Upward planarity testing of outerplanar dags. In Roberto Tamassia
and Ioannis G. Tollis, editors, DIMACS International Workshop on Graph Drawing, GD
’94, volume 894 of Lecture Notes in Computer Science, pages 298–306. Springer, 1994. doi:
10.1007/3-540-58950-3_385.

29 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984.

30 William T. Trotter and John I. Moore Jr. The dimension of planar posets. J. Comb. Theory,
Ser. B, 22(1):54–67, 1977.

https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1137/0202012
https://doi.org/10.1137/S0097539792235906
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1007/3-540-58950-3_385


Finding Weakly Simple Closed Quasigeodesics on
Polyhedral Spheres
Jean Chartier #

Univ. Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France

Arnaud de Mesmay #

LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Abstract
A closed quasigeodesic on a convex polyhedron is a closed curve that is locally straight outside
of the vertices, where it forms an angle at most π on both sides. While the existence of a simple
closed quasigeodesic on a convex polyhedron has been proved by Pogorelov in 1949, finding a
polynomial-time algorithm to compute such a simple closed quasigeodesic has been repeatedly posed
as an open problem. Our first contribution is to propose an extended definition of quasigeodesics
in the intrinsic setting of (not necessarily convex) polyhedral spheres, and to prove the existence
of a weakly simple closed quasigeodesic in such a setting. Our proof does not proceed via an
approximation by smooth surfaces, but relies on an adapation of the disk flow of Hass and Scott
to the context of polyhedral surfaces. Our second result is to leverage this existence theorem to
provide a finite algorithm to compute a weakly simple closed quasigeodesic on a polyhedral sphere.
On a convex polyhedron, our algorithm computes a simple closed quasigeodesic, solving an open
problem of Demaine, Hersterberg and Ku.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Quasigeodesic, polyhedron, curve-shortening process, disk flow, weakly simple

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.27

Related Version Full Version: https://arxiv.org/abs/2203.05853 [11]

Funding This research was partially supported by the ANR project Min-Max (ANR-19-CE40-0014)),
the ANR project SoS (ANR-17-CE40-0033) and the Bézout Labex, funded by ANR, reference
ANR-10-LABX-58.

Acknowledgements We thank Francis Lazarus for insightful discussions, and Joseph O’Rourke and
the anonymous reviewers for helpful comments.

1 Introduction

A geodesic is a curve on a surface, or more generally in a manifold, which is locally shortest.
The study of geodesics on surfaces dates back at least to Poincaré [20] and led to a celebrated
theorem of Lyusternik and Schnirelmann [18] proving that any Riemannian sphere admits at
least three distinct simple (i.e., not self-intersecting) closed geodesics (while the initial proof
of the theorem was criticized, the result is now well-established, see for example Grayson [15]).
This bound is tight, as showcased by ellipsoids.

In this article, we investigate closed geodesics in a polyhedral setting. In such a setting,
the following relaxed notion is key: a quasigeodesic is a curve such that the angle is at most
π on both sides at each point of the curve. In 1949, Pogorelov [19] proved the existence of
three simple (i.e., non self-intersecting) and closed quasigeodesics on any convex polyhedron.
The proof is non-constructive and it was asked by Demaine and O’Rourke [13, Open Problem
24.24] whether one could compute such a closed quasigeodesic in polynomial time. Recent
progress on this question was made by Demaine, Hersterberg and Ku [12] who provided
the first algorithm to compute a closed quasigeodesic on a convex polyhedron, and their

© Jean Chartier and Arnaud de Mesmay;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jean.chartier@u-pec.fr
mailto:arnaud.de-mesmay@univ-eiffel.fr
https://doi.org/10.4230/LIPIcs.SoCG.2022.27
https://arxiv.org/abs/2203.05853
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

algorithm runs in pseudo-polynomial time. However, their algorithm is ill-adapted to find
closed quasigeodesics which are simple – this has remained an open problem [12, Open
Problem 1]. Furthermore, as they note, for this problem, “even a finite algorithm is not
known or obvious”: indeed there is no known upper bound on the combinatorial complexity
of a simple closed quasigeodesic (for example the number of times that it intersects each
edge), so there is no natural brute-force algorithm. We refer to the extensive introduction
of [12] for a panorama on the difficulties in finding closed quasigeodesics.

Our results. Our contributions in this article are two-fold.
First, we extend the theorem of Pogorelov to a non-convex and non-embedded setting.

Precisely, we work in the abstract setting of compact polyhedral spheres, which consist of the
following data: (1) a finite collection of Euclidean polygons, and (2) gluing rules between
pairs of boundaries of equal length, so that the topological space resulting from the gluings is
a topological sphere. A face, edge or vertex of a polyhedral sphere is respectively a polygon,
an edge or a vertex of one of the polygons, and a vertex is convex (respectively concave)
if the sum of the angles of the polygons around the vertex is at most 2π, respectively at
least 2π. Let us emphasize that such a polyhedral sphere is not a priori embedded in R3. In
particular, edges of the triangles might not be shortest paths. This intrinsic description of
non-smooth surfaces appears under various names in the literature, see, e.g., piecewise-linear
surfaces [14] or intrinsic triangulations [21], and dates back to at least Alexandrov, who
proved [2, Chapter 4] that when all the vertices are convex, such a polyhedral sphere is the
metric structure of a unique convex polyhedron in R3 (see [17] for an algorithmic version of
this result). In the non-convex case, a celebrated theorem of Burago and Zalgaller [8], shows
that one can always find a piecewise-linear isometric embedding of a compact polyhedral
sphere into R3, but it might require a large number of subdivisions and the proof has to our
knowledge not been made algorithmic.

Note that by definition, a polyhedral sphere is locally Euclidean at every point that is
not a vertex. We propose the following generalization of the definition of quasigeodesics to a
polyhedral sphere S: a closed quasigeodesic is a closed curve that is locally a straight line
around any point that is not a vertex, and that is locally a pair of straight lines around a
vertex, forming an angle at most π on each side if the vertex is convex, and forming an angle
at least π on each side if the vertex is concave. A closed curve γ : S1 → S is simple if it is
injective, and is weakly simple if it is a limit of simple curves (see Section 2 for details).

Our first theorem shows the existence of a weakly simple closed quasigeodesic of controlled
length on a polyhedral sphere. We denote by M the edge-sum of S, which we define as the
sum of the lengths of the edges of an iterated barycentric subdivision of a triangulation of S.

▶ Theorem 1 (Existence). Let S be a polyhedral sphere and denote by M its edge-sum. There
exists a weakly simple closed quasigeodesic of length at most M .

The original proof of Pogorelov in the convex case proceeds by first approximating the
polyhedron with smooth surfaces, and then taking the limit of the simple closed geodesics on
the smooth surfaces, whose existence is guaranteed by the Lyusternik–Schnirelmann theorem.
The proof technique for that latter theorem, originating from the work of Birkhoff [5], goes
roughly as follows: we consider sweep-outs, i.e., a family of simple closed curves sweeping
the polyhedron from one point to another point (see Section 2 for a precise definition), and
consider the sweep-out where the longest curve has minimal length. Then, by applying a
curve-shortening process, one can use this optimal sweep-out to find simple closed geodesics.
This last step is notoriously perilous [3, 4, 15], hence the tumultuous history of the Lyusternik-
Schnirelmann theorem. Our proof proceeds by working directly on the polyhedral sphere



J. Chartier and A. de Mesmay 27:3

and we prove the existence of a weakly simple closed quasigeodesic using a similar technique
based on sweep-outs. Our key technical contribution is to rely on a curve-shortening process
that is well-adapted to the polyhedral structure of the problem: we adapt the disk flow
originally designed by Hass and Scott [16] for Riemannian surfaces so as to handle the disks
formed by the stars of vertices in a seamless way. We are hopeful that this polyhedral variant
of the disk flow could find further applications in the study of quasigeodesics.

Theorem 1 provides, in addition to the existence of a weakly simple closed quasigeodesic,
a bound on its length. Our second result is to leverage this bound in order to control the
combinatorics of the quasigeodesic, which allows us to design a finite algorithm to compute a
weakly simple closed quasigeodesic on a polyhedral sphere.

▶ Theorem 2 (Algorithm). Given a polyhedral sphere S, we can compute a weakly simple
closed quasigeodesic in time exponential in n and ⌈M/h⌉, where n is the number of vertices
of S, M is its edge-sum, and h is the smallest altitude over all triangles of some triangulation
of S.

Note that a bound on the length of a quasigeodesic does not translate directly into a
bound on the number of times that it crosses each edge of the polyhedral sphere, as these
crossings could happen arbitrarily close to vertices, and thus contribute an arbitrarily small
length. Our proof of Theorem 2 investigates the local geometry of quasigeodesics around
vertices to show that this does not happen too much, and that one can indeed bound the
multiplicity of each edge. Then, our algorithm guesses the correct combinatorics of the simple
closed quasigeodesic and checks in polynomial time that it is realizable.

Our proof techniques for Theorem 1 only provide the existence of weakly simple quasi-
geodesics instead of simple quasigeodesics. We believe this to be a necessary evil in any
generalization to the non-convex case, as shortest paths accumulate on concave vertices,
making it impossible to define a curve-shortening process in the neighborhood of those which
preserves simplicity. However, when all the vertices are convex, the result of Pogorelov does
show the existence of a (actually three) simple closed quasigeodesics, where we include as a
degenerate simple case a curve connecting twice two vertices of curvature at least π. Fur-
thermore, his proof also provides an upper bound on the length of this simple quasigeodesic,
as we explain an the end of Section 4. Since our algorithm behind Theorem 2 only relies on
such an upper bound on the length and on the (weak) simplicity of the sought after curve, we
can also use it to compute simple closed quasigeodesics in the convex case. This solves Open
Problem 1 of [12], but note that we are still a long way off a polynomial-time algorithm.

Some of the proofs have been omitted and are available in the full version [11].

2 Preliminaries

In this article, a polyhedral sphere is a finite collection of Euclidean polygons, and gluing rules
for boundaries of the same length, so that the space obtained by identifying the boundaries
of the polygons via the gluing rules is homeomorphic to a sphere. Such a sphere is naturally
endowed with a metric which is locally Euclidean at every point except at the vertices of
the polygons, where it might display a conical singularity: if the total angle of the polygons
glued around that vertex is larger than 2π (respectively at most 2π), we say that the vertex
is concave (respectively convex), and its curvature is the angular defect compared to 2π

(which is thus negative for concave vertices). Given a (not necessarily convex) polyhedron
described via the coordinates of its vertices in R3, one can easily compute the underlying
polygons and thus the structure as a Euclidean sphere. The reverse direction of embedding a

SoCG 2022



27:4 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

polyhedral sphere in R3 is significantly more intricate (see [17] for the convex case and [8]
for the general case), hence our choice of the intrinsic model.

Triangulating each polygon defining a polyhedral sphere yields a triangulated polyhedral
sphere. Furthermore, by doing up to two barycentric subdivisions in each triangle if necessary,
we can assume that there are no loops nor multiple edges in this triangulation. Note that
this triangulation and these subdivisions do not change the metric of the sphere and do not
impact quasigeodesicity (see next paragraph). Therefore, for convenience, in this article we
will always assume that our polyhedral spheres are triangulated and that they contain neither
loops nor multiple edges, and we will denote such a sphere by S from now on. A shelling of
a triangulated sphere S is an order (T1, . . . , Tℓ) on the triangles that S consists of so that
for all i ∈ [1, ℓ − 1],

⋃k=i
k=1 Tk is homeomorphic to a 2-disk D2. It is well-known that all the

triangulated spheres are shellable, for example because, by Steinitz’s theorem [22, Chapter 4]
they form the 2-skeleton of a polytope, and those are shellable [6]. Throughout this article,
we use the following notations for a polyhedral sphere: its vertices are denoted by p1, . . . , pn,
its edges by e1, . . . , em (or sometimes eij to emphasize the vertices that it connects to) and
its triangles by T1, . . . , Tℓ. The order induced by the numbering of the triangles is a shelling
order. The star of vertex pi, denoted by Ci is the union of the triangles Tk having pi for
common vertex, identified along the edges adjacent to pi. It is convex (resp. concave) if pi is
(but note that the shortest path in S between two points of a convex star is not necessarily
contained in that star). We optionally rename the vertices of P to have p1 ∈ T1 and pn ∈ Tℓ.
Finally, we denote by M the sum of the lengths of the edges of S, and by h the smallest
altitude of all the triangles in S. Note that h is a lower bound on the distance between any
two vertices. For γ an edge or a curve on S, we denote by L(γ) its length.

A closed curve c on S is a continuous map c : S1 → S. A closed curve is piecewise-linear
if it is locally straight except at a finite number of points.

▶ Definition 3. A closed curve is a quasigeodesic if it is locally straight around every point
of S that is not a vertex, and around a vertex it forms an angle at most (respectively at least)
π on both sides if the vertex is convex (respectively concave).

We emphasize that this definition is non-standard in the non-convex case, where it is
sometimes simply forbidden for a quasigeodesic to go through a concave vertex [13]. Note
that a quasigeodesic is straight around a vertex with zero curvature. A closed curve is simple
if it is injective. Throughout this article, all the curves will always be parameterized at
constant speed. We endow the space of piecewise-linear curves with the uniform convergence
metric, i.e., d(c1, c2) = maxt∈S1 d(c1(t), c2(t)). A closed curve is weakly simple if it is a limit
of simple curves for this metric: intuitively a weakly simple curve is a curve with tangencies
but no self-crossings. We denote by P the set of constant closed curves, i.e., closed curves c

such that there exists p ∈ S such that ∀t ∈ S1, c(t) = p.
We denote by Ω the space of rectifiable closed curves of length at most M . This space is

compact for the uniform convergence metric, as can be shown via the Arzelà-Ascoli theorem,
the bound on the length and the constant-speed parameterization providing equicontinuity
(see for example [7, Theorem 2.5.14]). We denote by Ωpl the subspace of Ω consisting of
piecewise-linear and weakly simple closed curves. A monotone sweep-out of S is a continuous
map β : S2 −→ S, where S2 is seen as the quotient of the cylinder [0, 1] × S1 by the relation
which identifies the circles (0, S1) and (1, S1) to two points, and such that:

β(0, ·) and β(1, ·) belong to P, i.e., are two constant closed curves on S,
β has topological degree one,



J. Chartier and A. de Mesmay 27:5

for s ∈ (0, 1), each fiber β(s, ·) : S1 −→ S belongs to Ωpl, and
the sweep-out is monotone, i.e., if Ds denotes the disk to the left of β(s, ·), the disks Ds

are nested: Ds ⊆ Ds′ for s′ > s.
The requirement on the topological degree informally means that each point is covered once
by the sweep-out ; it is there to prevent trivial sweep-outs (for example constant at a point).
It can be replaced by the requirement that the starting and endpoints are distinct. The
monotonicity corresponds to the third condition, and typical sweep-outs in the literature do
not assume it (see [9]), but in this paper we will only use monotone sweep-outs and thus
for simplicity we will henceforth drop the word monotone. The width of a sweep-out is the
length of the longest fiber. We denote by B the space of sweep-outs.

The algorithm underlying Theorem 2 has complexity exponential in ⌈M/h⌉, i.e., it
depends on the actual values of the lengths of the boundaries of the polygons. Therefore, we
do not work on a real RAM model and rely rather on a word RAM model, which is powerful
enough to express all the operations that we require: see for example [12, Section 2] for a
description of the O(1)-Expression RAM model which can be encoded in the word RAM
model and allows for a restricted notion of real numbers and algebraic operations thereon.

3 Disk flow and sweep-outs

We start by describing a monotone sweep-out of controlled width.

▶ Lemma 4. Let S be a triangulated polyhedral sphere of edge-sum M . There exists a
monotone sweep-out of S of width at most M .

This lemma is proved by sweeping triangles one by one, in the order prescribed by a
shelling order of the sphere S.

The disk flow. We define here a curve-shortening process that we call the disk flow, which
is an iterative process Φ shortening locally a curve in Ωpl successively in each star Ci, with
the key property that the only fixed points of Φ are quasigeodesics or trivial curves. In
a second step, we will extend Φ into a map Φ̂ that acts on monotone sweep-outs, which
will require interpolating at the points where Φ is discontinuous. This disk flow is directly
inspired by the work of Hass and Scott [16] who defined an analogous flow on Riemannian
surfaces. The key difference with their setup is that the star Ci around a convex vertex is
not strongly convex (i.e. there is no uniqueness of shortest paths), which causes additional
tears when extending Φ to sweep-outs and thus requires further operations. Furthermore,
instead of working with very small convex disks as they are doing, we work directly with the
stars Ci as we strive to preserve curves whose piecewise-linear structure matches that of S.
This requires us to deal with tangencies with the boundaries of stars in a different manner.

Let c be a curve in Ωpl and let Ci be a star crossed by c ∈ Ωpl. An arc of Ci is a restriction
of c whose image is a connected component of Ci ∩ Im(c). Let γ be an arc of Ci, from a
closed curve c. The points γ(t0) = c(t0) ∈ ∂Ci such that c([t0 − ε, t0)) or c((t0, t0 + ε]) is
contained in the interior of Ci for a small enough ε > 0, are called the gates of γ. Note that
two kinds of arcs have no gates: loops strictly inside the star and arcs never meeting the
interior of the star. Unless γ is included in Ci, the orientation of S1 naturally designates a
first gate, denoted by front(γ), and a final gate, denoted by exit(γ). The gates can give
access to the interior of the star for values of t greater (resp. less) than t0 – we say that
the gate is open to the right (resp. to the left). A gate can be open to the right and to the
left. Thus, front gates are open to the right and exit gates are open to the left. Figure 1
illustrates different possible sequences of gates.

SoCG 2022



27:6 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

Figure 1 Three examples of sequences of gates.

Relative to two gates A and B and independently of the path followed between A and
B, we define the right region Cr

i (A, B) and the left region Cℓ
i (A, B) of the star, as being

the two parts of Ci whose union is Ci and which intersect along the edges [Api] and [piB].
The orientation right/left is chosen compatible with that of c between the two gates. The
angles of the regions at the pi vertex are called the right angle θr(A, B) and the left angle
θℓ(A, B).

▶ Lemma 5. Let c be a curve in Ωpl. There exists a map Φ : Ωpl −→ Ωpl satisfying the
following two conditions :

The only fixed points of Φ are quasigeodesics and constant curves.
L(Φ(c)) ≤ L(c), with equality if and only if c is a fixed point.

We stress that the map Φ is in general not continuous.

Proof. We define Φ as follows. Let c be a closed curve in Ωpl. We pick an arbitrary order on
the vertices of S, which induces an arbitrary order on the stars Ci. The map Φ consists in
repeating in this order a straightening process Φi

loc successively in each star. Consider in Ci

an arc γ of c. Note that between two of its consecutive gates, A open to the right and B

open to the left, γ lies in Ci.
If Ci is convex, the straightening is defined as follows for each subset of γ between two

consecutive gates (which by a slight abuse of notation we also denote by γ):
If pi ∈ γ and if θr(A, B) and θℓ(A, B) are less than or equal to π, we replace γ by
[Api] ∪ [piB].
If pi /∈ γ and if θr(A, B) and θℓ(A, B) are less than or equal to π, we replace γ by the
shortest path between A and B staying in the same region relative to A and B.
If θr(A, B) (resp. θℓ(A, B)) is strictly greater than π, we replace γ by the shortest path
between A and B in Cℓ

i (resp. Cr
i ).

If Ci is concave, the straightening is defined as follows:
If θr(A, B) and θℓ(A, B) are at least π, and even if pi /∈ γ, we replace γ by [Api] ∪ [piB].
If θr(A, B) (resp. θℓ(A, B)) is strictly less than π, we replace γ by the shortest path
between A and B in Cr

i (resp. Cℓ
i ).

In case γ = c is strictly included in the interior of Ci, then Φi
loc(c) = 0, where 0 denotes

an arbitrary constant curve based at a point p in Ci.
We denote by Φi

loc, relative to a given star Ci, the straightening process described
above, applied in this star to each arc of a closed curve c ∈ Ωpl. Then Φ is defined as the
concatenation Φ := ◦n

i=1Φi
loc. Let us first show that Φ has values in Ωpl, note that it suffices

to prove it for Φi
loc. It is immediate that the image under Φi

loc is piecewise-linear. In order



J. Chartier and A. de Mesmay 27:7

to prove that the image is weakly simple, we look at the case of two arcs of the same closed
curve c in a star, one delimited by two gates A and B, the other delimited by two gates A′

and B′. As c belongs to Ωpl, the two arcs do not cross, so they delimit a band in the star. If
Φi

loc sends both arcs to the same side of pi, then their images form two shortest paths in
the same region and do not intersect. If Φi

loc sends the two arcs on opposite sides of pi, a
configuration where the two arcs cross twice is impossible because the angles θr(A, B) and
θr(A′, B′) on the one hand, and θℓ(A, B) and θℓ(A′, B′) on the other hand are arranged in
the same order.

If c is a quasigeodesic, each of its arcs possibly behaves in two ways in the star it crosses:
either it reaches and leaves the vertex in a straight line from and up to the boundary of the
star, forming on each side an angle at most π in the convex case, or at least π in the concave
case. Or it connects its gates via a shortest path, entirely contained in the more acute of the
two regions that it induces. In both cases, the previous process does not change its trajectory.
So Φ fixes the quasigeodesics. Conversely, if c is not a quasigeodesic, then either it does not
take a shortest path through a face or in neighborhood of a transverse intersection with an
edge, either it forms on the passage of a vertex an angle greater than π on one side. This
will be straightened when applying Φi

loc in a star containing that face, edge, or vertex in its
interior, and therefore c is not a fixed point of Φi

loc. By construction, since Φi
loc does not

increase lengths, we have that L(Φ(c)) ≤ L(c). Let us show that if L(Φ(c)) = L(c), then
c is a quasigeodesic. If an arc of c is not fixed by Φi

loc in a star, while remaining on the
same side of the vertex, then it loses length, because there is uniqueness of the shortest path
within a (left or right) region of a star. On the other hand, if Φi

loc passes an arc on the
other side of the vertex (or pushes it against the vertex), it is because its length exceeds
L([Api]) + L([piB]). So the arc loses at least this excess in length. Finally, since some Φi

loc

decreases the length of a non-quasigeodesic c, such a c cannot be a fixed point of Φ. ◀

In this proof, we could have taken the simpler choice of always replacing an arc in a star
by a shortest path, irrespective of the angle at the vertex. The more delicate choice that is
made here is tailored so as to be able to extend Φ to sweep-outs in Lemma 8.

The following property will be useful.

▶ Lemma 6. For all ε > 0, there exists η > 0 such that for any curve c ∈ Ωpl and for any i,
if L(c) − L(Φi

loc(c)) < η, then dH(c, Φi
loc(c)) < ε, where dH denotes the Hausdorff distance.

The following lemma shows that applying Φ iteratively to a curve either makes the curve
trivial in finite time, or converges to a quasigeodesic. Note that the lemma is not as obvious
as it might seem as Φ is not continuous on Ωpl.

▶ Lemma 7. Let c ∈ Ωpl. We consider the sequence of iterates of Φ, i.e., (Φj(c))j. If
this sequence does not reach 0 in finite time, then it admits a subsequence converging to a
quasigeodesic (with respect to the uniform convergence metric).

We now explain how to apply the disk flow to a monotone sweep-out, so that it extends
the action on each of the fibers.

▶ Lemma 8. There exists a map Φ̂ : B −→ B and a piecewise continuous injective map
ι : [0, 1] −→ [0, 1], such that

∀s ∈ [0, 1], Φ̂(β)(ι(s), ·) = Φ(β(s, ·)).

The map ι induces a surjection f that maps [0, 1] on to [0, 1], which continually extends ι−1,
with the property that L(Φ̂(β)(s, ·)) ≤ L(β(f(s), ·)), with equality if and only if β(f(s), ·) is a
quasigeodesic.

SoCG 2022



27:8 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

Proof. Let β be a sweep-out in B. We explain how to apply a local step Φ̂i
loc of the

curve-shortening process to β. Then, as before, we will define Φ̂ as the concatenation
◦n

i=1Φ̂i
loc.

Before analyzing the effect of Φi
loc on β, we apply an artificial thickening of β which fills

its “problematic” portions on the boundary of each star and is defined as follows. We call
the bare boundary of Ci the set of points of ∂Ci which are not the gates of any arc of a fiber
of β crossing Ci. Consider a connected component of the bare boundary of a certain star Ci.
It is fully contained in the image of at least1 one fiber c of β that:

either connects two gates which are neither a front gate nor an exit gate,
or it connects a front or exit gate on one side only (see the green curve on Figure 2, top
left),
or it does not connect any gate (see the green curve on Figure 2, top right).

In all three cases, we can see that applying Φi
loc would induce a discontinuity around c.

This is pictured in Figure 2, where one sees that the action of Φi
loc on the red curve and the

green curve would be very different, despite them being arbitrarily close. We handle this
discontinuity as follows. Case 1 will fit into the more general surgery described below, and
thus is not addressed at this stage. In cases 2 and 3, the idea is to replace the parameter s

of c = β(s, ·) by a closed interval describing a collection of copies of c all identical (hence the
artificial nature of this thickening), except that we drag artificially the position of the single
extremal gate (case 2) or we add two new front/exit gates (case 3), one of which moves along
∂Ci. In both cases, the new gates keep or gain an open character to the right or to the left.
The aim of this operation is that the arcs of c between these new artificial gates will become
straightened by Φi

loc, thus ensuring the continuity of Φi
loc at c (see Figure 2).

Figure 2 We artificially add gates on bare edges to obtain interpolating curves in their neighbor-
hoods.

After this pre-processing, we consider the map β′ : [0, 1] × S1 −→ S defined by:

∀s ∈ [0, 1], β′(s, ·) = Φi
loc(β(s, ·)).

The discontinuity of Φi
loc on arcs within the star Ci induces a finite number of tears in β′.

These discontinuities occur around a convex vertex or when a fiber is tangent to the boundary
of a star, and can be of the following four types.

1 If there is an infinite number of them, they are parameterized in β by a closed interval. We then consider
the representative closest to the interior of the star.



J. Chartier and A. de Mesmay 27:9

Disappearance of one or more gates far from the vertex, see Figure 3.

Figure 3 Disappearance of one or more gates far from the vertex: Two examples of interpolation.
In the example in the bottom picture, the γs0 fiber has been added during the preprocessing and
provided with an artificial gate. The missing part of the interpolation will be covered by the new
gates induced in the preprocessing.

Double tear around a convex vertex, see Figure 4.
Single tear around a vertex, see Figure 5.
Disappearance of interior curves, see Figures 6 and 7.

In all four cases, the discontinuities are filled by (1) blowing up the parameter space
around a discontinuity point s to an interval gap(s) and (2) adding interpolating curves in
this interval gap(s), one of which is Φi

loc(β(s, ·)). We refer to Athe full version for a precise
description of these interpolating procedures. Such interpolating curves are pictured in green
in Figure 3, 4, 5, 6 and 7 and they are obtained by shortcutting β(s, ·) using shortest paths,
therefore all of them have length bounded by that of β(s, ·). We define the map ι as the one
sending s to the parameter corresponding to the fiber Φi

loc(β(s, ·)), while the surjection f

maps the entire interval gap(s) to s (the maps ι and f are defined in the natural way outside
of the discontinuities). Therefore we have defined a new map which we denote by Φ̂i

loc(β),
whose parameter space is connected to that of β using the maps ι and f . As the Φ̂i

loc get
composed to yield Φ̂, the maps ι and f are also composed in the natural way.

SoCG 2022



27:10 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

Figure 4 Double tear around a convex vertex: Interpolation.

We argue that the resulting map is a monotone sweep-out. It starts and ends at trivial
curves, and by constructions each fiber is piecewise-linear. Furthermore, the disks defined by
the fibers are nested, since the effect of Φ̂i

loc is restricted to the star Ci, where the nesting of
disks that was present in β is preserved, as the interpolated curves are put inbetween their
interpolation targets. Generically, points are covered by the new sweep-out exactly once
(since all the fibers can be slightly perturbed to be disjoint), thus the topological degree
is one. Finally, since all the interpolating curves have length at most that of a curve it
interpolates from, we have the inequality L(Φ̂(β)(s, ·)) ≤ L(β(f(s), ·)), with equality if and
only if β(f(s), ·) is a quasigeodesic. ◀

▶ Remark. This proof showcases why our definition of quasigeodesic is the correct one for
the disk flow to be appropriately defined on sweep-outs. If we had chosen more strict rules
around convex vertices (for example only allowing curves with equal angles on both sides),
we could have defined Φ in a more abrupt way by simply replacing arcs with shortest paths,
thus ensuring that no arc through a vertex is fixed by the disk flow. However, this would
have yielded tears around a convex vertex p in which our interpolating technique could not
have worked, since no fiber of β′ would be going through the vertex, and there would have
been no way to add interpolating fibers of controlled length. In this sense, allowing for an
angle at most π on both sides is the minimum angular spread allowing for the interpolation
steps in the proof of Lemma 8 to work. For concave vertices, shortest paths between points
on the boundary of a star Ci might require the whole spread of angles at least π on both
sides, hence this choice of definition.

4 Existence of a simple closed quasigeodesic

We are now ready to prove Theorem 1. At this stage, our proof follows the same lines as
that of Hass and Scott [16, Theorem 3.11].

Proof of Theorem 1. Let β be the monotone sweep-out of B of width at most M described
by Lemma 4. We consider the sequence of sweep-outs (Φ̂j(β))j . For any j ∈ N, the parameter
space of Φ̂j(β) is the product of an interval [0, 1] by S1, the first factor being related to that of
Φ̂j−1(β) via the surjection fj of Lemma 8. Therefore, in order to track the history of a fiber
in Φ̂j(β) under the action of Φ̂, we introduce the sequence of parameters Oj = (s0, . . . , sj)
such that for all k beetwen 0 and j − 1 : sk = fk(sk+1). Each space of parameters describing



J. Chartier and A. de Mesmay 27:11

Figure 5 Single tear around a vertex: Two examples of interpolation.

Oj is homeomorphic to the interval [0, 1] (via the trivial homeomorphism (s0, . . . , sj) 7→ sj),
and we consider the projective limit I of these intervals, which is thus also homeomorphic to
an interval [0, 1]. An element of this projective limit therefore consists of an infinite sequence
O = (s0, s1 . . .) such that for all k, sk = fk(sk+1).

Let O = (s1, s2 . . .) be an element of I, which thus corresponds to a family of curves
cj := Φ̂j(β)(sj), and let us assume that all these curves are trivial for j bigger than some k.
Then there is an open neighborhood of O for which this is also the case, as a curve becomes
trivial under the action of some Φ̂i

loc if and only if it is fully contained in the interior of a
star. Therefore, the set Vk ⊂ I of sequences of curves for which the kth curve is not trivial is
a closed subset of I. Furthermore, it is not empty, as otherwise some intermediate sweep-out
after Φ̂k−1(β) would consist of only curves contained in the interior of some star and thus
would miss some point of the sphere S, in contradiction with the requirement that a sweep-out
be of topological degree one. Finally, we have the natural inclusion Vk+1 ⊂ Vk since if
Φ̂k+1(β)(sk+1) is not trivial, then this is also the case for Φ̂k(β)(sk). We can thus consider
the intersection ∩k∈NVk which is an infinite intersection of nested closed non-empty subsets
of I and is thus non-empty. An element in this intersection is a sequence O∞ = (s1, s2 . . .)
such that none of the curves cn = Φ̂n(β)(sn) is trivial. As Ωpl is compact, we can extract
from this sequence of curves a convergent subsequence ck, which converges to a curve c∞.
We claim that c∞ is a weakly simple closed quasigeodesic of length at most M . The curve
c∞ is weakly simple because it is a limit of weakly simple curves. The bound on the length
follows from the fact that by Lemma 4, the width of each of the sweep-outs Φ̂n(β) is at most
M , and thus in particular c∞ is a limit of curves of length at most M and thus has length at
most M , since the length is a lower semi-continuous function on Ω.

SoCG 2022



27:12 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

Figure 6 Disappearance of interior curves: Three examples of interpolation.

Figure 7 Interpolating to fill the last hole when an interior curve disappears.

Finally, in order to prove that c∞ is a quasigeodesic, the argument is identical to the one
in the proof of Lemma 7, to which we refer. If c∞ is not a quasigeodesic, there is one point p

in its image which is not locally quasigeodesic, i.e., there are two points p1 and p2 in a small
neighborhood in c∞ such that p1, p and p2 are not aligned, and if p is a vertex, the angle
at p is disallowed by the curvature there. For k big enough, ck will also have this property.
Now, we consider a star Ci which contains p in its interior. Here observe that Lemma 6 is
also valid under the action of Φ̂, i.e., for interpolating curves: indeed, those are displaced
even less than under the action of Φ. Therefore, ck will have moved very little when Φi

loc

acts on it, and thus this action will diminish its length by a fixed quantity that can be lower
bounded based on c∞, which is impossible since the lengths of the ck converge. ◀

Our techniques only guarantee the existence of a weakly simple closed quasigeodesic of
length at most M . In contrast, in the convex case, Pogorelov [19] proved the existence of a
simple closed quasigeodesic (where the degenerate case of two vertices of curvature at least
π connected twice by a curve is allowed). The proof of Pogorelov works by approximating



J. Chartier and A. de Mesmay 27:13

a convex polyhedron by smooth surfaces, appealing to the Lyusternik-Schnirrelmann on
the smooth surfaces to find simple closed geodesics, taking the limit of such simple closed
geodesics and arguing that (1) the limit is a quasigeodesic and (2) it is simple. We argue
that the same technique proves the existence of a simple closed quasigeodesic of length at
most M + ε, for an arbitrarily small ε > 0. Indeed, the sweep-out that we describe on S

naturally induces sweep-outs of width at most M + ε on the approximating smooth surfaces
that are close enough, and thus the first simple closed geodesic output by the Lyusternik-
Schnirrelmann theorem in each of these surfaces has length at most M + ε. Taking the limit
of those yields a simple closed quasigeodesic of length at most M + ε. We will use this result
at the end of the next section.

5 An algorithm to compute a weakly simple closed quasigeodesic

In this section, we leverage the existence of a weakly simple closed quasigeodesic of length at
most M proved in Theorem 1 in order to design an algorithm to find it.

Let S be a polyhedral sphere and denote by E = {p1, . . . , pn, e1, . . . , em} be the set of
vertices and open edges of S. To a closed curve c : S1 −→ S, we associate the cyclic word
E(c) whose successive letters are the elements of E met by c(t) as t moves around S1 (note
that an edge can be either crossed or followed). Given a bound on the length of c, we want
to derive a bound on the combinatorics of c, i.e., a bound on the length of E(c). This is
hopeless without any assumption, as a curve spiraling around a vertex for an arbitrarily long
time showcases. But when c is a weakly simple quasigeodesic, we can obtain such a bound.
Indeed, our first observation is that a weakly simple quasigeodesic never spirals around a
vertex.

▶ Lemma 9. Let γ be a weakly simple closed quasigeodesic and Ci be the open star of a vertex
vi of degree di. Then for any connected component α of γ ∩ Ci, the number of intersections
of α with edges and vertices of Ci is at most di.

Proof. If α passes through the vertex vi, then it exits on both sides tracing a straight line in
one of the triangles of Ci. This straight-line reaches directly the opposite edge of the triangle,
therefore in this case the number of intersections of α with edges and vertices of Ci is at most
two.

If α does not pass through the vertex vi, then let us denote by e the first edge adjacent
to vi that it crosses. Note that within a triangle of Ci, by quasigeodesicity, α enters from one
edge and does not backtrack, i.e., it escapes from another edge. Therefore, either α escapes
from Ci before crossing e again, in this case it crosses at most di edges, or it crosses e again.
In the latter case, up to reversing orientation of α we can assume that the second crossing
point is closer to vi than the first crossing point. Tracing α after the second crossing point,
we see that in each triangle that it enters, it cannot escape Ci since, by weak simplicity, it
cannot cross the previous edge that it traced, and is thus forced to continue spiraling around
vi indefinitely. This contradicts the assumption that γ is closed, finishing the proof. ◀

The following geometric lemma will come handy to bound the combinatorics of a closed
simple quasigeodesic.

▶ Lemma 10. Let Q be a Euclidean quadrilateral consisting of two Euclidean triangles glued
along an edge. Then the distance between two opposite sides of Q is lower bounded by the
smallest altitude of the two triangles.

Combining Lemmas 9 and 10 yields the following proposition.

SoCG 2022



27:14 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

▶ Proposition 11. Let S be a polyhedral sphere, let M denote the sum of the edge-lengths of
the triangles of S, let h denote the smallest altitude of the triangles of S, and let d be the
maximum degree of a vertex in S. Then there exists a weakly simple closed quasigeodesic on
S such that the length of E(γ) is bounded by:

ηγ = ⌈(d + 1)M/h⌉

We now have all the tools to prove Theorem 2.

Proof of Theorem 2. Let γ be a weakly simple closed quasigeodesic whose combinatorial
complexity is controlled by ηγ as specified by Proposition 11. First, we observe that we can
assume that this quasigeodesic meets a vertex (see full version).

Figure 8 Unfolding a (tentative) quasigeodesic along the set of edges that it crosses.

Then, we guess the cyclic word w of size at most ηγ describing the combinatorics of γ,
a weakly simple closed quasigeodesic going through at least one vertex. For each subword
p1e1 . . . ekp2 between two consecutive vertices, if e1 is adjacent to p1, we simply check that
the next letter is the other endpoint of p1. Otherwise, we first check that successive letters
of that word are adjacent to a common triangle. Then we compute a local unfolding of the
polyhedral sphere along the edges e1, e2 . . . ek, i.e., we first place the triangle T1 spanned by
p1 and e1, to which we attach along e1 the triangle T2 spanned by e2 and e3, and so on until
we reach the last triangle Tk spanned by ek and p2. Now, in this unfolded picture, we trace
the straight line Σ12 between p1 and p2. There remains to check that the combinatorics of
this straight line match those of the guessed word: in the first and last triangles, we check
that Σ12 exits via or follows e1 (or ek), and in each other triangle Ti it suffices to check that
the three vertices of Ti are on the sides of Σ12 prescribed by the edges ei and ei+1 (i.e., if
ei = ab and ei+1 = bc, then a and c should be one side of Σ12 while b should be on the other
side). Then, we check that the angle between each pair Σi,i+1,Σi+1,i+2 is within the rules
specified by the curvature at the vertex pi+1. Finally, we check that this curve is weakly
simple, for example via known algorithms [1, 10] or by brute-forcing in exponential time the
choice of on which side two overlapping segments can be desingularized. If all the checks are
positive, we have found the unique closed quasigeodesic matching the combinatorics of the
word w, which is thus weakly simple. ◀



J. Chartier and A. de Mesmay 27:15

Finally, let us discuss how to find a simple closed quasigeodesic of bounded length in the
case of a convex polyhedron. Following the discussion at the end of Section 4, Pogorelov’s
theorem implies that there exists a simple closed quasigeodesic of length at most M + ε, for
an arbitrarily small ε, and allowing as a “simple” closed quasigeodesic the degenerate case
of a curve connecting twice two vertices of curvature at least π. This degenerate case is a
weakly simple curve that will be found by our algorithm. For the non-degenerate case, the
arguments of Proposition 11 apply verbatim to provide a bound on the combinatorics of
some simple closed quasigeodesic γ. If this quasigeodesic goes through at least one vertex,
the algorithm described just above finds it, and it is immediate to check that it is simple. If
not, we can push it as in the proof of Theorem 2 to a weakly simple closed geodesic that
goes through a vertex, and it will stay simple until it hits that vertex, where it will form an
angle exactly π in the direction where it came from. Since the total angle at each vertex is
at most 2π, this implies that this curve is either degenerate or simple, and in both cases it
will be found by our algorithm.

References
1 Hugo A Akitaya, Greg Aloupis, Jeff Erickson, and Csaba D Tóth. Recognizing weakly

simple polygons. Discrete & Computational Geometry, 58(4):785–821, 2017. doi:10.1007/
s00454-017-9918-3.

2 Alexandr D Alexandrov. Convex polyhedra. Springer Science & Business Media, 2005.
3 Werner Ballmann. Der Satz von Lusternik und Schnirelmann. Bonner Math. Schriften,

102:1–25, 1978.
4 Werner Ballmann, Gudlaugur Thorbergsson, and Wolfgang Ziller. On the existence of short

closed geodesics and their stability properties. In Seminar On Minimal Submanifolds.(AM-103),
Volume 103, pages 53–64. Princeton University Press, 1983.

5 George David Birkhoff. Dynamical systems, volume 9 of Colloquium Publications. American
Mathematical Soc., 1927. doi:10.1016/B978-044450871-3/50149-2.

6 Heinz Bruggesser and Peter Mani. Shellable decompositions of cells and spheres. Mathematica
Scandinavica, 29(2):197–205, 1971. doi:10.7146/math.scand.a-11045.

7 Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33.
American Mathematical Society, 2001.

8 Yuriy Dmitrievich Burago and Viktor Abramovich Zalgaller. Isometric piecewise-linear
embeddings of two-dimensional manifolds with a polyhedral metric into R3. Algebra i analiz,
7(3):76–95, 1995.

9 Erin Wolf Chambers, Gregory R Chambers, Arnaud de Mesmay, Tim Ophelders, and Regina
Rotman. Constructing monotone homotopies and sweepouts. Journal of Differential Geometry,
119(3):383–401, 2021. doi:10.4310/jdg/1635368350.

10 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proceedings of the twenty-sixth annual ACM-SIAM Symposium on Discrete Algorithms, pages
1655–1670. SIAM, 2014. doi:10.1137/1.9781611973730.110.

11 Jean Chartier and Arnaud de Mesmay. Finding weakly simple closed quasigeodesics on
polyhedral spheres, 2022. arXiv:2203.05853.

12 Erik D Demaine, Adam C Hesterberg, and Jason S Ku. Finding closed quasigeodesics on convex
polyhedra. In 36th International Symposium on Computational Geometry (SoCG 2020), pages
33:1–33:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:10.1007/b137434.

13 Erik D Demaine and Joseph O’Rourke. Geometric folding algorithms: linkages, origami,
polyhedra. Cambridge University Press, 2007. doi:10.1017/CBO9780511735172.

14 Jeff Erickson and Amir Nayyeri. Tracing compressed curves in triangulated surfaces. Discrete
& Computational Geometry, 49(4):823–863, 2013. doi:10.1007/s00454-013-9515-z.

SoCG 2022

https://doi.org/10.1007/s00454-017-9918-3
https://doi.org/10.1007/s00454-017-9918-3
https://doi.org/10.1016/B978-044450871-3/50149-2
https://doi.org/10.7146/math.scand.a-11045
https://doi.org/10.4310/jdg/1635368350
https://doi.org/10.1137/1.9781611973730.110
http://arxiv.org/abs/2203.05853
https://doi.org/10.1007/b137434
https://doi.org/10.1017/CBO9780511735172
https://doi.org/10.1007/s00454-013-9515-z


27:16 Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres

15 Matthew A Grayson. Shortening embedded curves. Annals of Mathematics, 129(1):71–111,
1989. doi:10.2307/1971486.

16 Joel Hass and Peter Scott. Shortening curves on surfaces. Topology, 33(1):25–43, 1994.
doi:10.1016/0040-9383(94)90033-7.

17 Daniel Kane, Gregory N Price, and Erik D Demaine. A pseudopolynomial algorithm for
Alexandrov’s theorem. In Workshop on Algorithms and Data Structures, pages 435–446.
Springer, 2009. doi:10.1007/978-3-642-03367-4_38.

18 L Lyusternik and Lev Schnirelmann. Sur le problème de trois géodésiques fermées sur les
surfaces de genre 0. CR Acad. Sci. Paris, 189(269):271, 1929.

19 Aleksei Vasil’evich Pogorelov. Quasi-geodesic lines on a convex surface. Matematicheskii
Sbornik, 67(2):275–306, 1949. English translation in American Mathematical Society Transla-
tions 74, 1952.

20 Henri Poincaré. Sur les lignes géodésiques des surfaces convexes. Transactions of the American
Mathematical Society, 6(3):237–274, 1905.

21 Nicholas Sharp, Yousuf Soliman, and Keenan Crane. Navigating intrinsic triangulations. ACM
Transactions on Graphics (TOG), 38(4):1–16, 2019. doi:10.1145/3306346.3322979.

22 Günter M Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.
Springer Science & Business Media, 2012. doi:10.1007/978-1-4613-8431-1.

https://doi.org/10.2307/1971486
https://doi.org/10.1016/0040-9383(94)90033-7
https://doi.org/10.1007/978-3-642-03367-4_38
https://doi.org/10.1145/3306346.3322979
https://doi.org/10.1007/978-1-4613-8431-1


Tight Lower Bounds for Approximate & Exact
k-Center in Rd

Rajesh Chitnis #

School of Computer Science, University of Birmingham, UK

Nitin Saurabh #

Indian Institute of Technology Hyderabad, Sangareddy, India

Abstract
In the discrete k-Center problem, we are given a metric space (P, dist) where |P | = n and the goal
is to select a set C ⊆ P of k centers which minimizes the maximum distance of a point in P from its
nearest center. For any ϵ > 0, Agarwal and Procopiuc [SODA ’98, Algorithmica ’02] designed an
(1 + ϵ)-approximation algorithm1 for this problem in d-dimensional Euclidean space2 which runs in

O(dn log k) +
(

k

ϵ

)O(k1−1/d)
· nO(1) time. In this paper we show that their algorithm is essentially

optimal: if for some d ≥ 2 and some computable function f , there is an f(k)·
(1

ϵ

)o(k1−1/d)
·no(k1−1/d)

time algorithm for (1 + ϵ)-approximating the discrete k-Center on n points in d-dimensional
Euclidean space then the Exponential Time Hypothesis (ETH) fails.

We obtain our lower bound by designing a gap reduction from a d-dimensional constraint
satisfaction problem (CSP) to discrete d-dimensional k-Center. This reduction has the property
that there is a fixed value ϵ (depending on the CSP) such that the optimal radius of k-Center
instances corresponding to satisfiable and unsatisfiable instances of the CSP is < 1 and ≥ (1 + ϵ)
respectively. Our claimed lower bound on the running time for approximating discrete k-Center
in d-dimensions then follows from the lower bound due to Marx and Sidiropoulos [SoCG ’14] for
checking the satisfiability of the aforementioned d-dimensional CSP.

As a byproduct of our reduction, we also obtain that the exact algorithm of Agarwal and
Procopiuc [SODA ’98, Algorithmica ’02] which runs in nO(d·k1−1/d) time for discrete k-Center on
n points in d-dimensional Euclidean space is asymptotically optimal. Formally, we show that if for
some d ≥ 2 and some computable function f , there is an f(k) · no(k1−1/d) time exact algorithm for
the discrete k-Center problem on n points in d-dimensional Euclidean space then the Exponential
Time Hypothesis (ETH) fails. Previously, such a lower bound was only known for d = 2 and was
implicit in the work of Marx [IWPEC ’06].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases k-center, Euclidean space, Exponential Time Hypothesis (ETH), lower bound

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.28

Related Version Full Version: https://arxiv.org/abs/2203.08328 [7]

1 Introduction

The k-Center problem is a classical problem in theoretical computer science and was first
formulated by Hakimi [22] in 1964. In this problem, given a metric space (P, dist) and an
integer k ≤ |P | the goal is to select a set C of k centers which minimizes the maximum

1 The algorithm of Agarwal and Procopiuc [2] also works for the non-discrete, i.e., continuous, version of
the problem when C need not be a subset of P , but our lower bounds only hold for the discrete version.

2 The algorithm of Agarwal and Procopiuc [2] also works for other metrics such as ℓ∞ or ℓq metric for
q ≥ 1. Our construction also works for ℓ∞ (in fact, some of the bounds are simpler to derive!) but we
present only the proof for ℓ2 to keep the presentation simple.

© Rajesh Chitnis and Nitin Saurabh;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.h.chitnis@bham.ac.uk
mailto:nitin@cse.iith.ac.in
https://doi.org/10.4230/LIPIcs.SoCG.2022.28
https://arxiv.org/abs/2203.08328
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Tight Lower Bounds for Approximate & Exact k-Center in Rd

distance of a point in P from its nearest center, i.e., select a set C which minimizes the
quantity maxp∈P minc∈C dist(p, c). A geometric way to view the k-Center problem is to
find the minimum radius r such that k closed balls of radius r located at each of the points in
C cover all the points in P . In most applications, we require that C ⊆ P and this is known
as the discrete version of the problem.

As an example, one can consider the set P to be important locations in a city and solving
the k-Center problem (where k is upper bounded by budget constraints) establishes the
locations of fire stations which minimize the response time in event of a fire. In addition to
other applications in facility location, transportation networks, etc. an important application
of k-Center is in clustering. With the advent of massive data sets, the problem of efficiently
and effectively summarizing this data is crucial. A standard approach for this is via centroid-
based clustering algorithms of which k-Center is a special case. Clustering using k-Center
has found applications in text summarization, robotics, bioinformatics, pattern recognition,
etc. [41, 20, 23, 30].

1.1 Prior work on exact & approximate algorithms for discrete k-Center
The discrete3 k-Center problem is NP-hard [44], and admits a 2-approximation [24, 21]
in nO(1) time where n is the number of points. This approximation ratio is tight and the
k-Center problem is NP-hard to approximate in polynomial time to a factor (2 − ϵ) for
any constant ϵ > 0 [25, 21]. Given this intractability, research was aimed at designing
parameterized algorithms [10] and parameterized approximation algorithms for k-center.
The k-Center problem is W[2]-hard to approximate to factor better than 2 even when
allowing running times of the form f(k) · nO(1) for any computable function f [15, 13].
The k-Center problem remains W[2]-hard even if we combine the parameter k with other
structural parameters such as size of vertex cover or size of feedback vertex set [31]. Agarwal
and Procopiuc [2] designed an algorithm for discrete k-Center on n points in d-dimensional
Euclidean space which runs in nO(d·k1−1/d) time.

The paradigm of combining parameterized algorithms & approximation algorithms has
been successful in designing algorithms for k-center in special topologies such as d-dimensional
Euclidean space [2], planar graphs [19], metrics of bounded doubling dimensions [16], graphs
of bounded highway dimension [15, 4], etc. Of particular relevance to this paper is the
(1 + ϵ)-approximation algorithm4 of Agarwal and Procopiuc [2] which runs in O(dn log k) +(

k

ϵ

)O(k1−1/d)
· nO(1) time. This was generalized by Feldmann and Marx [16] who designed

an (1 + ϵ)-approximation algorithm running in
(

kk

ϵO(kD)

)
· nO(1) time for discrete k-Center

in metric spaces of doubling dimension D.

1.2 From 2-dimensions to higher dimensions
Square root phenomenon for planar graphs and geometric problems in the plane. For a
wide range of problems on planar graphs or geometric problems in the plane, a certain square
root phenomenon is observed for a wide range of algorithmic problems: the exponent of the

3 Here we mention the known results only for the discrete version of k-Center. A discussion about
results for the continuous version of the problem is given in Section 1.4.

4 This is also known as an efficient parameterized approximation scheme (EPAS) as the running time is a
function of the type f(k, ϵ, d) · nO(1).



R. Chitnis and N. Saurabh 28:3

running time can be improved from O(ℓ) to O(
√

ℓ) where ℓ is the parameter, or from O(n)
to O(

√
n) where n is in the input size, and lower bounds indicate that this improvement is

essentially best possible. There is an ever increasing list of such problems known for planar
graphs [8, 37, 32, 38, 33, 14, 42, 39, 34, 1, 18] and in the plane [39, 36, 17, 3, 43, 27, 26]

Bounds for higher dimensional Euclidean spaces. Unlike the situation on planar graphs
and in two-dimensions, the program of obtaining tight bounds for higher dimensions is still
quite nascent with relatively fewer results [9, 40, 5, 12, 11]. Marx and Sidiropoulos [40]
showed that for some problems there is a limited blessing of low dimensionality: that is, for
d-dimensions the running time can be improved from nℓ to nℓ1−1/d or from 2n to 2n1−1/d

where ℓ is a parameter and n is the input size. In contrast, Cohen-Addad et al. [9] showed
that the two problems of k-Median and k-Means suffer from the curse of low dimensionality:
even for 4-dimensional Euclidean space, assuming the Exponential Time Hypothesis5 (ETH),
there is no f(k) · no(k) time algorithm, i.e., the brute force algorithm which runs in nO(k)

time is asymptotically optimal.

1.3 Motivation & Our Results
In two-dimensional Euclidean space there is an nO(

√
k) algorithm [2, 27, 26], and a matching

lower bound of f(k) · no(
√

k) under Exponential Time Hypothesis (ETH) for any computable
function f [36]. Our motivation in this paper is to investigate what is the correct complexity
of exact and approximate algorithms for the discrete k-Center for higher dimensional
Euclidean spaces. In particular, we aim to answer the following two questions:

(Question 1) Can the running time of the (1 + ϵ)-approximation algorithm of [2] be

improved from O(dn log k) +
(

k

ϵ

)O(k1−1/d)
· nO(1), or is there a (close to) matching

lower bound?
(Question 2) The nO(d·k1−1/d) algorithm of [2] for d-dimensional Euclidean space shows

that there is a limited blessing of low dimensionality for k-Center. But can the term
k1−1/d in the exponent be improved, or is it asymptotically tight?

We make progress towards answering both these questions by showing the following theorem:

▶ Theorem 1. For any d ≥ 2, under the Exponential Time Hypothesis (ETH), the discrete
k-Center problem in d-dimensional Euclidean space

(Inapproximability result) does not admit an (1 + ϵ)-approximation in f(k) ·
( 1

ϵ

)o(k1−1/d) ·
no(k1−1/d) time where f is any computable function and n is the number of points.
(Lower bound for exact algorithm) cannot be solved in f(k) · no(k1−1/d) time where f is
any computable function and n is the number of points.

Theorem 1 answers Question 1 by showing that the running time of the (1 + ϵ)-
approximation algorithm of Agarwal and Procopiuc [2] is essentially tight, i.e., the dependence
on ϵ cannot be improved even if we allow a larger dependence on both k and n. Theorem 1
answers Question 2 by showing that the running time of the exact algorithm of Agarwal and
Procopiuc [2] is asymptotically tight, i.e., the exponent of k1−1/d cannot be asymptotically
improved even if we allow a larger dependence on k.

5 Recall that the Exponential Time Hypothesis (ETH) has the consequence that n-variable 3-SAT cannot
be solved in 2o(n) time [28, 29].

SoCG 2022



28:4 Tight Lower Bounds for Approximate & Exact k-Center in Rd

1.4 Discussion of the continuous k-Center problem
In the continuous version of the k-Center problem, the centers are not required to be
picked from the original set of input points. The nO(d·k1−1/d) algorithm of Agarwal and
Procopiuc [2] also works for this continuous version of the k-Center problem in Rd. Marx
[35] showed the W[1]-hardness of k-Center in (R2, ℓ∞) parameterized by k. Cabello et
al. [6] studied the complexity of this problem parameterized by the dimension, and showed
the W[1]-hardness of 4-Center in (Rd, ℓ∞) parameterized by d. Additionally, they also
obtained the W[1]-hardness of 2-Center in (Rd, ℓ2) parameterized by d; this reduction
also rules out existence of no(d) algorithms for this problem under the Exponential Time
Hypothesis (ETH). It is an interesting open question whether the nO(d·k1−1/d) algorithm
of Agarwal and Procopiuc [2] is also asymptotically tight for the continuous version of the
problem: one way to possibly prove this would be to extend the W[1]-hardness reduction of
Marx [35] for continuous k-Center in R2 (parameterized by k) to higher dimensions using
the framework of Marx and Sidiropoulos [40]. Our reduction in this paper does not extend
to the continuous version.

1.5 Notation
The set {1, 2, . . . , n} is denoted by [n]. All vectors considered in this paper have length d.
If a is a vector then for each i ∈ [d] its i-th coordinate is denoted by a[i]. Addition and
subtraction of vectors is denoted by ⊕ and ⊖ respectively. The i-th unit vector is denoted
by ei and has ei[i] = 1 and ei[j] = 0 for each j ̸= i. The d-dimensional vector whose
every coordinate equals 1 is denoted by 1d. If u is a point and X is a set of points then
dist(u, X) = minx∈X dist(u, x). We will sometimes abuse notation slightly and use x to
denote both the name and location of the point x.

2 Lower bounds for exact & approximate k-Center in d-dimensional
Euclidean space

The goal of this section is to prove Theorem 1 which is restated below:

▶ Theorem 1. For any d ≥ 2, under the Exponential Time Hypothesis (ETH), the discrete
k-Center problem in d-dimensional Euclidean space

(Inapproximability result) does not admit an (1 + ϵ)-approximation in f(k) ·
( 1

ϵ

)o(k1−1/d) ·
no(k1−1/d) time where f is any computable function and n is the number of points.
(Lower bound for exact algorithm) cannot be solved in f(k) · no(k1−1/d) time where f is
any computable function and n is the number of points.

Roadmap to prove Theorem 1. To prove Theorem 1, we design a gap reduction (described
in Section 2.2) from a constraint satisfaction problem (CSP) to the k-Center problem. The
definition and statement of the lower bound for the CSP due to Marx and Sidiropoulos [40] is
given in Section 2.1. The correctness of the reduction is shown in Section 2.4 and Section 2.3.
Finally, everything is tied together in Section 2.5 which contains the proof of Theorem 1.

2.1 Lower bound for d-dimensional geometric ≥-CSP [40]
This section introduces the d-dimensional geometric ≥-CSP problem of Marx and Sidiropoulos
[40]. First we start with some definitions before stating the formal lower bound (Theorem 5)
that will be used to prove Theorem 1. Constraint Satisfaction Problems (CSPs) are a general
way to represent several important problems in theoretical computer science. In this paper,
we will only need a subclass of CSPs called binary CSPs which we define below.



R. Chitnis and N. Saurabh 28:5

▶ Definition 2. An instance of a binary constraint satisfaction problem (CSP) is a triple
I = (V, D, C) where V is a set of variables, D is a domain of values and C is a set of
constraints. There are two types of constraints:

Unary constraints: For some v ∈ V there is a unary constraint ⟨v, Rv⟩ where Rv ⊆ D.
Binary constraints: For some u, v ∈ V, u ̸= v, there is a binary constraint

〈
(u, v), Ru,v

〉
where Ru,v ⊆ D × D.

Solving a given CSP instance I = (V, D, C) is to check whether there exists a satisfying
assignment for it, i.e., a function f : V → D such that all the constraints are satisfied. For a
binary CSP, a satisfying assignment f has the property that for each unary constraint ⟨v, Rv⟩
we have f(v) ∈ Rv and for each binary constraint

〈
(u, v), Ru,v

〉
we have (f(u), f(v)) ∈ Ru,v.

The constraint graph of a given CSP instance I = (V, D, C) is an undirected graph
GI whose vertex set is V and the adjacency relation is defined as follows: two vertices
u, v ∈ V are adjacent in GI if there is a constraint in I which contains both u and v. Marx
and Sidiropoulos [40] observed that binary CSPs whose primal graph is a subgraph of the
d-dimensional grid is useful in showing lower bounds for geometric problems in d-dimensions.

▶ Definition 3. The d-dimensional grid R[N, d] is an undirected graph with vertex set [N ]d
and the adjacency relation is as follows: two vertices (a1, a2, . . . , ad) and (b1, b2, . . . , bd) have
an edge between them if and only if

∑d
i=1 |ai − bi| = 1.

▶ Definition 4. A d-dimensional geometric ≥-CSP I = (V, D, C) is a binary CSP whose
set of variables V is a subset of R[N, d] for some N ≥ 1,
domain is [δ]d for some integer δ ≥ 1,
constraint graph GI is an induced subgraph of R[N, d],
unary constraints are arbitrary, and
binary constraints are of the following type: if a, a′ ∈ V such that a′ = a ⊕ ei

for some i ∈ [d] then there is a binary constraint
〈
(a, a′), Ra,a′

〉
where Ra,a′ =

{(x, y) ∈ Ra × Ra′ | x[i] ≥ y[i]}.

Observe that the set of unary constraints of a d-dimensional geometric ≥-CSP is sufficient
to completely define it. The size |I| of a binary CSP I = (V, D, C) is the combined size of
the variables, domain and the constraints. With appropriate preprocessing (e.g., combining
different constraints on the same variables) we can assume that |I| = (|V| + |D|)O(1). We now
state the result of Marx and Sidiropoulos [40] which gives a lower bound on the complexity
of checking whether a given d-dimensional geometric ≥-CSP has a satisfying assignment.

▶ Theorem 5 ([40, Theorem 2.10]). If for some fixed d ≥ 2, there is an f(|V|) · |I|o(|V|1−1/d)
time algorithm for solving a d-dimensional geometric ≥-CSP I for some computable function
f , then the Exponential Time Hypothesis (ETH) fails.

▶ Remark 6. The problem defined by Marx and Sidiropoulos [40] is actually d-dimensional
geometric ≤-CSP which has ≤-constraints instead of the ≥-constraints. However, for each
a ∈ V by replacing each unary constraint x ∈ Ra by y such that y[i] = N + 1 − x[i] for each
i ∈ [d], it is easy to see that d-dimensional geometric ≤-CSP and d-dimensional geometric
≥-CSP are equivalent.

SoCG 2022



28:6 Tight Lower Bounds for Approximate & Exact k-Center in Rd

2.2 Reduction from d-dimensional geometric ≥-CSP to k-Center in Rd

We are now ready to describe our reduction from d-dimensional geometric ≥-CSP to k-
Center in Rd. Fix any d ≥ 2. Let I = (V, D, C) be a d-dimensional geometric ≥-CSP
instance on variables V and domain [δ]d for some integer δ ≥ 1. We fix6 the following two
quantities:

r := 1
4 and ϵ := r2

(d − 1)δ2 = 1
16(d − 1)δ2 . (1)

Since d ≥ 2 and δ ≥ 1, we obtain the following bounds from Equation 1,

0 < ϵ ≤ ϵδ ≤ ϵδ2 ≤ ϵδ2(d − 1) = r2 = 1
16 . (2)

Given an instance I = (V, D, C) of d-dimensional geometric ≥-CSP, we add a set U of
points in Rd as described in Table 1 and Table 2. These set of points are the input for the
instance of the |V|-Center problem.

Table 1 The set U of points in Rd
(
which gives an instance of k-Center

)
constructed from an

instance I = (V, D, C) of d-dimensional geometric ≥-CSP.

(1) Corresponding to variables: If a ∈ V then we add the following set of points which are
collectively called as Border[a]

For each i ∈ [d], the point B+i
a which is located at a ⊕ ei · r(1 − ϵ) ⊕ (1d − ei) · 2ϵδ.

For each i ∈ [d], the point B−i
a which is located at a ⊖ ei · r(1 − ϵ) ⊖ (1d − ei) · 2ϵδ.

This set of points are referred to as border points.
(2) Corresponding to unary constraints: If a ∈ V and

〈
(a), Ra

〉
is the unary constraint on

a, then we add the following set of points which are collectively called as Core[a]:
for each x ∈ Ra ⊆ [δ]d we add a point called Cx

a located at a ⊕ ϵ · x.
This set of points are referred to as core points.

(3) Corresponding to adjacencies in GI : For every edge (a, a′) in GI we add a collection
of δ points denoted by S{a,a′}. Assume, without loss of generality, that a′ = a ⊕ ei for
some i ∈ [d]. Then the set of points S{a,a′} is defined as follows:

for each ℓ ∈ [δ] we add a point Sℓ
{a,a′} which is located at a ⊕ ei · ((1 − ϵ)2r + ϵℓ).

This set of points are referred to as secondary points.

Note that we add at most |V| · 2d many border points, at most |C| many core points, and
at most |V|2 · δ many secondary points. Hence, the total number of points n in the instance
U is ≤ |V| · 2d + |C| + |V|2 · δ = |I|O(1) where |I| = |V| + |D| + |C|. We now prove some
preliminary lemmas to be later used in Section 2.4 and Section 2.3.

2.2.1 Preliminary lemmas

▶ Lemma 7. For each a ∈ V and i ∈ [d], we have dist
(
B+i

a , B−i
a

)
≥ 2r(1 + ϵ).

6 For simplicity of presentation, we choose r = 1/4 instead of r = 1: by scaling the result holds for r = 1.



R. Chitnis and N. Saurabh 28:7

Table 2 Notation for some special subsets of points from U . Note that a primary point is either
a core point or a border point.

For each a ∈ V , let D[a] := Core[a]
⋃

Border[a]. (3)

The set of primary points is Primary :=
⋃

a∈V
D[a]. (4)

The set of secondary points is Secondary :=
⋃

a & a′ forms an edge in GI

S{a,a′}. (5)

The final collection of points is U := Primary
⋃

Secondary. (6)

Proof. Fix any a ∈ V and i ∈ [d]. By Table 1, the points B+i
a and B−i

a are located at
a ⊕ ei · r(1 − ϵ) ⊕ (1d − ei) · 2ϵδ and a ⊖ ei · r(1 − ϵ) ⊖ (1d − ei) · 2ϵδ respectively. Hence, we
have that

dist
(
B+i

a , B−i
a

)2 = (2r(1 − ϵ))2 + (d − 1) · (4ϵδ)2 = (2r(1 − ϵ))2 + 16ϵ · (d − 1)ϵδ2,

= (2r(1 − ϵ))2 + 16ϵ · r2, (by definition of ϵ in Equation 1)
= (2r)2[(1 − ϵ)2 + 4ϵ] = (2r(1 + ϵ))2.

◀

▶ Lemma 8. For each a ∈ V, the distance between any two points in Core[a] is < r.

Proof. Fix any a ∈ V . Consider any two points in Core[a], say Cx
a and Cy

a , for some x ̸= y.
By Table 1, these points are located at a ⊕ ϵ · x and a ⊕ ϵ · y respectively. Hence, we have

dist (Cx
a , Cy

a )2 = (ϵ · dist(x, y))2
,

≤ ϵ2 · d · (δ − 1)2, (since x, y ∈ Ra ⊆ [δ]d)

= d(δ − 1)2

(d − 1)2δ4 · r4, (by definition of ϵ in Equation 1)

≤ 1
8 · r4 < r. (since d ≥ 2 and δ ≥ 1)

◀

▶ Lemma 9. For each a ∈ V, the distance of any point from Core[a] to any point from
Border[a] is < 2r.

Proof. Fix any a ∈ V and consider any point Cx
a ∈ Core[a] where x ∈ Ra ⊆ [δ]d. We prove

this lemma by showing that, for each i ∈ [d], the point Cx
a is at distance < 2r from both the

points B+i
a and B−i

a . Fix some i ∈ [d].
(i) By Table 1, the points Cx

a and B+i
a are located at a⊕ϵ·x and a⊕ei ·r(1−ϵ)⊕(1d−ei)·2ϵδ

respectively. Hence, we have

dist
(
Cx

a , B+i
a

)2 = (r(1 − ϵ) − ϵ · x[i])2 +
d∑

j=1: j ̸=i

(2ϵδ − ϵ · x[j])2,

≤ (r(1 − ϵ))2 + (d − 1)(2ϵδ)2, (since x[i], x[j] ≥ 1)
= (r(1 − ϵ))2 + 4ϵr2, (by definition of ϵ in Equation 1)
= (r(1 + ϵ))2 < (2r)2. (since ϵ < 1)

SoCG 2022



28:8 Tight Lower Bounds for Approximate & Exact k-Center in Rd

(ii) By Table 1, the points Cx
a and B−i

a are located at a⊕ϵ·x and a⊖ei ·r(1−ϵ)⊖(1d−ei)·2ϵδ

respectively. Hence, we have

dist
(
Cx

a , B−i
a

)2 = (r(1 − ϵ) + ϵ · x[i])2 +
d∑

j=1: j ̸=i

(ϵ · x[j] + 2ϵδ)2,

≤ (r(1 − ϵ) + ϵδ)2 + (d − 1)(3ϵδ)2, (since x[i], x[j] ≤ δ)
= (r(1 − ϵ) + ϵδ)2 + 9ϵr2, (by definition of ϵ)
≤ 2r2(1 − ϵ)2 + 2ϵ2δ2 + 9ϵr2, (since (α + β)2 ≤ 2α2 + 2β2)
≤ 2r2(1 − ϵ)2 + 11ϵr2, (since ϵδ2 ≤ r2)
= 2r2((1 − ϵ)2 + 5.5ϵ) < 2r2(1 + 1.75ϵ)2 < (2r)2. (since ϵ ≤ 1/16)

◀

▶ Lemma 10. For each a ∈ V, the distance of a to any point in Border[a] is r(1 + ϵ).

Proof. Let p be any point in Border[a]. Then we have two choices for p, namely p = B+i
a

or p = B−i
a . In both cases, we have

dist(p, a)2 = (r(1 − ϵ))2 + (d − 1)(2ϵδ)2 = r2(1 − ϵ)2 + 4ϵr2 = (r(1 + ϵ))2,

where the second equality is obtained by the definition of ϵ (Equation 1). ◀

▶ Lemma 11. For each a ∈ V and each i ∈ [d],
If w ∈ U such that dist

(
w, B+i

a
)

< 2r(1 + ϵ) then w ∈
(
D[a]

⋃
S{a,a⊕ei}

)
.

If w ∈ U such that dist
(
w, B−i

a
)

< 2r(1 + ϵ) then w ∈
(
D[a]

⋃
S{a,a⊖ei}

)
.

Proof. The proof of this lemma is deferred to the full version [7]. ◀

▶ Remark 12. Lemma 11 gives a necessary but not sufficient condition. Also, it might be the
case that for some a ∈ V and i ∈ [d] the vector a ⊕ ei /∈ V (resp., a ⊖ ei /∈ V) in which case
the set S{a,a⊕ei}

(
resp., S{a,a⊖ei}

)
is empty.

▶ Lemma 13. Let a ∈ V and i ∈ [d] be such that a′ := (a ⊕ ei) ∈ V. For each ℓ ∈ [δ],
(1) If x ∈ Ra and ℓ ≤ x[i], then dist

(
Cx

a , Sℓ
{a,a′}

)
< 2r.

(2) If x ∈ Ra and ℓ > x[i], then dist
(

Cx
a , Sℓ

{a,a′}

)
≥ 2r(1 + ϵ).

(3) If y ∈ Ra′ and ℓ > y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)
< 2r.

(4) If y ∈ Ra′ and ℓ ≤ y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)
≥ 2r(1 + ϵ).

Proof. Recall from Table 1 that the points Cx
a and Sℓ

{a,a′} are located at a ⊕ ϵ · x and
a ⊕ ei · ((1 − ϵ)2r + ϵℓ) respectively.

(1) If ℓ ≤ x[i], then dist
(

Cx
a , Sℓ

{a,a′}

)2

= (2r(1 − ϵ) + ϵ(ℓ − x[i]))2 +
d∑

j=1: j ̸=i

(ϵ · x[j])2,

≤ (2r(1 − ϵ))2 + (d − 1)ϵ2δ2 = (2r(1 − ϵ))2 + ϵr2 (since ℓ ≤ x[i] and x[j] ≤ δ)

= (2r)2
(

(1 − ϵ)2 + ϵ

4

)
< (2r)2. (since 0 < ϵ < 1)



R. Chitnis and N. Saurabh 28:9

(2) If ℓ > x[i], then dist
(

Cx
a , Sℓ

{a,a′}

)2

= (2r(1 − ϵ) + ϵ(ℓ − x[i]))2 +
d∑

j=1: j ̸=i

(ϵ · x[j])2,

≥ (2r(1 − ϵ) + ϵ)2 = (2r(1 − ϵ) + 4rϵ)2 = (2r(1 + ϵ))2. (since ℓ > x[i] and 4r = 1)

We now show the remaining two claims: recall from Table 1 that the points Cy
a′ and Sℓ

{a,a′}
are located at (a′ ⊕ ϵ · y) = a ⊕ ei ⊕ ϵ · y and a ⊕ ei · ((1 − ϵ)2r + ϵℓ) respectively.

(3) If ℓ > y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)2

= (1 + ϵ · y[i] − (1 − ϵ)2r − ϵℓ)2 +
d∑

j=1: j ̸=i

(ϵ · y[j])2,

≤ (4r + ϵ · y[i] − (1 − ϵ)2r − ϵℓ)2 + (d − 1)ϵ2δ2, (since 4r = 1 and y[j] ≤ δ)
= (2r(1 + ϵ) − ϵ(ℓ − y[i]))2 + ϵr2, (since (d − 1)ϵδ2 = r2)
≤ (2r(1 + ϵ) − ϵ)2 + ϵr2, (since ℓ > y[i])
= (2r(1 − ϵ))2 + ϵr2, (since 4r = 1)

= (2r)2
(

(1 − ϵ)2 + ϵ

4

)
< (2r)2. (since 0 < ϵ < 1)

(4) If ℓ ≤ y[i], then dist
(

Cy
a′ , Sℓ

{a,a′}

)2

= (1 + ϵ · y[i] − (1 − ϵ)2r − ϵℓ)2 +
d∑

j=1: j ̸=i

(ϵ · y[j])2,

≥ (2r(1 + ϵ) + ϵ(y[i] − ℓ))2, (since 4r = 1)
≥ (2r(1 + ϵ))2. (since y[i] ≥ ℓ)

◀

▶ Lemma 14. Let a ∈ V and i ∈ [d] be such that a′ := (a ⊕ ei) ∈ V. If a′′ /∈ {a, a′} then the
distance between any point in Core[a′′] and any point in Sa,a′ is at least 2r(1 + ϵ).

Proof. Let p and q be two arbitrary points from Core[a′′] and Sa,a′ , respectively. By Table 1,
p is located at a′′ ⊕ ϵ · x for some x ∈ Ra ⊆ [δ]d and q is located at a ⊕ ei · ((1 − ϵ)2r + ϵℓ)
for some ℓ ∈ [δ].

Since a′ = a ⊕ ei and a′′ /∈ {a, a′}, we have three cases to consider:
a′′[j] = a[j] for all j ̸= i and a′′[i] ≤ a[i] − 1: In this case, we have dist(p, q)2

≥ ((a[i] + (1 − ϵ)2r + ϵℓ) − (a′′[i] + ϵ · x[i]))2
,

(only considering the i-th coordinate)
= (a[i] − a′′[i] + (1 − ϵ)2r + ϵℓ − ϵx[i])2

,

≥ (1 + (1 − ϵ)2r + ϵ · 4r − ϵδ)2
, (since a[i] − a′′[i] ≥ 1, ℓ ≥ 1 = 4r and x[i] ≤ δ)

> (2r(1 + ϵ))2. (since 1 − ϵδ ≥ 1 − 1
16 > 0)

SoCG 2022



28:10 Tight Lower Bounds for Approximate & Exact k-Center in Rd

a′′[j] = a[j] for all j ̸= i and a′′[i] ≥ a[i] + 2: In this case, we have dist(p, q)2

≥ ((a′′[i] + ϵ · x[i]) − (a[i] + (1 − ϵ)2r + ϵℓ))2
,

(only considering the i-th coordinate)
= (a′′[i] − a[i] − (1 − ϵ)2r + ϵ · x[i] − ϵℓ)2

,

≥ (2 − (1 − ϵ)2r + ϵ − ϵδ)2, (since a′′[i] − a[i] ≥ 2, x[i] ≥ 1 and ℓ ≤ δ)
= (4r − (1 − ϵ)2r + 1 + ϵ − ϵδ)2, (since 4r = 1)
> (2r(1 + ϵ))2. (since 1 − ϵδ ≥ 1 − 1

16 > 0)

There exists j ̸= i such that a′′[j] ̸= a[j]: In this case, we have dist(p, q)

≥ |a[j] − (a′′[j] + ϵ · x[j])| , (only considering the j-th coordinate)
≥ |a[j] − a′′[j]| − ϵ · x[j], (by triangle inequality)
≥ 1 − ϵ · δ, (since a[j] ̸= a′′[j] and x[j] ≤ δ)

≥ 2r + 2r − r2 = 2r + 2r
(

1 − r

2

)
, (since 4r = 1 and ϵδ ≤ r2)

> 2r(1 + ϵ). (since 1 − r
2 > 1

16 ≥ ϵ)

◀

2.3 I has a satisfying assignment ⇒ OPT for the instance U of |V|-Center is < 2r

Suppose that the d-dimensional geometric ≥-CSP , I = (V, D, C), has a satisfying assignment
f : V → D. Consider the set of points F given by

{
C

f(a)
a : a ∈ V

}
. Since f : V → D is a

satisfying assignment for I, it follows that f(a) ∈ Ra for each a ∈ V and hence the set F is
well-defined. Clearly, |F | = |V|. We now show that

OPT(F ) :=
(

max
u∈U

(
min
v∈F

dist(u, v)
))

< 2r.

This implies that OPT for the instance U of |V|-Center is < 2r. We show OPT(F ) < 2r

by showing that dist(p, F ) < 2r for each p ∈ U . From Table 1 and Table 2, it is sufficient
to consider the two cases depending on whether p is a primary point or a secondary point.

▶ Lemma 15. If p is a primary point, then dist (p, F ) < 2r.

Proof. If p is a primary point, then by Table 1 and Table 2 it follows that p is either a core
point or a border point.

p is a core point: By Table 1, p ∈ Core[b] for some b ∈ V. Then, Lemma 8 implies
that dist

(
p, C

f(b)
b

)
< r. Since C

f(b)
b ∈ F , we have dist (p, F ) ≤ dist

(
p, C

f(b)
b

)
< r.

p is a border point: By Table 1, p ∈ Border[b] for some b ∈ V . Then, Lemma 9 implies
that dist

(
p, C

f(b)
b

)
< 2r. Since C

f(b)
b ∈ F , we have dist (p, F ) ≤ dist

(
p, C

f(b)
b

)
< 2r.

◀

▶ Lemma 16. If p is a secondary point, then dist (p, F ) < 2r.

Proof. If p is a secondary point, then by Table 1 and Table 2 it follows that there exists
a ∈ V , i ∈ [d] and ℓ ∈ [δ] such that p = Sℓ

{a,a⊕ei}. Note that C
f(a)
a ∈ F and C

f(a⊕ei)
a⊕ei

∈ F .

We now prove the lemma by showing that min
{

dist
(

p, C
f(a)
a

)
, dist

(
p, C

f(a⊕ei)
a⊕ei

)}
< 2r.

Since f : V → D is a satisfying assignment, the binary constraint on a and a ⊕ ei is satisfied,
i.e., δ ≥ f(a)[i] ≥ f(a ⊕ ei)[i] ≥ 1. Since ℓ ∈ [δ], either ℓ ≤ f(a)[i] or ℓ > f(a ⊕ ei)[i]. The
following implications complete the proof:



R. Chitnis and N. Saurabh 28:11

If ℓ ≤ f(a)[i], then 13(1) implies that dist
(

C
f(a)
a , p

)
< 2r.

If ℓ > f(a ⊕ ei)[i], then 13(3) implies that dist
(

C
f(a⊕ei)
a⊕ei

, p
)

< 2r. ◀

From Table 2, Lemma 15 and Lemma 16 it follows that OPT for the instance U of |V|-Center
is < 2r.

2.4 I does not have a satisfying assignment ⇒ OPT for the instance U of
|V|-Center is ≥ 2r(1 + ϵ)

Suppose that the instance I = (V, D, C) of d-dimensional geometric ≥-CSP does not have a
satisfying assignment. We want to now show that OPT for the instance U of |V|-Center is
≥ 2r(1 + ϵ). Fix any set Q ⊆ U of size |V|: it is sufficient to show that

OPT(Q) :=
(

max
u∈U

(
min
v∈Q

dist(u, v)
))

≥ 2r(1 + ϵ). (7)

We consider two cases: either
∣∣Q ∩ Core[a]

∣∣ = 1 for each a ∈ V (Lemma 17) or not
(Lemma 18).

▶ Lemma 17. If
∣∣Q ∩ Core[a]

∣∣ = 1 for each a ∈ V then OPT(Q) ≥ 2r(1 + ϵ).

Proof. Since |Q| = |V| and |Q ∩ Core[a]| = 1 for each a ∈ V it follows that the only points
in Q are core points (see Table 1 for definition) and moreover Q contains exactly one core
point corresponding to each element from V. Let ϕ : V → [δ]d be the function such that
Q ∩ Core[a] = C

ϕ(a)
a . By Table 1, it follows that ϕ(a) ∈ Ra for each a ∈ V .

Recall that we are assuming in this section that the instance I = (V, D, C) of d-dimensional
geometric ≥-CSP does not have a satisfying assignment. Hence, in particular, the function
ϕ : V → [δ]d is not a satisfying assignment for I. All unary constraints are satisfied since
ϕ(a) ∈ Ra for each a ∈ V. Hence, there is some binary constraint which is not satisfied by
ϕ: let this constraint be violated for the pair a, a ⊕ ei for some a ∈ V and i ∈ [d]. Let us
denote a ⊕ ei by a′. The violation of the binary constraint on a and a ⊕ ei by ϕ implies that
1 ≤ ϕ(a)[i] < ϕ(a′)[i] ≤ δ. We now show that dist

(
Q, S

ϕ(a′)[i]
{a,a′}

)
≥ (2r(1 + ϵ) which, in turn,

implies that OPT(Q) ≥ 2r(1 + ϵ). The following implications complete the proof.
13(2) implies that dist

(
S

ϕ(a′)[i]
{a,a′} , C

ϕ(a)
a

)
≥ 2r(1 + ϵ).

13(4) implies that dist
(

S
ϕ(a′)[i]
{a,a′} , C

ϕ(a′)
a′

)
≥ 2r(1 + ϵ).

Consider any point s ∈ Q \
{

C
ϕ(a)
a , C

ϕ(a′)
a′

}
. Then s ∈ Core[a′′] for some a′′ /∈ {a, a′}.

Now Lemma 14 implies that dist
(

S
ϕ(a′)[i]
{a,a′} , s

)
≥ 2r(1 + ϵ). ◀

▶ Lemma 18. If there exists a ∈ V such that
∣∣Q ∩ Core[a]

∣∣ ̸= 1 then OPT(Q) ≥ 2r(1 + ϵ).

Proof. Suppose that OPT(Q) < 2r(1 + ϵ). To prove the lemma, we will now show that this
implies |Q ∩ Core[a]| = 1 for each a ∈ V . This is done via the following two claims, namely
Claim 19 and Claim 20.

▷ Claim 19.
∣∣Q ∩ D[a]

∣∣ = 1 for each a ∈ V .

Proof. Define three sets I0, I1 and I≥2 as follows:

I0 :=
{

a ∈ V :
∣∣Q ∩ D[a]

∣∣ = 0
}

(8)
I1 :=

{
a ∈ V :

∣∣Q ∩ D[a]
∣∣ = 1

}
(9)

I≥2 :=
{

a ∈ V :
∣∣Q ∩ D[a]

∣∣ ≥ 2
}

(10)

SoCG 2022



28:12 Tight Lower Bounds for Approximate & Exact k-Center in Rd

By definition, we have

|I0| + |I1| + |I≥2| = |V| (11)

Consider a variable b ∈ I0. Since dist
(
Q, B+i

b
)

and dist
(
Q, B−i

b
)

< 2r(1 + ϵ), and
Q ∩ D[b] = ∅, Lemma 11 implies that for each i ∈ [d],

(i) Q must contain a point from S{b,b⊕ei}, and
(ii) Q must contain a point from S{b,b⊖ei}.

Since each secondary point can be “charged” to two variables in V (for example, the set
S{b,b⊕ei} corresponds to both b and b ⊕ ei), it follows that Q contains ≥ 2d

2 = d ≥ 2 distinct
secondary points corresponding to each variable in I0. Therefore, we have

|I0| + |I1| + |I≥2| = |V| = |Q| , (from Equation 11)
≥ |Q ∩ Primary| + |Q ∩ Secondary| ,

(since Primary ∩ Secondary = ∅)
≥ (|I1| + 2|I≥2|) + |Q ∩ Secondary| , (by definition of I1 and I≥2)
≥ (|I1| + 2|I≥2|) + 2|I0|, (12)

where the last inequality follows because Q contains at least 2 secondary points corresponding
to each variable in I0. Hence, we have |I0| + |I1| + |I≥2| ≥ 2|I0| + |I1| + 2|I≥2| which implies
|I0| = 0 = |I≥2|. From Equation 11, we get |I1| = |V|, i.e.,

∣∣Q ∩ D[a]
∣∣ = 1 for each a ∈ V.

This concludes the proof of Claim 19. ◁

Since |Q| =
∣∣V∣∣ and D[a] ∩ D[b] = ∅ for distinct a, b ∈ V , Claim 19 implies that

Q contains no secondary points. (13)

We now prove that Q doesn’t contain border points either.

▷ Claim 20.
∣∣Q ∩ Core[a]

∣∣ = 1 for each a ∈ V

Proof. Fix any a ∈ V . From Claim 19, we know that
∣∣Q∩D[a]

∣∣ = 1. Suppose that this unique
point in Q ∩ D[a] is from Border[a]. Without loss of generality, let Q ∩ D[a] =

{
B+i

a
}

for
some i ∈ [d]. Since OPT(Q) < 2r(1 + ϵ), it follows that dist

(
Q, B−i

a
)

< 2r(1 + ϵ). Hence,
Lemma 11(2) implies that Q ∩

(
D[a]

⋃
S{a,a⊖ei}

)
̸= ∅. Since Q contains no secondary

points (Equation 13), we have Q ∩
(
D[a]

⋃
S{a,a⊖ei}

)
= Q ∩ D[a] =

{
B+i

a
}

. But from
Lemma 7 we know dist

(
B+i

a , B−i
a

)
≥ 2r(1 + ϵ). We thus obtain a contradiction. This

concludes the proof of Claim 20. ◁

Therefore, we have shown that OPT(Q) < 2r(1 + ϵ) implies
∣∣Q ∩ Core[a]

∣∣ = 1 for each
a ∈ V . This concludes the proof of Lemma 18. ◀

2.5 Finishing the proof of Theorem 1
Finally, we are ready to prove Theorem 1 which is restated below.

▶ Theorem 1. For any d ≥ 2, under the Exponential Time Hypothesis (ETH), the discrete
k-Center problem in d-dimensional Euclidean space

(Inapproximability result) does not admit an (1 + ϵ)-approximation in f(k) ·
( 1

ϵ

)o(k1−1/d) ·
no(k1−1/d) time where f is any computable function and n is the number of points.
(Lower bound for exact algorithm) cannot be solved in f(k) · no(k1−1/d) time where f is
any computable function and n is the number of points.



R. Chitnis and N. Saurabh 28:13

Proof. Given an instance I = (V, D, C) of a d-dimensional geometric ≥-CSP, we build an
instance U of |V|-Center in Rd given by the reduction in Section 2.2. This reduction has
the property that

if I does not have a satisfying assignment then OPT for the instance U of |V|-Center is
≥ 2r(1 + ϵ∗) (Section 2.4), and
if I has a satisfying assignment then OPT for the instance U of |V|-Center is < 2r

(Section 2.3),

where r = 1/4 and ϵ∗ = r2

(d − 1)δ2 ≥ 1
16(d − 1)|D|

, since |D| =
∣∣[δ]d

∣∣ ≥ δ2. Hence, any

algorithm for the |V|-center problem which has an approximation factor ≤ (1 + ϵ∗) can solve
the d-dimensional geometric ≥-CSP. Note that the instance U of k-Center in Rd has k = |V|
and the number of points n ≤ |V| · 2d + |C| + |V|2 · δ = |I|O(1) where |I| = |V| + |D| + |C|.
We now derive the two lower bounds claimed in the theorem.

(Inapproximability result) Suppose that there exists d ≥ 2 such that the k-center on n

points in Rd admits an (1 + ϵ)-approximation algorithm in f(k) ·
(

1
ϵ

)o(k1−1/d)
· no(k1−1/d)

time for some computable function f . As argued above, using a (1 + ϵ∗)-approximation
for the k-center problem with k = |V| and n = |I|O(1) points can solve the d-dimensional
geometric ≥-CSP problem. Recall that 16(d − 1)|I| ≥ 16(d − 1)|D| ≥ 1

ϵ∗ since |I| =
|V| + |D| + |C|, and hence we have an algorithm for the d-dimensional geometric ≥-
CSP problem which runs in time f (|V|) · (16d)o(k1−1/d) · |I|o(k1−1/d) which contradicts
Theorem 5.
(Lower bound for exact algorithm) Suppose that there exists d ≥ 2 such that the
k-center on n points in Rd admits an exact algorithm in f(k) · no(k1−1/d) time for some
computable function f . As argued above7, solving the k center problem with k = |V|
and n = |I|O(1) points can solve the d-dimensional geometric ≥-CSP problem. Hence, we
have an algorithm for the d-dimensional geometric ≥-CSP problem which runs in time
f (|V|) · |I|o(k1−1/d) which again contradicts Theorem 5. ◀

References
1 Pierre Aboulker, Nick Brettell, Frédéric Havet, Dániel Marx, and Nicolas Trotignon. Coloring

graphs with constraints on connectivity. Journal of Graph Theory, 85(4):814–838, 2017.
2 Pankaj K. Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation algorithms

for clustering. Algorithmica, 33(2):201–226, 2002.
3 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.
4 Amariah Becker, Philip N. Klein, and David Saulpic. Polynomial-Time Approximation Schemes

for k-center, k-median, and Capacitated Vehicle Routing in Bounded Highway Dimension. In
ESA 2018, volume 112, pages 8:1–8:15, 2018.

5 Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow, and Pawel Rzazewski. Fine-
grained complexity of coloring unit disks and balls. J. Comput. Geom., 9(2):47–80, 2018.
doi:10.20382/jocg.v9i2a4.

6 Sergio Cabello, Panos Giannopoulos, Christian Knauer, Dániel Marx, and Günter Rote.
Geometric clustering: Fixed-parameter tractability and lower bounds with respect to the
dimension. ACM Trans. Algorithms, 7(4):43:1–43:27, 2011. doi:10.1145/2000807.2000811.

7 The argument above is actually stronger: even a (1 + ϵ∗)-approximation algorithm for k-center can solve
d-dimensional geometric ≥-CSP.

SoCG 2022

https://doi.org/10.20382/jocg.v9i2a4
https://doi.org/10.1145/2000807.2000811


28:14 Tight Lower Bounds for Approximate & Exact k-Center in Rd

7 Rajesh Chitnis and Nitin Saurabh. Tight Lower Bounds for Approximate & Exact k-Center
in Rd. CoRR, abs/2203.08328, 2022. arXiv:2203.08328.

8 Rajesh Hemant Chitnis, Andreas Emil Feldmann, Mohammad Taghi Hajiaghayi, and Dániel
Marx. Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of
Terminals (and Extensions). SIAM J. Comput., 49(2):318–364, 2020.

9 Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Roytman. The Bane of
Low-Dimensionality Clustering. In SODA 2018, pages 441–456, 2018.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

11 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, and Sudeshna Kolay. An ETH-
Tight Exact Algorithm for Euclidean TSP. In FOCS 2018, pages 450–461, 2018. doi:
10.1109/FOCS.2018.00050.

12 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A Framework for Exponential-Time-Hypothesis-Tight Algorithms and Lower Bounds
in Geometric Intersection Graphs. SIAM J. Comput., 49(6):1291–1331, 2020. doi:10.1137/
20M1320870.

13 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, 2005.

14 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005.

15 Andreas Emil Feldmann. Fixed-parameter approximations for k-center problems in low highway
dimension graphs. Algorithmica, 81(3):1031–1052, 2019.

16 Andreas Emil Feldmann and Dániel Marx. The parameterized hardness of the k-center problem
in transportation networks. Algorithmica, 82(7):1989–2005, 2020.

17 Fedor V. Fomin, Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh.
Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems. In SoCG
2016, pages 39:1–39:15, 2016.

18 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. Subexponential Parameterized Algorithms for Planar and Apex-Minor-Free
Graphs via Low Treewidth Pattern Covering. In FOCS 2016, pages 515–524, 2016.

19 Eli Fox-Epstein, Philip N. Klein, and Aaron Schild. Embedding Planar Graphs into Low-
Treewidth Graphs with Applications to Efficient Approximation Schemes for Metric Problems.
In SODA 2019, pages 1069–1088, 2019.

20 Yogesh A. Girdhar and Gregory Dudek. Efficient on-line data summarization using extremum
summaries. In ICRA 2012, pages 3490–3496, 2012.

21 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985.

22 S. Louis Hakimi. Steiner’s problem in graphs and its implications. Networks, 1(2):113–133,
1971.

23 Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci. Handbook of cluster
analysis. CRC Press, 2015.

24 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, 1985.

25 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discret.
Appl. Math., 1(3):209–215, 1979.

26 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The Searching over Separators Strategy
To Solve Some NP-Hard Problems in Subexponential Time. Algorithmica, 9(4):398–423, 1993.

27 R. Z. Hwang, Richard C. T. Lee, and R. C. Chang. The Slab Dividing Approach To Solve the
Euclidean p-Center Problem. Algorithmica, 9(1):1–22, 1993.

http://arxiv.org/abs/2203.08328
https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870


R. Chitnis and N. Saurabh 28:15

28 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

29 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

30 Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expression data: a
survey. IEEE Transactions on knowledge and data engineering, 16(11):1370–1386, 2004.

31 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight
bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90–117, 2019.

32 Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(nc
√

k) Time. In ICALP
2012, pages 569–580, 2012.

33 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset TSP
on planar graphs. In SODA 2014, pages 1812–1830, 2014.

34 Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential Parameterized
Odd Cycle Transversal on Planar Graphs. In FSTTCS 2012, pages 424–434, 2012.

35 Dániel Marx. Efficient Approximation Schemes for Geometric Problems? In ESA 2005, pages
448–459, 2005. doi:10.1007/11561071_41.

36 Dániel Marx. Parameterized complexity of independence and domination on geometric graphs.
In Hans L. Bodlaender and Michael A. Langston, editors, IWPEC 2006, pages 154–165, 2006.

37 Dániel Marx. A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals.
In ICALP 2012, pages 677–688, 2012.

38 Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. On Subexponential Parameterized
Algorithms for Steiner Tree and Directed Subset TSP on Planar Graphs. In FOCS 2018, pages
474–484, 2018.

39 Dániel Marx and Michal Pilipczuk. Optimal Parameterized Algorithms for Planar Facility
Location Problems Using Voronoi Diagrams. In ESA 2015, pages 865–877, 2015.

40 Dániel Marx and Anastasios Sidiropoulos. The limited blessing of low dimensionality: when
1 − 1/d is the best possible exponent for d-dimensional geometric problems. In SoCG 2014,
page 67, 2014.

41 Marie-Francine Moens, Caroline Uyttendaele, and Jos Dumortier. Abstracting of legal cases:
The potential of clustering based on the selection of representative objects. J. Am. Soc. Inf.
Sci., 50(2):151–161, 1999.

42 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs. In STACS
2013, pages 353–364, 2013.

43 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications. In
FOCS 1998, pages 232–243, 1998.

44 Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

SoCG 2022

https://doi.org/10.1007/11561071_41




Flat Folding an Unassigned Single-Vertex Complex
(Combinatorially Embedded Planar Graph with
Specified Edge Lengths) Without Flat Angles
Lily Chung #

Massachusetts Institute of Technology, Cambridge, MA, USA

Erik D. Demaine #

Massachusetts Institute of Technology, Cambridge, MA, USA

Dylan Hendrickson #

Massachusetts Institute of Technology, Cambridge, MA, USA

Victor Luo #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
A foundational result in origami mathematics is Kawasaki and Justin’s simple, efficient characteriza-
tion of flat foldability for unassigned single-vertex crease patterns (where each crease can fold
mountain or valley) on flat material. This result was later generalized to cones of material, where the
angles glued at the single vertex may not sum to 360◦. Here we generalize these results to when the
material forms a complex (instead of a manifold), and thus the angles are glued at the single vertex
in the structure of an arbitrary planar graph (instead of a cycle). Like the earlier characterizations,
we require all creases to fold mountain or valley, not remain unfolded flat; otherwise, the problem is
known to be NP-complete (weakly for flat material and strongly for complexes). Equivalently, we
efficiently characterize which combinatorially embedded planar graphs with prescribed edge lengths
can fold flat, when all angles must be mountain or valley (not unfolded flat). Our algorithm runs in
O(n log3 n) time, improving on the previous best algorithm of O(n2 log n).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Graph drawing, folding, origami, polyhedral complex, algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.29

Related Version arXiv version: https://arxiv.org/abs/2204.03696

Acknowledgements We thank Joseph O’Rourke and the anonymous referees for helpful suggestions.
This work grew out of an open problem session and a final project from the MIT class on Geometric
Folding Algorithms: Linkages, Origami, Polyhedra (6.849) held Fall 2020.

1 Introduction

The graph flat folding problem asks whether a given combinatorially embedded planar graph
with prescribed edge lengths can be “folded flat” onto a line. More precisely, a flat folding
is an assignment of x coordinates to vertices that respects the edge lengths, together with a
partial order on the edges (which defines the stacking order among edges with overlapping
x extents) that respects the combinatorial planar embedding and avoids crossings (edges
penetrating connections between higher and lower edge endpoints, and improperly nested
edge endpoint connections) [2, 9, 11].1 Equivalently, a flat folding is a sequence or continuum

1 In [2], flat foldings are called “linear folded states”. Here we use “flat foldings” so that they match up
with the corresponding notions in computational origami.

© Lily Chung, Erik D. Demaine, Dylan Hendrickson, and Victor Luo;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lkdc@mit.edu
https://orcid.org/0000-0001-7056-6155
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:dylanhen@mit.edu
https://orcid.org/0000-0002-9967-8799
mailto:vluo@mit.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.29
https://arxiv.org/abs/2204.03696
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

of planar embeddings that respect the combinatorial planar embedding, avoid crossings, and
converge to the correct edge lengths and to lying on a line [1, 3]. Figure 1 shows an example
of a flat folding, as well as some non-examples.

4
4 3

2
1

2

1
2𝒂 𝒃 

𝒄

𝒈

𝒇 𝒆
𝒅

𝒂
𝒃

𝒄
𝒈

𝒆
𝒇

𝒂
𝒃

𝒇𝒄 𝒆
𝒈

𝒂

𝒂

𝒃

𝒃

𝒄

𝒄

𝒈

𝒈

𝒇

𝒇

𝒆

𝒆
𝒅

𝒅

𝒅
𝒅

Figure 1 Four attempts to fold a graph with assigned edge lengths. Top left: A valid folding
of the graph. Top right: Invalid because the lengths of edges ad and cd do not correspond to the
original edge lengths. Bottom left: Invalid for two reasons: the cyclic ordering of edges at vertex a is
not respected, and the folding exhibits incorrect layering at vertices d and e. Bottom right: Invalid
since edges cross over each other.

It is known that the graph flat folding problem is strongly NP-complete in general, and
solvable in linear time if all edge lengths are equal [2]. But there are two natural variations
on the problem, posed in the same paper [2]. In any flat folding, we can identify the angles
between consecutive edges around a vertex (as determined by the combinatorial planar
embedding) as either valley (0◦), mountain (360◦), or unfolded/flat (180◦). (At each
vertex, these angles must sum to 360◦, so there is either one mountain or two flats, and the
rest are valleys.) Now we can vary two aspects of the problem:
1. What if we are also given the angle (valley/mountain/flat) between every consecutive

pair of edges around each vertex?
2. What if we forbid flat angles, and instead require just valleys and mountains?

These parameters define four versions of the problem, as summarized in Table 1. The
original paper [2] proved NP-completeness of the version with no angles given and allowing
flat angles. Recent work shows that, if the angles are given, the problem becomes solvable
in linear time (independent of whether flat angles are allowed) [3]. The remaining problem,
studied here, is the version where the angles are not given, but flat angles are forbidden.

Connection to weak embeddings of graphs. Although not stated explicitly, this no-
flat-angles graph flat folding problem can be solved in polynomial time by a reduction to
“weak embeddings of graphs”. A key feature of this version of graph folding (in particular



L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:3

Table 1 Complexity of different models of graph flat folding (based on [3, Table 1], which in turn
is based on open problems from [2]). Our new result is in the bottom-left.

Flat angles forbidden Flat angles allowed
Angles given Linear time [3]

Angles unspecified O(n2 log n) [4] → O(n log3 n) [new] NP-complete [2]

distinguishing it from the NP-complete version with unknown angles that can be flat) is
that the relative coordinates of the vertices are determined by the input: fixing one edge to
go right from the origin, any path in the graph alternates between going right and left by
the specified edge lengths, so a depth-first search fixes the vertex coordinates (and checks
geometric closure constraints on cycles in the graph). The graph flat folding problem is then
equivalent to asking whether this mapping from vertices to coordinates is a weak embedding
of the graph, meaning that the vertices can be perturbed in the plane within ε-radius disks
(for any ε > 0), and the edges can be similarly perturbed to Jordan curves within distance ε

of the corresponding line segments, so that we obtain a strict embedding (no intersections
except as intended at shared vertices). Recognizing weak embeddings was recently solved in
O(n2 log n) time [4],2 so the same result applies to no-flat-angles graph flat folding.

Our results. In this paper, we give a faster algorithm for the no-flat-angles graph flat folding
problem. Specifically, we show how to determine whether a graph can be folded flat without
flat angles in O(n log3 n) time, which is tight up to logarithmic factors.

We extend this result to the case where some angles are specified as flat, and the problem
asks to determine mountain or valley for each of the remaining angles. (The same extension
also follows from the reduction to weak embedding.) Thus what makes graph flat folding
hard is not the existence of flat angles, but deciding which angles are flat.

Application to single-vertex origami. The version of the graph flat folding problem we
study is particularly natural when viewed from the lens of computational origami.

Define a single-vertex complex to consist of m polygons in 3D where the polygons
all share a common vertex v, and all the shared edges between these polygons are incident
to v, as in Figure 2 (left). If we intersect such a single-vertex complex with a small sphere
centered at v, we obtain a planar graph embedded on the sphere, whose m edge lengths
are proportional to the m polygon angles at v. In the example of Figure 2 (left), we obtain
the planar graph in Figure 1 (top). A flat folding of the single-vertex complex into the
plane (according to standard origami definitions [11]) corresponds to a flat folding of the
combinatorially embedded planar graph with prescribed edge lengths [2, 3]. Figure 2 (right)
shows such a flat folding, corresponding to the graph flat folding in Figure 1 (top left). We
can similarly consider the case of a single-vertex abstract complex – that is, an abstract
metric space (not embedded in 3D) formed by gluing planar polygons along edges, which
all share a common vertex – together with the cyclic ordering of polygons around each
shared edge. Intersecting a single-vertex abstract complex with a small intrinsic sphere
centered at the shared vertex produces a graph flat folding problem, and we can construct an
arbitrary combinatorially embedded planar graph with prescribed edge lengths by a suitable

2 The same paper [4] develops an O(n log n) algorithm for weak embedding of graphs, but only when the
given map is “simplicial”, meaning that edges do not pass through other vertices. This property does
not hold in general in the graph flat folding problem.

SoCG 2022



29:4 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

v

v

Figure 2 Unfolded and folded states of the single-vertex complex corresponding to the planar
graph in Figure 1.

single-vertex abstract complex. Indeed, we can construct a multigraph in this way, so we
generally allow graphs with multiple edges between the same two vertices. Therefore graph
flat folding is equivalent to origami flat foldability of single-vertex (abstract) complexes.

When the planar graph is a cycle corresponding to 360◦ of total angle of polygons
glued at a single vertex, we obtain what is known as a single-vertex crease pattern [11,
Section 12.2]: creases emanating from a single vertex on a piece of paper. At the first OSME
(Origami Science/Mathematics/Education) conference in 1989, Justin [16] and Kawasaki [17]
presented characterizations of which single-vertex crease patterns fold flat: exactly those
whose alternating sum of angles is zero. (A complete proof of this characterization was
not published until Hull’s 1994 paper [13]; see [15, Section 5.9].) Crucially, this linear-time
characterization assumes that all creases must be folded either mountain or valley (none can
be left unfolded flat at an angle of 180◦); otherwise, single-vertex flat foldability becomes
weakly NP-complete [10].

We see a similar behavior in Table 1 (bottom row), where allowing mountain, valley, and
flat angles makes the problem NP-complete (even strongly), while our result shows that
allowing just mountain or valley makes the problem solvable in near-linear time. Thus our
result can be seen as a generalization of the Justin–Kawasaki Theorem from flat paper to
complexes with similar running time. Previously, the theorem was generalized to cones of
paper, where the angles sum to a value other than 360◦ [11, Section 12.2.1], but ours is the
first generalization from manifolds to complexes with near-linear running time.

The top row of Table 1 corresponds to single-vertex mountain-valley patterns, where
each crease is marked as mountain or valley. (Some creases could be marked unfolded/flat,
but this is equivalent to removing the crease.) The previous work on given-angle complexes [3]
can similarly be seen as a generalization of the previously known linear-time characterization
of single-vertex mountain-valley patterns [5], [11, Section 12.2.2].

Organization. The rest of this paper is organized as follows. First we restate two needed
previous results in Section 2. We then give a high-level overview of our algorithm in Section 3,
and detail the various components of the algorithm in Sections 4, 5, 6, and 7.



L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:5

2 Background

Our results rely on two previous results, which we restate here for completeness.
First, based on results of Hull [14], Demaine and O’Rourke [11] characterized the flat-

foldable mountain/valley assignments of a cycle, which we will apply to each face in a
connected combinatorially embedded planar graph:

▶ Lemma 1 ([11, Corollary 12.2.12]). Let f be a simple cycle with edge lengths θ1, . . . , θn. If
the edge lengths are all equal, then a crease assignment on f is flat foldable in precisely the
following cases:

Case A: The cycle f is an interior face with equal-length edges, and there are exactly 2
more valley folds than mountain folds.
Case B: The cycle f is an exterior face with equal-length edges, and there are exactly 2
more mountain folds than valley folds.

Otherwise, take any maximal sequence em, . . . , em+k−1 of k contiguous equal-length edges
surrounded by strictly longer edges, so that3

θm−1 > θm = · · · = θm+k−1 < θm+k

Then a crease assignment is flat foldable in precisely the following cases:
Case C: k is odd, and there are an equal number of mountain and valley folds incident
to edges em, . . . , em+k−1. Additionally, replacing all of the edges em−1, . . . , em+k with a
single edge of length θm−1 − θm + θm+k yields a flat-foldable face with the same crease
assignment.
Case D: k is even, and the numbers of mountain and valley folds incident to edges
em, . . . , em+k−1 differ by ±1. Additionally, replacing all of the edges em, . . . , em+k−1
with a single new vertex yields a flat-foldable face, where the crease assignment is the
same except that it assigns the new vertex to be the same type as the majority of the
folds incident to em, . . . , em+k−1. (That is, the new vertex is a mountain fold in this
assignment if the number of mountain folds was 1 greater than the number of valley folds.)

Second, Abel et al. [3] proved that a flat folding of a graph is equivalent to a compatible
folding of each face:4

▶ Theorem 2 ([3, Theorem 2]). Let G be a connected multigraph with an assignment
of measures to every angle in G. That is, for each angle a we are given its measure
ma ∈ {0°, 180°, 360°}. Suppose that, for every face f , the restriction of this assignment to f

yields a flat-foldable mountain-valley assignment when f is treated as a simple cycle. Suppose
also that the assignment is compatible in that the sum of angles around each vertex is equal
to 360°. Then there exists a flat folding of G whose angles have the assigned measures.

Figure 3 shows an example of combining compatible flat foldings of individual faces to
obtain a flat folding of the entire graph.

3 The indices should be understood as being modulo n.
4 A similar style of result (“faces being valid implies global validity”) was obtained in the context of

upward drawings of graphs [6, Theorem 3]. It also does not allow flat angles. That result, however, does
not deal with prescribed edge lengths, which significantly complicates whether faces are flat foldable.

SoCG 2022



29:6 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

Figure 3 Left: A graph with three interior faces. Right: Given compatible flat foldings of all four
faces, a flat folding of the graph can be generated.

3 Algorithm Overview

In this section, we provide a high-level outline of our algorithm for determining whether a
connected combinatorially embedded planar (multi)graph with prescribed edge lengths can
be folded flat. This algorithm takes as input a combinatorial embedding of the graph G

(which we allow to have multiple edges between the same two vertices) and an assignment
of lengths to the edges of G. We assume for now that the graph is connected and that we
are given a single face of G designated as the exterior ; in Section 7, we will remove both
constraints.

By Theorem 2, determining whether such a graph has a flat folding is equivalent to
determining whether there are compatible flat-foldable crease assignments for each face. To
accomplish this, we reduce the graph flat folding problem to a boolean constraint satisfaction
problem, with constraints deriving both from the requirement that each face needs to be flat
foldable and from the compatibility requirement between faces. The variables will correspond
to angles in each face of the graph (including some angles only present in virtual intermediate
states), and indicate whether that angle is a valley fold or a mountain fold. The resulting
constraint satisfaction problem has the following structure:

Each clause specifies an exact number of true variables in some set.
Each variable appears in exactly two clauses.
The graph whose vertices are clauses and whose edges are variables, connecting the two
clauses in which each variable appears, is bipartite. In particular, each vertex appears in
exactly one clause on each side of the bipartition.
The same graph is planar.

We call such a problem planar bipartite positive ∗-in-∗SAT-E2 . This terminology
generalizes the standard notion of “positive i-in-kSAT” [12, 18] where every clause requires
satisfying exactly i out of (up to) k variables, which are never negated (hence “positive”), to
the situation where number of variables and required true variables may vary from clause to
clause. The standard suffix “-E2” represents the requirement that every variable appears in
exactly two clauses [12, 8]. The “planar” prefix is also standard [12, 18], while the “bipartite”
prefix is new (and makes sense only with the “-E2” requirement).



L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:7

In Section 4, we describe the constraints which express that each face must be folded flat.
In Section 5, we describe the constraints capturing compatibility between faces, and prove
that the resulting constraint problem is equivalent to flat folding the graph. In Section 6,
we show that planar bipartite positive ∗-in-∗SAT-E2 can be solved in O(n log3 n) time
through a reduction to a flow problem. In Section 7, we put the pieces together to obtain
our main result, and describe three extensions: to graphs with some prescribed flat angles,
to disconnected graphs, and to graphs with unknown exterior face.

4 Single Face Constraints

In this section, we describe the constraints obtained from the requirement that each face of
the graph is folded flat. Although faces of the graph may not be bound by simple cycles (in
the case of cut vertices), there exists a simple cycle corresponding to each face. This cycle can
be constructed by enumerating the face’s incident edges and angles in order, duplicating any
repeated vertices or edges. Although there may exist flat foldings of this simple cycle which
do not correspond to flat foldings of the original face, Theorem 2 tells us that compatible
flat foldings of the corresponding simple cycles are sufficient for flat foldability of the full
graph. From here on, when we discuss flat foldability of an individual face, we will actually
be referring to flat foldability of the corresponding simple cycle.

Now consider flat folding a single face f . We check (and henceforth assume) that the
edge lengths satisfy the basic closure property (mentioned in Section 1) that the number
of edges is even and the alternating sum of edge lengths is zero; otherwise, flat folding is
impossible. It remains to determine flat-foldable mountain/valley assignments.

We introduce a boolean variable xa for each angle a in f . These variables represent
an assignment of creases: xa = 0 if a is a valley fold (0°) and xa = 1 if a is a mountain
fold (360°). We present an algorithm which, given the edge lengths and interior/exterior
assignment of f and a variable xa assigned to each angle a in f , generates a set of constraints
Cf on the variables xa, possibly introducing additional variables, such that solutions to this
constraint problem correspond to flat-foldable crease assignments of f . The constraints are
of the form “exactly c variables from a set S are true,” which we write∑

x∈S

x = c.

Additionally, each constraint generated will be colored either red or blue; this coloring will
be used later to show that the constraint satisfaction problem is bipartite. The algorithm
essentially follows Lemma 1:

If all edges of f have equal length, then let V be the set of all angles in f , and let b be
−1 if f is an interior face, or +1 if f is an exterior face. Generate just the red constraint∑

a∈V

xa = |V |
2 + b. (1)

Otherwise, not all of the edges of f have equal length. Find a sequence em, . . . , em+k−1
of k consecutive equal-length edges, such that θm−1 > θm = · · · = θm+k−1 < θm+k;
this is guaranteed to exist by considering a maximal sequence of consecutive edges with
minimum length. Let S be the set of angles in f incident to em, . . . , em+k−1.
If k is odd (i.e., |S| is even), generate the red constraint∑

a∈S

xa = |S|
2 . (2)

SoCG 2022



29:8 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

Having done so, replace all the edges em−1, . . . , em+k with a single edge of length θm−1 −
θm + θm+k to construct a smaller face f ′, and recursively output the constraints in Cf ′ .
If instead k is even (i.e., |S| is odd), introduce two fresh boolean variables y and z, and
generate the following red and blue (respectively) constraints:

y +
∑
a∈S

xa = |S| + 1
2 ; (3)

y + z = 1. (4)

Then replace all the edges em, . . . , em+k−1 with a single new angle whose associated
variable is z to construct a smaller face f ′, and recursively output the constraints in Cf ′ .

2

2

0 1 0 1

2

0 0 1 1

Figure 4 The case where k is odd. In this diagram, circular vertices represent constraints and
edges represent boolean variables. Top: The red constraint expresses that exactly half of the creases
must be mountain folds and the others must be valley folds. Bottom: Two possible satisfying variable
assignments and the associated local foldings.

We now show that solutions to the constraints generated by this algorithm correspond to
flat-foldable crease assignments of f .

▶ Theorem 3. A mountain/valley assignment for f is flat foldable if and only if it can be
extended to a satisfying assignment of Cf .



L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:9

3

1

0 1 0 1

3

1

0 0 1 1 0

3

1

1

0

1 0

1

Figure 5 The case where k is even. The pair of constraints expresses that the number of mountain
folds and valley folds must differ by 1, and the majority value is equal to the newly generated
variable.

We may need to extend the assignment to account for variables introduced in the case
where k is even. The values for these variables are forced by the constraints added when the
variables are introduced, and can be determined by considering variables in the order they
were added.

Proof. The proof is by induction on the size of f . If all the edges of f have equal length,
then it is immediate by cases A and B of Lemma 1 that an assignment is flat foldable if and
only if equation (1) holds.

When the edges are not all equal in length, the algorithm finds some maximal sequence
em, . . . , em+k−1 of k equal-length edges surrounded by strictly longer edges, whose incident
angles we call S.

If k is odd, then by case C of Lemma 1, the assignment is flat foldable for f if and only
if it both assigns an equal number of mountain and valley folds to the angles in S, and is
also a flat-foldable crease assignment for f ′, where f ′ is the face resulting from replacing the

SoCG 2022



29:10 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

edges em−1, . . . , em+k with a single edge of length θm−1 − θm + θm+k. The first condition
is just equation (2), and the second is equivalent by the inductive hypothesis to the set of
constraints Cf ′ obtained by recursion on f ′. An example of this case is shown in Figure 4.

If k is even, then by case D of Lemma 1, the assignment is flat foldable if and only if the
mountain and valley folds assigned to the angles in S differ by 1, and it is also a flat-foldable
crease assignment for f ′ when suitably extended. Here f ′ is the face resulting from replacing
the edges em, . . . , em+k−1 with a single angle, and the assignment is extended to assign the
new angle to be the same type as the majority of the folds it assigned to the angles in S.
Equation (3) constrains the number of folds to differ by 1, where y is the minority fold type,
and equation (4) constrains z to be the opposite of y, so z is the majority fold type. By the
inductive hypothesis, the constraints Cf ′ obtained by recursion on f ′ are equivalent to the
statement that f ′ is flat foldable under the assignment extended to assign z to the new angle.
An example of this case is shown in Figure 5.

In all cases, we find that the assignment is flat foldable if and only if it satisfies the
constraints. ◀

We also show that these constraints can be computed efficiently and satisfy certain
properties which will be useful for solving them.

▶ Theorem 4. The algorithm for computing Cf takes time linear in the number of angles
in f . The variables and clauses of Cf form a graph in which graph vertices correspond to
clauses and graph edges correspond to variables, when an additional blue graph vertex is
added for each angle of f . Then this graph is a bipartite (i.e. 2-colored) forest with linearly
many vertices, and there is a planar embedding of this graph within f such that each vertex
corresponding to an angle of f is located at the vertex of f incident to that angle.

Proof. Let n be the number of angles in f . We prove by induction that Cf forms a graph as
described with at most 2n vertices.

In the case where the edges all have equal length, Cf is a star graph whose central vertex
is a red clause and whose outer vertices are the blue angles of f , so it is a bipartite forest
with n + 1 ≤ 2n vertices. The planar embedding can be achieved by placing the central
vertex within f and drawing edges to all the vertices of f .

When the edges of f are not all equal in length, the algorithm finds some sequence of k

edges whose k + 1 incident angles we call S. Let T be the star graph whose central vertex is
the red clause added in this step and whose outer vertices are the blue angles of S; this is a
bipartite forest with k + 2 vertices.

When k is odd, the graph Cf is simply the disjoint union of Cf ′ and T , where f ′ is a
face with n − k − 1 angles. By the inductive hypothesis Cf ′ is a bipartite forest with at most
2(n−k−1) vertices, so Cf is a bipartite forest with at most k +2+2(n−k−1) = 2n−k ≤ 2n

vertices. The planar embedding of Cf is obtained from the planar embedding of Cf ′ by
simply placing T alongside it; none of the edges need to cross because the angles in S are
contiguous in f .

When k is even, the graph Cf is formed from the disjoint union of Cf ′ and T by
adding an edge from the red central vertex of T to the blue vertex corresponding to some
angle a′ of f ′, where f ′ is a face with n − k angles. By the inductive hypothesis Cf ′ is
a bipartite forest with at most 2(n − k) vertices, so Cf is a bipartite forest with at most
k + 2 + 2(n − k) = 2n − k + 2 ≤ 2n vertices. The planar embedding of Cf is obtained from
the planar embedding of Cf ′ by first placing T alongside it as before; again none of the edges
cross because S is contiguous in f . Then the edge from the central vertex of T to the vertex
corresponding to a′ can be added without crossing because a′ occurs in the same place in
f ′’s cyclic order of angles as S does in f .



L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:11

Thus Cf is a linear-sized bipartite forest with the desired planar embedding. We need
to show that it can be computed in linear time. It is straightforward to charge the work
performed by the algorithm at each step to the newly created vertices, except for finding
the sequence em, . . . , em+k−1 of equal-length edges surrounded by strictly longer edges. We
cannot accomplish this by simply scanning through the edges of the face at each iteration,
since this would take linear time and there might be linearly many iterations. We instead
solve this by maintaining a cyclic doubly-linked list C, each of whose entries corresponds
to a maximal contiguous sequence of equal-length edges. Additionally we keep a list M of
such entries of C which are surrounded by longer entries. These can be computed once at
the beginning of the algorithm in linear time, and then maintained at each iteration. At
each iteration a sequence em, . . . , em+k−1 is obtained by taking the first entry from M and
removing it from both M and C. When the new face f ′ is computed, we add any new edges
to C and check whether any of the newly adjacent pairs of entries have equal length; if so we
consolidate them into a single entry of C. We also check whether any of the newly adjacent
entries have become surrounded by strictly longer entries; if so we add them to M . These
checks take constant time in each iteration since at most two new pairs of adjacent entries
can be created. So computing Cf takes linear time overall. ◀

5 Compatibility Constraints

Next, we describe the constraints needed to ensure that the crease assignments are compatible
between faces. The angles around each vertex must sum to 360°; this means exactly one of
these angles is a mountain fold, as shown in Figure 6. So for each vertex v of the graph, we
generate a blue constraint Cv:∑

a∈Av

xa = 1, (5)

where Av is the set of angles incident to v.

▶ Theorem 5. A connected combinatorially embedded planar multigraph with prescribed edge
lengths has a flat folding with no flat angles if and only if the constraint satisfaction problem
consisting of

for each face f , the constraints Cf described in Section 4, and
for each vertex v, the constraint Cv described above

is satisfiable. Moreover, these constraints can be computed in time linear in the number of
angles in the graph.

Proof. Suppose the graph has such a flat folding, and assign variables representing angles in
the graph based on whether the corresponding angle is a mountain or a valley fold in the
flat-folded state; this is only a partial assignment since some variables do not correspond to
angles of the original graph. Each face (and thus its corresponding simple cycle) is folded
flat, and the variables which are not yet assigned are disjoint between faces, so by Theorem 3
we can extend the assignment to an assignment of all variables which satisfies Cf for every
face f . The assignment also satisfies Cv since exactly one angle incident to v has measure
360° in the folded state.

Conversely, suppose there is a satisfying assignment. Then assign each angle to be
mountain or valley based on the value of the corresponding variable. By Theorem 3, this
gives a flat-foldable crease assignment for each face. These crease assignments are compatible
because the variable assignments satisfy each Cv, so by Theorem 2 there is a flat folding
with these angle assignments.

SoCG 2022



29:12 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

1

1

0

0

1 1

0

1

0

Figure 6 A vertex folds flat under a given crease assignment if and only if exactly one if the
incident angles is a mountain fold.

Finally, we show that the set of constraints can be computed in linear time. By Theorem 4
each set of face constraints Cf can be computed in time linear in the number of angles
incident to f . Since the sets of angles incident to different faces are disjoint, it takes linear
time overall to compute the face constraints. Similarly, computing each vertex constraint
Cv takes time linear in the number of angles incident to v, and these are all disjoint from
each other as well. So the set of constraints can be computed in time linear in the number of
angles of the graph. ◀

6 Solving the Constraint Satisfaction Problem

What remains is solving the constraint satisfaction problem consisting of Cf and Cv for each
face and vertex of the graph. Inspecting the constraints reveals that they are an instance of
planar bipartite positive ∗-in-∗SAT-E2:

Each constraint has the form
∑

x∈S

x = c for some set S of variables and constant c; this is

a clause saying exactly c variables in S are true.
The red and blue clauses provide the bipartition. Each variable is in exactly one red
clause and exactly one blue clause. For each angle a incident to a face f and a vertex v,
the variable xa appears in one red clause belonging to Cf and one blue clause Cv. All
other variables satisfy this condition because the subgraph corresponding to each Cf is
bipartite according to Theorem 4.



L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:13

11

1

1

11

1

1

1

0

0

22

3
2

3
2

2 2

33

2

1

2

1

2

1

11

0

11

2

Figure 7 Top: An example graph with assigned edge lengths. Unlabeled edges have length 1.
Bottom: The resulting instance of planar bipartite positive ∗-in-∗SAT-E2 (overlaid on the original
graph in gray). Since this instance is unsatisfiable, the original graph cannot be folded flat.

The graph corresponding to the constraint satisfaction problem is planar. We can place
each clause Cv at the corresponding vertex v. Then for each face f we can place the
graph corresponding to Cf inside f ; by Theorem 4 this can be done without violating
planarity. An example of the planar embedding constructed for the entire constraint
satisfaction problem is shown in Figure 7.

All that remains to be shown is that planar bipartite positive ∗-in-∗SAT-E2 can be
solved efficiently. We now describe a fairly standard reduction to a max-flow problem, which
can be solved in near-linear time.

SoCG 2022



29:14 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

▶ Theorem 6. Planar bipartite positive ∗-in-∗SAT-E2 can be solved in O(n log3 n) time,
where n is the number of clauses.

Proof. We use the graph with clauses as vertices and variables as edges, as described earlier
and shown in Figure 7. For each red clause r which expects ℓr true variables, we add a new
source vertex and an edge from the source vertex to r with capacity ℓr. Similarly, for every
blue clause b expecting ℓb true variables, we add a new sink vertex and an edge from b to the
sink vertex with capacity ℓb. Finally, we assign a capacity of 1 to each edge corresponding
to a variable, which goes from a red clause to a blue clause. This gives us an instance
of multi-source multi-sink planar max-flow, for which the maximum possible flow can be
determined in time O(k log3 k) [7] where k is the number of vertices in the flow graph. Since
the flow graph has exactly twice as many vertices as there were clauses, the maximum flow
can be determined in time O(n log3 n).

We will assume that

T :=
∑
red r

ℓr =
∑

blue b

ℓb,

since this is clearly required for the constraint problem to be satisfiable.
To solve the constraint satisfaction problem, we ask if the maximum flow has value T ;

this is clearly an upper bound an the maximum flow.
An integer flow uses some set of edges corresponding to variables, which specifies an

assignment. The flow constraint on the edges to the appropriate source or sink forces the
flow to use at most ℓc variables in clause c, and in order to reach the target flow T we must
use exactly this many variables in each clause. Thus the desired flow exists if and only if the
instance of planar bipartite positive ∗-in-∗SAT-E2 is solvable. ◀

7 Putting Things Together

Combining Theorem 5 and Theorem 6 immediately gives our main result:

▶ Corollary 7. We can determine whether a connected combinatorially embedded planar
multigraph with prescribed edge lengths and exterior face has a flat folding with no flat angles
in O(n log3 n) time, where n is the number of angles in the graph.

Proof. The constraint problem instance can be computed in linear time, and so it has linearly
many clauses, which can thus be solved in time O(n log3 n). ◀

This result can be extended in three ways, described next.

7.1 Extension to Specified Flat Angles
First, we can allow flat (180°) angles in the folded graph, provided the input specifies which
angles are flat, leaving the remaining angles free to be mountain or valley (but not flat).

To accomplish this, first observe that for there to be a flat folding, each vertex must have
exactly zero or two flat angles. We do not create variables for flat angles, since their angle is
already known. Within a face that contains a flat angle, we treat the two edges around the
flat angle as a single longer edge. At a vertex v which has two flat angles, we need all other
angles to be valley, so the constraint Cv is now∑

a∈Av

xa = 0, (6)

where Av includes only non-flat angles at v. The rest of the algorithm is as before.



L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:15

7.2 Extension to Disconnected Graphs
Second, we can account for the case where the graph is disconnected. Here we assume that
the connected components are arranged in a rooted forest (i.e., a collection of rooted trees),
where each non-root component specifies which interior face of its parent it is to reside in.
This condition can arise from folding an arbitrary single-vertex complex, where some faces
share the central vertex but no edges; then the structure of the complex requires a certain
arrangement of components within faces. We first check that each connected component is
foldable. If this is the case, then the only obstacle to foldability is being able to fit the folded
state of each child graph Gi inside the designated face pi of its parent.

We define the folded diameter of a graph or face to be the maximum distance between
any pair of vertices in its folded state. Since the locations of all flat angles are specified, the
relative vertex coordinates are determined and can be computed in linear time (as described
in Section 1), so this value can be computed easily without knowledge of the folding. It turns
out that we can fit Gi inside pi in a folding if and only if the folded diameter of Gi is at most
the folded diameter of pi. To show this, we can imagine applying cases C and D of Lemma 1
to pi repeatedly until all the edge lengths are equal. Because the face transformations in
those cases preserve folded diameter, it follows that the remaining edges all have length equal
to the folded diameter of pi. Thus, if the folded diameter of Gi is less than or equal to the
length of one of these edges, we can place a folding of Gi along it in the folded state. On the
other hand, if the folded diameter of Gi is greater than the folded diameter of pi, then we
can clearly never fit a folding of Gi inside a folding of pi.

7.3 Finding an Exterior Face
Third, instead of assuming that the exterior face is given, we can determine in linear time a
face that is a suitable exterior face if any face is. Observe that the exterior face must be
full-diameter in the sense that its folded diameter (defined in Section 7.2 above) equals the
folded diameter of the entire graph, because some vertex of the minimum (and maximum)
coordinate must be on the exterior face in any flat folding. We claim that every full-diameter
face is an equally suitable exterior face: if there is a flat folding with any one full-diameter face
as exterior face, then there is a flat folding with any desired full-diameter face as exterior face.
Thus, to determine whether the graph is flat foldable, we can simply find any full-diameter
face and specify it as the exterior face.

To prove the claim, consider a flat folding of the graph, say with exterior face e. Take
any non-exterior full-diameter face f , with diameter realized by vertices v and w. Face f

consists of two folded paths connecting v and w. By the argument in Section 7.2 above, in
any folding of f resulting from Lemma 1, we can select v and w such that the two folded
paths are separable: we can draw a straight line segment s from v to w that is layered in
between the two folded paths. Because s is full diameter, it partitions the edges of the graph
into two halves H1 and H2, where H1 is entirely before H2 in the layer order. Some vertices
(including v and w) have some incident edges in H1 and other incident edges in H2. We can
imagine splitting each such vertex x into two vertices x1 and x2, where xi is incident to the
edges that lie within Hi, so that H1 and H2 become disconnected from each other. We then
swap the layer order of the two halves, placing H2 before H1, and for each split vertex x,
reconnect the two halves x2 and x1, which corresponds to a cyclic shift of the edges incident
to x. This process is illustrated in Figure 8. Intuitively, we can view the folding as lying
on an American football (prolate spheroid), where the two poles represent the minimum
and maximum vertex coordinates; then this transformation corresponds to spinning the line
along which we cut this football open to define the extremes in the other dimension (layer
order). Thus we still obtain a flat folding of the graph, but now f is the exterior face.

SoCG 2022



29:16 Flat Folding an Unassigned Single-Vertex Complex Without Flat Angles

𝒗 𝒙𝒘
𝒔

𝒙1𝒘1

𝒗1

𝒙2
𝒘2𝒗2

𝒗 𝒙 𝒘

Figure 8 Cutting a flat folding apart and reassembling it with a different exterior face.

7.4 Finale
Putting these extensions together, we have the following more general result:

▶ Corollary 8. Given a combinatorially embedded planar multigraph with prescribed edge
lengths and some angles specified as flat, we can determine in O(n log3 n) time whether there
is a flat folding that has precisely the specified angles flat.

On the other hand, if the set of flat angles is not specified, it is NP-complete to determine
whether there is a flat folding [2], so this implies that the hard part is deciding which angles
should be flat.

References
1 Timothy G. Abbott, Erik D. Demaine, and Blaise Gassend. A generalized carpenter’s rule

theorem for self-touching linkages. arXiv:0901.1322, 2009. arXiv:0901.1322.
2 Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, Tao B.

Schardl, and Isaac Shapiro-Ellowitz. Folding equilateral plane graphs. International Journal
of Computational Geometry and Applications, 23(2):75–92, April 2013.

3 Zachary Abel, Erik D. Demaine, Martin L. Demaine, David Eppstein, Anna Lubiw, and
Ryuhei Uehara. Flat foldings of plane graphs with prescribed angles and edge lengths. Journal
of Computational Geometry, 9(1):74–93, 2018.

4 Hugo A. Akitaya, Radoslav Fulek, and Csaba D. Tóth. Recognizing weak embeddings of
graphs. ACM Transactions on Algorithms, 15(4), October 2019. doi:10.1145/3344549.

5 Marshall Bern and Barry Hayes. The complexity of flat origami. In Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 175–183, Atlanta, January
1996.

6 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994.

7 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM Journal on Computing, 46(4):1280–1303, 2017. doi:10.1137/15M1042929.

http://arxiv.org/abs/0901.1322
https://doi.org/10.1145/3344549
https://doi.org/10.1137/15M1042929


L. Chung, E. D. Demaine, D. Hendrickson, and V. Luo 29:17

8 M. Chlebík and J. Chlebíková. Approximation hardness of dominating set problems in
bounded degree graphs. Information and Computation, 206(11):1264–1275, 2008. doi:
10.1016/j.ic.2008.07.003.

9 Robert Connelly, Erik D. Demaine, and Günter Rote. Infinitesimally locked self-touching
linkages with applications to locked trees. In J. Calvo, K. Millett, and E. Rawdon, editors,
Physical Knots: Knotting, Linking, and Folding of Geometric Objects in 3-space, pages 287–311.
American Mathematical Society, 2002.

10 Erik D. Demaine. 6.849: Geometric folding algorithms: Linkages, origami, polyhedra: Lecture
5. MIT class, fall 2010. URL: https://courses.csail.mit.edu/6.849/fall10/lectures/
L05.html?notes=4.

11 Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, 2007.

12 Ivan Tadeu Ferreira Antunes Filho. Characterizing boolean satisfiability variants. M.eng. thesis,
Massachusetts Institute of Technology, 2019. URL: https://erikdemaine.org/theses/
ifilho.pdf.

13 Thomas Hull. On the mathematics of flat origamis. Congressus Numerantium, 100:215–224,
1994.

14 Thomas Hull. The combinatorics of flat folds: a survey. In Origami3: Proceedings of the
3rd International Meeting of Origami Science, Math, and Education, pages 29–38, Monterey,
California, March 2001.

15 Thomas C. Hull. Origametry: Mathematical Methods in Paper Folding. Cambridge University
Press, December 2020.

16 Jacques Justin. Aspects mathematiques du pliage de papier (Mathematical aspects of paper
folding). In H. Huzita, editor, Proceedings of the 1st International Meeting of Origami Science
and Technology, pages 263–277, Ferrara, Italy, December 1989. Originally appeared in L’Ouvert,
number 47, 1987, pages 1–14. URL: https://publimath.univ-irem.fr/biblio/IST87008.
htm.

17 Toshikazu Kawasaki. On the relation between mountain-creases and valley-creases of a flat
origami. In H. Huzita, editor, Proceedings of the 1st International Meeting of Origami Science
and Technology, pages 229–237, Ferrara, Italy, December 1989. An unabridged Japanese
version appeared in Sasebo College of Technology Report, 27:153–157, 1990.

18 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. Journal of the
ACM, 55(2), May 2008. doi:10.1145/1346330.1346336.

SoCG 2022

https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1016/j.ic.2008.07.003
https://courses.csail.mit.edu/6.849/fall10/lectures/L05.html?notes=4
https://courses.csail.mit.edu/6.849/fall10/lectures/L05.html?notes=4
https://erikdemaine.org/theses/ifilho.pdf
https://erikdemaine.org/theses/ifilho.pdf
https://publimath.univ-irem.fr/biblio/IST87008.htm
https://publimath.univ-irem.fr/biblio/IST87008.htm
https://doi.org/10.1145/1346330.1346336




Hop-Spanners for Geometric Intersection Graphs
Jonathan B. Conroy #

Department of Computer Science, Tufts University, Medford, MA, USA

Csaba D. Tóth #

Department of Mathematics, California State University Northridge, Los Angeles, CA, USA
Department of Computer Science, Tufts University, Medford, MA, USA

Abstract
A t-spanner of a graph G = (V, E) is a subgraph H = (V, E′) that contains a uv-path of length at
most t for every uv ∈ E. It is known that every n-vertex graph admits a (2k − 1)-spanner with
O(n1+1/k) edges for k ≥ 1. This bound is the best possible for 1 ≤ k ≤ 9 and is conjectured to be
optimal due to Erdős’ girth conjecture.

We study t-spanners for t ∈ {2, 3} for geometric intersection graphs in the plane. These spanners
are also known as t-hop spanners to emphasize the use of graph-theoretic distances (as opposed to
Euclidean distances between the geometric objects or their centers). We obtain the following results:
(1) Every n-vertex unit disk graph (UDG) admits a 2-hop spanner with O(n) edges; improving upon
the previous bound of O(n log n). (2) The intersection graph of n axis-aligned fat rectangles admits
a 2-hop spanner with O(n log n) edges, and this bound is the best possible. (3) The intersection
graph of n fat convex bodies in the plane admits a 3-hop spanner with O(n log n) edges. (4) The
intersection graph of n axis-aligned rectangles admits a 3-hop spanner with O(n log2 n) edges.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Mathematics
of computing → Paths and connectivity problems; Theory of computation → Computational
geometry

Keywords and phrases geometric intersection graph, unit disk graph, hop-spanner

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.30

Related Version Full Version: https://arxiv.org/abs/2112.07158

Funding Jonathan B. Conroy: Summer Scholars Program at Tufts University.
Csaba D. Tóth: Research supported in part by NSF DMS-0701280.

Acknowledgements We thank Sujoy Bhore for helpful discussions on geometric intersections graphs.

1 Introduction

Graph spanners were introduced by Awerbuch [7] and by Peleg and Schäffer [54]. A spanner
of a graph G is a spanning subgraph H with bounded distortion between graph distances in
G and H. For an edge-weighted graph G = (V, E), a spanning subgraph H is a t-spanner
if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V , where dH and dG are the shortest-path distances
in H and G, respectively. The parameter t ≥ 1 is the stretch factor of the spanner. A long
line of research is devoted to finding spanners with desirable features, which minimize the
number of edges, the weight, or the diameter; refer to a recent survey by Ahmed et al. [2].

In abstract graphs, all edges have unit weight. In a graph G of girth g, any proper
subgraph H has stretch at least g − 1. In particular, a complete bipartite graph does not
have any subquadratic size t-spanner for t < 3. The celebrated greedy spanner by Althöfer
et al. [3] finds, for every n-vertex graph and parameter t = 2k − 1, a t-spanner with O(n1+ 1

k )
edges; and this bound matches the lower bound from the Erdős girth conjecture [31].

© Jonathan B. Conroy and Csaba D. Tóth;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jonathan.Conroy@tufts.edu
mailto:csaba.toth@csun.edu
https://orcid.org/0000-0002-8769-3190
https://doi.org/10.4230/LIPIcs.SoCG.2022.30
https://arxiv.org/abs/2112.07158
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


30:2 Hop-Spanners for Geometric Intersection Graphs

Geometric Setting: Euclidean and Metric Spanners. Given a set P of n points in a
metric space (M, δ), consider the complete graph G on P where the weight of an edge uv

is the distance δ(u, v). If M has doubling dimension d (e.g., Euclidean spaces of constant
dimension) the greedy algorithm by Althöfer et al. [3] constructs an (1 + ε)-spanner with
ε−O(d)n edges [45]. Specifically, every set of n points in Rd admits a (1 + ε)-spanner with
O(ε−dn) edges, and this bound is the best possible [45].

Gao and Zhang [38] considered data structures for approximating the weighted distances
in unit disk graphs (UDG), which are intersection graphs of unit disks in R2. Importantly, the
weight of an edge is the Euclidean distance between the centers. They designed a well-speared
pair-decomposition (WSPD) of size O(n log n) for an n-vertex UDG. For the unit ball graphs
in doubling dimensions, Eppstein and Khodabandeh [30] construct (1 + ε)-spanners which
also have bounded degree and total weight O(w(MST )), generalizing earlier work in Rd by
Damian et al. [23]; see also [46]. Fürer and Kasiviswanathan [37] construct a (1 + ε)-spanner
with O(ε−2n) edges for the intersection graph of n disks of arbitrary radii in R2.

Hop-Spanners for Geometric Intersection Graphs. Unit disk graphs (UDG) were the first
geometric intersection graphs for which the hop distance was studied (i.e., the unweighted
version), motivated by applications in wireless communication. Spanners in this setting
are often called hop-spanners to emphasize the use of graph-theoretic distance (i.e., hop
distance), as opposed to the Euclidean distance between centers.

For an n-vertex UDG G, Yan et al. [57] constructed a subgraph H with O(n log n) edges
and dH(u, v) ≤ 3dG(u, v) + 12, which is a 15-hop spanner. Catusse et al. [19] showed that
every n-vertex UDG admits a 5-hop spanner with at most 10n edges (as well as a noncrossing
O(1)-spanner with O(n) edges). Biniaz [9] improved this bound to 9n. Dumitrescu et al. [28]
recently showed that every n-vertex UDG admits a 5-hop spanner with at most 5.5n edges,
a 3-hop spanner with at most 11n edges, and a 2-hop spanner with O(n log n) edges. In this
paper, we improve the bound on the size of 2-hop spanners to O(n), and initiate the study
of minimum 2-hop spanners of other classes of geometric intersection graphs.

Our Contributions.
1. Every unit disk graph on n vertices admits a 2-hop spanner with O(n) edges (Theorem 2

in Section 2). This bound is the best possible; and it generalizes to intersection graphs of
translates of a convex body in the plane (shown in the full version of the paper).

2. The intersection graph of n axis-aligned fat rectangles in R2 admits a 2-hop spanner
with O(n log n) edges (Theorem 15 in Section 3). This bound is the best possible: We
establish a lower bound of Ω(n log n) for the size of 2-hop spanners in the intersection
graph of n homothets of any convex body in the plane (Theorem 19 in Section 4).

3. The intersection graph of n fat convex bodies in R2 admits a 3-hop spanner with O(n log n)
edges (shown in the full version of the paper).

Related Previous Work. While our upper bounds are constructive, we do not attempt to
minimize the number of edges in a k-spanner for a given graph. The minimum k-spanner
problem is to find a k-spanner H of a given graph G with the minimum number of edges.
This problem is NP-hard [16, 54] for all 2 ≤ k ≤ o(log n); already for planar graphs [10, 41].
It is also hard to approximate up to a factor of 2(log1−ε n)/k, for 3 ≤ log1−2ε n and ε > 0,
assuming NP ̸⊆ BPTIME(2polylog(n)) [25]; see also [27, 29, 42]. On the positive side, Peleg



J. B. Conroy and C. D. Tóth 30:3

and Krtsarz [43] gave an O(log(m/n))-approximation for the minimum 2-spanner problem
for graphs G with n vertices and m edges; see also [20]. There is an O(n)-time algorithm for
the minimum 2-spanner problem over graphs of maximum degree at most four [17].

Classical graph optimization problems (which are often hard and hard to approximate)
typically admit better approximation ratios or are fixed-parameter tractable (FPT) for
geometric intersection graphs. Three main strategies have been developed to take advantage
of geometry: (i) Divide-and-conquer strategies using separators and dynamic programming [4,
8, 24, 18, 34, 35, 36, 47]; (ii) Local search algorithms [14, 21, 40, 51]; and (iii) Bounded
VC-dimension and the ε-net theory [1, 6, 13, 53, 50, 52]. It is unclear whether separators
and local search help find small k-hop spanners. Small hitting sets and ε-nets help finding
large cliques in geometric intersection graphs, and this is a tool we use, as well.

Relation to Edge Clique and Biclique Covers. A 2-hop spanner H of a graph G = (V, E)
is union of stars S such that every edge in E is induced by a star in S. Thus the minimum
2-spanner problem is equivalent to minimizing the sum of sizes of stars in S. As such, the
2-spanner problem is similar to the minimum dominating set and minimum edge-clique
cover problems [32, 49]. In particular, the size of a 2-hop spanner is bounded above by
the minimum weighted edge clique cover, where the weight of a clique Kt is t − 1 (i.e.,
the size of a spanning star). Recently, de Berg et al. [24] proposed a divide-and-conquer
framework for optimization problems on geometric intersection graphs. Their main technical
tool is a weighted separator theorem, where the weight of a separator is W =

∑
i w(ti) for

a decomposition of the subgraph induced by the separator into cliques Kti
, and sublinear

weights w(t) = o(t). For 2-hop spanners, however, each clique Kt requires a star with t − 1
edges, so the weight function would be linear w(t) = t − 1.

Every biclique (i.e., complete bipartie graph) Ks,t admits a 3-hop spanner with s + t − 1
edges (as a union of two stars). Hence an edge biclique cover, with total weight W and weight
function w(Ks,t) = s+t, yields a 3-hop spanners with at most W edges. Every n-vertex graph
has an edge biclique cover of weight O(n2/ log n), and this bound is tight [33, 56]. (In contrast,
every n-vertex graph has a 3-hop spanner with O(n3/2) edges [3].) Better bounds are known
for semi-algebraic graphs, where the edges are defined in terms of semi-algebraic relations
of bounded degree. For instance, an incidence graph between n points and m hyperplanes
in Rd admits an edge biclique cover of weight O((mn)1−1/d + m + n) [5, 11, 55]. Recently,
Do [26] proved that a semi-algebraic bipartite graph on m + n vertices, where the vertices are
points in Rd1 and Rd2 , resp., has an edge biclique cover of weight Oε(m

d1d2−d2
d1d2−1 +εn

d1d2−d1
d1d2−1 +ε +

m1+ε + n1+ε) for any ε > 0. For d1 + d2 ≤ 4, this result yields nontrivial 3-hop spanners.
For a UDG with m = n unit disks, d1 = d2 = 2 gives a 3-hop spanner with W ≤ Oε(n4/3+ε)
edges. But for the intersection graph of arbitrary disks in R2, d1 = d2 = 3 gives Oε(n3/2+ε),
which is worse than the default O(n3/2) guaranteed by the greedy algorithm [3].

Representation. Our algorithms assume a geometric representation of a given intersection
graphs (it is NP-hard to recognize UDGs [12], disk graphs [39, 48], or box graphs [44]). Given
a set of geometric objects of bounded description complexity, the intersection graph and the
hop distances can easily be computed in polynomial time. Chan and Skrepetos [22] designed
near-quadratic time algorithms to compute all pairwise hop-distances in the intersection graph
of n geometric objects (e.g., balls or hyperrectangles in Rd). In a UDG, the hop-distance
between a given pair of disks can be computed in optimal O(n log n) time [15].

SoCG 2022



30:4 Hop-Spanners for Geometric Intersection Graphs

2 Two-Hop Spanners for Unit Disk Graphs

In this section, we prove that every n-vertex UDG has a 2-hop spanner with O(n) edges. The
proof hinges on a key lemma, Lemma 1, in a bipartite setting. A unit disk is a closed disk of
unit diameter in R2; two unit disks intersect if and only if their centers are at distance at
most 1 apart. For finite sets A, B ⊂ R2, let U(A, B) denote the unit disk graph on A ∪ B,
and let G(A, B) denote the bipartite subgraph of U(A, B) of all edges between A and B.

▶ Lemma 1. Let P = A ∪ B be a set of n points in the plane such that diam(A) ≤ 1,
diam(B) ≤ 1, and A (resp., B) is above (resp., below) the x-axis. Then there is a subgraph
H of U(A, B) with at most 5n edges such that for every edge ab of G(A, B), H contains a
path of length at most 2 between a and b.

We construct the graph H in Lemma 1 incrementally: In each step, we find a subset
W ⊂ A ∪ B, together with a subgraph H(W ) of at most 5|W | edges that contains a uv-path
of length at most 2 for every edge uv between u ∈ W and v ∈ N(W ) (cf. Lemma 5); and
then recurse on P \ W . We show that

⋃
W H(W ) is a 2-hop spanner for U(A, B).

Section 2.1 establishes a technical lemma about the interaction pattern of disks in the
bipartite setting. One step of the recursion is presented in Section 2.2. The proof of Lemma 1
is in Section 2.3. Lemma 1, combined with previous work [9, 19, 28] that reduced the problem
to a bipartite setting, implies the main result of this section.

▶ Theorem 2. Every n-vertex unit disk graph has a 2-hop spanner with O(n) edges.

Proof. Let P be a set of centers of n unit disks in the plane, and let G = (P, E) be the
UDG on P . Consider a tiling of the plane with regular hexagons of diameter 1, where
each point in P lies in the interior of a tile. A tile τ is nonempty if τ ∩ P ̸= ∅. Clearly
diam(P ∩ τ) ≤ diam(τ) = 1. For each nonempty tile τ , let Sτ be a spanning star on P ∩ τ .

For each pair of tiles, σ and τ , at distance at most 1 apart, Lemma 1 yields a graph
Hσ,τ := G(A, B) ⊂ G for A = P ∩ σ and B = P ∩ τ with 5(|P ∩ σ| + |P ∩ τ |) edges. Let
H be the union of all stars Sτ and all graphs Hσ,τ . It is easily checked that H is a 2-hop
spanner of G: Indeed, let uv ∈ E. If u and v are in the same tile τ , then Sτ contains uv or
a uv-path of length 2. Otherwise u and v are in different tiles, say σ and τ , at distance at
most 1, and Hσ,τ contains uv or a uv-path of length 2.

It remains to bound the number of edges in H. The union of all stars Sτ is a spanning
forest on P , which has at most n − 1 edges. Every tile σ is within unit distance from 18 other
tiles [9]. The total number of edges in Hσ,τ over all pairs of tiles is

∑
σ,τ 5(|P ∩σ|+ |P ∩τ |) ≤

18
∑

σ 5(|P ∩ σ|) = 90n. Overall, H has less than 91n edges, as required. ◀

2.1 Properties of Unit-Disk Hulls
Let A ⊂ R2 be a finite set of points above the x-axis. Let D be the set of all unit disks with
centers on or below the x-axis. Let M(A) be the union of all unit disks D ∈ D such that
A ∩ int(D) = ∅, and let hull(A) = R2 \ int(M(A)); see Fig. 1.

For every p ∈ R2 above the x-axis, let X(p) denote its vertical projection onto ∂hull(A);
this is well defined by Lemma 3(1) below. Let L(p) and R(p) denote the points in A∩∂hull(A)
immediately to the left and right of X(p) if such a point exists; that is, L(p) (resp., R(p)) is
the point in A ∩ ∂hull(A) with the largest (resp., smallest) x-coordinate that still satisfies
L(p)x ≤ X(p)x (resp., R(p)x ≥ X(p)x).



J. B. Conroy and C. D. Tóth 30:5

x

A

∂hull(A)

M(A)

hull(A)

L(p)

R(p)
X(p)

p

D

D′

Figure 1 A point set A (red), region M(A) (light blue), and hull(A) (pink). A point p ∈ A in a
disk D ∈ D, its vertical projection X(p) ∈ ∂hull(A), and the two adjacent points L(p), R(p) ∈ A.

▶ Lemma 3. For every finite set A ⊂ R2 above the x-axis, the following holds:
1. ∂hull(A) is an x-monotone curve.
2. For every D ∈ D, the intersection D ∩ ∂hull(A) is connected (possibly empty).
3. For every D ∈ D and every p ∈ A, if p ∈ D, then D contains X(p). Further, L(p) or

R(p) exists, and D contains L(p) or R(p) (possibly both).
4. Let D, D′ ∈ D. Suppose that ∂D intersects ∂hull(A) at points with x-coordinates x1 and

x2, and ∂D′ intersects ∂hull(A) at points with x-coordinates x′
1 and x′

2. If x1 ≤ x′
1 ≤

x′
2 ≤ x2, then D′ ∩ hull(A) ⊂ D ∩ hull(A).

The proof (in the full version of the paper) is a straightforward extension of previous
results [28, Lemma 4].

2.2 One Incremental Step
Let A and B be finite point sets above and below the x-axis, respectively, and let P = A ∪ B.
For every point p ∈ R2, let N(p) ⊂ P denote the points in P on the opposite side of
the x-axis within unit distance from p; refer to Fig. 2. For a point set S ⊂ R2, let
N(S) =

⋃
p∈S N(p). Suppose that a unit circle centered at p ∈ A intersects ∂hull(B) at

points p1, p2 ∈ R2; or a unit circle centered at p ∈ B intersects ∂hull(A) at points p1, p2 ∈ R2.
Define I(p) = N(N(p)) \ (N(p1) ∪ N(p2)); see Fig. 2 for an example.

▶ Lemma 4. Let P = A ∪ B be a finite set of points in the plane such that A (resp., B) is
above (resp., below) the x-axis. For every p ∈ P , N(I(p)) ⊂ N(p).

Proof. We may assume w.l.o.g. that p ∈ A. Let v ∈ I(p), and let Dv (resp., Dp) denote
the unit disk centered on v (resp., p). As v ∈ N(N(p)), Dv contains some point u ∈ N(p).
Clearly, Dp contains u. By Lemma 3(3), Dv and Dp contain X(u). As Dp ∩ hull(B) has
endpoints p1 and p2, Lemma 3(1)–(2) implies that X(u) has x-coordinate between p1 and
p2. By definition of I(P ), Dv ∩ hull(B) does not contain either p1 or p2, so it only contains
points between p1 and p2. By Lemma 3(4), N(v) ⊂ N(p). ◀

We construct a spanner by repeatedly applying the following lemma:

▶ Lemma 5. Let P = A ∪ B be a set of n points in the plane such that diam(A) ≤ 1,
diam(B) ≤ 1, and A (resp., B) is above (resp., below) the x-axis. Then there exists a
nonempty subset W ⊂ P and a graph H(W ) with the following properties:

SoCG 2022



30:6 Hop-Spanners for Geometric Intersection Graphs

x

A

∂hull(A)

hull(A)

B

∂hull(B)

p1

p2

p

N(p)

N(p1)

N(p2) = {p}

I(p)

hull(B)

Figure 2 A point p ∈ A and its neighbors N(p) ⊂ B. The unit circle centered at p intersecting
∂hull(B) at p1 and p2. The sets N(p1), N(p2), and I(p).

1. H(W ) is a subgraph of U(A, B);
2. H(W ) contains at most 5|W | edges;
3. for every edge ab in the neighborhood of W in G(A, B), H(W ) contains an ab-path of

length at most 2.

Proof. Let m ∈ R2 be the point that maximizes |N(m)| (breaking ties arbitrarily) and let
k = |N(m)|. Notice that m might not be in P . By Lemma 3(3), every point in N(m) is
within unit distance of L(m) or R(m); and L(m), R(m) ∈ P . Thus there exists a point v ∈ P

such that |N(v)| ≥ k/2.
Now let p ∈ P be the point that maximizes |N(p)|; and note that |N(p)| ≥ k/2. Let

W = N(p) ∪ I(p) ∪ {p}. Let H(W ) be the spanning star centered at p connected to all points
in N(N(p)) and to all points in N(p). We verify that H(W ) has the required properties:
1. Every point in N(p) is within unit distance of p. As p ∈ A and N(N(p)) ⊂ A, every

point in N(N(p)) is within unit distance of p. Thus H(W ) is a subgraph of U(A, B).
2. By definition of k, |N(p1)| ≤ k and |N(p2)| ≤ k. Thus, |N(N(p))| ≤ 2k + |I(p)|. Further,

|W | = |N(p)| + |I(p)| ≥ k/2 + |I(p)|. Thus |N(N(p))| ≤ 4|W |. The spanning star H(W )
has |N(N(p))| + |N(p)| − 1 edges, so it has at most 5|W | edges.

3. For every v ∈ N(p), all neighbors of v are in N(N(p)) by the definition of N(.), so
the spanning star contains a path of length at most 2 to each neighbor. For every
v ∈ I(p) ∪ {p}, all neighbors of v are in N(p) by Lemma 4, so the spanning star contains
a path of length at most 2 to each neighbor. ◀

2.3 Proof of Lemma 1
We can now construct a sparse 2-hop spanner in the bipartite setting. We restate Lemma 1.

▶ Lemma 1. Let P = A ∪ B be a set of n points in the plane such that diam(A) ≤ 1,
diam(B) ≤ 1, and A (resp., B) is above (resp., below) the x-axis. Then there is a subgraph
H of U(A, B) with at most 5n edges such that for every edge ab of G(A, B), H contains a
path of length at most 2 between a and b.

Proof. Apply Lemma 5 to find a subset W ⊂ P and a subgraph H(W ). Let H be the
union of H(W ) and the spanner constructed by recursing on P \ W . Since H is the union of
subgraphs of U(A, B), it is itself a subgraph of U(A, B).



J. B. Conroy and C. D. Tóth 30:7

Stretch analysis. Suppose a ∈ A and b ∈ B are neighbors in G(A, B). We assume w.l.o.g.
that a was removed before or at the same time as b during the construction of H as part of
some subset W . Then H includes a subgraph H(W ) that, by construction, connects a to all
neighbors that have not yet been removed (including b) by paths of length at most 2.

Sparsity analysis. Each subgraph H(W ) in H is responsible for removing some set of points
W and has at most 5|W | edges. Charge 5 edges to each of the |W | points removed. As each
point is removed exactly once, H contains at most 5n edges. ◀

3 Two-Hop Spanners for Axis-Aligned Squares

For intersection graphs of n unit disks, we found 2-hop spanners with O(n) edges in Section 2.
This bound does not generalize to intersection graphs of disks of arbitrary radii, as we
establish a lower bound of Ω(n log n) in Section 4. Here, we construct 2-hop spanners with
O(n log n) edges for such graphs under the L∞ norm (where unit disks are really unit squares).
The result also holds for axis-aligned fat rectangles.

We prove a linear upper bound for the 1-dimensional version of the problem (Section 3.1),
and then address axis-aligned fat rectangles in the plane (Section 3.2). The fatness of a set
s ⊂ R2 is the ratio ϱout/ϱin between the radii of a minimum enclosing disk and a maximum
inscribed disk of s. A collection S of geometric objects is α-fat if the fatness of every s ∈ S

is at most α; and it is fat, for short, if it is α-fat for some α ∈ O(1).

3.1 Two-Hop Spanners for Interval Graphs
Let G(S) be the intersection graph of a set S of n closed segments in R. Assume w.l.o.g. that
G(S) is connected: otherwise, we can apply this construction to each connected component.

We partition
⋃

S into a collection of disjoint intervals I = {I1, . . . , Im} as follows. Let
I0 = {p0} be the interval containing only the leftmost point in

⋃
S, and let k := 1. While

pk−1 lies to the left of the rightmost point in
⋃

S, let pk be the rightmost point of any
segment in S that intersects pk−1; let Ik = (pk−1, pk]; and set k := k + 1. As G(S) is
connected, this process terminates. For every k ∈ {1, . . . , m}, define the covering segment ck

to be some segment that intersects pk−1 and has right endpoint pk; see Fig. 3. Notice that
by construction of Ik, ck is guaranteed to exist, and Ik ⊂ ck.

c1

I1

c2

I2 I3

c3

I4

c4

p0 p1 p2 p3 p4

Figure 3 A set of segments S, with
⋃

S partitioned into intervals I = {I1, . . . , I4}. Each Ik ∈ I

is contained in some covering segment ck ∈ S.

▶ Lemma 6. The set of intervals I defined above has the following properties:

1. I is a partition of
⋃

S;
2. every segment s ∈ S intersects at most 2 intervals in I;
3. if two segments a, b ⊂

⋃
S intersect (with a, b not necessarily elements of S), then there

is some interval in I that intersects both segments.

SoCG 2022



30:8 Hop-Spanners for Geometric Intersection Graphs

The proof is straightforward; see the full version of the paper.

▶ Theorem 7. Every n-vertex interval graph admits a 2-hop spanner with at most 2n edges.

Proof. We construct the 2-hop spanner H as the union of stars. For every interval Ik ∈ I,
construct a star Hk centered on the covering segment ck with an edge to every segment that
intersects Ik. As Ik ⊂ ck, every segment that intersects Ik also intersects ck, so there is an
edge between the two segments in G(S). Define H =

⋃m
k=1 Hk.

Stretch analysis. Suppose s1, s2 ∈ S intersect. By Lemma 6(3), s1 ∩ s2 intersects some
interval Ik. Thus, the star Hk ⊂ H connects s1 and s2 by a path of length at most 2.

Sparsity analysis. Suppose the star Hk ⊂ H has j edges. The corresponding interval Ik ∈ I
intersects j + 1 segments in S. Charge 1 edge to each of the segments intersecting Ik. By
Lemma 6(2), each of the n segments in S is charged at most twice. ◀

▶ Corollary 8. The intersection graph of a set of n axis-aligned rectangles in R2 that all
intersect a fixed horizontal or vertical line admits a 2-hop spanner with at most 2n edges.

3.2 Two-Hop Spanners for Axis-Aligned Fat Rectangles
Let G(S) be the intersection graph of a set S of n axis-aligned α-fat closed rectangles in the
plane. For every pair of intersecting rectangles a, b ∈ S, select some representative point in
a ∩ b. Let C(S) denote the set comprising the representatives for all intersections.

Setup for a Divide & Conquer Strategy. We recursively partition the plane into slabs
by splitting along horizontal lines. The recursion tree P is a binary tree, where each node
P ∈ P stores a slab, denoted slab(P ), that is bounded by horizontal lines bP and tP on the
bottom and top, respectively. The node P also stores a subset S(P ) ⊂ S of (not necessarily
all) rectangles in S that intersect slab(P ).

Let the inside set In(P ) ⊂ S(P ) be the set of rectangles contained in int(slab(P )). Let
the bottom set B(P ) ⊂ S(P ) be rectangles that intersect the line bP , the top set T (P ) ⊂ S(P )
be the rectangles that intersect tP , and the across set A(P ) = B(P ) ∩ T (P ); see Fig. 4.

bP

tP

slab(P )

Figure 4 A horizontal slab(P ) is bounded by bP and tP . Rectangles in the inside set In(P )
(green), bottom set B(P ) (red), top set T (P ) (blue), and across set A(P ) = B(P ) ∩ T (P ) (purple).
Some red and blue fat rectangles are shown only partially, in a small neighborhood of slab(P ).

We define the root node Pr to have a slab large enough to contain all rectangles in
S, and define S(Pr) = S. We define the rest of the space partition tree recursively. Let
P ∈ P. Define C(P ) ⊂ C(S) to be the set C(S) ∩ int(slab(P )). If C(P ) = ∅, then P is a
leaf and has no children. Otherwise, P has two children P1 and P2. Let cP be a horizontal
line with at most half the points in C(P ) on either side. Let slab(P1) (resp., slab(P2)) be
the slab bounded by bP and cP (resp., cP and tP ); and let S(P1) ⊂ S(P ) \ A(P ) (resp.,



J. B. Conroy and C. D. Tóth 30:9

S(P2) ⊂ S(P ) \ A(P )) be the set of rectangles that intersect this slab, excluding rectangles
in A(P ). Notice that no rectangles in A(P ) appear in the children of P , whereas rectangles
in the sets In(P ), B(P ) \ A(P ), and T (P ) \ A(P ) appear in one or both of the children.

Spanner Construction. We construct a spanner H(S) for G(S) as the union of subgraphs
H(P ) for each node P in the space partition tree.

We construct H(P ) such that there is a path of length at most 2 between every rectangle
s ∈ A(P ) and every rectangle in S(P ) that s intersects. Every edge in G(S(P )) requiring
such a path involves a rectangle in B(P ), a rectangle in T (P ), or a rectangle in In(P ). We
construct three subgraphs to deal with these three categories of edges.

By Corollary 8, we can construct a subgraph HB(P ) of G(B(P )) with at most 2 |B(P )|
edges that is a 2-hop spanner for B(P ). Similarly, we can construct a 2-hop spanner HT (P )
for G(T (P )) with 2 |T (P )| edges. As all rectangles in A(S) intersect bP , we can apply
Corollary 8 to construct a 2-hop spanner H ′

In(P ) with at most 2 |A(P )| edges for G(A(P )).
To construct HIn(P ), we partition

⋃ (
A(P ) ∩ slab(P )

)
analogously to the 1-dimensional case.

Recall that by Lemma 6(1), the line segment
⋃ (

A(P ) ∩ bP

)
can be partitioned into

intervals Ik, each of which is contained in some covering segment ck ∈ A(P ). As every
s ∈ A(P ) is an axis-aligned rectangle that spans two horizontal lines bP and tP , the segments
in Ik can be extended upward to form axis-aligned rectangles Îk, each with an associated
covering rectangle ĉk ∈ S corresponding to the covering segment ck in the 1-dimensional case.
Let Î denote the set of all 2-dimensional intervals Îk.

We construct HIn(P ) from H ′
In(P ) using these intervals. For every s ∈ In(P ), if s intersects

some Îk ∈ Î, add an edge between s and ĉk to H ′
In(P ). Let H(P ) = HB(P )∪HT (P )∪HIn(P ).

Stretch and Weight Analysis. We start with a technical lemma (Lemma 9), which is used
in the stretch and weight analysis for the graph H(P ) of a single node P ∈ P (Lemma 10).
Notice that the intervals in Î act similarly to the 1-dimensional intervals in I: in particular,
Lemma 6 carries over, with Ik replaced by Îk, and with the line segment

⋃
S replaced by

the region
⋃ (

A(P ) ∩ slab(P )
)
.

▶ Lemma 9. Let w denote the smallest width of any rectangle in S(P ), where the width
of a rectangle s ∈ A(P ) is the length of s ∩ bP . Then for any k ∈ N, the union of any 2k

contiguous intervals in Î has width at least kw.

Proof. By construction, every covering rectangle ĉk intersects Îk and Îk−1. By Lemma 6(2),
ĉk does not intersect any other intervals in Î. Thus, ĉl ⊂ Îk−1 ∪ Îk. This means that every
pair of intervals has width at least w. As there are k disjoint pairs of intervals in a set
containing 2k contiguous intervals, such a set must have width at least kw. ◀

▶ Lemma 10. The subgraph H(P ) has the following properties:
1. for every edge ab ∈ G(P ) with a ∈ A(P ), H(P ) contains an ab-path of length at most 2;
2. H(P ) contains O(α2 |S(P )|) edges.

Proof.
1. Every b ∈ S(P ) is in B(P ), T (P ), or In(P ). If b ∈ B(P ), then the claim follows from the

definition of HB(P ) and the fact that HB(P ) is a subgraph of H(P ). Similarly, the claim
holds when b ∈ T (P ).
Suppose b ∈ In(P ). By Lemma 6(3), if there is an edge ab in G(P ) then both a and b

intersect some interval Îk. By construction of HIn(P ), there is an edge between a and ck

and between b and ck (or else either a or b is equal to ck) and so there is a path of length
at most 2 between a and b in HIn(P ). As HIn(P ) is a subgraph of H(P ), this proves the
claim.

SoCG 2022



30:10 Hop-Spanners for Geometric Intersection Graphs

2. By construction, HB(P ) contains 2 |B(P )| edges, HB(P ) contains 2 |T (P )| edges, and
H ′

In(P ) contains 2 |A(P )| edges.
We now bound the number of edges that are added to H ′

In(P ) to produce HIn(P ). Let h

be the distance between bP and tP . Every rectangle a ∈ A(P ) has width at least Ω( h
α ),

as a is α-fat and has height at least h. Further, notice that every rectangle b ∈ In(P ) has
width less than αh, as otherwise it would cross bP or tP .
Let Îl, Îr ∈ Î, resp., be the leftmost and rightmost intervals that b intersects. As these
intervals are interior-disjoint, the intervals between Îl and Îr (if any exist) must have
a total length less than αh; otherwise, b could not intersect both. By Lemma 9, any
consecutive 2α2 intervals (all of length at least h/α) have width at least αh. Thus, b can
intersect at most 2α2 − 1 intervals other than Îl and Îr.
By construction, this implies that b ∈ In(P ) adds at most O(α2) edges to H ′

In during the
construction of HIn. Thus, HIn has at most 2|A(P )| + α2|In(P )| edges. As In(P ), B(P ),
T (P ), and A(P ) are all subsets of S(P ), H(P ) has at most O(α2|S(P )|) edges. ◀

We prove that H(S) =
⋃

P ∈P H(P ) has O(α2n log n) edges and that it is a 2-hop spanner.
We begin by considering the size. While some H(P ) may contain many edges, we bound the
total size of H(S) by showing that every rectangle in S is involved in O(log n) subproblems.

▶ Lemma 11. For every rectangle s ∈ S, the following hold:
1. there are O(log n) nodes P ∈ P where s ∈ In(P );
2. there are O(log n) nodes P ∈ P where s ∈ B(P ) \ A(P ); symmetrically, there are O(log n)

nodes P ∈ P where s ∈ T (P ) \ A(P );
3. there are O(log n) nodes P ∈ P where s ∈ A(P ).

Proof. Notice that for any k, the slabs of nodes at level k in the space partition tree have
pairwise disjoint interiors. Since S contains n rectangles, there are at most

(
n
2
)

intersections
in G(S). Thus, |C(S)| ≤

(
n
2
)
, and so the tree has O(log n) levels.

1. For every level k ∈ N in the space partition tree, there is only one node P where s ∈ In(P ).
Suppose for the sake of contradiction that s ∈ In(P1) and s ∈ In(P2) with P1 and P2 in
the same level and P1 ̸= P2. By the definition of In(.), s is contained in slab(P1) and in
slab(P2). As these slabs are disjoint, this is impossible. Summation over O(log n) levels
of the recursion tree completes the proof.

2. For every level k ∈ N in the tree, consider the node P with the highest slab such that
slab(P ) ∩ s ̸= ∅. Notice that s ∈ B(P ) and s /∈ T (P ), so s ∈ B(P ) \ A(P ). Any other
node P ′ in this level that s intersects lies strictly below P (as nodes within a level have
pairwise disjoint slab interiors) and s is connected, so s ∈ B(P ′) only if s ∈ T (P ′). Thus,
P is the only node in level k where s ∈ B(P ) \ A(P ). A symmetric argument proves that
there is only one P per level where s ∈ T (P ) \ A(P ).

3. For every level k ∈ N in the tree, there are at most two nodes P such that s ∈ A(P ).
Suppose for the sake of contradiction that there exist distinct P1, P2, and P3 at level k

such that s ∈ A(P1) ∩ A(P2) ∩ A(P3). The interiors of the corresponding slabs are disjoint,
so we may assume w.l.o.g. that P1 lies below P2, which lies below P3. As s is connected,
it intersects bP and tP for every node P between P1 and P3. In particular, s must be in
A(P ) for the sibling P of P2. Then s is also in A(P ′) for the parent P ′ of P2. This is a
contradiction – if s were in the A set of the parent of P2, it would not have been added to
the set S(P2) ⊂ S(P ′) \ A(P ′) of rectangles for the child. ◀

▶ Corollary 12. For every s ∈ S, there are O(log n) nodes P ∈ P where s ∈ S(P ).



J. B. Conroy and C. D. Tóth 30:11

Proof. This follows from the fact that for every node P , S(P ) is the union of the four sets
mentioned in Lemma 11: S(P ) = In(P ) ∪ (B(P ) \ A(P )) ∪ (T (P ) \ A(P )) ∪ A(P ). ◀

▶ Lemma 13. H(S) has O(α2n log n) edges.

Proof. For every node P , H(P ) has O(α2 |S(P )|) edges by Lemma 10. Charge O(α2) edges
to each rectangle in S(P ). By Corollary 12, each rectangle is charged at most O(log n) times,
and so H(S) has at most O(α2n log n) edges. ◀

▶ Lemma 14. H(S) is a 2-hop spanner for G(S).

Proof. Let ab be an edge in G(S). As the rectangles a and b intersect, there is some point
p ∈ C(S) that lies in a ∩ b. Since p is not in the interior of any slab at the leaf level, a
horizontal line of the space partition contains p. Assume w.l.o.g. that this line is bP for
some node P . If both a and b are present in S(P ), then HB(P ) contains an ab-path of
length at most 2. Otherwise, there is some node P ′ for which both a and b are in S(P ′) but
either a or b is not in the set for either child of P ′. Assume w.l.o.g. that a was removed.
By construction, a rectangle is removed exactly when it is in A(P ′). By Lemma 10, H(P ′)
contains an ab-path of length at most 2. As H(S) =

⋃
P ∈P H(P ), this proves that H(S)

contains such a path. ◀

The previous two lemmata prove the following theorem.

▶ Theorem 15. The intersection graph of every set of n axis-aligned α-fat rectangles in the
plane admits a 2-hop spanner with O(α2n log n) edges.

4 Lower Bound Constructions

In this section, we define a class of graphs for which any 2-hop spanner has at least Ω(n log n)
edges, then show that these graphs can be realized as the intersection graph of n homothets
of any convex body in the plane.

Construction of F (h). For every h ∈ N, we construct a graph F (h), which contains 2h(h+1)
vertices. The vertex set is V = {0, . . . , 2h − 1} × {0, . . . , h}. For each vertex v = (x, i), we
call i the level of v. For each level i ∈ {0, . . . , h}, partition the vertices with level less than
or equal to i into 2i groups of 2h−i(i + 1) consecutive vertices based on their x-coordinates.
In particular, for every level i ∈ {0, . . . , h}, let {0, . . . , 2h − 1} =

⋃2i−1
k=1 Xk,i, where Xk,i =

{2h−ik, 2h−ik + 1, . . . , 2h−i(k + 1) − 1}. This defines groups Vk,i = Xk,i × {0, . . . , i} for
k ∈ {0, . . . , 2i − 1}. Notice that (x, ℓ) ∈ Vk,i for k = ⌊x/2i⌋ and i ≥ ℓ. Finally, add edges to
the graph F (h) such that every group Vk,i is a clique; see Fig. 5.

We show that any 2-hop spanner for F (h) with n = 2h(h + 1) vertices has Ω(2hh2) =
Ω(n log n) edges. We do this by first showing that a 2-hop spanner contains Ω(2h−ih) edges
in each clique induced by a group Vk,i, and these edges are distinct from the edges required
by any other group. This result follows from the following lemma:

▶ Lemma 16. Suppose that the vertex set of the complete graph K2n is partitioned into two
sets A and B each of size n, and call edges between A and B bichromatic. Then every 2-hop
spanner of K2n contains n bichromatic edges.

Proof. Let S be a 2-hop spanner for K2n. If every vertex in A is incident to a bichromatic
edge in S, then clearly S contains at least |A| = n bichromatic edges. Otherwise, there is
some a ∈ A that has no direct edges to B in S. For every b ∈ B, S contains a 2-hop path
between a and b, that is, a path (a, ab, b) for some ab ∈ A. The edges abb are bichromatic
and distinct for all b ∈ B, so S contains at least |B| = n bichromatic edges. ◀

SoCG 2022



30:12 Hop-Spanners for Geometric Intersection Graphs

V0,0

V0,1 V1,1

V0,2 V1,2 V2,2 V3,2

Figure 5 Vertices of F (2) grouped by cliques Vk,i.

▶ Lemma 17. For all h ∈ N, F (h) has n = 2h(h + 1) vertices and Ω(n log n) edges.

Proof. Notice that every Xk,i, for i < h, can be written as X2k,i+1 ∪ X2k+1,i+1. Accordingly,
we can partition Vk,i into two sets of equal size:

Vk,i =
(

X2k,i+1 × {0, . . . , i}
)

∪
(

X2k+1,i+1 × {0, . . . , i}
)

.

Call edges that cross between these two sets Vk,i-bichromatic.
We claim that the set of Vk,i-bichromatic edges and Vk′,i′ -bichromatic edges are disjoint

unless k′ = k and i′ = i. If i = i′, then the claim follows from the fact that Vk,i and Vk′,i

are disjoint. Otherwise, assume w.l.o.g. that i < i′. Notice that either Xk′,i′ is contained
within X2k,i+1 or X2k+1,i+1, or it is disjoint from both. The Vk,i-bichromatic edges cross
from X2k,i+1 to X2k+1,i+1 while Vk′,i′ -bichromatic edges stay within Xk′,i′ , so the edge sets
must be disjoint.

Let S be a 2-hop spanner of F (h). Each vertex set Vk,i contains 2h−i(i + 1) vertices,
so the partition described above involves two sets of size 2h−i−1(i + 1). As Vk,i is a clique,
Lemma 16 implies that S contains at least 2h−i−1(i + 1) Vk,i-bichromatic edges. Every
level i contains 2i groups Vk,i, so S contains at least 2h−1(i + 1) bichromatic edges in
each level. Summation over all h levels (excluding the level where i = h) yields at least∑h−1

i=0 2h−1(i + 1) = Ω(2hh2) = Ω(n log n) edges. ◀

Geometric Realization of F (h). We realize F (h) as the intersection graph of a set S(h) of
homothets of any convex body for all h ∈ N. The construction is recursive. To construct
S(h+1), we form two copies of S(h) to realize vertices in the first h levels, then add homothets
to realize the vertices in level h + 1.

▶ Lemma 18. For every convex body C ⊂ R2 and every h ∈ N, the n-vertex graph F (h) can
be realized as the intersection graph of a set S(h) of n homothets of C.

Proof. Let C be a convex body (i.e., a compact convex set with nonempty interior) in the
plane. Let o ∈ ∂C be an extremal point of C. Then there exists a (tangent) line L such
that C ∩ L = {o}. Assume w.l.o.g. that o is the origin, L is the x-axis, and C lies in the
upper halfplane. We construct S(h) recursively from S(h − 1). Let s(a, i) ∈ S(h) denote the
homothet that represents the vertex (a, i) ∈ F (h). We maintain two invariants: (I1) for every
a ∈ {0, . . . , 2h − 1}, there is some point pa on the x-axis such that every s(a, i) ∈ S(h) is
tangent to the x-axis and intersects the x-axis exactly at pa; and (I2) whenever s1, s2 ∈ S(h)
intersect, s1 ∩ s2 has nonempty interior.



J. B. Conroy and C. D. Tóth 30:13

Construction. F (0) has a single vertex (0, 0) and no edges, so it can be represented as the
single convex body C with the extremal point o on the x-axis.

We now construct S(h) from S(h − 1); see Fig. 6. By invariant (I2), there is some ε > 0
such that for every s ∈ S(h − 1), translating s by ε in any direction does not change the
intersection graph. Duplicate S(h−1) to form the sets S1(h−1) and S2(h−1), and translate
every homothet in S2(h−1) by ε in the positive x direction. Let S′(h) = S1(h−1)∪S2(h−1).
Notice that for every clique Vk,i in F (h−1), there is a corresponding clique in the intersection
graph of S′(h) that contains both the vertices in the clique Vk,i realized by S1(h − 1) and
the vertices in the clique Vk,i realized by S2(h − 1).

The x-axis is still tangent to all s ∈ S′(h), and there are 2h distinct points on the x-axis
that intersect some s ∈ S′(h). Each point pa has a neighborhood that intersects only the
homothets in S′(h) that contain pa, since every convex body that does not contain pa has
a positive distance from pa by compactness. For each pa, add a homothetic copy Ca of C

completely contained within that neighborhood, tangent to the x-axis and containing pa.
Let S(h) be the union of S′(h) and these Ca.

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

L

Figure 6 Realization of F (2) with homothets of squares, all tangent to L. Each homothet is
labeled with the vertex of F (2) that is represents.

Correctness. For 0 ≤ i < h, let the homothet s1(a, i) ∈ S1(h − 1) represent (2a, i) in F (h),
and let the homothet s2(a, i) ∈ S2(h − 1) represent (2a + 1, i) in F (h). Let the homothets
Ca represent (a, h) ∈ F (h).

This correspondence implies that, for all 0 ≤ i < h, vertices in the clique Vk,i in F (h)
have been realized by homothets corresponding to a clique V⌊ k

2 ⌋,i in S1(h − 1) or S2(h − 1).
By construction of S(h), any two such homothets intersect. Similar reasoning applies in the
opposite direction: any intersection between two homothets in S′ corresponds to an edge in
some clique in F (h). When i = h, notice that every Ca intersects exactly the homothets in
S′(h) that intersect pa, which by assumption were the homothets representing points with
the same x-coordinate. Thus, any clique Vk,h in F (h) is represented in S(h), and there are
no edges involving Ca that do not correspond to such a clique in F (h). ◀

The previous two lemmata imply the following theorem.

▶ Theorem 19. For every convex body C ⊂ R2, there exists a set S of n homothets of C

such that every 2-hop spanner for the intersection graph of S has Ω(n log n) edges.

SoCG 2022



30:14 Hop-Spanners for Geometric Intersection Graphs

5 Outlook

We have shown that every n-vertex UDG admits a 2-hop spanner with O(n) edges; and this
bound generalizes to the intersection graphs of translates of any convex body in the plane
(see the full paper). The proof crucially relies on new results on the α-hull of a planar point
set. It remains an open problem whether these results generalize to higher dimensions, and
whether unit ball graphs admit 2-hop spanners with Od(n) edges in Rd for any d ≥ 3.

We proved that the intersection graph of n axis-aligned squares in R2 admits a 2-hop
spanner with O(n log n) edges, and this bound is the best possible. However, it is unclear
whether the upper bound generalizes to Euclidean disks of arbitrary radii (or to fat convex
bodies) in the plane. For fat convex bodies and for axis-aligned rectangles, we obtained 3-hop
spanners with O(n log n) and O(n log2 n) edges, respectively. However, it is unclear whether
the logarithmic factors are necessary. Do these intersection graphs admit weighted edge
biclique covers of weight O(n)? In general, we do not even know whether a linear bound can
be established for any constant stretch: Is there a constant t ∈ N for which every intersection
graph of n disks or rectangles admits t-hop spanner with O(n) edges?

Finally, it would be interesting to see other classes of intersection graphs (e.g., for strings
or convex sets in R2, set systems with bounded VC-dimension or semi-algebraic sets in Rd)
for which the general bound of O(n1+1/⌈t/2⌉) edges for t-hop spanners can be improved.

References
1 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and set

covers. Discret. Comput. Geom., 63(2):460–482, 2020. doi:10.1007/s00454-019-00099-6.
2 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad

Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial
review. Comput. Sci. Rev., 37:100253, 2020. doi:10.1016/j.cosrev.2020.100253.

3 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993. doi:
10.1007/BF02189308.

4 Shinwoo An and Eunjin Oh. Feedback vertex set on geometric intersection graphs. In Hee-Kap
Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and
Computation, (ISAAC), volume 212 of LIPIcs, pages 47:1–47:12. Schloss Dagstuhl, 2021.
doi:10.4230/LIPIcs.ISAAC.2021.47.

5 Roel Apfelbaum and Micha Sharir. Large complete bipartite subgraphs in incidence graphs
of points and hyperplanes. SIAM J. Discret. Math., 21(3):707–725, 2007. doi:10.1137/
050641375.

6 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM J. Comput., 39(7):3248–3282, 2010. doi:10.1137/090762968.

7 Baruch Awerbuch. Communication-time trade-offs in network synchronization. In Proc. 4th
ACM Symposium on Principles of Distributed Computing (PODC), pages 272–276, 1985.
doi:10.1145/323596.323621.

8 Julien Baste and Dimitrios M. Thilikos. Contraction-bidimensionality of geometric intersection
graphs. In Proc. 12th International Symposium on Parameterized and Exact Computation
(IPEC), volume 89 of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.
IPEC.2017.5.

9 Ahmad Biniaz. Plane hop spanners for unit disk graphs: Simpler and better. Comput. Geom.,
89:101622, 2020. doi:10.1016/j.comgeo.2020.101622.

10 Ulrik Brandes and Dagmar Handke. NP-completness results for minimum planar spanners.
In Rolf H. Möhring, editor, Proc. 23rd Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 1335 of LNCS, pages 85–99. Springer, 1997. doi:10.1007/BFb0024490.

https://doi.org/10.1007/s00454-019-00099-6
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.4230/LIPIcs.ISAAC.2021.47
https://doi.org/10.1137/050641375
https://doi.org/10.1137/050641375
https://doi.org/10.1137/090762968
https://doi.org/10.1145/323596.323621
https://doi.org/10.4230/LIPIcs.IPEC.2017.5
https://doi.org/10.4230/LIPIcs.IPEC.2017.5
https://doi.org/10.1016/j.comgeo.2020.101622
https://doi.org/10.1007/BFb0024490


J. B. Conroy and C. D. Tóth 30:15

11 Peter Braß and Christian Knauer. On counting point-hyperplane incidences. Comput. Geom.,
25(1-2):13–20, 2003. doi:10.1016/S0925-7721(02)00127-X.

12 Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is np-hard. Comput. Geom.,
9(1-2):3–24, 1998. doi:10.1016/S0925-7721(97)00014-X.

13 Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. Tighter estimates for
ε-nets for disks. Comput. Geom., 53:27–35, 2016. doi:10.1016/j.comgeo.2015.12.002.

14 Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. Limits of local
search: Quality and efficiency. Discret. Comput. Geom., 57(3):607–624, 2017. doi:
10.1007/s00454-016-9819-x.

15 Sergio Cabello and Miha Jejcic. Shortest paths in intersection graphs of unit disks. Comput.
Geom., 48(4):360–367, 2015. doi:10.1016/j.comgeo.2014.12.003.

16 Leizhen Cai. Np-completeness of minimum spanner problems. Discret. Appl. Math., 48(2):187–
194, 1994. doi:10.1016/0166-218X(94)90073-6.

17 Leizhen Cai and J. Mark Keil. Spanners in graphs of bounded degree. Networks, 24(4):233–249,
1994. doi:10.1002/net.3230240406.

18 Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic geometric
independent set. In Proc. 29th European Symposium on Algorithms (ESA), volume 204 of
LIPIcs, pages 25:1–25:15. Schloss Dagstuhl, 2021. doi:10.4230/LIPIcs.ESA.2021.25.

19 Nicolas Catusse, Victor Chepoi, and Yann Vaxès. Planar hop spanners for unit disk graphs.
In Christian Scheideler, editor, Proc. 6th (ALGOSENSORS), volume 6451 of LNCS, pages
16–30. Springer, 2010. doi:10.1007/978-3-642-16988-5_2.

20 Keren Censor-Hillel and Michal Dory. Distributed spanner approximation. SIAM J. Comput.,
50(3):1103–1147, 2021. doi:10.1137/20M1312630.

21 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

22 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. J. Comput. Geom., 10(1):27–41, 2019. doi:10.20382/jocg.v10i1a2.

23 Mirela Damian, Saurav Pandit, and Sriram V. Pemmaraju. Local approximation schemes for
topology control. In Eric Ruppert and Dahlia Malkhi, editors, Proceedings of the Twenty-Fifth
Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, Denver, CO,
USA, July 23-26, 2006, pages 208–217. ACM, 2006. doi:10.1145/1146381.1146413.

24 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds
in geometric intersection graphs. SIAM J. Comput., 49(6):1291–1331, 2020. doi:10.1137/
20M1320870.

25 Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth and the
hardness of approximating basic k-spanner. ACM Trans. Algorithms, 12(2):25:1–25:16, 2016.
doi:10.1145/2818375.

26 Thao Do. Representation complexities of semialgebraic graphs. SIAM J. Discret. Math.,
33(4):1864–1877, 2019. doi:10.1137/18M1221606.

27 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance.
In Proc. 31st ACM Symposium on Theory of Computing (STOC), pages 750–759, 1999.
doi:10.1145/301250.301447.

28 Adrian Dumitrescu, Anirban Ghosh, and Csaba D. Tóth. Sparse hop spanners for unit disk
graphs. Computational Geometry, page 101808, 2021. doi:10.1016/j.comgeo.2021.101808.

29 Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory
Comput. Syst., 41(4):691–729, 2007. doi:10.1007/s00224-006-1266-2.

30 David Eppstein and Hadi Khodabandeh. Optimal spanners for unit ball graphs in doubling
metrics. CoRR, abs/2106.15234, 2021. arXiv:2106.15234.

SoCG 2022

https://doi.org/10.1016/S0925-7721(02)00127-X
https://doi.org/10.1016/S0925-7721(97)00014-X
https://doi.org/10.1016/j.comgeo.2015.12.002
https://doi.org/10.1007/s00454-016-9819-x
https://doi.org/10.1007/s00454-016-9819-x
https://doi.org/10.1016/j.comgeo.2014.12.003
https://doi.org/10.1016/0166-218X(94)90073-6
https://doi.org/10.1002/net.3230240406
https://doi.org/10.4230/LIPIcs.ESA.2021.25
https://doi.org/10.1007/978-3-642-16988-5_2
https://doi.org/10.1137/20M1312630
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.20382/jocg.v10i1a2
https://doi.org/10.1145/1146381.1146413
https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
https://doi.org/10.1145/2818375
https://doi.org/10.1137/18M1221606
https://doi.org/10.1145/301250.301447
https://doi.org/10.1016/j.comgeo.2021.101808
https://doi.org/10.1007/s00224-006-1266-2
http://arxiv.org/abs/2106.15234


30:16 Hop-Spanners for Geometric Intersection Graphs

31 Paul Erdős. Extremal problems in graph theory. In Theory of Graphs and its Applications (Proc.
Sympos. Smolenice, 1963), pages 29–36, Prague, 1964. Publishing House of the Czechoslovak
Academy of Sciences. URL: https://old.renyi.hu/~p_erdos/1964-06.pdf.

32 Paul Erdős, A. W. Goodman, and Louis Pósa. The representation of a graph by set intersections.
Canadian Journal of Mathematics, 18:106–112, 1966. doi:10.4153/CJM-1966-014-3.

33 Paul Erdös and László Pyber. Covering a graph by complete bipartite graphs. Discret. Math.,
170(1-3):249–251, 1997. doi:10.1016/S0012-365X(96)00124-0.

34 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discret.
Comput. Geom., 62(4):879–911, 2019. doi:10.1007/s00454-018-00054-x.

35 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Yuval Rabani, editor, Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1563–1575, 2012. doi:10.1137/1.9781611973099.124.

36 Jacob Fox and János Pach. Applications of a new separator theorem for string graphs. Comb.
Probab. Comput., 23(1):66–74, 2014. doi:10.1017/S0963548313000412.

37 Martin Fürer and Shiva Prasad Kasiviswanathan. Spanners for geometric intersection graphs
with applications. J. Comput. Geom., 3(1):31–64, 2012. doi:10.20382/jocg.v3i1a3.

38 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and
its applications. SIAM J. Comput., 35(1):151–169, 2005. doi:10.1137/S0097539703436357.

39 Petr Hlinený and Jan Kratochvíl. Representing graphs by disks and balls (a survey of
recognition-complexity results). Discret. Math., 229(1-3):101–124, 2001. doi:10.1016/
S0012-365X(00)00204-1.

40 Bruno Jartoux and Nabil H. Mustafa. Optimality of geometric local search. In Proc. 34th
Symposium on Computational Geometry (SoCG), volume 99 of LIPIcs, pages 48:1–48:15.
Schloss Dagstuhl, 2018. doi:10.4230/LIPIcs.SoCG.2018.48.

41 Yusuke Kobayashi. Np-hardness and fixed-parameter tractability of the minimum spanner
problem. Theor. Comput. Sci., 746:88–97, 2018. doi:10.1016/j.tcs.2018.06.031.

42 Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450, 2001.
doi:10.1007/s00453-001-0021-y.

43 Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM J. Comput.,
27(5):1438–1456, 1998. doi:10.1137/S0097539794268753.

44 Jan Kratochvíl. A special planar satisfiability problem and a consequence of its np-completeness.
Discret. Appl. Math., 52(3):233–252, 1994. doi:10.1016/0166-218X(94)90143-0.

45 Hung Le and Shay Solomon. Truly optimal Euclidean spanners. In Proc. 60th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 1078–1100, 2019. doi:10.1109/FOCS.
2019.00069.

46 Hung Le and Shay Solomon. Towards a unified theory of light spanners I: fast (yet optimal)
constructions. CoRR, abs/2106.15596, 2021. arXiv:2106.15596.

47 James R. Lee. Separators in region intersection graphs. In Proc. 8th Innovations in Theoretical
Computer Science (ITCS), volume 67 of LIPIcs, pages 1:1–1:8. Schloss Dagstuhl, 2017. doi:
10.4230/LIPIcs.ITCS.2017.1.

48 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. J.
Comb. Theory, Ser. B, 103(1):114–143, 2013. doi:10.1016/j.jctb.2012.09.004.

49 T. S. Michael and Thomas Quint. Sphericity, cubicity, and edge clique covers of graphs.
Discret. Appl. Math., 154(8):1309–1313, 2006. doi:10.1016/j.dam.2006.01.004.

50 Nabil H. Mustafa, Kunal Dutta, and Arijit Ghosh. A simple proof of optimal epsilon nets.
Combinatorica, 38(5):1269–1277, 2018. doi:10.1007/s00493-017-3564-5.

51 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discret. Comput. Geom., 44(4):883–895, 2010. doi:10.1007/s00454-010-9285-9.

52 Nabil H. Mustafa and Kasturi R. Varadarajan. Epsilon-approximations and epsilon-nets. In
Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and
Computational Geometry, chapter 47. CRC Press, Boca Raton, FL, 3rd edition, 2017.

https://old.renyi.hu/~p_erdos/1964-06.pdf
https://doi.org/10.4153/CJM-1966-014-3
https://doi.org/10.1016/S0012-365X(96)00124-0
https://doi.org/10.1007/s00454-018-00054-x
https://doi.org/10.1137/1.9781611973099.124
https://doi.org/10.1017/S0963548313000412
https://doi.org/10.20382/jocg.v3i1a3
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.1016/S0012-365X(00)00204-1
https://doi.org/10.4230/LIPIcs.SoCG.2018.48
https://doi.org/10.1016/j.tcs.2018.06.031
https://doi.org/10.1007/s00453-001-0021-y
https://doi.org/10.1137/S0097539794268753
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1109/FOCS.2019.00069
http://arxiv.org/abs/2106.15596
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.4230/LIPIcs.ITCS.2017.1
https://doi.org/10.1016/j.jctb.2012.09.004
https://doi.org/10.1016/j.dam.2006.01.004
https://doi.org/10.1007/s00493-017-3564-5
https://doi.org/10.1007/s00454-010-9285-9


J. B. Conroy and C. D. Tóth 30:17

53 János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. J. AMS,
26:645–658, 2013. doi:10.1090/S0894-0347-2012-00759-0.

54 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989. doi:10.1002/jgt.3190130114.

55 Micha Sharir and Noam Solomon. Incidences with curves and surfaces in three dimensions,
with applications to distinct and repeated distances. In Proc. 28th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2456–2475, 2017. doi:10.1137/1.9781611974782.163.

56 Zsolt Tuza. Covering of graphs by complete bipartite subgraphs; complexity of 0-1 matrices.
Comb., 4(1):111–116, 1984. doi:10.1007/BF02579163.

57 Chenyu Yan, Yang Xiang, and Feodor F. Dragan. Compact and low delay routing labeling
scheme for unit disk graphs. Comput. Geom., 45(7):305–325, 2012. doi:10.1016/j.comgeo.
2012.01.015.

SoCG 2022

https://doi.org/10.1090/S0894-0347-2012-00759-0
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1137/1.9781611974782.163
https://doi.org/10.1007/BF02579163
https://doi.org/10.1016/j.comgeo.2012.01.015
https://doi.org/10.1016/j.comgeo.2012.01.015




Persistent Cup-Length
Marco Contessoto # Ñ

Department of Mathematics, São Paulo State University – UNESP, Brazil

Facundo Mémoli # Ñ

Department of Mathematics and Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, US

Anastasios Stefanou # Ñ

Department of Mathematics and Computer Science, University of Bremen, Germany

Ling Zhou # Ñ

Department of Mathematics, The Ohio State University, Columbus, OH, US

Abstract
Cohomological ideas have recently been injected into persistent homology and have for example
been used for accelerating the calculation of persistence diagrams by the software Ripser.

The cup product operation which is available at cohomology level gives rise to a graded ring
structure that extends the usual vector space structure and is therefore able to extract and encode
additional rich information. The maximum number of cocycles having non-zero cup product yields
an invariant, the cup-length, which is useful for discriminating spaces.

In this paper, we lift the cup-length into the persistent cup-length function for the purpose of
capturing ring-theoretic information about the evolution of the cohomology (ring) structure across
a filtration. We show that the persistent cup-length function can be computed from a family of
representative cocycles and devise a polynomial time algorithm for its computation. We furthermore
show that this invariant is stable under suitable interleaving-type distances.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry; Mathematics of computing → Topology

Keywords and phrases cohomology, cup product, persistence, cup length, Gromov-Hausdorff distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.31

Related Version Full Version: https://arxiv.org/abs/2107.01553 [11]

Funding Marco Contessoto: MC was supported by FAPESP through grants 2016/24707-4, 2017/
25675-1 and 2019/22023-9.
Facundo Mémoli: FM was partially supported by the NSF through grants RI-1901360, CCF-1740761,
and CCF-1526513, and DMS-1723003.
Anastasios Stefanou: AS was supported by NSF through grants CCF-1740761, DMS-1440386,
RI-1901360, and the Dioscuri program initiated by the Max Planck Society, jointly managed with
the National Science Centre (Poland), and mutually funded by the Polish Ministry of Science and
Higher Education and the German Federal Ministry of Education and Research.
Ling Zhou: LZ was partially supported by the NSF through grants RI-1901360, CCF-1740761, and
CCF-1526513, and DMS-1723003.

1 Introduction

Persistent Homology [20, 21, 33, 40, 10, 18, 8, 9], one of the main techniques in Topological
Data Analysis (TDA), studies the evolution of homology classes across a filtration. This
produces a collection of birth-death pairs which is called the barcode or persistence diagram
of the filtration.

© Marco Contessoto, Facundo Mémoli, Anastasios Stefanou, and Ling Zhou;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.contessoto@unesp.br
https://bv.fapesp.br/pt/pesquisador/670958/marco-antonio-de-freitas-contessoto/
mailto:memoli@math.osu.edu
http://facundo-memoli.org/
mailto:stefanou@uni-bremen.de
https://sites.google.com/view/anastasiostefanou
mailto:zhou.2568@osu.edu
https://sites.google.com/view/lingzhou-math/home
https://orcid.org/0000-0001-6655-5162
https://doi.org/10.4230/LIPIcs.SoCG.2022.31
https://arxiv.org/abs/2107.01553
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Persistent Cup-Length

In the case of cohomology, which is dual to that of homology, one studies linear maps
from the vector space of simplicial chains into the field K, known as cochains. Cochains are
naturally endowed with a product operation, called the cup product, which induces a bilinear
operation on cohomology and is denoted by ⌣: Hp(X)×Hq(X)→ Hp+q(X) for a space X
and dimensions p, q ≥ 0. With the cup product operation, the collection of cohomology vector
spaces can be given the structure of a graded ring, called the cohomology ring; see [31, § 48
and § 68] and [23, Ch. 3, §3.D]. This makes cohomology a richer structure than homology.

Persistent cohomology has been studied in [15, 16, 17, 5, 27], without exploiting the ring
structure induced by the cup product. Works which do attempt to exploit this ring structure
include [22, 26] in the static case and [25, 39, 3, 29, 24, 6, 12] at the persistent level.

In this paper, we continue this line of work and tackle the question of quantifying the
evolution of the cup product structure across a filtration through introducing a polynomial-
time computable invariant which is induced from the cup-length: the maximal number of
cocycles (in dimensions 1 and above) having non-zero cup product. We call this invariant
the persistent cup-length function, and identify a tool - the persistent cup-length diagram
(associated to a family of representative cocycles σ of the barcode) to compute it. (see Fig. 1).

t ∈ [0, 1) t ∈ [1, 2) t ∈ [2, 3) t ≥ 3

1 2 3 4 ∞

1
2
3
4

∞

1

2

cup(X)

1 2 3 4 ∞

1
2
3
4

∞

1 2

2

dgm⌣
σ (X)

Figure 1 A filtration X of the pinched Klein bottle, its persistent cup-length function cup(X)
(see Ex.12) and its persistent cup-length diagram dgm⌣

σ (X) (see Ex. 17).

Some invariants related to the cup product. In standard topology, an invariant is a
quantity associated to a given topological space which remains invariant under a certain class
of maps. This invariance helps in discovering, studying and classifying properties of spaces.
Beyond Betti numbers, examples of classical invariants are: the Lusternik-Schnirelmann
category (LS-category) of a space X, defined as the minimal integer k ≥ 1 such that there is
an open cover {Ui}k

i=1 of X such that each inclusion map Ui ↪→ X is null-homotopic, and
the cup-length invariant, which is the maximum number of positive-dimensional cocycles
having non-zero cup product. While being relatively more informative, the LS-category is
difficult to compute [13], and with rational coefficients this computation is known to be
NP-hard [2]. The cup-length invariant, as a lower bound of the LS-category [34, 35], serves
as a computable estimate for the LS-category. Another well known invariant which can be
estimated through the cup-length is the so-called topological complexity [38, 19, 36].



M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:3

Our contributions

Let Top denotes the category of (compactly generated weak Hausdorff) topological spaces.1
Throughout the paper, by a (topological) space we refer to an object in Top, and by a
persistent space we mean a functor from the poset category (R,≤) to Top. A filtration (of
spaces) is an example of a persistent space where the transition maps are given by inclusions.
This paper considers only persistent spaces with a discrete set of critical values. In addition,
all (co)homology groups are assumed to be taken over a field K. We denote by Intω the set
of intervals of type ω, where ω can be any one of the four types: open-open, open-closed,
closed-open and closed-closed. The type ω will be omitted when the results apply to all four
situations and intervals are written in the form of ⟨a, b⟩.

We introduce the invariant, the persistent cup-length function of general persistent
spaces, by lifting the standard cup-length invariant into the persistent setting. Let X :
(R,≤) → Top be a persistent space with t 7→ Xt. The persistent cup-length function
cup(X) : Int→ N of X, see Defn. 7, is defined as the function from the set Int to the set N
of non-negative integers, which assigns to each interval ⟨a, b⟩ the cup-length of the image ring2

Im
(
H∗(X)⟨a, b⟩

)
, which is the ring Im

(
H∗(Xb)→ H∗(Xa)

)
when ⟨a, b⟩ is a closed interval

(in other cases, there is some subtlety, see Rmk. 8). Note that the persistent cup-length
function is a generalization of the cup-length of spaces, since cup(X)([a, a]) reduces to the
cup-length of the space Xa.

In the case when X is a filtration, we define a notion of a diagram to compute the persistent
cup-length function (see Thm. 1): the persistent cup-length diagram dgm⌣

σ (X) : Int→
N (Defn. 16). We first assign a representative cocycle to every interval in the barcode of
X, and denote the family of representative cocycles by σ. Then, the persistent cup-length
diagram of an interval ⟨a, b⟩ is defined to be the maximum number of representative cocycles
in X that have a nonzero cup product over ⟨a, b⟩. It is worth noticing that the persistent
cup-length diagram depends on the choice of representative cocycles; see Ex. 18.

▶ Theorem 1. Let X be a filtration, and let σ be a family of representative cocycles for the
barcodes of X. The persistent cup-length function cup(X) can be retrieved from the persistent
cup-length diagram dgm⌣

σ (X): for any ⟨a, b⟩ ∈ Int,

cup(X)(⟨a, b⟩) = max
⟨c,d⟩⊇⟨a,b⟩

dgm⌣
σ (X)(⟨c, d⟩). (1)

The persistent cup-length functions do not supersede the standard persistence diagrams,
partly because they do not take H0 classes into account. However, it effectively augments the
standard diagram in the sense that there are situations in which it can successfully capture
information that standard persistence diagrams neglect (see Fig. 5). Our work therefore
provides additional computable persistence-like invariants enriching the TDA toolset which
can be used in applications requiring discriminating between different hypotheses such as in
shape classification or machine learning. For example, [27] mentions that cup product could
provide additional evidence when recovering the structure of animal trajectories.

A polynomial time algorithm. We develop a poly-time algorithm (Alg. 3) to compute
the persistent cup-length diagram of a filtration X of a simplicial complex X of dimension
(k + 1). This algorithm is output sensitive, and it has complexity bounded above by

1 We are following the convention from [7].
2 For f : R → S a graded ring morphism, we denote the graded ring f(R) by Im(f).

SoCG 2022



31:4 Persistent Cup-Length

O((mk)2 · q1 · qk−1 ·max{ck, q1}) ≤ O((mk)k+3) (cf. Thm. 20), with mk being the cardinality
of X, q1 being the cardinality of the barcode, and parameters qk−1 (≤ qk−1

1 ) and ck (≤ mk)
which we describe in §3.2 on page 13. In the case of the Vietoris-Rips filtration of an n-point
metric space, this complexity is improved to O((mk)2 ·q2

1 ·qk−1), which can be upper bounded
by O(nk2+5k+6).

Gromov-Hausdorff stability and discriminating power. In Thm. 2 we prove that the
persistent cup-length function is stable to perturbations of the involved filtrations (in a
suitable sense involving weak homotopy equivalences). Below, dE, dHI and dGH denote the
erosion, homotopy-interleaving and Gromov-Hausdorff distances, respectively. See [11, §D]
for details.

In general, the Gromov-Hausdorff distance is NP-hard to compute [37] whereas the erosion
distance is computable in polynomial time (see [28, Thm. 5.4]) and thus, in combination
with Thm. 2, provides a computable estimate for the Gromov-Hausdorff distance.

▶ Theorem 2 (Homotopical stability). For two persistent spaces X, Y : (R,≤)→ Top,

dE(cup(X), cup(Y)) ≤ dHI(X, Y). (2)

For the Vietoris-Rips filtrations VR(X) and VR(Y ) of compact metric spaces X and Y ,

dE (cup (VR(X)) , cup (VR(Y ))) ≤ 2 · dGH(X, Y ). (3)

Through several examples, we show that the persistent cup-length function helps in
discriminating filtrations when the persistent homology fails to or has a relatively weak
performance in doing so. Ex. 13 is a situation when two filtrations have identical persistent
homology but induce different persistent cup-length functions. In addition, in [11, Ex. 54] by
specifying suitable metrics on the torus T2 and on the wedge sum S1 ∨ S2 ∨ S1, we compute
the erosion distance between their persistent cup-length functions (see Fig. 2) and apply
Thm. 2 to obtain a lower bound π

3 for the Gromov-Hausdorff distance between them T2 and
S1 ∨ S2 ∨ S1 (see [11, Prop. 55]):

π

3 = dE
(
cup(VR(T2)), cup(VR(S1 ∨ S2 ∨ S1))

)
≤ 2 · dGH

(
T2, S1 ∨ S2 ∨ S1)

.

We also verify that the interleaving distance between the persistent homology of these two
spaces is at most 3

5 of the bound obtained from persistent cup-length functions (a fact which
we also establish). See [11, Rmk. 56].

π
2

2π
3

π

π
2

2π
3

π

2

2

π
2 ζ 2π

3
π

π
2

2π
3

π

1

Figure 2 The persistent cup-length functions cup(VR(T2)) (left) and cup(VR(S1 ∨S2 ∨S1))|(0,ζ)
(right), respectively. Here, ζ = arccos(− 1

3 ) ≈ 0.61π.

Proofs of all the theorems and results mentioned above are available in the appendix of
the full version [11].



M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:5

2 Persistent cup-length function

In the standard setting of persistent homology, one considers a filtration of spaces, i.e. a
collection of spaces X = {Xt}t∈R such that Xt ⊂ Xs for all t ≤ s, and studies the p-th
persistent homology for any given dimension p, defined as the functor Hp(X) : (R,≤)→ Vec
which sends each t to the p-th homology Hp(Xt) of Xt, see [18, 8]. Here Vec denotes the
category of vector spaces. The p-th persistent homology encodes the lifespans, represented by
intervals, of the p-dimensional holes (p-cycles that are not p-boundaries) in X. The collection
Bp(X) of these intervals is called the p-th barcode of X, and its elements are named bars. The
p-th persistent cohomology Hp(X) and its corresponding barcode are defined dually. Since
persistent homology and persistent cohomology have the same barcode [15], we will denote
both barcodes by Bp(X) for dimension p. We call the disjoint union B(X) := ⊔p∈NBp(X) the
total barcode of X, and assume bars in B(X) are of the same interval type3.

By considering the cup product operation on cocycles, the persistent cohomology is
naturally enriched with the structure of a persistent graded ring, which carries additional
information and leads to invariants stronger than standard barcodes in cases like Ex. 13.

In §2.1 we recall the cup product operation, as well as the notion and properties of
the cup-length invariant of cohomology rings. In §2.2 we lift the cup-length invariant to a
persistent invariant, called the persistent cup-length function, and examine some examples
that highlight its strength. Proofs and details are available in [11, §B].

2.1 Cohomology rings and the cup-length invariant
For a topological space X and a dimension p ∈ N, denote by Cp(X) and Cp(X) the spaces of
singular p-chains and p-cochains, respectively. For a cocycle σ, denote by [σ] the cohomology
class of σ. If X is given by the geometric realization of some simplicial complex, then we
consider its simplicial cohomology, by assuming an ordering on the vertex set of X and
considering its simplices to be sets of ordered vertices.

Let X := {Xt}t∈R be a filtration of topological spaces, and let I = ⟨b, d⟩ ∈ Bp(X). If I

is closed at its right end d, we denote by σI a cocycle in Cp(Xd); if not, we denote by σI

a cocycle in Cp(Xd−δ) for sufficiently small δ > 0. For any t ≤ d, denote by σI |Cp(Xt) the
restriction of σI to Cp(Xt)(⊂ Cp(Xd)). We introduce the notation [σI ]t by defining [σI ]t to
be

[
σI |Cp(Xt)

]
for t ≤ d and 0 for t > d.

▶ Definition 3 (Representative cocycles). Let σp := {σI}I∈Bp(X) be a Bp(X)-indexed collection
of p-cocycles in X. The collection σp is called a family of representative p-cocycles for Hp(X),
if for any t ∈ R, the set {[σI ]t}t∈I∈Bp(X) forms a linear basis for Hp(Xt). In this case, each σI

is called a representative cocycle associated to the interval I. The disjoint union σ := ⊔p∈Nσp

is called a family of representative cocycles for H∗(X).

The existence of a family of representative cocycles for H∗(X) (assuming that the filtration
X has finite critical values and finite-dimensional cohomology point-wise) is guaranteed by
the interval decomposition theorem of point-wise finite dimensional persistence modules
(see [14]) and the axiom of choice. Software programs are available to compute the total
barcode and return a family of representative cocycles, such as Ripser (see [5]), Java-Plex
(see [1]), Dionysus (see [16]), and Gudhi (see [30]). These cocycles are naturally equipped
with the cup product operation, which we recall as follows.

3 In TDA it is often the case that bars are of a fixed interval type, usually in closed-open form [32].

SoCG 2022



31:6 Persistent Cup-Length

Cup product. We recall the cup product operation in the setting of simplicial cohomology.
Let X be a simplicial complex with an ordered vertex set {x1 < · · · < xn}. For any non-
negative integer p, we denote a p-simplex by α := [α0, . . . , αp] where α0 < · · · < αp are
ordered vertices in X, and by α∗ : Cp(X)→ K the dual of α, where α∗(α) = 1 and α∗(τ) = 0
for any p-simplex τ ̸= α. Here K is the base field as before, and α∗ is also called a p-cosimplex.
Let β := [β0, . . . , βq] be a q-simplex for some integer q ≥ 0. The cup product α∗ ⌣ β∗ is
defined as the linear map Cp+q(X)→ K such that for any (p + q)-simplex τ = [τ0, . . . , τp+q],

α∗ ⌣ β∗(τ) := α∗([τ0, . . . , τp]) · β∗([τp, . . . , τp+q]).

Equivalently, we have that α∗ ⌣ β∗ is [α0, . . . , αp, β1, . . . , βq]∗ if αp = β0, and 0 otherwise.
By a p-cochain we mean a finite linear sum σ =

∑h
j=1 λjαj∗, where each αj is a p-simplex

in X and λj ∈ K. The cup product of a p-cochain σ =
∑h

j=1 λjαj∗ and a q-cochain
σ′ =

∑h′

j′=1 µj′βj′∗ is defined as σ ⌣ σ′ :=
∑

j,j′ λjµj′

(
αj∗ ⌣ βj′∗

)
.

In our algorithms, K is taken to be Z2 and every p-simplex α = [xi0 , . . . , xip
] is represented

by the ordered list [i0, . . . , ip]. We assume a total order (e.g. the order given in [5]) on the
simplices in X. Since coefficients are either 0 or 1, a p-cochain can be written as σ =

∑h
j=1 αj∗

for some αj = [xij
0
, . . . , xij

p
] and will be represented by the list

[
[i1

0, . . . , i1
p], . . . , [ih

0 , . . . , ih
p ]

]
.

We call h the size of σ. Let Xp ⊂ X be the set of p-simplices. Alg. 1 computes the cup
product of two cochains over Z2.

Algorithm 1 CupProduct(σ1, σ2,X).

Input : Two cochains σ1 and σ2, and the simplicial complex X.
Output : The cup product σ = σ1 ⌣ σ2, at cochain level.

1 σ ← [ ];
2 if dim(σ1) + dim(σ2) ≤ dim(X) then
3 for i ≤ size(σ1) and j ≤ size(σ2) do
4 a← σ1(i) and b← σ2(j);
5 if a[end] == b[first] then
6 c← a.append(b[second : end]);
7 if c ∈ Xdim(σ1)+dim(σ2) then
8 Append c to σ;

9 return σ.

▶ Remark 4 (Complexity of Alg. 1). Let c be the complexity of checking whether a simplex is in
the simplicial complex, and let m := card(X) be the number of simplices. For Z2-coefficients,
cocycles are in one-to-one correspondence with the subsets of X, so the size of a cocycle is at
most m. Thus, the complexity for Alg. 1 is O(size(σ1) · size(σ2) · c) ≤ O(m2 · c).

Cohomology ring and cup-length. For a given space X, the cup product yields a bilinear
map ⌣: Hp(X) × Hq(X) → Hp+q(X) of vector spaces. In particular, it turns the total
cohomology vector space H∗(X) :=

⊕
p∈N Hp(X) into a graded ring (H∗(X), +, ⌣) (see [11,

§B] for the explicit definition of a graded ring). The cohomology ring map X 7→ H∗(X) defines
a contravariant functor from the category of spaces, Top, to the category of graded rings,
GRing (see [23, §3.2]). To avoid the difficulty of describing and comparing ring structures
in a computer, we study a computable invariant of the graded cohomology ring, called the
cup-length. See [11, §A.2] for the general notion of invariants. For a category C, denote by
Ob(C) the set of objects in C.



M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:7

▶ Definition 5 (Length and cup-length). The length of a graded ring R =
⊕

p∈N Rp is the
largest non-negative integer ℓ such that there exist positive-dimension homogeneous elements
η1, . . . , ηℓ ∈ R (i.e. η1, . . . , ηℓ ∈

⋃
p≥1 Rp) with η1 • · · · • ηℓ ≠ 0. If

⋃
p≥1 Rp = ∅, then we

define the length of R to be zero. We denote the length of a graded ring R by len(R), and
call the following map the length invariant:

len : Ob(GRing)→ N, with R 7→ len(R).

When R = (H∗(X), +, ⌣) for some space X, we denote cup(X) := len(H∗(X)) and call
it the cup-length of X And we call the following map the cup-length invariant:

cup : Ob(Top)→ N, with X 7→ cup(X).

▶ Remark 6 (About the strength of the cup-length invariant). In some cases, cup-length captures
more information than homology. One well-known example is given by the torus T2 v.s. the
wedge sum S1 ∨ S2 ∨ S1, where despite having the same homology groups, these two spaces
have different cup-length. By specifying suitable metrics and considering the Vietoris-Rips
filtrations of the two spaces, the strength of cup-length persists in the setting of persistence
(see [11, Ex. 54]). It is also worth noticing that cup-length is not a complete invariant for
graded cohomology rings. For instance, after taking the wedge sum of T2 and S1 ∨ S2 ∨ S1

with T2 respectively, the resulted spaces T2 ∨ T2 and S1 ∨ S2 ∨ S1 ∨ T2 still have different
ring structures, but they have the same cup-length (since cup length takes the “maximum”).

An important fact about the cup-length is that it can be computed using a linear basis
for the cohomology vector space. In [11, Prop. 36] we show that if Bp is a linear basis for
Hp(X) for each p ≥ 1 and B :=

⋃
p≥1 Bp, then cup(X) = sup

{
ℓ ≥ 1 | B⌣ℓ ̸= {0}

}
.

2.2 Persistent cohomology rings and persistent cup-length functions
We study the persistent cohomology ring of a filtration and the associated notion of persistent
cup-length invariant. We examine several examples of this persistent invariant and establish
a way to visualize it in the half-plane above the diagonal. See [11, §B.2] for the proofs of our
results in this section.

Filtrations of spaces are special cases of persistent spaces. In general, for any category
C, one can define the notion of a persistent object in C, as a functor from the poset (R,≤)
(viewed as a category) to the category C. For instance, a functor R : (R,≤) → GRing
is called a persistent graded ring. Recall the contravariant cohomology ring functor
H∗ : Top → GRing. Given a persistent space X : (R,≤) → Top, the composition
H∗(X) : (R,≤) → GRing is called the persistent cohomology ring of X. Due to the
contravariance of H∗, we consider only contravariant persistent graded rings in this paper.

▶ Definition 7. We define the persistent cup-length function of a persistent space X as
the function cup(X) : Int→ N given by ⟨t, s⟩ 7→ len (Im(H∗(X)(⟨t, s⟩)) .

▶ Remark 8 (Notation for image ring). Im(H∗(X)(⟨t, s⟩) is defined as the image ring
Im(H∗(X)([t− δ, s + δ])) = Im(H∗(Xs+δ)→ H∗(Xt−δ)) for sufficiently small δ > 0, when
⟨t, s⟩ = (t, s), and is defined similarly for the cases when ⟨t, s⟩ = (t, s] or [t, s).
▶ Remark 9. It follows from [11, Prop. 38] that the cup-length invariant cup is non-increasing
under surjective morphisms and non-decreasing under injective morphisms, which we call an
inj-surj invariant. As a consequence, for any persistent space X, the persistent cup-length
function cup(X) defines a functor from (Int,≤) to (N,≥).

SoCG 2022



31:8 Persistent Cup-Length

Prop. 10 below allows us to compute the cohomology images of a persistent cohomology
ring from representative cocycles, which will be applied to compute persistent cup-length
functions in Ex. 12 and prove Thm. 1 in the full version of this paper, see [11, page 24].
Prop. 11 allows us to simplify the calculation of persistent cup-length functions in certain
cases, such as the Vietoris-Rips filtration of products or wedge sums of metric spaces.

▶ Proposition 10 (Persistent image ring). Let X = {Xt}t∈R be a filtration, together with
a family of representative cocycles σ = {σI}I∈B(X) for H∗(X). Let t ≤ s in R. Then
Im(H∗(Xs)→ H∗(Xt)) = ⟨[σI ]t : [t, s] ⊂ I ∈ B(X)⟩, generated as a graded ring.

▶ Proposition 11. Let X, Y : (R,≤)→ Top be two persistent spaces. Then:
cup (X×Y) = cup(X) + cup(Y),
cup (X⨿Y) = max{cup(X), cup(Y)}, and
cup (X ∨Y) = max{cup(X), cup(Y)}.

Here ×,⨿ and ∨ denote point-wise product, disjoint union, and wedge sum, respectively.

Examples and visualization. Each interval ⟨a, b⟩ in Int is visualized as a point (a, b) in the
half-plane above the diagonal (see Fig. 3). To visualize the persistent cup-length function of
a filtration X, we assign to each point (a, b) the integer value cup(X)(⟨a, b⟩), if it is positive.
If cup(X)(⟨a, b⟩) = 0 we do not assign any value. We present an example to demonstrate
how persistent cup-length functions are visualized in the upper-diagonal plane (see Fig. 1).

a b

(a, b)

Figure 3 The interval ⟨a, b⟩ in Int corresponds to the point (a, b) in R2.

▶ Example 12 (Visualization of cup(·)). Recall the filtration X = {Xt}t≥0 of a Klein bottle
with a 2-cell attached, defined in Fig. 1. Consider the persistent cohomology H∗(X) in
Z2-coefficients. Let v be the 0-cocycle born at t = 0, let α be the 1-cocycle born at t = 1
and died at t = 3, and let β be the 1-cocycle born at time t = 2. Let γ := β ⌣ β, which
is then a non-trivial 2-cocycle born at time t = 2, like β. Then the barcodes of X are:
B0(X) = {[0,∞)}, B1(X) = {[1, 3), [2,∞)}, and B2(X) = {[2,∞)}. See Fig. 4.

Using the formula in Prop. 10, for any t ≤ s, we have

Im(H∗(Xs)→ H∗(Xt)) =


⟨[v]t, [β]t, [γ]t⟩, if 2 ≤ t < 3 and s ≥ 3
⟨[v]t, [α]t, [β]t, [γ]t⟩, if 2 ≤ t ≤ s < 3
⟨[v]t, [α]t⟩, if 1 ≤ t < 2 and s < 3
⟨[v]t⟩, otherwise.

The persistent cup-length function of X is computed as follows and visualized in Fig. 1.

cup(X)([t, s]) =


2, if t ≥ 2
1, if 1 ≤ t < 2 and s < 3
0, otherwise.



M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:9

0 1 2 3 4

v

β
α

γ

B(X)

t ∈ [0, 1) t ∈ [1, 2) t ∈ [2, 3) t ≥ 3

Figure 4 The filtration X given in Fig. 1 and its barcode B(X), see Ex. 12.

We end this section by presenting an example, Ex. 13, where the persistent cup-length
function distinguishes a pair of filtrations which the total barcode is not able to. A similar
example is available in [11, §D.2], where we will also give a quantitative measure via the erosion
distance on the difference between persistent cup-length functions of different filtrations.

▶ Example 13 (cup(·) better than standard barcode). Consider the filtration X = {Xt}t≥0
of a 2-torus T2 and the filtration Y = {Yt}t≥0 of the space S1 ∨ S2 ∨ S1 as shown in Fig. 5.
Knowing that X3 = T2 and Y3 = S1∨S2∨S1 have the same (co)homology vector spaces in all
dimensions, one can directly check that the persistent (co)homology vector spaces associated
to X and Y are the same. However, the cohomology ring structure of X3 is different from
that of Y3: there are two 1-cocycles in X3 with a non-zero product (indeed the product is
a 2-cocycle), whereas all 1-cocycles in Y3 have zero product. This difference between the
cohomology ring structures of these two filtration is quantified by their persistent cup-length
functions, see Fig. 5. Also, see [11, Ex. 54] for a more geometric example, which considers
the Vietoris-Rips filtrations of T2 and S1 ∨ S2 ∨ S1.

t ∈ [0, 1) t ∈ [1, 2) t ≥ 2

1 2 3 4 ∞

1

2

3

4

∞

1
2

cup(X)

1 2 3 4 ∞

1

2

3

4

∞

1

cup(Y)

Figure 5 Top: A filtration X of T2 and its persistent cup-length function cup(X). Bottom: A
filtration Y of the wedge sum S1 ∨S2 ∨S1 and its persistent cup-length function cup(Y). See Ex. 13.

SoCG 2022



31:10 Persistent Cup-Length

3 The persistent cup-length diagram

In this section, we introduce the notion of the persistent cup-length diagram of a filtration, by
using the cup product operation on cocycles. In §3.1, we show how the persistent cup-length
diagram is used to compute the persistent cup-length function (see Thm. 1). In §3.2, we
develop an algorithm (see Alg. 3) to compute the persistent cup-length diagram, and study
its complexity. Proofs, details and extra examples are available in [11, §C].

3.1 Persistent cup-length diagram
We define the persistent cup-length diagram using a family of representative cocycles. In
Thm. 1 we show that the persistent cup-length function can be retrieved from the persistent
cup-length diagram. See [11, §C.1] for the proofs of Thm. 1 and details for this section.

▶ Definition 14 (ℓ-fold ∗σ-product). Let σ be a family of representative cocycles for H∗(X).
Let ℓ ∈ N∗ and let I1, . . . , Iℓ be a sequence of elements in B(X) with representative cocycles
σI1 , . . . , σIℓ

∈ σ, respectively. We define the ℓ-fold ∗σ-product of I1, · · · , Iℓ to be

I1 ∗σ · · · ∗σ Iℓ := {t ∈ R | [σI1 ]t ⌣ · · ·⌣ [σIℓ
]t ̸= [0]t}, (4)

associated with the formal representative cocycle σI1 ⌣ · · ·⌣ σIℓ
. We also call the right-hand

side of Eq. (4) the support of σI1 ⌣ · · ·⌣ σIℓ
, and denote it by supp(σI1 ⌣ · · ·⌣ σIℓ

).

The support of a product of representative cocycles is always an interval:

▶ Proposition 15 (Support is an interval). With the same assumption and notation in
Defn. 14, let I := supp(σI1 ⌣ · · ·⌣ σIℓ

). If I ̸= ∅, then I is an interval ⟨b, d⟩, where b ≤ d

are such that d is the right end of ∩1≤i≤ℓIi and b is the left end of some J ∈ B(X) (J is not
necessarily one of the Ii).

The ∗σ-product is associative and invariant under permutations. Let B≥1(X) :=
⊔p≥1Bp(X). Let B≥1(X)∗σℓ be the set of I1 ∗σ · · · ∗σ Iℓ where each Ii ∈ B≥1(X). For
the simplicity of notation, we often write B≥1(X)∗σℓ as B(X)∗σℓ.

▶ Definition 16 (persistent cup-length diagram). Let X be a filtration and let B≥1(X) be
its barcode over positive dimensions. Let σ = {σI}I∈B≥1(X) be a family of representative
cocycles for H≥1(X). The persistent cup-length diagram of X (associated to σ) is
defined to be the map dgm⌣

σ (X) : Int→ N, given by:

dgm⌣
σ (X)(I) := max{ℓ ∈ N∗ | I = I1 ∗σ · · · ∗σ Iℓ, where each Ii ∈ B≥1(X)},

with the convention that max ∅ = 0.

Recall Thm. 1, which states the relation between the persistent cup-length function cup(X)
and the persistent cup-length diagram dgm⌣

σ (X): for any interval ⟨a, b⟩, the cup(X)(⟨a, b⟩)
attains the maximum value of dgm⌣

σ (X)(⟨c, d⟩) over all intervals ⟨c, d⟩ ⊇ ⟨a, b⟩. This is in
the same spirit as in [32] where the rank function can be reconstructed from the persistence
diagram by replacing “max” operation with the sum operation.

▶ Example 17 (Example of dgm⌣
σ (·) and Thm. 1). Recall the filtration X = {Xt}t≥0

of the pinched Klein bottle defined in Fig. 1, and its persistent cup-length function and
the representative cocycles {α, β, γ} =: σ from Ex. 12. Because H∗(X) is non-trivial
up to dimension 2, dgm⌣

σ (X)(I) ≤ 2 for any I. It follows from [α ⌣ α] = 0 that



M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:11

dgm⌣
σ (X)([1, 3)) = 1, and from [α ⌣ β] = [γ] that [2, 3) = [1, 3) ∗σ [2,∞), implying

dgm⌣
σ (X)([2, 3)) = 2. A similar argument holds for [2,∞), using the fact that [β ⌣ β] = [γ].

Thus, we obtain the persistent cup-length diagram dgm⌣
σ (X) as below (see the right-most

figure in Fig. 1 for its visualization):

dgm⌣
σ (X)(I) =


1, if I = [1, 3)
2, if I = [2, 3) or I = [2,∞)
0, otherwise.

Applying Thm. 1, we obtain the persistent cup-length function cup(X) shown in the middle
figure of Fig. 1.

See [11, §C.1] for the proof of Thm. 1 and more examples of persistent cup-length diagrams.
It is worth noticing that the persistent cup-length diagram depends on the choice of the
family of representative cocycles σ, see Ex. 18 below.

▶ Example 18 (dgm⌣
σ (X) depends on σ). Let RP2 be the real projective plane. Consider

the filtration X of the 2-skeleton S2(RP2 × RP2) of the product space RP2 × RP2, given by:

X : • RP2 RP2 ∨ RP2 S2(RP2 × RP2)
t ∈ [0, 1) t ∈ [1, 2) t ∈ [2, 3) t ≥ 3

Let α be the 1-cocycle born at t = 1, and β be the 1-cocycles born at t = 2 when the
second copy of RP2 appears. See Fig. 6 for two choices of representative cocycles σ and τ

for B≥1(X), where these two choices only differ by the first dimensional cocycles associated
with the bar [1,∞). For a detailed explanation of the cohomology rings of the above spaces,
see [11, §C.1].

0 1 2 3 4

α

β

α⌣2

β⌣2

α ⌣ β

σ

0 1 2 3 4

α + β

β

α⌣2

β⌣2

α ⌣ β

τ

Figure 6 Two choices of representative cocycles for the filtration X given by Ex. 18.

To obtain the cup-length diagram, we first compute B(X)∗σ2 and B(X)∗τ2:

0 1 2 3 4

α⌣2

β⌣2

α ⌣ β

B(X)∗σ2

0 1 2 3 4

(α + β)⌣2

β⌣2

(α + β) ⌣ β

B(X)∗τ2

By Defn. 16, the persistent cup-length diagram associated to σ and τ are (see Fig. 7):

SoCG 2022



31:12 Persistent Cup-Length

1 2 3 4 ∞

1

2

3

4

∞
2 2 2

dgm⌣
σ (X)

1 2 3 4 ∞

1

2

3

4

∞
2 2

dgm⌣
τ (X)

Figure 7 The persistent cup-length diagrams dgm⌣
σ (X) (left) and dgm⌣

τ (X) (right), see Ex. 18.

See [11, §C.2] for more examples of persistent cup-length diagrams. In the next section,
we develop an algorithm for computing the persistent cup-length diagram dgm⌣

σ (X), which
can be used to compute the persistent cup-length function cup(X) due to Thm. 1.

3.2 An algorithm for computing the persistent cup-length diagram
over Z2

Let X : X1 ↪→ · · · ↪→ XN (= X) be a finite filtration of a finite simplicial complex X. Suppose
that the barcode over positive dimensions B := B≥1(X) and a family of representative
cocycles σ := {σI}I∈B are given. Because a finite filtration has only finitely many critical
values, we assume that all intervals in the barcode are closed at the right end. If not, we
replace the right end of each such interval with its closest critical value to the left. Since each
interval is considered together with a representative cocycle in this section, we will abuse the
notation and write B for the set {(I, σI)}I∈B as well. Let B∗σℓ be the set of I1 ∗σ · · · ∗σ Iℓ

where each Ii ∈ B. We compute
{
B∗σℓ

}
ℓ≥1 using:

Algorithm 2 Computing
{

B∗σℓ
}

ℓ≥1
.

1 while B∗σℓ ̸= ∅ do
2 for (I1, σ1) ∈ B and (I2, σ2) ∈ B∗σℓ do
3 if I1 ∗σ I2 ̸= ∅ then
4 Append (I1 ∗σ I2, σ1 ⌣ σ2) to B∗σ(ℓ+1)

The line 3 involves the computation of supp(σ1 ⌣ σ2) which is some interval [bσ, dσ]
for 1 ≤ bσ ≤ dσ ≤ m such that dσ is simply the right end of I1 ∩ I2 and bσ is the left end of
some I ∈ B, by Prop. 15. The computation of bσ is broken down in two steps: (1) compute
the cup product (at cochain level) σ := σ1 ⌣ σ2, and (2) find bσ as the smallest i ≤ dσ such
that σ|C∗(Xi) is not a coboundary. Step (1) is already addressed by Alg. 1 on page 6. Let us
now introduce an algorithm to address Step (2).

3.3 Checking whether a cochain is a coboundary
As before, we assume a total order (e.g. the order given in [5]) on the simplices, and denote
the ordered simplices by S = {α1 < · · · < αm}, where m is the number of simplices. We
adopt the reverse ordering for the set of cosimplices S∗ := {α∗

m < · · · < α∗
1}. Notice that S∗

forms a basis for the linear space of cochains. A p-cochain σ is written as a linear sum of
elements in S∗ uniquely. If α∗

j appears as a summand for σ, we denote αj ∈ σ.



M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:13

Let A be the coboundary matrix associated to the ordered basis S∗. Assume that
R = AV is the reduced matrix of A obtained from left-to-right column operations, given

by the upper triangular matrix V . As a consequence, the pivots Pivots(R) of columns of
R are unique. Using all i-th row for i ∈ Pivots(R), we do bottom-to-top row reduction on
R: UR = Λ , such that Λ has at most one non-zero element in each row and column, and
U is an upper triangular matrix. See [11, Alg. 3] for the row reduction algorithm (with
complexity O(m2)), which outputs the matrix U . The following proposition allows us to use
the row reduction matrix U and Pivots(R) to check whether a cochain is a coboundary. For
the proof of Prop. 19, see [11, §C.3].

▶ Proposition 19. Given a p-cochain σ, let y ∈ Zm
2 be such that σ = S∗ · y. Let R be

the column reduced coboundary matrix, U be the row reduction matrix of R. Then σ is a
coboundary, iff {i : the i-th row of (U · y) ̸= 0} ⊂ Pivots(R).

Using the boundary matrix. We can also use the boundary matrix to check whether a
cocycle is a coboundary, see [11, page 28]. Using the boundary matrix, only column reduction
is needed, while for the coboundary matrix both column reduction and row reduction are
performed. However, it has been justified in [5] that reducing the coboundary matrix is more
efficient than reducing the boundary matrix. Combined with the fact that the row reduction
step does not increase the computation complexity of computing the persistent cup-length
diagram, we will use the coboundary matrix in this paper.

3.4 Main algorithm and its complexity
Motivated by the goal of obtaining a practical algorithm, and in order to control the
complexity, we consider truncating filtrations up to a user specified dimension bound.

Truncation of a filtration. Fix a positive integer k. Given a filtration X : X1 ↪→ · · · ↪→
XN (= X) of a finite simplicial complex X, let Xk+1

i be the (k + 1)-skeleton of Xi for each i.
The (k + 1)-dimensional truncation of X is the filtration Xk+1 : Xk+1

1 ↪→ · · · ↪→ Xk+1
N . Since

H≤k(Y) ∼= H≤k(Yk+1) (as vector spaces) for any simplicial complex Y, we conclude that
H≤k(X) ∼= H≤k

(
Xk+1)

as persistent vector spaces. Thus, the barcode B(Xk+1) of Xk+1 is
equal to the barcode B≤k(X) := ⊔p≤kBp(X). Let B[1,k](X) := ⊔1≤p≤kBp(X). We introduce
Alg. 3 for computing the persistent cup-length diagram for the (k +1)-dimensional truncation
of X over Z2. The time complexity of Alg. 3 is described in terms of the variables below:

k is a dimension bound used to truncate the filtration;
mk is the number of simplices with positive dimension in the (k + 1)-skeleton Xk+1 of X;
ck is the complexity of checking whether a simplex is alive at a given filtration parameter;
qk−1 := max1≤ℓ≤k−1 card

((
B[1,k](X)

)∗σℓ
)

(see Defn. 14). In particular, q1 =
card

(
B[1,k](X)

)
.

Time complexity. In Alg. 3, line 9 runs no more than q1 · qk−1 times, due to the definition
of q1 and qk−1. The while loop in line 14 runs no more than card(b_time) ≤ q1 times, and
the condition of this while loop involves a matrix multiplication whose complexity is at most
O((mk)2). Combined with other comments in Alg. 3 and the fact that k is a fixed constant,
the total complexity is upper bounded by

O(k) ·O(q1 · qk−1) ·O((mk)2 ·max{ck, q1}) ≤ O((mk)2 · q1 · qk−1 ·max{ck, q1}).

SoCG 2022



31:14 Persistent Cup-Length

Algorithm 3 Main algorithm: compute persistent cup-length diagram.

Input : A dimension bound k, the ordered list of cosimplices S∗ from dimension 1
to k + 1, the column reduced coboundary matrix R from dimension 1 to
k + 1, and barcodes (annotated by representative cocycles) from dimension
1 to k: B[1,k] = {(bσ, dσ, σ)}σ∈σ, where each σ is a representative cocycle
for the bar (bσ, dσ) and {σ1, . . . , σq1} is ordered first in the increasing order
of the death time and then in the increasing order of the birth time.

Output : A matrix representation Aℓ of persistent cup-length diagram, and the lists
of distinct birth times b_time and death times d_time.

1 b_time, d_time← unique({bσ}σ∈σ), unique({dσ}σ∈σ);
2 mk, ℓ, B1 ← card(S∗), 1, B[1,k];
3 A0 = A1 ← zeros(card(b_time), card(d_time));
4 U ← RowReduce(R) ; // O(m2

k), [11, Alg. 3]
5 for (bi, bj) ∈ B1 do // O(mk)
6 A1(i, j)← 1;
7 while Aℓ−1 ̸= Aℓ and l ≤ k − 1 do // O(k)
8 Bℓ+1 = {};
9 for (bi1 , dj1 , σ1) ∈ B1 and (bi2 , dj2 , σ2) ∈ Bℓ do // O(q1 · qk−1)

10 σ ← CupProduct(σ1, σ2, S∗) ; // O(m2
k · ck), Alg. 1

11 y ← the vector representation of σ in S∗;
12 i← max{i′ : bi′ ≤ dmin{j1,j2}};
13 si ← number of simplices alive at bi;
14 while {u : (Umk+1−si: mk, mk+1−si: mk

· ymk+1−si: mk
)(u) ̸= 0} ⊂ Pivots(R)

do // O((mk)2 · q1)
15 i← i− 1;
16 si ← number of simplices alive at bi;
17 if bi < dmin{j1,j2} then
18 Append (bi, dmin{j1,j2}, σ) to Bℓ+1;
19 Aℓ+1(i, min{j1, j2})← ℓ

20 ℓ← ℓ + 1.
21 return Aℓ, b_time, d_time.

Next, we estimate qk−1 and ck using q1, mk and k. Since each Bℓ consists of ℓ-fold
∗σ-products of elements in B1, we have qk−1 = max1≤ℓ≤k−1 card(Bℓ) ≤ (q1)k−1, which turns
out to be a very coarse bound (see [11, Rmk. 45]). On the other hand, ck as the cost
of checking whether a simplex is alive at a given filtration, is at most mk the number of
simplices. Hence, the complexity of Alg. 3 is upper bounded by O((mk)3 ·qk

1 ). In addition, we
have q1 ≤ mk, because in the matrix reduction algorithm for computing barcodes, bars are
obtained from the pivots of the column reduced coboundary matrix and each column provides
at most one pivot. Thus, O((mk)2 · q1 · qk−1 ·max{ck, q1}) ≤ O((mk)3 · qk

1 ) ≤ O((mk)k+3).
Consider the Vietoris-Rips filtration arising from a metric space of n points with the

distance matrix D. Then line 7 of Alg. 1, checking whether a simplex a (represented by
a set of at most k + 1 indices into [n]) is alive at the filtration parameter value t, can be
done by checking whether max(D[a, a]) ≤ t, with constant time complexity ck = O(k2). In
summary, we have the following theorem.



M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:15

▶ Theorem 20 (Complexity of Alg. 3). For an arbitrary finite filtration truncated up to
dimension (k + 1), computing its persistent cup-length diagram via Alg. 3 has complexity at
most O((mk)2 · q1 · qk−1 ·max{ck, q1}). In terms of just mk, the complexity of Alg. 3 is at
most O((mk)k+3), since ck ≤ mk and qk−1 ≤ (mk)k−1.

For the (k +1)-dimensional truncation of the Vietoris-Rips filtration arising from a metric
space of n points, the complexity of Alg. 3 is improved to O((mk)2 · q2

1 · qk−1), which is at
most O((mk)k+3) ≤ O(nk2+5k+6).

Notice that when k = 1, the persistent cup-length diagram simply evaluates 1 at each
bar in the standard barcode, and 0 elsewhere. When k ≥ 2, the resulting persistent cup-
length diagram becomes more informative and captures certain topological features that the
standard persistence diagram is not able to detect. This is reflected in [11, Ex. 42].

Although the algorithm has not been tested on datasets yet, it is a practical algorithm,
given that there are available software programs, such as Ripser (see [4]), which compute
the barcode and extracts representative cocycles for Vietoris-Rips filtrations. Note that,
according to [5], the implementation ideas ‘are also applicable to persistence computations
for other filtrations as well’.
▶ Remark 21 (Estimating the parameter qk−1). The inequality qk−1 ≤ (mk)k−1 is quite coarse
in general. Consider a filtration consisting of contractible spaces, where qk−1 is always 0
but mk can be arbitrarily large. Even in the case when there is a reasonable number of
cohomology classes with non-trivial cup products, qk−1 can be much smaller than (mk)k−1.
See [11, Rmk. 45].
▶ Remark 22 (Reducing the time complexity). Because cup products cannot live longer than
their factors, discarding short bars will not result into loss of important information. In our
algorithm, an extra parameter ϵ ≥ 0 can be added to discard all the bars in the barcode B1
with length less than ε. By doing so, since the cardinality of B1 is decreased, one expects
the runtime of Alg. 3 (in particular inside the loop in line 9) to be significantly reduced. A
similar trimming strategy can also be applied in the construction of the subsequent Bℓs.

Correctness of the algorithm. Checking whether a cocycle is a coboundary requires local
matrix reduction for the given filtration parameter dmin{j1,j2}, but a global matrix reduction
is performed in the algorithm. The reason is that the coboundary matrix A, the column
reduction matrix V and the row reduction matrix U are all upper-diagonal. Therefore,
reducing the ambient matrix A and then taking the bottom-right submatrix to get Ū , is
equivalent to reducing the submatrix of A directly.

References
1 Henry Adams, Andrew Tausz, and Mikael Vejdemo-Johansson. javaplex: A research software

package for persistent (co)homology. In Mathematical Software, ICMS 2014 - 4th International
Congress, Proceedings, Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), pages 129–136. Springer Verlag,
2014. 4th International Congress on Mathematical Software, ICMS 2014 ; Conference date:
05-08-2014 Through 09-08-2014. doi:10.1007/978-3-662-44199-2_23.

2 Manuel Amann. Computational complexity of topological invariants. Proceedings of the
Edinburgh Mathematical Society, 58(1):27–32, 2015. doi:10.1017/S0013091514000455.

3 HB Aubrey. Persistent cohomology operations. PhD thesis, Duke University, 2011.
4 Ulrich Bauer. Ripser. https://github.com/Ripser/ripser, 2016.
5 Ulrich Bauer. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Journal of

Applied and Computational Topology, pages 1–33, 2021. doi:10.1007/s41468-021-00071-5.

SoCG 2022

https://doi.org/10.1007/978-3-662-44199-2_23
https://doi.org/10.1017/S0013091514000455
https://github.com/Ripser/ripser
https://doi.org/10.1007/s41468-021-00071-5


31:16 Persistent Cup-Length

6 Francisco Belchí and Anastasios Stefanou. A-infinity persistent homology estimates detailed
topology from point cloud datasets. Discrete & Computational Geometry, pages 1–24, 2021.
doi:10.1007/s00454-021-00319-y.

7 Andrew J Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance.
arXiv preprint, 2017. arXiv:1705.01690.

8 Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46(2):255–308, 2009.

9 Gunnar Carlsson. Persistent homology and applied homotopy theory. In Handbook of Homotopy
Theory, pages 297–329. Chapman and Hall/CRC, 2020.

10 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, 2007. doi:10.1007/s00454-006-1276-5.

11 Marco Contessoto, Facundo Mémoli, Anastasios Stefanou, and Ling Zhou. Persistent cup-length.
arXiv preprint, 2021. arXiv:2107.01553.

12 Luis Polanco Contreras and Jose Perea. Persistent cup product for quasi periodicity
detection. https://4c0aa4c9-c4b2-450c-a81a-c4a8e2d3f528.filesusr.com/ugd/58704f_
dcd2001732bb4b3ab91900f99955241c.pdf, 2021. Second Graduate Student Conference: Geo-
metry and Topology meet Data Analysis and Machine Learning (GTDAML2021).

13 Octavian Cornea, Gregory Lupton, John Oprea, Daniel Tanré, et al. Lusternik-Schnirelmann
category. Number 103 in Mathematical Surveys and Monographs. American Mathematical
Society, 2003.

14 William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence mod-
ules. Journal of Algebra and its Applications, 14(05):1550066, 2015. doi:10.1142/
S0219498815500668.

15 Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, November 2011. doi:10.1088/0266-5611/
27/12/124003.

16 Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent cohomology
and circular coordinates. Discrete & Computational Geometry, 45(4):737–759, 2011. doi:
10.1007/s00454-011-9344-x.

17 Paweł Dłotko and Hubert Wagner. Simplification of complexes for persistent homology
computations. Homology, Homotopy and Applications, 16(1):49–63, 2014. doi:10.4310/HHA.
2014.v16.n1.a3.

18 Herbert Edelsbrunner and John Harer. Persistent homology-a survey. Contemporary mathem-
atics, 453:257–282, 2008.

19 Michael Farber. Topological complexity of motion planning. Discrete and Computational
Geometry, 29(2):211–221, 2003. doi:10.1007/s00454-002-0760-9.

20 Patrizio Frosini. A distance for similarity classes of submanifolds of a euclidean space.
Bulletin of the Australian Mathematical Society, 42(3):407–415, 1990. doi:10.1017/
S0004972700028574.

21 Patrizio Frosini. Measuring shapes by size functions. In Intelligent Robots and Computer
Vision X: Algorithms and Techniques, volume 1607, pages 122–133. International Society for
Optics and Photonics, 1992. doi:10.1117/12.57059.

22 Rocío González Díaz and Pedro Real Jurado. Computation of cohomology operations of finite
simplicial complexes. Homology, Homotopy and Applications (HHA), 5 (2), 83-93., 2003.

23 Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000. URL: https:
//cds.cern.ch/record/478079.

24 Estanislao Herscovich. A higher homotopic extension of persistent (co)homology. Journal of
Homotopy and Related Structures, 13(3):599–633, 2018. doi:10.1007/s40062-017-0195-x.

25 Jonathan Huang. Cup products in computational topology, 2005. URL: http://
jonathan-huang.org/research/old/computationalcupproduct.pdf.

https://doi.org/10.1007/s00454-021-00319-y
http://arxiv.org/abs/1705.01690
https://doi.org/10.1007/s00454-006-1276-5
http://arxiv.org/abs/2107.01553
https://4c0aa4c9-c4b2-450c-a81a-c4a8e2d3f528.filesusr.com/ugd/58704f_dcd2001732bb4b3ab91900f99955241c.pdf
https://4c0aa4c9-c4b2-450c-a81a-c4a8e2d3f528.filesusr.com/ugd/58704f_dcd2001732bb4b3ab91900f99955241c.pdf
https://doi.org/10.1142/S0219498815500668
https://doi.org/10.1142/S0219498815500668
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1007/s00454-011-9344-x
https://doi.org/10.1007/s00454-011-9344-x
https://doi.org/10.4310/HHA.2014.v16.n1.a3
https://doi.org/10.4310/HHA.2014.v16.n1.a3
https://doi.org/10.1007/s00454-002-0760-9
https://doi.org/10.1017/S0004972700028574
https://doi.org/10.1017/S0004972700028574
https://doi.org/10.1117/12.57059
https://cds.cern.ch/record/478079
https://cds.cern.ch/record/478079
https://doi.org/10.1007/s40062-017-0195-x
http://jonathan-huang.org/research/old/computationalcupproduct.pdf
http://jonathan-huang.org/research/old/computationalcupproduct.pdf


M. Contessoto, F. Mémoli, A. Stefanou, and L. Zhou 31:17

26 Tomasz Kaczynski, Paweł Dłotko, and Marian Mrozek. Computing the cubical cohomology
ring. Image-A: Applicable Mathematics in Image Engineering, 1 (3), 137-142, 2010. URL:
http://hdl.handle.net/11441/26211.

27 Louis Kang, Boyan Xu, and Dmitriy Morozov. Evaluating state space discovery by persistent
cohomology in the spatial representation system. Frontiers in Computational Neuroscience,
15, 2021. doi:10.3389/fncom.2021.616748.

28 Woojin Kim and Facundo Mémoli. Spatiotemporal persistent homology for dynamic met-
ric spaces. Discrete & Computational Geometry, 66(3):831–875, 2021. doi:10.1007/
s00454-019-00168-w.

29 Umberto Lupo, Anibal M. Medina-Mardones, and Guillaume Tauzin. Persistence Steenrod
modules. arXiv preprint, pages arXiv–1812, 2018. arXiv:1812.05031.

30 Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The Gudhi
library: Simplicial complexes and persistent homology. In Hoon Hong and Chee Yap, editors,
Mathematical Software – ICMS 2014, pages 167–174, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg. doi:10.1007/978-3-662-44199-2_28.

31 James R. Munkres. Elements of algebraic topology. Addison-Wesley, Menlo Park, CA, 1984.
doi:10.1201/9780429493911.

32 Amit Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology,
1(3):397–419, 2018. doi:10.1007/s41468-018-0012-6.

33 Vanessa Robins. Towards computing homology from finite approximations. In Topology
proceedings, volume 24, pages 503–532, 1999.

34 Yuli B. Rudyak. On analytical applications of stable homotopy (the Arnold conjecture, critical
points). Mathematische Zeitschrift, 230(4):659–672, 1999. doi:10.1007/PL00004708.

35 Yuli B Rudyak. On category weight and its applications. Topology, 38(1):37–55, 1999.
doi:10.1016/S0040-9383(97)00101-8.

36 Parth Sarin. Cup length as a bound on topological complexity. arXiv preprint, 2017. arXiv:
1710.06502.

37 Felix Schmiedl. Computational aspects of the Gromov—Hausdorff distance and its application
in non-rigid shape matching. Discrete Comput. Geom., 57(4):854–880, June 2017. doi:
10.1007/s00454-017-9889-4.

38 Steve Smale. On the topology of algorithms, I. Journal of Complexity, 3(2):81–89, 1987.
doi:10.1016/0885-064X(87)90021-5.

39 Andrew Yarmola. Persistence and computation of the cup product. Undergraduate honors
thesis, Stanford University, 2010.

40 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Compu-
tational Geometry, 33(2):249–274, 2005. doi:10.1007/s00454-004-1146-y.

SoCG 2022

http://hdl.handle.net/11441/26211
https://doi.org/10.3389/fncom.2021.616748
https://doi.org/10.1007/s00454-019-00168-w
https://doi.org/10.1007/s00454-019-00168-w
http://arxiv.org/abs/1812.05031
https://doi.org/10.1007/978-3-662-44199-2_28
https://doi.org/10.1201/9780429493911
https://doi.org/10.1007/s41468-018-0012-6
https://doi.org/10.1007/PL00004708
https://doi.org/10.1016/S0040-9383(97)00101-8
http://arxiv.org/abs/1710.06502
http://arxiv.org/abs/1710.06502
https://doi.org/10.1007/s00454-017-9889-4
https://doi.org/10.1007/s00454-017-9889-4
https://doi.org/10.1016/0885-064X(87)90021-5
https://doi.org/10.1007/s00454-004-1146-y




Three-Chromatic Geometric Hypergraphs
Gábor Damásdi1 #

MTA-ELTE Lendület Combinatorial Geometry Research Group, Dept. of Computer Science,
ELTE Eötvös Loránd University, Budapest, Hungary

Dömötör Pálvölgyi #

MTA-ELTE Lendület Combinatorial Geometry Research Group, Dept. of Computer Science,
ELTE Eötvös Loránd University, Budapest, Hungary

Abstract
We prove that for any planar convex body C there is a positive integer m with the property that any
finite point set P in the plane can be three-colored such that there is no translate of C containing at
least m points of P , all of the same color. As a part of the proof, we show a strengthening of the
Erdős-Sands-Sauer-Woodrow conjecture. Surprisingly, the proof also relies on the two dimensional
case of the Illumination conjecture.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs

Keywords and phrases Discrete geometry, Geometric hypergraph coloring, Decomposition of multiple
coverings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.32

Related Version Full Version: https://arxiv.org/abs/2112.01820

Funding Gábor Damásdi: Supported by the ÚNKP-21-3 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research, Development
and Innovation Fund, and both researchers supported by the Lendület program of the Hungarian
Academy of Sciences (MTA), under grant number LP2017-19/2017.

1 Introduction

Our main result is the following.

▶ Theorem 1. For any planar convex body C there is a positive integer m = m(C) such that
any finite point set P in the plane can be three-colored in a way that there is no translate of
C containing at least m points of P , all of the same color.

This result closes a long line of research about coloring points with respect to planar
range spaces that consist of translates of a fixed set, a problem that was initiated by Pach
over forty years ago [21]. In general, a pair (P, S), where P is a set of points in the plane
and S is a family of subsets of the plane, called the range space, defines a primal hypergraph
H(P, S) whose vertex set is P , and for each S ∈ S we add the edge S ∩ P to the hypergraph.
Given any hypergraph H, a planar realization of H is defined as a pair (P, S) for which
H(P, S) is isomorphic to H. If H can be realized with some pair (P, S) where S is from some
family F , then we say that H is realizable with F . The dual of the hypergraph H(P, S),
where the elements of the range space S are the vertices and the points P define the edges
such that {S ∈ S | p ∈ S} is an edge for every p ∈ P , is known as the dual hypergraph and
is denoted by H(S, P ). If H = H(S, P ) where S is from some family F , then we say that H

1 Corresponding author

© Gábor Damásdi and Dömötör Pálvölgyi;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 32; pp. 32:1–32:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:damasdigabor@caesar.elte.hu
https://orcid.org/0000-0002-6390-5419
mailto:dom@cs.elte.hu
https://orcid.org/0000-0003-2970-0943
https://doi.org/10.4230/LIPIcs.SoCG.2022.32
https://arxiv.org/abs/2112.01820
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 Three-Chromatic Geometric Hypergraphs

has a dual realization with F . Pach observed [21, 24] that if F is the family of translates of
some set, then H has a dual realization with F if and only if H has a (primal) realization
with F .

Pach proposed to study the chromatic number of hypergraphs realizable with different
geometric families F . It is important to distinguish between two types of hypergraph colorings
that we will use, the proper coloring and the polychromatic coloring.

▶ Definition 2. A hypergraph is properly k-colorable if its vertices can be colored with k

colors so that each edge contains points from at least two color classes. Such a coloring
is called a proper k-coloring. If a hypergraph has a proper k-coloring but not a proper
(k − 1)-coloring, then it is called k-chromatic.

A hypergraph is polychromatic k-colorable if its vertices can be colored with k colors so
that each edge contains points from each color class. Such a coloring is called a polychromatic
k-coloring.

Note that for a polychromatic k-coloring to exist, it is necessary that each edge of the
underlying hypergraph has at least k vertices. More generally, we say that a hypergraph is
m-heavy if each of its edges has at least m vertices.

The main question that Pach raised can be rephrased as follows.

▶ Question 3. For which planar families F is there an mk = m(F , k) such that any mk-heavy
hypergraph realizable with F has a proper/polychromatic k-coloring?

Initially, this question has been mainly studied for polychromatic k-colorings (known in
case of a dual range space as cover-decomposition problem), and it was shown that such an
mk exists if F is the family of translates of some convex polygon [22, 33, 28], or the family of
all halfplanes [14, 32], or the homothetic2 copies of a triangle [15] or of a square [2], while it
was also shown that even m2 does not exist if F is the family of translates of some appropriate
concave polygon [26, 27] or any body3 with a smooth boundary [23]. It was also shown that
there is no mk for proper k-colorings if F is the family of all lines [26] or all axis-parallel
rectangles [10]; for these families, the same holds in case of dual realizations [26, 25]. For
homothets of convex polygons other than triangles, it is known that there is no m2 for
dual realizations [19], unlike for primal realizations. Higher dimensional variants [15, 8] and
improved bounds for mk have been also studied [3, 13, 7, 16, 4, 9]. For other results, see also
the decade old survey [24], or the up-to-date website https://coge.elte.hu/cogezoo.html.

If F is the translates or homothets of some planar convex body, it is an easy consequence
of the properties of generalized Delaunay-triangulations and the Four Color Theorem that
any hypergraph realizable with F is proper 4-colorable if every edge contains at least two
vertices. We have recently shown that this cannot be improved for homothets.

▶ Theorem 4 (Damásdi, Pálvölgyi [12]). Let C be any convex body in the plane that has two
parallel supporting lines such that C is strictly convex in some neighborhood of the two points
of tangencies. For any positive integer m, there exists a 4-chromatic m-uniform hypergraph
that is realizable with homothets of C.

2 A homothetic copy, or homothet, is a scaled and translated (but non-rotated) copy of a set. We always
require the scaling factor to be positive. Note that this is sometimes called a positive homothet.

3 By body, we always mean a compact subset of the plane with a non-empty interior, though our results
(and most of the results mentioned) also hold for sets that are unbounded, or that contain an arbitrary
part of their boundary, and are thus neither open, nor closed. This is because a realization of a
hypergraph can be perturbed slightly to move the points off from the boundaries of the sets realizing
the respective edges of the hypergraph.

https://coge.elte.hu/cogezoo.html


G. Damásdi and D. Pálvölgyi 32:3

For translates, we recall the following result.

▶ Theorem 5 (Pach, Pálvölgyi [23]). Let C be any convex body in the plane that has two
parallel supporting lines such that C is strictly convex in some neighborhood of the two points
of tangencies. For any positive integer m, there exists a 3-chromatic m-uniform hypergraph
that is realizable with translates of C.

This left only the following question open: Is it true for any planar convex body C that
there is a positive integer m such that no 4-chromatic m-uniform hypergraph is realizable
with translates of C? Our Theorem 1 answers this question affirmatively for all C by showing
that all realizable m-heavy hypergraphs are three-colorable for some m. This has been
hitherto known to hold only when C is a polygon (in which case 2 colors suffice [28], and 3
colors are known to be enough even for homothets [18]) and pseudodisk families that intersect
in a common point [1] (which generalizes the case when C is unbounded, in which case 2
colors suffice [23]).

The proof of Theorem 1 relies on a surprising connection with two other famous results, the
solution of the two dimensional case of the Illumination conjecture [20], and a recent solution
of the Erdős-Sands-Sauer-Woodrow conjecture by Bousquet, Lochet and Thomassé [6]. In
fact, we need a generalization of the latter result, which we prove with the addition of one
more trick to their method; this can be of independent interest.

Note that the extended abstract of our first proof attempt appeared recently in the
proceedings of EuroComb 2021 [11]. That proof did not use the above two results, however,
it only worked when C was a disk, and while the generalization to other convex bodies with
a smooth boundary seemed feasible, we saw no way to extend it to arbitrary convex bodies.

The rest of the paper is organized as follows.
In Section 2 we present the three main ingredients of our proof:

the Union Lemma (Section 2.1),
the Erdős-Sands-Sauer-Woodrow conjecture (Section 2.2) – the proof of our generalization
of the Bousquet-Lochet-Thomassé theorem can be found in the full version of the paper,
the Illumination conjecture (Section 2.3), which is a theorem of Levi in the plane.

In Section 3 we give the detailed proof of Theorem 1.
In Section 4 we give a general overview of the steps of the algorithm requiring computation
to show that we can find a three-coloring in randomized polynomial time.
Finally, in Section 5, we pose some problems left open.

2 Tools

2.1 Union Lemma
Polychromatic colorability is a much stronger property than proper colorability. Any poly-
chromatic k-colorable hypergraph is proper 2-colorable. We generalize this trivial observation
to the following statement about unions of polychromatic k-colorable hypergraphs.

▶ Lemma 6 (Union Lemma). Let H1 = (V, E1), . . . , Hk−1 = (V, Ek−1) be hypergraphs on a
common vertex set V . If H1, . . . , Hk−1 are polychromatic k-colorable, then the hypergraph
k−1⋃
i=1

Hi = (V,
k−1⋃
i=1

Ei) is proper k-colorable.

SoCG 2022



32:4 Three-Chromatic Geometric Hypergraphs

Proof. Choose c(v) ∈ {1, . . . , k} such that it differs from each ci(v). We claim that c is a

proper k-coloring of
k−1⋃
i=1

Hi. To prove this, it is enough to show that for every edge H ∈ Hi

and for every color j ∈ {1, . . . , k − 1}, there is a v ∈ H such that c(v) ̸= j. We can pick
v ∈ H for which ci(v) = j. This finishes the proof. ◀

Lemma 6 is sharp in the sense that for every k there are k − 1 hypergraphs such that
each is polychromatic k-colorable but their union is not properly (k − 1)-colorable.

We will apply the Union Lemma combined with the theorem below. A pseudoline
arrangement is a collection of simple curves, each of which splits R2 into two unbounded
parts, such that any two curves intersect at most once. A pseudohalfplane is the region on one
side of a pseudoline in such an arrangement. For hypergraphs realizible by pseudohalfplanes
the following was proved, generalizing a result of Smorodinsky and Yuditsky [32] about
halfplanes.

▶ Theorem 7 (Keszegh-Pálvölgyi [17]). Any (2k − 1)-heavy hypergraph realizable by pseudo-
halfplanes is polychromatic k-colorable, i.e., given a finite set of points and a pseudohalfplane
arrangement in the plane, the points can be k-colored such that every pseudohalfplane that
contains at least 2k − 1 points contains all k colors.

Combining Theorem 7 with Lemma 6 for k = 3, we obtain the following.

▶ Corollary 8. Any 5-heavy hypergraph realizable by two pseudohalfplane families is proper
3-colorable, i.e., given a finite set of points and two different pseudohalfplane arrangements
in the plane, the points can be 3-colored such that every pseudohalfplane that contains at least
5 points contains two differently colored points.

2.2 Erdős-Sands-Sauer-Woodrow conjecture
Given a quasi-order4 ≺ on a set V , we interpret it as a digraph D = (V, A), where the vertex
set is V and a pair (x, y) defines an arc in A if x ≺ y. The closed in-neighborhood of a vertex
x ∈ V is N−(x) = {x} ∪ {y|(y, x) ∈ A}. Similarly the closed out-neighborhood of a vertex x

is N+(x) = {x} ∪ {y|(x, y) ∈ A}. We extend this to subsets S ⊂ V as N−(S) =
⋃

x∈S

N−(x)

and N+(S) =
⋃

x∈S

N+(x). A set of vertices S such that N+(S) = V is said to be dominating.

For A, B ⊂ V we will also say that A dominates B if B ⊂ N+(A).
A complete multidigraph is a digraph where parallel edges are allowed and in which there

is at least one arc between each pair of distinct vertices. Let D be a complete multidigraph
whose arcs are the disjoint union of k quasi-orders ≺1, . . . , ≺k (parallel arcs are allowed).
Define N−

i (x) (resp. N+
i (x)) as the closed in-neighborhood (resp. out-neighborhood) of the

digraph induced by ≺i.
Proving the conjecture of Erdős, and of Sands, Sauer and Woodrow [31], Bousquet, Lochet

and Thomassé recently showed the following.

▶ Theorem 9 (Bousquet, Lochet, Thomassé [6]). For every k, there exists an integer f(k)
such that if D is a complete multidigraph whose arcs are the union of k quasi-orders, then D

has a dominating set of size at most f(k).

4 A quasi-order ≺ is a reflexive and transitive relation, but it is not required to be antisymmetric, so
p ≺ q ≺ p is allowed, unlike for partial orders.



G. Damásdi and D. Pálvölgyi 32:5

We show the following generalization of Theorem 9.

▶ Theorem 10. For every pair of positive integers k and l, there exist an integer f(k, l) such
that if D = (V, A) is a complete multidigraph whose arcs are the union of k quasi-orders
≺1, . . . , ≺k, then V contains a family of pairwise disjoint subsets Sj

i for i ∈ [k], j ∈ [l] with
the following properties:

|
⋃
i,j

Sj
i | ≤ f(k, l)

For each vertex v ∈ V \
⋃
i,j

Sj
i there is an i ∈ [k] such that for each j ∈ [l] there is an edge

of ≺i from a vertex of Sj
i to v.

Note that disjointness is the real difficulty here, without it the theorem would trivially
hold from repeated applications of Theorem 9. We saw no way to derive Theorem 10 from
Theorem 9, but with an extra modification the proof goes through. The proof of Theorem
10 can be found in the full version of the paper.

2.3 Hadwiger’s Illumination conjecture and pseudolines
Hadwiger’s Illumination conjecture has a number of equivalent formulations and names5.
For a recent survey, see [5]. We will use the following version of the conjecture.

Let Sd−1 denote the unit sphere in Rd. For a convex body C, let ∂C denote the boundary
of C and let int(C) denote its interior. A direction (light) u ∈ Sd−1 illuminates b ∈ ∂C if
{b + λu : λ > 0} ∩ int(C) ̸= ∅.

▶ Conjecture 11. The boundary of any convex body in Rd can be illuminated by 2d or fewer
directions. Furthermore, the 2d lights are necessary if and only if the body is a parallelepiped.

The conjecture is open in general. The d = 2 case was settled in affirmative by Levi [20]
in 1955. For d = 3 the best result is due to Prymak [30], who showed that 16 lights are
enough, improving the earlier method of Papadoperakis [29] with the help of a computer
program.

In the following part we make an interesting connection between the Illumination conjec-
ture for d = 2 and pseudolines. Roughly speaking, we show that the Illumination conjecture
implies that for any convex body in the plane the boundary can be broken into three parts
such that the translates of each part behave similarly to pseudolines, i.e., we get three
pseudoline arrangements from the translates of the three parts.

To put this into precise terms, we need some technical definitions and statements.
Fix a body C and an injective parametrization of ∂C, γ : [0, 1] → ∂C, that follows ∂C

counterclockwise. For each point p of ∂C there is a set of possible tangents touching at p.
Let g(p) ⊂ S1 denote the Gauss image of p, i.e., g(p) is the set of unit outernormals of the
tangent lines touching at p. Note that g(p) is an arc of S1 and g(p) is a proper subset of S1.

Let g+ : ∂C → S1 be the function that assigns to p the counterclockwise last element of
g(p). (See Figure 1 left.) Similarly let g− be the function that assigns to p the clockwise
last element of g(p). Thus, g(p) is the arc of S1 from g−(p) to g+(p). Let |g(p)| denote the
length of g(p).

▶ Observation 12. g+ ◦ γ is continuous from the right and g− ◦ γ is continuous from the left.

5 These include names such as Levi–Hadwiger Conjecture, Gohberg–Markus Covering Conjecture, Hadwi-
ger Covering Conjecture, Boltyanski–Hadwiger Illumination Conjecture.

SoCG 2022



32:6 Three-Chromatic Geometric Hypergraphs

p
g−(p)

g+(p)
p

q

J2J1

Figure 1 Extremal tangents at a boundary point (on the left) and parallel tangents on two
intersecting translates (on the right).

For t1 < t2 let γ[t1,t2] denote the restriction of γ to the interval [t1, t2]. For t1 > t2 let
γ[t1,t2] denote the concatenation of γ[t1,1] and γ[0,t2]. When it leads to no confusion, we
identify γ[t1,t2] with its image, which is a closed connected part of the boundary ∂C. For
such a J = γ[t1,t2], let g(J) =

⋃
p∈J

g(p). Clearly, g(J) is an arc of S1 from g−(t1) to g+(t2);

let |g(J)| denote the length of this arc.

▶ Lemma 13. Let C be a convex body and assume that J is a closed connected part of ∂C

such that |g(J)| < π. Then there are no two translates of J that intersect in more than one
point.

Proof. Suppose J has two translates J1 and J2 such that they intersect in two points, p and
q. Now both J1 and J2 have a tangent that is parallel to the segment pq, but since they lie on
different sides of the pq line, they have opposite outer normal vectors. (See Figure 1 right.)
This shows that J has two different tangents parallel to pq and therefore |g(J)| ≥ π. ◀

▶ Lemma 14. For a convex body C, which is not a parallelogram, and an injective para-
metrization γ of ∂C, we can pick 0 ≤ t1 < t2 < t3 ≤ 1 such that |g(γ[t1,t2])|, |g(γ[t2,t3])| and
|g(γ[t3,t1])| are each strictly smaller than π.

Proof. We use the 2-dimensional case of the Illumination conjecture (proved by Levi [20]). If
C is not a parallelogram, we can pick three directions, u1, u2 and u3, that illuminate C. Pick
t1 such that γ(t1) is illuminated by both u1 and u2. To see why this is possible, suppose that
the parts illuminated by u1 and u2 are disjoint. Each light illuminates a continuous open
ended part of the boundary. So in this case there are two disjoint parts of the boundary that
are not illuminated. If u3 illuminates both, then it illuminates everything that is illuminated
by u1 or everything that is illuminated by u2. This would mean that two lights illuminate
the whole boundary but this is not possible for any convex body. Indeed, suppose that two
lights u and v illuminate the whole body. Then there is a halfplane H through the origin that
contains both vectors u and v. Take a translate of H that touches C. Clearly the touching
point is not illuminated by either u or v, a contradiction.

Using the same argument, pick t2 and t3 such that γ(t2) is illuminated by both u2 and
u3 and γ(t3) is illuminated by both u3 and u1.

Note that u1 illuminates exactly those points for which g+(p) < u1 + π/2 and g−(p) >

u1 − π/2. Therefore, |g(γ[t1,t3])| < u1 + π/2 − (u1 − π/2) = π. Similarly |g(γ[t1,t2])| < π and
|g(γ[t2,t3])| < π. ◀

Observation 12 and Lemma 14 immediately imply the following statement.

▶ Lemma 15. For a convex body C, which is not a parallelogram, and an injective para-
metrization γ of ∂C, we can pick 0 ≤ t1 < t2 < t3 ≤ 1 and ε > 0 such that |g(γ[t1−ε,t2+ε])|,
|g(γ[t2−ε,t3+ε])| and |g(γ[t3−ε,t1+ε])| are each strictly smaller than π.



G. Damásdi and D. Pálvölgyi 32:7

3 Proof of Theorem 1

3.1 Quasi-orders on planar point sets
Cones provide a natural way to define quasi-orders on point sets (see [33] for an example
where this idea was used). A cone is a closed region in the plane that is bounded by two rays
that emanate from the origin. For a cone K let −K denote the cone that is the reflection of
K across the origin and let q + K denote the translate of K by the vector q.

▶ Observation 16. For any p, q ∈ R2 and cone K, the following are equivalent (see Fig. 2):
p ∈ q + K

q ∈ p + (−K)
p + K ⊆ q + K

q

p

p

q

Figure 2 Basic properties of cones.

For a cone K let ≺K denote the relation on the points of the plane where a point p is
bigger than a point q if and only if p + K contains q. By Observation 16, this relation is
transitive so it is a quasi-order. Recall that when ≺K is interpreted as a digraph, qp is an
edge if and only if q ≺K p.

Figure 3 Quasi-order on a point set.

Suppose the cones K1, K2, K3 are the translates of the three corners of a triangle so
that all their apexes are in the origin, in other words the cones K1, −K3, K2, −K1, K3, −K2
partition the plane around the origin in this order. Then we will say that K1, K2, K3 is a set
of tri-partition cones. In this case the intersection of any translates of K1, K2, K3 forms a
(possibly degenerate) triangle.

▶ Observation 17. Let K1, K2, K3 be a set of tri-partition cones and let P be a planar point
set. Then any two distinct points of P are comparable in either ≺K1 , ≺K2 or ≺K3 . (See
Figure 3.)

In other words, when interpreted as digraphs, the union of ≺K1 , ≺K2 and ≺K3 forms
a complete multidigraph on P . As a warm up for the proof of Theorem 1, we show the
following theorem.

SoCG 2022



32:8 Three-Chromatic Geometric Hypergraphs

▶ Theorem 18. There exists a positive integer m such that for any point set P , and any set
of tri-partition cones K1, K2, K3, we can three-color P such that no translate of K1, K2 or
K3 that contains at least m points of P is monochromatic.

Proof. We set m to be f(3, 2) + 13 with the function of Theorem 10. Consider the three
quasi-orders ≺K1 , ≺K2 or ≺K3 . Their union gives a complete multidigraph on P , hence we
can apply Theorem 10 with k = 3 and l = 2, resulting in subsets Sj

i for i ∈ [3], j ∈ [2]. Let
S =

⋃
i∈[3],j∈[2]

Sj
i . For each point p ∈ P \ S there is an i such that ≺Ki

has an edge from a

vertex of Si,1 and Si,2 to p. Let P1, P2, P3 be the partition of P \ S according to this i value.
We start by coloring the points of S. Color the points of S1,1 ∪ S2,1 ∪ S3,1 with the first

color and color the points of S1,2 ∪ S2,2 ∪ S3,2 with the second color.
Any translate of K1, K2 or K3 that contains f(3, 2) + 13 points of P , must contain

5 points from either P1, P2 or P3 by the pigeonhole principle. (Note that the cone might
contain all points of S.) Therefore, it is enough to show that for each i ∈ [3] the points of Pi

can be three-colored such that no translate of K1, K2, or K3 that contains at least 5 points
of Pi is monochromatic.

Consider P1; the proof is the same for P2 and P3. Take a translate of K1 and suppose
that it contains a point p of P1. By Theorem 10, there is an edge of ≺K1 from a vertex of
S1,1 to p and another edge from a vertex of S1,2 to p. Thus any such translate contains a
point from S1,1 and another point from S1,2, and hence it cannot be monochromatic.

Therefore, we only have to consider the translates of K2 and K3. Two translates of a cone
intersect at most once on their boundary. Hence, the translates of K2 form a pseudohalfplane
arrangement, and so do the translates of K3. Therefore, by Corollary 8, there is a proper
three-coloring for the translates of K2 and K3 together. ◀

▶ Remark 19. From Theorem 18, it follows using standard methods (see Section 3.2) that
Theorem 1 holds for triangles. This was of course known before, even for two-colorings
of homothetic copies of triangles. Our proof cannot be modified for homothets, but a
two-coloring would follow if instead of Corollary 8 we applied a more careful analysis for the
two cones.

3.2 Proof of Theorem 1
If C is a parallelogram, then our proof method fails. Luckily, translates of parallelograms
(and other symmetric polygons) were the first for which it was shown that even two colors
are enough [22]; in fact, by now we know that two colors are enough even for homothets of
parallelograms [2]. So from now on we assume that C is not a parallelogram.

The proof of Theorem 1 relies on the same ideas as we used for Theorem 18. We partition
P into several parts, and for each part Pi, we divide the translates of C into three families
such that two of the families each form a pseudohalfplane arrangement over Pi, while the
third family will only contain translates that are automatically non-monochromatic. Then
Corollary 8 gives us a proper three-coloring. As in the proof of Theorem 18, this is not done
directly. First, we divide the plane using a grid, and then in each small square we will use
Theorem 10 to discard some of the translates of C at the cost of a bounded number of points.

Now we start the proof of Theorem 1. The first step is a classic divide and conquer
idea [22]. We chose a constant r = r(C) depending only on C and divide the plane into a
grid of squares of side length r. Since each translate of C intersects some bounded number
of squares, by the pigeonhole principle we can find for any positive integer m another integer
m′ such that the following holds: each translate Ĉ of C that contains at least m′ points



G. Damásdi and D. Pálvölgyi 32:9

intersects a square Q such that Ĉ ∩ Q contains at least m points. For example, we can
choose m′ = m(diam(C)/r + 2)2, where diam(C) denotes the diameter of C. Therefore, it is
enough to show the following localized version of Theorem 1, since applying it separately for
the points in each square of the grid provides a proper three-coloring of the whole point set.

▶ Theorem 20. There is a positive integer m such that for any convex body C there is a
positive real r such that any finite point set P in the plane that lies in a square of side length
r can be three-colored in a way that there is no translate of C containing at least m points of
P , all of the same color.

We will show that m can be chosen to be f(3, 2) + 13 with the function of Theorem 10,
independently of C.

Proof. We pick r the following way. First we fix an injective parametrization γ of ∂C and
then fix t1, t2, t3 and ε according to Lemma 15. Let ℓ1, ℓ2, ℓ3 be the tangents of C touching
at γ(t1), γ(t2) and γ(t3). Let K1,2, K2,3, K3,1 be the set of tri-partition cones bordered by
ℓ1, ℓ2, ℓ3, such that Ki,i+1 is bordered by ℓi on its counterclockwise side, and by ℓi+1 on its
clockwise side (see Figure 4 left, and note that we always treat 3 + 1 as 1 in the subscript).

For a translate Ĉ of C we will denote by γ̂ the translated parametrization of ∂Ĉ, i.e.,
γ̂(t) = γ(t) + v if Ĉ was translated by vector v. Our aim is to choose r small enough to
satisfy the following two properties for each i ∈ [3].

(A) Let Ĉ be a translate of C, and Q be a square of side length r such that ∂Ĉ ∩ Q ⊂
γ̂[ti+ε/2,ti+1−ε/2] (see Figure 4 right). Then for any translate K of Ki,i+1 whose apex is
in Q ∩ Ĉ, we have K ∩ Q ⊂ Ĉ. (I.e., r is small with respect to C.)

(B) Let Ĉ be a translate of C, and Q be a square of side length r such that γ̂[ti−ε/2,ti+1+ε/2]

intersects Q. Then ∂Ĉ ∩ Q ⊂ γ̂[ti−ε,ti+1+ε]. (I.e., r is small compared to ε.)

ℓ1

ℓ2

C ℓ3

K3,1

K1,2

K2,3

γ̂(
t 1)

γ̂(t2)

ℓ1

ℓ2

γ̂(t2 − ε/2)

γ̂(
t 1

+
ε/

2)

K

Figure 4 Selecting the cones (on the left) and Property (A) (on the right).

We show that an r satisfying properties (A) and (B) can be found for i = 1. The argument
is the same for i = 2 and i = 3, and we can take the smallest among the three resulting
values of r.

First, consider property (A). Since the sides of K are parallel to ℓ1 and ℓ2, the portion of
K that lies “above” the segment γ̂(t1)γ̂(t2) is in Ĉ. Hence, if we choose r small enough so
that Q cannot intersect γ̂(t1)γ̂(t2), then property (A) is satisfied. We can choose r to be
smaller than 1√

2 times the distance of the segments γ̂(t1)γ̂(t2) and γ̂(t1 + ε/2)γ̂(t2 − ε/2).
Using that γ is a continuous function on a compact set, we can pick r such that property

(B) is satisfied. Therefore, there is an r satisfying properties (A) and (B).

SoCG 2022



32:10 Three-Chromatic Geometric Hypergraphs

The next step is a subdivision of the point set P using Theorem 10, like we did in the
proof of Theorem 18. The beginning of our argument is exactly the same.

Apply Theorem 10 for the graph given by the union of ≺K1,2 , ≺K2,3 and ≺K3,1 . By
Observation 16, this is indeed a complete multidigraph on P .

We apply Theorem 10 with k = 3 and l = 2, resulting in subsets Sj
i for i ∈ [3], j ∈ [2].

Let S =
⋃

i∈[3],j∈[2]
Sj

i . For each point p ∈ P \ S there is an i such that ≺Ki,i+1 has an edge

from a vertex of Si,1 and Si,2 to p. Let P1, P2, P3 be the partition of P \ S according to this
i value.

We start by coloring the points of S. Color the points of S1,1 ∪ S2,1 ∪ S3,1 with the first
color and color the points of S1,2 ∪ S2,2 ∪ S3,2 with the second color.

Note that m is at least f(3, 2) + 13. Any translate of C that contains f(3, 2) + 13 points
of P must contain 5 points from either P1, P2 or P3. (Note that the cone might contain all
points of S). Thus, it is enough to show that for each i ∈ [3] the points of Pi can be 3-colored
so that no translate of C that contains at least 5 points of Pi is monochromatic.

Consider P1, the proof is the same for P2 and P3. We divide the translates of C that
intersect Q into four (not necessarily disjoint) groups. Let C0 denote the translates where
Ĉ ∩ Q = Q. Let C1 denote the translates for which ∂Ĉ ∩ Q ⊂ γ̂[t1+ε/2,t2−ε/2]. Let C2 denote
the translates for which ∂Ĉ ∩ Q ∩ γ̂[t2−ε/2,t3] ̸= ∅. Let C3 denote the remaining translates for
which ∂Ĉ ∩ Q ∩ γ̂[t3,t1+ε/2] ̸= ∅.

We do not need to worry about the translates in C0, as Q itself will not be monochromatic.
Take a translate Ĉ from C1 and suppose that it contains a point p ∈ P1. By Theorem 10,

there is an edge of ≺K1,2 from a vertex of S1,1 to p and another edge from a vertex of S1,2 to
p. I.e., the cone p + K1,2 contains a point from S1,1 and another point from S1,2, and hence
it is not monochromatic. From property (A) we know that every point in (p + K1,2) ∩ P is
also in Ĉ. Therefore, Ĉ is not monochromatic.

Now consider the translates in C2. From property (B) we know that for these translates
we have ∂Ĉ ∩ Q ⊂ γ̂[t2−ε,t3+ε]. By the definition of t1, t2 and t3, we know that this implies
that any two translates from C2 intersect at most once on their boundary within Q, i.e., they
behave as pseudohalfplanes. To turn the translates in C2 into a pseudohalfplane arrangement
as defined earlier, we can do as follows. For a translate Ĉ, replace it with the convex set
whose boundary is γ̂[t2−ε,t3+ε] extended from its endpoints with two rays orthogonal to the
segment γ̂(t2 − ε)γ̂(t3 + ε). This new family provides the same intersection pattern in Q

and forms a pseudohalfplane arrangement. We can do the same with the translates in C3.
Therefore, by Corollary 8 there is a proper three-coloring for the translates in C2 ∪ C3. ◀

4 Overview of the computational complexity of the algorithm

In this section we show that given a point set P and a convex set C, we can determine some
m = m(C) and calculate a three-coloring of P efficiently if C is given in a natural way, for
example, if C is a disk. Our algorithm is randomized and its expected running time is a
polynomial of the number of points, n = |P |.

First, we need to fix three points on the boundary, τ1, τ2, τ3 ⊂ ∂C such that Lemma 15 is
satisfied with τi = γ(ti) for some ti and ε > 0 for each i. Note that we do not need to fix
a complete parametrization γ of ∂C or ε > 0; instead, it is enough to choose some points
τ −−

i and τ ++
i that satisfy the conclusion of Lemma 15 if we assume τ −−

i = γ(ti − ε) and
τ ++

i = γ(ti + ε) for each i. If C has a smooth boundary, like a disk, we can pick τ1, τ2, τ3
to be the touching points of an equilateral triangle with C inscribed in it. If the boundary



G. Damásdi and D. Pálvölgyi 32:11

of C contains vertex-type sharp turns, the complexity of finding these turns depends on
how C is given, but for any reasonable input method, this should be straight-forward.
After that, one can follow closely the steps of the proof of the Illumination conjecture in
the plane to get an algorithm, but apparently, this has not yet been studied in detail.
To pick r, the side length of the squares of the grid, we can fix some arbitrary points τ −

i

between τ −−
i and τi, and points τ +

i between τi and τ ++
i , to play the roles of γ(ti − ε/2)

and γ(ti + ε/2), respectively, for each i. It is sufficient to pick r so that r
√

2, the diameter
of the square of side length r, is less than

the distance of τ +
i and τ −

i+1 from the segment τiτi+1,
the distance of τ −

i from τ −−
i , and

the distance of τ +
i from τ ++

i ,
for each i, to guarantee that properties (A) and (B) are satisfied.
Set m = f(3, 2) + 13, which is an absolute constant given by Theorem 10. We need
to construct the complete multidigraph given by the tri-partition cones determined by
τ1, τ2, τ3, which needs a comparison for each pair of points. To obtain the subsets Sj

i ⊂ P

for i ∈ [3], j ∈ [2], where P is the set of points that are contained in a square of side
length r, we randomly sample the required number of points from each of the constantly
many Tj1,...,ji

according to the probability distributions wj1,...,ji
given in the proof. These

probability distributions can be computed by LP. With high probability, all the Sj
i -s will

be disjoint – otherwise, we can resample until we obtain disjoint sets.
To find the three-coloring for the two pseudohalfplane arrangements, given by Corollary
8, it is enough to determine the two-coloring given by Theorem 7 for one pseudohalfplane
arrangement. While not mentioned explicitly in [17], the polychromatic k-coloring can be
found in polynomial time if we know the hypergraph determined by the range space, as
this hypergraph can only have a polynomial number of edges, and the coloring algorithm
only needs to check some simple relations among a constant number of vertices and edges.
Finally, to compute a suitable m′ for Theorem 1 from the m of Theorem 20, it is enough
to know any upper bound B for the diameter of C, and let m′ = m(B/r + 2)2.

5 Open questions

It is a natural question whether there is a universal m that works for all convex bodies in
Theorem 1, like in Theorem 20. This would follow if we could choose r to be a universal
constant. While the r given by our algorithm can depend on C, we can apply an appropriate
affine transformation to C before choosing r; this does not change the hypergraphs that can
be realized with the range space determined by the translates of C. To ensure that properties
(A) and (B) are satisfied would require further study of the Illumination conjecture.

Our bound for m is quite large, even for the unit disk, both in Theorems 1 and 20, which
is mainly due to the fact that f(3, 2) given by Theorem 10 is huge. It has been conjectured
that in Theorem 9 the optimal value is f(3) = 3, and a similarly small number seems realistic
for f(3, 2) as well.

While Theorem 1 closed the last question left open for primal hypergraphs realizable
by translates of planar bodies, the respective problem is still open in higher dimensions.
While it is not hard to show that some hypergraphs with high chromatic number often used
in constructions can be easily realized by unit balls in R5, we do not know whether the
chromatic number is bounded or not in R3. From our Union Lemma (Lemma 6) it follows
that to establish boundedness, it would be enough to find a polychromatic k-coloring for
pseudohalfspaces, whatever this word means.

SoCG 2022



32:12 Three-Chromatic Geometric Hypergraphs

References
1 Eyal Ackerman, Balázs Keszegh, and Dömötör Pálvölgyi. Coloring hypergraphs defined by

stabbed pseudo-disks and ABAB-free hypergraphs. SIAM J. Discrete Math., 34(4):2250–2269,
2020. doi:10.1137/19M1290231.

2 Eyal Ackerman, Balázs Keszegh, and Máté Vizer. Coloring points with respect to squares.
Discrete Comput. Geom., 58(4):757–784, 2017. doi:10.1007/s00454-017-9902-y.

3 Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, David Orden, and Pedro
Ramos. Decomposition of multiple coverings into more parts. Discrete Comput. Geom.,
44(3):706–723, 2010. doi:10.1007/s00454-009-9238-3.

4 Andrei Asinowski, Jean Cardinal, Nathann Cohen, Sébastien Collette, Thomas Hackl, Michael
Hoffmann, Kolja Knauer, Stefan Langerman, MichałLasoń, Piotr Micek, Günter Rote, and
Torsten Ueckerdt. Coloring hypergraphs induced by dynamic point sets and bottomless
rectangles. In Algorithms and data structures, volume 8037 of Lecture Notes in Comput. Sci.,
pages 73–84. Springer, Heidelberg, 2013. doi:10.1007/978-3-642-40104-6_7.

5 Károly Bezdek and Muhammad A. Khan. The geometry of homothetic covering and illumina-
tion. In Discrete geometry and symmetry, volume 234 of Springer Proc. Math. Stat., pages
1–30. Springer, Cham, 2018. doi:10.1007/978-3-319-78434-2_1.

6 Nicolas Bousquet, William Lochet, and Stéphan Thomassé. A proof of the Erdős-Sands-Sauer-
Woodrow conjecture. J. Combin. Theory Ser. B, 137:316–319, 2019. doi:10.1016/j.jctb.
2018.11.005.

7 Jean Cardinal, Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. Making triangles colorful.
J. Comput. Geom., 4(1):240–246, 2013. doi:10.20382/jocg.v4i1a10.

8 Jean Cardinal, Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. Making octants colorful
and related covering decomposition problems. SIAM J. Discrete Math., 28(4):1948–1959, 2014.
doi:10.1137/140955975.

9 Jean Cardinal, Piotr Micek Kolja Knauer, Dömötör Pálvölgyi, Torsten Ueckerdt, and Narmada
Varadarajan. Colouring bottomless rectangles and arborescences. To appear, 2020.

10 Xiaomin Chen, János Pach, Mario Szegedy, and Gábor Tardos. Delaunay graphs of point
sets in the plane with respect to axis-parallel rectangles. Random Structures Algorithms,
34(1):11–23, 2009. doi:10.1002/rsa.20246.

11 Gábor Damásdi and Dömötör Pálvölgyi. Unit disks hypergraphs are three-colorable. Extended
Abstracts EuroComb 2021, Trends in Mathematics, 14:483–489, 2021.

12 Gábor Damásdi and Dömötör Pálvölgyi. Realizing an m-uniform four-chromatic hypergraph
with disks. Combinatorica, to appear, 2022.

13 Matt Gibson and Kasturi Varadarajan. Optimally decomposing coverings with trans-
lates of a convex polygon. Discrete Comput. Geom., 46(2):313–333, 2011. doi:10.1007/
s00454-011-9353-9.

14 Balázs Keszegh. Coloring half-planes and bottomless rectangles. Comput. Geom., 45(9):495–
507, 2012. doi:10.1016/j.comgeo.2011.09.004.

15 Balázs Keszegh and Dömötör Pálvölgyi. Octants are cover-decomposable. Discrete Comput.
Geom., 47(3):598–609, 2012. doi:10.1007/s00454-011-9377-1.

16 Balázs Keszegh and Dömötör Pálvölgyi. Convex polygons are self-coverable. Discrete Comput.
Geom., 51(4):885–895, 2014. doi:10.1007/s00454-014-9582-9.

17 Balázs Keszegh and Dömötör Pálvölgyi. An abstract approach to polychromatic coloring:
shallow hitting sets in ABA-free hypergraphs and pseudohalfplanes. J. Comput. Geom.,
10(1):1–26, 2019. doi:10.20382/jocg.v10i1a1.

18 Balázs Keszegh and Dömötör Pálvölgyi. Proper coloring of geometric hypergraphs. Discrete
Comput. Geom., 62(3):674–689, 2019. doi:10.1007/s00454-019-00096-9.

19 István Kovács. Indecomposable coverings with homothetic polygons. Discrete Comput. Geom.,
53(4):817–824, 2015. doi:10.1007/s00454-015-9687-9.

20 F. W. Levi. Überdeckung eines Eibereiches durch Parallelverschiebung seines offenen Kerns.
Arch. Math. (Basel), 6:369–370, 1955. doi:10.1007/BF01900507.

https://doi.org/10.1137/19M1290231
https://doi.org/10.1007/s00454-017-9902-y
https://doi.org/10.1007/s00454-009-9238-3
https://doi.org/10.1007/978-3-642-40104-6_7
https://doi.org/10.1007/978-3-319-78434-2_1
https://doi.org/10.1016/j.jctb.2018.11.005
https://doi.org/10.1016/j.jctb.2018.11.005
https://doi.org/10.20382/jocg.v4i1a10
https://doi.org/10.1137/140955975
https://doi.org/10.1002/rsa.20246
https://doi.org/10.1007/s00454-011-9353-9
https://doi.org/10.1007/s00454-011-9353-9
https://doi.org/10.1016/j.comgeo.2011.09.004
https://doi.org/10.1007/s00454-011-9377-1
https://doi.org/10.1007/s00454-014-9582-9
https://doi.org/10.20382/jocg.v10i1a1
https://doi.org/10.1007/s00454-019-00096-9
https://doi.org/10.1007/s00454-015-9687-9
https://doi.org/10.1007/BF01900507


G. Damásdi and D. Pálvölgyi 32:13

21 János Pach. Decomposition of multiple packing and covering. Diskrete Geometrie, 2. Kolloq.
Math. Inst. Univ. Salzburg, pages 169–178, 1980.

22 János Pach. Covering the plane with convex polygons. Discrete Comput. Geom., 1(1):73–81,
1986. doi:10.1007/BF02187684.

23 János Pach and Dömötör Pálvölgyi. Unsplittable coverings in the plane. Adv. Math., 302:433–
457, 2016. doi:10.1016/j.aim.2016.07.011.

24 János Pach, Dömötör Pálvölgyi, and Géza Tóth. Survey on decomposition of multiple coverings.
In Geometry—intuitive, discrete, and convex, volume 24 of Bolyai Soc. Math. Stud., pages
219–257. János Bolyai Math. Soc., Budapest, 2013. doi:10.1007/978-3-642-41498-5_9.

25 János Pach and Gábor Tardos. Coloring axis-parallel rectangles. J. Combin. Theory Ser. A,
117(6):776–782, 2010. doi:10.1016/j.jcta.2009.04.007.

26 János Pach, Gábor Tardos, and Géza Tóth. Indecomposable coverings. In Discrete geometry,
combinatorics and graph theory, volume 4381 of Lecture Notes in Comput. Sci., pages 135–148.
Springer, Berlin, 2007. doi:10.1007/978-3-540-70666-3_15.

27 Dömötör Pálvölgyi. Indecomposable coverings with concave polygons. Discrete Comput.
Geom., 44(3):577–588, 2010. doi:10.1007/s00454-009-9194-y.

28 Dömötör Pálvölgyi and Géza Tóth. Convex polygons are cover-decomposable. Discrete Comput.
Geom., 43(3):483–496, 2010. doi:10.1007/s00454-009-9133-y.

29 Ioannis Papadoperakis. An estimate for the problem of illumination of the boundary of a
convex body in E3. Geom. Dedicata, 75(3):275–285, 1999. doi:10.1023/A:1005056207406.

30 A Prymak. Every 3-dimensional convex body can be covered by 14 smaller homothetic copies.
arXiv preprint, 2021. arXiv:2112.10698.

31 Bill Sands, Norbert W. Sauer, and Robert E. Woodrow. On monochromatic paths in
edge-coloured digraphs. J. Combin. Theory Ser. B, 33(3):271–275, 1982. doi:10.1016/
0095-8956(82)90047-8.

32 Shakhar Smorodinsky and Yelena Yuditsky. Polychromatic coloring for half-planes. J. Combin.
Theory Ser. A, 119(1):146–154, 2012. doi:10.1016/j.jcta.2011.07.001.

33 Gábor Tardos and Géza Tóth. Multiple coverings of the plane with triangles. Discrete Comput.
Geom., 38(2):443–450, 2007. doi:10.1007/s00454-007-1345-4.

SoCG 2022

https://doi.org/10.1007/BF02187684
https://doi.org/10.1016/j.aim.2016.07.011
https://doi.org/10.1007/978-3-642-41498-5_9
https://doi.org/10.1016/j.jcta.2009.04.007
https://doi.org/10.1007/978-3-540-70666-3_15
https://doi.org/10.1007/s00454-009-9194-y
https://doi.org/10.1007/s00454-009-9133-y
https://doi.org/10.1023/A:1005056207406
http://arxiv.org/abs/2112.10698
https://doi.org/10.1016/0095-8956(82)90047-8
https://doi.org/10.1016/0095-8956(82)90047-8
https://doi.org/10.1016/j.jcta.2011.07.001
https://doi.org/10.1007/s00454-007-1345-4




A Solution to Ringel’s Circle Problem
James Davies #

University of Waterloo, Canada

Chaya Keller #

Ariel University, Israel

Linda Kleist #

Technische Universität Braunschweig, Germany

Shakhar Smorodinsky #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Bartosz Walczak #

Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Abstract
We construct families of circles in the plane such that their tangency graphs have arbitrarily large
girth and chromatic number. This provides a strong negative answer to Ringel’s circle problem (1959).
The proof relies on a (multidimensional) version of Gallai’s theorem with polynomial constraints,
which we derive from the Hales-Jewett theorem and which may be of independent interest.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases circle arrangement, chromatic number, Gallai’s theorem, polynomial method

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.33

Related Version Full Version: https://arxiv.org/abs/2112.05042

Funding Chaya Keller : Research partially supported by the Israel Science Foundation (grant no.
1065/20).
Shakhar Smorodinsky: Research partially supported by the Israel Science Foundation (grant no.
1065/20).
Bartosz Walczak: The author is partially supported by the National Science Center of Poland grant
2019/34/E/ST6/00443.

Acknowledgements This work was initiated at the online workshop “Geometric graphs and hyper-
graphs”. We thank the organizers Torsten Ueckerdt and Yelena Yuditsky for a very nice workshop
and all participants for fun coffee breaks and a fruitful atmosphere.

1 Introduction

A constellation (see [10]) is a finite collection of circles in the plane in which no three circles
are tangent at the same point. The tangency graph G(C) of a constellation C is the graph
with vertex set C and edges comprising of the pairs of tangent circles in C. In this paper,
graph-theoretic terms such as chromatic number or girth (i.e., the minimum length of a
cycle) applied to a constellation C refer to the tangency graph G(C).

Jackson and Ringel [10] discussed four problems regarding the chromatic number of
constellations. The problems are illustrated in Figure 1.

(a) The penny problem. What is the maximum chromatic number of a constellation of
non-overlapping unit circles?

(b) The coin problem. What is the maximum chromatic number of a constellation of non-
overlapping circles (of arbitrary radii)?

© James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jgdavies@uwaterloo.ca
mailto:chayak@ariel.ac.il
https://orcid.org/0000-0001-6400-3946
mailto:kleist@ibr.cs.tu-bs.de
https://orcid.org/0000-0002-3786-916X
mailto:shakhar@math.bgu.ac.il
https://orcid.org/0000-0003-3038-6955
mailto:walczak@tcs.uj.edu.pl
https://orcid.org/0000-0002-5761-2564
https://doi.org/10.4230/LIPIcs.SoCG.2022.33
https://arxiv.org/abs/2112.05042
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 A Solution to Ringel’s Circle Problem

(a) (c)

(d)(b)

Figure 1 An illustration of the four coloring problems of tangency graphs of constellations:
(a) a penny graph, (b) a coin graph, (c) an overlapping penny graph, and (d) a general constellation
as in the circle problem.

(c) The overlapping penny problem. What is the maximum chromatic number of a (possibly
overlapping) constellation of unit circles?

(d) The circle problem. What is the maximum chromatic number of a general constellation
of circles?

Jackson and Ringel provided a simple proof that the answer to the penny problem is 4.
The claim that the answer for the coin problem is also 4 is equivalent to the four color
theorem [1, 2]. Indeed, on the one hand, if the circles are non-overlapping, then G(C) is
planar and thus 4-colorable by the four-color theorem. On the other hand, by the Koebe-
Andreev-Thurston circle packing theorem [13], every planar graph can be realized as G(C)
for some constellation C of non-overlapping circles, and hence, the assertion that every such
constellation C is 4-colorable implies the four color theorem.

The overlapping penny problem is equivalent to the celebrated Hadwiger-Nelson problem,
which asks what is the minimum number of colors needed for a coloring of the plane such
that no two points at distance 1 get the same color. Indeed, if all circles in C have a radius
of 1/2, then two circles are tangent if and only if the distance between their centers is 1. For
this setting, Isbell [20] observed about 60 years ago that 7 colors suffice, and only recently
de Grey [5] showed that 4 colors are not sufficient, and hence, the chromatic number of the
plane lies between 5 and 7.

Unlike for the first three problems, in which a finite upper bound was known already
when they were stated, for the circle problem no finite upper bound was known. This open
problem was introduced for the first time by Ringel [19] in 1959 and appeared in several
places as either a question (e.g., [10, 11, 15]) or a conjecture that there is a finite upper
bound (e.g., [12]). For lower bounds, Jackson and Ringel [10] presented an example that
requires 5 colors, see Figure 1(d). Another such example follows from de Grey’s 5-chromatic
unit distance graph. No construction requiring more than 5 colors has been known so far.

In this paper, we solve Ringel’s circle problem in a strong sense by showing that the
chromatic number is unbounded, even if we require high girth.



J. Davies, C. Keller, L. Kleist, S. Smorodinsky, and B. Walczak 33:3

▶ Theorem 1. There exist constellations of circles in the plane with arbitrarily large girth
and chromatic number.

The constellation condition (that no three circles are tangent at a point) is crucial for
Ringel’s circle problem to be interesting – otherwise one could drive the chromatic number
arbitrarily high by taking a set of circles all tangent at one point. In Theorem 1, however,
the condition is redundant because it follows from the stronger condition that the girth of the
tangency graph is larger than 3. Actually, we prove an even stronger statement (Theorem 9)
in which we additionally forbid pairs of internally tangent circles.

The first author [4] recently proved that there are intersection graphs of axis-aligned
boxes in R3 with arbitrarily large girth and chromatic number. The main tool for this result
is a “sparse” version of Gallai’s theorem due to Prömel and Voigt [17] (see Theorem 3),
whose applications include a modification of Tutte’s construction of triangle-free graphs with
large chromatic number [6, 7].

To prove Theorem 1, we also use a “sparse” version of Gallai’s theorem. However, it is
crucial in our context to guarantee that there are no “unwanted” tangencies in the resulting
collection of circles. To this end, we develop a refined “sparse” version of Gallai’s theorem
with additional (polynomial) constraints (Theorem 4). We believe that this version may be
applicable to obtaining lower bound constructions for other geometric coloring problems, in
which some specific form of algebraic independence is requested.

Tangent circles can be thought of as circles intersecting at zero angle. We extend Theorem 1
to graphs defined by pairs of circles intersecting at an arbitrary fixed angle. Specifically, we
say that two intersecting circles C1 and C2 intersect at angle θ if at any intersection point of
C1 and C2, the angle between the tangent line to C1 and the tangent line to C2 equals θ.
For any θ ∈ [0, π/2], the θ-graph Gθ(C) of a collection of circles C is the graph with vertex
set C and edges comprising the pairs of circles in C that intersect at angle θ. In particular,
the 0-graph is the tangency graph. We extend Theorem 1 as follows.

▶ Theorem 2. For every θ ∈ [0, π/2], there exist θ-graphs of circles in the plane with
arbitrarily large girth and chromatic number.

The proof of Theorem 2 for θ > 0 is significantly simpler than the proof for θ = 0
corresponding to Theorem 1. Therefore, the remainder of the paper is organized as follows. In
Section 2, we introduce Gallai’s theorem and prove a version of it with additional constraints
as needed for the proof of Theorem 1. In Section 3, we prove Theorem 2 for θ > 0. As the
underlying ideas and tools are similar but simpler, this can be considered as a warm-up for
the proof of the more involved case θ = 0, which follows in Section 4.

2 Gallai’s theorem with constraints

We start by introducing results from Ramsey theory – Gallai’s theorem and its versions that
we need for the proofs of Theorems 1 and 2.

A homothetic map in Rd is a map h : Rd → Rd of the form h(p) = p∗ +λp for some p∗ ∈ Rd

and λ > 0. In other words, a homothetic map is a composition of (positive) uniform scaling
and translation. A set T ′ ⊆ Rd is a homothetic copy of a set T ⊆ Rd if there is a homothetic
map h in Rd such that T ′ = h(T ).

The following beautiful theorem, which is a generalization of the well-known van der
Waerden’s theorem on arithmetic progressions [21], was first discovered by Gallai in the 1930s,
as reported by Rado [18].

SoCG 2022



33:4 A Solution to Ringel’s Circle Problem

▶ Gallai’s Theorem. For every finite set T ⊂ Rd, there exists a finite set X ⊂ Rd such that
every k-coloring of X contains a monochromatic homothetic copy of T .

A cycle of length ℓ ⩾ 2 on a set X is a tuple (T1, . . . , Tℓ) of distinct subsets of X such that
there exist distinct elements x1, . . . , xℓ ∈ X with xi ∈ Ti ∩Ti+1 for i ∈ [ℓ−1] and xℓ ∈ Tℓ ∩T1.

In order to guarantee high girth in the proofs of Theorems 1 and 2, we need an appropriate
“sparse” version of Gallai’s theorem, which excludes short cycles among all homothetic copies
of T in X (one of which is guaranteed to be monochromatic). In particular, the following
strengthening of Gallai’s theorem suffices for the purpose of proving Theorem 2 for θ > 0.

▶ Theorem 3 (Prömel, Voigt [17]). For every finite set T ⊂ Rd of size at least 3 and for any
integers g ⩾ 3 and k ⩾ 1, there exists a finite set X ⊂ Rd such that every k-coloring of X

contains a monochromatic homothetic copy of T and no tuple of fewer than g homothetic
copies of T in X forms a cycle on X.

Because Theorem 3 only guarantees the existence of a set X, it is not specific enough
to prove Theorem 1. Roughly speaking, in our proof of Theorem 1, we apply a (refined
version of) Gallai’s theorem to a family of circles in the plane (with d = 3, the third
coordinate representing the radius) such that the resulting family of circles satisfies a number
of additional conditions, e.g., it does not contain two internally tangent circles. To guarantee
the additional properties, we develop a refined “sparse” version of Gallai’s theorem, which
imposes polynomial constraints on the resulting set.

We say that a family F of 2d-variate real polynomials respects a set X ⊂ Rd if f(p, q) ̸= 0
for all f ∈ F and all pairs of distinct points p, q ∈ X.

▶ Theorem 4. Let T be a finite subset of Rd of size at least 3, let F be a countable family
of 2d-variate real polynomials that respects T , and let g and k be positive integers. Then
there exist a finite set X ⊂ Rd and a collection T of homothetic copies of T in X satisfying
the following conditions:
1. F respects X,
2. no tuple of fewer than g homothetic copies of T in T form a cycle,
3. every k-coloring of X contains a monochromatic homothetic copy of T in T .

One of the standard ways of proving Gallai’s theorem is to derive it from the Hales-Jewett
theorem [9]. Our proof of Theorem 4 goes along the same line.

For m, n ∈ N, a subset L of the n-dimensional m-cube [m]n is called a combinatorial line
if there exist a non-empty set of indices I = {i1, . . . , ik} ⊆ [n] and a choice of x∗

i ∈ [m] for
every i ∈ [n] \ I such that

L =
{

(x1, . . . , xn) ∈ [m]n : xi1 = · · · = xik
and xi = x∗

i for i /∈ I
}

.

The indices in I are called the active coordinates of L.

▶ Hales-Jewett Theorem. For any m, k ∈ N, there exists n ∈ N such that every k-coloring
of [m]n contains a monochromatic combinatorial line.

We need the following “sparse” version of the Hales-Jewett theorem.

▶ Theorem 5 (Prömel, Voigt [16]). For any m, g, k ∈ N with m ⩾ 3, there exist n ∈ N and a
set H ⊆ [m]n such that every k-coloring of H contains a monochromatic combinatorial line
of [m]n and no tuple of fewer than g combinatorial lines of [m]n contained in H forms a cycle.

We also need the following simple algebraic fact.



J. Davies, C. Keller, L. Kleist, S. Smorodinsky, and B. Walczak 33:5

▶ Lemma 6. For every countable family F of n-variate real polynomials that are not
identically zero, the union of their zero sets

⋃
f∈F Z(f), where Z(f) = {x ∈ Rn : f(x) = 0},

has empty interior.

Proof. Fix f ∈ F . Clearly, Z(f) is a closed set in Rn. Suppose for the sake of contradiction
that there is a point x in the interior of Z(f). Let y ∈ Rn be such that f(y) ̸= 0. The
univariate polynomial fx,y given by fx,y(t) = f(x + t(y − x)) is not identically zero, because
fx,y(1) = f(y) ̸= 0, so it has finitely many roots. However, fx,y(t) = 0 whenever |t| is
sufficiently small for the point x + t(y − x) to fall into an open neighborhood of x contained
in Z(f). There are infinitely many such values t, which is a contradiction. Hence, Z(f) has
empty interior. The lemma now follows by the Baire category theorem – a standard tool
from topology, which asserts that a countable union of closed sets with empty interior in a
complete metric space (such as Rn with the Euclidean metric) has empty interior. ◀

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. We can assume without loss of generality that F contains the polyno-
mial δ defined by

δ(p1, . . . , pd, q1, . . . , qd) = (p1 − q1)2 + · · · + (pd − qd)2,

because distinct points p, q ∈ Rd satisfy δ(p, q) ̸= 0. Put T = {t1, . . . , tm}, where m = |T |.
Let n and H ⊆ [m]n be as claimed in Theorem 5 applied to [m], g, and k. For a given
vector γ = (γ1, . . . , γn) ∈ Rn, define a map ζγ : H → Rd by ζγ(x) =

∑n
i=1 γitxi

, and put
Xγ = ζγ(H) = {ζγ(x) : x ∈ H} ⊂ Rd.

We aim to find a vector γ ∈ Rn with positive coordinates such that F respects the set Xγ .
For any f ∈ F and any distinct x, y ∈ H, let Ff,x,y be the n-variate polynomial defined by

Ff,x,y(γ1, . . . , γn) = f
(∑n

i=1 γitxi
,

∑n
i=1 γityi

)
.

Given f ∈ F and distinct points x, y ∈ H, let i ∈ [n] be an index such that xi ̸= yi. Setting
γi = 1 and γj = 0 for j ̸= i, we obtain Ff,x,y(γ) = f(txi , tyi) ̸= 0, which shows that Ff,x,y

is not identically zero. Apply Lemma 6 to the family {Ff,x,y : f ∈ F , x, y ∈ H, x ̸= y} to
conclude that the union

⋃
f∈F ,x,y∈H,x ̸=y Z(Ff,x,y) of the zero sets of the polynomials Ff,x,y

has empty interior. In particular, there exists a vector γ ∈ Rn with positive coordinates such
that Ff,x,y(γ) ̸= 0 for all f ∈ F and all distinct x, y ∈ H, so that F respects the set Xγ .

Fix such a vector γ, and let ζ = ζγ and X = Xγ . Condition 1 thus follows. Furthermore,
by our assumption that δ ∈ F , we have δ(ζ(x), ζ(y)) = Fδ,x,y(γ) ̸= 0 for any distinct x, y ∈ H ,
which shows that ζ is injective.

Let L be the set of combinatorial lines that are contained in H. Every combinatorial
line L ∈ L gives rise to a homothetic copy of T in X as follows: if I is the set of active
coordinates of L and the coordinates i /∈ I are fixed to xi in L, then the set

ζ(L) = {ζ(x) : x ∈ L} =
{∑

i/∈I γitxi
+

(∑
i∈I γi

)
tj : j ∈ [m]

}
is a homothetic copy of T . Specifically, we have ζ(L) = h(T ) for the homothetic map h given
by h(p) = p∗ + λp with p∗ =

∑
i/∈I γitxi and λ =

∑
i∈I γi > 0. Let T = {ζ(L) : L ∈ L}.

We show that conditions 2 and 3 hold for X and T . Since no tuple of fewer than g

combinatorial lines in L form a cycle and ζ is injective, no tuple of fewer than g members
of T form a cycle, which is condition 2. For the proof of condition 3, consider a k-coloring
ϕ of X. It induces a k-coloring x 7→ ϕ(ζ(x)) of H, in which, by Theorem 5, there is a
monochromatic combinatorial line L ∈ L. We conclude that the homothetic copy ζ(L) of T

in T is monochromatic in ϕ. ◀

SoCG 2022



33:6 A Solution to Ringel’s Circle Problem

T0

Figure 2 Construction of the set T0 for θ = π/2.

The above proof method can also be used to prove other versions of Gallai’s theorem
with constraints. On the one hand, we can describe constraints using functions other than
polynomials if they satisfy a suitable analogue of Lemma 6, e.g., real analytic functions. On
the other hand, we can use other versions of the Hales-Jewett theorem, e.g., the density
Hales-Jewett theorem due to Furstenberg and Katznelson [8], which asserts that for any
m ∈ N and α > 0, there is n ∈ N such that every subset of [m]n of size at least αmn contains
a combinatorial line. Then, the same proof leads to the following result.

▶ Theorem 7. Let T be a finite subset of Rd, let F be a countable family of 2d-variate real
polynomials that respects T , and let α > 0. Then there exists a finite set X ⊂ Rd such that
F respects X and every subset of X of size at least α|X| contains a homothetic copy of T .

3 Proof of Theorem 2 for θ > 0

In this section, we prove Theorem 2 for all θ ∈ (0, π/2]. Here is the precise statement.

▶ Theorem 8. For every θ ∈ (0, π/2] and any integers g ⩾ 3 and k ⩾ 1, there is a collection
of circles C, no two concentric, such that the θ-graph Gθ(C) has girth at least g and chromatic
number at least k.

Proof. We fix θ ∈ (0, π/2) and g ⩾ 3, and construct the families of circles by induction on k.
The base case k ⩽ 3 is easy, because all odd cycles can be represented as θ-graphs of circles
satisfying the conditions of the theorem.

For the induction step, assume we have already constructed a family of circles Ck, no two
concentric, such that the θ-graph Gθ(C) has girth at least g and chromatic number at least k,
where k ⩾ 3. Let L(y) denote the horizontal line at coordinate y ∈ R, that is, L(y) = R×{y}.
To construct a family Ck+1, we perform the following process.

1. Constructing a “template” set from the family Ck. For each circle C ∈ Ck, we pick all
horizontal lines that intersect C at angle θ (meaning that the angle between the horizontal
line and the tangent line to C at either of the intersection points is θ), see Figure 2. There
are two such lines when θ ∈ (0, π/2) and only one (through the center of the circle) when
θ = π/2. By slightly rotating the family C if needed, we can guarantee that these lines are
all distinct. When θ = π/2, this requires the additional assumption that no two circles in
C are concentric (which is otherwise superfluous). Let T0 ⊂ R be the set of y-coordinates
of the lines.

2. Applying Gallai’s theorem. Theorem 3 in R applied to the set T0 yields a finite set Y ⊂ R
such that every k-coloring of Y contains a monochromatic homothetic copy of T0 and no
tuple of fewer than ⌈g/2⌉ homothetic copies of T0 in Y form a cycle.



J. Davies, C. Keller, L. Kleist, S. Smorodinsky, and B. Walczak 33:7

YT1,T2⊂

C′T1 C′T2

Figure 3 Illustration for steps 3–5 in the proof of Theorem 8 for θ = π/2: Construction of a
preliminary family from Y and the result after inversion with respect to the dotted circle. Note that
the set Y consists of two homothetic copies of the set T0 from Fig. 2 that have one element in common.

3. Geometric interpretation of the resulting set. The set Y gives rise to the family of
horizontal lines L′ = {L(y) : y ∈ Y }. Let T be the family of homothetic copies of T0 in Y .

4. Attaching a copy of Ck for each homothetic copy of the “template”. For each T ∈ T , we
consider the set of horizontal lines L′

T = {L(y) : y ∈ T} and construct a homothetic
copy C′

T of Ck such that each line in L′
T intersects a single circle C′

T at angle θ; see Figure 3.
(Each circle in C′

T intersects two lines in L′
T at angle θ when θ ∈ (0, π/2) and only one when

θ = π/2.) This is possible because the set of lines {L(y) : y ∈ T0} has this property with
respect to Ck, and T is a homothetic copy of T0. We spread the copies C′

T horizontally so
that a vertical line separates C′

T1
from C′

T2
for any distinct T1, T2 ∈ T . Let C′ =

⋃
T ∈T C′

T .
5. Constructing the final family Ck+1 via inversion. Finally, we construct the family Ck+1

by applying a geometric inversion to the lines and circles in L′ ∪ C′, where the center of
inversion is chosen not to lie on any of these lines or circles. See Figure 3 for an illustration.
By basic properties of inversion, the resulting family consists only of circles; in particular,
the lines in L′ turn into a bunch of circles tangent to the horizontal line at the center of
inversion [3, chapter 6]. To ensure that the inversion does not create concentric circles,
we choose the center of inversion not to lie on any line passing through the centers of two
circles in C′ or any vertical line passing through the center of a circle in C′.

We claim that the θ-graph Gθ(Ck+1) has girth at least g and chromatic number at least k+1.
Since inversion preserves angles, this graph is isomorphic to the θ-graph of L′ ∪ C′ (which is
defined analogously to the θ-graph for a collection of circles). Let G denote the latter θ-graph.
It is thus sufficient to prove that G has girth at least g and chromatic number at least k + 1.

To this end, we observe that by the construction, G has the following structure: for
every T ∈ T , the subgraph of G induced on the vertices in C′

T is isomorphic to Gθ(Ck), and
the remaining edges form a collection of bipartite subgraphs between the vertices in C′

T and
the vertices in L′

T , where each vertex in C′
T is adjacent to two corresponding vertices in L′

T

if θ ∈ (0, π/2) and only one if θ = π/2.
We exploit the structure above in the proofs of the final two claims. They are standard

when applying generalizations of Tutte’s construction; see, e.g., [4, 14].

SoCG 2022



33:8 A Solution to Ringel’s Circle Problem

▷ Claim 8.1. The graph G has girth at least g.

Proof. For every T ∈ T , every cycle in G that lies entirely within C′
T has length at least g

because the subgraph of G induced on the vertices in C′
T is isomorphic to Gθ(Ck), the girth

of which is at least g by the induction hypothesis. It thus remains to consider a cycle in G of
length ℓ ⩾ 3 that does not lie entirely within C′

T for any T ∈ T . It must contain vertices
from L′, say, L1, . . . , Lm in this order along the cycle. For each i ∈ [m], since Li has no
edges to the rest of L′ and at most one edge to C′

T for each T ∈ T , the neighbors of Li on
the cycle lie in two different sets of the form C′

T . For each i ∈ [m], let Ti ∈ T be such that
the part of the cycle between Li and Li+1 (or L1 when i = m) lies within C′

Ti
.

It follows that (T1, . . . , Tm) is a cycle in T of length m or contains such a cycle if some
members of T repeat among T1, . . . , Tm. Hence, Theorem 3 yields m ⩾ ⌈g/2⌉. Since the
cycle contains at least one vertex from C′ between Li and Li+1 (or L1 when i = m) for any
i ∈ [m], we conclude that ℓ ⩾ 2m ⩾ g. ◁

▷ Claim 8.2. The graph G has chromatic number at least k + 1.

Proof. Suppose for the sake of contradiction that the graph G is k-colorable. Pick a proper
k-coloring of G, and consider its restriction to the vertices in L′. It induces a k-coloring of Y

via the correspondence Y ∋ y ↔ L(y) ∈ L′. It follows from the application of Theorem 3
that there is a monochromatic homothetic copy T of T0 in T , which means that the set of
lines L′

T is monochromatic. Since the edges of G that connect these lines with C′
T match all

of C′
T , their common color does not occur on the circles in C′

T . Therefore, the given k-coloring
of G induces a proper (k − 1)-coloring of the subgraph of G induced on the vertices in C′

T ,
which is isomorphic to Gθ(Ck). This contradicts the assumption that the graph Gθ(Ck) has
chromatic number at least k. ◁

This completes the proof of Theorem 8 by induction. ◀

Observe that the proof above cannot be used for θ = 0 to prove Theorem 1, because the
inversion at step 5 turns all lines in L′ into circles tangent at one point, so the resulting
collection of circles is not a constellation (and the resulting tangency graph has girth 3).

4 Proof of Theorem 1

In this section, we prove Theorem 1. For the purpose of induction, we prove the following
stronger statement, which directly implies Theorem 1.

▶ Theorem 9. For any integers g ⩾ 3 and k ⩾ 1, there exists a collection of circles C, no
two concentric and no two internally tangent, such that the tangency graph G(C) has girth at
least g and chromatic number at least k.

For the sake of clarity, we first present the construction of the families C and then we
prove that the construction satisfies the requirements of the theorem.

4.1 High-level description of the construction
We fix g ⩾ 3 and prove the theorem by induction on k. The base case k ⩽ 3 is easy, because
all odd cycles can be represented as tangency graphs of circles satisfying the conditions of
the theorem.



J. Davies, C. Keller, L. Kleist, S. Smorodinsky, and B. Walczak 33:9

Ck

Figure 4 Illustration for the construction of the family Ck+1 from Ck. Gray circles represent a
part of the set X ⊂ R3 containing two homothetic copies of T0 in T . The family Ck+1 contains a
(large) circle for each point in X and a homothetic copy of Ck for each homothetic copy of T0 in T .

For the induction step, assume we have already constructed a family of circles Ck, no
two concentric and no two internally tangent, such that the tangency graph G(Ck) has girth
at least g and chromatic number at least k. Let C(x, y, r) denote the circle with center
(x, y) ∈ R2 and radius r > 0. To construct a family Ck+1 with girth g and chromatic number
k + 1, we perform the following process. See Figure 4 for an illustration.

1. Constructing a “template” set from the family Ck. We represent each circle C(x, y, r) ∈ Ck

by the point (x, y, r) ∈ R3, to obtain the set

T0 =
{

(x, y, r) ∈ R3 : C(x, y, r) ∈ Ck

}
⊂ R3.

2. Applying Gallai’s theorem with constraints. Theorem 4 in R3 applied to the set T0 with
appropriate constraints to be detailed below yields a finite set X ⊂ R3 and a collection T
of homothetic copies of T0 in X such that every k-coloring of X contains a monochromatic
homothetic copy of T0 in T and no tuple of fewer than ⌈g/3⌉ homothetic copies of T0 in T
form a cycle. For each T ∈ T , let hT be the homothetic map from T0 to T in R3. It has
the following form for some x∗

T , y∗
T , r∗

T ∈ R and λT > 0:

hT : R3 ∋ (x, y, r) 7→
(
x∗

T + λT x, y∗
T + λT y, r∗

T + λT r
)

∈ R3.

SoCG 2022



33:10 A Solution to Ringel’s Circle Problem

3. Geometric interpretation of the resulting set. Let R0 = max{r′ : (x′, y′, r′) ∈ X}, and
let R ∈ R satisfy R > R0. (In the sequel, R is going to be “large”.) The set X gives rise
to a family of “large” circles C′

R, parameterized by R, defined as follows:

C′
R =

{
C(x′, y′, R − r′) : (x′, y′, r′) ∈ X

}
.

The use of the stronger Theorem 4 with appropriate constraints, rather than Theorem 3,
allows us to infer that no two circles in C′

R are concentric or internally tangent.
4. Attaching a copy of Ck for each homothetic copy of the “template”. We pick a set {ϕT }T ∈T

of distinct angles in [0, π) that satisfy a certain condition to be detailed below. For every
T ∈ T and every circle C = C(x, y, r) ∈ Ck, we define the following two circles, where
(x′, y′, r′) = hT (x, y, r) ∈ T :

µR,T (C) = C(x′, y′, R − r′), which is a circle in C′
R,

νR,T (C) = C
(
x′ + (R − r∗

T ) cos(ϕT ), y′ + (R − r∗
T ) sin(ϕT ), λT r

)
.

In words, µR,T (C) is a “large” circle with center (x′, y′), and νR,T (C) is a “small” circle
with center translated from (x′, y′) in direction ϕT , externally tangent to µR,T (C). For
every T ∈ T , we set

C′
R,T = {νR,T (C) : C ∈ Ck}.

Since the angles ϕT are distinct and the radii of the circles νR,T (C) do not depend on
R, when R is sufficiently large, the circles C′

R,T1
are disjoint from those in C′

R,T2
for any

distinct T1, T2 ∈ T .
5. Constructing the final family Ck+1. Finally, we define

C′′
R = C′

R ∪
⋃

T ∈T
C′

R,T .

We will show that Ck+1 := C′′
R satisfies all claimed properties if R is sufficiently large.

Comparison with the construction in Section 3

This construction follows the general strategy of the construction for the θ-graph presented in
Section 3. Notable differences result from the need to avoid multiple circles mutually tangent
at one point, which arise in the last step of that construction when applying inversion.

1. While in Section 3, we have T0 ⊂ R, here we have to resort to the more complex choice
of T0 ⊂ R3.

2. While in Section 3, the standard “sparse” version of Gallai’s theorem is sufficient, here
we need the stronger version with constraints, to be able to infer that the resulting set of
circles avoids concentricities and internal tangencies.

3. The construction of “large” circles here is explicit and uses a parameter R that must be
chosen appropriately, while in Section 3, horizontal lines are used instead.

4. The construction of “small” circles here is more involved and uses a set of parameters
{ϕT }T ∈T that must be chosen appropriately.

5. In Section 3, a final application of inversion is required to transform the horizontal lines
into circles, which is no longer needed in the construction here.

The proof of validity of the construction is somewhat more complex, accordingly.



J. Davies, C. Keller, L. Kleist, S. Smorodinsky, and B. Walczak 33:11

r2
r1 r2 r1

Figure 5 External and internal tangency of circles.

4.2 Proof of Theorem 9
In the proof, we use the following two simple lemmas in addition to Theorem 4.

▶ Lemma 10. Circles C(x1, y1, r1) and C(x2, y2, r2) are
externally tangent if and only if (x1 − x2)2 + (y1 − y2)2 = (r1 + r2)2,
internally tangent if and only if (x1 − x2)2 + (y1 − y2)2 = (r1 − r2)2.

Proof. Circles C(x1, y1, r1) and C(x2, y2, r2) are externally tangent if and only if the segment
connecting their centers (x1, x2) and (y1, y2) has length r1 + r2, and they are internally
tangent if and only if it has length |r1 − r2|. See Figure 5 for an illustration. ◀

▶ Lemma 11. If a, b, c, φ ∈ R, (a, b) ̸= (0, 0), and the vectors (a, b) and (cos φ, sin φ) are
not parallel in R2, then the equality (a + R cos φ)2 + (b + R sin φ)2 = (c + R)2 holds for at
most one value R ∈ R.

Proof. Consider the univariate polynomial f defined by

f(R) = (a + R cos φ)2 + (b + R sin φ)2 − (c + R)2

= (a2 + b2 − c2) + 2R(a cos φ + b sin φ − c).

It is identically zero only if a2 + b2 = c2 and a cos φ + b sin φ = c. However, if a2 + b2 = c2

and the vectors (a, b) and (cos φ, sin φ) are not parallel, then the Cauchy-Schwarz inequality
yields |a cos φ + b sin φ| <

√
a2 + b2 ·

√
cos2 φ + sin2 φ = |c|, so a cos φ + b sin φ ̸= c. Since f

is not identically zero and has degree at most 1, it has at most one root in R. ◀

We are now ready to present the details of the proof of Theorem 9.

Proof of Theorem 9. We proceed by induction on k and, for the induction step, construct
the family of circles Ck+1 from a family of circles Ck as was described above. The following
claim describes the property of the set X constructed by applying our enhanced version of
Gallai’s theorem, namely Theorem 4, with appropriate polynomial constraints to T0.

▷ Claim 9.1. There exists a finite set X ⊂ R3 and a collection T of homothetic copies of T0
in X with the following properties:
1. for any two distinct points (x1, y1, r1), (x2, y2, r2) ∈ X, we have

a. (x1, y1) ̸= (x2, y2),
b. (x1 − x2)2 + (y1 − y2)2 ̸= (r1 − r2)2,

2. no tuple of fewer than ⌈g/3⌉ homothetic copies of T0 in T form a cycle,
3. every k-coloring of X contains a monochromatic homothetic copy of T0 in T .

Proof. Consider the following two 6-variate polynomials:

fa(x1, y1, r1, x2, y2, r2) = (x1 − x2)2 + (y1 − y2)2,

fb(x1, y1, r1, x2, y2, r2) = (x1 − x2)2 + (y1 − y2)2 − (r1 − r2)2.

SoCG 2022



33:12 A Solution to Ringel’s Circle Problem

We have fa(x1, y1, r1, x2, y2, r2) ̸= 0 if and only if (x1, y1) ̸= (x2, y2), which holds in particular
for distinct points (x1, y1, r1), (x2, y2, r2) ∈ T0, by the assumption that no two circles in Ck

are concentric. Lemma 10 and the assumption that no two circles in C are internally
tangent imply fb(x1, y1, r1, x2, y2, r2) ̸= 0 for any distinct points (x1, y1, r1), (x2, y2, r2) ∈ T0.
Theorem 4 applied to T0, F = {fa, fb}, ⌈g/3⌉, and k directly yields the requested set X and
collection T . ◁

For the construction of the families of circles {νR,T }T ∈T , we let {ϕT }T ∈T be a set of
distinct angles in [0, π) such that for every T ∈ T , the unit vector (cos ϕT , sin ϕT ) ∈ R2 is not
parallel to the vector (x1 − x2, y1 − y2) for any distinct points (x1, y1, r1), (x2, y2, r2) ∈ X,
where the latter vector is non-zero, by condition 1a of Claim 9.1.

We now claim that for a sufficiently large R, the family C′′
R defined above satisfies the

following conditions on concentricity and tangency.

▷ Claim 9.2. The following holds when R is sufficiently large:
1. no two circles in C′′

R are concentric,
2. no two circles in C′′

R are internally tangent,
3. a pair of circles in C′′

R is externally tangent if and only if it belongs to one of the two
following types:
a. µR,T (C) and νR,T (C) for any T ∈ T and any C ∈ Ck,
b. νR,T (C1) and νR,T (C2) for any T ∈ T and any C1, C2 ∈ Ck that are externally tangent.

Proof. First, consider two distinct circles C ′ = C(x′, y′, R − r′) and C ′′ = C(x′′, y′′, R − r′′)
in C′

R, where (x′, y′, r′), (x′′, y′′, r′′) ∈ X. By condition 1a of Claim 9.1, the circles C ′ and
C ′′ are not concentric. By Lemma 10, the circles C ′ and C ′′ are internally tangent if and
only if (x′ − x′′)2 + (y′ − y′′)2 = (r′ − r′′)2, which does not hold due to condition 1b of
Claim 9.1. Also by Lemma 10, the circles C ′ and C ′′ are externally tangent if and only if
(x′ − x′′)2 + (y′ − y′′)2 = (2R − r′ − r′′)2, which does not hold when R is sufficiently large.

Next, let T ∈ T , and consider two distinct circles C ′
1 and C ′

2 such that for i ∈ [2],
we have C ′

i = C
(
x′

i + (R − r∗
T ) cos ϕT , y′

i + (R − r∗
T ) sin ϕT , λT ri

)
= νR,T (Ci), where

Ci = C(xi, yi, ri) ∈ Ck and hT (xi, yi, ri) = (x′
i, y′

i, r′
i) ∈ T . The assumption that the circles

C1 and C2 are not concentric, that is, (x1, y1) ̸= (x2, y2), yields (x′
1, y′

1) ̸= (x′
2, y′

2), which
implies that the circles C ′

1 and C ′
2 are not concentric. By Lemma 10, the circles C ′

1 and
C ′

2 are internally tangent if and only if (x′
1 − x′

2)2 + (y′
1 − y′

2)2 = λ2
T (r1 − r2)2, which is

equivalent to (x1 − x2)2 + (y1 − y2)2 = (r1 − r2)2, which does not hold due to the assumption
that C1 and C2 are not internally tangent. Also by Lemma 10, the circles C ′

1 and C ′
2 are

externally tangent if and only if (x′
1 − x′

2)2 + (y′
1 − y′

2)2 = λ2
T (r1 + r2)2, which is equivalent

to (x1 − x2)2 + (y1 − y2)2 = (r1 + r2)2, which means that C1 and C2 are externally tangent.
Next, for two distinct T1, T2 ∈ T , consider circles of the form C ′

1 = νR,T1(C1) and
C ′

2 = νR,T2(C2), where C1, C2 ∈ Ck. Since ϕT1 ̸= ϕT2 and the radii of C ′
1 and C ′

2 are
independent of R, the circles C ′

1 and C ′
2 are arbitrarily far apart as R grows. In particular,

they are disjoint and not nested when R is sufficiently large.
Finally, consider a circle C ′ = C(x′, y′, R − r′) ∈ C′

R, where (x′, y′, r′) ∈ X, and a circle
C ′′ = C

(
x′′+(R−r∗

T ) cos ϕT , y′′+(R−r∗
T ) sin ϕT , λT r

)
= νR,T (C), where C = C(x, y, r) ∈ Ck

and hT (x, y, r) = (x′′, y′′, r′′) ∈ T . When R > r∗
T , since the vectors (x′′ − x′, y′′ − y′) and

(cos ϕT , sin ϕT ) are not parallel unless (x′, y′) = (x′′, y′′), the circles C ′ and C ′′ are not
concentric. By Lemma 10, the circles C ′ and C ′′ are externally tangent if and only if(

x′′ − x′ + (R − r∗
T ) cos ϕT

)2 +
(
y′′ − y′ + (R − r∗

T ) sin ϕT

)2 = (R − r′ + λT r)2,

which is equivalent to(
(x′′ − x′) + R′ cos ϕT

)2 +
(
(y′′ − y′) + R′ sin ϕT

)2 =
(
(r′′ − r′) + R′)2

,



J. Davies, C. Keller, L. Kleist, S. Smorodinsky, and B. Walczak 33:13

where R′ = R−r∗
T . By Lemma 11, the equality above holds for at most one value of R′ (so at

most one value of R) unless (x′, y′, r′) = (x′′, y′′, r′′), in which case it clearly holds for every
value of R′ (so every value of R). The latter case means that C ′′ = µR,T (C), as requested in
case 3a. Also by Lemma 10, the circles C ′ and C ′′ are internally tangent if and only if(

x′′ − x′ + (R − r∗
T ) cos ϕT

)2 +
(
y′′ − y′ + (R − r∗

T ) sin ϕT

)2 = (R − r′ − λT r)2,

which is equivalent to(
(x′′ − x′) + R′ cos ϕT

)2 +
(
(y′′ − y′) + R′ sin ϕT

)2 =
(
(2r∗

T − r′ − r′′) + R′)2
,

where R′ = R − r∗
T . By Lemma 11, the equality above holds for at most one value of R′ (so

at most one value of R) unless (x′, y′, r′) = (x′′, y′′, r′′). In the latter case, C ′ and C ′′ are
externally tangent (as we have shown previously), so they cannot be internally tangent. ◁

Let R > R0 be sufficiently large for the conclusions of Claim 9.2 to hold. Conditions 2
and 3 of Claim 9.2 imply the following structure of the tangency graph G(C′′

R): for every
T ∈ T , the subgraph induced on the vertices in C′

R,T is isomorphic to G(Ck) and the remaining
edges form a collection of matchings between the vertices in C′

R,T (which are of the form
νR,T (C) for C ∈ Ck) and the vertices in C′

R of the form µR,T (C) for C ∈ Ck. We exploit this
structure in the proofs of the final two claims, which are analogous to Claims 8.1 and 8.2.

▷ Claim 9.3. The tangency graph G(C′′
R) has girth at least g.

Proof. Let G = G(C′′
R). For every T ∈ T , since the subgraph of G induced on the vertices

in C′
R,T is isomorphic to G(C), the girth of which is at least g by the induction hypothesis,

every cycle in G that lies entirely within C′
R,T has length at least g. Consider now a cycle

in G of length ℓ ⩾ 3 that does not lie entirely within C′
R,T for any T ∈ T . It must contain

vertices from C′
R, say, C1, . . . , Cm in this order along the cycle. For each i ∈ [m], since Ci has

no edges to the rest of C′
R and at most one edge to C′

R,T for each T ∈ T , the neighbors of Ci

on the cycle lie in two different sets of the form C′
R,T . For each i ∈ [m], let Ti ∈ T be such

that the part of the cycle between Ci and Ci+1 (or C1 if i = m) lies within C′
R,Ti

. It follows
that (T1, . . . , Tm) is a cycle in T of length m or contains such a cycle if some members of
T repeat among T1, . . . , Tm. Condition 2 of Claim 9.1 yields m ⩾ ⌈g/3⌉. Since there are at
least two vertices from C′

R,Ti
between Ci and Ci+1 (or C1 when i = m) for any i ∈ [m], we

conclude that ℓ ⩾ 3m ⩾ g. ◁

▷ Claim 9.4. The tangency graph G(C′′
R) has chromatic number at least k + 1.

Proof. Suppose for the sake of contradiction that the graph G = G(C′′
R) is k-colorable. Pick

a proper k-coloring of G, and consider its restriction to the vertices in C′
R. It induces a k-

coloring of X via the correspondence X ∋ (x′, y′, r′) ↔ C(x′, y′, R − r′) ∈ C′
R. By condition 3

of Claim 9.1, there is a monochromatic homothetic copy T of T0 in T , which means that
the set of circles {µR,T (C) : C ∈ Ck} is monochromatic. Since these circles are connected
to C′

R,T by a perfect matching in G, their common color does not occur on the circles in C′
R,T .

Therefore, the given k-coloring of G induces a proper (k − 1)-coloring of the graph G(C′
R,T ),

which is isomorphic to G(Ck). This contradicts the assumption that the graph G(Ck) has
chromatic number at least k. ◁

We complete the proof of the induction step by setting Ck+1 = C′′
R and observing that

the induction statement follows from Claims 9.2 (conditions 1 and 2), 9.3, and 9.4. ◀

SoCG 2022



33:14 A Solution to Ringel’s Circle Problem

References
1 Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Part I: Discharging.

Illinois Journal of Mathematics, 21(3):429–490, 1977.
2 Kenneth Appel, Wolfgang Haken, and John Koch. Every planar map is four colorable. Part II:

Reducibility. Illinois Journal of Mathematics, 21(3):491–567, 1977.
3 Harold Scott Macdonald Coxeter. Introduction to geometry. John Wiley & Sons, 1961.
4 James Davies. Box and segment intersection graphs with large girth and chromatic number.

Advances in Combinatorics, 2021:7, 9 pp., 2021. doi:10.19086/aic.25431.
5 Aubrey D. N. J. de Grey. The chromatic number of the plane is at least 5. Geombinatorics,

28:5–18, 2018.
6 Blanche Descartes. A three colour problem. Eureka, 9(21):24–25, 1947.
7 Blanche Descartes. Solution to advanced problem no. 4526. The American Mathematical

Monthly, 61:352, 1954.
8 Hillel Furstenberg and Yitzhak Katznelson. A density version of the Hales-Jewett theorem.

Journal d’Analyse Mathématique, 57:64–119, 1991. doi:10.1007/BF03041066.
9 Andrew W. Hales and Robert I. Jewett. Regularity and positional games. Transactions of the

American Mathematical Society, 106(2):222–229, 1963.
10 Brad Jackson and Gerhard Ringel. Colorings of circles. The American Mathematical Monthly,

91(1):42–49, 1984. doi:10.1080/00029890.1984.11971333.
11 Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. John Wiley & Sons, 1995.
12 Gil Kalai. Some old and new problems in combinatorial geometry I: Around Borsuk’s problem.

In Artur Czumaj, Agelos Georgakopoulos, Daniel Kráľ, Vadim Lozin, and Oleg Pikhurko,
editors, Surveys in Combinatorics, volume 424 of London Mathematical Society Lecture Note
Series, pages 147–174. Cambridge University Press, 2015.

13 Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen
der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse,
88:141–164, 1936.

14 Alexandr V. Kostochka and Jaroslav Nešetřil. Properties of Descartes’ construction of triangle-
free graphs with high chromatic number. Combinatorics, Probability and Computing, 8(5):467–
472, 1999. doi:10.1017/S0963548399004022.

15 János Pach. Finite point configurations. In Jacob E. Goodman, Joseph O’Rourke, and Csaba D.
Tóth, editors, Handbook of Discrete and Computational Geometry, pages 26–50. CRC Press,
3rd edition, 2017.

16 Hans Jürgen Prömel and Bernd Voigt. A sparse Graham-Rothschild theorem. Trans-
actions of the American Mathematical Society, 309(1):113–137, 1988. doi:10.1090/
S0002-9947-1988-0957064-5.

17 Hans Jürgen Prömel and Bernd Voigt. A sparse Gallai-Witt theorem. In Rainer Bodendiek
and Rudolf Henn, editors, Topics in Combinatorics and Graph Theory, pages 747–755. Physica-
Verlag Heidelberg, 1990. doi:10.1007/978-3-642-46908-4_84.

18 Richard Rado. Note on combinatorial analysis. Proceedings of the London Mathematical
Society, 48:122–160, 1945.

19 Gerhard Ringel. Färbungsprobleme auf Flächen und Graphen, volume 2 of Mathematische
Monographien. VEB Deutscher Verlag der Wissenschaften, 1959.

20 Alexander Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful
Life of its Creators. Springer, 2009.

21 Bartel L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Archief voor
Wiskunde, 15:212–216, 1927.

https://doi.org/10.19086/aic.25431
https://doi.org/10.1007/BF03041066
https://doi.org/10.1080/00029890.1984.11971333
https://doi.org/10.1017/S0963548399004022
https://doi.org/10.1090/S0002-9947-1988-0957064-5
https://doi.org/10.1090/S0002-9947-1988-0957064-5
https://doi.org/10.1007/978-3-642-46908-4_84


Computing Generalized Rank Invariant for
2-Parameter Persistence Modules via Zigzag
Persistence and Its Applications
Tamal K. Dey #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Woojin Kim #

Department of Mathematics, Duke University, Durham, NC, USA

Facundo Mémoli #

Department of Mathematics and Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, USA

Abstract
The notion of generalized rank invariant in the context of multiparameter persistence has become an
important ingredient for defining interesting homological structures such as generalized persistence
diagrams. Naturally, computing these rank invariants efficiently is a prelude to computing any of
these derived structures efficiently. We show that the generalized rank over a finite interval I of
a Z2-indexed persistence module M is equal to the generalized rank of the zigzag module that is
induced on a certain path in I tracing mostly its boundary. Hence, we can compute the generalized
rank over I by computing the barcode of the zigzag module obtained by restricting the bifiltration
inducing M to that path. If the bifiltration and I have at most t simplices and points respectively,
this computation takes O(tω) time where ω ∈ [2, 2.373) is the exponent of matrix multiplication.
Among others, we apply this result to obtain an improved algorithm for the following problem.
Given a bifiltration inducing a module M , determine whether M is interval decomposable and, if so,
compute all intervals supporting its summands.

2012 ACM Subject Classification Mathematics of computing → Topology; Theory of computation
→ Computational geometry

Keywords and phrases Multiparameter persistent homology, Zigzag persistent homology, Generalized
Persistence Diagrams, Möbius inversion

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.34

Related Version Full Version: https://arxiv.org/abs/2111.15058

Funding This work is supported by NSF grants CCF-2049010, CCF-1740761, DMS-1547357, and
IIS-1901360.

Acknowledgements The authors thank the anonymous reviewers for constructive feedback and
suggesting ideas that shortened the proof of Theorem 24.

1 Introduction

In Topological Data Analysis (TDA) one of the central tasks is that of decomposing persistence
modules into direct sums of indecomposables. In the case of a persistence module M over the
integers Z, the indecomposables are interval modules, which implies that M is isomorphic
to a direct sum of interval modules I([bα, dα]), for integers bα ≤ dα and α in some index
set A. This follows from a classification theorem for quiver representations established by
Pierre Gabriel in the 1970s. The multiset of intervals {[bα, dα], α ∈ A} that appear in this
decomposition constitutes the persistence diagram, or equivalently, the barcode of M – a
central object in TDA [19, 21].

© Tamal K. Dey, Woojin Kim, and Facundo Mémoli;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tamaldey@purdue.edu
mailto:woojin@math.duke.edu
mailto:memoli@math.osu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.34
https://arxiv.org/abs/2111.15058
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


34:2 Generalized Rank via Zigzag and Its Applications

There are many situations in which data naturally induce persistence modules over posets
which are different from Z [4, 12, 13, 14, 17, 22, 27, 29, 30, 33]. Unfortunately, the situation
already becomes “wild” when the domain poset is Z2. In that situation, one must contend
with the fact that a direct analogue of the notion of persistence diagrams may not exist [14],
namely it may not be possible to obtain a lossless up-to-isomorphism representation of the
module as a direct sum of interval modules.

Much energy has been put into finding ways in which one can extract incomplete but
still stable invariants from persistence modules M : Zd → vec (which we will refer to as a
Zd-module). Biasotti et al. [6] proposed considering the restriction of a Zd-module to lines
with positive slope. This was further developed by Lesnick and Wright in the RIVET project
[31] which facilitates the interactive visualization of Z2-modules. Cai et al. [11] considered a
certain elder-rule on the Z2-modules which arise in multiparameter clustering. Other efforts
have identified algebraic conditions which can guarantee that M can be decomposed into
interval modules of varying degrees of complexity (e.g. rectangle modules etc) [7, 16].

Figure 1 Generalized rank via zigzag persistence. Let M be a Z2-module. (A) Standard
rank: Let p ≤ q in Z2. The rank of the structure map from p to q coincides with the multiplicity of
full bars (red) over the diagonal path, which is three. (B) Generalized rank: Let I be an interval of
Z2. Let us consider the zigzag poset ∂I : p1 ≤ (p0 ∨ p1) ≥ p0 ≤ q0 ≥ (q0 ∧ q1) ≤ q1. The generalized
rank of M over I is equal to the multiplicity of full bars (red) in the zigzag module M∂I , which is
two (Theorem 24) (note: by definition, the zigzag poset ∂I does not fully inherit the partial order on
Z2. For example, the partial order on ∂I does not contain the pair (p1, q1) whereas p1 ≤ q1 in Z2).

A distinct thread has been proposed by Patel in [35] through the reinterpretation of the
persistence diagram of a Z-module as the Möbius inversion of its rank function. Patel’s work
was then extended by Kim and Mémoli [26] to the setting of modules defined over any suitable
locally finite poset. They generalized the rank invariant via the limit-to-colimit map over
subposets and then conveniently expressed its Möbius inversion. In fact the limit-to-colimit
map was suggested by Amit Patel to the authors of [26] who in [25] used it to define a notion



T. K. Dey, W. Kim, and F. Mémoli 34:3

of rank invariant for zigzag modules. Chambers and Letscher [15] also considered a notion of
persistent homology over directed acyclic graphs using the limit-to-colimit map. Asashiba et
al. [2] study the case of modules defined on an m×n grid and propose a high-level algorithm
for computing both their generalized rank function and their Möbius inversions with the goal
of providing an approximation of a given module by interval decomposables. Asashiba et al.
[1] tackle the interval decomposability of a given Zd-module via quiver representation theory.

One fundamental algorithmic problem is that of determining whether a given Z2-module is
interval decomposable, and if so, computing the intervals. There are some existing solutions to
this problem in the literature. Suppose that the input Z2-module is induced by a bifiltration
comprising at most t simplices on a grid of cardinality O(t). First, the decomposition
algorithm by Dey and Xin [20] can produce all indecomposables from such a module in
O(t2ω+1) time (see [24] for comments about its implementation) where ω ∈ [2, 2.373) is the
exponent of matrix multiplication. Given these indecomposables, one could then test whether
they are indeed interval modules. However, the algorithm requires that the input module be
such that no two generators or relations in the module have the same grade. Then, Asashiba
et al. [1] give an algorithm which requires enumerating an exponential number (in t) of
intervals. Finally, the algorithm by Meataxe sidesteps both of the above issues, but incurs a
worst-case cost of O(t18) as explained in [20].

See also [5, 9, 10, 28, 32] for related recent work.

Contributions. One of our key results is the following. We prove that for an interval I in
Z2 we can compute the generalized rank invariant rk(M)(I) of a Z2-module M through the
computation of the zigzag persistence barcode of the restriction of M to the boundary cap of
I, which is a certain zigzag path in I; see Figure 1 for an illustration.

These are our main results assuming that the input is a bifiltration with O(t) simplices:
1. We reduce the problem of computing the generalized rank invariant of a Z2-module to

computing zigzag persistence (Theorem 24).
2. We provide an algorithm Interval (page 13) to compute the barcode of any finite interval

decomposable Z2-module in time O(tω+2) (Proposition 38).
3. We provide an algorithm IsIntervalDecomp (page 15) to decide the interval decompos-

ability of a finite Z2-module in time O(t3ω+2) (Proposition 39).

2 Preliminaries

In §2.1, we review the notion of interval decomposability of persistence modules. In §2.2,
we review the notions of generalized rank invariant and generalized persistence diagram. In
§2.3, we discuss how to compute the limit and the colimit of a given functor P → vec.

2.1 Persistence Modules and their decompositions
We fix a certain field F and every vector space in this paper is over F. Let vec denote the
category of finite dimensional vector spaces and linear maps over F.

Let P be a poset. We regard P as the category that has points of P as objects. Also,
for any p, q ∈ P , there exists a unique morphism p→ q if and only if p ≤ q. For a positive
integer d, let Zd be given the partial order defined by (a1, a2, . . . , ad) ≤ (b1, b2, . . . , bd) if and
only if ai ≤ bi for i = 1, 2, . . . , d.

A (P -indexed) persistence module is any functor M : P → vec (which we will simply
refer to as a P -module). In other words, to each p ∈ P , a vector space Mp is associated,
and to each pair p ≤ q in P , a linear map φM (p, q) : Mp →Mq is associated. Importantly,
whenever p ≤ q ≤ r in P , it must be that φM (p, r) = φM (q, r) ◦ φM (p, q).

SoCG 2022



34:4 Generalized Rank via Zigzag and Its Applications

We say that a pair of p, q ∈ P is comparable if either p ≤ q or q ≤ p.

▶ Definition 1 ([8]). An interval I of P is a subset I ⊆ P such that:
(i) I is nonempty.
(ii) If p, q ∈ I and p ≤ r ≤ q, then r ∈ I.
(iii) I is connected, i.e. for any p, q ∈ I, there is a sequence p = p0, p1, · · · , pℓ = q of

elements of I with pi and pi+1 comparable for 0 ≤ i ≤ ℓ− 1.
By Int(P ) we denote the set of all finite intervals of P . When P is finite and connected,
P ∈ Int(P ) will be referred to as the full interval.

For an interval I of P , the interval module II : P → vec is defined as

II(p) =
{
F if p ∈ I,
0 otherwise,

φII
(p, q) =

{
idF if p, q ∈ I, p ≤ q,
0 otherwise.

Direct sums and quotients of P -modules are defined pointwisely at each index p ∈ P .

▶ Definition 2. Let M be any P -module. A submodule N of M is defined by subspaces
Np ⊆ Mp such that φM (p, q)(Np) ⊆ Nq for all p, q ∈ P with p ≤ q. These conditions
guarantee that N itself is a P -module, with the structure maps given by the restrictions
φM (p, q)|Np . In this case we write N ≤M .

A submodule N is a summand of M if there exists a submodule N ′ which is comple-
mentary to N , i.e. Mp = Np ⊕N ′

p for all p. In that case, we say that M is a direct sum of
N,N ′ and write M ∼= N ⊕N ′. Note that this direct sum is an internal direct sum.

▶ Definition 3. A P -module M is called interval decomposable if M is isomorphic to a
direct sum of interval modules, i.e. there exists an indexing set J such that M ∼=

⊕
j∈J IIj

(external direct sum). In this case, the multiset {Ij : j ∈ J } is called the barcode of M ,
which will be denoted by barc(M).

The Azumaya-Krull-Remak-Schmidt theorem guarantees that barc(M) is well-defined [3].
Consider a zigzag poset of n points, •1 ↔ •2 ↔ . . . •n−1 ↔ •n where ↔ stands for either ≤
or ≥. A functor from a zigzag poset to vec is called a zigzag module [12]. Any zigzag
module is interval decomposable [23] and thus admits a barcode.

The following proposition directly follows from the Azumaya-Krull-Remak-Schmidt
theorem and will be useful in §4.

▶ Proposition 4. Let M : P → vec be interval decomposable and let N ≤M is a summand
of M (Definition 2). Then, M/N is interval decomposable (proof in the full version).

2.2 Generalized rank invariant and generalized persistence diagrams
Let P be a finite connected poset and consider any P -module M . Then M admits a limit
lim←−M = (L, (πp : L → Mp)p∈P ) and a colimit lim−→M = (C, (ip : Mp → C)p∈P ); see the
full version for definitions. This implies that, for every p ≤ q in P , φM (p ≤ q) ◦ πp =
πq and iq ◦ φM (p ≤ q) = ip, which in turn imply ip ◦ πp = iq ◦ πq : L→ C for any p, q ∈ P .

▶ Definition 5 ([26]). The canonical limit-to-colimit map ψM : lim←−M → lim−→M is
the linear map ip ◦πp for any p ∈ P . The generalized rank of M is rank(M) := rank(ψM ).

The rank of M counts the multiplicity of the fully supported interval modules in a direct
sum decomposition of M .

▶ Theorem 6 ([15, Lemma 3.1]). The rank of M is equal to the number of indecomposable
summands of M which are isomorphic to the interval module IP .



T. K. Dey, W. Kim, and F. Mémoli 34:5

▶ Definition 7. The (Int)-generalized rank invariant of M is the map
rkI(M) : Int(P )→ Z+ defined as I 7→ rank(M |I), where M |I is the restriction of M to I.

▶ Definition 8. The (Int)-generalized persistence diagram of M is the unique1 function
dgmI(M) : Int(P )→ Z that satisfies, for any I ∈ Int(P ),

rkI(M)(I) =
∑
J⊇I

J∈Int(P )

dgmI(M)(J).

The following is a slight variation of [26, Theorem 3.14] and [2, Theorem 5.10].

▶ Theorem 9. If a given M : P → vec is interval decomposable, then for all I ∈ Int(P ),
dgmI(M)(I) is equal to the multiplicity of I in barc(M) (proof in the full version).

We consider P to be a 2d-grid and focus on the setting of Z2-modules.

▶ Definition 10. For any I ∈ Int(Z2), we define nbdI(I) := {p ∈ Z2 \I : I ∪{p} ∈ Int(Z2)}.

Note that nbdI(I) is nonempty [2, Proposition 3.2]. When A ⊆ nbdI(I) contains more than
one point, A ∪ I is not necessarily an interval of Z2. However, there always exists a unique
smallest interval that contains A ∪ I which is denoted by A ∪ I.
▶ Remark 11 ([2, Theorem 5.3]). If in Definition 8 we assume that P ∈ Int(Z2) then we have
that for every I ∈ Int(P ),2

dgmI(M)(I) = rkI(M)(I) +
∑

A⊆nbdI(I)∩P
A̸=∅

(−1)|A|rkI(M)
(
A ∪ I

)
. (1)

2.3 Canonical constructions of limits and colimits
Let M be any P -module.

▶ Notation 12. Let p, q ∈ P and let vp ∈Mp and vq ∈Mq. We write vp ∼ vq if p and q are
comparable, and either vp is mapped to vq via φM (p, q) or vq is mapped to vp via φM (q, p).

The following proposition gives a standard way of constructing a limit and a colimit of a
P -module M . Since it is well-known, we do not prove it (see for example [26, Section E]).

▶ Proposition 13.
(i) The limit of M is (isomorphic to) the pair (W, (πp)p∈P ) where:

W :=

(vp)p∈P ∈
⊕
p∈P

Mp : ∀p ≤ q in P, vp ∼ vq

 (2)

and for each p ∈ P , the map πp : W →Mp is the canonical projection. An element of
W is called a section of M .

(ii) The colimit of M is (isomorphic to) the pair (U, (ip)p∈P ) described as follows: For
p ∈ P , let the map jp : Mp ↪→

⊕
p∈P Mp be the canonical injection. U is the quotient(⊕

p∈P Mp

)
/T , where T is the subspace of

⊕
p∈P Mp which is generated by the vectors

of the form jp(vp) − jq(vq), vp ∼ vq, the map ip : Mp → U is the composition ρ ◦ jp,
where ρ is the quotient map

⊕
p∈P Mp → U .

1 The existence and uniqueness is guaranteed by properties of the Möbius inversion formula [36, 37].
2 In [2], only the case P = {1, . . . , m} × {1, . . . , n} ⊂ Z2 was considered. However, it is not difficult to

check that Eq. (1) is still valid for any finite interval P in Z2 and any subinterval I ⊆ P .

SoCG 2022



34:6 Generalized Rank via Zigzag and Its Applications

▶ Setup 1. In the rest of the paper, limits and colimits of a P -module M will all be
constructed as in Proposition 13. Hence, assuming that P is connected, the canonical
limit-to-colimit map lim←−M → lim−→M is ψM := ip ◦ πp for any p ∈ P .

3 Computing generalized rank via boundary zigzags

In §3.1 we introduce the notions of lower and upper fences of a poset. In §3.2, we introduce
the boundary cap ∂I of a finite interval I of Z2, which is a path, a certain sequence of
points in I. In §3.3, we show that the rank of any functor M : I → vec can be obtained by
computing the barcode of the zigzag module over the path ∂I.

3.1 Lower and upper fences of a poset
Let P be any connected poset. Given any p ∈ P , by p↓, we denote the set of all elements of
P that are less than or equal to p. Dually p↑ is defined as the set of all elements of P that
are greater than or equal to p.

▶ Definition 14. A subposet L ⊂ P (resp. U ⊂ P ) is called a lower (resp. upper) fence of
P if L is connected, and for any q ∈ P , the intersection L ∩ q↓ (resp. U ∩ q↑) is nonempty
and connected.

▶ Proposition 15. Let L and U be a lower and an upper fences of P respectively. Given any
P -module M , we have lim←−M

∼= lim←−M |L and lim−→M ∼= lim−→M |U (proof in the full version).3

The canonical isomorphism lim←−M
∼= lim←−M |L in Proposition 15 is given by the canonical

section extension e : lim←−M |L → lim←−M . Namely,

e : (vp)p∈L 7→ (wq)q∈P , (3)

where for any q ∈ P , the vector wq is defined as φM (p, q)(vp) for any p ∈ L ∩ q↓; the
connectedness of L∩ q↓ guarantees that wq is well-defined. Also, if q ∈ L, then wq = vq. The
inverse r := e−1 is the canonical section restriction. The other isomorphism lim−→M ∼= lim−→M |U
in Proposition 15 is given by the map i : lim−→M |U → lim−→M defined by [vp] 7→ [vp] for any
p ∈ U and any vp ∈ Mp; the fact that this map i is well-defined will become clear from
Proposition 22. Let us define ξ : lim←−M |L → lim−→M |U by i−1 ◦ ψM ◦ e. By construction, the
following diagram commutes

lim←−M |L lim−→M |U

lim←−M lim−→M,

ξ

e∼= i∼=
ψM

(4)

where ψM is the canonical limit-to-colimit map of M . Hence we have the fact rank(ψM ) =
rank(ξ), which is useful for proving Theorem 24.

3 This proposition appeared in an earlier version of [26] (see Proposition D.14 in the second arXiv version).



T. K. Dey, W. Kim, and F. Mémoli 34:7

Figure 2 Five different intervals I of Z2. Relations in minZZ(I) and maxZZ(I) are indicated
by green and red arrows, respectively. The inequality p0 ≤ q0 is indicated by blue arrows unless
p0 = q0. Notice that ∂I, as defined in equation (7), has cardinality 2, 2, 6, 6, 6 in that order
((A),(B),(C),(D),(E)).

3.2 Boundary cap of an interval in Z2

Let I ∈ Int(Z2), i.e. I is a finite interval of Z2 (Definition 1). By min(I) and max(I), we
denote the collections of minimal and maximal elements of I, respectively. In other words,

min(I) := {p ∈ I : there is no q ∈ I s.t. q < p},

max(I) := {p ∈ I : there is no q ∈ I s.t. p < q}.
Note that min(I) and max(I) are nonempty and that min(I) and max(I) respectively form
an antichain in I, i.e. any two different points in min(I) (or in max(I)) are not comparable.
▶ Remark 16.

(i) The least upper bound and the greatest lower bound of p, q ∈ Z2 are denoted by p ∨ q
and p ∧ q respectively. Let p = (px, py) and q = (qx, qy) in Z2. Then,

p ∨ q = (max{px, qx},max{py, qy}), p ∧ q = (min{px, qx},min{py, qy}).

For the item below, let I ∈ Int(Z2). Notice the following:
(ii) Since min(I) is a finite antichain, we can list the elements of min(I) in ascending order

of their x-coordinates, i.e. min(I) := {p0, . . . , pk} and such that for each i = 0, . . . , k,
the x-coordinate of pi is less than that of pi+1. Similarly, let max(I) := {q0, . . . , qℓ} be
ordered in ascending order of qj ’s x-coordinates. We have that p0 ≤ q0 (Figure 2).

▶ Definition 17 (Lower and upper zigzags of an interval). Let I, min(I), and max(I) be as in
Remark 16 ii. We define the following two zigzag posets (Figure 2):

min
ZZ

(I) := {p0 < (p0 ∨ p1) > p1 < (p1 ∨ p2) > · · · < (pk−1 ∨ pk) > pk} (5)

= min(I) ∪ {pi ∨ pi+1 : i = 0, . . . , k − 1},
max
ZZ

(I) := {q0 > (q0 ∧ q1) < q1 > (q1 ∧ q2) < · · · > (qℓ−1 ∧ qℓ) > qℓ} (6)

= max(I) ∪ {qi ∧ qi+1 : i = 0, . . . , ℓ− 1}.

SoCG 2022



34:8 Generalized Rank via Zigzag and Its Applications

Note that minZZ(I) and maxZZ(I) are lower and upper fences of I respectively.
For p, q ∈ P , let us write p ◁ q if p < q and there is no r ∈ P such that p < r < q.

Similarly, we write p ▷ q if p > q and there is no r ∈ P such that p > r > q.

▶ Definition 18. Given a poset P , a path Γ between two points p, q ∈ P is a sequence of
points p = p0, . . . , pk = q in P such that either pi ≤ pi+1 or pi ≥ pi+1 for every i ∈ [1, k − 1]
(in particular, there can be a pair i ̸= j such that pi = pj). The path Γ is said to be
monotonic if pi ≤ pi+1 for each i. The path Γ is called faithful if either pi ◁ pi+1 or
pi ▷ pi+1 for each i.

▶ Definition 19 (Boundary cap of an interval). We define the boundary cap ∂I of I ∈ Int(Z2)
as the path obtained by concatenating minZZ(I) and maxZZ(I) in Eqs. (5) and (6).

∂I := pk < (pk ∨ pk−1) > pk−1 < · · · > p0︸ ︷︷ ︸
2k+1 terms from minZZ(I)

≤ q0 > (q0 ∧ q1) < q1 > · · · < qℓ︸ ︷︷ ︸
2ℓ+1 terms from maxZZ(I)

, (7)

We remark that ∂I can contain multiple copies of the same point. Namely, there can be
i ∈ [0, k] and j ∈ [0, ℓ] such that either pi = qj (Figure 2 (A)), pi = qj ∧ qj+1 (Figure 2 (C)),
pi ∨ pi+1 = qj (Figure 2 (C)), or pi ∨ pi+1 = qj ∧ qj+1 (Figure 2 (D)).

Consider the following zigzag poset of the same length as ∂I:

ZZ∂I : •1 < •2 > •3 < · · · > •2k+1︸ ︷︷ ︸
2k+1

< ◦1 > ◦2 < ◦3 > · · · < ◦2ℓ+1︸ ︷︷ ︸
2ℓ+1

. (8)

Still using the notation in Eqs. (7) we have the following order-preserving map

ιI : ZZ∂I → I (9)

whose image is ∂I: •1 is sent to pk, •2 is sent to pk ∨ pk−1, . . ., and ◦2ℓ+1 is sent to qℓ.

3.3 Generalized rank invariant via boundary zigzags
The goal of this section is to establish Theorem 24.

▶ Definition 20. Let P be a poset. Let Γ : p0, . . . , pk be a path in P . A (k + 1)-tuple
v ∈

⊕k
i=0 Mpi

is called the section of M along Γ if vpi
∼ vpi+1 for each i (Notation 12).

Note that v is not necessarily a section of the restriction M |{p0,...,pk} of M to the subposet
{p0, . . . , pk} ⊆ I. Furthermore, Γ can contain multiple copies of the same point in P .

▶ Example 21. Consider M : {(1, 1), (1, 2), (2, 2), (2, 1)}(⊂ Z2)→ vec given as follows.

M(1,2) M(2,2)

M(1,1) M(2,1)

=
F F

F F2

1

( 1
0 )

1 ( 1 1 )

Consider the path Γ : (1, 1), (1, 2), (2, 2), (2, 1) which contains all points in the indexing poset.
Then, v := (1, 1, 1, (0, 1)) ∈M(1,1)⊕M(1,2)⊕M(2,2)⊕M(2,1) is a section of M along Γ, while
v is not a section of M itself, i.e. v ̸∈ lim←−M .



T. K. Dey, W. Kim, and F. Mémoli 34:9

By Proposition 13 (ii), we directly have:

▶ Proposition 22. Let p, q ∈ P . For any vectors vp ∈ Mp and vq ∈ Mq [vp] = [vq] in4 the
colimit lim−→M if and only if there exist a path Γ : p = p0, p1, . . . , pn = q in P and a section v
of M along Γ such that vp = vp and vq = vq.

The map ιI : ZZ∂I → I in Eqs. (9) induces a bijection between the sections of M∂I and
the sections of M along ∂I in a canonical way. Hence:

▶ Setup 2. In the rest of §3.3, we fix both I ∈ Int(Z2) and a functor M : I → vec.
Each element in lim←−M∂I is identified with the corresponding section of M along ∂I.
Also, we identify points in (7) and (8) via ιI .

▶ Definition 23 (Zigzag module along ∂I). Define the zigzag module M∂I : ZZ∂I → vec by
(M∂I)x := MιI (x) for x ∈ ZZ∂I and φM∂I

(x, y) := φM (ιI(x), ιI(y)) for x ≤ y in ZZ∂I .

One of our main results is the following.

▶ Theorem 24. rank(M) is equal to the multiplicity of the full interval in barc(M∂I).

Proof. By Theorem 6, it suffices to show that

rank(ψM : lim←−M → lim−→M) = rank(ψM∂I
: lim←−M∂I → lim−→M∂I).

Let L := minZZ(I) and U := maxZZ(I) which are lower and upper fences of I respectively.
Let us define the maps e, r, i and ξ as described in the paragraph after Proposition 15. Then,
by Proposition 15 and the commutative diagram in (4), it suffices to prove that the rank
of ξ equals the rank of ψM∂I

. To this end, we show that there exist a surjective linear
map f : lim←−M∂I → lim←−M |L and an injective linear map g : lim−→M |U → lim−→M∂I such that
ψM∂I

= g ◦ ξ ◦ f . We define f as the canonical section restriction (vq)q∈∂I 7→ (vq)q∈L. We
define g as the canonical map, i.e. [vq] 7→ [vq] for any q ∈ U and any vq ∈Mq. By Proposition
22 and by construction of M∂I , the map g is well-defined.

We now show that ψM∂I
= g ◦ ξ ◦ f . Let v := (vq)q∈∂I ∈ lim←−M∂I . Then, by definition of

ψM∂I
(Setup 1), the image of v via ψM∂I

is [vq0 ] where q0 ∈ U is defined as in Remark 16 ii.
Also, we have

v f7−→ (vq)q∈L
ξ7−→ [vq0 ]

(
∈ lim−→M |U ) g7−→ [vq0 ](∈ lim−→M∂I

)
,

which proves the equality ψM∂I
= g ◦ ξ ◦ f .

We claim that f is surjective. Let r′ : lim←−M → lim←−M∂I be the canonical section
restriction map (vq)q∈I 7→ (vq)q∈∂I . Then, the restriction r : lim←−M → lim←−M |L, can be seen
as the composition of two restrictions r = f ◦ r′. Since r is the inverse of the isomorphism e

in diagram (4), r is surjective and thus so is f .
Next we claim that g is injective. Let i′ : lim−→M∂I → lim−→M be defined by [vq] 7→ [vq] for

any q ∈ ∂I and any vq ∈Mq. By Proposition 22 and by construction of M∂I , the map i′ is
well-defined. Then, for the isomorphism i in diagram (4), we have i = i′ ◦ g. This implies
that g is injective. ◀

4 For simplicity, we write [vp] and [vq] instead of [jp(vp)] and [jq(vq)] respectively where jp : Mp →⊕
r∈P

Mr and jq : Mq →
⊕

r∈P
Mr are the canonical inclusion maps.

SoCG 2022



34:10 Generalized Rank via Zigzag and Its Applications

▶ Remark 25. In Definition 19 one may consider the “lower” boundary cap ∂̂I, as an
alternative to ∂I:

∂̂I : p0 < p0 ∨ p1 > p1 < · · · > pk ≤ qℓ > qℓ ∧ qℓ−1 < qℓ−1 > · · · < q0.

The value rank(M) also equals the multiplicity of the full interval in the barcode of the
zigzag module induced over ∂̂I.

By Theorem 24, we can utilize algorithms for zigzag persistence in order to compute the
generalized rank invariant and the generalized persistence diagram of any Z2-module that is
obtained by applying the homology functor to a finite simplicial bifiltration consisting of
O(t) simplices over an index set of size O(t). For this, we complete the boundary cap of a
given interval to a faithful path (i.e. we put the missing monotonic paths between every pair
of consecutive points) and then simply run a zigzag persistence algorithm, say the O(tω)
algorithm of Milosavljevic et al. [34], on the filtration restricted to this path.

▶ Remark 26. To compute dgmI(M)(I) by the formula in (1), one needs to consider terms
whose number depends exponentially on the number of neighbors of I. However, for any
interval that has at most O(log t) neighbors, we have 2O(log t) = tc terms for some constant
c > 0. It follows that using O(tω) zigzag persistence algorithm for computing generalized
ranks, we obtain an O(tω+c) algorithm for computing generalized persistence diagrams of
intervals that have at most O(log t) neighbors.

4 Computing intervals and detecting interval decomposability

When a persistence module M admits a summand N that is isomorphic to an interval
module, N will be called an interval summand of M . In this section, we apply Theorem
24 for computing generalized rank via zigzag to different problems that ask to find interval
summands of an input finite Z2-module: Problems I, II, and III.

Let K be a finite abstract simplicial complex and let sub(K) be the poset of all sub-
complexes of K, ordered by inclusion. Given any poset P , an order-preserving map
F : P → sub(K) is called a simplicial filtration (of K).

▶ Setup 3. Throughout §4, F denotes a bifiltration of a simplicial complex K defined
over an interval P ∈ Int(Z2). Let t := max(|K|, |P |) denote the maximum of the number
of simplices in K and the number of points in P . By MF : P → vec we denote the
module induced by F through the homology functor with coefficients in the field F.

Computing the dimension function. In all algorithms below, we utilize a subroutine
Dim(F , P ), which computes the dimension of the vector space (MF )p for every p ∈ P .

▶ Proposition 27. Dim(F , P ) can be executed in O(t3) time (proof in the full version).

4.1 Detecting interval modules
We consider the following problem.



T. K. Dey, W. Kim, and F. Mémoli 34:11

▶ Problem I. Determine whether MF is isomorphic to the direct sum of a certain number
of copies of IP and if so, report the number of such copies.

Algorithm IsInterval solves Problem I. The correctness of the algorithm follows from
Proposition 28. Below, for an interval I ∈ Int(Z2) and for m ∈ Z≥0 we define ImI :=
II ⊕ II ⊕ · · · ⊕ II︸ ︷︷ ︸

m

. In particular, I0
I is defined to be the trivial module. Let us recall that

(MF )∂P denotes the zigzag module along the boundary cap ∂P (Definition 23).

Algorithm 1 IsInterval(F , P ).

Step 1. Compute zigzag barcode barc((MF )∂P ) and let m be the multiplicity of
the full interval.
Step 2. Call Dim(F , P ) (Computes dim(MF )p for every p ∈ P )
Step 3. If dim(MF )p == m for each point p ∈ P return m, otherwise return 0
indicating MF has a summand which is not an interval module supported over P .

▶ Proposition 28. Assume that a given M : P → vec has the indecomposable decomposition
M ∼=

⊕m
i=1 Mi. Then, every summand Mi is isomorphic to the interval module IP if and

only if rkI(M)(P ) = dimMp = m for all p ∈ P (proof in the full version).

▶ Proposition 29. Algorithm IsInterval can be run in O(t3) time (proof in the full version).

4.2 Interval decomposable modules and its summands
Setup 3 still applies in §4.2. Next, we consider the problem of computing all indecomposable
summands of MF under the assumption that MF is interval decomposable (Definition 3).

▶ Problem II. Assume that MF : P → vec is interval decomposable. Find barc(MF ).

We present algorithm Interval to solve Problem II in O(tω+2) time. This algorithm is
eventually used to detect whether a given module is interval decomposable or not (Problem
III). Before describing Interval, we first describe another algorithm TrueInterval. The
outcomes of both Interval and TrueInterval are the same as the barcode of MF in
Problem II (Propositions 33 and 37). Whereas TrueInterval is more intuitive, real
implementation is accomplished via Interval.

▶ Definition 30. Let I(MF ) := {I ∈ Int(P ) : rkI(MF )(I) > 0}. We call I ∈ I(MF )
maximal if there is no J ⊋ I in Int(P ) such that rkI(MF )(J) is nonzero.

▶ Proposition 31. Assume that MF is interval decomposable and let I ∈ I(MF ) be maximal.
Then, I belongs to barc(MF ) and the multiplicity of I in barc(MF ) is equal to rkI(MF )(I).

Proof. By assumption, all summands in the sum
∑

A⊆nbdI(I)∩P
A̸=∅

(−1)|A|rkI(MF )
(
I ∪A

)
corre-

sponding to the second term of (1) are zero. Hence, dgmI(MF )(I) = rkI(MF )(I) > 0. Since
MF is interval decomposable, by Theorem 9, dgmI(MF )(I) is equal to the multiplicity of I
in barc(MF ). Therefore, not only does I belong to barc(MF ), but also the value rkI(MF )(I)
is equal to the multiplicity of I in barc(MF ). ◀

The following proposition is a corollary of Proposition 31.

SoCG 2022



34:12 Generalized Rank via Zigzag and Its Applications

▶ Proposition 32. Assume that MF is interval decomposable and let I ∈ I(MF ) be maximal.
Let µI := rkI(MF )(I). Then, MF admits a summand N which is isomorphic to IµI

I .

Let us now describe a procedure TrueInterval that outputs all indecomposable sum-
mands of a given interval decomposable module. For computational efficiency, we will
implement TrueInterval differently. Let M := MF . First we compute dimMp for every
point p ∈ P . Iteratively, we choose a point p with dimMp ̸= 0 and compute a maximal
interval I ∈ I(M) containing p. Since M is interval decomposable, by Propositions 31 and
32 we have that I ∈ barc(M) and that there is a summand N ∼= IµI

I of M . Consider the
quotient module M ′ := M/N . Clearly, this “peeling off” of N reduces the total dimension

of the input module. Namely, dimM ′
p =

{
dimMp − µI , p ∈ I
dimMp, p /∈ I.

We continue the process

by replacing M with M ′ until there is no point p ∈ P with dimMp ̸= 0 (note that M ′ is
interval decomposable by Proposition 4). Since dimM :=

∑
p∈P dimMp is finite, this process

terminates in finitely many steps. By Propositions 4 and 32, the outcome of TrueInterval
is a list of all intervals in barc(M) with accurate multiplicities:

▶ Proposition 33. Assume that MF is interval decomposable. Let Ii, i = 1, . . . , k be the
intervals computed by TrueInterval. For each i = 1, . . . , k, let µIi := rkI(MF )(Ii). Then,
we have MF ∼=

⊕k
i=1 I

µIi

Ii
.

Next, we describe an algorithm Interval that simulates TrueInterval while avoiding
explicit quotienting of MF by its summands.

We associate a number d(p) and a list list(p) of identifiers of intervals I ⊆ P to each
point p ∈ P . The number d(p) equals the original dimension of (MF )p minus the number of
intervals peeled off so far (counted with their multiplicities) which contained p. It is initialized
to dim(MF )p. Each time we compute a maximal interval I ∈ I(MF ) with multiplicity µI
that contains p, we update d(p) := d(p) − µI keeping track of how many more intervals
containing p would TrueInterval still be peeling off.

With each interval I that is output, we associate an identifier id(I). The variable list(p)
maintains the set of identifiers of the intervals containing p that have been output so far.
While searching for a maximal interval I, we maintain a variable list for I that contains the
set of identifiers common to all points in I. Initializing list with list(p) of the initial point
p, we update it as we explore expanding I. Every time we augment I with a new point q, we
update list by taking its intersection with the set of identifiers list(q) associated with q.

We assume a routine Count that takes a list as input and gives the total number of
intervals counted with their multiplicities whose identifiers are in the list. This means that if
list = {id(I1), . . . , id(Ik)}, then Count(list) returns the number c :=

∑
µI1 + · · ·+ µIk

.

Notice that, while searching for a maximal interval starting from a point, we keep
considering the original given module MF since we do not implement the true “peeling” (i.e.
quotient MF by a submodule). However, we modify the condition for checking the maximality
of an interval I. We check whether rkI(MF )(I) > c, that is, whether the generalized rank of
MF over I is larger than the total number of intervals containing I that would have been
peeled off so far by TrueInterval. This idea is implemented in the following algorithm.



T. K. Dey, W. Kim, and F. Mémoli 34:13

Algorithm 2 Interval (F , P ).

Step 1. Call Dim(F ,P ) and set d(p) := dim(MF )p; list(p) := ∅ for every p ∈ P
Step 2. While there exists a p ∈ P with d(p) > 0 do

Step 2.1 Let I := {p}; list := list(p); unmark every q ∈ P
Step 2.2 If there exists unmarked q ∈ nbdI(I) then
i. templist := list ∩ list(q); c :=Count(templist)
ii. If rkI(MF )(I ∪ {q})>c then5 mark q; set I := I ∪ {q}; list := list ∩ list(q)
iii. go to Step 2.2

Step 2.3 Output I with multiplicity µI := rkI(MF )(I)− c
Step 2.4 For every q ∈ I set d(q) := d(q)− µI and list(q) := list(q) ∪ {id(I)}

The output of Interval can be succinctly described as:
Output: {(Ii, µIi

) : i = 1, . . . , k} where Ii ∈ Int(P ) and µi is a positive integer for each i.
▶ Remark 34. For each p ∈ P , dimMp coincides with

∑
Ii∋p µi.

We will show that if MF is interval decomposable, then the output of Interval coincides
with the barcode of MF (Propositions 33 and 37).

▶ Example 35 (Interval with interval decomposable input). Suppose that MF ∼= II1⊕II2⊕II3

as depicted in Figure 3 (A). The algorithm Interval yields {(I1, 1), (I2, 1), (I3, 1)}. In
particular, since I1 ⊃ I2 ⊃ I3, Interval outputs (I1, 1), (I2, 1), and (I3, 1) in order, as
depicted in Figure 4 (A) (details in the full version).

▶ Example 36 (Interval with non-interval-decomposable input). Suppose that N := MF ∼=
N ′ ⊕ II2 as depicted in Figure 3 (B). N ′ is an indecomposable module that is not an interval
module. One possible final output of Interval is {(J1, 1), (J2, 1), (J3, 1)} as depicted in
Figure 4 (B). Note however that, depending on the choices of p in Step 2 and the neighbors
q in Step 2.2, the final outcome can be different (details in the full version).

▶ Proposition 37. If MF is interval decomposable, Interval(F , P ) computes an interval
in barc(MF ) if and only if TrueInterval(F , P ) computes it with the same multiplicity.

Proof. (“if”): We induct on the list of intervals in the order they are computed by TrueIn-
terval. We prove two claims by induction: (i) TrueInterval can be run to explore
the points in P in the same order as Interval while searching for maximal intervals, (ii)
if Ii, i = 1, · · · , k, are the intervals computed by TrueInterval with this chosen order,
then Interval also outputs these intervals with the same multiplicities. Clearly, for i = 1,
Interval computes the maximal interval on the same input module MF as TrueInterval
does. So, clearly, TrueInterval can be made to explore P as Interval does and hence
their outputs are the same. Assume inductively that the hypotheses hold for i ≥ 1. Then,
TrueInterval operates next on the module Mi+1 := MF/(I

µI1
I1
⊕ · · · ⊕ IµIi

Ii
) (here each

IµIi

Ii
stands for a summand of MF that is isomorphic to IµIi

Ii
by Proposition 32). We let

TrueInterval explore P in the same way as Interval does. This is always possible
because the outcome of the test for exploration remains the same in both cases as we argue.

5 to check rkI(MF )(I ∪{q}) > c, we invoke Theorem 24 and run the zigzag persistence algorithm described
beneath Remark 25. For efficiency, one can use zigzag update algorithm in [17].

SoCG 2022



34:14 Generalized Rank via Zigzag and Its Applications

Figure 3 Modules M, N : {1, 2, 3} × {1, 2} → vec. M is interval decomposable, but N is not.

Figure 4 An illustration for Examples 35 and 36.

The variable d(p) at this point has the value dim(Mi+1)p and thus both TrueInterval
and Interval can start exploring from the point p if d(p) > 0. So, we let TrueInterval
compute the next maximal interval Ii+1 starting from the point p if Interval starts from p.

Now, when Interval tests for a point q to expand the interval I, we claim that the result
would be the same if TrueInterval tested for q. First of all, the condition whether I ∪ {q}
is an interval or not does not depend on which algorithm we are executing. Second, the
list supplied to Count in Step 2.2 (i) exactly equals the list of intervals containing I ∪ {q}
that Interval has already output. By the inductive hypothesis, this list is exactly equal
to the list of intervals that TrueInterval had already “peeled off”. Therefore, the test
rkI(MF )(I ∪ {q}) > c that Interval performs in Step 2.2 (ii) is exactly the same as the test
rkI(Mi+1)(I ∪ {q}) > 0 that TrueInterval would have performed for the module Mi+1.
This establishes that Interval computes the same interval Ii+1 with the same multiplicity
as TrueInterval would have computed on Mi+1 using the same order of exploration as the
inductive hypothesis claims.

(“only if”): See the full version. ◀



T. K. Dey, W. Kim, and F. Mémoli 34:15

▶ Proposition 38. Interval(F , P ) runs in O(tω+2) time (proof in the full version).

4.3 Interval decomposability
Setup 3 still applies in §4.3. We consider the following problem.

▶ Problem III. Determine whether the module MF is interval decomposable or not.

If the input module MF is interval decomposable, then the algorithm Interval computes
all intervals in the barcode. However, if the module MF is not interval decomposable, then
the algorithm is not guaranteed to output all interval summands. We show that Interval
still can be used to solve Problem III. For this we test whether each of the output intervals I
with multiplicity µI indeed supports a summand N ∼= IµI

I of MF .
To do this we run Algorithm 3 in Asashiba et al. [1] for each of the output intervals

of Interval. Call this algorithm TestInterval which with an input interval I, returns
µI > 0 if the module IµI

I is a summand of M and 0 otherwise.
For each of the intervals I with multiplicity µI returned by Interval(F , P ) we test

whether TestInterval(I) returns a non-zero µI . The first time the test fails, we declare
that MF is not interval decomposable. This gives us a polynomial time algorithm (with
complexity O(t3ω+2)) to test whether a module induced by a given bifiltration is interval
decomposable or not. It is a substantial improvement over the result of Asashiba et al. [1]
who gave an algorithm for tackling the same problem. Their algorithm cleverly enumerates
the intervals in the poset to test, but still tests exponentially many of them and hence may
run in time that is exponential in t. Because of our algorithm Interval, we can do the same
test but only on polynomially many intervals.

Algorithm 3 IsIntervalDecomp(F , P )

Step 1. I = {(Ii, µIi
)} ← Interval(F , P )

Step 2. For every Ii ∈ I do
Step 2.1 µ← TestInterval(MF ,Ii)
Step 2.2 If µ ̸= µIi then output false; quit

Step 3. output true

▶ Proposition 39. IsIntervalDecomp(F , P ) returns true if and only if MF is interval
decomposable. It takes O(t3ω+2) time.

Proof. By the contrapositive of Proposition 33, if for any of the computed interval(s)
Ii, i = 1, · · · , k by Interval, IµIi

Ii
is not a summand of MF , then MF is not interval

decomposable. On the other hand, if every such interval module is a summand of MF , then
we have that MF ∼=

⊕k
i=1 I

µIi

Ii
because dim(MF )p =

∑k
i dim(IµIi

Ii
)p for every p ∈ P .

Time complexity : By Proposition 38, Step 1 runs in time O(tω+2). We claim that
dim(MF ) = O(t2) (see Proof of Proposition 38 in the full version). Therefore, Interval
returns at most O(t2) intervals. According to the analysis in Asashiba et al. [1], each test
in Step 2.1 takes O(((dimMF )ω + t)tω) = O(t3ω) time and thus O(t3ω+2) in total over all
O(t2) tests which dominates the time complexity of IsIntervalDecomp. ◀

SoCG 2022



34:16 Generalized Rank via Zigzag and Its Applications

5 Discussion

The algorithm Interval produces all intervals of an input interval decomposable module.
What happens if the input module is not interval decomposable? We can show that the
algorithm still produces intervals each supporting a submodule of an indecomposable of the
input module (Figure 4), see [18] for details. Some other open questions that follow are: (i)
Can we generalize Theorem 24 to d-parameter persistent homology for d > 2? (ii) Can the
complexity of the algorithms be improved? (iii) In particular, can we improve the interval
testing algorithm of Asashiba et al.?

References
1 Hideto Asashiba, Mickaël Buchet, Emerson G Escolar, Ken Nakashima, and Michio Yoshiwaki.

On interval decomposability of 2d persistence modules. arXiv preprint v2, 2018. arXiv:
1812.05261.

2 Hideto Asashiba, Emerson G Escolar, Ken Nakashima, and Michio Yoshiwaki. On ap-
proximation of 2d-persistence modules by interval-decomposables. arXiv preprint, 2019.
arXiv:1911.01637.

3 Gorô Azumaya. Corrections and supplementaries to my paper concerning Krull-Remak-
schmidt’s theorem. Nagoya Mathematical Journal, 1:117–124, 1950.

4 Ulrich Bauer, Magnus B Botnan, Steffen Oppermann, and Johan Steen. Cotorsion tor-
sion triples and the representation theory of filtered hierarchical clustering. Advances in
Mathematics, 369:107171, 2020.

5 Leo Betthauser, Peter Bubenik, and Parker B Edwards. Graded persistence diagrams and
persistence landscapes. Discrete & Computational Geometry, pages 1–28, 2021.

6 Silvia Biasotti, Andrea Cerri, Patrizio Frosini, Daniela Giorgi, and Claudia Landi. Multidi-
mensional size functions for shape comparison. Journal of Mathematical Imaging and Vision,
32(2):161–179, 2008.

7 Magnus Botnan, Vadim Lebovici, and Steve Oudot. On Rectangle-Decomposable 2-Parameter
Persistence Modules. In 36th International Symposium on Computational Geometry (SoCG
2020), volume 164, pages 22:1–22:16, 2020.

8 Magnus Botnan and Michael Lesnick. Algebraic stability of zigzag persistence modules.
Algebraic & geometric topology, 18(6):3133–3204, 2018.

9 Magnus Botnan, Steffen Oppermann, and Steve Oudot. Signed barcodes for multi-parameter
persistence via rank decompositions and rank-exact resolutions. arXiv preprint, 2021. arXiv:
2107.06800.

10 Peter Bubenik and Alex Elchesen. Virtual persistence diagrams, signed measures, and
wasserstein distance. arXiv preprint, 2020. arXiv:2012.10514.

11 Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang. Elder-rule-staircodes for augmented
metric spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):417–454, 2021.

12 Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of computational mathe-
matics, 10(4):367–405, 2010.

13 Gunnar Carlsson and Facundo Mémoli. Multiparameter hierarchical clustering methods. In
Classification as a Tool for Research, pages 63–70. Springer, 2010.

14 Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete
& Computational Geometry, 42(1):71–93, 2009.

15 Erin Chambers and David Letscher. Persistent homology over directed acyclic graphs. In
Research in Computational Topology, pages 11–32. Springer, 2018.

16 Jérémy Cochoy and Steve Oudot. Decomposition of exact pfd persistence bimodules. Discrete
& Computational Geometry, 63(2):255–293, 2020.

17 Tamal K. Dey and Tao Hou. Updating zigzag persistence and maintaining representatives
over changing filtrations. CoRR, abs/2112.02352, 2021. arXiv:2112.02352.

http://arxiv.org/abs/1812.05261
http://arxiv.org/abs/1812.05261
http://arxiv.org/abs/1911.01637
http://arxiv.org/abs/2107.06800
http://arxiv.org/abs/2107.06800
http://arxiv.org/abs/2012.10514
http://arxiv.org/abs/2112.02352


T. K. Dey, W. Kim, and F. Mémoli 34:17

18 Tamal K. Dey, Woojin Kim, and Facundo Mémoli. Computing generalized rank invariant for
2-parameter persistence modules via zigzag persistence and its applications. arXiv preprint,
2021. arXiv:2111.15058.

19 Tamal K. Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge
University Press, 2022. URL: https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/
CTDAbook.pdf.

20 Tamal K Dey and Cheng Xin. Generalized persistence algorithm for decomposing multipa-
rameter persistence modules. Journal of Applied and Computational Topology, pages 1–52,
2022.

21 Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American
Mathematical Society, January 2010.

22 Emerson G Escolar and Yasuaki Hiraoka. Persistence modules on commutative ladders of
finite type. Discrete & Computational Geometry, 55(1):100–157, 2016.

23 Pierre Gabriel. Unzerlegbare darstellungen i. Manuscripta Mathematica, pages 71–103, 1972.
24 Michael Kerber. Multi-parameter persistent homology is practical. In NeurIPS 2020 Workshop

on Topological Data Analysis and Beyond, 2020.
25 Woojin Kim and Facundo Mémoli. Rank invariant for zigzag modules. arXiv preprint v1, 2018.

arXiv:1810.11517.
26 Woojin Kim and Facundo Mémoli. Generalized persistence diagrams for persistence modules

over posets. Journal of Applied and Computational Topology, 5(4):533–581, 2021.
27 Woojin Kim and Facundo Mémoli. Spatiotemporal persistent homology for dynamic metric

spaces. Discrete & Computational Geometry, 66(3):831–875, 2021.
28 Woojin Kim and Samantha Moore. The generalized persistence diagram encodes the bigraded

Betti numbers. arXiv preprint, 2021. arXiv:2111.02551.
29 Michael Lesnick. Multidimensional interleavings and applications to topological inference.

Stanford University, 2012.
30 Michael Lesnick. The theory of the interleaving distance on multidimensional persistence

modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.
31 Michael Lesnick and Matthew Wright. Interactive visualization of 2-d persistence modules.

arXiv preprint, 2015. arXiv:1512.00180.
32 Alexander McCleary and Amit Patel. Edit distance and persistence diagrams over lattices.

arXiv preprint, 2020. arXiv:2010.07337.
33 Ezra Miller. Modules over posets: commutative and homological algebra. arXiv preprint, 2019.

arXiv:1908.09750.
34 Nikola Milosavljević, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology

in matrix multiplication time. In Proceedings of the twenty-seventh Annual Symposium on
Computational Geometry, pages 216–225, 2011.

35 Amit Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology,
1(3):397–419, 2018.

36 Gian-Carlo Rota. On the foundations of combinatorial theory i. theory of Möbius functions.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(4):340–368, 1964.

37 Richard P Stanley. Enumerative combinatorics volume 1 second edition. Cambridge studies in
advanced mathematics, 2011.

SoCG 2022

http://arxiv.org/abs/2111.15058
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.pdf
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.pdf
http://arxiv.org/abs/1810.11517
http://arxiv.org/abs/2111.02551
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/2010.07337
http://arxiv.org/abs/1908.09750




Tracking Dynamical Features via Continuation and
Persistence
Tamal K. Dey # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Michał Lipiński # Ñ

Division of Computational Mathematics, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Marian Mrozek # Ñ

Division of Computational Mathematics, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Ryan Slechta # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Abstract
Multivector fields and combinatorial dynamical systems have recently become a subject of interest
due to their potential for use in computational methods. In this paper, we develop a method to track
an isolated invariant set – a salient feature of a combinatorial dynamical system – across a sequence
of multivector fields. This goal is attained by placing the classical notion of the “continuation” of
an isolated invariant set in the combinatorial setting. In particular, we give a “Tracking Protocol”
that, when given a seed isolated invariant set, finds a canonical continuation of the seed across a
sequence of multivector fields. In cases where it is not possible to continue, we show how to use
zigzag persistence to track homological features associated with the isolated invariant sets. This
construction permits viewing continuation as a special case of persistence.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases combinatorial dynamical systems, continuation, index pair, Conley index,
persistent homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.35

Related Version Full Version: https://arxiv.org/abs/2203.05727

Funding This work is partially supported by NSF grants CCF-2049010, CCF-1839252, Polish
National Science Center under Maestro Grant 2014/14/A/ST1/00453, Opus Grant 2019/35/B/ST1/
00874 and Preludium Grant 2018/29/N/ST1/00449

1 Introduction

Dynamical systems enter the field of data science in two ways: either directly, as in the case
of dynamic data, or indirectly, as in the case of images, where gradient dynamics are useful.
Forman’s discrete Morse theory [10, 11, 16] combines topology with gradient dynamics via
combinatorial vector fields. Discrete Morse theory has been used to simplify datasets and to
extract topological features from them [1, 7, 15, 25]. When coupled with persistent homology
[7, 8, 9], this theory can be useful for analyzing complex data [12, 17, 18].

Conley theory [4] is a generalization of classical Morse theory beyond gradient dynamics.
Conley’s approach to dynamical systems is motivated by the observation that in many areas,
perhaps most notably biology, the differential equations governing systems of interest are
known only roughly. Generally, this is due to the presence of several parameters which
cannot be measured or estimated precisely. A similar situation occurs in data science, where

© Tamal K. Dey, Michał Lipiński, Marian Mrozek, and Ryan Slechta;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tamaldey@purdue.edu
https://www.cs.purdue.edu/homes/tamaldey/
https://orcid.org/0000-0001-5160-9738
mailto:michal.lipinski@uj.edu.pl
https://apacz.matinf.uj.edu.pl/users/1632-michal-lipinski
https://orcid.org/0000-0001-9789-9750
mailto:marian.mrozek@uj.edu.pl
http://ww2.ii.uj.edu.pl/~mrozek
https://orcid.org/0000-0002-0619-6417
mailto:rslechta@purdue.edu
https://rslechta.github.io
https://orcid.org/0000-0002-3641-3072
https://doi.org/10.4230/LIPIcs.SoCG.2022.35
https://arxiv.org/abs/2203.05727
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Tracking via Continuation and Persistence

a time series dataset that is collected from a dynamical process only crudely approximates
the underlying system. This observation has motivated recent studies [2, 6, 14, 20, 21, 23]
on a variant of Conley theory for combinatorial vector fields.

The primary objects of interest in Conley theory are isolated invariant sets, each of
which is a salient feature of a vector field, together with an associated homological invariant
called the Conley index (Section 2). Notably, isolated invariant sets with non-trivial Conley
index persist under small perturbations. The geometry of the isolated invariant set may
change, and even the topology may change, but the Conley index associated with the isolated
invariant set remains the same. The isolated invariant set cannot suddenly vanish or change
from an attractor to a repeller or vice versa. From this observation, we get the notion of the
continuation of an isolated invariant set in a dynamical system to another one in a nearby
system. This local idea becomes global by making the continuation relation transitive.

Given a path in the space of dynamical systems, one can track an invariant set along the
path so long as the invariant set remains isolated. When the isolation is lost, continuation
“breaks” and the Conley index is not well-defined. Typically, this may be observed when
two isolated invariant sets merge. Isolation may eventually be regained, but there is no
guarantee that the Conley index will be recovered. We propose to use persistence [7, 8, 9]
in the discrete setting to connect continuations. First, we show how continuation can be
detected and maintained algorithmically in a combinatorial multivector field, which is a
discretized version of a continuous vector field. In fact, the continuation itself may be viewed
as a special case of persistence where all bars persist for the duration of the continuation.
When continuation “breaks,” we observe the birth and death of homology classes.

The combination of continuation and persistence allows us to algorithmically track an
isolated invariant set and its associated Conley index in the setting of combinatorial dynamical
systems. Recall that a combinatorial dynamical system is generated by a multivector field. A
multivector field is a partition of a simplicial complex into sets that are convex with respect
to the face poset. We track an isolated invariant set in a sequence of such fields where each
field differs from its adjacent ones by an atomic rearrangement. Each atomic rearrangement
is either an atomic coarsening or an atomic refinement. We show that an atomic refinement
always permits continuation and thus the Conley index of the tracked invariant set persists.
In the case of coarsening, we may not be able to continue. In such a case, we select an
isolated invariant set that is a minimal perturbation of the previous one and compute the
persistence of the Conley index between them. Hence, while there may come a point where
we can no longer track an isolated invariant set, we can use persistence to track the lifetime
of the homological features that are associated with the isolated invariant set.

The top row of Figure 1 presents flow lines from three flows on a simplicial complex with
vertices marked from A to N. The same figure also shows three combinatorial multivector
fields represented as three different partitions of the collection of cells into multivectors. Each
multivector is depicted as a connected component, and it is easy to see that they are convex
with respect to the face poset. The multivector fields are constructed as follows: if the flow
transversely crosses an edge e into a triangle t, then e and t are put in the same multivector.
Else, e is put into the same multivector as both of its incident triangles. If the flow line
originating at a vertex v immediately enters triangle t, then v and t are put into the same
multivector. See [22, 23] for additional information on this construction.

There are two saddle stationary points in each flow, indicated by small black dots. For
all three flows, the lower saddle is located in triangle GHK. However, the upper one moves
from triangle CDG in the left flow, through triangle DGH in the middle flow and finally it
shares triangle GHK with the lower saddle in the right flow. On the combinatorial level, the



T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:3

A B

C
D E

F G H I

J K L

M N

A B

C
D E

F G H I

J K L

M N

A B

C
D E

F G H I

J K L

M N

Dimension: 1
Dimension: 1

Figure 1 (Top) Three multivector fields, corresponding to merging saddles, where the middle
multivector field is an atomic refinement of the left and the right multivector field is an atomic
coarsening of the middle. The persistence barcode associated with the isolated invariant sets –
depicted in yellow – is shown in gray below the three figures. (Bottom) The multivector fields
associated with the figure at the top using the standard multivector drawing convention.

upper saddle in the left flow is represented by an isolated invariant set S1 consisting of one
multivector {CFG, CDG, DGH, CF, CG, DG, DH} marked in yellow. The Conley index of
S1 is non-trivial only in dimension one and has exactly one generator. Using methods from
this paper, S1 can be tracked to an isolated invariant set S2 containing the upper saddle of
the middle flow and consisting of one multivector {CDG, DGH, CG, DG, DH}, also marked
in yellow. The isolated invariant set S3 containing the upper saddle of the right flow consists
of one multivector {CDG, DGH, FGJ, GJK, GHK, CG, DG, DH, FG, JK, GH, GJ, GK},
again marked in yellow. It is not a continuation of S2, because in the right flow the
two saddles are too close to one another to be distinguishable with the resolution of the
triangulation. Furthermore, the Conley index has changed. It is only nontrivial in dimension
one, but unlike S1 and S2, it has two generators. Hence, in the right multivector field, a new
generator is born. We show how to capture the birth of this generator using persistence, and
we depict the associated barcode beneath the top row of Figure 1. The familiar reader will
note that the Conley index of S3 is the same as that of a monkey saddle. However, because
of the finite resolution, we cannot discriminate between two nearby saddles and a monkey
saddle. One can view a multivector field as a combinatorial object that represents flows up
to the resolution permitted by a triangulation. This purely combinatorial view of the top
row of Figure 1 is presented in the bottom row. In subsequent examples, we use this style.

SoCG 2022



35:4 Tracking via Continuation and Persistence

2 Combinatorial Dynamical Systems

In this section, we review multivector fields, combinatorial dynamical systems, and isolated
invariant sets. Throughout this paper, K will always denote a finite simplicial complex.
Furthermore, we will only consider simplicial homology [13, 24] with coefficients taken from
a finite field. Much of the foundational work on combinatorial dynamical systems was first
published in [21] and subsequently generalized in [20]. This work was heavily influenced by
Forman’s discrete Morse theory [10, 11]. Combinatorial dynamical systems are constructed
via multivector fields, which require a notion of convexity. Given a finite simplicial complex
K, we let ≤ denote the face relation on K. Formally, if σ, τ ∈ K, then σ ≤ τ if and only
if σ is a face of τ . The set A is convex if for each pair σ, τ ∈ A where there exists a ρ ∈ K

satisfying σ ≤ ρ ≤ τ , we have that ρ ∈ A.
A multivector is a convex subset of a simplicial complex. A partition of K into multivectors

is a multivector field on K. Multivectors are not required to have a unique maximal element
under ≤, nor are they required to be connected. Disconnected multivectors do not appear
in practice, and in the interest of legibility, all examples that we include in this paper only
depict connected multivectors. However, all of our theoretical results do hold for disconnected
multivectors. We draw a multivector V by drawing an arrow from each nonmaximal element
σ ∈ V to each maximal element τ ∈ V where σ ≤ τ . If σ is the only element of a multivector,
or a singleton, then we mark σ with a circle. Each σ ∈ K is contained in a unique multivector
V ∈ V . We denote the unique multivector in V containing σ as [σ]V .

A multivector field V induces dynamics on K. Given a simplex σ ∈ K, we denote the
closure of σ as cl(σ) := {τ ∈ K | τ ≤ σ}. For a set A ⊆ K, the closure of A is given by
cl(A) := ∪σ∈A cl(σ). A set A is closed if and only if A = cl(A). The multivector field V
induces a multivalued map FV : K ⊸ K where FV(σ) := cl(σ) ∪ [σ]V . Informally, this will
mean that if one is at a simplex σ, then one can move either to a face of σ or to a simplex τ

in the same multivector as σ. We allow moving within any single multivector because, on
the level of flows, the behavior within the multivector is beyond the resolution of the given
simplicial complex. Conversely, we do not allow moving from a cell to its coface, unless they
are in the same multivector, because this does not respect the underlying flow.

The multivalued map F gives a notion of paths and solutions to V . We let Z[i,j] := Z∩[i, j].
A path is a function ρ : Z[0,n] → K where ρ(i + 1) ∈ FV(ρ(i)) for i ∈ Z[0,n−1]. Likewise, a
solution is a function ρ : Z → K where ρ(i + 1) ∈ FV(ρ(i)) for i ∈ Z. However, there are
several trivial solutions in a multivector field. If σ ∈ K, then there is a solution ρ where
ρ(i) = σ for all i ∈ Z. That is, every simplex is a fixed point. This does not match the
intuition from differential equations: only a very select set of simplices should be fixed points
under FV . To enforce this, we use the notion of a critical multivector. But first, we define the
mouth of a set A, denoted mo(A), to be mo(A) := cl(A) \ A. The multivector V is critical if
H(cl(A), mo(A)) ̸= 0. Intuitively, critical multivectors with one maximal element correspond
to stationary points in the flow setting. Thus, only simplices in critical multivectors should
be fixed points under F . Essential solutions enforce this requirement [20].

▶ Definition 1 (Essential Solution). Let ρ : Z → K denote a solution to the multivector field
V. If for every i ∈ Z where [ρ(i)]V is not critical, there exists a pair of integers i− < i < i+

where [ρ(i−)]V ̸= [ρ(i)]V and [ρ(i)]V ̸= [ρ(i+)]V , then ρ is an essential solution.

The invariant part of a set A ⊆ K, denoted InvV(A), is given by the set of simplices
σ ∈ A for which there exists an essential solution ρ : Z → A where ρ(i) = σ for some i ∈ Z.
A set S ⊆ K is an invariant set if and only if S = InvV(S). For examples of invariant sets,
see Figure 2. We are interested in a special type of invariant set.



T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:5

Figure 2 Three examples of an invariant set, marked in yellow.

Figure 3 Three invariant sets on the same multivector field, marked in yellow. The left invariant
set is isolated by the entire rectangle. The middle invariant set is isolated by its closure, but not by
the rectangle because of the path in red. The right invariant set is isolated by neither its closure nor
the rectangle, because there is a path from a yellow triangle, to the red edge, to the yellow vertex.

Figure 4 Two invariant sets, marked in yellow, over the same multivector field. On the right, the
invariant set includes the two yellow vertices marked with filled discs, but it excludes the red edge.
The invariant set on the left is not V-compatible, while the invariant set on the right is.

▶ Definition 2 (Isolated Invariant Set, Isolating Set). Let S be an invariant set under V. If
there exists a closed set N such that FV(S) ⊆ N and every path ρ : Z[0,n] → N where
ρ(0), ρ(n) ∈ S has the property that ρ(Z[0,n]) ⊆ S, then S is isolated by N and S is an
isolated invariant set. Moreover, the set N is an isolating set for S.

Figure 3 illustrates the concept of isolation. An invariant set S is V-compatible if S is equal to
the union of a set of multivectors in V . For examples, see Figure 4. This gives an equivalent
formulation of an isolated invariant set.

▶ Proposition 3 ([19], Proposition 4.1.21). An invariant set S is isolated if and only if it is
convex and V-compatible.

3 Tracking Isolated Invariant Sets

In this section, we introduce the protocol for tracking an isolated invariant set across
multivector fields. Results in the continuous theory imply that under a sufficiently small
perturbation, some homological features of an isolated invariant set do not change. Hence,

SoCG 2022



35:6 Tracking via Continuation and Persistence

we require a notion of a small perturbation of a multivector field. In particular, let V and V ′

denote two multivector fields on K. If each multivector V ′ ∈ V ′ is contained in a multivector
V ∈ V, |V \ V ′| = 1, and |V ′ \ V| = 2, then V ′ is an atomic refinement of V. It is so-called
because V ′ is obtained by “splitting” exactly one multivector in V into two multivectors,
while all the other multivectors remain the same. Symmetrically, we say that V is an atomic
coarsening of V ′. More broadly, it is said that V and V ′ are atomic rearrangements of each
other. In Figures 5, 6, 7, 8, and 9, the two multivector fields are atomic rearrangements of
each other. In these figures, we draw the multivectors that are splitting or merging in red.

Given an isolated invariant set S under V , and an atomic rearrangement of V denoted V ′,
we aim to find an isolated invariant set S′ that is a minimal perturbation of S. We accomplish
this through two mechanisms: continuation and persistence. When we use continuation, or
when we attempt to continue, we check if there exists an S′ under V ′ that is in some sense
the same as S. If there is at least one such S′, then we choose a canonical one. This is
explained in Section 4. If there is no S′ to which we can continue, then we use persistence.
In particular, we choose a canonical isolated invariant set S′ under V ′, and while S does not
continue to S′, we can use zigzag persistence to observe which features of S are absorbed by
S′. We elaborate on this scheme in Section 5. To choose S′, we require the following result.

▶ Proposition 4 ([19], Corollary 4.1.22). Let A be a convex and V-compatible set. Then
InvV(A) is an isolated invariant set.

The set S is an isolated invariant set by assumption, so Proposition 3 implies that S

is convex and V-compatible. Thus, if S is also V ′-compatible, a natural choice is then to
use Proposition 4 and take S′ := InvV′(S). However, if S is not V ′-compatible, then the
situation is more complicated. The set S is not V ′-compatible precisely when V ′ is an atomic
coarsening of V, and the unique multivector V ∈ V ′ \ V, occasionally called the merged
multivector, has the properties that V ∩ S ̸= ∅ and V ̸⊆ S. In such a case, we use the
notation ⟨S ∪ V ⟩V′ to denote the intersection of all V ′-compatible and convex sets that
contain S ∪ V . The simplicial complex K is V ′-compatible and convex, so ⟨S ∪ V ⟩V′ always
exists and S ⊊ ⟨S ∪ V ⟩V′ . We observe that ⟨S ∪ V ⟩V′ is V ′-compatible and convex, and
thus it is the minimal convex and V ′-compatible set that contains S. In such a case, we
use Proposition 4 and take S′ := InvV′(⟨S ∪ V ⟩V′ ). These principles are enumerated in the
following Tracking Protocol.

Tracking Protocol

Given a nonempty isolated invariant set S under V , and an atomic rearrangement of V denoted
V ′, use the following rules to find an isolated invariant set S′ under V ′ that corresponds to S.
1. Attempt to track via continuation:

a. If V ′ is an atomic refinement of V, then take S′ := InvV′(S).
b. If V ′ is an atomic coarsening of V, and the unique merged multivector V has the

property that V ⊆ S, then take S′ := InvV′(S).
c. If V ′ is an atomic coarsening of V, and the unique merged multivector V has the

property that V ∩ S = ∅, then take S′ := InvV′(S) = S.
d. If V ′ is an atomic coarsening of V and the unique merged multivector V satisfies the

formulae V ∩ S ̸= ∅ and V ̸⊆ S, then consider A = ⟨S ∪ V ⟩V′ . If InvV(A) = S, then
take S′ := InvV′(A).

e. Else, it is impossible to track via continuation.
2. If it is impossible to track via continuation, then attempt to track via persistence:

f. If A := ⟨S ∪ V ⟩V , then take S′ := InvV′(A). If S and S′ have a common isolating set,
then use the technique in Equation 3 to find a zigzag filtration connecting them.

g. Otherwise, there is no natural choice of S′. See the full version for a possible strategy.



T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:7

We include an example of Step 1a in Figure 5, Step 1b in Figure 6, Step 1c in Figure 7,
Step 1d in Figure 8, and Step 2f in Figure 9. Each figure depicts a multivector field and
a seed isolated invariant set on the left, and an atomic rearrangement and the resulting
isolated invariant set on the right. By iteratively applying this protocol (until S′ = ∅, in
which case we are done), we can track how an isolated invariant set changes across several
atomic rearrangements. See Figure 10 and the associated barcode in Figure 11. Any two
multivector fields V1 and V2 can be related by a sequence of atomic rearrangements, and
hence the Tracking Protocol can be used to track how an isolated invariant set changes across
an arbitrary sequence of multivector fields. Additional details on this are in the full version.

Figure 5 Applying Step 1a to an invariant set (yellow, left) to get a new one (yellow, right).

Figure 6 Applying Step 1b to an invariant set (yellow, left) to get a new one (yellow, right).

Figure 7 Applying Step 1c to an invariant set (yellow, left) to get a new one (yellow, right). The
merged vector is outside of the invariant set on the left, so the invariant sets are the same.

SoCG 2022



35:8 Tracking via Continuation and Persistence

Figure 8 Applying Step 1d to an invariant set (yellow, left) to get a new one (yellow, right).

Dimension: 0

Dimension: 1

Figure 9 Applying Step 2f to an invariant set (yellow, left) to get a new one (yellow, right). The
associated persistence barcode is depicted below the figures.

4 Tracking via Continuation

Now, we introduce continuation in the combinatorial setting, and we justify the canonicity of
the choices made in Step 1 of the Tracking Protocol. In addition, we show that if Step 1 is
used to obtain S′ from S, then S and S′ are related by continuation. Continuation is closely
related to the Conley index, so we begin with a brief review of the topic.

4.1 Index Pairs and the Conley Index
Originally developed in the classical setting by Conley [4], the Conley index associates a
homological invariant with each isolated invariant set. It is defined through index pairs.

▶ Definition 5 (Index Pair). Let S denote an isolated invariant set under V, and let P and E

denote closed sets where E ⊆ P . If the following all hold, then (P, E) is an index pair for S:
1. FV(P \ E) ⊆ P

2. FV(E) ∩ P ⊆ E

3. S = InvV(P \ E)

For examples, see Figure 12. If (P, E) is an index pair for S, then the k-dimensional Conley
index of S is Hk(P, E). The authors in [20] showed that the Conley index is well-defined.

▶ Theorem 6 ([20], Theorem 5.16). Let (P, E) and (P ′, E′) denote index pairs for S. Then
Hk(P, E) = Hk(P ′, E′) for all k ≥ 0.



T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:9

(a) Initial multivector field. (b) Atomic coarsening of 10a. (c) Atomic refinement of 10b.

(d) Atomic refinement of 10c. (e) Atomic coarsening of 10d. (f) Atomic coarsening of 10e.

(g) Atomic refinement of 10f. (h) Atomic coarsening of 10g. (i) Atomic refinement of 10h.

Figure 10 Subfigure 10a contains an initial multivector field and a seed isolated invariant set,
which is a yellow edge. Each subsequent subfigure contains a multivector field that is an atomic
refinement or atomic coarsening of the previous. The isolated invariant set that we get by iteratively
applying the Tracking Protocol is depicted in yellow. Splitting and merging multivectors are in blue.

For a single isolated invariant set, there may be many possible index pairs. However, we
can choose a canonical one, namely, the minimal index pair.

▶ Proposition 7 ([20], Proposition 5.3). Let S denote an isolated invariant set. The pair
(cl(S), mo(S)) is an index pair for S.

The following two propositions show that convex and V-compatible sets are crucial for
finding index pairs.

▶ Proposition 8 ([20], Proposition 5.6). Let (P, E) be an index pair under V. Then P \ E is
convex and V-compatible.

▶ Proposition 9. If A is convex and V-compatible, then (cl(A), mo(A)) is an index pair for
InvV(A).

Dimension: 1
Dimension: 1

Figure 11 The barcode associated with the tracked invariant sets in Figure 10. Starting with
subfigure 10h, we see the birth of a new 1-dimensional homology generator.

SoCG 2022



35:10 Tracking via Continuation and Persistence

Figure 12 All three images depict an index pair for the yellow triangle marked with a black circle.
P is given by the red and yellow simplices, while E is given by the red simplices.

Proof. By Proposition 4 the set S = InvV(A) is an isolated invariant set. Since cl(A)\mo(A) =
A, we immediately get condition 3 from Definition 5. Since A is V-compatible we get
FV(A) = cl A, and thus, condition 1. To see condition 2 consider x ∈ FV(mo(A)). By
the definition of FV there exists an a ∈ mo(A) such that either x ∈ [a]V or x ∈ cl(a). In
the first case x ̸∈ A, because A is V-compatible and a ̸∈ A. Therefore [a]V ∩ cl(A) ⊆
cl(A) \ A = mo(A). If x ∈ cl(a) then x ∈ mo A, because mo(A) is closed. Hence, it follows
that FV(mo(A)) ∩ cl(A) ⊆ mo(A). ◀

4.2 Combinatorial Continuation and the Tracking Protocol
We now move to placing continuation in the combinatorial setting and explaining Step 1
of the Tracking Protocol. In essence, a continuation captures the presence of the “same”
isolated invariant set across multiple multivector fields. We then show that Step 1 of the
Tracking Protocol does use continuation to track an isolated invariant set.

▶ Definition 10. Let S1, S2, . . . , Sn denote a sequence of isolated invariant sets under the
multivector fields V1, V2, . . . , Vn, where each Vi is defined on a fixed simplicial complex K.
We say that isolated invariant set S1 continues to isolated invariant set Sn whenever there
exists a sequence of index pairs (P1, E1), (P2, E2), . . . , (Pn−1, En−1) where (Pi, Ei) is an
index pair for both Si and Si+1. Such a sequence is a sequence of connecting index pairs.

Figure 13 An index pair, where P is in yellow and E is empty, for the isolated invariant sets in
Figure 8. There is a common index pair for both isolated invariant sets, so they form a continuation.

Each index pair (Pi, Ei) in a connecting sequence of index pairs is an index pair for a
pair of consecutive isolated invariant sets Si and Si+1 (see Figures 13 and 14). Hence, the
isolated invariant sets in the continuation all have the same Conley index. In this sense, we
are capturing the “same” isolated invariant set. In Step 1 of the Tracking Protocol, we first



T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:11

Figure 14 An index pair, where P is given by the yellow and red simplices and E is given by the
red simplices, for the isolated invariant sets in Figure 6. Thus, they form a continuation.

attempt to track the isolated invariant set S via continuation. That is, if we use Step 1, then
we choose S′ such that S and S′ have a common index pair, say (P, E). It so happens that
(P, E) is easy to find algorithmically. We begin with the refinement case, or Step 1a.

▶ Theorem 11. Let V and V ′ denote multivector fields where V ′ is an atomic refinement
of V. Let A be a V-compatible and convex set. The pair (cl(A), mo(A)) is an index pair for
both InvV(A) under V and InvV′(A) under V ′.

The proof of Theorem 11 is included in the full version. In Step 1a of the Tracking
Protocol, where V ′ is an atomic refinement of V , we choose S′ := InvV′(S). By Proposition 3,
it follows that S is V-compatible. By identical reasoning to that presented in the proof
of Theorem 11, it follows that S is also V ′-compatible. Hence, Theorem 11 implies that
(cl(S), mo(S)) is an index pair for both S = InvV(S) and S′ = InvV′(S). Thus, S and S′

share an index pair.
The case of an atomic coarsening, corresponding to Steps 1b, 1c, and 1d of the Tracking

Protocol, is more complicated. Recall that if V ′ is an atomic coarsening of V , then the unique
multivector V ∈ V ′ \ V is called the merged multivector.

▶ Theorem 12. Let V and V ′ denote multivector fields where V ′ is an atomic coarsening of
V. Let A be a convex and V-compatible set, and let V ∈ V ′ be the unique merged multivector.
If V ⊆ A or V ∩ A = ∅, then (cl(A), mo(A)) is an index pair for both InvV(A) and InvV′(A).

Proof. If V ∩ A = ∅, then A is both V-compatible and V ′-compatible. Thus, Proposition 9
implies that (cl(A), mo(A)) is an index pair for both S = InvV(A) and S′ = InvV′(A).

If V ⊆ A, then by the same reasoning as in the proof of Theorem 11, it follows that A is
both V-compatible and V ′-compatible. Thus, Proposition 9 implies that (cl(A), mo(A)) is an
index pair for both InvV(A) and InvV(A). ◀

By Proposition 3, S is convex and V-compatible. Theorem 12 implies that if V ⊆ S or
V ∩ S = ∅, then (cl(S), mo(S)) is an index pair for both InvV(S) = S and InvV′(S) = S′. In
Steps 1b and 1c of the Tracking Protocol, S′ is chosen as InvV′(S). Hence, the index pair
(cl(S), mo(S)) is an index pair for both S and S′.

A more complicated case is Step 1d, where V ∩ S ≠ ∅ and V ̸⊆ S. Recall that
A := ⟨S ∪ V ⟩V′ denotes the intersection of all convex and V ′-compatible sets that contain
S ∪ V , and in particular, A is convex and V ′-compatible. In Step 1d of the Tracking Protocol,
we first check if S = InvV(A). By Proposition 9, if S = Inv(A), then (cl(A), mo(A)) is an
index pair for S. The set ⟨S ∪V ⟩V′ is necessarily V-compatible, because it is V ′-compatible by

SoCG 2022



35:12 Tracking via Continuation and Persistence

construction and it contains the unique merged multivector. Hence, Proposition 4 implies that
S′ := InvV′(A) is an isolated invariant set. Thus, Proposition 9 implies that (cl(A), mo(A))
is also an index pair for S′. Hence, if Step 1d gives S′, there is an index pair for S and S′.

In Step 1e of the Tracking Protocol, we claim that if S ̸= InvV(A), then it is not possible
to continue. Equivalently, there is no S′ that shares an index pair with S.

▶ Theorem 13. Let S denote an isolated invariant set under V and let V ′ denote an atomic
coarsening of V where the unique merged multivector V ∈ V ′ \ V satisfies the formulae
V ∩ S ̸= ∅ and V ̸⊆ S. Furthermore, let A := ⟨S ∪ V ⟩V′ . If S ̸= InvV(A), then there does not
exist an isolated invariant set S′ under V ′ for which there is an index pair (P, E) satisfying
InvV(P \ E) = S and InvV′(P \ E) = S′.

Proof. Suppose that S ̸= InvV(A) and there exists an index pair, (P, E), for both S under V
and some S′ under V ′. By Proposition 8, the set P \ E must be convex and V ′-compatible.
Since S ⊆ P \ E and A is the smallest convex and V ′-compatible set containing S, it follows
that A ⊆ P \ E. Hence, InvV(A) ⊆ InvV(P \ E). By assumption, S ⊊ InvV(A). Thus,
S ⊊ InvV(P \ E). This implies that (P, E) is not an index pair for S, a contradiction. ◀

4.3 Characterizing Tracked Isolated Invariant Sets
Step 1 of the Tracking Protocol provides an avenue for tracking an isolated invariant set
across a sequence of atomic rearrangements. In this subsection, we justify the canonicity of
the selected isolated invariant set in Step 1 of the Tracking Protocol. First, we observe that
we always have an inclusion. We prove Theorem 14 in the full version.

▶ Theorem 14. If S′ is obtained by applying Step 1 of the Tracking Protocol to S, then we
have S ⊆ S′ or S′ ⊆ S.

Furthermore, isolated invariant sets chosen by Step 1 minimize the perturbation to S in
terms of the number of inclusions. We include the proof for Proposition 15 in the full version.

▶ Proposition 15. Let S be an isolated invariant set under V, and let S′ be an isolated
invariant set under V ′ that is obtained by applying Step 1 of the Tracking Protocol to S.
If S′′ is any isolated invariant set under V ′ that shares a common index pair with S, then
S′ ⊆ S′′. Moreover, if S′′ ⊆ S, then S′ = S′′.

5 Tracking via Persistence

In the previous section, we explicated Step 1 of the protocol, which uses continuation to
track an isolated invariant set across a changing multivector field. In this section, we first
place continuation in the persistence framework by showing how to translate the idea of
combinatorial continuation into a zigzag filtration [3, 7] that does not introduce spurious
information. Then, we use the persistence view of continuation to justify Step 2f of the
Tracking Protocol, which permits us to capture changes in an isolated invariant set when no
continuation is possible. In particular, it permits us to track an isolated invariant set even in
the presence of a bifurcation that changes the Conley index. If the isolated invariant set that
we are tracking collides, or merges, with another isolated invariant set, then we follow the
newly formed isolated invariant set, and persistence captures which aspects of our original
isolated invariant set persist into the new one. Conversely, if an isolated invariant set splits,
we track the smallest isolated invariant set that contains all of the child invariant sets. We
begin by reviewing some results on computing the persistence of the Conley index from [5].



T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:13

5.1 Conley Index Persistence
In [5], the authors were interested in computing the changing Conley index across a sequence
of isolated invariant sets. A naive approach to computing the persistence of the Conley
index is, if given two index pairs (P1, E1) and (P2, E2), to take the intersection of the index
pairs to obtain the zigzag filtration (P1, E1) ⊇ (P1 ∩ P2, E1 ∩ E2) ⊆ (P2, E2). However, the
intersection of index pairs is generally not an index pair, and as a consequence, the barcode
associated with this zigzag filtration does not capture a changing Conley index. In addition,
due to the fact that (P1 ∩ P2, E1 ∩ E2) need not be an index pair, the barcode is frequently
erratic. An example is in Figure 15. To solve this issue, we consider index pairs in N [5].

Dimension: 2 Dimension: 2
Dimension: 1
Dimension: 1

Figure 15 All three images depict the same multivector field, which includes a yellow repelling
fixed point (triangle, marked with a black circle). (left) and (right) depict two different index
pairs, (Pl, El) and (Pr, Er), for the repelling fixed point: Pl and Pr consist of yellow and red
simplices and El and Er consist of red simplices. The intersection (Pl ∩ Pr, El ∩ Er) is depicted
in the middle. Check that this pair is not an index pair because if e denotes a yellow edge, then
FV(e) ̸⊆ Pl ∩ Pr. Beneath, we depict the barcode that is associated with the zigzag filtration
(Pl, El) ⊇ (Pl ∩ Pr, El ∩ Er) ⊆ (Pr, Er). Because (Pl, El) and (Pr, Er) are both index pairs for the
same repelling fixed point, we would expect the barcode to be full. However, as (Pl ∩ Pr, El ∩ Er) is
not an index pair for the repelling fixed point, its relative homology can change drastically.

▶ Definition 16. Let S denote an isolated invariant set, and let N denote an isolating set
for S. The pair of closed sets (P, E) is an index pair for S in N if all of the following hold:
1. FV(P \ E) ⊆ N

2. FV(E) ∩ N ⊆ E

3. FV(P ) ∩ N ⊆ P

4. S = InvV(P \ E)

Every index pair in N is also an index pair in the sense of Definition 5 (see [5]). The
canonical choice of an index pair for S can be used to obtain a canonical index pair for S in
N via the push forward. The push forward of a set A in N , denoted pfV(A, N), is given by
the set of simplices σ ∈ N for which there exists a path ρ : Z[0,n] → N in V where ρ(0) ∈ A

and ρ(n) = σ. If V is clear from the context we write pf(A, N).

▶ Theorem 17 ([5], Theorem 15). Let S be an isolated invariant set under V, and let N be
an isolating set for S. The pair (pfV(cl(S), N), pfV(mo(S), N)) is an index pair in N for S.

Index pairs in N are particularly useful because, unlike standard index pairs, their
intersection is guaranteed to be an index pair. For two multivector fields V1 and V2, an
intermediate multivector field is V1∩V2, where V1∩V2 := {V1 ∩ V2 | V1 ∈ V1, V2 ∈ V2}.

SoCG 2022



35:14 Tracking via Continuation and Persistence

▶ Theorem 18 ([5], Theorem 10). Let (P1, E1) and (P2, E2) denote index pairs in N under
V1 and V2, respectively. The pair (P1 ∩ P2, E1 ∩ E2) is an index pair in N under V1∩V2.

Hence, given an index pair (P1, E1) in N under V1 and an index pair (P2, E2) in N

under V2, we can obtain a relative zigzag filtration where each pair is an index pair under a
different multivector field. This zigzag filtration permits capturing a changing Conley index
via persistence. We include an example in Figure 16.

Dimension: 2

Figure 16 All three images depict the same multivector field in Figure 15. The left and the right
images depict an index pair in N , where N is the entire rectangle. The color convention is the same
as in Figure 15: red and yellow simplices are in P , and red simplices are in E. Unlike Figure 15,
Theorem 18 implies that that the intersected pair in the middle is an index pair. The persistence
barcode, capturing the static Conley index, is depicted below the three images.

5.2 From continuation to filtration
Now, we show that a continuation of an isolated invariant set S1 to Sn+1 can be expressed in
terms of persistence. Namely, a corresponding sequence of connecting index pairs (P1, E1),
(P2, E2), . . . , (Pn, En) can be turned into a zigzag filtration, that is a sequence of pairs
{(Ai, Bi)}m

i=1 such that either (Ai, Bi) ⊆ (Ai+1, Bi+1) or (Ai+1, Bi+1) ⊆ (Ai, Bi). Ideally,
each (Ai, Bi) would be an index pair for some Sj from the initial continuation so as to not
introduce spurious invariant sets or Conley indices. A connecting index pair (Pi, Ei) is an
index pair for both Si under Vi and for Si+1 under Vi+1. Thus, (Pi, Ei) and (Pi+1, Ei+1) are
both index pairs for Si+1 under Vi+1. We will construct auxiliary index pairs for Si+1 and
then relate (Pi, Ei) and (Pi+1, Ei+1) with a zigzag filtration using these auxiliary pairs. If
we can connect all adjacent pairs (Pi, Ei) and (Pi+1, Ei+1) with a zigzag filtration, then we
can concatenate all of these zigzag filtrations and transform a sequence of connecting index
pairs into a larger zigzag filtration. The following results are important for achieving this.

▶ Proposition 19 ([20], Proposition 5.2). Let (P, E) denote an index pair for S. The set P

is an isolating set for S.

▶ Proposition 20. Let (P, E) denote an index pair for S under V. The pair (P, E) is an
index pair for S in P under V.

Proof. First, we observe that S = InvV(P \ E) because (P, E) is an index pair. In addition,
FV(P ) ∩ N = FV(P ) ∩ P ⊆ P by definition. Since (P, E) is an index pair, it has the property
that FV(P \ E) ⊆ P . In the case of index pairs in N , we require that FV(P \ E) ⊆ N = P ,
so this case is immediately satisfied. Finally, because (P, E) is an index pair, FV(E) ∩ P ⊆ E.
Thus, FV(E) ∩ N = FV(E) ∩ P ⊆ E. ◀



T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:15

▶ Theorem 21. Let (P1, E1) and (P2, E2) denote index pairs for S in N under V. The pair
(P1 ∩ P2, E1 ∩ E2) is an index pair for S in N under V.

We include the proof of Theorem 21 in the full version.
Now, we move to using these results to translate a sequence of connecting index pairs

{(Pi, Ei)}n
i=1 into a zigzag filtration. For 1 < i ≤ n, (Pi−1, Ei−1) and (Pi, Ei) are both index

pairs for Si. By Proposition 7, the pair (cl(Si), mo(Si)) is an index pair for Si. Hence, a
natural approach is to find a zigzag filtration that connects (Pi, Ei) with (cl(Si), mo(Si)) and
a zigzag filtration that connects (Pi−1, Ei−1) with (cl(Si), mo(Si)). If we can find such zigzag
filtrations for all Si, then we can concatenate all of them and obtain a zigzag filtration that
connects (P1, E1) with (Pn, En). We depict the resulting zigzag filtration in Equation 1.

(P1, E1) ⊇ . . . ⊇ (cl(S2), mo(S2)) ⊆ . . . ⊆ (P2, E2) ⊇ . . . ⊇ (cl(S3), mo(S3)) ⊆ . . . (Pn, En)
(1)

We connect (cl(Si), mo(Si)) with (Pi, Ei), and (Pi−1, Ei−1) connects with (cl(Si), mo(Si))
symmetrically. By Proposition 19, Pi is an isolating set for Si. Thus, by Theorem 17,
(pfVi

(cl(Si), Pi), pfVi
(mo(Si), Pi)) is an index pair for Si in Pi. Proposition 20 implies

that (Pi, Ei) is an index pair for Si in Pi. By Theorem 21, (Pi ∩ pfVi
(cl(Si), Pi), Ei ∩

pfVi
(mo(Si), Pi)) is an index pair for Si in Pi. Hence, we get the following zigzag filtration:

(cl(Si), mo(Si)) ⊆ (pfVi
(cl(Si), Pi), pfVi

(mo(Si), Pi)) ⊇
(Pi ∩ pfVi

(cl(Si), Pi), Ei ∩ pfVi
(mo(Si), Pi)) ⊆ (Pi, Ei) (2)

Every pair in Equation 2 is an index pair for Si under Vi. Thus, we do not introduce any
spurious invariant sets. We can concatenate these filtrations to get Equation 1.

We now analyze the barcode obtained for 1. we prove Theorem 22 in the full version.

▶ Theorem 22. For every k ≥ 0, the k-dimensional barcode of a connecting sequence of
index pairs {(Pi, Ei)}n

i=1 has m bars [1, n] if dim Hk(P1, E1) = m.

5.3 Tracking beyond continuation
In the previous subsection, we showed how to convert a connecting sequence of index pairs
into a zigzag filtration. Furthermore, we observed that it produces “full” barcodes - they
have one bar for each basis element of the Conley index that persists for the length of the
filtration. This change of perspective allows us to generalize our protocol to handle cases
when it is impossible to continue.

In particular, we consider Step 2f of the protocol. Let S denote an isolated invariant
set under V, and V ′ is an atomic coarsening of V where the merged multivector V has the
property that V ∩ S ̸= ∅ and V ̸⊆ S. In such a case, we consider A := ⟨S ∪ V ⟩V′ and take
S′ = InvV′(A). Theorem 13 implies that if S ̸= InvV(A), then it is impossible to continue.
However, it may be possible to compute persistence in a way that resembles continuation.
Let B := cl(S) ∪ cl(S′). Trivially, B is closed. If B is an isolating set for both S and S′,
then we say that S and S′ are adjacent. By Theorem 17, (pfV(cl(S), B), pfV(mo(S), B)) is
an index pair for S in B. Similarly, (pfV′(cl(S′), B), pfV′(mo(S′), B)) is an index pair for S′

in B. Thus, we can use Theorem 18 to obtain the following zigzag filtration.

(cl(S), mo(S)) ⊆ (pfV(cl(S), B), pfV(mo(S), B))
⊇ (pfV(cl(S), B) ∩ pfV′(cl(S′), B), pfV(mo(S), B) ∩ pfV′(mo(S′), B)) ⊆

(pfV′(cl(S′), B), pfV′(mo(S′), B)) ⊇ (cl(S′), mo(S′)) (3)

SoCG 2022



35:16 Tracking via Continuation and Persistence

Suppose that we are iteratively applying Step 1 of the Tracking Protocol, finding a
sequence of isolated invariant sets where adjacent ones share an index pair, and we terminate
with an isolated invariant set S and an index pair (P, E). We can connect (P, E) with
(cl(S), mo(S)) with techniques from the previous section. That is, if (P, E) ̸= (cl(S), mo(S)),
then we can find a filtration that connects them:

(P, E) ⊇ (P ∩ pfV(cl(S), P ), E ∩ pfV(mo(S), P )) ⊆
(pfV(cl(S), P ), pfV(mo(S), P ) ⊇ (cl(S), mo(S1)) (4)

We can then concatenate this filtration with the zigzag filtration in Equation 3. This
effectively completes the Tracking Protocol: when continuation, represented as Step 1, is
impossible, we can attempt to apply Step 2f and persistence to continue to track.

In Step 2f, we choose to take S′ = InvV′(A). In practice, there may be many isolated
invariant sets under V ′ that are adjacent to S. However, our choice of S′ is canonical.

▶ Proposition 23. Let S′ denote an isolated invariant set under V ′ that is obtained from
applying Step 2f of the Tracking Protocol to the isolated invariant set S under V. If S′′ is an
isolated invariant set under V ′ where S ⊆ S′′, then S′ ⊆ S′′.

Proof. By Proposition 4, set S′′ is convex and V ′-compatible. Since A is the minimal convex
and V ′-compatible set containing S we get that S ⊆ A ⊆ S′′. By definition, S′ = InvV′(A),
so S′ ⊆ A ⊆ S′′. ◀

6 Conclusion

We conclude by briefly discussing some directions for future work. In Step 2g of the Tracking
Protocol, there is a canonical choice of S′. But, as there is no common isolating set for S

and S′, we cannot presently say anything about the persistence of the Conley index from S

to S′. Is it possible to compute the Conley index persistence here in a controlled way? Can
we meaningfully compute persistence for a different choice of invariant set? Investigation and
experiments are likely needed to determine the most practical course of action in this case.

References
1 Madjid Allili, Tomasz Kaczynski, Claudia Landi, and Filippo Masoni. Acyclic partial matchings

for multidimensional persistence: Algorithm and combinatorial interpretation. J. Math.
Imaging Vision, 61:174–192, 2019. doi:10.1007/s10851-018-0843-8.

2 Bogdan Batko, Tomasz Kaczynski, Marian Mrozek, and Thomas Wanner. Linking combinat-
orial and classical dynamics: Conley index and Morse decompositions. Found. Comput. Math.,
20(5):967–1012, 2020.

3 Gunnar Carlsson and Vin de Silva. Zigzag persistence. Found. Comput. Math., 10(4):367–405,
August 2010. doi:10.1007/s10208-010-9066-0.

4 Charles Conley. Isolated invariant sets and the Morse index. In CBMS Reg. Conf. Ser. Math.,
volume 38, 1978.

5 Tamal K. Dey, Marian Mrozek, and Ryan Slechta. Persistence of the Conley index in
combinatorial dynamical systems. In Proceedings of the 36th International Symposium on
Computational Geometry, pages 37:1–37:17, June 2020. doi:10.4230/LIPIcs.SoCG.2020.37.

6 Tamal K. Dey, Marian Mrozek, and Ryan Slechta. Persistence of Conley-Morse graphs in
combinatorial dynamical systems. SIAM J. Appl. Dyn. Syst., 2022. To appear.

7 Tamal K. Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge
University Press, 2022. URL: https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/
CTDAbook.pdf.

https://doi.org/10.1007/s10851-018-0843-8
https://doi.org/10.1007/s10208-010-9066-0
https://doi.org/10.4230/LIPIcs.SoCG.2020.37
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.pdf
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.pdf


T. K. Dey, M. Lipiński, M. Mrozek, and R. Slechta 35:17

8 Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American
Mathematical Society, January 2010.

9 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete & Computational Geometry, 28(4):511–533, November 2002. doi:
10.1007/s00454-002-2885-2.

10 Robin Forman. Combinatorial vector fields and dynamical systems. Math. Z., 228:629–681,
1998. doi:10.1007/PL00004638.

11 Robin Forman. Morse theory for cell complexes. Adv. Math., 134:90–145, 1998. doi:
10.1006/aima.1997.1650.

12 David Gunther, Jan Reininghaus, Ingrid Hotz, and Hubert Wagner. Memory-efficient
computation of persistent homology for 3d images using discrete Morse theory. In 2011
24th SIBGRAPI Conference on Graphics, Patterns and Images, pages 25–32, 2011. doi:
10.1109/SIBGRAPI.2011.24.

13 Allen Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.
14 Tomasz Kaczynski, Marian Mrozek, and Thomas Wanner. Towards a formal tie between

combinatorial and classical vector field dynamics. J. Comput. Dyn., 3(1):17–50, 2016. doi:
10.3934/jcd.2016002.

15 Henry King, Kevin Knudson, and Neža Mramor. Generating discrete Morse functions from
point data. Exp. Math., 14:435–444, 2005.

16 Kevin Knudson. Morse Theory Smooth and Discrete. World Scientific, 2015.
17 Kevin Knudson and Bei Wang. Discrete Stratified Morse Theory: A User’s Guide. In

34th International Symposium on Computational Geometry (SoCG 2018), volume 99, pages
54:1–54:14, 2018. doi:10.4230/LIPIcs.SoCG.2018.54.

18 Claudia Landi and Sara Scaramuccia. Relative-perfectness of discrete gradient vector fields
and multi-parameter persistent homology. J. Comb. Optim., 2021.

19 Michał Lipiński. Morse-Conley-Forman theory for generalized combinatorial multivector fields
on finite topological spaces. PhD thesis, Jagiellonian University, 2021.

20 Michał Lipiński, Jacek Kubica, Marian Mrozek, and Thomas Wanner. Conley-Morse-Forman
theory for generalized combinatorial multivector fields on finite topological spaces, 2020.
arXiv:1911.12698.

21 Marian Mrozek. Conley–Morse–Forman theory for combinatorial multivector fields on
Lefschetz complexes. Found. Comput. Math., 17(6):1585–1633, December 2017. doi:
10.1007/s10208-016-9330-z.

22 Marian Mrozek, Roman Srzednicki, Justin Thorpe, and Thomas Wanner. Combinatorial vs.
classical dynamics: Recurrence. Commun. Nonlinear Sci. Numer. Simul., 108:106226(1–30),
2022. doi:10.1016/j.cnsns.2021.106226.

23 Marian Mrozek and Thomas Wanner. Creating semiflows on simplicial complexes from
combinatorial vector fields. J. Differential Equations, 304:375–434, 2021.

24 James Munkres. Topology. Featured Titles for Topology Series. Prentice Hall, Incorporated,
2000.

25 Vanessa Robins, Peter John Wood, and Adrian P. Sheppard. Theory and algorithms for
constructing discrete Morse complexes from grayscale digital images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(8):1646–1658, 2011. doi:10.1109/TPAMI.2011.
95.

SoCG 2022

https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/PL00004638
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1006/aima.1997.1650
https://doi.org/10.1109/SIBGRAPI.2011.24
https://doi.org/10.1109/SIBGRAPI.2011.24
https://doi.org/10.3934/jcd.2016002
https://doi.org/10.3934/jcd.2016002
https://doi.org/10.4230/LIPIcs.SoCG.2018.54
http://arxiv.org/abs/1911.12698
https://doi.org/10.1007/s10208-016-9330-z
https://doi.org/10.1007/s10208-016-9330-z
https://doi.org/10.1016/j.cnsns.2021.106226
https://doi.org/10.1109/TPAMI.2011.95
https://doi.org/10.1109/TPAMI.2011.95




On the Discrete Fréchet Distance in a Graph
Anne Driemel #

Hausdorff Center for Mathematics, Universität Bonn, Germany

Ivor van der Hoog #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

Abstract
The Fréchet distance is a well-studied similarity measure between curves that is widely used
throughout computer science. Motivated by applications where curves stem from paths and walks
on an underlying graph (such as a road network), we define and study the Fréchet distance for paths
and walks on graphs. When provided with a distance oracle of G with O(1) query time, the classical
quadratic-time dynamic program can compute the Fréchet distance between two walks P and Q in a
graph G in O(|P | · |Q|) time. We show that there are situations where the graph structure helps with
computing Fréchet distance: when the graph G is planar, we apply existing (approximate) distance
oracles to compute a (1 + ε)-approximation of the Fréchet distance between any shortest path P and
any walk Q in O(|G| log |G|/

√
ε + |P | + |Q|

ε
) time. We generalise this result to near-shortest paths,

i.e. κ-straight paths, as we show how to compute a (1 + ε)-approximation between a κ-straight path
P and any walk Q in O(|G| log |G|/

√
ε + |P | + κ|Q|

ε
) time. Our algorithmic results hold for both the

strong and the weak discrete Fréchet distance over the shortest path metric in G.
Finally, we show that additional assumptions on the input, such as our assumption on path

straightness, are indeed necessary to obtain truly subquadratic running time. We provide a conditional
lower bound showing that the Fréchet distance, or even its 1.01-approximation, between arbitrary
paths in a weighted planar graph cannot be computed in O((|P | · |Q|)1−δ) time for any δ > 0 unless
the Orthogonal Vector Hypothesis fails. For walks, this lower bound holds even when G is planar,
unit-weight and has O(1) vertices.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Fréchet, graphs, planar, complexity analysis

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.36

Related Version Full Version: https://arxiv.org/abs/2201.02121

Funding Partially supported by Independent Research Fund Denmark grants 2020-2023 (9131-
00044B) “Dynamic Network Analysis”.

Acknowledgements We thank David Goeckede and Petra Mutzel for useful discussions.

1 Introduction

The Fréchet distance is a popular metric for measuring the similarity between (polygonal)
curves. The Fréchet distance is often intuitively defined through the following metaphor:
suppose that we have two curves that are traversed by a person and their dog. Over all
possible traversals by both the person and the dog, what is the minimum length of their
connecting leash? The Fréchet distance has many applications; in particular in the analysis
and visualization of movement data [10, 14, 31, 44]. It is a versatile distance measure that
can be used for a variety of objects, such as handwriting [38], coastlines [34], outlines of
geometric shapes in geographic information systems [20], trajectories of moving objects,

© Anne Driemel, Ivor van der Hoog, and Eva Rotenberg;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 36; pp. 36:1–36:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:driemel@cs.uni-bonn.de
mailto:vanderhoog@gmail.com
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.SoCG.2022.36
https://arxiv.org/abs/2201.02121
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


36:2 On the Discrete Fréchet Distance in a Graph

such as vehicles, animals or sports players [37, 39, 6, 14], air traffic [5] and also protein
structures [28]. There are many variants of the Fréchet distance, some of which we also
discuss further below. The two most-studied variants are the continuous and discrete Fréchet
distance (based on whether the entities traverse a curve continuously or vertex-by-vertex).

Alt and Godau [2] were the first to study the Fréchet distance from a computational
perspective. They studied how to compute the continuous Fréchet distance between two
polygonal curves of n and m vertices each in O(mn log(n + m)) time. Recently, this running
time was improved by Buchin et al. [11] to O(n2√

log n(log log n)3/2) on a real-valued pointer
machine and O(n2 log log n) on a word RAM with word size Ω(log n). Eiter and Manila [23]
showed how to compute the discrete Fréchet distance between two polygonal curves in O(nm)
time, which was later improved to O(nm(log log nm)/ log nm) by Buchin et al. [11].

Conditional lower bounds for the Fréchet distance. The above (near-) quadratic upper
bound algorithms are accompanied by a series of conditional lower bounds for computing
the Fréchet distance or a constant factor approximation. All these results assume the
Orthogonal Vector Hypothesis (OVH) or, by extension, the strong exponential time hypothesis
(SETH) [42]. Bringmann [7] shows that there is no O(n2−δ) algorithm, for any δ > 0, for
computing the (discrete or continuous) Fréchet distance between two polygonal curves of n

vertices each. The statement also holds for approximation algorithms with small constant
approximation factor. Bringmann’s original proof uses self-intersecting curves in the plane.
Later, Bringmann and Mulzer [9] showed the same conditional lower bound for intersecting
curves in R1. Bringmann [7] also showed the following conditional lower bound tailored
to the unbalanced setting where the two input curves have different complexities: given
two polygonal curves of n and m vertices each, there is no O((nm)1−δ) time algorithm for
computing the Fréchet distance. Recently Buchin, Ophelders and Speckmann [13] showed
that (assuming OVH) there can be no O((nm)1−δ) time algorithm that computes anything
better than a 3-approximation of the Fréchet distance for pairwise disjoint planar curves in
R2 and intersecting curves in R1.

Avoiding lower bounds. These lower bounds can be circumvented whenever the input
curves come from well-behaved classes of curves, such as c-packed curves [22, 8], ϕ-low density
curves [22], and κ-straight curves [3, 4], and in special cases when the edges of the input
curves are long [26]. Another way to avoid the quadratic complexity is to allow relatively large
approximation factors. Bringmann and Mulzer [9] presented an α-approximation algorithm
for the discrete Fréchet distance, that runs in time O(n log n + n2/α), for any α in [1, n].
This was recently improved by Chan and Rahmati [16] to O(n log n + n2/α2) for any α in
[1, n/ log n]. For the continuous Fréchet distance a weaker result was presented by Colombe
and Fox [19]. They show an O(α)-approximation algorithm for any α in [

√
n, n] that runs in

time O((n3/α2) log n). For general polygonal curves, without further input assumptions, the
best-known approximation factors with near-linear running times are still quite high, α ≈ n

for the continuous Fréchet distance and α ≈
√

n for the discrete case.

Fréchet distance variants. Variants of the Fréchet distance include those that model
partial similarity by allowing straight-line shortcuts along a curve [21], or by maximizing
the portions of the curves that a matched to each other within a fixed distance [12]. Other
variants constrain the class of mappings by applying speed constraints [33] or topological
constraints [15], or model the distance metric to the geodesics inside a simple polygon [27].
Even other variants extend the class of mappings, such as the weak Fréchet distance, which



A. Driemel, I. van der Hoog, and E. Rotenberg 36:3

(a) (b)

Figure 1 (a) A road network can be represented as a graph G. (b) Edges in G can be weighted,
e.g. depending on whether traffic flows fast (grey) or slow (black). Under the shortest path metric,
the Fréchet distance between blue and green may be smaller than the distance between red and
black; even though under the Euclidean metric, the red-black Fréchet distance is smaller.

was already studied by Alt and Godau [2]. Strikingly, the Fréchet distance has not been
studied in the context of graphs. Edge-weighted graphs with their shortest-path metric
are commonly used to model discrete metric spaces [35], and the Fréchet distance can be
derived from the underlying distance metric (Figure 2). In this paper, we intend to initiate a
study of the computational complexity of the discrete Fréchet distance between paths in a
planar graph, where distances between nodes are measured by their shortest path metric
in this graph. This is a natural model when, for example, measuring the similarity of two
trajectories in the same street network (Figure 1).

Contribution and organisation. This is the first paper that considers computing the Fréchet
distance in the graph domain.1 Section 2 contains the preliminaries where we present an
overview of distance oracles and the problem statement. Section 3 serves as an introduction
to our setting and techniques. We assume that P is a κ-straight path and that Q is a walk
in a planar weighted graph G. We use an exact distance oracle with O(log2+o(1) |G|) query
time to compute a (κ + 1)-approximation of DF (P, Q). This is the first nontrivial algorithm
for computing the (approximate) Fréchet distance in a planar graph. In Section 4 we extend
our results. We use a (1 + α)-stretch distance oracle to compute a (1 + ε)-approximation
of DF (P, Q). The full version contains the analogous result for the weak Fréchet distance.
Finally, we show in Section 5 a conditional lower bound for computing the Fréchet distance.
Specifically, assuming the Orthogonal Vector Hypothesis (OVH), we show that if G is an
integer-weighted planar graph, P and Q are paths in G and m = nγ for some constant
γ > 0, then for every δ > 0 there can be no algorithm that computes DF (P, Q) (or a
1.01-approximation) in O((nm)1−δ) time unless OVH fails. In the full version we consider
walks P and Q in a planar unit-weight graph with a constant number of vertices.

2 Preliminaries

Let G = (V, E) be a planar undirected weighted graph with N vertices, where every edge
ei has some corresponding integer weight ωi and all weights can be expressed in a word of
Θ(log N) bits. For any two vertices v1, v2 ∈ V their distance, denoted by d(v1, v2), is the

1 Similar ideas were used in the master’s thesis of David Goeckede [24]. In particular, the approach we
use in Section 3 and a lower bound construction for walks was used there.

SoCG 2022



36:4 On the Discrete Fréchet Distance in a Graph

(a) (b)

Figure 2 The Fréchet distance may be derived from the Euclidean or the shortest path metric.

length of the shortest path from v1 to v2 in G. A walk in G is any sequence of vertices where
every subsequent pair of vertices is connected by an edge in E. A path in G is a walk where
no vertex appears twice in the sequence. Let P be any walk in G, represented by an ordered
set of vertices P = (p1, p2, . . . pn). We denote by |P | = n the number of vertices in P and by
[n] the set (1, 2, . . . , n). We denote the walk Q = (q1, q2, . . . qm), |Q| and [m] analogously.

Discrete Fréchet distance. Given two walks P and Q in G, we denote by [n] × [m] ⊂ N×N
the integer lattice of n by m integers. We say that an ordered sequence F of points in [n]× [m]
is a discrete walk if for every consecutive pair (i, j), (k, l) ∈ F , we have k ∈ {i − 1, i, i + 1}
and l ∈ {j − 1, j, j + 1}. It is furthermore xy-monotone when we restrict to k ∈ {i, i + 1} and
l ∈ {j, j + 1}. Let F be a discrete walk from (1, 1) to (n, m). The cost of F is the maximum
over (i, j) ∈ F of d(pi, qj). The (weak) discrete Fréchet distance is the minimum over all
(not necessarily xy-monotone) walks F from (1, 1) to (n, m) of its associated cost:

DF (P, Q) := min
F

cost(F ) = min
F

max
(i,j)∈F

d(pi, qj).

The discrete free-space matrix. In this paper we show an algorithm for computing the
discrete Fréchet distance between two walks P and Q in a graph G. To this end, we use
what we will call a free-space matrix which can be seen as a discrete free-space diagram.
Given P , Q and some real value ρ, we construct a |P | × |Q| matrix M which we call the
free-space matrix Mρ. The i’th column of Mρ corresponds to the vertex pi ∈ P and the j’th
row corresponds qj ∈ Q. We assign to each matrix cell Mρ[i, j] the integer −1 if d(pi, qj) ≤ ρ,
and a 0 if d(pi, qj) > ρ. From our above definition of the discrete Fréchet distance, we
immediately conclude the following:

▶ Lemma 1. The Fréchet distance between P and Q is at most ρ, if and only if there exists
a discrete (xy-monotone) walk F from (1, 1) to (n, m) such that ∀(i, j) ∈ F , Mρ[i, j] = −1.

Orthogonal Vectors Hypothesis. The Orthogonal Vectors problem can be stated as follows.
Given are a set A and B of d-dimensional Boolean vectors with |A| = n and |B| = m. The
goal is to identify whether there exist two vectors a = (a1, a2, . . . ad) and b = (b1, b2, . . . bd)
with a ∈ A and b ∈ B, such that a and b are orthogonal (i.e.

∑d
i=1 ai · bi = 0). In this paper,

we use the following variant of the Orthogonal Vectors hypothesis. It is implied by SETH,
see Abboud and Williams [1, Section 3], and it is equivalent to the standard variant of OVH
defined by Williams [42], see Bringmann [7].

▶ Definition 2. The Orthogonal Vectors Hypothesis states that for every δ > 0 and 1 > γ > 0,
there exists an ω > 0 and such that the Orthogonal Vectors problem for d-dimensional vectors
with d = ω log n and m = nγ , cannot be solved in O((nm)1−δ) time.



A. Driemel, I. van der Hoog, and E. Rotenberg 36:5

Distance oracles. A distance oracle is a compact data structure that facilitates fast exact
or approximate distance queries between vertices in a graph. A distance oracle has stretch
S if it never underestimates the distance, and it at most overestimates by a factor S, i.e.
d(a, b) ≤ destim.(a, b) ≤ S · d(a, b). For general graphs [36, 41, 43], the best possible stretch
in sub-quadratic space is 3, but for planar graphs on N vertices, Thorup [40] shows that it
is possible to compute (1 + ε)-stretch distance oracles in the near-linear O(N/ε log N) time
and space, and with a query-time of O(1/ε). The study of distance oracles for planar graphs
is an active research area [17, 18, 25, 29, 30, 32, 40]. For (1 + ε)-stretch oracles, Gu and
Xu [25] show that it is possible to achieve constant query-time independently of ε at the
cost of an increased construction time and space of O

(
N(log N)4/ε + 2O(1/ε)). Even for

exact distances, Charalampopoulos et al. [17] give an O
(
N1+o(1))-space and O

(
No(1))-query

time data structure. Long and Pettie [32] improve these exact queries to polylogarithmic
O

(
(log(N))2+o(1)) time while maintaining the O

(
N1+o(1))-space bound.

In the following sections we use the exact distance oracle by Long and Pettie [32] and the
(1 + ε)-stretch oracle by Thorup [40]. Any distance oracle that improves the efficiency of
these data structures, or any extension of them to larger classes of graphs, immediately leads
to improving or extending our results correspondingly.

From distance oracles to an upper bound. Given a distance oracle with T (G) query time it
is straightforward to find an O(nm · T (G)) time algorithm for computing DF (P, Q) between
two walks P and Q in G that “matches” the conditional Ω(nm1−δ) lower bound. Indeed, for
any pair (p, q) ∈ P × Q we can query their pairwise distance in G. Given such a weighted
graph, we want to find an xy-monotone path from (1, 1) to (n, m) with minimal cost (which
can be done with an O(nm · T (G)) dynamic program as by Eiter and Manila [23]).

κ-straight paths. Alt, Knauer and Wenk [3] define κ-straight paths as a generalisation of
shortest paths. A path P is κ-straight if for any two points s, t ∈ P , the length of the subpath
P [s, t] from s to t is at most κ · d(s, t). Shortest paths are 1-straight. When we replace the
term “points” by “vertices”, this definition immediately transfers to our graph setting.

3 A (κ + 1)-approximation for the discrete Fréchet distance

Let G = (V, E) be a planar weighted graph with N vertices and integer weights. We use the
structure by Long and Pettie [32] to preprocess G, such that given two walks P = (p1, . . . pn)
and Q = (q1, . . . qm), where P is a κ-straight path we can compute a (κ + 1)-approximation
of DF (P, Q). In the following section we extend this approach to an algorithmic result for
computing a (1 + ε)-approximation. Recall that the decision variant of the Fréchet distance
may be answered with the help of a free-space matrix Mρ. Here, we extend its definition:

▶ Definition 3. We denote by Mκ
ρ the κ-straight free-space matrix, which is a matrix with

dimensions n × m. We define the matrix Mκ
ρ [i, j] as follows:

Mκ
ρ [i, j] = −1 if the distance d(pi, qj) ≤ ρ,

Mκ
ρ [i, j] = 1 if the distance d(pi, qj) > (κ + 1)ρ, or

Mκ
ρ [i, j] = 0 otherwise.

Every cell Mκ
ρ [i, j] has a corresponding point (i, j) in the integer lattice [n] × [m]. The

discrete Fréchet distance is at most ρ, iff there exists a discrete walk F through [n] × [m]
where for every pair (i, j) ∈ F , Mκ

ρ [i, j] = −1. Explicitly constructing Mκ
ρ takes at least

Ω(nm) time. However, we show that we can use the distance oracle to implicitly traverse
Mκ

ρ to find the existence of such a discrete walk. To this end, we first show the following:

SoCG 2022



36:6 On the Discrete Fréchet Distance in a Graph

pa

pb

pc

≤ ρ

≤ ρ

> κρ

> κρ

> κρ

≤ ρ

≤ ρ

qj

(a) (b) (c)

qj qj
pa pa

pb pb

pc pc
> κρ

Figure 3 (a) Three vertices pa, pb, pc ∈ P and a vertex qj ∈ Q such that Mκ
ρ [a, j] = Mκ

ρ [c, j] = −1
and Mκ

ρ [b, j] = 1. (b) We show that the distance between pa and pb must be more than κρ. (c)
However, this implies that P is not κ-straight, as there is a shortcut from pa to pc through qj .

▶ Lemma 4. Let P be a κ-straight path and Q a walk in G, ρ be some fixed value and j ≤ m

some integer. For any two integers a, c such that Mκ
ρ [a, j] = −1 and Mκ

ρ [c, j] = −1, there
cannot be an integer b ∈ [a, c] for which Mκ

ρ [b, j] = 1.

Proof. Suppose for the sake of contradiction that there are three integers a, b, c with b ∈ [a, c],
Mκ

ρ [a, j] = −1 and Mκ
ρ [c, j] = −1 and Mκ

ρ [b, j] = 1. It cannot be that b = a or b = c, so
there are three vertices pa, pb, pc ∈ P with d(pa, qj) ≤ ρ, d(pc, qj) ≤ ρ and d(pb, qj) > (κ+1)ρ
(Figure 3). Moreover, pb lies on the κ-straight subpath P [pa, pc]. It follows that the length of
the subtrajectory P [pa, pb] is more than κρ (otherwise, the distance between pb and qj is at
most (κ+1)ρ by the path through pa to qj). We can apply a symmetric argument to P [pb, pc].
Thus, the length of P [pa, pc] is more than 2κρ. At the same time, there exists a path in G

from pa to pb through qj of length at most 2ρ. This contradicts that P is κ-straight. ◀

A consequence of the above lemma is the following: let (i, j) be a lattice point for which
Mκ

ρ [i, j] = −1. For the nearest lattice point (l, j) left of (i, j) for which Mκ
ρ [l, j] = 1, there

can be no lattice point left of (l, j) for which the matrix evaluates to −1. A symmetrical
statement holds for the nearest such point right of (i, j). This leads to the following algorithm
to conclude if DF (P, Q) ≤ (κ + 1)ρ or DF (P, Q) > ρ, where we construct a discrete walk F ′:

We compute the distance oracle in O(N1+o(1)) time. If Mκ
ρ [1, 1] > −1 then our algorithm

terminates and concludes that DF (P, Q) > ρ. We iteratively perform the following procedure,
to construct a path F ′. Let (i, j) be the latest point added to F ′, then:
1. If (i, j) = (n, m) the algorithm terminates and concludes that DF (P, Q) ≤ (κ + 1)ρ.
2. If (j + 1) > m, go to the last step.
3. Otherwise, we use two distance queries to check Mκ

ρ [i, j + 1] and Mκ
ρ [i + 1, j + 1]:

(i) If Mκ
ρ [i, j + 1] = −1, add (i, j + 1) to F ′.

(ii) Else if Mκ
ρ [i + 1, j + 1] = −1, add (i + 1, j + 1) to F ′.

4. Otherwise, we use a distance query to check if Mκ
ρ [i + 1, j]:

(i) If (i + 1) > n or Mκ
ρ [i + 1, j] = 1,

we terminate the procedure and conclude that DF (P, Q) > ρ.
(ii) Otherwise, we add (i + 1, j) to F ′.

(a) (b) (c)

Figure 4 Lattice points to prove Lemma 5. Blue ∈ F . Orange ∈ F ′ and Red ̸∈ F .



A. Driemel, I. van der Hoog, and E. Rotenberg 36:7

▶ Lemma 5. Let P be κ-straight in G, Q be any walk and DF (P, Q) < ρ. Denote by F an
xy-monotone path over the lattice [n] × [m] such that for all (i, j) ∈ F , M [i, j] = −1. All
lattice points in our constructed path F ′ are either in F or lie to the left of a point of F .

Proof. Consider for the sake of contradiction the first iteration where the algorithm would
add a lattice point (c, d) right of a point in F . Let (a, b) ∈ F ′ be the point preceding (c, d).
We make a case distinction based on whether (c, d) was added through step 3(i), 3(ii) or 4(ii).
The three cases are illustrated by Figure 4, (a) (b) and (c) respectively.

First suppose that (c, d) = (a, b + 1). Since (c, d) is the first point right of F , it must be
that F contains either (a, b) or a point right of (a, b). Moreover (since (c, d) is right of F ), F

also contains a point left of (a, b + 1). This implies that F is not xy-monotone, contradiction.
Now suppose that (c, d) = (a + 1, b + 1). Because we reached step 3(ii), we know that

Mκ
ρ [a, b + 1] > −1 and thus (a, b + 1) ̸∈ F . However, since (c, d) is the first point right of F ,

F either contains (a, b) or a point right of (a, b), and a point strictly left of (a, b + 1). This
implies that F is not xy-monotone which is a contradiction.

Finally, suppose that (c, d) = (a + 1, b). Since (c, d) is the first point right of F , it must be
that (a, b) ∈ F . However, consider now the successor of (a, b) in F . Since F is xy-monotone,
this successor is either (a, b + 1) or (a + 1, b + 1), as it cannot be (a + 1, b) = (c, d). However,
this implies that either Mκ

ρ [a, b + 1] = −1 or Mκ
ρ [a + 1, b + 1] = −1, which contradicts the

assumption that we have reached step 4 of the algorithm. ◀

With these two observations, we are ready to prove our main theorem:

▶ Theorem 6. We can preprocess a planar graph G with N vertices in O(N1+o(1)) time and
space s.t: for any κ-straight path P = (p1, . . . , pn), walk Q = (q1, . . . , qm) and ρ ∈ R, we can
conclude either DF (P, Q) > ρ or DF (P, Q) ≤ (κ + 1)ρ in O((n + m) log2+o(1) N) time.

Proof. We first preprocess G to construct a distance oracle using O(N1+o(1)) time and space.
Given ρ, our algorithm spends at most n + m iterations before it either reaches (n, m) or step
4(i) and terminates. At each iteration we perform at most three distance queries. We prove
that if DF (P, Q) ≤ ρ, we always conclude that DF (P, Q) ≤ (κ + 1)ρ. Indeed, suppose that
DF (P, Q) ≤ ρ then there exists a discrete walk F such that for every (i, j) ∈ F , Mκ

ρ [i, j] = −1
and F is xy-monotone. Per construction, the path F ′ is xy-monotone and for all (i, j) ∈ F ′,
M [i, j] < 1. What remains to show is that F ′ is from (1, 1) to (n, m). Suppose for the sake
of contradiction that F ′ does not reach (n, m) and let (i, j) be the last element added to F ′

before the algorithm terminated in step 4. Since we reached step 4 it must be that:

Mκ
ρ [i, j + 1] > −1 and Mκ

ρ [i + 1, j + 1] > −1 (or (j + 1 ≤ m)).

Let ℓ ≤ i be the lowest integer such that Mκ
ρ [ℓ, j] = −1. Such an ℓ must always exist, since

we only enter the j’th row through a point (k, j) for which Mκ
ρ [k, j] = −1 (step 3(i) or 3(ii)).

Since we arrived in step 4(i), it must be that either Mκ
ρ [i + 1, j] = 1 or (i + 1) > n. However,

this implies that (i, j) ∈ F (indeed, by Lemma 5 there exists a point equal to or to the right
of (i, j) in F . However, given Lemma 4 and (ℓ, i), there is no a point in F right of (i, j)).
Because if F is xy-monotone, the successor of (i, j) ∈ F is either (i + 1, j + 1), (i + 1, j) or
(i, j + 1). Since we terminated, none of these elements can be in F , contradiction. ◀

The following corollary is a direct result of the assumption that edge weights each fit in a
constant number of words (thus, the range of values for DF (P, Q) is polynomial in N).

▶ Corollary 7. We can preprocess a planar graph G with N vertices in O(N1+o(1)) time such
that: for any κ-straight path P = (p1, . . . , pn) and walk Q = (q1, . . . , qm), we can compute a
(κ + 1)-approximation of D(G)(P, Q) in O((n + m) log3+o(1) N) time.

SoCG 2022



36:8 On the Discrete Fréchet Distance in a Graph

4 A (1 + ε)-approximation for Fréchet distance

We present a more involved approach to compute a (1 + ε) approximation of DF (P, Q).
Specifically, we choose (1 + ε) = (1 + α)(1 + α + β) for some α and β. We show for any ρ

how to correctly conclude either DF (P, Q) ≤ (1 + α)(1 + α + β)ρ or DF (P, Q) > ρ.
To obtain this result, we use two data structures. A Voronoi diagram of P in G marks

every vertex v in G with the closest vertex p ∈ P (and the exact distance d(v, p)). For
completeness, we prove in the full version the following (folklore) result:

▶ Theorem 8. For any planar weighted graph G = (V, E) and any vertex set P ⊆ V , it is
possible to construct the Voronoi diagram of P in G in O(|V | log |V |) time.

Additionally, we use the (1+α)-stretch distance oracle D(G) by Thorup [40]. We differentiate
between the distance d(pi, qj) and what we call the preceived distance between pi and qj .
For any two vertices pi, qj we denote by do(pi, qj) their perceived distance (the result of the
distance query of D(G)). Per definition d(pi, qj) ≤ do(pi, qj) ≤ (1 + α) · d(pi, qj).

▶ Definition 9. For a given value ρ ∈ R we denote by Mβ
ρ the approximate free-space matrix,

which is a matrix with dimensions n × m where:
Mβ

ρ [i, j] = −1 if the perceived distance do(pi, qj) ≤ (1 + α)ρ,
Mβ

ρ [i, j] = 1 if the perceived distance do(pi, qj) > (1 + α)(1 + α + β)ρ, or
Mβ

ρ [i, j] = 0 otherwise.

β-compression. Given a κ-straight path P and real values (ρ, β) we define the β-compression
P β as an ordered set that is obtained in three steps (Figure 5):

The first step is a greedy iterative process where:
we remove (consecutive) px where the length of P [p1, px] is fewer than βρ.
the first such vertex pi that does not meet this criterion is added to P β . Then, we
remove (consecutive) px where the length of P [pi, px] is fewer than βρ. and so forth.

In the second step we add for every vertex in P β its preceding vertex in P .
In the third step we add pn.

The result of this procedure is that we have an ordered set P β with n′ ≤ n vertices. We
create a map π : [n′] ↪→ [n] that maps every vertex in P β to its corresponding vertex in P

(i.e. the k’th element of P β is denoted by pπ(k)) ∈ P ) and we observe:
π(1) = 1 and π(n′) = n,
for all i, the length of P [pπ(i), pπ(i+3)] is greater than βρ and
for all x ∈ [π(i), π(i + 1)], the exact distance d(pπ(i), px) < βρ and d(pπ(i+1), px) < βρ.

We denote P β =
(
pπ(1), pπ(2), . . . pπ(n′)

)
. The global approach is to approximate the Fréchet

distance between P β and Q instead. We first note the following three properties of P β :

▶ Lemma 10. For every two integers i and j, if Mβ
ρ [π(i), j] = −1, then for all integers

x ∈ (π(i − 1), π(i + 1)) it must be that Mβ
ρ [i, j] ≤ 1.

Proof. Either pπ(i−1) and pπ(i) are consecutive in P (thus, the set (π(i − 1), π(i)) is empty)
or per construction the length of P [pπ(i−1), pπ(i)] is less than βρ.

Thus, if the perceived distance do(pπ(i), qj) ≤ (1 + α)ρ, then for all points px with
x ∈ (π(i − 1), π(i)), the exact distance d(px, qj) ≤ (1 + α + β)ρ by traversing through pπ(i).
Thus, the perceived distance do(px, qj) ≤ (1 + α)(1 + α + β)ρ. A symmetrical argument holds
for all x ∈ (π(i), π(i + 1)). ◀



A. Driemel, I. van der Hoog, and E. Rotenberg 36:9

π(7) = 12

(a)

(b)

Figure 5 A planar path where the edge weights correspond to their length. (a) We greedily add
vertices to P β such that for all vertices px ∈ P with preceding vertex pi ∈ P β the length of P [pi, px]
is at most βρ. (b) For every vertex in P β , we subsequently add its preceding vertex in P to P β .

▶ Lemma 11. For all i and j, if there exists an integer x ∈ (π(i), π(i + 1)) such that
Mβ

ρ [x, j] = −1, then Mβ
ρ [π(i), j] ≤ 1 and Mβ

ρ [π(i + 1), j] ≤ 1.

Proof. As in Lemma 10, d(px, pπ(i)) ≤ βρ and d(px, pπ(i+1)) ≤ βρ implies the lemma. ◀

▶ Lemma 12. For any j, let i be an integer such that there exists an x ∈ [π(i), π(i + 1)]
with Mβ

ρ [x, j] = −1. Denote a = i − ⌈ 9κ
β ⌉ and b = i + ⌈ 9κ

β ⌉. There can be no integer
y ̸∈ [π(a), π(b)] such that Mβ

ρ [y, j] = −1.

Proof. For all i, the length of P [pπ(i), pπ(i+3)] is greater than βρ. It follows that the length
of the subpath P [pπ(a), px] is more than:

∑⌈3κ/β⌉
t=1 βρ = 3κ

β βρ = 3κρ (Figure 6). Suppose for
the sake of contradiction that there exists an integer y < π(a) such that do(py, qj) ≤ (1 + α)ρ.
Then the exact distance d(py, px) is at most 2(1 + α)ρ through traversing from py to qj to px.

However, the subpath P [py, px] is longer than P [pπ(a), px] and thus longer than 3κρ. For
α < 0.5, this contradicts the assumption that P is κ-straight.

A symmetrical argument holds for y > π(b). ◀

px
pπ(i)pπ(a)

py

> βρ

> 3κρ

Figure 6 A schematic representation of P β . For any i as in Lemma 12, we consider an integer
a = i − ⌈ 9κ

β
⌉ and some py preceding pπ(a).

SoCG 2022



36:10 On the Discrete Fréchet Distance in a Graph

Defining β-windows. Now, we use two lattices: [n] × [m] and the smaller lattice [n′] × [m].
Points on the first lattice will be denoted by (x, j) and (y, j). Points on the second lattice
will be denoted by (i, j) or (a, j) or (b, j). Intuitively, Lemma 12 shows for every integer j a
“horizontal window” in [n′] × [m] (of width O( κ

β )) that bounds the subpath of P of vertices
that may have perceived distance fewer than (1 + α)ρ to the vertex qj ∈ Q. We formalise
this intuition by defining β-windows (denoted by W1, W2, . . . Wm, see Figure 7):

Let for an index j, px be any vertex in P with minimal distance to qj in the graph G.
Let i be the integer such that pπ(i) is the point in P β that precedes px.
We distinguish two cases:

1. If the exact distance d(px, qj) > ρ then: Wj is empty.
2. Otherwise: Wj = [i − ⌈ 9κ

β ⌉, i + ⌈ 9κ
β ⌉] × {j} ⊂ [n′] × [m].

The high-level approach. We first construct the Voronoi diagram of P in G in O(N log N)
time. For every qj ∈ Q, we obtain from the diagram the vertex px ∈ P that is closest to qj

and the exact distance d(pi, qj) in O(1) time. With qj , we construct Wj in O( κ
β ) time. For

every point (a, j) ∈ Wj we compute d(pπ(a), j) in O( 1
α ) time. Any lattice walk that realises

a distance DF (P, Q) ≤ (1 + α)(1 + α + β)ρ must be contained in the grid: A = ∪j Wj which
has O(m · κ

β ) complexity. We compute a minimal cost path in time linear in the size of A.

q1

q2

q3

q4

qm

[n]

q1

q2

q3

q4

qm

[n′]

[m]

[m]

(a)

(b)

(c)

P β

q1

q2

q3

q4

q1

q2

q3

q4

qm

(a)

(b)

(c)

P β

Figure 7 (a) a schematic representation of a path P with P β in red. (b) For every j ∈ [m], we
observe the closest point px. If d(px, qj) ≤ ρ we color it green. Otherwise, we color it orange. In
addition, if px ̸∈ P β we color its predecessor in P β yellow. (c) For every yellow or green vertex in
[n′] × [m], we create a horizontal window in blue. We show the window for κ = β = 1.

▶ Theorem 13. Let G be a planar graph with N vertices, P = (p1, . . . , pn) a κ-straight
path and Q = (q1, . . . , qm) be any walk in G. Given a value ρ ∈ R and some β and
α ≤ 0.5, we correctly conclude either DF (P, Q) > ρ or DF (P, Q) ≤ (1 + α)(1 + α + β)ρ in
O(N log N/α + n + κ

αβ m)) time using O(N log N/α) space.



A. Driemel, I. van der Hoog, and E. Rotenberg 36:11

Proof. We construct the approximate distance oracle D(G) using O(N log N/α) time and
space. Given P and Q, we construct the β-compressed path P β in O(n) time. We supply
every point in P\P β with a pointer to the point in P β that precedes it. We construct the
Voronoi diagram of P in the graph G in O(N log N) time. Given P β , we construct for every
integer j ∈ [m] the window Wj in O( κ

β ) time. Specifically, for any point qj we obtain the point
px that is closest to qj . If d(px, qj) ≤ ρ then we obtain the point pπ(i) in P β that precedes px

in constant time through the pre-stored pointer and we set: Wj = [i − ⌈ 9κ
β ⌉, i + ⌈ 9κ

β ⌉] × {j}.
The union of windows (A = ∪jWj) is a grid in [n′] × [m] of at most O(m · κ

β ) lattice
points. For each (a, j) ∈ A we query D(G) in O( 1

α ) time to determine the value Mβ
ρ [π(a), j]

in O(m κ
αβ ) total time. Given this grid, we construct a directed grid graph where there is:

a vertical edge from (a, j) to (a, j + 1) if Mβ
ρ [π(a), j] < 1 and Mβ

ρ [π(a), j + 1] < 1,
a horizontal edge from (a, j) to (a + 1, j) if Mβ

ρ [π(a), j] < 1 and Mβ
ρ [π(a + 1), j] = −1,

diagonal edge from (a, j) to (a + 1, j + 1) if Mβ
ρ [π(a), j] < 1 and Mβ

ρ [π(a + 1), j + 1] = −1.
We can determine if there exists a path in A from (1, 1) to (n′, m) in O( mκ

β ) time.

If such a path F ∗ exists. we claim that DF (P, Q) ≤ (1 + α)(1 + α + β)ρ. Indeed, we
transform F ∗ into a path over [n] × [m] as follows: for all (a, j) ∈ F ∗ we add (π(a), j). Note
that per construction of the grid graph, for all points in F ∗ it must be that Mβ

ρ [π(a), j] < 1
and thus do(π(a), j) ≤ (1 + α)(1 + α + β)ρ. For every two consecutive points (a, j), (a + 1, j′)
in F ∗, per construction, Mβ

ρ [π(a+1), j′] = −1. We add all points (x, j′) with x ∈ [π(a), π(b)].
By Lemma 10, for all these points (x, j′) it must be that Mβ

ρ [x, j′] < 1. Thus, we found a
walk F from (1, 1) to (n, m) where for every (i, j) ∈ F , Mβ

ρ [i, j] < 1 and the Fréchet distance
between P and Q is at most (1 + α)(1 + α + β)ρ.

If no such path F ∗ exists. we claim that DF (P, Q) > ρ. Suppose for the sake of contra-
diction that DF (P, Q) ≤ ρ then there exists an xy-monotone path F from (1, 1) to (n, m)
where for all (i, j) ∈ F , d(pi, qj) ≤ ρ. We use F to construct a path F ∗ from (1, 1) to (n′, m)
in our grid graph. Specifically, for every element (x, j) ∈ F we check if px has been removed
during compression.

If px has an equivalent in P β then there exists an integer a such that pπ(a) = px and we
add the lattice point (a, j) ∈ [n′] × [m] to F ∗. Per definition of F , Mβ

ρ [π(a), j] = −1.
Otherwise, we identify the index i such that π(i) is the vertex of P β preceding px and we
add the point (i, j) ∈ [n′] × [m] to F ∗. By Lemma 11, Mβ

ρ [π(i), j] < 1.
Since F is a connected xy-monotone path from (1, 1) to (n, m), we obtain an xy-monotone
path F ∗ from (1, 1) to (n′, m). Moreover, whenever this path traverses a horizontal or
diagonal edge to a point (a, j) it must be that (π(a), j) ∈ F and thus Mβ

ρ [π(a), j] = −1.
Thus, F ∗ is a path from (1, 1) to (n′, m) in our grid graph which contradicts the earlier
assumption that no such path exists. ◀

This corollary follows immediately from choosing α = β = 0.25(
√

8ε + 9 − 3).

▶ Corollary 14. Let G be a planar graph with N vertices, P = (p1, . . . , pn) a κ-straight path
and Q = (q1, . . . , qm) be any walk in G. Given a value ρ ∈ R and some ε > 0 we correctly
conclude either DF (P, Q) > ρ or DF (P, Q) ≤ (1 + ε)ρ in O(N log N/

√
ε + n + κ

ε m)) time.

5 A conditional lower bound for computing the Fréchet distance

We show that for every δ > 0 there is no O((nm)1−δ) algorithm for computing for the discrete
Fréchet distance between two paths in a planar graph (unless OVH fails). We show this using a
planar graph G = (V, E) where the edges have integer weights in {0.001, 0.35, 0.6, 0.65, 1, 2, 3}.

SoCG 2022



36:12 On the Discrete Fréchet Distance in a Graph

In the full version we prove a similar statement for walks in a constant-complexity unit-weight
graph. Throughout this section, we fix some δ > 0 and γ > 0 and consider two sets A and B

of d-dimensional Boolean vectors (with d = ω log n where the constant ω depends on δ). In
addition, we assume that A and B contain n′ and m′ vectors respectively with n′ = (m′)γ .
Using A and B, we reduce from Orthogonal Vectors using what we call a vector gadget. We
construct a graph G and two paths P and Q where DF (P, Q) < 3 if and only if there exists
(a, b) ∈ A × B such that a and b are orthogonal.

Proof notation. Throughout this section, we label vertices to represent an equivalence class.
We construct a graph where we label “blue” vertices with a label in {x, y, z, B{0}, B{1}, B}
and “red” vertices with a label in {α, α∗, β, β∗, γ, A{0}, A{1}, A}. Ideally, we would construct a
graph where for every red-blue pair of labels, all red-blue vertices with those two labels have the
same distance. We maintain a slightly weaker property: consider any red-blue pair of vertices
b, r with label(b) ∈ {x, y, z, B{0}, B{1}, B} and label(r) ∈ {α, α∗, β, β∗, γ, A{0}, A{1}, A}.
We demand the following: if d(b, r) < 3 then for all (b′, r′) with label(b′) = label(b) and
label(r′) = label(r) it must be that d(b′, r′) < 3.

We construct for every vector in A (and B) a vector gadget. This gadget resembles the
gadget used in the conditional lower bound for the Fréchet distance in the Euclidean plane
by Bringmann [7]. The path P will traverse all vector gadgets of A in sequence (and Q will
traverse gadgets of B). We connect all gadgets of A to all gadgets of B via “star” vertices
(grey triangles or diamonds). These stars ensure that there can be a matching between every
pair of gadgets (vectors). Finally, we add “park” vertices (square vertices) which are vertices
of A (or B) that are close to all vertices of B (or A). The intuition is, that during a traversal
(reparametrization) of P and Q an entity can remain stationary at a park vertex, whilst the
other entity traverses their corresponding path until the appropriate gadgets can be matched.

Vector gadget. We illustrate the vector gadget for vectors b ∈ B (see Figure 8). The “core”
of this subgraph is vertex y connected to the following construction (repeated d times): there
are two Boolean vertices (B{0}, B{1}), followed by an intermediary vertex B. This core
will allow us to model a d-dimensional Boolean vector. We connect the core to two park
vertices x and z where we add an edge (x, y) and (B, z) of weight 3. Finally, we add two star
vertices where every vertex B, y and x get connected to the top star vertex, and every vertex
x, B{0}, z get connected to the bottom star vertex. For every vector in A, the corresponding
vector gadget is nearly identical. Most crucially, this subgraph is vertically mirrored and the
edges attached to star vertices have different weights.

From gadgets to a graph. Given our instance of OV, we construct (n + m) vector gadgets.
Next, we combine the gadgets (Figure 9). We highlight the important steps: all the vector
gadgets of B (and A) are placed horizontally adjacent to each other.
The vertices {s↓, z, σ↑} get connected via a star vertex in the centre of the graph. Each vertex
s↑ gets connected to a star vertex at the top of the graph. Each vertex σ↓ gets connected
to a star vertex at the bottom of the graph. These two stars get connected via an edge
with weight 2. Given this graph G, we say that a red vertex r is close to a blue vertex b if
d(r, b) < 3. For every blue label, we observe the set of close red labels (Table 1):

Constructing the paths P and Q. Given G, A and B, we construct a path P consisting of
n = O(n′ · d) vertices and a path Q consisting of m = O(m′ · d) vertices (refer to Figure 9).
The path P starts in α and then moves to α∗. Then, P traverses every vector gadget of A in



A. Driemel, I. van der Hoog, and E. Rotenberg 36:13

y

B{1}

B{0} γ

A{0}

σ↑

A{1}

A

B B B
B{1}

A A A
A{1}

B
B{1} B{1}

A{1} A{1}

= 0.65 = 1

= 0.6

= 0.35

zx

= 3

s↓

s↑

σ↓

B{0}
B{0}B{0}

A{0}A{0}A{0}

Figure 8 The gadgets for vectors in B and in A. The path corresponding to B will traverse blue
vertices, the path corresponding to A red.

Table 1 The shortest distance between vertices with a label in {α, α∗, β, β∗, γ, A{0}, A{1}, A}

and in { x, y, z, B{0}, B{1}, B } , showing far and near pairs of labels.

dist. α α∗ β β∗ γ A{0} A{1} A

x .65 2.65 2.3 4.3 2.702 2.301 2.951 2.952
y 1.6 3.6 2.601 4.601 2.952 3.251 3.302 3.202
z 2.3 4.3 .65 2.65 1.652 0.652 1.302 1.652

B{0} 1.95 3.95 2.3 4.3 3.301 2.301 2.951 3.301
B{1} 1.7 3.7 2.701 4.701 3.051 2.951 3.402 3.302

B 1.35 3.35 2.351 4.351 2.702 3.001 3.051 2.951

sequence. Let v be the first vector in A. The path P arrives at y and traverses the Boolean
vertices and intermediate vertices in an alternating manner (where P traverses A{0} if the
corresponding Boolean in v is false and A{1} if the corresponding Boolean is true). Having
traversed every vector gadget, P moves through β∗ to β. The path Q traverses every vector
gadget of B in sequence. Let a gadget correspond to a vector v′ ∈ B:

The path Q starts at the vector x in the gadget and then traverses the Boolean vertices and
intermediate vertices in an alternating manner (where Q traverses B{0} if the corresponding
Boolean in v′ is false and B{1} if the corresponding Boolean is true). The path Q ends at
the vector z, and continues to the next gadget.

▶ Theorem 15. Let G be a planar, integer-weighted graph, P and Q be two paths in G with
n and m vertices and n = mγ for some constant 0 < γ ≤ 1. For all δ > 0, there can be no
algorithm that computes (a 1.01-approximation of DF (P, Q)) in O((nm)1−δ) time.

Proof. For any given A and B of n′ and m′ vectors, we construct two paths P and G with
n = O(n′ log n′) and m = O(m′ log m′) vertices respectively. OVH postulates that there
exists no algorithm that can conclude if there exists two orthogonal vectors (a, b) ∈ A × B in
O((nm)1−δ) time, for any δ > 0. We prove this theorem by showing that there are two such
vectors if and only if DF (P, Q) < 3. We observe that in our graph for all red/blue vertices r

and b either d(r, b) ≤ 2.96 or d(r, b) ≥ 3 (which implies this proof for the 1.01-approximation).

SoCG 2022



36:14 On the Discrete Fréchet Distance in a Graph

y B

γ

α

α∗

y

s↑

γ

σ↓

B

γ

σ↓

β∗β

s↑

B

B = {(1, 0, 1, 0), (1, 1, 1, 0), (0, 0, 1, 1)}

A = {(0, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0)}

y

x z

γ

y

B{1}

B{0}

s↑

γ

A{0}

σ↓

A{1}

A

B

A
A{1} A{1} A{1}

γ
A{1}

A
A A A

A{1} A{1} A{1}

α

α∗

β∗

β

x

= 0.001

= 0.65

= 1

= 2

= 0.6

= 0.35

z = 3

σ↓ σ↓

s↓

σ↑ σ↑

s↑

σ↓

B B B
B{1} B{1} B{1}

B{0} B{0} B{0}

A A

A{0}A{0}A{0} A{0}A{0}A{0}A{0}

Figure 9 Top: we show how pairwise gadgets get connected. Bottom: given a set A of four and
B of three vectors, we construct the corresponding graph and path.



A. Driemel, I. van der Hoog, and E. Rotenberg 36:15

We show that if there exist two orthogonal vectors (a, b) ∈ A × B then DF (P, Q) < 3.
We construct a traversal of P and Q where the red entity (henceforth “Red”) traversing P

remains close to the blue entity (“Blue”) traversing Q. First, Red is stationary at the park
vertex α, whilst Blue traverses B until it reaches the vector gadget corresponding to b ∈ B.
Then, whilst Blue remains stationary at the park vertex x, Red traverses P until it reaches
the vector gadget corresponding to a ∈ A. At this point, Blue moves to y as Red moves to γ.
Both entities simultaneously traverse their vector gadgets. During this traversal (since a and
b are orthogonal) the entities remain close. Then, Blue remains stationary at z, whilst Red
traverses the rest of P . Finally, Red remains at β whilst Blue traverses the rest of Q.

We show that if DF (P, Q) < 3 then there exists a pair of vectors (a, b) ∈ A × B such
that a and b are orthogonal. Indeed, fix any traversal of P and Q that realises the Fréchet
distance. When Red is at α∗, Blue must be at some vertex x.

Consider now the time when Blue moves from x to y (where y lies in a gadget corresponding
to some vector b ∈ B). At this time, Red cannot be at the park vertex α because α precedes
α∗. Similarly, Red cannot be at the park vertex β because β∗ precedes β (and β∗ is not close
to x). Since close(y) = {γ, α, β}, it must be that Blue is at some vertex γ (corresponding
to some vector a ∈ A). Now consider the next time step, when we assume that Red moves
to {A{0}, A{1}} (the argument for when Blue moves to {B{0}, B{1}} is symmetrical). If Red
moves to A{0} then, via the same argument as above, Blue has to simultaneously move to
B{0} or B{1}. If Red moves to A{1} then Blue must move to B{0}. For the next time step,
via the same argument, both entities must move to A and B. We can continue this same
argument, which shows that the two vectors a and b must be orthogonal. ◀

6 Concluding remarks

This paper is the first to study the natural question of computing the Fréchet distance
between walks P and Q in graphs. Our algorithmic results (including the Voronoi diagram
construction) do not depend on the planarity of G; we rely only on a distance oracle. Hence,
our result immediately holds for other classes of graphs where it is possible to efficiently
construct distance oracles or in computational models where the distance oracle is provided.
Given a distance oracle, our (κ + 1) approximation is obtained in time (near-) linear in
(|P | + |Q|). In other words, our result in Section 3 allows us to pre-process a graph G in time
nearly linear to its vertices, in order to efficiently facilitate Fréchet distance queries between
two any two walks in (as long as one of the two walks is κ straight for some query constant
κ). This is not true for our (1 + ε)-approximation algorithm, which currently requires the
construction of a Voronoi diagram of P in G and thus, for every pair of walks, must spend
near-linear time in G.

References

1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pages 434–443. IEEE, 2014.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004.

SoCG 2022



36:16 On the Discrete Fréchet Distance in a Graph

4 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In European symposium on algorithms, pages 52–63. Springer,
2006.

5 Alessandro Bombelli, Lluis Soler, Eric Trumbauer, and Kenneth D Mease. Strategic air traffic
planning with Fréchet distance aggregation and rerouting. Journal of Guidance, Control, and
Dynamics, 40(5):1117–1129, 2017.

6 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle
tracking data. In Proceedings of the 31st international conference on Very large data bases,
pages 853–864, 2005.

7 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 661–670. IEEE, 2014.

8 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27(01n02):85–119, 2017.

9 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2016.

10 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan,
Rodrigo I Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construction.
In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 1–10, 2017.

11 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017.

12 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 645–654. SIAM, 2009.

13 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Seth says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2887–2901. SIAM, 2019.

14 Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for representing
trajectories. International Journal of Geographical Information Science, 34(12):2401–2433,
2020.

15 Erin Wolf Chambers, Eric Colin De Verdiere, Jeff Erickson, Sylvain Lazard, Francis Lazarus,
and Shripad Thite. Homotopic Fréchet distance between curves or, walking your dog in the
woods in polynomial time. Computational Geometry, 43(3):295–311, 2010.

16 Timothy M Chan and Zahed Rahmati. An improved approximation algorithm for the discrete
Fréchet distance. Information Processing Letters, 138:72–74, 2018.

17 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Almost
optimal distance oracles for planar graphs. In Moses Charikar and Edith Cohen, editors,
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 138–151. ACM, 2019. doi:10.1145/
3313276.3316316.

18 Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact exact
distance oracle for planar graphs. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 962–973. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.93.

19 Connor Colombe and Kyle Fox. Approximating the (continuous) Fréchet distance. In 37th
International Symposium on Computational Geometry (SoCG 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

20 Thomas Devogele. A new merging process for data integration based on the discrete Fréchet
distance. In Advances in spatial data handling, pages 167–181. Springer, 2002.

https://doi.org/10.1145/3313276.3316316
https://doi.org/10.1145/3313276.3316316
https://doi.org/10.1109/FOCS.2017.93


A. Driemel, I. van der Hoog, and E. Rotenberg 36:17

21 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.

22 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. doi:
10.1007/s00454-012-9402-z.

23 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

24 David Göckede. Computing the Fréchet distance in graphs efficiently using shortest-path
distance oracles. Master’s thesis, Department of Computer Science, University of Bonn, 2021.

25 Qian-Ping Gu and Gengchun Xu. Constant query time (1+ε)-approximate distance oracle for
planar graphs. Theor. Comput. Sci., 761:78–88, 2019. doi:10.1016/j.tcs.2018.08.024.

26 Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk. Fast Fréchet
distance between curves with long edges. International Journal of Computational Geometry &
Applications, 29(02):161–187, 2019.

27 Atlas F Cook IV and Carola Wenk. Geodesic Fréchet distance inside a simple polygon. ACM
Transactions on Algorithms (TALG), 7(1):1–19, 2010.

28 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with discrete
Fréchet distance. Journal of bioinformatics and computational biology, 6(01):51–64, 2008.

29 Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate
distance queries. In David Eppstein, editor, Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages
820–827. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545488.

30 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver,
British Columbia, Canada, January 23-25, 2005, pages 146–155. SIAM, 2005. URL: http:
//dl.acm.org/citation.cfm?id=1070432.1070454.

31 Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca Giuggioli,
Jed Long, Trisalyn Nelson, Michel A Westenberg, and Kevin Buchin. Visual analytics of delays
and interaction in movement data. International Journal of Geographical Information Science,
31(2):320–345, 2017.

32 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517–2537. SIAM, 2021.
doi:10.1137/1.9781611976465.149.

33 Anil Maheshwari, Jörg-Rüdiger Sack, Kaveh Shahbaz, and Hamid Zarrabi-Zadeh. Fréchet
distance with speed limits. Computational Geometry, 44(2):110–120, 2011.

34 Ariane Mascret, Thomas Devogele, Iwan Le Berre, and Alain Hénaff. Coastline matching
process based on the discrete Fréchet distance. In Progress in Spatial Data Handling, pages
383–400. Springer, 2006.

35 Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science & Business Media,
2013.

36 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approxi-
mate distance oracles and spanners. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming,
32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceed-
ings, volume 3580 of Lecture Notes in Computer Science, pages 261–272. Springer, 2005.
doi:10.1007/11523468_22.

37 Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle trajectory
similarity: Models, methods, and applications. ACM Comput. Surv., 53(5), September 2020.
doi:10.1145/3406096.

SoCG 2022

https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1016/j.tcs.2018.08.024
http://dl.acm.org/citation.cfm?id=545381.545488
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1007/11523468_22
https://doi.org/10.1145/3406096


36:18 On the Discrete Fréchet Distance in a Graph

38 E Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), volume 1, pages 461–465. IEEE, 2007.

39 Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation. The VLDB Journal, 29(1):3–32, 2020.

40 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993–1024, 2004.

41 Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Jeffrey Scott Vitter, Paul G.
Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 183–192. ACM, 2001.
doi:10.1145/380752.380798.

42 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

43 Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Encyclo-
pedia of Algorithms, pages 94–97. Springer, 2016. doi:10.1007/978-1-4939-2864-4_568.

44 Dong Xie, Feifei Li, and Jeff M Phillips. Distributed trajectory similarity search. Proceedings
of the VLDB Endowment, 10(11):1478–1489, 2017.

https://doi.org/10.1145/380752.380798
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1007/978-1-4939-2864-4_568


Computing a Link Diagram from Its Exterior
Nathan M. Dunfield # Ñ

Dept. of Math., University of Illinois at Urbana-Champaign, IL, USA

Malik Obeidin #

Google, Inc., Mountain View, CA, USA

Cameron Gates Rudd # Ñ

Dept. of Math., University of Illinois at Urbana-Champaign, IL, USA

Abstract
A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately
related to that of its exterior, which is the complement of an open regular neighborhood of the
knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact
3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical
algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies
to links as well as knots, and allows us to recover links with hundreds of crossings. We use it to find
the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over
2,500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which
relates to questions about slice knots and the smooth 4D Poincaré conjecture.

2012 ACM Subject Classification Mathematics of computing → Geometric topology

Keywords and phrases computational topology, low-dimensional topology, knot, knot exterior, knot
diagram, link, link exterior, link diagram

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.37

Related Version Full Version: https://arxiv.org/abs/2112.03251v2

Supplementary Material Software (Source Code and Data): https://doi.org/10.7910/DVN/BT1M8R

Funding Nathan M. Dunfield: Partially supported by US National Science Foundation grants
DMS-1510204 and DMS-1811156 and by a Simons Fellowship.
Malik Obeidin: Partially supported by US National Science Foundation grants DMS-1510204 and
DMS-181115.
Cameron Gates Rudd: Partially supported by US National Science Foundation grant DMS-1811156.

Acknowledgements We thank Matthias Goerner and Henry Segerman for helpful correspondence,
and thank the referees for their detailed comments which helped improve this paper.

Figure 1 A planar diagram for a knot is a 4-valent graph with a planar embedding where every
vertex represents a crossing, a place where one part of the knot crosses in front of the other in 3D.

© Nathan M. Dunfield, Malik Obeidin, and Cameron Gates Rudd;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 37; pp. 37:1–37:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathan@dunfield.info
https://dunfield.info
https://orcid.org/0000-0002-9152-6598
mailto:obeidinm@gmail.com
mailto:cameron.rudd@gmail.com
https://www.camrudd.page
https://orcid.org/0000-0001-6065-1110
https://doi.org/10.4230/LIPIcs.SoCG.2022.37
https://arxiv.org/abs/2112.03251v2
https://doi.org/10.7910/DVN/BT1M8R
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


37:2 Computing a Link Diagram from Its Exterior

1 Introduction

A knot is a piecewise-linear (PL) embedding of a circle S1 into the 3-sphere S3. The study of
knots goes back to the 19th century, and today is a central focus of low-dimensional topology,
with applications to chemistry [23], biology [24], engineering [40], and theoretical computer
science [16]. Two knots are topologically equivalent when they are isotopic, that is, when one
can be continuously deformed to the other without passing through itself. Computationally,
knots are typically encoded as planar diagrams (Figure 1); there are more than 350 million
distinct knots with diagrams of at most 19 crossings as enumerated by [11].

The topology of knots is intimately related to that of their exteriors, where the exterior of
a knot K is the compact 3-manifold with torus boundary E(K) := S3 \ N(K) where N(K) is
an open tubular neighborhood of K. Indeed, the exterior E(K) determines the knot K [26].
Many algorithms for knots work via their exteriors, starting with Haken’s foundational
method for deciding when a knot is equivalent to a round circle [27]. Consequently, the
problem of going from a diagram D of K to a triangulation of E(K) is well-studied [28, §7];
for ideal triangulations (see Section 2.1 below), one needs only four tetrahedra per crossing
of D [51, §3]. Here, we study the inverse problem:

▶ Find Diagram. Input a triangulation T of a knot exterior E(K), output a diagram of K.

If the input triangulation T is guaranteed to be that of a knot exterior (in fact, this
is decidable by Algorithm S of [33]), then a useless algorithm to find D is just this: start
generating all knot diagrams, triangulate each exterior, and then do Pachner moves (see
Section 2.4) on these triangulations. Since any two triangulations of a compact 3-manifold
are connected by a sequence of such moves, one eventually stumbles across T , thus finding a
diagram for the underlying knot. We do not explore the computational complexity of Find
Diagram here (though it is at least exponential space by Theorem E.1 in Appendix E of
the full version [18]), but rather give the first algorithm that is highly effective in practice.
We work more generally with links, where a link is a disjoint union of knots. While a link
exterior does not uniquely determine a link [3, Figure 9.28], this indeterminacy is removed by
specifying meridional curves for the link; hence we require such curves as part of the input
in Section 1.2. Figures 2 and 3 show diagrams that were found by our method; these are the
first known diagrams of these particular link exteriors, see Section 9.1.

1.1 Prior work
The case when the interior of E(K) has a complete hyperbolic structure, in short is hyperbolic,
is in practice generic for prime knots; for example, 99.999% of the knots in [11] are hyperbolic.
The homeomorphism problem for such 3-manifolds can be quickly solved in practice using
hyperbolic geometry, even for triangulations with 1,000 tetrahedra [53]. This allows a
table lookup method for Find Diagram when K is small enough; one uses hyperbolic and
homological invariants to form a hash of E(K), queries a database of knots to get a handful
of possible Ki, and then checks if any E(Ki) is homeomorphic to E(K). This technique is
used by the identify method of [15], but is hopeless for something like Figure 2, as the
number of links of that size exceeds the number of atoms in the visible universe [47].

A related approach was used in [14, 5] to find knot diagrams for all 1,267 knots where
E(K) is hyperbolic and can be triangulated with at most 9 ideal tetrahedra [8, 17]. While
knots with few crossing have simple exteriors, the converse is not the case, and the simplest
known diagrams for about 25% of these knots have 100–300 crossings. However, these knots
either fall into very special families which can be tabulated to a large number of crossings, or



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:3

Figure 2 The first known diagram of a link whose exterior is M̊ = H3/Γ(I) where Γ(I) is
the principal congruence subgroup of PSL2Z[ 1+

√
15i

2 ] of level I =
〈
6, −3+

√
15i

2

〉
from [6]; it has 24

components and 294 crossings. The input ideal triangulation T̊ for M̊ had 249 tetrahedra. Since the
hyperbolic volume of M̊ ≈ 225.98, any diagram must have at least 66 crossings by [1, Theorem 5.1].

SoCG 2022



37:4 Computing a Link Diagram from Its Exterior

Figure 3 The first known diagram of a link whose exterior is M̊ = H3/Γ(I) where Γ(I) is
the principal congruence subgroup of PSL2Z[ 1+

√
15i

2 ] of level I =
〈
5, 5+

√
15i

2

〉
from [6]; it has 24

components and 1,092 crossings. The input ideal triangulation T̊ for M̊ had 211 tetrahedra. Since
the hyperbolic volume of M̊ ≈ 188.32, any diagram must have at least 56 crossings [1, Theorem 5.1].

one can drill out additional curves to get a link exterior that appears in an existing table
and has special properties allowing the recovery of a diagram of the knot itself. There are
other ad hoc methods in the literature, see e.g. [7] and references therein, but this paper is
the first to give a generically applicable method for Find Diagram.

1.2 Outline of algorithm
As Figures 2 and 3 show, our method can solve Find Diagram in some cases where any
diagram for the link has 55 or more crossings. We also easily recover everything in Section 1.1,
and more applications are given in Sections 8 and 9. Experimental mean running time was
O(1.07n), see Figure 14. With the definitions of Section 2, the input for our algorithm is:



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:5

▶ Input.
a. An ideal triangulation T̊ of a compact 3-manifold M̊ with toroidal boundary, with an

essential simple closed curve αi for each boundary component of M̊ .
b. A sequence (Pi) of Pachner moves transforming the layered filling triangulation T of the

manifold M = M̊(α1, . . . , αk) into a specific 2-tetrahedra base triangulation T0 of S3.

You might object that (b) is effectively cheating, since no polynomial-time algorithm for
finding (Pi) is known, or indeed for deciding if M is S3. Using the estimates in [37], one can
perform a naive search to find some (Pi), but the complexity of this is super-exponential.
However, recognizing S3 by finding such moves is easy in practice, see Section 7, with the
length of (Pi) linear in the size of T as per Figure 16. The output of the algorithm is a knot
diagram D, encoded as a planar graph with over/under crossing data for the vertices.

The main data structure is a triangulation T of S3 with a PL link L that is disjoint from
the 1-skeleton. The link L is encoded as a sequence of line segments, each contained in a
single tetrahedron of T , with endpoints recorded in barycentric coordinates. An initial pair
(T , L) in (b) is constructed from input (a) as described in Appendix A of the full version
[18]. The algorithm proceeds by performing the Pachner moves Pi from (b), keeping track of
the PL arcs encoding the link L throughout using the techniques of Section 3. The result
is the base triangulation enriched with PL arcs representing the link L. As detailed in
Section 5, this triangulation of S3 can be cut open along faces and embedded in R3, giving
an embedding of the cut-open link into R3 as a collection of PL arcs with endpoints on the
boundary of these tetrahedra. As in Figure 11, these PL arcs are then tied up using the
face identifications to obtain a collection of closed PL curves that represent L. An initial
link diagram D is obtained by projecting this PL link onto a plane and recording crossing
information. We then apply generic simplification methods to D and output the result.

This outline turns out to be deceptively simple. Some key difficulties are:
1. Understanding what 2 → 3 and 3 → 2 Pachner moves do to the link L is fairly straight-

forward as these correspond to changing the triangulation of a convex polyhedron in R3.
However, while these two moves theoretically suffice for (b), in practice one wants to use
2 → 0 moves as well, see Section 7, and these are much harder to deal with, as Figure 6
shows. We thus expand each 2 → 0 move into a (sometimes quite lengthy) sequence of
2 → 3 and 3 → 2 moves as discussed in Section 4. We give a simplified expansion for the
trickiest part, the endpoint-through-endpoint move, using 6 of the basic 2 → 3 and 3 → 2
moves instead of 14.

2. The complexity of the link grows very rapidly as we do Pachner moves, resulting in
enormously complicated initial diagrams. We greatly reduce this by elementary local
simplifications to the link after each Pachner move, see Section 3.2.

3. Prior work on simplifying link diagrams was focused on those with 30 or fewer crossings,
where random application of Reidemeister moves (plus flypes) are extremely effective.
Here, we need to simplify diagrams with 10,000 or even 100,000 crossings down to
something with less than 100, and such methods proved ineffective for this. Instead, we
used the more global strand pickup method of Section 6.

2 Background

2.1 Triangulations
Let M be a compact orientable 3-manifold, possibly with boundary. A triangulation of M is
a cell complex T made from finitely many tetrahedra by gluing some of their 2-dimensional
faces in pairs via orientation-reversing affine maps so that the resulting space is homeomorphic

SoCG 2022



37:6 Computing a Link Diagram from Its Exterior

to M . These triangulations are not necessarily simplicial complexes, but rather what are
sometimes called semi-simplicial, pseudo-simplicial, or singular triangulations. Of particular
importance are those with a single vertex, the 1-vertex triangulations. We use T i to denote
the i-skeleton of T . When M has nonempty boundary, an ideal triangulation of M is a
cell complex T made out of finitely many tetrahedra by gluing all of their 2-dimensional
faces in pairs as above so that M \ ∂M is homeomorphic to T \ T 0. Put another way, the
manifold M is what you get by gluing together truncated tetrahedra in the corresponding
pattern. See [49] for background on ideal triangulations, which we use only for 3-manifolds
whose boundary is a union of tori. We always include the modifier “ideal”, so throughout
“triangulation” means a non-ideal, also called “finite”, triangulation.

2.2 Triangulations with PL curves
Consider a tetrahedron ∆ in Rn as the convex hull of its vertices v0, v1, v2, and v3. We
encode points in ∆ using barycentric coordinates, that is, write p ∈ ∆ as the unique convex
combination

∑
i xivi and then represent p by the vector (x0, x1, x2, x3), where of necessity∑

i xi = 1. For a 3-manifold triangulation T , we view each tetrahedron τ as having a fixed
identification with the tetrahedron in R4 whose vertices are the standard basis vectors; we
use this to encode points in τ by barycentric coordinates.

An oriented PL curve in T will be described by a sequence of such barycentric coordinates
as follows. A barycentric arc a is an ordered pair of points (u, v) in a tetrahedron τ ,
representing the straight segment joining them. We write a.start = u and a.end = v. A
barycentric curve C is a sequence of barycentric arcs ai such that ai.end and ai+1.start
correspond to the same point in M under the face identifications of T . For a barycentric curve,
we define ai.next = ai+1 and ai+1.past = ai; these may not lie in the same tetrahedron.
Suppose the barycentric curve C consists of N barycentric arcs. If a0.start and aN .end
correspond to the same point in M , we have a barycentric loop. An embedded barycentric
loop is a barycentric knot. A barycentric link is a finite disjoint union of such knots.

We always require that a barycentric curve C is in the following kind of general position
with respect to T . First, C is disjoint from T 1. Second, any intersection of a constituent
barycentric arc a with T 2 is an endpoint of a. Finally, arcs do not bounce off faces of T 2, so
if an arc ends in a face, the next arc must be in the adjacent tetrahedron on the other side
of that face. Throughout, we use only points whose barycentric coordinates are in Q.

2.3 Dehn filling
Suppose M̊ is a compact 3-manifold whose boundary is a union of tori. Given an essential
simple closed curve αi on each boundary component Ti, the Dehn filling of M̊ along
α = (α1, . . . , αk) is the closed 3-manifold M̊(α) obtained from M̊ by gluing a solid torus
D2 × S1 to each Ti so that ∂D2 × {point} is αi. When M̊ is the exterior of a link L in S3

and each αi is a small meridional loop about the i-th component of L, then M̊(α) is just
S3. Given an ideal triangulation T̊ of M̊ and Dehn filling curves α, we follow [52, 32, 33] to
create a 1-vertex triangulation T of M̊(α) that we call the layered filling triangulation; see
Appendix A of the full version [18]. A key point is that the link L consisting of the cores of
the k added solid tori is a barycentric link in T made of just k barycentric arcs.

2.4 Pachner moves
A 3-manifold triangulation T can be modified by local Pachner moves (bistellar flips) to
give a new triangulation of the same underlying manifold. Those we use are:



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:7

0 → 2 2 → 3

4 → 4

Figure 4 Pachner moves which preserve the number of vertices.

1. The 2 → 3 move and its inverse 3 → 2 move. These take a triangulation of a ball, possibly
with boundary faces glued together, and retriangulate the interior without changing the
boundary triangulation. Specifically, the 2 → 3 move takes a pair of distinct tetrahedra
sharing a face and replaces them with three new tetrahedra around a new central edge.
The 3 → 2 move reverses this, replacing three distinct tetrahedra around a valence-3 edge
with two tetrahedra sharing a face.

2. The 4 → 4 move. The 4 → 4 move takes four tetrahedra around a central edge and
replaces them with four new tetrahedra assembled around a new valence-4 edge.

3. The 2 → 0 move and its inverse 0 → 2 move. The 2 → 0 move takes a pair of tetrahedra
sharing two faces to form a valence-2 edge and collapses them onto their common faces.
The 0 → 2 move reverses this by puffing air into a pair of faces sharing an edge and
adding two new tetrahedra. We call the complex created by the 0 → 2 move a pillow.
The 0 → 2 move inflates a pillow and the 2 → 0 move collapses a pillow.

If S and T are two 1-vertex triangulations of the same closed 3-manifold M , then there
is a sequence of Pachner moves that transforms S into T ; provided both S and T have at
least two tetrahedra, one needs only use 2 → 3 and 3 → 2 moves by [36, Theorem 1.2.5] (see
also [39, 42]). When M is S3, any triangulation T with n tetrahedra is related to a standard
triangulation by at most 12 · 106n222·103n2 Pachner moves [37]. Experimentally, one needs
many fewer moves [9]. In our data shown in Figure 16, the number is O(n); this is essential
for the utility of our algorithm for Find Diagram.

3 Modifying triangulations with arcs

Using part (a) of the input data, we first build the layered filled triangulation T of Section 2.3,
which comes enriched with a barycentric link L. Part (b) of the input data is a sequence of
Pachner moves (Pi) converting T to the base triangulation T0 of Section 5. The next step of
our algorithm is to apply the moves (Pi) to T , carrying the link L along as we go.

SoCG 2022



37:8 Computing a Link Diagram from Its Exterior

Figure 5 Two bipyramids with superimposed triangulations corresponding to before and after
applying the 4 → 4 move and 2 → 3 or 3 → 2 moves.

3.1 Pachner moves with arcs
We call the 2 → 3, 3 → 2, and 4 → 4 moves the simple Pachner moves. Each simple Pachner
move P takes a triangulated ball B in T , possibly with boundary faces glued together, and
re-triangulates B without changing the triangulation of ∂B to obtain PT . The arcs of the
link L contained in the ball are initially encoded using the barycentric coordinates of T , and
we need to re-express these arcs in the new barycentric coordinate system of PT . We model
each simple Pachner move as a pair of triangulations of concrete bipyramids in R3, as shown
in Figure 5. We identify the tetrahedra in T and PT involved in P with tetrahedra in the
corresponding bipyramid in R3. This identification allows us to map barycentric arcs from
T into R3, and then to map these arcs in R3 into PT . Appendix B of the full version [18]
details how this is used to give a method with_arcs[P ] that applies a simple Pachner move
P to T while transferring the barycentric arcs from T to PT . This approach cannot work
for the 2 → 0 move, as demonstrated by Figure 6. To implement with_arcs[2 → 0], we
factor the 2 → 0 move into a sequence of 2 → 3 and 3 → 2 moves as described in Section 4.

Figure 6 Cartoon showing the difficulty of doing a 2 → 0 move with arcs present. At left, the
two tetrahedra in the pillow to be collapsed are shaded. Here, you should regard the vertical purple
arc as the valence-2 edge, with the blue and red dots opposite being cross-sections of the two edges
of the pillow that become identified in the collapse. The problem is that we have to push all the
topology of the link out of the pillow before we collapse it, requiring us to move arcs into many of
the tetrahedra adjacent to the pillow.

3.2 Simplifying arcs
Given the inputs (a) and (b) of Section 1.2, the machinery of Section 3.1 always produces
the desired link L in the base triangulation T0. However, even in the smallest examples,
applying the sequence of Pachner moves to T produces incredibly complicated configurations
of arcs in T0 encoding L. This complexity makes necessary computational geometry tasks



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:9

straighten

a b

push

a
b

τ

τ ′F

Figure 7 The straighten move removes unnecessary bends in the link, and the push move reduces
unnecessary intersections with the 2-skeleton.

prohibitively expensive. Fortunately, much of this complexity is not topologically essential,
and the number of arcs can be decreased dramatically by the basic simplifications we now
describe. Without these, applying our full algorithm to an ideal triangulation T̊ with just
two tetrahedra resulted in 838 arcs and an initial link diagram with 5,130 crossings; with the
simplifications, we get 19 arcs and 35 crossings. A 3-tetrahedra ideal triangulation resulted
in 129,265 arcs compared to 27 with simplifications, and something with 10 tetrahedra would
be impossible without them. Our two kinds of simplification moves are shown in Figure 7.

The first is straighten, which takes as input a tetrahedron τ with barycentric arcs. It
then checks for each arc a in τ if the pair of arcs a and b = a.next can be replaced with
a single arc that runs from a.start and b.end. The check is that no other arc in τ has
an interior intersection with the triangle spanned by a and b. The other move is push,
which removes unnecessary intersections with T 2. When a starts on the same face F that
b = a.next ends on, it checks whether any other arc intersects the triangle a and b span. If
there are none, the move replaces a and b with an arc in the tetrahedron τ ′ glued to τ along
F . This often produces a bend that can then be removed by a straighten move.

3.3 Computational geometry issues
Our algorithm requires many geometric computations with barycentric arcs, e.g. to test for
one of our simplifying moves and to ensure we do not violate the general position requirement
of Section 2.2. Difficult and subtle issues can arise here, and much work has been done to
ameliorate them; see [44] for a survey. We took the approach of having all coordinates in
Q so that so we can do these computations exactly. This entails a stiff speed penalty and
leads to points represented by rational numbers with overwhelmingly large denominators.
We handle such denominators by rounding coordinates so that the denominator is less than
232. One can certify at each step by simple local tests that this rounding does not change the
isotopy type of the link. However, when the input manifold is hyperbolic, we instead certify
correctness of the output diagram after the fact by checking that its exterior is homeomorphic
to the manifold in part (a) of the input; this is considerably faster than checking at each step.

SoCG 2022



37:10 Computing a Link Diagram from Its Exterior

3.4 Putting the pieces together

Let T be a layered filling triangulation with arcs encoding the core curves of the filling and
let (Pi) be Pachner moves reducing T to T0. Our process for producing a barycentric link in
T0 that is isotopic to the initial L is:

Algorithm 1 with_arcs[apply_Pachner_moves]
(
T , (Pi)

)
.

Start with T ′ := T and loop over the P1, P2, . . . Pn as follows:
1. Apply with_arcs[Pi] to T ′ to get PiT ′ with arcs representing L. Set T ′ := PiT ′.
2. Loop over the tetrahedra τ in T ′, applying push and straighten until the arcs stabilize.

4 Factoring the 2-to-0 move

As mentioned in Section 3.1, we factor each 2 → 0 move into a sequence of 2 → 3 and 3 → 2
moves so that we can carry along the barycentric link. This factorization is quite delicate
in certain unavoidable corner cases; we outline our method in this section, but leave the
details to Appendix C of the full version [18]. To begin to understand the 2 → 0 move, first
consider its inverse 0 → 2 move shown in Figure 8. The possible 0 → 2 moves in Figure 8
correspond to a pillow splitting open the book of tetrahedra around the edge e. Following
[46], we call this pillow a bird beak with upper and lower mandibles that pivot around the
two outside edges of the beak (viewed from above, these are the purple and black vertices
in the top right of Figure 8). On both sides of the bird beak are half-books of tetrahedra,
together forming a split-book. When applying the inverse 2 → 0 move, the two half-books
combine to form a book of tetrahedra assembled around the central edge.

The simplest 2 → 0 move is when there are two valence-2 edges that are opposite each
other on a single tetrahedron, as shown in Figure 9; equivalently, one of the half-books has
a single tetrahedron. This base case is handled by Matveev’s V move, the composition of
four 2 → 3 and 3 → 2 moves of [36, Figure 1.15]. To reduce other instances of the 2 → 0
move to the base case, we rotate a mandible of the bird beak, moving tetrahedra from one
half-book to the other until one contains only a single tetrahedron. Because the tetrahedra
in the split-book may repeat or be glued together in strange ways, this is rather delicate.
When things are sufficiently embedded, Segerman [46] showed:

▶ Proposition 4.1. Suppose e is a valence-2 edge where the half-books adjacent to the bird
beak are embedded and contain m and n tetrahedra respectively. Then the 2 → 0 move can be
implemented by 2 · min(m, n) + 2 basic 2 → 3 and 3 → 2 moves.

Proof. We can rotate a mandible by one tetrahedron using the two basic moves of [46,
Figure 11]. With min(m, n) − 1 such rotations we can reduce the smaller of the half-books
to a single tetrahedron. As already noted, the base case can be done in four moves. ◀

▶ Remark 4.2. One cannot in general factor a 2 → 0 move into a sublinear number of 2 → 3
and 3 → 2 moves: the 2 → 0 move amalgamates two edges of valence m + 1 and n + 1 into a
single edge of valence m + n, and each 2 → 3 or 3 → 2 move only changes valences by a total
of 12 (counting with multiplicity).



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:11

Figure 8 At top, a cross section of a 0 → 2 move; at bottom is a close-up of the inflation of the
pillow. The move is performed on the pair of green faces meeting along the purple edge e at left.
The resulting pillow is a bird beak, which splits open the book of tetrahedra about e. In the top
right, the purple and black dots give edges that join together above and below the cross section.

4.1 Twisted beaks and endpoint-through-endpoint moves

The tricky case is when additional faces of the bird beak are glued to each other. There are two
fundamentally different ways for this to happen, shown in Figures 28 and 29 of Appendix C
of the full version [18]. The untwisting of these extremely confusing arrangements is done by
the endpoint-through-endpoint move of Figure 10, which is in the dual language of special
spines from Appendix C of [18]. Matveev’s factorization of the endpoint-through-endpoint
move is described in Figure 1.19 of [36]. We simplify this factorization from 14 moves to 6;
the key is Proposition C.1 of Appendix C of [18] which shows that

α α

can be done with just two T moves, which is dual to two 2 → 3 Pachner moves. Proposition
C.1 in Appendix C of the full version [18] was essential for determining the exact sequence
of moves needed to factor the 2 → 0 move. Dual to the endpoint-through-endpoint move
are a pair of untwist the beak moves, one for each of the situations in Figures 28 and 29, see
Appendix C of [18]. We can thus factorize the 2 → 0 move as follows:

5 Building the initial diagram

The base triangulation T0 of S3 has two tetrahedra and one vertex and is shown in Fig-
ure 11a; its isomorphism signature in the sense of [9, § 3.2], which completely determines the
triangulation, is cMcabbgdv. We next give the method for obtaining a planar diagram D for
a barycentric link L in T0. We first build a PL link in R3 representing L and then project it
onto a plane to get D.

SoCG 2022



37:12 Computing a Link Diagram from Its Exterior

Figure 9 The base case of the 2 → 0 move at top with the cross section at bottom.

Figure 10 The endpoint-through-endpoint move in a special spine.

We cut open T0 along its faces and embed the resulting pair of tetrahedra in R3 as shown
in Figure 11a. This cuts open the link L along its intersections with the faces of T0, resulting
in a collection of curves in R3 inside the two tetrahedra. To reconnect these curves and
recover L, we use fins and lenses as shown in Figure 11b to interpolate between pairs of
faces that are identified in T0. There are two triangular fins, one attached vertically to each
tetrahedron, with each fin corresponding to one of the two valence-1 edges of T0. The gluing
of two faces incident to a valence-1 edge is realized by folding them onto the corresponding
fin. Thus for each barycentric arc that ends in a face corresponding to a fin, we add the line
segment joining this endpoint of the arc to the corresponding point in the fin.

Algorithm 2 factor[2 → 0].

1. If we are in the base case, do the sequence of moves in the triangulation dual to the
factorization of the V move in Figure 1.15 of [36] and exit.

2. If we are in the twisted cases described by Figures 28 and 29 in Appendix C of the full
version [18], do the appropriate untwist the beak move. Otherwise, rotate the mandible
by one tetrahedron.

3. Go to to step 1.



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:13

(a) The base triangulation T0. (b) Two views of the same link.

b2

b1
b3

b0

a3 a2

a0

a1

a023 → a123

b213 → b013

a031

b021

a012

b032

Figure 11 The base triangulation T0 in R3, with fins and lenses shown in the middle and at left.

The two triangular lenses lie between the two tetrahedra in a horizontal plane. There is
an affine map taking the corresponding face in the top tetrahedron to its lens and a second
affine map taking the lens to the corresponding face in the bottom tetrahedron, arranged
so their composition is the face pairing in T0. For every arc in the top tetrahedron ending
on a face corresponding to a lens, we add the line segment between the endpoint and its
image under the affine map to the lens. For each such segment that terminates on a lens, we
add the line segment from this endpoint to its image in the face of the bottom tetrahedron
under the affine map. This results in a PL link in R3 ⊂ S3 that must be isotopic to L: just
imagine puffing out the two tetrahedra to fill all of S3 following the guides given by the fins
and lenses.

Given a collection of line segments in R3 corresponding to the link L, we can build
a diagram for L by projecting the line segments onto a plane, computing the crossing
information, and assembling this into a planar diagram. Our default choice is roughly to
project onto the plane of the page in Figure 11b, with the (so far unused) fall-back of a small
random matrix in SL3Z if a general-position failure occurs. The link diagrams resulting from
this process have many more crossings than is necessary, and we deal with this in Section 6.
Still, the specific configuration of fins, lenses, and projection were chosen to try minimize
the number of crossings created at this stage; our initial approach used a more compact
embedding where the tetrahedra shared a face, and this produced much larger diagrams.

6 Simplifying link diagrams

We now sketch how we simplified the initial link diagram constructed in Section 5, which
sometimes had 10,000–100,000 crossings, to produce the final output of our algorithm for
Find Diagram. Previous computational work focused on simplifying diagrams with 20 or
fewer crossings [30, 11]. In that regime, random Reidemeister moves combined with flypes
are extremely effective in reducing the number of crossings. However, these techniques alone
proved inadequate for our much larger links. Instead, we used the more global strand pickup
method of Figure 12. This technique was introduced by the third author and included in

SoCG 2022



37:14 Computing a Link Diagram from Its Exterior

Figure 12 An example of the strand pickup method for diagram simplification. At left, an
overstrand, which runs over each crossing it partipates in, is indicated by the darker line. At right is
the result of isotoping the overstrand, fixing its endpoints, to get a diagram with fewer crossings. The
best possible location for an overstrand can be found by solving a weighted shortest-path problem
in the planar dual graph to the original diagram.

102 103 104 105

Size of initial diagram

101

102

103

104

Si
ze

 o
f f

in
al

 d
ia

gr
am

Fit: y = 0.765 x - 0.224, r= 0.804Fit: r = 0.804,
log y ≈ 0.765 log x − 0.224

Crossings in input diagram
102 103 104 105

C
ro

ss
in

gs
in

ou
tp

ut
di

ag
ra

m

101

102

103

104

102 103 104 105

Size of initial diagram

10 2

10 1

100

101

102

103
Ti

m
e 

to
 si

m
pl

ify
 d

ia
gr

am
Fit: y = 1.461 x - 4.023, r= 0.926Fit: r = 0.926,
log y ≈ 1.46 log x − 4.02

Crossings in input diagram
102 103 104 105

T
im

e
to

si
m

pl
ify

(s
ec

on
ds

)

10−2

10−1

100

101

102

103

Figure 13 Simplifying 300 diagrams with between 19 and 32,095 crossings, drawn from Sections 8
and 9.3. The dramatic amount of simplification is shown at left, with an n-crossing knot turned into
one with O(n0.8) crossings. The running time at right is roughly O(n1.5).

SnapPy [15] since version 2.3 (2015), but not previously documented in the literature. It
has similarities with the arc representation/grid diagram approach of [20, 21, 22], but it
works with arbitrary planar diagrams. When applying the pickup move, we start with the
longest overstrands and work towards the shorter ones if no improvement is made. When
a pickup move succeeds, we do more basic simplications before looking for another pickup
move. We also do the same move on understrands, going back and forth between the two
sides until the diagram stabilizes; for details, see [38]. The high amount of simplification and
sub-quadratic running time are shown in Figure 13. As further evidence of its utility, we
note that it strictly monotonically reduces the unknot diagrams D28, D43, and PZ78 in [12]
to the trivial diagram; in constrast, these require adding at least three crossings if one uses
only Reidemeister moves.



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:15

7 Finding certificates

Part (b) of the input to our algorithm is a certificate that the Dehn filling M = M̊(α) is S3

in the form of Pachner moves simplifying a triangulation T of M to the base triangulation T0
of S3. In practice, one starts with an ideal triangulation T̊ and Dehn filling slopes α where it
is unknown if M(α) is S3. We therefore need a way of finding this sequence of Pachner moves
when it exists. While deciding if a closed 3-manifold M is the S3 is in NP by [31, 45] and
additionally in co-NP assuming the Generalized Riemann Hypothesis [54, Theorem 11.2], no
sub-exponential time algorithm is known. The current best algorithm for S3 recognition is to
heuristically simplify the input triangulation using Pachner moves and then apply the theory
of almost normal surfaces, see Algorithm 3.2 of [10]. However, triangulations of S3 that are
truly hard to simplify using Pachner moves have not been encountered in practice, and it is
open whether they exist at all [9]. Thus, when M is S3, the initial stage of Algorithm 3.2
of [10] nearly always arrives at a 1-tetrahedron triangulation of S3 and no normal surface
theory is needed. The usefulness of our algorithm for Find Diagram relies on the fact that
a heuristic search using Pachner moves gives a practical recognition algorithm for S3.
▶ Remark 7.1. The effectiveness of our heuristic search procedure relies on the 2 → 0 move
being atomic. Initially, we tried restricting our heuristic search to just the simple Pachner
moves, but were typically unable to find a sequence that simplified the input triangulation of
S3 down to one with just a few tetrahedra. (To square this with [9], note from Figure 16
that our triangulations are much larger.) As is clear from Appendix C of the full version [18],
factoring the 2 → 0 move as a sequence of 2 → 3 and 3 → 2 moves is complicated enough
that one cannot expect to stumble upon these sequences when the triangulation is large and
the search is restricted to simple Pachner moves.

Our simplification heuristic closely follows that of SnapPy [15], with some modifications
that reduce the complexity of the final barycentric link in T0. These include:
1. Simplifying the layered filling triangulation T of Section 2.3 as much as possible without

modifying the few tetrahedra containing the initial link.
2. Finding sequences of Pachner moves to T0 for several different layered filling triangulations,

and then using the one requiring the fewest moves for the computations in Sections 3–6.
3. Ensuring the tail of the sequence of moves is a geodesic in the Pachner graph of [9].
The details are in Appendix D of the full version [18].

8 Implementation and initial experiments

We implemented our algorithm in Python, building on the pure-Python t3mlite library for
3-manifold triangulations that is part of SnapPy [15]. We also used SnapPy’s C kernel to
produce the layered filled triangulation T of Section 2.3 from the input ideal triangulation T̊ .
The needed linear algebra over Q was handed by PARI [48]. Not including these libraries,
our implementation consists of 1,800 lines of Python code. We had to put some effort into
optimization to handle things as large as Figure 3, but more could be done. Our code and
data is archived at [19] and the code will be incorporated into version 3.1 of SnapPy [15].

To validate our implementation, we applied it to two samples, one where the input is
small and one where the best-possible output is small. The first, CK, is the 1,267 hyperbolic
knots whose exteriors have ideal triangulations with at most 9 tetrahedra [17, 5]. The
second, SK, consists of 1,000 knots whose minimal crossing number was between 10 and 19.
There are 100 knots for each crossing number, which were selected at random from all the
hyperbolic nonalternating knots with that crossing number [11]; the exception is that there

SoCG 2022



37:16 Computing a Link Diagram from Its Exterior

are only 41 such 10-crossing knots, so 59 alternating 10-crossing knots were used as well.
(Alternating knots have unusually close connections between their diagrams and exteriors, so
were excluded as possibly being an easy case for Find Diagram.)

Our program found diagrams for all 2,267 of these exteriors. The running time was
under 20 seconds for 96.7% of them, with a max of 2.5 minutes (CPUs were Intel Xeon
E5-2690 v3 at 2.6GHz with 4G of memory per core, circa 2014); see Figure 14. The input
ideal triangulations T̊ had between 2 and 44 tetrahedra, and the resulting layered filling
triangulation T had between 13 and 77 tetrahedra (mean of 31.5), typically 60% larger
than T̊ ; see Figure 15. The sequence of simple Pachner moves used to reduce T to T0 had
length between 39 and 761 (mean of 241.0), see Figure 16; this was typically 7.5 times longer
than the initial sequence of Pachner moves that included 2 → 0 moves (Figure 17). For the
knots in SK, we compare the size of the output diagram to the minimal crossing number in
Figure 18; the output matched the crossing number for 42.1% of these exteriors, and it was
within 3 for 87.8%. For CK, the number of crossings in the output had max 303, mean 65.9,
and median 40.

9 Applications

9.1 Congruence links
Powerful tools from number theory apply to the special class of arithmetic hyperbolic
3-manifolds. Thurston asked which link exteriors are in the subclass of principal congruence
arithmetic manifolds; this was resolved in [6]: there are exactly 48 such exteriors. These 48
have hyperbolic volumes in [5.33348, 1365.37] and ideal triangulations with between 6 and
1,526 tetrahedra. Link diagrams for 15 of these 48 had previously been found by ad hoc
methods [7]. Our program has found diagrams for 23 more, including Figures 2 and 3;
collectively, we now have links for the 38 such exteriors of smallest volume, see Figure 20.

9.2 Dehn surgery descriptions
Every closed orientable 3-manifold is Dehn filling on some link exterior in S3 [43, Chapter 9],
and such Dehn surgery descriptions play a key role in both theory and practice. However,
finding a Dehn surgery description from e.g. a triangulation can be extremely challenging.
Thurston observed experimentally that, starting with a closed hyperbolic 3-manifold, one
frequently arrives at a link exterior by repeatedly drilling out short closed geodesics, see page
516 of [2]. Combining this with our algorithm for Find Diagram gives an effective tool for
finding Dehn surgery descriptions given a triangulation. We applied this to the Seifert–Weber
dodecahedral space, which is an old example [50] still of much current interest [13, 34]. The
resulting description in Figure 21 seems to be the first such published; a different description
appeared subsequently in [4].

9.3 Knots with the same 0-surgery
The 0-surgery Z(K) on a knot K is the unique Dehn filling N of E(K) where H1(N ;Q) ̸= 0.
Pairs of knots K and K ′ with Z(K) homeomorphic to Z(K ′) are of much interest in low-
dimensional topology. Most strikingly, if such a pair K and K ′ exist with K slice (i.e. bounds
a smooth D2 in D4) and the Rasmussen s-invariant of K ′ is nonzero, then the smooth
4-dimensional Poincaré conjecture is false. That is, there would exist a 4-manifold that is
homeomorphic but not diffeomorphic to S4. See [25, 35] for a general discussion, and also [41]
for an important recent result using pairs with Z(K) ∼= Z(K ′). There are many techniques
for constructing families of such pairs, which have been unified by the red-blue-green link



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:17

0 5 10 15 20 25 30 35 40 45
Ideal tetrahedra in Tdot

100

101

102

Ru
nn

in
g 

tim
e 

(s
ec

on
ds

)
Fit: y = 0.031 x + 0.114, r= 0.850Fit: log y ≈ 0.031x + 0.114, r = 0.850

Ideal tetrahedra in T̊

0 5 10 15 20 25 30 35 40 45

R
un

ni
ng

tim
e

(s
ec

on
ds

)

100

101

102

SK
CK

Figure 14 Mean running time for the 2,267 knot exteriors in SK and CK appears exponential
with small base, roughly O(1.07n). Compare Figure 19 on the growth of the number of arcs in T0.

0 5 10 15 20 25 30 35 40 45
Ideal tetrahedra in Tdot

10

20

30

40

50

60

70

80

Te
tra

he
dr

a 
in

 la
ye

re
d 

fil
le

d 
T

Fit: y = 1.582 x + 7.638, r= 0.989Fit: y ≈ 1.58x + 7.64, r = 0.989

Ideal tetrahedra in T̊

0 5 10 15 20 25 30 35 40 45

Te
tr

ah
ed

ra
in

la
ye

re
d

fil
le

d
T

10

20

30

40

50

60

70

80

SK
CK

Figure 15 The number of tetrahedra in the layered filled T compared to the input ideal T̊ .

SoCG 2022



37:18 Computing a Link Diagram from Its Exterior

10 20 30 40 50 60 70 80
Size of T

0

100

200

300

400

500

600

700

800

Si
m

pl
e 

Pa
ch

er
 m

ov
es

Fit: y = 9.427 x - 56.433, r= 0.923Fit: y ≈ 9.43x − 56.4, r = 0.923

Tetrahedra in T

10 20 30 40 50 60 70 80

Si
m

pl
e

Pa
ch

ne
r

m
ov

es

0

100

200

300

400

500

600

700

800

SK
CK

Figure 16 The number of simple Pachner moves used to transform the layered filled triangulation
T into the base triangulation T0 is generically linear in the size of T .

25 50 75 100 125 150 175
Pacher moves from T to S3

0

100

200

300

400

500

600

700

ex
pa

nd
ed

 P
ac

he
r m

ov
es

Fit: y = 7.517 x - 41.357, r= 0.896

Fit: y ≈ 7.52x − 41.4, r = 0.896

General Pachner moves from T to T0

25 50 75 100 125 150 175

Si
m

pl
e

Pa
ch

er
m

ov
es

0

100

200

300

400

500

600

700

SK
CK

Figure 17 This plot shows the increase in the number of Pachner moves when we factor the
2 → 0 moves into simple Pachner moves. The regression line is based on points with x < 75.



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:19

10 12 14 16 18
minimal crossing number

10

15

20

25

30

cr
os

sin
gs

 in
 o

ut
pu

t

Minimal crossing number

10 12 14 16 18

C
ro

ss
in

gs
in

ou
tp

ut

10

15

20

25

30

Figure 18 For the knots in SK, grouped by minimum crossing number, the number of crossings
in the diagram output by our program. The dotted line indicates the mean.

0 5 10 15 20 25 30 35 40 45
Ideal tetrahedra in Tdot

101

102

Nu
m

be
r o

f a
rc

s i
n 

T0

Fit: y = 0.013 x + 1.521, r= 0.573Fit: log y ≈ 0.013x + 1.52, r = 0.573

Ideal tetrahedra in T̊

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
ar

cs
in

T 0

101

102

5 × 102

Figure 19 The number of barycentric arcs when we arrive at T0 appears exponential in the size
of the input T̊ , roughly O(1.03n).

SoCG 2022



37:20 Computing a Link Diagram from Its Exterior

0 100 200 300
Hyperbolic volume

0

500

1000

1500

2000

2500
Cr

os
sin

gs

Hyperbolic volume
0 100 200 300

C
ro

ss
in

gs

0

500

1000

1500

2000

2500

101 102

volume

101

102

103

cr
os

sin
gs

Fit: y = 1.359 x - 0.480, r= 0.946Fit: r = 0.946,
log y ≈ 1.356 log x − 0.480

Hyperbolic volume
101 102

C
ro

ss
in

gs

101

102

103

Figure 20 The 38 known link diagrams whose exteriors are principal congruence arithmetic; blue
are the 15 from [7], yellow are new. The plots are the same save for the scales on the axes. The
regression at right predicts that a link for the largest such exterior would have 9,000 crossings.

(−1, 1)

(−5, 1)

(0, 1)

Figure 21 A Dehn surgery description of the Seifert–Weber dodecahedral space.

framework of [35]. However, given a particular K, a practical algorithm to search for K ′ with
the same 0-surgery has been lacking. When Z(K) is hyperbolic, we attack this as follows.
First, find the short closed geodesics in Z(K) using [29]. Then drill out each geodesic in
turn, and test if the resulting manifold M̊ ′ has a Dehn filling which is S3; if it does, use our
algorithm for Find Diagram to M̊ ′ to get a diagram for K ′.

Figure 22 shows the result of applying our algorithm to 100 pairs (K, γ) where K is a
knot with at most 18 crossings and γ is a short closed geodesic in Z(K) whose exterior is
also that of a knot K ′ in S3. In all cases, we were able to recover a diagram for K ′, and
these were more challenging on average than the examples in Section 8.



N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:21

20 30 40 50 60
Num ideal tetrahedra

0
250
500
750

1000
1250
1500
1750
2000

Cr
os

sin
gs

 in
 o

ut
pu

t

Fit: y = 61.364 x - 2074.606, r= 0.574Fit: r = 0.574,
y ≈ 61.4x − 2075

Ideal tetrahedra in T̊

Outliers at
(57, 4603) and
(64, 5973) omitted

20 30 40 50 60

C
ro

ss
in

gs
in

ou
tp

ut

0

250

500

750

1000

1250

1500

1750

2000

30 40 50 60
Num ideal tetrahedra

101

102

103

Ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

Fit: y = 0.046 x - 0.416, r= 0.713
Fit: r = 0.713,
y ≈ 0.046x − 0.416

Ideal tetrahedra in T̊
30 40 50 60

R
un

ni
ng

tim
e

(s
ec

on
ds

)

101

102

103

40 50 60 70
Num finite tetrahedra

200

300

400

500

600

700

Si
m

pl
e 

Pa
ch

ne
r m

ov
es

Fit: y = 5.402 x + 71.092, r= 0.456Fit: r = 0.456,
y ≈ 5.40x + 71.1

Tets in the layered filling T
40 50 60 70

Si
m

pl
e

Pa
ch

ne
r

m
ov

es
to

T 0

200

300

400

500

600

700

50 100 150
Pachner moves to S3

200

300

400

500

600

700
Si

m
pl

e 
Pa

ch
ne

r m
ov

es
Fit: y = 1.412 x + 253.809, r= 0.478Fit: r = 0.478,
y ≈ 1.41x + 254

Pachner moves T → T0, with 2 → 0
50 100 150

E
xp

an
de

d
si

m
pl

e
Pa

ch
ne

r
m

ov
es

200

300

400

500

600

700

Figure 22 Data on the 100 knot exteriors from Section 9.3.

10 Future work

Having demonstrated the practicality of solving Find Diagram, we plan to refine our
implementation and then incorporate it as a standard feature of SnapPy [15] so that it can
be widely used. In particular, we aim to:

1. Explore whether the mean running time of O(1.07n) can be reduced. While Theorem E.1
in Appendix E of the full version [18] shows that the worst case running time must be at
least exponential, it is not implausible that the mean running time is polynomial in the
size of the output. The key issue is that the number of arcs in T0 is currently exponential
in the size of both the input and the output, compare Figure 19.

2. To reduce the number of arcs, we could consider additional local PL simplification moves,
or try the current moves in larger balls in T made up of several tetrahedra.

3. Explore whether modern methods in computational geometry can be used to speed up
the work in Sections 3 and 5.

SoCG 2022



37:22 Computing a Link Diagram from Its Exterior

References
1 Colin Adams. Triple crossing number of knots and links. J. Knot Theory Ramifications,

22(2):1350006, 17, 2013. doi:10.1142/S0218216513500065.
2 Colin C. Adams. Isometric cusps in hyperbolic 3-manifolds. Michigan Math. J., 46(3):515–531,

1999. doi:10.1307/mmj/1030132477.
3 Colin Conrad. Adams. The knot book : an elementary introduction to the mathematical theory

of knots. W.H. Freeman, 1994.
4 Kenneth L. Baker. A sketchy surgery description of the seifert-weber dodecahedral space, 2021.

URL: https://sketchesoftopology.wordpress.com/2021/12/09/a-sketchy-surgery.
5 Kenneth L. Baker and Marc Kegel. Census L-space knots are braid positive, except one that

is not, in preparation.
6 M. D. Baker, M. Goerner, and A. W. Reid. All principal congruence link groups. J. Algebra,

528:497–504, 2019. doi:10.1016/j.jalgebra.2019.02.023.
7 Mark D. Baker, Matthias Goerner, and Alan W. Reid. All known principal congruence links.

Preprint 2019, 9 pages. arXiv:1902.04426.
8 Benjamin A. Burton. The cusped hyperbolic census is complete. Preprint 2014, 32 pages.

arXiv:1405.2695.
9 Benjamin A. Burton. The Pachner graph and the simplification of 3-sphere triangulations.

In Computational geometry (SCG’11), pages 153–162. ACM, New York, 2011. doi:10.1145/
1998196.1998220.

10 Benjamin A. Burton. Computational topology with Regina: algorithms, heuristics and
implementations. In Geometry and topology down under, volume 597 of Contemp. Math.,
pages 195–224. Amer. Math. Soc., Providence, RI, 2013. doi:10.1090/conm/597/11877.

11 Benjamin A. Burton. The next 350 million knots. In 36th International Symposium on
Computational Geometry, volume 164 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 25,
17. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020. doi:10.4230/LIPIcs.SoCG.2020.
25.

12 Benjamin A. Burton, Hsien-Chih Chang, Maarten Löffler, Arnaud de Mesmay, Clément Maria,
Saul Schleimer, Eric Sedgwick, and Jonathan Spreer. Hard diagrams of the unknot. Preprint
2021, 26 pages. arXiv:2104.14076.

13 Benjamin A. Burton, J. Hyam Rubinstein, and Stephan Tillmann. The Weber-Seifert
dodecahedral space is non-Haken. Trans. Amer. Math. Soc., 364(2):911–932, 2012. doi:
10.1090/S0002-9947-2011-05419-X.

14 Abhijit Champanerkar, Ilya Kofman, and Timothy Mullen. The 500 simplest hyperbolic knots.
J. Knot Theory Ramifications, 23(12):1450055, 34, 2014. doi:10.1142/S0218216514500552.

15 Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks. SnapPy, a
computer program for studying the geometry and topology of 3-manifolds, version 3.0.2, 2021.
URL: https://snappy.computop.org.

16 Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer. The unbearable hardness
of unknotting. Adv. Math., 381:Paper No. 107648, 36, 2021. doi:10.1016/j.aim.2021.107648.

17 Nathan M. Dunfield. A census of exceptional Dehn fillings. In Characters in low-dimensional
topology, volume 760 of Contemp. Math., pages 143–155. Amer. Math. Soc., [Providence], RI,
2020. doi:10.1090/conm/760/15289.

18 Nathan M. Dunfield, Malik Obeidin, and Cameron Gates Rudd. Computing a Link Diagram
from its Exterior, 2021. Full version of this paper, 34 pages. arXiv:2112.03251v2.

19 Nathan M. Dunfield, Malik Obeidin, and Cameron Gates Rudd. Code and data for computing
a link diagram from its exterior, 2022. doi:10.7910/DVN/BT1M8R.

20 I. A. Dynnikov. Three-page approach to knot theory. Coding and local motions. Funktsional.
Anal. i Prilozhen., 33(4):25–37, 96, 1999. doi:10.1007/BF02467109.

21 I. A. Dynnikov. Arc-presentations of links: monotonic simplification. Fund. Math., 190:29–76,
2006. doi:10.4064/fm190-0-3.

https://doi.org/10.1142/S0218216513500065
https://doi.org/10.1307/mmj/1030132477
https://sketchesoftopology.wordpress.com/2021/12/09/a-sketchy-surgery
https://doi.org/10.1016/j.jalgebra.2019.02.023
http://arxiv.org/abs/1902.04426
http://arxiv.org/abs/1405.2695
https://doi.org/10.1145/1998196.1998220
https://doi.org/10.1145/1998196.1998220
https://doi.org/10.1090/conm/597/11877
https://doi.org/10.4230/LIPIcs.SoCG.2020.25
https://doi.org/10.4230/LIPIcs.SoCG.2020.25
http://arxiv.org/abs/2104.14076
https://doi.org/10.1090/S0002-9947-2011-05419-X
https://doi.org/10.1090/S0002-9947-2011-05419-X
https://doi.org/10.1142/S0218216514500552
https://snappy.computop.org
https://doi.org/10.1016/j.aim.2021.107648
https://doi.org/10.1090/conm/760/15289
http://arxiv.org/abs/2112.03251v2
https://doi.org/10.7910/DVN/BT1M8R
https://doi.org/10.1007/BF02467109
https://doi.org/10.4064/fm190-0-3


N. M. Dunfield, M. Obeidin, and C. G. Rudd 37:23

22 Ivan Dynnikov and Vera Sokolova. Multiflypes of rectangular diagrams of links. J. Knot
Theory Ramifications, 30(6):Paper No. 2150038, 15, 2021. doi:10.1142/S0218216521500383.

23 Erica Flapan. When topology meets chemistry. Outlooks. Cambridge University Press,
Cambridge; Mathematical Association of America, Washington, DC, 2000. A topological look
at molecular chirality. doi:10.1017/CBO9780511626272.

24 Erica Flapan, Adam He, and Helen Wong. Topological descriptions of protein folding. Proc.
Natl. Acad. Sci. USA, 116(19):9360–9369, 2019. doi:10.1073/pnas.1808312116.

25 Michael Freedman, Robert Gompf, Scott Morrison, and Kevin Walker. Man and machine
thinking about the smooth 4-dimensional Poincaré conjecture. Quantum Topol., 1(2):171–208,
2010. doi:10.4171/QT/5.

26 C. McA. Gordon and J. Luecke. Knots are determined by their complements. J. Amer. Math.
Soc., 2(2):371–415, 1989. doi:10.2307/1990979.

27 Wolfgang Haken. Theorie der Normalflächen. Acta Math., 105:245–375, 1961. doi:10.1007/
BF02559591.

28 Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of
knot and link problems. J. ACM, 46(2):185–211, 1999. doi:10.1145/301970.301971.

29 Craig D. Hodgson and Jeffrey R. Weeks. Symmetries, isometries and length spectra of closed
hyperbolic three-manifolds. Experiment. Math., 3(4):261–274, 1994.

30 Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks. The first 1,701,936 knots. Math. Intelli-
gencer, 20(4):33–48, 1998. doi:10.1007/BF03025227.

31 S. V. Ivanov. The computational complexity of basic decision problems in 3-dimensional
topology. Geom. Dedicata, 131:1–26, 2008. doi:10.1007/s10711-007-9210-4.

32 William Jaco and J. Hyam Rubinstein. Inflations of ideal triangulations. Adv. Math., 267:176–
224, 2014. doi:10.1016/j.aim.2014.09.001.

33 William Jaco and Eric Sedgwick. Decision problems in the space of Dehn fillings. Topology,
42(4):845–906, 2003. doi:10.1016/S0040-9383(02)00083-6.

34 Francesco Lin and Michael Lipnowski. Monopole Floer Homology, Eigenform Multiplicities
and the Seifert-Weber Ddodecahedral Space. Int. Math. Res. Notices, to appear. doi:
10.1093/imrn/rnaa310.

35 Ciprian Manolescu and Lisa Piccirillo. From zero surgeries to candidates for exotic definite
four-manifolds. Preprint 2021, 30 pages. arXiv:2102.04391.

36 Sergei Matveev. Algorithmic topology and classification of 3-manifolds, volume 9 of Algorithms
and Computation in Mathematics. Springer, Berlin, second edition, 2007.

37 Aleksandar Mijatović. Simplifying triangulations of S3. Pacific J. Math., 208(2):291–324,
2003. doi:10.2140/pjm.2003.208.291.

38 Malik Obeidin. Link simplification code for Spherogram. URL: https://github.com/
3-manifolds/Spherogram/blob/master/spherogram_src/links/simplify.py.

39 Udo Pachner. P.L. homeomorphic manifolds are equivalent by elementary shellings. European
J. Combin., 12(2):129–145, 1991. doi:10.1016/S0195-6698(13)80080-7.

40 Satya R. T. Peddada, Nathan M. Dunfield, Lawrence E. Zeidner, Kai A. James, and James T.
Allison. Systematic Enumeration and Identification of Unique Spatial Topologies of 3D
Systems Using Spatial Graph Representations. In International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, volume 3A: 47th
Design Automation Conference (DAC), 2021. doi:10.1115/DETC2021-66900.

41 Lisa Piccirillo. The Conway knot is not slice. Ann. of Math. (2), 191(2):581–591, 2020.
doi:10.4007/annals.2020.191.2.5.

42 Riccardo Piergallini. Standard moves for standard polyhedra and spines. Rend. Circ. Mat.
Palermo (2) Suppl., 18:391–414, 1988. Third National Conference on Topology (Italian)
(Trieste, 1986).

43 Dale Rolfsen. Knots and links, volume 7 of Mathematics Lecture Series. Publish or Perish,
Inc., Houston, TX, 1990. Corrected reprint of the 1976 original.

SoCG 2022

https://doi.org/10.1142/S0218216521500383
https://doi.org/10.1017/CBO9780511626272
https://doi.org/10.1073/pnas.1808312116
https://doi.org/10.4171/QT/5
https://doi.org/10.2307/1990979
https://doi.org/10.1007/BF02559591
https://doi.org/10.1007/BF02559591
https://doi.org/10.1145/301970.301971
https://doi.org/10.1007/BF03025227
https://doi.org/10.1007/s10711-007-9210-4
https://doi.org/10.1016/j.aim.2014.09.001
https://doi.org/10.1016/S0040-9383(02)00083-6
https://doi.org/10.1093/imrn/rnaa310
https://doi.org/10.1093/imrn/rnaa310
http://arxiv.org/abs/2102.04391
https://doi.org/10.2140/pjm.2003.208.291
https://github.com/3-manifolds/Spherogram/blob/master/spherogram_src/links/simplify.py
https://github.com/3-manifolds/Spherogram/blob/master/spherogram_src/links/simplify.py
https://doi.org/10.1016/S0195-6698(13)80080-7
https://doi.org/10.1115/DETC2021-66900
https://doi.org/10.4007/annals.2020.191.2.5


37:24 Computing a Link Diagram from Its Exterior

44 Stefan Schirra. Robustness and precision issues in geometric computation. In Handbook of
computational geometry, pages 597–632. North-Holland, Amsterdam, 2000. doi:10.1016/
B978-044482537-7/50015-2.

45 Saul Schleimer. Sphere recognition lies in NP. In Low-dimensional and symplectic topology,
volume 82 of Proc. Sympos. Pure Math., pages 183–213. Amer. Math. Soc., Providence, RI,
2011. doi:10.1090/pspum/082/2768660.

46 Henry Segerman. Connectivity of triangulations without degree one edges under 2-3 and 3-2
moves. Proc. Amer. Math. Soc., 145(12):5391–5404, 2017. doi:10.1090/proc/13485.

47 Carl Sundberg and Morwen Thistlethwaite. The rate of growth of the number of prime
alternating links and tangles. Pacific J. Math., 182(2):329–358, 1998. doi:10.2140/pjm.1998.
182.329.

48 The PARI Group, Univ. Bordeaux. PARI/GP version 2.11.4, 2020. URL: http://pari.
math.u-bordeaux.fr.

49 Stephan Tillmann. Normal surfaces in topologically finite 3-manifolds. Enseign. Math. (2),
54(3-4):329–380, 2008. arXiv:math/0406271.

50 C. Weber and H. Seifert. Die beiden Dodekaederräume. Math. Z., 37(1):237–253, 1933.
doi:10.1007/BF01474572.

51 Jeff Weeks. Computation of hyperbolic structures in knot theory. In Handbook of knot theory,
pages 461–480. Elsevier B. V., Amsterdam, 2005. doi:10.1016/B978-044451452-3/50011-3.

52 Jeffery R. Weeks. Source code file close_cusp.c for SnapPea, version 2.5, circa 1995. URL:
https://github.com/3-manifolds/SnapPy/blob/master/kernel/kernel_code/.

53 Jeffrey R. Weeks. Convex hulls and isometries of cusped hyperbolic 3-manifolds. Topology
Appl., 52(2):127–149, 1993. doi:10.1016/0166-8641(93)90032-9.

54 Raphael Zentner. Integer homology 3-spheres admit irreducible representations in SL(2,C).
Duke Math. J., 167(9):1643–1712, 2018. doi:10.1215/00127094-2018-0004.

https://doi.org/10.1016/B978-044482537-7/50015-2
https://doi.org/10.1016/B978-044482537-7/50015-2
https://doi.org/10.1090/pspum/082/2768660
https://doi.org/10.1090/proc/13485
https://doi.org/10.2140/pjm.1998.182.329
https://doi.org/10.2140/pjm.1998.182.329
http://pari.math.u-bordeaux.fr
http://pari.math.u-bordeaux.fr
http://arxiv.org/abs/math/0406271
https://doi.org/10.1007/BF01474572
https://doi.org/10.1016/B978-044451452-3/50011-3
https://github.com/3-manifolds/SnapPy/blob/master/kernel/kernel_code/
https://doi.org/10.1016/0166-8641(93)90032-9
https://doi.org/10.1215/00127094-2018-0004


On Comparable Box Dimension
Zdeněk Dvořák #

Charles University, Prague, Czech Republic

Daniel Gonçalves #

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abhiruk Lahiri #

Charles University, Prague, Czech Republic

Jane Tan #

Mathematical Institute, University of Oxford, UK

Torsten Ueckerdt #

Karlsruhe Institute of Technology, Germany

Abstract
Two boxes in Rd are comparable if one of them is a subset of a translation of the other one. The
comparable box dimension of a graph G is the minimum integer d such that G can be represented as
a touching graph of comparable axis-aligned boxes in Rd. We show that proper minor-closed classes
have bounded comparable box dimension and explore further properties of this notion.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graphs and surfaces

Keywords and phrases geometric graphs, minor-closed graph classes, treewidth fragility

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.38

Related Version Full Version: https://arxiv.org/abs/2203.07686

Funding Zdeněk Dvořák: Supported by the ERC-CZ project LL2005 (Algorithms and complexity
within and beyond bounded expansion) of the Ministry of Education of Czech Republic.
Daniel Gonçalves: Supported by the ANR grant GATO ANR-16-CE40-0009.
Abhiruk Lahiri: Supported by the ERC-CZ project LL2005 (Algorithms and complexity within and
beyond bounded expansion) of the Ministry of Education of Czech Republic.

Acknowledgements This research was carried out at the workshop on Geometric Graphs and
Hypergraphs organized by Yelena Yuditsky and Torsten Ueckerdt in September 2021. We would like
to thank the organizers and all participants for creating a friendly and productive environment.

1 Introduction

Given a system O of subsets of Rd, we say that a graph G is a touching graph of objects
from O if there exists a function f : V (G) → O (called a touching representation by objects
from O) such that the interiors of f(u) and f(v) are disjoint for all distinct u, v ∈ V (G),
and f(u) ∩ f(v) ̸= ∅ if and only if uv ∈ E(G). Famously, Koebe [13] proved that a graph is
planar if and only if it is a touching graph of balls in R2. This result has motivated numerous
strengthenings and variations (see [14, 19] for some classical examples); most relevantly for
us, Felsner and Francis [11] showed that every planar graph is a touching graph of cubes
in R3.

An attractive feature of touching representations is that it is possible to represent
graph classes that are sparse (e.g., planar graphs, or more generally, graph classes with
bounded expansion [15]). This is in contrast to general intersection representations where
the represented class always includes arbitrarily large cliques. Of course, whether the class

© Zdeněk Dvořák, Daniel Gonçalves, Abhiruk Lahiri, Jane Tan, and Torsten Ueckerdt;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 38; pp. 38:1–38:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rakdver@iuuk.mff.cuni.cz
mailto:goncalves@lirmm.fr
mailto:abhiruk@iuuk.mff.cuni.cz
mailto:jane.tan@maths.ox.ac.uk
mailto:torsten.ueckerdt@kit.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.38
https://arxiv.org/abs/2203.07686
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


38:2 On Comparable Box Dimension

of touching graphs of objects from O is sparse or not depends on the particular system O.
For example, all complete bipartite graphs Kn,m are touching graphs of boxes in R3, where
the vertices in one part are represented by m × 1 × 1 boxes and the vertices of the other
part are represented by 1 × n × 1 boxes (throughout the paper, by box we always mean
axis-aligned box, i.e., the Cartesian product of closed intervals of non-zero length). Dvořák,
McCarty and Norin [6] noticed that this issue disappears if we forbid such a combination of
long and wide boxes. This condition can be expressed as follows. For two boxes B1 and B2,
we write B1 ⊑ B2 if B2 contains a translate of B1. We say that B1 and B2 are comparable
if B1 ⊑ B2 or B2 ⊑ B1. A touching representation by comparable boxes of a graph G is a
touching representation f by boxes such that for every u, v ∈ V (G), the boxes f(u) and f(v)
are comparable. Let the comparable box dimension dimcb(G) of a graph G be the smallest
integer d such that G has a touching representation by comparable boxes in Rd. We remark
that the comparable box dimension of every graph G is at most |V (G)|, see Section 3.1
for details. Then, for a class G of graphs, let dimcb(G) := sup{dimcb(G) : G ∈ G}. If the
comparable box dimension of graphs in G is not bounded, we write dimcb(G) = ∞.

Dvořák, McCarty and Norin [6] proved some basic properties of this notion. In particular,
they showed that if a class G has finite comparable box dimension, then it has polynomial
strong coloring numbers, which implies that G has strongly sublinear separators. They
also provided an example showing that, for many functions h, the class of graphs with
strong coloring numbers bounded by h has infinite comparable box dimension1. Dvořák et
al. [9] proved that graphs of comparable box dimension 3 have exponential weak coloring
numbers, giving the first natural graph class with polynomial strong coloring numbers and
superpolynomial weak coloring numbers (the previous example is obtained by subdividing
edges of every graph suitably many times [12]).

We show that the comparable box dimension behaves well under the operations of addition
of apex vertices, clique-sums, and taking subgraphs. Together with known results on product
structure [4], this implies the main result of this paper.

▶ Theorem 1. The comparable box dimension of every proper minor-closed class of graphs
is finite.

Additionally, we show that classes of graphs with finite comparable box dimension are
fractionally treewidth-fragile. This gives arbitrarily precise approximation algorithms for
all monotone maximization problems that are expressible in terms of distances between the
solution vertices and tractable on graphs of bounded treewidth [8], or expressible in the
first-order logic [7].

2 Parameters

In this section we bound some basic graph parameters in terms of comparable box dimension.
The first result bounds the clique number ω(G) in terms of dimcb(G).

▶ Lemma 2. For any graph G, we have ω(G) ≤ 2dimcb(G).

Proof. We may assume that G has bounded comparable box dimension witnessed by a box
representation f . To represent any clique A = {a1, . . . , aw} in G, the corresponding boxes
f(a1), . . . , f(aw) have pairwise non-empty intersections. Since axis-aligned boxes have the
Helly property, there is a point p ∈ Rd contained in f(a1) ∩ · · · ∩ f(aw). As each box is

1 In their construction h(r) has to be at least 3, and has to tend to +∞.



Z. Dvořák, D. Gonçalves, A. Lahiri, J. Tan, and T. Ueckerdt 38:3

full-dimensional, their interiors each intersect at least one of the 2d orthants at p. At the
same time, it follows from the definition of a touching representation that f(a1), . . . , f(ad)
have pairwise disjoint interiors, and hence w ≤ 2d. ◀

Note that a clique with 2d vertices has a touching representation by comparable boxes in
Rd, where each vertex is a hypercube defined as the Cartesian product of intervals of form
[−1, 0] or [0, 1]. From this together with Lemma 2, it follows that dimcb(K2d) = d.

The remaining bounds pertain to the chromatic number χ(G) of a graph G, and two
of its variants. An acyclic coloring (resp. star coloring) of a graph G is a proper coloring
such that any two color classes induce a forest (resp. star forest, i.e., a forest in which each
component is a star). The acyclic chromatic number χa(G) (resp. star chromatic number
χs(G)) of G is the minimum number of colors in an acyclic (resp. star) coloring of G. We
will need the fact that all the variants of the chromatic number are at most exponential in
the comparable box dimension; this follows from [6], although we include an argument to
make the dependence clear.

▶ Lemma 3. For any graph G we have χ(G) ≤ 3dimcb(G), χa(G) ≤ 5dimcb(G) and χs(G) ≤
2 · 9dimcb(G).

Proof. We focus on the star chromatic number and note that the chromatic number and the
acyclic chromatic number may be bounded similarly. Suppose that G has comparable box
dimension d witnessed by a representation f , and let v1, . . . , vn be the vertices of G written
so that vol(f(v1)) ≥ . . . ≥ vol(f(vn)). Equivalently, we have f(vi) ⊑ f(vj) whenever i > j.
Now define a greedy coloring c so that c(vi) is the smallest color such that c(vi) ̸= c(vj) for
any j < i for which either vjvi ∈ E(G) or there exists m > j such that vjvm, vmvi ∈ E(G).
Note that this gives a star coloring, since a path on four vertices always contains a 3-vertex
subpath of the form vi1vi2vi3 such that i1 < i2, i3, and our coloring procedure gives distinct
colors to vertices forming such a path.

It remains to bound the number of colors used. Suppose we are coloring vi. We shall
bound the number of vertices vj such that j < i and such that there exists m > i for which
vjvm, vmvi ∈ E(G). Let B be the box obtained by scaling up f(vi) by a factor of 5 while
keeping the same center. Since f(vm) ⊑ f(vi) ⊑ f(vj), there exists a translation Bj of f(vi)
contained in f(vj) ∩ B (see Figure 1). Two boxes Bj and Bj′ for j ̸= j′ have disjoint interiors
since their intersection is contained in the intersection of the touching boxes f(vj) and f(vj′),
and their interiors are also disjoint from f(vi) ⊂ B. Thus, the number of such indices j is at
most vol(B)/ vol(f(vi)) − 1 = 5d − 1.

A similar argument shows that the number of indices m such that m < i and vmvi ∈ E(G)
is at most 3d − 1. Consequently, the number of indices j < i for which there exists m such
that j < m < i and vjvm, vmvi ∈ E(G) is at most (3d − 1)2. This means that when choosing
the color of vi greedily, we only need to avoid colors of at most (5d − 1) + (3d − 1) + (3d − 1)2

vertices, so 2 · 9d colors suffice. ◀

3 Operations

It is clear that, given a touching representation of a graph G, one can easily obtains a
touching representation by boxes of an induced subgraph H of G by simply deleting the
boxes corresponding to the vertices in V (G)\V (H). We shall show that these representations
also behave nicely under several other basic operations on graphs. To describe the boxes, we
shall use the Cartesian product × defined among boxes of lower dimension (so that A × B

SoCG 2022



38:4 On Comparable Box Dimension

f(vi)

B

f(v1)
B1

f(v2) B2

f(v3)B3

Figure 1 Nearby boxes obstructing colors at vi.

is the box whose projection on some first number of dimensions gives the box A, while the
projection on the remaining dimensions gives the box B), or specify its projections onto
every dimension (and in this case write A[i] for the interval obtained from projecting A on
its ith dimension).

3.1 Vertex addition
Let us start with a simple lemma which says that the addition of a vertex increases the
comparable box dimension by at most one. In particular, this implies that dimcb(G) ≤ |V (G)|.

▶ Lemma 4. For any graph G and v ∈ V (G), we have dimcb(G) ≤ dimcb(G − v) + 1.

Proof. Let f be a touching representation of G − v by comparable boxes in Rd, where
d = dimcb(G − v). We define a representation h of G as follows. For each u ∈ V (G) \ {v},
let h(u) = [0, 1] × f(u) if uv ∈ E(G) and h(u) = [1/2, 3/2] × f(u) if uv ̸∈ E(G). Let
h(v) = [−1, 0] × [−M, M ] × · · · × [−M, M ], where M is chosen large enough so that f(u) ⊆
[−M, M ] × · · · × [−M, M ] for every u ∈ V (G) \ {v}. Then h is a touching representation of
G by comparable boxes in Rd+1. ◀

3.2 Strong product
Let G ⊠ H denote the strong product of the graphs G and H, i.e., the graph with vertex
set V (G) × V (H) and with distinct vertices (u1, v1) and (u2, v2) adjacent if and only if u1
is equal to or adjacent to u2 in G and v1 is equal to or adjacent to v2 in H. To obtain a
touching representation of G ⊠ H it suffices to take a product of representations of G and
H, but the resulting representation may contain incomparable boxes. Indeed, in general
dimcb(G ⊠ H) is not bounded by a function of dimcb(G) and dimcb(H); for example, every
star has comparable box dimension at most two, but the strong product of the star K1,n

with itself contains Kn,n as an induced subgraph, and thus its comparable box dimension is
at least Ω(log n). However, as shown in the following lemma, this issue does not arise if the
representation of H consists of translates of a single box; by scaling, we can without loss of
generality assume this box is a unit hypercube.

▶ Lemma 5. Consider a graph H having a touching representation h in RdH by axis-aligned
hypercubes of unit size. Then for any graph G, the strong product G ⊠ H of these graphs has
comparable box dimension at most dimcb(G) + dH .



Z. Dvořák, D. Gonçalves, A. Lahiri, J. Tan, and T. Ueckerdt 38:5

Proof. It suffices to take a product of the two representations. Indeed, consider a touch-
ing respresentation g of G by comparable boxes in RdG , with dG = dimcb(G), and the
representation h of H. Let us define a representation f of G ⊠ H in RdG+dH by

f((u, v))[i] =
{

g(u)[i] if i ≤ dG

h(v)[i − dG] if i > dG.

Consider distinct vertices (u, v) and (u′, v′) of G⊠H . The boxes g(u) and g(u′) are comparable,
say g(u) ⊑ g(u′). Since h(v′) is a translation of h(v), this implies that f((u, v)) ⊑ f((u′, v′)).
Hence, the boxes of the representation f are pairwise comparable.

The boxes of the representations g and h have pairwise disjoint interiors. Hence, if
u ̸= u′, then there exists i ≤ dG such that the interiors of the intervals f((u, v))[i] = g(u)[i]
and f((u′, v′))[i] = g(u′)[i] are disjoint; if v ̸= v′, then there exists i ≤ dH such that the
interiors of the intervals f((u, v))[i + dG] = h(v)[i] and f((u′, v′))[i + dG] = h(v′)[i] are
disjoint. Consequently, the interiors of boxes f((u, v)) and f((u′, v′)) are pairwise disjoint.
Moreover, if u ̸= u′ and uu′ ̸∈ E(G), or if v ̸= v′ and vv′ ̸∈ E(G), then the aforementioned
intervals (not just their interiors) are disjoint for some i; hence, if (u, v) and (u′, v′) are not
adjacent in G ⊠ H, then f((u, v)) ∩ f((u′, v′)) = ∅. Therefore, f is a touching representation
of a subgraph of G ⊠ H.

Finally, suppose that (u, v) and (u′, v′) are adjacent in G ⊠ H. Then there exists a point
pG in the intersection of g(u) and g(u′), since u = u′ or uu′ ∈ E(G) and g is a touching
representation of G; and similarly, there exists a point pH in the intersection of h(v) and
h(v′). Then pG × pH is a point in the intersection of f((u, v)) and f((u′, v′)). Hence, f is
indeed a touching representation of G ⊠ H. ◀

3.3 Taking a subgraph
The comparable box dimension of a subgraph of a graph G may be larger than dimcb(G)
(see the end of this section for an example). However, we show that the comparable box
dimension of a subgraph is at most exponential in the comparable box dimension of the whole
graph. This is essentially Corollary 25 in [6], but since the setting is somewhat different and
the construction of [6] uses rotated boxes, we provide details of the argument.

▶ Lemma 6. If G is a subgraph of a graph G′, then dimcb(G) ≤ dimcb(G′) + 1
2 χ2

s(G′).

Proof. By removing boxes that represent vertices of G that are not in G′, we may assume
that V (G′) = V (G). Let f be a touching representation of G′ by comparable boxes in Rd,
where d = dimcb(G′). Let φ be a star coloring of G′ using colors {1, . . . , c}, where c = χs(G′).

For any distinct colors i, j ∈ {1, . . . , c}, let Ai,j ⊆ V (G) be the set of vertices u of color i

such that there exists a vertex v of color j such that uv ∈ E(G′) \ E(G). For each u ∈ Ai,j ,
let aj(u) denote such a vertex v chosen arbitrarily.

Let us define a representation h by boxes in Rd+(c
2) by starting from the representation f

and, for each pair i < j of colors, adding a dimension di,j and setting

h(v)[di,j ] =


[1/3, 4/3] if v ∈ Ai,j

[−4/3, −1/3] if v ∈ Aj,i

[−1/2, 1/2] otherwise.

Note that the boxes in this extended representation are comparable, as in the added
dimensions, all the boxes have size 1.

SoCG 2022



38:6 On Comparable Box Dimension

Suppose uv ∈ E(G), where φ(u) = i and φ(v) = j and say i < j. We cannot have
u ∈ Ai,j and v ∈ Aj,i, as then aj(u)uvai(v) would be a 4-vertex path in G′ in colors i and j.
Hence, in any added dimension d′, we have h(u)[d′] = [−1/2, 1/2] or h(v)[d′] = [−1/2, 1/2],
and thus h(u)[d′] ∩ h(v)[d′] ̸= ∅. Since the boxes f(u) and f(v) touch, it follows that the
boxes h(u) and h(v) touch as well.

Suppose now that uv ̸∈ E(G). If uv ̸∈ E(G′), then f(u) is disjoint from f(v), and thus
h(u) is disjoint from h(v). Hence, we can assume uv ∈ E(G′) \ E(G), φ(u) = i, φ(v) = j

and i < j. Then u ∈ Ai,j , v ∈ Aj,i, h(u)[di,j ] = [1/3, 4/3], h(v)[dj,i] = [−4/3, −1/3], and
h(u) ∩ h(v) = ∅.

Consequently, h is a touching representation of G by comparable boxes in dimension
d +

(
c
2
)

≤ d + c2/2. ◀

Let us now combine Lemmas 3 and 6.

▶ Corollary 7. If G is a subgraph of a graph G′, then dimcb(G) ≤ dimcb(G′)+2 ·81dimcb(G′) ≤
3 · 81dimcb(G′).

An exponential increase in the dimension is unavoidable: we have dimcb(K2d) = d, but
the graph obtained from K2d by deleting a perfect matching has comparable box dimension
2d−1. Indeed, for every pair u, v of non-adjacent vertices there is a specific dimension i such
that their boxes span intervals [a, b] and [c, d] with b < c, while the ith interval of every other
box in the representation contains [b, c].

3.4 Clique-sums

A clique-sum of two graphs G1 and G2 is obtained from their disjoint union by identifying
vertices of a clique in G1 and a clique of the same size in G2 and possibly deleting some of
the edges of the resulting clique. A full clique-sum is a clique-sum in which we keep all the
edges of the resulting clique. The main issue to overcome in obtaining a representation for a
(full) clique-sum is that the representations of G1 and G2 can be “degenerate”. Consider, for
example, the case where G1 is represented by unit squares arranged in a grid; here there is no
space to attach G2 at the cliques formed by four squares intersecting in a single corner. This
can be avoided by increasing the dimension, but we need to be careful so that the dimension
stays bounded even after an arbitrary number of clique-sums. We thus introduce the notion
of clique-sum extendable representations.

▶ Definition 8. Consider a graph G with a distinguished clique C⋆, called the root clique of
G. A touching representation h of G by (not necessarily comparable) boxes in Rd is called
C⋆-clique-sum extendable if the following conditions hold for every sufficiently small ε > 0.
(vertices) For each u ∈ V (C⋆), there exists a dimension du, such that:
(v0) du ̸= du′ for distinct u, u′ ∈ V (C⋆),
(v1) each vertex u ∈ V (C⋆) satisfies h(u)[du] = [−1, 0] and h(u)[i] = [0, 1] for any dimension

i ̸= du, and
(v2) each vertex v /∈ V (C⋆) satisfies h(v) ⊂ [0, 1)d.

(cliques) For every clique C of G, there exists a point p(C) ∈ [0, 1)d ∩
(⋂

v∈V (C) h(v)
)

such
that, defining the clique box hε(C) by setting hε(C)[i] = [p(C)[i], p(C)[i] + ε] for every
dimension i, the following conditions are satisfied:

(c1) For any two cliques C1 ̸= C2, hε(C1) ∩ hε(C2) = ∅ (equivalently, p(C1) ̸= p(C2)).



Z. Dvořák, D. Gonçalves, A. Lahiri, J. Tan, and T. Ueckerdt 38:7

(c2) A box h(v) intersects hε(C) if and only if v ∈ V (C), and in that case their intersection
is a facet of hε(C) incident to p(C). That is, there exists a dimension iC,v such that
for each dimension j,

h(v)[j] ∩ hε(C)[j] =
{

{p(C)[iC,v]} if j = iC,v

[p(C)[j], p(C)[j] + ε] otherwise.

Note that the root clique can be empty, that is the empty subgraph with no vertices. In that
case the clique is denoted ∅. Let dimext

cb (G) be the minimum dimension such that G has an
∅-clique-sum extendable touching representation by comparable boxes.

Let us remark that a clique-sum extendable representation in dimension d implies the
existence of such a representation in higher dimensions as well.

▶ Lemma 9. Let G be a graph with a root clique C⋆ and let h be a C⋆-clique-sum extendable
touching representation of G by comparable boxes in Rd. Then G has such a representation
in Rd′ for every d′ ≥ d.

Proof. It clearly suffices to consider the case that d′ = d + 1. Note that the (vertices)
conditions imply that h(v′) ⊑ h(v) for every v′ ∈ V (G) \ V (C⋆) and v ∈ V (C⋆). We extend
the representation h by setting h(v)[d + 1] = [0, 1] for v ∈ V (C⋆) and h(v)[d + 1] = [0, 1

2 ]
for v ∈ V (G) \ V (C⋆). The clique point p(C) of each clique C is extended by setting
p(C)[d + 1] = 1

4 . It is easy to verify that the resulting representation is C⋆-clique-sum
extendable. ◀

The following lemma ensures that clique-sum extendable representations behave well
with respect to full clique-sums. The proof is omitted, but the key strategy is to translate
(allowing exchanges of dimensions) and scale h2 to fit in hε

1(C1).

▶ Lemma 10. Consider two graphs G1 and G2, given with a C⋆
1 - and a C⋆

2 -clique-sum
extendable representations h1 and h2 by comparable boxes in Rd1 and Rd2 , respectively. Let
G be the graph obtained by performing a full clique-sum of these two graphs on any clique
C1 of G1, and on the root clique C⋆

2 of G2. Then G admits a C⋆
1 -clique sum extendable

representation h by comparable boxes in Rmax(d1,d2).

Moreover, we can pick the root clique at the expense of increasing the dimension by ω(G).
This proof is also omitted, but it is essentially the same as that of Lemma 4.

▶ Lemma 11. For any graph G and any clique C⋆, the graph G admits a C⋆-clique-sum
extendable touching representation by comparable boxes in Rd, for d = |V (C⋆)| + dimext

cb (G \
V (C⋆)).

The last key lemma that we will need in this section is an upper bound on dimext
cb (G) in

terms of dimcb(G) and χ(G).

▶ Lemma 12. For any graph G, dimext
cb (G) ≤ dimcb(G) + χ(G).

Proof. Let h be a touching representation of G by comparable boxes in Rd, with d = dimcb(G),
and let c be a χ(G)-coloring of G. We start with a slightly modified version of h. We first
scale h to fit in (0, 1)d, and for a sufficiently small real α > 0 we increase each box in
h by 2α in every dimension, that is we replace h(v)[i] = [a, b] by [a − α, b + α] for each
vertex v and dimension i. Here, we choose α to be sufficiently small so that the boxes
representing non-adjacent vertices remain disjoint, and thus the resulting representation h1 is
an intersection representation of the same graph G. Moreover, observe that for every clique

SoCG 2022



38:8 On Comparable Box Dimension

C of G, the intersection IC =
⋂

v∈V (C) h1(v) is a box with non-zero edge lengths. For any
clique C of G, let p1(C) be a point in the interior of IC different from the points chosen for
all other cliques.

Now we add χ(G) dimensions to make the representation touching again, and to ensure
some space for the clique boxes hε(C). Formally we define h2 as

h2(u)[i] =


h1(u)[i] if i ≤ d

[1/5, 3/5] if i > d and c(u) < i − d

[0, 2/5] if i > d and c(u) = i − d

[2/5, 4/5] otherwise (if c(u) > i − d > 0).

For any clique C of G, let c(C) denote the color set {c(u) | u ∈ V (C)}. We now set

p2(C)[i] =


p1(C)[i] if i ≤ d

2/5 if i > d and i − d ∈ c(C)
1/2 otherwise.

As h2 is an extension of h1, and as in each dimension j > d, h2(v)[j] is an interval of
length 2/5 containing the point 2/5 for every vertex v, we have that h2 is an intersection
representation of G by comparable boxes. To prove that it is touching consider two adjacent
vertices u and v such that c(u) < c(v), and let us note that h2(u)[d + c(u)] = [0, 2/5] and
h2(v)[d + c(u)] = [2/5, 4/5].

For the ∅-clique-sum extendability, the (vertices) conditions are void. For the (cliques)
conditions, since p1 is chosen to be injective, the mapping p2 is injective as well, implying
that (c1) holds.

Consider now a clique C in G and a vertex v ∈ V (G). If c(v) ̸∈ c(C), then h2(v)[c(v)+d] =
[0, 2/5] and p2(C)[c(v) + d] = 1/2, implying that hε

2(C) ∩ h2(v) = ∅. If c(v) ∈ c(C) but
v ̸∈ V (C), then letting v′ ∈ V (C) be the vertex of color c(v), we have vv′ ̸∈ E(G), and thus
h1(v) is disjoint from h1(v′). Since p1(C) is contained in the interior of h1(v′), it follows that
hε

2(C) ∩ h2(v) = ∅. Finally, suppose that v ∈ C. Since p1(C) is contained in the interior of
h1(v), we have hε

2(C)[i] ⊂ h2(v)[i] for every i ≤ d. For i > d distinct from d + c(v), we have
pε

2(C)[i] ∈ {2/5, 1/2} and [2/5, 3/5] ⊆ h2(v)[i], and thus hε
2(C)[i] ⊂ h2(v)[i]. For i = d + c(v),

we have pε
2(C)[i] = 2/5 and h2(v)[i] = [0, 2/5], and thus hε

2(C)[i] ∩ h2(v)[i] = {pε
2(C)[i]}.

Therefore, (c2) holds. ◀

Together, the preceding lemmas show that comparable box dimension is almost preserved
by full clique-sums.

▶ Corollary 13. Let G be a class of graphs of chromatic number at most k. If G′ is the class
of all graphs that can be obtained from G by repeatedly performing full clique-sums, then
dimcb(G′) ≤ dimcb(G) + 2k.

Proof. Suppose a graph G is obtained from G1, . . . , Gm ∈ G by a sequence of full clique-sums.
Without loss of generality, the labelling of the graphs is chosen so that we first perform
the full clique-sum on G1 and G2, then on the resulting graph and G3, and so on. Let
C⋆

1 = ∅ and for i = 2, . . . , m, let C⋆
i be the root clique of Gi on which it is glued in the full

clique-sum operation. By Lemmas 12 and 11, Gi has a C⋆
i -clique-sum extendable touching

representation by comparable boxes in Rd, where d = dimcb(G) + 2k. Repeatedly applying
Lemma 10, we conclude that dimcb(G) ≤ d. ◀



Z. Dvořák, D. Gonçalves, A. Lahiri, J. Tan, and T. Ueckerdt 38:9

Putting this corollary together with Lemmas 3 and 6, we obtain the following bounds.

▶ Corollary 14. Let G be a class of graphs of comparable box dimension at most d.
The class G′ of graphs obtained from G by repeatedly performing full clique-sums has
comparable box dimension at most d + 2 · 3d.
The closure of G′ by taking subgraphs has comparable box dimension at most 1250d.

Proof. The former bound directly follows from Corollary 13 and the bound on the chromatic
number from Lemma 3. For the latter, we need to bound the star chromatic number of
G′. Suppose a graph G is obtained from G1, . . . , Gm ∈ G by performing full clique-sums.
For i = 1, . . . , m, suppose Gi has an acyclic coloring φi by at most k colors. Note that the
vertices of any clique get pairwise different colors, and thus by permuting the colors, we can
ensure that when we perform the full clique-sum, the vertices that are identified have the
same color. Hence, we can define a coloring φ of G such that for each i, the restriction of φ

to V (Gi) is equal to φi. Let C be the union of any two color classes of φ. Then for each i,
Gi[C ∩ V (Gi)] is a forest, and since G[C] is obtained from these graphs by full clique-sums,
G[C] is also a forest. Hence, φ is an acyclic coloring of G by at most k colors. By [1], G has
a star coloring by at most 2k2 − k colors. Hence, Lemma 3 implies that G′ has star chromatic
number at most 2 · 25d − 5d. The bound on the comparable box dimension of subgraphs of
graphs from G′ then follows from Lemma 6. ◀

4 The strong product structure and minor-closed classes

A k-tree is any graph obtained by repeated full clique-sums on cliques of size k from cliques
of size at most k + 1. A k-tree-grid is a strong product of a k-tree and a path. An extended
k-tree-grid is a graph obtained from a k-tree-grid by adding at most k apex vertices. Dujmović
et al. [4] proved the following result.

▶ Theorem 15. Any graph G is a subgraph of the strong product of a k-tree-grid and Km,
where

k = 3 and m = 3 if G is planar, and
k = 4 and m = max(2g, 3) if G has Euler genus at most g.

Moreover, for every t, there exists an integer k such that any Kt-minor-free graph G is a
subgraph of a graph obtained by repeated clique-sums from extended k-tree-grids.

Let us first bound the comparable box dimension of a graph in terms of its Euler genus.
As paths and m-cliques admit touching representations with hypercubes of unit size in R1

and in R⌈log2 m⌉ respectively, by Lemma 5 it suffices to bound the comparable box dimension
of k-trees.

▶ Theorem 16. For any k-tree G, dimcb(G) ≤ dimext
cb (G) ≤ k + 1.

Proof. Let H be a complete graph with k+1 vertices and let C⋆ be a clique of size k in H . By
Lemma 10, it suffices to show that H has a C⋆-clique-sum extendable touching representation
by hypercubes in Rk+1. Let V (C⋆) = {v1, . . . , vk}. We construct the representation h so
that (v1) holds with dvi

= i for each i; this uniquely determines the hypercubes h(v1), . . . ,
h(vk). For the vertex vk+1 ∈ V (H) \ V (C⋆), we set h(vk+1) = [0, 1/2]k+1. This ensures that
the (vertices) conditions holds.

SoCG 2022



38:10 On Comparable Box Dimension

For the (cliques) conditions, let us set the point p(C) for every clique C as follows:
p(C)[i] = 0 for every i ≤ k such that vi ∈ C

p(C)[i] = 1
4 for every i ≤ k such that vi /∈ C

p(C)[k + 1] = 1
2 if vk+1 ∈ C

p(C)[k + 1] = 3
4 if vk+1 /∈ C

By construction, it is clear that for each vertex v ∈ V (H), p(C) ∈ h(v) if and only if
v ∈ V (C).

For any two distinct cliques C1 and C2, the points p(C1) and p(C2) are distinct. Indeed,
by symmetry we can assume that for some i we have vi ∈ V (C1) \ V (C2), and this implies
that p(C1)[i] < p(C2)[i]. Hence, the condition (c1) holds.

Consider now a vertex vi and a clique C. As we observed before, if vi ̸∈ V (C), then
p(C) ̸∈ h(vi), and thus hε(C) and h(vi) are disjoint (for sufficiently small ε > 0). If vi ∈ C,
then the definitions ensure that p(C)[i] is equal to the maximum of h(vi)[i], and that for
j ̸= i, p(C)[j] is in h(vi)[j], implying that h(vi)[j] ∩ hε(C)[j] = [p(C)[j], p(C)[j] + ε] for
sufficiently small ε > 0. ◀

The treewidth tw(G) of a graph G is the minimum k such that G is a subgraph of a k-tree.
It is worth noting that the bound on the comparable box dimension of Theorem 16 actually
extends to graphs of treewidth at most k (proof omitted).

▶ Corollary 17. Every graph G satisfies dimcb(G) ≤ tw(G) + 1.

As every planar graph G has a touching representation by cubes in R3 [11], we have
that dimcb(G) ≤ 3. For graphs with higher Euler genus we can also derive upper bounds.
Indeed, combining the previous observation on the representations of paths and Km with
Theorem 16, Lemma 5 and Corollary 7 we obtain:

▶ Corollary 18. For every graph G of Euler genus g, there exists a supergraph G′ of G such
that dimcb(G′) ≤ 6 + ⌈log2 max(2g, 3)⌉. Consequently,

dimcb(G) ≤ 3 · 817 · max(2g, 3)log2 81.

Similarly, we can deal with proper minor-closed classes.

Proof of Theorem 1. Let G be a proper minor-closed class. Since G is proper, there exists t

such that Kt ̸∈ G. By Theorem 15, there exists k such that every graph in G is a subgraph
of a graph obtained by repeated clique-sums from extended k-tree-grids. As we have seen,
k-tree-grids have comparable box dimension at most k + 2, and by Lemma 4, extended
k-tree-grids have comparable box dimension at most 2k + 2. By Corollary 14, it follows that
dimcb(G) ≤ 12502k+2. ◀

Note that the graph obtained from K2n by deleting a perfect matching has Euler genus
Θ(n2) and comparable box dimension n. It follows that the dependence of the comparable
box dimension on the Euler genus cannot be subpolynomial (though the degree log2 81 of
the polynomial established in Corollary 18 certainly can be improved). The dependence of
the comparable box dimension on the size of the forbidden minor that we established is not
explicit, as Theorem 15 is based on the structure theorem of Robertson and Seymour [17]. It
would be interesting to prove Theorem 1 without using the structure theorem.



Z. Dvořák, D. Gonçalves, A. Lahiri, J. Tan, and T. Ueckerdt 38:11

5 Fractional treewidth-fragility

Suppose G is a connected planar graph and v is a vertex of G. For an integer k ≥ 2, give
each vertex at distance d from v the color d mod k. Then deleting the vertices of any of the
k colors results in a graph of treewidth at most 3k. This fact (which follows from the result
of Robertson and Seymour [18] on treewidth of planar graphs of bounded radius) is (in the
modern terms) the basis of Baker’s technique [2] for design of approximation algorithms.
However, even quite simple graph classes, such as the strong products of three paths [3],
do not admit such a coloring where the removal of any color class results in a graph of
bounded treewidth. Nonetheless, a fractional version of this coloring concept is still very
useful in the design of approximation algorithms [8] and applies to much more general graph
classes, including all graph classes with strongly sublinear separators and bounded maximum
degree [5].

A class of graphs G is fractionally treewidth-fragile if there exists a function f such that
for every graph G ∈ G and integer k ≥ 2, there exist sets X1, . . . , Xm ⊆ V (G) such that each
vertex belongs to at most m/k of them and tw(G − Xi) ≤ f(k) for every i (equivalently,
there exists a probability distribution on the set {X ⊆ V (G) : tw(G − X) ≤ f(k)} such that
Pr[v ∈ X] ≤ 1/k for each v ∈ V (G)). For example, the class of planar graphs is (fractionally)
treewidth-fragile, since we can let Xi consist of the vertices of color i − 1 in the coloring
described at the beginning of the section.

It will be useful to have a different formulation of treewidth for the argument to follow.
Recall that a tree decomposition of a graph G is a pair (T, β), where T is a rooted tree and
β : V (T ) → 2V (G) assigns a bag to each of its nodes, such that

for each edge uv ∈ E(G), there exists x ∈ V (T ) such that u, v ∈ β(x), and
for each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ β(x)} is non-empty and induces a
connected subtree of T .

For nodes x, y ∈ V (T ), we write x ⪯ y if x = y or x is a descendant of y in T . The width of
the tree decomposition is the maximum of the sizes of the bags minus 1. The treewidth of
a graph is the minimum of the widths of its tree decompositions. Let us remark that the
treewidth obtained via this definition coincides with the one via k-trees of Section 4

The purpose of this section is to show that all graph classes of bounded comparable box
dimension are fractionally treewidth-fragile. In fact, we prove this result in a more general
setting, motivated by concepts from [6] and by applications to related representations. The
argument is motivated by the idea used in the approximation algorithms for disk graphs by
Erlebach et al. [10].

For a measurable set A ⊆ Rd, let vol(A) denote the Lebesgue measure of A. Given two
measurable subsets A and B of Rd and a positive integer s, we write A ⊑s B if for every
x ∈ B, there exists a translation A′ of A such that x ∈ A′ and vol(A′ ∩ B) ≥ 1

s vol(A). Note
that for two boxes A and B, we have A ⊑1 B if and only if A ⊑ B. An s-comparable envelope
representation (ι, ω) of a graph G in Rd consists of two functions ι, ω : V (G) → 2Rd such
that for some ordering v1, . . . , vn of vertices of G,

for each i, ω(vi) is a box, ι(vi) is a measurable set, and ι(vi) ⊆ ω(vi),
if i < j, then ω(vj) ⊑s ι(vi), and
if i < j and vivj ∈ E(G), then ω(vj) ∩ ι(vi) ̸= ∅.

We say that the representation has thickness at most t if for every point x ∈ Rd, there exist
at most t vertices v ∈ V (G) such that x ∈ ι(v). For example, if f is a touching representation
of G by comparable boxes in Rd, then (f, f) is a 1-comparable envelope representation of G

in Rd of thickness at most 2d.

SoCG 2022



38:12 On Comparable Box Dimension

▶ Theorem 19. For positive integers t, s, and d, the class of graphs with an s-comparable
envelope representation in Rd of thickness at most t is fractionally treewidth-fragile, with a
function f(k) = Ot,s,d

(
kd

)
.

Proof. For a positive integer k, let f(k) = (2ksd + 2)dst. Let (ι, ω) be an s-comparable
envelope representation of a graph G in Rd of thickness at most t, and let v1, . . . , vn be
the corresponding ordering of the vertices of G. Let us define ℓi,j ∈ R+ for i = 1, . . . , n and
j ∈ {1, . . . , d} as an approximation of ksd|ω(vi)[j]| such that ℓi−1,j/ℓi,j is a positive integer.
Formally, it is defined by the following process.

Let ℓ1,j = ksd|ω(v1)[j]|.
For i = 2, . . . , n, let ℓi,j = ℓi−1,j , if ℓi−1,j < ksd|ω(vi)[j]|, and otherwise let ℓi,j be lowest
fraction of ℓi−1,j that is greater than ksd|ω(vi)[j]|, formally ℓi,j = min{ℓi−1,j/b | b ∈
N+ and ℓi−1,j/b ≥ ksd|ω(vi)[j]|}.

Choose xj ∈ [0, ℓ1,j ] uniformly at random, and let Hi
j be the set of hyperplanes in Rd

consisting of the points whose j-th coordinate is equal to xj +mℓi,j for some m ∈ Z. As ℓi,j is
a multiple of ℓi′,j whenever i ≤ i′, we have that Hi

j ⊆ Hi′

j whenever i ≤ i′. For i ∈ {1, . . . , n},
the i-grid is Hi =

⋃d
j=1 Hi

j , and we let the 0-grid H0 = ∅. Then, as above, we have that
Hi ⊆ Hi′ whenever i ≤ i′.

Let X ⊆ V (G) consist of the vertices va ∈ V (G) such that the box ω(va) intersects some
hyperplane H ∈ Ha, that is such that xj +mℓa,j ∈ ω(va)[j], for some j ∈ {1, . . . , d} and some
m ∈ Z. First, let us argue that Pr[va ∈ X] ≤ 1/k. Indeed, the set [0, ℓ1,j ] ∩

⋃
m∈Z(ω(va)[j] −

mℓa,j) has measure ℓ1,j

ℓa,j
· |ω(va)[j]|, implying that for fixed j, this happens with probability

|ω(va)[j]|/ℓa,j . Let a′ be the largest integer such that a′ ≤ a and ℓa′,j < ℓa′−1,j if such an
index exists, and a′ = 1 otherwise; note that ℓa,j = ℓa′,j ≥ ksd|ω(va′)[j]|. Moreover, since
ω(va) ⊑s ι(va′) ⊆ ω(va′), we have ω(va)[j] ≤ sω(va′)[j]. Combining these inequalities,

|ω(va)[j]|
ℓa,j

≤ sω(va′)[j]
ksd|ω(va′)[j]| = 1

kd
.

By the union bound, we conclude that Pr[va ∈ X] ≤ 1/k.
We now bound the treewidth of G − X. For a ≥ 0, an a-cell is a maximal connected

subset of Rd \
(⋃

H∈Ha H
)
. A set C ⊆ Rd is a cell if it is an a-cell for some a ≥ 0. A cell

C is non-empty if there exists v ∈ V (G − X) such that ι(v) ⊆ C. Note that there exists a
rooted tree T whose vertices are the non-empty cells and such that for x, y ∈ V (T ), we have
x ⪯ y if and only if x ⊆ y. For each non-empty cell C, define β(C) to be the set of vertices
vi ∈ V (G − X) such that ι(v) ∩ C ̸= ∅ and C is an a-cell for some a ≥ i.

Let us show that (T, β) is a tree decomposition of G − X. For each vj ∈ V (G − X),
the j-grid is disjoint from ω(vj), and thus ι(vj) ⊆ ω(vj) ⊂ C for some j-cell C ∈ V (T ) and
vj ∈ β(C). Consider now an edge vivj ∈ E(G − X), where i < j. We have ω(vj) ∩ ι(vi) ̸= ∅,
and thus ι(vi) ∩ C ̸= ∅ and vi ∈ β(C). Finally, suppose that vj ∈ C ′ for some C ′ ∈ V (T ).
Then C ′ is an a-cell for some a ≥ j, and since ι(vj) ∩ C ′ ̸= ∅ and ι(vj) ⊂ C, we conclude that
C ′ ⊆ C, and consequently C ′ ⪯ C. Moreover, any cell C ′′ such that C ′ ⪯ C ′′ ⪯ C (and thus
C ′ ⊆ C ′′ ⊆ C) is an a′-cell for some a′ ≥ j and ι(vj) ∩ C ′′ ⊇ ι(vj) ∩ C ′ ̸= ∅, which implies
that vj ∈ β(C ′′). It follows that {C ′ : vj ∈ β(C ′)} induces a connected subtree of T .

Finally, we bound the width of the decomposition (T, β). Let C be a non-empty cell and
let a be maximum number for which C is an a-cell. Then C is an open box with sides of
lengths ℓa,1, . . . , ℓa,d. Consider j ∈ {1, . . . , d}:

If a = 1, then ℓa,j = ksd|ω(va)[j]|.
If a > 1 and ℓa,j = ℓa−1,j , then ℓa,j = ℓa−1,j < 2ksd|ω(va)[j]| (otherwise ℓa,j = ℓa−1,j/b

for some integer b ≥ 2).



Z. Dvořák, D. Gonçalves, A. Lahiri, J. Tan, and T. Ueckerdt 38:13

If a > 1 and ℓa,j < ℓa−1,j , then ℓa−1,j ≥ b × ksd|ω(va)[j]| for some integer b ≥ 2. Now
let b be the greatest such integer (that is such that ℓa−1,j < (b + 1) × ksd|ω(va)[j]|) and
note that

ℓa,j = ℓa−1,j

b
< b+1

b ksd|ω(va)[j]| < 3
2 ksd|ω(va)[j]|.

Hence, in all cases we have ℓa,j < 2ksd|ω(va)[j]|. Let C ′ be the box with the same center
as C and with |C ′[j]| = (2ksd + 2)|ω(va)[j]|. For any vi ∈ β(C) \ {va}, we have i ≤ a and
ι(vi) ∩ C ̸= ∅, and since ω(va) ⊑s ι(vi), there exists a translation Bi of ω(va) that intersects
C ∩ ι(vi) and such that vol(Bi ∩ ι(vi)) ≥ 1

s vol(ω(va)). Note that as Bi intersects C, we have
that Bi ⊆ C ′. Using the initial assumption that the representation has thickness at most t,
we now have

vol(C ′) ≥ vol

C ′ ∩
⋃

vi∈β(C)\{va}

ι(vi)


≥ vol

 ⋃
vi∈β(C)\{va}

Bi ∩ ι(vi)


≥ 1

t

∑
vi∈β(C)\{va}

vol(Bi ∩ ι(vi))

≥ vol(ω(va))(|β(C)| − 1)
st

.

Since vol(C ′) = (2ksd + 2)d vol(ω(va)), it follows that

|β(C)| − 1 ≤ (2ksd + 2)dst = f(k),

as required. ◀

The proof that (generalizations of) graphs with bounded comparable box dimensions have
sublinear separators in [6] is indirect; it is established that these graphs have polynomial
coloring numbers, which in turn implies they have polynomial expansion, which then gives
sublinear separators using the algorithm of Plotkin, Rao, and Smith [16]. The existence
of sublinear separators is known to follow more directly from fractional treewidth-fragility.
Indeed, since Pr[v ∈ X] ≤ 1/k, there exists X ⊆ V (G) such that tw(G − X) ≤ f(k) and
|X| ≤ |V (G)|/k. The graph G − X has a balanced separator of size at most tw(G − X) + 1,
which combines with X to a balanced separator of size at most V (G)|/k + f(k) + 1 in G.
Optimizing the value of k (choosing it so that V (G)|/k = f(k)), we obtain the following
corollary of Theorem 19.

▶ Corollary 20. For positive integers t, s, and d, every graph G with an s-comparable envelope
representation in Rd of thickness at most t has a sublinear separator of size Ot,s,d

(
|V (G)|

d
d+1

)
.

References
1 Michael O Albertson, Glenn G Chappell, Hal A Kierstead, André Kündgen, and Radhika

Ramamurthi. Coloring with no 2-colored p_4’s. the electronic journal of combinatorics, pages
R26–R26, 2004.

2 B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the ACM (JACM), 41(1):153–180, 1994.

SoCG 2022



38:14 On Comparable Box Dimension

3 E. Berger, Z. Dvořák, and S. Norin. Treewidth of grid subsets. Combinatorica, 2017. Accepted,
doi.org/10.1007/s00493-017-3548-5.

4 V. Dujmović, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood. Planar graphs have
bounded queue-number. Journal of the ACM, 67:22, 2020.

5 Z. Dvořák. Sublinear separators, fragility and subexponential expansion. European Journal of
Combinatorics, 52:103–119, 2016.

6 Z. Dvořák, R. McCarty, and S. Norin. Sublinear separators in intersection graphs of convex
shapes. arXiv, 2001.01552, 2020. arXiv:2001.01552.

7 Zdenek Dvorák. Approximation metatheorem for fractionally treewidth-fragile graphs. arXiv,
2103.08698, 2021. arXiv:2103.08698.

8 Zdenek Dvorák and Abhiruk Lahiri. Approximation schemes for bounded distance problems
on fractionally treewidth-fragile graphs. In 29th Annual European Symposium on Algorithms,
ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs,
pages 40:1–40:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

9 Zdeněk Dvořák, Jakub Pekárek, Torsten Ueckerdt, and Yelena Yuditsky. Weak coloring
numbers of intersection graphs. arXiv, 2103.17094, 2021. arXiv:2103.17094.

10 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing, 34:1302–1323, 2005.

11 Stefan Felsner and Mathew C Francis. Contact representations of planar graphs with cubes.
In Proceedings of the twenty-seventh annual symposium on Computational geometry, pages
315–320, 2011.

12 Martin Grohe, Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Konstantinos
Stavropoulos. Coloring and covering nowhere dense graphs. SIAM Journal on Discrete
Mathematics, 32:2467–2481, 2018.

13 P. Koebe. Kontaktprobleme der Konformen Abbildung. Math.-Phys. Kl., 88:141–164, 1936.
14 L. Lovász. Graphs and Geometry. American Mathematical Society, Providence, 2019.
15 J. Nešetřil and P. Ossona de Mendez. Sparsity (Graphs, Structures, and Algorithms), volume 28

of Algorithms and Combinatorics. Springer, 2012.
16 Serge Plotkin, Satish Rao, and Warren D Smith. Shallow excluded minors and improved

graph decompositions. In Proceedings of the fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 462–470. Society for Industrial and Applied Mathematics, 1994.

17 N. Robertson and P. D. Seymour. Graph Minors. XVI. Excluding a non-planar graph. J.
Combin. Theory, Ser. B, 89(1):43–76, 2003.

18 Neil Robertson and Paul D. Seymour. Graph Minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36:49–64, 1984.

19 Horst Sachs. Coin graphs, polyhedra, and conformal mapping. Discrete Mathematics, 134:133–
138, 1994.

doi.org/10.1007/s00493-017-3548-5
http://arxiv.org/abs/2001.01552
http://arxiv.org/abs/2103.08698
http://arxiv.org/abs/2103.17094


Weak Coloring Numbers of Intersection Graphs
Zdeněk Dvořák #

Charles University, Prague, Czech Republic

Jakub Pekárek #

Charles University, Prague, Czech Republic

Torsten Ueckerdt #

Karlsruhe Institute of Technology, Germany

Yelena Yuditsky #

Université Libre de Bruxelles, Brussels, Belgium

Abstract
Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for a
positive integer k, we seek a vertex ordering such that every vertex can (weakly respectively strongly)
reach in k steps only few vertices that precede it in the ordering. Both notions capture the sparsity
of a graph or a graph class, and have interesting applications in structural and algorithmic graph
theory. Recently, Dvořák, McCarty, and Norin observed a natural volume-based upper bound for
the strong coloring numbers of intersection graphs of well-behaved objects in Rd, such as homothets
of a compact convex object, or comparable axis-aligned boxes.

In this paper, we prove upper and lower bounds for the k-th weak coloring numbers of these classes
of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring
numbers are polynomial in k, but the weak coloring numbers are exponential. We also observe a
surprising difference in terms of the dependence of the weak coloring numbers on the dimension
between touching graphs of balls (single-exponential) and hypercubes (double-exponential).

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Mathe-
matics of computing → Graph coloring

Keywords and phrases geometric intersection graphs, weak and strong coloring numbers

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.39

Funding Zdeněk Dvořák: Supported by the ERC-CZ project LL2005 (Algorithms and complexity
within and beyond bounded expansion) of the Ministry of Education of Czech Republic.
Jakub Pekárek: Supported by the ERC-CZ project LL2005 (Algorithms and complexity within and
beyond bounded expansion) of the Ministry of Education of Czech Republic.

Acknowledgements This research was carried out at the workshop on Generalized Coloring Numbers
organized by Michał Pilipczuk and Piotr Micek in February 2021. We would like to thank the
organizers and all participants for creating a friendly and productive environment. Special thanks
go to Stefan Felsner for fruitful discussions.

1 Introduction

It is well known that if every subgraph of a graph G has average degree at most d, then
G is d-degenerate, that is, there exists a linear ordering of the vertices of G such that each
vertex has at most d neighbors that precede it in the ordering. Conversely, every subgraph
of a d-degenerate graph has average degree at most 2d. This fact is often used in design of
algorithms for sparse graphs, where a result is obtained by processing the vertices one by
one in the degeneracy ordering.

For algorithmic problems that involve interactions over larger distances, a stronger notion
of sparsity is needed. Such a notion of bounded expansion was developed by Nešetřil and
Ossona de Mendez [12] and can be formulated in terms of the dependence of the density of

© Zdeněk Dvořák, Jakub Pekárek, Torsten Ueckerdt, and Yelena Yuditsky;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rakdver@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-8308-9746
mailto:pekarej@iuuk.mff.cuni.cz
mailto:torsten.ueckerdt@kit.edu
mailto:yuditskyl@gmail.com
https://orcid.org/0000-0002-6467-3437
https://doi.org/10.4230/LIPIcs.SoCG.2022.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


39:2 Weak Coloring Numbers of Intersection Graphs

wreachG,≺,3(v) sreachG,≺,3(v)

v

Figure 1 A vertex ordering ≺ of a graph G, and the sets wreachG,≺,k(v) and sreachG,≺,k(v) for
a vertex v and k = 3.

minors or topological minors that appear in the considered graphs on the depths of these
minors (we do not give a precise definition since it is somewhat technical and we do not
need it in this paper). As was shown by Zhu [15], there is also an equivalent degeneracy-like
characterization of bounded expansion, in terms of generalized coloring numbers, that is
weak and strong coloring numbers defined below. The generalized coloring numbers were
previously introduced by Kierstead and Yang [10] in the context of marking and coloring
games on graphs.

Given a linear ordering ≺ of the vertices of a graph G and an integer k ≥ 0, a vertex
u is weakly k-reachable from a vertex v if u ⪯ v and there exists a path in G from v to u

of length at most k with all internal vertices greater than u in ≺, and strongly k-reachable
if there exists such a path with all internal vertices greater than v in ≺; see Figure 1 for
an illustration. Let wreachG,≺,k(v) and sreachG,≺,k(v) denote the sets of vertices that are
weakly and strongly k-reachable from v, respectively. We define weak and strong coloring
numbers for a given ordering ≺ as

wcol≺,k(G) = max
v∈V (G)

| wreachG,≺,k(v)|

scol≺,k(G) = max
v∈V (G)

| sreachG,≺,k(v)|

The weak and strong coloring numbers of a graph are then obtained by minimizing over all
linear orderings of V (G).

wcolk(G) = min
≺

wcol≺,k(G)

scolk(G) = min
≺

scol≺,k(G)

Note that for k = 1, both wreachG,≺,1(v) \ {v} and sreachG,≺,1(v) \ {v} consist of the
neighbors of v that precede it in the ordering ≺, and thus scol1(G) = wcol1(G) coincide with
the coloring number of the graph G, equal to the degeneracy of G plus one.

1.1 Properties and applications of generalized coloring numbers
The following basic claims can be found for example in [12]. One can easily check that both
wcolk(G) and scolk(G) are non-decreasing in k and that scolk(G) ≤ wcolk(G) ≤ (scolk(G))k

for any positive integer k. Moreover, for every k ≥ |V (G)|, scolk(G) is equal to the treewidth



Z. Dvořák, J. Pekárek, T. Ueckerdt, and Y. Yuditsky 39:3

of G and wcolk(G) is equal to the treedepth of G. A greedy coloring algorithm applied
along the corresponding vertex ordering shows that the chromatic number of G is at most
scol1(G) = wcol1(G), the acyclic chromatic number of G is at most scol2(G), and the star
chromatic number of G is at most wcol2(G).

Algorithmic applications of the generalized coloring numbers include for example:
Generating sparse neighborhood covers used in decision algorithms for problems expressible
in the first-order logic [8].
Constant-factor approximation for distance versions of domination number and indepen-
dence number [2], with further applications in fixed-parameter algorithms and kerneliza-
tion [5].
Practical algorithm for counting the number of appearances of fixed subgraphs [13].

As we mentioned before, Zhu [15] proved that generalized coloring numbers are bounded
exactly for graph classes with bounded expansion (which include planar graphs and more
generally all proper classes closed under taking minors or topological minors, graphs with
bounded maximum degree, graphs that can be drawn in the plane with a bounded number of
crossings per edge, intersection graphs of balls with bounded clique number, and many others).
More precisely, for any class G with bounded expansion, there exist functions fs

G and fw
G

such that for every graph G ∈ G and every positive integer k, we have scolk(G) ≤ fs
G(k) and

wcolk(G) ≤ fw
G (k). However, the general bounds arising from Zhu’s result are rather weak,

and since the time complexity of the aforementioned algorithms depends on the generalized
coloring numbers, we are interested in more precise bounds for specific graph classes.

1.2 Bounds on generalized coloring numbers
Quite a bit is known about the maximum possible values of generalized coloring numbers of
many natural graph classes, as summarized in the following table:

Class scolk wcolk
treewidth ≤ t t + 1 [7]

(
k+t

t

)
[7]

outerplanar 3 Θ(k log k) [9]
planar Θ(k) [14] Ω(k2 log k) [9] O(k3) [14]
genus g O(gk) [14] O(gk + k3) [14]
no Kt minor O(t2k) [14] Ω(kt−2) [7] O(kt−1) [14]
no Kt topological minor Ω((t − 3)k/4) [6, attributed to Norin] tO(k) [7]

Moreover, Dvořák et al. [3] observed that in many classes of intersection graphs of
geometric objects in Rd, a non-increasing ordering of the objects according to their volume
easily implies that their strong coloring number is at most O(kd). The starting point of this
paper is the investigation of the same ordering from the perspective of the weak coloring
numbers.

1.3 Strong coloring numbers of intersection graphs
Let S be a finite set of subsets of Rd, which we call objects. The intersection graph of S is
the graph G with V (G) = S and with uv ∈ E(G) if and only if u ∩ v ̸= ∅. For an integer
t ≥ 1, we say that the set S is t-thin if every point of Rd is contained in the interior of at
most t objects from S; in the case t = 1, we say S is a touching representation of G. For
example, a famous result of Koebe [11] states that a graph is planar if and only if it has

SoCG 2022



39:4 Weak Coloring Numbers of Intersection Graphs

a touching representation by balls in R2. Another example can be found in [4], where it
is shown that the graphs in any proper minor-closed class have touching representation by
comparable axis-aligned boxes in bounded dimension. That is, by a set S of axis-aligned
boxes which has the additional property that for every u, v ∈ S, a translation of u is a subset
of v or vice versa. As observed in [3], there is a very natural way of bounding the strong
coloring numbers for thin intersection graphs of certain classes of objects by ordering the
vertices in a non-increasing order according to the size of the objects that represent the
vertices. Note that, by the definitions of the coloring numbers, if it is possible to show an
upper bound on the strong coloring number in this ordering (or any ordering) then it implies
an upper bound on the strong coloring number of the intersection graph. In particular, this
approach works in the case the objects in S are

scaled and translated copies of the same centrally symmetric compact convex object (this
includes intersection graphs of balls and of axis-aligned hypercubes); or
b-ball-like for some real number b ≥ 1, i.e., every v ∈ S is a compact convex set satisfying
vol(v) ≥ vol(B(diam(v)/2))/b, where B(a) is the ball in Rd of radius a, diam(v) is the
maximum distance between any two points of v, and vol(v) is the volume of v; or
comparable axis-aligned boxes.

As we are going to build on this argument, let us give a sketch of it. A linear ordering ≺
of a finite set of compact objects S is sizewise if for all u, v ∈ S such that u ≺ v, we have
diam(u) ≥ diam(v). Roughly, the idea behind the proof of the next lemma is that in a
sizewise ordering, the number of objects it is possible to strongly k-reach from a given object
v, is bounded by the maximum order of a t-thin system of objects of larger size which can be
placed in a scaled instance of v.

▶ Lemma 1. Let d and t be positive integers. Let S be a t-thin finite set of compact convex
objects in Rd and let G be the intersection graph of S. Let ≺ be a sizewise linear ordering of
S. For each integer k ≥ 1,
(a) if S consists of scaled and translated copies of the same centrally symmetric object, or if

S is a set of comparable axis-aligned boxes, then scol≺,k(G) ≤ t(2k + 1)d, and
(b) if S consists of b-ball-like objects for a real number b ≥ 1, then scol≺,k(G) ≤ bt(2k + 2)d.

Proof. Consider a vertex v ∈ V (G); we need to provide an upper bound on | sreachG,≺,k(v)|.
For any m ≥ 0, in case (a) let Bm(v) be the object obtained by scaling v by the factor of
2m+1, with the center p of v being the fixed point; i.e., Bm(v) = {p+(2m+1)(q −p) : q ∈ v}.
In case (b), let Bm(v) be a ball of radius (m + 1) diam(v) centered at an arbitrarily chosen
point of v.

For each u ∈ sreachG,≺,k(v), observe that u ∩ Bk−1(v) ̸= ∅, as u is joined to v through
a path with at most k − 1 internal vertices, each represented by an object smaller or
equal to v in size. In case (a), observe that there exists a translation u′ of v such that
u′ ⊆ u and u′ ∩ Bk−1(v) ̸= ∅. In case (b), let u′ be a scaled translation of u such that
u′ ⊆ u, u′ ∩ Bk−1(v) ̸= ∅, and diam(u′) = diam(v). Note that in the former case we have
vol(u′) = vol(v) = (2k + 1)−d vol(Bk(v)), and in the latter case we have

vol(u′) = diamd(v)
diamd(u)

vol(u) ≥ diamd(v)
b diamd(u)

vol(B(diam(u)/2))

= b−1 vol(B(diam(v)/2)) = b−1(2k + 2)−d vol(Bk(v)).



Z. Dvořák, J. Pekárek, T. Ueckerdt, and Y. Yuditsky 39:5

In either case, observe that u′ ⊆ Bk(v), and since S is t-thin, we have∑
u∈sreachG,≺,k(v)

vol(u′) ≤ t vol(Bk(v)).

Therefore, | sreachG,≺,k(v)| ≤ t(2k + 1)d in case (a) and | sreachG,≺,k(v)| ≤ bt(2k + 2)d in
case (b). ◀

That is, the strong coloring numbers of these graph classes are polynomial in k, with a
uniform ordering of vertices that works for all values of k. For weak coloring numbers, a
general upper bound is as follows.

▶ Observation 2. For any graph G, a linear ordering ≺ of its vertices, and an integer k ≥ 1,

wcol≺,k(G) ≤
k∑

i=1
scol≺,i(G) wcol≺,k−i(G).

In particular, if there exists c > 1 such that scol≺,k(G) ≤ ck for every k ≥ 1, then
wcol≺,k(G) ≤ (2c)k for every k ≥ 1.

For graphs from the classes described in Lemma 1, we obtain an exponential bound on the weak
coloring numbers, more precisely wcolk(G) ≤

(
2t3d

)k in case (a) and wcolk(G) ≤
(
2bt4d

)k

in case (b).

2 Our results

Joret and Wood (see [6]) conjectured that every class of graphs with polynomial strong
coloring numbers also has polynomial weak coloring numbers (more precisely, this claim
is implied by their conjecture regarding weak coloring numbers of graphs of polynomial
expansion). This turns out not to be the case; Grohe et al. [7] showed that the class of graphs
obtained by subdividing all edges of each graph the number of times equal to its treewidth
has superpolynomial weak coloring numbers, while their strong coloring numbers are linear.
However, one could still expect this conjecture to hold for “natural” graph classes, and thus
we ask whether the weak coloring numbers are polynomial for the graph classes described in
Lemma 1. On the positive side, we obtain the following result.

▶ Theorem 3. Let d and t be positive integers. Let S be a t-thin finite set of compact convex
objects in Rd and let G be the intersection graph of S. Let ≺ be a sizewise linear ordering of
S. For each integer k ≥ 1:
(a) If S consists of scaled and translated copies of the same centrally symmetric object, then

wcol≺,k(G) ≤ t max(1, ⌈log2 k⌉)(4k − 1)d

(
k + t5d + 2

t5d + 2

)
.

(b) If S consists of b-ball-like objects for a real number b ≥ 1, then

wcol≺,k(G) ≤ tb max(1, ⌈log2 k⌉)(4k)d

(
k + tb6d + 2

tb6d + 2

)
.

Moreover, there exists k0 (depending only on d) such that if S consists of balls, then for every
k ≥ k0,

wcol≺,k(G) ≤ t max(1, ⌈log2 k⌉)(4k − 1)d

(
k + 2t + 2

2t + 2

)
.

SoCG 2022



39:6 Weak Coloring Numbers of Intersection Graphs

Asymptotically, the bounds in (a) and (b) in the above theorem are doubly exponential
in the dimension d and singly exponential in t (and b), and for fixed d and t, they depend on
k polynomially. Note that the bounds are for the full weak coloring numbers (minimized
over all orderings), not just with respect to the sizewise ordering. Theorem 3 is qualitatively
tight in several surprising aspects, summarized in the following result.

▶ Theorem 4. For every positive integer k:
(i) There exists a touching graph Fk of comparable axis-aligned boxes in R3 such that

wcol2k(Fk) ≥ 2k+1 − 1.
(ii) For every t, there exists a t-thin set of axis-aligned squares in R2 whose intersection

graph Hk,t satisfies wcol2k(Hk,t) ≥
(

k+t
t

)
.

(iii) For every d ≥ 1, the graph Hk,2d−1 can also be represented as a touching graph of
axis-aligned hypercubes in Rd+2.

That is:
(i) The class of touching graphs of comparable axis-aligned boxes in R3 has polynomial

strong coloring numbers by Lemma 1, but exponential weak coloring numbers by
Theorem 4(i). This provides a rather natural counterexample to the conjecture of Joret
and Wood.
Let us remark that touching graphs of rectangles in R2 are obtained from planar graphs
by adding crossing edges into faces of size four (when four of the boxes share corners),
and such graphs have polynomial weak coloring numbers (this follows e.g. from their
product structure [1]). Hence, the dimension three in the previous claim cannot be
decreased.

(ii) Lemma 1 shows that the strong coloring numbers depend linearly on the thinness t

of the representation, while the bounds on the weak coloring numbers in Theorem 3
contain t in the exponent. As shown in Theorem 4(ii), in dimension at least two this
cannot be avoided (if we want a bound which is not exponential in k) and Theorem 3
cannot be strengthened so that only the multiplicative constant would depend on t.
Let us also remark that t-thin intersection graphs of intervals in R are interval graphs
of clique number at most 2t. As was pointed to us by Gwenaël Joret, any interval graph
of clique number ω satisfies wcolk(G) ≤

(
ω+1

2
)
(k + 1), as shown by an ordering obtained

by placing first the vertices of a maximal system of pairwise disjoint cliques of size ω

and then recursively processing the remainder of the graph which has clique number
smaller than ω. Hence, the dimension two in the previous claim cannot be decreased.

(iii) In the case (a) of Theorem 3, and in particular for the touching graphs of axis-aligned
hypercubes, the exponent must be exponential in the dimension, in a contrast to the
case of touching graphs of balls.

3 Upper bounds

In order to prove Theorem 3 for all the classes at once, let us formulate an abstract graph
property P (f, a, e) on which the proof is based. For a graph G, a function r : V (G) → R+

and u, v ∈ V (G), let us define λr(u, v) as the minimum of
∑

x∈V (Q)\{u,v} r(x) over all paths
Q from u to v in G. For a function f : Z+

0 → Z+ and positive integers a and e, we say that
(G, r) has the property P (f, a, e) if

(i) for each v ∈ V (G) and integers s ≥ 1 and p ≥ 0, there are at most f(p) vertices
u ∈ V (G) such that r(u) ≥ sr(v) and λr(u, v) ≤ psr(v), and

(ii) for each v ∈ V (G) and each positive integer s, every sequence u1, u2, . . . of distinct
vertices of G such that λr(ui, v) ≤ sr(v) and r(ui) ≥ aisr(v) for each i has length at
most e.



Z. Dvořák, J. Pekárek, T. Ueckerdt, and Y. Yuditsky 39:7

Let us remark that P (f, a, e) implies P (f, a′, e) for every a′ ≥ a, and (i) implies (ii) with
a = 1 and e = f(1). The following lemma is proved similarly to Lemma 1. In the lemma, for
the role of the function r, we use diam. Intuitively, part (i) says that the number of objects
with large diam that can be reached with a path with bounded diam from some object v is
bounded. Part (ii) says that the number of objects with an increasing diam that can reach
an object v with a path of bounded diam is also bounded.

▶ Lemma 5. Let d and t be positive integers. Let S be a t-thin finite set of compact convex
objects in Rd and let G be the intersection graph of S. For v ∈ V (G), let r(v) = diam(v).
(a) If S consists of scaled and translated copies of the same centrally symmetric object, then

(G, r) has the property P (p 7→ t(2p + 3)d, 1, t5d).
(b) If S consists of b-ball-like objects for b ≥ 1, then (G, r) has the property P (p 7→ tb(2p +

4)d, 1, tb6d).
(c) If S consists of balls, then there exists a such that (G, r) has the property P (p 7→

t(2p + 3)d, a, 2t).

Proof. Consider a vertex v ∈ V (G) and integers s ≥ 1 and p ≥ 0. For any m ≥ 0, in cases
(a) and (c) let Bm(v) be the object obtained by scaling v by the factor of 2m + 1, with the
center of v being the fixed point. In case (b), let Bm(v) be a ball of radius (m + 1) diam(v)
centered at an arbitrarily chosen point of v. Let U be the set of vertices u ∈ V (G) such that
r(u) ≥ sr(v) and λr(u, v) ≤ psr(v). Observe that for any u ∈ U , we have u∩Bps(v) ̸= ∅. Let
u′ be a scaled translation of u such that u′ ⊆ u, u′ ∩ Bps(v) ̸= ∅, and diam(u′) = s diam(v).
For each m ≥ 0, in cases (a) and (c), we have

vol(u′) = sd vol(v) =
(

s
2m+1

)d vol(Bm(v)),

and in case (b) we have

vol(u′) ≥ b−1sd vol(B(diam(v)/2)) = b−1(
s

2m+2
)d vol(Bm(v)).

In either case, we have u′ ⊆ B(p+1)s(v), and since S is t-thin, it follows that

|U | ≤ t
( 2(p+1)s+1

s

)d ≤ t(2p + 3)d

in cases (a) and (c), and

|U | ≤ tb
( 2(p+1)s+2

s

)d ≤ tb(2p + 4)d

in case (b). Hence, the part (i) of the property P (f, a, e) is verified, and by the observations
made before the lemma, this finishes the proof for the cases (a) and (b).

Let us now consider the part (ii) in case (c). Let Q be a half-space whose boundary
hyperplane touches Bs(v) and is otherwise disjoint from Bs(v). There exists l such that
vol(Q ∩ Bls(v)) ≥

( 1
2 − 1

6t

)
vol(Bls(v)); let us fix smallest such l. For a ≥ 1, let Ca be a ball

touching Bs(v) of radius as rad(v). I.e. Ca ⊆ Q. Note that

lim
a→∞

vol(Ca ∩ Bls(v))
vol(Bls(v)) = vol(Q ∩ Bls(v))

vol(Bls(v)) ,

and thus there exists a such that vol(Ca ∩ Bls(v)) ≥
( 1

2 − 1
5t

)
vol(Bls(v)); let us fix smallest

such a.

SoCG 2022



39:8 Weak Coloring Numbers of Intersection Graphs

Consider a sequence u1, u2, . . . , un of distinct vertices of G such that λr(ui, v) ≤ sr(v)
and r(ui) ≥ aisr(v) for each i. In particular, note that rad(ui) ≥ rad(Ca) for each i. From
the observation made in the first paragraph of the proof, we have ui ∩ Bs(v) ̸= ∅, and it
follows that

vol(ui ∩ Bls(v))
vol(Bls(v)) ≥ vol(Ca ∩ Bls(v))

vol(Bls(v)) ≥ 1
2 − 1

5t .

Since S is t-thin and n is an integer, this implies n ≤ 2t, verifying the part (ii) of the property
P (p 7→ t(2p + 3)d, a, 2t). ◀

To bound the weak coloring numbers, we need the following result about graphs of
bounded pathwidth which appears in a stronger form (for treewidth) in van den Heuvel et
al. [14]. For us, it is convenient to state the result as follows (without explicitly defining
pathwidth), and thus we include the proof for completeness. A path P = v1v2 . . . vm in a
graph G with a linear ordering ≺ of vertices is decreasing if v1 ≻ v2 ≻ · · · ≻ vm. For each
v ∈ V (G), we define decrG,≺,k(v) as the set of vertices reachable from v by decreasing paths
of length at most k.

▶ Lemma 6. Let k and w be non-negative integers. Let ≺ be a linear ordering of the vertices
of a graph G. If for every x ∈ V (G), at most w vertices y ≺ x have a neighbor y′ ⪰ x, then
| decrG,≺,k(v)| ≤

(
k+w

w

)
for every v ∈ V (G).

Proof. Without loss of generality, we assume that if yy′ ∈ E(G) and y ≺ y′, then y is also
adjacent to all vertices x such that y ≺ x ≺ y′. Indeed, adding such an edge yx does not
violate the assumptions and can only increase | decrG,≺,k(v)|.

The proof is by induction on k +w. Note that | decrG,≺,0(v)| = 1, and thus we can assume
k ≥ 1. If no neighbor of v is smaller than v, then | decrG,≺,k(v)| = 1, and thus the claim of
the lemma holds. Hence, we can assume v has such a neighbor, and in particular w ≥ 1. Let
z be the smallest neighbor of v. Let G′ be the subgraph of G induced by the vertices greater
than z and smaller or equal to v. Since z is adjacent to all the vertices of G′, then for each
x ∈ V (G′), at most w − 1 vertices y ≺ x of G′ have a neighbor y′ ⪰ x in G′.

Consider now a vertex u ∈ decrG,≺,k(v), and let Q be a decreasing path of length at most
k from v to u. If z ≺ u, then Q is also a decreasing path in G′, and thus u ∈ decrG′,≺,k(v).
Note that | decrG′,≺,k(v)| ≤

(
k+w−1

w−1
)

by the induction hypothesis. If u ≺ z, consider the
edge u′z′ of Q such that u′ ≺ z and z ⪯ z′. Note that u′ is not adjacent to v by the
minimality of z, and thus z′ ≠ v. Moreover, by the assumption made in the first paragraph,
u′z ∈ E(G). Hence, u is reachable from v by the decreasing path of length at most k starting
with vzu′ and continuing along Q, and thus u ∈ decrG,≺,k−1(z). If u = z, then we also have
u ∈ decrG,≺,k−1(z). By the induction hypothesis, we have | decrG,≺,k−1(z)| ≤

(
k+w−1

w

)
.

Therefore,

| decrG,≺,k(v)| = | decrG′,≺,k(v)| + | decrG,≺,k−1(z)|

≤
(

k + w − 1
w − 1

)
+

(
k + w − 1

w

)
=

(
k + w

w

)
. ◀

We use the following corollary, obtained by applying Lemma 6 to the graph obtained by
contracting each interval to a single vertex.

▶ Corollary 7. Let w, k, and m be non-negative integers. Let ≺ be a linear ordering of
vertices of a graph H, and let I = {Li : i = 0, 1, . . .} be a partition of V (H) into consecutive
intervals in this ordering, where for every i < j, u ∈ Li, and v ∈ Lj, we have u ≻ v (note



Z. Dvořák, J. Pekárek, T. Ueckerdt, and Y. Yuditsky 39:9

the reverse ordering of the indices). Suppose that for each i ≥ 0, we have |Li| ≤ m and there
are at most w indices j > i such that a vertex of Lj has a neighbor in L0 ∪ L1 ∪ · · · ∪ Li.
Then | decrH,≺,k(v)| ≤ m

(
k+w

w

)
for each v ∈ V (H).

Theorem 3 now follows from Lemma 5 and the following theorem.

▶ Theorem 8. Let f : Z+
0 → Z+ be a function and let a and e be positive integers. For a

graph G and a function r : V (G) → R+, let ≺ be a linear ordering of V (G) such that if u ≺ v,
then r(u) ≥ r(v). If (G, r) has the property P (f, a, e), then

wcol≺,k(G) ≤ max(1, ⌈log2 k⌉)f(2k − 2)
(

k + e + 2
e + 2

)
for every integer k ≥ a.

Proof. Consider any integer k ≥ a and a vertex v ∈ V (G); we are going to bound the number
of vertices weakly k-reachable from v. Note that for k = 1, wreachG,≺,1(v) consists of the
vertices x ∈ V (G) such that r(x) ≥ r(v) and λr(v, x) = 0, and thus | wreachG,≺,1 | ≤ f(0)
by the part (i) of the property P (f, a, e) with s = 1 and p = 0. Hence, we can assume that
k ≥ 2.

Let H be the graph with the vertex set wreachG,≺,k(v), such that for x, y ∈ V (H) with
x ≺ y, we have xy ∈ E(H) if and only if there exists a path Q of length at most k in G from
v to x such that y ∈ V (Q) and all the internal vertices of the subpath of Q between x and y

are greater than y. Let ℓ(xy) denote the minimum length of the subpath between x and y

over all paths Q satisfying these conditions. Observe that, by the definition of V (H) and
ℓ(xy), for every edge e′ of H, there exists a decreasing path D from v in H containing the
edge e′ such that

∑
e∈E(D) ℓ(e) ≤ k. Moreover, V (H) = decrH,≺,k(v).

For i ≥ 0, let Li consist of the vertices x ∈ V (H) such that kir(v) ≤ r(x) < ki+1r(v); in
particular, v ∈ L0. Let c = ⌈log2 k⌉ and further partition Li into Li,1, . . . , Li,c, where Li,b

consists of the vertices x ∈ Li with 2b−1kir(v) ≤ r(x) < 2bkir(v) for b = 1, . . . , c. Consider
any vertex x ∈ Li,b. Since x is weakly k-reachable from v and r(x) < 2bkir(v), we have
λr(v, x) < (k − 1)2bkir(v). Moreover, r(x) ≥ 2b−1kir(v), and thus by the part (i) of the
property P (f, a, e) with s = 2b−1ki and p = 2(k − 1), we conclude |Li,b| ≤ f(2k − 2) for each
b ∈ {1, . . . , c}. Hence, we have |Li| = |Li,1| + · · · + |Li,c| ≤ cf(2k − 2) = ⌈log2 k⌉f(2k − 2).

Let j−1 < j0 < j1 < · · · < jw−2 be all indices such that j−1 > i and for each m ∈
{−1, . . . , w − 2}, a vertex um ∈ Lj,m has a neighbor ym ∈ L0 ∪ · · · ∪ Li for each m. For
m = 1, . . . , w − 2, since there exists a decreasing path D from v containing the edge umym

such that
∑

e∈E(D) ℓ(e) ≤ k, there exists a path Q in G from v to um of length at most k

such that r(x) ≤ r(ym) < ki+1r(v) for every internal vertex x of Q. Consequently, we have
λr(v, um) ≤ (k − 1)ki+1r(v) ≤ sr(v) for s = ki+2. Moreover, note that jm ≥ i + 2 + m, and
thus r(um) ≥ ki+2+mr(v) ≥ amsr(v). By part (ii) of the property P (f, a, e), we conclude
that w ≤ e + 2.

Hence, Corollary 7 implies that

| wreachG,≺,k(v)| = | decrH,≺,k(v)| ≤ ⌈log2 k⌉f(2k − 2)
(

k + e + 2
e + 2

)
for each v ∈ V (G). ◀

SoCG 2022



39:10 Weak Coloring Numbers of Intersection Graphs

AH,≺,3 :H :

v1 v2 v3

v1 v3 v2

Figure 2 The graph AH,≺,3 depicted in two ways, the first respecting the ordering and the second
is easier to translate into a geometric setting.

4 Lower bounds

It is relatively easy to construct intersection graphs with large weak coloring numbers with
respect to a fixed ordering. The following construction (illustrated in Figure 2) enables us to
turn such graphs into graphs that have large weak coloring numbers with respect to every
ordering. Let H be a graph and ≺ a linear ordering of its vertices. Let v1 ≺ · · · ≺ vn be
the vertices of H. Let m be a positive integer and let T be the complete rooted m-ary tree
of depth n − 1. For i ∈ {1, . . . , n}, let T (vi) be the set of vertices of T at distance exactly
i − 1 from the root. The graph AH,≺,m has vertex set V (T ), with vertices x ∈ T (vi) and
y ∈ T (vj) adjacent if and only if i ̸= j, vivj ∈ E(H), and x is an ancestor of y in T or vice
versa. We say that T is the scaffolding of AH,≺,m.

▶ Lemma 9. Let k and m be positive integers. Let H be a graph and ≺ a linear ordering of
its vertices. Suppose that for each v ∈ V (H), the graph H[{u ∈ V (H) : v ⪯ u}] is connected
and has diameter at most k. Then

wcolk(AH,≺,m) ≥ min
(
m, wcol≺,k(H)

)
.

Proof. Consider any linear ordering ◁ of the vertices of AH,≺,m. Let T be the scaffolding of
AH,≺,m and suppose first that there exists a non-leaf vertex z ∈ V (T ) such that all children
z1, . . . , zm of z in T are smaller than z in the ordering ◁. For i = 1, . . . , m, let Ai be the
subgraph of AH,≺,m induced by z, zi, and all descendants of zi in T . Let v be the vertex of



Z. Dvořák, J. Pekárek, T. Ueckerdt, and Y. Yuditsky 39:11

AH,≺,3 :H :

Figure 3 Representation of the graphs H and AH,≺,3 in Figure 2 as intersection graphs of
intervals and squares.

H such that z ∈ T (v); since the graph H [{u ∈ V (H) : v ⪯ u}] has diameter at most k, every
vertex of Ai is at distance at most k from z. Since zi ◁ z, we conclude that a vertex of Ai

distinct from z is weakly k-reachable from z. Since this is the case for each i ∈ {1, . . . , m}
and the subgraphs A1, . . . , Am intersect only in z, it follows that

wcol◁,k(AH,≺,m) ≥ | wreachAH,≺,m,◁,k(z)| ≥ m.

Hence, we can assume that each non-leaf vertex z of T has a child which is greater than z

in the ordering ◁. Consequently, T contains a path u1u2 . . . un from the root to a leaf such
that u1 ◁ · · · ◁ un. The subgraph A of AH,≺,m induced by {u1, . . . , un} with ordering ◁ is
isomorphic to H with ordering ≺, and thus

wcol◁,k(AH,≺,m) ≥ wcol◁,k(A) = wcol≺,k(H). ◀

Moreover, assuming H has a sufficiently generic representation by comparable axis-aligned
boxes, we can also find such a representation for AH,≺,m. Given an axis-aligned box v in
Rd and i ∈ {1, . . . , d}, let ℓi(v) denote the length of v in the i-th coordinate. We say that
a sequence v1, . . . , vn of axis-aligned boxes is m-shrinking if ℓd(vi) > mℓd(vi+1) holds for
1 ≤ i ≤ n − 1. See Figure 3 for an illustration of the following construction.

▶ Lemma 10. Let d, t and m be positive integers. Let S be a t-thin finite set of comparable
axis-aligned boxes in Rd and let H be the intersection graph of S. Let T be the scaffolding
of AH,≺,m. Let ≺ be a sizewise linear ordering of S and let v1, . . . , vn be the sequence of
vertices of H in this order. If this sequence is m-shrinking, then AH,≺,m is the intersection
graph of a t-thin set of comparable axis-aligned boxes in Rd+1, where for v ∈ V (H) and
u ∈ T (v), u is the product of v with an interval of length ℓd(v).

Proof. Let ε > 0 be small enough so that ℓd(vi) ≥ m(ℓd(vi+1) + ε) holds for 1 ≤ i ≤ n − 1.
For each non-leaf vertex z of T , assign labels 0, . . . , m − 1 to the edges from z to the children
of z in any order; let l(e) denote the label assigned to the edge e. For a vertex y of T , if
y1y2 . . . yc is the path in T from the root to y, then let l(y) = (l(y1y2), l(y2y3), . . . , l(yc−1yc)).
Note that y is an ancestor of a vertex x in T if and only if l(y) is a prefix of l(x). Let
s(y) =

∑c−1
i=1 (l(y))i(ℓd(vi+1) + ε), and let I(y) be the interval [s(y), s(y) + ℓd(vc)]. Observe

that if y is an ancestor of a vertex x in T , then I(x) ⊂ I(y), and if x is neither an ancestor
nor a descendant of y in T , then I(x) ∩ I(y) = ∅.

SoCG 2022



39:12 Weak Coloring Numbers of Intersection Graphs

s

F ′
k−1F ′

k−1

=
s

F ′
k

scaled (m+ 1)× horizontally

scaled a lot horizontally

Figure 4 The construction from Lemma 12.

Hence, letting each vertex y at distance c − 1 from the root of T be represented by the
box vc × I(y) in Rd+1, we obtain a t-thin intersection representation of AH,≺,m as described
in the statement of the lemma. ◀

To verify the assumptions of Lemma 9, the following concept is useful. Let ≺ be a linear
ordering of vertices of a graph G. A decreasing spanning tree is a spanning tree T of G rooted
in the maximum vertex such that any path in T starting in the root is decreasing.

▶ Lemma 11. Let k ≥ 0 be an integer. Let ≺ be a linear ordering of vertices of a graph G.
If G has a decreasing spanning tree T of depth at most k, then wcol≺,k(G) = |V (G)|, and for
each v ∈ V (G), the graph G[{u ∈ V (H) : v ⪯ u}] is connected and has diameter at most 2k.

Proof. Let z be the maximum vertex of G. Since T is decreasing and has depth at most
k, we have wcol≺,k(G) ≥ | wreachG,≺,k(z)| = |V (G)|. Moreover, for each v ∈ V (G), letting
Cv = {u ∈ V (H) : v ⪯ u}, observe that for each x ∈ Cv, all ancestors of x also belong to Cv.
Hence, T [Cv] is a spanning tree of G[Cv] of depth at most k, and thus G[Cv] is connected
and has diameter at most 2k. ◀

We now find some basic graphs to which we can apply the construction.

▶ Lemma 12. For all integers k ≥ 0 and m ≥ 1, there exists a graph F ′
k with 2k+1 −1 vertices

represented as the touching graph of an m-shrinking sequence of comparable axis-aligned
rectangles in R2, such that F ′

k has a spanning tree of depth at most k decreasing in the
sizewise ordering.

Proof. We proceed by induction on k. For each k, we construct a representation of F ′
k

where the last vertex is represented by a unit square s and the rest of the representation is
contained in the lower left quadrant starting from the middle of the upper side of s. The
second coordinate (relevant for the definition of an m-shrinking sequence) is the horizontal
one. In the vertical coordinate, all rectangles have length 1. See Figure 4 for an illustration
of the construction.

The graph F ′
0 is a single vertex represented by s. For k ≥ 1, to obtain a representation of

F ′
k, we scale the representation of F ′

k−1 in the horizontal direction by the factor of m + 1
and place it so that its upper right corner is the middle of the lower side of s. Then we add
another copy of a representation of F ′

k−1, scaled in the horizontal direction so that all its
rectangles are more than m times longer than the already placed ones and so that when we
place its upper right corner at the upper left corner of s, their interiors are disjoint from the
already placed rectangles.

Observe that F ′
k contains a spanning complete binary tree of depth k rooted in s, with

the vertices along each path from the root increasing in size, and thus decreasing in the
sizewise ordering. ◀



Z. Dvořák, J. Pekárek, T. Ueckerdt, and Y. Yuditsky 39:13

=
H ′k−1,t (scaled)H ′k,t

H ′k,t−1

Figure 5 The construction from Lemma 13.

▶ Lemma 13. For all integers k ≥ 0 and m, t ≥ 1, there exists a graph H ′
k,t with

(
k+t

t

)
vertices represented by a t-thin m-shrinking sequence of intervals in R, such that H ′

k,t has a
spanning tree of depth at most k decreasing in the sizewise ordering. Furthermore, H ′

k,t is
properly (t + 1)-colorable.

Proof. We construct a representation of H ′
k,t with the additional property that the right

end of the smallest interval is the strictly rightmost point of the whole representation. See
Figure 5 for an illustration of the construction.

We proceed by the induction on k + t. If k = 0, the representation of H ′
k,t consists of a

single unit interval. If t = 1, then the representation consists of an m-shrinking sequence of
k + 1 intervals intersecting only in endpoints. Hence, suppose that k ≥ 1 and t ≥ 2. Then
the representation consists of the representation A of H ′

k,t−1 and of the representation B

of H ′
k−1,t scaled so that all its intervals are more than m times longer than all intervals in

A and so that when we place the rightmost point of B slightly to the left of the rightmost
point of A, only the smallest interval of B intersects all intervals of A.

Observe that H ′
k,t has a spanning tree of depth k rooted in the smallest vertex, with the

vertices along each path from the root increasing in size, and thus decreasing in the sizewise
ordering. Finally, note that H ′

k,t is an interval graph with clique number at most t + 1. Since
interval graphs are perfect, H ′

k,t is properly (t + 1)-colorable. ◀

As a final ingredient, we note that we can trade thinness for dimension.

▶ Lemma 14. For a positive integer d, let S = {v1, . . . , vn} be a finite set of hypercubes
in Rd, and let G be the intersection graph of S. For any set Y ⊆ {1, . . . , n}, there exists a
set {u1, . . . , un} of hypercubes in Rd+1 whose intersection graph is isomorphic to G via the
isomorphism mapping ui to vi for each i, such that

for 1 ≤ i < j ≤ n, if vi and vj have disjoint interiors, then ui and uj have disjoint
interiors, and
for i ∈ Y and j ∈ {1, . . . , n} \ Y , the hypercubes ui and uj have disjoint interiors.

Proof. For i ∈ Y , we set ui = vi×[0, ℓ1(vi)]. For i ∈ {1, . . . , n}\Y , we set ui = vi×[0, −ℓ1(vi)].
Note that the intersection of the representation with the hyperplane defined by the last
coordinate being 0 is equal to S, and thus indeed the intersection graph of S′ is isomorphic
to G as described. ◀

▶ Corollary 15. Let c ≥ 0 and d ≥ 1 be integers. If G is a graph of chromatic number at most
2c representable as an intersection graph of hypercubes in Rd, then G is also representable as
a touching graph of hypercubes in Rd+c.

Proof. Let V (G) = {v1, . . . , vn}, and let φ : V (G) → {0, 1}c be a proper coloring of G. By
repeatedly applying Lemma 14 for sets Y1, . . . , Yc, where Yb = {i ∈ {1, . . . , n} : φ(vi)b = 0}
for b ∈ {1, . . . , c}, we obtain a representation of G as an intersection graph of hypercubes
u1, . . . , un in Rd+c with the property that for 1 ≤ i < j ≤ n, if φ(vi) ̸= φ(vj), then ui

SoCG 2022



39:14 Weak Coloring Numbers of Intersection Graphs

and uj have disjoint interiors. If φ(vi) = φ(vj), then since φ is a proper coloring, we have
vivj ̸∈ E(G), and thus the hypercubes ui and uj are disjoint. Consequently, the hypercubes
u1, . . . , un have pairwise disjoint interiors. ◀

We are now ready to give the lower bounds.

Proof of Theorem 4. We prove each point separately:
(i) Let F ′

k be the graph obtained in Lemma 12, represented as a touching graph of an
m-shrinking sequence of axis-aligned rectangles for m = 2k+1 − 1. Let ≺ be the sizewise
ordering of F ′

k. By Lemma 11, we have wcol≺,k(F ′
k) = |V (F ′

k)| = 2k+1 − 1. Letting
Fk = AF ′

k
,≺,m, Lemma 9 implies wcol2k(Fk) ≥ 2k+1 − 1. Moreover, by Lemma 10, Fk

is a touching graph of comparable axis-aligned boxes in R3.
(ii) Let H ′

k,t be the graph obtained in Lemma 13, represented as the intersection graph
of a t-thin m-shrinking sequence of intervals for m =

(
k+t

t

)
. Let ≺ be the sizewise

ordering of H ′
k,t. By Lemma 11, we have wcol≺,k(H ′

k,t) = |V (H ′
k,t)| =

(
k+t

t

)
. Letting

Hk,t = AH′
k,t

,≺,m, Lemma 9 implies wcol2k(Hk,t) ≥
(

k+t
t

)
. Moreover, by Lemma 10,

Hk,t is the intersection graph of a t-thin set of axis-aligned squares in R2.
(iii) Recall that by Lemma 13, the graph H ′

k,2d−1 is properly 2d-colorable. Let T be the
scaffolding of Hk,2d−1. For each v ∈ V (H ′

k,2d−1), we can assign the color of v to all
vertices in T (v), obtaining a proper coloring of Hk,2d−1 by 2d colors. Corollary 15
implies that Hk,2d−1 can be represented as a touching graph of axis-aligned hypercubes
in Rd+2. ◀

5 Conclusions

In this paper we have provided upper bounds on the weak coloring number of t-thin
intersection graphs of d-dimensional objects of different kinds. Our bounds are qualitatively
tight in several aspects. We would like to mention a few open questions, beyond improving
the proven upper and lower bounds:

What is the asymptotic behavior of the k-th weak coloring numbers of planar graphs? It
is known to be O(k3) [14] and Ω(k2 log k) [9].
What is the asymptotic behavior of the k-th strong coloring numbers of touching graphs
of unit balls in Rd? It is known to be O(kd−1) and Ω(kd/2).

References
1 Vida Dujmović, Pat Morin, and David R. Wood. Graph product structure for non-minor-closed

classes. arXiv, 1907.05168, 2019. arXiv:1907.05168.
2 Zdeněk Dvořák. Constant-factor approximation of domination number in sparse graphs.

European Journal of Combinatorics, 34:833–840, 2013.
3 Zdeněk Dvořák, Rose McCarty, and Sergey Norin. Sublinear separators in intersection

graphs of convex shapes. SIAM Journal on Discrete Mathematics, 35(2):1149–1164, 2021.
doi:10.1137/20M1311156.

4 Zdeněk Dvořák, Daniel Gonçalves, Abhiruk Lahiri, Jane Tan, and Torsten Ueckerdt. On
comparable box dimension. Manuscript.

5 Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michał
Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and kernel-
ization for nowhere dense classes of graphs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages,
and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 63:1–63:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2017.63.

http://arxiv.org/abs/1907.05168
https://doi.org/10.1137/20M1311156
https://doi.org/10.4230/LIPIcs.ICALP.2017.63


Z. Dvořák, J. Pekárek, T. Ueckerdt, and Y. Yuditsky 39:15

6 Louis Esperet and Jean-Florent Raymond. Polynomial expansion and sublinear separators.
European Journal of Combinatorics, 69:49–53, 2018.

7 Martin Grohe, Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Konstantinos
Stavropoulos. Coloring and covering nowhere dense graphs. SIAM Journal on Discrete
Mathematics, 32:2467–2481, 2018.

8 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 89–98. ACM, 2014.

9 Gwenaël Joret and Piotr Micek. Improved bounds for weak coloring numbers. CoRR, 2021.
arXiv:2102.10061.

10 Hal A. Kierstead and Daqing Yang. Orderings on graphs and game coloring number. Order,
20(3):255–264, 2003.

11 Paul Koebe. Kontaktprobleme der Konformen Abbildung. Math.-Phys. Kl., 88:141–164, 1936.
12 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity (Graphs, Structures, and Algorithms),

volume 28 of Algorithms and Combinatorics. Springer, 2012.
13 Felix Reidl and Blair D. Sullivan. A color-avoiding approach to subgraph counting in bounded

expansion classes. arXiv, 2001.05236, 2020. arXiv:2001.05236.
14 Jan van den Heuvel, Patrice Ossona de Mendez, Daniel Quiroz, Roman Rabinovich, and

Sebastian Siebertz. On the generalised colouring numbers of graphs that exclude a fixed minor.
European Journal of Combinatorics, 66:129–144, 2017.

15 Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Math.,
309(18):5562–5568, 2009.

SoCG 2022

http://arxiv.org/abs/2102.10061
http://arxiv.org/abs/2001.05236




ε-Isometric Dimension Reduction for
Incompressible Subsets of ℓp

Alexandros Eskenazis # Ñ

Trinity College and Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, UK

Abstract
Fix p ∈ [1, ∞), K ∈ (0, ∞) and a probability measure µ. We prove that for every n ∈ N, ε ∈ (0, 1)
and x1, . . . , xn ∈ Lp(µ) with

∥∥ maxi∈{1,...,n} |xi|
∥∥

Lp(µ)
≤ K, there exists d ≤ 32e2(2K)2p log n

ε2 and
vectors y1, . . . , yn ∈ ℓd

p such that

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥p
Lp(µ) − ε ≤ ∥yi − yj∥p

ℓd
p

≤ ∥xi − xj∥p
Lp(µ) + ε.

Moreover, the argument implies the existence of a greedy algorithm which outputs {yi}n
i=1 af-

ter receiving {xi}n
i=1 as input. The proof relies on a derandomized version of Maurey’s empiri-

cal method (1981) combined with a combinatorial idea of Ball (1990) and a suitable change of
measure. Motivated by the above embedding, we introduce the notion of ε-isometric dimension
reduction of the unit ball BE of a normed space (E, ∥ · ∥E) and we prove that Bℓp does not
admit ε-isometric dimension reduction by linear operators for any value of p ̸= 2.

2012 ACM Subject Classification Theory of computation → Random projections and metric
embeddings; Mathematics of computing → Probabilistic algorithms; Mathematics of computing →
Approximation

Keywords and phrases Dimension reduction, ε-isometric embedding, Maurey’s empirical method,
change of measure

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.40

Funding The author was supported by a Junior Research Fellowship from Trinity College, Cambridge.

Acknowledgements I am grateful to Keith Ball, Assaf Naor and Pierre Youssef for insightful
discussions and useful feedback. I also wish to thank the anonymous referees for their constructive
comments.

1 Introduction

1.1 Metric dimension reduction
Using standard terminology from metric embeddings (see [35]), we say that a mapping
between metric spaces f : (M, dM) → (N, dN) is a bi-Lipschitz embedding with distortion at
most α ∈ [1, ∞) if there exists a scaling factor σ ∈ (0, ∞) such that

∀ x, y ∈ M, σdM(x, y) ≤ dN

(
f(x), f(y)

)
≤ ασdM(x, y). (1)

Throughout this paper, we shall denote by ℓd
p the linear space Rd equipped with the p-norm,

∀ a = (a1, . . . , ad) ∈ Rd, ∥a∥ℓd
p

=
( d∑

i=1
|ai|p

)1/p

. (2)

The classical Johnson–Lindenstrauss lemma [20] asserts that if (H, ∥·∥H) is a Hilbert space and
x1, . . . , xn ∈ H, then for every ε ∈ (0, 1) there exist d ≤ C log n

ε2 and y1, . . . , yn ∈ ℓd
2 such that

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥H ≤ ∥yi − yj∥ℓd
2

≤ (1 + ε) · ∥xi − xj∥H, (3)
© Alexandros Eskenazis;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 40; pp. 40:1–40:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ae466@cam.ac.uk
https://www.sites.google.com/view/eskenazis
https://orcid.org/0000-0002-1601-8307
https://doi.org/10.4230/LIPIcs.SoCG.2022.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


40:2 Dimension Reduction for Incompressible Subsets of ℓp

where C ∈ (0, ∞) is a universal constant. In the above embedding terminology, the Johnson–
Lindenstrauss lemma states that for every ε ∈ (0, 1), n ∈ N and d ≥ C log n

ε2 , any n-point
subset of Hilbert space admits a bi-Lipschitz embedding into ℓd

2 with distortion at most 1 + ε.
In order to prove their result, Johnson and Lindenstrauss introduced in [20] the influential
random projection method that has since had many important applicatons in metric geometry
and theoretical computer science and kickstarted the field of metric dimension reduction (see
the recent survey [33] of Naor) which lies at the intersection of those two subjects.

Following [33], we say that an infinite dimensional Banach space (E, ∥ · ∥E) admits
bi-Lipschitz dimension reduction if there exists α = α(E) ∈ [1, ∞) such that for every n ∈ N,
there exists kn = kn(E, α) ∈ N satisfying

lim
n→∞

log kn

log n
= 0 (4)

and such that any n-point subset S of E admits a bi-Lipschitz embedding with distortion
at most α in a finite-dimensional linear subspace F of E with dimF ≤ kn. The only
non-Hilbertian space that is known to admit bi-Lipschitz dimension reduction is the 2-
convexification of the classical Tsirelson space, as proven by Johnson and Naor in [21].
Turning to negative results, Matoušek proved in [30] the impossibility of bi-Lipschitz dimension
reduction in ℓ∞, whereas Brinkman and Charikar [10] (see also [28] for a shorter proof)
constructed an n-point subset of ℓ1 which does not admit a bi-Lipschitz embedding into
any no(1)-dimensional subspace of ℓ1. Their theorem was recently refined by Naor, Pisier
and Schechtman [34] who showed that the same n-point subset of ℓ1 does not embed into
any no(1)-dimensional subspace of the trace class S1 (see also the striking recent work [38]
of Regev and Vidick, where the impossibility of polynomial almost isometric dimension
reduction in S1 is established). We refer to [33, Theorem 16] for a summary of the best
known bounds quantifying the aforementioned qualitative statements. Despite the lapse
of almost four decades since the proof of the Johnson–Lindenstrauss lemma, the following
natural question remains stubbornly open.

▶ Question 1. For which values of p /∈ {1, 2, ∞} does ℓp admit bi-Lipschitz dimension
reduction?

1.2 Dimensionality and structure
An important feature of the formalism of bi-Lipschitz dimension reduction in a Banach space
E is that both the distortion α(E) of the embedding and the dimension kn(E, α) of the
target subspace F are independent of the given n-point subset S of E. Nevertheless, there are
instances in which one can construct delicate embeddings whose distortion or the dimension
of their targets depends on subtle geometric parameters of S. For instance, we mention an
important theorem of Schechtman [39, Theorem 5] (which built on work of Klartag and
Mendelson [24]) who constructed a linear embedding of an arbitrary subset S of ℓ2 into
any Banach space E whose distortion depends only on the Gaussian width of S and the
ℓ-norm of the identity operator idE : E → E. In the special case that E is a Hilbert space, a
substantially richer family of such embeddings was devised in [29].

Let µ be a probability measure on a measurable space Ω. As usual, we shall denote the
Lp(µ)-norm of a function f : Ω → R by

∥f∥Lp(µ)
def=

( ∫
|f |p dµ

)1/p

. (5)



A. Eskenazis 40:3

For a subset S of Lp(µ), we shall denote by

I(S) def=
∥∥ max

x∈S
|x|

∥∥
Lp(µ) (6)

the Lp(µ)-norm of the pointwise maximum of all functions in S and we will say that S is
K-incompressible1 if I(S) ≤ K. The main contribution of the present paper is the following
dimensionality reduction theorem for incompressible subsets of Lp(µ) which, in contrast to
all the results discussed earlier, is valid for any value of p ∈ [1, ∞).

▶ Theorem 2 (ε-isometric dimension reduction for incompressible subsets of Lp(µ)). Fix
parameters p ∈ [1, ∞), n ∈ N, K ∈ (0, ∞) and let {xi}n

i=1 be a K-incompressible family of
vectors in Lp(µ) for some probability measure µ. Then for every ε ∈ (0, 1), there exists d ∈ N
with d ≤ 32e2(2K)2p log n

ε2 and points y1, . . . , yn ∈ ℓd
p such that

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥p
Lp(µ) − ε ≤ ∥yi − yj∥p

ℓd
p

≤ ∥xi − xj∥p
Lp(µ) + ε. (7)

Besides the appearance of the incompressibility parameter K in the bound for the
dimension d of the target space, Theorem 2 differs from the Johnson–Lindenstrauss lemma
in that the error in (7) is additive rather than multiplicative. Recall that a map between
metric spaces f : (M, dM) → (N, dN) is called an ε-isometric embedding if

∀ x, y ∈ M,
∣∣dN

(
f(x), f(y)

)
− dM(x, y)

∣∣ ≤ ε. (8)

Embeddings with additive errors occur naturally in metric geometry and, more specifically,
in metric dimension reduction (see e.g. [42, Section 9.3]). We mention for instance a result
[37, Theorem 1.5] of Plan and Vershynin who showed that any subset S of the unit sphere in
ℓn

2 admits a δ-isometric embedding into the d-dimensional Hamming cube ({−1, 1}d, ∥ · ∥1),
where d depends polynomially on δ−1 and the Gaussian width of S. In the above embedding
terminology and in view of the elementary inequality |α − β| ≤ |αp − βp|1/p which holds
for every α, β > 0, Theorem 2 asserts that any n-point K-incompressible subset of Lp(µ)
admits an ε1/p-isometric embedding into ℓd

p for the above choice of dimension d. For further
occurences of ε-isometric embeddings in the dimensionality reduction and compressed sensing
literatures, we refer to [37, 18, 19, 29, 42, 8] and the references therein.

1.3 Method of proof
A large part of the (vast) literature on metric dimension reduction focuses on showing that
a typical low-rank linear operator chosen randomly from a specific ensemble acts as an
approximate isometry on a given set S with high probability. For subsets S of Euclidean
space, this principle has been confirmed for random projections [20, 13, 11, 33], matrices
with Gaussian [14, 15, 39], Rademacher [5, 1] and subgaussian [24, 16, 12, 29] entries,
randomizations of matrices with the RIP [25] as well as more computationally efficient
models [31, 2, 3, 23, 9] which are based on sparse matrices. Beyond its inherent interest as an
ℓp-dimension reduction theorem (albeit, for specific configurations of points), Theorem 2 also
differs from the aforementioned works in its method of proof. The core of the argument, rather
than sampling from a random matrix ensemble, relies on Maurey’s empirical method [36] (see

1 The terminology is borrowed by the standard use of the term “incompressible vector” from random
matrix theory, which refers to points on the unit sphere of Rn which are far from the coordinate vectors
e1, . . . , en.

SoCG 2022



40:4 Dimension Reduction for Incompressible Subsets of ℓp

Section 2.1) which is a dimension-free way to approximate points in bounded convex subsets
of Banach spaces by convex combinations of extreme points with prescribed length. An
application of the method to the positive cone of Lp-distance matrices (the use of which in this
context is inspired by classical work of Ball [6]) equipped with the supremum norm allows us to
deduce (see Proposition 7) the conclusion of Theorem 2 under the stronger assumption that

K ≥ max
i∈{1,...,n}

∥xi∥L∞(µ). (9)

While Maurey’s empirical method is an a priori existential statement that is proven via the
probabilistic method, recent works (see [7, 17]) have focused on derandomizing its proof
for specific Banach spaces. In the setting of Theorem 2, we can use these tools to show
(see Corollary 13) that there exists a greedy algorithm which receives as input the high-
dimensional data {xi}n

i=1 and produces as output the low-dimensional points {yi}n
i=1. Finally,

using a suitable change of measure [32] (see Section 2.3) we are able to relax the stronger
assumption (9) to that of K-incompressibility and derive the conclusion of Theorem 2. Finally,
we emphasize that, in contrast to most of the dimension reduction algorithms (randomized or
not) discussed earlier, the one which gives Theorem 2 is not oblivious but is rather tailored
to the specific configuration of points {xi}n

i=1 as it relies on the use of Maurey’s empirical
method.

1.4 ε-isometric dimension reduction
Given two moduli ω, Ω : [0, ∞) → [0, ∞), we say (following [33]) that a Banach space
(E, ∥ · ∥E) admits metric dimension reduction with moduli (ω, Ω) if for any n ∈ N there exists
kn = kn(E) ∈ N with kn = no(1) as n → ∞ such that for any x1, . . . , xn ∈ E, there exists a
subspace F of E with dimF ≤ kn and y1, . . . , yn ∈ F satisfying

∀ i, j ∈ {1, . . . , n}, ω(∥xi − xj∥E) ≤ ∥yi − yj∥E ≤ Ω(∥xi − xj∥E). (10)

In view of Theorem 2, we would be interested in formulating a suitable notion of dimension
reduction via ε-isometric embeddings which would be fitting to the moduli appearing in (7).
▶ Remark 3. Let a, b ∈ (0, ∞), suppose that ω, Ω : [0, ∞) → [0, ∞) are two moduli satisfying

lim
t→∞

ω(t)
t

= a and lim
t→∞

Ω(t)
t

= b (11)

and that the Banach space (E, ∥ · ∥E) admits metric dimension reduction with moduli (ω, Ω).
Fix n ∈ N and x1, . . . , xn ∈ E. Applying the assumption (10) to the points sx1, . . . , sxn

where s >> 1, we deduce that there exist points y1(s), . . . , yn(s) in a kn-dimensional subspace
F (s) of E such that

∀ i, j ∈ {1, . . . , n}, ω(s∥xi − xj∥E) ≤
∥∥yi(s) − yj(s)

∥∥
E

≤ Ω(s∥xi − xj∥E). (12)

For any η ∈ (0, 1), we can then choose s large enough (as a function of η and the xi) such
that

∀ i, j ∈ {1, . . . , n}, (1 − η)a∥xi − xj∥E ≤ ∥yi(s) − yj(s)∥E

s
≤ (1 + η)b∥xi − xj∥E . (13)

Therefore, we conclude that E also admits bi-Lipschitz dimension reduction (with distor-
tion b/a).



A. Eskenazis 40:5

This simple scaling argument suggests that any reasonable notion of ε-isometric dimension
reduction can differ from the corresponding bi-Lipschitz theory only in small scales, thus
motivating the following definition. We denote by BE the closed unit ball of a normed space
(E, ∥ · ∥E), that is BE = {x ∈ E : ∥x∥E ≤ 1}.

▶ Definition 4 (ε-isometric dimension reduction). Fix ε ∈ (0, 1), r ∈ (0, ∞) and let (E, ∥ · ∥E)
be an infinite-dimensional Banach space. We say that BE admits ε-isometric dimension
reduction with power r if for every n ∈ N there exists kn = kr

n(E, ε) ∈ N with kn = no(1) as
n → ∞ for which the following condition holds. For every n points x1, . . . , xn ∈ BE there
exists a linear subspace F of E with dimF ≤ kn and points y1, . . . , yn ∈ F satisfying

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥r
E − ε ≤ ∥yi − yj∥r

E ≤ ∥xi − xj∥r
E + ε. (14)

The fact that the whole space ℓ2 admits ε-isometric dimension reduction with r = 1 and
corresponding target dimension k1

n(ℓ2, ε) ≲ log n
ε2 follows from the additive version of the

Johnson–Lindenstrauss lemma, first proven by Liaw, Mehrabian, Plan and Vershynin [29]
(see also [42, Proposition 9.3.2]). In Corollary 9 we obtain the same conclusion for its unit
ball Bℓ2 with a slightly weaker bound for the target dimension using our Theorem 2.

It is clear from the definitions that if a Banach space E admits bi-Lipschitz dimension
reduction with distortion 1+ε

1−ε , where ε ∈ (0, 1), then BE admits 2ε-isometric dimension
reduction with power r = 1. The ε-isometric analogue of Question 1 deserves further
investigation.

▶ Question 5. For which values of p ̸= 2 does Bℓp
admit ε-isometric dimension reduction?

Even though the K-incompressibility assumption of Theorem 2 may a priori seem
restrictive, it is satisfied for most configurations of points in Bℓp

. Suppose that n, N ∈ N
such that N is polynomial2 in n. Then, standard considerations (see Remark 10) show
that with high probability, a uniformly chosen n-point subset S of N1/pBℓN

p
is O(log n)1/p-

incompressible.

1.5 ε-isometric dimension reduction by linear maps
A close inspection of the proof of Theorem 2 (see Remark 12) reveals that in fact the
low-dimensional points {yi}n

i=1 can be realized as images of the initial data {xi}n
i=1 under a

carefully chosen linear operator. Nevertheless, we will show that for any p ≠ 2 and n large
enough, there exist an n-point subset of Bℓp

whose image under any fixed linear ε-isometric
embedding has rank which is linear in n. In fact, we shall prove the following more general
statement which refines a theorem that Lee, Mendel and Naor proved in [27] for bi-Lipschitz
embeddings.

▶ Theorem 6 (Impossibility of linear dimension reduction in Bℓp
). Fix p ̸= 2 and two moduli

ω, Ω : [0, ∞) → [0, ∞) with ω(1) > 0. For arbitrarily large n ∈ N, there exists an n-point
subset Sn,p of Bℓp

such that the following holds. If T : span(Sn,p) → ℓd
p is a linear operator

satisfying

∀ x, y ∈ Sn,p, ω(∥x − y∥ℓp) ≤ ∥Tx − Ty∥ℓd
p

≤ Ω(∥x − y∥ℓp), (15)

then d ≥
(

ω(1)
Ω(1)

) 2p
|p−2| · n−1

2 .

2 This relation between the parameters n, N is natural as any n-point subset of ℓp embeds isometrically
in ℓN

p with N =
(

n
2

)
+ 1 by Ball’s isometric embedding theorem [6].

SoCG 2022



40:6 Dimension Reduction for Incompressible Subsets of ℓp

2 Proof of Theorem 2

We say that a normed space (E, ∥ · ∥E) has Rademacher type p if there exists a universal
constant T ∈ (0, ∞) such that for every n ∈ N and every x1, . . . , xn ∈ E,

1
2n

∑
ε∈{−1,1}n

∥∥∥ n∑
i=1

εixi

∥∥∥p

E
≤ T p

n∑
i=1

∥xi∥p
E . (16)

The least constant T such that (16) is satisfied is denoted by Tp(E). A standard symmetriza-
tion argument (see [26, Proposition 9.11]) shows that if X1, . . . , Xn are independent E-valued
random variables with E[Xi] = 0 for every i ∈ {1, . . . , n}, then

E
∥∥∥ n∑

i=1
Xi

∥∥∥p

E
≤

(
2Tp(E)

)p
n∑

i=1
E∥Xi∥p

E . (17)

2.1 Maurey’s empirical method and its algorithmic counterparts

A classical theorem of Carathéodory asserts than if T is a subset of Rm, then any point
z ∈ conv(T) can be expressed as a convex combination of at most m+1 points of T. Maurey’s
empirical method is a powerful dimension-free approximate version of Carathéodory’s theorem,
first popularized in [36], that has numerous applications in geometry and theoretical computer
science. Let (E, ∥ · ∥E) be a Banach space, consider a bounded subset T of E and fix
z ∈ conv(T). Since z is a convex combination of elements of T, there exists m ∈ N,
λ1, . . . , λm ∈ (0, ∞) and t1, . . . , tm ∈ T such that

m∑
k=1

λk = 1 and z =
m∑

k=1
λktk. (18)

Let X be an E-valued discrete random variable with P{X = tk} = λk for all k ∈ {1, . . . , m}
and consider X1, . . . , Xd i.i.d. copies of X. Then, conditions (18) ensure that X is well
defined and E[X] = z. Therefore, applying the Rademacher type condition (17) to the
centered random variables {Xs − z}d

s=1 and normalizing, we get

E
∥∥∥1

d

d∑
s=1

Xs − z
∥∥∥p

E
≤ (2Tp(E))p

dp−1 E∥X − z∥p
E . (19)

Since X takes values in T, if T ⊆ RBE , we then deduce that there exist x1, . . . , xd ∈ T such
that

∥∥∥1
d

d∑
s=1

xs − z
∥∥∥

E
≤ 4RTp(E)

d1−1/p
. (20)

While the above argument is probabilistic, recent works have focused on derandomizing
Maurey’s sampling lemma for smaller classes of Banach spaces, thus constructing deterministic
algorithms which output the empirical approximation x1+...+xd

d of z. The first result in this
direction is due to Barman [7] who treated the case that E is an Lr(µ)-space, r ∈ (1, ∞).
This assumption was recently generalized by Ivanov in [17] who built a greedy algorithm
which constructs the desired empirical mean in an arbitrary p-uniformly smooth space.



A. Eskenazis 40:7

2.2 Dimension reduction in Lp(µ) for uniformly bounded vectors
With Maurey’s empirical method at hand, we are ready to proceed to the first part of the
proof of Theorem 2, namely the ε-isometric dimension reduction property of Lp(µ) under
the strong assumption that the given point set consists of functions which are bounded in
L∞(µ).

▶ Proposition 7. Fix p ∈ [1, ∞), n ∈ N and let {xi}n
i=1 be a family of vectors in Lp(µ) for

some probability measure µ. Denote by L = maxi∈{1,...,n} ∥xi∥L∞(µ) ∈ [0, ∞]. Then for every
ε ∈ (0, 1), there exists d ∈ N with d ≤ 32e2(2L)2p log n

ε2 and y1, . . . , yn ∈ ℓd
p such that

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥p
Lp(µ) − ε ≤ ∥yi − yj∥p

ℓd
p

≤ ∥xi − xj∥p
Lp(µ) + ε. (21)

Proof. We shall identify ℓ
(n

2)
∞ with the vector space of all symmetric n × n real matrices with

0 on the diagonal equipped with the supremum norm. Consider the set

Cp =
{(

∥zi−zj∥p
Lp(ρ)

)
i,j=1,...,n

: ρ is a probability measure and z1, . . . , zn ∈ Lp(ρ)
}

⊆ ℓ
(n

2)
∞ .

It is obvious that Cp is a cone in the sense that Cp = λCp for every λ > 0 but moreover Cp

is convex. To see this, consider A, B ∈ Cp, probability spaces (Ω1, ρ1), (Ω2, ρ2) and vectors
{zi}n

i=1, {wi}n
i=1 in Lp(ρ1) and Lp(ρ2) respectively such that

∀ i, j ∈ {1, . . . , n}, Aij = ∥zi − zj∥p
Lp(ρ1) and Bij = ∥wi − wj∥p

Lp(ρ2). (22)

Fix λ ∈ (0, 1) and consider the disjoint union Ω1 ⊔ Ω2 of Ω1 and Ω2 equipped with the
probability measure ρ(λ) = λρ1 + (1 − λ)ρ2. Then, by (22) the functions ζi : Ω1 ⊔ Ω2 → R
given by ζi|Ω1 = zi and ζi|Ω2 = wi, where i ∈ {1, . . . , n}, belong in Lp(ρ(λ)) and for every
i, j ∈ {1, . . . , n} satisfy the conditions

∥ζi − ζj∥p
Lp(ρ(λ)) = λ∥zi − zj∥p

Lp(ρ1) + (1 − λ)∥wi − wj∥p
Lp(ρ2) = λAij + (1 − λ)Bij , (23)

which ensure that λA + (1 − λ)B ∈ Cp, making Cp a convex cone. Consider the embedding
M : Lp(µ)n → Cp mapping a vector z = (z1, . . . , zn) to the corresponding distance matrix,
i.e.

∀ i, j ∈ {1, . . . , n}, M(z)ij = ∥zi − zj∥p
Lp(µ). (24)

Without loss of generality we will assume that the given points x1, . . . , xn ∈ Lp(µ) are simple
functions with ∥xi∥L∞(µ) ≤ L. Let {S1, . . . , Sm} be a partition of the underlying measure
space such that each xi is constant on each Sk and suppose that xi|Sk

= a(i, k) ∈ [−L, L] for
i ∈ {1, . . . , n} and k ∈ {1, . . . , m}. Then, for every i, j ∈ {1, . . . , n}, we have

M(x)ij =
m∑

k=1

∫
Sk

|xi −xj |p dµ =
m∑

k=1
µ(Sk) ·

∣∣a(i, k)−a(j, k)
∣∣p =

m∑
k=1

µ(Sk) M
(
y(k)

)
ij

, (25)

where y(k) def= (a(1, k), . . . , a(n, k)) ∈ Lp(µ)n is a vector whose components are constant
functions. As µ is a probability measure and {S1, . . . , Sm} is a partition, identity (25) implies
that

M(x) ∈ conv
{
M

(
y(k)

)
: k ∈ {1, . . . , m}

}
⊆ ℓ

(n
2)

∞ . (26)

SoCG 2022



40:8 Dimension Reduction for Incompressible Subsets of ℓp

Observe that since a(i, k) ∈ [−L, L] for every i ∈ {1, . . . , n} and k ∈ {1, . . . , m}, we have

∀ k ∈ {1, . . . , m},
∥∥M(

y(k)
)∥∥

ℓ
(n

2)
∞

= max
i,j∈{1,...,n}

∣∣a(i, k) − a(j, k)
∣∣p ≤ (2L)p. (27)

Moreover, ℓ
(n

2)
∞ is e-isomorphic to ℓ

(n
2)

pn where pn = log
(

n
2
)
. It is well-known (see [26, Chapter 9])

that T2(ℓp) ≤
√

p − 1 for every p ≥ 2 and thus

T2
(
ℓ
(n

2)
∞

)
≤ e

√
pn − 1 <

√
2e2 log n. (28)

Applying Maurey’s sampling lemma (Section 2.1) while taking into account (27) and (28),
we deduce that for every d ≥ 1 there exist k1, . . . , kd ∈ {1, . . . , m} such that∥∥∥1

d

d∑
s=1

M
(
y(ks)

)
− M(x)

∥∥∥
ℓ
(n

2)
∞

≤ 2p+ 5
2 eLp

√
log n√

d
. (29)

Therefore, if ε ∈ (0, 1) is such that d ≥ 32e2(2L)2p log n
ε2 we then have

∀ i, j ∈ {1, . . . , n},
∣∣∣1
d

d∑
s=1

∣∣a(i, ks) − a(j, ks)
∣∣p − ∥xi − xj∥p

Lp(µ)

∣∣∣ ≤ ε. (30)

Finally, consider for each i ∈ {1, . . . , n} a vector yi = (yi(1), . . . , yi(d)) ∈ ℓd
p given by

∀ s ∈ {1, . . . , d}, yi(s) = a(i, ks)
d1/p

(31)

and notice that (30) can be equivalently rewritten as

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥p
Lp(µ) − ε ≤ ∥yi − yj∥p

ℓd
p

≤ ∥xi − xj∥p
Lp(µ) + ε, (32)

concluding the proof of the proposition. ◀

▶ Remark 8. Following a comment by an anonymous referee, we point out that the existence
of k1, . . . , kd satisfying (29) can be proven without relying on the type estimate T2(ℓm

∞) =
O(

√
log m). Indeed, this follows by sampling k1, . . . , kd independently from {1, . . . , m} with

P{kj = r} = µ(Sr) for all j, r and applying Hoeffding’s inequality on each coordinate of the
matrix 1

d

∑d
s=1 M

(
y(ks)

)
− M(x). Then, the conclusion follows by applying a union bound.

Moreover (in relation to Corollary 13), this argument can be derandomized by a classical
potential-following algorithm, see [41, Lecture 4].

The additive version of the Johnson–Lindenstrauss lemma, first observed in [29] as a
consequence of a deep matrix deviation inequality (see also [42, Chapter 9]), asserts that for
every n points x1, . . . , xn in a Hilbert space H and every ε ∈ (0, 1), there exists d ≤ C log n

ε2

and points y1, . . . , yn ∈ ℓd
2 such that

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥H − ε ≤ ∥yi − yj∥ℓd
2

≤ ∥xi − xj∥H + ε, (33)

where C ∈ (0, ∞) is a universal constant. We will now observe that the spherical symmetry of
Bℓ2 allows us to deduce a similar conclusion for points in BH by removing the incompressibility
assumption from Proposition 7 when p = 2. We shall use the standard notation LN

p for the
space Lp(µN ) where µN is the normalized counting measure on the finite set {1, . . . , N},
that is

∀ a = (a1, . . . , aN ) ∈ RN , ∥a∥LN
p

def=
( 1

N

N∑
i=1

|ai|p
)1/p

. (34)

Observe that for 0 < p < q ≤ ∞, we have BLN
q

⊆ BLN
p

.



A. Eskenazis 40:9

▶ Corollary 9. There exists a universal constant C ∈ (0, ∞) such that the following statement
holds. Fix n ∈ N and let {xi}n

i=1 be a family of vectors in BH for some Hilbert space H.
Then for every ε ∈ (0, 1), there exists d ∈ N with d ≤ C(log n)3

ε4 and points y1, . . . , yn ∈ ℓd
2

such that

∀ i, j ∈ {1, . . . , n}, ∥xi − xj∥H − ε ≤ ∥yi − yj∥ℓd
2

≤ ∥xi − xj∥H + ε. (35)

Before proceeding to the derivation of (35) we emphasize that since the given points
{xi}n

i=1 belong in BH, Corollary 9 is formally weaker than the Johnson–Lindenstrauss lemma.
However we include it here since it differs from [20] in that the low-dimensional point set
{yi}n

i=1 is not obtained as an image of {xi}n
i=1 under a typical low-rank matrix from a specific

ensemble.

Proof of Corollary 9. Since any n-point subset {x1, . . . , xn} of H embeds linearly and iso-
metrically in Ln

2 , we assume that x1, . . . , xn ∈ BLn
2
. We will need the following claim.

▷ Claim. Suppose that X1, . . . , Xn are (not necessarily independent) random vectors, each
uniformly distributed on the unit sphere Sn−1 of Ln

2 . Then, for some universal constant
S ∈ (0, ∞),

E
[

max
i∈{1,...,n}

∥Xi∥Ln
∞

]
≤ S

√
log n, (36)

Proof. By a standard estimate of Schechtman and Zinn [40, Theorem 3], for a uniformly
distributed random vector X on the unit sphere Sn−1 of Ln

2 , we have

∀ t ≥ γ1
√

log n, P
{

∥X∥Ln
∞

> t
}

≤ e−γ2t2
(37)

for some absolute constants γ1, γ2 ∈ (0, ∞). Let W
def= maxi∈{1,...,n} ∥Xi∥Ln

∞
and notice that

∀ K ∈ (γ1, ∞), E[W ] =
∫ ∞

0
P{W > t} dt ≤ K

√
log n +

∫ ∞

K
√

log n

P{W > t} dt. (38)

By the union bound, we have

∀ t > 0, P{W > t} ≤
n∑

i=1
P{Xi > t} = nP{X1 > t}. (39)

Combining (38) and (39), we therefore get

E[W ] ≤ K
√

log n + n

∫
K

√
log n

P{X1 > t} dt
(37)
≤ K

√
log n + n

∫ ∞

K
√

log n

e−γ2t2
dt

= K
√

log n + n
√

log n

∫ ∞

K

n−γ2u2
du = K

√
log n +

√
log n

∫ ∞

K

n1−γ2u2
du. (40)

Choosing K > γ1 such that K2γ2 > 1, the exponent in the last integrand becomes negative,
thus

E[W ] ≤ K
√

log n + 2
√

log n

∫ ∞

K

2−γ2u2
du ≤ S

√
log n (41)

for a large enough constant S ∈ (0, ∞) and the claim follows. ◁

SoCG 2022



40:10 Dimension Reduction for Incompressible Subsets of ℓp

Now let U ∈ O(n) be a uniformly chosen random rotation on Rn. The aforementioned
claim shows that since ∥xi∥Ln

2
≤ 1 for every i ∈ {1, . . . , n}, writing x̂i = xi

∥xi∥Ln
2

, we have the
estimate

E
[

max
i∈{1,...,n}

∥Uxi∥Ln
∞

]
≤ E

[
max

i∈{1,...,n}
∥Ux̂i∥Ln

∞

]
≤ S

√
log n. (42)

Therefore, by (42) and Proposition 7 there exists a constant C ∈ (0, ∞) and a rotation
U ∈ O(n) such that for every ε ∈ (0, 1) there exists d ≤ C(log n)3

ε4 and points y1, . . . , yn ∈ ℓd
2

for which

∀ i, j ∈ {1, . . . , n}, ∥Uxi − Uxj∥2
Ln

2
− ε2 ≤ ∥yi − yj∥2

ℓd
2

≤ ∥Uxi − Uxj∥2
Ln

2
+ ε2. (43)

Since ∥Ua − Ub∥Ln
2

= ∥a − b∥Ln
2

for every a, b ∈ Ln
2 , the conclusion follows by the elementary

inequality |α − β| ≤
√

|α2 − β2| which holds for every positive numbers α, β ∈ (0, ∞). ◀

▶ Remark 10. Fix p ∈ [1, ∞). The isometric embedding theorem of Ball [6] asserts that any
n-point subset of ℓp admits an isometric embedding into ℓN

p where N =
(

n
2
)

+ 1. Suppose,
more generally, that n, N ∈ N are such that N is polynomial in n. Considerations in
the spirit of the proof of Corollary 9 (e.g. relying on [40]) then show that if x1, . . . , xn

are independent uniformly random points in BLN
p

, then the random set {x1, . . . , xn} is
O(log n)1/p-incompressible. In other words, incompressibility is a generic property of random
n-point subsets of BLN

p
. On the other hand, a typical n-point subset of BLN

p
is known to

be approximately a simplex due to work of Arias-de-Reyna, Ball and Villa [4] and so, in
particular, it can be bi-Lipschitzly embedded in O(log n) dimensions.

2.3 Factorization and proof of Theorem 2
Observe that Proposition 7 is rather non-canonical as the conclusion depends on the pairwise
distances between the points {xi}n

i=1 in Lp(µ) whereas the bound on the dimension depends
on L = maxi ∥xi∥L∞(µ). In order to deduce Theorem 2 from this (a priori weaker) statement
we shall leverage the fact that Proposition 7 holds for any probability measure µ by optimizing
this parameter L over all lattice-isomorphic images of {xi}n

i=1. The optimal such change
of measure which allows us to replace L by ∥ maxi |xi|∥Lp(µ) is a special case of a classical
factorization theorem of Maurey (see [32] or [22, Theorem 5] for the general statement),
whose short proof we include for completeness.

▶ Proposition 11. Fix n ∈ N, p ∈ (0, ∞) and a probability space (Ω, µ). For every points
x1, . . . , xn ∈ Lp(µ), there exists a nonnegative density function f : Ω → R+ supported on the
support of maxi |xi| such that if ν is the probability measure on Ω given by dν

dµ = f , then

max
i∈{1,...,n}

∥∥xif
−1/p

∥∥
L∞(ν) ≤

∥∥ max
i∈{1,...,n}

|xi|
∥∥

Lp(µ). (44)

Proof. Let V = supp(maxi |xi|) ⊆ Ω and define the change of measure f as

∀ ω ∈ Ω, f(ω) def=
maxi∈{1,...,n} |xi(ω)|p∫

Ω maxi∈{1,...,n} |xi(θ)|p dθ
. (45)

Then, (44) is elementary to check. ◀

We are now ready to complete the proof of Theorem 2.



A. Eskenazis 40:11

Proof of Theorem 2. Fix a K-incompressible family of vectors x1, . . . , xn ∈ Lp(Ω, µ) and
let V = supp(maxi |xi|) ⊆ Ω. Denote by f : Ω → R+ the change of density from Proposition
11. If dν

dµ = f , then the linear operator T : Lp(V, µ) → Lp(Ω, ν) given by Tg = f−1/pg is
(trivially) a linear isometry. Therefore, Proposition 7 and (44) show that there exists d ∈ N
with d ≤ 32e2(2K)2p log n

ε2 and points y1, . . . , yn ∈ ℓd
p such that the condition

∥xi − xj∥p
Lp(µ) − ε = ∥Txi − Txj∥p

Lp(ν) − ε

≤ ∥yi − yj∥p
ℓd

p
≤ ∥Txi − Txj∥p

Lp(ν) + ε = ∥xi − xj∥p
Lp(µ) + ε, (46)

is satisfied for every i, j ∈ {1, . . . , n}. This concludes the proof of Theorem 2. ◀

▶ Remark 12. A careful inspection of the proof of Theorem 2 reveals that the low-dimensional
points {yi}n

i=1 can be obtained as images of the given points {xi}n
i=1 under a linear trans-

formation. Indeed, starting from a K-incompressible family of points {xi}n
i=1 in Lp(Ω, µ),

we use Proposition 11 to find a change of measure T : Lp(V, µ) → Lp(Ω, ν) such that
{Txi}n

i=1 satisfy the stronger assumption of Proposition 7. Then, for some d ∈ N with
d ≤ 32e2(2K)2p log n

ε2 we find pairwise disjoint measurable subsets S1, . . . , Sd of Ω, each with
positive measure, such that if S : Lp(Ω, ν) → ℓd

p is the linear map

∀ z ∈ Lp(Ω, ν), Sz
def= 1

d1/p

( 1
µ(S1)

∫
S1

z dν, . . . ,
1

µ(Sd)

∫
Sd

z dν
)

∈ ℓd
p, (47)

then the points {yi}n
i=1 = {(S ◦ T )xi}n

i=1 ⊆ ℓd
p satisfy the desired conclusion (7).

We conclude this section by observing that the argument leading to Theorem 2 is constructive.

▶ Corollary 13. In the setting of Theorem 2, there exists a greedy algorithm which receives
as input the high-dimensional points {xi}n

i=1 and produces as output the low-dimensional
points {yi}n

i=1.

Proof. As the density (45) is explicitly defined, the linear operator T : Lp(V, µ) → Lp(Ω, ν)
can also be efficiently constructed. On the other hand, in order to construct the operator
S defined by (47) one needs to find the corresponding partition {S1, . . . , Sd} and this was
achieved in Proposition 7 via an application of Maurey’s sampling lemma to the cone Cp ⊆ ℓN

∞
where N =

(
n
2
)
. As ℓN

∞ is e-isomorphic to the 2-uniformly smooth space ℓN
log N , Ivanov’s

result from [17] implies that the construction can be implemented by a greedy algorithm. ◀

3 Proof of Theorem 6

In this section we prove Theorem 6. The constructed subset of Bℓp
which does not embed

linearly into ℓd
p for small d is a slight modification of the one considered in [27].

Proof of Theorem 6. Fix m ∈ N and denote by {wi}2m

i=1 the rows of the 2m × 2m Walsh
matrix and by {ei}2m

i=1 the coordinate basis vectors of R2m . Consider the n-point set

Sn,p = {0} ∪ {e1, . . . , e2m} ∪
{

w1
2m/p , . . . , w2m

2m/p

}
⊆ Bℓ2m

p
(48)

where n = 2m+1 + 1 and suppose that T : ℓ2m

p → ℓd
p is a linear operator such that

∀ x, y ∈ Sn,p, ω(∥x − y∥ℓ2m
p

) ≤ ∥Tx − Ty∥ℓd
p

≤ Ω(∥x − y∥ℓ2m
p

). (49)

SoCG 2022



40:12 Dimension Reduction for Incompressible Subsets of ℓp

Assume first that 1 ≤ p < 2. If we write wi =
∑2m

j=1 wi(j)ej then by orthogonality of {wi}2m

i=1,

2m∑
i=1

∥Twi∥2
ℓd

2
=

2m∑
i=1

∥∥∥ 2m∑
j=1

wi(j)Tej

∥∥∥2

ℓd
2

=
2m∑

j,k=1
⟨wj , wk⟩⟨Tej , T ek⟩ = 2m

2m∑
j=1

∥Tej∥2
ℓd

2
. (50)

By assumption (49) on T , we have

∀ j ∈ {1, . . . , 2m}, ∥Tej∥2
ℓd

2
≤ ∥Tej∥2

ℓd
p

≤ Ω(1)2 (51)

and

∀ j ∈ {1, . . . , 2m}, ∥Twj∥2
ℓd

2
≥ 2

2m
p d− 2−p

p

∥∥T
( wj

2m/p

)∥∥2
ℓd

p
≥ 2

2m
p d− 2−p

p ω(1)2. (52)

Combining (50), (51) and (52) we deduce that

2m(1+ 2
p )d− 2−p

p ω(1)2 ≤ 4mΩ(1)2, (53)

which is equivalent to d ≥
(

ω(1)
Ω(1)

) 2p
2−p 2m =

(
ω(1)
Ω(1)

) 2p
|p−2| · n−1

2 . The case p > 2 is treated
similarly. ◀

References
1 D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary

coins. J. Comput. System Sci., 66(4):671–687, 2003. Special issue on PODS 2001 (Santa
Barbara, CA). doi:10.1016/S0022-0000(03)00025-4.

2 N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest
neighbors. SIAM J. Comput., 39(1):302–322, 2009. doi:10.1137/060673096.

3 N. Ailon and E. Liberty. An almost optimal unrestricted fast Johnson-Lindenstrauss transform.
ACM Trans. Algorithms, 9(3):Art. 21, 12, 2013. doi:10.1145/2483699.2483701.

4 J. Arias-de Reyna, K. Ball, and R. Villa. Concentration of the distance in finite-dimensional
normed spaces. Mathematika, 45(2):245–252, 1998. doi:10.1112/S0025579300014182.

5 R. I. Arriaga and S. Vempala. An algorithmic theory of learning: robust concepts and random
projection. In 40th Annual Symposium on Foundations of Computer Science (New York,
1999), pages 616–623. IEEE Computer Soc., Los Alamitos, CA, 1999. doi:10.1109/SFFCS.
1999.814637.

6 K. Ball. Isometric embedding in lp-spaces. European J. Combin., 11(4):305–311, 1990.
doi:10.1016/S0195-6698(13)80131-X.

7 S. Barman. Approximating Nash equilibria and dense subgraphs via an approximate version of
Carathéodory’s theorem. SIAM J. Comput., 47(3):960–981, 2018. doi:10.1137/15M1050574.

8 Y. Bartal and L.-A. Gottlieb. Approximate nearest neighbor search for ℓp-spaces (2 < p < ∞)
via embeddings. In LATIN 2018: Theoretical informatics, volume 10807 of Lecture Notes in
Comput. Sci., pages 120–133. Springer, Cham, 2018. doi:10.1007/978-3-319-77404-6_1.

9 J. Bourgain, S. Dirksen, and J. Nelson. Toward a unified theory of sparse dimensionality
reduction in Euclidean space. Geom. Funct. Anal., 25(4):1009–1088, 2015. doi:10.1007/
s00039-015-0332-9.

10 B. Brinkman and M. Charikar. On the impossibility of dimension reduction in l1. J. ACM,
52(5):766–788, 2005. doi:10.1145/1089023.1089026.

11 S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss.
Random Structures Algorithms, 22(1):60–65, 2003. doi:10.1002/rsa.10073.

12 S. Dirksen. Dimensionality reduction with subgaussian matrices: a unified theory. Found.
Comput. Math., 16(5):1367–1396, 2016. doi:10.1007/s10208-015-9280-x.

https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1137/060673096
https://doi.org/10.1145/2483699.2483701
https://doi.org/10.1112/S0025579300014182
https://doi.org/10.1109/SFFCS.1999.814637
https://doi.org/10.1109/SFFCS.1999.814637
https://doi.org/10.1016/S0195-6698(13)80131-X
https://doi.org/10.1137/15M1050574
https://doi.org/10.1007/978-3-319-77404-6_1
https://doi.org/10.1007/s00039-015-0332-9
https://doi.org/10.1007/s00039-015-0332-9
https://doi.org/10.1145/1089023.1089026
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1007/s10208-015-9280-x


A. Eskenazis 40:13

13 P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some graphs.
J. Combin. Theory Ser. B, 44(3):355–362, 1988. doi:10.1016/0095-8956(88)90043-3.

14 Y. Gordon. On Milman’s inequality and random subspaces which escape through a mesh in
Rn. In Geometric aspects of functional analysis (1986/87), volume 1317 of Lecture Notes in
Math., pages 84–106. Springer, Berlin, 1988. doi:10.1007/BFb0081737.

15 P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In STOC ’98 (Dallas, TX), pages 604–613. ACM, New York, 1999.

16 P. Indyk and A. Naor. Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms,
3(3):Art. 31, 12, 2007. doi:10.1145/1273340.1273347.

17 G. Ivanov. Approximate Carathéodory’s Theorem in Uniformly Smooth Banach Spaces.
Discrete Comput. Geom., 66(1):273–280, 2021. doi:10.1007/s00454-019-00130-w.

18 L. Jacques. A quantized Johnson-Lindenstrauss lemma: the finding of Buffon’s needle. IEEE
Trans. Inform. Theory, 61(9):5012–5027, 2015. doi:10.1109/TIT.2015.2453355.

19 L. Jacques. Small width, low distortions: quantized random embeddings of low-complexity
sets. IEEE Trans. Inform. Theory, 63(9):5477–5495, 2017.

20 W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of
Contemp. Math., pages 189–206. Amer. Math. Soc., Providence, RI, 1984. doi:10.1090/conm/
026/737400.

21 W. B. Johnson and A. Naor. The Johnson-Lindenstrauss lemma almost characterizes
Hilbert space, but not quite. Discrete Comput. Geom., 43(3):542–553, 2010. doi:10.1007/
s00454-009-9193-z.

22 W. B. Johnson and G. Schechtman. Finite dimensional subspaces of Lp. In Handbook of
the geometry of Banach spaces, Vol. I, pages 837–870. North-Holland, Amsterdam, 2001.
doi:10.1016/S1874-5849(01)80021-8.

23 D. M. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM, 61(1):Art. 4,
23, 2014. doi:10.1145/2559902.

24 B. Klartag and S. Mendelson. Empirical processes and random projections. J. Funct. Anal.,
225(1):229–245, 2005. doi:10.1016/j.jfa.2004.10.009.

25 F. Krahmer and R. Ward. New and improved Johnson-Lindenstrauss embeddings via the
restricted isometry property. SIAM J. Math. Anal., 43(3):1269–1281, 2011. doi:10.1137/
100810447.

26 M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1991. Isoperimetry and processes. doi:10.1007/978-3-642-20212-4.

27 J. R. Lee, M. Mendel, and A. Naor. Metric structures in L1: dimension, snowflakes, and average
distortion. European J. Combin., 26(8):1180–1190, 2005. doi:10.1016/j.ejc.2004.07.002.

28 J. R. Lee and A. Naor. Embedding the diamond graph in Lp and dimension reduction in L1.
Geom. Funct. Anal., 14(4):745–747, 2004. doi:10.1007/s00039-004-0473-8.

29 C. Liaw, A. Mehrabian, Y. Plan, and R. Vershynin. A simple tool for bounding the deviation
of random matrices on geometric sets. In Geometric aspects of functional analysis, volume
2169 of Lecture Notes in Math., pages 277–299. Springer, Cham, 2017.

30 J. Matoušek. On the distortion required for embedding finite metric spaces into normed spaces.
Israel J. Math., 93:333–344, 1996. doi:10.1007/BF02761110.

31 J. Matoušek. On variants of the Johnson-Lindenstrauss lemma. Random Structures Algorithms,
33(2):142–156, 2008. doi:10.1002/rsa.20218.

32 B. Maurey. Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces
Lp. Astérisque, No. 11. Société Mathématique de France, Paris, 1974. With an English
summary.

33 A. Naor. Metric dimension reduction: a snapshot of the Ribe program. In Proceedings of
the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures,
pages 759–837. World Sci. Publ., Hackensack, NJ, 2018.

SoCG 2022

https://doi.org/10.1016/0095-8956(88)90043-3
https://doi.org/10.1007/BFb0081737
https://doi.org/10.1145/1273340.1273347
https://doi.org/10.1007/s00454-019-00130-w
https://doi.org/10.1109/TIT.2015.2453355
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1007/s00454-009-9193-z
https://doi.org/10.1007/s00454-009-9193-z
https://doi.org/10.1016/S1874-5849(01)80021-8
https://doi.org/10.1145/2559902
https://doi.org/10.1016/j.jfa.2004.10.009
https://doi.org/10.1137/100810447
https://doi.org/10.1137/100810447
https://doi.org/10.1007/978-3-642-20212-4
https://doi.org/10.1016/j.ejc.2004.07.002
https://doi.org/10.1007/s00039-004-0473-8
https://doi.org/10.1007/BF02761110
https://doi.org/10.1002/rsa.20218


40:14 Dimension Reduction for Incompressible Subsets of ℓp

34 A. Naor, G. Pisier, and G. Schechtman. Impossibility of dimension reduction in the nuclear
norm. Discrete Comput. Geom., 63(2):319–345, 2020. doi:10.1007/s00454-019-00162-2.

35 M. I. Ostrovskii. Metric embeddings, volume 49 of De Gruyter Studies in Mathematics.
De Gruyter, Berlin, 2013. Bilipschitz and coarse embeddings into Banach spaces. doi:
10.1515/9783110264012.

36 G. Pisier. Remarques sur un résultat non publié de B. Maurey. In Seminar on Functional
Analysis, 1980–1981, pages Exp. No. V, 13. École Polytech., Palaiseau, 1981.

37 Y. Plan and R. Vershynin. Dimension reduction by random hyperplane tessellations. Discrete
Comput. Geom., 51(2):438–461, 2014. doi:10.1007/s00454-013-9561-6.

38 O. Regev and T. Vidick. Bounds on dimension reduction in the nuclear norm. In Geometric
aspects of functional analysis. Vol. II, volume 2266 of Lecture Notes in Math., pages 279–299.
Springer, Cham, [2020] ©2020. doi:10.1007/978-3-030-46762-3_13.

39 G. Schechtman. Two observations regarding embedding subsets of Euclidean spaces in normed
spaces. Adv. Math., 200(1):125–135, 2006. doi:10.1016/j.aim.2004.11.003.

40 G. Schechtman and J. Zinn. On the volume of the intersection of two Ln
p balls. Proc. Amer.

Math. Soc., 110(1):217–224, 1990. doi:10.2307/2048262.
41 J. Spencer. Ten lectures on the probabilistic method, volume 64 of CBMS-NSF Regional

Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, second edition, 1994. doi:10.1137/1.9781611970074.

42 R. Vershynin. High-dimensional probability, volume 47 of Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge, 2018. An introduction
with applications in data science, With a foreword by Sara van de Geer. doi:10.1017/
9781108231596.

https://doi.org/10.1007/s00454-019-00162-2
https://doi.org/10.1515/9783110264012
https://doi.org/10.1515/9783110264012
https://doi.org/10.1007/s00454-013-9561-6
https://doi.org/10.1007/978-3-030-46762-3_13
https://doi.org/10.1016/j.aim.2004.11.003
https://doi.org/10.2307/2048262
https://doi.org/10.1137/1.9781611970074
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596


Short Topological Decompositions of
Non-Orientable Surfaces
Niloufar Fuladi #

LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Alfredo Hubard
LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Arnaud de Mesmay #

LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Abstract
We investigate short topological decompositions of non-orientable surfaces and provide algorithms
to compute them. Our main result is a polynomial-time algorithm that for any graph embedded
in a non-orientable surface computes a canonical non-orientable system of loops so that any loop
from the canonical system intersects any edge of the graph in at most 30 points. The existence of
such short canonical systems of loops was well known in the orientable case and an open problem in
the non-orientable case. Our proof techniques combine recent work of Schaefer-Štefankovič with
ideas coming from computational biology, specifically from the signed reversal distance algorithm
of Hannenhalli-Pevzner. This result confirms a special case of a conjecture of Negami on the joint
crossing number of two embeddable graphs. We also provide a correction for an argument of Negami
bounding the joint crossing number of two non-orientable graph embeddings.

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Mathematics
of computing → Graphs and surfaces

Keywords and phrases Computational topology, embedded graph, non-orientable surface, joint
crossing number, canonical system of loop, surface decomposition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.41

Related Version Full Version: https://arxiv.org/abs/2203.06659 [9]

Funding This work was partially supported by the ANR project SoS (ANR-17-CE40-0033).

Acknowledgements We are grateful to Marcus Schaefer and Daniel Štefankovič for providing us the
full version of [25], to Francis Lazarus for insightful discussions, and to the anonymous reviewers for
very helpful comments.

1 Introduction

Decomposing a surface along a graph or a curve is a standard way to simplify its topology. The
classification of surfaces and classical tools to compute both homology groups and fundamental
groups typically rely on such topological decompositions, which are also important in meshing
and 3D-modeling (see for example [27]). Surfaces often come with extra structure which
can be modeled by an embedded graph. Decomposing such a surface efficiently then means
finding a graph that intersects the original graph transversely and that does not intersect the
embedded graph too much but nevertheless carries the topological complexity of the surface,
as is done for example in [18] or [8]. Such decompositions also appear in algorithm design:
often, to generalize results on planar graph to graphs embedded on surfaces, it is enough to
find a decomposition that cuts open the surface into a disk, then solve the resulting planar
instance and stitch back the solution, see, e.g., [4, 7, 18]. Sometimes it is important that the
cut graph is canonical in some way, e.g. in order to compute a homeomorphism between two
surfaces, one cuts them into disks, puts these disks in correspondence, and glues back the
surfaces. This works only if the cut graphs have the same combinatorial structure.

© Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niloufar.fuladi@aol.com
mailto:arnaud.de-mesmay@univ-eiffel.fr
https://doi.org/10.4230/LIPIcs.SoCG.2022.41
https://arxiv.org/abs/2203.06659
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


41:2 Short Topological Decompositions of Non-Orientable Surfaces

Lazarus, Pocchiola, Vegter and Verroust [18] (see also [17]) were the first to design
an algorithm that finds, for any graph G embedded in a closed orientable surface S a
canonical system of loops H such that no edge of H intersects1 any edge of G more than
a constant number of times. Here, by a canonical system of loops we mean a one-vertex
and one-face embedded graph in which the cyclic ordering of the edges around the vertex is
a1b1a−1

1 b−1
1 . . . agbga−1

g b−1
g . Such a decomposition is an instance of the joint crossing number

problem. More precisely, consider a pair of graphs G1 and G2 embedded on a surface S of
genus g and define the joint crossing number as the minimal number of crossings between
h(G1) and G2 over all the homeomorphisms h : S → S. This quantity was introduced by
Negami [22] who made the following conjecture:

▶ Conjecture 1. There exists a universal constant C such that for any pair of graphs G1
and G2 embedded on a surface S, the joint crossing number is at most C|E(G1)||E(G2)|.

Furthermore, he proved an upper bound of Cg|E(G1)||E(G2)|. His conjecture has been
investigated further [1, 15, 23] and variants of this problem have appeared in works with
applications as diverse as finding explicit bounds for graph minors [10] or designing an
algorithm for the embeddability of simplicial complexes into R3 [19].

In the non-orientable case, no instance of Negami’s conjecture seem to be known. Even if
G1 is the non-orientable canonical system of loops, that is, a system of one-sided loops with
the cyclic ordering a1a1a2a2 . . . agag around the vertex, the best known bound is O(g|E(G2)|)
crossings for each loop (see [17]), which matches Negami’s bound. Non-orientable surfaces
have been often somehow neglected in computational topology, but there are many reasons
to want to correct this: a random surface that arises from pasting a set of polygons along
their edges is non-orientable with overwhelming probability, they appear as configuration
spaces in diverse contexts [11, 26], and insights garnered from non-orientable surfaces can
sometimes also be applied to the orientable ones; see for example [24]. Furthermore, the
orientable genus of a graph can be arbitrarily larger than its non-orientable genus, while the
reverse does not happen (see Lemma 7).

Our results. In this article, we initiate a study of short topological decompositions on non-
orientable surfaces. We first show that the proof of the aforementioned result of Negami [22]
has a minor flaw in the non-orientable case, we provide a counter-example to the proof
technique and an alternative proof based on different techniques.

▶ Theorem 2. Let S be a non-orientable surface of genus g ≥ 1 and G1 and G2 be two
graphs embedded on S. Then there exists a homeomorphism h such that any edge of h(G1)
crosses each edge of G2 at most O(g) times. In particular, the total number of crossings
between h(G1) and G2 is O(g|E(G1)||E(G2)|).

Then our main result is the following theorem providing, to the best of our knowledge, the
first known case of a short topological decomposition into a disk for non-orientable surfaces.

▶ Theorem 3. There exists a polynomial time algorithm that given a graph cellularly embedded
on a non-orientable surface computes a non-orientable canonical system of loops such that
each loop in the system intersects any edge of the graph in at most 30 points.

1 Throughout the article, we decompose surface-embedded graphs by cutting them along embedded graphs
which are transverse to the original graph, and count the number of intersections. This is equivalent to
the primal setting studied in, e.g., Lazarus, Pocchiola, Vegter and Verroust [18] via graph duality.



N. Fuladi, A. Hubard, and A. de Mesmay 41:3

Figure 1 From left to right: 1) The combinatorial information of a one-vertex graph. 2) A
cross-cap drawing of this graph, with cross-caps connected to a base-point. 3) A joint drawing of
the graph and a canonical system of loops. 4) A different representation: decomposing the graph
along the canonical system of loops.

Main ideas and proof techniques. As in many similar works, the first step in most of our
results is to contract a spanning tree of the underlying graph, reducing the problems to the
setting of one-vertex graph embedded on a non-orientable surface. The combinatorics of a
one-vertex embedded graph are completely described by a rotation system, or embedding
scheme.This will be the basic object with which we work.

Then, a simple but important object that we rely on extensively is an orienting curve, i.e.,
a closed curve on a non-orientable surface such that cutting along it produces an orientable
surface. It was shown by Matoušek, Sedgwick, Tancer and Wagner [19] that given a graph
embedded on a non-orientable surface, one can compute such an orienting loop that crosses
each edge of the graph at most twice. This tool will be crucial in our corrected proof of
Theorem 2 and in our work to prove Theorem 3.

For the proof of Theorem 3, we first point out that the techniques used to prove the
orientable version in [18] incur an overhead of O(g) in the number of crossings of the resulting
curves (see [17, Theorem 4.3.9]). Instead, our proof of Theorem 3 builds on important recent
work of Schaefer and Štefankovič [25]. The foundational idea behind this work, which takes
its roots in an article of Mohar [20] on the degenerate crossing number, is to represent a graph
embedded on a non-orientable surface as a planar drawing, with a finite set of cross-caps, as
pictured in the second image of Figure 1. Schaefer and Štefankovič showed that any graph
embedded on a non-orientable surface can be represented with a cross-cap drawing so that
each edge uses each cross-cap at most twice. Our main technical contribution is to upgrade
their construction so that the cross-caps can be connected to each other so as to yield a
non-orientable canonical system of loops (Lemma 8), so that each loop intersects each edge
of the one-vertex graph in at most 30 points (see Figure 1).

The complexity of the drawings provided by the proof of Schaefer and Štefankovič increases
too fast to directly obtain a good bound by just connecting the cross-caps. Therefore, we
modify their algorithm. First, by the aforementioned techniques, we can assume that we
always have an orienting loop, which simplifies some of the steps and provides additional
structure to the inductive argument. More importantly, we show that one can impose a
certain order in which we choose the one-sided loops, as well as the separating loops, in the
inductive argument to obtain a finer control on the resulting drawing.

The order in which we choose the loops comes from a seemingly unrelated problem in
computational biology, and more precisely genome rearrangements. Given a permutation
with signatures (a bit assigned to each letter), a signed reversal consists in choosing a subword
in w, and reversing it as well as the signatures of all its letters. The signed reversal distance

SoCG 2022



41:4 Short Topological Decompositions of Non-Orientable Surfaces

Figure 2 Left: a pictorial representation of three signed reversals bringing the signed permutation
on the left to the signed permutation of the right. Right: Attaching the two permutations to a
common basepoint yields a one-vertex graph with an embedding scheme, and the signed reversals
provide a cross-cap drawing of that scheme where each loop enters each cross-cap at most once.

between two signed permutations is the minimum number of signed reversals needed to
go from one permutation to the other one. This distance, and in particular algorithms to
compute it has been intensively studied in the computational biology literature due to its
relevance for phylogenetic reconstruction (see for example [14]). A cornerstone of the theory
is the breakthrough of Hannenhalli and Pevzner [12] who provided an algorithm to compute
the signed reversal distance between two signed permutations in polynomial time (see also
the reformulation by Bergeron [2]). Now, as we illustrate in Figure 2, there is a very strong
similarity between computing the signed reversal distance between two permutations and
embedding a one-vertex graph built from these two permutations with a minimum number
of cross-caps (see also [3, 16]). Surprisingly the algorithms of Hannenhalli and Pevzner on
one side and of Schaefer and Štefankovič on the other also have strong similarities, which
we leverage for example in Lemma 22. We hope that further cross-pollination between
computational genomics and computational topology will lead to new surprises.

Due to space limitations, many proofs are omitted but can be found in the full version [9].

2 Preliminaries

We refer the reader to standard references such as Hatcher [13] and Stillwell [28] for topological
background, the book of Mohar and Thomassen for graphs on surfaces [21] and the survey of
Colin de Verdière [5] for topological algorithms for embedded graphs.

Surfaces, curves and embedded graphs. We assume working knowledge with the classifi-
cation of surfaces. By the genus of a surface, we mean the orientable genus for an orientable
surface, which we denote by M , and the non-orientable genus for a non-orientable surface,
which we denote by N . The Euler genus is twice the orientable genus for orientable surfaces
eg(M) = 2g(M), and equals the non-orientable genus for non-orientable ones eg(N) = g(N).

We call a closed curve on a surface two-sided if it has a neighborhood of it homeomorphic
to the annulus. Otherwise, it is called one-sided and it has a neighborhood homeomorphic
to the Möbius band. Given a closed curve ν on a surface S, cutting S along ν gives a
(possibly disconnected) surface with one or two boundary components depending on whether
ν is one-sided or two-sided. A curve δ on a surface S is non-separating if the surface we
obtain by cutting along δ is connected; otherwise δ is separating. An orienting curve on
a non-orientable surface N is a curve γ such that by cutting along γ, we get a connected
orientable surface. We recall the following lemma from [19, Lemma 5.3].



N. Fuladi, A. Hubard, and A. de Mesmay 41:5

▶ Lemma 4. Let N be a non-orientable surface of genus g with h boundary components and
let γ be an orienting closed curve. Let gγ be the (orientable) genus and hγ be the number of
boundary components in N after cutting along γ.

If g is odd, then γ is one-sided, gγ = g−1
2 , and hγ = h + 1

If g is even, then γ is two-sided, gγ = g−2
2 , and hγ = h + 2.

On a surface with boundary, by an essential proper arc, we mean an arc with endpoints on a
boundary component that does not cut off a disk from the surface.

An embedding of a graph G on a surface S is a continuous injective map from G into S.
A graph embedding is called cellular if its faces are homeomorphic to open disks.

Discrete Metrics on Surfaces. A cellularly embedded graph G on a surface S induces a
discrete metric in two different ways. In the combinatorial model, the metric is defined on
walks in G, and the length of a curve C is the number of edges of G traversed by C. In the
cross-metric model [6], the metric is defined on curves transverse to G (i.e., that intersect
G only at edges and in a non-tangent way), and their lengths is the number of crossings
with G. Both models are naturally connected via graph duality. We mostly work in the
cross-metric model and we refer to the embedded graph G of a cross metric surface S as the
primal graph on S. The multiplicity of a curve (or a system of curves) at some edge e of G

is the number of times e is crossed by the curve (curves). The multiplicity of a curve (or a
system of curves) is the maximal multiplicity of the curve (curves) at any edge e of G.

Embedding schemes. For v a vertex of an embedded graph G, by a rotation ρv at v,
we mean the cyclic permutation of the ends of edges incident to v. A rotation system,
ρ, of a graph assigns a rotation to each vertex. and a signature to each edge, which is a
number from {1, −1}. A rotation system ρ and a signature λ for the edges determine a
cellular embedding for the graph up to homeomorphism i.e. we can compute the faces of
the embedding purely combinatorially (see [21, Section 3.2] for further details). The pair
(ρ, λ) is called an embedding scheme for the graph G, we simply use scheme throughout this
work. Since a first step in all of our arguments is to contract a spanning tree, almost all the
schemes considered in this article will have a single vertex. A cycle in a scheme is one-sided
if the signature of its edges multiply to −1 and it is two-sided otherwise. The Euler genus of
a scheme is the Euler genus of the underlying surface. A scheme is orientable if all its cycles
are two-sided, and non-orientable otherwise. A loop e in the scheme divides the half-edges
around the vertex into two parts; each part is called a wedge of e. When a loop γ has exactly
one end in each wedge of e, we say that the ends of γ alternate with those of e; otherwise
both ends of γ is in one wedge of e and we say that the ends of e enclose the ends of γ.

Following Schaefer and Štefankovič [25], we use the following model with localized cross-
caps to represent non-orientable embedded graphs. A planarizing system of disjoint one-sided
curves on a non-orientable surface, abbreviated PD1S, is a system of g disjoint one-sided
curves such that by cutting along them, we obtain a sphere with g holes (this was first
introduced by Mohar [20]). Therefore, from any graph embedded on a non-orientable surface,
we obtain a planar representation by cutting along such a system. The non-orientable surface
is recovered by gluing a Möbius band on each boundary component, which we depict using

⊗
and call a cross-cap. It is easily checked that a family of edges entering a cross-cap emerges
on the other side with a reversed order, and that the sidedness of a loop is determined by
the number of cross-caps that it crosses.

The planar drawing that we obtain by this cross-cap localization is called a cross-cap
drawing, see Figure 3 for examples. In this model, we say that a drawing realizes an
embedding scheme (G, ρ, λ) if the rotation at each vertex is as prescribed by ρ, and if

SoCG 2022



41:6 Short Topological Decompositions of Non-Orientable Surfaces

Figure 3 Different localization for the same embedding scheme gives different cross-cap drawings.

whenever a closed curve in the drawing passes through an odd (resp. even) number of
cross-caps, the multiplication of the signatures of the edges it follows is −1 (resp. 1). Note
that such a realization might not correspond to a cellularly embedded graph, and that while
a cross-cap drawing uniquely describes an embedded graph, the converse is not true, see
Figure 3. Throughout this article, by a cross-cap drawing for a graph G with an embedding
scheme (ρ, λ), we mean the planar graph with cross-caps treated as extra vertices and edges
being the sub-edges in G.

The following lemmas establish basic properties of orienting, separating loops and cross-
cap drawings.

▶ Lemma 5. A loop o in a cellularly embedded one-vertex graph G with a non-orientable
embedding scheme is orienting if and only if its ends enclose the ends of any two-sided loop
and alternate with the ends of any one-sided loop in the scheme.

▶ Lemma 6. In any cross-cap drawing of a scheme, a separating loop passes through each
cross-cap an even number of times; and an orienting loop passes through each cross-cap an
odd number of times.

▶ Lemma 7. Let G be an orientable scheme corresponding to a cellular embedding on a
surface M with a minimum number of g > 0 handles. The minimum number of cross-caps
needed in a cross-cap drawing realizing G is 2g + 1 and this can always be achieved.

Canonical System of Loops. For a non-orientable surface of genus g, a non-orientable canon-
ical system of loops is a family of one-sided loops with the cyclic ordering a1a1a2a2 . . . agag

around the base point such that cutting M along this family yields a topological disk. The
following lemma, illustrated in Figure 1 underpins our strategy to prove Theorem 3.

▶ Lemma 8. Let H be a cross-cap drawing for a graph of non-orientable genus g and let b

be a point in one face of the drawing. Let {pi} be a family of paths in the dual graph of this
drawing from each cross-cap to b. Introduce a loop ci by starting from b, passing along the
path pi, entering the corresponding cross-cap, going around the cross-cap and passing along
pi to return to b. The system of loops {ci} is a non-orientable canonical system of loops.

Short Orienting Curves. The following lemma is a restatement of [19, Proposition 5.5].

▶ Lemma 9. Let N be a non-orientable surface without boundary and with genus g and G

be a graph embedded on N . Then there exists an orienting curve of multiplicity at most 2.

By a little modification of the building process in the proof of this lemma, we can get an
orienting arc in the case with boundaries instead of an orienting cycle, see the full version.



N. Fuladi, A. Hubard, and A. de Mesmay 41:7

Figure 4 A non-orientable surface of genus 3 with an embedded system of arcs. The dents in the
picture indicate the segments of the boundary component.

3 Correcting the proof of Negami

Negami proved in [22, Theorem 1] that if we have two graphs embeddable on a closed surface,
we can reembed them simultaneously such that their edges cross few times.

▶ Theorem 10. Let G1 and G2 be two connected graphs embeddable on a closed surface of
genus g, orientable or non-orientable. We can embed them simultaneously such that they
intersect transversely in their edges at most 4gβ(G1)β(G2) times, where β(G) = |E(G)| −
|V (G)| + 1 is the Betti number for a connected graph G.

Negami’s proof in the non-orientable case is reduced to showing the following two lemmas
(with slightly different constants). However, his proof of Lemma 12 is flawed.

▶ Lemma 11. For two orientable surfaces Mi of genus g ≥ 1, with one boundary component
and βi disjoint essential proper arcs (i = 1, 2) where βi ≤ β(Gi), there are homeomorphisms
ϕi : Mi → M , where M is an orientable surface of genus g and one boundary component, so
that the image of the arcs in M1 and M2 on M intersect at most 4(g − 1)β1β2 times.

▶ Lemma 12. For two non-orientable surfaces Ni of genus g ≥ 1 with one boundary
component and βi disjoint essential proper arcs (i = 1, 2) where βi ≤ β(Gi), there are
homeomorphisms ϕi : Ni → N , where N is a non-orientable surface of genus g and one
boundary component, so that the image of the arcs in N1 and N2 on N intersect at most
18(g − 1)β1β2 times when g is odd and 72(g − 2)β1β2 when it is even.

In the proof of Lemma 12, Negami uses induction on the genus of the non-orientable
surface. Assuming that the lemma is true for genus g − 1, to prove it for genus g, he claims
that there is an essential proper arc α that runs along the center line of a Möbius band (a
one-sided arc). The idea is then to cut along α to get a non-orientable surface of genus g − 1
to use the induction hypothesis. The problem lies in the fact that cutting along such an arc,
we might not end up with a non-orientable surface.

▶ Lemma 13. Consider the non-orientable surface of genus 3 with one boundary component
and embedded essential arcs shown in Figure 4. Any one-sided arc disjoint from the embedded
arcs cut the surface into an orientable surface.

SoCG 2022



41:8 Short Topological Decompositions of Non-Orientable Surfaces

A Correction. To prove Theorem 2, we provide a different proof of Lemma 12. Our approach
is to cut both surfaces along an orienting arc guaranteed by Lemma 9, this has the effect of
multiplying the number of arcs by at most three. Depending on the parity of the genus we
obtain an orientable surface with one or two boundary components. In the odd case, we apply
Lemma 11 and then carefully modify one of the maps near the boundary controlling the
multiplicity so that we can reconstruct the surface. In the even case, we have two boundaries.
In that case, we connect them using a path of controlled multiplicity. Then we argue like in
the odd case.2.

4 Non-orientable Canonical System of Loops

4.1 The Schaefer-Štefankovič Algorithm
Schaefer and Štefankovič proved the following theorem [25, Lemma 9].

▶ Theorem 14. If G is a one-vertex non-orientable (respectively orientable) scheme (ρ, λ),
then it admits a cross-cap drawing with eg(G) (respectively eg(G) + 1) cross-caps in which
every edge passes through every cross-cap at most twice.

Schaefer and Štefankovič gave an inductive algorithm computing the cross-cap drawing
claimed by this theorem. We first introduce the different moves that they use to deal with
different types of loops.

For an embedding scheme around a vertex v, by flipping a wedge of a one-sided loop e in
a one-vertex scheme, we mean reversing the order of the edges in the wedge and changing
the signature of the loops that have exactly one end in the wedge. We call an empty wedge
between two consecutive half-edges around v a root wedge.

Contractible loop move. Let c be a contractible loop with consecutive ends in the scheme
G. Remove c. The new scheme can be drawn using the same number of cross-caps. Having
a drawing for the new scheme, we can draw the loop c without passing through any of the
cross-caps.

Gluing move. Let s be a non-contractible separating loop in the scheme G. We divide
the scheme to G1 and G2 by cutting along s and splitting the vertex into two vertices (the
embedding schemes of G1 and G2 are induced by the embedding scheme of G). Denote by
f1

o and f2
o the root wedges in G1 and G2 in which s was formerly placed. Let H1 and H2 be

drawings for G1 and G2 respectively. We glue the drawings by identifying the root wedges
f1

o and f2
o to get the drawing H

′ for G \ {s}.
Note that removing s does not change the genus and we have eg(G) = eg(G1) + eg(G2).

If G1 and G2 are both non-orientable, then H
′ can be extended to a cross-cap drawing for G

by adding s without using any of the cross-caps; see Figure 5. When at least one of G1 or
G2 is orientable, say G2, H

′ uses one extra cross-cap (G2 needs eg(G2) + 1 cross-caps to be
drawn). To deal with this case, we need the following lemma and the dragging move which
allows us to reduce one cross-cap from the drawing.

▶ Lemma 15. Let (ρ, λ) be an orientable embedding scheme for the one vertex graph G.
Adding a one-sided loop o with consecutive ends to the scheme (anywhere in the rotation
around the vertex) increases the Euler genus by 1. Thus, the new scheme needs as many
cross-caps as G to embed. Furthermore, the loop o is orienting.

2 Our Theorem 2 is stated with respect to the numbers of edges |E(Gi)| for simplicity, but the proof also
provides a bound in terms of the Betti numbers β(Gi), as in Theorem 10.



N. Fuladi, A. Hubard, and A. de Mesmay 41:9

Figure 5 The gluing move on two cross-cap drawings when G1 and G2 are both non-orientable.

Dragging move. Let us assume that G2 is orientable. By Lemma 15, we can add a one-sided
loop o with consecutive ends in the root wedge f2

o without increasing the number of cross-caps
that we need to draw G2. The loop o is orienting and the new scheme needs eg(G2) + 1
cross-caps to be drawn. Having a drawing for the new scheme, we can draw the loop s in the
drawing for G2 + {o} as follows: we start the loop from one of the root wedges between o

and another loop of G2, we draw s by following o through all the cross-caps, except that
after coming out of the last cross-cap, we go back to the first one entered, and traverse all
of the cross-caps again. At the end, we follow o back to the vertex; see Figure 6, left. We
denote this drawing of G2 + {o} + {s} by H

′

2.
By gluing H1 to H

′

2, we get a drawing H
′ for G + {o} + {s} but the drawing is not using

the minimum number of cross-caps. We eliminate one of the cross-caps in H
′ as follows.

Let i1 be the rightmost half-edge in G1 that follows immediately the separating loop in
G. Denote by c the first cross-cap that i1 passes through. Let us assume that there are 2k

half-edges passing through c. Let us denote by (i1, f1, . . . , i2k, f1
o ) the alternating sequence

of half-edges and faces adjacent to c in the cross-cap drawing by moving clockwise around it.
Now, we disconnect the edges that enter c and remove the cross-cap c. We drag i1, . . . , ik

through all the cross-caps in G2 along the loop o. After exiting the last cross-cap in G2, we
remove o and we attach the half edges to their other ends (ik+1, . . . , i2k). Since G2 uses an
odd number of cross-caps (Lemma 7), the half edges will have the correct orientability and
order to get attached to their other ends; see Figure 6. If only one of G1 and G2 is orientable,
the drawing we get uses eg(G) cross-caps and if both are orientable, we get a drawing with
eg(G) + 1 cross-cap, that is, the minimum cross-cap needed to draw the scheme in this case.

One-sided loop move. Let r be a one-sided loop in the scheme G. We remove r and flip
one of its wedges. One can check that the new scheme G

′ has Euler genus eg(G) − 1. Let us
assume that H

′ is a drawing for G
′ . We add r to this drawing by adding a cross-cap near the

vertex and the flipped wedge and dragging r and every edge in the flipped wedge in it; see
Figure 7. Note that flipping different wedges of r leads to two different cross-cap drawings.
This freedom in choosing the wedge will be used later.

If we apply a one-sided loop move on an orienting loop, the drawing we get does not use
the minimum amount of cross-caps, hence we need the following different move.

SoCG 2022



41:10 Short Topological Decompositions of Non-Orientable Surfaces

Figure 6 Left: the gluing move. Right: the dragging move when G2 is orientable: the top right
crosscap is removed and the corresponding curves are dragged through the bottom component.

Figure 7 The one-sided loop move on the loop r.

Concatenation move. Let o be an orienting loop in the scheme G such that one of its
ends is immediately followed by an end of a two-sided non-separating loop t in the rotation.
By Lemma 5, since t is non-separating, the concatenation of o and t which we denote by
o

′ , is not orienting. Denote by G
′ the scheme in which we replace o by o

′ (we need eg(G)
cross-caps to draw both G and G

′). If H
′ is a drawing for G

′ , one can obtain from H
′ a

drawing of G by replacing the drawing o
′ by its concatenation with t. Depending on the

wedge of o
′ that we choose to flip, we slide o

′ along t in the drawing:
If we flipped the wedge that does not encompass the loop t, we detach the end of o

′ next
to t and slide it along t and we attach it to the vertex. This way, it ends up where the end
of o was placed originally; see Figure 8.

If we flipped the wedge that encompasses the loop t, we draw o as follows: note that o
′

passes trough only one cross-cap. We draw o next to the end of o
′ that is not slid along t,

but instead of following o
′ into the cross-cap, we follow t. We can do this because the loop

o
′ is next to the loop t in the rotation around this cross-cap; see Figure 9.



N. Fuladi, A. Hubard, and A. de Mesmay 41:11

Figure 8 The concatenation move when the flipped wedge does not encompass the ends of t.

The Schaefer-Štefankovič algorithm also uses an additional move which we will not need,
so we do not introduce it here. Each of these moves provides a way to draw a loop assuming
that some simpler one-vertex graph without that loop has already been drawn. The algorithm
behind Theorem 14 works by applying these moves in a specific order, we refer to the full
version for details. Note that by Lemma 6, in a drawing that is obtained by Theorem 14,
every orienting loop passes through each cross-cap exactly once and if a separating loop
enters a cross-cap, it passes through that cross-cap exactly twice.

4.2 Our Modification to the Schaefer-Štefankovič algorithm

Our modification to the Schaefer-Štefankovič is to add two preprocessing steps, and then
enforce more specific rules as to how to apply the moves described in the previous section.
The first preprocessing is to add an orienting curve (via Lemma 9) and contract a spanning
tree. In doing so, each edge in G is subdivided in at most 3 edges. This is summarized in
the following lemma.

▶ Lemma 16. Given a graph G embedded on a non-orientable surface N , there exists a
one-vertex scheme Ĝ such that Ĝ has an orienting loop, and if Ĝ has a non-orientable
canonical system of loops of multiplicity at most k, then G has a non-orientable canonical
system of loops of multiplicity at most 3k.

For the second prepossessing move we need a definition that is inspired by a similar notion
from the literature on sorting signed permutations by reversals [12]. Given an embedding
scheme G, the interleaving graph IG has as vertex set the set of loops of G, and two vertices
are connected if their corresponding loops have interleaving ends. When we talk about the
sidedness of a vertex, we mean the sidedness of the loop it is associated to. A connected
component in the interleaving graph is called non-orientable if it has a one-sided vertex,
and orientable otherwise. A component with only one vertex is a trivial component, and
non-trivial otherwise. Separating loops correspond to trivial orientable components.

SoCG 2022



41:12 Short Topological Decompositions of Non-Orientable Surfaces

Figure 9 The concatenation move when the flipped wedge encompasses the ends of t.

Figure 10 Left: a saturated one-vertex scheme in which the drawn loops are the separating loops;
Right: the component tree of the left scheme. Note that the component G4 is an empty sub-scheme.

Our second preprocessing step aims at subdividing G into subschemes Gi such that
each IGi

has only one non-trivial component. To achieve this, we saturate the scheme with
auxiliary separating loops, i.e., we add a separating loop for any non-trivial component that
is not divided from the rest of the graph by some separating loops. Since adding a separating
loop does not interfere with the genus, then eg(G) = eg(Ḡ) and we can later remove the
added separating loops. Given a non-orientable scheme G saturated with separating loops
and any cellular embedding of G on a surface N , cutting G along the separating loops yields
subsurfaces Ni of N , each containing (possibly empty) components of G, which we denote by
Gi (see Figure 10). The component tree of G has a vertex for every such sub-graph Gi, and
two vertices are connected if their corresponding components are separated by a separating
loop. See Figure 10 for an example of a component tree.

We now describe our algorithm. Throughout the main loop of our algorithm, if we have
homotopic loops we remove all of them except one and after drawing this one, we re-introduce
them parallel to the one drawn.

A difference of our modified version with the original one is that it is not clear at first
sight that we cover all cases. This is justified by the following lemmas.

▶ Lemma 17. A scheme with an orienting loop is non-orientable.



N. Fuladi, A. Hubard, and A. de Mesmay 41:13

Algorithm 1 The modified algorithm.

Pre-processing steps:
Step A: If there is no orienting loop, we add an orienting loop and contract a spanning
tree using Lemma 16.
Step B: If G is not saturated by separating curves, we saturate it.

Main loop:
Step 1: If there is a contractible loop. We recurse on the scheme without the loop
and apply the contractible loop move.
Step 2: If there exists a separating (non-contractible) loop. We pick a separating
loop that separates a non-root leaf from the component tree, recurse on the subschemes
and apply a gluing and a dragging move.
Step 3.1: If there exists a one-sided non-orienting loop. We pick a one-sided
non-orienting loop such that the scheme G

′ that we obtain when removing it and flipping
its wedge maximizes the number of one-sided loops. We recurse on G′ and apply the
one-sided loop move on this loop.
Step 3.2.a: If all one-sided loops are orienting and there are two-sided loops.
We pick an orienting loop adjacent to a two-sided loop, recurse on the drawing H ′

described in the concatenation move and apply the concatenation move on these loops.
Step 3.2.b: If all one-sided loops are orienting and there are no two-sided
loops. In this case one cross-cap is sufficient to draw all the loops.

Post-processing steps:
Step B’: Erase the extra separating loops added in step B.
Step A’: Uncontract the spanning tree and remove the loop added in step A.

As a corollary, a scheme G that has an orienting loop needs eg(G) cross-caps to be drawn.

▶ Lemma 18. Let G be a scheme with an orienting loop o and a non-contractible separating
loop s. Then s separates the graph into an orientable and a non-orientable sub-graph.

Then the following lemma shows that there is always an orienting curve throughout the
recursive calls of the algorithm. We state it as a corollary since it is a direct corollary of
three technical lemmas that are featured in the full version.

▶ Corollary 19. Let G be a one-vertex scheme with an orienting loop. Let G′ be the graph on
which the modified algorithm recurses when applying a contractible loop move, a one-sided loop
move or a concatenation move. Then G′ has an orienting loop. Likewise, when the modified
algorithm applies a gluing and dragging move on a separating loop s, the two subgraphs G1
and G2 on which it recurses have an orienting loop.

We now analyze the cross-cap drawing provided by the modified algorithm.

▶ Lemma 20. Let G be a graph cellularly embedded on a non-orientable surface. If G has
an orienting loop, applying the modified algorithm, we obtain a cross-cap drawing of G with
eg(G) cross-caps such that each loop of G enters each cross-cap at most twice. Otherwise,
we obtain a cross-cap drawing of G with eg(G) cross-caps such that each loop of G enters
each cross-cap at most 6 times.

SoCG 2022



41:14 Short Topological Decompositions of Non-Orientable Surfaces

Sketch of proof. After the preprocessing steps, we obtain a saturated scheme with an
orienting loop and by Lemma 16 we can work with this scheme to prove the lemma. We
follow the recursive steps of the modified algorithm, and thus provide a proof by induction
on eg(G) + |E(G)|. By Corollary 19, there is an orienting loop throughout the recursive calls
of the algorithm. Based on the description of each move, it can be seen that at each step we
obtain a drawing with a minimum number of cross-caps. It is easy to see that the induction
carries over after Step 1. Then, by Lemma 18, we know that a separating loop divides the
scheme into a non-orientable and an orientable subscheme. This case is handled by Step 2 of
the algorithm. One can see that in the dragging move and drawing the separating loop, each
edge follows the auxiliary orienting loop o added to G2 at most twice. Since o passes through
every crosscap in the drawing of G2 exactly once, we get the right multiplicity for every edge.
For Step 3.1, let G

′ be the scheme that we recurse on. By the recursion of the algorithm we
obtain a drawing for G

′ in which each edge uses each cross-cap at most twice. In adding the
last cross-cap in the one-sided loop move, only the half-edges in the flipped wedge enter the
last cross-cap and therefore each edge enters this cross-cap at most twice. For Step 3.2.a, let
o

′ be the concatenation of the loops o and t. The loop o
′ is the only one-sided non-orienting

loop in G
′ . By applying a one-sided loop move on o

′ and then recursing, we obtain a drawing
for G

′ in which o
′ and t pass through a disjoint set of cross-caps and at most twice through

each. Then it can be shown that sliding o
′ back along t, o

′ enters every cross-cap at most
twice. Step 3.2.b is a base case for the induction satisfying the requirements of the lemma.
Finally, since there is always an orienting loop, by Lemma 17 there is always at least one
one-sided loop, and thus we are never in a case not covered by the previous steps. This
concludes this sketch. ◀

The following two lemmas ensure further properties guaranteed by our algorithm and
explain our choice for the rule in Step 3.1. The proof of the second lemma mirrors proofs in
the signed reversal distance theory [2, Theorem 1].

▶ Lemma 21. If there exists an orienting loop o in the embedding scheme G, the connected
component that has the vertex o is the only non-orientable component in IG.

▶ Lemma 22. Let G be a one-vertex scheme with an orienting loop and no non-contractible
separating loop such that IG has only one non-trivial component. Then G can be drawn by
exclusively applying a sequence of contractible, concatenation one-sided loop moves.

4.3 The Non-orientable Canonical System of Loops

Our algorithm has the following key advantage compared to the algorithm of Schaefer and
Štefankovič: due to the order in which we choose the loops in Steps 2 and 3.1, we know that
dragging moves and the other moves do not intermingle during the recursive calls of the
algorithm. Indeed, first, by Lemma 22, when it draws a scheme with a single non-trivial
component, it only relies on contractible, concatenation and one-sided loop moves. Second,
due to the order in which we choose the loops in Steps 2 and 3.1 and Lemma 21, we know
that whenever a dragging move is applied, the orientable sub-scheme on which we recurse
has only one non-trivial component. In this section, we leverage these two key advantages to
find a non-orientable canonical system of loops of small multiplicity.

A root face in a cross-cap drawing is a face adjacent to the vertex. The strategy to
prove Theorem 3 is to show that the modified algorithm outputs a cross-cap drawing where
cross-caps are not too far from the vertex.



N. Fuladi, A. Hubard, and A. de Mesmay 41:15

▶ Lemma 23. For any saturated one-vertex scheme G with an orienting loop o, the cross-cap
drawing H output by the modified algorithm has eg(G) cross-caps, and there is a path from
every cross-cap to a root face (not necessarily fixed) with multiplicity at most two.

This lemma is the crux of the paper. We refer to the full version for the proof, and only
outline some ideas. The difficulty lies in the fact that long dual paths are added to the
cross-cap drawings when doing one-sided loop moves and dragging moves, making it hard to
control the diameter of the graph dual to the cross-cap drawings throughout the recursive
calls. This is solved by tracking specific paths, whose lengths are controlled using two different
strategies for the one-sided loop moves and for the dragging moves. The inductive property
that we maintain throughout one-sided loop moves is that there is a short path that does not
cross the orienting curve from every crosscap to a fixed root face. The choice of a fixed root
face ensures that, if one chooses carefully the wedge when applying a one-sided loop move,
the lengths of the paths stay controlled. The property of not crossing the orienting curve is
key because, when we subsequently apply dragging moves, edges dual to the orienting curves
might get replaced with long dual paths (see Figure 6). However, dragging moves naturally
lead to paths that connect different root faces. Fortunately, at this stage, this is not an issue
since all the one-sided moves have already been applied. Therefore, for this proof strategy to
succeed, our modifications are crucial, in particular to ensure that one-sided loop moves and
dragging moves do not alternate during recursive calls.

Finally, we now have all the tools to prove Theorem 3.

Sketch of proof of Theorem 3. The modified algorithm on G constructs a cross-cap drawing
of a saturated scheme with an orienting loop. By Lemma 20, the loops enter each cross-cap
at most twice. By Lemma 23, we furthermore have paths {pj} of multiplicity two from a face
incident to each cross-cap to a root face in this cross-cap drawing. We follow these paths to
construct loops surrounding each of the cross caps. By Lemma 8, the system of loops we
obtain is canonical. Adding the different bounds on the multiplicity, we obtain that each
loop in the system has multiplicity 10. ◀

References
1 Dan Archdeacon and C Paul Bonnington. Two maps on one surface. Journal of Graph Theory,

36(4):198–216, 2001.
2 Anne Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory. In Annual

Symposium on Combinatorial Pattern Matching, pages 106–117. Springer, 2001.
3 Andrei C Bura, Ricky XF Chen, and Christian M Reidys. On a lower bound for sorting signed

permutations by reversals. arXiv preprint, 2016. arXiv:1602.00778.
4 Éric Colin de Verdière. Topological algorithms for graphs on surfaces. Habilitation thesis,

http://www.di.ens.fr/~colin/, 2012.
5 Éric Colin de Verdière. Computational topology of graphs on surfaces. In Jacob E. Goodman,

Joseph O’Rourke, and Csaba Toth, editors, Handbook of Discrete and Computational Geometry,
chapter 23, pages 605–636. CRC Press LLC, third edition, 2018.

6 Éric Colin De Verdière and Jeff Erickson. Tightening nonsimple paths and cycles on surfaces.
SIAM Journal on Computing, 39(8):3784–3813, 2010.

7 Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete &
Computational Geometry, 31(1):37–59, 2004.

8 Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In
SODA, volume 5, pages 1038–1046, 2005.

9 Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay. Short topological decompositions
of non-orientable surfaces, 2022. arXiv:2203.06659.

SoCG 2022

http://arxiv.org/abs/1602.00778
http://www.di.ens.fr/~colin/
http://arxiv.org/abs/2203.06659


41:16 Short Topological Decompositions of Non-Orientable Surfaces

10 Jim Geelen, Tony Huynh, and R Bruce Richter. Explicit bounds for graph minors. Journal of
Combinatorial Theory, Series B, 132:80–106, 2018.

11 Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathe-
matical Society, 45(1):61–75, 2008.

12 Sridhar Hannenhalli and Pavel A Pevzner. Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. Journal of the ACM (JACM), 46(1):1–
27, 1999.

13 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
14 Brian Hayes. Computing science: Sorting out the genome. American Scientist, 95(5):386–391,

2007.
15 Petr Hliněnỳ and Gelasio Salazar. On hardness of the joint crossing number. In International

Symposium on Algorithms and Computation, pages 603–613. Springer, 2015.
16 Fenix WD Huang and Christian M Reidys. A topological framework for signed permutations.

Discrete Mathematics, 340(9):2161–2182, 2017.
17 Francis Lazarus. Combinatorial graphs and surfaces from the computational and topological

viewpoint followed by some notes on the isometric embedding of the square flat torus. Mémoire
d’HDR, 2014. Available at http://www.gipsa-lab.grenoble-inp.fr/~francis.lazarus/
Documents/hdr-Lazarus.pdf.

18 Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Computing a canonical
polygonal schema of an orientable triangulated surface. In Proceedings of the seventeenth
annual symposium on Computational geometry, pages 80–89, 2001.

19 Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Untangling two systems of
noncrossing curves. In International Symposium on Graph Drawing, pages 472–483. Springer,
2013.

20 Bojan Mohar. The genus crossing number. ARS Mathematica Contemporanea, 2(2):157–162,
2009.

21 Bojan Mohar and Carsten Thomassen. Graphs on surfaces, volume 10. JHU press, 2001.
22 Seiya Negami. Crossing numbers of graph embedding pairs on closed surfaces. Journal of

Graph Theory, 36(1):8–23, 2001.
23 R Bruce Richter and Gelasio Salazar. Two maps with large representativity on one surface.

Journal of Graph Theory, 50(3):234–245, 2005.
24 Marcus Schaefer and Daniel Štefankovič. Block additivity of Z2-embeddings. In International

Symposium on Graph Drawing, pages 185–195. Springer, 2013.
25 Marcus Schaefer and Daniel Štefankovič. The degenerate crossing number and higher-genus

embeddings. Journal of Graph Algorithms and Applications, 26(1):35–58, 2022. doi:10.7155/
jgaa.00580.

26 James P Sethna. Order parameters, broken symmetry, and topology. In 1991 Lectures in
Complex Systems. Addison-Wesley, 1992.

27 Alla Sheffer, K Hormann, B Levy, M Desbrun, K Zhou, E Praun, and H Hoppe. Mesh param-
eterization: Theory and practice. ACM SIGGRAPPH, course notes, 10(1281500.1281510),
2007.

28 John Stillwell. Classical topology and combinatorial group theory, volume 72. Springer Science
& Business Media, 1993.

http://www.gipsa-lab.grenoble-inp. fr/~francis.lazarus/Documents/hdr-Lazarus.pdf
http://www.gipsa-lab.grenoble-inp. fr/~francis.lazarus/Documents/hdr-Lazarus.pdf
https://doi.org/10.7155/jgaa.00580
https://doi.org/10.7155/jgaa.00580


Robust Radical Sylvester-Gallai Theorem for
Quadratics
Abhibhav Garg #

Cheriton School of Computer Science, University of Waterloo, Canada

Rafael Oliveira1 #

Cheriton School of Computer Science, University of Waterloo, Canada

Akash Kumar Sengupta #

Department of Mathematics, Columbia University, New York, NY, USA

Abstract
We prove a robust generalization of a Sylvester-Gallai type theorem for quadratic polynomials. More
precisely, given a parameter 0 < δ ≤ 1 and a finite collection F of irreducible and pairwise independent
polynomials of degree at most 2, we say that F is a (δ, 2)-radical Sylvester-Gallai configuration if for
any polynomial Fi ∈ F , there exist δ(|F| − 1) polynomials Fj such that |rad (Fi, Fj) ∩ F| ≥ 3, that
is, the radical of Fi, Fj contains a third polynomial in the set.
We prove that any (δ, 2)-radical Sylvester-Gallai configuration F must be of low dimension: that is

dim spanC {F} = poly (1/δ) .

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Computational geometry

Keywords and phrases Sylvester-Gallai theorem, arrangements of hypersurfaces, locally correctable
codes, algebraic complexity, polynomial identity testing, algebraic geometry, commutative algebra

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.42

Related Version Full Version: https://arxiv.org/abs/2203.05532

Independent result

We would like to remark that, independently and simultaneously to our work, [21] have
also proved that (δ, 2)-radical Sylvester-Gallai configurations must be of low dimension.
Both works have been presented in a common talk at CG week 2022. For a more detailed
comparison between both works, we refer the reader to Section 1.3.

1 Introduction

Suppose v1, . . . , vm ∈ Rn is a set of m distinct points, such that the line joining any two
points in the set contains a third point. In 1893, Sylvester asked if such configurations of
points are necessarily colinear [26]. Independently, this same question was asked by Erdös in
1943 [9]. This was proved by [17], and independently by Gallai [10], where the latter was in
response to Erdös. This result is now known as the Sylvester-Gallai theorem. A set of points
satisfying the above is called a Sylvester-Gallai (SG) configuration.

Sylvester-Gallai theorems depend on the base field. For instance, it is well known that any
nonsingular planar cubic curve over C has nine inflection points, and that any line passing
through two such points passes through a third [5]. These nine points are not collinear,

1 corresponding author

© Abhibhav Garg, Rafael Oliveira, and Akash Kumar Sengupta;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 42; pp. 42:1–42:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a65garg@uwaterloo.ca
https://orcid.org/0000-0001-9084-7499
mailto:rafael@uwaterloo.ca
https://orcid.org/0000-0001-8917-8689
mailto:akashs@math.columbia.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.42
https://arxiv.org/abs/2203.05532
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


42:2 Robust Radical Sylvester-Gallai Theorem for Quadratics

and therefore form a counterexample to the Sylvester-Gallai theorem when the underlying
field is changed from R to C. In 1966, Serre asked if there are configuration of points in Cn

that satisfy the Sylvester-Gallai that are not coplanar [23]. Kelly [15] proved that no such
configurations can exist, or equivalently that points in Cn that satisfy the Sylvester-Gallai
property are always coplanar.

Over finite fields, Sylvester-Gallai configurations do not have bounded dimension. For
example, if we are working over the field Fp (with p > 2) and our vector space is Fn

p , then the
set of points is Fn

p is a SG configuration of dimension n, which is not constant. In general, any
subgroup of Fn

p will form a Sylvester-Gallai configuration. Some bounds on the dimension of
configurations in this setting can be found in [7]. In this work, we only focus on fields of
characteristic zero, and to make presentation easier we restrict our attention to C.

Several variations and generalizations of the Sylvester-Gallai problem defined above have
been studied in combinatorial geometry. The underlying theme in all these types of questions
is the following:

Are Sylvester-Gallai type configurations always low-dimensional?

In characteristic zero, the answer has always turned out to be yes. For a thorough survey of
the earlier works on SG-type theorems, we refer the reader to [2] and results therein.

While the above results are mathematically beautiful and interesting on their own right, it
is also interesting and useful in areas such as computer science and coding theory to consider
higher-dimensional analogs as well as robust analogs of SG type theorems.

Higher-dimensional analogs of SG configurations. In [12], a higher dimensional version of
the theorem was proved, with lines replaced by flats. This variant has applications in the
study of algebraic circuits, and in particular in Polynomial Identity Testing (PIT) [14, 22], a
central problem in algebraic complexity theory. The works [14, 22] use the higher dimensional
Sylvester-Gallai theorems to bound the “rank” of certain types of depth three circuits.2 In
simple terms, if the linear forms of a circuit satisfy the high dimensional SG condition, then
in essence the polynomial being computed must depend on a constant number of variables,
in which case it is easy to check whether the circuit is computing a non-zero polynomial.

Robust analogs of SG configurations and applications. Robust generalizations of the
Sylvester-Gallai theorem have found applications in coding theory and in complexity theory.

In this variant, for every point vi there are at least δ(m − 1) points u1, . . . , uk such that
vi and uk span a third point. The usual Sylvester-Gallai theorem is the case when δ = 1.
Such configurations were first studied by Szemerédi and Trotter [27], who proved that if δ is
bigger than an absolute constant close to 1, then the configuration has constant dimension.

In [1], the authors prove that such a configuration has dimension O
(
1/δ2)

, for any
0 < δ ≤ 1. This robust version also allows them to prove robust versions of the higher
dimensional variants, and average case versions of the theorem. They also define the notion
of a LCC-configuration, which is an extension of the Sylvester-Gallai configuration where
points are allowed to occur with multiplicity. In [8], the authors improve the bound on the
dimension of robust Sylvester-Gallai configurations to O (1/δ).

In coding theory, these robust configurations naturally appear in the study of locally
decodable codes and locally correctable codes [1]. These results, as well as similar results are
surveyed in [7]. They also have applications in the study of algebraic circuits, in particular
in reconstruction of algebraic circuits [25].

2 Algebraic circuits which compute polynomials that can be written as a sum of products of linear forms.



A. Garg, R. Oliveira, and A. K. Sengupta 42:3

Higher degree generalizations of Sylvester-Gallai configurations. Also motivated by the
PIT problem, Gupta in [11] introduced higher degree analogs of Sylvester-Gallai configura-
tions, and asked if they are also “low dimensional.” In his paper, Gupta outlines a series of
conjectures, and gives a deterministic polynomial-time blackbox PIT algorithm for a special
class of algebraic circuits3 assuming that these conjectures hold.

The first challenge in Gupta’s series of conjectures on SG type theorems is the following:

▶ Conjecture 1 (Conjecture 29, [11]). Let Q1, . . . , Qm ∈ C [x1, . . . , xn] be irreducible, ho-
mogeneous, and of degree at most d such that for every pair Qi, Qj there is a k such that
Qk ∈ rad (Qi, Qj). Then the transcendence degree of Q1, . . . , Qm is O (1) (where the constant
depends on the degree d).

The case of d = 2 for the above conjecture was proved in [24]. We henceforth refer to the
original Sylvester-Gallai theorem (the case d = 1) and its variants as the “linear case”. As in
the linear case of SG type problems, it is natural to consider the robust version of the above
lemma as a next step towards the conjectures of Gupta that give an algorithm for a special
case of PIT. We resolve the robust version of the above conjecture in the case when d = 2.

1.1 Main results
In this section, we formally state our main result: robust quadratic radical Sylvester-Gallai
configurations must lie in a constant dimensional vector space.4 In particular, this result
implies that the polynomials must be contained in a small algebra, and also that they have
constant transcendence degree. Another important result is a structural result for ideals
generated by two quadratic forms.

1.1.1 Robust radical Sylvester-Gallai theorem
We first formally define robust quadratic radical Sylvester-Gallai configurations. Henceforth,
as is customary in the literature, we will use form to denote homogeneous polynomials. For a
polynomial ring S = C[x1, . . . , xn], we let Sd denote the vector space of polynomials of degree
d in S, and the ideal generated by a set of polynomials f1, · · · , fr is denoted as (f1, · · · , fr).
We also use rad (f1, . . . , fr) to denote the radical of this ideal, that is, the set of polynomials
g such that gk ∈ (f1, . . . , fr) for some k.

▶ Definition 2 ((δ, 2)-rad-SG configurations). Let 0 < δ ≤ 1 and F := {F1, . . . , Fm} be
a set of irreducible forms in the polynomial ring S = C[x1, . . . , xn]. We say that F is a
(δ, 2)-rad-SG configuration if the following conditions hold:
1. F ⊂ S1 ∪ S2 (only linear and quadratic forms)
2. for any i ̸= j, we have that Fi ̸∈ (Fj)
3. for any i ∈ [m], there are δ(m − 1) indices j ∈ [m] \ {i} such that |rad(Fi, Fj) ∩ F| ≥ 3.

We are now ready to formally state the main contributions of our paper. We begin with our
main theorem, that robust quadratic radical SG configurations must have small linear span.

▶ Theorem 3 ((δ, 2)-rad-SG theorem). If F is a (δ, 2)-rad-SG configuration, then

dim(spanC {F}) = O(1/δ54).

3 These are circuits computed by a sum of constantly many products of constant degree polynomials.
4 Our results hold for any algebraically closed field of characteristic zero. However, for simplicity of

exposition, we only state our results over C.

SoCG 2022



42:4 Robust Radical Sylvester-Gallai Theorem for Quadratics

To prove the theorem above, we first notice that the theorem would imply that the
forms in the configuration are contained in a subalgebra of the polynomial ring of small
dimension, namely the subalgebra generated by a linear basis of the given configuration. With
this observation at hand, we provide a principled approach to construct small dimensional
subalgebras of the polynomial ring which control the configuration (in the sense that all forms
in the configuration will become a “univariate form” with coefficients from our subalgebra).

The main property of these algebras is that they allow us to translate non-linear SG
dependencies (the radical dependencies) into linear SG dependencies, and therefore we can
reduce our non-linear problem to the linear version of the SG problem.

The main principle guiding the construction of our subalgebras is that we would like these
subalgebras to look “as free as possible” without increasing the dimension of the algebra by
much. The amount of “freeness” that we need is captured by the robust algebras defined
in Section 2, where we also elaborate on how these algebras behave with SG configurations
(where we need the notion of clean algebras). For more intuition on how we prove the
theorem, we refer the reader to Section 1.2.

1.1.2 Results on structure of ideals generated by two quadratics
A key step in our strategy to prove that a SG configuration is low dimensional (as has also
been the first step in the works of [24, 19]) is to understand the structure of ideals generated
by two quadratic forms.

The general principle at play here is that if the ideal generated by two quadratic forms
is not radical or prime, then there must be a low-rank quadratic in their span. In [24, 19],
the authors proved similar structural results to determine when a product of quadratic
forms is contained in an ideal generated by two quadratic forms. In Proposition 4, we use
a different approach to completely characterize when the ideal generated by two quadratic
forms is radical or prime, and as corollaries we obtain the structural results in [24, 19]. We
use a commutative-algebraic approach to develop a further understanding of the radical of
ideals generated by two irreducible quadratics. Indeed, using the standard tools of primary
decomposition and Hilbert-Samuel multiplicity we obtain a classification of the possible
minimal primes of an ideal generated by two quadratic forms. Consequently we obtain
a characterization for such an ideal to be prime or radical. This approach can also be
generalized to ideals generated by cubic forms ([18]).

▶ Proposition 4 (Radical Structure). Let K be an algebraically closed field of characteristic
zero and Q1, Q2 ∈ S = K[x1, · · · , xn] be two forms of degree 2. Then one of the following
holds:
1. The ideal (Q1, Q2) is prime.
2. The ideal (Q1, Q2) is radical, but not prime. Furthermore, one of the following cases

occur:
(a) There exist two linearly independent linear forms x, y ∈ S1 such that xy ∈

span(Q1, Q2).
(b) There exists a minimal prime p ⊃ (Q1, Q2), such that p = (x, y) for some linearly

independent forms x, y ∈ S1
3. The ideal (Q1, Q2) is not radical and one of the following cases occur:

(a) Q1, Q2 have a common factor and Q1 = xy, Q2 = x(αx + βy) for some linear forms
x, y and α, β ∈ k. In this case, we have x2 ∈ span(Q1, Q2).

(b) Q1, Q2 do not have a common factor. There exists a minimal prime p ⊃ (Q1, Q2)
such that p = (x, Q), where x ∈ S1, Q ∈ S2 and Q is irreducible modulo x, and we
also have x2 ∈ span(Q1, Q2).



A. Garg, R. Oliveira, and A. K. Sengupta 42:5

(c) Q1, Q2 do not have a common factor and there exists a minimal prime p ⊃ (Q1, Q2),
such that p = (x, y) for some linearly independent forms x, y ∈ S1, and the (x, y)-
primary ideal q has multiplicity e(S/q) ≥ 2.

The proposition above is not new, and proofs of some of the statements can be found in
[4, Section 1] and [13, Chapter XIII]. For completeness, we provide a proof of this proposition
using primary decomposition and Hilbert-Samuel multiplicity of an ideal. In the former, the
authors study the cycle decomposition of the intersection of two quadric hypersurfaces to
obtain results about existence of rational points on intersection of two quadric hypersurfaces
and Châtelet surfaces over number fields. Our statements here are slightly simpler to state
(and slightly different) since in the works above the authors work in the more general setting
of perfect fields, and we are only concerned with algebraically closed fields of characteristic
zero.

1.2 Sketch of the proof of Theorem 3
In this section, we give a sketch of the proof of our main theorem. Suppose we are given
a (δ, 2)-rad-SG configuration F = F1 ∪ F2, where Fd is the set of forms of degree d in our
configuration. We will show that there is a small subalgebra of the polynomial ring that
contains F . That is, we will construct a subalgebra C[y1, · · · , ys, Q1, · · · , Qt] generated
by linear forms yi and quadratic forms Qj , such that F ⊂ C[y1, · · · , ys, Q1, · · · , Qt] and
s + t = O(1/δ27). Then it will follow that dim(spanC {F}) is at most O(1/δ54), since every
quadratic form in this algebra is a linear combination of the forms Qj and pairwise products
of the forms yi.

A motivating special case. Our strategy to prove the robust radical SG theorem is based on
the following toy example. Suppose our polynomial ring is C[x1, . . . , xr, y1, . . . , ys], where one
should think of s being constant and r ≫ s, and every quadratic form Q in our configuration
is a polynomial which is “univariate” over the smaller polynomial ring C[y1, . . . , ys]. That
is, for each quadratic Q, there exists a linear form xQ ∈ spanC {x1, . . . , xr} such that
Q ∈ C[xQ, y1, . . . , ys]. In this case, one would hope that the non-linear SG dependencies
involving our configuration F would imply linear SG dependencies for the set of linear
forms F1 ∪ {xQ | Q ∈ F2}. If we manage to prove that the latter set of linear forms is
a robust linear SG configuration, we can invoke the robust SG theorem for linear forms of
[1, 8] to bound the dimension of spanC {F1 ∪ {xQ | Q ∈ F2}}. Thus we may take our small
subalgebra to be the subalgebra generated by y1, · · · , ys and F1 ∪ {xQ | Q ∈ F2}.

Small subalgebras. In general it is not always possible to reduce the general robust radical
SG problem for quadratics to the toy example above.5 However we will be able to construct
a small subalgebra of our polynomial ring which is just as good as the small polynomial ring
C[y1, . . . , ys] in the toy example above. Additionally, we will not always be able to reduce
the non-linear problem to a robust linear SG configuration. Instead of a robust linear SG
configuration, we will reduce it to a δ-LCC configuration of [1].

Since the main counterexample to the above toy example are quadratics of large rank, the
small subalgebras that we construct will have both linear and quadratic forms as generating
elements. Therefore, it is natural to consider the vector space of forms generating the algebra,

5 For instance if the polynomial Q =
∑s

i=1 xiyi is in our SG configuration.

SoCG 2022



42:6 Robust Radical Sylvester-Gallai Theorem for Quadratics

which we denote by V := V1 + V2, where V1 is the vector space of linear forms in the algebra
and V2 is the vector space of quadratic generators of the algebra. The main idea here is
that the quadratic generators will be composed only of quadratics of high rank, which can
essentially be though of as “free variables.” As it turns out, intuitively and informally, the
only properties that we need from the vector space above are that:
1. the quadratics in V2 are “robust” against the linear forms in V1. That is, we would like

each quadratic in V2 to be of very high rank even if we subtract from it polynomials from
the algebra C[V1]

2. V is in a sense “saturated” with respect to our configuration F . That is, there exists no
small vector space of linear forms that we can add to V1 that would add many polynomials
of F to the algebra C[V ], or “make them closer to being in C[V ].”

The first condition ensures that any quadratic from our set F which “depends” on a form
from V2 must be of high rank, while the second condition ensures that there is no trivial way
to increase the algebra slightly in order to have a lot more forms from F inside of the larger
algebra. We call any vector space which satisfies the conditions above a clean vector space
with respect to F . The formal definition of these vector spaces and the results needed can
be found on Section 2.

Univariate over an intermediate small subalgebra. First we construct an intermediate
small subalgebra C[V ] such that any polynomial in F is either contained in C[V ] or it is
univariate over C[V ]. To construct the subalgebra above, we need to understand in a bit
more detail the structure of the radical of an ideal generated by two quadratic forms. To
this end, we prove Proposition 4, generalizing the previous structure theorems from [24, 19].
Additionally, we also assemble results on the structure of minimal primes of these ideals to
construct our algebra.

With Proposition 4 (our main structural result) at hand, we proceed similarly to [24, 19]
by partitioning the quadratics in our (δ, 2)-rad-SG configuration F into four subsets, each
satisfying a particular case of our structure theorem. Taking ε = δ/10, we define
1. Fspan is the set of quadratics Q which satisfy a “span dependency” with at least ε-

fraction of the polynomials. That is, there exist many quadratics F, G ∈ F such that
G ∈ spanC {Q, F}.

2. Flinear is the set of quadratics Q which satisfy case 3 (c) of Proposition 4 with at least an
ε-fraction of the other polynomials. That is, there are many quadratics F ∈ F and linear
forms x, y such that (Q, F ) ⊂ (x, y), and this minimal prime has multiplicity ≥ 2.

3. Fdeg is the set of quadratics Q which have an ε-fraction of its SG dependencies with
linear forms.6

4. Fsquare is the set of quadratics Q which satisfy case 3 (b) of Proposition 4 with at least
(δ − 3ε)-fraction of the other polynomials. That is, there are many quadratics F ∈ F
such that there is a linear form ℓ such that ℓ2 ∈ spanC {F, Q}.

With this partition, we construct a small clean vector space V such that Fsquare and
Flinear are entirely contained in the algebra C[V ], and the forms in the remaining subsets
are either in C[V ], or are univariate over C[V ]. Here, by univariate over C[V ], we mean that
there is a linear form z ̸∈ V1 such that the polynomial is in the algebra C[V ][z].

6 Deg stands for the degenerate case.



A. Garg, R. Oliveira, and A. K. Sengupta 42:7

Construction of the intermediate small subalgebra. We construct the subalgebra above in
four steps, where in each step we construct intermediate subalgebras which handle one of
the subsets of quadratics defined above. We use two strategies in the construction: iterative
processes similar to the ones in [24, 19], and double covers of the SG dependencies. These
two strategies allow us to construct algebras generated by poly (1/δ) many elements with the
desired properties for each of the subsets above. The iterative processes allow us to tightly
control Fsquare and obtain some control over Flinear and Fspan, whereas the double covers
allow us to handle Fdeg and also to prove that the remaining linear forms will become a
δ-LCC configuration.

The final small subalgebra. Once we have our clean subalgebra with respect to F , and
every polynomial in F either in the subalgebra or univariate over our subalgebra, we proceed
to prove that the “additional linear forms” that arise in this way, together with the linear
forms from our configuration, span a vector space of small dimension. While these linear
forms satisfy linear relations, the linear forms corresponding to different quadratics in our
set might be the same, and therefore the set of linear forms might not form a robust linear
Sylvester-Gallai configuration. However, the fact that the vector space V is saturated implies
that not too many quadratics have the same linear form: if they did, then we could add that
linear form to V1 and add many polynomials of F to C [V ]. This saturation allows us to
show that the linear forms form a δ-LCC configuration, and therefore span a vector space
of small dimension. We extend our algebra C[V ] by adjoining the generators of this small
vector space to obtain the final small subalgebra containing F as desired.

1.3 Related work
The original motivation for studying higher degree SG configurations comes from [11], in
order to give polynomial time PIT for a special class of depth-4 algebraic circuits. The most
general SG problem/configuration that is needed towards this application is the following
conjecture. As we mentioned earlier, Conjecture 1 is a first step towards the proof of this
conjecture. The most general form of Gupta’s conjecture [11, Conjecture 1], which we term
as (k, d, c)-Sylvester-Gallai conjecture, is stated below.

▶ Conjecture 5 ((k, d, c)-Sylvester-Gallai conjecture). Let k, d, c ∈ N∗ be parameters, and let
F1, . . . , Fk be finite sets of irreducible polynomials of degree at most d such that

∩iFi = ∅,
for every Q1, . . . , Qk−1 each from a distinct set Fij

, there are polynomials P1, . . . , Pc in
the remaining set such that

∏
Pi ∈ rad (Q1, . . . , Qk−1).

Then the transcendence degree of the union ∪iFi is a function of k, d, c, independent of the
number of variables or the size of the sets Fi.

As a step towards the proof of Conjecture 5, [24] studies quadratic Sylvester-Gallai
configurations (Conjecture 1). The configurations we study are exactly the fractional versions
of these quadratic Sylvester-Gallai configurations. In [19], the authors extend the result
on quadratic Sylvester-Gallai configurations, weakening the Sylvester-Gallai condition, only
requiring that the radical of the ideal generated by every pair of quadratics contains a product
of four other quadratics. In [20], the authors extend this further, by proving Conjecture 5 for
the case of k = 3, d = 2 and c = 4, which gives a polynomial time blackbox PIT for algebraic
circuits computing a sum of three products of quadratic polynomials.

Our proof techniques and intermediate results generalise some of those of [24], [19], [20].
In [24], the author proves a structural result for quadratic forms contained in the radical of
the ideal generated by two other quadratic forms. In [19], this result is extended to products

SoCG 2022



42:8 Robust Radical Sylvester-Gallai Theorem for Quadratics

of quadratics. Our structure result directly classifies the radical of the ideal generated by
two quadratics based on the number and degree of the minimal primes of the ideal. Both
structure theorems of [24] and [19] follow as immediate corollaries.

Further, our definition of clean vector spaces and the clean up procedure is a generalisation
of part of the strategy in the above works. In [24, 19], the authors construct two vector
spaces: one of linear forms and another of quadratic forms, and then they prove that most
polynomials in the configuration can be written as the sum of a quadratic polynomial in the
second vector space, and a polynomial “close” to the algebra generated by the first vector
space. Our definition of clean vector spaces formalizes this strategy, giving us more structure
which helps us unify the case analysis in these previous works.

Another important point to notice is that in this paper we do not make use of the
projection trick used in [24, 19]. While the parameters become slightly worse for not using
the projection trick, as we now have to account for repetitions in the set of linear forms not
in the algebra, we believe that getting rid of the projection trick will make this strategy more
amenable to generalizations to higher degree.

Progress on Polynomial Identity Testing. Recently, there has been remarkable progress
on the PIT problem for depth 4 circuits (the same algebraic circuits considered in [11]). In
[6], the authors give a quasi-polynomial time algorithm for blackbox PIT for depth 4 circuits
with bounded top and bottom fanins. Their approach involves considering the logarithmic
derivative of circuits, and is analytic in nature, which allows them to bypass the need of
Sylvester-Gallai configurations. Another PIT result in this setting comes from the lower
bound against low depth algebraic circuits proved by [16], which gives a weakly-exponential
algorithm for PIT for these circuits via the hardness vs randomness paradigm for constant
depth circuits [3]. However, the SG approach of [11] is the only one so far which could yield
polynomial-time blackbox PIT algorithms for the subclass of depth-4 circuits with constant
top and bottom fanins.

Comparison with [18]. In [18] the authors prove the radical SG theorem for cubic forms
(not the robust version). Their work is on one hand more general, since they are now handling
cubic forms as well, but it is less general in that their SG theorem is not robust, and the
robustness - as we have seen, significantly increases the complexity of the problem (as it
is the case in every setting, even in the linear case). In their work, the authors proceed
with a similar strategy as the previous works and this one, by proving a structure theorem
for ideals generated by two cubics, and then constructing a “robust algebra” where the
forms become “univariate” with respect to it. Some of the ideas in this paper are motivated
by similar constructions done in their work. More precisely, their construction of wide
algebras motivated our construction of clean vector spaces, where the difference between
the constructions is that in their work they need stronger algebro-geometric properties of
their algebras, but to achieve that their algebras must be significantly larger than the ones
we construct in this paper. Apart from this motivation, both works are distinct in their
techniques, since in our case the robustness severely constrains our choice of dependencies.

Simultaneous result [21]. Simultaneously and independently from this work, Peleg and
Shpilka have also proved that (δ, 2)-rad-SG configurations have poly (1/δ) dimension. While
the result of [21] in its current form works when the configuration only has irreducible
quadratics, in our work we also allow linear forms in our configurations.



A. Garg, R. Oliveira, and A. K. Sengupta 42:9

There are a number of parallels between the methods used in [21] and the ones used in
our paper. Both use structure theorems for ideals generated by quadratics, and structure
theorems for (x, y)-primary ideals. Further, both results divide the configuration into special
sets based on the cases of the structure theorem, and control each of these sets separately.

One key technical difference between our approach and [21] is the structure used to
control the above sets. In [21] they use an algebra generated by linear forms and quadratics
with the property that linear combinations of quadratics are high rank even after taking
quotients with the linear forms. We define the notion of clean vector spaces, which generate
“special algebras” which apart from having the above property (what we call robustness) are
also saturated in the sense that adding a few linear forms cannot bring too many polynomials
in our configuration “closer” to the vector space. We also use the notion of univariate
polynomials over clean vector spaces, and prove the existence of a small clean vector space
V such that the polynomials in each special set is univariate over V . Once we have such
structure, we can assign to each univariate polynomial a linear form ℓi (the “extra variable”
from this polynomial), and we then show that the set of linear forms {ℓi} corresponding to
each polynomial forms a LCC configuration.

Another key technical difference is that in our work, we do not make use of the
projection method, as we believe that in higher degrees such method may not be amenable
to generalization without generalizing the SG conjectures as well. This is one of the main
reasons why we can only prove that the univariate polynomials ℓi form a LCC configuration,
instead of a robust linear SG configuration. This in turn is also the reason that our bound is
worse than the one in [21].

Handling the linear forms presents an extra technical challenge. The main difficulty arises
when a quadratic Q satisfies the SG condition with many linear forms ℓ, as there is less
structure between Q, ℓ and the quadratic in rad (Q, ℓ) than when the configurations just
consist of quadratics. This lack of structure makes our analysis significantly more intricate.

1.4 Organization

In Section 2 we state the formal definitions of robust and clean vector spaces. In Section 3
we state the condition we want our small algebra (as described in Section 1.2) to satisfy, and
how this implies the main theorem. Finally, in Section 4 we state some concluding remarks,
and list a number of open problems and further directions. Due to space limitations, all
proofs and detailed discussions are omitted from this article, and can be found in the full
version on arxiv.

2 Clean vector spaces

In this section we formally define the notions of robust and clean vector spaces as described
in the introduction. We refer to the full version for examples, further details and related
statements. We begin with a definition of polynomials which are close to being in the algebra
generated by a vector space of forms. Recall that S = C [x1, . . . , xn], and that Sd refers to
the vector space of polynomials of degree d.

▶ Definition 6 (Polynomials close to a vector space). Given a vector space V = V1 + V2 where
Vi ⊆ Si we say that a quadratic P is s-close to V if there is a polynomial Q ∈ C[V ] such
that rank(P − Q) = s, and for any polynomial Q′ ∈ C[V ], we have that rank(P − Q′) ≥ s. If
a polynomial P is not r-close to V , for any r ≤ s, we say that P is s-far from V .

SoCG 2022



42:10 Robust Radical Sylvester-Gallai Theorem for Quadratics

With the definition above in hand, we are ready to define robust vector spaces. These
are vector spaces whose quadratic forms are in a sense far from the ideal generated by the
linear forms.

▶ Definition 7 (Robust vector spaces). A vector space V = V1 + V2 where Vi ⊂ Si is said to
be r-robust if, for any nonzero Q ∈ V2, the following conditions hold:
1. Q is (r − 1)-far from V1
2. if Q ̸∈ (V1), then rank(Q) ≥ r, where Q ∈ S/(V1) denotes the image of Q in the quotient

ring S/(V1).
If a homogeneous ideal I has a generating set V1 + V2 which is r-robust, we say that I is an
r-robust ideal.

In the above definition, we use the fact that the quotient ring S/ (V1) is isomorphic to
a polynomial ring, in order to define rank(Q). Next we define the relative vector space of
a quadratic form and the notion of a polynomial being univariate over a vector space. We
refer to the full version for statements regarding well-definedness of these notions.

▶ Definition 8 (Vector space of a quadratic form). Let Q be a quadratic form of rank s, so
that Q =

∑s
i=1 aibi. Define the vector space Lin (Q) := spanC {a1, . . . , as, b1, . . . , bs}. Define

L (Q) as:

L (Q) =
{

spanC {Q} , if s ≥ 5
Lin (Q) , otherwise.

▶ Definition 9 (Relative space of linear forms). If V is an r-robust vector space and P is
s-close to V for s < r/2 we can define

LV (P ) :=
{
L (P − Q) + V1, if s ≤ 4
spanC {P} , otherwise

where Q ∈ C[V ] is a polynomial such that rank(P − Q) = s. We also define the quotient
space

LV (P ) :=
{
LV (P ) /V1, if s ≤ 4
0, otherwise

▶ Definition 10 (Univariate polynomials over robust vector spaces). Let V := V1 + V2 be
an r-robust vector space, where r ≥ 3 and Vi ⊆ Si, for i ∈ {1, 2}. We say that a form
P is univariate over V if P is 1-close to V and dim

(
LV (P )

)
= 1. Moreover, we define

zP ∈ S1/V1 to be the linear form such that LV (P ) := spanC {zP }.

We are now ready to define the main object of this section: clean vector spaces. The
subalgebras that we construct in the proof of the Theorem 3 will be algebras generated by
clean vector spaces. The cleanliness conditions imply that the quadratic generators are of
high rank and that one can not add a small number of linear forms to a clean vector space V

to increase the algebra C[V ] such that the new algebra contains a lot of new polynomials from
F . The second condition will be the key to reduce the radical-SG-condition to a linear-SG
condition once we show that our polynomials are univariate over a clean vector space.



A. Garg, R. Oliveira, and A. K. Sengupta 42:11

▶ Definition 11 (Clean vector spaces). Let F := {Q1, . . . , Qm} ⊂ S1 ∪ S2 be a set of forms
and r ≥ 17 be an integer. Let V = V1 + V2 be a vector space with Vi ⊂ Si. We say that V is
an (r, ε)-clean vector space over F if the following conditions hold:
1. V is an r-robust vector space
2. For any U1 ⊂ S1 such that dim(U1) ≤ 8, there are < εm polynomials Qj ∈ F such that

Qj is s-close to V for 1 ≤ s ≤ 4 and

dim
(
LV (Qj)

)
> dim

(
LV +U1 (Qj)

)
.

If V = V1 + V2 is an (r, ε)-clean vector space over F , then we say that the ideal (V ) is an
(r, ε)-clean ideal over F , and similarly the algebra C[V ] is an (r, ε)-clean algebra over F .

3 Proof of Theorem 3

In this section we formalize the sketch of the proof given in the introduction. We refer to the
full version for the formal definitions and proofs of the lemmas below. We use the partition
of F2 = Fspan ∪ Flinear ∪ Fsquare ∪ Fdeg as defined in the introduction. The first step is to
construct an intermediate small algebra such that any polynomial from our configuration
F = F1 ∪ F2 is either in the algebra, or univariate over this algebra (Lemma 12). The
second step is to prove that we can augment this algebra slightly to contain all forms from
F (Lemma 13). We achieve this by showing that the extra variables corresponding to the
polynomials form a LCC configuration, allowing us to bound their rank.

▶ Lemma 12 (Reduction to Base Configuration). Let 0 < δ ≤ 1 be a constant, and let
ε := δ/10. Let F be a (δ, 2)-rad-SG configuration. There exists a (17, ε3/48)-clean vector
space with respect to F , denoted by V , such that every polynomial in F is either in C [V ]
or univariate over V , and dim(V ) = O(1/ε4). Further, Fsquare ∪ Flinear ⊆ C [V ]. Also, for
every polynomial P ∈ Fdeg \C [V ], if zP spans LV (P ) then there are at least ε3m/48 distinct
linear forms x1, . . . , xt and distinct linear forms a1, . . . , at such that for every i, the linear
forms zP , xi, ai are pairwise linearly independent in S1/V1, and zP ∈ spanC {xi, ai}.

▶ Lemma 13 (Base Configuration). Let 0 < δ ≤ 1, let ε := δ/10 and let 0 < γ ≤ ε3/48 be
constants. If F is a (δ, 2)-rad-SG configuration, and V := V1 + V2 is a (17, γ)-clean vector
space with respect to F that satisfies the conditions of Lemma 12, then there exists U ⊂ S1
with dim(U) = O(1/ε27) such that F ⊂ C[V, U ].

▶ Theorem 3 ((δ, 2)-rad-SG theorem). If F is a (δ, 2)-rad-SG configuration, then

dim(spanC {F}) = O(1/δ54).

Proof. We use the previous two lemmas to prove the main theorem. Let ε := δ/10, Given a
(δ, 2)-rad-SG, we first apply Lemma 12 to obtain V , a (17, ε3/47)-clean vector space with
respect to F . The space V has dimension O

(
1/ε4)

, and is such that every polynomial in F
is either in the algebra C [V ], or univariate over V . We now apply Lemma 13 with parameter
γ = ε3/48 and vector space V , to obtain a vector space U ⊆ S1. The vector space U has
dimension O

(
1/ε27)

, and is such that F ⊆ C [V, U ].
Consider the algebra C [V, U ]. Since the generators are homogeneous, the set of linear

forms C [V, U ]1 in the vector space U + V1. Further, every quadratic in this algebra is a linear
combination of elements of V2, and products of the form ℓ1ℓ2, where ℓi ∈ U + V1. Therefore,
we have C [V, U ]2 = O

(
1/ε54)

. The vector space C [V, U ]1 + C [V, U ]2 contains F and has
dimension O

(
1/ε54)

. This completes the proof. ◀

SoCG 2022



42:12 Robust Radical Sylvester-Gallai Theorem for Quadratics

4 Conclusion and open problems

In this paper, we prove a robust version of the radical Sylvester-Gallai theorem for quadratics,
generalizing [24].

Just as in the linear case of the Sylvester-Gallai problem robustness plays an important
role in generalizing Sylvester-Gallai results to higher dimensional variants, such as the flats
version in [1], we expect our robust variant to allow us to generalize the Sylvester-Gallai
problem to “higher codimension” tuples of quadratic polynomials. For instance, instead
of requiring rad (Fi, Fj) to intersect F non-trivially, one would only require that for many
triples (i, j, k), we would require rad (Fi, Fj , Fk) to intersect F non-trivially. Just as in the
linear case, properly defining such higher codimension variants requires some careful thought,
especially since the non-linear aspect will introduce more subtlety than the linear case.7

These higher dimensional variants have applications in algebraic complexity, as they can be
instrumental in proving the main conjectures posed in [11] about such SG configurations.

Another important open problem is to generalize the above result to prove a robust
version of the “product version” of the Sylvester-Gallai problem - a robust version of [11,
Conjecture 1] with k = 3 and r = 2. In this work, we made a somewhat strong use of the fact
that we have an extra polynomial in the radical ideal, and having a product of polynomials
in the ideal instead seems to require a strengthening of several arguments in this paper to
address it. Just as in [19], we believe that our general structure theorem, which gives us a
deeper look in the minimal primes, could shed some light into a different way to construct
robust algebras.

It is important to remark that higher codimension variants of the Sylvester-Gallai problem,
even for quadratics, involves the study of schemes which are not equidimensional, which may
require stronger structural results on the structure of such ideals. However, one could hope
that our structure theorems might suffice, just as in [1] the robust linear Sylvester-Gallai
theorem was sufficient to induct on the higher-dimensional analogs.

Lastly, another interesting direction and potential application of robust SG configurations
is in the study of non-linear locally correctable codes (LCCs) over fields of characteristic zero.
While lower bounds for linear LCCs have been out of reach for current techniques even over
characteristic zero,8 it would be interesting to know if robust non-linear SG configurations
have bounded transcendence degree. If a robust form of Gupta’s general conjecture is false,
it could yield the first constructions of non-linear LCCs over characteristic zero, which are
not known to exist. Moreover, we currently do not know of any construction of such codes
with constant queries over characteristic zero.

References
1 Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design matrices

with applications to combinatorial geometry and locally correctable codes. In Proceedings of the
Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, pages 519–528, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1993636.1993705.

2 Peter Borwein and William OJ Moser. A survey of sylvester’s problem and its generalizations.
Aequationes Mathematicae, 40(1):111–135, 1990.

3 Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure results for polynomial factoriza-
tion. Theory of Computing, 15(1):1–34, 2019.

7 In [1] had to account for sub-flats intersecting F non-trivially.
8 Aside from 2-query LCCs where optimal lower bounds are known for both linear and non-linear codes.

https://doi.org/10.1145/1993636.1993705


A. Garg, R. Oliveira, and A. K. Sengupta 42:13

4 J-L Colliot-Thélene, J-J Sansuc, and P Swinnerton-Dyer. Intersections of two quadrics and
châtelet surfaces. i. Journal für die reine und angewandte Mathematik, 373:37–107, 1987.

5 Leonard Eugene Dickson. The points of inflexion of a plane cubic curve. The Annals of
Mathematics, 16(1/4):50–66, 1914.

6 Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic identity testing paradigms
for bounded top-fanin depth-4 circuits. In Proceedings of the 36th Computational Complexity
Conference, CCC ’21, Dagstuhl, DEU, 2021. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CCC.2021.11.

7 Zeev Dvir. Incidence theorems and their applications. arXiv preprint, 2012. arXiv:1208.5073.
8 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design matrices

and a new proof of kelly’s theorem. In Forum of Mathematics, Sigma, volume 2. Cambridge
University Press, 2014.

9 Paul Erdos, Richard Bellman, Hubert S Wall, James Singer, and Victor Thébault. Problems
for solution: 4065-4069. The American Mathematical Monthly, 50(1):65–66, 1943.

10 Tibor Gallai. Solution of problem 4065. American Mathematical Monthly, 51:169–171, 1944.
11 Ankit Gupta. Algebraic geometric techniques for depth-4 pit & sylvester-gallai conjectures for

varieties. In Electron. Colloquium Comput. Complex., volume 21, page 130, 2014.
12 Sten Hansen. A generalization of a theorem of sylvester on the lines determined by a finite

point set. Mathematica Scandinavica, 16(2):175–180, 1965.
13 William Vallance Douglas Hodge and Daniel Pedoe. Methods of Algebraic Geometry: Volume

2. Cambridge University Press, 1994.
14 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.

In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 198–207.
IEEE, 2009.

15 Leroy Milton Kelly. A resolution of the sylvester-gallai problem of j.-p. serre. Discrete &
Computational Geometry, 1(2):101–104, 1986.

16 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. Electron. Colloquium Comput. Complex., page 81, 2021.
URL: https://eccc.weizmann.ac.il/report/2021/081.

17 Eberhard Melchior. Uber vielseite der projektiven ebene. Deutsche Math, 5:461–475, 1940.
18 Rafael Oliveira and Akash Sengupta. Radical sylvester-gallai theorem for cubics. Manuscript,

2021.
19 Shir Peleg and Amir Shpilka. A generalized sylvester-gallai type theorem for quadratic

polynomials. CoRR, abs/2003.05152, 2020. arXiv:2003.05152.
20 Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm

for Σ[3]ΠΣΠ[2] circuits via edelstein-kelly type theorem for quadratic polynomials. CoRR,
abs/2006.08263, 2020. arXiv:2006.08263.

21 Shir Peleg and Amir Shpilka. Robust sylvester-gallai type theorem for quadratic polynomials.
CoRR, abs/2202.04932, 2022. arXiv:2202.04932.

22 Nitin Saxena and Comandur Seshadhri. From sylvester-gallai configurations to rank bounds:
Improved blackbox identity test for depth-3 circuits. Journal of the ACM (JACM), 60(5):1–33,
2013.

23 Jean-Pierre Serre. Advanced problem 5359. Amer. Math. Monthly, 73(1):89, 1966.
24 Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. Discrete Analysis,

page 14492, 2020.
25 Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Conference

on Computational Complexity (CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

26 James Joseph Sylvester. Mathematical question 11851. Educational Times, 59(98):256, 1893.
27 Endre Szemerédi and William T. Trotter. Extremal problems in discrete geometry. Combina-

torica, 3(3):381–392, 1983.

SoCG 2022

https://doi.org/10.4230/LIPIcs.CCC.2021.11
http://arxiv.org/abs/1208.5073
https://eccc.weizmann.ac.il/report/2021/081
http://arxiv.org/abs/2003.05152
http://arxiv.org/abs/2006.08263
http://arxiv.org/abs/2202.04932




Robust Sylvester-Gallai Type Theorem for
Quadratic Polynomials
Shir Peleg #

Tel Aviv University, Israel

Amir Shpilka #

Tel Aviv University, Israel

Abstract
In this work we extend the robust version of the Sylvester-Gallai theorem, obtained by Barak, Dvir,
Wigderson and Yehudayoff, and by Dvir, Saraf and Wigderson, to the case of quadratic polynomials.
Specifically, we prove that if Q ⊂ C[x1. . . . , xn] is a finite set, |Q| = m, of irreducible quadratic
polynomials that satisfy the following condition

There is δ > 0 such that for every Q ∈ Q there are at least δm polynomials P ∈ Q such that
whenever Q and P vanish then so does a third polynomial in Q \ {Q, P }.

then dim(span{Q}) = Poly(1/δ).
The work of Barak et al. and Dvir et al. studied the case of linear polynomials and proved an

upper bound of O(1/δ) on the dimension (in the first work an upper bound of O(1/δ2) was given,
which was improved to O(1/δ) in the second work).

2012 ACM Subject Classification Mathematics of computing → Mathematical analysis; Theory of
computation → Computational geometry

Keywords and phrases Sylvester-Gallai theorem, quadratic polynomials, Algebraic computation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.43

Related Version Full Version: http://arxiv.org/abs/2202.04932

Funding Shir Peleg: The research leading to these results has received funding from the Israel
Science Foundation (grant number 514/20) and from the Len Blavatnik and the Blavatnik Family
foundation.
Amir Shpilka: The research leading to these results has received funding from the Israel Science
Foundation (grant number 514/20) and from the Len Blavatnik and the Blavatnik Family foundation.

Independent result

Independently of our work, [18] have also proved the same result. Both works have been
presented in a common talk at CG week 2022. For a more detailed comparison between the
works, we refer the reader to Subsection 1.2.

1 Introduction

In this paper we prove a robust version of a result of [40]: Let T ⊂ C[x1, . . . , xn] be a finite
set of polynomials. We say that Q1(x⃗), Q2(x⃗) ∈ Q satisfy the Polynomial Sylvester-Gallai
condition (PSG-condition for short) if there is a third polynomial Q3(x⃗) ∈ Q such that Q3(x⃗)
vanishes whenever Q1(x⃗) and Q2(x⃗) vanish. We prove that if T ⊂ C[x1, . . . , xn] is a finite
set containing only irreducible quadratic polynomials, such that for every Q ∈ T a δ fraction
of the polynomials in T satisfy the PSG-condition with Q, then dim (span{T }) = Poly(1/δ).

© Shir Peleg and Amir Shpilka;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shirpele@tauex.tau.ac.il
https://orcid.org/0000-0002-7836-7780
mailto:shpilka@tauex.tau.ac.il
https://orcid.org/0000-0003-2384-425X
https://doi.org/10.4230/LIPIcs.SoCG.2022.43
http://arxiv.org/abs/2202.04932
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


43:2 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

The motivation for proving this result, besides its own appeal, is two fold: a similar
theorem played an important role in the polynomial identity testing (PIT for short) problem
for small depth algebraic circuits, one of the fundamental open problems in theoretical
computer science, see [33]; and it is also related to a long line of work extending and
generalizing the original Sylvester-Gallai theorem [30, 17]. In particular, our result builds
and generalizes a result of [3, 9], that can be viewed as proving an analogous claim for the
case of degree-1 polynomials. Such results are useful in discrete geometry [3, 9], in the study
of locally correctable codes, for reconstruction of certain depth-3 circuits [39, 25, 42] and
more. See the survey of Dvir on incidence geometry for some applications of Sylvester-Gallai
type theorems [7].

We next give background on the Sylvester-Gallai theorem, and some of its variants, and
then discuss the connection to the polynomial identity testing problem.

Sylvester-Gallai type theorems

The Sylvester-Gallai theorem (SG-theorem) asserts that given a set S = {v⃗1, . . . , v⃗m} ⊂ Rn

such that S is not contained in a line, there must be a line that contains exactly two points
from S. It was first conjectured by Sylvester in 1893 [44] and then proved, independently,
by Melchior in 1941 [30] and Gallai [17] in 1943 (in an answer to the same question posed
by Erdös, who was unaware of Melchior’s result [12]). There are many extensions and
generalizations of the theorem. We shall state a few that are related to this work. It is
also helpful to think of the contra-positive statement. We say that a set of points is a
Sylvester-Gallai configuration (SG-configuration for short) if every line that intersects the
set at two points, must contain at least three points from the set. Thus, an SG-configuration
in Rn must be colinear.

In [38] Serre, aware that the original formulation of the theorem is not true over C asked
“Is there a nonplanar version of the Sylvester-Gallai configuration over the field of complex
numbers?” Kelly proved that the answer is no, i.e. that every finite set of points in Cn

satisfying the SG-condition is planar [27]. Edelstein and Kelly proved a colorful variant of
the problem: if three finite sets of points in Rn satisfy that every line passing through points
from two different sets also contains a point from the third set, then, the points belong to a
three-dimensional affine space. This result can be extended to any constant number of sets.
Many more extensions and generalizations of the SG-theorem are known, e.g. [22, 8]. The
survey by Borwein and Moser [5] is a good resource on the SG-Theorem and some of the
different variants that have been studied in the past.

More recently, Barak et al. [3] and Dvir, Saraf and Wigderson [9], motivated by questions
on locally decodable codes and construction of rigid matrices, proved a robust (or fractional)
version of the SG-theorem:

▶ Definition 1 (δ-SG configuration). We say that a set of points v1, . . . , vm ∈ Cn is a δ-SG
configuration if for every i ∈ [m] there exists at least δ(m − 1) values of j ∈ [m] such that the
line through vi, vj contains a third point in the set.

▶ Theorem 2 (Theorem 1.9 of [9]). Let V = {v1, . . . , vm} ⊂ Cn be a δ-SG configuration.
Then dim(span{v1, . . . , vm}) ≤ 12

δ + 1.



S. Peleg and A. Shpilka 43:3

Algebraic generalizations of Sylvester-Gallai type theorems

Although the Sylvester-Gallai theorem and Theorem 2 are formulated in the setting of
discrete geometry, there is a very natural algebraic formulation: If a finite set of pairwise
linearly independent vectors, S ⊂ Cn, has the property that every two vectors span a third
vector in the set, then the dimension of S is at most 3. The proof is immediate from Kelly’s
theorem: pick a subspace H of codimension 1, which is in general position with respect to the
vectors in S. The intersection points pi = H ∩ span{si}, for si ∈ S, satisfy the SG-condition
over C. Therefore, dim(S) ≤ 3. An equivalent formulation, in the case of linear functions, is
the following: If a finite set of pairwise linearly independent linear forms, L ⊂ C[x1, . . . , xn],
has the property that for every two forms ℓi, ℓj ∈ L there is a third ℓk ∈ L, such that ℓk = 0
whenever ℓi = ℓj = 0, then the linear dimension of L is at most 3. To see the equivalence
note that it must be the case that ℓk ∈ span{ℓi, ℓj} and thus the coefficient vectors of the
forms in the set satisfy the condition for the (vector version of the) SG-theorem, and the
bound on the dimension follows. Observe that the last example shows that in the case of
linear functions the PSG-condition and the SG-condition are equivalent. The last formulation
can now be generalized to higher degree polynomials. In particular, the following conjecture
was raised by Gupta [20].

▶ Definition 3 (PSG-configuration). Let T ⊂ C[x1, . . . , xn] be a set of polynomials. We say
that Q1, Q2 ∈ T satisfy the Polynomial Sylvester-Gallai condition (PSG-condition for short)
if there is a third polynomial Q3(x⃗) ∈ T such that Q3 vanishes whenever Q1 and Q2 vanish.

We say that a set T is a PSG-configuration if every two polynomials Q1, Q2 ∈ T satisfy
the PSG-condition.

▶ Problem 1 (Conjecture 2 of [20]). There is a function λ : N → N such that for any finite
set T ⊂ C[x1, . . . , xn] of pairwise linearly independent and irreducible polynomials, of degree
at most r, that satisfy the PSG-condition, it holds that the algebraic rank of T is at most
λ(r).

This problem was answered affirmatively, with a stronger conclusion, in the case of
quadratic polynomials (r = 2) in [40].

▶ Theorem 4 (Theorem 1.7 of [40]). There is a constant λ such that the following holds
for every n ∈ N. Let T ⊂ C[x1, . . . , xn] consist of homogeneous quadratic polynomials, such
that each Q ∈ T is either irreducible or a square of a linear function. If T satisfies the
PSG-condition then dim (span{T }) ≤ λ.

Motivated by applications for the polynomial identity testing problem, Gupta [20] and
Beecken, Mittmann and Saxena [4] also raised the following colorful variant, which generalizes
the Edelstein-Kelly theorem.

▶ Conjecture 5 (Conjecture 30 of [20]). There is a function λ : N → N such that the following
holds for every r, n ∈ N. Let R, B, G be finite disjoint sets of pairwise linearly independent,
irreducible, homogeneous polynomials in C[x1, . . . , xn] of degree ≤ r such that for every pair
Q1, Q2 from distinct sets there is a Q3 in the remaining set so that whenever Q1 and Q2
vanish then also Q3 vanishes. Then the algebraic rank of (R ∪ B ∪ G) is at most λ(r).

This problem was also answered affirmatively, with the same stronger conclusion, in [40],
for the case of quadratic polynomials.

SoCG 2022



43:4 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

▶ Theorem 6 (Theorem 1.8 of [40]). There is a constant λ such that the following holds for
every n ∈ N. Let T1, T2 and T3 be finite sets of homogeneous quadratic polynomials over C
satisfying the following properties:

Each Q ∈ ∪iTi is either irreducible or a square of a linear function.
No two polynomials are multiples of each other (i.e., every pair is linearly independent).
For every two polynomials Q1 and Q2 from distinct sets there is a polynomial Q3 in the
third set so that whenever Q1 and Q2 vanish then also Q3 vanishes.

Then dim (span{∪iTi}) has dimension O(1).

PIT and Sylvester-Gallai type theorems

The PIT problem asks to give a deterministic algorithm that given an arithmetic circuit as
input determines whether it computes the identically zero polynomial. The circuit can be
given either via a description of its graph of computation (white-box model) or via oracle
access to the polynomial that it computes (black-box model). This is a fundamental problem
in theoretical computer science that has received a lot of attention from researchers in the last
two decades. Besides of being a natural and elegant question, the PIT problem is important
due its connections to lower bounds for arithmetic circuits (hardness-randomness tradeoffs)
[23, 1, 24, 11, 6]; its relation to other derandomization problems such as finding perfect
matching deterministically, in parallel, [13, 43], derandomizing factoring algorithms [28],
derandomization questions in geometric complexity theory [31, 15]; its role in algebraic natural
proofs [16, 19]. In particular, PIT appears to be the most general algebraic derandomization
problem. For more on the PIT problem see [41, 34, 35, 14]. For a survey of algebraic
hardness-randomness tradeoffs see [29].

A beautiful line of work has shown that deterministic algorithms for the PIT problem for
homogeneous depth-4 circuits or for depth-3 circuits would lead to deterministic algorithms
for general circuits [2, 21]. This makes small depth circuits extremely interesting for the PIT
problem. This is also the setting where Sylvester-Gallai type theorems play an important role.
The relation between (colored-versions of the) SG-theorem and deterministic PIT algorithms
for depth-3 circuits was observed in [10]. The work of [26, 37] used this relation to obtain
polynomial- and quasi-polynomial-time PIT algorithms for depth-3 circuits, depending on
the characteristic. Currently, the best algorithm for PIT of depth-3 circuits was obtained
through a different yet highly related approach in [36]. As the SG-theorem played such an
important role in derandomizing PIT for depth-3 circuits, it was asked whether a similar
approach could work for depth-4 circuits. This motivated [4, 20] to raise Problem 1 and
Conjecture 5. In [33] we gave a positive answer to Conjecture 5 for the case of degree-2
polynomials (r = 2). Interestingly, Theorem 2 played a crucial role in the proof, as well as
in the proofs of [40, 32]. Studying the proofs of [40, 32, 33] leads to the conclusion that in
order to solve Problem 1 and Conjecture 5 for degrees larger than 2, we must first obtain a
result analogous to Theorem 2.

Our results

In this work we prove an analog of Theorem 2 for quadratic polynomials. We hope that this
result will lead to an extension of the works [40, 32, 33] to higher degree polynomials.

▶ Definition 7 (δ-PSG-configuration). Let Q ⊂ C[x1, . . . , xn] be a set of polynomials. We say
that a finite set of polynomials Q is a δ-PSG configuration if for every Q ∈ Q there are at
least δ · |Q| polynomials P ∈ Q such that Q and P satisfy the PSG condition.



S. Peleg and A. Shpilka 43:5

▶ Theorem 8. Let Q ⊂ C[x1, . . . , xn] a finite set of irreducible quadratic polynomials. If Q
is a δ-PSG configuration then dim(span{Q}) = O(1/δ16).

▶ Remark 9. The same conclusion holds even if we allow irreducible polynomials of degree
at most 2 (i.e. if we allow linear functions). The proof is similar in nature, with more case
analysis, and so we decided to omit it.

Note that this is robust version of Theorem 4 in the same sense that Theorem 2 is a
robust version of the SG-theorem.

▶ Remark 10. While the result in Theorem 2 tight (up to the constant in the big Oh), we do
not believe that the result of Theorem 8 is tight. In particular, we believe that the upper
bound should be O(1/δ).

1.1 Proof idea
To explain the proof we will use some algebraic notations, ⟨·⟩ denotes an ideal,

√
⟨·⟩ denotes

the radical of the ideal, and C[V ]2 denotes the space of all quadratic polynomials defined
only using the linear forms in V .

At the heart of all previous work lies an algebraic theorem, classifying the cases in which
a quadratic polynomial vanishes when two other quadratics vanish (actually, for [32, 33] a
more general result was needed - a characterization of the different cases in which a product
of quadratic polynomials vanishes whenever two other quadratics vanish).

▶ Theorem 11 (Theorem 1.10 of [40]). Let A, B and C be n-variate, homogeneous, quadratic
polynomials, over C, such that whenever A and B vanish then so does C. Then, one of the
following cases must hold:

(i) C is in the linear span of A and B.
(ii) There exists a non trivial linear combination of the form αA + βB = ℓ2 for some linear

form ℓ.
(iii) There exist two linear forms ℓ1 and ℓ2 such that when setting ℓ1 = ℓ2 = 0 we get that

A and B (and consequently C) vanish.

The high level idea in the proof of Theorem 4 (which was generalized in [32, 33]),
includes two steps; The first step constructs a linear space of linear forms V , and a subset
J ⊂ Q, both of constant dimension such that a vast majority of the polynomials in Q are
in span{J , Q ∩ ⟨V ⟩}.1 Implementing this idea requires a lot of case analysis, according to
Theorem 11. In the second step the dimension of Q ∩ ⟨V ⟩ is upper bounded.

The idea outlined above heavily relies on the fact that when δ = 1, the set Q ∩ ⟨V ⟩ is a
PSG-configuration in itself. Indeed, let Q1, Q2 ∈ Q ∩ ⟨V ⟩. When δ = 1 it follows that there
is Q3 ∈ Q such that Q3 ∈

√
⟨Q1, Q2⟩ ⊆ ⟨V ⟩. In order to bound the dimension of Q ∩ ⟨V ⟩,

[40] “projected” V to a one dimensional space span{z} (where z is a new variable). Every
polynomial Qi ∈ Q ∩ ⟨V ⟩ is mapped to a polynomial of the form z · ℓi, for some linear form
ℓi. Then, it is proved that the ℓi’s form an SG-condition.2

This technique fails when δ ∈ (0, 1). First, we cannot expect to prove that Q ∩ ⟨V ⟩
is a δ′-PSG configuration by itself (even when we allow smaller, yet fixed, δ′ ≤ δ). For
example, since δ < 1, it may be the case that (many polynomials) Q ∈ Q ∩ ⟨V ⟩ have all of

1 [40] had different notations, and |J | = 1.
2 The reader should take note that this is a very high-level simplification of one part in the proof. For

more details see the “easy-case” in [32, 33].

SoCG 2022



43:6 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

their neighbors outside Q ∩ ⟨V ⟩. Furthermore, even if we knew that Q ∩ ⟨V ⟩ is a δ′-PSG
configuration, then it is not clear that by following the lines of [40] and mapping ⟨V ⟩ to
span{z}, the resulting ℓis, form a δ′-PSG configurations. The reason for that is a bit subtle:
note that it may be the case that many polynomials Q ∈ Q ∩ ⟨V ⟩ were mapped to span{z2}.
Thus, it may be the case that all the neighbors of some z · ℓ are in span{z2}, which gives
us no information at all about ℓ. In contrast, in [40], since δ = 1, we could get information
about ℓ by its interaction with polynomials not in span{z2}.

In order to overcome these issues, we needed to develop new techniques, and improve the
characterization given in Theorem 11iii (see Corollary 19). Next, we present the outline of
the proof in more details.

We start with the same line of constructing a linear space of linear forms V , and a subset
J ⊂ Q, both of dimension O(poly( 1

δ )) such that Q ⊆ span{J , ⟨V ⟩}. We partition Q to
four sets: C[V ] = Q ∩ C[V ]2; C⟨V ⟩ = (Q ∩ ⟨V ⟩) \ C[V ]; J[V ] = Q ∩ span{J ∪ C[V ]2}; and the
remaining set J⟨V ⟩ = Q ∩ span{J ∪ ⟨V ⟩} \ J[V ]. We already know that dim(C[V ] ∪ J[V ]) is
small, so we only have to bound the dimension of C⟨V ⟩ ∪ J⟨V ⟩.

Let us focus on C⟨V ⟩. We would like to prove that we can add a few linear functions to V

to get a subspace U such that C⟨V ⟩ ⊂ C[U ]2. Let P ∈ C⟨V ⟩. First we consider the case that
many of P ’s neighbors (i.e. those polynomials with which P satisfies the PSG-condition) are
in C[V ] ∪ C⟨V ⟩. To handle this case we strengthen Theorem 11iii and use it to show that if
Q ∈ C[V ] is a neighbor of P then the polynomial Q′ ∈

√
⟨P, Q⟩ is unique (see Corollary 18).

This means that by moving the linear functions on which P depends to U , we move many
polynomials from C⟨V ⟩ to C[V + U ]2.

Next we consider the case where P has “many” neighbors in J[V ] ∪ J⟨V ⟩. To handle this
case we first prove that P can only satisfy Theorem 11i with polynomials in J[V ] ∪ J⟨V ⟩.
We prove that under this condition, there is a “large” subset of C⟨V ⟩ that is of constant
dimension. Thus, by adding a few linear functions to U , we move many polynomials from
C⟨V ⟩ to C[V + U ]2 (see Claim 29). We can continue this process as long as C⟨V ⟩ is large
enough, as the amount of polynomials that we move at any step depends on |C⟨V ⟩|. Therefore,
when this process terminates we still have to deal with a set C⟨V ⟩ that is not large but not
too small either (it is of size Ω(δm)). Now, we turn our attention to J⟨V ⟩. Using similar
arguments, and relying on the fact that

∣∣C⟨V ⟩
∣∣ is small, we prove that we can add a few

linear functions to U and make
∣∣J⟨V +U⟩

∣∣ small. Having achieved that, we prove that if both∣∣C⟨V +U⟩
∣∣ and

∣∣J⟨V +U⟩
∣∣ are small then they are in fact, empty (see Claim 28).

1.2 The work of [18]
Independently from this work, Garg, Oliviera and Sengupta have also proved that δ-PSG
configurations have dimension bounded by Poly( 1

δ ).
While our result, in its current form, holds when the configuration is assumed to contain

only irreducible quadratics, [18] also allow linear forms in the configuration. Our techniques
are good enough to deduce the more general case, but since it adds more technical details
that do not give more insight into the problem, we decided to omit that part of the proof.

There are a number of parallels between the methods used in [18] and the ones used in
our paper. Both proofs use structure theorems that analyze the situation in which there is a
quadratic polynomial in the radical of an ideal generated by two other quadratics. Basically
those theorems prove that the involved quadratics must satisfy certain structural conditions.
Further, both results partition the δ-PSG configuration to “special” sets based on the different
cases of the structure theorem, and analyze each of these sets separately.



S. Peleg and A. Shpilka 43:7

One key technical difference between our approach and that of [18] is the definition of
these special sets. While we construct J , V using our iterative process, [18] define the notion
of clean vector spaces, which generate “special algebras” (in their terminology) that have
similar properties, but are also saturated in the sense that adding a few linear forms to the
vector space cannot bring too many polynomials from the configuration “closer” to the vector
space. This is the analog of moving many polynomials from J⟨V ⟩ ∪ C⟨V ⟩ to J[V ] ∪ C[V ], until
this cannot be done anymore, in our work.

[18] also uses the notion of univariate polynomials over clean vector spaces, whereas we
work with the ideal generated by the vector space V . They show that there is a clean vector
space W , of dimension at most Poly( 1

δ ), such that the polynomials in each special set are
univariate over W . In other words, each Qi in the configuration can be represented as a
polynomial in the space C[W, ℓi]2 for some linear form ℓi. They then show that these ℓi’s form
a LCC configuration (see [3, 18] for definition), instead of a robust linear SG configuration,
which is what we use in our work. This in turn is also the reason why the bound in [18] is
slightly worse than the one in our work.

1.3 Discussion
There are two distinct goal to the line of work [40, 32, 33], including this paper. The first is
obtaining higher degree geometric extensions of the Sylvester-Gallai and Edelstein-Kelley
theorems. From the complexity theoretic point of view, the goal is to eventually obtain PIT
algorithms for Σ[k]Π[d]ΣΠ[r] circuits, for any k, r = O(1). Currently we have a polynomial
time PIT algorithm only for the case k = 3 and r = 2 [33]. To understand such a difficult
question one has to start somewhere, and the case k = 3 and r = 2 was a natural starting
point for the investigation (especially as no subexponential time PIT algorithm, even for
Σ[3]Π[d]ΣΠ[2] circuits, was known prior to [33]). Since so little is known, we believe that a
natural approach for advancing is to first extend the results of [33] to higher degrees (i.e.
higher values of r), and then for a higher top fan-in (i.e. higher values of k). Before we
explain the difficulties in going to higher degrees we recall that [33] needed the following
strengthening of Theorem 6 for their PIT algorithm.

▶ Theorem 12 (Theorem 1.6 in [33]). There exists a universal constant λ such that the
following holds. Let T1, T2, T3 ⊂ C[x1, . . . , xn] be finite sets of pairwise linearly independent
homogeneous polynomials satisfying the following properties:

Each Q ∈ ∪j∈[3]Tj is either irreducible quadratic or a square of a linear function.
Every two polynomials Q1 and Q2 from distinct sets satisfy that whenever they vanish
then the product of all the polynomials in the third set vanishes as well.

Then, dim(span{∪j∈[3]Tj}) ≤ λ.

There are several difficult hurdles in going from r = 2 to general r, or even to r = 3, if
we wish to continue working in the framework of [40, 32, 33] (and this paper). The first is
understanding what is the correct generalization of Theorem 11 to higher degrees, as this
theorem lies at the heart of all these papers. A second hurdle is obtaining a robust version
of Theorem 12. First for r = 2 and then for higher degrees.

For extending Theorem 11 to higher degrees it seems natural to find an extension to
r = 3. While it seems that such an approach could last forever and lead nowhere (as we will
then have to prove a result for r = 4 etc.), we believe that understanding the case r = 3 can
shed more light on the general case, as sometimes going from degree 2 to 3 is as difficult as
the general case.

SoCG 2022



43:8 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

Once we prove such a structural theorem, we will need to extend Theorem 12 to higher
values of r. An important tool in the proof of Theorem 12 was a robust version of the
EK-theorem.

▶ Definition 13 (δ-EK configuration). We say that the sets T1, T2, T3 ⊂ Cn form a δ-EK
configuration if for every i ∈ [3] and p ∈ Ti a δ fraction of the vectors q in the union of the
two other sets satisfy that p and q span some vector in the third set (the one not containing
p and q). We refer to a 1-EK configuration as simply an EK-configuration.

▶ Theorem 14 (Theorem 3.9 of [33]). Let 0 < δ ≤ 1 be any constant. Let T1, T2, T3 ⊂ Cn be
disjoint finite sets that form a δ-EK configuration. Then, dim(span{∪iTi}) = O(1/δ3).

Thus, a natural continuation would be to prove a robust version of Theorem 14 for quadratic
polynomials (i.e. a robust version of Theorem 6) and then to extend it to a robust version
of Theorem 12 and to higher degrees. While in this paper we only prove a robust version
of Theorem 4, we believe that with some more technical work this can be extended to a
robust version of Theorem 6 as well. Hence, the next immediate challenge would be to obtain
a robust version of Theorem 12 (or even of the main result of [32]). If we obtain such an
extension and, in addition extend Theorem 11 to higher values of r, then we expect that a
PIT algorithm for the case k = 3 and r = 3 would follow. More importantly, we believe that
this will let us gain important understanding on how to generalize the results for arbitrary
values of r.

2 Robust-SG theorems in Cn

We shall need the following generalizations of Theorem 2. The proofs of this section appear
in the full version.

▶ Theorem 15. Let 0 < δ ≤ 1 be any constant. Let W ⊂ Cn be an r-dimensional space.
Let W ⊂ W and K ⊂ Cn \ W be finite subsets such that no two vectors in T = K ∪ W are
linearly dependent. Assume further that all the elements in K satisfy the following relaxed
EK-property: For every p ∈ K, for at least δ fraction of the points q ∈ T the span of p and q

contains a point in T \ {p, q}. Then, dim(span{T }) ≤ O(r + 1
δ ).

We also use the following bi-partitive version of [9, Corollary 1.11] this is a slight variation
of the formulation presented in their paper.

▷ Claim 16. Let V = v1, . . . , vn ⊂ Cd be a set of n distinct points. Suppose that there is
B ⊆ V such that there are at least δn2 pairs in B × (V \ B) that lie on a special line. Then
there exists a subset B′ ⊆ B such that |B′| ≥ (δ/6)n and affine-dim(B′) ≤ O(1/δ).

The important difference between Claim 16 and [9, Corollary 1.11] is that Claim 16
guarantees the existence of a low-dimensional subspace that contains a constant fraction of
the points in B, whereas from [9, Corollary 1.11] we do not get any guarantee about the
fraction of points from B in the low-dimensional space.

3 Strengthening Case iii of Theorem 11

The following claim strengthens Theorem 11iii by providing more information on the polyno-
mial in the radical.



S. Peleg and A. Shpilka 43:9

▷ Claim 17. Let P, Q and T be irreducible homogeneous quadratic polynomials, such that
T ∈

√
⟨P, Q⟩. Furthermore, assume that they satisfy Theorem 11iii and not any other

case, that is, there are linear forms v1, v2 such that T, P, Q ∈ ⟨v1, v2⟩. Finally, assume
Lin(P ) ̸⊆ Lin(Q). Then there are linear forms v′

1, v′
2 ∈ span{v1, v2} such that the following

holds:
P = v′

1ℓ + v′2
2 for some linear form ℓ.

Q = v′
1u − v′2

2 for some linear form u.
T = v′

2(ℓ + u) + αP + βQ for some constants α, β ∈ C,
where the qualities holds up to a constant non zero factor.

We provide the proof of Claim 17 in the full version. As a consequence of the claim we
can deduce the following uniqueness property.

▶ Corollary 18. Let P, Q, Q′, T be pairwise linearly independent irreducible quadratics such
that T ∈

√
⟨P, Q⟩. Let T ′ be such that T ′ ̸∼ P, Q, Q′ and such that T ′ ∈

√
⟨P, Q′⟩. Assume

further that P ∈ ⟨Lin(Q) + Lin(Q′)⟩ but Lin(P ) ̸⊆ Lin(Q) + Lin(Q′). Then T ̸= T ′. In
addition, Lin(T ), Lin(T ′) ̸⊆ Lin(Q) + Lin(Q′).

The proof of Corollary 18 appears in the full version.
We finish this section by formulating the improvement for Theorem 11 which follows

immediately from Claim 17

▶ Corollary 19 (Improvement of Theorem 1.10 of [40]). Let A, B and C be n-variate, homo-
geneous, quadratic polynomials, over C, such that C ∈

√
⟨A, B⟩. Then, one of the following

cases must hold:
(i) C is in the linear span of A and B.
(ii) There exists a non trivial linear combination of the form αA + βB = ℓ2 for some linear

form ℓ.
(iii) If none of the above hold, then there exist two linear forms ℓ1 and ℓ2 such that A, B, C ∈

⟨ℓ1, ℓ2⟩. Furthermore, we have that either Lin(P ) ⊆ Lin(Q) or
A = ℓ1a + ℓ2

2 for some linear form a.
B = ℓ1b − ℓ2

2 for some linear form b.
C = ℓ2(a + b) + αA + βB for some constants α, β ∈ C.

4 Robust Sylvester-Gallai theorem for quadratic polynomials

We divide Q = Q1 ∪ Q2 ∪ Q3 as following:

Q1 =
{

Q ∈ Q
∣∣∣∣ Q satisfies Theorem 11i with at least

δ/100 fraction of the polynomials in Q

}
, (1)

Q2 =
{

Q ∈ Q
∣∣∣∣ Q satisfies Theorem 11ii with at least

δ/100 fraction of the polynomials in Q

}
, (2)

Q3 =
{

Q ∈ Q
∣∣∣∣ Q satisfies Theorem 11iii with at least

δ/100 fraction of the polynomials in Q

}
. (3)

We will also use the following notation: Let Q ∈ Q, and t ∈ {(i), (ii), (iii)} we denote

Γt(Q) = {P ∈ Q | Q, P satisfiy case t of Theorem 11} .

Finally we set Q1 = Q1 \ (Q2 ∪ Q3). This implies that if P ∈ Q1 then at least a δ/100
fraction of the polynomials in Q satisfy Theorem 11i with P and no other case.

SoCG 2022



43:10 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

▶ Observation 20. The definition of Γt naturally defines an undirected graph with an edge
between P and Q if for some t, Q ∈ Γt(P ) (which is equivalent to saying P ∈ Γt(Q)). Thus,
when we speak of “edges” and “neighbors” this graph is the one that we refer to.

Throughout the proof, we will use the following simple claim.

▷ Claim 21. Let P, T ∈ Q. Removing T from Q, causes the removal of at most two
polynomials from Γ(i)(P ), and this happens only in the case that P ∈ Γ(i)(T ) and |Q ∩
span{P, T }| = 3.

Proof. First, note that for Q1, Q2, Q3 ∈ Q if Q3 ∈ span{Q1, Q2}, then for every k ≠ j ∈ [3],
Qk ∈ Γ(i)(Qj). In particular, if P ̸∈ Γ(i)(T ), then removing T from Q does not affect Γ(i)(P ).

Let P ∈ Γ(i)(T ). By the argument above, if |Q ∩ span{P, T }| > 3 then removing T does
not affect Γ(i)(P ). Thus, the only case the Γ(i)(P ). is affected is when |Q ∩ span{P, T }| = 3
and in this case the third polynomial in the span is removed from Γ(i)(P ). ◁

The proof of Theorem 8 is organized as follows. In the full version we bound the dimension
of Q2. Specifically, we prove the following claim.

▷ Claim 22. There exist a subset I ⊆ Q2 of size |I| = O(1/δ), and a linear space of linear
forms V ′ such that dim(V ′) = O(1/δ2) such that Q2 ⊂ span{I,C[V ′]2}.

In the full version prove that for some small dimensional space V ′′, it holds that Q3 ⊂ ⟨V ′′⟩.

▷ Claim 23. There exists a linear space of linear forms, V ′′, such that dim(V ′′) = O(1/δ)
and Q3 ⊂ ⟨V ′′⟩.

Set V = V ′ + V ′′. So far it holds that Q2 ∈ span{I,C[V ]2} and Q3 ⊂ ⟨V ⟩. Next, we find
a small set of polynomials J such that Q ⊂ ⟨V ⟩ + span{J }.

▷ Claim 24. There exists a set J ⊆ Q, of size |J | = O(1/δ), such that Q ⊂
span{(Q ∩ ⟨V ⟩), J ,C[V ]2}. Furthermore, if P ∈ Q \ ⟨V ⟩ then there is no quadratic L

such that P + L ∈ ⟨V ⟩ and ranks(L) ≤ 2.

Given the claims above we have that Q ⊂ span{(Q ∩ ⟨V ⟩), J ,C[V ]2}, where |J | = O(1/δ)
and dim(V ) = O(1/δ2). We are not done yet as the dimension of ⟨V ⟩, as a vector space, is
not a constant. To bound this dimension we partition Q to four sets and study the subgraphs
induced by any two of the sets.

C[V ] = {Q ∈ Q | Q ∈ C[V ]2} (4)
C⟨V ⟩ = {Q ∈ Q | Q ∈ ⟨V ⟩} \ C[V ] (5)
J[V ] = {Q ∈ Q | Q ∈ span{J ,C[V ]2} \ C[V ]2} (6)
J⟨V ⟩ = {Q ∈ Q | Q ∈ span{J , ⟨V ⟩} \ ⟨V ⟩} \ J[V ] . (7)

In words, C[V ] is the set of all quadratics in Q that only depend on linear functions in V .
C⟨V ⟩ is the set of polynomials that are in ⟨V ⟩ but not in C[V ], etc.

Our goal is to bound the dimension of each of these sets. In fact, we already know that
dim(C[V ]), dim(J[V ]) ≤ O(1/δ4) so we only need to bound dim(C⟨V ⟩) and dim(J⟨V ⟩). For
that we will analyze the edges between the different sets.

We first note that the “furthermore” part of Claim 24, stating that the “rank-distance”
between nonzero polynomials in span{J } and quadratics in ⟨V ⟩ is larger than 2, implies the
following:



S. Peleg and A. Shpilka 43:11

▶ Observation 25.
1. If P ∈ C⟨V ⟩ ∪ C[V ] and Q ∈ J⟨V ⟩ ∪ J[V ] satisfy that P ∈ Γ(Q) then P and Q satisfy

Theorem 11i.
2. If P ∈ J⟨V ⟩ and Q ∈ C⟨V ⟩ ∪ C[V ] ∪ J[V ] satisfy that P ∈ Γ(Q) then P and Q satisfy

Theorem 11i.

Proof. We only prove the first case as the proof of the second case is similar. As Q ∈
J⟨V ⟩ ∪J[V ], we have that ranks(Q1) > 2. In particular, P and Q do not satisfy Theorem 11iii.
If P and Q satisfy Theorem 11ii then Q = αP + ℓ2 for some linear form ℓ, which contradicts
the structure of J guaranteed in Claim 24. ◀

To bound the dimension of C⟨V ⟩ we note that any edge going from P ∈ C⟨V ⟩ ∪ J⟨V ⟩ to
C[V ] ∪ J[V ] defines uniquely a third polynomial in C⟨V ⟩ ∪ J⟨V ⟩. This uniqueness property
guarantees that if we add Lin(P ) to V , then many polynomials move from C⟨V ⟩ ∪ J⟨V ⟩ to
C[V ] ∪ J[V ].

▷ Claim 26. Let P ∈ C⟨V ⟩ then,
1. for every polynomial Q1 ∈ Γ(P ) ∩ J[V ] there is a unique polynomial Q′

1 ∈ J⟨V ⟩ such that
Q′

1 ∈ span{P, Q1}. I.e., there is no other Q2 ∈ J[V ] such that Q′
1 ∈ span{P, Q2}.

2. for every polynomial Q1 ∈ Γ(P ) ∩ C[V ] there is a unique polynomial Q′
1 ∈ C⟨V ⟩ such that

Q′
1 ∈

√
⟨P, Q1⟩. I.e., there is no other Q2 ∈ C[V ] such that Q′

1 ∈
√

⟨P, Q2⟩.

Proof.
1. Let Q1 ∈ Γ(P ) ∩ J[V ]. By Observation 25, P and Q1 satisfy Theorem 11i. We first prove

that they span a polynomial in J⟨V ⟩ and then prove its uniqueness. Any polynomial in
T ∈ span{P, Q1} \ (span{P}) has ranks(T ) > 2, even when setting the linear forms in
V to 0. Hence, P and Q1 span a polynomial Q′

1 ∈ J[V ] ∪ J⟨V ⟩. As P ̸∈ C[V ]2 we can
conclude that Q′

1 ∈ J⟨V ⟩. To prove that Q′
1 is unique assume that Q′

1 ∈ span{P, Q2}
for some Q2 ∈ J[V ]. Pairwise linear independence implies that P ∈ span{Q1, Q2} which
implies that P ∈ C[V ], in contradiction.

2. Follows from Corollary 18. ◁

▷ Claim 27. Let P ∈ J⟨V ⟩. Then for every polynomial Q1 ∈ Γ(P ) ∩ (J[V ] ∪ C[V ]) there is
a unique polynomial Q′

1 ∈ J⟨V ⟩ ∪ C⟨V ⟩ such that Q′
1 ∈ span{P, Q1}. By “unique” we mean

that there is no other Q2 ∈ J[V ] such that Q′
1 ∈ span{P, Q2}.

Proof. We first consider the case Q1 ∈ Γ(P ) ∩ C[V ]. Observation 25 implies that P and Q1
satisfy Theorem 11i. By construction of J , any polynomial in T ∈ span{P, Q1} \ (span{Q1})
has ranks(T ) > 2, even when setting the linear forms in V to 0. Hence, P and Q1 span a
polynomial Q′

1 ∈ J[V ] ∪ J⟨V ⟩. As P ̸∈ J[V ] we conclude that Q′
1 ∈ J⟨V ⟩. To prove that Q′

1 is
unique assume that Q′

1 ∈ span{P, Q2} for some Q2 ∈ J[V ] ∪ C[V ]. As before, pairwise linear
independence shows that P ∈ span{Q1, Q2}, which implies that P ∈ J[V ], in contradiction.

Consider the case Q1 ∈ Γ(P ) ∩ J[V ]. As before, P and Q1 must satisfy Theorem 11i. Any
polynomial in T ∈ span{P, Q1} \ (span{Q1}) is not in J[V ] ∪ C[V ]. Hence, P and Q1 span a
polynomial Q′

1 ∈ C⟨V ⟩ ∪ J⟨V ⟩. Uniqueness follows exactly as in the first case. ◁

We next show that the uniqueness property proved in Claims 26 and 27 imply that J⟨V ⟩
and C⟨V ⟩ cannot be “too small,” unless they are empty.

▷ Claim 28. If |J⟨V ⟩|, |C⟨V ⟩| ≤ (δ/10) · m, then J⟨V ⟩ = C⟨V ⟩ = ∅.

SoCG 2022



43:12 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

Proof. Assume towards a contradiction that there is P ∈ C⟨V ⟩ ∪ J⟨V ⟩. As |Γ(P )| ≥ δm it
follows that |Γ(P ) ∩ (C[V ] ∪ J[V ])| ≥ (8δ/10) · m. Claims 26 and 27 imply that there are
at least |Γ(P ) ∩ (C[V ] ∪ J[V ])| ≥ 8δ/10 polynomials in J⟨V ⟩ ∪ C⟨V ⟩ in contradiction to the
assumption that there are at most (2δ/10) · m polynomials in J⟨V ⟩ ∪ C⟨V ⟩. ◁

Thus, if we can make|J⟨V ⟩|, |C⟨V ⟩| ≤ (δ/10) · m without increasing dim(V ) and |J | too
much then Claim 28 would imply that Q ∈ span{J ,C[V ]2}, from which the theorem would
follow. We first show how to reduce |C⟨V ⟩| and then we reduce |J⟨V ⟩|. We will need the
following easy observation.

▷ Claim 29. There is a linear subspace V ⊆ V ′, of dimension dim(V ′) ≤ 1/δ4 ·dim(V ) ≤ 1/δ6,
such that |C⟨V ′⟩| ≤ δ/10 · m.

The proof of Claim 29 appears in the full version. Note that it may now be the case that
some linear combination of polynomials in J is now “close” to V ′. We therefore perform the
following simple process: if Q ∈ span{J } is such that for some quadratic L of rank(L) = 2
we have that P + L ∈ ⟨V ′⟩ then we can add Lin(L) to V ′ and remove one polynomial from
J while still maintaining that Q ⊂ span{(Q ∩ ⟨V ′⟩), J ,C[V ′]2}. As |J | = O(1/δ), this does
not have much affect on the dimension of V ′, which is still O(1/δ4 · dim(V )).

To simplify notation, we denote with V the linear space guaranteed by Claim 29. As V

may have changed, we update the sets C[V ], C⟨V ⟩, J[V ] and J⟨V ⟩ accordingly. By construction
of V = V ′, we now have that |C⟨V ⟩| ≤ δ/100m.

We now complete the proof of Theorem 8 by bounding the dimension of J⟨V ⟩.

▷ Claim 30. There is a set J ⊆ J ′ ⊂ Q such that |J ′| ≤ |J | + O(1/δ) and dim(J ′
⟨V ⟩) ≤

O(1/δ + dim(V )2).

Proof. Denote T1 = {Q ∈ J | |Γ(ii)(Q)| ≥ 0.1δm} and T2 = J⟨V ⟩ \ T1. For every polynomial
in Q ∈ J⟨V ⟩, denote Q = QJ + Q⟨V ⟩ where QJ ∈ span{J } and Q⟨V ⟩ ∈ ⟨V ⟩. Note that
neither QJ nor Q⟨V ⟩ can be zero as this would imply Q ∈ J[V ] ∪ C⟨V ⟩.

▷ Claim 31. There is a subset T ′
1 ⊆ T1 of size at most 10/δ such that T1 ⊂

span{T ′
1 , J ,C[V ]2}.

We prove Claim 31 in the full version. Set T2 = T2 \ span{T1, J ,C[V ]2}. Every Q ∈ T2
must now satisfy that |Γi(Q)| ≥ 0.9δm. Indeed, this follows from the fact that Q ̸∈ T1
and that it cannot satisfy Theorem 11iii with any polynomial. Remove from Γi(Q) all
the polynomials in B1, this removes at most 2|B1| ≤ 2/10δm polynomials from Γi(Q)
(using an argument similar to Claim 21), leaving |Γ(i)(Q)| ≥ 0.7δm. This implies that
K = T2, W = span{T1, J ,C[V ]2} and W = Q ∩ span{T1, J ,C[V ]2} satisfy the conditions of
Theorem 15. As dim(W ) ≤ O(dim(V )2) it follows that dim(J⟨V ⟩) ≤ O(1/δ + dim(V )2).

Setting J ′ = T ′
1 ∪ J completes the proof. ◁

We now put everything together and prove Theorem 8.

Proof of Theorem 8. Claims 22, 23 and 24 imply that there exists a set J ⊆ Q, of size
|J | = O(1/δ), and a subspace of linear functions V of dimension dim(V ) = O(1/δ2) such
that Q ⊂ span{(Q ∩ ⟨V ⟩), J ,C[V ]2}.

By Claims 29 and 30 there are J ⊆ J ′ and V ⊆ V ′ such that dim(V ′) ≤ 1/δ4 · dim(V ) ≤
1/δ6 and |J ′| = O(1/δ), for which it holds that |C⟨V ′⟩| ≤ δ/10 · m and dim(J ′

⟨V ⟩) ≤
O(1/δ + dim(V )2) = O(1/δ8). We now set J = J ′, V = V ′ and, if needed, we add O(|J |)
linear functions to V to make sure that no non-trivial linear combination of polynomials in



S. Peleg and A. Shpilka 43:13

J is of the form L + F (V ) where ranks(L) ≤ 2 and F ∈ C[V ]2, we obtain that J⟨V ⟩ = ∅
and |C⟨V ⟩| ≤ δm/10. Claim 28 now guarantees that we also have that C⟨V ⟩ = ∅. Hence,
Q = C[V ] ∪ J[V ] and it follows that dim(span{Q}) ≤ |J | + dim(V )2 = O(1/δ16). ◀

References

1 Manindra Agrawal. Proving lower bounds via pseudo-random generators. In Ramaswamy
Ramanujam and Sandeep Sen, editors, FSTTCS 2005: Foundations of Software Technology
and Theoretical Computer Science, 25th International Conference, Hyderabad, India, December
15-18, 2005, Proceedings, volume 3821 of Lecture Notes in Computer Science, pages 92–105.
Springer, 2005. doi:10.1007/11590156_6.

2 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.
32.

3 Boaz Barak, Zeev Dvir, Avi Wigderson, and Amir Yehudayoff. Fractional Sylvester–Gallai
theorems. Proceedings of the National Academy of Sciences, 110(48):19213–19219, 2013.

4 Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and blackbox
identity testing. Inf. Comput., 222:2–19, 2013. doi:10.1016/j.ic.2012.10.004.

5 Peter Borwein and William O. J. Moser. A survey of Sylvester’s problem and its generalizations.
Aequationes Mathematicae, 40:111–135, 1990. doi:doi:10.1007/BF02112289.

6 Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs Randomness for Bounded
Depth Arithmetic Circuits. In Rocco A. Servedio, editor, 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages
13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
CCC.2018.13.

7 Zeev Dvir. Incidence theorems and their applications. Found. Trends Theor. Comput. Sci.,
6(4):257–393, 2012. doi:10.1561/0400000056.

8 Zeev Dvir and Guangda Hu. Sylvester-Gallai for Arrangements of Subspaces. Discrete &
Computational Geometry, 56(4):940–965, 2016. doi:10.1007/s00454-016-9781-7.

9 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design matrices
and a new proof of kelly’s theorem. Forum of Mathematics, Sigma, 2, 2014. arXiv:1211.0330.

10 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–1434, 2007. doi:10.1137/
05063605X.

11 Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM J. Comput., 39(4):1279–1293, 2009. doi:10.1137/080735850.

12 Paul Erdös. Problems for Solution: 4065. The American Mathematical Monthly, 50(1):65,
1943. URL: http://www.jstor.org/stable/2304011.

13 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. A deterministic parallel algorithm
for bipartite perfect matching. Commun. ACM, 62(3):109–115, 2019. doi:10.1145/3306208.

14 Michael A. Forbes. Polynomial identity testing of read-once oblivious algebraic branching
programs. PhD thesis, Massachusetts Institute of Technology, 2014.

15 Michael A. Forbes and Amir Shpilka. Explicit noether normalization for simultaneous conjug-
ation via polynomial identity testing. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus
Jansen, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 16th International Workshop, APPROX 2013,
and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013.
Proceedings, volume 8096 of Lecture Notes in Computer Science, pages 527–542. Springer,
2013. doi:10.1007/978-3-642-40328-6_37.

SoCG 2022

https://doi.org/10.1007/11590156_6
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1016/j.ic.2012.10.004
https://doi.org/doi:10.1007/BF02112289
https://doi.org/10.4230/LIPIcs.CCC.2018.13
https://doi.org/10.4230/LIPIcs.CCC.2018.13
https://doi.org/10.1561/0400000056
https://doi.org/10.1007/s00454-016-9781-7
http://arxiv.org/abs/1211.0330
https://doi.org/10.1137/05063605X
https://doi.org/10.1137/05063605X
https://doi.org/10.1137/080735850
http://www.jstor.org/stable/2304011
https://doi.org/10.1145/3306208
https://doi.org/10.1007/978-3-642-40328-6_37


43:14 Robust Sylvester-Gallai Type Theorem for Quadratic Polynomials

16 Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct Hitting Sets and Barriers
to Proving Lower Bounds for Algebraic Circuits. Theory of Computing, 14(1):1–45, 2018.
doi:10.4086/toc.2018.v014a018.

17 Tibor Gallai. Solution to Problem 4065. The American Mathematical Monthly, 51:169–171,
1944.

18 Abhibhav Garg, Rafael Oliviera, and Akash Kumar Sengupta. Robust Radical Sylvester-Gallai
Theorem for Quadratics. Personal communication, 2021.

19 Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. Towards an
algebraic natural proofs barrier via polynomial identity testing. CoRR, abs/1701.01717, 2017.
arXiv:1701.01717.

20 Ankit Gupta. Algebraic Geometric Techniques for Depth-4 PIT & Sylvester-Gallai Conjectures
for Varieties. Electronic Colloquium on Computational Complexity (ECCC), 21:130, 2014.
URL: http://eccc.hpi-web.de/report/2014/130.

21 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. doi:10.1137/140957123.

22 Sten Hansen. A generalization of a theorem of Sylvester on the lines determined by a finite
point set. Mathematica Scandinavica, 16:175–180, 1965.

23 Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute
(extended abstract). In Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and
Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, April 28-30, 1980, Los Angeles, California, USA, pages 262–272. ACM, 1980.
doi:10.1145/800141.804674.

24 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

25 Zohar S. Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In Proceedings of the 24th Annual IEEE Conference on Computational
Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 274–285. IEEE Computer Society,
2009. doi:10.1109/CCC.2009.18.

26 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 198–207. IEEE Computer Society, 2009. doi:
10.1109/FOCS.2009.67.

27 Leroy Milton Kelly. A resolution of the Sylvester-Gallai problem of J.-P. Serre. Discrete &
Computational Geometry, 1(2):101–104, 1986.

28 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and polynomial factorization. Computational Complexity, 24(2):295–331, 2015. doi:
10.1007/s00037-015-0102-y.

29 Mrinal Kumar and Ramprasad Saptharishi. Hardness-Randomness Tradeoffs for Algebraic
Computation. Bull. EATCS, 129, 2019. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/591/599.

30 Eberhard Melchior. Über Vielseite der Projektive Ebene. Deutsche Mathematik, 5:461–475,
1941.

31 Ketan D. Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normal-
ization. J. Amer. Math. Soc., 30(1):225–309, 2017.

32 Shir Peleg and Amir Shpilka. A Generalized Sylvester-Gallai Type Theorem for Quadratic
Polynomials. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC
2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs,
pages 8:1–8:33. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
CCC.2020.8.

https://doi.org/10.4086/toc.2018.v014a018
http://arxiv.org/abs/1701.01717
http://eccc.hpi-web.de/report/2014/130
https://doi.org/10.1137/140957123
https://doi.org/10.1145/800141.804674
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1109/CCC.2009.18
https://doi.org/10.1109/FOCS.2009.67
https://doi.org/10.1109/FOCS.2009.67
https://doi.org/10.1007/s00037-015-0102-y
https://doi.org/10.1007/s00037-015-0102-y
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
https://doi.org/10.4230/LIPIcs.CCC.2020.8
https://doi.org/10.4230/LIPIcs.CCC.2020.8


S. Peleg and A. Shpilka 43:15

33 Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testingalgorithm for
Σ[3]ΠΣΠ[2] circuits via edelstein-kelly type theorem for quadratic polynomials. CoRR,
abs/2006.08263, 2020. arXiv:2006.08263.

34 Nitin Saxena. Progress on polynomial identity testing. Bulletin of EATCS, 99:49–79, 2009.
URL: https://eccc.weizmann.ac.il/report/2009/101/.

35 Nitin Saxena. Progress on polynomial identity testing-ii. In M. Agrawal and V. Arvind,
editors, Perspectives in Computational Complexity: The Somenath Biswas Anniversary Volume,
Progress in Computer Science and Applied Logic, pages 131–146. Springer International
Publishing, 2014. URL: https://books.google.co.il/books?id=U7ApBAAAQBAJ.

36 Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top-fanin
depth-3 circuits: The field doesn’t matter. SIAM J. Comput., 41(5):1285–1298, 2012. doi:
10.1137/10848232.

37 Nitin Saxena and Comandur Seshadhri. From sylvester-gallai configurations to rank bounds:
Improved blackbox identity test for depth-3 circuits. J. ACM, 60(5):33, 2013. doi:10.1145/
2528403.

38 Jean-Pierre Serre. Advanced Problems: 5359. The American Mathematical Monthly, 73(1):89,
1966. URL: http://www.jstor.org/stable/2313941.

39 Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM
J. Comput., 38(6):2130–2161, 2009. doi:10.1137/070694879.

40 Amir Shpilka. Sylvester-Gallai type theorems for quadratic polynomials. Discrete Analysis,
13, 2020.

41 Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
doi:10.1561/0400000039.

42 Gaurav Sinha. Reconstruction of Real Depth-3 Circuits with Top Fan-In 2. In Ran Raz,
editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,
Tokyo, Japan, volume 50 of LIPIcs, pages 31:1–31:53. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.31.

43 Ola Svensson and Jakub Tarnawski. The Matching Problem in General Graphs Is in Quasi-NC.
In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.70.

44 James Joseph Sylvester. Mathematical question 11851. Educational Times, pages 59–98, 1893.

SoCG 2022

http://arxiv.org/abs/2006.08263
https://eccc.weizmann.ac.il/report/2009/101/
https://books.google.co.il/books?id=U7ApBAAAQBAJ
https://doi.org/10.1137/10848232
https://doi.org/10.1137/10848232
https://doi.org/10.1145/2528403
https://doi.org/10.1145/2528403
http://www.jstor.org/stable/2313941
https://doi.org/10.1137/070694879
https://doi.org/10.1561/0400000039
https://doi.org/10.4230/LIPIcs.CCC.2016.31
https://doi.org/10.1109/FOCS.2017.70




Swap, Shift and Trim to Edge Collapse a Filtration
Marc Glisse # Ñ

Université Paris-Saclay, CNRS, Inria, Laboratoire de Mathématiques d’Orsay, 91405, Orsay, France

Siddharth Pritam #

School of Engineering, Department of Computer Science, Shiv Nadar University, Delhi NCR, India

Abstract
Boissonnat and Pritam introduced an algorithm to reduce a filtration of flag (or clique) complexes,
which can in particular speed up the computation of its persistent homology. They used so-called
edge collapse to reduce the input flag filtration and their reduction method required only the
1-skeleton of the filtration. In this paper we revisit the use of edge collapse for efficient computation
of persistent homology. We first give a simple and intuitive explanation of the principles underlying
that algorithm. This in turn allows us to propose various extensions including a zigzag filtration
simplification algorithm. We finally show some experiments to better understand how it behaves.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology

Keywords and phrases edge collapse, flag complex, graph, persistent homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.44

Related Version Full Version: https://arxiv.org/abs/2203.07022

Supplementary Material Software (Source Code): https://github.com/GUDHI/gudhi-devel [16]
archived at swh:1:cnt:c823901feab91f79f85da1717314127803fe18fd

1 Introduction

Efficient computation of persistent homology has been a central quest in Topological Data
Analysis (TDA) since the early days of the field about 20 years ago. Given a filtration
(a nested sequence of simplicial complexes), computation of persistent homology involves
reduction of a boundary matrix, whose rows and columns are the simplices of the input
filtration. Traditionally, there are two complementary lines of research that have been
explored to improve the computation of persistent homology. The first approach led to
improvement of the persistence algorithm (the boundary matrix reduction algorithm) and
of its analysis, to efficient implementations and optimizations, and to a new generation of
software [16, 4, 3, 18, 22, 26, 1]. The second and complementary approach is to reduce (or
simplify) the input filtration to a smaller filtration through various geometric or topological
techniques in an exact or approximate way and then compute the persistent homology of
the smaller reduced filtration. This research direction has been intensively explored as
well [21, 14, 10, 7, 27, 19, 11, 13].

Flag complexes and, in particular, the Vietoris-Rips complexes are an important class of
simplicial complexes that are extensively used in TDA. Flag complexes are fully characterized
by their graph (or 1-skeleton) and can thus be stored in a very compact way. Therefore, they
are of great practical importance and are well studied theoretically. Various efficient codes
and reduction techniques have been developed for those complexes [3, 27, 26, 1]. However,
further progress have been made only recently by the work of Boissonnat and Pritam [5, 6].
Both works [5, 6] put forward preprocessing techniques, which reduce an input flag filtration
(nested sequence of flag complexes) to a smaller flag filtration using only the 1-skeleton. The
work in [5] uses a special type of collapse called strong collapse (removal of special vertices
called dominated vertices), introduced by J. Barmak and E. Miniam [2]. In [6] they extend

© Marc Glisse and Siddharth Pritam;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marc.glisse@inria.fr
https://geometrica.saclay.inria.fr/team/Marc.Glisse/
https://orcid.org/0000-0001-6914-1651
mailto:siddharth.pritam@snu.edu.in
https://orcid.org/0000-0001-5673-0406
https://doi.org/10.4230/LIPIcs.SoCG.2022.44
https://arxiv.org/abs/2203.07022
https://github.com/GUDHI/gudhi-devel
https://archive.softwareheritage.org/swh:1:cnt:c823901feab91f79f85da1717314127803fe18fd;origin=https://github.com/mglisse/gudhi-devel;visit=swh:1:snp:2eeeeeec0dbfec82cf1570de6717bca7889915cf;anchor=swh:1:rev:e495c4de49a9a226359fbf21966f4ebc4b3fc31b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


44:2 Swap, Shift and Trim to Edge Collapse a Filtration

the notion of strong collapse to edge collapse (removal of special edges, called dominated
edges) and use it for further filtration simplification which improves the performance by
several orders of magnitude.

In this paper, we revisit the usage of edge collapse for efficient computation of persistent
homology. We first give a simple and intuitive explanation of the principles underlying the
algorithm proposed in [6]. We identify that an algorithm to edge collapse a filtration can be
deconstructed as three fundamental operations: 1. Swap two edges having same filtration
value, 2. Shift a dominated edge forward in the filtration and 3. Trim the very last dominated
edge. This new approach allows us to propose various extensions, which we list below.

Backward: We propose a backward reduction algorithm, which processes the edges of
a flag filtration with decreasing filtration values. The algorithm in [6] processes edges
one by one with increasing filtration values, i.e. in the forward direction. The backward
processing results (shown experimentally) in faster reduction of the edges as it allows
various operations like domination checks, computing the neighbourhood of an edge etc
to be performed fewer times than in the forward algorithm of [6].
Parallel: We propose a divide and conquer heuristic to further improve and semi-
parallelize our backward reduction algorithm. Our approach is to subdivide the input
filtration into two smaller sub-sequences (consisting of consecutive edges), we process
these smaller sub-sequences in parallel and then merge the solutions of two sequences
to form the solution of the complete sequence. The two sub-sequences can be further
sub-divided and processed recursively in parallel.
Approximate: With this simplified perspective a simple tweak in the backward algorithm
allows us to have an approximate version of the reduction algorithm. There are two goals
in mind behind an approximate version, first to speed up the algorithm, and second to
obtain a smaller reduced sequence. We perform certain experiments to show how the
approximate version performs on these two parameters.
Zigzag: We provide a (parallelizable) reduction algorithm for a zigzag flag filtration,
which is a sequence of flag complexes linked through inclusion maps in both forward and
backward directions.

We note that we don’t assume that all the vertices appear in the beginning of the filtration.
That is the filtration values of vertices can be arbitrary as well.

2 Background

We briefly recall the basic notions like simplicial complexes, flag complexes, persistent
homology and edge collapse. For more details on these topics please refer to [15, 17, 23].

Simplicial complex and simplicial map. An abstract simplicial complex K is a collection
of subsets of a non-empty finite set X, such that for every subset A in K, all the subsets of A
are in K. We call an abstract simplicial complex simply a simplicial complex or just a complex.
An element of K is called a simplex. An element of cardinality k+1 is called a k-simplex and
k is called its dimension. Given a simplicial complex K, we denote its geometric realization
as |K|. A simplex is called maximal if it is not a proper subset of any other simplex in
K. A sub-collection L of K is called a subcomplex if it is a simplicial complex itself. An
inclusion ψ : K σ

↪−→ K ∪ σ of a single simplex σ is called elementary, otherwise, it’s called
non-elementary. An inclusion ψ : K ↪→ L between two complexes K and L induces a
continuous map |ψ| : |K| → |L| between the underlying geometric realizations.



M. Glisse and S. Pritam 44:3

Flag complex and neighborhood. A complex K is a flag or a clique complex if, when
a subset of its vertices forms a clique (i.e. any pair of vertices is joined by an edge), they
span a simplex. It follows that the full structure of K is determined by its 1-skeleton (or
graph) we denote by G. For a vertex v in G, the open neighborhood NG(v) of v in G

is defined as NG(v) := {u ∈ G | [uv] ∈ E}, where E is the set of edges of G. The closed
neighborhood NG[v] is NG[v] := NG(v) ∪ {v}. Similarly we define the closed and open
neighborhood of an edge [xy] ∈ E, NG[xy] and NG(xy) as NG[xy] := NG[x] ∩ NG[y] and
NG(xy) := NG(x) ∩NG(y), respectively.

Persistent homology. A sequence of simplicial complexes F : {K1 ↪→ K2 ↪→ · · · ↪→ Km}
connected through inclusion maps is called a filtration. A filtration is a flag filtration if
all the simplicial complexes Ki are flag complexes.

If we compute the homology groups of all the Ki, we get the sequence P(F) : {Hp(K1) ∗
↪−→

Hp(K2) ∗
↪−→ · · · ∗

↪−→ Hp(Km)}. Here Hp() denotes the homology group of dimension p with
coefficients from a field F and ∗

↪−→ is the homomorphism induced by the inclusion map. P(F)
is a sequence of vector spaces connected through the homomorphisms and it is called a
persistence module. More formally, a persistence module V is a sequence of vector spaces
{V1 −→ V2 −→ V3 −→ · · · −→ Vm} connected with homomorphisms {−→}. A persistence module
arising from a filtration captures the evolution of the topology of the sequence.

Any persistence module can be decomposed into a collection of intervals of the form
[i, j) [9]. The multiset of all the intervals [i, j) in this decomposition is called the persistence
diagram (PD) of the persistence module. An interval of the form [i, j) corresponds to a
homological feature (a “cycle”) which appeared at i and disappeared at j. The PD completely
characterizes the persistence module, that is, there is a bijective correspondence between the
PD and the equivalence class of the persistence module [15, 28].

Two different persistence modules V : {V1 −→ V2 −→ · · · −→ Vm} and W : {W1 −→ W2 −→
· · · −→Wm}, connected through a set of homomorphisms ϕi : Vi →Wi are equivalent if the
ϕi are isomorphisms and the following diagram commutes [15, 12]. Equivalent persistence
modules have the same interval decomposition, hence the same diagram.

V1 V2 · · · Vm−1 Vm

W1 W2 · · · Wm−1 Wm

ϕ1 ϕ2 ϕm−1 ϕm

Edge collapse of a flag complex. In a flag complex K, we say that an edge e = [ab],
connecting vertices a and b, is dominated by a vertex v (different from a and b) if NG[e] ⊆
NG[v]. Removing e and all its cofaces from K defines a smaller flag complex K ′. It has been
proven in [6] that when e is dominated in K, the inclusion K ′ ⊂ K induces an isomorphism
between the homology groups of K ′ and K. This removal is called an edge collapse.

3 Swapping, shifting and trimming

In this Section, we show three simple and fundamental operations that preserve the persistence
diagram of a flag filtration: 1. Swapping two edges with the same filtration value, 2. Shifting
a dominated edge, and 3. Trimming a dominated edge at the end of the filtration. These
operations can be combined to simplify a flag filtration.

Before we proceed, we will fix some notations. Let {t1, t2, · · · , tn} be a finite index set
where ti ∈ R and ti < tj for i < j. For convenience, we may consider tn+1 =∞. With each
ti (called the filtration value or grade) we associate a graph Gti such that Gti ↪→ Gti+1 is

SoCG 2022



44:4 Swap, Shift and Trim to Edge Collapse a Filtration

an inclusion, (not necessarily elementary) of edges. The flag complex of Gti is denoted as
Gti

and we consider the associated flag filtration F : Gt1 ↪→ Gt2 ↪→ · · · ↪→ Gtn
. The edges in

the set E := {e1, e2, · · · em} (m ≥ n) are thus indexed with an order compatible with the
filtration values.

Swapping. Inserting several edges at the same filtration value can be done in any order.
We state this basic observation as the following lemma.

▶ Lemma 1 (Swapping Lemma). Given a flag filtration {Gt1 ↪→ Gt2 · · · ↪→ Gtn
}, such that

Gti ↪→ Gti+1 is a non-elementary inclusion. Then, the indices of the edges Gti+1 \Gti could be
assigned interchangeably. That is, swapping their order of insertion preserves the persistence
diagram.

Shifting. In a filtration, insertion of a dominated edge does not bring immediate topological
change. Therefore, its insertion can be shifted until the next grade and possibly even further.

▶ Lemma 2 (Shifting Lemma). Let e be a dominated edge in Gti
inserted at grade ti. Then, the

insertion of e can be shifted by one grade to ti+1 without changing the persistence diagram. In
other words, the persistence diagrams of the original flag filtration F := {Gt1 ↪→ · · · ↪→ Gti

↪→
Gti+1 ↪→ · · · ↪→ Gtn} and the shifted filtration {Gt1 ↪→ · · · ↪→ Gti \ e ↪→ Gti+1 ↪→ · · · ↪→ Gtn}
are equivalent.

Proof. The proof follows from the commutativity of the following diagram, where all maps
are induced by inclusions, and the fact that all vertical maps are isomorphisms.

Hp(Gti−1) Hp(Gti
) Hp(Gti+1)

Hp(Gti−1) Hp(Gti \ e) Hp(Gti+1)

|ri|∗

This implies that the persistence diagrams of the sequences {Gt1 ↪→ · · · ↪→ Gti
↪→

Gti+1 ↪→ · · · ↪→ Gtn
} and {Gt1 ↪→ · · · ↪→ Gti

\ e ↪→ Gti+1 ↪→ · · · ↪→ Gtn
} are equivalent,

see [6, Theorem 4] for more details. Here, |ri|∗ is the isomorphism between the homology
groups induced by the retraction map (on the geometric realizations of the complexes)
associated to the edge collapse. ◀

After an edge is shifted to grade ti+1, it can leap frog the edges inserted at grade ti+1
using the swapping lemma (Lemma 1) and can be checked for shifting to the next grade.

Trimming. If the very last edge in the filtration is dominated then we can omit its inclusion.
This is a special case of the shifting operation (Lemma 2) assuming that there is a graph
G∞ at infinity.

▶ Lemma 3 (Trimming Lemma). Let e /∈ Gtn−1 be a dominated edge in the graph Gtn
. Then,

the persistence diagrams of the original sequence F := {Gt1 ↪→ Gt2 ↪→ · · · ↪→ Gtn
} and the

trimmed sequence {Gt1 ↪→ Gt2 ↪→ · · · ↪→ Gtn
\ e} are equivalent.

Note that when shifting or trimming produces a sequence with identical consecutive graphs
Gti

= Gti+1 , we can just drop index ti+1.

▶ Lemma 4 (Adjacency). Let e be an edge in a graph G and let e′ be a new edge with
G′ := G ∪ e′. If NG(e) = NG′(e) and e is dominated in G, then e is also dominated in G′.

This is in particular the case if e and e′ are not boundary edges of a common triangle in G′.
The above lemma is not strictly necessary, but it is useful to speed up algorithms.



M. Glisse and S. Pritam 44:5

4 Persistence simplification

In this Section, we will describe our new approach to use edge collapse to speed up the
persistence computation. As mentioned before, the simplification process will be seen as a
combination of the basic operations described in Section 3. This new perspective simplifies
the design process and correctness proof of the algorithm. Along with this we achieve a
significant improvement in the run-time efficiency as shown in Section 8. We first briefly look
at the forward algorithm of [6] with this new point of view and then present the new approach
called the backward algorithm [Algorithm 1]. Both algorithms take as input a flag filtration
F represented as a sorted array E of edges (pairs of vertices) with their filtration value, and
output a similar array Ec, sorted in the case the Forward Algorithm and unsorted for the
Backward Algorithm, that represents a reduced filtration Fc that has the same persistence
diagram as F .

Forward algorithm. In the forward algorithm (the original one from [6]), the edges are
processed in the order of the filtration in a streaming fashion. If a new edge is dominated,
we skip its insertion and consider the next edge. If the next edge is dominated as well its
insertion is skipped as well. Intuitively, the sequence of such dominated edges forms a train
of dominated edges that we are moving to the right. When a new edge e is non-dominated
(called critical), we output it, and also check what part of the train of dominated edges is
allowed to continue to the right (shifted forward) and what part has to stop right there. For
all the previously dominated edges (actually only those that are adjacent to e), we check if
they are still dominated after adding the edge e. If an edge e′ becomes critical, we output it
with the same filtration value as e, and the following edges now have to cross both e and e′

to remain in the train. We stop after processing the last edge, and the edges that are still
part of the dominated train are discarded (trimmed).

Backward algorithm. The backward algorithm (Algorithm 1) considers edges in order of
decreasing filtration value. Each edge e is considered once, delayed (shifted) as much as
possible, then never touched again. We always implicitly swap edges so that while e is the
edge considered, it is the last one inserted at its current filtration value, and compute its
domination status there. If the edge is dominated, we shift it to the next filtration value,
and iterate, swapping and checking for domination again at this new filtration value. If there
is no next filtration value, we remove the edge (trimming). Once the edge is not dominated,
we update its filtration value and output it. As an optimization, instead of moving the edge
one grade at a time, we may jump directly to the filtration value of the next adjacent edge,
since we know that moving across the other edges will preserve the domination (Lemma 4).

The main datastructure used here is a neighborhood map N . For each vertex u, it
provides another map N [u] from the adjacent vertices vi to the filtration value N [u][vi]
of edge uvi. The two main uses of this map are computing the neighborhood of an edge
uv at a time t (i.e. in the graph Gt) as Nt[uv] = Nt[u] ∩ Nt[v] (filtering out the edges of
filtration value larger than t), and checking if such an edge neighborhood is included in the
neighborhood of a vertex w at time t. While computing Nt[uv], we also get as a side product
the list of the future neighbors Ft[uv], which we sort by filtration value. These operations
can be done efficiently by keeping the maps sorted, or using hashtables. The information
in N is symmetric, any operation we mention on N [u][v] (removal or updating t) will also
implicitly be done on N [v][u]. In this Section, we denote t(e) the filtration value of e ∈ E,
which is stored as N [u][v] if e = uv. Note that even though E is sorted, since several edges
may have the same filtration value, Gt(e) may contain some edges that appear after e.

SoCG 2022



44:6 Swap, Shift and Trim to Edge Collapse a Filtration

We now explain the precise computation of the reduced sequence of edges Ec. See
Algorithm 1 for the pseudo-code. The main for loop on line 4 (called the backward loop)
iterates over the edges in the sequence E by decreasing filtration values, i.e. in the backward
direction, and checks whether or not the current edge e is dominated in the graph Gt(e). If
not, we insert e in Ec and keep its original filtration value t(e). Else, e is dominated in Gt(e),
and we increase t(e) to the smallest value t′ > t(e) where Nt(e)[e] ⊊ Nt′ [e]. We can then
iterate (goto on line 12), check if the edge is still dominated at its new filtration value t′,
etc. When the edge stops being dominated, we insert it in Ec with its new t(e) and update
t(e) in the neighborhood map N . If the smallest value t′ > t(e) does not actually exist, we
remove the edge from the neighborhood map and do not insert it in Ec.

Algorithm 1 Core flag filtration backward algorithm.

1: procedure Core-Flag-Filtration(E)
2: input : set of edges E sorted by filtration value
3: Ec ← ∅
4: for e ∈ E do ▷ In non-increasing order of t(e)
5: Compute Nt(e)(e) and Ft(e)(e)
6: for w ∈ Nt(e)(e) do
7: Test if w dominates e at t(e)
8: end for
9: if e is dominated in Gt(e) then

10: if Ft(e)(e) is empty then
11: Remove N [u][v] ▷ Trimming.
12: go to 23 (next edge)
13: else ▷ Shift and Swap.
14: t′ ← filtration of the first element of Ft(e)(e)
15: Move from Ft(e)(e) to Nt(e)(e) the vertices that become neighbors of e at t′
16: N [u][v] = t(e)← t′

17: go to 6
18: end if
19: else
20: Insert {e, t(e)} in Ec

21: go to 23 (next edge)
22: end if
23: end for
24: return Ec ▷ Ec is the 1-skeleton of the core flag filtration.
25: end procedure

▶ Theorem 5 (Correctness). Let F be a flag filtration, and Fc the reduced filtration produced
by Algorithm 1. F and Fc have the same persistence diagram.

Proof. The proof is based on the observation that the algorithm inductively performs the
elementary operations from Section 3: either it trims the very last edge of the current
sequence (Line 11) or shifts and swaps a dominated edge forward to get a new sequence.
Then the result follows using Lemmas 1–3 inductively. The only subtlety is around Line 15,
where instead of simply performing one shift to the next filtration value, we perform a whole
sequence of operations. We first shift e to the next filtration value t′ (and implicitly swap e

with the other edges of filtration value t′). As long as we have not reached the first element of



M. Glisse and S. Pritam 44:7

Ft(e)(e), we know that shifting has not changed the neighborhood of e and thus by Lemma 4
the fact that e is dominated. We can then safely keep shifting (and swapping) until we reach
that first element of Ft(e)(e). ◀

Complexity. We write ne for the total number of edges and k for the maximum degree of a
vertex in Gtn

. The main loop of the procedure, Line 4 of Algorithm 1, is executed ne times.
Nested, we loop (in the form of go to 6) on the elements of Ft(e)(e), of which there are at
most k. For each of those elements, on Line 6, we iterate on Nt(e)(e), which has size at most
k. Finally, testing if a specific vertex dominates a specific edge amounts to checking if one
set is included in another, which takes linear time in k for sorted sets or hash tables. The
other operations are comparatively of negligible cost. Sorting Ft(e)(e) on Line 5 takes time
k log k = o(k2). Line 15 may take time k log k depending on the datastructure, O(k2) in any
case. This yields a complexity of O(nek

3).

5 Parallelisation

Delaying the insertion of an edge until the next grade, and possibly swapping it, is a very
local operation. As such, there is no problem doing several of them in parallel as long as
they are in disjoint intervals of filtration values. We exploit this observation and further
optimize our algorithm by parallelizing a significant part of the computation using a divide
and conquer approach.

To describe the parallel approach, let us use the same notations ti, Gti , F , GF and E

as in Section 3. To make things simpler, we assume that all edges have distinct filtration
values. We subdivide the given input edge set E := {e1, e2, · · · en} of size n into two smaller
halves: the left half El := {e1, e2, · · · en/2} and the right half Er := {en/2+1, en/2+2, · · · en}
of roughly the same size. We will describe a version of the algorithm based on the backward
algorithm, but the same could be done with the forward algorithm, or a mixture of both.

We first apply the backward algorithm to El normally (left call), which produces a
reduced Ec

l . We also remember the list of all edges that were removed in this procedure:
Er

l := El \ Ec
l . Independently (in parallel), we apply the backward algorithm to E (right

call), but stop after processing all the edges of Er on Line 4 of Algorithm 1. In a final
sequential merging step, we resume the right call, processing only the edges of Er

l , as if they
all had the same initial filtration value tn/2+1. The subdivision can obviously be applied
recursively to increase the parallelism.

▶ Lemma 6. The parallel algorithm produces exactly the same output as the sequential
algorithm, and is thus correct.

Proof. The right call and the sequential algorithm start by handling the edges of Er in
exactly the same way. When we reach the edges of El, for each edge e, there are two cases.
Either the sequential algorithm shifts e no further than tn/2, in which case the left call does
the same. Or the sequential algorithms shifts e further (possibly all the way to removing it),
then shifting to tn/2+1 is handled by the left call, while the rest of the shift happens in the
merging step. ◀

6 Approximation

Another interesting extension is an approximate version that gives a diagram within bottleneck
distance ϵ of the true diagram (or some other similar criterion). Since the Rips filtration is
often used as an approximation of the Čech filtration, an additional error is often acceptable.

SoCG 2022



44:8 Swap, Shift and Trim to Edge Collapse a Filtration

If an edge is non-dominated for a short range of filtration values and becomes dominated
again afterwards, it is tempting to skip the non-dominated region and keep delaying this
edge. However, if we are not careful, the errors caused by these skips may add up and
result in a diagram that is far from the original. The simplest idea would be to round all
filtration values to the nearest multiple of ϵ before running the backward algorithm (as in [5]).
However, we can do a little better.

We describe here one safe approximation algorithm, based on the backward algorithm.
When considering a new edge e, instead of checking if it is dominated at its original position
t(e), we start checking ϵ later, at filtration value t(e)+ϵ. If it is dominated, we resume normal
processing from there. However, if the edge is not dominated ϵ after its original insertion
time, we keep it at its original position and avoid uselessly shifting the whole sequence.

▶ Lemma 7. The resulting module is ϵ-interleaved1 with the original one.

Proof. Consider the set D of edges that are delayed by this algorithm, and C the edges that
are kept at their original position. Starting from the original sequence, we can delay all the
edges of D by exactly ϵ. The flag filtration defined by this delayed sequence is obviously
(0, ϵ)-interleaved with the original. We now run the regular backward algorithm on this
sequence, with the difference that the edges in C are handled as if they were never dominated.
The output filtration has the same persistence diagram as the delayed sequence, which is at
distance at most ϵ from the diagram of the original filtration. The key observation here is
that this output filtration is precisely what the approximation algorithm produces. ◀

7 Zigzag persistence

The filtrations we have discussed so far are increasing sequences of complexes. There exists
a more general type of filtration, called zigzag filtration [8, 20] Z : K1 ↪→ K2 ←↩ K3 ↪→
· · · ↪→ Kn. Here consecutive complexes are still related by an inclusion, but the direction
of this inclusion may be different for every consecutive pair. In other words, the complex
Ki is obtained by either inclusion or removal of simplices from the previous complex Ki−1.
Persistence diagrams can still be defined for these filtrations. Again, in this paper, we are
only interested in flag zigzag filtrations, where each complex is a clique complex. For a flag
zigzag filtration the underlying graphs are related through inclusion or removal of edges. We
show that edge collapse can again be used for simplification of such sequences.

In the case of standard persistence (explained in Section 4) the goal of the simplification
process was to shift as many dominated edges as possible towards the end of a filtration
and then trim them. For a zigzag flag filtration there are several possible ways to simplify
it: 1. If a dominated edge is included and is never removed, then as usual we try to shift it
towards the end and trim it. 2. If an edge is included and removed both as dominated, then
we try to shift the inclusion till its removal and then annihilate both operations. 3. If an
edge is included as non-dominated but later removed as dominated then we try to shift its
removal towards the right till the end or its re-insertion. 4. A zigzag filtration is symmetric
and a removal is an inclusion from the opposite direction, therefore, we can shift dominated
removals towards the beginning and perform symmetric operations as in 2.

The 3rd method reduces the number of events at the cost of a slightly bigger complex,
which may or may not be preferred over a more “zigzaggy” filtration, so we do not use it in
the default algorithm.

1 See [9] for a definition of interleaving.



M. Glisse and S. Pritam 44:9

With more ways to simplify, the simplification process of a zigzag flag filtration is more
delicate compared to the usual filtration. And it has some subtleties, first, can we shift a
dominated edge inclusion across an edge removal? We show that (in Lemma 8), a dominated
edge e can be shifted across an edge removal if e is also dominated after the edge removal.
Resolving the first issue leads us to the question, how to index (order) inclusions and removals
of the same grade? In practice, this situation is not common and two complexes at consecutive
grades are linked through either inclusions or removals. Therefore, we adopt the following
representation for a zigzag flag filtration.

We will use the same notations ti, Gti , Gti and E as in Section 3. We represent a zigzag
filtration in slightly more general way as Z : Gt1 ←↩ Gt′

1
↪→ Gt2 ←↩ · · · ↪→ Gti−1 ←↩ Gt′

i−1
↪→

Gti
←↩ Gt′

i
↪→ Gti+1 , · · · ↪→ Gtn

. Here Gt′
i

is an intermediate graph at grade ti. In a usual
zigzag, Gt′

i
is equal to either Gti

or Gti+1 depending on the direction of the arrow. Note that
the standard zigzag algorithm still applies to this version.

Below, we provide a sufficient condition to shift and swap an inclusion with removal.

▶ Lemma 8 (Zigzag Shifting-Swapping Lemma). Let e be an edge inserted at ti, e ∈ Gt′
i

and dominated in both graphs Gti
and Gt′

i
. Then the persistence diagrams of the original

zigzag flag filtration { · · · ←↩ Gt′
i−1

e
↪−→ Gti

←↩ Gt′
i
↪→ Gti+1 ←↩ · · · } and the shifted-swapped

sequence { · · · ←↩ Gt′
i−1

↪→ Gti \ e ←↩ Gt′
i
\ e e

↪−→ Gti+1 ←↩ · · · } are equivalent. That is, the
grade of e can be shifted to ti+1.

Proof. The proof follows through a similar argument as Lemma 2. All three squares in the
following diagram commute as all the maps are induced by inclusions. Note that the top left
and the bottom right horizontal maps can be induced by non-elementary inclusions.

Hp(Gt′
i−1

) Hp(Gti
) Hp(Gt′

i
) Hp(Gti+1)

Hp(Gt′
i−1) Hp(Gti

\ e) Hp(Gt′
i
\ e) Hp(Gti+1)

|e|∗

|rt|∗ |rt|∗|e|∗ |e|∗

|e|∗

Since the vertical maps are either equalities or isomorphisms induced by the inclusion of
the dominated e (|rt| is the corresponding retraction map associated with the collapse), the
result follows immediately. That is, the shift of e to the grade ti+1 preserves the diagram. ◀

Note that in the above lemma, the hypothesis that edge e should be dominated in the
graph Gt′

i
is necessary as shown in Figure 1.

Simultaneous insertion and removal of a dominated edge can be canceled.

▶ Lemma 9 (Cancellation Lemma). Let e be an edge inserted and removed at ti. If e is
dominated in Gti , then the persistence diagrams of the following two sequences { · · · ←↩
Gt′

i−1

e
↪−→ Gti

e←−↩ Gt′
i
↪→ Gti+1 ←↩ · · · } and { · · · ←↩ Gt′

i−1
↪→ Gti

\ e←↩ Gt′
i
↪→ Gti+1 ←↩ · · · }

are the same.

Algorithm. Algorithm 2 to simplify Z : Gt1 ←↩ · · ·Gti
←↩ Gt′

i
↪→ Gti+1 , · · · ↪→ Gtn

is again
a combination of swapping, shifting, trimming and cancelling of a dominated edge. For each
edge e in Z there is a list of pairs < t, inc > associated with it, where t is a grade and inc
is a Boolean variable to denote whether e is inserted or removed at t. Below, we provide
the main steps of the zigzag simplification algorithm. The algorithm first processes all the
edge inclusions in decreasing grade order from tn to t1 and tries to shift them towards the

SoCG 2022



44:10 Swap, Shift and Trim to Edge Collapse a Filtration

1 2 3 4 5

e e e

ee

e←−↩

e←−↩

f f f

ff

f
↪−→

f
↪−→

Figure 1 In the top sequence, the green edge f is dominated at grade 3 and non-dominated
at grade 4. Shifting and swapping the inclusion of f with the removal of the red edge e results
in the bottom sequence. This results in two different one dimensional persistence diagrams of the
associated flag complexes. For the top sequence it is {[1, 5]} and for the bottom {[1, 2], [4, 5]}. Note
that it is standard to use closed intervals in a zigzag persistence diagram.

end. After processing the first edge inclusion, it processes all the removals in increasing
grade order from t1 to tn and tries to shift them towards the beginning. This process can
be repeated several times until it converges. We use t(e) to denote the current grade of the
edge e being considered by the algorithm.

Algorithm 2 Core zigzag flag filtration algorithm.

1: procedure Core-Zigzag-Flag-Filtration(E)
2: for all edge inclusions, backward (from tn to t1) do
3: if the current edge e is dominated in the graph Gt(e) then
4: if t(e) == tn then
5: trim e (delete the element < t(e), inc >).
6: else if Gt(e) ̸= Gt′(e) then ▷ the next step is a removal Gt(e) ←↩ Gt′(e).
7: if e /∈ Gt′(e) then
8: delete the inclusion-removal pair of e at t(e).
9: else if e is dominated in Gt′(e). then

10: set t(e) = t(e) + 1 and go-to step 3. ▷ t(e) + 1 denotes the next grade.
11: end if
12: else ▷ the next step is an inclusion Gt(e) ↪→ Gt(e)+1.
13: set t(e) = t(e) + 1 and go-to step 3.
14: end if
15: end if
16: end for
17: Move forward from t1 to tn and process edge removals symmetric to steps 2-16.
18: end procedure

Note that an edge can be inserted and removed multiple times, in this case, the algorithm
proceeds by pairing an inclusion with its next removal. Algorithm 2 outlines the essential
aspects of the computation but is not optimal. Like Algorithm 1 we can use the Adjacency
lemma (Lemma 4) to perform fewer domination checks. We can easily parallelize the zigzag
simplification algorithm using the same divide and conquer approach described in Section 5.



M. Glisse and S. Pritam 44:11

8 Experiments

Complete graph. Starting from a complete graph on 700 vertices where all edges appear at
the same time, the size of the graph after applying the algorithm several times decreases
as 244650 (initial), 5340, 3086, 1307, 788 and finally 699. It stops decreasing after the 5th
round since 699 edges is obviously minimal. This example demonstrates that one round of
the algorithm is far from producing a fully reduced sequence. However, it removed a large
number of edges, which makes subsequent rounds much faster, and may have already reduced
the complex enough to compute (persistent) homology.

Torus: distribution of filtration values. We use a dataset with 1307 points on a torus
embedded in R3. Figure 2 (left) shows the distribution of the edge lengths. Originally, there
are 853471 edges and the longest has size 2.6. We apply repeatedly the backward algorithm
until the process converges. In the end, we are left with 65053 edges, and a maximal filtration
value of 1.427.

0.0 0.5 1.0 1.5 2.0 2.5

0

200000

400000

600000

800000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

10000

20000

30000

40000

50000

60000

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Birth

0.000

0.200

0.400

0.600

0.800

1.000

1.200

+∞

D
ea

th

Persistence diagram

0

1

2

Figure 2 Filtration value of edges for a torus (top). Orange is for original edges and blue after
collapse. Top right: enlarged blue graph. Bottom: persistence diagram.

First, note that some implementations (of which the first one is Eirene [18]) of Rips
persistence first check at which filtration value the complex becomes a cone (here around 2)
and ignore longer edges. In our algorithm, this check is performed implicitly and the long
edges are dominated by the apex of the cone and thus get removed (we actually manage to
go significantly lower than 2). Still, it remains sensible to avoid those edges when possible.

SoCG 2022



44:12 Swap, Shift and Trim to Edge Collapse a Filtration

After collapsing, we notice several regions in the curve. First some short edges are added
progressively, until the complex gets the homotopy type of a torus. Then nothing happens
for a while, until we have enough edges to kill one of the 1-cycles and fill the cavity, where
many edges are inserted at the same time. Then again nothing happens while the complex is
equivalent to a circle, until we can kill this last 1-cycle, and the process quickly stops with a
contractible complex.

Benchmark backward vs forward. We benchmark the new backward algorithm with the
forward algorithm. For the forward algorithm, we use the code from Giotto-ph [25], which
is derived from our implementation in Gudhi but faster by a factor 1.5 to 2. Our bench
marking considers two aspects: run-time and reduction size (see Table 1). The datasets
are: uniform for an i.i.d. sample of points in a square, sparse for the same, but using a low
threshold on the maximal size of edges, polygon for a regular polygon, circle for an i.i.d.
uniform sample of a circle, dragon comes from [24] and O3 from [3] (the first version uses a
threshold of 1.4 on edge lengths).

The backward algorithm comes with an optimization using a dense array indexed by
vertices. This usually speeds things up nicely, but in cases where the original set of edges is
very sparse, this dense array can be an issue, so we also have a version without this array,
denoted sparse.

Table 1 Run-time and reduction size comparison. Column before and after contains the number
of edges before and after collapsing, and column time contains run time in seconds of the collapse.

Forward Backward
vertices before after time after time dense time sparse

uniform 1000 499500 2897 2.4 2897 1.7 2.4
sparse 50000 389488 125119 0.3 125119 1.9 0.17
polygon 300 44850 44701 3.6 44701 0.5 1
circle 300 44850 41959 4.8 41959 0.4 0.8
complete 900 404550 24540 43 5980 0.4 0.4
torus 1307 853471 94993 31 94993 3.2 5
dragon 2000 1999000 53522 29 53522 14 20
O3 (1.4) 4096 4107941 13674 59 13674 37 51
O3 1024 523776 519217 200 519217 12 23

Table 1 shows a clear advantage for the backward algorithm in cases where few edges
can be removed, or when several edges have the same filtration value. Except for complete
which is a plain complete graph with every edge at the same filtration value, all edges are
computed as Euclidean Rips graphs.

When all the input edges have distinct filtration values, both algorithms output exactly
the same list of edges. However, this isn’t the case anymore when multiple edges have the
same filtration value (and in particular if we apply the algorithm several times). The forward
algorithm, as presented, relies on the order of the edges and does not take advantage of edges
with the same filtration value. The backward algorithm, at its core, checks if an edge is
dominated at a specific filtration value (grade). As seen in Table 1, for a complete graph on
900 vertices, the backward algorithm outputs 5 times fewer edges than the forward algorithm.



M. Glisse and S. Pritam 44:13

Table 2 Gains with the approximate algorithm, for different interleaving factors.

original 1 (exact) 1.01 1.1 1.5 2 10 100
uniform 499500 2897 2891 2859 2609 2462 2356 2353

circle 44850 42007 30423 20617 17552 16404 14574 14342
(seconds) 0.4 0.33 0.22 0.16 0.14 0.12 0.115
dragon 1999000 53522 52738 52161 45439 40564 36094 35860

O3 (1.4) 4107941 13674 13635 13418 12682 12050 11828 11823

Size gains with approximate version. Table 2 shows the number of remaining edges when
we don’t require the output to have the same persistence diagram, but only ask that the
modules be multiplicatively α-interleaved. Usually, the approximate version gives modest
gains over the exact version, for roughly the same running time. However, in some cases that
are hard to simplify like the circle, even a small error allows a significant number of collapses.

2 4 6 8 10 12 14 16

1

2

3

4

5

uniform
circle
torus
O3 (1.4)

Figure 3 Speed gain in function of the number of threads.

Parallelism benchmark. We wrote a limited2 prototype based on tbb::parallel_reduce
and tested it on an i7-10875H CPU (8 cores, 16 threads) by limiting the number of threads.
Figure 3 shows promising results for some datasets, but also that there is room for better
parallel algorithms.

Persistence benchmark. In our experience, doing edge collapses before computing persistent
homology helps a lot for (homology) dimension 2 or higher. However, it is a terrible idea if
we only care about dimension 0. The case of dimension 1 is more mixed, it can help in some
cases and hurt in others. By default we would only recommend its use for dimension greater
than or equal to 2.

2 This implementation assumes that no two edges have the same filtration value.

SoCG 2022



44:14 Swap, Shift and Trim to Edge Collapse a Filtration

For convenience, the persistence computation is done using the version of Ripser [3] found
in giotto-ph [25] with n_threads = 1, and with our new backward algorithm. This means
that edges after the complex has become a cone are ignored. Table 3 shows the time it takes
to compute persistent homology in dimension up to k, either directly, or first collapsing
before computing it.

Table 3 Persistent homology computation time in seconds, with or without edge collapse.

dim 1 collapse & dim 1 dim 2 collapse & dim 2 collapse & dim 3
torus3D 6.2 3.8 75 6.4 47
dragon 3.3 9.2 148 9.7 16.3

References
1 M. Aggarwal and V. Periwal. Dory: Overcoming barriers to computing persistent homology,

2021. arXiv:2103.05608.
2 J. A. Barmak and E. G. Minian. Strong homotopy types, nerves and collapses. Discrete and

Computational Geometry, 47:301–328, 2012. doi:10.1007/s00454-011-9357-5.
3 U. Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. Journal of

Applied and Computational Topology, 5(3):391–423, 2021. doi:10.1007/s41468-021-00071-5.
4 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. PHAT - persistent homology algorithms

toolbox. Journal of Symbolic Computation, 78, 2017. doi:10.1016/j.jsc.2016.03.008.
5 J-D. Boissonnat and S. Pritam. Computing persistent homology of flag complexes via

strong collapses. International Symposium on Computational Geometry (SoCG), 2019. doi:
10.4230/LIPIcs.SoCG.2019.55.

6 J-D. Boissonnat and S. Pritam. Edge collapse and persistence of flag complexes. International
Symposium on Computational Geometry (SoCG), 2020. doi:10.4230/LIPIcs.SoCG.2020.19.

7 M. Botnan and G. Spreemann. Approximating persistent homology in Euclidean space through
collapses. In: Applicable Algebra in Engineering, Communication and Computing, 26:73–101,
2015. doi:10.1007/s00200-014-0247-y.

8 G. Carlsson and V. de Silva. Zigzag persistence. Found Comput Math, 10, 2010. doi:
10.1007/s10208-010-9066-0.

9 F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The Structure and Stability of Persistence Mod-
ules. SpringerBriefs in Mathematics. Springer, Cham, 2016. doi:10.1007/978-3-319-42545-0.

10 F. Chazal and S. Oudot. Towards persistence-based reconstruction in Euclidean spaces.
International Symposium on Computational Geometry (SoCG), 2008. doi:10.1145/1377676.
1377719.

11 A. Choudhary, M. Kerber, and S. Raghvendra:. Polynomial-sized topological approximations
using the permutahedron. Discrete and Computational Geometry, 61:42–80, 2019. doi:
10.1007/s00454-017-9951-2.

12 H. Derksen and J. Weyman. Quiver representations. Notices of the American Mathemati-
cal Society, 52(2):200–206, February 2005. URL: https://www.ams.org/journals/notices/
200502/fea-weyman.pdf.

13 T. K. Dey, D. Shi, and Y. Wang. Simba: An efficient tool for approximating Rips-filtration
persistence via simplicial batch collapse. ACM J. Exp. Algorithmics, 24, January 2019.
doi:10.1145/3284360.

14 P. Dłotko and H. Wagner. Simplification of complexes for persistent homology computations.
Homology, Homotopy and Applications, 16:49–63, 2014. doi:10.4310/HHA.2014.v16.n1.a3.

15 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American Mathe-
matical Society, 2010.

16 Gudhi: Geometry understanding in higher dimensions. URL: https://gudhi.inria.fr/.

http://arxiv.org/abs/2103.05608
https://doi.org/10.1007/s00454-011-9357-5
https://doi.org/10.1007/s41468-021-00071-5
https://doi.org/10.1016/j.jsc.2016.03.008
https://doi.org/10.4230/LIPIcs.SoCG.2019.55
https://doi.org/10.4230/LIPIcs.SoCG.2019.55
https://doi.org/10.4230/LIPIcs.SoCG.2020.19
https://doi.org/10.1007/s00200-014-0247-y
https://doi.org/10.1007/s10208-010-9066-0
https://doi.org/10.1007/s10208-010-9066-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1145/1377676.1377719
https://doi.org/10.1145/1377676.1377719
https://doi.org/10.1007/s00454-017-9951-2
https://doi.org/10.1007/s00454-017-9951-2
https://www.ams.org/journals/notices/200502/fea-weyman.pdf
https://www.ams.org/journals/notices/200502/fea-weyman.pdf
https://doi.org/10.1145/3284360
https://doi.org/10.4310/HHA.2014.v16.n1.a3
https://gudhi.inria.fr/


M. Glisse and S. Pritam 44:15

17 A. Hatcher. Algebraic Topology. Univ. Press Cambridge, 2001. URL: https://pi.math.
cornell.edu/~hatcher/AT/ATpage.html.

18 A. Hylton, G. Henselman-Petrusek, J. Sang, and R. Short. Tuning the performance of a
computational persistent homology package. Software: practice & experience, 49(5):885–905,
May 2019. doi:10.1002/spe.2678.

19 M. Kerber and R. Sharathkumar. Approximate Čech complex in low and high dimensions. In
Algorithms and Computation, pages 666–676. By Leizhen Cai, Siu-Wing Cheng, and Tak-Wah
Lam. Vol. 8283. Lecture Notes in Computer Science, 2013. doi:10.1007/978-3-642-45030-3_
62.

20 C. Maria and S. Oudot. Zigzag persistence via reflections and transpositions. In Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 181–199, January 2015. doi:
10.1145/1542362.1542408.

21 K. Mischaikow and V. Nanda. Morse theory for filtrations and efficient computation of
persistent homology. Discrete and Computational Geometry, 50:330–353, September 2013.
doi:10.1007/s00454-013-9529-6.

22 D. Mozozov. Dionysus. URL: http://www.mrzv.org/software/dionysus/.
23 J. Munkres. Elements of Algebraic Topology. Perseus Publishing, 1984.
24 N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harrington. A roadmap for the

computation of persistent homology. EPJ Data Science, Springer Nature, 6:17, 2017. doi:
10.1140/epjds/s13688-017-0109-5.

25 J. B. Pérez, S. Hauke, U. Lupo, M. Caorsi, and A. Dassatti. Giotto-ph: A Python Library for
High-Performance Computation of Persistent Homology of Vietoris-Rips Filtrations. CoRR,
2021. arXiv:2107.05412.

26 M. Xiao S. Zhang and H. Wang. GPU-Accelerated Computation of Vietoris-Rips Persistence
Barcodes. International Symposium on Computational Geometry (SoCG), 2020. doi:10.4230/
LIPIcs.SoCG.2020.70.

27 D. Sheehy. Linear-size approximations to the Vietoris–Rips filtration. Discrete and Computa-
tional Geometry, 49:778–796, 2013. doi:10.1007/s00454-013-9513-1.

28 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete and Computational
Geometry, 33:249–274, 2005. doi:10.1007/s00454-004-1146-y.

SoCG 2022

https://pi.math.cornell.edu/~hatcher/AT/ATpage.html
https://pi.math.cornell.edu/~hatcher/AT/ATpage.html
https://doi.org/10.1002/spe.2678
https://doi.org/10.1007/978-3-642-45030-3_62
https://doi.org/10.1007/978-3-642-45030-3_62
https://doi.org/10.1145/1542362.1542408
https://doi.org/10.1145/1542362.1542408
https://doi.org/10.1007/s00454-013-9529-6
http://www.mrzv.org/software/dionysus/
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
http://arxiv.org/abs/2107.05412
https://doi.org/10.4230/LIPIcs.SoCG.2020.70
https://doi.org/10.4230/LIPIcs.SoCG.2020.70
https://doi.org/10.1007/s00454-013-9513-1
https://doi.org/10.1007/s00454-004-1146-y




Hardness and Approximation of Minimum Convex
Partition
Nicolas Grelier #

Department of Computer Science, ETH Zürich, Switzerland

Abstract
We consider the Minimum Convex Partition problem: Given a set P of n points in the plane,
draw a plane graph G on P , with positive minimum degree, such that G partitions the convex
hull of P into a minimum number of convex faces. We show that Minimum Convex Partition
is NP-hard, and we give several approximation algorithms, from an O(log OPT)-approximation
running in O(n8)-time, where OPT denotes the minimum number of convex faces needed, to an
O(

√
n log n)-approximation algorithm running in O(n2)-time. We say that a point set is k-directed

if the (straight) lines containing at least three points have up to k directions. We present an
O(k)-approximation algorithm running in nO(k)-time. Those hardness and approximation results
also holds for the Minimum Convex Tiling problem, defined similarly but allowing the use of Steiner
points. The approximation results are obtained by relating the problem to the Covering Points
with Non-Crossing Segments problem. We show that this problem is NP-hard, and present an FPT
algorithm. This allows us to obtain a constant-approximation FPT algorithm for the Minimum
Convex Partition Problem where the parameter is the number of faces.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases degenerate point sets, point cover, non-crossing segments, approximation
algorithm, complexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.45

Related Version Full Version: https://arxiv.org/abs/1911.07697

Funding Research supported by the Swiss National Science Foundation within the collaborative
DACH project Arrangements and Drawings as SNSF Project 200021E-171681.

Acknowledgements The author thanks Michael Hoffmann for his helpful advice.

1 Introduction

The CG Challenge 2020 organised by Demaine, Fekete, Keldenich, Krupke and Mitchell [5],
was about solving instances of Minimum Convex Partition (MCP).

▶ Definition 1 (Demaine et al. [5]: Minimum Convex Partition problem). Given a set P of
n points in the plane. The objective is to compute a plane graph with vertex set P (with
each point in P having positive degree) that partitions the convex hull of P into the smallest
possible number of convex faces. Note that collinear points are allowed on face boundaries,
so all internal angles of a face are at most π.

As explained by Bose et al., this problem has applications in routing [3]. They show that
a routing algorithm named Random-Compass that works for triangulations can be extended
to convex partitions. Having a convex partition with few faces reduces the amount of data
to store. From now on, we denote by P a set of n points in the plane.

In this paper, we present several approximation algorithms for MCP. We obtain those
approximation algorithms by relating the MCP problem to the Covering Points with Non-
Crossing Segments (CPNCS) problem. First, we define what non-crossing segments are.

© Nicolas Grelier;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 45; pp. 45:1–45:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.grelier@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.SoCG.2022.45
https://arxiv.org/abs/1911.07697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


45:2 Hardness and Approximation of Minimum Convex Partition

▶ Definition 2 (Non-Crossing Segments). We call a part of a (straight) line bounded by
two points a segment. The two points are referred to as endpoints of the segment. Note
that we do not force the endpoints to be distinct, therefore we consider a point p as being a
segment. The endpoint of p is p itself. Two segments are non-crossing if the intersection of
their relative interior is empty.

▶ Definition 3 (Covering Points with Non-Crossing Segments). Given a set P of n points, find
a minimum number of non-crossing segments whose endpoints are in P such that each point
of P is contained in at least one segment.

The condition that the endpoints of the segments must be in P has no effect on the
number of segments required. We add it as it simplifies some arguments. Note that CPNCS
is not a so-called set cover problem nor an exact cover problem. We believe that CPNCS is
interesting in itself. Even though it is a very natural problem, to the best of our knowledge
it had not been introduced before.

1.1 NP-hardness results
Fevens, Meijer and Rappaport first considered the MCP problem in 2001 [7], and its
complexity was explicitly asked about by Knauer and Spillner in 2006 [12]. It has remained
open since then [2, 5]. We show in Section 5 that MCP is NP-hard. To do this, we use the
decision version of the problem, as stated below:

▶ Definition 4 (MCP - decision version). Given a set P of points in the plane and a natural
number k, is it possible to find at most k closed convex polygons whose vertices are points of
P , with the following properties: a) The union of the polygons is the convex hull of P , b)
the interiors of the polygons are pairwise disjoint, and c) no polygon contains a point of P in
its interior.

We also show NP-hardness of a similar problem, which we call Minimum Convex Tiling
problem (MCT). The problem is exactly as in Definition 4, but the constraint about the
vertices of the polygons is removed (i.e. they need not be points of P ). This can make a
difference as shown in Figure 1. Equivalently, the MCT problem corresponds to the MCP
problem when Steiner points are allowed. A Steiner point is a point that does not belong to
the point set given as input, and which can be used as a vertex of some polygons. The MCT
problem has been studied in 2012 by Dumitrescu, Har-Peled and Tóth, who asked about the
complexity of the problem [6]. We answer their question, and our proofs are very similar for
MCP and MCT. We also show in the full version of the paper [10] that CPNCS is NP-hard,
even for some constrained point sets.

•

•

•

•

•

•

•

•

•

•

Figure 1 A minimum partition with three convex polygons and a tiling with two.



N. Grelier 45:3

1.2 Approximation algorithms
For the related problem Minimum Convex Partition of Polygons with Holes, Bandyapadhyay,
Bhowmick and Varadarajan showed the existence of a (1 + ε)-approximation algorithm
running in time nO((log n/ε)4) [1]. Although they only consider holes with non empty interior,
one can observe that their proof extends to the case of point holes. This is an even more
general setting than MCP for point sets, so their algorithm also applies in our setting. This
implies that MCP is not APX-hard unless NP ⊆ DTIME(2polylog n).

•
•

•

•

•
•

•

• • • • •

Figure 2 The number of inner points can be arbitrarily much larger than the number of convex
faces required.

Under the assumption that no three points are collinear, Knauer and Spillner have shown
the existence of a 30

11 -approximation algorithm for MCP in 2006 [12]. As a lower bound on
the number of convex faces for one particular point set, they rely on the observation that
each inner point has degree at least 3. The inner points of P are the points not on the
boundary of the convex hull. This gives a lower bound on the number of edges, and therefore
on the number of faces, by Euler’s formula. Note that the restriction that no three points are
on a line is necessary, as shown in Figure 2. There are only two faces in a minimum convex
partition of this point set, and all the inner points have degree 2.

Additionally, Knauer and Spillner showed how to adapt any constructive upper bound on
the number of faces into an approximation algorithm. More explicitly, they showed that if
one can compute in polynomial time a convex partition with at most λn convex faces, then
there exists a 2λ-approximation algorithm running in polynomial time. The best result to
date is a proof by Sakai and Urrutia that one can partition a point set in quadratic time
using at most 4

3 n convex faces (the result was presented at the 7th JCCGG in 2009, the paper
appeared on arXiv in 2019) [19]. Although they do not mention it, combining this result
with the one by Knauer and Spillner gives a quadratic time 8

3 -approximation algorithm.
Concerning previous upper bounds, Neumann-Lara, Rivero-Campo and Urrutia first

showed in 2004 how to construct in quadratic time a partition of any point set with at most
10
7 n convex faces [17]. In 2006, Knauer and Spillner improved this to 15

11 n convex faces [12].
As said above, the best known upper bound is 4

3 n, as proven by Sakai and Urrutia in 2009.
Relatedly for lower bounds, García-Lopez and Nicolás have given in 2013 a construction

of point sets for which any convex partition has at least 35
32 n − 3

2 faces [8].
All these results concerning upper bounds hold for all point sets, even where many points

are on a line. Indeed, slightly shifting the points so that no three points are on a line can only
increase the number of convex faces needed. So an upper bound for point sets where no three
points are on a line also holds for all point sets. However, as mentioned above, the lower
bound used by Knauer and Spillner does not extend to our setting, where we consider all point

SoCG 2022



45:4 Hardness and Approximation of Minimum Convex Partition

sets. They say that a constant-approximation algorithm would be desirable for unrestricted
point sets, but so far not even an O(n1−ε)-approximation is known. For the MCT problem,
Dumitrescu, Har-Peled and Tóth showed the existence of a 3-approximation algorithm for
point sets with no three collinear points [6]. They also ask whether a constant-approximation
algorithm exists when this constraint is removed. However, so far no O(n1−ε)-approximation
algorithm is known. In Section 3, we prove the following:

▶ Theorem 5. There exists O(log OPT)-approximation algorithms for MCP, MCT and
CPNCS running in O(n8)-time.

Allowing several points to be on a line does not simply create tedious technicalities to
deal with. The crux of the matter is to find, for a fixed point set, an exploitable lower bound
on the number of faces in a minimum convex partition. When no three points are on a line,
the number of inner points in P gives a linear lower bound on the number of faces in a
convex partition [12], and in a convex tiling [6]. In this paper, we consider point sets with no
restriction. We introduce the CPNCS problem as it pinpoints where the difficulty of finding
a constant-approximation algorithm for MCP is and makes the problem easier to study. We
show in Section 2 the following theorem, which is used to prove Theorem 5:

▶ Theorem 6. Let P be a set of n points with at least one inner point, and let λ ≥ 1 be a
real number. Let fm denote the minimum number of faces in a convex partition of P . Let
sm denote the minimum number of non-crossing segments in a covering of the inner points
of P , denoted by Pi.
1. It holds that sm

6 ≤ fm ≤ 8sm.
2. Given a covering of Pi with s ≤ λsm non-crossing segments, it is possible to compute in

O(n2)-time a convex partition of P with at most 24λfm convex faces.
3. Given a convex partition of P with f ≤ λfm convex faces, it is possible to compute in

O(n)-time a covering of Pi with at most 44λsm non-crossing segments.
The theorem also holds when considering convex tilings instead of convex partitions.

The idea behind the similarity of MCP, MCT and CPNCS is that they are all about
maximizing the number of vertices of degree 2 with incident edges being aligned in a plane
straight-line drawing of a graph on a point set. We show in the full version of the paper [10]
that MCP and CPNCS are however not equivalent, meaning that one cannot use an optimal
solution for one to deduce an optimal solution for the other.

1.3 Exact algorithms, FPT algorithms
Under the assumptions that the points lie on the boundaries of a fixed number h of nested
convex hulls, and that no three points lie on a line, Fevens, Meijer and Rappaport gave
an algorithm for solving MCP in time O(n3h+3) [7]. Observe that this is not an FPT
algorithm. Some integer linear programming formulations of the problem have been recently
introduced [2, 20, 4].

A first FPT algorithm with respect to the number k of inner points was introduced by
Grantson and Levcopoulos, with running time O(216kk6k−5n) [9]. The idea of the algorithm
is to enumerate all plane graphs on the inner points, and then for each to them to guess
how to connect the inner points to points on the boundary of the convex hull. Another
FPT algorithm with respect to the number of inner points was later found by Spillner, with
running time O(2kk4n3 + n log n) [21].

We show in Section 4 the existence of an FPT algorithm that checks whether there is
a solution for CPNCS with at most k non-crossing segments, running in time O(2k2

k7k +
n4 log n). By Theorem 6, this gives us a constant-approximation FPT algorithm for MCP



N. Grelier 45:5

and MCT, where the parameter is the number of convex faces needed. Under the assumption
that no three points are on a line, the number of faces in a minimum convex partition or
in a minimum convex tiling is the same as the number of inner points, up to a constant
multiplicative factor [12, 6]. However, without this assumption the number of inner points
can be arbitrarily much larger than the minimum number of convex faces, as shown in
Figure 2.

2 The relation between MCP, MCT and CPNCS

Throughout this section, we denote by P a point set in the plane. We denote by Pi the set of
inner points of P . Let p be in P . If P and P \ {p} do not have the same convex hull, we say
that p is an extreme point. We denote by P ′

i ⊆ Pi the extreme points in Pi, where Pi denotes
the inner points in P . Note that a point might lie on the boundary of the convex hull of a
point set without being an extreme point. We say that P is special if |P ′

i | ≤ 2. Recall that
for a given covering of a point set Q with non-crossing segments, we always assume that the
endpoints of the segments are in Q.

▶ Lemma 7. Let P be a set of n points that is not special. Given a covering K of Pi with s

non-crossing segments, one can compute in O(n2)-time a convex partition Σ of P with at
most 4s + 2|P ′

i | faces. Moreover every segment in K is the union of some edges in Σ.

Due to space constraints, we postpone the proof of Lemma 7 to the full version of the
paper [10]. The idea of the proof is to compute a constrained triangulation with respect to
the segments of the covering. This gives us a convex partition of the inner points, and it
remains to connect the points in P ′

i to points on the boundary of the convex hull.

▶ Lemma 8. Let P be a set of n points. Given a convex tiling Σ of P with f faces, one can
compute in O(n)-time a covering K of Pi with at most 6f − 2|P ′

i | non-crossing segments.
Moreover every segment in K is the union of some edges in Σ.

Proof. The proof is illustrated in Figure 3. Let us denote by G0 = (V0, E0) the plane graph
corresponding to the convex tiling, where a point in V0 is extreme or has degree at least 3.
Observe that some points in V0 might not be in P . Also, the relative interior of an edge in
E0 might overlap with points in P . We assume that G0 is given with a doubly connected
edge list (DCEL) structure. If there is an edge between two points on the boundary of the
convex hull of V0, but not consecutive, we remove this edge. Note that this decreases the
number of faces by 1, and does not break the convexity property. We denote by m the
number of such edges that we have removed. We also remove from P all points contained
in the relative interior of an edge between two points on the boundary of the convex hull.
We denote by P ′′

i the extreme points in Pi that we have not removed. As an edge contains
at most two points in P ′

i , we have |P ′′
i | ≥ |P ′

i | − 2m. Using the DCEL structure, this can
be done in O(n)-time. We have obtained a new graph G = (V, E), and there are f − m

convex faces in G. We denote by Q the set of inner points that are of degree at least 3
in G. We set k := |Q|. Now observe that for each point p in P ′′

i , there exists at least one
edge e in E with one endpoint in Q, one endpoint on the boundary of the convex hull, such
that e overlaps with a point in P ′′

i . This is because if we consider p and the two lines going
through p and one of the two consecutive vertices in P ′′

i (the one before p and the one after p

when going around P ′′
i in clockwise order), they define a wedge that one edge must intersect

because of convexity. The point in P ′′
i can be an endpoint of e or in its relative interior.

If for a point p ∈ P ′′
i there are several edges that satisfy the conditions, we choose one

SoCG 2022



45:6 Hardness and Approximation of Minimum Convex Partition

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

Figure 3 Illustration of Lemma 8. The green dashed edge and the triangle points are removed at
the beginning for the analysis, and added back at the end. The extreme points in P ′′

i are represented
as square points. The edges in E′ are in red. The other edges from P ′′

i to the boundary of the
convex hull are in blue.

arbitrarily. We denote these edges by E′. An edge in E′ overlaps with exactly one point
in P ′′

i , thus |E′| = |P ′′
i |. We denote by Eb the edges not in E′ that have a point on the

boundary of the convex hull and the other in Q, and we denote |Eb| by m′. The vertices on
the boundary of the convex hull are adjacent to two other vertices on the boundary of the
convex hull. Moreover, those vertices are incident to |P ′′

i | + m′ additional edges. We have
2|E| =

∑
v∈V deg(v) ≥ 3k + 2(n − k) + |P ′′

i | + m′ = k + 2n + |P ′′
i | + m′. By Euler’s formula,

we have f − m = |E| − n + 1 ≥ k+|P ′′
i |+m′

2 + 1.
Now, the solution consists of the union of all edges in E incident to two points in Q,

with the m edges in E0 that we have removed, and with the |P ′′
i | + m′ edges in E′ ∪ Eb.

We may need those edges as they might overlap with points in Pi. Note that there are at
most 3k edges in E incident to two points in Q as G is plane. Moreover, all points in Pi

are indeed covered by the edges in our solution. Thus, we obtain a covering of Pi with s

segments, where s ≤ 3k + m + m′ + |P ′′
i | ≤ 3(2(f − m) − |P ′′

i | − m′) + m + m′ + |P ′′
i | ≤

6f − 5m − 2|P ′′
i | ≤ 6f − 5m − 2(|P ′

i | − 2m) ≤ 6f − 2|P ′
i |. ◀

It is now possible to combine Lemmas 7 and 8 to prove Theorem 6. The proof can be
found in the full version of the paper [10].

3 Approximation algorithms for CPNCS

We present several approximation algorithms for CPNCS. Let us first consider the ones whose
approximation ratio is not output-dependent. The best algorithms in terms of approximation
ratio are constant-approximation algorithms. The fastest algorithms take quadratic time.
Therefore by 2. of Theorem 6, all the algorithms we present for CPNCS can be used to



N. Grelier 45:7

obtain approximation algorithms for MCP and MCT with the same order of approximation
ratio, and the same order of running time. We have also one algorithm for CPNCS which
realises an O(log OPT )-approximation in time O(n8), where OPT denotes the minimum
number of segments needed. Using 1. and 2. of Theorem 6, we also derive from it the
O(log OPT )-approximation algorithm for MCP and MCT running in time O(n8), where now
OPT denotes the minimum number of faces needed in a convex partition, or in a convex
tiling, respectively. This is how we prove Theorem 5. We first mention an easy approximation
algorithm running relatively fast, at the cost of a high approximation ratio. The proof can
be found in the full version of the paper [10]. The idea is to use the greedy algorithm to
solve Covering Points with lines on P (a set cover problem), and then to split the lines into
non-crossing segments.

▶ Theorem 9. There exists an
√

n log(n)-approximation algorithm for CPNCS running in
O(n2)-time.

Mitchell presented in a technical report some approximation algorithms for the problem
of covering a point set with a minimum number of pairwise-disjoint triangles [16]. In his
problem, the triangles of the covering must be subtriangles of some triangles given as input,
for otherwise the problem would be trivial. He makes the assumption that no three points
are on a line. We adapt his algorithms to our setting of CPNCS for point sets with no
constraint. Let P be a set of n points. By doing a rotation if necessary, we can assume that
no two points in P have the same x-coordinate. We say that a trapezoid is constrained if 1)
it has two disjoint vertical sides, each lying on a line that contains a point in P , and 2) the
two remaining sides are lying on lines that contain each at least two points in P . Note that
there are O(n6) constrained trapezoids.

We also allow for some degeneracies. Let us consider a triangle with vertices a, b and c,
not all three on a line. If a is in P , the segment with endpoints b, c is vertical and lies on a
line that contains a point in P , and the segments with endpoints a, b and a, c respectively
are contained in some lines ℓ and ℓ′ such that ℓ and ℓ′ contains at least two points in P , then
we say that the triangle is a constrained trapezoid. If a constrained trapezoid is split into
two halves by a vertical line ℓ going through its interior, with ℓ containing a point in P , we
obtain two constrained trapezoids. Likewise, if a segment s is in a constrained trapezoid τ ,
such that s lies on a line that contains at least two points in P , s intersects the interior of
τ , and the endpoints of s are contained in the vertical sides of τ , then s splits τ into two
constrained trapezoids.

For a set of points P where no two points have the same x-coordinate, we define the
enclosing trapezoid as follows. Let ℓ1 be the vertical line that contains the leftmost point in
P , and let ℓ2 be the vertical line that contains the rightmost point in P . Let L be the set
of all lines containing at least two points in P . Observe that no line in L is vertical. We
denote by a the highest intersection point between ℓ1 and a line in L. We denote by b the
lowest point intersection point between ℓ1 and a line in L. Similarly, we denote by c and d,
respectively, the highest intersection point, respectively the lowest intersection point, between
ℓ2 and a line in L. We denote by ℓ3 the line containing a and c, and by ℓ4 the line containing
b and d. The enclosing trapezoid of P is the constrained trapezoid of P ∪ {a, b, c, d} defined
by ℓ1, ℓ2, ℓ3 and ℓ4. It is denoted by TP .

We define the strong guillotine property in the special case of segments. We show that
if there is a covering of P with s non-crossing segments, then there is a covering of S with
O(s log s) non-crossing segments having the strong guillotine property. We then present
an algorithm that outputs an optimal solution among all the coverings with non-crossing
segments having the strong guillotine property. Let S be a set of non-crossing segments

SoCG 2022



45:8 Hardness and Approximation of Minimum Convex Partition

covering P . We assume that the endpoints of the segments in S are in P . We say that S

has the strong guillotine property with respect to a constrained trapezoid T that contains
all segments in S if a) S contains at most one segment, or if b) there exists a partitioning
line ℓ containing at least two points in P and at least one segment in S, such that for any
segment s ∈ S, ℓ either contains s or does not intersect the relative interior of s, and ℓ splits
T into two constrained trapezoids T1 and T2, such that the segments in T1, respectively T2,
have the strong guillotine property with respect to T1, respectively T2, or if c) there exists
a vertical line not intersecting with the relative interior of any segment in S, that splits T
into two constrained trapezoids T1 and T2, such that the segments in T1, respectively T2,
have the strong guillotine property with respect to T1, respectively T2. Observe that the line
ℓ in case b) only intersects the vertical sides of T , for otherwise ℓ would not split T into
constrained trapezoids. We simply say that S has the strong guillotine property if it has the
strong guillotine property with respect to the enclosing trapezoid TP .

▶ Lemma 10. If there exists a covering of P with s non-crossing segments, then there exists
a covering of P with O(s log(s)) non-crossing segments with the strong guillotine property.

Proof. Recall that we assume that the endpoints of the segments are in P , by cropping them
if need be. We can even crop some segments further such that they are pairwise-disjoint
(it may be that now some segments are reduced to points). Consider the endpoints of the
segments in that covering, that we denote by P ′. We denote |P ′| by n′, and we have n′ ≤ 2s.
Note that no two points in P ′ have the same x-coordinate. We denote by X the set of
x-coordinates of the points in P ′. We now consider the segment tree based on X, as defined
in [18]. The segment tree defines some canonical intervals. Each interval, whose endpoints
are in X, is partitioned into O(log s) canonical intervals. We partition each segment in the
covering, such that the projection on the x-axis of each new segment is a canonical interval.
Therefore we obtain a covering of P with O(s log(s)) non-crossing segments. We claim that
this family of segments has the strong guillotine property. Let us denote by xi, 1 ≤ i ≤ n′

the elements in X, ordered by increasing value. We distinguish two cases. If there exists a
segment σ whose projection on the x-axis is equal to the interval [x1, xn′ ], then we recurse
on the parts above and below σ which contain some segments. Observe that if n′ = 2 we are
done. If there is no such segment, then by definition of a segment tree, there is no segment
in the covering whose relative interior intersects the vertical line ℓ with x-coordinate equal
to x⌊(1+n′)/2⌋. Thus we can recurse on the left and right side of ℓ. ◀

▶ Theorem 11. There exists an O(log(OPT ))-approximation algorithm running in O(n8)-
time for CPNCS.

Proof. We explain how to recursively compute a minimum covering of P with non-crossing
segments under the constraint that the solution has the strong guillotine property. The
approximation ratio for the CPNCS problem when this additional constraint is removed
follows from Lemma 10. If P is empty, we return no segment, which is a valid solution. If P

can be covered with a single segment, we return that segment. This can be tested in O(n2)
time using duality. Now let us assume that not all points in P are on a line. We compute
the enclosing trapezoid TP of P . We consider the four vertices a, b, c, d of TP . We start by
adding the segment with endpoints a, c, and the segment with endpoints b, d. Now all the
points to cover are within the enclosing trapezoid TP . We distinguish two cases, according to
whether a segment with endpoints on the vertical sides of TP is in a minimum covering with
non-crossing segments having the strong guillotine property. If it is, we can add it to the
solution and recurse on the two new constrained trapezoids. If no such segment is part of a



N. Grelier 45:9

minimum solution, then there exists a vertical line ℓ that splits a minimum solution into two
parts, such that ℓ does not intersect the relative interior of any segment in that minimum
solution. We can recurse on the O(n) choices of splitting vertically the constrained trapezoid
into two constrained trapezoids. For each of the O(n2) recursions, we compute the number
of segments corresponding to that solution, and we output the solution corresponding to the
one that minimises the number of segments.

To optimise we can do dynamic programming, and solve first the thinnest constrained
trapezoids (in terms of width on the x-axis). There are O(n6) constrained trapezoids, and
we take quadratic time for each of them, so the total running time is O(n8). ◀

We prove the following theorem in the full version of the paper [10].

▶ Theorem 12. There exists an O(log(n))-approximation algorithm running in O(n7)-time
for CPNCS.

We say that a point set P is k-directed if there exists a set D of k directions, such that for
any line ℓ that contains at least three points in P , the direction of ℓ is in D. For convenience,
for any set of directions D and any segment s reduced to a point, we say that the direction
of s is in D. We say that a set of segments S has the autopartition property if |S| ≤ 1, or if
there exists a line ℓ which contains at least one segment in S, and splits S into two sets that
have the autopartition property. The relative interior of a segment in S is either contained in
ℓ or does not intersect ℓ. Tóth has shown that any set of s′ disjoint segments having up to k

directions have an autopartition of size O(s′k) [22]. Using this result and similar techniques
to the ones of Theorem 11, we show in the full version of the paper [10] the following:

▶ Theorem 13. There exists an O(k)-approximation algorithm for CPNCS in k-directed
sets running in nO(k). Furthermore, there exists a 4-approximation algorithm for CPNCS in
2-directed sets running in time O(n5).

4 Fixed-parameter algorithm for CPNCS

As mentioned in the introduction, there are known fixed-parameter algorithms for MCP,
where the parameter is the number of inner points. We present here a fixed-parameter
constant-approximation algorithm for MCP and MCT, where the parameter is the number
of faces in a minimum convex partition or a minimum convex tiling, respectively. For point
sets where no three points are on a line, the minimum number of convex faces is at least
half the number of inner points [12], and the number of convex tiles is at list a sixth of the
number of inner points [6]. However, as shown in Figure 2, when we allow for several points
to be on a line, the number of inner points can be arbitrarily much larger than the number
of convex faces in a minimum convex partition. If the number of inner points is significantly
larger than the number of convex faces needed, our algorithm has a lower running time. We
first show that CPNCS is in FPT.

▶ Theorem 14. We can compute in time O(2k2
k7k + n4 log n) whether a point set P can be

covered with at most k non-crossing segments, and to output such a covering if it exists.

The proof uses a kernelisation technique presented by Langerman and Morin for Covering
Points with Lines [13]. Assume there is a line ℓ that contains at least k + 1 points in P .
Then in any covering of P with at most k lines, ℓ must be in the covering. Otherwise, we
would need at least k + 1 lines to cover the points contained in ℓ. Now one can compute all
of these lines that contain at least k + 1 points, dismiss all of the covered points, until no line

SoCG 2022



45:10 Hardness and Approximation of Minimum Convex Partition

covers more than k of the remaining points. If there remains more than k2 points, then there
is no covering of the point set with at most k lines. Otherwise, one can compute every way
of covering the O(k2) remaining points, and check whether there is one that uses in total
at most k lines. In our setting, we are looking for a covering with non-crossing segments,
which makes it more difficult. Indeed, if a line ℓ contains at least k + 1 points, we only know
that ℓ must contain at least one segment of the covering. This means that we cannot simply
dismiss the points covered by such a line. Also, we have to be careful about crossings. To
prove Theorem 14, we need several lemmas. For a point set P , we say that a segment s is a
P -segment if its endpoints are in P . Recall that we only consider coverings of a point set P

with non-crossing P -segments.

▶ Definition 15. Let P be a point set, and let s and t be two crossing P -segments. We
denote by p the intersection of s and t. We determine four points in P , that we call the
points enclosing p. There are two points on s ∩ P and two points on t ∩ P . The two points
on s ∩ P , denoted by u and v, are such that the segment with endpoints u and v, which we
denote by uv, is the shortest P -segment contained in s whose relative interior contains p.
Likewise, the two points u′ and v′ are such that u′v′ is the shortest P -segment contained in
t whose relative interior contains p. The points u, v, u′ and v′ are the points enclosing p.

▶ Lemma 16. Given a set P of n points, it is possible to compute in time O(n4 log n) the
pairs of crossing P -segments, to find whether their intersection p is in P , and to store the
points enclosing p. Additionally, we can also store for each P -segment how many points in
P they contain, and the list of those points.

The proof of Lemma 16 can be found in the full version of the paper [10].

▶ Lemma 17. Given a set P of n points, and a natural number k, it is possible to find
in time O(2k2 + n4 log n) either a certificate that there is no covering of P with at most
k non-crossing segments, or to output a family F of O(2k2) sets S containing at most k

non-crossing P -segments, with the following properties: For any fixed covering of P with at
most k non-crossing P -segments, there exists a set S in F such that a) any segment s ∈ S

contains at least k + 1 points in P , b) for each segment t of the covering, if |P ∩ t ∩ s| ≥ 2
for some s ∈ S, then t is contained in s, and c) if a segment of the covering contains at least
k + 1 points in P , then it is contained in a segment in S.

Let P be a point set and let k be a natural number. Observe that if a set S of segments
satisfies property a), then in a covering with at most k segments of P , each segment s in S

contains at least one segment t of the covering, such that |P ∩ t| ≥ 2. Indeed if there exists a
segment s ∈ S such that for any segment t in the covering, we have that s ∩ t contains at
most one point in P , then at least k + 1 segments are needed to cover the points in P ∩ s.
This implies that if S consists of m segments and satisfies properties a) and b), then there
are at least m segments in the considered covering of P with non-crossing segments.

Proof of Lemma 17. We first do some preprocessing by using the algorithm of Lemma 16.
This takes O(n4 log n) time. We create a list L of segments, which at the beginning is empty,
and will contain the segments in S when we are done. For each line ℓ that contains at least
k + 1 points, we find the extremal points p and q of P contained in ℓ in time O(n). Then we
add the line segment with endpoints p and q to L. Using the algorithm presented by Guibas
et al. [11], we can compute all lines containing more than k points in time O( n2

k log( n
k )). If

there are more than k of such lines, we already know that there is no covering of P with at
most k non-crossing segments of P . Indeed such a covering can only exist if there exists a



N. Grelier 45:11

covering of P with at most k lines. Let us now assume that there are at most k such lines.
We add all corresponding segments to L in total time O(kn + n2

k log( n
k )). Let us show that

the segments in L satisfy properties a), b) and c), although they might still be crossing.
First, property a) holds by definition. Moreover property b) holds for all coverings of P with
at most k segments because a segment in L containing points p and q also contains all points
on the line (p, q). Finally, property c) also holds trivially for all coverings of P with at most
k segments.

We are now going to modify L and make copies of it while maintaining the fact that
properties a), b) and c) hold. Our aim is that no two segments in L cross. Let us consider one
segment s in L which is crossed by another segment s′ in L. We denote by p the intersection
of s and s′. We retrieve the points u and v such that uv is the shortest P -segment in s

whose relative interior contains p. We do likewise with u′ and v′ in s′. Observe that not
both uv and u′v′ can be in a covering of P with non-crossing segments. More generally, in a
valid covering, at least one of uv and u′v′ is not contained in any segment of the covering.
We create one copy of L, and recurse on two cases, one where we assume that uv is not
contained in a segment of the covering, and one where we assume that u′v′ is not contained
in a segment of the covering. Let us assume for now that uv is not contained in a segment of
the covering. We keep s′ in L, and s′ might still be removed at a later step. We remove s

from L. The segment s′ splits s at p into two sides. Let us denote by x and y the endpoints
of s, with u being closer to x than v is. If p is not in P , we consider the segments xu and
vy. If p is in P , we consider the segments xp and py. Any of the two new segments that
contains more than k points in P is added to L. Indeed property a) holds by definition.
Moreover property b) holds because s was in L, and we are assuming that the segment uv

is not contained in a segment of the covering. If a segment contains at most k points, we
do not add it to L. We claim that property c) still holds. This is because if a point q ∈ P

which lies on a line that contains more than k points is not contained in some segment in L,
that means that if a segment t contains q as well as at least k other points in P , then t also
contains some segment which we are assuming not to be contained in the covering.

If we obtain more than k segments in L, we stop this branch of the recursion, as we
already know that there is no valid covering of P with at most k segments, assuming that uv

is not contained in a segment of the covering. We now iterate over all crossing segments in
L. We obtain O(k) segments in L, which are by construction non-crossing. As the depth of
the recursion tree is in O(k2), the number of leaves is in O(2k2). We would like to say that
each recursion implies the existence of one more segment in a covering with non-crossing
segments, but this is a priori not the case. Therefore, if the number of lines containing more
than k points is in Ω(k), we might have to do Ω(k2) recursions. We can do the computation
in total time O(2k2 + kn + n2

k log( n
k )), using the information we preprocessed. If we add

to it the running time of the preprocessing, the total running time of the algorithm is in
O(2k2 + n4 log n). ◀

The proof of Theorem 14 appears in the full version of the paper [10]. The idea is to fix
one valid covering K if it exists, and then to guess in time O(2k2) the set S ∈ F of segments
which corresponds to this covering K. Then we can argue by property c) that there are at
most k2 points in P not contained in some segments in S. It remains to guess what are the
segments in K covering those points. If some of these segments split a segment in S, then
we simply do as in the proof of Lemma 17 and update the set S of segments.

▶ Theorem 18. It is possible to compute in time O(236f2
f42f+1 +n4 log n) a convex partition

of a point set P with at most 24f convex faces, where f denotes the minimum number of
convex faces required. The same holds when considering convex tilings.

SoCG 2022



45:12 Hardness and Approximation of Minimum Convex Partition

Proof. We first compute a minimum covering of the inner points in time O(2s2
s7s+1+n4 log n)

by applying the algorithm of Theorem 14 for k = 1, 2, . . . , s, where s denotes the minimum
number of segments required in a covering of the inner points. Then, by 2. of Theorem 6,
we obtain in O(n2)-time a convex partition with at most 24f convex faces. The same holds
with convex tilings for the same arguments. As by 1. of Theorem 6, we have s ≤ 6f , the
total running time of the algorithm is as stated. ◀

We discuss in the full version of the paper [10] why the membership of CPNCS in FPT
does not contradict the W[1]-hardness of Maximum Independent Set in Segment Intersection
Graphs shown by Marx [15]. We also discuss why our techniques are not sufficient to obtain
an exact FPT algorithm for MCP.

5 NP-hardness of MCP and MCT

Our proof of NP-hardness of MCP and MCT builds upon gadgets introduced by Lingas [14].
He used them to prove NP-hardness of several decision problems, including Minimum
Convex Partition for Polygons with Holes and Minimum Rectangular Partition for Rectilinear
Polygons with Holes. The entire proof appears in the full version of the paper [10]. The
idea is to first mimic Lingas’ proof. We show how we can embed the rectilinear polygon
with holes into a grid Λ of polynomial size. Then we add all edges of the grid outside of the
polygon and inside of the holes to the drawing. This gives us a set Φ of unit length segments.
We finally replace each unit segment by K collinear points, where K depends polynomially
on the size of the input, and obtain a point set P . We show that the convex faces in a
minimum convex partition of P have large area, and that if the interior of a convex face F

in a convex partition of P intersects a segment in Φ, then the area of F , denoted by A(F ), is
not large enough. Therefore, the interior of a convex face F in a minimum convex partition
of P does not intersect a segment in Φ. From this we can conclude that convex partitions on
P behave as if the segments of the polygon where there as constraints. Thus, the reduction
works similarly as Lingas’. We present here our key lemma in the proof. It states that if the
interior of a convex face F intersects a segment σ in Φ, then F cannot have large area within
two cells of Λ on different sides of σ, where large area means larger than 1/K.

▶ Lemma 19. Let L and L′ be two unit cells in Λ, and let F be a convex polygon whose
interior does not contain any point in P . If A(F ∩ L) > 1/K, and the boundary of F crosses
a segment of Φ between L and L′, then A(F ∩ L′) < 1/K.

Proof. The proof is illustrated in Figure 4. By assumption, F intersects a line segment
whose endpoints p and q are at distance 1/K. Let us consider the two line segments s

and s′ of the boundary of S that intersect the line ℓ which contains p and q. Assume for
contradiction that the lines containing respectively s and s′ do not intersect, or intersect
on the side of ℓ where L lies. This implies that F ∩ L is contained in a parallelogram that
has area 1/K, as illustrated in Figure 5. Indeed such a parallelogram has base 1/K and
height 1, therefore A(F ∩ L) ≤ 1/K. This shows that the lines containing respectively s and
s′ intersect on the side of ℓ where L′ lies. Using the same arguments as above, this implies
A(F ∩ L′) < 1/K. ◀



N. Grelier 45:13

•

•

•

•

•

•

•

• • • • • • • • •

L

S

s

s′

p

q

Figure 4 If A(S ∩ L) > 1/K, the two lines containing s and s′ intersect on the left side.

•

•p

q

L

Figure 5 The area of the parallelograms is 1/K.

6 Open problems

It would be interesting to have approximation algorithms for MCP, MCT and CPNCS with
better ratio than O(log OPT ). As MCP is not APX-hard unless NP ⊆ DTIME(2polylog n) [1],
we expect that some improvement can be achieved.

A natural question is to ask whether MCP is FPT with respect to the number of faces in
an optimal convex partition, as we have only shown a constant-approximation FPT algorithm.
This question is open when having several points on a line is allowed, since otherwise the
minimum number of convex faces is linear in the number of inner points.

We have shown that the decision versions of MCP and CPNCS are NP-complete, and
that the one of MCT is NP-hard, but the question whether the decision version of MCT is
in NP remains open. We also do not know the complexity of MCP and MCT when it is
assumed that no three points are collinear.

References

1 Sayan Bandyapadhyay, Santanu Bhowmick, and Kasturi Varadarajan. Approximation schemes
for partitioning: Convex decomposition and surface approximation. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1457–1470. SIAM,
2014. doi:10.1137/1.9781611973730.96.

SoCG 2022

https://doi.org/10.1137/1.9781611973730.96


45:14 Hardness and Approximation of Minimum Convex Partition

2 Allan S. Barboza, Cid C. de Souza, and Pedro J. de Rezende. Minimum convex partition of
point sets. In Proceedings of International Conference on Algorithms and Complexity, pages
25–37. Springer, 2019. doi:/10.1007/978-3-030-17402-6_3.

3 Prosenjit Bose, Andrej Brodnik, Svante Carlsson, Erik D Demaine, Rudolf Fleischer, Alejandro
López-Ortiz, Pat Morin, and J Ian Munro. Online routing in convex subdivisions. International
Journal of Computational Geometry & Applications, 12(04):283–295, 2002. doi:10.1142/
S021819590200089X.

4 Hadrien Cambazard and Nicolas Catusse. An integer programming formulation using convex
polygons for the convex partition problem. In 37th International Symposium on Computational
Geometry (SoCG 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021. doi:10.
4230/LIPIcs.SoCG.2021.20.

5 Erik Demaine, Sándor Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell.
CG:SHOP 2020. https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020. Accessed:
12/02/2020.

6 Adrian Dumitrescu, Sariel Har-Peled, and Csaba D. Tóth. Minimum convex partitions and
maximum empty polytopes. In Proceedings of Scandinavian Workshop on Algorithm Theory,
pages 213–224. Springer, 2012. doi:10.1007/978-3-642-31155-0_19.

7 Thomas Fevens, Henk Meijer, and David Rappaport. Minimum convex partition of a con-
strained point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001. doi:10.1016/
S0166-218X(00)00237-7.

8 Jesús García-López and Carlos M. Nicolás. Planar point sets with large minimum con-
vex decompositions. Graphs and Combinatorics, 29(5):1347–1353, 2013. doi:10.1007/
s00373-012-1181-z.

9 Magdalene Grantson and Christos Levcopoulos. A fixed parameter algorithm for the minimum
number convex partition problem. In Japanese Conference on Discrete and Computational
Geometry, pages 83–94. Springer, 2004. doi:10.1007/11589440_9.

10 Nicolas Grelier. Hardness and approximation of minimum convex partition. arXiv preprint,
2019. arXiv:1911.07697.

11 Leonidas J. Guibas, Mark H. Overmars, and Jean-Marc Robert. The exact fitting problem in
higher dimensions. Computational geometry, 6(4):215–230, 1996. doi:10.1016/0925-7721(95)
00020-8.

12 Christian Knauer and Andreas Spillner. Approximation algorithms for the minimum convex
partition problem. In Proceedings of Scandinavian Workshop on Algorithm Theory, pages
232–241. Springer, 2006. doi:10.1007/11785293_23.

13 Stefan Langerman and Pat Morin. Covering things with things. Discrete & Computational
Geometry, 33(4):717–729, 2005. doi:10.1007/s00454-004-1108-4.

14 Andrzej Lingas. The power of non-rectilinear holes. In Proceedings of International Colloquium
on Automata, Languages, and Programming, pages 369–383. Springer, 1982. doi:10.1007/
BFb0012784.

15 Dániel Marx. Parameterized complexity of independence and domination on geometric graphs.
In International Workshop on Parameterized and Exact Computation, pages 154–165. Springer,
2006. doi:10.1007/11847250_14.

16 Joseph S. B. Mitchell. Approximation algorithms for geometric separation problems.
Technical report, Dept. of Applied Math. and Statistics, State U. of New York at Stony
Brook, 1993. Available at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
50.7089&rep=rep1&type=pdf.

17 Víctor Neumann-Lara, Eduardo Rivera-Campo, and Jorge Urrutia. A note on convex decom-
positions of a set of points in the plane. Graphs and Combinatorics, 20(2):223–231, 2004.
doi:10.1007/s00373-004-0555-2.

18 Franco P. Preparata and Michael I. Shamos. Computational Geometry. Springer-Verlag, New
York, 1985. doi:10.1007/978-1-4612-1098-6.

https://doi.org//10.1007/978-3-030-17402-6_3
https://doi.org/10.1142/S021819590200089X
https://doi.org/10.1142/S021819590200089X
https://doi.org/10.4230/LIPIcs.SoCG.2021.20
https://doi.org/10.4230/LIPIcs.SoCG.2021.20
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020
https://doi.org/10.1007/978-3-642-31155-0_19
https://doi.org/10.1016/S0166-218X(00)00237-7
https://doi.org/10.1016/S0166-218X(00)00237-7
https://doi.org/10.1007/s00373-012-1181-z
https://doi.org/10.1007/s00373-012-1181-z
https://doi.org/10.1007/11589440_9
http://arxiv.org/abs/1911.07697
https://doi.org/10.1016/0925-7721(95)00020-8
https://doi.org/10.1016/0925-7721(95)00020-8
https://doi.org/10.1007/11785293_23
https://doi.org/10.1007/s00454-004-1108-4
https://doi.org/10.1007/BFb0012784
https://doi.org/10.1007/BFb0012784
https://doi.org/10.1007/11847250_14
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7089&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7089&rep=rep1&type=pdf
https://doi.org/10.1007/s00373-004-0555-2
https://doi.org/10.1007/978-1-4612-1098-6


N. Grelier 45:15

19 Toshinori Sakai and Jorge Urrutia. Convex decompositions of point sets in the plane. arXiv
preprint, 2019. arXiv:1909.06105.

20 Allan Sapucaia, Pedro J. de Rezende, and Cid C. de Souza. Solving the minimum convex
partition of point sets with integer programming. Computational Geometry, page 101794,
2021. doi:10.1016/j.comgeo.2021.101794.

21 Andreas Spillner. A fixed parameter algorithm for optimal convex partitions. Journal of
Discrete Algorithms, 6(4):561–569, 2008. doi:10.1016/j.jda.2008.07.002.

22 Csaba D. Tóth. Binary space partitions for line segments with a limited number of directions.
SIAM Journal on Computing, 32(2):307–325, 2003. doi:10.1137/S0097539702403785.

SoCG 2022

http://arxiv.org/abs/1909.06105
https://doi.org/10.1016/j.comgeo.2021.101794
https://doi.org/10.1016/j.jda.2008.07.002
https://doi.org/10.1137/S0097539702403785




Parameterised Partially-Predrawn Crossing Number
Thekla Hamm #

Algorithms and Complexity Group, TU Wien, Austria

Petr Hliněný #

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract
Inspired by the increasingly popular research on extending partial graph drawings, we propose a
new perspective on the traditional and arguably most important geometric graph parameter, the
crossing number. Specifically, we define the partially predrawn crossing number to be the smallest
number of crossings in any drawing of a graph, part of which is prescribed on the input (not counting
the prescribed crossings). Our main result – an FPT-algorithm to compute the partially predrawn
crossing number – combines advanced ideas from research on the classical crossing number and so
called partial planarity in a very natural but intricate way. Not only do our techniques generalise
the known FPT-algorithm by Grohe for computing the standard crossing number, they also allow us
to substantially improve a number of recent parameterised results for various drawing extension
problems.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Computational geometry

Keywords and phrases Crossing Number, Drawing Extension, Partial Planarity, Parameterised
Complexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.46

Related Version Full Version: https://arxiv.org/abs/2202.13635

Funding Thekla Hamm: Supported by the Austrian Science Fund (projects P31336, Y1329, and
W1255-N23).
Petr Hliněný: Supported by the Czech Science Foundation, project no. 20-04567S.

1 Introduction

Determining the crossing number, i.e. the smallest possible number of pairwise transverse
intersections (called crossings) of edges in any drawing, of a graph is among the most important
problems in discrete computational geometry. As such its general computational complexity
is well-researched: Probably most famously, it is known that graphs with crossing number 0,
i.e. planar graphs, can be recognised in polynomial time [27, 20, 28]. Generally, computing
the crossing number of a graph is NP-hard, even in very restricted settings [16, 19, 25, 4], and
also APX-hard [3]. However there is a fixed-parameter algorithm for the problem, and even
one that can compute a drawing of a graph with at most k crossings in time in O(f(k)n) or
decide that its crossing number is larger than k [17, 22].

More recently, so called graph drawing extension problems have received increased at-
tention. Instead of being given an entirely abstract graph as an input, here the input is a
partially drawn graph P = (G,H), meaning that a subgraph H of the input graph G is given
with a fixed drawing H which must not be changed in the solution. This is motivated by
immediate applications in network visualisation [23], as well as a more general line of research
in which important computational problems are extended to the setting in which parts of the
solution are prescribed which can lead to useful insights for dynamic or divide-and-conquer
type algorithms and heuristics [5, 14]. In this context it is natural to define the partially
predrawn crossing number as the smallest number of pairwise crossings of edges in any

© Thekla Hamm and Petr Hliněný;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 46; pp. 46:1–46:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thamm@ac.tuwien.ac.at
https://orcid.org/0000-0002-4595-9982
mailto:hlineny@fi.muni.cz
https://orcid.org/0000-0003-2125-1514
https://doi.org/10.4230/LIPIcs.SoCG.2022.46
https://arxiv.org/abs/2202.13635
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


46:2 Parameterised Partially-Predrawn Crossing Number

drawing which coincides with (i.e., extends) the given fixed drawing of the predrawn skeleton,
minus the number of “unavoidable” crossings already contained in the fixed drawing of the
skeleton. We name this problem Partially Predrawn Crossing Number.

Of course, the problem of computing the partially predrawn crossing number is more
general than the one of computing the classical crossing number (which is captured by the
former by simply letting the predrawn skeleton be empty), and thus the known hardness
results for computing the classical crossing number carry over. To the best of our knowledge,
the partially predrawn crossing number problem has so far not been explicitly studied in
literature, although, there are papers which study partially embedded planarity, i.e. the
property of having partially predrawn crossing number 0, and variants thereof. In particular,
similarly to ordinary planarity, partially drawn graphs extendable to planar drawings can be
recognised in polynomial time [1], and in analogy to the Kuratowski theorem, there is also a
neat list of forbidden “partially drawn minors” (Figure 3) which characterise partially drawn
graphs extendable to planar drawings [21].

If one allows a non-zero number of crossings, the only algorithmic results on extending
partially drawn graphs with constrained crossings we are aware of are those for scenarios
with a few edges or vertices outside of the predrawn skeleton or/and with a small number of
crossings for each edge. We give a brief list of these algorithmic results:

An algorithm to determine the exact partially predrawn crossing number of a partially
drawn graph in FPT time parameterised by the number of edges which are not fixed by
the predrawn skeleton [6] (the “rigid” case in the paper).
An algorithm to determine whether there is a 1-planar drawing (or more generally a
drawing in which each edge outside of the predrawn skeleton has at most c crossings)
which coincides with the given partial drawing in FPT time parameterised by (c and) the
number of edges which are not fixed by the predrawn skeleton [13, 15].
An algorithm to determine whether there is a 1-planar drawing which coincides with the
given partial drawing in XP time parameterised by the vertex cover size of the edges
which are not fixed by the predrawn skeleton [12].
An algorithm to determine whether there is a simple drawing in which each edge outside
of the predrawn skeleton has at most c crossings which coincides with the given partial
drawing in FPT time parameterised by c and the number the edges which are not fixed
by the predrawn skeleton [15].

We remark that all these parameterised algorithms require the given predrawn skeleton to be
connected, and the last three algorithms are easily adapted to output drawings minimising
the number of crossings under the requirement of the respective properties.

Contributions

The foundation of our main contribution is a fixed-parameter algorithm for an exact compu-
tation of the partially predrawn crossing number k of a given partially drawn graph.

▶ Theorem 1.1. Partially Predrawn Crossing Number is in FPT when parameterised
by the solution value (i.e., by the number of crossings which are not predrawn).

We employ a technique similar to the approach showing fixed-parameter tractability of
classical crossing number devised by Grohe [17]. This means we proceed in two phases:

I. We iteratively reduce the input partially drawn graph P until we cannot find a large
flat grid in it, and so we bound its treewidth by a function of k, or decide that the
partially predrawn crossing number of P is larger than k. Importantly, each reduction
step is guaranteed to preserve the solution value (unless it is > k).



T. Hamm and P. Hliněný 46:3

II. We devise an MSO2-encoding for the property that any partially drawn graph has the
partially predrawn crossing number at most k. The key idea is to encode the predrawn
skeleton of the input in a 3-connected planar “frame” which is added to the input
partially drawn graph. Using the bounded treewidth of the involved graph with the
frame, we then apply Courcelle’s theorem [7] in order to decide this property.

Note that the second step is an interesting result in its own right:

▶ Lemma 1.2. For every k ≥ 0 there is an MSO2-formula ψk such that the following holds.
Given a partially drawn graph P, one can in polynomial time construct a graph G′ such that
ψk is true on G′ if and only if the partially predrawn crossing number of P is at most k. This
claim holds also if some edges of P are marked as “uncrossable” and we compute the crossing
number over such drawings extending P that do not have crossings on the “uncrossable”
edges.

While our high-level approach is similar to Grohe’s [17], in each phase we are faced with
some caveats, on which we elaborate in the respective sections, due to the fact that we must
respect the given predrawn skeleton and that we have to observe also the treewidth of the
derived graph which encodes the predrawn skeleton, i.e. of G′ from Lemma 1.2.

In this regard, we also give a concrete example (see Proposition 5.1) of a fundamentally
different behaviour of the partially predrawn crossing number compared to the classical one
(which can partly explain the difficulties we face in Theorem 1.1, compared to [17]). In a
nutshell, we show that for fixed k a partially drawn graph can have arbitrarily many nested
cycles which are “critical” for having crossing number > k.

Based on the proof of Theorem 1.1 we are also able to give an improved algorithm to
determine whether there is a drawing in which each edge outside of the predrawn skeleton has
at most c crossings which coincides with the given partial drawing. Specifically we can show
the following theorem, where the partially predrawn c-planar crossing number of a partially
drawn graph P is as the partially predrawn crossing number above while restricted to only
drawings of P in which each edge outside of the predrawn skeleton has at most c crossings.

▶ Theorem 1.3. Partially Predrawn c-Planar Crossing Number is in FPT when
parameterised by the solution value (i.e., by the number of crossings which are not predrawn).

Compared to the algorithm given in [13], Theorem 1.3 presents an additional improvement
in two important aspects. Not only can our algorithm solve the c-planar drawing extension
problem parameterised by the number of new crossings (a less restrictive parameter than the
combination of c and |E(G) \ E(H)|), but we can also handle disconnected initial drawings.

We also can combine our techniques with structural insights from [15] to drop the
connectivity requirement on the input in the setting that we want to determine the partially
predrawn c-planar crossing number restricted to simple drawings:

▶ Theorem 1.4. Given a partially drawn graph, one can in FPT time parameterised by c
and the number of edges not contained in the predrawn skeleton, decide the minimum number
of crossings in a simple drawing which coincides with the given simple partial drawing and in
which each edge outside of the predrawn skeleton has at most c crossings.

Full proofs of the *-marked statements are left for arXiv:2202.13635.

SoCG 2022

https://arxiv.org/abs/2202.13635


46:4 Parameterised Partially-Predrawn Crossing Number

b d

a

c

e

f c

b

a

d

e

f

Figure 1 Two drawings of the same graph (solid lines) with the same rotation scheme. However
both drawings are not equivalent. All dashed curves need to be mapped without crossing each other
or any solid line by any homeomorphism from the left to the right the drawing. This is not possible.

2 Preliminaries

We use standard terminology for undirected simple graphs [9] and assume basic understanding
of parameterised complexity [8, 10], and of Courcelle’s theorem together with MSO logic [2, 7]
and treewidth. We refer also to the full preprint paper for additional background on these
notions. Regarding embeddings and drawings of graphs we mostly follow [24].

For r ∈ N, we write [r] as shorthand for the set {1, . . . , r}.

2.1 Partial graph drawings

A drawing G of a graph G in the Euclidean plane R2 is a function that maps each vertex
v ∈ V (G) to a distinct point G(v) ∈ R2 and each edge e = uv ∈ E(G) to a simple open
curve G(e) ⊂ R2 with the ends G(u) and G(v). We require that G(e) is disjoint from G(w)
for all w ∈ V (G) \ {u, v}. In a slight abuse of notation we often identify a vertex v with its
image G(v) and an edge e with G(e). Throughout the paper we will moreover assume that:
there are finitely many points which are in an intersection of two edges, no more than two
edges intersect in any single point other than a vertex, and whenever two edges intersect in
a point, they do so transversally (i.e., not tangentially).

The intersection (a point) of two edges is called a crossing of these edges. A drawing G
is planar (or a plane graph) if G has no crossings, and a graph is planar if it has a planar
drawing. The number of crossings in a drawing G is denoted by cr(G). A drawing G is
c-planar (or a c-plane graph) if every edge in G contains at most c crossings, and a graph
is c-planar if it has a c-planar drawing. The planarisation G× of a drawing G of G is the
plane graph obtained from G by making each crossing point a new degree-4 vertex of G×.
The inclusion-maximal connected subsets of the set-complement R2 \ G are called the faces
of G. For any drawing exactly one of these faces is infinite and referred to as the outer face.

A partial drawing of a graph G is a drawing of an arbitrary subgraph H of G. A partially
drawn graph P = (G,H), with an implicit reference to H , is a graph G together with a partial
drawing H of H ⊆ G, and then H is called the predrawn skeleton of (G,H). We say that
two drawings G1 and G2 of the same graph G are equivalent if there is a homeomorphism
of R2 onto itself taking G1

× onto G2
× [24]. For connected G1

× and G2
×, this is the same

as requiring equal rotation systems and the same outer face. However, for disconnected
drawings, [21] in addition to equal rotation systems and outer face it is neccessary to specify
which faces of each connected component of G1

× contain which other connected components
and in which orientation, and match this specification with G×

2 (see also Figure 1).
In this setup, we also say that two partially drawn graphs are isomorphic if there exists

an isomorphism which gives an equivalence of their predrawn skeletons.



T. Hamm and P. Hliněný 46:5

2.2 Problem definitions

The Partially Predrawn Crossing Number problem takes as an input a partially drawn
graph (G,H) and an integer q. The task is to decide whether there is a drawing G of G,
the restriction of which to the predrawn skeleton H is equivalent to H (we can shortly say
that G extends H), such that G has at most q + cr(H) crossings. The smallest value of
the parameter q for which (G,H) is a yes-instance of Partially Predrawn Crossing
Number is called the partially predrawn crossing number of (G,H), denoted by pd-cr(G,H).
Note that pd-cr(G, ∅) is the (called classical for distinction) crossing number cr(G) of G.

Likewise, the Partially Predrawn c-Planar Crossing Number problem takes as
an input a partially drawn graph (G,H) and an integer q. The task is to decide whether
there is a drawing G of G in which every edge in E(G) \E(H) has at most c crossings and
the restriction of which to H is equivalent to H, such that G has altogether at most q+ cr(H)
crossings. The smallest q (which may not be defined in general; a trivial example for which
q is not defined is given by c = 1 and G not 1-planar) for which (G,H) is a yes-instance
of Partially Predrawn c-Planar Crossing Number is called the partially predrawn
c-planar crossing number of (G,H).

2.3 A parameterised algorithm for classical crossing number

We outline the high-level idea of Grohe’s algorithm [17] to decide the classical crossing
number of a graph in FPT time and note some obstacles that we need to overcome. Due to
lack of space in the main paper, we leave the complete formal recapitulation together with
some supplementary definitions for the full preprint paper.

The algorithm proceeds in two phases.

Phase I – Bounding Treewidth

Consider a graph G in which some edges are marked as “uncrossable”, and the question of
whether there is a drawing of G with at most k crossings in which no “uncrossable” edge
is crossed for a fixed parameter k. To improve readability, we shortly say that a drawing
is conforming if no edge marked “uncrossable” is crossed in it. Grohe [17] showed that in
polynomial time one can (i) confirm that the answer to this question is no, (ii) find a tree
decomposition of G with width bounded in k, or (iii) find a connected planar subgraph
I ⊆ G where |V (I)| ≥ 6 together with a cycle C that is disjoint from V (I) and contains
N(I) such that the following holds. If G′ arises from G by contracting I to a vertex vI and
additionally marking all edges incident to vI and all edges of C as “uncrossable”, then any
crossing-minimum conforming drawing of G arises from a crossing-minimum conforming
drawing of G′ by replacing vI with a planar drawing of G[V (I) ∪ V (C)] where the drawing
of C is distorted to match that in the drawing of G′ and I is drawn in an ε-neighbourhood
of vI . Conversely, every crossing-minimum conforming drawing of G′ arises from a crossing-
minimum conforming drawing of G by contracting I and placing the resulting vertex on the
drawing of some vertex in I.

In the partially drawn setting we can however not simply contract a subgraph I without
loosing information about its parts that are potentially fixed by the partial drawing of the
instance. In particular, reinserting some unrestricted planar drawing of I can violate the
partial drawing (see Figure 2).

SoCG 2022



46:6 Parameterised Partially-Predrawn Crossing Number

c

a

b

e

f

d

c

a
b

e

f

d

Figure 2 Example where predrawn parts (blue) make it impossible to simply insert a planar
drawing of I (brown underlay). If the partial drawing is as on the left, I can be drawn planarly as
depicted on the right but not while preserving equivalence of the partial drawing (cf. Figure 1).

Phase II – MSO Encoding

After having reduced G to a graph of treewidth bounded in the desired crossing number,
one can apply Courcelle’s theorem to decide whether cr(G) ≤ k for any fixed k. For that
it is sufficient to encode in MSO2 logic the existence of at most k pairs of edges such that,
after planarising a hypothetical crossing between the two edges of each pair, the resulting
graph is planar. To express planarity, one simply excludes the existence of subdivisions of
the two Kuratowski obstructions K5 and K3,3. The task of interpreting the planarisation of
hypothetical crossings, “guessed” by existential quantifiers, is a more subtle one. In order to
avoid heavy tools of finite model theory here, we can apply the following trick: instead of
G, use the graph G(k) which subdivides k-times every edge of G, and “guess” k pairs of the
subdivision vertices which are pairwise identified to make the planarisation.

This of course does not carry over easily to the partially drawn setting as the Kuratowski
obstructions do not capture the predrawn skeleton shape, i.e., there could be partially drawn
graphs with high crossing number and not containing any K5 or K3,3 subdivisions. Here,
instead, we will use the corresponding planarity obstructions for partially drawn graphs
from [21], described next in Section 2.4. This brings two new complications to be resolved;
namely that the list of obstructions is not finite, and that we have to encode the input
drawing of the given partially drawn graph in an abstract way which can be “read” by an
MSO2-formula.

2.4 Characterising partially predrawn planarity
We use the mentioned result of Jelínek, Kratochvíl and Rutter [21] characterising partially
predrawn planarity, that is, the question of whether a given partially drawn graph (G,H)
admits a planar drawing which extends H, by means of forbidding so-called PEG-minors.
In this context we assume cr(H) = 0. The forbidden obstructions are formed by one “easy”
infinite family described separately (the alternating chains) and a list of 24 specific partially
drawn graphs shown in Figure 3. However, since PEG-minors are not suitable for our
application, we relax the characterisation of [21] to make a larger finite obstruction set and a
simpler-to-handle containment relation (essentially a “partially drawn topological minor”).

A subdivision of an edge in a partially drawn graph (G,H) is the same subdivision in the
graph G, which is correspondingly applied to H if the subdivided edge is from H. A partially
drawn graph (G1,H1) is a (partially drawn) subgraph of (G,H) if G1 ⊆ G, H1 ⊆ H and the
drawing H1 is equivalent to the restriction of H to H1. Note that in general one may have
an edge of G1 which is predrawn in H but not in H1.



T. Hamm and P. Hliněný 46:7

Figure 3 (A picture copied from arXiv:1204.2915v1 with permission of the authors.) The list of
24 partially drawn graphs [21] that are the obstructions (as PEG-minors) for partially drawn graphs
which can be extended to planar drawings. The solid black edges and vertices form the predrawn
skeleton of the graphs, and dashed edges are the non-fixed ones.

▶ Theorem 2.1 (adapted from [21]). There is a finite family K of partially drawn graphs
such that the following is true. A partially drawn graph P = (G,H) admits a planar drawing
which extends H if and only if cr(H) = 0 and the following hold:

i. there is no alternating chain in P (see the preprint version for the full definition), and
ii. no subdivision of a partially drawn graph from K is isomorphic to a partially drawn

subgraph of P.

Briefly put, the family K from Theorem 2.1 is composed of all graphs obtained from the
obstructions (G,H) in Figure 3 [21] by possible iterative splittings (of vertices of degree > 3
in G) and possible releasing of certain edges from H. The splitting of a vertex v is performed
by partitioning the neighbourhood of v into two disjoint sets N1 and N2, and replacing v

SoCG 2022

https://arxiv.org/pdf/1204.2915.pdf


46:8 Parameterised Partially-Predrawn Crossing Number

Figure 4 Instance (left) cannot be drawn with 0 crossings (same node styles indicate adjacencies
to vertices on dashed cycle), but subinstance (middle) consisting only of H (blue), and induced
graph on I (brown underlay) and C, as well as subinstance (right) in which I is contracted can.

with two new adjacent vertices v1 and v2 such that the neighbourhood of v1 is N1 ∪ {v2} and
the neighbourhood of v2 is N2 ∪ {v1}. The release of an edge f ∈ E(H) from H is allowed if
f is a bridge, i.e. f is not contained in any cycle of H, and is performed as follows: If one
end (resp., both ends) of f is of degree > 2 in H , subdivide f once (twice), and denote by f ′

the edge resulting from f such that both ends of f ′ are of degree ≤ 2 in H. Then remove f ′

only from H (but keep it in G). We leave the details for the full preprint paper.

3 Algorithm for partially predrawn crossing number

Note that, regarding the input partially drawn graph (G,H), we may as well assume that H is
a plane graph; otherwise, we replace H with its planarisation H× (and accordingly adjust G,
which formally means to move to the partially drawn graph

(
(G− E(H)) ∪ H×,H×)

). This
is sound since neither do we care about the number of crossings prescribed by H, nor do we
have any restrictions on single edges in H , and hence do not care to identify them. Thus, we
will assume planar H throughout the rest of the section, unless we explicitly say otherwise.

3.1 Phase I – Treewidth
To show that we can arrive at an input graph with small treewidth, we prove a statement
analogous to Grohe’s iterative contraction for the partially predrawn setting. Approaching
this, however, it becomes quite clear that contracting a subgraph I must be treated much
more delicately. The role of the cycle C in that case is that it could be treated as an interface
to glue together two drawings – any planar drawing of the contracted part and any drawing
of G after contraction with at most k crossings in which no “uncrossable” edge is crossed.
For actually gluing the parts together, the drawing of C might need to be “flipped” in either
of these two drawings. This can create a problem in terms of being equivalent to H on H.
Even if we ensure that each of the two drawings we would potentially like to glue together
to a drawing of G are compatible with H or the contraction of H, this compatibility is not
invariant under flipping C (see e.g. Figure 4).

For this purpose we consider the notion of (H, I)-flippability for C and I. Essentially, we
say that C is (H, I)-flippable in a graph D, if the orientation of C with respect to I in a
planar drawing of D that is equivalent to H on H is not determined by H. Otherwise C is
(H, I)-unflippable in D. A formal definition that makes use of the non-equivalence of drawing
two disconnected triangles described in Figure 1 is given in the full preprint paper. Using
this formal definition it can be decided in polynomial time whether a cycle is (H, I)-flippable
in a graph, or not.



T. Hamm and P. Hliněný 46:9

To facilitate readability, we say that for a partially drawn graph (G,H) where some edges
of G are marked as “uncrossable”, the drawings of G that we want to consider, are k-crossing
conforming. More formally, a k-crossing conforming drawing is a drawing of G with at most
k + cr(H) crossings that is equivalent to H on the predrawn skeleton H and in which no
“uncrossable” edge is crossed. The following key theorem is fully stated and proved in the
preprint paper.

▶ Theorem 3.1. For all k ∈ N there exists w ∈ N, such that given a partially drawn graph
(G,H) in which some edges are marked “uncrossable”, in FPT-time parameterised by k we can
1. decide that there is no k-crossing conforming drawing of (G,H); or
2. find a tree decomposition of G of width at most w; or
3. find an equivalent instance (G′,H′) with the property that |V (G′)| < |V (G)|.

Sketch of proof. We start by applying the result by Grohe [17] for k with G as input. If
the algorithm of [17] decides that the number of crossings in any drawing of G in which
no “uncrossable” edge is crossed is more than k times, we can safely return that the same
is true for any such drawing that is equivalent to H on the predrawn skeleton. Similarly,
if the algorithm returns a tree decomposition of width at most w, we can return that tree
decomposition.

In the last case, the algorithm finds a subgraph I ⊆ G and a cycle C in G as described
in Subsection 2.3 for bounding treewidth. We distinguish whether there is a 0-crossing
conforming drawing of

(
G[V (I) ∪ V (C)] ∪ H,H

)
, or not. Recall that, as we assume H

to be planarised, edges marked as “uncrossable” are irrelevant in this context because no
edge should be crossed. Hence deciding whether there is a 0-crossing conforming drawing of(
G[V (I)∪V (C)]∪H,H

)
is equivalent to deciding whether pd-cr

(
G[V (I)∪V (C)]∪H,H

)
= 0.

This can be decided in linear time using the result by Angelini et al. [1].

▷ Case 1. There is no 0-crossing conforming drawing of
(
G[V (I) ∪ V (C)] ∪H,H

)
.

In this case we claim that there is no k-crossing conforming drawing of (G,H). Assume for
a contradiction that there is such a drawing G. In particular this drawing has at most k
crossings and no “uncrossable” edge is crossed in it. Hence, because of the choice of I and C,
no edge of G[V (I) ∪V (C)] is crossed in G. But as there are exactly cr(H) crossings involving
only edges of H in G, this means that the restriction of G to G[V (I) ∪ V (C)] is a 0-crossing
conforming drawing of

(
G[V (I) ∪ V (C)] ∪H,H

)
; a contradiction.

▷ Case 2. There is a 0-crossing conforming drawing of
(
G[V (I) ∪ V (C)] ∪H,H

)
.

This is the case in which we attempt to construct an equivalent instance with fewer vertices.
Informally speaking, if we find an (H, I)-flippable cycle C, we will essentially be able to flip
any planar drawing of the contracted subgraph to appropriately match the interface in a
drawing of G after the contraction. Hence we can simply contract I in G and H.

If we find a cycle that is (H, I)-unflippable and the cycle remains unflippable after the
contraction of the subgraph is performed, any planar drawing of the contracted subgraph
automatically matches the interface in a drawing of G after contraction. Hence we can simply
contract I in G and H.

The last case is that the cycle we find is (H, I)-unflippable but it seems to be flippable
after the contraction of the subgraph is performed. In this case the orientation of the cycle
is fixed in any planar drawing of the subgraph I for contraction, but both orientations of the
cycle are possible after the contraction is performed. We must therefore appropriately force
the orientation of C in the drawing after performing the contraction to match the one which
is in fact forced before the contraction. We will do this by extending H carefully. ◀

SoCG 2022



46:10 Parameterised Partially-Predrawn Crossing Number

We can iteratively apply Theorem 3.1 O(|V (G)|) times to reduce our instance to a graph
of small treewidth. Hence from now on we focus on the case that we are given a partially
drawn graph (G,H) and a tree decomposition of G whose width w is bounded in the inquired
crossing number.

This is already a crucial step towards the targeted application of Courcelle’s theorem.
However we still need to incorporate the information on the partial drawing H into a graph
structure of small treewidth. For this we will define a framing of (G,H). Note that even
though we assume in this definition H to be planar, the definition also applies to the general
case in which we first planarise H into H× and correspondigly adjust G.

▶ Definition 3.2. A framing of a partially drawn graph (G,H), where H is a plane graph,
is an ordinary (abstract) graph F constructed as follows. See Figure 5. We start with the
initial drawing D := H and continue by the following steps in order:
1. While the graph of D is not connected, we iteratively add edges from G to D that can be

inserted in a planar way and which connect two previously disconnected components. If
this is no longer possible while the graph is still disconnected, let B be a face of D incident
to more than one connected component. We pick a vertex v on B and connect v to an
arbitrary vertex from each component incident to B which does not contain v. We will
call all edges added in this step the connector edges (of the resulting framing).

2. We replace each edge f = uw of the drawing D from Step 1 (including the connector
edges) by three internally disjoint paths of length 3 between u and w. We will call these
three paths together the framing triplet of f , and denote by D′ the resulting drawing.

3. Around each vertex v ∈ V (H×) in the drawing D′ from Step 2, we add a cycle on the
neighbours of v in D′ in the cyclic order given by D′. We will call these cycles the framing
cycles, and all edges of the resulting planar drawing D′′ the frame edges.

4. Finally, we set F := D′′ ∪G where D′′ is the underlying graph of D′′ from Step 3.

We remark that Step 1 of the construction of a framing F of (G,H) is not deterministic,
and hence a partially drawn graph can admit multiple framings. Note also that possible
connector edges introduced in Step 1 are no longer present in resulting F (only their
vertices and derived frame triplets are present). Moreover, the most important aspect of
Definition 3.2 is that the frame (D′′) defined after Step 3 is a 3-connected planar graph which
hence combinatorially captures the drawing H within the framing F .

As the last step in preparation for applying Courcelle’s theorem we need to show that
the framing construction does not considerably increase the treewidth:

▶ Lemma 3.3.* Let F be a framing of a partially drawn graph (G,H), and Go = (G −
E(H)) ∪ H×. Then tw(F ) ∈ O(16k+1 tw(Go)/ log(tw(Go))), where k = pd-cr(G,H).

3.2 Phase II – MSO2-encoding
Our aim now is to prove key Lemma 1.2. In closer detail, we are first going to show:

▶ Lemma 3.4.* Let P1 = (G1,H1) be a partially drawn graph where H1 is plane. There
exists an MSO2-formula σ, depending on P1, such that the following is true:

For any partially drawn graph P2 = (G2,H2) with plane H2 and any framing Ḡ2 of P2 we
have that Ḡ2 |= σ, if and only if some subdivision of P1 is a partially drawn subgraph of P2.
To combinatorially characterise the partially drawn subgraph containment, we use Defini-

tion 3.2 and the following concept of a “framing-aware” minor. Considering framings Ḡ1 of
(G1,H1) and Ḡ2 of (G2,H2), we say that Ḡ1 is a framing topological minor of Ḡ2 if there is
a topological-minor embedding of Ḡ1 into Ḡ2 which additionally satisfies

every edge of G1 (resp., of H1) is mapped into a path of G2 (resp., of H2),



T. Hamm and P. Hliněný 46:11

Figure 5 (Definition 3.2) A framing of a partially drawn graph (G, H): the graph is on the
left, such that the predrawn skeleton H is drawn with thick blue edges and the remaining edges of
E(G) \ E(H) are in green. The framing of (G, H) on the right has the frame edges drawn in red; for
every edge of H and for the chosen one connector edge between the two components of H, we get a
framing triplet, and for every vertex of H a framing cycle.

every framing cycle in Ḡ1 is mapped into a corresponding framing cycle in Ḡ2,
whenever an edge f ∈ E(H1) is mapped into a path Pf ⊆ H2, the framing triplet of f in
Ḡ1 is embedded (as three internally-disjoint paths) in the union of the framing cycles
and triplets of the internal vertices and edges of Pf in Ḡ2, and
the analogous condition (as the previous point) applies also to framing triplets of the
connector edges of Ḡ1, which are embedded in Ḡ2.

See Figure 6 for a natural illustration of this concept.
However, to state the desired characterisation we still need to technically generalise

Definition 3.2 to an extended framing of a partially drawn graph (G,H) which, informally,
allows us to use possible additional connector vertices and arbitrary connector edges between
the components of H. See the preprint paper for all details.

▶ Lemma 3.5.* Let P1 = (G1,H1) and P2 = (G2,H2) be partially drawn graphs where H1
and H2 are plane. Let Ḡ2 be a framing of P2. Then some subdivision of P1 is a partially
drawn subgraph of P2, if and only if there exists an extended framing Ḡ1 of P1 such that Ḡ1
is a restricted topological minor of Ḡ2.

We now finish a proof sketch of Lemma 3.4 easily. Let F be the finite set of all distinct
extended framings of P1. Using Lemma 3.5, we may write the formula σ ≡

∨
Ḡ1∈F σ[Ḡ1]

where Ḡ2 |= σ[Ḡ1] routinely expresses that Ḡ1 is a framing topological minor of Ḡ2 (this
description uses auxiliary precomputed labels distinguishing the types of edges in Ḡ2).

We also need to address the other kind of obstruction in Theorem 2.1 with the following:

▶ Lemma 3.6.* There exists an MSO2-formula τ such that the following is true:
For any partially drawn graph P2 = (G2,H2) and any framing Ḡ2 of P2 we have that
Ḡ2 |= τ , if and only if there exists an alternating chain in P2.

SoCG 2022



46:12 Parameterised Partially-Predrawn Crossing Number

⇝ as:

Figure 6 An illustration of the framing topological minor relation; the framing Ḡ1 (of the 5-vertex
partially drawn graph (G1, H1)) on the left is embedded in the framing Ḡ2 (of the 7-vertex graph
(G2, H2)) in the middle, and this embedding is emphasised as a topological minor in the picture on
the right. Notice that the framing triplet in Ḡ1 highlighted in the left picture with yellow background
is mapped (as three internally disjoint red paths) into a union of two framing triplets plus the
intermediate framing cycle in Ḡ2, as highlighted with yellow background in the picture on the right.

Now we can sketch a proof of the key Lemma 1.2 which we reformulate slightly for clarity:

▶ Lemma 3.7 (Lemma 1.2). For every k ≥ 0 there is an MSO2-formula ψk such that
the following holds. Given a partially drawn graph P, with some edges of P marked as
“uncrossable”, one can in polynomial time construct a graph G′ such that G′ |= ψk if and only
if there exists a k-crossing conforming drawing of P.

Sketch of proof. Recall that we may assume H to be a plane graph. We first give a rough
outline of what we want to achieve and then sketch the core steps of the proof.

The graph G′ will be based on a framing (as used above). Imagine a conforming drawing
G of G (extending H) with cr(G) = k and its planarisation G×. If we were able to “guess”,
within the formula ψk, the additional k vertices (those of G×) making the crossings, then we
would finish by checking partially predrawn planarity of the result (i.e., of the guessed G×).
Using Theorem 2.1, the latter would follow by an application of Lemmas 3.4 and 3.6.

Specifically, for the task of “guessing the crossings”, we subdivide each edge of P which
is not marked as “uncrossable” by k new vertices, called auxiliary vertices of this partially
drawn subdivision P0 = (G0,H0) of P. A subdivision clearly does not change the crossing
number; cr(P) = cr(P0). Then we interpret “guessing a crossing” in P0 as picking (with
existential quantifiers in ψk) a pair r′

1, r
′′
1 ∈ V (G0) \ V (G) of auxiliary vertices such that not

both r′
1 and r′′

1 are from edges of H, and identifying r′
1 = r′′

1 . Let P0[r′
1 = r′′

1 ] denote the
graph after such an identification. Note that since we do not identify auxiliary pairs from
two edges of H, the following holds – if Ḡ0 is a framing of P0, then Ḡ0[r′

1 = r′′
1 ] is a graph

isomorphic to the corresponding framing of P0[r′
1 = r′′

1 ].
We let G′ = Ḡ0 be a framing of P0 = (G0,H0). Let r′ = (r′

i : i ∈ [k]) and r′′ = (r′′
i : i ∈

[k]) be two k-tuples of vertex variables (which are used to specify the k identifications of
vertex pairs in P0[r′ = r′′]). We write the desired formula as

ψk ≡ ∃ r′, r′′
( ∧

r,s∈r′∪r′′
r ̸= s ∧

∧
i∈[k]

χ(r′
i, r

′′
i ) ∧ ψ′

k[r′, r′′]
)
,



T. Hamm and P. Hliněný 46:13

where χ(r′
i, r

′′
i ) checks that r′

i, r
′′
i are auxiliary vertices and not both coming from edges

of H (using precomputed labels of the auxiliary vertices). The formula ψ′
k[r′, r′′] then tests

whether the partially drawn graph P0[r′ = r′′] admits a planar drawing extending H0. This
is a technical task based on Lemmas 3.4 and 3.6, and we leave full details for the preprint
paper. ◀

Finally, we summarise how Theorem 1.1 follows from the previous claims. Given a
partially drawn graph (G,H) and an integer k > 0, we first make H planarised. Then, using
Theorem 3.1, we either conclude that pd-cr(G,H) > k, or we iteratively reduce the input
to an equivalent instance (G′,H′) with the same solution value k. Moreover, using also
Lemma 3.3, we have that the tree-width of any framing Ḡ′ of (G′,H′) is bounded in terms
of k. We can hence efficiently decide whether pd-cr(G′,H′) ≤ k using Courcelle’s theorem
applied with the formula ψk from Lemma 3.7 to a framing Ḡ′ of (G′,H′).

(*) We can also observe that the FPTruntime of this procedure is O(f(k) · |V (G)|3).

4 Restricting crossings per edge

Next we outline some nice consequences of our techniques for previously considered drawing
extension settings. Firstly, we are able to trivially modify our FPT-algorithm for Partially
Predrawn Crossing Number by additionally encoding the fact that in a solution every
edge in E(G) \ E(H) has at most c crossings by introducing k auxiliary vertices for each
edge in E(H), but only min{c, k} auxiliary vertices for each edge in E(G) \ E(H) in the
proof of Lemma 3.7. This immediately gives us Theorem 1.3 restated from above.

▶ Theorem 1.3. Partially Predrawn c-Planar Crossing Number is in FPT when
parameterised by the solution value (i.e., by the number of crossings which are not predrawn).

Another closely related problem that has been considered in literature asks for the smallest
number of non-predrawn crossings in a simple drawing that coincides with the given partially
drawn graph, in which each edge in E(G) \ E(H) has at most c crossings. I.e., compared to
Partially Predrawn c-Planar Crossing Number we only allow drawings in which
no pair of edges crosses more than once (crossings between adjacent edges can always be
avoided). The difficulty for our approach here is that we need to record the information of
which edges in H× correspond to the same edge in the non-planarised predrawn skeleton H

(this part can be handled by an MSO2-formula with help of special edge labels, cf. [15]), and
more importantly to keep this information, even during our iterative reduction of G and H×

described in Section 3.1. The latter seems to be a deep problem, not easy to overcome and a
good direction for continuing research.

Nevertheless, using the more restrictive parameterisation by |E(G) \ E(H)| + c (which
also naturally bounds the crossing number), we are able to give an improvement on the best
known result in [15]: finding the least number of crossings in a simple drawing which coincides
with the given partial drawing and in which each edge outside of the predrawn skeleton has
at most c crossings in FPT-time. The known result assumes that the planarised predrawn
skeleton is connected, an assumption that we can easily drop using our MSO2-encoding in
combination with a crucial structural lemma which we adapt from [15] to “stitch” together
relevant edges in H× that correspond to the same edge in H. This improvement over [15]
results in Theorem 1.4 stated in the Introduction.

SoCG 2022



46:14 Parameterised Partially-Predrawn Crossing Number

5 Conclusion

To summarise, we have shown that some algorithmic results for the classical crossing-number
can be extended to the partially predrawn setting, similarly to the respective planarity
question [1]. However, what can we say about structural properties of the partially predrawn
crossing number?

For instance, what can we say about the minimal graphs of a certain crossing-number
value? We call a partially drawn graph P = (G,H) k-crossing-critical if the partially
predrawn crossing number of P is at least k, but this crossing number drops down below
k after deleting any edge, predrawn or not, from P (alternatively, one may also include
removing any edge from H while keeping it in G to the definition). We have recently gotten
a complete rough asymptotical characterisation of classical k-crossing-critical graphs [11],
but here we see an important difference in behaviour. For classical k-crossing-critical graphs,
optimal drawings (i.e. those achieving the minimum number of crossings) can never contain
a collection of edge-disjoint cycles drawn nested in each other and of size arbitrarily large
compared to k (this is implicit in [18] or [11]). In contrast to that, we provide:

▶ Proposition 5.1.* For each k ≥ 8 and m > 0, there exists a partially drawn graph
P = (G,H) such that P is k-crossing-critical and that an optimal (with minimum crossings)
drawing of P extending H contains at least m vertex-disjoint nested cycles from G− E(H).

Consequently, even a rough characterisation of partially drawn k-crossing-critical graphs
is a widely open question worth further investigation. Unfortunately, already at the starting
point of this track we lack a good analogue of the result [26], saying that a k-crossing-critical
graph has its crossing number bounded in terms of k, whose proof simply breaks down in the
partially predrawn setting. Having a result like [26] in the predrawn setting we could, as a
first step, adapt the arguments from Section 3 to prove that partially drawn k-crossing-critical
graphs have treewidth bounded in terms of k.

References
1 Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio

Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM Trans.
Algorithms, 11(4), April 2015. doi:10.1145/2629341.

2 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.

3 Sergio Cabello. Hardness of approximation for crossing number. Discrete Comput. Geom.,
49(2):348–358, March 2013.

4 Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput., 42(5):1803–1829, January 2013.

5 Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian
Sikora. On the complexity of solution extension of optimization problems. Theoretical Computer
Science, 2021. doi:10.1016/j.tcs.2021.10.017.

6 Markus Chimani and Petr Hliněný. Inserting multiple edges into a planar graph. In SoCG,
volume 51 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

7 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

https://doi.org/10.1145/2629341
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/j.tcs.2021.10.017
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3


T. Hamm and P. Hliněný 46:15

9 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

10 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

11 Zdenek Dvořák, Petr Hliněný, and Bojan Mohar. Structure and generation of crossing-critical
graphs. In SoCG, volume 99 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

12 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
nearly complete 1-planar drawings in polynomial time. In Javier Esparza and Daniel Král’,
editors, MFCS 2020, volume 170 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.31.

13 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
partial 1-planar drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
ICALP 2020, volume 168 of LIPIcs, pages 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.43.

14 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. Journal of Computer and System
Sciences, 121:57–75, 2021. doi:10.1016/j.jcss.2021.04.005.

15 Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-
optimal extension of simple drawings. In Nikhil Bansal, Emanuela Merelli, and James Worrell,
editors, ICALP 2021, volume 198 of LIPIcs, pages 72:1–72:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.72.

16 Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM J. Algebr.
Discrete Methods, 4(3):312–316, September 1983.

17 Martin Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.,
68(2):285–302, 2004. doi:10.1016/j.jcss.2003.07.008.

18 César Hernández-Vélez, Gelasio Salazar, and Robin Thomas. Nested cycles in large triangula-
tions and crossing-critical graphs. J. Comb. Theory, Ser. B, 102(1):86–92, 2012.

19 Petr Hliněný. Crossing number is hard for cubic graphs. Journal of Comb. Theory, Ser. B,
96(4):455–471, 2006. doi:10.1016/j.jctb.2005.09.009.

20 John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, October
1974. doi:10.1145/321850.321852.

21 Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-type theorem for planarity
of partially embedded graphs. Computational Geometry, 46(4):466–492, 2013. SoCG 2011.
doi:10.1016/j.comgeo.2012.07.005.

22 Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in linear time. In
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07,
pages 382–390. Association for Computing Machinery, 2007. doi:10.1145/1250790.1250848.

23 Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment and the mental
map. Journal of Visual Languages and Computing, 6(2):183–210, 1995. doi:10.1006/jvlc.
1995.1010.

24 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series in the
mathematical sciences. Johns Hopkins University Press, 2001.

25 Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Crossing numbers of graphs
with rotation systems. Algorithmica, 60(3):679–702, 2011.

26 Robert B. Richter and Carsten Thomassen. Minimal graphs with crossing number at least k.
J. Comb. Theory, Ser. B, 58(2):217–224, 1993.

27 Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570–
590, 1937.

28 Shih Wei-Kuan and Hsu Wen-Lian. A new planarity test. Theoretical Computer Science,
223(1):179–191, 1999. doi:10.1016/S0304-3975(98)00120-0.

SoCG 2022

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPIcs.MFCS.2020.31
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.4230/LIPIcs.ICALP.2021.72
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1016/j.jctb.2005.09.009
https://doi.org/10.1145/321850.321852
https://doi.org/10.1016/j.comgeo.2012.07.005
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1016/S0304-3975(98)00120-0




Approximation Algorithms for Maximum Matchings
in Geometric Intersection Graphs
Sariel Har-Peled #

Department of Computer Science, University of Illinois,
201 N. Goodwin Avenue, Urbana, IL 61801, USA

Everett Yang #

Department of Computer Science, University of Illinois,
201 N. Goodwin Avenue, Urbana, IL 61801, USA

Abstract
We present a (1−ε)-approximation algorithms for maximum cardinality matchings in disk intersection
graphs – all with near linear running time. We also present an estimation algorithm that returns
(1 ± ε)-approximation to the size of such matchings – this algorithm runs in linear time for unit
disks, and O(n log n) for general disks (as long as the density is relatively small).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Matchings, disk intersection graphs, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.47

Related Version Full Version: https://arxiv.org/abs/2201.01849

Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF award
CCF-1907400.

Acknowledgements The authors thank the anonymous referees for their detailed comments.

1 Introduction

Geometric intersection graphs

Given a set of n objects U, its intersection graph, IU, is the graph where the vertices
correspond to objects in U and there is an edge between two vertices if their corresponding
objects intersect. Such graphs can be dense (i.e., have Θ(n2) edges), but they have a linear
size representation. It is natural to ask if one can solve problems on such graphs more
efficiently than explicitly represented graphs.

Maximum matchings

Computing maximum cardinality matchings is one of the classical problems on graphs
(surprisingly, the algorithm to solve the bipartite case goes back to work by Jacobi in the mid
19th century). The fastest combinatorial algorithm (ignoring polylog factors) seems to be the
work by Gabow and Tarjan [7], running in O(m

√
n) time where m is the number of edges in

the graph. Harvey [11] and Mucha and Sankowski [15] provided algorithms based on algebraic
approach that runs in O(nω) time, where O(nω) is the fastest time known for multiplying
two n× n matrices. Currently, the fastest known algorithm for matrix multiplication has
ω ≈ 2.3728596, but it is far from being practical.

© Sariel Har-Peled and Everett Yang;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 47; pp. 47:1–47:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sariel@illinois.edu
https://orcid.org/0000-0003-2638-9635
mailto:esyang@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.47
https://arxiv.org/abs/2201.01849
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


47:2 Approximation Algorithms for Max Matchings in Geometric Intersection Graphs

Matchings for planar graphs and disk intersection graphs

Mucha and Sankowski [16] adapted their algebraic technique for planar graphs (specifically
using separators), getting running time O(nω/2) ≈ O(n1.17). Yuster and Zwick [17] adapted
this algorithm for graphs with excluded minors.

Maximum matchings in geometric intersection graphs

Bonnet et al. [3] studied the problem for geometric intersection graphs. For simplicity of
exposition, we describe their results in the context of disk intersection graphs. Given a set n
disks with maximum density ρ (i.e., roughly the maximum number of disks covering a point
in the plane), they presented an algorithm for computing maximum matchings with running
time O(ρ3ω/2nω/2) ≈ O(ρ3.5n1.17). This compares favorably with the naive algorithm of just
plugging such graphs into the algorithm of Gabow and Tarjan, which yields running time
O(m

√
n) = O(ρn3/2). If the ratio between the smallest disk and largest disk is at most Φ,

they presented an algorithm with running time O(Φ12ωnω/2). Note that the running time of
all these algorithms is super linear in n.

Approximate maximum matchings

It is well known that it is enough to augment along paths of length up to O(1/ε) if one wants
(1 − ε)-approximate matchings. For bipartite graphs this implies that one need to run O(1/ε)
rounds of paths finding stage of the bipartite matching algorithm of Hopcroft and Karp [12].
Since such a round takes O(m) time, this readily leads to an (1 − ε)-approximate bipartite
matching algorithm in this case. The non-bipartite case is significantly more complicated,
and the weighted case is even more difficult. Nevertheless, Duan and Pettie [5] presented an
algorithm with running time O(mε−1 log ε−1) which provides (1 − ε)-approximation to the
maximum weight matching in non-bipartite graph.

Density and approximate matchings

For a set of objects U in Rd, the density of an object is the number of bigger objects in
the set intersecting it. The density of the set of objects is the maximum density of the
objects. The density is denoted by ρ, and the premise is that for real world inputs it would
be small. The intersection graph of such objects when ρ is a constant are known as low
density graphs, have some nice properties, such as having separators. See [9] and references
therein. In particular, for a set of fat objects, the density and the maximum depth (i.e., the
maximum number of object covering any point) are roughly the same. It is well known that
low density graphs are sparse and have O(ρn) edges, where n is the number of objects in
the set. Since one can compute the intersection graph in O(n log n+ ρn) time, and plug it
into the algorithm of Duan and Pettie [5], it follows that an approximation algorithm with
running time O

(
n log n+ (ρn/ε) log(1/ε)

)
. See Section 4.2 for details. Thus, the challenge is

to get better running times than this baseline.

1.1 Our results
Our purpose here is to develop near linear time algorithms for approximate matchings for
the unit disk graph and the general disk graph cases. Our results are summarized in Table 1.
Note, in this paper, we assume the input to our algorithms to be a set of disks.



S. Har-Peled and E. Yang 47:3

1. Unit disk graph.
a. Greedy matching. We show in Section 3.1 a linear time algorithm for the case of unit

disks graph – this readily provides a 1/2-approximation to the maximum matching.
The algorithm uses a simple grid to “capture’ intersections, and then use the locality
of the grid to find intersection with the remaining set of disks.

b. (1 − ε)-approximation. In Section 3.2 we show how to get a (1 − ε)-approximation. The
running time can be bounded by O

(
(n/ε2) log(1/ε)

)
. If the diameter of union of disks

is at most ∆, then the running time is O
(
n+ (∆2/ε2) log(1/ε)

)
.

c. (1 − ε)-estimation. Surprisingly, one can do even better – we show in Section 3.3 how
to use importance sampling to get (1 ± ε)-approximation (in expectation) to the size
of the maximum matching in time O(n+ poly(log n, 1/ε)).

2. Disk graph. The general disk graph case is more challenging.
a. Greedy matching. The greedy matching algorithm can be implemented in O(n log n)

time using sweeping, see Lemma 15 (this algorithm works for any nicely behaved
shapes).

b. Approximate bipartite case. Here, we are given two sets of disks, and consider only
intersections across the sets as edges. This case can be solved using range searching
data-structures as was done by Efrat et al. [6] – they showed how to implement a round
of the bipartite matching algorithm of Hopcroft and Karp [12] using O(n) queries. It is
folklore that running O(1/ε) rounds of this algorithm leads to a (1 − ε)-approximation
algorithm. Coupling this with the data-structure of Kaplan et al. [13] readily leads to
a near linear approximation algorithm in this case, see Section 4.3.

c. (1 − ε)-approximation algorithm. Surprisingly, approximate general matchings can be
reduced to bipartite matchings via random coloring. Specifically, one can compute
(1 − ε)-approximate matchings using 2O(1/ε) log n invocations of approximate bipartite
matchings algorithm mentioned above. This rather neat idea is due to Lotker et al.
[14] who used in the context of parallel matching algorithms. This leads to a near linear
time algorithm for (1 − ε)-approximate matchings for disk intersection graphs, see
Section 4.4 for details. The running time of the resulting algorithm is 2O(1/ε)n logO(1) n.
We emphasize that this algorithm assumes nothing about the density of the input
disks.

d. (1 − ε)-estimation. One can get an O(n log n) time estimation algorithm in this case,
but one needs to assume that the input disks have “small” density ρ. Specifically, one
computes a separator hierarchy and then use importance sampling on the patches, as
to estimate the sampling size. The details require some care, see Section 4.6. The
resulting algorithm has running time O(n log n) if the density is o(n1/9).

3. General shapes. Somewhat surprisingly, almost all our results extends in a verbatim
fashion to intersection graphs of general shapes. We need some standard assumptions
about the shapes:
a. the boundary of any pair of shapes intersects only a constant number of times,
b. these intersections can be computed in constant time,
c. one can compute the x-extreme and y-extreme points in a shape in constant time,
d. one can decide in constant time if a point is inside a shape, and
e. the boundary of a shape intersects any line a constant number of times, and they can

be computed in constant time.
For fat shapes of similar size, we also assume the diameters of all the shapes are the same
up to a constant factor, and any object o contains a disk of radius Ω(diam(o)).

SoCG 2022



47:4 Approximation Algorithms for Max Matchings in Geometric Intersection Graphs

Table 1 Results. The (⋆) indicates the result works only for disks.

Shape Quality Running time Ref Comment

Unit disks
Fat shapes of
similar size

1/2 O(n) Lemma 9 Greedy

1 − ε
O

(
n
ε

log 1
ε

)
Lemma 11

O
(
n + (∆2/ε2) log 1

ε

)
Remark 12 ∆ = Diam. disks

1 ± ε O(n + ε−6 log2 n) Theorem 14 Estimation

Unit disks 1 − ε O
(

n
ε

log 1
ε

)
Lemma 11 Approximate

Disks 1 − ε O
(
(n/ε) log11 n

)
Lemma 18 (⋆) Bipartite

1 − ε O(2O(1/ε)n log12 n) Theorem 20 (⋆) General

Shapes

1/2 O(n log n) Lemma 15 Greedy
1 − ε O(n log n + m

ε
log 1

ε
) Lemma 16 m : # edges

1 − ε O(n log n + nρ
ε

log 1
ε
) Lemma 17 ρ: Density

Exact O(n log n) Lemma 23 Matching size
O(n1/8)

1 ± ε O(n log n + ρ9ε−19 log2 n) Theorem 28 Estimation

Since the modification needed to make the algorithms work for the more general cases
are straightforward, we describe the algorithms for disks.

The full version of the paper is available on the [10] and includes all missing
details/proofs.

2 Preliminaries

2.1 Notations
For a graph G, let M⋆

G denote the maximum cardinality matching in G. Its size is denoted
by m⋆ = m⋆(G) = |M⋆

G|. For a graph G = (V,E), and a set X ⊆ V the induced subgraph
of G over X is G|X =

(
X, {uv ∈ E | u, v ∈ X}

)
. For a set Z, let G − Z denote the graph

resulting from G after deleting from it all the vertices of Z. Formally, G− Z is the graph
G|V\Z .

▶ Definition 1. For a set of objects U, the intersection graph of U, denoted by IU, is the
graph having U as its set of vertices, and there is an edge between two objects o, g ∈ U if they
intersect. Formally,

IU =
(
U,

{
og

∣∣ o, g ∈ U and o ∩ g ̸= ∅
})
.

For a point p ∈ R2, and a set of disks D, let

D ⊓ p = {# ∈ D | p ∈ #}

be the set of disks of D that contain p. Note, that the intersection graph Ip = ID∩p is a
clique.

▶ Definition 2. Consider a set of disks D. A set D′ ⊆ D is an independent set (or simply
independent) if no pair of disks of D′ intersects.



S. Har-Peled and E. Yang 47:5

2.2 Low density and separators
The following is standard by now, see Har-Peled and Quanrud [9] and references therein.

▶ Definition 3. A set of objects U in Rd (not necessarily convex or connected) has density
ρ if any object o (not necessarily in U) intersects at most ρ objects in U with diameter equal
or larger than the diameter of o. The minimum such quantity is denoted by density(U). A
graph that can be realized as the intersection graph of a set of objects U in Rd with density ρ
is ρ-dense. The set U is low density if ρ = O(1).

▶ Definition 4. Let G = (V,E) be an undirected graph. Two sets X,Y ⊆ V are separate in
G if
1. X and Y are disjoint, and
2. there is no edge between the vertices of X and the vertices of Y in G.
For a constant ζ ∈ (0, 1), a set Z ⊆ V is a ζ-separator for a set U ⊆ V, if U \ Z can be
partitioned into two separate sets X and Y , with |X| ≤ ζ |U | and |Y | ≤ ζ |U | .

▶ Lemma 5 ([9]). Let U be a set of n objects in Rd with density ρ. One can compute, in
expected linear time, a sphere S that intersects in expectation τ = O

(
ρ+ ρ1/dn1−1/d

)
objects

of U. The sphere is computed by picking uniformly its radius from some range of the form
[α, 2α]. Furthermore, the total number of objects of U strictly inside/outside S is at most
ζn, where ζ is a constant that depends only on d. Namely, the intersection graph IU has a
separator of size τ formed by all the objects of U intersecting S.

2.3 Importance sampling
Importance sampling is a standard technique for estimating a sum of terms. Assume that for
each term in the summation, one can quickly get a coarse estimate of its value. Furthermore,
assume that better estimates are possible but expensive. Importance sampling shows how to
sample terms in the summation, then acquire a better estimate only for the sampled terms, to
get a good estimate for the full summation. In particular, the number of samples is bounded
independently of the original number of terms, depending instead on the coarseness of the
initial estimates, the probability of success, and the quality of the final output estimate.

▶ Lemma 6 ([2]). Let (H1, w1, e1), . . . , (Hr, wr, er) be given, where Hi’s are some structures,
and wi and ei are numbers, for i = 1, . . . , r. Every structure Hi has an associated weight
w(Hi) ≥ 0 (the exact value of w(Hi) is not given to us). In addition, let ξ > 0, γ, b, and M
be parameters, such that:
1. ∀i wi, ei ≥ 1,
2. ∀i ei/b ≤ w(Hi) ≤ eib, and
3. Γ =

∑
i wi · w(Hi) ≤ M .

Then, one can compute a new sequence of triples (H′
1, w

′
1, e

′
1), . . . , (H′

t, w
′
t, e

′
t), that also com-

plies with the above conditions, such that the estimate Y =
∑t

i=1 w
′
iw(H′

i) is a multiplicative
(1 ± ξ)-approximation to Γ, with probability ≥ 1 − γ. The running time of the algorithm is
O(r), and size of the output sequence is t = O

(
b4ξ−2(log logM + log γ−1) logM

)
.

▶ Remark 7.
(A) The algorithm of Lemma 6 does not use the entities Hi directly at all. In particular,

the H′
is are just (reweighed) copies of some original structures. The only thing that the

above lemma uses is the estimates e1, . . . , er and the weights w1, . . . , wr.
(B) We are going to use Lemma 6, with ξ = O(ε), γ = 1/nO(1), b = 2, and M = n. As such,

the size of the output list is Llen = O(ε−2 log2 n)

SoCG 2022



47:6 Approximation Algorithms for Max Matchings in Geometric Intersection Graphs

2.4 Background on matchings

For a graph G, a matching is a set C ⊆ E(G) of edges, such that no pair of them not share an
endpoint. A matching that has the largest cardinality possible for a graph G, is a maximum
matching. Given a graph G and a matching C on G, an alternating path is a path with
edges that alternate between matched edges (i.e., edges that are in C) and unmatched edges
(i.e., edges in E(G) \ C). If both endpoints of an alternating path are unmatched (i.e., free),
then it is an augmenting path. In the following, let M⋆ denote a maximum cardinality
matching in G, and let m⋆ = m⋆(G) = |M⋆| denote its size. For β ∈ [0, 1], a matching
B ⊆ E(G) is an β-matching (or β-approximate matching) if |B| ≥ βm⋆. The set of vertices
covered by the matching B is denoted by V(B) =

⋃
uv∈B

{u, v}.

The length of a path is the number of its edges.
The following claim is well known, see [10].

▶ Lemma 8. For any ε ∈ (0, 1), if |C| < (1 − ε)|M⋆|, then there are at least (ε/2)|M⋆|
disjoint augmenting paths of C, each of length at most 4/ε.

3 Approximate matchings for unit disk graph

3.1 Greedy maximal matching

In a graph G, the greedy maximal matching can be computed by repeatedly picking an edge
of G, adding it to the matching,and removing the two vertices of the edges from G. We
do this repeatedly until no edges remain. The resulting greedy matching is a maximal
matching, and every maximal matching is a 1/2-approximation to the maximum matching.
To avoid the maximum/maximal confusion, we refer to such a matching as a greedy matching.

▶ Lemma 9. Let D be a set of n unit disks in the plane, where a unit disk has radius one.
One can compute, in O(n) time, a (1/2)-approximate matching for ID, where ID is the
intersection graph of the disks of D.

Proof. For every disk, compute all the integral grid points that it covers. Every disk covers
at least one, and at most five grid points. We use hashing to compute for every grid point
the disks that covers it. These lists can be computed in O(n) time overall. Next, for every
grid point that stores more than one disk, scan it, and break it into pairs, where every pair
is reported as a matching edge, and the two disks involved are removed.

By the end of this process, we computed a partial matching C, and we have a set D′ of
leftover disks that are not matched yet. The disks of D′ cover every integral grid point at
most once. Using the hash table one can look for intersections – for every grid point that is
active (i.e., has one disk of D′ covering it), the algorithm lookup in the hash table any disk
that covers any of the 8 neighboring grid points. Each such neighboring point offers one disk
that might intersect the current disk. If we find an intersecting pair, the algorithm outputs
it (removing the two disks involved). This requires O(1) time per active grid point, and
linear time overall. At the end of this process, all the remaining disks are disjoint, implying
that the computed matching is maximal and thus a (1/2)-approximation to the maximum
matching. ◀



S. Har-Peled and E. Yang 47:7

Figure 1 A tower can interact with at most 48 other towers.

3.2 (1 − ε)-approximation
▶ Lemma 10. Let D be a set of n unit disks, and let ε ∈ (0, 1) be a parameter. Then,
one can compute, in O

(
(n/ε2) log(1/ε)

)
time, an (1 − ε)-matching in ID, where ID is the

intersection graph of D.
If the diameter of ∪D is ∆, then the running time is O

(
n+ (∆2/ε3) log(1/ε)

)
.

Proof. Using a unit grid, the algorithm computes for each disk in D a grid point that it
contains, and register the disk with this point. Using hashing this can be done in O(n)
time overall. For a grid point p, let ℓ(p) be the list of disks that are registered with it. Let
p1, . . . pτ be the points with non-empty lists.

For a point pi, the graph ID∩pi is the tower of pi. Consider a maximum matching M⋆

of ID. An edge uv ∈ M⋆ is a cross edge if u and v belong to two different towers. Observe
that if there are two cross edges between two towers in a matching, then we can exchange
them by two edges internals to the two towers, preserving the size of the matching – this
observation is due to Bonnet et al. [3]. As such, we can assume that there is at most one
cross edge between any two towers in the maximum matching M⋆. In addition, any tower
can have edges only with towers in its neighborhood – specifically, two towers might have an
edge between them, if the distance between their centers is at most 4. As such, the number
of cross edges in M⋆ is at most 24τ = 48τ/2, as each tower interacts with at most 48 other
towers, see Figure 1.

If a tower has more than (say) 200/ε disks in it, then we add the greedy matching in the
tower to the output, and remove all the disks in the tower. This yields a matching of size at
least 100/ε, that destroys at most 48 additional edges from the optimal matching. Thus, it is
sufficient to compute the approximate matching in the residual graph. We repeat this process
till all the remaining towers have at most O(1/ε) disks in them. Let D′ be the remaining set
of disks – by the bounded depth, each disk intersects at most O(1/ε) other disks, and the
intersection graph of G = ID′ has |E(G)| = O(n/ε) edges, and can be computed in O(n/ε)
time. Using the algorithm of Duan and Pettie [5] on ID′ , computing a (1 − ε/2)-approximate
matching takes O(|E(G)|ε−1 log ε−1) = O(nε−2 log ε−1) time. It is straightforward to verify
that this matching, together with the greedy matching of the “tall” towers yields that desired
(1 − ε)-approximation.

As for the running for the case that the diameter ∆ is relatively small – observe that
after the cleanup step, there are at most O(∆2) towers, and each tower contains O(1/ε) disks
(each disk intersects O(1/ε) disks). As such, the residual graph has at most O(∆2/ε2) edges,
and the running time of the Duan and Pettie [5] algorithm is O

(
(∆2/ε3) log(1/ε)

)
. ◀

SoCG 2022



47:8 Approximation Algorithms for Max Matchings in Geometric Intersection Graphs

Using a reduction of Bonnet et al. [3], we can reduce the residual graph even further,
resulting in a slightly faster algorithm.

▶ Lemma 11. Let D be a set of n unit disks, and let ε ∈ (0, 1) be a parameter. One can
compute, in O

(
(n/ε) log(1/ε)

)
time, an (1 − ε)-matching in ID.

▶ Remark 12. If the set of disks of D has diameter ∆, then the cleanup stage reduces the
number of disks to O(∆2/ε). Then one can involve the algorithm of Lemma 11. The resulting
algorithm has running time O

(
n+ (∆2/ε2) log(1/ε)

)
.

▶ Remark 13. The above algorithm can be modified to work in similar time for shapes of
similar size – the only non-trivial step is computing the intersection graph H. This involves
taking all the shapes in a tower, and its neighboring towers, computing their arrangement,
and extracting the intersection pairs. If this involves ν shapes, then this takes O(ν2) time.
Each shape would be charged O(ν2/ν) amortized time, which results in O(n/ε) time, as
ν = O(1/ε). The rest of the algorithm remains the same.

3.3 Matching size estimation

▶ Theorem 14. Let D be a set of n unit disks, and let ε ∈ (0, 1) be a parameter. One can
output a number Z, such that (1 − ε)m⋆ ≤ E[Z] and P[Z < (1 + ε)m⋆] ≥ 1 − 1/nO(1), where
m⋆ is the size of the maximum matching in ID, where ID is the intersection graph of D.
The running time of the algorithm is O(n+ ε−6 log ε−1 log2 n).

Proof. We randomly shift a grid of size length ψ = ⌈32/ε⌉ over the plane, by choosing a
random point p ∈ [0, ψ]2. Formally, the (i, j)th cell in this grid is p+ (iψ, jψ) + [0, ψ]2, where
i, j are integers. For a pair of unit disks that intersect, with probability ≥ 1 − ε/2 they
both fall into the interior of a single grid cell. As such, throwing away all the disks that
intersect the boundaries of the shifted grid, the remaining set of disks D′, in expectation,
has a matching of size at least (1 − ε/8)m⋆.

For a grid cell 2 in this shifted grid, let D2 be the set of disks of D that are fully
contained in 2. A grid cell 2 is active if D2 is not empty. Let B be the set of active grid
cells. For a cell 2 ∈ B, let m⋆

2 be the size of the maximum matching in ID2 . Using the
algorithm of Lemma 9, compute in O(n) time overall, for all 2 ∈ B, a number e2 such that
m⋆

2/2 ≤ e2 ≤ m⋆
2.

The task at hand is to estimate the sum σ =
∑

2∈B m⋆
2, where σ ≤ m⋆ and E[σ] ≥

(1 − ε/8)m⋆. To this end, we use importance sampling to reduce the number of terms in
the summation of σ that need to be evaluated. Each term m⋆

2 is 1/2-approximated by e2,
and thus applying the algorithm of Lemma 6, to these approximation, with ξ = ε/32, b = 2,
M = n, and γ = 1/n10, we get that

t = O
(
b4ξ−2(log logM + log γ−1) logM

)
= O(ε−2 log2 n)

terms need to be evaluated (exactly if possible, but a (1 − ε/16)-approximation is sufficient)
to get 1 ± ε/8 estimate for σ. For each such cell, we apply the algorithm of Remark 12, to get
(1 − ε/16)-approximation. For a cell 2 this takes O

(
|D2| + (1/ε4) log(1/ε)

)
time. Summing

over all these t cells, the running time is O
(
n+ (t/ε4) log(1/ε)

)
. ◀



S. Har-Peled and E. Yang 47:9

4 Approximate maximum matching for general disks

4.1 The greedy algorithm
The following 1/2-approximation algorithm works (with the same running time) for any
simply connected shapes that are well-behaved.

▶ Lemma 15. Let D be a set of n disks in the plane. One can compute a greedy matching C
for ID in O(n log n) time. This matching C is a 1/2-approximation – that is, |C| ≥ m⋆/2,
where m⋆ is the size of the maximum cardinality matching in ID.

4.2 Approximation algorithm when the graph is sparse
▶ Lemma 16. Let D be a set of n disks in the plane such that the intersection graph ID has
m edges. For a parameter ε ∈ (0, 1), one can compute, in O

(
n log n+ (m/ε) log(1/ε)

)
time,

an (1 − ε)-matching in ID.

Proof. Computing the vertical decomposition of the arrangement A(D) can be done in
O(n log n + m) randomized time, using randomized incremental construction [4], as the
complexity of A(D) is O(n+m). This readily generates all the edges that arise out of pairs
of disks with intersecting boundaries.

The remaining edges are created by one disk being enclosed completely inside another
disk. One can perform a DFS on the dual graph of this arrangement, such that whenever
visiting a trapezoid, the traversal maintains the set of disks that contains it. This takes time
linear in the size of the arrangement, since the list of disks containing a point changes by at
most one element between two adjacent faces. Now, whenever visiting a vertical trapezoid
that on its non-empty vertical wall on the left contains an extreme right endpoint of a disk
#, the algorithm reports all the disks that contains this face, as having an edge with #.
Since every edge is generated at most O(1) times by this algorithm, it follows that its overall
running time is O(n log n+m).

Now that we computed the intersection graph, we apply the algorithm of Duan and
Pettie [5]. This takes O

(
(m/ε) log(1/ε)

)
time, and computes the desired matchings. ◀

The above is sufficient if the intersection graph is sparse, as is the case if the graph is low
density.

▶ Lemma 17. Let D be a set of n disks in the plane with density ρ. For a parameter
ε ∈ (0, 1), one can (1−ε)-approximate the maximum matching in ID in O

(
n log n+ nρ

ε log 1
ε

)
time.

Proof. The smallest disk in D intersects at most ρ other disks of D. Removing this disk
and repeating this argument, implies that ID has at most ρn edges. The result now readily
follows from Lemma 16. ◀

4.3 The bipartite case
Consider computing maximum matching when given two sets of disks D1,D2, where one
considers only intersections between disks that belong to different sets – that is the bipartite
case. Efrat et al. [6] showed how to implement one round of Hopcroft-Karp algorithm using
O(n) dynamic range searching operations on a set of disks. Using the (recent) data-structure

SoCG 2022



47:10 Approximation Algorithms for Max Matchings in Geometric Intersection Graphs

of Kaplan et al. [13], one can implement this algorithm. Each operation on the dynamic disks
data-structure takes O(log11 n) time. If our purpose is to get an (1 − ε)-approximation, we
need to run this algorithm O(1/ε) times, so that all paths of length O(1/ε) get augmented,
resulting in the following.

▶ Lemma 18. Given sets D1,D2 at most n disks in he plane, one can (1 − ε)-approximate
the maximum matching in the bipartite graph

ID1,D2 = (D1 ∪ D2, {#1#2 | #1 ∈ D1,#2 ∈ D2, and #1 ∩ #2 ̸= ∅}).

in O
(
(n/ε) log11 n

)
time. Any augmenting path for this matching has length at least 4/ε.

4.4 Approximate matching via reduction to the bipartite case

We use a reduction, due to Lotker et al. [14], of approximate general matchings to the
bipartite case.

4.4.1 The Algorithm

The input is a set D of n disks, and a parameter ε ∈ (0, 1). The algorithm maintains a
matching C in ID. Initially, this matching can be the greedy matching. Now, the algorithm
repeats the following O(cε log n) times, where cε = 28/ε:

ith iteration: Randomly color the disks of D by two colors (say 1 and 2), and let D1,D2
be the resulting partition. Remove from D1 any pair of disks #1,#2 such that #1#2
is in the current matching C. Do the same to D2. Let C′

i be edges of C that appear in
Hi = ID1,D2 . Using Lemma 18, find an (1 − ε/16)-approximate maximum matching in
Hi, and let C′′

i be this matching. Augment C with the augmenting paths in C′
i ⊕ C′′

i .

The intuition behind this algorithm is that this process would compute all the augmenting
paths of C of length (say) ≤ 4/ε, which implies that the resulting matching is the desired
approximation.

4.4.2 Analysis

▶ Lemma 19. The above algorithm outputs a matching of size ≥ (1 − ε)m⋆, with probability
≥ 1 − 1/nO(1).

4.4.3 The result

▶ Theorem 20. Let D be a set of n disks in the plane, and ε ∈ (0, 1) be a parameter. One
can compute a matching in ID of size ≥ (1 − ε)m⋆, in O(28/εn log12 n) time, where m⋆ is
the cardinality of the maximum matching in ID. The algorithm succeeds with high probability.

▶ Remark 21. Note, that the above algorithm does not work for fat shapes (even of similar
size), since the range searching data-structure of Kaplan et al. [13] can not to be used for
such shapes.



S. Har-Peled and E. Yang 47:11

4.5 Algorithm for the case the maximum matching is small
If nC = |C| is small (say, polylogarithmic), it turns out that one can compute the maximum
matching exactly in near linear time.

▶ Lemma 22. For a set X of n disks, and any constant δ ∈ (0, 1), one can preprocess X, in
O(n3+δ log n) time, such that given a query disk #, the algorithm outputs, in O(log n) time,
a pointer to a (unique) list containing all the disks intersecting the query disk.

▶ Lemma 23. Let D be a set of n disks in the plane. Then, in O(n log n) time, one can
decide if m⋆(D) = O(n1/8), and if so compute and output this maximum matching.

4.6 Estimation of matching size using separators
The input is a set D of n disks in the plane with density ρ (if the value of ρ is not given, it
can be approximated in near linear time [1]). Our purpose here is to (1 − ε)-estimate the
size of the maximum matching in D in near linear time. Since we can check (and compute
it) if the maximum matching is smaller than n1/8 by Lemma 23, in O(n log n) time, assume
that the matching is bigger than that.

4.6.1 Preliminaries
▶ Lemma 24 ([8]). Let p be a point in the plane, and let r be a random number picked
uniformly in an interval [α, 2α]. Let H be a set of interior disjoint disks in the plane. Then,
the expected number of disks of H that intersects the circle # = #(p, r), that is centered at p
and has radius r, is O(

√
|H|).

4.6.2 Algorithm idea and divisions
A natural approach to our problem is to break the input set of disks into small sets, and
then estimate the maximum matching size in each one of them. The problem is that for
this to work, we need to partition the disks participating in the optimal matching, as this
matching can be significantly smaller than the number of input disks. Since we do not
have the optimal matchings, we would use a proxy to this end – the greedy matching. The
algorithm recursively partitions it using a random cycle separator provided by Lemma 5. We
then partition the disks into three sets – inside the cycle, intersecting the cycle (i.e., the
separator), and outside the cycle. The algorithm continues this partition recursively on the
in/out sets, forming a partition hierarchy.
▶ Remark 25. For a set generated by this partition, its boundary is the set of all disks that
intersect it and are not in the set. The algorithm maintains the property that for such a set
with t disks, the number of its boundary vertices is bounded by O(ρ+

√
ρt). This can be

ensured by alternately separating for cardinality of the set, and for the cardinality of the
boundary vertices, see [9] and references therein for details. For simplicity of exposition we
assume this property holds, without going into the low level details required to ensure this.

4.6.3 The algorithm
The input is a set D of n disks in the plane with density ρ, and parameters ε ∈ (0, 1). The
algorithm computes the greedy matching, denoted by C, using Lemma 15. If this matching is
smaller than O(n1/8), then the algorithm computes the maximum matching using Lemma 23,
and returns it.

SoCG 2022



47:12 Approximation Algorithms for Max Matchings in Geometric Intersection Graphs

Otherwise, the algorithm partitions the disks of H = V(C) recursively using separators,
creating a separator hierarchy as described above. Conceptually, a subproblem here is a
region R in the plane formed by the union of some faces in an arrangement of circles (i.e., the
separators used in higher level of the recursion). Assume the algorithm has the sets of disks
H⊆R = {# ∈ H | # ⊆ R} and D⊆R = {# ∈ D | # ⊆ R} at hand. The algorithm computes a
separator of H⊆R, computes the relevant sets for the children, and continues recursively on
the children. Thus, for a node u in this recursion tree, there is a corresponding region R(u),
a set of active disks Hu = H⊆R(u), and Du = D⊆R(u).

The recursion stops the construction in node u if |Hu| ≤ b, where

b = c3ρ/ε
2,

and c3 is some sufficiently large constant. This implies that this recursion tree has U =
O(m⋆/b) leafs.

If a disk of D intersects some separator cycles then it is added to the set of “lost” disks L.
The hierarchy maps every disk of D \ L to a leaf. As such, for every leaf u of the separator
tree, there is an associated set Du of disks stored there. All these leaf sets, together with L,
form a disjoint partition of D.

The algorithm now computes for every leaf set a greedy matching, using Lemma 15. Let ev

be the size of this matching. Let Ξ be the set of all leaf nodes. The algorithm next (1 ± ε/4)-
estimates

∑
v∈Ξ m⋆(Dv), using importance sampling, with the estimates ev ≤ m⋆(Dv) ≤ 2ev,

for all v. Using, Lemma 6, this requires computing (1−ε/8)-approximate maximum matching
for

t = O
(
24ε−2(log log n+ log n) log n

)
= O(ε−2 log2 n)

leafs, this is done using the algorithm of Lemma 23 if the maximum matching is small
compared to the number of disks in this subproblem, and the algorithm of Lemma 17
otherwise. The algorithm now returns the estimate returned by the algorithm of Lemma 6.

4.6.4 Analysis
▶ Lemma 26. We have E

[∑
v∈L m⋆(Dv)

]
≥ (1 − ε/4)m⋆(D).

▶ Lemma 27. The running time of the above algorithm is O(n log n+ ρ9ε−19 log2 n).

▶ Theorem 28. Given a set D of n disks in the plane with density ρ, and a parameter
ε ∈ (0, 1), one can compute in O(n log n + ρ9ε−19 log2 n) time, a number Z, such that
(1 − ε)m⋆ ≤ E[Z] and P[Z > (1 + ε)m⋆] < 1/nO(1), where m⋆ = m⋆(D) is the size of the
maximum matching in ID.

References
1 Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM

J. Comput., 38(3):899–921, 2008. doi:10.1137/060669474.
2 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,

and Makrand Sinha. Edge estimation with independent set oracles. ACM Trans. Algo., 16(4),
September 2020. doi:10.1145/3404867.

3 Édouard Bonnet, Sergio Cabello, and Wolfgang Mulzer. Maximum matchings in geometric
intersection graphs. In Christophe Paul and Markus Bläser, editors, Proc. 37th Internat.
Sympos. Theoret. Asp. Comp. Sci. (STACS), volume 154 of LIPIcs, pages 31:1–31:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.31.

https://doi.org/10.1137/060669474
https://doi.org/10.1145/3404867
https://doi.org/10.4230/LIPIcs.STACS.2020.31


S. Har-Peled and E. Yang 47:13

4 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, Santa Clara, CA, USA, 3rd edition, 2008.
doi:10.1007/978-3-540-77974-2.

5 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1), January 2014. doi:10.1145/2529989.

6 Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001. doi:10.1007/s00453-001-0016-8.

7 Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-
matching problems. J. Assoc. Comput. Mach., 38(4):815–853, 1991. doi:10.1145/115234.
115366.

8 Sariel Har-Peled. A simple proof of the existence of a planar separator. ArXiv e-prints, April
2013. arXiv:1105.0103.

9 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion and
low-density graphs. SIAM J. Comput., 46(6):1712–1744, 2017. doi:10.1137/16M1079336.

10 Sariel Har-Peled and Everett Yang. Approximation algorithms for maximum matchings in
geometric intersection graphs. CoRR, abs/2201.01849, 2022. arXiv:2201.01849.

11 Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid problems. SIAM J.
Comput., 39(2):679–702, 2009. doi:10.1137/070684008.

12 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

13 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discrete Comput. Geom., 64(3):838–904, September 2020. doi:10.1007/s00454-020-00243-7.

14 Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate matching.
J. Assoc. Comput. Mach., 62(5):38:1–38:17, 2015. doi:10.1145/2786753.

15 Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In Proc.
45th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 248–255. IEEE Computer
Society, 2004. doi:10.1109/FOCS.2004.40.

16 Marcin Mucha and Piotr Sankowski. Maximum matchings in planar graphs via Gaussian
elimination. Algorithmica, 45(1):3–20, 2006. doi:10.1007/s00453-005-1187-5.

17 Raphael Yuster and Uri Zwick. Maximum matching in graphs with an excluded minor. In
Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proc. 18th ACM-SIAM Sympos. Discrete
Algs. (SODA), pages 108–117. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=
1283383.1283396.

SoCG 2022

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1145/2529989
https://doi.org/10.1007/s00453-001-0016-8
https://doi.org/10.1145/115234.115366
https://doi.org/10.1145/115234.115366
http://arxiv.org/abs/1105.0103
https://doi.org/10.1137/16M1079336
http://arxiv.org/abs/2201.01849
https://doi.org/10.1137/070684008
https://doi.org/10.1137/0202019
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1145/2786753
https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1007/s00453-005-1187-5
http://dl.acm.org/citation.cfm?id=1283383.1283396
http://dl.acm.org/citation.cfm?id=1283383.1283396




The Complexity of the Hausdorff Distance
Paul Jungeblut #

Karlsruhe Institute of Technology, Germany

Linda Kleist #

Technische Universität Braunschweig, Germany

Tillmann Miltzow #

Utrecht University, The Netherlands

Abstract
We investigate the computational complexity of computing the Hausdorff distance. Specifically,
we show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets
is bounded by a given threshold is complete for the complexity class ∀∃<R. This implies that the
problem is NP-, co-NP-, ∃R- and ∀R-hard.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Hausdorff Distance, Semi-Algebraic Set, Existential Theory of the Reals,
Universal Existential Theory of the Reals, Complexity Theory

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.48

Related Version Full Version: https://arxiv.org/abs/2112.04343

Funding Linda Kleist: Partially supported by a postdoc fellowship of the German Academic
Exchange Service (DAAD).
Tillmann Miltzow: Generously supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 016.Veni.192.250.

1 Introduction

The question of “how similar are two given objects” occurs in numerous settings. One
typical tool to quantify their similarity is the Hausdorff distance. Two sets have a small
Hausdorff distance if every point of one set is close to some point of the other set and vice
versa. As a matter of fact, the Hausdorff distance appears in many branches of science. To
illustrate the range of use cases, we consider two examples, for illustrations see Figure 1.
In mathematics, the Hausdorff distance provides a metric on sets and henceforth also a
topology. This topology can be used to discuss continuous transformations of one set to
another [17]. In computer vision and geographical information science, the Hausdorff distance
is used to measure the similarity between spacial objects [37, 45], for example the quality
of quadrangulations of complex 3D models [52]. In this paper, we study the computational
complexity of the Hausdorff distance from a theoretical perspective.

Figure 1 Left: Continuous deformation of a cup into a doughnut [22]. Right: Quadrangulation of
a smooth surface used for rendering [52].

© Paul Jungeblut, Linda Kleist, and Tillmann Miltzow;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 48; pp. 48:1–48:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paul.jungeblut@kit.edu
https://orcid.org/0000-0001-8241-2102
mailto:kleist@ibr.cs.tu-bs.de
https://orcid.org/0000-0002-3786-916X
mailto:t.miltzow@uu.nl
https://orcid.org/0000-0003-4563-2864
https://doi.org/10.4230/LIPIcs.SoCG.2022.48
https://arxiv.org/abs/2112.04343
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


48:2 The Complexity of the Hausdorff Distance

A1
B1

B2
A2

A3

B3

Figure 2 How similar are these sets?

Definition. The directed Hausdorff distance between a non-empty set A ⊆ Rn and a
non-empty set B ⊆ Rn is defined as

d⃗H(A,B) := sup
a∈A

inf
b∈B

∥a− b∥.

The directed Hausdorff distance between A and B can be interpreted as the smallest value
ε ≥ 0 such that the (closed) ε-neighborhood of B contains A. Hence, it nicely captures the
intuition of how much B has to be blown up to contain A. Note that d⃗H(A,B) and d⃗H(B,A)
do not need to be equal, consider Figure 2: While A ⊂ B and thus d⃗H(A,B) = 0, it holds
that d⃗H(B,A) > 0. The (undirected) Hausdorff distance is symmetric and defined as

dH(A,B) := max
{
d⃗H(A,B), d⃗H(B,A)

}
.

In this paper, we investigate the computational complexity of deciding whether the Hausdorff
distance of two sets is at most a given threshold.

Semi-algebraic sets. The algorithmic complexity of computing the Hausdorff distance
clearly depends on the type of their underlying sets. If we are given the sets in a way that we
cannot even decide if they are empty, it seems near impossible to compute their Hausdorff
distance. However, if the sets consists of finitely many points, their Hausdorff distance can
easily be computed by checking all pairs of points. In practice, we are often somewhere
between those two extreme situations. For instance, the sets could be a collection of disks in
the plane or cubic splines, describing a surface in three dimensions, see also Figure 3.

Figure 3 The Hausdorff distance can appear in simpler or more complicated settings. Left: Two
finite point sets (black and white) in the plane. Middle: Two sets of blue and red disks in the plane.
Right: Two surfaces in 3-space with different meshes, image taken from [52].

In this paper, we focus on semi-algebraic sets defined over the ring of integers, i.e., sets
that can be described by polynomial inequalities with integer coefficients. For simplicity, we
just write semi-algebraic set, and silently assume all coefficients of defining polynomials are
integers. Formally, a semi-algebraic set is the finite union of basic semi-algebraic sets. A



P. Jungeblut, L. Kleist, and T. Miltzow 48:3

basic semi-algebraic set S is specified by two families of polynomials P and Q with integer
coefficients such that

S =
{
x∈Rn

∣∣ ∧
P ∈P

P (x) ≤ 0 ∧
∧

Q∈Q
Q(x) < 0

}
.

Semi-algebraic sets cover clearly the vast majority of practical cases. Simultaneously, one
deals with polynomials even in supposedly simple cases, i.e., when considering cubic splines.

Concrete example. The following example was made up on the spot by Bernd Sturmfels at
a workshop in Saarbrücken in 2019. The two polynomials

f(x, y) := x4 + y4 + 12x3 + 2y3 − 3xy + 11
g(x, y) := 7x4 + 8y4 − 1

define the sets A = {(x, y) ∈ R2 | f(x, y) = 0} and B = {(x, y) ∈ R2 | g(x, y) = 0}. For an
illustration of A and B, consider the blue and green curve in Figure 4, respectively.

a2

A
a1

b2 b1

B

Figure 4 The Hausdorff distance between the compact semi-algebraic sets (in blue and green) is
attained at points (a2, b2) such that the segment a2b2 is orthogonal to the tangents at a2 and b2.
While the segment a1b1 is longer than a2b2, the pair (a1, b1) does not realize the Hausdorff distance
because the segment a1b1 crosses both A and B.

It can be argued using convexity and continuity that the Hausdorff distance is attained
at points a ∈A, b ∈B such that the segment ab is orthogonal to the tangents at a and b.
This yields a set of polynomial equations in four variables. The system has 240 complex
solutions, eight of which are real. These 240 solutions can be computed using computer
algebra systems based on Gröbner bases. For some of the real solutions (a, b), the segment
ab crosses A and B, for example a1b1 as in Figure 4. Among the remaining solutions the
points a2 ≈ (−11.48362,−6.1760), b2 ≈ (−0.56460,−0.43583) realize the Hausdorff distance
of approximately 12.33591. This approach does not easily generalize to general semi-algebraic
sets. In the next paragraph, we present a slower, but more general method.

General decision algorithm. We consider a situation where we are given two semi-algebraic
sets A and B as well as a threshold t; for simplicity, we assume here (only in this paragraph)
that A and B are closed. The statement d⃗H(A,B) ≤ t can be encoded into a logical sentence

SoCG 2022



48:4 The Complexity of the Hausdorff Distance

Φ of the form ∀a∈A . ∃b∈B : ∥a− b∥2 ≤ t2, where ∥x∥ denotes the Euclidean norm of the
vector x. We can decide the truth of this sentence by employing sophisticated algorithms
from real algebraic geometry that can deal with two blocks of quantifiers [12, Chapter 14].
These algorithms are so slow that they would probably not work in the above example. Our
main result roughly states that in general there is little hope for an improvement. To state
this formally, we continue by defining suitable complexity classes.

Algorithmic complexity. Let φ be a quantifier-free formula in the first-order theory of the
reals, i.e., a formula formed over the alphabet Σ = {Z,+, ·,=,≤, <,∨,∧,¬} together with
symbols for the variables. Details on how formulas are encoded are described in Section 2.
The Universal Existential Theory of the Reals (UETR) asks to decide the truth
value of a sentence

Φ := ∀X ∈Rn . ∃Y ∈Rm : φ(X,Y ).

An instance of UETR belongs to Strict-UETR if the corresponding formula φ is over the
alphabet Σ = {Z,+, ·, <,∨,∧}, i.e., if every atom is a strict inequality and negations do not
occur. The complexity classes ∀∃R and ∀∃<R contain all decision problems for which there
exists a polynomial-time many-one reduction to UETR and Strict-UETR, respectively.
We propose to pronounce the complexity class ∀∃R as “UER” or “forall exists R” and ∀∃<R
as “Strict-UER” or “strict forall exists R”. Let us emphasize that we work in the bit-model
of computation; all inputs have finite precision and their overall length determines the size of
the problem instance. To the best of our knowledge, ∀∃R was first introduced by Bürgisser
and Cucker [19, Section 9] under the name BP0(∀∃) (in the constant-free Blum-Shub-Smale-
model [16]). The notation ∀∃R arised later in [27] extending the notation from Schaefer
and Števankovič [48]. The class co-∀∃<R = ∃∀≤R was first studied by D’Costa, Lefaucheux,
Neumann, Ouaknine and Worrel [25].

Concerning the relation of these complexity classes, it is easy to see that ∀∃<R is contained
in ∀∃R. It is an intriguing open problem if those two classes coincide or are different. If the
two classes are indeed different, this would imply NP ̸= PSPACE so we do not expect such
a proof any time soon. It is also conceivable that some extensions of known results in real
algebraic geometry can be used to show ∀∃R = ∀∃<R.

Problem and results. We now have all ingredients to state our problem and main results.
Let ΦA(X) and ΦB(X) be two quantifier-free formulas defining the semi-algebraic sets
A = {x∈Rn | ΦA(x)} and B = {x∈Rn | ΦB(x)}, and let t∈Q be a rational number. The
Hausdorff problem asks whether dH(A,B) ≤ t. Here the dimension n of the ambient space
of A and B is part of the input (there is a polynomial-time algorithm for every fixed n, see
the related work in Section 1.1). Our main result determines the algorithmic complexity.

▶ Theorem 1. The Hausdorff problem is ∀∃<R-complete.

Note that prior to our result, it was not even known if computing the Hausdorff distance
was NP-hard. As ∀∃<R contains NP, co-NP, ∃R and ∀R, we also get hardness for all of those
complexity classes. Theorem 1 answers an open question posed by Dobbins, Kleist, Miltzow
and Rzążewski [27].

One may wonder whether it is crucial for our results that the Hausdorff problem asks
for the distance to be at most t rather than below t. We remark that all our proofs work with
tiny modifications also for the case of a strict inequality. Furthermore, our results also hold
for the directed Hausdorff distance. Note that one can compute the undirected Hausdorff



P. Jungeblut, L. Kleist, and T. Miltzow 48:5

distance trivially, by computing twice the directed Hausdorff distance. Thus intuitively, the
directed Hausdorff distance is computationally at least as hard. Yet, this is not a many-one
reduction, as we need to compute the directed Hausdorff distance twice.

In the proof of ∀∃<R-hardness for Theorem 1, we create instances with some additional
properties. In particular, we can guarantee a gap, i.e., the Hausdorff distance is either below
the threshold t or at least t · 22Ω(d) , where d denotes the number of variables of ΦA and ΦB .
Thus our result also rules out approximation algorithms.

▶ Corollary 2. Let A and B be two semi-algebraic sets in Rd and f(d) = 22o(d) . Then there
is no polynomial-time f(d)-approximation algorithm to compute dH(A,B), unless P = ∀∃<R.

We remark that our proof provides hard instances, where the threshold t is strictly larger
than zero. By scaling of A and B, we can assume t = 1 without loss of generality. It is natural
to wonder if ∀∃<R-hardness also holds for the case of t = 0. This question is equivalent to
checking whether the closure of two semi-algebraic sets is equal, i.e., dH(A,B) = 0 if and
only if A = B. Computing the closure of a semi-algebraic set is non-trivial. In particular, it
is not enough to replace all occurrences of < by ≤. Yet testing, if two semi-algebraic sets are
equal is likely slightly easier.

▶ Theorem 3. Deciding if two semi-algebraic sets are equal is ∀R-complete.

Because the proof is rather simple, we present it at this point.

Proof. Given quantifier-free formulas ΦA(X) and ΦB(X), it holds that A = B if and only if
∀X ∈Rn : ΦA(X) ⇐⇒ ΦB(X). This shows ∀R-membership. To see ∀R-hardness, note that
Ψ := ∀X ∈Rn : φ(X) is equivalent to {x ∈ Rn : φ(x)} = Rn. ◀

1.1 Related work
This subsection reviews previous work concerning two directions. First, we discuss the
complexity of computing the Hausdorff distance for special sets. Afterwards, we investigate
previous work on the complexity class ∀∃R.

Computing the Hausdorff distance. The notion of the Hausdorff distance was introduced
by Felix Hausdorff in 1914 [32]. Most of the early works focused on the Hausdorff distance
for finite point sets. For a set of n points and a set of m points in any fixed dimension, the
Hausdorff distance can be easily computed by checking all pairs, i.e., in time O(mn). In the
plane, this can be improved to O((n+m) log(m+ n)) by using Voronoi diagrams [7]. In fact,
this method can be extended to sets consisting of pairwise non-crossing line segments in the
plane, e.g., simple polygons and polygonal chains fulfill this property. If the polygons are
additionally convex, their Hausdorff distance can even be computed in linear time [11].

More generally, the Hausdorff distance can be computed in polynomial time whenever
the two sets can be described by a simplicial complex of fixed dimension. Based on the
PhD thesis of Godau [30], Alt et al. [8, Theorem 3.3] show how to compute the directed
Hausdorff distance between two sets in Rd consisting of n and m k-dimensional simplices in
time O(nmk+2) (assuming d is constant). Using a Las Vegas algorithm for computing the
vertices of the lower envelope, similar ideas yield an approach with randomized expected
time in O(nmk+ε) for k > 1 and every ε > 0 [8, Theorem 3.4]. They additionally present
algorithms with better randomized expected running times for sets of triangles in R3 and
point sets in Rd.

SoCG 2022



48:6 The Complexity of the Hausdorff Distance

Given two semi-algebraic sets A,B ⊆ Rn, the Hausdorff problem can be encoded as a
sentence of the form ∀X∃Y : φ(X,Y ) with Θ(n) variables, where φ is quantifier-free. Such
a sentence can be decided in time roughly equal to (sd)O(n2) [12, Theorem 14.14] where d
denotes the maximum degree of any polynomial of φ and s denotes the number of atoms.

In other contexts the two sets are allowed to undergo certain transformations (e.g.
translations) such that the Hausdorff distance is minimized [18]. See Alt [9] for a survey.

Universal existential theory of the reals. As mentioned above, the complexity class ∀∃R
was first studied by Bürgisser and Cucker who prove complexity results for many decision
problems involving circuits [19]. For example, they study functions f : Rn → R that are
given by arithmetic circuits. They show that it is ∀∃R-complete to decide if such f is
surjective. Dobbins, Kleist, Miltzow, and Rzążewski [28, 27] consider ∀∃R in the context of
area-universality of graphs. A plane graph is area-universal if for every assignment of reals
to the inner faces of a plane graph, there exists a straight-line drawing such that the area
of each inner face equals the assigned number. Dobbins et al. conjecture that the decision
problem whether a given plane graph is area-universal is complete for ∀∃R. They support
this conjecture by proving hardness for several related notions [27]. Additionally, for future
research directions, they present a number of candidates for potentially ∀∃R-hard problems.
Among them, they stated a question motivating this paper as an open problem, namely
whether the Hausdorff problem is ∀∃R-complete. The other candidates exhibit intrinsic
connections to the notions of imprecision, robustness and extendability.

We point out that the computational complexity may also become easier when asking
universal-type questions. For example, it is ∃R-complete to decide whether a graph is a unit
distance graph, i.e., whether it has a straight-line drawing in the plane in which all edges have
the same length [47]. On the other hand, the decision problem whether for all reasonable
assignments of weights to the edges, a graph has a straight-line drawing in which the edge
lengths correspond to the assigned weight lies in P [14]. Similarly, it is ∃R-complete to decide
for a given planar graph for which some vertices are fixed to the boundary of a polygon
(with holes) whether there exists a planar straight-line drawing inside the polygon [33]. The
case of simple polygons is open. In contrast, there is a polynomial time algorithm to test if a
given graph G and a contained cycle C admit for every simple polygon P , representing C, a
straight-line drawing of G inside P [39].

The sister class ∃∀R was recently investigated by D’Costa et al. [25]. They show that
it is ∃∀≤R-complete to decide for a given rational matrix A and a compact semi-algebraic
set K ⊆ Rn, whether there exists a starting point x ∈ K such that xn := Anx is contained
in K for all n ∈ N . This and similar problems are generally referred to as escape problems.

The complexity class ∀∃R is a natural extension of the complexity class ∃R (pronounced
as “exists R”, “ER”, or “ETR”), which is defined similarly to ∀∃R, but without universally
quantified variables. The complexity class ∃R has gained a lot of interest in recent years,
specifically in the computational geometry community. It gains its significance because
numerous well-studied problems from diverse areas of theoretical computer science and
mathematics have been shown to be complete for this class. Famous examples from discrete
geometry are the recognition of geometric structures, such as unit disk graphs [35], segment
intersection graphs [34], visibility graphs [21], stretchability of pseudoline arrangements [38,
50], and order type realizability [34]. Other ∃R-complete problems are related to graph
drawing [33], Nash-Equilibria [15, 29], geometric packing [6], the art gallery problem [3],
convex covers [2], non-negative matrix factorization [49], polytopes [26, 43], geometric
embeddings of simplicial complexes [4], geometric linkage constructions [1], training neural



P. Jungeblut, L. Kleist, and T. Miltzow 48:7

networks [5], and continuous constraint satisfaction problems [36]. For more information
on the complexity class ∃R, we refer to Matoušek’s lecture notes [34], and the surveys by
Schaefer [46] and Cardinal [20].

General solution strategies. We sometimes see that researchers make the dichotomy
between tractable and intractable algorithmic problems. More precisely, when there exists a
polynomial time algorithm the underlying problem is considered to be tractable. In contrast,
in case of NP-hardness the underlying problem is considered intractable. Although most
researchers are aware that this dichotomy does not match actual practical performance, it is
often seen as a good enough yardstick.

In the last decades, a more nuanced perspective emerged. This new perspective ac-
knowledges that there is a whole range of mathematical assumptions and models and that
depending on the specific situation, different models can be more or less accurate [44]. One
example is the so-called smoothed analysis of algorithms [51]. The underlying idea is that
practical instances are subject to small noise. This small noise may tame a very difficult
instance. In this context, we discuss four complexity classes: NP, ∃R, Πp

2, and ∀∃R.
NP Despite NP-hardness, huge practical instances can often be solved very fast. Prominent

examples are ILPs that can be solved optimally using off the shelf solvers. Note that it
is also possible to generate adversarial instances of moderate size for which no good
tools exist.

∃R Problems in ∃R are considerably harder. Still, we can often solve ∃R-complete problems
using suitable discretizations or using gradient descent. However, both methods usually
have no guarantees to ever terminate. Furthermore, they may give solutions that are
arbitrarily far from the optimum. Methods from real algebraic geometry are applicable
if polynomials are explicitly given and contain only few variables, say around ten.

Πp
2 Describes problems on the second level of the polynomial time hierarchy [10]. We

do not know many problems on this level, compared to the number of NP-complete
problems. Due to the two blocks of quantifiers there are no effective general purpose
tools like ILP-solvers. On the positive side, due to the combinatorial nature, it is
possible to use exhaustive search.

∀∃R This class combines the difficulties of ∃R and Πp
2. Note that we cannot even use gradient

descent for problems in this class. Due to the continuous nature of the problem it is
also not possible to use a simple brute-force algorithm. Furthermore, methods from
real algebraic geometry cannot even solve small instances with up to say ten variables.
The two different quantifiers limit those already impractical methods even further.

We want to point out that this classification of difficulty should not be taken dogmatically.
For many algorithmic problems worst-case complexity is not an adequate model to explain
practical performance. We rather take the perspective that this mathematical classification
is a crude yardstick which measures algorithmic difficulty from the worst-case perspective.
For each individual problem one has to judge, if the worst-case perspective is accurate.

1.2 Techniques and proof overview
In this subsection, we present the general idea behind the hardness reduction for the
Hausdorff problem. The goal is to convey the intuition and to motivate the technical
intermediate steps needed. The sketched reduction is oversimplified and thus neither in
polynomial time nor fully correct. We point out both of these issues and give first ideas on
how to solve them.

Let Φ := ∀X ∈Rn . ∃Y ∈Rm : φ(X,Y ) be a Strict-UETR instance. We define two sets

A := {x∈Rn | ∃Y ∈Rm : φ(x, Y )} and B := Rn

SoCG 2022



48:8 The Complexity of the Hausdorff Distance

and ask whether dH(A,B) = 0. If Φ is true, then A = Rn and we have dH(A,B) = 0 because
both sets are equal. Otherwise, if Φ is false, then there exists some x∈Rn for which there
is no y∈Rm satisfying φ(x, y) and we conclude that A ̸= Rn. In general we call the set of
all x∈Rn for which there is no y ∈Rm satisfying φ(x, y) the counterexamples ⊥(Φ) of Φ.
One might hope that ⊥(Φ) ̸= ∅ is enough to obtain dH(A,B) > 0, but this is not the case.
To this end, consider the formula Ψ := ∀X ∈ R . ∃Y ∈ R : XY > 1, which is false. The
set ⊥(Ψ) = {0} contains only a single element, so we have A = R \ {0} and B = R. However,
their Hausdorff distance also evaluates to dH(A,B) = 0. We conclude that above reduction
does not (yet completely) work, because it maps a yes- and a no-instances of Strict-UETR
to a yes-instance of Hausdorff.

We solve this issue by blowing up the set of counter examples. Specifically, Theorem 10
establishes a polynomial-time algorithm to transform a Strict-UETR instance Φ into an
equivalent formula Φ′ such that the set of counterexamples is either empty (if Φ′ is true)
or contains an open ball of positive radius (if Φ′ is false). The radius of the ball serves as
a lower bound on the Hausdorff distance dH(A,B). Thus a reduction starting with Φ′ is
correct. As a key tool for this step, we restrict the variable ranges from Rn and Rm to small
and compact intervals. Figure 5 presents an an example on how such a range restriction may
enlarge the set of counterexamples from a single point to an interval.

x

y

x

y(a) (b)

Figure 5 Consider the formula ∀X ∈R . ∃Y ∈R : XY > 1. (a) Each point (x, y)∈R2 in the blue
open region satisfies xy > 1. Only for x = 0 (in red) no suitable y ∈R exists. (b) Restricting the
range of Y to [−1, 1], then for all x∈ [−1, 1] (in red) no y with xy > 1 exists.

We highlight that such a restriction of the variable ranges is not possible for general UETR
formulas. However, we can exploit the fact that Strict-UETR formulas are ∀-strict; a
negation- and implication-free formula is ∀-strict if each atom involving universally quantified
variables is a strict inequality. Being ∀-strict is a key property of many of the formulas
considered throughout the paper, both for ∀∃<R-hardness and -membership. We think that
the special property of blown up counterexamples can prove useful in future reductions to
show ∀∃<R-hardness of other problems because it makes handling the no-instances easier.

A further challenge is given by the definition of the sets A and B. While the description
complexity of B depends only on n, the definition of A contains an existential quantifier.
This is troublesome because our definition of the Hausdorff problem requires quantifier-
free formulas as its input, and in general there is no equivalent quantifier-free formula of
polynomial length which describes the set A [24]. We overcome this issue by taking the
existentially quantified variables as additional dimensions into account; it will be useful
to scale them to a tiny range, so that their influence on the Hausdorff distance becomes
negligible. Therefore instead of the above, in Section 5 we work with sets similar to

A := {(x, y) | x∈ [−1, 1]n, y ∈ [−ε, ε]m, φ(x, y)} and
B := [−1, 1]n × {0}m



P. Jungeblut, L. Kleist, and T. Miltzow 48:9

for some tiny value ε depending on the radius r (of the ball contained in the counterexamples)
computed in Section 4. This definition of A and B introduces the new issue that even if Φ is
true, the Hausdorff distance dH(A,B) might be strictly positive. However, we manage to
identify a threshold t, such that dH(A,B) ≤ t if and only if Φ is true. This completes the
proof of ∀∃<R-hardness.

Organization. The remainder of the paper is organized as follows. We introduce prelimi-
naries concerning the first-order theory of the reals in Section 2 and essential tools from
real algebraic geometry in Section 3. Section 4 presents the result for blowing up the set of
counterexamples for ∀-strict formulas and Section 5 the hardness proof. For the membership
of Hausdorff in ∀∃<R we refer to Theorem 17 of the full version. We conclude with a list
of open problems in Section 6. Statements marked with (♠) are proved in the full version.

2 Preliminaries on the first-order theory of the reals and ∀∃R

Here, we give a short overview of the notation and definitions used in the paper. We mostly
introduce standard terminology following the book by Cox, Little, O’Shea [23].

An atom is an expression of the form P ◦ 0 for some polynomial P ∈ Z[X1, . . . , Xn]
and ◦ ∈ {<,≤,=, ̸=,≥, >}. We always assume that a polynomial is written as a sum of
monomials. Its total degree is the maximum number of occurrences of variables involved in
any monomial. For example P (X,Y, Z) = X2Y 2 +XY Z has total degree four. A variable
is called free if it is not bound by a quantifier. A formula is either (i) an atom, or (ii) if
φ1, φ2 are formulas, then φ1 ∧ φ2, φ1 ∨ φ2, φ1 =⇒ φ2 and ¬φ1 are formulas, or (iii) if
X is a free variable of a formula φ(X), then ∃X : φ(X) and ∀X : φ(X) are formulas in
which X is bound. In order to determine the length |φ| of a formula φ, we count 1 for
each fixed symbol, we encode integer coefficients in binary, exponents are encoded in unary,
and we count log n for every occurrence of each variable, where n denotes the number of
variables. We denote by QFF the family of quantifier-free formulas that contain no negation
or implication. Furthermore, QFF<, QFF≤, and QFF= are the families in QFF that have
only atoms involving <, ≤ and = respectively.

A sentence is a formula without free variables and thus either equivalent to true or to
false. The truth value is defined inductively, by interpreting the quantifiers over the real
numbers R. As a convention, we use capitalized Greek letters for sentences and use lower
case Greek letter for formulas. We write Ψ ≡ Ψ′ if the two sentences have the same truth
value. The first order theory of the reals (FOTR) is the family of all true sentences. If all
quantifiers of a formula appear at its beginning, we say it is in prenex normal form. We
usually write blocks of variables, i.e., ∀X ∈Rn : φ(X). Here X is a shorthand notation for
X = (X1, . . . , Xn). We say n is the length of X in this case. All quantifiers quantify their
bound variables over R. The following are just shorthand notation:

∀X ∈ [−1, 1] : φ(X) ≡ ∀X ∈R : (X ≥ −1 ∧X ≤ 1) =⇒ φ(X)
∃X ∈ [−1, 1] : φ(X) ≡ ∃X ∈R : (X ≥ −1 ∧X ≤ 1) ∧ φ(X)

We use uppercase letters for variables in formulas and lowercase letters for specific values,
i.e., symbol X denotes a vector of variables, while x∈Rn is a point. We sometimes write
φ(X,Y ) to emphasize that X and Y are free variables of the formula φ. Often we do not
mention the free variables of φ though.

SoCG 2022



48:10 The Complexity of the Hausdorff Distance

Consider a formula Φ := ∀X ∈Rn . ∃Y ∈Rm : φ(X,Y ), where φ∈QFF. Each atom of φ is
of the form P ◦ 0, where ◦ ∈ {<,≤,=, ≠,≥, >} and P ∈ Z[X,Y ] is a multivariate polynomial
in the variables X and Y . Without loss of generality we can restrict our attention to the
case of ◦ ∈ {<,≤}, because the following transformations show that the other relations can
be reformulated such that the length of the formula is at most doubled.

P > 0 ≡ −P < 0 P = 0 ≡ (P ≤ 0) ∧ (−P ≤ 0)
P ≥ 0 ≡ −P ≤ 0 P ̸= 0 ≡ (P < 0) ∨ (−P < 0)

Furthermore, we can assume that φ contains only the logical connectives ∧ and ∨, because
De Morgan’s law allows to push all negations (and therefore also implications) down to the
atoms transforming φ into negation normal form. With the following equivalences we obtain
a formula without negations:

¬(P < 0) ≡ −P ≤ 0 ¬(P ≤ 0) ≡ −P < 0

Given a formula φ, the set S(φ) = {x ∈ Rn | φ(x)} is semi-algebraic. The complexity of a
semi-algebraic set S is the length of a shortest quantifier-free formula φ, such that S = S(φ)
(recall that integers are encoded in binary). We write φ ≡ φ′ if S(φ) = S(φ′).

For any fixed ◦ ∈ {<,≤}, we denote by ∀∃◦R the fragment of ∀∃R containing all decision
problems that polynomial-time many-one reduce to a UETR-instance where all formulas
are contained in QFF◦. Similarly, for ◦ ∈ {<,≤}, we denote the corresponding fragments of
∃R and ∀R by ∃◦R and ∀◦R, respectively. The following lemma summarizes what we know
about the relation between the complexity classes ∀∃<R, ∀∃≤R and ∀∃R as well as their
relation to the well-studied classes NP, co-NP, ∃R, ∀R, and PSPACE.

▶ Lemma 4 (♠). It holds NP ⊆ ∃R ⊆ ∀∃<R ⊆ ∀∃≤R = ∀∃R ⊆ PSPACE. Furthermore,
co-NP ⊆ ∀R ⊆ ∀∃<R.

3 Mathematical tools

In this section, we review already existing tools that are needed throughout the paper. In
particular, we use two sophisticated results from algebraic geometry, namely singly exponential
quantifier elimination and the so called Ball Theorem. While quantifier elimination provides
equivalent quantifier free formulas of bounded length, the Ball Theorem guarantees that
every non-empty semi-algebraic set contains an element not too far from the origin. We use
the two results to establish useful properties of semi-algebraic sets.

We start with a result on quantifier-elimination which originates from a series of articles
by Renegar [40, 41, 42]. We note that the time complexity of this algorithm is exponential
and not doubly exponential for every fixed number of quantifier alternations.

▶ Theorem 5 ([12, Theorem 14.16]). Let X1, . . . , Xk, Y be vectors of real variables where Xi

has length ni, Y has length m, formula φ(X1, . . . , Xk, Y ) ∈ QFF has s atoms and Qi ∈ {∃, ∀}
is a quantifier for all i = 1, . . . , k. Further, let d be the maximum total degree of any polynomial
of φ(X1, . . . , Xk, Y ). Then for any formula Φ(Y ) := (Q1X1) . . . (QkXk) : φ(X1, . . . , Xk, Y )
there is an equivalent quantifier-free formula of size at most

s(n1+1)···(nk+1)(m+1)dO(n1)···O(nk)O(m).

We use the following corollary of Theorem 5 that is weaker but easier to work with.



P. Jungeblut, L. Kleist, and T. Miltzow 48:11

▶ Corollary 6 (♠). Given a formula Φ(Y ) as in Theorem 5 of length L = |φ(X1, . . . , Xn, Y )|.
Then for a constant α ∈ R independent of Φ, there exists an equivalent quantifier-free formula
of size at most Lαk+1·n1·...·nk·m.

The Ball Theorem was first discovered by Vorob’ev [53] and Grigor’ev and Vorobjov [31].
Vorob’ev and Vorobjov are two different transcriptions of the same name from the Cyrillic to
the Latin alphabet. Explicit bounds on the distance are given by Basu and Roy [13]. We use
a formulation from Schaefer and Štefankovič [48].

▶ Theorem 7 (Ball Theorem [48, Corollary 3.1]). Every non-empty semi-algebraic set in Rn

of complexity at most L ≥ 4 contains a point of distance at most 2L8n from the origin.

Recall that for any quantifier-free formula φ(X) with free variables X ∈ Rn, the set
S := {x ∈ Rn | φ(X)} is semi-algebraic. Thus, a direct conclusion of Theorem 7 is that
∃X ∈Rn : φ(X) is equivalent to ∃X ∈ [−2L8n , 2L8n ]n : φ(X). This is how we are going to
make use of Theorem 7 throughout this paper.

In the following, we deduce useful properties from Corollary 6 and Theorem 7, starting
with a fact that was identified by D’Costa, Lefaucheux, Neumann, Ouaknine and Worrel [25,
Lemma 14] for two quantifiers. We are interested in a generalization to more quantifiers.
Their proof also works with slight modifications in the more general case with k quantifiers.

▶ Lemma 8 (♠). Let X1, . . . , Xk be vectors of variables where Xi has length ni ≥ 1 and let
φ(ε,X1, . . . , Xk) be a quantifier-free formula of length L. Then the semi-algebraic set

S = {ε > 0 | (Q1X1) . . . (QkXk) : φ(ε,X1, . . . , Xk)},

where the Qi are alternating existential and universal quantifiers, is either empty or it
contains an element ε∗ ∈ S such that for some constant β ∈ R we have ε∗ ≥ 2−Lβk+2n1···nk .

Given a semi-algebraic set S ⊆ Rn and any α ∈ Q, the scaled set T = {αx ∈ Rn | x ∈ S}
is semi-algebraic. The following lemma proves that scaling any subset of the variables by a
doubly exponentially large integer can be encoded by a formula of polynomial length.

We denote by the type of an atom whether it is a strict inequality, a non-strict inequality
or an equation. We say that two formulas have the same logical structure if there is a bijection
between their atoms such that identifying corresponding atoms leads to the same formula.

▶ Lemma 9 (Scaling Semi-Algebraic Sets ♠). Let φ(X,Y ) ∈ QFF with free variables X ∈ Rn

and Y ∈ Rm. Further, let N be an integer and s ∈ {−1, 1}. We can construct in time
polynomial in |φ| and N a formula ψ(X,Y ), such that for any (x, y) ∈ Rn+m we have φ(x, y)
if and only if ψ(x · 2s·2N , y). Further ψ(X,Y ) can be chosen to be of the form

ψ(X,Y ) ≡ ∃U ∈ [−1, 1]N+1 : χ(U) ∧ φ′(X,Y, U) or alternatively
ψ(X,Y ) ≡ ∀U ∈ [−1, 1]N+1 : ¬χ(U) ∨ φ′(X,Y, U).

In both cases, χ(U) ∈ QFF=, formulas φ′(X,Y, U) and φ(X,Y ) have the same logical
structure and corresponding atoms have the same type.

4 Counterexamples of Strict-UETR

Let us recall the definition of counterexamples here that was already motivated in Section 1.2.
Given a sentence Φ := ∀X ∈Rn . ∃Y ∈Rm : φ(X,Y ) we call the set

⊥(Φ) := {x ∈ Rn | ∀Y ∈Rm : ¬φ(x, Y )}

SoCG 2022



48:12 The Complexity of the Hausdorff Distance

its counterexamples. The counterexamples of Φ are exactly the values x ∈ Rn for which
there is no y ∈ Rm such that φ(x, y) is true. We show how to transform a Strict-UETR
instance Φ into an equivalent formula Ψ for which ⊥(Ψ) is either empty or contains an open
ball. We achieve this by bounding the range over which the variables are quantified. The
following theorem summarizes our findings. This open ball property is a key technical step
and we believe is of independent interest.

▶ Theorem 10 (♠). Given a Strict-UETR instance Φ := ∀X ∈Rn . ∃Y ∈Rm : φ<(X,Y ),
with φ<(X,Y ) ∈ QFF<, we can construct in polynomial time an equivalent UETR instance

Ψ := ∀X ∈ [−1, 1]n . ∃Y ∈ [−1, 1]ℓ : ψ(X,Y ),

where ψ ∈ QFF. Further, ⊥(Ψ) is either empty or contains an n-dimensional open ball.

5 ∀∃<R-Hardness

▶ Theorem 11. Hausdorff and directed Hausdorff are ∀∃<R-hard.

Proof. Let Φ := ∀X ∈Rn . ∃Y ∈Rm : φ<(X,Y ) be an instance of Strict-UETR. We give
a polynomial-time many-one reduction to an equivalent Hausdorff instance. The proof is
split into three parts: First we transform Φ into an equivalent UETR instance Ψ′ whose
counterexamples contain an open ball (if there are any). Then we use Ψ′ to define the
semi-algebraic sets A and B as well as an integer t, such that (A,B, t) is a Hausdorff
instance. Lastly we prove that Φ and (A,B, t) are indeed equivalent.

Transforming Φ into Ψ′. We apply Theorem 10 to Φ and obtain an equivalent sentence

Ψ := ∀X ∈ [−1, 1]n . ∃Y ∈ [−1, 1]ℓ : ψ(X,Y )

in polynomial time, where ψ(X,Y ) ∈ QFF. Additionally, we get that ⊥(Ψ) = ∅ if Ψ is true
and that it contains an n-dimensional open ball Bn(x, r) centered at some x ∈ ⊥(Ψ) ⊆ [−1, 1]n
of radius r > 0 otherwise. We remark that Ψ is an instance of UETR and not necessarily
of Strict-UETR. Using the tools from Section 3, we shall prove next, that we can give
a lower bound on the radius r of the open ball of counterexamples centered at x. For this,
assume that Ψ is false, so ⊥(Ψ) ̸= ∅ and therefore

¬Ψ = ∃X ∈ [−1, 1]n . ∀Y ∈ [−1, 1]ℓ : ¬ψ(X,Y )

is true. Utilizing our knowledge about the open ball of counterexamples around x, we can
strengthen this to

∃r > 0 . ∃X ∈ [−1, 1]n . ∀X̃ ∈ [−1, 1]n, Y ∈ [−1, 1]ℓ : ∥X − X̃∥2 < r2 =⇒ ¬ψ(X̃, Y ),

which is still equivalent to ¬Ψ. Let L denote the length of the quantifier-free part of this
formula. We see that L is clearly polynomial in |Ψ|, which by Theorem 10 is polynomial
in |Φ|. The above sentence has the form required to apply Lemma 8, and we get that there
is an r satisfying above sentence with

r ≥ 2−Lβ4n(n+ℓ)
(1)

for some constant β ∈ R. Let N be the smallest integer, such that

r · 22N > ℓ. (2)



P. Jungeblut, L. Kleist, and T. Miltzow 48:13

By Equation (1), it holds that N ∈ O(n(n+ ℓ) log(L)). Using Lemma 9 on Ψ and N , we can
again in polynomial time scale up the range of the universally quantified variables and get

Ψ′ := ∀X ∈ [−22N

, 22N

]n . ∃Y ∈ [−1, 1]ℓ, U ∈ [−1, 1]N+1 : ψ′(X,Y, U),

where ψ′(X,Y, U) ∈ QFF and we have ⊥(Ψ′) equal to ⊥(Ψ) scaled up by 22N in all dimen-
sions. Further, from (the proof of) Lemma 9 it follows and for all (x, y, u) ∈ Rn+ℓ+N+1

with ψ′(x, y, u) we have ui = 2−2i . In particular, the radius of the open ball of counterexam-
ples around 22N · x ∈ ⊥(Ψ′) is now r′ := r · 22N

> ℓ by the choice of N .

Defining Hausdorff instance (A, B, t). We first define three sets A′, B′ and C ′ as
follows:

A′ :=
{

(x, y, u) ∈ [−22N , 22N ]n × [−1, 1]ℓ × [−1, 1]N+1 ∣∣ ψ′(x, y, u)
}

B′ := [−22N , 22N ]n × {0}ℓ × {2−20} × . . .× {2−2N }
C ′ := {22N+1}n+ℓ × {2−20} × . . .× {2−2N }

Note that A′, B′, C ′ ⊆ Rn+ℓ+N+1 and all three sets can be described by quantifier-free
formulas of polynomial length. We further define

A := A′ ∪ C ′,
B := B′ ∪ C ′ and
t := ℓ.

The reason to include C ′ into both A and B is to guarantee that both semi-algebraic sets
are non-empty. Otherwise, if ⊥(Ψ′) = [−22N , 22N ]n, the set A is the empty set and the
Hausdorff distance between A and B would not be well-defined. The triple (A,B, t) is the
desired Hausdorff instance.

Equivalence of Φ and (A, B, t). We first note that we can ignore C ′ in our argumentation
about dH(A,B): In fact, assuming that both A′ and B′ are non-empty, we have dH(A,B) =
dH(A′, B′). To prove this, observe first that adding the same set of points to A′ and B′ can only
decrease their Hausdorff distance. Second, C ′ was chosen to have dH(A′, C ′) ≥ dH(A′, B′),
so for no a ∈ A, the distance to the closest b ∈ B has decreased (and vice versa).

To see that Φ and (A,B, t) are equivalent, assume first that Φ is true. Let u ∈ [−1, 1]N+1

such that ui = 2−2i . As seen above, this is necessary in every satisfying assignment of the
variable vector U in Ψ′. Then for every x ∈ [−22N , 22N ]n there is at least one y ∈ [−1, 1]ℓ
such that a = (x, y, u) ∈ A. At the same time, b = (x, {0}ℓ, u) ∈ B. We get

∥a− b∥ = ∥(x, y, u) − (x, {0}ℓ, u)∥ = ∥y − 0⃗∥ ≤
√∑ℓ

i=1 1 =
√
ℓ ≤ ℓ = t.

As x was chosen arbitrarily, we get an upper bound for the directed Hausdorff distance
d⃗H(A,B) ≤ ℓ. On the other hand, for every b = (x, {0}ℓ, u) ∈ B there is an y ∈ [−1, 1]ℓ such
that a = (x, y, u) ∈ A, as we assume that Φ is true. As above, we get d⃗H(B,A) ≤ ℓ and thus

dH(A,B) ≤ ℓ = t. (3)

Now assume that Φ is false. By construction Ψ′ is also false and contains a counterexample
x ∈ ⊥(Ψ′) such that Bn(x, r′) ⊆ ⊥(Ψ′). Consider b = (x, {0}ℓ, u) ∈ B. Since Ψ′ is false, for
no x̃ with ∥x− x̃∥ < r′ and no y ∈ [−1, 1]ℓ there is a point a = (x̃, y, u) ∈ A. We conclude

dH(A,B) ≥ d⃗H(B,A) ≥ r′ > ℓ = t. (4)

Equations (3) and (4) prove that dH(A,B) ≤ t (and d⃗H(B,A) ≤ t) if and only if Φ is true. ◀

SoCG 2022



48:14 The Complexity of the Hausdorff Distance

In the proof of Theorem 1, we could choose N ′ := N + 1 instead of N in Equation (2).
Then in the case that Φ is false, the Hausdorff distance is at least

r′ > 22N+1
r > 22N+1−2N

ℓ = 22N

ℓ = 22N

t.

Note that the dimension d of the resulting sets A,B equals d = n + ℓ + N ′ + 1 = Θ(N).
Thus, we created a gap of size 22Θ(d) . This implies the following inapproximability result.

▶ Corollary 2. Let A and B be two semi-algebraic sets in Rd and f(d) = 22o(d) . Then there
is no polynomial-time f(d)-approximation algorithm to compute dH(A,B), unless P = ∀∃<R.

6 Open problems

We showed that the Hausdorff problem is ∀∃<R complete. One important open question
is whether the two complexity classes ∀∃R and ∀∃<R are actually the same. An answer
to this question is interesting in its own right. Furthermore, it is interesting to see if our
hardness result can be extended to simpler settings.

References
1 Zachary Abel, Erik Demaine, Martin Demaine, Sarah Eisenstat, Jayson Lynch, and Tao

Schardl. Who Needs Crossings? Hardness of Plane Graph Rigidity. In Sándor Fekete and
Anna Lubiw, editors, 32nd International Symposium on Computational Geometry (SoCG
2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:15,
2016. doi:10.4230/LIPIcs.SoCG.2016.3.

2 Mikkel Abrahamsen. Covering Polygons is Even Harder. arXiv preprint, 2021. arXiv:
2106.02335.

3 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The Art Gallery Problem is
∃R-complete. In STOC 2018: Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 65–73, 2018. doi:10.1145/3188745.3188868.

4 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Geometric Embeddability of
Complexes is ∃R-complete. arXiv preprint, 2021. arXiv:2108.02585.

5 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Training Neural Networks is
ER-complete. In Marc A. Ranzato, Alina Beygelzimer, K. Nguyen, Percy Liang, Jennifer W.
Vaughan, and Yann Dauphin, editors, Advances in Neural Information Processing Systems
(NeurIPS 2021), volume 34, 2021.

6 Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for ER-Completeness
of Two-Dimensional Packing Problems. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 1014–1021, 2020. doi:10.1109/FOCS46700.2020.00098.

7 Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate Matching of Polygonal
Shapes. Annals of Mathematics and Artificial Intelligence, 13(3):251–265, 1995. doi:10.1007/
BF01530830.

8 Helmut Alt, Peter Braß, Michael Godau, Christian Knauer, and Carola Wenk. Computing
the Hausdorff Distance of Geometric Patterns and Shapes. In Boris Aronov, Saugata Basu,
János Pach, and Micha Sharir, editors, Discrete and Computational Geometry: The Goodman-
Pollack Festschrift, volume 25 of Algorithms and Combinatorics, pages 65–76. Springer, 2003.
doi:10.1007/978-3-642-55566-4_4.

9 Helmut Alt and Leonidas J. Guibas. Discrete Geometric Shapes: Matching, Interpolation, and
Approximation. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational
Geometry, pages 121–153. Elsevier, 2000. doi:B978-044482537-7/50004-8.

10 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. doi:10.1017/CBO9780511804090.

https://doi.org/10.4230/LIPIcs.SoCG.2016.3
http://arxiv.org/abs/2106.02335
http://arxiv.org/abs/2106.02335
https://doi.org/10.1145/3188745.3188868
http://arxiv.org/abs/2108.02585
https://doi.org/10.1109/FOCS46700.2020.00098
https://doi.org/10.1007/BF01530830
https://doi.org/10.1007/BF01530830
https://doi.org/10.1007/978-3-642-55566-4_4
https://doi.org/B978-044482537-7/50004-8
https://doi.org/10.1017/CBO9780511804090


P. Jungeblut, L. Kleist, and T. Miltzow 48:15

11 Mikhail J. Atallah. A Linear Time Algorithm for the Hausdorff Distance Between Convex
Polygons. Information Processing Letters, 17(4):207–209, 1983. doi:10.1016/0020-0190(83)
90042-X.

12 Sauguta Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic
Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer, 2006. doi:
10.1007/3-540-33099-2.

13 Sauguta Basu and Marie-Françoise Roy. Bounding the radii of balls meeting every connected
component of semi-algebraic sets. Journal of Symbolic Computation, 45(12):1270–1279, 2010.
doi:10.1016/j.jsc.2010.06.009.

14 Maria Belk. Realizability of Graphs in Three Dimensions. Discrete & Computational Geometry,
37(2):139–162, 2007. doi:10.1007/s00454-006-1285-4.

15 Vittorio Bilò and Marios Mavronicolas. A Catalog of EXISTS-R-Complete Decision Problems
About Nash Equilibria in Multi-Player Games. In Nicolas Ollinger and Heribert Vollmer,
editors, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:13, 2016. doi:10.4230/
LIPIcs.STACS.2016.17.

16 Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation and Complexity over
the Real Numbers: NP-Completeness, Recursive Functions and Universal Machines. Bulletin of
the American Mathematical Society, 21:1–46, 1989. doi:10.1090/S0273-0979-1989-15750-9.

17 Glen E. Bredon. Topology and Geometry, volume 139 of Graduate Texts in Mathematics.
Springer Science & Business Media, 1st edition, 2013. doi:10.1007/978-1-4757-6848-0.

18 Karl Bringmann and André Nusser. Translating Hausdorff Is Hard: Fine-Grained Lower
Bounds for Hausdorff Distance Under Translation. In Kevin Buchin and Éric Colin de Verdière,
editors, 37th International Symposium on Computational Geometry (SoCG 2021), volume
189 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:17, 2021.
doi:10.4230/LIPIcs.SoCG.2021.18.

19 Peter Bürgisser and Felipe Cucker. Exotic Quantifiers, Complexity Classes, and Complete
Problems. Foundations of Computational Mathematics, 9(2):135–170, 2009. doi:10.1007/
s10208-007-9006-9.

20 Jean Cardinal. Computational Geometry Column 62. ACM SIGACT News, 46(4):69–78, 2015.
doi:10.1145/2852040.2852053.

21 Jean Cardinal and Udo Hoffmann. Recognition and Complexity of Point Visibility Graphs.
Discrete & Computational Geometry, 57(1):164–178, 2017. doi:10.1007/s00454-016-9831-1.

22 Wiki Community. Homotopy. accessed 2021 November. URL: https://en.wikipedia.org/
wiki/Homotopy.

23 David Cox, John Little, and Donal O’Shea. Using Algebraic Geometry, volume 185 of Graduate
Texts in Mathematics. Springer, 2nd edition, 2006. doi:10.1007/b138611.

24 James H. Davenport and Joos Heintz. Real Quantifier Elimination is Doubly Exponential.
Journal of Symbolic Computation, 5(1–2):29–35, 1988. doi:10.1016/S0747-7171(88)80004-X.

25 Julian D’Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrel. On the
Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic
Sets. In Filippo Bonchi and Simon J. Puglisi, editors, International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 202 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 33:1–33:21, 2021. doi:10.4230/LIPIcs.MFCS.2021.33.

26 Michael G. Dobbins, Andreas Holmsen, and Tillmann Miltzow. A Universality Theorem for
Nested Polytopes. arXiv preprint, 2019. arXiv:1908.02213.

27 Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. ∀∃R-Completeness
and Area-Universality. In Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors,
Graph-Theoretic Concepts in Computer Science (WG), volume 11159 of Lecture Notes in
Computer Science, pages 164–175. Springer, 2018. doi:10.1007/978-3-030-00256-5_14.

28 Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. Completeness for
the Complexity Class ∀∃R and Area-Universality. arXiv preprint, 2021. arXiv:1712.05142v3.

SoCG 2022

https://doi.org/10.1016/0020-0190(83)90042-X
https://doi.org/10.1016/0020-0190(83)90042-X
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1016/j.jsc.2010.06.009
https://doi.org/10.1007/s00454-006-1285-4
https://doi.org/10.4230/LIPIcs.STACS.2016.17
https://doi.org/10.4230/LIPIcs.STACS.2016.17
https://doi.org/10.1090/S0273-0979-1989-15750-9
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.4230/LIPIcs.SoCG.2021.18
https://doi.org/10.1007/s10208-007-9006-9
https://doi.org/10.1007/s10208-007-9006-9
https://doi.org/10.1145/2852040.2852053
https://doi.org/10.1007/s00454-016-9831-1
https://en.wikipedia.org/wiki/Homotopy
https://en.wikipedia.org/wiki/Homotopy
https://doi.org/10.1007/b138611
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.4230/LIPIcs.MFCS.2021.33
http://arxiv.org/abs/1908.02213
https://doi.org/10.1007/978-3-030-00256-5_14
http://arxiv.org/abs/1712.05142v3


48:16 The Complexity of the Hausdorff Distance

29 Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. ∃R-Completeness for
Decision Versions of Multi-Player (Symmetric) Nash Equilibria. ACM Transactions on
Economics and Computation, 6(1):1:1–1:23, 2018. doi:10.1145/3175494.

30 Michael Godau. On the complexity of measuring the similarity between geometric objects in
higher dimensions. PhD thesis, Freie Universtät Berlin, 1999. doi:10.17169/refubium-7780.

31 Dmitrii Y. Grigor’ev and Nicolai N. Vorobjov. Solving Systems of Polynomial Inequalities in
Subexponential Time. Journal of Symbolic Computation, 5(1–2):37–64, 1988. doi:10.1016/
S0747-7171(88)80005-1.

32 Felix Hausdorff. Grundzüge der Mengenlehre. Von Veit & Company, 1914.
33 Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The Complexity of Drawing a Graph

in a Polygonal Region. In Therese Biedl and Andreas Kerren, editors, GD 2018: Graph
Drawing and Network Visualization, volume 11282 of Lecture Notes in Computer Science,
pages 387–401, 2018. doi:10.1007/978-3-030-04414-5_28.

34 Jiří Matoušek. Intersection graphs of segments and ∃R. arXiv preprint, 2014. arXiv:1406.2636.
35 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal

of Combinatorial Theory, Series B, 103(1):114–143, 2013. doi:10.1016/j.jctb.2012.09.004.
36 Tillmann Miltzow and Reinier F. Schmiermann. On Classifying Continuous Constraint

Satisfaction Problems. arXiv preprint, 2022. arXiv:2106.02397.
37 Deng Min, Li Zhilin, and Chen Xiaoyong. Extended Hausdorff distance for spatial objects

in GIS. International Journal of Geographical Information Science, 21(4):459–475, 2007.
doi:10.1080/13658810601073315.

38 Nikolai E. Mnëv. The Universality Theorems on the Classification Problem of Configuration
Varieties and Convex Polytopes Varieties. In Oleg Y. Viro and Anatoly M Vershik, editors,
Topology and Geometry — Rohlin Seminar, volume 1346 of Lecture Notes in Mathematics,
pages 527–543. Springer, 1988. doi:10.1007/BFb0082792.

39 Tim Ophelders, Ignaz Rutter, Bettina Speckmann, and Kevin Verbeek. Polygon-Universal
Graphs. In Kevin Buchin and Éric Colin de Verdière, editors, 37th International Symposium
on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 55:1–55:15, 2021. doi:10.4230/LIPIcs.SoCG.2021.55.

40 James Renegar. On the Computational Complexity and Geometry of the First-order Theory
of the Reals. Part I: Introduction. Preliminaries. The Geometry of Semi-algebraic Sets. The
Decision Problem for the Existential Theory of the Reals. Journal of Symbolic Computation,
13(3):255–299, 1992. doi:10.1016/S0747-7171(10)80003-3.

41 James Renegar. On the Computational Complexity and Geometry of the First-Order Theory
of the Reals. Part II: The General Decision Problem. Preliminaries for Quantifier Elimina-
tion. Journal of Symbolic Computation, 13(3):301–327, 1992. doi:10.1016/S0747-7171(10)
80004-5.

42 James Renegar. On the Computational Complexity and Geometry of the First-Order Theory
of the Reals. Part III: Quantifier Elimination. Journal of Symbolic Computation, 13(3):329–352,
1992. doi:10.1016/S0747-7171(10)80005-7.

43 Jürgen Richter-Gebert and Günter M. Ziegler. Realization Spaces of 4-Polytopes are
Universal. Bulletin of the American Mathematical Society, 32(4):403–412, 1995. doi:
10.1090/S0273-0979-1995-00604-X.

44 Tim Roughgarden. Beyond Worst-Case Analysis. Communications of the ACM, 62(3):88–96,
2019. doi:10.1145/3232535.

45 William Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance, volume 1173 of
Lecture Notes in Computer Science. Springer, 1996. doi:10.1007/BFb0015091.

46 Marcus Schaefer. Complexity of Some Geometric and Topological Problems. In David Eppstein
and Emden R. Gansner, editors, GD 2009: Graph Drawing, volume 5849 of Lecture Notes in
Computer Science, pages 334–344, 2010. doi:10.1007/978-3-642-11805-0_32.

47 Marcus Schaefer. Realizability of Graphs and Linkages, pages 461–482. Thirty Essays on
Geometric Graph Theory. Springer, 2013. doi:10.1007/978-1-4614-0110-0_24.

https://doi.org/10.1145/3175494
https://doi.org/10.17169/refubium-7780
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1007/978-3-030-04414-5_28
http://arxiv.org/abs/1406.2636
https://doi.org/10.1016/j.jctb.2012.09.004
http://arxiv.org/abs/2106.02397
https://doi.org/10.1080/13658810601073315
https://doi.org/10.1007/BFb0082792
https://doi.org/10.4230/LIPIcs.SoCG.2021.55
https://doi.org/10.1016/S0747-7171(10)80003-3
https://doi.org/10.1016/S0747-7171(10)80004-5
https://doi.org/10.1016/S0747-7171(10)80004-5
https://doi.org/10.1016/S0747-7171(10)80005-7
https://doi.org/10.1090/S0273-0979-1995-00604-X
https://doi.org/10.1090/S0273-0979-1995-00604-X
https://doi.org/10.1145/3232535
https://doi.org/10.1007/BFb0015091
https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.1007/978-1-4614-0110-0_24


P. Jungeblut, L. Kleist, and T. Miltzow 48:17

48 Marcus Schaefer and Daniel Štefankovič. Fixed Points, Nash Equilibria, and the Ex-
istential Theory of the Reals. Theory of Computing Systems, 60:172–193, 2017. doi:
10.1007/s00224-015-9662-0.

49 Yaroslav Shitov. A Universality Theorem for Nonnegative Matrix Factorizations. arXiv
preprint, 2016. arXiv:1606.09068.

50 Peter W. Shor. Stretchability of Pseudolines is NP-Hard. In Peter Gritzmann and Bernd
Sturmfels, editors, Applied Geometry And Discrete Mathematics, volume 4 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 531–554, 1991.
doi:10.1090/dimacs/004/41.

51 Daniel Spielman and Shang-Hua Teng. Smoothed Analysis of Algorithms: Why the Simplex
Algorithm Usually Takes Polynomial Time. Journal of the ACM, 51(3):385–463, 2004. doi:
10.1145/990308.990310.

52 Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung. Dev2PQ: Planar
Quadrilateral Strip Remeshing of Developable Surfaces. ACM Transactions on Graphics,
41(3):29:1–29:18, 2022. doi:10.1145/3510002.

53 Nicolai N. Vorob’ev. Estimates of Real Roots of a System of Algebraic Equations. Journal of
Soviet Mathematics, 34:1754–1762, 1986. doi:10.1007/BF01095637.

SoCG 2022

https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
http://arxiv.org/abs/1606.09068
https://doi.org/10.1090/dimacs/004/41
https://doi.org/10.1145/990308.990310
https://doi.org/10.1145/990308.990310
https://doi.org/10.1145/3510002
https://doi.org/10.1007/BF01095637




Dynamic Connectivity in Disk Graphs
Haim Kaplan #

School of Computer Science,
Tel Aviv University, Israel

Alexander Kauer #

Institut für Informatik,
Freie Universtiät Berlin, Germany

Katharina Klost #

Institut für Informatik,
Freie Universität Berlin, Germany

Kristin Knorr #

Institut für Informatik,
Freie Universität Berlin, Germany

Wolfgang Mulzer #

Institut für Informatik,
Freie Universität Berlin, Germany

Liam Roditty #

Department of Computer Science,
Bar Ilan University, Ramat Gan, Israel

Paul Seiferth #

Institut für Informatik,
Freie Universtiät Berlin, Germany

Abstract
Let S ⊆ R2 be a set of n planar sites, such that each s ∈ S has an associated radius rs > 0. Let
D(S) be the disk intersection graph for S. It has vertex set S and an edge between two distinct sites
s, t ∈ S if and only if the disks with centers s, t and radii rs, rt intersect. Our goal is to design data
structures that maintain the connectivity structure of D(S) as sites are inserted and/or deleted.

First, we consider unit disk graphs, i.e., rs = 1, for all s ∈ S. We describe a data structure
that has O(log2 n) amortized update and O(log n/ log log n) amortized query time. Second, we look
at disk graphs with bounded radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ rs ≤ Ψ, for a Ψ ≥ 1
known in advance. In the fully dynamic case, we achieve amortized update time O(Ψλ6(log n) log7 n)
and query time O(log n/ log log n), where λs(n) is the maximum length of a Davenport-Schinzel
sequence of order s on n symbols. In the incremental case, where only insertions are allowed, we
get logarithmic dependency on Ψ, with O(α(n)) query time and O(log Ψλ6(log n) log7 n) update
time. For the decremental setting, where only deletions are allowed, we first develop an efficient
disk revealing structure: given two sets R and B of disks, we can delete disks from R, and upon
each deletion, we receive a list of all disks in B that no longer intersect the union of R. Using this,
we get decremental data structures with amortized query time O(log n/ log log n) that support m

deletions in O((n log5 n + m log7 n)λ6(log n) + n log Ψ log4 n) overall time for bounded radius ratio
Ψ and O((n log6 n + m log8 n)λ6(log n)) for arbitrary radii.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory
of computation → Data structures design and analysis; Mathematics of computing → Paths and
connectivity problems

Keywords and phrases Disk Graphs, Connectivity, Lower Envelopes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.49

Related Version Full Version: https://arxiv.org/abs/2106.14935

Funding Supported in part by grant 1367/2016 from the German-Israeli Science Foundation (GIF).
Haim Kaplan: Partially supported by ISF grant 1595/19 and by the Blavatnik research foundation.
Alexander Kauer : Supported in part by grant 1367/2016 from the German-Israeli Science Foundation
(GIF), by the German Research Foundation within the collaborative DACH project Arrangements
and Drawings as DFG Project MU 3501/3-1, and by ERC StG 757609.
Kristin Knorr : Supported by the German Science Foundation within the research training group
“Facets of Complexity” (GRK 2434).
Wolfgang Mulzer : Supported in part by ERC StG 757609.

© Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam
Roditty, and Paul Seiferth;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 49; pp. 49:1–49:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haimk@tau.ac.il
mailto:akauer@inf.fu-berlin.de
mailto:kathklost@inf.fu-berlin.de
https://orcid.org/0000-0002-9884-3297
mailto:knorrkri@inf.fu-berlin.de
https://orcid.org/0000-0003-4239-424X
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
mailto:liamr@macs.biu.ac.il
mailto:pseiferth@inf.fu-berlin.de
https://doi.org/10.4230/LIPIcs.SoCG.2022.49
https://arxiv.org/abs/2106.14935
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


49:2 Dynamic Connectivity in Disk Graphs

1 Introduction

Suppose we are given a simple, undirected graph G, and we would like to preprocess it so
that we can determine efficiently if two vertices of G lie in the same connected component.
If G is fixed, we can simply perform a graph search in G (e.g., BFS or DFS) to label the
vertices of each connected component with a unique identifier, allowing us to answer all
queries in O(1) time with linear preprocessing time and space. When G changes over time,
the problem becomes much harder. If the vertex set is fixed and edges can only be inserted,
the problem reduces to disjoint set union. Then, there is a folklore optimal data structure.It
achieves O(1) time for updates and O(α(n)) amortized time for queries, where α(n) is the
inverse Ackermann function [5]. If the vertex set is fixed, but edges can be inserted and
deleted, there is a data structure due to Holm et al. [8], with O(log n/ log log n) amortized
query time and O(log2 n) amortized update time. For planar graphs, Eppstein et al. [6] give
a structure with O(log n) amortized time for queries and updates.

In this paper, we add a geometric twist and study the dynamic connectivity problem on
different variants of disk intersection graphs. Let S ⊂ R2 be a set of planar point sites, where
each site s ∈ S has an associated radius rs > 0. The disk intersection graph (disk graph, for
short) D(S) is the undirected graph with vertex set S that has an undirected edge between
any two distinct sites s and t if and only if the Euclidean distance between s and t is at most
rs + rt. Note that even though D(S) is fully described by the n sites and their associated
radii, it might have Θ(n2) edges. Thus, our goal is to find algorithms whose running time
depends only on the number of sites and not on the number of edges. We consider three
variants of disk graphs, characterized by the possible values for the radii. In the first variant,
unit disk graphs, all radii are 1. In the second variant, bounded radius ratio, all radii must
come from the interval [1, Ψ], where Ψ is a parameter known in advance that may depend on
the number of sites n. In the third variant, general disk graphs, the radii can be arbitrary.

We assume that S is dynamic, i.e., sites can be inserted and deleted over time. At each
update, the edges incident to the modified site appear or disappear in D(S). An update can
change up to n − 1 edges in D(S), so simply storing D(S) in the data structure by Holm
et al. could lead to potentially superlinear update times and might even be slower than
recomputing the connectivity information from scratch.

For dynamic connectivity in general disk graphs, Chan et al. [4] give a data structure
with amortized O(n1/7+ε) query time and O(n20/21+ε) update time. As far as we know,
this is still the currently best fully dynamic connectivity structure for general disk graphs.
However, Chan et al. present their data structure as a special case of a more general setting,
so there is hope that the specific geometry of disk graphs may allow for better running times.

Indeed, several results show that for certain disk graphs, we can achieve polylogarithmic
update and query times. For unit disk graphs, Chan et al. [4] observe that there is a data
structure with O(log6 n) update time and O(log n/ log log n) query time.1 For bounded
radius ratio, Kaplan et al. [9] show that there is a data structure with expected amortized
update time O(Ψ2λ6(log n) log7 n) and query time O(log n/ log log n).2 Both results use the
notion of a proxy graph, a sparse graph that models the connectivity of the original disk
graph and that can be updated efficiently with suitable dynamic geometric data structures.
The proxy graph can then be stored in the data structure by Holm et al., so the query
procedure coincides with the one by Holm et al. The update operations involve a combination
of updating the proxy graph with the help of the geometric data structures and of modifying
the edges in the structure of Holm et al.

1 Actually, Chan et al. [4] claim an update time of O(log10 n). Recent results [3] improve the bound.
2 The original paper claims an update time of O(Ψ2λ6(log n) log9 n), but recent improvements in the

underlying data structure [10] lead to the better bound.



H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:3

Our results. For unit disk graphs, we significantly improve over Chan et al. [4]: with a
direct approach that uses a grid-based proxy graph and dynamic lower envelopes, we obtain
O(log2 n) amortized update and O(log n/ log log n) amortized query time (Theorem 3.2).

For bounded radius ratio, we give a data structure that improves the update time.
Specifically, we achieve expected amortized update time O(Ψλ6(log n) log7 n) and amortized
query time O(log n/ log log n), where λs(n) is the maximum length of a Davenport-Schinzel
sequence of order s on n symbols [11]. Compared to the previous data structure of Kaplan
et al., this improves the factor in the update time from Ψ2 to Ψ.

We also provide partial results that push the dependency on Ψ from linear to logarithmic.
For this, we consider the semi-dynamic setting, in which only insertions (incremental) or only
deletions (decremental) are allowed. In the incremental setting, we use a dynamic additively
weighted Voronoi diagram to obtain a data structure with O(α(n)) amortized query time and
O(log Ψλ6(log n) log7 n) expected amortized update time. Due to space reasons, this result is
deferred to the full version. In the decremental setting, a main challenge is to identify those
edges in D(S) that were incident to a freshly removed site and that change the connectivity
in D(S). To address this, we first develop a data structure for a related dynamic geometric
problem which might be of independent interest: suppose we have two sets R and B of disks
in the plane, such that the disks in B can only be deleted, while the disks in R can be both
inserted and deleted. We would like to maintain R and B in a data structure such that
whenever we delete a disk b from B, we receive a list of all the disks in the current set R

that intersect the disk b but no other disk from the remaining set B \ {b}. We say that these
are the disks in R that are revealed by the deletion of b. We call this data structure a disk
revealing structure (RDS). Due to space reasons, the details of the RDS are relegated to the
full version. Its properties are summarized in the following theorem:

▶ Theorem 1.1. Let R and B be disjoint sets of disks in R2 with |R|+|B| = n. We can prepro-
cess R∪B into a structure that supports deletions from R∪B, while detecting all newly revealed
disks of R after each deletion from b. Preprocessing needs O

(
|B| log5 nλ6(log n) + |R| log3 n

)
expected time and O(n log n) expected space. Deleting k disks from B and any number of disks
from R needs O

(
|R| log4 n + k log7 nλ6(log n)

)
expected time, where λs(n) is the maximum

length of a Davenport-Schinzel sequence of order s.

The RDS plays a crucial part in developing decremental connectivity structures for disk
graphs of bounded radius ratio and for general disk graphs. For both cases, we obtain
data structures with O(log n/ log log n) amortized query time. The total expected time for
processing k deletions is O((n log5 n + k log7 n)λ6(log n) + n log Ψ log4 n) for bounded radius
ratio (Theorem 5.6) and O((n log6 n + k log8 n)λ6(log n)) for the general case (full version).

2 Preliminaries

Data structure for edge updates. We rely on the following existing data structure that
supports connectivity queries and edge updates on general graphs.

▶ Theorem 2.1 (Holm et al. [8, Theorem 3]). Let G be a graph with n vertices and initially no
edges. There is a deterministic fully dynamic data structure so that edge updates in G take
amortized time O(log2 n) and connectivity queries take worst-case time O(log n/ log log n).

Theorem 2.1 assumes that n is fixed, but we can easily support vertex insertions and
deletions within the same amortized time bounds, with standard rebuilding. Thorup gave a
variant of Theorem 2.1 that uses O(m) space, where m is the current number of edges [13].

SoCG 2022



49:4 Dynamic Connectivity in Disk Graphs

2i+1

2i

σ
N5×5(σ)

a(σ)

Figure 1 Two levels of the hierarchical grid.

The hierarchical grid and quadtrees. Let Gi be a grid with cell diameter 2i and a corner at
the origin. The hierarchical grid G is defined as G =

⋃∞
i=0 Gi. For any cell σ ∈ G, we denote

by |σ| its diameter and by a(σ) its center. We say that grid Gi has level i. We assume that
we can find the coordinates of the cell of G containing a site on a given level in O(1) time.
Furthermore, for a cell σ ∈ Gi and odd k, we call the k × k subgrid of Gi centered at σ the
(k × k)-neighborhood of σ, and denote it by Nk×k(σ); see Figure 1. Let C be a set of cells in
G. The quadtree T for C is a rooted 4-nary tree whose nodes are cells from G. The root of C
is the smallest cell ρ in G that contains all of C. If a cell σ with |σ| = 2i, for i ≥ 1, properly
contains at least one cell of C, then the four children of σ are the cells τ with |τ | = 2i−1

and τ ⊆ σ. If a cell σ does not properly contain a cell of C, it does not have any children.
Typically, we do not distinguish between a cell σ and its associated vertex. A quadtree T on
a given set of n cells can be constructed in O(n log(|ρ|)) time, where ρ is the root of T .

Maximal bichromatic matchings. We need a data structure that dynamically maintains a
maximal bichromatic matching (MBM) between two sets of disks: let R ⊆ S and B ⊆ S be
two disjoint non-empty sets of sites, and (R × B) ∩ D(S) the bipartite graph on R and B

with all edges of D(S) with one vertex in R and one vertex in B. An MBM between R and
B is a maximal set of vertex-disjoint edges in (R × B) ∩ D(S). We show how to maintain an
MBM as sites are inserted or deleted in R and in B, in two ways. The first way uses a general
structure by Kaplan et al. [9] and applies in all settings, see the full version for details.

▶ Lemma 2.2. Let R, B ⊆ S be two disjoint sets with a total of at most n sites. Then, there
exists a dynamic data structure that maintains an MBM for R and B with O(λ6(log n) log7 n)
amortized expected update time, using O(n log n) expected space.

The second way applies only to unit disks that are separated by a vertical or horizontal
lines. It relies on dynamic lower envelopes for pseudolines [1], see the full version for details.

▶ Lemma 2.3. Suppose that rs = 1, for all sites s ∈ S. Let R, B ⊆ S be two disjoint sets
with a total of at most n sites, such that there is a there exists a known vertical or horizontal
line that separates R and B. Then, there exists a dynamic data structure that maintains an
MBM for R and B with O(log2 n) worst-case update time, using O(n) space.



H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:5

D(S)

updates

·O(log2 n)
DBCP

Dynamic Connectivity DS

EMST
21

Figure 2 A solution with O(log6 n) update time.

·O(1)
D(S) DLE

updates

MBM

Dynamic Connectivity DS

H
21 3

·O(1)

Figure 3 The structure for our data structure.

3 Fully dynamic unit disk graphs

We first consider the case of unit disk graphs. As mentioned in the introduction, this problem
was already addressed by Chan et al. [4]. They explained how to combine several known
results into a data structure for connectivity queries in fully dynamic unit disk graphs with
update time O(log6 n) and query time O(log n/ log log n).

A visual representation of their approach can be found in Figure 2. In the core, they
use a subtree of the Euclidean minimum spanning tree (EMST) of S as a proxy graph that
accurately represents the connectivity of D(S). They store this proxy graph in a Holm et al.
data structure. In order to update the EMST efficiently, they also maintain several instances
of a dynamic bichromatic closest pair problem (DBCP). The combination of the running
times for the separated data structures then yields the overall running time claimed above.
To improve over this result, we replace the EMST by a simpler graph that still captures the
connectivity of D(S). We also replace the DBCP structure by a suitable maximal bichromatic
matching (MBM) structure that is based on dynamic lower envelopes (Lemma 2.3). These
two changes significantly improve the amortized update time to O(log2 n), without affecting
the query time. The overall structure behind our method is shown in Figure 3.

We define a proxy graph H that represents the connectivity of D(S). The vertices of H

are cells of the grid G1 of diameter 2 (cf. Section 2). More precisely, we say that two cells σ,
τ in G1 are neighboring if σ ∈ N5×5(τ). For S ⊂ R2, we define the graph H whose vertices
are the non-empty cells σ ∈ G1, i.e., the cells with σ ∩ S ̸= ∅. We say that a site s ∈ S is
assigned to the cell σ ∈ G1 that contains it, and we let S(σ) denote the sites that are assigned
to σ. Two cells σ, τ are connected by an edge in H if and only if there is an edge st ∈ D(S)
with s ∈ S(σ) and t ∈ S(τ). Then, H is sparse and represents the connectivity in D(S), as
stated in the following lemma. Its simple proof can be found in the full version.

▶ Lemma 3.1. The proxy graph H has at most n vertices, each with degree O(1). Two sites
s, t ∈ S are connected in D(S) if and only if their assigned cells σ and τ are connected in H.

We build a data structure H as in Theorem 2.1 for H . To query the connectivity between
two sites s and t, we first identify the cells σ and τ in G1 to which s and t are assigned. This
requires O(1) time, because when inserting a site u, we can store the assigned cell for u in the
satellite data of u. The query is then performed on H, using σ and τ as the query vertices.
When a site s is inserted into or deleted in S, only the edges incident to the assigned cell σ

are affected. By Lemma 3.1, there are only O(1) such edges. Thus, once the set E of these
edges is determined, by Theorem 2.1, we can update H in time O(log2 n).

SoCG 2022



49:6 Dynamic Connectivity in Disk Graphs

It remains to find the edges E of H that change when we update S. For each pair σ, τ of
neighboring cells in G1, we maintain a maximal bichromatic matching (MBM) M{σ,τ} for
R = S(σ) and B = S(τ), as in Lemma 2.3 (note that the special requirements of the lemma
are met in our case). By construction, there is an edge between σ and τ in H if and only
if M{σ,τ} is not empty. When inserting or deleting a site s from S, we proceed as follows:
let σ ∈ G1 be the cell associated to σ. We go through all cells τ ∈ N5×5(σ), and we update
M{σ,τ} by inserting or deleting s from the relevant set. If M{σ,τ} becomes non-empty during
an insertion or empty during a deletion, we add the edge στ to E and mark it for insertion or
deletion, respectively. Putting everything together, we obtain the main result of this section:

▶ Theorem 3.2. There is a dynamic connectivity structure for unit disk graphs such that
an update takes amortized time O

(
log2 n

)
and a connectivity query takes worst-case time

O(log n/ log log n), where n is the maximum number of sites. The structure uses O(n) space.

4 Fully dynamic bounded radius ratio

We extend our structure from Theorem 3.2 to the case of bounded radius ratio Ψ. Now,
the running times will depend polynomially on Ψ. The general approach is unchanged,
but the varying sizes of the disks introduce new issues. First, we adapt Theorem 3.2 to
disks of different sizes. Instead of just G1, we rely on a hierarchical grid with ⌈log Ψ⌉ + 1
levels. Each site s is assigned to a cell σ of such level that |σ| ≤ rs < 2|σ|. Since the disks
have different sizes, we can no longer use Lemma 2.3 to maintain the maximal bichromatic
matchings (MBMs) between neighboring non-empty grid cells. Instead, we use the more
complex structure from Lemma 2.2. This increases the overhead for updating the MBM for
each pair of neighboring cells. Furthermore, a disk can now intersect disks from Θ(Ψ2) other
cells, instead of the O(1)-bound from the unit disk case, see Figure 4. Thus, the degree of the
proxy graph and the number of edges that need to be modified in a single update becomes
much larger. This results in the following theorem, see the full version for details.

▶ Theorem 4.1. There is a dynamic connectivity structure for disk graphs of bounded
radius ratio Ψ such that an update takes amortized expected time O(Ψ2λ6(log n) log7 n) and a
connectivity query takes worst-case time O(log n/ log log n), where n is the maximum number
of sites at any time. The data structure requires O(Ψ2n log n) expected space.

To remedy this latter problem – at least partially – we describe in Section 4.1 how to
refine the proxy graph so that fewer edges need to be modified in a single update operation.
This will reduce the dependence on Ψ in the update time to linear. The query procedure
becomes slightly more complicated, but the asymptotic running time remains unchanged.

Note that the approach described above is similar to the method of Kaplan et al. [9,
Theorem 9.11] that achieves the same time and space bounds. However, the details of
our implementation are crucial for the adaptation in Section 4.1. Most significantly, our
implementation uses a hierarchical grid instead of a single fine grid.

4.1 Improving the dependence on Ψ
To avoid an update time dependent on the potentially quadratic number of neighbors, we
show how to reduce the degree of the proxy graph H from Θ(Ψ2) to O(Ψ). The intuition is
that to maintain the connected components of D(S), it suffices to focus on maximal disks that
are not contained in any other disk in S. From this, it follows that we only need to consider
edges between disks that intersect properly. When we want to perform a connectivity query
between sites s and t, we must find appropriate maximal disks that contain s and t. Let D



H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:7

Gi

Gi−1

Gi−2

Figure 4 The neighborhood of the red colored cell in Gi−1. The area of the neighboring cells in
one level beneath is colored in a darker shade.

be a disk and σ ∈ G a cell. We say that σ is fully covered by D if and only if every possible
assigned disk of σ is fully contained in D. We call σ maximal if and only if there is no larger
cell τ ⊃ σ that is fully covered by Ds.

Given a disk D, the maximal cells in the quadforest F that are fully covered by D are
exactly those that are closest to the root in their quadtrees. Furthermore, the whole subtree
of F that is rooted in a maximal fully covered cell consists of cells that are fully covered by
D. The following lemma bounds the number of the different types of cells. See Figure 5.

▶ Lemma 4.2. Let s ∈ S be a site, and let N be the cells of F that may contain a disk that
intersects Ds. Write N = N1 ∪ N2 ∪ N3, where N1 are the cells that are not fully covered
by Ds, N2 the disks that are maximal fully covered by Ds, and N3 the disks that are fully
covered by Ds, but not maximal with this property. Then, we have |N1 ∪ N2| = O(Ψ) and
|N3| = O(Ψ2). Using the quadforest F , we can find N1 ∪ N2 in O(Ψ + log n) time and N3 in
O(Ψ2 + log n) time.

Proof sketch. (Full proof in the full version) The cells of N1 form an annulus per level. A
volume argument shows that they sum up to O(Ψ) altogether. Now, note that every cell in
N2 is either a quadtree root in F or a child of a cell in N1. Hence, we have |N1 ∪ N2| = O(Ψ).
The bound on |N3| follows from the number of neighbors. The retrieval is possible with
simple traversal after finding the relevant roots of F in O(log n) time. ◀

Now, we show that it is enough to focus on a subset of the edges in the proxy graph.
More precisely, let H ′ be the subgraph of H that is defined as follows: as in H, the vertices
of H ′ are all cells σ that have S(σ) ̸= ∅. Two cells σ, τ with |σ| ≥ |τ | are adjacent in H ′ if
and only if there are s ∈ S(σ) and t ∈ S(τ) such that Ds and Dt intersect and such that Ds

does not fully cover τ . Let σ be a cell in H. We define the proxy cell σ′ of σ as follows: if
there is no disk in S that fully covers σ, then σ′ = σ. Otherwise, let σ ⊇ σ be the maximal
cell that contains σ and is fully covered by a disk in S, and let Ds, s ∈ S, be a disk of
maximum radius that fully covers σ. Then, we set σ′ to be the cell with s ∈ S(σ′). If there
are multiple such disks, the choice is arbitrary.

SoCG 2022



49:8 Dynamic Connectivity in Disk Graphs

Gi

Gi−1

Gi−2

Figure 5 The types of cells that require checking when updating the black disk in Theorem 4.1:
N1: not fully covered N2: maximal fully covered N3: fully covered, not maximal.

Ds′

Dt
Ds

(a) Omitting the dashed disks and querying for
s′ instead of s still leads to a valid path to t.

(b) A path between the two red disks can ignore
the dashed black disks as intermediates.

Figure 6 Depiction of the arguments in Lemma 4.3.

▶ Lemma 4.3. Let s, t ∈ S be two sites, and let σ, τ be the cells with s ∈ S(σ) and t ∈ S(τ).
Let σ′ and τ ′ be the proxy cells for σ and τ . Then, σ′ and τ ′ are connected in H ′ if and only
if s and t are connected in D(S).

Proof sketch. (Full proof in the full version) First, suppose that s and t are not connected
in D(S). Since H ′ is a subgraph of H, it follows that σ′ and τ ′ are not connected in H ′.

Next, suppose that s and t are connected in D(S). We consider a path of (inclusion)
maximal disks that connects s and t in D(S), and we show that it induces a path between
σ′ and τ ′ in H’. Let Ds′ , Dt′ with s′ ∈ S(σ′), t′ ∈ S(τ ′) be the disks of maximum radius
which caused σ′, τ ′ to be proxy cells of σ, τ . Now, there is a path π in D(S) between s′ and
t′ that uses only maximal disks: indeed, along any path in D(S) between s′ and t′, we can
replace every disk by a maximal disk that contains it, and the resulting path π (possibly after
removing duplicate disks) has the required property. See Figure 6. Consider the sequence
π′ of cells in H ′ that we obtain by replacing every site u in π by the cell σu in H ′ with
u ∈ S(σu), and by removing any duplicate cells. We observe that π′ is actually a path in H ′,
since the assigned cells for two intersecting maximal disks of S must be adjacent in H ′. ◀

Now, our strategy is to maintain the proxy graph H ′ instead of the graph H, again
such that each potential edge of H ′ is supported by an MBM structure. This will make the
updates faster. However, when performing a query, we must be able to find the proxy cells
for the query sites efficiently. This requires a further modification of the quadforest F .



H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:9

▶ Theorem 4.4. There is a data structure for dynamic disk connectivity with expected
amortized update time O(Ψλ6(log n) log7 n) and amortized query time O(log n/ log log n). It
needs O(Ψn log n) expected space.

Proof sketch. (Full proof in the full version) We may assume that Ψ = O(n3). We augment
the quadforest F : in each cell σ in F , we store the set Cσ of all sites s ∈ S such that σ is
maximal fully covered by Ds. Cσ is organized as a max-heap, ordered by radius rs.

We describe how to insert a new site s. First, we insert s into the quadforest F . Then, we
obtain the sets N1 and N2 for s using Lemma 4.2 and insert them into F . For each τ ∈ N1
we insert s into the MBM for σ and τ and update H of Theorem 2.1 accordingly. For each
τ ∈ N2, we insert s into the max-heap Cτ . A deletion is handled analogously.

To perform a connectivity query between s and t, let σ and τ be the cells with s ∈ S(σ)
and t ∈ S(τ). We determine the proxy cell σ′ via obtaining the maximal cell σ ⊇ σ that
contains σ and is fully covered by a disk from S. Let u be the site of maximum radius in the
max-heap Cσ and set σ′ = σu. τ ′ is obtained similarly. Afterwards, H is queried with σ′ and
τ ′ for the final result. By Lemma 4.3, this gives the correct answer. The overall running time
for this query procedure is O(log n), where the bottleneck consists in ascending the quadtree.

The query time can be improved via maintaining every Θ(log log Ψ) levels shortcuts
pointing upwards, each pointing to the next. To decide whether to take a shortcut, the
respective cells have another max-heap containing all intermediate max-heaps. ◀

5 Semi-dynamic bounded radius ratio

We turn to the semi-dynamic setting, and we show how to reduce the dependency on Ψ from
linear to logarithmic. For both the incremental and the decremental scenario, we use the
same proxy graph H to represent the connectivity in D(S). The proxy graph is described in
Section 5.1. In Section 5.2 we then describe the data structures using H. For details on how
to use the proxy graph in the incremental setting, refer to the full version of this paper.

5.1 The proxy graph

The vertex set of the proxy graph H contains one vertex for each site in S, plus one additional
vertex per certain region A ∈ A in the plane, to be described below. Each region is defined
based on a cell of a quadtree and associated with two site sets, S1(A) and S2(A). The first set
S1(A) ⊆ S is defined such that all sites s ∈ S1(A) lie in A and have a radius rs comparable
to the size of A, for a notion of “comparable” to be detailed below. A site s can lie in several
sets S1(A). We will ensure that for each region A, the induced disk graph D(S1(A)) of the
associated sites is a clique. The second set S2(A) ⊆ S contains a site s if it lies in the cell
associated to the region A and if rs is “small”. The sites in S2(A) are all sites with a suitable
radius in the associated cell of A that have an edge in D(S) to at least one site in S1(A).

The proxy graph H is bipartite, with all edges going between the site-vertices and the
region-vertices. The edges of H connect every region A to all sites in S1(A) ∪ S2(A). The
connections between the sites in S1(A) and A constitute a sparse representation of the
corresponding clique D(S1(A)). The edges connecting a site in S2(A) to A allow us to
represent all edges in D(S) between S2(A) and S1(A) by two edges in H , and since D(S1(A))
is a clique, this sparse representation does not change the connectivity between the sites. We
will see that the sites in S2(A) can be chosen such that every edge in D(S) is represented by
two edges in H. Furthermore, we will ensure that the number of regions, and the total size
of the associated sets S1(A) and S2(A) is small, giving a sparse proxy graph.

SoCG 2022



49:10 Dynamic Connectivity in Disk Graphs

2π/
d

σ a(σ)

Figure 7 The cones Cd with angle 2π/d, with apex at the center a(σ) of a cell σ.

Now, we describe the details of the regions in A. For each site s ∈ S we consider the
cell σs ∈ G with s ∈ σs and |σs| ≤ rs < 2|σs| and its (15 × 15)-neighborhood N(s). We let
N = {N(s) | s ∈ S} and construct the quadforest F for N . This quadforest F contains
quadtrees that cover the lowest ⌊log Ψ⌋ + 1 levels of the hierarchical grid G, see the full
version for details. The set A of region-vertices of H is a subset of the set AF that contains
certain regions for every cell of F . There are three kinds of regions for a cell σ of F : the
outer regions, the middle regions, and the inner region.

To describe these regions, we first define for d ∈ N a set Cd of d cones with opening angle
2π/d, such that all cones in Cd have their apex in the origin, have pairwise disjoint interiors,
and cover the plane. For a cell σ ∈ F , we denote by Cd(σ) a translated copy of Cd whose
apex has been moved to the center a(σ), of σ, as shown in Figure 7.

Let Γ(a, r1, r2) be the annulus centered at a with inner radius r1 and outer radius
r2. To define the outer regions for a cell σ, we consider the set Cd1(σ), for some in-
teger parameter d1 to be determined below. For each Cd1 we set the outer regions to
be

{
C ∩ Γ(a(σ), 5

2 |σ|, 9
2 |σ|) | C ∈ Cd1

}
. Similarly to this, we define the middle regions as{

C ∩ Γ(a(σ), |σ|, 5
2 ) | C ∈ Cd2

}
. Finally, the inner region for σ is the disk with center a(σ)

and radius |σ|. See Figure 8 for an illustration of the regions for a cell σ.
We associate a set of sites S1(A) ⊆ S with each region A ∈ AF . The set S1(A) contains

all sites t such that (i) t ∈ A; (ii) |σ| ≤ rt < 2|σ|; and (iii) ∥a(σ)t∥ ≤ rt + 5
2 |σ|. This means

that the disk Dt has size comparable to |σ|, a center in A. If t is in a middle or inner region,
the third property is trivially true. If t is in an outer region it implies that t intersects the
inner boundary of A.

We define A ⊆ AF as the set of regions where S1(A) ̸= ∅. In the following, we will not
strictly distinguish between a vertex from A and the corresponding region, provided it is
clear from the context.

For each region A ∈ A, we define a set S2(A) as the set of all sites s such that (i) s ∈ σ;
(ii) s is adjacent in D(S) to at least one site in S1(A); and (iii) rs < 2|σ|.

We add an edge sA in H between a site s and a region A if and only if s ∈ S1(A) ∪ S2(A).
Note that the sets S1(A) and S2(A) are not necessarily disjoint, as for the center region
defined by a cell σ, a site with |σ| ≤ rs < 2|σ| will be both in S1(A) and S2(A). However,
this will adversely affect neither the preprocessing time nor the correctness. The following
structural lemma will help us both to show that H accurately represents the connectivity as
well as to bound the size of H and the preprocessing time in the decremental setting.



H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:11

σ

outer regions inner region

middle regions

|σ|

9
2 |σ|

5
2 |σ|

Figure 8 The regions defined by a cell σ.

A

A′

Figure 9 The set S1(A) is marked blue. The orange site in A is not in the set because its radius
is too small. The orange site in A′ is not in S1(A′): even though its radius is in the correct range, it
does not touch or intersect the inner boundary.

SoCG 2022



49:12 Dynamic Connectivity in Disk Graphs

A

Figure 10 The red sites in σ are in S2(A). The radius of the orange site is in the correct range,
but it does not intersect a site in S1(A) (marked blue).

▶ Lemma 5.1. Let st be an edge in D(S) with rs ≤ rt, then
1. there is a cell σ ∈ N(t) with s ∈ σ such that σ defines a region A with t ∈ A; and
2. all cells that define a region A with t ∈ S1(A) are in N(t).

The proof for Lemma 5.1 can be found in the full version of the paper. Before we argue
that H accurately represents the connectivity of D(S), we show that the associated sites of a
region in A form a clique in D(S).

▶ Lemma 5.2. Suppose that d1 ≥ 23 and d2 ≥ 8. Then, for any region A ∈ A, the associated
sites in S1(A) form a clique in D(S).

Proof sketch. (Full proof in the full version) The diameter of the inner and middle regions
is at most 2|σ|, thus two sites in S1(A) always intersect.

If a site t lies in the outer region, we can show that the lines segments that are perpendicular
to the boundary rays of the cones, go through t and are inside the cone are contained in Dt.
Then any other site t′ that has a larger distance to a(σ) than t either lies in the convex hull
defined by the perpendicular line segments, or Dt′ contains a line segment that intersects
the convex hull, see Figure 11. ◀

Having Lemmas 5.1 and 5.2 at hand, we can now show that H accurately represents the
connectivity of D(S).

▶ Lemma 5.3. Two sites are connected in H if and only if they are connected in D(S).

Proof. Let s, t ∈ S. First, we show that if s and t are connected in H , they are also connected
in D(S). The path between s and t in H alternates between vertices in S and vertices in
A. Thus, it suffices to show that if two sites u and u’ are connected with the same region
A ∈ A, they are also connected in D(S). This follows directly from Lemma 5.2: if u and
u′ both lie in S1(A), they are part of the same clique. Otherwise, S2(A) is non-empty, and
there is at least one site in S1(A) which intersects the site in S2(A). Then u is connected to
u′ via the clique induced by S1(A), and the claim follows.

Now, we consider two sites connected in D(S), and we show that they are also connected
in H. It suffices to show that if s, t are adjacent in D(S), they are connected in H. Assume
without loss of generality that rs ≤ rt, and let σ be the cell in N(t) with s ∈ σ. The cell



H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:13

Figure 11 The disk D(t, 9
2 |σ|) is contained in N15×15(τ).

σ exists by the first property of Lemma 5.1, and it belongs to F , since σ lies in the first
⌈log Ψ⌉ + 1 levels of G and since σs ⊆ σ. Thus, we get that t ∈ S1(A) for some A ∈ AF . As
the regions with non-empty sets S1(A) are in A, by definition, the edge tA exists in H.

Now we argue that s ∈ S2(A), and thus the edge As also exists in H. This follows by
straightforward checking of the properties of a site in S2(A). We have s ∈ σ by the definition
of σ, and, by assumption, rs ≤ rt < 2|σ|. Finally, as t is in S1(A) and as Ds and Dt intersect,
there is at least one site in S1(A) that intersects Ds. The claim follows. ◀

After we have shown that H accurately represents the connectivity relation in D(S), we
now show that the number of edge in H depends only on n and Ψ, and not on the number
of edges in D(S) or the diameter of S. The proof of the following lemma can be found in the
full version.

▶ Lemma 5.4. The proxy graph H has O(n) vertices and O(n log Ψ) edges.

5.2 The decremental data structure
The decremental data structure has several components: we store a quadforest containing
the cells defining A and for every A ∈ A, we store the sets S1(A) and S2(A). For each region
A ∈ A, we store a disk revealing structure (RDS) as in Theorem 1.1 with B = S1(A) and
R = S2(A). Finally, we store the proxy graph H in a Holm et al. data structure H [8]. See
Figure 12 for an illustration.

As usual, the connectivity queries are answered using H. To delete a site s, we first
remove from H all incident edges of s. Then, we go through all regions A with s ∈ S1(A). We
remove s from S1(A) and the RDS of A, and we let U be the set of revealed sites from S2(A)
reported by the RDS. We delete each such site u ∈ U from S2(A) and the corresponding
RDS. Additionally, we delete the edges uA for u ∈ U from H for all u ∈ U that are not
also in S1(A). Next, for each region A with s ∈ S2(A), we remove s from S2(A) and the
associated RDS.

This gives us a time bound for the preprocessing time and the main theorem follows.

▶ Lemma 5.5. Given a set S of n sites, we can construct the data structure described above
in O

(
n log5 nλ6(log n) + n log Ψ log3 n

)
time.

SoCG 2022



49:14 Dynamic Connectivity in Disk Graphs

S

Dynamic Connectivity DS

F A

S1(A) S2(A)

H

RDS

vertices vertices

edges

Figure 12 The structure of the decremental data structure.

▶ Theorem 5.6. The data structure handles m site deletions in overall O
((

n log5 n +
m log7 n

)
λ6(log n) + n log Ψ log4 n

)
time. Furthermore, it correctly answers connectivity

queries in O(log n/ log log n) amortized time.

6 Semi-dynamic arbitrary radius ratio

We extend the approach from Section 5 to obtain a decremental data structure with a
running time that is independent of Ψ. The cost for dropping the dependence on Ψ is
replacing the additive O

(
n log Ψ log4 n

)
term in the running time of Theorem 5.6 with an

additional O(log n) factor in the first term. The O
(
n log Ψ log4 n

)
term in Theorem 5.6

arose from the total size of the sets S2(A), and thus from the height of the quadtrees in
F . We can get rid of this dependency by using a compressed quadtree Q instead of F . The
height and size of Q do not depend on the radius ratio of the diameter of S, but only on n.
Nonetheless, the height of Q could still be Θ(n), which is not favorable for our purposes. In
order to reduce the number of edges in our proxy graph to O(n log n), we use a heavy path
decomposition of Q in combination with a canonical decomposition for every heavy path. Let
diam(S) = maxs,t∈S ∥st∥. To simplify our arguments, we assume without loss of generality
that S and its associated radii are scaled all associated radii are at least 1. This allows us to
keep working with our hierarchical grid G, as defined in Section 2.

Compressed quadtrees. The quadtree defined for a set C of O(n) cells as in Section 2,
has O(n) leaves and height O(log(|ρ|)), where ρ is the smallest cell in G that contains all
cells of C. This height can be arbitrarily large, even if n is small. To avoid this, we use the
notion of a compressed quadtree Q as defined by Har-Peled [7] among others. Q has O(n)
vertices, height O(n), and it can be constructed in O(n log n) time [2, 7]. While the latter
construction algorithm is stated for planar point sets it can be applied by considering a set
of O(n) virtual sites, similar to a construction of Har-Peled [7], see Figure 13.

Heavy paths. Let T be a rooted ordered tree. An edge uv ∈ T is called heavy if v is the first
child of u that maximizes the total number of nodes in the subtree rooted at v. Otherwise,
the edge uv is light. By definition, every interior node in T has exactly one child that is
connected by a heavy edge. A heavy path is a maximum path in T that consists only of
heavy edges. The heavy path decomposition of T is the set of all the heavy paths in T . The
following lemma summarizes a classic result on the properties of heavy path decompositions.



H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:15

Figure 13 Four cells from N15×15(σ) with the virtual sites.

▶ Lemma 6.1 (Sleator and Tarjan [12]). Let T be a tree with n vertices. Then, the following
properties hold:
1. Every leaf-root path in T contains O(log n) light edges;
2. every vertex of T lies on exactly one heavy path; and
3. the heavy path decomposition of T can be constructed in O(n) time.

The proxy graph. The general structure of the proxy graph is as in Section 5.1, and we
will often refer back to it. We still have a bipartite graph with S on one side and a set of
regions vertices on the other side. The regions will again be used to define sets S1(A) and
S2(A) that will determine the edges. However, we will adapt the regions A and define them
based certain subpaths of the compressed quadtree Q instead of single cells. Furthermore, we
will relax the condition on the radii in the definition of the sets S1(A).

As usual, for a site s ∈ S, let σs be the cell in G with s ∈ σs and |σs| ≤ rs < 2|σs|.
Let N(s) be the (15 × 15)-neighborhood of σs. Let N = {N(s) | s ∈ S}, and let Q be
the compressed quadtree for N . Now, let R be the heavy path decomposition of Q, as in
Lemma 6.1. For each heavy path R ∈ R, we find a set PR of canonical paths such that every
subpath of R can be written as the disjoint union of O(log n) canonical paths. To be precise,
for each R ∈ R, we build a biased binary search tree TR with the cells of R in the leaves,
sorted by increasing diameter. The weights in the biased binary search tree are chosen as
described by Sleator and Tarjan [12]: for a node σ of R, let the weight wσ be the number of
nodes in Q that are below σ (including σ), but not below another node of R below σ. Then,
the depth of the leaf σ in TR is O(log(wR/wσ)), where wR is the total weight of all leaves
in TR. We associate each vertex v in TR with the path induced by the cells in the subtree
rooted at v, and we add this path to PR. Using this construction, we can write every path
in Q that starts at the root as the disjoint union of O(log n) canonical path:

▶ Lemma 6.2. Let σ be a vertex of Q, and let π be the path from the root of Q to σ. There
exists a set Pπ of canonical paths such that: (i) |Pπ| = O(log n); and (ii) π is the disjoint
union of the canonical paths in Pπ.

Proof sketch. (Full proof in full version) By Lemma 6.1 there are O(log n) heavy paths
R1, . . . , Rk along π. The subpaths defined by the search paths to the smallest cell of a heavy
path Ri partition π. Furthermore, by summing over the weights of the leaves of the biased
binary search tree, we get that the overall number of canonical paths for π is O(log n). ◀

The vertex set of the proxy graph H again consists of S and a set of regions A. We
define O(1) regions for each canonical path R in a similar way as in Section 5.1. Let σ be
the smallest cell and τ the largest cell of R. The inner and middle regions of R are defined

SoCG 2022



49:16 Dynamic Connectivity in Disk Graphs

Q′

R3

R2

R1

R4

R5

R1

σ1

σ2

σ3

σ4

σ5

σ1 σ2 σ3

σ5

R2

R3

R5

Pπ

σ4

R4

Figure 14 Illustration of Lemma 6.2. On the left, we see the decomposition of R into R1, . . . Rk.
On the right, the vertices defining Pπ are depicted in green.

as in Section 5.1, using σ as the defining cell. For the outer regions of R, we extend the
outer radius of the annulus: they are defined as the intersections of the cones in Cd1 with the
annulus of inner radius 5

2 |σ| and outer radius 5
2 |σ| + 2|τ |, again centered at a(σ). The set A

now contains the regions defined in this way for all canonical paths.
Given a region A ∈ A for a canonical path R with smallest cell σ and largest cell τ , we

can now define the sets S1(A) and S2(A). These definitions are similar to the analogous sets
in Section 5.1. The set S1(A) contains all sites t such that (i) t ∈ A; (ii) |σ| ≤ rt ≤ 2|τ |;
and (iii) ∥a(σ)t∥ ≤ rt + 5

2 |σ|. The definition for S2(A) is also similar to Section 5.1, using
canonical paths instead of cells. Let s ∈ S be a site, and πs be the path in Q from the root
to σs. Let Ps be the decomposition of πs into canonical paths as in Lemma 6.2. Let A be a
region, defined by a canonical path P . Then, s ∈ S2(A) if (i) P ∈ Ps; and (ii) s is adjacent in
D(S) to at least one site in S1(A). These are basically the conditions we had in Section 5.1.
However, as the definition is restricted to those canonical paths in Pπs , not all sites satisfying
these conditions are considered. Using similar arguments as in Section 5.1, this suffices to
make sure that the proxy graph represents the connectivity, while also ensuring that each
site s lies in few sets S2(A).

The graph H is now again defined by connecting each region A ∈ A to all sites in
s ∈ S1(A) ∪ S2(A). By similar considerations as in Section 5, we obtain a decremental data
structure for disk graphs with arbitrary radii. The details can be found in the full version.

References

1 Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer. Maintaining the
union of unit discs under insertions with near-optimal overhead. In Proc. 35th Annu. Sympos.
Comput. Geom. (SoCG), pages 26:1–26:15, 2019. doi:10.4230/LIPIcs.SoCG.2019.26.

2 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Preprocessing imprecise
points for Delaunay triangulation: Simplified and extended. Algorithmica, 61(3):674–693, 2011.
doi:10.1007/s00453-010-9430-0.

3 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discrete Comput.
Geom., 64(4):1235–1252, 2020. doi:10.1007/s00454-020-00229-5.

https://doi.org/10.4230/LIPIcs.SoCG.2019.26
https://doi.org/10.1007/s00453-010-9430-0
https://doi.org/10.1007/s00454-020-00229-5


H. Kaplan, A. Kauer, K. Klost, K. Knorr, W. Mulzer, L. Roditty, and P. Seiferth 49:17

4 Timothy M. Chan, Mihai Pătraşcu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM J. Comput., 40(2):333–349, 2011. doi:10.1137/090751670.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, 3rd edition, 2009.

6 David Eppstein, Giuseppe F Italiano, Roberto Tamassia, Robert E Tarjan, Jeffery Westbrook,
and Moti Yung. Maintenance of a minimum spanning forest in a dynamic plane graph. J.
Algorithms, 13(1):33–54, 1992. doi:10.1016/0196-6774(92)90004-V.

7 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173. American Mathematical
Society, 2011. doi:10.1090/surv/173.

8 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

9 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discrete Comput. Geom., 64(3):838–904, 2020. doi:10.1007/s00454-020-00243-7.

10 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. In Proc. 31st Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
2842–2859, 2020. doi:10.1137/1.9781611975994.173.

11 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, 1995.

12 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
System Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

13 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32nd Annu. ACM
Sympos. Theory Comput. (STOC), pages 343–350, 2000.

SoCG 2022

https://doi.org/10.1137/090751670
https://doi.org/10.1016/0196-6774(92)90004-V
https://doi.org/10.1090/surv/173
https://doi.org/10.1145/502090.502095
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1137/1.9781611975994.173
https://doi.org/10.1016/0022-0000(83)90006-5




An (ℵ0, k + 2)-Theorem for k-Transversals
Chaya Keller #

Ariel University, Israel

Micha A. Perles #

Einstein Institute of Mathematics, Hebrew University, Jerusalem, Israel

Abstract
A family F of sets satisfies the (p, q)-property if among every p members of F , some q can be
pierced by a single point. The celebrated (p, q)-theorem of Alon and Kleitman asserts that for any
p ⩾ q ⩾ d + 1, any family F of compact convex sets in Rd that satisfies the (p, q)-property can
be pierced by a finite number c(p, q, d) of points. A similar theorem with respect to piercing by
(d − 1)-dimensional flats, called (d − 1)-transversals, was obtained by Alon and Kalai.

In this paper we prove the following result, which can be viewed as an (ℵ0, k + 2)-theorem with
respect to k-transversals: Let F be an infinite family of sets in Rd such that each A ∈ F contains a
ball of radius r and is contained in a ball of radius R, and let 0 ⩽ k < d. If among every ℵ0 elements
of F , some k + 2 can be pierced by a k-dimensional flat, then F can be pierced by a finite number
of k-dimensional flats.

This is the first (p, q)-theorem in which the assumption is weakened to an (∞, ·) assumption.
Our proofs combine geometric and topological tools.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases convexity, (p, q)-theorem, k-transversal, infinite (p, q)-theorem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.50

Funding Chaya Keller : Research partially supported by the Israel Science Foundation (grant no.
1065/20).

Acknowledgements The authors are grateful to Andreas Holmsen for valuable suggestions and
information.

1 Introduction

1.1 Background
Helly’s theorem and the (p, q)-theorem. The classical Helly’s theorem [19] asserts that if
F is a family of compact convex sets in Rd and every d + 1 (or fewer) members of F have a
non-empty intersection, then the whole family F has a non-empty intersection.

For a pair of positive integers p ⩾ q, a family F of sets in Rd is said to satisfy the (p, q)-
property if |F| ≥ p, none of the sets in F is empty, and among every p sets of F , some q have
a non-empty intersection, or equivalently, can be pierced by a single point. A set P ⊂ Rd

is called a transversal for F if it has a non-empty intersection with every member of F , or
equivalently, if every member of F is pierced by an element of P . In this language, Helly’s
theorem states that any family of compact convex sets in Rd that satisfies the (d + 1, d + 1)-
property, has a singleton transversal.

One of the best-known generalizations of Helly’s theorem is the (p, q)-theorem of Alon and
Kleitman (1992), which resolved a 35-year old conjecture of Hadwiger and Debrunner [18].

▶ Theorem 1 (the (p, q)-theorem [3]). For any triple of positive integers p ⩾ q ⩾ d + 1 there
exists c = c(p, q, d) such that if F is a family of compact convex sets in Rd that satisfies the
(p, q)-property, then there exists a transversal for F of size at most c.

© Chaya Keller and Micha A. Perles;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chayak@ariel.ac.il
https://orcid.org/0000-0001-6400-3946
mailto:perles@math.huji.ac.il
https://doi.org/10.4230/LIPIcs.SoCG.2022.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


50:2 An (ℵ0, k + 2)-Theorem for k-Transversals

In the 30 years since the publication of the (p, q)-theorem, numerous variations, generalizations
and applications of it were obtained (see, e.g., the surveys [13, 20]). We outline below three
variations to which our results are closely related.

(p, q)-theorems for k-transversals. The question whether Helly’s theorem can be general-
ized to k-transversals – namely, to piercing by k-dimensional flats (i.e., k-dimensional affine
subspaces of Rd) – goes back to Vincensini [32], and was studied extensively. Santaló [31]
observed that there is no Helly-type theorem for general families of convex sets, even with
respect to 1-transversals in the plane. Subsequently, numerous works showed that Helly-type
theorems for 1-transversals and for (d − 1)-transversals in Rd can be obtained under addi-
tional assumptions on the sets of the family (see [20] and the references therein). A few of
these results were generalized to k-transversals for all 1 ⩽ k ⩽ d − 1 (see [5, 6]).

Concerning (p, q)-theorems, the situation is cardinally different. In [1], Alon and Kalai
obtained a (p, q)-theorem for hyperplane transversals (that is, for (d − 1)-transversals in Rd).
The formulation of the theorem involves a natural generalization of the (p, q)-property:

For a family G of objects (e.g., the family of all hyperplanes in Rd), a family F is said to
satisfy the (p, q)-property with respect to G if among every p members of F , some q can be
pierced by an element of G. A set P ⊂ G is called a transversal for F with respect to G if
every member of F is pierced by an element of P .

▶ Theorem 2 ([1]). For any triple of positive integers p ⩾ q ⩾ d + 1 there exists c = c(p, q, d)
such that if F is a family of compact convex sets in Rd that satisfies the (p, q)-property with
respect to piercing by hyperplanes, then there exists a hyperplane transversal for F of size at
most c.

As an open problem at the end of their paper, Alon and Kalai [1] asked whether a similar
result can be obtained for k-transversals, for 1 ⩽ k ⩽ d − 2. The question was answered
on the negative by Alon, Kalai, Matoušek and Meshulam [2], who showed by an explicit
example that no such (p, q)-theorem exists for line transversals in R3.

(p, q)-theorems without convexity. Numerous works obtained variants of the (p, q)-theorem
in which the convexity assumption on the sets is replaced by a different (usually, topological)
assumption. Most of the results in this direction base upon a result of Alon et al. [2], who
showed that a (p, q)-theorem can be obtained whenever a fractional Helly theorem can be
obtained, even without a convexity assumption on the elements of F . In particular, the authors
of [2] obtained a (p, q)-theorem for finite families of sets which are a good cover, meaning
that the intersection of every sub-family is either empty or contractible. Matoušek [24]
showed that bounded VC-dimension implies a (p, q)-theorem, and Pinchasi [29] proved a
(p, q)-theorem for geometric hypergraphs whose ground set has a small union complexity.
Recently, several more general (p, q)-theorems were obtained for families with a bounded
Radon number, by Moran and Yehudayoff [26], Holmsen and Lee [21], and Patáková [28].

(p, q)-theorems for infinite set families. While most of the works on (p, q)-theorems
concentrated on finite families of sets, several papers studied (p, q)-theorems for infinite set
families.

It is well-known that Helly’s theorem for infinite families holds under the weaker assump-
tion that all sets are convex and closed, and at least one of them is bounded. In 1990, Erdős
asked whether a (p, q)-theorem can be obtained in this weaker setting as well. Specifically,
his conjecture – which was first published in [8] – was that a (4, 3)-theorem holds for infinite
families of convex closed sets in the plane in which at least one of the sets is bounded.



C. Keller and M. A. Perles 50:3

Following Erdős and Grünbaum, who refuted Erdős’ conjecture and replaced it by a
weaker conjecture of his own, several papers studied versions of the (p, q)-theorem for infinite
families (see [25, 27]). These papers aimed at replacing the compactness assumption (which
can be removed completely for finite families) by a weaker assumption.

1.2 Our contributions
In this paper we study variants of the (p, q)-theorem for infinite families F of sets in Rd. Our
basic question is whether the assumption of the theorem can be replaced by the following
weaker infinitary assumption, which we naturally call an (ℵ0, q)-property: Among every ℵ0
elements of F , there exist some q that can be pierced by a single point (or more generally,
by an element of G). We show that despite the apparently weaker condition, (p, q)-theorems
can be obtained in several settings of interest.

An (ℵ0, 2)-theorem for closed balls in Rd. Our first result concerns the classical setting of
point transversals and considers families of closed balls in Rd. For such families, Danzer [9]
obtained in 1956 a (2, 2)-theorem in the plane, answering a question of Gallai. Grünbaum [17]
obtained a (2, 2)-theorem in Rd, Kim et al. [22] obtained a (p, 2) theorem in the plane for all
p ⩾ 2, and finally, Dumitrescu and Jiang [11] obtained a (p, 2)-theorem in Rd for all p ⩾ 2.
We show that an (ℵ0, 2)-theorem holds as well.

▶ Theorem 3. Let F be an infinite family of closed balls in Rd. If among every ℵ0 elements
of F , some two intersect, then F can be pierced by a finite number of points.

We note that unlike the standard (p, q)-theorems, there does not exist a universal constant
c = c(d) such that every family of closed balls in Rd can be pierced by at most c points.
Indeed, for any m ∈ N, if the family consists of ℵ0 copies of m pairwise disjoint balls then it
satisfies the (ℵ0, 2)-property (and actually, even the much stronger (ℵ0, ℵ0)-property), yet it
clearly cannot be pierced by less than m points.

An (ℵ0, k + 2)-theorem for “fat” sets in Rd, with respect to k-transversals. Our main
result concerns (p, q)-theorems with respect to k-transversals. In this setting, the construction
presented in [2, Sec. 9] suggests that no (ℵ0, k + 2)-theorem with respect to k-transversals
can be obtained for general families of convex sets in Rd where k < d − 1, since even the
stronger (d + 1, d + 1)-property does not imply a bounded-sized k-transversal. However, we
show that if the convexity assumption is replaced by an assumption that the elements of the
family are “fat”,1 then an (ℵ0, k + 2)-theorem can be obtained.

▶ Definition 4. Let 0 < r ⩽ R. A family F of sets in Rd is called (r, R)-fat if any A ∈ F
contains a ball of radius r and is contained in a ball of radius R.

▶ Theorem 5. Let 0 < r ⩽ R, 0 ⩽ k ⩽ d − 1, and let F be an infinite (r, R)-fat family of
sets in Rd. If among every ℵ0 elements of F , some k + 2 can be pierced by a k-flat, then F
can be pierced by a finite number of k-flats.

1 We note that a “fatness” assumption was considered in the context of (p, q)-theorems for families of
convex sets in the plane, by Gao and Zerbib [16].

SoCG 2022



50:4 An (ℵ0, k + 2)-Theorem for k-Transversals

Theorem 5 allows significantly weakening the (p, q)-property assumption of “classical” (p, q)-
theorems into an (∞, q)-property assumption, it applies to k-transversals for all 0 ⩽ k ⩽ d−1
(while the (p, q)-theorem for k-transversals holds only for k = 0, d−1), and it does not require
the sets in the family to be convex.

On the other hand, it requires a significant additional assumption – namely, that the
elements of the family are “fat”. We show by an explicit construction that this assumption is
essential.

▶ Proposition 6. There exists an infinite family F of open discs in the plane that satisfies the
(3, 3)-property (and so, also the (ℵ0, 3)-property) with respect to 1-transversals (i.e., piercing
by lines), but cannot be pierced by a finite number of lines.

Note that such a strong example could not be obtained for families of closed discs in the
plane, since by Theorem 2, a family of compact convex sets in the plane that satisfies the
(3, 3)-property with respect to piercing by lines, admits a bounded-sized line transversal.

An infinite Ramsey-type theorem. In [23], Larman et al. observed that every (p, 2)-theorem
can be used to obtain a Ramsey-type theorem. Using a similar argument (presented in
Sec. 7), Theorem 5 can be used to obtain the following Ramsey-type result.

▶ Corollary 7. Let 0 < r ⩽ R, 0 ⩽ k ⩽ d − 1, and let F be an infinite (r, R)-fat family of
sets in Rd. Denote α = |F|. Then one of the following holds:

There exists S ⊂ F with |S| = ℵ0 such that no k+2 elements of S can be pierced by a k-flat.
There exists S′ ⊂ F with |S′| = α, such that every k + 2 elements of S′ can be pierced by
a k-flat.

For α > ℵ0 and k ⩾ 1, the assertion of Corollary 7 is significantly stronger than the best
possible “generic” Ramsey theorem that can be obtained in the same setting. Indeed, the
corresponding Ramsey-type theorem concerns (blue, red)-colorings of all r-element subsets
of a set with cardinality α, for r ⩾ 3. In this setting, Erdős and Rado [14, Thm. 28] showed
that in general, one cannot guarantee even the existence of either a set of r + 1 elements all
of whose r-tuples are blue or a set of cardinality α all of whose r-tuples are red. Corollary 7
provides either an “all-blue” set with cardinality ℵ0 or an “all-red” set with cardinality α (of
course, for the specific coloring in which a (k + 2)-tuple is colored blue if it can be pierced by
a k-flat). This provides yet another example of the phenomenon that graphs and hypergraphs
arising in geometry satisfy much stronger forms of Ramsey’s theorem than arbitrary graphs
and hypergraphs. This phenomenon was demonstrated in several works in the finite setting
(see [4, 7, 15, 23]), and our result provides an infinitary example.

Organization of the paper. In Section 2 we present some definitions, notations, and basic
observations. In Section 3 we prove a lemma which shall be used in the proof of Theorem 5.
Then, in Section 4 we prove Theorem 5. The construction of Proposition 6 is presented in
Section 5, and the proof of Theorem 3 is given in Section 6. A more detailed comparison of
Corollary 7 with generic Ramsey results is presented in Section 7. We conclude the paper
with an open problem in Section 8.



C. Keller and M. A. Perles 50:5

2 Definitions, Notations, and Basic Observations

2.1 Definitions and notations
We use the following classical definitions.

For 0 ⩽ k ⩽ d − 1, a k-flat in Rd is a k-dimensional affine subspace of Rd (namely, a
translation of a k-dimensional linear subspace of Rd). In particular, a 0-flat is a point, an
1-flat is a line, and a (d − 1)-flat is a hyperplane.
The direction of a k-flat (k > 0) in Rd is defined as follows. First, the k-flat is translated
such that it will pass through the origin. Then, its direction is defined as the great
(k − 1)-sphere in which the k-flat intersects the sphere Sd−1. (This definition follows [6].)
A k1-flat and a k2-flat are called parallel if the direction of one of them is contained in
the direction of the other. (Equivalently, this means that if both are translated so that
they will pass through the origin, then one translation will be included in the other. Note
that this relation is not transitive, and that two flats of the same dimension are parallel,
if and only if one of them is a translation of the other.)
For ϵ > 0, an (open) ϵ-neighborhood of a point x ∈ Sd−1 on the sphere is B◦(x, ϵ) ∩ Sd−1,
where B◦(x, ϵ) is the open ball with radius ϵ centered at x.
A family F = {Bα}α of sets in Rd, is independent w.r.t. k-flats if no k-flat π ⊂ Rd

intersects k + 2 Bα’s or more.

In the proofs of the theorems in the sequel, we mostly consider families F of closed unit
balls in Rd, d ⩾ 1, no two of them are equal. We always assume w.l.o.g. that F does not
contain a ball centered at the origin, since all such balls are pierced by a single point, and
hence by a single k-flat. We use the following definitions and notations:

For B = B(x, 1) ∈ F , the direction of B is the point x̂ = x/||x||2. Of course, x̂ ∈ Sd−1.
For any x̂ ∈ Sd−1 (which is not necessarily a direction of a ball in F) and any ϵ > 0, the
(open) ϵ-neighborhood of x̂ in F is

Fx̂,ϵ = {B(y, 1) ∈ F : ŷ ∈ B◦(x̂, ϵ) ∩ Sd−1},

that is, the set of all elements of F whose directions are in an ϵ-neighborhood of x̂.
For convenience, we often focus on the point x̂ = (0, 0, . . . , 0, 1) ∈ Sd−1, on the line
ℓ = {tx̂ : t ∈ R}, and on projections onto the hyperplane orthogonal to ℓ (i.e., projections
onto the first d − 1 coordinates.)
For each B = B(x, 1) ∈ F , we denote by B′ ⊂ Rd−1 and x′ ∈ Rd−1 the projections of B

and x, repsectively. The d’th coordinate of x, omitted in the projection, is denoted by x(d).

2.2 Basic claims and observations
We use the two following simple claims.

▷ Claim 8. Let x̂ = (0, 0, . . . , 0, 1), and let {B(xn, 1)}n=1,2,... be a sequence of pairwise
disjoint unit balls in Rd such that limn→∞ x̂n = x̂. Then limn→∞ xn(d) = ∞.

Proof. Let 0 < M ∈ R, ϵ > 0. There exists n1 ∈ N such that for any n > n1, x̂n is in the
ϵ-neighborhood of x̂. The set

Fx̂,ϵ ∩ {B(xn, 1) : n > n1, xn(d) < M}

is contained in a finite area (which is a function of ϵ, d and M). By the disjointness of the
balls in F , there exists n2 > n1 such that for any n > n2, xn(d) ⩾ M . ◁

SoCG 2022



50:6 An (ℵ0, k + 2)-Theorem for k-Transversals

▷ Claim 9. Let F ⊂ Rd be a family of balls of radius 1, and let G be a family of balls of
radius r > 0, with the same centers. Then for any 0 ⩽ k ⩽ d − 1, F can be pierced by a
finite set of k-flats if and only if G can be pierced by a finite set of k-flats.

Proof. Assume w.l.o.g. that r > 1. If F can be pierced by finitely many k-flats, then the same
clearly holds for G as well, as the elements of F are contained in corresponding elements of G.

Assume that G can be pierced by finitely many k-flats, and take a finite family H of
k-flats that pierces it. Replace each k-flat π in H by a sufficiently dense net of k-flats parallel
to it, whose distance from π is at most 2r. It is clear that the resulting finite family of k-flats
pierces F . ◁

3 A Technical Lemma

In the proof of Theorem 5, we shall need the following lemma.

▶ Lemma 10. Let F be a family of closed unit balls in Rd, let 0 ⩽ k ⩽ d − 1, and let
x̂ = (0, 0, . . . , 0, 1). Assume that for any ϵ > 0, the set Fx̂,ϵ cannot be pierced by a finite
collection of k-flats.

Then there exists a sequence of balls, {B(xn, 1)}n=1,2,3,... ⊂ F such that limn→∞ x̂n = x̂

and the sequence cannot be pierced by a finite family of k-flats.

We derive Lemma 10 from the following proposition.

▶ Proposition 11. Let F be a family of closed unit balls in Rd, let 0 ⩽ k ⩽ d − 1 and m ∈ N.
If any finite subfamily of F can be pierced by at most m k-flats, then F can be pierced by at
most m k-flats.

We first derive Lemma 10 from Proposition 11, and then present the proof of the proposition.

Proof of Lemma 10, assuming Proposition 11. Let F , x̂ be as in the statement of the
lemma, and assume that for any ϵ > 0, the set Fx̂,ϵ cannot be pierced by a finite collection
of k-flats.

We construct the sequence of balls {B(xn, 1)}n=1,2,3,... ⊂ F as follows. We take a sequence
{ϵm}m=1,2,3,..., where ϵm = 1/m. For each m ∈ N, we find in Fx̂,ϵm

a finite family Gm of
balls that cannot be pierced by m k-flats (this is possible by Proposition 11). We define the
sequence {B(xn, 1)}n=1,2,3,... as

⋃
m∈N Gm. Namely, we arbitrarily order the balls in each Gm

and add them to the sequence, allowing repetitions, starting with m = 1, proceeding to m = 2,
etc.. We have limn→∞ x̂n = x̂, since for any ϵ > 0, only a finite number of B(xn, 1)’s do not
belong to Fx̂,ϵ. Furthermore, {B(xn, 1)}n=1,2,3,..., cannot be pierced by m k-flats (for any
m ∈ N) since it contains the family Gm that cannot be pierced by m k-flats by its construction.
Hence, {B(xn, 1)}n=1,2,3,... cannot be pierced by a finite number of k-flats, as asserted. ◀

Proof of Proposition 11. Any k-flat π ⊂ Rd can be represented as

π = {c + λ1v1 + . . . + λkvk : λi ∈ R},

where c is the point on π closest to the origin, and {v1, . . . , vk} is an orthonormal basis of
the vector subspace π − π = {x − y : x, y ∈ π} which is parallel to π. (This actually means
that the vector 0⃗c is orthogonal to each vi.)



C. Keller and M. A. Perles 50:7

Assign to each k-flat π all the corresponding (k + 1)-tuples of the type {c, v1, . . . , vk}.
Note that while c is uniquely determined by π, the orthogonal basis is not. We obtain a
representation of all k-flats in Rd as (k + 1)-tuples of d-vectors

A = {(c, v1, . . . , vk) : c, vi ∈ Rd ∧ ∀i ̸= j, vi ⊥ vj ∧ vi ⊥ c ∧ ||vi|| = 1} ⊂ Rd(k+1).

By the conditions of the proposition, we can assume w.l.o.g. that there exists a finite
sub-family F0 ⊂ F that cannot be pierced by m − 1 k-flats. Let

Am = {(c1, v1
1 , . . . , v1

k, . . . , cm, vm
1 , . . . , vm

k ) : ∀1 ⩽ j ⩽ m, (cj , vj
1, . . . , vj

k) ∈ A} ⊂ Rd(k+1)m

represent m-tuples of k-flats in Rd.
Note that Am is not compact (as a subset of Rd(k+1)m), since ||cj || may be arbitrarily

large. However, for any fixed closed unit ball B = B(x0, 1) ⊂ Rd, the subset ΠB ⊂ Am that
represents all m-tuples of k-flats intersecting B ∪ F0, is a compact subset of Am. Indeed, all
the m coordinates cj , satisfy ||cj || ⩽ max{||x0|| + 1, maxB′∈F0 dist(B′, 0) + 2}.

Consider the family {ΠB}B∈F where ΠB represents all m-tuples of k-flats that pierce
B ∪ F0. (For each such m-tuple of k-flats, we take all possible (d(k + 1)m)-tuples that
represent it.) Each ΠB is compact, and by the assumption, any finite sub-family {ΠBi

}n
i=1

has non-empty intersection (that contains the representation of some m-tuple of k-flats that
together intersect F0, B1, . . . , Bn). Therefore, by the finite intersection property of compact
sets, the whole family {ΠB}B∈F has non-empty intersection. Any element in this non-empty
intersection represents an m-tuple of k-flats that pierce together all the balls in F . ◀

▶ Remark 12. Proposition 11 holds not only when F is a family of unit balls, but actually
for any family F of non-empty compact sets in Rd.

4 Proof of the Main Theorem

We restate Theorem 5, in a formulation that will be more convenient for the proof:

▶ Theorem 5 (restated). Let R, r > 0 and let F be a family of sets in Rd such that each
S ∈ F contains a ball of radius r and is contained in a ball of radius R. Let 0 ⩽ k ⩽ d − 1.
Then one of the two following conditions must hold:

F can be pierced by a finite number of k-flats.
F contains an infinite sequence of sets that are independent w.r.t. k-flats (i.e., no k-flat
pierces k + 2 of them).

First, we observe that it is sufficient to prove Theorem 5 for families of closed unit balls
in Rd.

▷ Claim 13 (Reduction to closed unit balls). If the assertion of Theorem 5 holds for all
families of closed unit balls in Rd, then it holds in the full generality stated in the theorem.

Proof. Let F be a family as in the assumption. Construct a family F1 by taking, for each
S ∈ F , a closed ball of radius r contained in S. (Note that we can make sure that the
centers of these balls are distinct, possibly at the price of reducing their radii to r/2.) Then,
construct another family F2 by taking, for each S ∈ F , a closed ball of radius 2R that
contains S, with the same center as the corresponding ball in S1.

Apply Theorem 5 to F2. If it contains an infinite sequence of balls that are independent
w.r.t. k-flats, then so does F , since for each element of the sequence, we can take the element
of F that corresponds to it, and the resulting sequence of elements of F will clearly be
independent as well.

SoCG 2022



50:8 An (ℵ0, k + 2)-Theorem for k-Transversals

Otherwise, F2 can be pierced by a finite number of k-flats. Hence, by Claim 9, F1 can be
pierced by a finite number of k-flats as well. This implies that F can be pierced by a finite
number of k-flats, since any element of F contains an element of F1. Therefore, the assertion
of the theorem holds for F . ◁

By Claim 13, it is sufficient to prove Theorem 5 for families of closed unit balls in Rd. A
second reduction, before procceeding to the proof, is passing to pairwise disjoint unit balls.

▷ Claim 14 (Reduction to pairwise disjoint balls). If the assertion of Theorem 5 holds for all
families of pairwise disjoint closed unit balls in Rd, then it holds in the full generality stated
in the theorem.

Proof. By Claim 13, it is sufficient to prove that if Theorem 5 holds for all families of pairwise
disjoint closed unit balls in Rd, then it holds for any family of closed unit balls.

Indeed, assume correctness for all families of pairwise disjoint closed unit balls in Rd, and
let F be a family of arbitrary closed unit balls in Rd. First, we pass to a subfamily F̄ ⊂ F
of pairwise disjoint balls, which is maximal under inclusion:

Consider the family G of all subsets of F in which all balls are pairwise disjoint. View G
as a poset with respect to inclusion. As each chain in G has a maximal element (which is the
union of its elements), by Zorn’s lemma G has a maximal element. This maximal element
F̄ ⊂ F is a set of pairwise disjoint balls, which is maximal under inclusion, among all the
pairwise disjoint subfamilies.

By assuming correctness of Theorem 5 for families of pairwise disjoint closed unit balls,
either F̄ contains an infinite sequence {F̄n}n∈N of balls that are independent w.r.t. k-flats,
or F̄ can be pierced by a finite number of k-flats.

In the first case, {F̄n}n∈N ⊂ F̄ ⊂ F satisfies the second assertion of Theorem 5. In the
second case, by the maximality of F̄ , any ball in F intersects some ball in F̄ . Therefore,
by replacing each k-flat in the finite piercing set of F̄ , by a sufficiently dense net of k-flats
surrounding it and parallel to it, we obtain a finite piercing set of k-flats for F , that satisfies
the first assertion of Theorem 5. ◁

The proof of Theorem 5 is by induction, passing from (k−1, d−1) to (k, d). The induction
basis is the case k = 0 of Theorem 5, reduced to a family of closed unit balls, by Claim 13.
(The reduction to disjoint balls is not needed here.) We observe:

▶ Observation 15. Let F be a family of (not neccessarily disjoint) closed unit balls in Rd.
Then one of the two following conditions must hold:

F can be pierced by a finite number of points.
F contains an infinite sequence of pairwise disjoint balls.

Proof. Consider the set A = {x ∈ Rd|B(x, 1) ∈ F} of all centers of balls in F . If A is
bounded in some B(0, R) ⊂ Rd, then clearly a finite set of points pierces all elements of F .
Otherwise, A is unbounded, hence F contains an infinite sequence of pairwise disjoint balls,
that can be obtained inductively. ◀

For d = 1, the assertion of Theorem 5, after applying the reduction of Claim 13, is exactly
Observation 15. For d ⩾ 2, we shall prove the following version, which is sufficient due to the
reductions of Claims 13 and 14:



C. Keller and M. A. Perles 50:9

▶ Theorem 16. Let d ⩾ 2 and 0 ⩽ k ⩽ d−1. Let F be a family of pairwise disjoint closed unit
balls in Rd, and assume w.l.o.g. that F does not contain a ball centered at the origin. Then:
1. If for any x̂ ∈ Sd−1, there exists ϵ(x̂) = ϵ > 0 such that Fx̂,ϵ can be pierced by finitely

many of k-flats, then F can be pierced by finitely many of k-flats.
2. If the condition of (1) does not hold, then F contains an infinite sequence of balls that

are independent w.r.t. k-flats (i.e., no k-flat pierces k + 2 of them).

Proof. First, we give the proof of the first assertion. Assume that for any x̂ ∈ Sd−1, there
exists ϵ = ϵ(x̂) > 0 such that Fx̂,ϵ can be pierced by a finite number of k-flats. Pick such an
ϵ(x̂) for each x̂ ∈ Sd−1, and obtain an open covering of Sd−1 by open balls B(x̂, ϵ(x̂)), for all
x̂ ∈ Sd−1.

By the compactness of the sphere, we can find a finite sub-cover, generated by balls
around x̂1, . . . , x̂n. As each Fx̂i,ϵ(x̂i) can be pierced by a finite number of k-flats, we can
pierce all elements of F by a finite collection of k-flats (which is the union of the k-flats that
pierce Fx̂i,ϵ(x̂i), for i = 1, . . . , n).

Now we move to the second assertion. Assume that for some x̂ ∈ Sd−1 and for any ϵ > 0,
the family Fx̂,ϵ cannot be pierced by a finite number of k-flats. We assume w.l.o.g. that
x̂ = (0, 0, . . . , 1). We shall construct a sequence of elements of F that is independent w.r.t. k-
flats. The construction goes by induction, which reduces from k-flats in Rd to (k − 1)-flats in
Rd−1.

Induction basis: k = 0. This case, which concerns piercing by points, follows by the
argument of Observation 15.

Induction step: From (k − 1, d − 1) to (k, d). Assume that we proved the assertion for
families in Rd−1, with respect to piercing by (k − 1)-flats, and consider a family F ⊂ Rd of
pairwise disjoint closed unit balls.

First, we use Lemma 10 to find a sequence G = {B(xn, 1)}n=1,2,... of elements of F such
that limn→∞ x̂n = x̂ and the sequence cannot be pierced by a finite number of k-flats. From
now on, we restrict ourselves to this sequence.

We project each B(xn, 1) ∈ G onto its first d − 1 coordinates. Let the resulting set be G′,
and similarly to the proof of Claim 14, let G′′ ⊂ G′ be a subset of pairwise disjoint balls,
maximal under inclusion in G′. By the induction hypothesis, either G′′ (and therefore G′)
can be pierced by a finite number of (k − 1)-flats in Rd−1, or else it contains a sequence of
(d − 1)-dimensional balls that are independent w.r.t. (k − 1)-flats.

The first option cannot happen, as otherwise, one could pierce G with a finite number of
k-flats (which are the pre-images of the (k −1)-flats-transversal in Rd−1 under the projection),
contrary to the choice of G. Hence, there exists a sub-sequence Ḡ = {B(xnl

, 1)}l=1,2,... ⊂
G of balls whose projections are independent w.r.t. (k − 1)-flats in Rd−1. Note that as
limn→∞ x̂n = x̂, we have liml→∞ x̂nl

= x̂. From now on, we restrict ourselves to this sequence
and construct inductively a subsequence of it that will be independent w.r.t. k-flats in Rd.

We construct the subsequence {B(xn, 1)}∞
n=1 inductively. ({xn}∞

n=1 is a subsequence of
{xnl

}∞
l=1.)

The first k + 1 elements can be chosen arbitrarily. Assume that we already chose the
balls B(x1, 1), . . . , B(xm, 1), for m ⩾ k + 1. To choose B(xm+1, 1), we first look at each
(k+1)-tuple of balls (B(xi1 , 1), . . . , B(xik+1 , 1)) separately. By assumption, the corresponding
projections on the first d − 1 coordinates cannot be pierced by a (k − 1)-flat in Rd−1. This
implies that no k-flat that is parallel to the line ℓ = {tx̂ : t ∈ R} can pierce all the k + 1 balls
B(xi1 , 1), . . . , B(xik+1 , 1).

SoCG 2022



50:10 An (ℵ0, k + 2)-Theorem for k-Transversals

t0

Cε0

x

y

B(x1, 1)

B(x3, 1)

B(x2, 1)

Figure 1 An illustration for the proof of Theorem 16 for d = 2,k = 1.

Consider the family U of all k-flats that pierce (B(xi1 , 1), . . . , B(xik+1 , 1)). As none of
them is parallel to ℓ, neither of their directions2 contains the point (0, 0, . . . , 0, 1) = x̂ ∈ Sd−1.
By compactness of the elements of F , this implies that there exists ϵ0 > 0, such that all
these directions are disjoint with the ϵ0-neighborhood of x̂ on Sd−1.

Now, let Cϵ0 be the unbounded cone whose vertex is the origin and whose intersection
with Sd−1 is the boundary of ϵ0/2-neighborhood of x̂ on Sd−1. (Informally, this is a cone of
small aperture around the positive direction of the d’th axis.) We claim that there exists
t0 ∈ R such that for any t > t0, the translation (0, 0, . . . , 0, t) + Cϵ0 is disjoint from all k-flats
in U (see Figure 1).

To see this, for each k-flat L ∈ U we define a function fL : R → R⩾0 by fL(t) =
min{||x′|| : x ∈ L ∧ x(d) = t} (for all the relevant notations, see the end of Section 2.1). It
is clear that fL attains a minimum, and that since L is not parallel to ℓ, this minimum is
attained in a single point, t = argmin(fL) ∈ R. Now, we define a function g : U → R by
g(L) = argmin(fL). By compactness of the elements of F , this function attains a maximum,
t0. As the direction of any L ∈ U is disjoint with the ϵ0-neighborhood of x̂ on Sd−1, it follows
that L ∩ ((0, 0, . . . , 0, t) + Cϵ0) = ∅, for all t > t0.

We are now ready to choose the ball B(xm+1, 1). We go over all (k + 1)-tuples of balls
(B(xi1 , 1), . . . , B(xik+1 , 1)) with 1 ⩽ i1 < i2 < . . . < ik+1 ⩽ m. For each of them, we find
(ϵ0, t0) such that for any t > t0, any k-flat that pierces (B(xi1 , 1), . . . , B(xik+1 , 1)) is disjoint
with the cone (0, 0, . . . , 0, t) + Cϵ0 , where Cϵ0 is as defined above.

Let ϵ1 be the minimum of the ϵ0 values, and let t1 be the maximum of the t0 values. It is
clear that if we make sure that B(xm+1, 1) is entirely included in the cone (0, 0, . . . , 0, t1 +1)+
Cϵ1 , then no k-flat will pierce both B(xm+1, 1) and a (k +1)-tuple (B(xi1 , 1), . . . , B(xik+1 , 1)).
We can indeed choose B(xm+1, 1) in this way, by Claim 8. This completes the proof. ◀

2 See Section 2.1 for the needed definitions.



C. Keller and M. A. Perles 50:11

Figure 2 An illustration for Section 5.

5 Proof of Proposition 6

In this section we prove Proposition 6. Namely, we construct an infinite family of open discs
in the plane that satisfies the (3, 3)-property with respect to line transversals, but cannot be
pierced by a finite number of lines.

Proof of Proposition 6. Let F = {Fn}∞
n=1 ⊂ R2, where Fn = B(n, 1/n) is an open disc

centered at (n, 1
n ) with radius 1

n . The family F does not admit a finite line transversal, since
the x-axis meets no element of F , any line that is parallel to the x-axis meets finitely many
elements of F , and any line that forms a positive angle with the x-axis, intersects a finite
subfamily of F .

On the other hand, any F ′ ⊂ F which is independent w.r.t. lines, satisfies |F ′| ⩽ 2.
Indeed, consider the two leftmost discs B1, B2 ∈ F ′. The right wedge that the two common
inner tangents of B1 and B2 form, contains all elements of F that are to the right of B1 and
B2 (see Figure 2). Therefore, any element of F that lies to the right of B1 and B2 is pierced
by a line that passes through B1 and B2, and hence cannot be contained in F ′. ◀

We note that no similar example could be constructed with closed balls, since by the
Danzer-Grünbaum-Klee theorem [10], such a family would be pierced by a single line.

6 An 0-flat Transversal With no Restriction on the Radii

In this section we prove Theorem 3, which is a much stronger version of Observation 15.
This stronger version holds with no restriction on the radii. Let us restate the theorem in a
formulation which is more convenient for us:

▶ Theorem 3 (restated). Let F be a family of closed balls in Rd (with no restriction on the
radii). Then one of the two following conditions must hold:

F can be pierced by a finitely many points.
F contains an infinite sequence of pairwise disjoint balls.

Before proceeding into the proof, we prove a reduction to the case where all elements of
F are contained in a closed bounded ball B(0, R) ⊂ Rd.

▷ Claim 17. Let R > 0 and assume we proved Theorem 3 where any ball in F is contained
in B(0, R). Then Theorem 3 holds.

Proof. Define the distance of a closed ball B ⊂ Rd from the origin, dist(B, 0), as the Euclidian
distance between the origin and the point x ∈ B which is closest to the origin.

If the set {dist(B, 0) : B ∈ F} is unbounded in Rd, then one can inductively construct an
infinite sequence of pairwise disjoint balls in F , whose distance from the origin tends to infinity.

SoCG 2022



50:12 An (ℵ0, k + 2)-Theorem for k-Transversals

From now on we assume that there exists some 0 < R ∈ R such that for any B ∈ F ,
dist(B, 0) ⩽ R − 2. Replace each B ∈ F whose radius r(B) > 1, by some closed smaller ball
B′ ⊂ B with r(B′) = 1, such that dist(0, B) = dist(0, B′). Let F ′ be the obtained family.
Any ball in F ′ is contained in B(0, R).

By the assumption of our claim, either F ′ can be pierced by finitely many points, or F ′

contains an infinite sequence F ′′ ⊂ F ′ of pairwise disjoint balls. In the first case, the finite
piercing set of F ′ pierces F as well.

In the second case, remove from F ′′ all balls with radius 1. There are only finitely many
such balls, since F ′′ ⊂ F ′ ⊂ B(0, R), and the elements of F ′′ are pairwise disjoint. After
removing from F ′′ all balls with radius 1, we are left with an infinite subfamily of balls each
of which belongs to F (since the transition from F to F ′ involved only the radius-1 balls of
F ′), which are pairwise disjoint. ◁

Proof of Theorem 3. By Claim 17 we can assume that there exists R > 0 such that each
ball in F is contained in B(0, R). We can assume w.l.o.g. that F contains no ball of radius
0. Indeed, if F contains finitely many such balls, we can remove them without changing the
assertion. Otherwise, F contains an infinite sequence of radius-0 balls, and then we are done
again.

Each x ∈ B(0, R) is of exactly one of the two following types:
Type (a): For each δ > 0, there exists some B ∈ F , B ∩ B◦(x, δ) ̸= ∅, with r(B) < δ and

B ∩ {x} = ∅.
Type (b): There exists 0 < δ = δ(x) such that for any B ∈ F with B ∩ B◦(x, δ) ̸= ∅, the

following holds: Either r(B) ⩾ δ or B ∩ {x} ̸= ∅.

If B(0, R) contains some point x of type (a), then there exists an infinite sequence of
pairwise disjoint balls in F (that tends to {x}). Indeed, start with δ0 = 1 and pick some
B0 ∈ F , b0 ∩ B◦(x, δ0) ̸= ∅, with r(B0) < δ0 and B0 ∩ {x} = ∅. Since B0 is closed, it has a
positive distance ϵ from x. Let δ1 = ϵ

10 and pick some B1 ∈ F , B1 ∩B◦(x, δ1) ̸= ∅, r(B1) < δ1
and B1 ∩ {x} = ∅. Continue in the same manner to construct an infinite sequence of pairwise
disjoint balls in F .

The remainig case is where each x ∈ B(0, R) is of type (b). Then for each x ∈ B(0, R)
there exists 0 < δ = δ(x) such that any B ∈ F that that intersects B◦(x, δ) can be pierced
by finitely many points, say, by f(x) points. (Note that the exact value of f(x) depends on
the choice of δ = δ(x).) By the finite intersection property of compact sets in Rd, the open
cover

⋃
x∈B(0,R) B◦(x, δ(x)) of B(0, R) has a finite sub-cover B(0, R) ⊂

⋃k
i=1 B◦(xi, δ(xi)).

Since all the balls in F that intersect B◦(xi, δ(xi)) can be pierced by f(xi) points, it follows
that all the elements of F can be pierced by at most Σk

i=1f(xi) points. ◀

7 Comparison of Corollary 7 with Generic Infinite Ramsey-type
Theorems

We begin with a restatement of Corollary 7.

▶ Corollary 7 (restated). Let 0 < r ⩽ R, 0 ⩽ k ⩽ d − 1, and let F be an infinite (r, R)-fat
family of sets in Rd. Denote α = |F|. Then one of the following holds:

There exists S ⊂ F with |S| = ℵ0 s.t. no k + 2 elements of S can be pierced by a k-flat.
There exists S′ ⊂ F with |S′| = α, s.t. every k +2 elements of S′ can be pierced by a k-flat.

Proof. If the first condition does not hold, then F satisfies the (ℵ0, k + 2) property, and
hence by Theorem 5, F can be pierced by a finite number of k-flats L1, L2, . . . , Ln. Denote
Fi = {A ∈ F : A ∩ Li ̸= ∅}. At least one of the families Fi is of cardinality α, and every
k + 2 elements of it can be pierced by a k-flat. ◀



C. Keller and M. A. Perles 50:13

For α = ℵ0, Corollary 7 is not interesting, as it follows directly from the infinite
Ramsey theorem [30]. For α > ℵ0 and k = 0 (i.e., piercing by points), Corollary 7 is
already significantly stronger than the conclusion of the “diagonal” Ramsey’s theorem, which
guarantees only a countable monochromatic subset. However, it is still uninteresting since it
follows from the Erdős-Dushnik-Miller theorem [12], which asserts that for any infinite α,
any (blue, red)-coloring of a graph on α vertices contains either a monochromatic blue set of
cardinality ℵ0 or a monochromatic red set of cardinality α.

The interesting case is k ⩾ 1 – i.e., piercing by k-flats with k ⩾ 1, which is the hard case
in Theorem 5. Here, the corresponding Ramsey-type theorem concerns (blue, red)-colorings
of all r-element subsets of a set with cardinality α, for r ⩾ 3. In this setting, Erdős and
Rado [14, Thm. 28] showed that in general, one cannot guarantee even the existence of either
a set of r + 1 elements all of whose r-tuples are blue or a set of cardinality α all of whose
r-tuples are red. Corollary 7 provides either an “all-blue” set with cardinality ℵ0 or an “all-
red” set with cardinality α (of course, for the specific coloring in which a (k + 2)-tuple is
colored blue if it can be pierced by a k-flat).

Therefore, in its “main” setting of k ⩾ 1, Theorem 5 provides an infinite Ramsey theorem
which is significantly stronger than the best possible “generic” Ramsey theorems. Moreover,
the assertion of Corollary 7 cannot be strengthened to obtain a first possibility with |S| > ℵ0,
since once no k + 2 elements of S can be pierced by a k-flat, all elements of S must be
pairwise disjoints; hence |S| ⩽ ℵ0.

8 Open Problem

A natural open problem which arises in light of Theorem 3 and Proposition 6 is, whether an
(ℵ0, k + 2)-theorem (like Theorem 5) can be obtained for families of closed balls, without
the “fatness” assumption. For 1 ⩽ k < d − 1, such a theorem cannot be obtained for general
families of compact convex sets, as shown by the construction of Alon et al. [2]. However, it
still might hold for families of balls.

References
1 N. Alon and G. Kalai. Bounding the piercing number. Discrete Comput. Geom., 13:245–256,

1995.
2 N. Alon, G. Kalai, J. Matoušek, and R. Meshulam. Transversal numbers for hypergraphs

arising in geometry. Adv. Appl. Math., 29:79–101, 2002.
3 N. Alon and D. J. Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p,q)-problem.

Advances in Mathematics, 96(1):103–112, 1992.
4 N. Alon, J. Pach, R. Pinchasi, R. Radoic̆ić, and M. Sharir. Crossing patterns of semi-algebraic

sets. J. Combin. Theory, Ser. A, 111:310–326, 2005.
5 J. L. Arocha, J. Bracho, and L. Montejano. Flat transversals to flats and convex sets of a

fixed dimension. Advances in Mathematics, 213(2):902–918, 2007.
6 B. Aronov, J. E. Goodman, and R. Pollack. A Helly-type theorem for higher-dimensional

transversals. Comput. Geom., 21:177–183, 2002.
7 I. Bárány and G. Kalai. Helly-type problems, 2021. arXiv:2108.08804.
8 V. Boltyanski and A. Soifer. Geometric études in combinatorial mathematics. Center for

Excellence in Mathematical Education, Colorado Springs, CO, 1991.
9 L. Danzer. Zur lösung des gallaischen problems über kreisscheiben in der euklidischen ebene.

Studia Sci. Math. Hungar., 21:111–134, 1986.
10 L. Danzer, B. Grünbaum, and V. Klee. Helly’s theorem and its relatives. In V. Klee, editor,

Convexity, Proceedings of Symposium in Pure Mathematics, volume 7, pages 100–181. American
Mathematical Society, Providence, RI, 1963.

SoCG 2022

http://arxiv.org/abs/2108.08804


50:14 An (ℵ0, k + 2)-Theorem for k-Transversals

11 A. Dumitrescu and M. Jiang. Piercing translates and homothets of a convex body. Algorithmica,
61(1):94–115, 2011.

12 B. Dushnik and E. W. Miller. Partially ordered sets. American Journal of Mathematics,
63(3):600–610, 1941.

13 J. Eckhoff. A survey of the Hadwiger-Debrunner (p, q)-problem. In B. Aronov, S. Basu, J. Pach,
and M. Sharir, editors, Discrete and Computational Geometry, volume 25 of Algorithms and
Combinatorics, pages 347–377. Springer Berlin Heidelberg, 2003.

14 P. Erdős and R. Rado. A partition calculus in set theory. Bulletin of the American Mathematical
Society, 62(5):427–489, 1956.

15 J. Fox, J. Pach, and C. D. Tóth. Intersection patterns of curves. J. London Math. Society,
83:389–406, 2011.

16 S. Gao and S. Zerbib. The (2,2) and (4,3) properties in families of fat sets in the plane. SIAM
Journal of Discrete Math., 33(3):1326–1337, 2019.

17 B. Grünbaum. On intersections of similar sets. Portugaliae Mathematica, 18:155–164, 1959.
18 H. Hadwiger and H. Debrunner. Über eine variante zum Hellyschen satz. Archiv der Mathematik,

8(4):309–313, 1957.
19 E. Helly. Uber mengen konvexer körper mit gemeinschaftlichen punkte. Jahresbericht der

Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.
20 A. Holmsen and R. Wenger. Helly-type theorems and geometric transversals. In J. O’Rourke

J. E. Goodman and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry,
3rd Edition, pages 91–123. CRC Press LLC, Boca Raton, FL, 2017.

21 A. F. Holmsen and D. Lee. Radon numbers and the fractional Helly theorem. Isr. J. Math.,
241:433–447, 2021.

22 S. J. Kim, K. Nakprasit, M.J. Pelsmajer, and J. Skokan. Transversal numbers of translates of
a convex body. Discrete Math., 306:2166–2173, 2006.

23 D. Larman, J. Matous̆ek, J. Pach, and J. Töröcsik. A ramsey-type result for planar convex
sets. Bulletin of London Math. Soc., 26:132–136, 1994.

24 J. Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput.
Geom., 31(2):251–255, 2004.

25 A. Montejano, L. Montejano, E. Roldán-Pensado, and P. Soberón. About an Erdős–Grünbaum
conjecture concerning piercing of non-bounded convex sets. Discrete Comput. Geom., 53(4):941–
950, 2015.

26 S. Moran and A. Yehudayoff. On weak ϵ-nets and the Radon number. Discret. Comput. Geom.,
64(4):1125–1140, 2020.

27 T. Müller. A counterexample to a conjecture of Grünbaum on piercing convex sets in the
plane. Discrete Math., 313(24):2868–2871, 2013.

28 Z. Patáková. Bounding Radon number via Betti numbers. In 36th International Symposium
on Computational Geometry, SoCG 2020, volume 164 of LIPIcs, pages 61:1–61:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

29 R. Pinchasi. A note on smaller fractional Helly numbers. Discrete Comput. Geom., 54:663–668,
2015.

30 F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc. (Ser. 2), 30(1):264–286,
1930.

31 L. Santaló. Un teorema sobre conjuntos de paralelepipedos de aristas paralelas. Publ. Inst.
Mat. Univ. Nac. Litoral, 2:49–60, 1940.

32 P. Vincensini. Figures convexes et variétés linéaires de l’espace euclidien à n dimensions. Bull
Sci. Math., 59:163–174, 1935.



Farthest-Point Voronoi Diagrams in the Presence
of Rectangular Obstacles
Mincheol Kim #

Department of Computer Science and Engineering,
Pohang University of Science and Technology, South Korea

Chanyang Seo #

Graduate School of Artificial Intelligence,
Pohang University of Science and Technology, South Korea

Taehoon Ahn #

Department of Computer Science and Engineering,
Pohang University of Science and Technology, South Korea

Hee-Kap Ahn #

Graduate School of Artificial Intelligence, Department of Computer Science and Engineering,
Pohang University of Science and Technology, South Korea

Abstract
We present an algorithm to compute the geodesic L1 farthest-point Voronoi diagram of m point

sites in the presence of n rectangular obstacles in the plane. It takes O(nm + n log n + m log m)
construction time using O(nm) space. This is the first optimal algorithm for constructing the
farthest-point Voronoi diagram in the presence of obstacles. We can construct a data structure in
the same construction time and space that answers a farthest-neighbor query in O(log(n + m)) time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geodesic distance, L1 metric, farthest-point Voronoi diagram

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.51

Related Version Full Version: http://arxiv.org/abs/2203.03198

Funding This research was partly supported by the Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.
2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dy-
namic Geometric Environment)) and (No. 2019-0-01906, Artificial Intelligence Graduate School
Program(POSTECH)).

1 Introduction

A Voronoi diagram of a set of sites is a subdivision of the space under consideration into
subspaces by assigning points to sites with respect to a certain proximity. Typical Voronoi
assignment models are the nearest-point model and the farthest-point model where every
point is assigned to its nearest site and its farthest site, respectively. There are results for
computing Voronoi diagrams in the plane [1, 13, 14, 24], under different metrics [9, 17, 18, 23],
or for various types of sites [2, 8, 22].

For m point sites in the plane, the nearest-point and farthest-point Voronoi diagrams of
the sites can be constructed in O(m log m) time [14, 24]. When the sites are contained in a
simple polygon with no holes, the distance between any two points in the polygon, called the
geodesic distance, is measured as the length of the shortest path contained in the polygon
and connecting the points (called the geodesic path). There has been a fair amount of work
computing the geodesic nearest-point and farthest-point Voronoi diagrams of m point sites

© Mincheol Kim, Chanyang Seo, Taehoon Ahn, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 51; pp. 51:1–51:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rucatia@postech.ac.kr
mailto:chan8616@postech.ac.kr
mailto:sloth@postech.ac.kr
mailto:heekap@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
https://doi.org/10.4230/LIPIcs.SoCG.2022.51
http://arxiv.org/abs/2203.03198
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


51:2 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

in a simple n-gon [3, 4, 20, 21] to achieve the lower bound Ω(n + m log m) [3]. Recently,
optimal algorithms of O(n + m log m) time were given for the geodesic nearest-point Voronoi
diagram [19] and for the geodesic farthest-point Voronoi diagram [25].

The problem of computing Voronoi diagrams is more challenging in the presence of
obstacles. Each obstacle plays as a hole and there can be two or more geodesic paths
connecting two points avoiding those holes. The geodesic nearest-point Voronoi diagram of m

point sites can be computed in O(m log m + k log k) time by applying the continuous Dijkstra
paradigm [16], where k is the number of total vertices of obstacles. However, no optimal
algorithm is known for the farthest-point Voronoi diagram in the presence of obstacles in the
plane, even when the obstacles are of elementary shapes such as axis-aligned line segments
and rectangles. The best result of the geodesic farthest-point Voronoi diagram known so far
takes O(mk log2(m + k) log k) time by Bae and Chwa [5]. They also showed that the total
complexity of the geodesic farthest-point Voronoi diagram is Θ(mk).

In the presence of n rectangular obstacles under L1 metric, there are some work for farthest-
neighbor queries. Ben-Moshe et al. [7] presented a data structure with O(nm log(n + m))
construction time and O(nm) space for m point sites that supports farthest point queries in
O(log(n + m)) time. They also showed that the L1 geodesic farthest-point Voronoi diagram
has complexity Θ(nm), but without presenting any algorithm for computing the diagram.
Later Ben-Moshe et al. [6] gave a tradeoff between the query time and the preprocessing/space
such that a data structure of size O((n+m)1.5) can be constructed in O((n+m)1.5 log2(n+m))
to support farthest point queries in O((n + m)0.5 log(n + m)) time.

The geodesic center of a set of objects in a polygonal domain is the set of points in the
domain that minimize the maximum geodesic distance from input objects. Thus, it can
be obtained once the geodesic farthest-point Voronoi diagram of the objects is constructed.
For m points in the presence of n axis-aligned rectangular obstacles in the plane, Choi et
al. [10] showed that the geodesic center of the points under the L1 metric consists of Θ(nm)
connected regions and they gave an O(n2m)-time algorithm to compute the geodesic center.
Later, Ben-Moshe et al. [7] gave an O(nm log(n + m))-time algorithm for the problem.

Our Result. In this paper, we present an algorithm that computes the geodesic L1 farthest-
point Voronoi diagram of m points in the presence of n rectangular obstacles in the plane in
O(nm + n log n + m log m) time using O(nm) space. The running time and space complexity
of our algorithm match the time and space bounds of the Voronoi diagram. Thus, it is the
first optimal algorithm for computing the geodesic farthest-point Voronoi diagram in the
presence of obstacles.

To do this, we construct a data structure for L1 farthest-neighbor queries in O(nm +
n log n + m log m) time using O(nm) space. This improves upon the results by Ben-Moshe et
al. [7], and the construction time and space are the best among the data structures supporting
O(log(n+m)) query time for L1 farthest neighbors. Then we present an optimal algorithm to
compute the explicit geodesic L1 farthest-point Voronoi diagram in O(nm+n log n+m log m)
time using O(nm) space, which matches the time and space lower bounds of the diagram.

As a byproduct, we compute the geodesic center under the L1 metric in O(nm + n log n +
m log m) time. This result improves upon the algorithm by Ben-Moshe et al. [7].

Outline. First, we construct four farthest-point maps, one for each of the four axis directions,
either the x- or y-axis, and either positive or negative. In the course, we construct a data
structure for L1 farthest-neighbor queries in O(nm + n log n + m log m) time using O(nm)
space. For each axis direction, we apply the plane sweep technique with a line orthogonal to



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:3

the direction and moving along the direction. During the sweep, we maintain the status of the
sweep line in a balanced binary search tree and its associated structures while handling events
induced by the point sites and the sides of rectangles parallel to the sweep line. There are m

events induced by point sites and O(n) events induced by rectangles. After sorting the events
in O(n log n + m log m) time, we show that we can handle all events induced by point sites in
O(nm) time. Additionally, we show that each event induced by a rectangle can be handled in
O(m + log n) time. By the plane sweep, we construct a data structure consisting of O(n + m)
line segments parallel to the sweep line and O(nm) points in O(nm + n log n + m log m) time
in total. Given a query, it uses axis-aligned ray shooting queries on the data structure to
find the farthest site from the query. The four farthest-point maps are planar subdivisions,
and they can be constructed during the plane sweep in the same time and space.

With the four farthest-point maps and the data structure for farthest-neighbor queries,
we construct the geodesic L1 farthest-point Voronoi diagram explicitly. First, we decompose
the plane, excluding the holes, into rectangular faces using vertical line segments, each
extended from a vertical side of a hole. Then, we partition each face in the decomposition
into zones such that the farthest-point Voronoi diagram restricted to a zone coincides with
the corresponding region of a farthest-point map. This partition is done by using the
boundary between two farthest-point maps, which can be computed by traversing the cells
in the two maps in which the boundary lies. Finally, we glue the corresponding regions
along the boundaries of zones, and then glue all adjacent faces along their boundaries to
obtain the geodesic L1 farthest-point Voronoi diagram. We show that this can be done in
O(nm + n log n + m log m) time in total.

For the centers of m points in the presence of n axis-aligned rectangles in the plane, we
can find them from the farthest-point Voronoi diagram in time linear to the complexity of
the diagram.

2 Preliminaries

Let R be a set of n open disjoint rectangles and S be a set of m point sites lying in the free
space F = R2 −

⋃
R∈R R. We consider the L1 metric. For ease of description, we omit L1. We

use x(p) and y(p) to denote the x-coordinate and y-coordinate of a point p, respectively. For
two points p and q in F, we use pq to denote the line segment connecting them. Whenever
we say a path connecting two points in F, it is a path contained in F. There can be more
than one geodesic path connecting two points p and q avoiding the holes. We use π(p, q)
to denote a fixed geodesic path connecting p and q, and use d(p, q) to denote the geodesic
distance between p and q, which is the length of π(p, q).

We make a general position assumption that no point in F is equidistant from four or
more distinct sites. We use f(p) to denote the set of sites of S that are farthest from a point
p ∈ F under the geodesic distance, that is, a site s is in f(p) if and only if d(s, p) ≥ d(s′, p)
for all s′ ∈ S. If there is only one farthest site, we use f(p) to denote the site.

A horizontal line segment ℓ can be represented by the two x-coordinates x1(ℓ) and x2(ℓ)
of its endpoints (x1(ℓ) < x2(ℓ)) and the y-coordinate y(ℓ) of them. For an axis-aligned
rectangle R, let x1(R) and x2(R) denote the x-coordinates of the left and right sides of R.

A path is x-monotone if and only if the intersection of the path with any line perpendicular
to the x-axis is connected. Likewise, a path is y-monotone if and only if the intersection of
the path with any line perpendicular to the y-axis is connected. A path is xy-monotone if
and only if the path is x-monotone and y-monotone. Observe that if a path connecting two
points is xy-monotone, it is a geodesic path connecting the points.

SoCG 2022



51:4 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

πru(s)

πrd(s)

πdr(s)πdl(s)

πld(s)

πlu(s)

πul(s) πur(s)

s

πru(s)

πrd(s)πld(s)

πlu(s)

s

p

q

(a) (b)

reg1

reg2

reg3

reg4
reg5

reg6

reg7

reg8

R

Figure 1 Gray rectangles are holes. (a) The eight paths partition F into eight regions reg1, . . . , reg8.
Region reg3 consists of two regions separated by a rectangle R. (b) Every geodesic path from s to p

is y+-monotone and p is y+-reachable from s. Every geodesic path from s to q is y−-monotone and
q is y−-reachable from s.

2.1 Eight Monotone Paths from a Point
Choi and Yap [11] gave a way of partitioning the plane with rectangular holes into eight
regions using eight xy-monotone paths from a point. We use their method to partition F
as follows. Consider a horizontal ray emanating from a point s = p1 ∈ F going rightwards.
The ray stops when it hits a rectangle R ∈ R at a point p′

1. Let p2 be the top-left corner of
R. We repeat this process by taking a horizontal ray from p2 going rightwards until it hits
a rectangle, and so on. Then we obtain an xy-monotone path πru(s) = p1p′

1p2p′
2 . . . from s

that alternates going rightwards and going upwards.
By choosing two directions, one going either rightwards or leftwards horizontally,

and one going either upwards or downwards vertically, and ordering the chosen direc-
tions, we define eight rectilinear xy-monotone paths with directions: rightwards-upwards
(ru), upwards-rightwards (ur), upwards-leftwards (ul), leftwards-upwards (lu), leftwards-
downwards (ld), downwards-leftwards (dl), downwards-rightwards (dr), and rightwards-
downwards (rd). Let πδ(s) denote one of the eight paths corresponding to the direction δ in
{ru, ur, ul, lu, ld, dl, dr, rd}.

Some of the eight paths πδ(s) may overlap in the beginning from s but they do not cross
each other. The paths partition F into eight regions reg1, . . . , reg8 with the indices sorted
around s in a counterclockwise order such that reg1 denotes the region lying to the right
of s, below πru(s) and above πrd(s). Observe that regi is not necessarily connected. See
Figure 1(a) for an illustration.

▶ Lemma 1 ([11, 12]). Every geodesic path connecting two points is either x-, y-, or
xy-monotone. For a point s ∈ F, following three statements hold.

If p ∈ reg1 ∪ reg5, every geodesic path from s to p is x-monotone but not y-monotone.
If p ∈ reg3 ∪ reg7, every geodesic path from s to p is y-monotone but not x-monotone.
If p ∈ reg2 ∪ reg4 ∪ reg6 ∪ reg8 ∪ Π(s), every geodesic path from s to p is xy-monotone,
where Π(s) is the union of the eight paths πδ(s).



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:5

Based on Lemma 1, we define a few more terms. For any point p in reg2 ∪ reg3 ∪ reg4
(and the boundaries of the regions), we say p is y+-reachable from s, and every geodesic path
from s to p is y+-monotone. Any point q ∈ reg6 ∪ reg7 ∪ reg8 (and the boundaries of the
regions) is y−-reachable from s, and every geodesic path from s to q is y−-monotone. See
Figure 1(b). Similarly, any point p ∈ reg1 ∪ reg2 ∪ reg8 (and the boundaries of the regions)
is x+-reachable from s, and every geodesic path from s to p is x+-monotone. Any point
q ∈ reg4 ∪ reg5 ∪ reg6 (and the boundaries of the regions) is x−-reachable from s, and every
geodesic path from s to q is x−-monotone.

3 Farthest-point Maps

Based on Lemma 1 and the four directions of monotone paths in the previous section, we
define four farthest-point maps. A farthest-point map My+ = My+(S) of S in F corresponding
to the positive y-direction is a planar subdivision of F into cells. For a point p ∈ F, a site
s ∈ S is a farthest site of p in My+ if d(p, s) ≥ d(p, s′) for every site s′ ∈ S from which p is
y+-reachable. If p is y+-reachable from no site in S, p has no farthest site in My+ . Thus, a
cell of My+ is defined on F \ C∅, where C∅ denotes the set of points of F that are y+-reachable
from no site in S. A site s corresponds to one or more cells in My+ with the property that a
point p ∈ F \ C∅ lies in a cell of s if and only if d(p, s) > d(p, s′) for every s′ ∈ S \ {s} from
which p is y+-reachable.

We define My− , Mx+ and Mx− analogously with respect to their corresponding directions.
Since the four maps have the same structural and combinatorial properties with respect
to their corresponding directions, we describe only My+ in the following. Let B be an
axis-aligned rectangular box such that S, R, and all vertices of the four farthest-point maps
are contained in the interior of B. We focus on F ∩ B only, and use F as F ∩ B.

In the following, we analyze the edges of My+ using the bisectors of pairs of sites. Let
F (s, s′) denote a set of points of F that are y+-reachable from two sites s and s′. To be
specific, F (s, s′) is an intersection of two regions, one lying above πlu(s) and πru(s) and the
other lying above πlu(s′) and πru(s′). Thus, the boundary of F (s, s′) coincides with the upper
envelope of πlu(s), πru(s), πlu(s′) and πru(s′). We use F (s, s) to denote the set of points that
are y+-reachable from a site s.

For any two distinct sites s, s′ ∈ S, their bisector consists of all points x ∈ F satisfying
{x | d(x, s) = d(x, s′)}. Observe that the bisector may contain a two-dimensional region. We
use b(s, s′) to denote the line segments and the boundary of the two-dimensional region in
the bisector of s and s′.

A proof of the following lemma is given in the full version.

▶ Lemma 2. For any two sites s and s′, b(s, s′) ∩ F (s, s′) consists of axis-aligned segments.

Let fδ(p) denote the set of farthest sites from a point p ∈ F among the sites from which
p is δ-reachable for δ ∈ {y+, y−, x+, x−}. For each horizontal segment of πlu(s) ∪ πru(s),
we call the portion h of the segment such that fy+(p) = {s} for any point p ∈ h, a b-edge.
Observe that no point p′ with x1(h) ≤ x(p′) ≤ x2(h) and y(p′) = y(h) − ε for any ε > 0 is
y+-reachable from s. Thus, a b-edge is also an edge of My+ . Since every edge of My+ is part
of a bisector of two sites in S or a b-edge, it is either horizontal or vertical. See Figure 2(a).

▶ Corollary 3. Every edge of My+ is an axis-aligned line segment.

SoCG 2022



51:6 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

s1

s2

s4

s5

C2C3C5

s6

C6

B

w

u v

z

s3 C∅

s2

s5

s6

q

s3

(a) (b)

C3C6

Figure 2 (a) My+ for S = {s1, . . . , s6} restricted to a box B with four rectangular holes (gray). si

has a corresponding cell Ci for i = 2, 3, 5, 6 while s1 and s4 have no cell. A vertical edge vz is from
b(s3, s6) in the (red) region F (s3, s6). A horizontal edge uv is not part of b(s3, s6) but it is part of a
b-edge as no point lying below uv is y+-reachable from s6. (b) Illustration of Qy+ corresponding to
My+ . At the boundary point q, d(q, s3) = d(q, s6).

For sites contained in a simple polygon, Aronov et al. [4] gave a lemma, called Ordering
Lemma, that the order of sites along their convex hull is the same as the order of their
Voronoi cells along the boundary of a simple polygon. We give a lemma on the order of
sites in the presence of rectangular obstacles. We use it in analyzing the maps and Voronoi
diagrams. A proof of the following lemma is given in the full version.

▶ Lemma 4. Let pq be a horizontal segment contained in F \ C∅ with x(p) < x(q). For any
two sites fp ∈ f(p) and fq ∈ f(q) such that p and q are y+-reachable from both fp and fq, if
fp /∈ f(q) or fq /∈ f(p), x(fp) > x(fq).

Since there are at most m sites, we obtain the following corollary from Lemma 4.

▶ Corollary 5. Any horizontal line segment contained in F intersects at most m cells in My+ .

Using Corollary 3 and 5, we analyze the complexity of My+ as follows. Note that each
lower endpoint of a vertical edge of My+ appears on a horizontal line segment passing through
a site or the top side of a rectangle. By Corollary 5, the maximal horizontal segment through
the top side of a rectangle in R and contained in F intersects O(m) vertical edges of My+ .
Moreover, the maximal horizontal line segment through a site s and contained in F intersects
O(1) lower endpoints of vertical edges on the boundary of the cell of s. Since there are
n rectangles in R and m sites in S, My+ has O(nm + m) = O(nm) vertical edges. Every
horizontal edge of My+ is a segment of a bisector or a b-edge, and it is incident to a side of a
rectangle or another vertical edge. Since there are O(n) rectangle sides, and O(1) horizontal
edges of My+ that are incident to a vertical edge, My+ has O(n + nm) = O(nm) horizontal
edges. Thus, My+ has complexity O(nm).

Now we show that every farthest site s ∈ f(p) of a point p in F is one of the farthest
sites of p in the four farthest-point maps. By the definition of the farthest-point maps, p is
contained in a cell of My+ , My− , Mx+ or Mx− . Since every geodesic path connecting two
points is either y+-, y−-, x+-, or x−-monotone by Lemma 1, s ∈ f(p) is one of the farthest
sites of p in the four farthest-point maps. If p is contained in cells of two or more maps,
we compare their distances to the farthest sites defining the cells and take the ones with
the largest distance as the farthest sites of p. Thus, once the four farthest-point maps are
constructed, the farthest sites of a query point can be computed from the map.



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:7

T

dv(x)

q

C(s) C(s′)

B(v)

x

v Xv T

[x1(v), x2(v)]

B(v)

T T F

L

(b)(a)

Figure 3 (a) Illustration of a balanced binary search tree T . A node v in T has domain
[x1(v), x2(v)], array Xv, and a pointer to B(v). (b) Illustration of B(v) and dv(x).

4 Data Structure for Farthest-neighbor Queries

We present an algorithm that constructs a data structure for farthest site queries. We denote
m point sites of S by s1, . . . , sm such that x(s1) ≤ · · · ≤ x(sm), and n rectangular obstacles of
R by R1, . . . , Rn. The data structure consists of four parts, each for one axis direction. Since
the four parts can be constructed in the same way with respect to their directions, we focus
on the part corresponding to the positive y-direction, and thus the structure corresponds to
My+ . We use Qy+ to denote the query data structure.

By Corollary 3, we can find the farthest site of a query point using a vertical ray shooting
query to the horizontal edges of My+ and a binary search on the lower endpoints of vertical
edges of My+ lying on the horizontal edges of My+ . Thus, we construct Qy+ such that it
consists of the horizontal edges of My+ and the endpoints of vertical edges of My+ lying on
the horizontal edges of My+ .

A point q lying on a horizontal segment h of Qy+ is the lower endpoint of a vertical edge
of My+ if and only if there are two points q1 = (x(q) − ε, y(q)) and q2 = (x(q) + ε, y(q)) for
sufficiently small ε > 0 satisfying fy+(q1) ∪ fy+(q2) = fy+(q) and fy+(q1) ̸= fy+(q2). We call
each lower endpoint of vertical edges lying on h a boundary point on h. See Figure 2(b).

We use a plane sweep algorithm with a horizontal sweep line L to construct the horizontal
line segments in Qy+ . Note that F ∩ L consists of disjoint horizontal segments along L.
The status of L is the sequence of segments in F ∩ L along L. The status changes while
L moves upwards over the plane, but not continuously. Each update of the status occurs
at a particular y-coordinate, which we call an event. To do such updates efficiently, we
maintain three data structures for L: a balanced binary search tree T representing the status,
a boundary list B, and a list D of distance functions. The structures B and D are associated
structures of T .

We store the segments of F ∩ L in a balanced binary search tree T in increasing order
of x-coordinate of their left endpoints. Each node v of T corresponds to a horizontal line
segment hv of F ∩ L. We store x1(hv) and x2(hv), and an array Xv of m Boolean variables
at v. We set Xv[i] = T if a point on hv is y+-reachable from si for i = 1 . . . , m. Otherwise,
we set Xv[i] = F. The range of v is [x1(v), x2(v)] for x1(v) = x1(hv) and x2(v) = x2(hv).
There are at most n + 1 nodes in T , and each node maintains an array of size O(m), so T
itself uses O(nm) space in total. See Figure 3(a).

The list B consists of boundary lists B(v) for nodes v of T . Each node v of T has a pointer
to its boundary list B(v), which is a doubly-linked list of the boundary points (including
the endpoints of hv) lying on hv. Each boundary point in B is the intersection of L and a
vertical edge of My+ , so there are O(nm) boundary points in B.

SoCG 2022



51:8 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

(b)

L
si

Rj

Rj

L

L

(a) (c)

Figure 4 Three types of events. (a) site events. (b) bottom-side events. (c) top-side events.

Let dδ(p) = d(s, p) for a site s ∈ fδ(p) if fδ(p) ̸= ∅, or dδ(p) = −∞ for δ ∈
{y+, y−, x+, x−}. The list D consists of distance functions dv for nodes v of T . Let p(r)
denote a point on L with x(p(r)) = r for a real number r. Each node v of T has a pointer to
its distance function dv(x) = dy+(p(x)) for x in the range [x1(v), x2(v)] of v. It is a piecewise
linear function with pieces (segments) of slopes 1 or −1. See Figure 3(b).

There are three types of events: (1) a site event, (2) a bottom-side event, and (3) a
top-side event. A site event occurs when L encounters a site in S. A bottom-side event
occurs when L encounters the bottom side of a rectangle in R. A top-side event occurs when
L encounters the top side of a rectangle in R. Thus, there are m site events, n bottom-side
events, and n top-side events. See Figure 4.

We maintain and update T , B and D during the plane sweep for those events. To handle
events, we first sort the events in y-coordinate order, which takes O((n + m) log(n + m)) =
O(n log n + m log m) time. We update dv(x) only at those events and keep it unchanged
between two consecutive events. To reflect the distances from sites to p(x) ∈ hv correctly, we
assign an additive weight to dv(x), which is the difference in the y-coordinates between the
current event and the last event at which dv(x) is updated.

Initially, when L is at the bottom side of B, T consists of one node v with x1(v) = x1(B),
x2(v) = x2(B), and Xv[i] = F for all i ∈ {1, . . . , m}. B(v) has no boundary point and
dv(x) = −∞ for all x, since no points on L is y+-reachable from any sites.

4.1 Handling a site event

When L encounters a site si ∈ S, we find the node v ∈ T such that x1(v) ≤ x(si) ≤ x2(v).
Every point on hv is y+-reachable from si, so we set Xv[i] = T. We can find v in O(log n)
time, and set Xv[i] = T in constant time. Thus, it takes O(log n) time to update T .

For any point p(x) ∈ hv, d(si, p(x)) = |x − x(si)|. By Lemma 4, there is at most one
maximal interval I ⊂ [x1(v), x2(v)] such that dv(x) < d(si, p(x)) for every x ∈ I. Moreover,
I is bounded from left by x1(v) or from right by x2(v) because dv(x) is continuous and
consists of pieces (segments) of slopes 1 or −1, and d(si, p(x)) = |x − x(si)|. We find the
boundary point p(x∗) ∈ hv induced by si such that dv(x∗) = d(si, p(x∗)). If I is bounded
from left, we update dv(x) to dv(x) = d(si, p(x)) for x ≤ x∗. If I is bounded from right, we
update dv(x) to dv(x) = d(si, p(x)) for x ≥ x∗.

If there is no such point p(x∗), either dv(x) < d(si, p(x)) or dv(x) > d(si, p(x)) for all x

with x1(v) ≤ x ≤ x2(v). If dv(x) < d(si, p(x)), we update dv(x) to dv(x) = d(si, p(x)) for
x1(v) ≤ x ≤ x2(v). If dv(x) > d(si, p(x)), we do not update dv(x).

We update B(v) by removing all the boundary points of B(v) lying in the interior of I in
time linear to the number of the boundary points, and then inserting p(x∗) into B(v).



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:9

Since there are m site events, it takes O(m log n) time in total to update T . The total
time to remove the boundary points is linear to the total number of boundary points in Qy+ ,
which is O(nm).

▶ Lemma 6. We can handle all site events in O(nm) time using O(nm) space.

4.2 Handling a bottom-side event

When L encounters the bottom side of a rectangle R ∈ R, the line segment of F ∩ L incident
to the bottom side is replaced by two line segments by the event. See Figure 4(b). Thus, we
update T by finding the node v ∈ T with x1(v) ≤ x1(R) < x2(R) ≤ x2(v), removing v from
T , and then inserting two new nodes u and w into T . We set (x1(u), x2(u)) = (x1(v), x1(R)),
(x1(w), x2(w)) = (x2(R), x2(v)), Xu = Xv, and Xw = Xv. This takes O(log n) time since T
is a balanced binary search tree. It takes O(m) time to copy the Boolean values of Xv to Xu

and Xw, and to remove Xv. Thus, it takes O(m + log n) time to update T .
We update B by inserting two lists B(u) and B(w) into B, copying the boundary points

of B(v) to the lists, and then removing B(v) from B. By Corollary 5, hv intersects O(m)
cells in My+ . Thus, B(v) has O(m) boundary points, and the update to B(u) and B(w) takes
O(m) time. There is no change to distance functions.

Since there are n bottom-side events, it takes O(nm + n log n) time to update T and
O(nm) time to update B for all bottom-side events.

▶ Lemma 7. We can handle all bottom-side events in O(nm + n log n) time using O(nm)
space.

4.3 Handling a top-side event

When L encounters the top side of a rectangle R ∈ R, the two consecutive segments in F ∩ L

incident to R are replaced by one segment spanning them by the event. See Figure 4(c).
We update T by finding the two nodes u, w ∈ T with x2(u) = x1(R) and x1(w) = x2(R),
removing u and w from T , and then inserting a new node v into T . We set x1(v) = x1(u),
x2(v) = x2(w), and Xv[i] = Xu[i] ∨ Xw[i] for each i = 1, . . . , m. This takes O(m + log n)
time.

We update the distance function dv(x) for x with x1(v) ≤ x ≤ x1(R) as follows. The
geodesic path from any point p(x) ∈ hu to si with Xu[i] = F and Xw[i] = T is xy-monotone by
Lemma 1, and thus d(si, p(x)) = y(p(x))−y(si)+ |x(si)−x|. Also, we observe that x(si) ≥ x

for any x. Thus, every p(x) has the same site s∗ as its farthest site among the sites si with
Xu[i] = F and Xw[i] = T. Then d(s∗, p(x)) = y(p(x)) − y(s∗) + x(s∗) − x. By Lemma 4,
there is at most one maximal interval I of x ∈ [x1(v), x1(R)] such that dv(x) ≤ d(s∗, p(x)).
Moreover, I is bounded from left by x1(v). We find the boundary point p(x∗) ∈ hu such that
dv(x∗) = d(s∗, p(x∗)), and update dv(x) to d(s∗, p(x)) for x ≤ x∗.

If there is no such point p(x∗), either dv(x) < d(s∗, p(x)) or dv(x) > d(s∗, p(x)) for all x

with x1(v) ≤ x ≤ x1(R). If dv(x) < d(s∗, p(x)), we update dv(x) to dv(x) = d(s∗, p(x)) for
x1(v) ≤ x ≤ x1(R). If dv(x) > d(s∗, p(x)), we do not update dv(x).

We update B[x1(v), x1(R)], which is a part of B(v) with range [x1(v), x1(R)], by removing
all the boundary points in the interior of I in time linear to the number of the boundary
points, and then inserting p(x∗) as a boundary point. We can handle the case of x with
x2(R) ≤ x ≤ x2(v), and update B[x2(R), x2(v)] analogously.

SoCG 2022



51:10 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

R = Rk

βα

Ra

Rb

s1

s2

s3

s4

s5

s6
αa

αb

βa

βb

Figure 5 ST = {s1, s2, s3, s4, s5, s6} is partitioned into Sk = {s2, s3, s4, s5}, S(α) = {s1}, and
S(β) = {s6}. For two rectangles Ra and Rb, Sa = {s2} and Sb = {s5}.

Computing distance functions for a top side

We show how to compute dv(x) for x ∈ [x1(R), x2(R)] and update B[x1(R), x2(R)] efficiently.

For an index k, let αk and βk denote the top-left corner and the top-right corner of
Rk ∈ R, and let Sk denote the set of the sites that lie below the polygonal curve consisting
of πdl(αk), the top side of Rk, and πdr(βk).

For the top-side event of R = Rk, let α = αk and β = βk. Note that x(α) = x1(R) and
x(β) = x2(R). Let ST be the set of the sites si, with Xv[i] = T for all i = 1, . . . , m. We
partition ST into three disjoint subsets, Sk, S(α), and S(β), such that S(α) = {si ∈ ST \ Sk |
x(si) ≤ x1(R)} and S(β) = {si ∈ ST \ Sk | x(si) ≥ x2(R)}. See Figure 5.

Every geodesic path from any site in S(α) or S(β) to any point on the top side of R is
xy-monotone. Thus for any point p(x) lying on the top side of R, we can compute d(sα, p(x))
and d(sβ , p(x)), where sα and sβ are the farthest sites of p(x) among sites in S(α) and among
sites in S(β), respectively, as we did for B[x1(v), x1(R)] or B[x2(R), x2(v)].

We denote by dα(i, x) = d(α, si) + x − x(α) the length of a geodesic path from a site si to
p(x) passing through α, and denote by dβ(i, x) = d(β, si) + x(β) − x the length of a geodesic
path from si to p(x) passing through β. Let D(x) = maxsi∈Sk

min{dα(i, x), dβ(i, x)} for
all x with x(α) ≤ x ≤ x(β). Then dv(x) = max{d(sα, p(x)), D(x), d(sβ , p(x))}. Thus, once
we compute D(x) in O(m) time, we can compute dv(x) in time linear to the complexity of
D(x), which is O(m). To compute D(x), we find the two rectangles hit first by the vertical
rays, one emanating from α and one emanating from β, going downwards. Using these two
rectangles we compute the distance functions d(α, si) and d(β, si) for all si ∈ Sk. Using these
distance functions, we can compute D(x) in O(m) time. Details are given in the full version.
We update B[x1(R), x2(R)] in O(m) time using dv(x).

There are n top-side events, so we can handle the top-side events in O(nm + n log n) time.
In addition, we compute distances from O(m) sites to each corner of O(n) rectangles, and
store them. Using ray shooting queries emanating from the corners of rectangles, it takes
O(nm) + O(n log n) time using O(nm) space. Therefore, we have the following lemma.

▶ Lemma 8. We can handle all top-side events in O(nm + n log n) time using O(nm) space.



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:11

4.4 Constructing the query data structure
Initially, Qy+ = ∅. For each site event and top-side event, we update dv(x) and B(v) for node
v of T corresponding to the event. We insert a horizontal segment h corresponding to each
interval which is updated at the event into Qy+ , and copy the boundary points into h. For
each site event, at most one horizontal line segment h is inserted. There is no boundary point
in the interior of h, so we can copy h with two endpoints in O(1) time. For each top-side
event, at most three horizontal line segments are inserted. They have O(m) boundary points
by Lemma 4, so we can copy them in O(m) time. There are O(n + m) horizontal segments
and O(nm) boundary points in Qy+ , so the query structure Qy+ uses O(nm) space.

Farthest-point queries
Once Qy+ is constructed, we can find fy+(q) from a query point q ∈ F \ C∅. We find the
farthest sites from q in the other three maps using their query data structures.

By Corollary 3, our query problem reduces to the vertical ray shooting queries. We use
the data structure by Giora and Kaplan [15] for vertical ray shooting queries on O(n + m)
horizontal line segments in Qy+ , which requires O((n + m) log(n + m)) time and O(n + m)
space for construction. Let h be the horizontal segment in Qy+ hit first by the vertical ray
emanating from q going downwards. We can find h in O(log(n + m)) time using the ray
shooting structure. If no horizontal segment in Qy+ is hit by the ray, q is y+-reachable
from no site. Otherwise, there are O(m) boundary points on h, sorted in increasing order of
x-coordinate. With those boundary points, we can find f(q) for a query point q in O(log m)
time using binary search. Thus, a farthest-neighbor query takes O(log(n + m)) time in total.

Once the farthest sites of q for each of the four data structures is found, we take the
sites with the largest distance among them as the farthest sites f(q) of S from q. Combining
Lemmas 6, 7 and 8 with query time, we have the following theorem.

▶ Theorem 9. We can construct a data structure for m point sites in the presence of n

axis-aligned rectangular obstacles in the plane in O(nm + n log n + m log m) time and O(nm)
space that answers any L1 farthest-neighbor query in O(log(n + m)) time.

5 Computing the Explicit Farthest-point Voronoi Diagram

We construct the explicit farthest-point Voronoi diagram FVD = FVD(S, R) of a set S of m

point sites in the presence of a set R of n rectangular obstacles in the plane. It is known
that FVD requires Ω(nm) space [5, 7]. It takes Ω(n log n) time to compute the geodesic
distance between two points in F [12]. By a reduction from the sorting problem, it can be
shown to take Ω(m log m) time for computing the farthest-point Voronoi diagram of m point
sites in the plane. We present an O(nm + n log n + m log m)-time algorithm using O(nm)
space that matches the time and space lower bounds. This is the first optimal algorithm for
constructing the farthest-point Voronoi diagram of points in the presence of obstacles in the
plane in both time and space.

We construct Qy+ using the plane sweep in Section 4. During the plane sweep, we find
all horizontal edges of My+ and insert them into Qy+ as segments. We find all the lower
endpoints of the vertical edges of My+ and insert them as boundary points in B. We also
find the upper endpoints of vertical edges of My+ . By connecting those endpoints using
vertical segments appropriately, we can construct My+ from Qy+ in a doubly connected edge
list without increasing the time and space complexities. The other three maps can also be
constructed in the same way in the same time and space.

SoCG 2022



51:12 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

(b) (c)(a)

B

f

B

T (y+, y−)

T (y+, x+)

T (y+, x−)

Zy+

Figure 6 (a) Vertical decomposition FV . f is a face of FV . (b) Zy+ is a region in f above
the upper envelope of three traces, T (y+, y−), T (y+, x+) and T (y+, x−). (c) Explicit geodesic L1

farthest-point Voronoi diagram FVD.

We construct the farthest-point Voronoi diagram FVD using the four maps explicitly.
Note that f(p) = fy+(p) for any point p lying on the top side of B. Thus, it suffices to
compute FVD in F ∩ B. For ease of description, we assume that the x-coordinates of the
rectangles in R are all distinct. We consider a vertical decomposition FV obtained by drawing
maximal vertical line segments contained in F ∩ B of which each is extended from a vertical
side of a hole of F. Let V be a set of such vertical line segments. F \

⋃
ℓ∈V ℓ consists of O(n)

connected faces. Each face is a rectangle since each hole of F is a rectangle and F is bounded
by B. See Figure 6(a).

Any two farthest-point maps M1, M2 have a bisector which consists of the points in F
having the same distance to their farthest sites in M1 and in M2. The four maps define
six bisectors. In a face of FV , the six bisectors and some axis-aligned segments partition
the face into zones such that FVD restricted to one zone coincides with the diagram in the
corresponding region of a farthest-point map. Thus, we compute the bisectors between maps
in each face of FV , partition the face into zones, find the region of a farthest-point map
corresponding to each zone, and then glue the regions and faces to compute FVD completely.

5.1 Bisectors of farthest-point maps

We define the bisector between Mδ and Mδ′ as B(δ, δ′) = {q ∈ F | dδ(q) = dδ′(q)} for any
two distinct δ, δ′ ∈ {y+, y−, x+, x−}. We show that any vertical line intersects B(y+, y−) in
at most one point, and any vertical line segment contained in F intersects B(y+, x+) (and
B(y+, x−)) in at most one connected component. Thus, these three bisectors contained in a
face of FV are x-monotone. Details are given in the full version.

For each face f of FV , we compute the portion of B(y+, y−) contained in f. As B(y+, y−)∩f
is x-monotone, we sweep a vertical line L from x1(f) to x2(f) maintaining a point p ∈ f ∩ L

with dy+(p) = dy−(p). First, we compute p lying on the left side of f as follows. There are
O(m) intersections of the left side of f with the horizontal segments of Qy+ and Qy− as
any vertical line segment contained in F intersects O(m) horizontal segments of them. For
each intersection point q, we compute dy+(q) and dy−(q), and find two consecutive points
q1 and q2 among the intersection points by y-coordinate such that dy+(q1) ≤ dy−(q1) and
dy−(q2) ≤ dy+(q2). We can compute q1 and q2 in O(m) time using Qy+ and Qy− . Then we
compute p lying on q1q2.



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:13

Having the distance functions, we have the slope of the bisector incident to p. Let ℓ⃗ be
the half-line from p with the slope going rightward. We find the first point p′ on ℓ⃗ from
p at which the slope of dy+(p′) or dy−(p′) changes. Since the slope of dy+(p′) changes at
most once within a cell of My+ , we can find p′ in time linear to the complexity of the cells
containing p of the maps. If there are two or more such points, p is the point with the
maximum y-coordinate among them.

There may be no point p satisfying dy+(p) = dy−(p) if there is a point q ∈ f ∩ L such that
dy+(q′) > dy−(q′) for every point q′ lying above q, and dy+(q′) < dy−(q′) for every point q′

lying below q. We maintain the point q in this case. Note that q follows a horizontal segment
during the plane sweep, and thus we can find the first point p with dy+(p) = dy−(p) using a
horizontal half-line from q.

During the plane sweep, p or q moves along B(y+, y−) rightwards until it meets the right
side of f. We compute the other bisectors in f similarly.

We compute the trace T (y+, y−) of p and q during the sweep. Observe that every vertical
line intersecting f also intersects the trace in one point t. Moreover, if the line intersects
B(y+, y−) ∩ f, t is the topmost point of the intersection. Since we have Mx+ and Mx− , we
can compute the two traces T (y+, x+) and T (y+, x−) similarly.

We observe that each bisector and trace in f has O(m) complexity. We get the distance
functions using Qy+ , Qy− , Qx+ , and Qx− which consist of O(n + m) line segments and
support O(log(n + m)) query time. After computing those distance functions, the traces can
be constructed in time linear to their complexities. Thus, in total it takes O(nm + n log n +
m log m) time to construct the traces for all faces.

5.2 Partitioning f into zones
With the three traces T (y+, y−), T (y+, x+), T (y+, x−) in f, we compute the zone Zy+ in
f corresponding to My+ in f. Let T be an upper envelope of T (y+, y−), T (y+, x+) and
T (y+, x−). Then Zy+ is the set of points lying above T in f. See Figure 6(b). The following
lemma can be shown using the lemmas in the full version.

▶ Lemma 10. For any point p ∈ Zy+ , f(p) = fy+(p).

Similarly, we define the other three zones Zy− , Zx+ , and Zx− . Note that dδ(p) > dδ′(p)
for every point p ∈ Zδ for distinct δ, δ′ ∈ {y+, y−, x+, x−}. By Lemma 10, FVD ∩ Zy+

coincides with My+ . We copy the corresponding farthest-point map of δ into Zδ for each
δ ∈ {y+, y−, x+, x−}.

We call f \ (Zy+ ∪ Zy− ∪ Zx+ ∪ Zx−) the bisector zone. Every point p in the bisector zone
lies on a bisector of two or more maps. Thus, for each bisector of two maps, we copy one of
the maps into the corresponding zone.

5.3 Gluing along boundaries
We first glue the zones along their boundaries in each face of FV . For each edge e incident to
two zones, we check whether the two cells incident to the edge have the same farthest site or
not. If they have the same farthest site, e is not a Voronoi edge of FVD. Then we remove the
edge and merge the cells into one. If they have different farthest sites, e is a Voronoi edge of
FVD. This takes O(nm) time in total, which is linear to the number of Voronoi edges and
cells in FVD.

After gluing zones in every face, we glue the faces of FV along their boundaries. Since e is
a vertical line segment and incident to more than two cells, we divide e into pieces such that
any point in the same piece e′ is incident to the same set of two cells. If both cells incident

SoCG 2022



51:14 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

to e′ have the same farthest site, e′ is not a Voronoi edge of FVD. Then we remove the edge
and merge the cells. If they have different farthest sites, e′ is a Voronoi edge of FVD. There
are O(n) vertical line segments in V and each of them intersects O(m) cells of FVD, so it
takes O(nm) time in total. Then we obtain the geodesic L1 farthest-point Voronoi diagram
FVD explicitly. See Figure 6(c).

▶ Theorem 11. We can compute the L1 farthest-point Voronoi diagram of m point sites in
the presence of n axis-aligned rectangular obstacles in the plane in O(nm + n log n + m log m)
time and O(nm) space.

▶ Corollary 12. We can compute the L1 geodesic center of m point sites in the presence of n

axis-aligned rectangular obstacles in the plane in O(nm + n log n + m log m) time and O(nm)
space.

6 Concluding Remarks

We present an optimal algorithm for computing the farthest-point Voronoi diagram of point
sites in the presence of rectangular obstacles. However, our algorithm may not work for
more general obstacles as it is, because some properties we use for the axis-aligned rectangles
including their convexity may not hold any longer. Our results, however, may serve as a
stepping stone to closing the gap to the optimal bounds.

References
1 A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor. A linear-time algorithm for computing

the Voronoi diagram of a convex polygon. Discrete & Computational Geometry, 4(6):591–604,
1989.

2 H. Alt, O. Cheong, and A. Vigneron. The Voronoi diagram of curved objects. Discrete &
Computational Geometry, 34(3):439–453, 2005.

3 B. Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica,
4(1):109–140, 1989.

4 B. Aronov, S. Fortune, and G. Wilfong. The furthest-site geodesic Voronoi diagram. Discrete
& Computational Geometry, 9(3):217–255, 1993.

5 S.W. Bae and K.-Y. Chwa. The geodesic farthest-site Voronoi diagram in a polygonal domain
with holes. In Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG),
pages 198–207, 2009.

6 B. Ben-Moshe, B.K. Bhattacharya, and Q. Shi. Farthest neighbor Voronoi diagram in
the presence of rectangular obstacles. In Proceedings of the 13th Canadian Conference on
Computational Geometry (CCCG), pages 243–246, 2005.

7 B. Ben-Moshe, M.J. Katz, and J.S.B. Mitchell. Farthest neighbors and center points in
the presence of rectangular obstacles. In Proceedings of the 17th Annual Symposium on
Computational Geometry (SoCG), pages 164–171, 2001.

8 O. Cheong, H. Everett, M. Glisse, J. Gudmundsson, S. Hornus, S. Lazard, M. Lee, and H.-S.
Na. Farthest-polygon Voronoi diagrams. Computational Geometry, 44(4):234–247, 2011.

9 L.P. Chew and R.L. Dyrsdale III. Voronoi diagrams based on convex distance functions. In
Proceedings of the 1st annual symposium on Computational geometry (SoCG), pages 235–244,
1985.

10 J. Choi, C.-S. Shin, and S.K. Kim. Computing weighted rectilinear median and center set in
the presence of obstacles. In International Symposium on Algorithms and Computation, pages
30–40. Springer, 1998.

11 J. Choi and C. Yap. Monotonicity of rectilinear geodesics in d-space. In Proceedings of the
12th Annual Symposium on Computational Geometry (SoCG), pages 339–348, 1996.



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:15

12 P.J. De Rezende, D.-T. Lee, and Y.-F. Wu. Rectilinear shortest paths with rectangular barriers.
In Proceedings of the 1st Annual Symposium on Computational Geometry (SoCG), pages
204–213, 1985.

13 H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete & Computational
Geometry, 1(1):25–44, 1986.

14 S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1):153–174, 1987.
15 Y. Giora and H. Kaplan. Optimal dynamic vertical ray shooting in rectilinear planar subdivi-

sions. ACM Transactions on Algorithms, 5(3):28:1–51, 2009.
16 J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.

SIAM Journal on Computing, 28(6):2215–2256, 1999.
17 R. Klein. Abstract Voronoi diagrams and their applications. In Proceedings of the 4th

International Workshop on Computational Geometry (EuroCG), pages 148–157. Springer,
1988.

18 D.-T. Lee. Two-dimensional Voronoi diagrams in the Lp-metric. Journal of the ACM,
27(4):604–618, 1980.

19 E. Oh. Optimal algorithm for geodesic nearest-point Voronoi diagrams in simple polygons.
In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 391–409, 2019.

20 E. Oh and H.-K. Ahn. Voronoi diagrams for a moderate-sized point-set in a simple polygon.
Discrete & Computational Geometry, 63(2):418–454, 2020.

21 E. Oh, L. Barba, and H.-K. Ahn. The geodesic farthest-point Voronoi diagram in a simple
polygon. Algorithmica, 82(5):1434–1473, 2020.

22 E. Papadopoulou and S.K. Dey. On the farthest line-segment Voronoi diagram. International
Journal of Computational Geometry & Applications, 23(06):443–459, 2013.

23 E. Papadopoulou and D.T. Lee. The L∞ Voronoi diagram of segments and VLSI applications.
International Journal of Computational Geometry & Applications, 11(05):503–528, 2001.

24 M.I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the 16th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 151–162, 1975.

25 H. Wang. An optimal deterministic algorithm for geodesic farthest-point Voronoi diagrams
in simple polygons. In Proceedings of the 37th International Symposium on Computational
Geometry (SoCG), pages 59:1–59:15, 2021.

SoCG 2022





Point Separation and Obstacle Removal by Finding
and Hitting Odd Cycles
Neeraj Kumar #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Daniel Lokshtanov #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Saket Saurabh #

Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway

Subhash Suri #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Jie Xue #

New York University Shanghai, China

Abstract
Suppose we are given a pair of points s, t and a set S of n geometric objects in the plane, called
obstacles. We show that in polynomial time one can construct an auxiliary (multi-)graph G with
vertex set S and every edge labeled from {0, 1}, such that a set Sd ⊆ S of obstacles separates
s from t if and only if G[Sd] contains a cycle whose sum of labels is odd. Using this structural
characterization of separating sets of obstacles we obtain the following algorithmic results.

In the Obstacle-removal problem the task is to find a curve in the plane connecting s to t

intersecting at most q obstacles. We give a 2.3146qnO(1) algorithm for Obstacle-removal, signifi-
cantly improving upon the previously best known qO(q3)nO(1) algorithm of Eiben and Lokshtanov
(SoCG’20). We also obtain an alternative proof of a constant factor approximation algorithm for
Obstacle-removal, substantially simplifying the arguments of Kumar et al. (SODA’21).

In the Generalized Points-separation problem input consists of the set S of obstacles, a point
set A of k points and p pairs (s1, t1), . . . (sp, tp) of points from A. The task is to find a minimum
subset Sr ⊆ S such that for every i, every curve from si to ti intersects at least one obstacle in
Sr. We obtain 2O(p)nO(k)-time algorithm for Generalized Points-separation. This resolves an
open problem of Cabello and Giannopoulos (SoCG’13), who asked about the existence of such an
algorithm for the special case where (s1, t1), . . . (sp, tp) contains all the pairs of points in A. Finally,
we improve the running time of our algorithm to f(p, k) · nO(

√
k) when the obstacles are unit disks,

where f(p, k) = 2O(p)kO(k), and show that, assuming the Exponential Time Hypothesis (ETH), the
running time dependence on k of our algorithms is essentially optimal.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases points-separation, min color path, constraint removal, barrier resillience

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.52

Related Version Full Version: https://arxiv.org/abs/2203.08193

Funding Daniel Lokshtanov: BSF award 2018302 and NSF award CCF-2008838
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 819416), and Swarnajayanti Fellowship
(No. DST/SJF/MSA01/2017-18).
Subhash Suri: NSF award CCF-1814172

© Neeraj Kumar, Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neeraj@cs.ucsb.edu
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:suri@cs.ucsb.edu
mailto:jiexue@nyu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.52
https://arxiv.org/abs/2203.08193
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


52:2 Algorithms for Point Separation and Obstacle Removal

1 Introduction

Suppose we are given a set S of geometric objects in the plane, and we want to modify S in
order to achieve certain guarantees on coverage of paths between a given set A of points. Such
problems have received significant interest in sensor networks [2, 4, 6, 16], robotics [9, 12] and
computational geometry [3, 8, 11]. There have been two closely related lines of work on this
topic: (i) remove a smallest number of obstacles from S to satisfy reachability requirements for
points in A, and (ii) retain a smallest number of obstacles to satisfy separation requirements
for points in A.

In the most basic version of these problems the set A consists of just two points s and
t. Specifically, in Obstacle-removal the task is to find a smallest possible set Sd ⊆ S
such that there is a curve from s to t in the plane avoiding all obstacles in S \ Sd. In
2-Points-separation the task is to find a smallest set Sr ⊆ S such that every curve from
s to t in the plane intersects at least one obstacle in Sr. It is quite natural to require the
obstacles in the set S to be connected. Indeed, removing the connectivity requirements
results in problems that are computationally intractable [8, 10,21].

When the obstacles are required to be connected Obstacle-removal remains NP-
hard, but becomes more tractable from the perspective of approximation algorithms and
parameterized algorithms. For approximation algorithms, Bereg and Kirkpatrick [4] designed
a constant factor approximation for unit disk obstacles. Chan and Kirkpatrick [6,7] improved
the approximation factor for unit disk obstacles. Korman et al. [14] obtained a (1 + ϵ)-
approximation algorithm for the case when obstacles are fat, similarly sized, and no point in
the plane is contained in more than a constant number of obstacles. Whether a constant factor
approximation exists for general obstacles was posed repeatedly as an open problem [3,6, 7]
before it was resolved in the affirmative by a subset of the authors of this article [21].

For parameterized algorithms, Korman et al. [14] designed an algorithm for Obstacle-
removal with running time f(q)nO(1) for determining whether there exists a solution Sd of
size at most q, when obstacles are fat, similarly sized, and no point in the plane is contained
in more than a constant number of obstacles. Eiben and Kanj [8,10] generalized the result of
Korman et al. [14], and posed as an open problem the existence of a f(q)nO(1) time algorithm
for Obstacle-removal with general connected obtacles. Eiben and Lokshtanov [11] resolved
this problem in the affirmative, providing an algorithm with running time qO(q3)nO(1).

Like Obstacle-removal, the 2-Points-separation problem becomes more tractable
when the obstacles are connected. Cabello and Giannopoulos [5] showed that 2-Points-
separation with connected obstacles is polynomial time solvable. They show that the more
general Points-separation problem where we are given a point set A and asked to find
a minimum size set Sr ⊆ S that separates every pair of points in A, is NP-complete, even
when all obstacles are unit disks. They leave as an open problem to determine the existence
of f(k)nO(1) and f(k)ng(k) time algorithms for Points-separation, where k = |A|.

Our Results and Techniques

Our main result is a structural characterization of separating sets of obstacles in terms of
odd cycles in an auxiliary graph.

▶ Theorem 1. There exists a polynomial time algorithm that takes as input a set S of
obstacles in the plane, two points s and t, and outputs a (multi-)graph G with vertex set S
and every edge labeled from {0, 1}, such that a set Sd ⊆ S of obstacles separates s from t if
and only if G[Sd] contains a cycle whose sum of labels is odd.



N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:3

The proof of Theorem 1 is an application of the well known fact that a closed curve
separates s from t if and only if it crosses a curve from s to t an odd number of times.
Theorem 1 allows us to re-prove, improve, and generalize a number of results for Obstacle-
removal, 2-Points-separation and Points-separation in a remarkably simple way.
More concretely, we obtain the following results.

There exists a polynomial time algorithm for 2-Points-separation.

Here is the proof: construct the graph G from Theorem 1 and find the shortest odd
cycle, which is easy to do in polynomial time. This re-proves the main result of Cabello
and Giannopoulos [5]. Next we turn to Obstacle-removal, and obtain an improved
parameterized algorithm and simplified approximation algorithms.

There exists an algorithm for Obstacle-removal that determines whether there exists
a solution size set S of size at most q in time 2.3146qnO(1).

Here is a proof sketch: construct the graph G from Theorem 1 and determine whether
there exists a subset Sd of S of size at most q such that G − Sd does not have any odd label
cycle. This can be done in time 2.3146qnO(1) using the algorithm of Lokshtanov et al. [18]
for Odd Cycle Transversal.1 This parameterized algorithm improves over the previously
best known parameterized algorithm for Obstacle-removal of Eiben and Lokshtanov [11]
with running time qO(q3)nO(1).

If we run an approximation algorithm for Odd Cycle Transversal on G instead of a
parameterized algorithm, we immediately obtain an approximation algorithm for Obstacle-
removal with the same ratio. Thus, the O(

√
log n)-approximation algorithm for Odd

Cycle Transversal [1, 15] implies a O(
√

log n)-approximation algorithm for Obstacle-
removal as well. Going a little deeper we observe that the structure of G implies that the
standard Linear Programming relaxation of Odd Cycle Transversal on G only has a
constant integrality gap. This yields a constant factor approximation for Obstacle-removal,
substantially simplifying the approximation algorithm of Kumar et al [21].

There exists a a constant factor approximation for Obstacle-removal.

Finally we turn our attention back to a generalization of Points-separation, called
Generalized Points-separation. Here, instead of separating all k points in A from each
other, we are only required to separate p specific pairs (s1, t1), . . . , (sp, tp) of points in A

(which are specified in the input). We apply Theorem 1 several times, each time with the
same obstacle set S, but with a different pair (si, ti). Let Gi be the graph resulting from
the construction with the pair (si, ti). Finding a minimum size set Sr of obstacles that
separates si from ti for every i now amounts to finding a minimum size set Sr such that
Gi[Sr] contains an odd label cycle for every i. The graph in the construction of Theorem 1
does not depend on the points (si, ti) - only the labels of the edges do. Thus G1, . . . , Gp are
copies of the same graph G, but with p different edge labelings. Our task now is to find a
subgraph of G on the minimum number of vertices, such that the subgraph contains an odd
labeled cycle with respect to each one of the p labels. We show that such a subgraph has at
most O(p) vertices of degree at least 3 and use this to obtain a 2O(p2)nO(p) time algorithm

1 The only reason this is a proof sketch rather than a proof is that the algorithm of Lokshtanov et al. [18]
works for unlabeled graphs, while G has edges with labels 0 or 1. This difference can be worked out
using a well-known and simple trick of subdividing every edge with label 0 (see Section 4).

SoCG 2022



52:4 Algorithms for Point Separation and Obstacle Removal

for Generalized Points-separation. This implies a 2O(k4)nO(k2) time algorithm for
Points-separation, resolving the open problem of Cabello and Giannopoulos [5]. With
additional technical effort we are able to bring down the running time of our algorithm for
Generalized Points-separation to 2O(p)nO(k). This turns out to be close to the best
one can do. On the other hand, for pseudo-disk obstacles we can get a faster algorithm.

There exists a 2O(p)nO(k) time algorithm for Generalized Points-separation, and a
nO(

√
k) time algorithm for Generalized Points-separation with pseudo-disk obstacles.

A f(k)no(k/ log k) time algorithm for Points-separation, or a f(k)no(
√

k) time algorithm
for Points-separation with pseudo-disk obstacles would violate the ETH [13].

2 Preliminaries

All graphs used in this paper are undirected. It will also be more convenient to sometimes
consider multi-graphs, in which self-loops and parallel edges are allowed. The degree of a
vertex is the number of adjacent edges.

The arrangement Arr(S) of a set of obstacles S is a subdivision of the plane induced by
the boundaries of the obstacles in S. The faces of Arr(S) are connected regions and edges
are parts of obstacle boundaries. The arrangement graph GArr = (V, E) is the dual graph
of the arrangement whose vertices are faces of Arr(S) and edges connect neighboring faces.
The complexity of the arrangement is the size of its arrangement graph which we denote
by |Arr(S)|. We assume that the size of the arrangement is polynomial in the number of
obstacles, that is |Arr(S)| = |GArr| = nO(1). This is indeed true for most reasonable obstacle
models such as polygons or low-degree splines.

Plane curves and Crossings. A plane curve (or simply curve) is specified by a continuous
function π : [0, 1] → R2, where the points π(0) and π(1) are called the endpoints (we also
use the notation π to denote the image of the path function π). A curve is simple if it is
injective, and is closed if its two endpoints are the same. We say a curve π separates a pair
(a, b) of two points in R2 if a and b belong to different connected components of R2\π.

A crossing of π with π′ is an element of the set {t ∈ [0, 1] | π(t) ∈ π′}. We will often be
concerned with the number of times π crosses π′. This is defined as |{t ∈ [0, 1] | π(t) ∈ π′}|.
Whenever we count the number of times a curve π crosses another curve π′ we shall assume
that (and ensure that) |{t ∈ [0, 1] | π(t) ∈ π′}| is finite and that π and π′ are transverse.
That is for every t ∈ [0, 1] such that π(t) ∈ π′ there exists an ϵ > 0 such that the intersection
of π ∪ π′ with an ϵ radius ball around π(t) is homotopic with two orthogonal lines. We will
make frequent use of the following basic topological fact.

▶ Fact 2. Let π be a curve with endpoints a, b ∈ R2. We have that (i) A simple closed curve
γ separates (a, b) iff π crosses γ an odd number of times. (ii) If π crosses a closed curve γ

an odd number of times, then γ separates (a, b).

3 Labeled Intersection Graph of Obstacles

We begin by describing the construction of the labeled intersection graph GS = (S, X) of
the obstacles S. For the ease of exposition, we will use S to refer to the obstacle S ∈ S as
well as the vertex for S in GS interchangeably.



N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:5

Constructing the graph GS . For every obstacle S ∈ S we first select an arbitrary point
ref(S) ∈ S and designate it to be the reference point of the obstacle. Next, we select the
reference curve π to be a simple curve in the plane connecting s and t such that including it
to the arrangement Arr(S) does not significantly increase its complexity. That is, we want to
ensure that |Arr(S ∪ π)| = O(|Arr(S)|). Additionally, the reference curve π is chosen such
that there exists an ϵ > 0 and π is disjoint from an ϵ ball around every intersection point of
two obstacles in Arr(S) and from an ϵ ball around every reference point ref(S) for S ∈ S.

As long as the intersection of every pair of obstacles is finite and their arrangement has
bounded size, a suitable choice for π always exists (and can be efficiently computed). For
example one can choose π to be the plane curve corresponding to an s–t path in GArr.

We will now add edges to GS as follows. (See also Figure 1(c) for an example.)

For every obstacle S ∈ S that contains s or t, add a self-loop e = (S, S) with lab(e) = 1.
For every pair of obstacles S, S′ ∈ S that intersect, we add edges to G as follows.

Add an edge e0 = (S, S′) with lab(e0) = 0 if there exists a curve connecting ref(S) and
ref(S′) contained in the region S ∪ S′ that crosses π an even number of times.
Add an edge e1 = (S, S′) with lab(e1) = 1 if there exists a curve connecting ref(S) and
ref(S′) contained in the region S ∪ S′ that crosses π an odd number of times.

Checking whether there exists a curve contained in the region S ∪S′ with endpoints ref(S)
and ref(S′) that crosses π an odd (resp. even) number of times can be done in time linear
in the size of arrangement Arr′ = Arr(S ∪ S′ ∪ π). Specifically, we build the arrangement
graph GArr′ and only retain edges (fi, fj) such that the faces fi, fj ∈ S ∪ S′. If the common
boundary of faces fi, fj is a portion of π, we assign a label 1 to the edge (fi, fj), otherwise
we assign it a label 0. An odd (resp. even) labeled walk in GArr′ connecting the faces
containing ref(S) and ref(S′) gives us the desired plane curve πij . Since edges of GArr′ connect
adjacent faces of Arr′, we can ensure that the intersections between curve πij and the edges
of arrangement (including parts of reference curve π) are all transverse.

We are now ready to prove the following important structural property of the graph GS .

▶ Lemma 3. A set of obstacles S ′ ⊆ S in the graph GS separates the points s and t if and
only if the induced graph H = GS [S ′] contains an odd labeled cycle.

Proof. (⇒) For the forward direction, suppose we are given a set of obstacles S ′ that separate
s from t. If s or t are contained in some obstacle, then we must have an odd self-loop in GS
and we will be done. Otherwise, assume that s, t lie in the exterior of all obstacles, so we
have s, t ̸∈ R(S ′) where R(S ′) =

⋃
S∈S′ S is the region bounded by obstacles in S ′. Observe

that s, t must lie in different connected regions Rs, Rt of R2 \ R(S ′) or else the set S ′ would
not separate them. At least one of Rs or Rt must be bounded, wlog assume it is Rs. Let γ′

be the simple closed curve that is the common boundary of R(S ′) and Rs. We have that
γ′ encloses s but not t and therefore separates s from t. Using first statement of Fact 2,
we obtain that γ′ crosses the reference curve π an odd number of times. Observe that the
curve γ′ consists of multiple sections α′

1 → α′
2 · · · → α′

r where each curve α′
i is part of the

boundary of some obstacle Si. For each of these curves α′
i, we add a detour to and back

from the reference point ref(Si) of the obstacle it belongs. Specifically, let qi be an arbitrary
point on the curve α′

i and let α′
iℓ, α′

ir be the portion of α′
i before and after qi respectively.

We add the detour curve δi = qi → ref(Si) → qi ensuring that it always stays within the
obstacle Si which is possible because the obstacles are connected. (Same as before the curve
δi can be chosen to be transverse with π by considering the corresponding walk in graph of
Arr(Si ∪ π).) Let αi = α′

iℓ → δi → α′
ir be the curve obtained by adding detour δi to α′

i. Let

SoCG 2022



52:6 Algorithms for Point Separation and Obstacle Removal

γ = α1 → α2 · · · → αr be the closed curve obtained by adding these detours to γ′. Note that
γ is not necessarily simple as the detour curves may intersect each other. Every detour δi

consists of identical copies of two curves, so it crosses the reference curve π an even number
of times. Since γ′ crosses π an odd number of times, the curve γ also crosses π an odd
number of times. (See also Figure 1.) Observe that γ and γ′ are transverse with π because
intersections of π and obstacle boundaries are transverse and the detour curves δi are chosen
to be transverse with π.

q1

ref(S1)
S1

S2

S3

S4 δ1

γ′ γ

S3

S1

S2 S4

1

0 0

0

(a) (b) (c)

s
t

Figure 1 (a) The curve γ′ shown shaded in blue is the common boundary of R(S ′) and region
Rs (b) Adding detours δi to obtain curve γ (c) Labeled Intersection graph GS ob obstacles.

We will now translate the curve γ to a walk in the labeled intersection graph GS .
Specifically, consider the section of γ between two consecutive detours: γi,i+1 = ref(Si) →
qi → qi+1 → ref(Si+1). Therefore the obstacles Si, Si+1 must intersect and we have a curve
γi,i+1 connecting their reference points contained in the region Si ∪ Si+1 that also intersects
the reference curve π an odd (resp. even) number of times. By construction, GS must
contain an edge ei,i+1 with label 1 (resp. 0). By replacing all these sections of γ with the
corresponding edges of GS , we obtain an odd-labeled closed walk W in GS . Of all the
odd-labeled closed sub-walks of W , we select one that is inclusion minimal. This gives a
simple odd-labeled cycle in GS [S ′].

(⇐) The reverse direction is relatively simpler. Given an odd-labeled cycle in GS [S ′],
we obtain a closed curve γ in the plane contained in region R(S ′) as follows. For every
edge ei = (S, S′) of the cycle with label lab(ei), we consider the curve γi that connects the
reference points ref(S) and ref(S′) contained in S ∪ S′ and crosses the reference curve π

consistent with lab(ei). Moreover γi needs to be transverse with π. Such a curve exists by
construction of GS . Combining these curves γi in order gives us a closed curve γ in the
plane that crosses π an odd number of times. Although this curve may be self intersecting,
from second statement of Fact 2, we have that γ separates s and t. ◀

The construction of the graph GS , together with Lemma 3 prove Theorem 1.

2-Points-separation as Shortest Odd Cycle in GS . From Lemma 3, it follows that a
minimum set of obstacles that separates s from t corresponds to an odd-labeled cycle in GS
with fewest vertices. This readily gives a polytime algorithm for 2-Points-separation. In
particular, for a fixed starting vertex, we can compute the shortest odd cycle in GS in O(|S|2)
time by the following well-known technique. Consider an unlabeled auxiliary graph G′ with
vertex set is S × {0, 1}. For every edge e = (S, S′) of GS , we add edges {(S, 0), (S′, 0)} and
{(S, 1), (S′, 1)} if lab(e) = 0. Otherwise, we add the edges {(S, 0), (S′, 1)} and {(S, 1), (S′, 0)}.
The shortest odd cycle containing a fixed vertex S is the shortest path in G′ between vertices
(S, 0) and (S, 1). Repeating over all starting vertices gives the shortest odd cycle in GS . This



N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:7

can be easily extended for the node-weighted case which gives us the following useful lemma
that also yields a polynomial time algorithm for 2-Points-separation, reproving a result
of Cabello and Giannopoulos [5].

▶ Lemma 4. There exists a polynomial time algorithm for computing a minimum weight
labeled odd cycle in the graph GS .

Next we prove one more structural property of labeled intersection graph GS that will be
useful later. We define a (labeled) spanning tree T of a connected labeled multi-graph GS to
be a subgraph of GS that is a tree and connects all vertices in S. An edge e = (u, v) ∈ GS is
a tree edge if (u, v) ∈ T , otherwise it is called a non-tree edge.

▶ Lemma 5. Let GS be a connected labeled intersection graph and T be a spanning tree
of GS . If GS contains an odd labeled cycle, then it also contains an odd labeled cycle with
exactly one non-tree edge.

Proof. Let C be an odd cycle in GS that contains fewest non-tree edges. If C consists of
exactly one non-tree edge, we are done. Otherwise, C contains more than one non-tree edge.
Let e = (u, v) ∈ C be a non-tree edge and C ′ ⊂ C be the remainder of C without the edge e.
Since C is odd labeled, we must have lab(C ′) ̸= lab(e).

Let πuv be the unique path connecting u, v in T . This gives us a path πuv with label
lab(πuv). Recall that lab(C ′) ̸= lab(e). We have two cases. (i) If lab(πuv) ̸= lab(e), then
we obtain an odd labeled cycle πuv ⊕ e that has one non-tree edge, namely e, and we are
done. (ii) Otherwise, lab(πuv) = lab(e) ̸= lab(C ′). This gives us an odd labeled closed
walk W ∗ = πuv ⊕ C ′ which contains one less non-tree edge than C. Let C∗ ⊆ W ∗ be an
odd-labeled inclusion minimal closed sub-walk of W ∗ (one such C∗ always exists). Therefore,
C∗ is an odd-labeled cycle in GS that has fewer non-tree edges than C. But C was chosen
to be an odd labeled cycle with fewest non-tree edges, a contradiction. ◀

The above lemma also gives a simple O(|S2|) algorithm to detect whether there exists an odd
label cycle in GS . Specifically, consider an arbitrary spanning tree of T of GS and for each
edge not in T , compare its label with the label of the path connecting its endpoints in T .

▶ Lemma 6. Given a labeled graph GS , there exists an O(|S2|) time algorithm to detect
whether GS contains an odd labeled cycle.

4 Application to Obstacle-removal

We will show how to cast Obstacle-removal as a Labeled Odd Cycle Transversal
problem on the graph GS . Recall that in Obstacle-removal problem, we want to remove
a set Sd ⊆ S of obstacles from the input so that s and t are connected in S \ Sd. Equivalently,
we want to select a subset Sd of obstacles such that the complement set S \ Sd does not
separate s and t. From Lemma 3, it follows that the obstacles S \ Sd do not separate s and t

if and only if GS [S \ Sd] does not contain an odd labeled cycle. This gives us the following
important lemma.

▶ Lemma 7. A set of obstacles Sd ⊆ S is a solution to Obstacle-removal if and only if
the set of vertices Sd is a solution to Odd Cycle Transversal of GS .

This allows us to apply the set of existing results for Odd Cycle Transversal to obstacle
removal problems. In particular, this readily gives an improved algorithm for Obstacle-
removal when parameterized by the solution size (number of removed obstacles). Let

SoCG 2022



52:8 Algorithms for Point Separation and Obstacle Removal

G+
S denote the graph GS where every edge e with lab(e) = 0 is subdivided. Clearly an

odd-labeled cycle in GS has odd length in G+
S and vice versa. Applying the FPT algorithm

for Odd Cycle Transversal from [18] on the graph G+
S gives us the following result.

▶ Theorem 8. There exists a 2.3146knO(1) algorithm for Obstacle-removal parameterized
by k, the number of removed obstacles.

This also immediately gives us an O(
√

log OPT) approximation for Obstacle-removal
by using the best known O(

√
log OPT)-approximation [15] for Odd Cycle Transversal

on the graph G+
S . Observe that instances of obstacle removal are special cases of odd cycle

transversal, specifically where the graph GS is an intersection graph of obstacles. By applying
known results on small diameter decomposition of region intersection graphs, Kumar et al. [21]
obtained a constant factor approximation for Obstacle-removal. In the next section we
present an alternative constant factor approximation algorithm. Although our algorithm
follows a similar high level approach of using small diameter decomposition of GS , we give
an alternative proof which significantly simplifies the arguments of [21].

Constant Approximation for Obstacle-removal
Our algorithm is based on formulating and rounding a standard LP for labeled odd cycle
transversal on a labeled intersection graph GS . Let 0 ≤ xi ≤ 1 be an indicator variable that
denotes whether obstacle Si is included to the solution or not. The LP formulation which
will be referred as Hit-odd-cycles-LP can be written as follows:

min
∑

Si∈S
xi subject to:

∑
Sj∈C

xj ≥ 1 for all odd-labeled cycles C ∈ GS

Although this LP has exponentially many constraints, it can be solved in polynomial
time using the ellipsoid method with the polynomial time algorithm for minimum weight odd
labeled cycle in GS (Lemma 4) as separation oracle. The next step is to round the fractional
solution x̂ = x1, x2, . . . , xn obtained from solving the Hit-odd-cycles-LP. We will need
some background on small diameter decomposition of graphs.

Small Diameter Decomposition. Given a graph G = (V, E) and a distance function
d : V → R+ associated with each vertex, we can define the distance of each edge as
d(e) = d(v) + d(w) for every edge e = (v, w) ∈ E. We can then extend the distance function
to any pair of vertices d(u, v) as the shortest path distance between u and v in the edge-
weighted graph with distance values of edges as edge weights. We use the following result of
Lee [17] for the special case of region intersection graph over planar graphs.

▶ Lemma 9. Let G = (V, E) be a node-weighted intersection graph of connected regions in
the plane, then for every ∆ > 0 there exists a set X ⊆ V of |X| = O(1/∆) ·

∑
d(v) vertices

such that the diameter of G − X is at most ∆ in the metric d. Moreover, such a set X can
be computed in polynomial time.

For the sake of convenience, we assume that GS does not contain an obstacle Si with a
self-loop, because if so, we must always include Si to the solution. Let G∗

S be the underlying
unlabeled graph obtained by removing labels and multi-edges from GS . Since G∗

S is simply
the intersection graph of connected regions in the plane, it is easy to show that G∗

S is a
region intersection graph over a planar graph (See also Lemma 4.1 [21] for more details.)



N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:9

Algorithm: Hit-Odd-Cycles. With small diameter decomposition for G∗
S in place, the

rounding algorithm is really simple.
Assign distance values to vertices of G∗

S = (S, E) as d(Si) = xi, where xi is the fractional
solution obtained from solving Hit-Odd-Cycle-LP.
Apply Lemma 9 on graph G∗

S with diameter ∆ = 1/2. Return the set of vertices X

obtained from applying the lemma as solution.

It remains to show that the set X ⊆ S returned above indeed hits all the odd labeled
cycles in GS . Define a ball B(c, R) = {v ∈ V : d(c, v) < R − d(v)/2} with center c, radius
R and distance metric d defined before. Intuitively, B(c, R) consists of the vertices that lie
strictly inside the radius R ball drawn with c as center.

▶ Lemma 10. X hits all odd labeled cycles in GS .

Proof. The proof is by contradiction. Let C be an odd labeled cycle such that C ∩ X = ∅.
Then C must be contained in a single connected component κ of GS − X. Let v1 be an
arbitrary vertex of C and consider a ball B = B(v1, 1/2) of radius 1/2 centered at v1. We
have κ ⊆ B due to the choice of diameter ∆. Consider the shortest path tree T of ball B

rooted at v1 using the distance function d(e) in the unlabeled graph G∗
S . For every edge

(u, v) ∈ T assign the label lab(e) of e = (u, v) ∈ GS . If multiple labeled edges exist between
u and v, choose one arbitrarily.

Now consider the induced subgraph G′
S = GS [B] which is a connected labeled intersection

graph of obstacles in the ball B. Moreover, T is a spanning tree of G′
S , and G′

S contains an
odd-labeled cycle because κ ⊆ G′

S . Applying Lemma 5 gives us an odd-labeled cycle C ∈ G′
S

that contains exactly one edge e ̸∈ T . The cost of this cycle is cost(C) < 1/2 + 1/2 = 1. This
contradicts the constraint of Hit-Odd-Cycle-LP corresponding to C. ◀

We conclude with the main result for this section.

▶ Theorem 11. There exists a polynomial time constant factor approximation algorithm for
Obstacle-removal.

5 Generalized Points-separation

So far, we have focused on separating a pair of points s, t in the plane. In this section, we
consider the more general problem where we are given a set S of n obstacles, a set of points
A and a set P = {(s1, t1), . . . , (sp, tp)} of p pairs of points in A which we want to separate.
First we show how to extend the labeled intersecting graph GS to p source-destination pairs
and that the optimal solution subgraph GS [SOPT] exhibits a “nice” structure. Then we
exploit this structure to obtain an 2O(p2)nO(p) exact algorithm for Generalized Points-
separation. Since p = O(k2), this algorithm runs in polynomial time for any fixed k,
resolving an open question of [5]. Using a more sophisticated approach, we later show how
to improve the running time to 2O(p)nO(k).

5.1 A 2O(p2)nO(p) Algorithm
Recall the construction of the labeled intersection graph GS for a single point pair (s, t) from
Section 3. The label lab(e) ∈ {0, 1} of each edge e ∈ GS denotes the parity of edge e with
respect to reference curve π connecting s and t. As we generalize the graph GS = (S, E) to
p point pairs, we extend the label function lab : E → {0, 1}p as a p-bit binary string that
denotes the parity with respect to reference curve πi connecting si and ti for all i ∈ [p]. We
will use labi(e) to denote the i-th bit of lab(e).

SoCG 2022



52:10 Algorithms for Point Separation and Obstacle Removal

Generalized Label Intersection Graph.
For each (si, ti) ∈ P and each S ∈ S that contains at least one of si or ti, we add a self
loop e on S with labi(e) = 1 and labj(e) = 0 for all j ̸= i.
For every pair of intersecting obstacles S, S′ and a p-bit string ℓ ∈ {0, 1}p:

Let Π = {πi | si, ti ̸∈ S ∪ S′} be the set of reference curves that do not have endpoints
in S ∪ S′.
We add an edge e = (S, S′) with lab(e) = ℓ if there exists a plane curve connecting
ref(S) and ref(S′) contained in S ∪ S′ that crosses all reference curves πi ∈ Π with
parity consistent with label ℓ. That is, the curve crosses πi and odd (resp. even)
number of times if i-th bit of ℓ is 1 (resp. 0).

Similar to the one pair case, we can build an unlabeled graph G′ with vertex set S ×{0, 1}p

and edges between them based on the arrangement Arr(S ∪ S′ ∪ π1 ∪ . . . πp). Using this
graph, we can obtain the following lemma.

▶ Lemma 12. The generalized label intersection graph GS with p-bit labels can be constructed
in 2O(p)nO(1) time.

Suppose we define GS(i) to be the image of GS induced by the labeling labi : E → {0, 1}.
Specifically, we obtain GS(i) from GS by replacing label of each edge by the i-th bit labi(e),
followed by removing parallel edges that have the same label. Observe that GS(i) is precisely
the graph obtained by applying algorithm from Section 3 with reference curve πi. We say
that a subgraph G′

S ⊆ GS is well-behaved if G′
S(i) contains an odd labeled cycle for all i ∈ [p].

The following lemma can be obtained by applying Lemma 3 for every pair (si, ti) ∈ P .

▶ Lemma 13. A set of obstacles S ′ ⊆ S separate all point pairs in P iff GS [S ′] is well-behaved.

We will prove the following important property of well-behaved subgraphs of GS .

▶ Lemma 14. Let G ⊆ GS be an inclusion minimal well-behaved subgraph of GS . Then
there exists a set Vc ⊆ V (G) of connector vertices such that G consists of the vertex set Vc

and a set of K chains (path of degree 2 vertices) with endpoints in Vc. Moreover, |Vc| ≤ 4p

and |K| ≤ 5p.

Proof. Since G is an inclusion minimal well-behaved subgraph, it does not contain a proper
subgraph that is also well-behaved. Therefore, G does not contain a vertex of degree at most
1 because such vertices and edges adjacent to them cannot be part of any cycle. Suppose G

has r connected components C1, . . . , Cr. We fix a spanning tree Tj of Cj for each j ∈ [r]. We
construct the set Vc by including every vertex of degree three or more to Vc. The components
Cj that do not contain a vertex of degree three must be a simple cycle because G does not
have degree-1 vertices. For every such Cj , we include vertices adjacent to the only non-tree
edge of Cj . It is easy to verify that G consists of K chains connecting vertices in Vc.

Let E0 be the set of non-tree edges, that are edges not in Tj for some j ∈ [r]. We claim
that |E0| ≤ p. Since G is well-behaved, G(i) consists an odd-labeled cycle for all i ∈ [p].
Using Lemma 5, and the spanning tree Tj of the component containing that odd labeled cycle,
we can transform into an odd-labeled cycle that uses at most one non-tree edge. Repeating
this for all pairs, we can use at most p edges from E0. If |E0| > p, then we would have a
proper subgraph of G with at most p edges that is also well-behaved, which is not possible
because G was chosen to be inclusion minimal. Therefore |E0| ≤ p.

The graph G only contains vertices of degree 2 or higher, hence each leaf node of the
trees T1, . . . , Tr must be adjacent to some edge in E0. Therefore, the number of leaf nodes is
at most 2p, and so the number of nodes of degree three or above in T1, . . . , Tr is also at most



N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:11

2p. Observe that the vertices in Vc are either adjacent to some edge in E0 or have degree
three or more in some tree Tj . The number of both these type of vertices is at most 2p,
which gives us |Vc| ≤ 4p. Finally, we bound |K|, the number of chains. Note that each edge
of G belongs to exactly one chain in K. Therefore, the number of chains containing at least
one edge in E0 is at most p, because |E0| ≤ p. All the other chains that do not have any
edge in E0, are contained in the trees T1, . . . , Tr. It follows that these chains do not form
any cycle, and thus their number is less than |Vc|. This gives us |K| ≤ 5p. ◀

It is easy to see that if S ′ ⊆ S is an optimal set of obstacles separating all pairs in P ,
then there exists an inclusion minimal well-behaved subgraph G of GS [S ′] that satisfies the
property of Lemma 14. Observe that the K chains of graph G are vertex disjoint, so for
every chain Kt connecting vertices Si, Sj ∈ Vc that has lab(Kt) = ℓ, an optimal solution
will always choose the walk in GS that has label ℓ and has fewest vertices. To that end, we
will need the following simple lemma which is a generalization of the algorithm to compute
shortest odd cycle in GS with 1-bit labels.

▶ Lemma 15. Given a labeled graph GS = (S, E) with labeling lab : E → {0, 1}p, the shortest
walk between any pair of vertices Si, Sj with a fixed label ℓ ∈ {0, 1}p can be computed in
2O(p)nO(1) time.

Algorithm: Separate-Point-Pairs.
1. For every pair of vertices Si, Sj ∈ S and every label ℓ ∈ {0, 1}p, precompute the shortest

walk connecting Si, Sj with label ℓ in GS using Lemma 15.
2. For all possible sets Vc ⊆ S and ways of connecting Vc by K chains:

For all (2p)5p = 2O(p2) possible labeling of K chains:
a. Let G ⊆ GS be the labeled graph consisting of vertices Vc and chains Kt ∈ K

replaced by shortest walk between endpoints of Kt with label lab(Kt), already
computed in Step 1.

b. Check if the graph G is well-behaved. If so, add its vertices as one candidate
solution.

3. Return the candidate vertex set with smallest size as solution.

Precomputing labeled shortest walks in Step 1 takes at most 2O(p)nO(p) time. The total
number of candidate graphs G is nO(p) · pO(p) · 2O(p2), and checking if it is well behaved can
be done in nO(1) time. We have the following result.

▶ Theorem 16. Generalized Points-separation for connected obstacles in the plane
can be solved in 2O(p2)nO(p) time, where n is the number of obstacle and p is the number of
point-pairs to be separated.

▶ Corollary 17. Point-Separation for connected obstacles in the plane can be solved in
2O(k4)nO(k2) time, where n is the number of obstacles and k is the number of points. This is
polynomial in n for every fixed k.

5.2 Faster Algorithms for Points-separation
Recall that the labeled graph GS constructed in the previous section consisted of labels that
are p-bit binary strings. As a result, the running time has a dependence of nO(p) which in
worst case could be nO(k2), for example, in the case of Points-separation when P consists
of all point pairs. In this section, we describe an alternative approach that builds a labeled
intersection graph whose labels are k-bit strings. Using this graph and the notion of parity

SoCG 2022



52:12 Algorithms for Point Separation and Obstacle Removal

partitions, we obtain an 2O(p)nO(k) algorithm for Generalized Points-separation which
gets rid of the nO(k2) dependence for Points-separation. Due to lack of space, we describe
our approach at a high level and defer the details to the full paper.

The construction of graph GS is almost the same as before, except that now we choose
the reference curves πi differently. In particular, let A = {a1, a2, . . . , ak} be the set of points
and P be a set of pairs (ai, aj) of points we want to separate. We pick an arbitrary point
o in the plane, and for each i ∈ [k], we fix a plane curve with endpoints ai and o as the
reference curve πi. For an edge e, the parity of crossing with respect to πi defines the i-th
bit of lab(e). The graph GS constructed in this fashion has k-bit labels and will be referred
as k-labeled graph.

Let G be a k-labeled graph. For a cycle (or a path) γ in G with edge sequence (e1, . . . , er),
we define parity(γ) =

⊕r
t=1 lab(et) and denote by parityi(γ) the i-th bit of parity(γ) for i ∈ [k].

Here the notation “⊕” denotes the bitwise XOR operation for binary strings. Also, we
define Φ(γ) as the partition of [k] consisting of two parts I0 = {i : parityi(γ) = 0} and
I1 = {i : parityi(γ) = 1}. Next, we define an important notion called parity partition.

▶ Definition 18 (parity partition). Let G be a k-labeled graph. The parity partition induced
by G, denoted by ΦG, is the partition of [k] such that i, j ∈ [k] belong to the same part of ΦG

iff parityi(γ) = parityj(γ) for every cycle γ in G.

We say a k-labeled graph G is P -good if for all (i, j) ∈ P , i and j belong to different parts
in ΦG. The notion of P -goodness in k-labeled graphs is similar to well-behaved property of
subgraphs G′

S that we defined in Lemma 13 except that the latter is defined using p reference
curves. We prove the following lemma that establishes a characterization of obstacles that
separate all point pairs in P called P -separators using P -goodness.

▶ Lemma 19. A subset S ′ ⊆ S is a P -separator iff the induced subgraph GS [S ′] is P -good.

Similar to Lemma 14, one can show that there exists a P -good subgraph with 4k vertices
and 5k edges. Applying the algorithm Separate-Point-Pairs from previous section gives
an improved bound of 2k2

nO(k). Improving the running time to 2O(p)nO(k) require further
nontrivial efforts. We defer the details to full version and state our main results.

▶ Theorem 20. Generalized Point-Separation for connected obstacles in the plane can
be solved in 2O(p)nO(k) time, where n is the number of obstacles, k is the number of points,
and p is the number of point-pairs to be separated.

▶ Corollary 21. Point-Separation for connected obstacles in the plane can be solved in
2O(k2)nO(k) time, where n is the number of obstacles and k is the number of points.

Even Faster Algorithm for Pseudo-Disk Obstacles. If the obstacles in S are pseudo-disks
then we can further improve the dependence on n to be nO(

√
k). To this end, the key

observation is the following analog of Lemma 19 for pseudo-disk obstacles.

▶ Lemma 22. Suppose S consists of pseudo-disk obstacles. Then a subset S ′ ⊆ S is a
P -separator iff there is a subgraph of the induced subgraph GS [S ′] that is planar and P -good.

The planarity of subgraph GS [S ′] allows us to efficiently enumerate the candidate sets using
the planar separator theorem. We state our main result for such obstacles.

▶ Theorem 23. Generalized Point-Separation for pseudo-disk obstacles in the plane
can be solved in 2O(p)kO(k)nO(

√
k) time, where n is the number of obstacles, k is the number

of points, and p is the number of point-pairs to be separated.



N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:13

▶ Corollary 24. Point-Separation for pseudo-disk obstacles in the plane can be solved in
2O(k2)nO(

√
k) time, where n is the number of obstacles and k is the number of points.

5.3 Hardness of Points-separation
We complement our algorithmic results for Points-separation with almost matching
hardness bounds assuming the Exponential Time Hypothesis (ETH). We obtain the follow-
ing results by reductions from Partitioned Subgraph Isomorphism [19] and Planar
Multiway Cut [20] respectively.

▶ Theorem 25. Unless ETH fails, a Points-separation instance (S, A) for general obstacles
cannot be solved in f(k)no(k/ log k) time where n = |S| and k = |A|.

▶ Theorem 26. Unless ETH fails, a Points-separation instance (S, A) with pseudodisk
obstacles cannot be solved in f(k)no(

√
k) time where n = |S| and k = |A|.

References
1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(sqrt(log

n)) approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 573–581, 2005.

2 Paul Balister, Zizhan Zheng, Santosh Kumar, and Prasun Sinha. Trap coverage: Allowing
coverage holes of bounded diameter in wireless sensor networks. In IEEE INFOCOM 2009,
pages 136–144. IEEE, 2009.

3 Sayan Bandyapadhyay, Neeraj Kumar, Subhash Suri, and Kasturi Varadarajan. Improved
approximation bounds for the minimum constraint removal problem. Computational Geometry,
90:101650, 2020.

4 Sergey Bereg and David G. Kirkpatrick. Approximating barrier resilience in wireless sensor
networks. In Proc. of 5th ALGOSENSORS, volume 5804, pages 29–40, 2009.

5 S. Cabello and P. Giannopoulos. The complexity of separating points in the plane. Algorithmica,
74(2):643–663, 2016.

6 David Yu Cheng Chan and David G. Kirkpatrick. Approximating barrier resilience for
arrangements of non-identical disk sensors. In Proc. of 8th ALGOSENSORS, pages 42–53,
2012.

7 David Yu Cheng Chan and David G. Kirkpatrick. Multi-path algorithms for minimum-colour
path problems with applications to approximating barrier resilience. Theor. Comput. Sci.,
553:74–90, 2014.

8 E. Eiben and I. Kanj. How to navigate through obstacles? In Proc. of 45th ICALP, 2018.
9 Eduard Eiben, Jonathan Gemmell, Iyad A. Kanj, and Andrew Youngdahl. Improved results

for minimum constraint removal. In Proc. of 32nd AAAI, pages 6477–6484, 2018.
10 Eduard Eiben and Iyad Kanj. A colored path problem and its applications. ACM Trans.

Algorithms, 16(4):47:1–47:48, 2020.
11 Eduard Eiben and Daniel Lokshtanov. Removing connected obstacles in the plane is FPT. In

Proc. of 36th SoCG, volume 164, pages 39:1–39:14, 2020.
12 Lawrence H. Erickson and Steven M. LaValle. A simple, but NP-Hard, motion planning

problem. In Proc. of 27th AAAI, 2013.
13 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.
14 Matias Korman, Maarten Löffler, Rodrigo I. Silveira, and Darren Strash. On the complexity

of barrier resilience for fat regions and bounded ply. Comput. Geom., 72:34–51, 2018.
15 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools

for kernelization. Journal of the ACM (JACM), 67(3):1–50, 2020.

SoCG 2022



52:14 Algorithms for Point Separation and Obstacle Removal

16 Santosh Kumar, Ten-Hwang Lai, and Anish Arora. Barrier coverage with wireless sensors.
Wirel. Networks, 13(6):817–834, 2007.

17 James R. Lee. Separators in region intersection graphs. In Proc. of 8th ITCS, volume 67,
pages 1–8, 2017.

18 Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms (TALG), 11(2):1–31, 2014.

19 Dániel Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 169–179. IEEE, 2007.

20 Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In
International Colloquium on Automata, Languages, and Programming, pages 677–688. Springer,
2012.

21 Saket Saurabh Neeraj Kumar, Daniel Lokshtanov and Subhash Suri. A constant factor
approximation for navigating through connected obstacles in the plane. In Proc. 32nd SODA,
2021.



A Universal Triangulation for Flat Tori
Francis Lazarus # Ñ

G-SCOP, CNRS, UGA, Grenoble, France

Florent Tallerie #

G-SCOP, UGA, Grenoble, France

Abstract
A result due to Burago and Zalgaller states that every orientable polyhedral surface, one that is
obtained by gluing Euclidean polygons, has an isometric piecewise linear (PL) embedding into
Euclidean space E3. A flat torus, resulting from the identification of the opposite sides of a Euclidean
parallelogram, is a simple example of polyhedral surface. In a first part, we adapt the proof of
Burago and Zalgaller, which is partially constructive, to produce PL isometric embeddings of flat
tori. In practice, the resulting embeddings have a huge number of vertices, moreover distinct for
every flat torus. In a second part, based on another construction of Zalgaller and on recent works
by Arnoux et al., we exhibit a universal triangulation with 5974 triangles which can be embedded
linearly on each triangle in order to realize the metric of any flat torus.

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Mathematics
of computing → Discrete mathematics; Theory of computation → Computational geometry

Keywords and phrases Triangulation, flat torus, isometric embedding

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.53

Related Version Full Version: https://arxiv.org/abs/2203.05496

Funding Francis Lazarus: This author is partially supported by the French ANR projects GATO
(ANR-16-CE40-0009-01) and MINMAX (ANR-19-CE40-0014) and the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.

Acknowledgements We warmly thank Alba Málaga, Pierre Arnoux and Samuel Lelièvre for sharing
with us their constructions of flat tori and showing us how to cover their moduli space with these
constructions. We are also grateful to the anonymous reviewers for their careful reading and
suggestions.

1 Introduction

A celebrated theorem of Nash [6] completed by Kuiper [5] implies that every smooth
Riemannian orientable surface has a C1 isometric embedding in the Euclidean 3-space E3. As
a consequence one can represent and visualize faithfully in E3 the geometry of any abstract
orientable Riemannian surface. An analogous result, due to Burago and Zalgaller [3], states
that every orientable polyhedral surface, obtained by abstractly gluing Euclidean polygons,
has an isometric piecewise linear (PL) embedding in E3. In particular, this provides PL
isometric embeddings for every flat torus, the result of the identification of the opposite
sides of a Euclidean parallelogram. However, the proof of Burago and Zalgaller is partially
constructive, relying on the subdivision of the polyhedral surface into an acute triangulation
and on the Nash-Kuiper theorem itself, which is a priori far from constructive. The singular
vertices of the polyhedral surface (where the angles at the incident polygons do not sum up
to 2π) moreover deserve special treatments with several constants that are rather hard to
estimate. In the case of flat tori, all these difficulties can be circumvented. In particular, a
flat torus has no singular vertex. Using a simple construction of acute triangulations together
with the conformal embeddings of Hopf-Pinkall [7, 2], we were able to compute PL isometric
embeddings of various flat tori, including the square and the hexagonal tori.

© Francis Lazarus and Florent Tallerie;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 53; pp. 53:1–53:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francis.lazarus@grenoble-inp.fr
https://pagesperso.g-scop.grenoble-inp.fr/~lazarusf/
mailto:florent.tallerie@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.53
https://arxiv.org/abs/2203.05496
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


53:2 A Universal Triangulation for Flat Tori

In practice, the construction of Burago and Zalgaller, even including our simplifications
for flat tori, produces PL embeddings with a huge number of vertices: more than 170,000
for the square torus and more than 7 millions for the hexagonal torus. Most importantly,
the underlying triangulations of the resulting PL embeddings depends on the geometry (or
modulus) of the flat tori and are pairwise non-isomorphic. Apart from the construction of
Burago and Zalgaller, describing explicit PL embeddings of specific flat tori does not seem
a simple task. As an illustrating example, it was only very recently that an explicit PL
embedding of the square flat torus appeared in the literature [8].

We say that a triangulation of the topological torus is universal if, for any flat torus, it
admits a geometric realization in E3 that is isometric to this flat torus. It is not clear that
such a universal triangulation should exist as the moduli space of flat tori is not compact. In
particular, there is no reason why any of the triangulations obtained from the method of
Burago and Zalgaller would be universal. Our main result is the rather surprising existence
of a universal triangulation with the description of such a triangulation of reasonable size.

▶ Theorem 1. There exists an abstract triangulation T of the torus with 5974 triangles that
admits for each flat torus (in the moduli space) an embedding in E3 which is linear on each
triangle of T , and which is isometric to this flat torus.

2 Background and definitions

Polyhedral surfaces

A polyhedral surface is a compact topological surface obtained from a finite collection of
polygonal regions in the Euclidean plane by gluing their sides according to a partial oriented
pairing. This pairing should be such that each side is paired at most once and two sides in a
pair should have the same length. The pair orientation specifies one of the two isometries
between its sides. Since every polygon can be triangulated, one can replace the polygons by
triangles in this definition. The collection of triangles together with their gluing determine a
triangulation of the surface. This triangulation is simplicial when there is no loop edge or
parallel edges. By an abstract triangulation of a polyhedral surface, we mean a simplicial
complex that is isomorphic to some triangulation of the polyhedral surface.

Polyhedral metric

The gluing of Euclidean polygons induces a length metric on the resulting polyhedral
surface: the distance between any two points is the infimum of the lengths of the paths
connecting the two points. There is an intrinsic definition of polyhedral surfaces that does
not assume any specific decomposition into polygons. A polyhedral metric on a topological
surface is a metric such that every point has a neighborhood isometric to a neighborhood of
the apex of a Euclidean cone. In turn, a (2-dimensional) Euclidean cone is defined by coning
from the origin a rectifiable simple curve on the unit sphere in E3. The length of this curve
is the total angle of the cone. A point whose conic neighborhood has total angle different
from 2π is called a singular vertex.

Piecewise linear maps and isometries

Let S be a polyhedral surface. A map f : S → E3 is said piecewise linear (PL) if S
admits a triangulation such that the restriction of f to any triangle is linear, i.e., it preserves
barycentric coordinates. Once a triangulation of S is given, the image of its vertices in E3

determines a unique linear map on this triangulation by extending linearly to the images of
triangles.



F. Lazarus and F. Tallerie 53:3

f is piecewise distance preserving if S admits a triangulation such that the restriction
of f to any triangle is distance preserving, i.e., |f(x) − f(y)| = dS(x, y) for any x, y in a same
triangle. Here, | · | is the Euclidean norm and dS is the polyhedral metric on S. In particular,
the piecewise distance preserving map f must be length preserving: if γ : [a, b] → S

is a rectifiable path, then γ and its image f ◦ γ have the same length. The map f is an
embedding if it induces a homeomorphism onto its image f(S) endowed with the restriction
of the topology of E3. In that case, f(S) is naturally equipped with a length metric induced
by the Euclidean metric of E3 so that the length of a path in f(S) is its Euclidean length as
a path in E3.

A length preserving embedding is the same as an isometry between S and f(S), where
each surface is endowed with its own length metric, respectively polyhedral and induced by
the Euclidean metric. Thus, a piecewise distance preserving embedding is the same as a
PL isometric embedding. A map f : S → E3 is said contracting, or short, if there is a
constant C < 1 such that |f(x) − f(y)| ≤ CdS(x, y) for all x, y ∈ S.

Flat tori

A flat torus is a polyhedral surface obtained from a Euclidean parallelogram by pairing its
opposite sides. We usually consider flat tori up to re-scaling. This amounts to consider that
similar parallelograms lead to the same flat torus. If (e1, e2) is the canonical basis of the
Euclidean plane, we can thus assume that the two sides of the parallelogram are respectively
e1 and τ for some vector τ = τ1e1 + τie2, with τi > 0. Identifying the real plane with the
complex line, we conclude that a flat torus is determined by its modulus τ = τ1 + iτi.

Rather than gluing the sides of a parallelogram, one can equivalently obtained the
same flat torus by quotienting the Euclidean plane E2 by the rank 2 lattice Zτ + Ze1
acting by translations. The same lattice is generated by the vectors (aτ + b, cτ + d), where(
a b

c d

)
∈ SL2(Z) is an integer matrix with determinant 1. This lattice corresponds to the

modulus (aτ + b)/(cτ + d), where τ is again viewed as a complex number. In fact, the set
of flat tori is in one-to-one correspondence with the quotient H2/SL2(Z), where H2 denotes
the upper half-plane (the set of moduli) and SL2(Z) acts as above. Every flat torus has a
modulus in the fundamental domain of this quotient as shown in Figure 1.

0 1

H2

e2ip/3 eip/3
i

Figure 1 A point (in red) in a fundamental domain of the moduli space of tori (in light grey)
with the corresponding parallelogram.

SoCG 2022



53:4 A Universal Triangulation for Flat Tori

3 The construction of Burago and Zalgaller

We first recall the result of Burago and Zalgaller for embedded surfaces.

▶ Theorem 2 (Burago and Zalgaller [3]). Every short C2 embedding in E3 of a polyhedral
surface can be approximated by a PL isometric embedding.

Here, the approximation by a PL isometric map means that for any ε > 0 there is such a
map moving the points of the short C2-embedding by a distance less than ε. This implies
that every orientable polyhedral surface has an isometric PL embedding in 3-space. Before
we give a sketch of the proof, we describe the basic construction of Burago and Zalgaller,
which is a specialization of Theorem 2 to the case of a single triangle.

3.1 Embedding a triangle
If t is a triangle in E3 and n⃗ is a vector normal to t, then the prism above t is the set
{p+ λn⃗ | p ∈ t, λ ≥ 0} and the three infinite faces of this prism are its walls.

▶ Lemma 3 ([3]). Let T = A1A2A3 and t = a1a2a3 be (Euclidean) triangles in E3 such that
(i) T and t are acute,
(ii) |aiaj | < |AiAj | for i, j = 1, 2, 3; i ̸= j,
(iii) the distance of the circumcenter ω of t to each side aiaj is smaller than the distance of

the circumcenter Ω of T to the corresponding side AiAj.
Denote by mij the point in the wall above aiaj at equal distance from ai and aj. Then, T
has a PL isometric embedding in the prism above t (with respect to a normal directions) with
the boundary condition that each side AiAj is sent to the broken line aimijaj.

This Lemma (see Figure 2) easily implies that T has a PL isometric embedding arbitrarily

m12

a1

a2

a3
t

Figure 2 The prism above t.

close to t. Indeed, by subdividing T and t uniformly as in Figure 3 we get similar triangles of
smaller size to which we can individually apply Lemma 3. Thanks to the boundary condition
in the lemma, the individual constructions fit together to form an isometric embedding of
T . The constructions for the smaller triangles being homothetic to the construction for the
original triangles, we get closer and closer to t as we refine the uniform subdivisions.

The triangles T and t being acute, they contain their circumcenters Ω and ω in their
interior. Let n⃗ be a unit vector normal to t and let ω′ be the point vertically above ω such
that |a1ω

′| = |A1Ω|. Refer to Figure 4. Note that ω′ is well-defined since by the assumptions
(ii) and (iii) the circumradius |A1Ω| of T is larger than the circumradius |a1ω| of t. For
completeness, we recall the proof of Lemma 3. Triangle T is first subdivided into three
subtriangles ΩAiAj . The goal is to fold each ΩAiAj above ωaiaj with the boundary condition



F. Lazarus and F. Tallerie 53:5

Figure 3 Uniform subdivision of a triangle. The vertices of the subdivision have barycentric
coordinates (i/n, j/n, k/n) for i, j, k ∈ N and i + j + k = n for some fixed n.

m12

a1

a2

a3
t

A2

A1

T

A3W

w

w'

Figure 4 The subtriangle ΩA1A2 is folded above t.

for AiAj as in the lemma and so that the boundary edges ΩAi,ΩAj are sent respectively to
the segments ω′ai and ω′aj . To this end, we first fold ΩA1A2 along its altitude from Ω and
place the resulting two-winged shape above t so that the side A1A2 is folded onto the broken
line a1m12a2. We next consider a plane Π1 in the pencil generated by a1a2 to reflect the part
of the two-winged shape lying to the right of that plane. See Figure 5. Another plane Π2 in

a1

a2

a3
t

w'

P1

P2

w'w' w'

a b c d

Figure 5 a, the reflection plane Π1. b, after reflection in Π1, and the plane Π2. c, reflection in
Π2. d, after an even number of reflections the point Ω is sent to ω′.

the same pencil is then chosen to reflect part of the already reflected part. Choosing Π1 and
Π2 appropriately, it is not hard to see that after an even number of such reflections the point
Ω in ΩA1A2 will be sent to ω′. We finally apply the same construction to the two other
subtriangles ΩA2A3 and ΩA3A1 and paste them to form a folding of T above t as desired.

▶ Note 4. This folding of T admits some flexibility. In particular, the boundary conditions
can be modified so that each boundary wedge aimijaj is tilted around the axis aiaj . This
allows to paste the constructions for two adjacent and non coplanar triangles; see Figure 6.

SoCG 2022



53:6 A Universal Triangulation for Flat Tori

Figure 6 Pasting two foldings of large triangles sharing an edge above smaller triangles that are
non coplanar.

3.2 Embedding arbitrary polyhedral surfaces
Denote by f : S → E3 the short C2 map in Theorem 2. Let U be a union of small polygonal
disks centered at each singular vertex of S. The strategy for the proof of Burago and Zalgaller
is the following.
(a) Compute an acute triangulation of S \ U , where each triangle is acute.
(b) Compute an approximation f1 of f that is almost conformal on S \ U and short over S.
(c) Refine the acute triangulation of S \ U uniformly to obtain an acute triangulation T

with small triangles. The meaning of small depends on the geometric properties of f1
and on the flexibility in Note 4.

(d) Replace f1 by its PL approximation F mapping linearly each triangle T = A1A2A3 of T
to the triangle F (T ) := f1(A1)f1(A2)f1(A3) in E3.

(e) Apply the construction in Section 3.1 to every pair (T, F (T )), using the tilted version in
Note 4 in order to paste the constructions of adjacent triangles.

(f) Fill the gaps corresponding to U with specific constructions to deal with singularities as
described in [3].

We refer to the full version on ArXiV and to the original paper [3] for more details.

4 Embedding flat tori

Step (b) in the proof of Burago and Zalgaller is highly non constructive, and to our knowledge
no explicit PL isometric embedding of a closed surface according to their method was known
up to date. It appears that the steps of their construction can be greatly simplified in the
case of flat tori. Thanks to these simplifications we were able to visualize PL isometric
embeddings of various flat tori in E3.

We first observe that there is no need for Step (f) since a flat torus has no singular vertex:
the angles at the four corners of its defining parallelogram add up to 2π, showing that the
only vertex after the side gluing is non singular. In particular, one should set U = ∅ in all
the steps.

4.1 Acute triangulation of flat tori
Itoha and Yuan [4] have shown that every flat torus can be triangulated into at most 16 acute
triangles. However, since we need a fine triangulation as in Step (c) with a good control on
the acuteness, we use the following triangulation, which is conceptually simpler. Let τ be
the modulus of the flat torus Tτ := E2/(Zτ + Ze1) (we abusively identify the plane with
the complex numbers). We consider the equilateral triangular lattice generated by eiπ/3/n

and 1/n for some positive integer n. This lattice comes with a regular triangulation Te by
equilateral triangles. Let pa,b = aeiπ/3/n+ b/n, with a, b ∈ Z, be a point in this lattice that
is closest to τ . In particular, |τ − pa,b| ≤ (n

√
3)−1. We deform Te by a linear transformation



F. Lazarus and F. Tallerie 53:7

ℓ defined by 1 7→ 1 and pa,b 7→ τ . By the previous inequality and for n large enough, ℓ is
close to the identity. The triangles in ℓ(Te) are thus close to equilateral. Now, the lattice
Zτ + Ze1 leaves ℓ(Te) invariant, so that ℓ(Te)/(Zτ + Ze1) is a well defined triangulation of
Tτ by almost equilateral triangles. See Figure 7.

t

1

t

1

Figure 7 The equilateral triangular lattice (here with n = 4) is deformed to fit the lattice of Tτ .

4.2 Conformal embedding of flat tori
Theorem 2 requires an initial short C2 embedding, further approximated in Step (b) by an
almost conformal map. In the case of flat tori we can directly provide a short conformal
embedding. We rely on the Hopf tori developed by Pinkall [7]. These are based on the Hopf
fibration

p : S3 → S2, (x, y, z, t) 7→ (2xz + 2yt, 2xt− 2yz, x2 + y2 − z2 − t2),

a standard projection of the 3-sphere S3 onto the 2-sphere S2 whose fibers (the sets p−1(s)
for s ∈ S2) are circles. Pinkall proves that if γ is a simple closed curve on S2, then p−1(γ) is
a flat torus isometric to Tτ with τ = (A+ iL)/(4π), where L is the length of γ and A is the
oriented area delimited by γ on S2, choosing the side of γ so that A ∈ [−2π, 2π). Since this
torus lies in S3 ⊂ E4, it remains to apply a stereographic projection, say from the South pole
(0, 0, 0,−1), assuming it does not lie on the torus, to obtain a conformal embedding of Tτ in
E3. In coordinates: (x, y, z, t) 7→ (x, y, z)/(t+ 1).

Banchoff [2] revisited Pinkall’s approach to give explicit parametrizations of the Hopf-
Pinkall tori. On S2, Banchoff considers a curve of the form γτ (θ) = (sinϕ(θ)eiθ, cosϕ(θ))
given in spherical coordinates, where the polar angle 0 < ϕ < π is a smooth function of
the azimuthal angle 0 ≤ θ ≤ 2π. He next defines L(θ) =

∫ θ
0 |γ′

τ (t)|dt to be the length of
the curve portion γτ ([0, θ]) and A(θ) =

∫ θ
0 (1 − cosϕ(t))dt the area on S2 swept by the arc

of meridian linking the North Pole to the point on γτ up to θ. The conformal embedding
fτ : Tτ → E3 is then given by fτ = f ◦ g−1 with

f : (R/2πZ)2 → E3, (θ, ψ) 7→
(

sin ϕ(θ)
2 ei(θ+ψ), cosψ cos ϕ(θ)

2
)
/(1 + sinψ cos ϕ(θ)

2 ), and

g : (R/2πZ)2 → T−1/τ ∼ Tτ , (θ, ψ) 7→ (L(θ)
2 ,

A(θ)
2 + ψ).

We have chosen ϕ of the form ϕ(θ) = a+ b sin(nθ) for a < b, 0 ≤ b < π− a and n ∈ N. In
order to represent the modulus τ = τ1 +iτi, the parameters a, b, n should satisfy A(2π) = 4πτ1
and L(2π) = 4πτi, or equivalently:

J0(b) cos(a) = 1 − 2τ1 and
∫ 2π

0

√
n2b2 cos2(nt) + sin2(a+ b sin(nt))dt = 4πτi,

SoCG 2022



53:8 A Universal Triangulation for Flat Tori

where J0(b) = 1
π

∫ π
0 cos(b sin t)dt denotes the 0-th Bessel function of the first kind. The

condition on the total area implies 0 ≤ τ1 ≤ 1. Nevertheless, it is still possible to obtain
a conformal embedding in the case of τ1 < 0 by first reflecting the torus along one of its
boundary edge and applying a reflexion of the image torus in E3. We can thus cover the
whole moduli space.

4.3 The final construction

We now have all the pieces to produce PL isometric embedding of flat tori. Given a modulus
τ , we first compute a quasi-equilateral triangulation of Tτ as in Section 4.1. We then compute
a PL approximation Fτ of the conformal map fτ defined in Section 4.2 and finally apply the
construction in Section 3.1 to every pair of triangles (T, Fτ (T )). Figures 8 and 9 show some
results.

Figure 8 Left, PL isometric embedding of the square flat torus with 170,040 triangles. Middle,
the mesh with black edges shows the PL approximation of the initial almost conformal embedding.
Each of its triangles is replaced with a construction (in blue) as in Section 3.1 oriented toward the
interior of the initial embedding. Right, The construction is oriented towards the outside, giving
another isometric immersion of the square torus. (This last model has self-intersections. A finer
triangulation should be used to avoid them.)

Figure 9 isometric immersion of Tτ with, from left to right, τ = eiπ/3, (1 + i)/2, (1 + 3i)/2. The
left immersion is a hexagonal torus. While the subdivisions of the left and right tori already contain
more than 7 millions triangles, they present self-intersections. A finer triangulation should be used
to get an embedding.



F. Lazarus and F. Tallerie 53:9

5 Universal triangulation

The construction of Burago and Zalgaller gives rise to triangulations with a huge number
of triangles, moreover distinct for every flat torus. In order to get a unique abstract
triangulation that admits linear embeddings in E3 isometric to any flat torus, we resort to a
second construction by Zalgaller [10] and to very recent work by Tsuboi [9] and Arnoux et
al. [1] for embedding flat tori.

5.1 Embedding long tori
Any flat torus can be obtained by identifying abstractly the top and bottom boundaries
of a right circular cylinder. We obtain non-rectangular tori by shifting circularly the top
boundary before identification. We can moreover cover all the torus moduli by varying the
ratio between the height of the cylinder and the length of its boundaries. A torus is said
long when this ratio is large. In [10], Zalgaller proposes an origami style folding of long flat
tori, much simpler that the general construction of [3]. Here, we quantify how long should be
a torus to allow for the Zalgaller folding, and we show that the long tori admit a universal
triangulation.

▶ Proposition 5. There exists an abstract triangulation with 270 triangles, which admits
linear embeddings isometric to every torus of modulus τ1 + iτi with τi ≥ 33.

The proof reduces to a careful analysis of the construction of Zalgaller. Instead of a circular
cylinder, Zalgaller starts with a polyhedral cylinder in E3, namely a prism with equilateral
triangular basis, that he bents at several places to make the boundaries coincide, allowing
their geometric identification. A twist is also applied before the bending so as to simulate
a circular shift of the top boundary. In general, except for a twist of 2kπ/3, one boundary
will be rotated with respect to the other after the twisting and bending, preventing their
identification. Zalgaller then introduces a third modification that he calls a gasket in order
to rotate a cross section of the prism without rotating the “material” of the prism. Intuitively,
one should imagine a sleeve made of some non-elastic fabric, closed by two rigid triangles at
the extremities. The right prism results from pulling tight on the triangles. Now, the effect
of a gasket is to rotate one triangle around the axis of the prism, allowing the fabric to slide
along the edges of this triangle.

How to bend a triangular prism

Consider a right prism P with equilateral triangular basis and an orthogonal cross section
CC ′D. A bending at an angle φ with cutting angle λ along the rib CC ′ is obtained
by (refer to Figure 10)
(a) cutting two isosceles triangles ACB and AC ′B out of P , where A,B lie on the generatrix

of the prism through D, and the angle at C (and C ′) is 2λ,
(b) bending the cut prism at angle 0 < φ < π,
(c) folding ACB and AC ′B appropriately to fit them back on the bended prism.
Let A1, B1 be the respective positions of points A,B after bending and let ∠A1CB1 = 2µ.
In order for the construction not to overlap, one should have µ > 0, hence λ should satisfy
λ0(φ) < λ < π

2 where λ0(φ) is the angle for which, after bending, the triangles A1CC
′ and

B1CC
′ coincide. Looking at the right angled triangles ADC and ADV , one easily computes1

λ0(φ) = arctan(
√

3
2 tan φ2 ). (1)

1 This expression is simpler than the formula given in [10].

SoCG 2022



53:10 A Universal Triangulation for Flat Tori

C

A

B

D

2λ

C
V

2μ
'

A1
B1

V
C

C

2μ
2λ '

'

Figure 10 Bending of a prism.

▶ Lemma 6. For every φ ∈ (0, π) and for every λ ∈ (λ0(φ), π/2), there is an embedded
bending of P at angle φ with cutting angle λ introducing 12 triangles.

See the full version for a proof. For further reference, we call a bend a bent prism cut by
orthogonal cross sections at the extremity of the above construction as on Figure 11.

a

atanl

l

atanl

a
a

Figure 11 A bend is isometric to a right prism of length 2a tan λ.

After triangulating the two top quadrilaterals, a bend is made of 20 triangles including the
12 triangles as in Lemma 6.

Rotating a cross section with a gasket

The ribs of the prism P may have only three possible directions. This prevents to bend P in
an arbitrary direction. To circumvent this rigidity, Zalgaller introduces a simple construction
that he calls a gasket. Consider an equilateral triangle ABC in the horizontal plane and
a vertical translate A′B′C ′ by height h. Rotate A′B′C ′ by an angle α about the central
vertical axis. The gasket with turn α and height h is the polyhedral cylinder formed
by the six congruent triangles ABA′, A′BB′, B′BC, B′CC ′, C ′CA, AA′C ′. See Figure 12.
This gasket is embedded for every α ∈ (−π/3, π), independently of h > 0.

▶ Lemma 7. For every α ∈ (−π/3, π), the gasket with turn α and height h is isometric to a
right prism of length h̄ with

h̄2 = h2 + 2
27(sin2 α

2 + sin2(π3 − α

2 )) − 4
81(sin2 α

2 − sin2(π3 − α

2 ))2 − 1
36 < h2 + 1

9 . (2)



F. Lazarus and F. Tallerie 53:11

a

C

A

B'

A'

C'

B
h

A' B' C' A'

A B C A

h

Figure 12 Left, a gasket with turn α and height h. Right, the gasket is unfolded in the plane.
Cutting and pasting a small triangular piece shows that the gasket has the geometry of a right
prism.

By pasting two prisms at the boundaries of a gasket, we obtain a polyhedral cylinder with
triangular boundaries, where the two boundaries are turned at the angle α with respect to
each other; see Figure 13.

A B C

A' B' C'C'

A

C

A

B'

A'

C'

B

Figure 13 Joining a gasket with two prisms to rotate their ribs. Right, unfolding of the
construction showing the line of cut (in blue) and a generatrix (in red) of the polyhedral cylinder.

▶ Note 8. The top and bottom prisms in Figure 13 have the same central axis. This allows
to rotate the rib of a prism at an angle α ∈ (π/3, π) before applying a bending.

▶ Note 9. By joining k gaskets in a row, we can rotate the rib of a prism at an angle
α ∈ (−kπ/3, kπ).

Twisting a prism

Replacing a portion of a prism by a gasket with turn α allows to turn one boundary, say
the top one, of the prism with respect to the other one but does not twist the geometry:
the top endpoint of a geodesic line perpendicular to the bottom boundary (a generatrix)
will glide along the top boundary as we augment α. In order to twist the prism so that the
top endpoint of this geodesic line indeed turns with the boundary, Zalgaller introduces yet
another construction that he calls a helical twist. This construction takes advantage of
the holonomy of parallel transport on the sphere: consider a unit sphere of center O with a
spherical triangle PQR (see Figure 14). If one parallel transports an object from P to P

SoCG 2022



53:12 A Universal Triangulation for Flat Tori

P

Q

R

y
x

O

z

q

q0

Figure 14 The green tangent vector is transported along the spherical triangle P QR. The angle
θ is equal to the area of P QR, while the angle θ0 is given by L’Huillier’s formula.

following the sides of the triangle PQR, then the object is rotated by a certain angle around
the axis OP which is equal to the signed area of the spherical triangle PQR. In order to twist
a prism with axis directed by −−→

OP by an angle θ we may thus bend the prism successively
in the directions −−→

OQ,
−−→
OR and −−→

OP again. Each bending at angle φ indeed corresponds to a
transport along a spherical geodesic of length φ. Each portion of prism between two bends
should include two gaskets to orient its rib properly. Indeed, by Note 9, two gaskets allow to
turn by an angle in (−2π/3, 2π), which covers all the possible orientations.

A helical twist of angle θ consists of a sequence of gaskets and bends according to the
pattern (g2b)5g2 = (g2b)3(g2b)2g2, where b, g stand respectively for bends and gaskets. The
prefix (g2b)3 in the pattern is used to simulate the parallel transport as described above,
assuming that the central axis of the initial cross section is already aligned with −−→

OP . The
next factor (g2b)2 allows to return on the central axis of the initial cross section. Since −−→

OP

is aligned with this central axis, the changes of direction due to the factor (g2b)2 happen in
the same plane. The resulting holonomy is thus trivial. Finally, the last two gaskets allows
to turn the cross section by any angle in (−2π/3, 2π]; see Figure 15.

gb

b

b b

b

g
g

g g

g

g
g g

g

g g

etwist

2h'

2h s1

s2

s0

Figure 15 The cross section (in blue) after the last bending of a helical twist is rotated by an
angle θ about the central axis with respect to the initial cross section (in red). The last two gaskets
allow to turn the last cross section (in red) to be a translate of the first one.

In practice, to construct a helical twist of angle θ ∈ (−π, π], we choose an equilateral
triangle PQR on the unit sphere, with area θ. Moreover, we fix P = (1, 0, 0), and we take
Q in the plane Oxz with positive z coordinate. Then, R is the unique point making PQR
equilateral and counterclockwise. Denote by θ0 the angle between the vectors −−→

OP and



F. Lazarus and F. Tallerie 53:13

−−→
OQ. By L’Huillier’s formula, θ0 satisfies the equation 4 arctan

(√
tan( 3

4θ0) tan3( θ0
4 )

)
= θ.

Traveling along PQR in trigonometric direction induces a positive rotation angle, while
traveling clockwise induces a negative rotation angle. For |θ| ≤ π, L’Huillier’s formula implies
θ0 < 1.92. From (1), we deduce that the corresponding cutting angle satisfies λ < λ0 := 0.89.
Denote by s0 the initial cross section of the helical twist, by s1 the cross section at the end
of the fourth bend, and by s2 the initial cross section of the last bend. Refer to Figure 15.

▶ Lemma 10. Given any twist angle θ ∈ (−π, π] and any h > 0, we can construct a helical
twist of angle θ so that all its bends have cutting angle λ0, and all its gaskets have height
h, except the two gaskets between sections s1 and s2, which have height h′ imposed by our
construction. This helical twist is isometric to a right prism with length

ℓtwist = 10a tan λ0 + 10h̄+ 2h̄′

and the horizontal distance between the boundaries of the helical twist is bounded by

dtwist = 18(a tan λ0 + h).

Here, h̄ and h̄′ are given by Equation (2). The height h′ is moreover bounded by 2
√

10(2h+
3a tan λ0).

See the full version for a proof.

Putting the pieces together

Consider a flat torus with modulus τ = τ1 + iτi. It can be obtained from a right circular
cylinder of height τi and boundary length 1, identifying the boundaries after a circular shift
at angle 2πτ1. Zalgaller constructs his PL isometric embeddings of long tori, for which τi is
large, as follows. He first replaces the circular cylinder by an isometric equilateral triangular
prism that is bent 6 times at angle π/3 to form a hexagonal tube. If the torus is rectangular,
that is if τ1 = 0, then the identification of the initial and final cross sections provides the
desired embedding. Otherwise, he replaces one side of the hexagon by a helical twist of angle
2πτ1 in order to glue the boundaries of the prism with the correct angular shift. We use
a slightly different construction that allows us to get shorter tori. Starting from a helical
twist of angle θ, we add 4 bends at angle π/2 and 3 portions of right prisms as illustrated
on Figure 16 to form a closed torus. In order to avoid intersections between the horizontal
prism and the horizontal gaskets of the helical twist we choose the two vertical prisms of

Figure 16 Our construction decomposed into bends (in light blue), gaskets (in light green) and
triangular prisms (in pink).

SoCG 2022



53:14 A Universal Triangulation for Flat Tori

length a
3 >

a
2

√
3 . We also choose the length of the horizontal prism to be equal to the total

horizontal extend of the helical twist. We finally take the cutting angle of the 3 bends equals
to λ′

0 := arctan(9/10) > λ0(π/2). The resulting torus has length

L < ℓtwist + 8a tan λ′
0 + 2a/3 + dtwist = 28a tan λ0 + 8a tan λ′

0 + 2a/3 + 18h + 10h̄ + 2h̄′,

where ℓtwist and dtwist are given by Lemma 10. Using the bound for h′ in Lemma 10 together
with inequality (2), and the fact that tan λ0 < 49/40, and tan λ′

0 = 9/10, we get

L <
253
18 + 18h+ 10

√
h2 + 1

9 + 2
√

40(2h+ 49
40)2 + 1

9 .

By taking h = 0 we thus obtain L < 253
18 + 10

3 + 2
√

492

40 + 1
9 < 33. Note that any longer torus

can be obtained by elongating the two vertical prisms. Hence, for h small enough, we can
realize any flat torus of length at least 33. In practice, our implementation shows that the
same construction allows to embed shorter tori. See Figure 19 in the full version.

We remark that a prism can be triangulated as a gasket with turn 0, the whole construction
thus corresponds to the pattern (g2b)5g2(bg)3b and is composed of 15 × 6 + 9 × 20 = 270
triangles. This ends the proof of Proposition 5. Figure 17 shows the resulting unfolded
triangulation after cutting through a cross section and a longitude.

Figure 17 A universal triangulation for long tori.

5.2 The flat tori of Tsuboi and Arnoux et al.
The previous construction provides a universal triangulation for long tori. Referring to
Figure 1, this means that the part of the moduli space above the horizontal line τi = 33 can
be geometrically realized in E3 by this unique abstract triangulation. It thus remains to
cover the compact subspace of short tori below this line. Denote this subspace by Mshort.
Hence,

Mshort = {τ ∈ H2 | |τ | ≥ 1, |τ1| ≤ 1/2, |τi| ≤ 33}.

As already observed in Section 3, the construction of Burago and Zalgaller allows for some
flexibility, implying that around every point in the moduli space there is a neighborhood
that can be geometrically realized by the same abstract triangulation. By compactness we
can cover Mshort with a finite number of such neighborhoods. We could thus overlay all
the corresponding triangulations with the universal triangulation for long tori to obtain a
universal triangulation for all tori. This already provides a proof of the existence of such a
triangulation. However, estimating the size of the neighborhoods seems impractical and the
approach would lead to a gigantic triangulation. Surprisingly, it was only very recently that
Tsuboi [9] and Arnoux et al. [1] independently (re)discovered extremely simple geometric



F. Lazarus and F. Tallerie 53:15

realizations of flat tori. Arnoux et al. are able to prove that their construction, that they
call diplotorus, allows to realize all tori in the moduli space. For completeness we briefly
recall this construction.

The diplotorus Da,h
n,d with parameters n, d, a, h is defined as follows. Let Ak = (ei 2πk

n , 0) be
the vertices of the regular n-gon in the horizontal coordinate plane. Let Bk = (eiπ

n (a+1+2k), h)
be the vertices of the vertical translate by h of this n-gon, turned by an angle (a + 1)πn .
Then Da,h

n,d = Pint
⋃

Pext is the union of two twisted prisms, called ploids, where Pint is the
union of triangles {AkAk+1Bk}0≤k<n and {BkAk+1Bk+1}0≤k<n, and Pext is the union of
triangles {AkAk+1Bk−d}0≤k<n, {Bk−dAk+1Bk+1−d}0≤k<n. Of course, all the indices should
be considered modulo n. Figure 18 shows the diplotorus D3.5,2

5,2 .

a b c d

Figure 18 View of the diplotorus D3.5,2
5,2 (a) with its internal (b) and external (c) ploids. (d),

another view of D3.5,2
5,2 with a transparent external ploid.

▶ Lemma 11 (Arnoux et al., 2021). For h, a ∈ R and n, d ∈ Z, Da,h
n,d, is an embedded flat

torus if and only if

h > 0, n > 4, 2 ≤ |d| < n− 2, d+ 1 < a < n− 1 if d > 0, and 1 −n < a < d− 1 if d < 0

Moreover, the modulus of Da,h
n,d is τ(n, d, a, h) = τ1(n, d, a) + iτi(n, d, a, h) with

τ1(n, d, a) =d/n−
cos((a− d)πn ) sin(dπn )

n sin π
n

and

τi(n, d, a, h) =
(√

h2 + 4 sin2(a+ 1
2 · π

n
) sin2(a− 1

2 · π
n

) +√
h2 + 4 sin2(a− 2d+ 1

2 · π
n

) sin2(a− 2d− 1
2 · π

n
)

)
/(2n sin(π/n))

For n, d fixed, we denote by Mn,d the moduli space of the tori Da,h
n,d. It lies above the graph

of the parametrized curve a 7→ (τ1(n, d, a), τi(n, d, a, 0)), where a varies as in Lemma 11.

5.3 Realizing the short tori with three diplotori
The fundamental domain in Figure 1 is symmetric with respect to the imaginary axis. Two
symmetric points τ and −τ̄ actually represent isometric tori, but the isometry should reverse
the orientation. Hence, if Tτ has a PL isometric embedding in E3 so does T−τ̄ : just take
a reflected image of the embedding of Tτ . It is thus enough to realize the positive part
M+

short := {τ ∈ Mshort | τ1 ≥ 0} of the short tori to ensure that we can realize all of them.

SoCG 2022



53:16 A Universal Triangulation for Flat Tori

▶ Lemma 12. Any modulus in M+
short can be geometrically realized by a diplotorus with

parameters n = 19 and d ∈ {2, 7, 13}.

The proof, deferred to the full version, amounts to show that M19,2
⋃

M19,7
⋃

M19,13 indeed
covers all the short tori.

From Lemma 12 we can construct a universal triangulation for short tori. Indeed, all the
diplotori with fixed parameters n, d have the same abstract triangulation, that we denote by
Tn,d. Hence, we just need a common subdivision of T19,2, T19,7 and T19,13 to obtain such a
universal triangulation. These triangulations are obtained by identifying the boundaries of a
same triangulated cylinder. However, they are not isomorphic, as one needs to apply distinct
circular shifts before identification. We can nonetheless send them in a same torus as follows.
For k ∈ Z, consider the points

Ak = (k,−1), Bk = (k, 0), Ck = (k, 1)

in the infinite plane strip B := R× [−1, 1]. Then, T19,d is isomorphic to the triangulation of B
by the triangles {AkAk+1Bk, BkAk+1Bk+1, CkCk+1Bk−d, Bk−dCk+1Bk+1−d}k∈Z quotiented
by the horizontal translations generated by the vector (n, 0), further identifying the two
boundaries according to the vertical translation (0, 2). This quotient and identification being
independent of d, the three triangulations for d = 2, 7, 13 are indeed embedded in a same
torus; see Figure 19.

A1A0 A14

B1B0 B14

C1C0 C14

Lint

Lext

~

~

C13

B13

A13

C2 C3 C7 C8

Figure 19 Layout of the triangulations T19,2, T19,7 and T19,13.The two sub-strips L̃int and L̃ext

correspond to the (lift of) overlay of the internal and external ploids.

We overlay the three triangulated strips obtained for d = 2, 7, 13. We can count the
number of vertices of the resulting subdivision. We only have to care about the edges BkCℓ,
the other ones being common to the three triangulations. In the full version we show that
these edges intersect in 1064 crossing points. Adding the remaining points Ak, Bk (Ck and
Ak should be identified) we find a total of 1064 + 38 = 1102 vertices. By Euler’s formula on
the torus, we conclude that the triangulated overlay has 2204 triangles. We have proved

▶ Proposition 13. There exists an abstract triangulation with 2204 triangles, which admits
linear embeddings isometric to every short torus.

6 Merging short and long tori

It remains to overlay our universal triangulations for long and short tori to obtain a universal
triangulation for all tori. Before overlaying the layouts of Figures 17 and 19, we perform
some modifications. We first remove the diagonals introduced to triangulate the rectangular



F. Lazarus and F. Tallerie 53:17

Lint Lext

Figure 20 Modified layout of the universal triangulations for long and short tori, and their
overlay.

face of the bends as they are not necessary to define the isometric PL embeddings of long
tori. For the same reason, we remove the diagonals used to triangulate the three portions
of right prisms; See top Figure 20. Denote by Llong the resulting layout. We next apply
a quarter turn to the layout for short tori, call it Lshort. It decomposes into two parts
Lint

⋃
Lext corresponding to the internal and external ploids; See Figure 19. We apply some

stretching and compression in order to align Lext with a portion of right prism in Llong, and
to concentrate all the vertices of Lshort, except the ones on the horizontal boundaries of the
layout, in the central horizontal strip of Llong. We can enumerate the vertices of the overlay
as follows. It contains

V∩ = 1064 vertices from the intersecting edges in Lshort,
3Vext vertices, where Vext is the number of intersections in Lext of a horizontal edge of
Llong with the edges of Lshort,
Vlong = 270/2 = 135 vertices from the triangulation of long tori,
(2n − 3)Vc = 35Vc vertices in the central horizontal strip, where Vc is the number of
intersections of an edge of Lshort in this strip with the edges of Llong,
Vd intersections of the two remaining diagonals of Lshort with the edges of Llong. Rather
than considering these two diagonals as line segments, we subdivide each of them by
adding a vertex close to their extremities, moving it to the boundary of the central strip;
see Figure 21.

SoCG 2022



53:18 A Universal Triangulation for Flat Tori

Figure 21 The subdivision of the remaining two diagonals of Llong (thick purple lines).

In the full version of the paper we count Vext = 41, Vc = 45, Vd = 90, leading to a total of
2987 vertices. By Euler’s formula this corresponds, after adding diagonals to triangulate the
overlay, to 5974 triangles. This ends the proof of Theorem 1.

Our construction is clearly not optimal. The size of our universal triangulation for long
tori can probably be reduced by simplifying the helical twist. The overlay of the triangulation
can also be optimized. A challenging question is to find the smallest number of triangles in a
universal triangulation for flat tori.

References
1 Pierre Arnoux, Samuel Lelièvre, and Alba Málaga. Diplotori: a family of polyhedral flat tori.

In preparation, 2021.
2 Thomas F. Banchoff. Geometry of the Hopf mapping and Pinkall’s tori of given conformal

type. In Martin C. Tangora, editor, Computers in algebra, volume 111 of Lecture notes in pure
and applied mathematics, pages 57–62. M. Dekker, 1988.

3 Yuriy Dmitrievich Burago and Viktor Abramovich Zalgaller. Isometric piecewise-linear
imbeddings of two-dimensional manifolds with a polyhedral metric into R3. Algebra i analiz,
7(3):76–95, 1995. Transl. in St Petersburg Math. J. (7)3:369–385.

4 Jin ichi Itoha and Liping Yuan. Acute triangulations of flat tori. European journal of
combinatorics, 30:1–4, 2009. doi:10.1016/j.ejc.2008.03.005.

5 Nicolaas Kuiper. On C1-isometric imbeddings. Indagationes Mathematicae, 17:545–555, 1955.
6 John F. Nash. C1-isometric imbeddings. Annals of Mathematics, 60(3):383–396, 1954.

doi:10.2307/1969840.
7 Ulrich Pinkall. Hopf tori in S3. Inventiones mathematicae, 81(2):379–386, 1985. doi:

10.1007/BF01389060.
8 Tanessi Quintanar. An explicit PL-embedding of the square flat torus into E3. Journal of

Computational Geometry, 11(1):615–628, 2020. doi:10.20382/jocg.v11i1a24.
9 Takashi Tsuboi. On origami embeddings of flat tori. arXiv preprint, 2020. arXiv:2007.03434.

10 V. A. Zalgaller. Some bendings of a long cylinder. Journal of Mathematical Sciences,
100(3):2228–2238, 2000. doi:10.1007/s10958-000-0007-3.

https://doi.org/10.1016/j.ejc.2008.03.005
https://doi.org/10.2307/1969840
https://doi.org/10.1007/BF01389060
https://doi.org/10.1007/BF01389060
https://doi.org/10.20382/jocg.v11i1a24
http://arxiv.org/abs/2007.03434
https://doi.org/10.1007/s10958-000-0007-3


Sparse Euclidean Spanners with Tiny Diameter:
A Tight Lower Bound
Hung Le #

University of Massachusetts, Amherst, MA, USA

Lazar Milenković #

Tel Aviv University, Israel

Shay Solomon #

Tel Aviv University, Israel

Abstract
In STOC’95 [ADMSS95] Arya et al. showed that any set of n points in R admits a (1 + ϵ)-
spanner with hop-diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n)
edges). They also gave a general upper bound tradeoff of hop-diameter at most k and O(nαk(n))
edges, for any k ≥ 2. The function αk is the inverse of a certain Ackermann-style function
at the ⌊k/2⌋th level of the primitive recursive hierarchy, where α0(n) = ⌈n/2⌉, α1(n) =

⌈√
n
⌉
,

α2(n) = ⌈log n⌉, α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) = ⌊ 1
2 log∗ n⌋, . . . . Roughly speaking,

for k ≥ 2 the function αk is close to ⌊ k−2
2 ⌋-iterated log-star function, i.e., log with ⌊ k−2

2 ⌋ stars.
Also, α2α(n)+4(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function, which is an
extremely slowly growing function.

Whether or not this tradeoff is tight has remained open, even for the cases k = 2 and k = 3.
Two lower bounds are known: The first applies only to spanners with stretch 1 and the second is
sub-optimal and applies only to sufficiently large (constant) values of k. In this paper we prove a
tight lower bound for any constant k: For any fixed ϵ > 0, any (1 + ϵ)-spanner for the uniform line
metric with hop-diameter at most k must have at least Ω(nαk(n)) edges.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Euclidean spanners, hop-diameter, inverse-Ackermann, lower bounds, sparse
spanners

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.54

Related Version Full Version: https://arxiv.org/abs/2112.09124

Funding Hung Le: Supported by National Science Foundation under Grant No. CCF-2121952.
Lazar Milenković : Partially supported by the Israel Science Foundation (ISF) grant No.1991/1,
and by a grant from the United States-Israel Binational Science Foundation (BSF), Israel, and the
United States National Science Foundation (NSF).
Shay Solomon: Supported by the Israel Science Foundation (ISF) grant No.1991/1, and by a grant
from the United States-Israel Binational Science Foundation (BSF), Israel, and the United States
National Science Foundation (NSF).

1 Introduction

Consider a set S of n points in Rd and a real number t ≥ 1. A weighted graph G = (S, E, w)
in which the weight function is given by the Euclidean distance, i.e., w(x, y) = ∥x − y∥
for each e = (x, y) ∈ E, is called a geometric graph. We say that a geometric graph G

is a t-spanner for S if for every pair p, q ∈ S of distinct points, there is a path in G

between p and q whose weight (i.e., the sum of all edge weights in it) is at most t times
the Euclidean distance ∥p − q∥ between p and q. Such a path is called a t-spanner path.
The problem of constructing Euclidean spanners has been studied intensively over the years

© Hung Le, Lazar Milenković, and Shay Solomon;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 54; pp. 54:1–54:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hungle@cs.umass.edu
mailto:milenkovic.lazar@gmail.com
mailto:solo.shay@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.54
https://arxiv.org/abs/2112.09124
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


54:2 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

[15, 25, 4, 10, 16, 5, 17, 32, 2, 11, 18, 35, 34, 19, 27]. Euclidean spanners are of importance
both in theory and in practice, as they enable approximation of the complete Euclidean graph
in a more succinct form; in particular, they find a plethora of applications, e.g., in geometric
approximation algorithms, network topology design, geometric distance oracles, distributed
systems, design of parallel machines, and other areas [16, 28, 32, 20, 22, 21, 23, 29]. We refer
the reader to the book by Narasimhan and Smid [30], which provides a thorough account on
Euclidean spanners and their applications.

In terms of applications, the most basic requirement from a spanner (besides achieving a
small stretch) is to be sparse, i.e., to have only a small number of edges. However, for many
applications, the spanner is required to preserve some additional properties of the underlying
complete graph. One such property, which plays a key role in various applications (such as
to routing protocols) [6, 1, 2, 11, 18, 24], is the hop-diameter : a t-spanner for S is said to
have an hop-diameter of k if, for any p, q ∈ S, there is a t-spanner path between p and q

with at most k edges (or hops).

1.1 Known upper bounds
1-spanners for tree metrics. We denote the tree metric induced by an n-vertex (possibly
weighted) rooted tree (T, rt) by MT . A spanning subgraph G of MT is said to be a 1-spanner
for T , if for every pair of vertices, their distance in G is equal to their distance in T . The
problem of constructing 1-spanners for tree metrics is a fundamental one, and has been
studied quite extensively over the years, also in more general settings, such as planar metrics
[38], general metrics [37] and general graphs [8]. This problem is also intimately related to
the extremely well-studied problems of computing partial-sums and online product queries
in semigroup and their variants (see [36, 39, 3, 13, 31, 2], and the references therein).

Alon and Schieber [3] and Bodlaender et al. [9] showed that for any n-point tree metric, a
1-spanner with diameter 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges)
can be built within time linear in its size. For k ≥ 4, Alon and Schieber [3] showed that
1-spanners with diameter at most 2k and O(nαk(n)) edges can be built in O(nαk(n)) time.
The function αk is the inverse of a certain Ackermann-style function at the ⌊k/2⌋th level
of the primitive recursive hierarchy, where α0(n) = ⌈n/2⌉, α1(n) = ⌈

√
n⌉, α2(n) = ⌈log n⌉,

α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) =
⌊ 1

2 log∗ n
⌋
, etc. Roughly speaking, for k ≥ 2

the function αk is close to ⌊ k−2
2 ⌋-iterated log-star function, i.e., log with ⌊ k−2

2 ⌋ stars. Also,
α2α(n)+2(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function, which is an
extremely slowly growing function. (The functions αk(n) and α(n) are formally defined in
[3, 33]; see also Section 2 of the full version [26].) Bodlaender et al. [9] constructed 1-spanners
with diameter at most k and O(nαk(n)) edges, with a high running time. Solomon [33]
gave a construction that achieved the best of both worlds: a tradeoff of k versus O(nαk(n))
between the hop-diameter and the number of edges in linear time of O(nαk(n)).

Alternative constructions, given by Yao [39] for line metrics and later extended by
Chazelle [12] to general tree metrics, achieve a tradeoff of m edges versus Θ(α(m, n)) hop-
diameter, where α(m, n) is the standard two-parameter inverse Ackermann function [36]; see
also Section 2 of the full version [26]. However, these constructions provide 1-spanners with
diameter Γ′ · k rather than 2k or k, for some constant Γ′ > 30.

(1 + ϵ)-spanners. In STOC’95 Arya et al. [5] proved the so-called “Dumbbell Theorem”,
which states that, for any d-dimensional Euclidean space, a (1 + ϵ, O( log(1/ϵ)

ϵd ))-tree cover can
be constructed in O( log(1/ϵ)

ϵd ·n log n+ 1
ϵ2d ·n) time; see Section 2 for the definition of tree cover.

The Dummbell Theorem implies that any construction of 1-spanners for tree metrics can be



H. Le, L. Milenković, and S. Solomon 54:3

translated into a construction of Euclidean (1 + ϵ)-spanners. Applying the construction of
1-spanners for tree metrics from [33], this gives rise to an optimal O(n log n)-time construction
(in the algebraic computation tree (ACT) model1) of Euclidean (1 + ϵ)-spanners. This result
can be generalized (albeit not in the ACT model) for the wider family of doubling metrics,
by using the tree cover theorem of Bartal et al. [7], which generalizes the Dumbbell Theorem
of [5] for arbitrary doubling metrics.

1.2 Known lower bounds
The first lower bound on 1-spanners for tree metrics was given by Yao [39] and it estab-
lishes a tradeoff of m edges versus hop-diameter of Ω(α(m, n)) for the uniform line metric.
Alon and Schieber [3] gave a stronger lower bound on 1-spanners for the uniform line metric:
hop-diameter k versus Ω(nαk(n)) edges, for any k; it is easily shown that this lower bound
implies that of [39] (see Appendix A of the full version [26]), but the converse is not true.

The above lower bounds apply to 1-spanners. There is also a lower bound on (1 + ϵ)-
spanners that applies to line metrics, by Chan and Gupta [11], which extends that of [39]: m

edges versus hop-diameter of Ω(α(m, n)). As mentioned already concerning this tradeoff, it
only provides a meaningful bound for sufficiently large values of hop-diameter (above say 30),
and it does not apply to hop-diameter values that approach 1, which is the focus of this work.
More specifically, it can be used to show that any (1 + ϵ)-spanner for a certain line metric
with hop-diameter at most k must have Ω(nα2k+6(n)) edges. When k = 2 (resp. k = 3),
this gives Ω(n log∗∗∗∗ n) (resp. Ω(n log∗∗∗∗∗ n)) edges, which is far from the upper bound of
O(n log n) (resp., O(n log log n)). Furthermore, the line metric used in the proof of [11] is
not as basic as the uniform line metric – it is derived from hierarchically well-separated trees
(HSTs), and to achieve the result for line metrics, an embedding from HSTs to the line with
an appropriate separation parameter is employed. The resulting line metric is very far from
a uniform one and its aspect ratio2 depends on the stretch – it will be super-polynomial
whenever ϵ is sufficiently small or sufficiently large; of course, the aspect ratio of the uniform
line metric (which is the metric used by [39, 3]) is linear in n. As point sets arising in real-life
applications (e.g., for various random distributions) have polynomially bounded aspect ratio,
it is natural to ask whether one can achieve a lower bound for a point set of polynomial
aspect ratio.

1.3 Our contribution
We prove that any (1 + ϵ)-spanner for the uniform line metric with hop-diameter k must
have at least Ω(nαk(n)) edges, for any constant k ≥ 2.

▶ Theorem 1. For any positive integer n, any integer k ≥ 2 and any ϵ ∈ [0, 1/2], any
(1 + ϵ)-spanner with hop-diameter k for the uniform line metric with n points must contain
at least Ω( n

26⌊k/2⌋ αk(n)) edges.

Interestingly, our lower bound applies also to any ϵ > 1/2, where the bound on the number of
edges reduces linearly with ϵ, i.e., it becomes Ω(nαk(n)/ϵ). We stress that our lower bound
instance, namely the uniform line metric, does not depend on ϵ, and the lower bound that it
provides holds simultaneously for all values of ϵ.

1 Refer to Chapter 3 in [30] for the definition of the ACT model. A matching lower bound of Ω(n log n)
on the time needed to construct Euclidean spanners is given in [14].

2 The aspect ratio of a metric is the ratio of the maximum pairwise distance to the minimum one.

SoCG 2022



54:4 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

Although our lower bound on the number of edges coincides with Ω(nαk(n)) only for
constant k, we note that the values of k of interest range between 1 and O(α(n)), where
α(·) is a very slowly growing function, e.g., α(n) is asymptotically much smaller than log∗ n.
Indeed, as mentioned, for k = 2α(n) + 4, we have α2α(n)+4(n) ≤ 4, and clearly any spanner
must have Ω(n) edges. Thus the gap between our lower bound on the number of edges and
Ω(nαk(n)), namely, a multiplicative factor of 26⌊k/2⌋, which in particular is no greater than
2O(α(n)), is very small.

For technical reasons we prove a more general lower bound, stated in Theorem 17. In
particular, we need to consider a more general notion of Steiner spanners3, and to prove the
lower bound for a certain family of line metrics to which the uniform line metric belongs;
Theorem 1 follows directly from Theorem 17. See Section 2 for the definitions.

For constant values of k, Theorem 1 strengthens the lower bound shown by [3], which
applies only to stretch 1, whereas our tradeoff holds for arbitrary stretch. Whether or not
the term 1

26⌊k/2⌋ in the bound on the number of edges in Theorem 1 can be removed is left
open by our work. As mentioned before, we show in Appendix A of the full version [26] that
this tradeoff implies the tradeoff by [39] (for stretch 1) and [11] (for larger stretch).

The proof overview appears in the full version [26].

2 Preliminaries

▶ Definition 2 (Tree covers). Let MX = (X, δX) be an arbitrary metric space. We say that a
weighted tree T is a dominating tree for MX if X ⊆ V (T ) and it holds that δT (x, y) ≥ δX(x, y),
for every x, y ∈ X. For γ ≥ 1 and an integer ζ ≥ 1, a (γ, ζ)-tree cover of MX = (X, δX) is
a collection of ζ dominating trees for MX , such that for every x, y ∈ X, there exists a tree T

with dT (u, v) ≤ γ · δX(u, v); we say that the stretch between x and y in T is at most γ, and
the parameter γ is referred to as the stretch of the tree cover.

▶ Definition 3 (Uniform line metric). A uniform line metric U = (Z, d) is a metric on a set
of integer points such that the distance between two points a, b ∈ Z, denoted by d(a, b) is their
Euclidean distance, which is |a − b|. For two integers l, r ∈ Z, such that l ≤ r, we define a
uniform line metric on an interval [l, r], denoted by U(l, r), as a subspace of U consisting of
all the integer points k, such that l ≤ k ≤ r. We use U(n) to denote a uniform line metric
on the interval [1, n].

Although we aim to prove the lower bound for uniform line metric, the inductive nature
of our argument requires several generalizations of the considered metric space and spanner.

▶ Definition 4 (t-sparse line metric). Let l and r be two integers such that l < r. We call
metric space U((l, r), t) t-sparse if:

It is a subspace of U(l, r).
Each of the consecutive intervals of [l, r] of size t ([l, l + t − 1], [l + t, l + 2t − 1], . . . )
contains exactly one point. These intervals are called ((l, r), t)-intervals and the point
inside each such interval is called representative of the interval.

▶ Remark 5. Throughout the paper, we will always consider Steiner spanners that can contain
arbitrary points from the uniform line metric.

3 A Steiner spanner for a point set S is a spanner that may contain additional Steiner points (which do
not belong to S). Clearly, a lower bound for Steiner spanners also applies to ordinary spanners.



H. Le, L. Milenković, and S. Solomon 54:5

▶ Definition 6 (Global hop-diameter). For any two integers l, r such that r = l + nt − 1,
let U((l, r), t) be a t-sparse line metric with n points and let X be a subspace of U((l, r), t).
An edge that connects two points is ((l, r), t)-global if it has endpoints in two different
((l, r), t)-intervals of U((l, r), t). A spanner on X with stretch (1 + ϵ) has its ((l, r), t)-global
hop-diameter bounded by k if every pair of points in X has a path of stretch at most (1 + ϵ)
consisting of at most k ((l, r), t)-global edges.

For ease of presentation, we focus on ϵ ∈ [0, 1/2], as this is the basic regime. Our argument
naturally extends to any ϵ > 1/2, with the lower bound degrading by a factor of 1/ϵ.

▶ Lemma 7 (Separation property). Let l, r, t ∈ N, l ≤ r, t ≥ 1 and let i := ⌈ 1+ϵ/2
1+ϵ l + ϵ/2

1+ϵ r⌉,
and j := ⌊ ϵ/2

1+ϵ l + 1+ϵ/2
1+ϵ r⌋. Let a, b be two points in U((l, r), t) such that i ≤ a < b ≤ j. Then,

any (1 + ϵ)-spanner path between a and b contains points strictly inside [l, r].

▶ Corollary 8. For every integer N ≥ 34 and any t-sparse line metric U((1, N), t), any
spanner path with stretch at most 3/2 between metric points a and b such that ⌊N/4⌋ ≤ a ≤
b ≤ ⌈3N/4⌉ contains points strictly inside [1, N ].

3 Warm-up: lower bounds for hop-diameters 2 and 3

In this section, we prove the lower bound for cases k = 2 (Lemma 10 in Section 3.1) and k = 3
(Lemma 13 in Section 3.2). In fact, we prove more general statements (Theorems 9 and 12),
which apply not only to uniform line metric, but to subspaces of t-sparse line metrics, where
a constant fraction of the points is missing. We use these general statements in Section 4, to
prove the result for general k (cf. Theorem 17).

3.1 Hop diameter 2
▶ Theorem 9. For any two positive integers n ≥ 1000 and t, and any two integers l, r such
that r = l + nt − 1, let U((l, r), t) be a t-sparse line metric with n points and let X be a
subspace of U((l, r), t) which contains at least 31

32 n points. Then, for any choice of ϵ ∈ [0, 1/2],
any spanner on X with ((l, r), t)-global hop-diameter 2 and stretch 1 + ϵ contains at least
T ′

2(n) ≥ n
256 · α2(n) ((l, r), t)-global edges which have both endpoints inside [l, r].

The theorem is proved in three steps. First, we prove Lemma 10, which concerns uniform
line metrics. Then, we prove Lemma 11 for a subspace that contains at least 31/32 fraction
of the points of the original metric. In the third step, we observe that the same argument
applies for t-sparse line metrics.

▶ Lemma 10. For any positive integer n, and any two integers l, r such that r = l + n − 1,
let U(l, r) be a uniform line metric with n points. Then, for any choice of ϵ ∈ [0, 1/2], any
spanner on U(l, r) with hop-diameter 2 and stretch 1 + ϵ contains at least T2(n) ≥ 1

16 · n log n

edges which have both endpoints inside [l, r].

Proof. Suppose without loss of generality that we are working on the uniform line metric
U(1, n). Let H be an arbitrary (1 + ϵ)-spanner for U(1, n) with hop-diameter 2.

For the base case, we take 64 ≤ n ≤ 127. In that case our lower bound is n
16 · log n < n−1,

which is a trivial lower bound for the number of edges in H, since every two consecutive
points must be connected via a direct edge.

For the proof of the inductive step, we can assume that n ≥ 128. We would like to prove
that the number of spanner edges in H is lower bounded by T2(n), which satisfies recurrence
T2(n) = 2T2(⌊n/2⌋) + 11n/64 with the base case T2(n) = (n/16) log n when n ≤ 128. Split

SoCG 2022



54:6 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

the interval into two disjoint parts: the left part [1, ⌊n/2⌋] and the right part [⌊n/2⌋ + 1, n].
From the induction hypothesis on the uniform line metric U(1, ⌊n/2⌋) we know that any
spanner with hop-diameter 2 and stretch 1 + ϵ contains at least T2(⌊n/2⌋) edges that have
both endpoints inside [1, ⌊n/2⌋]. Similarly, any spanner for U(⌊n/2⌋ + 1, n) contains at least
T2(⌊n/2⌋) edges that have both endpoints inside [⌊n/2⌋ + 1, n]. This means that the sets of
edges considered on the left side and the right side are disjoint. We will show below that
there are Ω(n) edges that have one point on the left and the other on the right.

Consider the set L, consisting of the points inside [n/4, ⌊n/2⌋] and the set R, consisting
of the points in [⌊n/2⌋ + 1, 3n/4]. From Corollary 8, since n is sufficiently large, we know
that any (1 + ϵ)-spanner path connecting point a ∈ L and b ∈ R has to have all its points
inside [1, n]. We use term cross edge to denote any edge that has one endpoint in the left part
and the other endpoint in the right part. We claim that any spanner with hop-diameter at
most 2 and stretch 1 + ϵ has to contain at least min(|L|, |R|) cross edges. For this particular
choice of |L| and |R|, we have that min(|L|, |R|) = |R|. Suppose for contradiction that the
spanner contains less than |R| cross edges. This means that at least one point in x ∈ R is
not connected via a direct edge to any point on the left. Observe that, for every point l ∈ L,
the 2-hop spanner path between x and l must be of the form (x, rl, l) for some point rl in the
right set. It follows that every l ∈ L induces a different cross edge (rl, l). Thus, the number
of cross edges, denoted by |EC |, is |R| ≥ |L|, which is a contradiction. From the definition of
L and R, we know that min(|L|, |R|) ≥ n/4 − 2, implying that the number of cross edges is
at least n/4 − 2 ≥ 11n/64, for all n ≥ 26. (See also Figure 1 for an illustration.) Thus, we
have: T2(n) = 2T2(⌊n/2⌋) + 11n

64 ≥ 2 · ⌊n/2⌋
16 log⌊n/2⌋ + 11n

64 ≥ n
16 · log n as claimed. ◀

Figure 1 An illustration of the first two levels of the recurrence for the lower bound for k = 2
and ϵ = 1/2. We split the interval U(1, n) into two disjoint parts. In Lemma 10, we show that there
will be at least Ω(n) cross edges, which are the spanner edges having endpoints in both parts. The
values iL and jL are set according to Corollary 8 so that the spanner edges crossing µ(n) cannot be
used for the left set; otherwise the resulting stretch will be bigger than 1 + ϵ.

▶ Lemma 11 (Proof omitted; see the full version [26]). For any positive integer n, and any
two integers l, r such that r = l + n − 1, let U(l, r) be a uniform line metric with n points
and let X be a subspace of U(l, r) which contains at least 31

32 n points. Then, for any choice
of ϵ ∈ [0, 1/2], any spanner on X with hop-diameter 2 and stretch 1 + ϵ contains at least
T ′

2(n) ≥ 0.48 · n
16 log n edges which have both endpoints inside [l, r].



H. Le, L. Milenković, and S. Solomon 54:7

Completing the proof of Theorem 9. Note that α2(n) = ⌈log n⌉ and hence, we will show
that T ′

2(n) ≥ n
256 ⌈log n⌉. Suppose without loss of generality that we are working on any

t-sparse line metric with n points, U((1, N), t), where N = nt. Let H be an arbitrary
(1 + ϵ)-spanner for U((1, N), t) with ((1, N), t)-global hop-diameter 2. We would like to lower
bound the number of ((l, r), t)-global edges required for H.

Since ϵ ∈ [0, 1/2], every two consecutive points in U((1, N), t), except for the leftmost
and the rightmost two, have to be connected by a spanner path which has all its endpoints
inside the interval [1, N ]. This implies that the number of spanner edges is at least n − 3,
which is in turn greater than (n/16) log n, for any 64 ≤ n ≤ 127.

Let M = ⌊n/2⌋t and let L be the set of ((l, r), t)-intervals that are fully inside [N/4, M ]
and R be the set of ((l, r), t)-intervals that are fully inside [M, 3N/4]. In that case, the number
of ((l, r), t)-intervals inside L can be lower bounded by |L| ≥ ⌊(M − N/4 + 1)/t⌋ ≥ n/4 − 2,
which is the bound that we used for L. Similarly, we obtain that |R| ≥ n/4 − 1. The
cross edges will be those edges that contain one endpoint in [1, M ] and the other endpoint
in [M + 1, N ]. It follows that the cross edges are also ((l, r), t)-global edges. The same
argument can be applied to lower bound the number of cross edges, implying the lower
bound on the number of ((l, r), t)-global edges. The same proof as in Lemma 11 gives
T ′

2(n) ≥ 0.48 · n
16 log n ≥ n

256 ⌈log n⌉, when n ≥ 1000, as desired. ◀

3.2 Hop diameter 3
▶ Theorem 12. For any two positive integers n ≥ 1000 and t, and any two integers l, r

such that r = l + nt − 1, let U((l, r), t) be a t-sparse line metric with n points and let X

be a subspace of U((l, r), t) which contains at least 127
128 n points. Then, for any choice of

ϵ ∈ [0, 1/2], any spanner on X with ((l, r), t)-global hop-diameter 3 and stretch 1 + ϵ contains
at least T ′

3(n) ≥ n
1024 · α3(n) ((l, r), t)-global edges which have both endpoints inside [l, r].

The theorem is proved in three steps. First, we prove Lemma 13, which concerns uniform
line metrics. Then, we prove Lemma 16 for a subspace that contains at least 31/32 fraction
of the points of the original metric. In the third step, we observe that the same argument
applies for t-sparse line metrics.

▶ Lemma 13. For any positive integer n, and any two integers l, r such that r = l + n − 1,
let U(l, r) be a uniform line metric with n points. Then, for any choice of ϵ ∈ [0, 1/2], any
spanner on U(l, r) with hop-diameter 3 and stretch 1 + ϵ contains at least T3(n) ≥ n

40 log log n

edges which have both endpoints inside [l, r].

Proof. Suppose without loss of generality that we are working on the uniform line metric
U(1, n). Let H be an arbitrary (1 + ϵ)-spanner for U(1, n) with hop-diameter 3.

For the base case, we assume that 11 ≤ n ≤ 127. We have that n
40 log log n < n − 1, which

is a trivial lower bound on the number of edges of H , since every two consecutive points have
to be connected via a direct edge.

We now assume that n ≥ 128. Divide the the interval [1, n] into consecutive subintervals
containing b := ⌊

√
n⌋ points: [1, b], [b + 1, 2b], etc. Our goal is to show that the number

of spanner edges is lower bounded by T3(n), which satisfies recurrence T3(n) =
⌊

n

⌊√
n⌋

⌋
·

T3 (⌊
√

n⌋) + n/18, with the base case T3(n) = (n/40) log log n when n < 128.
For any j such that 1 ≤ j ≤ ⌊n/b⌋, the interval spanned by the jth subinterval is

[(j − 1)b + 1, jb]. Using the induction hypothesis, any spanner on U((j − 1)b + 1, jb) contains
at least T3(b) edges that are inside [(j − 1)b + 1, jb]. This means that all the subintervals

SoCG 2022



54:8 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

will contribute at least ⌊n/b⌋ · T3(b) spanner edges that are mutually disjoint and in addition
do not go outside of [1, n]. We will show that there are Ω(n) edges that have endpoints in
two different subintervals, called cross edges. By definition, the set of cross edges is disjoint
from the set of spanner edges considered in the term ⌊n/b⌋ · T3(b).

Consider the points that are within interval [n/4, 3n/4]. From Corollary 8, since n is
sufficiently large, we know that any (1 + ϵ)-spanner path connecting two points in [n/4, 3n/4]
has to have all its points inside [1, n].

We call a point global if it is adjacent to at least one cross edge. Otherwise, the point is
non-global. The following two claims bound the number of cross edges induced by global and
non-global points, respectively.

▷ Claim 14. Suppose that among points inside interval [n/4, 3n/4], m of them are global.
Then, they induce at least m/2 spanner edges.

The claim is true since each global point contributes at least one cross edge and each edge is
counted at most twice.

▷ Claim 15. Suppose that among points inside interval [n/4, 3n/4], m of them are non-global.
Then, they induce at least

(
m/

√
n

2
)

cross edges.

Proof. Consider two sets A and B such that A contains a non-global point a ∈ [n/4, 3n/4]
and B contains a non-global point b ∈ [n/4, 3n/4]. Since a is non-global, it can be connected
via an edge either to a point inside of A or to a point outside of [1, n]. Similarly, b can be
connected to either a point inside of B or to a point outside of [1, n]. From Corollary 8, and
since a, b ∈ [n/4, 3n/4], we know that every spanner path with stretch (1 + ϵ) connecting a

and b has to use points inside [1, n]. This means that the spanner path with stretch (1 + ϵ)
has to have a form (a, a′, b′, b), where a′ ∈ A and b′ ∈ B. In other words, we have to connect
points a′ and b′ using a cross edge; furthermore every pair of intervals containing at least
one non-global point induce one such edge and for every pair this edge is different.

Each interval contains at most b = ⌊
√

n⌋ non-global points, so the number of sets
containing at least one non-global point is at least m/b. Interconnecting all the sets requires(

m/b
2

)
≥

(
m/

√
n

2
)

edges. ◁

The number of points inside [n/4, 3n/4] is at least n/2 + 1, but we shall use a slightly
weaker lower bound of 15n/32. We consider two complementary cases. In the first case, at
least 1/4 of 15n/32 points are global. Claim 14 implies that the number of the cross edges
induced by these points is at least 15n/256. The other case is that at least 3/4 fraction of
15n/32 points are non-global. Claim 15 implies that for a sufficiently large n, the number
of cross edges induced by these points can be lower bounded by 15n/256 as well. In other
words, we have shown that in both cases, the number of cross edges is at least 15

256 n > n
18 .

Thus, we have: T3(n) ≥
⌊

n

⌊√
n⌋

⌋
· T3 (⌊

√
n⌋) + n

18 ≥ ⌊
√

n⌋ · ⌊
√

n⌋
40 (log log⌊

√
n⌋) + n

18 , which is

at most n
40 log log n, as claimed. ◀

▶ Lemma 16 (Proof omitted; see the full version [26]). For any positive integer n, and any
two integers l, r such that r = l + n − 1, let U(l, r) be a uniform line metric with n points
and let X be a subspace of U(l, r) which contains at least 127

128 n points. Then, for any choice
of ϵ ∈ [0, 1/2], any spanner on X with hop-diameter 3 and stretch 1 + ϵ contains at least
T ′

3(n) ≥ 0.18 · n
40 log log n edges which have both endpoints inside [l, r].



H. Le, L. Milenković, and S. Solomon 54:9

Completing the proof of Theorem 12. Note that α3(n) = ⌈log log n⌉ and hence, we will
show that T ′

3(n) ≥ n
1024 · ⌈log log n⌉. Suppose without loss of generality that we are working

on any t-sparse line metric with n points, U((1, N), t), where N = nt. Let H be an arbitrary
(1 + ϵ)-spanner for U((1, N), t) with ((1, N), t)-global hop-diameter 3. We would like to lower
bound the number of ((l, r), t)-global edges required for H.

Since ϵ ∈ [0, 1/2], every two consecutive points in U((1, N), t), except for the leftmost
and the rightmost two, have to be connected by a spanner path which has all its endpoints
inside the interval [1, N ]. This implies that the number of spanner edges is at least n − 3,
which is in turn greater than (n/40) log log n, for any 11 ≤ n ≤ 127.

Let consider the set of ((l, r), t)-intervals that are fully inside [N/4, 3N/4]. The number
of such intervals can be lower bounded by ((3N/4 − N/4)/t − 2 ≥ n/2 − 2, which is larger
than the bound of 15n/32, which we used. The cross edges will become ((1, N), t)-global
edges and the same argument can be applied to lower bound their number. The same proof
in Lemma 16 gives:

T ′
3(n) ≥ 0.18 · n

40 log log n ≥ n

1024 · ⌈log log n⌉

when n ≥ 1000, as desired. ◀

4 Lower bound for constant hop-diameter

We proceed to prove our main result, which is a generalization of Theorem 1. In particular,
invoking Theorem 17 stated below where X is the uniform line metric U(1, n) gives Theorem 1.

▶ Theorem 17. For any two positive integers n ≥ 1000 and t, and any two integers l, r

such that r = l + nt − 1, let U((l, r), t) be a t-sparse line metric with n points and let X be a
subspace of U((l, r), t) which contains at least n(1 − 1

2k+4 ) points. Then, for any choice of
ϵ ∈ [0, 1/2] and any integer k ≥ 2, any spanner on X with ((l, r), t)-global hop-diameter k

and stretch 1 + ϵ contains at least T ′
k(n) ≥ n

26⌊k/2⌋+4 · αk(n) ((l, r), t)-global edges which have
both endpoints inside [l, r].

Proof. We will prove the theorem by double induction on k ≥ 2 and n. The base case for
k = 2 and k = 3 and every n is proved in Theorems 9 and 12, respectively.

For every k ≥ 4, we shall prove the following two assertions.
1. For any two positive integers n and t, and any two integers l, r such that r = l + nt − 1,

let U((l, r), t) be a t-sparse line metric with n points. Then, for any choice of ϵ ∈ [0, 1/2],
any spanner on U((l, r), t) with ((l, r), t)-global hop-diameter k and stretch 1 + ϵ contains
at least Tk(n) ≥ n

26⌊k/2⌋+2 αk(n) ((l, r), t)-global edges which have both endpoints inside
[l, r].

2. For any two positive integers n and t, and any two integers l, r such that r = l +nt−1, let
U((l, r), t) be a t-sparse line metric with n points and let X be a subspace of U((l, r), t)
which contains at least n(1 − 1

2k+4 ) points. Then, for any choice of ϵ ∈ [0, 1/2], any
spanner on X with ((l, r), t)-global hop-diameter k and stretch 1 + ϵ contains at least
T ′

k(n) ≥ n
26⌊k/2⌋+4 · αk(n) ((l, r), t)-global edges which have both endpoints inside [l, r].

For every k ≥ 4, we first prove the first assertion, which relies on the second assertion
for k − 2. Then, we prove the second assertion which relies on the first assertion for k. We
proceed to prove assertion 1.

SoCG 2022



54:10 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

Proof of assertion 1. Suppose without loss of generality that we are working on any
t-sparse line metric U((1, N), t). Let H be an arbitrary (1 + ϵ)-spanner for U((1, N), t) with
((1, N), t)-global hop-diameter k.

Let M be A((k − 2)/2, 4) if k is even and B(⌊(k − 2)/2⌋, 4) if k is odd. For the base
case take 4 ≤ n < max(M, 10000). We consider n − 2 points in U((1, N), t): all the points
from the metric, excluding the leftmost and the rightmost one. Since ϵ ∈ [0, 1/2], every two
consecutive points among the considered n−2 points have to be connected by a spanner path
which has all its endpoints inside the interval [1, N ]. This implies that the number of spanner
edges is at least n − 3. Then n

26⌊k/2⌋+2 αk(n), which is at most n
26⌊k/2⌋+2 log∗(n) ≤ n − 3.

Next, we prove the induction step. We shall assume the correctness of the two statements:
(i) for k and all smaller values of n, and (ii) for k′ < k and all values of n. Let N := nt and let
b := αk−2(n). Divide the the interval [1, N ] into consecutive ((1, N), bt)-intervals containing
b points: [1, bt], [bt + 1, 2bt], etc. We would like to prove that the number of spanner edges is
lower bounded by recurrence

Tk(n) =
⌊

n

αk−2(n)

⌋
· Tk(αk−2(n)) + n

26⌊k/2⌋+1 ,

with the base case Tk(n) = n
26⌊k/2⌋+2 αk(n) for n ≤ 10000.

There are ⌊n/b⌋ ((1, N), bt)-intervals containing exactly b points. For any j such that
1 ≤ j ≤ ⌊n/b⌋, the jth ((1, N), bt)-interval is [(j − 1)bt + 1, jbt]. Using inductively the
assertion 1 for k and a value b < n, any spanner on U((j − 1)bt + 1, jbt) contains at least
Tk(b) edges that are inside [(j − 1)bt + 1, jbt]. This means that all the ((1, N), bt)-intervals
will contribute at least ⌊n/b⌋ · Tk(b) spanner edges that are mutually disjoint and in addition
do not go outside of [1, N ].

We will show that there are Ω(n/23k) edges that have endpoints in two different ((1, N), bt)-
intervals, i.e. edges that are ((1, N), bt)-global. Since these edges are ((1, N), bt)-global, they
are disjoint from the spanner edges considered in the term ⌊n/b⌋ · T3(b). We shall focus on
points that are inside ((1, N), bt)-intervals fully inside [N/4, 3N/4]; denote the number of
such points by p. We have p ≥ n/2 − 2αk−2(n), but we will use a weaker bound:

p ≥ n/4. (1)

▶ Definition 18. A point that is incident on at least one ((1, N), bt)-global edge is called a
((1, N), bt)-global point.

Among the p points inside inside [N/4, 3N/4], denote by p′ the number of ((1, N), bt)-
global points. Let p′′ = p − p′, and m be the number of ((1, N), bt)-global edges incident on
the p points. Since each ((1, N), bt)-global point contributes at least one ((1, N), bt)-global
edge and each such edge is counted at most twice, we have

m ≥ p′/2. (2)

Next, we prove that

m ≥ n

26⌊k/2⌋+1 , if
⌈

p′′

b

⌉
≥

(
1 − 1

2k+2

)
·
⌈p

b

⌉
(3)

Recall that we have divided [1, N ] into consecutive ((1, N), bt)-intervals containing b :=
αk−2(n) points. Consider now all the ((1, N), bt)-intervals that are fully inside [N/4, 3N/4],
and denote this collection of ((1, N), bt)-intervals by C. Let l′ (resp. r′) be the leftmost (resp.
rightmost) point of the leftmost (resp. rightmost) interval in C; note that l′ and r′ may
not coincide with points of the input metric, they are simply the leftmost and rightmost
boundaries of the intervals in C.



H. Le, L. Milenković, and S. Solomon 54:11

Constructing a new line metric. For each ((1, N), bt)-interval I in C, if I contains a point
that is not ((1, N), bt)-global, assign an arbitrary such point in I as its representative; other-
wise, assign an arbitrary point as its representative. The collection C of ((1, N), bt)-intervals,
together with the set of representatives uniquely defines (bt)-sparse line metric, U((l′, r′), bt).
This metric has ⌈p/b⌉ ((1, N), bt)-intervals, since there are ⌈p/b⌉ intervals covering p points in
the input t-sparse metric U((1, N), t) inside the interval [N/4, 3N/4]. Recall from Definition 4
that a bt-sparse metric is uniquely defined given its ((1, N), bt)-intervals and representatives.
Let X be the subspace of U((l′, r′), bt) induced by the representatives of all intervals in C
that contain points that are not ((1, N), bt)-global and using Equation (3), we have

|X| ≥
⌈

p′′

b

⌉
≥

(
1 − 1

2k+2

)
·
⌈p

b

⌉
(4)

Recall that H is an arbitrary (1 + ϵ)-spanner for U((1, N), t) with ((1, N), t)-global
hop-diameter k. Let a and b be two arbitrary points in X, and denote their corresponding
((1, N), bt)-intervals by A and B, respectively. Since a (reps., b) is not ((1, N), bt)-global,
it can be adjacent either to points outside of [1, N ] or to points inside A (resp., B). By
Corollary 8 and since a, b ∈ [N/4, 3N/4], any spanner path with stretch (1 + ϵ) connecting a

and b must remain inside [1, N ]. Hence, any (1 + ϵ)-spanner path in H between a and b is of
the form (a, a′, . . . , b′, b), where a′ ∈ A (resp. b′ ∈ B). Consider now the same path in the
metric X. It has at most k hops, where the first and the last edges are not ((1, N), bt)-global.
Thus, although this path contains at most k ((1, N), t)-global edges in U((1, N), t), it has at
most k − 2 ((1, N), bt)-global edges in X. It follows that H is a (Steiner) (1 + ϵ)-spanner
with ((1, N), bt)-global hop-diameter k − 2 for X. See Figure 2 for an illustration.

Denote by n′ := ⌈p/b⌉ the number of points in U((l′, r′), bt). Since p ≥ n/4, it follows that
n′ ≥ ⌈n/(4b)⌉. By (4), X is a subspace of U((l′, r′), bt), and its size is at least a (1 − 1/2k+2)-
fraction (i.e., a (1 − 1/2(k−2)+4)-fraction) of that of U((l′, r′), bt). Hence, by the induction
hypothesis of assertion 2 for k − 2, we know that any spanner on X with ((l′, r′), bt)-global
hop-diameter k − 2 and stretch 1 + ϵ contains at least T ′

k−2(n′) ≥ n′

26⌊(k−2)/2⌋+4 · αk−2(n′)
((l′, r′), bt)-global edges which have both endpoints inside [l′, r′]. Since every ((l′, r′), bt)-
global edge is also a ((1, N), bt)-global edge, we conclude with the following lower bound on
the number of ((1, N), bt)-global edges required by H:

T ′
k−2 (n′) ≥ n′

26⌊(k−2)/2⌋+4 · αk−2 (n′)

≥ n

4 · 26⌊(k−2)/2⌋+4 · αk−2(n)
· αk−2

(⌈
n

4αk−2(n)

⌉)
≥ n

8 · 26⌊(k−2)/2⌋+4

= n

26⌊k/2⌋+1

The last inequality follows since, when k ≥ 4, the ratio between αk−2(⌈n/4αk−2(n)⌉) and
αk−2(n) can be bounded by 1/2 for sufficiently large n (i.e. larger than the value considered
in the base case). In other word, we have shown that whenever ⌈p′′/b⌉ ≥ (1−1/2k+2) · ⌈p/b⌉,
the number of the ((1, N), bt)-global edges incident on the p points inside [N/4, 3N/4] is
lower bounded by n/26⌊k/2⌋+1; we have thus proved (3).

Recall (see (1)) that we lower bounded the number p of points inside [N/4, 3N/4] as
p ≥ n/4. We consider two complementary cases: either ⌈p′′/b⌉ ≥ (1 − 1/2k+2) · ⌈p/b⌉, or
⌈p′′/b⌉ < (1 − 1/2k+2) · ⌈p/b⌉, where p′′ is the number of points in [N/4, 3N/4] that are not
((1, N), bt)-global. In the former case (i.e. when ⌈p′′/b⌉ ≥ (1 − 1/2k+2)), by (3), we have

SoCG 2022



54:12 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

the number of ((1, N), bt)-global edges is lower bounded by n/26⌊k/2⌋+1. In the latter case,
we have p−p′

b − 1 <
⌊

p−p′

b

⌋
= p′′

b <
(
1 − 1

2k+2

)
·
⌈

p
b

⌉
<

(
1 − 1

2k+2

)
· p

b + 1. In other words,
we can lower bound p′ by p/2k+2 − 2b. From (2) and using that p ≥ n/4, the number of
((1, N), bt)-global edges is lower bounded by n/2k+5 − αk−2(n). Since the former bound is
always smaller for n sufficiently large (i.e. larger than the value considered in the base case),
we shall use it as a lower bound on the number of ((1, N), bt)-global edges required by H.
We note that every ((1, N), bt)-global edge is also ((1, N), t)-global, as required by assertion
1. It follows that

Tk(n) ≥
⌊

n

αk−2(n)

⌋
· αk−2(n)

26⌊k/2⌋+2 · αk(αk−2(n)) + n

26⌊k/2⌋+1

≥
(

n

αk−2(n) − 1
)

· αk−2(n)
26⌊k/2⌋+2 · (αk(n) − 1) + n

26⌊k/2⌋+1

≥ n

26⌊k/2⌋+2 αk(n)

For the second inequality we have used that αk(n) = 1 + αk(αk−2(n)), and for the third,
the fact that αk−2(n) · (αk(n) − 1) ≤ n for sufficiently large n (i.e. larger than the value
considered in the base case). This concludes the proof of assertion 1.

(a)

(b)

(c)

Figure 2 Constructing a new line metric and invoking the induction hypothesis. (a) We have
n = 32, k = 5, and a 2-sparse line metric U((1, 64), 2) with representatives of each ((1, 64), 2)-interval
highlighted in green. (b) Since b = αk−2(n) = 3, we consider a collection of ((1, 64), 6)-global
intervals inside [N/4, 3N/4], denoted by C. The seventh block contains only ((1, 64), 6)-global points
(highlighted in red) as each of them is incident on a ((1, 64), 6)-global edge. (c) The new line metric
is 6-sparse line metric U((19, 48), 6) consisting of 4 green points. Finally, we use the induction
hypothesis of assertion 2 for k = 3 to lower bound the number of ((1, N), 6)-global edges. A spanner
path between x1 and x2 consisting of 5 edges, 3 of which are ((1, N), 6) global is depicted.

Proof of assertion 2. Suppose without loss of generality that we are working on any
t-sparse line metric U((1, N), t). Let H be an arbitrary (1 + ϵ)-spanner for U(1, N) with
((1, N), t)-global hop-diameter k. We shall inductively assume the correctness of assertion 1
and assertion 2: (i) for k and all smaller values of n, and (ii) for k′ < k and all values of n.

Recall the recurrence we used in the proof of assertion 1, Tk(n) = ⌊n/αk−2(n)⌋ ·
Tk(αk−2(n)) + n

26⌊k/2⌋+1 , which provides a lower bound on the number of ((l, r), t)-global
edges of H . The base case for this recurrence is whenever n < 10000. Consider the recursion
tree of Tk(n) and denote its depth by ℓ and the number of nodes at depth i by ci. In addition,
denote by ni,j the number of points in the jth interval of the ith level and by ei,j the number
of ((1, N), t)-global edges contributed by this interval. We have that the contribution of an
interval is ni,j/26⌊k/2⌋+1. By definition, we have Tk(n) =

∑ℓ
i=1

∑ci

j=1 ei,j ≥ n
26⌊k/2⌋+2 αk(n).



H. Le, L. Milenković, and S. Solomon 54:13

Let H ′ be any (1 + ϵ) spanner on X with ((1, N), t)-global hop-diameter k. To lower
bound the number of spanner edges in H ′, we now consider the same recursion tree, but
take into consideration the fact that we are working on metric X, which is a subspace of
U((1, N), t). This means that at each level of recursion, instead of n points, there is at least
n(1 − 1/2k+4) points in X. The contribution of the jth interval in the ith level is denoted
by e′

i,j . We call the jth interval in the ith level good if it contains at least ni,j(1 − 1/2k+3)
points from X. (Recall that we have used ni,j to denote the number of points from U(l, r)
in the jth interval of the ith level.) From the definition of good interval and the fact that
each level of recurrence contains at least n(1 − 1/2k+4) points, it follows that there are at
least n/2 points contained in the good intervals at the ith level. Denote the collection of all
the good intervals at the ith level by Γi.

Recall that we are working with recurrence Tk(n) = ⌊n/αk−2(n)⌋ ·Tk(αk−2(n))+ n
26⌊k/2⌋+1 .

In particular, in the first level of recurrence, we consider the contribution of n points, whereas
in the second level, we consider the contribution of ⌊n/αk−2(n)⌋ · αk−2(n) points. Denote by
ni the number of points whose contribution we consider in the ith level of recurrence. Then,
we have n1 = n, n2 = ⌊n/αk−2(n)⌋ · αk−2(n) ≥ n − αk−2(n). Denote by α

(j)
k−2(n) value of

αk−2(·) iterated on n, i.e. α
(0)
k−2(n) = n, α

(1)
k−2(n) = αk−2(n), α

(2)
k−2(n) = αk−2(αk−2(n)), etc.

In general, for i ≥ 2, we have ni ≥ n−
∑i

j=2
nα

(j−1)
k−2 (n)

α
(j−2)
k−2 (n)

≥ n−n·
∑i

j=2
⌈log(j−1)(n)⌉
⌈log(j−2)(n)⌉ . We observe

that there is an exponential decay between the numerator and denominator of terms in each
summand and that terms grow with j. Since we do not consider intervals in the base case, we
also know that ⌈log(i−1)(n)⌉ ≥ 10000, meaning that the largest term in the sum is 10000/29999.
By observing that every two consecutive terms increase by a factor larger than 2, we conclude
that ni ≥ 0.99n. Since at each level there are at least n/2 points inside of good intervals, this
means that there are at least 0.49n points inside of good intervals which were not ignored.
Denote by Γi the set of good intervals in the ith level whose contribution is not ignored.
Then we have T ′

k(n) =
∑ℓ

i=1
∑c′

i
j=1 e′

i,j ≥
∑ℓ

i=1
∑

j∈Γi
ei,j ≥ 0.49 · Tk(n) ≥ n

26⌊k/2⌋+4 αk(n).
This concludes the proof of assertion 2. We have thus completed the inductive step for k. ◀

References

1 Ittai Abraham and Dahlia Malkhi. Compact routing on euclidian metrics. In PODC, pages
141–149. ACM, 2004.

2 Pankaj K. Agarwal, Yusu Wang, and Peng Yin. Lower bound for sparse euclidean spanners.
In SODA, pages 670–671. SIAM, 2005.

3 Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.
Technical report, Tel Aviv University, 1987.

4 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discret. Comput. Geom., 9:81–100, 1993.

5 Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel H. M. Smid.
Euclidean spanners: short, thin, and lanky. In STOC, pages 489–498. ACM, 1995.

6 Sunil Arya, David M. Mount, and Michiel H. M. Smid. Randomized and deterministic
algorithms for geometric spanners of small diameter. In FOCS, pages 703–712. IEEE Computer
Society, 1994.

7 Yair Bartal, Nova Fandina, and Ofer Neiman. Covering metric spaces by few trees. In ICALP,
volume 132 of LIPIcs, pages 20:1–20:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

8 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. In SODA, pages 932–941. SIAM, 2009.

SoCG 2022



54:14 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

9 Hans L. Bodlaender, Gerard Tel, and Nicola Santoro. Trade-offs in non-reversing diameter.
Nord. J. Comput., 1(1):111–134, 1994.

10 Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In SODA, pages 291–300. ACM/SIAM, 1993.

11 T.-H. Hubert Chan and Anupam Gupta. Small hop-diameter sparse spanners for doubling
metrics. Discret. Comput. Geom., 41(1):28–44, 2009.

12 Bernard Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica,
2:337–361, 1987.

13 Bernard Chazelle and Burton Rosenberg. The complexity of computing partial sums off-line.
Int. J. Comput. Geom. Appl., 1(1):33–45, 1991.

14 Danny Z. Chen, Gautam Das, and Michiel H. M. Smid. Lower bounds for computing geometric
spanners and approximate shortest paths. Discret. Appl. Math., 110(2-3):151–167, 2001.

15 Paul Chew. There is a planar graph almost as good as the complete graph. In SCG, pages
169–177. ACM, 1986.

16 Gautam Das and Giri Narasimhan. A fast algorithm for constructing sparse euclidean spanners.
Int. J. Comput. Geom. Appl., 7(4):297–315, 1997.

17 Gautam Das, Giri Narasimhan, and Jeffrey S. Salowe. A new way to weigh malnourished
euclidean graphs. In SODA, pages 215–222. ACM/SIAM, 1995.

18 Yefim Dinitz, Michael Elkin, and Shay Solomon. Low-light trees, and tight lower bounds for
euclidean spanners. Discret. Comput. Geom., 43(4):736–783, 2010.

19 Michael Elkin and Shay Solomon. Optimal euclidean spanners: Really short, thin, and lanky.
J. ACM, 62(5):35:1–35:45, 2015.

20 Joachim Gudmundsson, Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid.
Approximate distance oracles for geometric graphs. In SODA, pages 828–837. ACM/SIAM,
2002.

21 Joachim Gudmundsson, Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid.
Approximate distance oracles for geometric spanners. ACM Trans. Algorithms, 4(1):10:1–10:34,
2008.

22 Joachim Gudmundsson, Giri Narasimhan, and Michiel H. M. Smid. Fast pruning of geometric
spanners. In STACS, volume 3404 of Lecture Notes in Computer Science, pages 508–520.
Springer, 2005.

23 Yehuda Hassin and David Peleg. Sparse communication networks and efficient routing in the
plane. Distributed Comput., 14(4):205–215, 2001.

24 Omri Kahalon, Hung Le, Lazar Milenkovic, and Shay Solomon. Can’t see the forest for the
trees: Navigating metric spaces by bounded hop-diameter spanners. CoRR, abs/2107.14221,
2021. arXiv:2107.14221.

25 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete euclidean
graph. Discret. Comput. Geom., 7:13–28, 1992.

26 Hung Le, Lazar Milenkovic, and Shay Solomon. Sparse euclidean spanners with tiny diameter:
A tight lower bound. CoRR, abs/2112.09124, 2021. arXiv:2112.09124.

27 Hung Le and Shay Solomon. Truly optimal euclidean spanners. In FOCS, pages 1078–1100.
IEEE Computer Society, 2019.

28 Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Efficient algorithms for
constructing fault-tolerant geometric spanners. In STOC, pages 186–195. ACM, 1998.

29 Yishay Mansour and David Peleg. An approximation algorithm for minimum-cost network
design. In Robust Communication Networks: Interconnection and Survivability, volume 53 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 97–106.
DIMACS/AMS, 1998.

30 Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge University
Press, 2007.

31 Mihai Patrascu and Erik D. Demaine. Tight bounds for the partial-sums problem. In SODA,
pages 20–29. SIAM, 2004.

http://arxiv.org/abs/2107.14221
http://arxiv.org/abs/2112.09124


H. Le, L. Milenković, and S. Solomon 54:15

32 Satish Rao and Warren D. Smith. Approximating geometrical graphs via “spanners” and
“banyans”. In STOC, pages 540–550. ACM, 1998.

33 Shay Solomon. Sparse euclidean spanners with tiny diameter. ACM Trans. Algorithms,
9(3):28:1–28:33, 2013.

34 Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant
spanners for doubling metrics. In STOC, pages 363–372. ACM, 2014.

35 Shay Solomon and Michael Elkin. Balancing degree, diameter and weight in euclidean spanners.
In ESA (1), volume 6346 of Lecture Notes in Computer Science, pages 48–59. Springer, 2010.

36 Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–
715, 1979.

37 Mikkel Thorup. On shortcutting digraphs. In WG, volume 657 of Lecture Notes in Computer
Science, pages 205–211. Springer, 1992.

38 Mikkel Thorup. Shortcutting planar digraphs. Comb. Probab. Comput., 4:287–315, 1995.
39 Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended abstract).

In STOC, pages 128–136. ACM, 1982.

SoCG 2022





Minimum Height Drawings of Ordered Trees in
Polynomial Time: Homotopy Height of Tree Duals
Tim Ophelders #

Department of Information and Computing Science, Utrecht University, The Netherlands
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Salman Parsa #

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Abstract
We consider drawings of graphs in the plane in which vertices are assigned distinct points in the
plane and edges are drawn as simple curves connecting the vertices and such that the edges intersect
only at their common endpoints. There is an intuitive quality measure for drawings of a graph that
measures the height of a drawing ϕ : G ↪→ R2 as follows. For a vertical line ℓ in R2, let the height
of ℓ be the cardinality of the set ℓ ∩ ϕ(G). The height of a drawing of G is the maximum height
over all vertical lines. In this paper, instead of abstract graphs, we fix a drawing and consider plane
graphs. In other words, we are looking for a homeomorphism of the plane that minimizes the height
of the resulting drawing. This problem is equivalent to the homotopy height problem in the plane,
and the homotopic Fréchet distance problem. These problems were recently shown to lie in NP,
but no polynomial-time algorithm or NP-hardness proof has been found since their formulation in
2009. We present the first polynomial-time algorithm for drawing trees with optimal height. This
corresponds to a polynomial-time algorithm for the homotopy height where the triangulation has
only one vertex (that is, a set of loops incident to a single vertex), so that its dual is a tree.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Graph drawing, homotopy height

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.55

Related Version Full Version: https://arxiv.org/abs/2203.08364

Funding Tim Ophelders: This author was supported by the Dutch Research Council (NWO) under
project no. VI.Veni.212.260.
Salman Parsa: This author was funded in part by the SLU Research Institute and by NSF grant
CCF-1614562.

1 Introduction

A tree T is called an ordered tree if for each vertex, a fixed cyclic ordering of its incident
edges is given. Let T be an ordered tree and let f : |T | → R2 be a drawing of the tree, that
is, a continuous injection from the underlying topological space of the tree to the plane,
in which the clockwise order of edges around each vertex is as prescribed. Any ordered
tree can be recovered from any of its drawings up to degree 2 nodes. Any two drawings of
the same ordered tree can be obtained from one another using an orientation-preserving
homeomorphism of the plane. We are interested in drawings that minimize the height in the
following sense. Given a drawing ϕ and a vertical line ℓ, the height of the line ℓ is defined as
H(ℓ) := |ϕ(T ) ∩ ℓ|. That is, the number of times that the line ℓ intersects the drawing, where
vertical segments count as infinitely many intersections. The problem of drawing a tree T

with optimal height asks for a drawing ϕ : |T | → R2 that minimizes the maximum height
over all vertical lines. We call such a drawing an optimal height drawing. We emphasize that
our drawings are not necessarily straight-line. In fact, there exist instances for which any

© Tim Ophelders and Salman Parsa;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 55; pp. 55:1–55:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.a.e.ophelders@uu.nl
https://orcid.org/0000-0002-9570-024X
mailto:sparsa@sci.utah.edu
https://orcid.org/0000-0002-8179-9322
https://doi.org/10.4230/LIPIcs.SoCG.2022.55
https://arxiv.org/abs/2203.08364
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


55:2 Minimum Height Drawings of Ordered Trees in Polynomial Time

Figure 1 A bend is necessary in any drawing with height 5.

50

50
49

1 24 8
46

39
24

Figure 2 Spirals (e.g. the edge with weight 1) may be necessary to draw weighted trees optimally.

optimal drawing requires a bend in some edge. An example is given in Figure 1. One can
check that any optimal drawing of this tree requires a bend in some edge. Although we will
consider only unweighted trees, the definition of height naturally extends to edge-weighted
graphs. Already in the case of weighted trees with only one vertex of degree at least three,
an optimal drawing might even require an edge to form a spiral. Figure 2 depicts an instance
whose optimal drawing requires a spiral according to a computer-assisted enumeration of its
drawings. We do not know whether unweighted trees also require spiraling edges.

The optimal height drawing of graphs is related to two significant classes of problems
in computer science, and in particular, computational geometry and topology. If, instead
of ordered trees, we take (unordered) trees and allow edges to cross in the output drawing,
we obtain the classical min-cut linear arrangement problem. This problem is well-studied
[7, 11, 14] and Yannakakis [15] presented an O(n log n) time algorithm for drawing trees with
optimal height in this sense. Of course, optimal drawings with straight-line edges always
exist in this setting. On the other hand, it is known that the graph version as well as the
weighted tree version [13] of the same problem is NP-hard. Since the trees corresponding to
the reduction can be drawn optimally without self-intersection, it follows that optimal height
drawing of unordered weighted trees is also NP-hard. All the mentioned problems lie in NP.

The optimal height graph drawing problem also shows up as a special case of an important
open problem in computational geometry and topology called the homotopy height problem [2,
3, 5, 6, 10]. In this context, a homotopy corresponds to a one-parameter family of curves
γi (i ∈ [0, 1]) that sweeps a surface in a continuous way, where γ0 and γ1 are part of the
input. Roughly speaking, the homotopy height problem considers a surface homeomorphic
to a sphere, disk, or annulus, endowed with a metric, and asks for a homotopy of curves
that sweeps the surface in such a way that the longest curve γi is as short as possible. For a
perfectly round sphere, the homotopy height is the length of its equator. For the purpose
of computation, discrete versions of the problem have been considered, where the surface
is endowed with a cellular decomposition, and the lengths of curves are measured by the
number of intersections with cell boundaries. Each curve in general position with the cellular
decomposition can be represented as a walk on the dual graph of the decomposition. The
vertices of the dual graph are represented geometrically as representative points of cells, and
edges of the dual graph correspond to pieces of cell boundaries shared by two cells. As a curve



T. Ophelders and S. Parsa 55:3

P

Q

Figure 3 Left: a cellular decomposition of a disk (black) and its dual. Middle: some curves of a
homotopy whose curves start at P and end at Q, and a homeomorphism of the disk that sends the
curves to vertical lines. Right: the corresponding walks in the dual graph.

sweeps over the surface, it can sweep over vertices of the dual graph (resulting in a face flip),
or create or remove pairs of intersections with edges of the embedded graph (resulting in a
spike or unspike). Figure 3 illustrates a dual graph (of a cellular decomposition) with vertices
P and Q, and a homotopy through curves γi connecting P to Q. If the cell decomposition
contains exactly one vertex, then its dual is a tree and the problem of homotopy height
becomes equivalent to drawing trees with optimal height (In this case, the starting and
ending curves are nested circles in the unbounded face so that the curves sweep an annulus).

Although homotopy height admits an efficient O(log n)-approximation algorithm [10], its
exact computation appears to be very challenging. In fact, it was only recently shown to lie
in the complexity class NP [5] in the setting of edge-weighted graphs. If the curves at the
start and end of a homotopy are disjoint and shortest curves, it is known that there exists
an optimal homotopy that sweeps the surface in a monotone fashion [4]. Homotopy height is
closely related to other important graph parameters [2].

The duality relation between graph drawings and homotopy height is depicted in Figure 3.
In this paper instead of graphs we consider plane trees or ordered trees. We present the

first polynomial-time algorithm for the optimal height drawing of unit weight plane trees.
Our results give a polynomial algorithm for the homotopy height of unit-weight one-vertex
(multi-)graphs. This might point to the possibility that the problem for the general graphs is
also polynomial. However, already in our restricted setting, the algorithm is quite involved
and does not have a clear extension to general graphs.

Although our notion of height has frequently been studied in recent years, there exist
related parameters of graph drawings that also quantify some notion of height [1, 2, 12].

2 Background and terminology

2.1 Drawings and local disks
Drawings. Formally we work with plane trees instead of ordered trees. This is just some
reasonable, e.g. piecewise-linear, drawing g : T → R2 of a finite tree T in the Euclidean
plane. This plane drawing is fixed once and for all for any ordered tree T and respects the
given ordering around each vertex. In order to distinguish the Euclidean plane containing
the drawing g we use the symbol Π for this plane, so that g(T ) ⊂ Π.

Convention. With a slight abuse of notation, we will not distinguish between T and its
embedding g(T ) ⊂ Π in the plane. We use the words edge and path for edges and simple
curves on T exclusively, and reserve the word curve for curves in the drawing plane (the
plane to which Π is mapped).

SoCG 2022



55:4 Minimum Height Drawings of Ordered Trees in Polynomial Time

βt

βb

βl βr

Cl Cr

φ

Figure 4 A local disk and a drawing.

A drawing ϕ of a tree T , is a continuous injective function mapping Π into R2. We
consider only drawings ϕ in which the image of every edge e is piecewise-linear, and such
that every vertical line intersects the drawing in a finite number of points. It is not difficult
to see that this restriction does not affect the optimal height of the drawing. In our figures,
for aesthetic purposes, we often draw edges as smooth curves.

Let E = E(T ), V = V (T ) denote the set of edges and vertices of T . We always denote
the number of vertices by n. By H(ϕ) we denote the height of the drawing ϕ. That is, the
maximum number of points of the drawing on a vertical line.

Local disks. Let D ⊂ Π(T ) be a topological disk in the plane in which T is drawn. We
denote the boundary of D by ∂D. Let TD = T ∩ D and assume TD is connected. We say
that an edge e ∈ E is a boundary edge of D if e ∩ ∂D ̸= ∅. We call an edge internal if it lies
in the interior of D. We denote by B(D) the set of boundary edges of D. Let ∂D = Cl ∪ Cr

where Cl ∩ Cr = {pN , pS} is a set of two points, where none is in T . Intuitively, we think of
Cl and Cr as the left and right boundary of D. This “partition” of ∂D divides the set of
boundary edges B(D) into left and right boundary edges B(D) = BL(D) ⊔ BR(D). We call
(D, BL(D), BR(D)) a local disk.

A drawing of a local disk (D, BL, BR) is a homeomorphism ϕ : D → Q onto a rectangle
Q with edges (βl, βt, βr, βd), such that under ϕ, the boundary edges in BL intersect βl, and
those in BR intersect βr and ϕ(TD) ∩ (βt ∪ βr) = ∅. See Figure 4. Note that we can select
a local disk whose interior contains the whole tree, such that TD = T and there are no
boundary edges. The height of the left (right) boundary in any drawing is the number of left
(right) boundary edges of the local disk, and we call this number as the left (right) boundary
height. When the two boundary heights are equal we simply say boundary height.

The move sequence of a drawing. Consider sweeping a vertical line over a drawing of T

(or the interior of a local disk). The sweep line encounters three types of events: left bends
(points interior to edges of T whose x-coordinate in the drawing is locally minimal), right
bends (symmetric to left bends), and vertices. We will refer to these events as moves, and
the corresponding point of T as its location (i.e. the vertex corresponding to a vertex move,
or the point interior to the edge corresponding to the bend move). We assume that all bends
and vertex moves occur at distinct x-coordinates, and refer to the left-to-right sequence of
moves of a drawing as its move sequence.

2.2 Cuts and shortcuts
Let D be a local disk. By a cut in the local disk (D, BL, BR) we mean the sequence of edges
crossed by a curve that connects pN to pS , where pN and pS are some two points giving rise
to the local disk (D, BL, BR) (an edge might repeat consecutively in the sequence). Some



T. Ophelders and S. Parsa 55:5

times we refer to the curve itself as a cut. Note that the same local disk can be defined with
many such pair of points but this choice is not important. The length (or height) of a cut is
the number of edges in it (counted with repetition), or the number of intersections of the
curve with the tree TD. A cut C is a shortcut if its length is smallest over all cuts of D. For
the proof of the following lemma we refer to [5, Lemma 4.2].

▶ Lemma 1 (Pausing at a shortcut). Let D be a local disk, ϕ : D → Q a drawing and C a
shortcut in D. There is a drawing ϕ′ of height less than or equal to the height of ϕ in which
there is a vertical line defining the cut C. Moreover, vertical lines of ϕ that are disjoint from
C are unaffected and appear in ϕ′.

We say that the drawing ϕ can pause at the shortcut C, resulting in the drawing ϕ′.
When a cut C is vertical in an optimal drawing and each sub-disk cut by C contains a
connected part of TD, then C subdivides the problem into two sub-problems whose optimal
drawings can easily be merged to form an optimal drawing of the original disk.

3 Overview of the algorithm

Our main result is an algorithm for computing optimal drawings of plane trees. This algorithm
is a dynamic program which in a high level works as follows. Each cell of the dynamic
programming table represents a local disk and stores the optimal height of that disk (or an
optimal drawing, if an optimal drawing is to be computed). The local disks represented by
the cells are of two special types: spine disks and skew spine disks (defined in Section 6).
These disks essentially are local disks that cannot be cut by shortcuts. Row m of the table
stores all spine or skew spine disks with exactly m interior vertices. For m > 1, row m of the
table is built using the information in lower rows in two phases. The first phase constructs
all possible m-vertex spine and skew spine disks. The second phase computes the height of
an optimal height drawing for each of the computed disks of row m (or computes a drawing,
if the the drawing is needed). The computed optimal height (or optimal drawing) will be
stored again in the table. The base of the table consists of spine or skew spine disks with a
single interior vertex. The possibilities for the decomposition of a single spine disk or skew
spine disk into such disks with fewer vertices are shown in Figures 10 and 11. With this
description, a final optimal drawing consists of drawings in Figures 10 and 11 nested inside
each other, and where the deepest level is a single vertex disk. A trapezoid (skew spine disk)
will fit into a trapezoid and a rectangle into a rectangle (spine disk).

There are two ingredients in the proof of correctness. First, we show in Proposition 6
that any (sufficiently general) drawing can be turned, without increasing the height, into
a drawing that has a hierarchical structure. The root of this structure tree is a spine disk
containing the whole tree (with zero boundary edges). The nodes of the structure tree
are (skew) spine disks. Each node is cut essentially into a collection of sub-disks, using
shortcuts that are made vertical via pausing. These sub-disks are (skew) spine disks that
form the children of the node. Each node, has one of polynomially many possibilities for the
decomposition, depicted in Figures 10 and 11. The spine disks corresponding to leaves of
any structure tree are single-vertex local disks and thus trivial to draw optimally. In brief,
any drawing can be turned into one which has a tree structure of spine and skew spine disks
without increasing the height.

The second ingredient of the proof of correctness is a proof that there exists some optimal
drawing such that a super-set of all the (skew) spine disks in its tree structure can be
enumerated in polynomial time. For this purpose, we define a quality measure for a drawing.
To rule out pathological drawings and simplify our arguments, we need to consider simplified

SoCG 2022



55:6 Minimum Height Drawings of Ordered Trees in Polynomial Time

drawings which are the result of applying simplification moves of Figure 6. We also consider
balanced drawings, which are ones where the height of the lines on both sides of (and very
close to) any vertex differ by at most one. Among all the optimal drawings, we take the
drawing which is simplified, balanced, and maximizes our quality measure. Lemma 7 asserts
that such an optimized drawing has itself a tree structure of (skew) spine disks. The tree
structure of a drawing which optimizes a slightly stronger measure, namely the secondary
quality, is called a fat structure. Proposition 10 characterizes the spine disks that can appear
in a fat structure. This description allows us to easily enumerate all possible spine disks that
can appear in a fat structure in polynomial time and only store the (skew) spine disks in our
table that conform to this characterization. This will result in a polynomial-sized table and
hence a polynomial algorithm. Omitted proofs can be found in the full version.

4 Simplifying the drawings

Let ϕ be a drawing of a local disk D and T = TD. We label the left (resp. right) bends of ϕ

as either stuck or not, depending on whether the bend encloses the next (resp. previous)
move. Figure 5 illustrates the two possible reasons for a right bend to be stuck. Two
consecutive moves of a drawing may admit a simplification (of the drawing) that replaces the
two sequences by a simpler sequence of moves without increasing the height of the drawing.
For each of these simplifications, either the first move is a non-stuck left bend, or the second
move is a non-stuck right bend. We explain the types of simplifications involving a non-stuck
right bend (see Figure 6), the types involving a non-stuck left bend are symmetric. As
mentioned, the second move is a non-stuck right bend, so we distinguish cases based on the
first move of the pair.
Stuck slide. In this case, the first move is a stuck right bend. The non-stuck right bend

does not enclose the stuck right bend (otherwise it would also be stuck). Exchanging the
order of the two bends ensures that neither of the resulting bends are stuck.

Bend-bend (resp. vertex-bend) separation. The first move is a left bend (resp. vertex)
that is not connected to the right bend. We exchange the moves, reducing the height of
the line in between.

Bend-bend cancellation. The first move is a left bend that is connected to the right bend.
We replace the bends by an x-monotone curve, reducing the number of bends.

Vertex-bend cancellation. The first move is a vertex that is connected to the right bend.
We replace the bend by an x-monotone curve, reducing the number of bends. We call
a vertex-bend cancellation strong if the simplification does not decrease the absolute
difference between the number of edges incident to the left and right of the vertex.

We say that a drawing ϕ is strongly simplified if no simplification move is possible, and
simplified if only strong simplification moves are possible.

We say that ϕ is balanced if for any vertex v, the heights of the vertical lines immediately
to the left and right of v are equal if the degree of v is even, and differ by 1 if the degree of v

is odd. Balanced drawings will be useful for our algorithms. However, strong vertex-bend
cancellations may make vertices less balanced.

Figure 5 A right bend (marked) stuck around a vertex (left) or stuck around a bend (right). The
bold line represents a bundle of arbitrarily many edges incident to the vertex.



T. Ophelders and S. Parsa 55:7

Figure 6 Left to right: stuck slide, bend-bend separation, bend-bend cancellation, vertex-bend
separation, (strong) vertex-bend cancellation.

T2 T1

e e T1

Figure 7 Two local disks (containing sub-trees T1 and T2) with a single boundary edge e (left).
An exposed drawing of the sub-tree T1 with anchor edge e (right).

▶ Lemma 2. If there is a drawing ϕ of height H of a local disk D, then there exists a balanced
simplified drawing of D of height at most H with a bounded number of moves.

▶ Lemma 3. Any simplified drawing of height H of a local disk D with n vertices has at
most (H + 1)n moves if n > 0, and at most H moves if n = 0.

▶ Observation 4. Let ϕ be a balanced drawing of the local disk D. Then applying all possible
non-strong simplifying moves to h keeps the drawing balanced.

5 Bubbling a sub-tree

Let e be an edge of a tree T . There are two sub-trees T1, T2 of T that result from removing
e. For i ∈ {1, 2}, we call the rooted trees Ti = Ti(e), with the root chosen to be the endpoint
of e in Ti, the rooted sub-trees anchored via the edge e and the edge e the anchor edge of the
rooted tree Ti. We call the endpoint of e which is not the root of Ti the anchor vertex of Ti.
The exposed height of the sub-tree Ti ∪ {e}, denoted eH(Ti, e), is the height of the optimal
height drawing of a local disk containing Ti in its interior and such that the anchor edge e is
the single boundary edge, see Figure 7. We call such a drawing of Ti an exposed drawing of
the sub-tree Ti with respect to e.

Let P be a simple path (possibly of length1 0) in T . The neighborhood of P , denoted
N(P ), is the subset of vertices of T not in P which are connected in T to some vertex
of P by an edge. We say that a rooted sub-tree T ′′ ⊂ T is a sub-tree anchored at P if
V (T ′′) ⊂ V (T ) − V (P ) and the root of T ′′ is in N(P ). It follows that, for any P , the edge-set
of T is partitioned into three sets, the edges of P , the edges of sub-trees anchored at P , and
the anchor edges incident to P .

1 The length of a path is the number of its edges.

SoCG 2022



55:8 Minimum Height Drawings of Ordered Trees in Polynomial Time

We call an exposed drawing of a sub-tree T ′ in a drawing of T a bubble if the strip of the
plane containing this exposed drawing contains no moves of the rest of the drawing. In other
words, we can compress the exposed drawing of T ′ into a drawing inside an arbitrary small
bubble, without affecting the height of the drawing of T .

Let ϕ be a drawing of the tree T and let T ′ ⊂ T be a sub-tree anchored using an edge e to
a vertex v. We say that ϕ′ is obtained by bubbling the sub-tree T ′ at the point t ∈ R2 if ϕ′ is
such that i) H(ϕ′) ≤ H(ϕ), ii) T ′ is drawn in a bubble with e the boundary edge and t being
the point of e on the boundary, iii) the drawing is changed only over T ′ and the edge e, and
iv) the ϕ′-image of e is contained in ϕ-image of T ′ ∪ e. See Figure 8 for an example, where
t = tr. One of our main observations is that bubbling is always possible at a suitable t.

T ′T ′

tl tr

v
e

tl

v
e

tr

Figure 8 Bubbling the sub-tree T ′, tl and tr are locations of extreme moves in the given drawing.

▶ Lemma 5. Let T be a tree and h be a drawing of T . Let T ′ a sub-tree anchored at a vertex
v. Let tl and tr be the points of T which have the smallest and the largest x-coordinate,
respectively. We can assume these points are unique. If T ′ contains exactly one of tl and tr,
then T ′ can be bubbled at that point.

6 Spine disks

Let D be a local disk and B(D) the set of its boundary edges. Recall that the boundary
edges of a local disk are divided into left boundary edges, BL(D), and right boundary edges,
BR(D). Let el ∈ BL(D) and er ∈ BR(D). We say that el and er are opposite one another if
they are incident to the same vertex in the interior of D. We call a local disk a spine disk
with spine P , if all of the following hold:
1. P is a simple path in TD, such that every boundary edge is incident to a vertex of P ,

and P is interior-disjoint from boundary edges of TD.
2. There is a bijection α : BL(D) → BR(D) such that each e is opposite α(e).
3. If P has at least two vertices, there are boundary edges incident to its extremal vertices.

If there are no boundary edges, we let P be an arbitrary vertex, so that P is always
defined. Therefore a local disk that contains all of the input tree T and P chosen to be any
vertex is a spine disk.

A skew spine disk is a spine disk to which a new boundary edge incident to some vertex
of P is added. It follows that the height of one boundary line of any drawing of a skew spine
disk is one more than the height of the other boundary line. We call a (skew) spine disk
a vertex disk if there is a single vertex in its interior. Figure 9 shows an optimal drawing
of a tree and a “decomposition” of the drawing into spine (rectangle) and skew spine disks
(trapezoids). Note that a skew spine disk with a single boundary edge is a bubble. All skew
spine disks in Figure 9 are bubbles.



T. Ophelders and S. Parsa 55:9

6.1 Spine decomposition
We introduce some terminology before stating one of our main propositions. Let D be a local
disk and let C be a collection of disjoint shortcuts (combinatorially distinct from the left and
the right boundary lines) in D, and let C cut the disk D into disks D1, . . . , Dm. According
to Lemma 1, an optimal drawing ϕ of D can be obtained by gluing optimal drawings ϕi of
the Di, i = 1, . . . , m. Then we say ϕ is obtained by merging the drawings ϕ1, . . . , ϕm. In
our schematics, we draw a rectangle for a spine disk and a trapezoid for a skew disk. The
shorter side of the trapezoid has one less boundary edge than the long side. A vertex inside
a rectangle or a trapezoid indicates a vertex disk. A thick black line is a collection of parallel
lines whose number is indicated. A pipe in a drawing bounded by two vertical lines l and r

is a subpath of an edge of T drawn as an x-monotone curve between these lines. Observe
that a pipe can always be drawn as a straight line connecting the lines l and r.

If D is a vertex spine disk or vertex skew spine disk then there is a trivial, straight-line,
optimal drawing of D. These disks form the building blocks of our drawings. The following
proposition shows how more complicated (skew) spine disks can be decomposed into less
complicated ones and eventually into vertex (spine) disks.

▶ Proposition 6 (Spine Decomposition). Let D be a spine (resp. skew spine) local disk with
b ≥ 0 boundary edges on one side and b (resp. b + 1) boundary edges on the other side. If
D is not a vertex disk and D has a drawing of height H, then D has a drawing of height at
most H that can be decomposed as one of the cases of Figure 10 (resp. 11), up to horizontal
and vertical reflection. In these drawings m, ai, cj are non-negative integers.

6.2 Structure tree
Recursive applications of Proposition 6 to an optimal-height drawing of a spine or a skew
spine disk, for instance one containing all of T , result in an optimal drawing that has a
hierarchical structure. Any node in the hierarchy is a spine or skew spine disk, and a node is
decomposed into its children using one of the possibilities of Proposition 6. The leaves of the
hierarchy are vertex disks. We call this hierarchy a structure tree of the optimal drawing.
We call a drawing which has such a structure tree a structured drawing. For instance the
drawings output by Proposition 6 are structured drawings.

7 Optimizing the optimal-height drawings

In this section, we first define the quality of drawings. We then consider those optimal
drawings that maximize this quality measure.

Figure 9 Spine and skew spine disks.

SoCG 2022



55:10 Minimum Height Drawings of Ordered Trees in Polynomial Time

. . .

a1

a2

am−1

amam

am−1

a2
a1 − 1

1.0.1

. . .

a1

a2

am−1

amam

am−1

a2
a1

1.2

1.0.2

b− 1 b

1.1.1

b
a2

a1

b = a1 + a2

1.1.2

bb

1.3

a
a

c
c

Figure 10 Decomposition of spine disks. Thick lines indicate bundles of parallel edges. The
number of parallel edges in bundles are indicated by the labels on the sides. The values ai can be 0.
Rectangles indicate spine disks and trapezoids indicate skew spine disks. A black dot indicates a
vertex disk.

. . .

a1

a2

am − 1am

a2
a1 − 1

2.0

a1 = c1 + c2

. . .

c2

a2

am − 1am

a2

a1

2.1

c1

. . .

a1

a2

am − 1am

a2
a1

2.2

. . .

a1

a2

am − 1am

a2
a1

2.3

Figure 11 Decomposition of skew spine disks.



T. Ophelders and S. Parsa 55:11

7.1 Quality of a drawing

Let ϕ be any drawing of a local disk D. We denote by Λ′ = Λ′(ϕ) = {λi} the set of
combinatorially distinct vertical lines in the plane (that lie in general position with the
drawing). That is, the strip Si bounded by λi and λi+1, after removing pipes, is either: i) a
vertex move, that is, contains a single vertex and no bends, or ii) contains a single bend and
no vertices. Such a set of vertical lines can be chosen for any drawing h in general position.
Consider a strip Sij bounded by λi and λj . If Sij contains only pipes we remove λi or λj

(whichever is to the right of the other) and all the lines in between form Λ′, and repeat this
operation. Let Λ = Λ(ϕ) be the remaining set of vertical lines. We again consider strips Sij

bounded by λi and λj in Λ. If after removing pipes from the strip Sij it becomes a bubble,
spine disk, skew spine disk, or bend, we respectively say that Sij is a bubble, spine disk,
skew spine disk or bend. Recall that a bubble is a special type of skew spine disk with only
one boundary edge in one side.

Note that bubbles are either disjoint or nested and therefore give rise to a hierarchical
structure. We say that a vertex v is of depth d if it is contained in exactly d bubbles. That
is, there are exactly d strips, bounded by the lines of Λ, that contain the vertex and that are
bubbles. We define the depth of a bubble and a (skew) spine disk analogously to depth of a
vertex to be the number of bubbles that properly contain them.

We say that a line λ ∈ Λ(ϕ) is of depth i if it is contained in exactly i strips which are
bubbles, and in none of them it is a boundary. For instance, lines of depth 0 do not cut any
bubble. Let Λi = Λi(ϕ) denote the set of lines of depth i. Let Λi,j = Λi,j(ϕ) ⊂ Λi be the set
of lines of height j and depth i, and let δi,j(ϕ) = |Λi,j | be the number of lines of depth i and
height j. Note that δi,j(ϕ) can be 0. Let ∆i(ϕ) be the sequence (δi,0(ϕ), δi,1(ϕ), . . .), and
define the quality of the drawing ϕ as

Q(ϕ) = (∆0(ϕ), ∆1(ϕ), . . .).

For two drawings ϕ and ϕ′, we compare their qualities Q(ϕ) and Q(ϕ′) lexicographically,
where we also compare the sequences ∆i(ϕ) to ∆i(ϕ′) lexicographically. Specifically, a
drawing of maximum quality maximizes the depth sequences ∆i from left to right. That is,
we are interested in the drawings where the sequence ∆0 is maximized, and among these the
sequences where ∆1 is maximized, and so on. We emphasize that maximizing the quality
does not necessarily minimize the height of the drawing. Instead, we merely use the quality
measure to reduce the search space for minimum height drawings.

There remains still some arbitrariness in optimal drawings with maximum quality. For
instance, a star with 2k leaves and a central vertex can be drawn with optimal height and
with maximum quality in an exponentially many different ways, giving rise to exponentially
many spine disks, by changing the order of the vertices. We get rid of these choices using
the notion of secondary quality to be defined in Section 7.3.

By Lemma 2, there exists an optimal simplified and balanced drawing of any local disk
D, and by Lemma 3, (H + 1)n is an upper bound on the complexities of simplified drawings
with height H . Therefore, the set of quality sequences of the set of all optimal, balanced and
simplified drawings of a local disk is non-empty. Moreover, each quality sequence for such a
drawing consists of at most H(H + 1)n terms δi,j , since the depth is at most the number of
lines in Λ and each depth-sequence ∆i contains at most H = O(n) different height values.

SoCG 2022



55:12 Minimum Height Drawings of Ordered Trees in Polynomial Time

l

e1

e2

fv

Figure 12 The edge f is sandwiched between e1 and e2 with respect to l.

7.2 Properties of drawings with maximum quality
Since the dynamic program only constructs structured drawings, we need to argue that the
maximum quality drawing is structured.

▶ Lemma 7. Let ϕ be a simplified, balanced drawing of a spine disk D that has maximum
quality Q(ϕ) over all drawings with the same height as ϕ. Then ϕ is a structured drawing.

Recall that for a path P the set of anchor edges, A(P ), is the set of edges which have
exactly one endpoint on the path P . Also, the set of anchor edges of a spine disk D, A(D),
is the set of anchor edges of the spine path of D. Let D be a (balanced) spine disk with 2b

boundary edges and e ∈ A(D) be an anchor edge of D. Let H(D) denote, as always, the
optimal height of the disk D and eH(T ′, e′) denote the optimal exposed height of a sub-tree
T ′ with respect to the edge e′. Also recall that the sub-tree Te anchored by e is the sub-tree
rooted at the endpoint of e which is not in the spine of the disk D. We say e is light (with
respect to D) if the exposed height of the sub-tree Te satisfies eH(Te, e) ≤ H(D) − b + 1.

The significance of light edges is that if we know a boundary edge e of D is light then
given any drawing of D we can redraw the sub-tree Te near the boundary of D in a small
bubble without increasing the height, since the maximum height over the bubble would be
eH(Te, e) + b − 1 which would be at most H(D).

▶ Lemma 8. Let D be a spine disk of depth d in a drawing ϕ with maximum quality Q(ϕ).
Let e ∈ A(D) be a light edge and Te the sub-tree anchored by e. If e is a boundary edge then
Te is drawn in a bubble of depth d with e as the single boundary edge. Moreover, the strip
between the bubble of Te and the disk D is a sequence of bubbles of depth d anchored at the
spine of D, or bends.

7.3 Breaking ties while respecting the orders
In our arguments we will use a tie-breaking mechanism to decide between optimal drawings
which all have maximum quality. We first define a perturbation of the original heights.

Let v be a vertex in D and let e1, e2 and f be edges incident to v. Let l be a vertical line.
We say that f is sandwiched between e1 and e2 with respect to l if f does not intersect l

but e1 and e2 intersect l, and f lies in the resulting bigon, see Figure 12. We add a small ϵ

(0 < ϵ ≪ 1) for every sandwiched edge with respect to l to the height of l. The resulting
value is called the perturbed height of l.

Consider the set Λ of lines of a given drawing as defined above and let W (ϕ) = (w1, w2, . . .)
be the sequence of perturbed heights of lines in Λ, sorted in a non-decreasing order. Let
ϕ1 and ϕ2 be two drawings with maximum quality. We say that ϕ1 has a better secondary
quality than ϕ2 if the sequence W (ϕ1) is lexicographically smaller than W (ϕ2).



T. Ophelders and S. Parsa 55:13

1 2

3
4

5

6
7

8
9

10 11

1 2

3

4

5

6
7

8

9

10 11

T1 T2

T3

T4

T5

T6 T7

T8

T9

T10 T11

T6

T8

T5

Figure 13 Left: the path P (thick edges), anchor edges A(P ) numbered 1 to 11, and the
anchored sub-trees. Right: A spine disk with spine path P and b = 3. Proposition 10 states the
following. 1) Edges 5, 6, 8 are light. 2) Among the six sets {1}, {2}, {3, 4}, {7, 9}, {10}, {11} at
most one can contain a light edge. Assume it is {7, 9}. 3) If eH(T7) = eH(T9) = H(D) − 3 then
eH(T8) ̸= H(D) − 3. If eH(T7) < H − 3 and eH(T9) < H − 3, then eH(T8) ≥ H − 3.

7.4 Fat structures
Let D be a local disk. Let ϕ be an optimal, simplified and balanced drawing such that Q(ϕ)
is maximal among such drawings and also its secondary quality is the best possible. By
Lemma 7, such a drawing has a structure tree. We call the resulting structure a fat structure2

for D. It follows that any drawing which is optimal, simplified and balanced has to have
worse or equal quality (or equal quality and equal or worse secondary quality).

The proof of the following is straightforward.

▶ Lemma 9. Let ϕ be a drawing of local disk D with a fat structure. Then for every local
disk D′, corresponding to a node in the structure tree, the restriction of the structure to D′

is a fat structure.

The following lemma allows us to enumerate the spine disks which are possible in a fat
structure. Refer to Figure 13 for an example.

▶ Proposition 10 (Characterization of Spine Disks in Fat Structures). Let P be a path in the
tree and let D be a spine disk with spine path P , such that D is a node in a fat structure.
Let b > 0 be the number of left (equivalently right) boundary edges of D.
1. Every edge e ∈ A(P ) that lies entirely in the interior of D is light.
2. All light boundary edges of D are incident to a single vertex v, and intersect the same

(left or right) boundary.
3. For η ≥ 0, let E(η) ⊂ A(P ) be the set of anchor edges of P , incident to v, for which the

exposed height of the sub-tree anchored by that edge is H(D) − b + 1 − η. Then, for η = 0,
if any edge e in E(0) is not a boundary edge, then e is not sandwiched, with respect to
the boundary lines, between two edges of E(0) that are boundary edges. Moreover, if any
edge e of E(≥ 1) :=

⋃
j≥1 E(j) is not a boundary edge, then e is not sandwiched between

two edges of E(≥ 1) that are boundary edges.

2 The name comes from the fact that the bubbles in a minimal drawing tend to contain a maximal part
of the tree.

SoCG 2022



55:14 Minimum Height Drawings of Ordered Trees in Polynomial Time

We remark that the secondary quality is needed only in the proof of the second part of
statement 3. That is, the rest of proposition holds for drawings with maximum quality.

8 The dynamic program

We describe the algorithm for computing the optimal height of an input drawing. Modifying
the dynamic program to compute an actual optimal height drawing is standard.

We think of row m of the dynamic programming table as containing (the description) of
those spine and skew spine disks that have exactly m vertices in their interior and satisfy
Proposition 10, together with their optimal heights. For m = 1, i.e. the first row, we
must consider the (skew) spine disks with exactly one vertex in their interior. Since we are
interested in balanced drawings, we know that each vertex v of even degree defines O(d(v))
distinct spine disks, where d(v) is the degree of the vertex v. These are given by all the
O(d(v)) possible balanced partitions of the edges incident to v into left and right edges,
maintaining the order around v. The optimal drawings are trivial. Similarly, vertices with
odd degree determine O(d(v)) distinct skew spine disks.

Assume that we have populated the table up to row m − 1. The algorithm first computes
all spine and skew spine disks with m vertices that satisfy Proposition 10. If m = n we take
the spine disk containing all the tree. If we are computing skew spine disks we take all the
bubbles with m vertices (there are at most 2(n − 1) bubbles). The rest of the (skew) spine
disks are computed as follows. We determine only spine disks, and this also determines all
possible skew spine disks. This is because a skew spine disk is the result of changing one
non-boundary anchor edge of a spine disk into a boundary edge.

If we know the exposed heights of anchored sub-trees, then Proposition 10 implies that a
spine disk is determined uniquely given the following parameters. We also indicate an upper
bound on the number of possibilities for each of them.
1. The spine path P : O(n2) possibilities.
2. The boundary height b: O(n) possibilities.
3. The height H: O(n) possibilities.
4. A partition of A(P ) into cyclically contiguous subsequences AL(P ) and AR(P ): O(n2)

possibilities.
5. The vertex v to which light boundary edges are incident: O(n) possibilities.
6. Two consecutive sequences of edges around v: one for E(0) and the other for E(≥ 1):

O(n4) possibilities.

Therefore, there are polynomially many possible values for all these parameters, namely
O(n11). A particular set of values may or may not define a valid spine disk, and a more
careful analysis may result in asymptotically fewer relevant values. It is straightforward to
compute the disk (if any) that corresponds to a particular set of values for the parameters.

Let p be the number of vertices in (some choice for) the spine path P . If the sub-tree
anchored by an edge e has more than m − p vertices then e has to be a boundary edge.
Otherwise, the exposed height of the anchored sub-tree can be read from the table since it
has at most m − 1 vertices and is a bubble. Thus, we can determine which set of parameters
determine a spine disk with m internal vertices. Additional details can be found in the full
version of the paper.

After determining possible (skew) spine disks, we compute their optimal heights. This
can be done by considering the polynomially many different ways that a (skew) spine disk
can be decomposed into (skew) spine disks of smaller complexity (i.e vertices and edges),
given in Figures 10 and 11. For a given (skew) spine disk D, the number of possibilities is



T. Ophelders and S. Parsa 55:15

determined by the number of its possible first and last moves. These moves are either bends
or vertices which are determined by an edge or a vertex of the tree, respectively. It follows
that the total number of possibilities is polynomial. We consider all of the polynomially
many decompositions of D. For a given decomposition, we read the optimal heights of their
inner disks from the table. These heights can be used to derive the height of a drawing of D.
The optimal height of D is the minimum such value over all of its decompositions. For more
details to this part of the algorithm, and an exception to the general description above, we
refer to the full version of the paper, where we prove the following.

▶ Theorem 11. Let D be a (skew) spine disk. There is a polynomial-time algorithm for
drawing D with optimal height.

9 Discussion

We have presented the first polynomial-time algorithm for drawing plane trees with optimal
height. The case of weighted plane trees remains open. Moreover, the setting of unweighted
graphs remains open, but is believed to be NP-hard by some. However, we believe that a
polynomial time algorithm may exist even in this setting.

If the graph setting turns out to be NP-hard, then the situation resembles that of the
(non-embedded) min-cut linear arrangement problem, which has a polynomial time algorithm
for unweighted trees [15], but is NP-hard for graphs [9, 8].

There are other interesting problems around the complexity and properties of optimal
height drawings that might help in finding faster algorithms. As one such property, we
conjecture that for unweighted trees there always exists an optimal drawing without spiraling
edges. A spiral on an edge is depicted in Figure 2.

References
1 Hugo A Akitaya, Maarten Löffler, and Irene Parada. How to fit a tree in a box. In Proceedings

of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018),
pages 361–367. Springer, 2018.

2 Therese Biedl, Erin Wolf Chambers, David Eppstein, Arnaud de Mesmay, and Tim Ophelders.
Homotopy height, grid-major height and graph-drawing height. In Proceedings of the 27th
Graph Drawing and Network Visualization (GD 2019), pages 468–481. Springer, 2019.

3 Benjamin Burton, Erin Chambers, Marc van Kreveld, Wouter Meulemans, Tim Ophelders,
and Bettina Speckmann. Computing optimal homotopies over a spiked plane with polygonal
boundary. In Proceddings of the 25th Annual European Symposium on Algorithms (ESA),
2017.

4 Erin Wolf Chambers, Gregory R Chambers, Arnaud de Mesmay, Tim Ophelders, and Regina
Rotman. Constructing monotone homotopies and sweepouts. arXiv preprint, 2017. arXiv:
1704.06175.

5 Erin Wolf Chambers, Arnaud de Mesmay, and Tim Ophelders. On the complexity of optimal
homotopies. In Proceedings of the 29th Annual Symposium on Discrete Algorithms (SODA
2018), pages 1121–1134, 2018.

6 Erin Wolf Chambers and David Letscher. On the height of a homotopy. In Canadian Conference
on Computational Geometry (CCCG), volume 9, pages 103–106, 2009.

7 Moon-Jung Chung, Fillia Makedon, Ivan Hal Sudborough, and Jonathan Turner. Polynomial
time algorithms for the min cut problem on degree restricted trees. SIAM Journal on
Computing, 14(1):158–177, 1985.

8 Michael R Garey and David S Johnson. Computers and intractability, volume 174. Freeman
San Francisco, 1979.

SoCG 2022

http://arxiv.org/abs/1704.06175
http://arxiv.org/abs/1704.06175


55:16 Minimum Height Drawings of Ordered Trees in Polynomial Time

9 F Gavril. Some NP-complete problems on graphs. In Proc. Conf. on Inform. Sci. and Systems,
1977, pages 91–95, 1977.

10 Sariel Har-Peled, Amir Nayyeri, Mohammad Salavatipour, and Anastasios Sidiropoulos. How
to walk your dog in the mountains with no magic leash. Discrete & Computational Geometry,
55(1):39–73, 2016.

11 Thomas Lengauer. Upper and lower bounds on the complexity of the min-cut linear arrangement
problem on trees. SIAM Journal on Algebraic Discrete Methods, 3(1):99–113, 1982.

12 Debajyoti Mondal, Muhammad Jawaherul Alam, and Md. Saidur Rahman. Minimum-layer
drawings of trees. In Naoki Katoh and Amit Kumar, editors, WALCOM: Algorithms and
Computation, pages 221–232. Springer, 2011.

13 B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted trees. Theoretical
Computer Science, 58(1):209–229, 1988.

14 Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees. SIAM Journal
on Computing, 8(1):15–32, 1979.

15 Mihalis Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees.
Journal of the ACM, 32(4):950–988, 1985.



Disjointness Graphs of Short Polygonal Chains
János Pach #

Rényi Institute, Budapest, Hungary
MIPT, Moscow, Russia

Gábor Tardos #

Rényi Institute, Budapest, Hungary
MIPT, Moscow, Russia

Géza Tóth #

Rényi Institute, Budapest, Hungary

Abstract
The disjointness graph of a set system is a graph whose vertices are the sets, two being connected by
an edge if and only if they are disjoint. It is known that the disjointness graph G of any system
of segments in the plane is χ-bounded, that is, its chromatic number χ(G) is upper bounded by a
function of its clique number ω(G).

Here we show that this statement does not remain true for systems of polygonal chains of length 2.
We also construct systems of polygonal chains of length 3 such that their disjointness graphs have
arbitrarily large girth and chromatic number. In the opposite direction, we show that the class
of disjointness graphs of (possibly self-intersecting) 2-way infinite polygonal chains of length 3 is
χ-bounded: for every such graph G, we have χ(G) ≤ (ω(G))3 + ω(G).

2012 ACM Subject Classification Mathematics of computing → Graph coloring

Keywords and phrases chi-bounded, disjointness graph

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.56

Funding János Pach: Supported by the National Research, Development and Innovation Office
(NKFIH) grant K-131529, ERC Advanced Grant “GeoScape,” the Austrian Science Fund grant Z
342-N31, and by the Ministry of Education and Science of the Russian Federation in the framework
of MegaGrant No. 075-15-2019-1926.
Gábor Tardos: Supported by the ERC Synergy Grant “Dynasnet” No. 810115, the ERC advanced
grant “GeoSpace” No. 882971, the National Research, Development and Innovation Office – NKFIH
projects K-132696 and SSN-135643.
Géza Tóth: Supported by National Research, Development and Innovation Office, NKFIH, K-131529
and ERC Advanced Grant “GeoScape,”.

1 Introduction

Ramsey theory has many applications to other parts of mathematics and computer science [27],
including complexity theory [21], approximation algorithms, [22], coding [18], geometric data
structures [20], graph drawing and representation [2]. Constructing nearly optimal Ramsey
graphs is a notoriously difficult combinatorial problem [10]. The few efficient constructions
that we have are far from optimal, but they can come in handy in those areas where we have
interesting theorems, but lack nontrivial constructions. Here we provide two examples from
combinatorial geometry, based on two classical constructions of Erdős and Hajnal [9, 8]. We
close this paper with a result pointing in the opposite direction.

© János Pach, Gábor Tardos, and Géza Tóth;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 56; pp. 56:1–56:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pach@renyi.hu
mailto:tardos@renyi.hu
mailto:geza@renyi.hu
https://doi.org/10.4230/LIPIcs.SoCG.2022.56
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


56:2 Disjointness Graphs of Short Polygonal Chains

For any graph G, let χ(G) and ω(G) denote the chromatic number and the clique number
of G, respectively. Clearly, we have χ(G) ≥ ω(G), and if equality holds for every induced
subgraph of G, then G is called a perfect graph. Following Gyárfás and Lehel [15, 16, 13, 14],
a class of graphs G is said to be χ-bounded if there is a function f such that χ(G) ≤ f(ω(G))
for every G ∈ G.

Which classes of graphs are χ-bounded? Or, reversing the question, if a graph has small
clique number, how can its chromatic number be large? These questions are related to the
some of the deepest unsolved problems in graph theory. There are two different approaches
that have yielded spectacular results in recent years.

One can investigate what kind of substructures must necessarily occur in graphs of high
chromatic number. According to Hadwiger’s conjecture [17], if the chromatic number of
a graph is at least t, then it must contain a Kt-minor. (We now know that it contains a
Ks-minor with s = Ω(t/(log log t)); cf. [7].) Gyárfás [12] proved that if a graph has bounded
clique number and its chromatic number is sufficiently large, then it must contain a long
induced path; see also [11]. According to the (still open) Gyárfás-Sumner conjecture [29], the
same is true for any fixed tree instead of a path. Scott and Seymour proved that the class
of graphs with no induced odd cycle of length at least 5 is χ-bounded. For many beautiful
recent results of this kind, see the survey [28].

The second fruitful research direction was initiated by Asplund and Grünbaum [1]: Find
geometrically defined classes of graphs that are χ-bounded. Given a set S of geometric
objects, their intersection graph (resp., disjointness graph) is a graph on the vertex set S, in
which two vertices are connected by an edge if and only if the corresponding objects have a
nonempty intersection (resp., are disjoint). It was proved in [1] that the class of intersection
graphs of axis-parallel rectangles in the plane is χ-bounded (see also [4]). The corresponding
statement is false for boxes in 3 and higher dimensions [3], and even for segments in the
plane [26].

For disjointness graphs G of systems of segments in the plane, we have χ(G) ≤ (ω(G))4 [19].
The same is true for systems x-monotone curves, that is, for continuous curves in the plane
with the property that every vertical line intersects them in at most one point. It was shown
in [25] that, in this generality, the order of magnitude of this bound cannot be improved. On
the other hand, we proved [24] that the class of disjointness graphs of strings (continuous
curves in the plane) is not χ-bounded. Improving our construction, Mütze, Walczak, and
Wiechert [23] exhibited systems of polygonal curves consisting of three segments such that
their disjointness graphs are triangle-free (ω = 2), yet their chromatic numbers can be
arbitrarily large.

The above results leave open the case of polygonal curves consisting of two segments. Our
first result settles this case. A polygonal curve consisting of k segments is called a polygonal
k-chain.

▶ Theorem 1. There exist arrangements of polygonal 2-chains in the plane whose disjointness
graphs are triangle-free and have arbitrarily large chromatic numbers.

We do not know if Theorem 1 can be strengthened by requiring that the disjointness
graph of the curves has large girth.

▶ Problem 2. Do there exist arrangements of polygonal 2-chains in the plane whose disjoint-
ness graphs have arbitrarily large girth and chromatic number?

Our next result shows that the answer to the above question is in the affirmative if,
instead of 2-chains, we are allowed to use polygonal 3-chains.



J. Pach, G. Tardos, and G. Tóth 56:3

▶ Theorem 3. For any integers g and k, there is an arrangement of non-selfintersecting
polygonal 3-chains in the plane whose disjointness graph has girth at least g and chromatic
number at least k.

A 1-way infinite polygonal 2-chain is the union of a half-line and a segment that share an
endpoint. In our proof of Theorem 1, we actually construct arrangements of 1-way infinite
polygonal 2-chains whose disjointness graphs are triangle free, but have arbitrarily large
chromatic number. Doubly tracing these 1-way infinite 2-chains and slightly perturbing the
resulting curve, we obtain an arrangement of 2-way infinite 4-chains, i.e., 4-chains whose
first and last pieces are half-lines. Hence, we obtain the following

▶ Corollary 4. There exist arrangements of 2-way infinite polygonal 4-chains in the plane
whose disjointness graphs are triangle-free and have arbitrarily large chromatic numbers.

Our next theorem shows that Corollary 4 is optimal: the class of disjointness graphs of
(possibly self-intersecting) 2-way infinite polygonal 3-chains is χ-bounded.

▶ Theorem 5. Let G be the disjointness graph of an arrangement of 2-way infinite polygonal
3-chains in the plane. Then we have χ(G) ≤ (ω(G))3 + ω(G).

In fact, we will establish Theorem 5 in a somewhat stronger setting: for arrangements of
2-way infinite curves that consist of three x-monotone pieces; see Theorem 7. With more
work, the bound in Theorem 5 and Theorem 7 can be improved to χ(G) ≤ (ω(G))3.

In the polygonal case, our proof is algorithmic. There is a polynomial time algorithm
in the number of the polygonal chains, which, for every k, either finds k pairwise disjoint
chains or produces a coloring of their disjointness graph with at most k3 colors.

In Sections 2 and 3, we establish Theorems 1 and 3, respectively. Section 4 contains the
proof of Theorem 5. We end this note with a few remarks and open problems.

In what follows, we informally call a polygonal 2-chain a V-shape and a polygonal 3-chain
a Z-shape.

2 Shift graphs – Proof of Theorem 1

For every n > 1, Erdős and Hajnal [8] defined the shift graph Sn, as follows. The vertex set
of Sn consist of all pairs (a, b) with 1 ≤ a < b ≤ n, where two vertices, (a, b) and (a′, b′), are
connected by an edge if and only if b = a′ or b′ = a. It is easy to see that Sn is triangle-free
and that χ(Sn) = ⌈log2 n⌉.

Order the vertices (a, b) of Sn according to the co-lexicographic order, that is, let (a, b) ≺
(a′, b′) if b < b′, or if b = b′ and a < a′. Let v1, . . . , v(n

2) denote the vertices of Sn, listed in
this order.

Let vi = (a, b) be a vertex. Its neighbors having a smaller index are (a′, b′) with b′ = a.
No such neighbor exist if and only if a = 1. Notice that, for any i,
1. either vi has no neighbor vj with a smaller index j < i,
2. or there exist integers c(i), d(i) with 1 ≤ c(i) ≤ d(i) < i such that for every j < i,

vjvi ∈ E(Sn) ⇐⇒ c(i) ≤ j ≤ d(i).

Recall that a 1-way infinite V-shape is the union of a half-line and a segment that share
an endpoint. In the rest of this proof, for simplicity, we call a 1-way infinite V-shape long.

Our goal is to assign a long V-shape to each vertex of Sn so that two V-shapes are disjoint
if and only if the corresponding vertices are adjacent in Sn. This will prove Theorem 1,
because in any finite collection of long V-shapes, we can cut the half-lines short so that

SoCG 2022



56:4 Disjointness Graphs of Short Polygonal Chains

the resulting (bounded) V-shapes have the same intersection structure. Hence, we obtain a
collection of V-shapes with Sn as its disjointness graph, and the graphs Sn are triangle-free
and their chromatic numbers tend to infinity, as n → ∞.

We assign the long V-shape Vi to the vertex vi of Sn recursively starting at V1. Let hi

and si denote the half-line and the straight-line segment, respectively, comprising Vi and let
us denote their common endpoint by pi = (xi, yi). We write qi for the other endpoint of si.

During the recursive process, we will maintain the following properties:
(i) pi is the left end point of both hi and si;
(ii) both hi and si have positive slopes;
(iii) si is above hi, i.e., the slope of si is larger than the slope of hi;
(iv) for any i > j, the slope of hi will be smaller than the slope of hj ;
(v) for any i > j, we have xi < xj and yi < yj .

Let V1 be any long V-shape satisfying the above conditions. Let i > 1, and assume
recursively that we have already constructed the long V-shapes V1, . . . , Vi−1 satisfying the
above requirements. Next, we define Vi. We distinguish two cases:

Case A: The vertex vi = (a, b) has no neighbor with a smaller index, i.e., we have a = 1.

Let ℓ be a horizontal line passing above p1. It will intersect every Vj with 1 ≤ j < i.
Slightly rotate ℓ about any fixed point of the plane so that the resulting line ℓ′ has a very
small positive slope, smaller than the slope of hi−1 and it still intersects all Vj for j < i.
Choose a point pi = (xi, yi) ∈ ℓ,, very far to the left, so that xi < xi−1 and yi < yi−1. Let hi

be the part of ℓ′ to the right of pi, and let qi be a point to the right of pi which lies above hi.
One can choose qi such that the segment si = piqi does not intersect any of the earlier Vj .

p
c(i)−1

p
i

d(i)+1
p d(i)

p

i
s

h i

q
i

Vi

Figure 1 Inserting Vi.

Case B: The vertex vi = (a, b) has at least one neighbor of smaller index, i.e., a > 1.

Let c(i) and d(i) be the constants satisfying property (2) above and let ℓ be a horizontal
line that passes below pd(i) and above pd(i)+1. In case d(i) + 1 = i we could simply choose ℓ

to be an arbitrary horizontal line below pd(i), but the careful reader may notice that this
case never occurs as no vertex vi in Sn is adjacent to vi−1.

The line ℓ intersects every Vj with d(i) < j < i and is disjoint from all Vj with j ≤ d(i).
Slightly rotate ℓ about any fixed point in the plane so that the resulting line ℓ′ has a very
small positive slope, smaller than that of hi−1 and it still intersects the same previously
defined long V-shapes Vj . Select a slope α which is larger than the slope of hc(i), but smaller
than the slope of hc(i)−1, if hc(i)−1 exists, that is, if c(i) > 1.



J. Pach, G. Tardos, and G. Tóth 56:5

For any j < i, let ℓj and ℓ′
j denote the lines of slope α through pj and qj , respectively.

Choose a point pi = (xi, yi) ∈ ℓ′ so far to the left that we have xi < xi−1, yi < yi−1 and pi

lies above the lines ℓj and ℓ′
j , for all j ≤ i.

Let hi be the part of ℓ′ to the right of pi. Let f be the half-line of slope α, whose left
endpoint is pi. Then f goes strictly above all sj for j < i and also of all hj with c(i) ≤ j < i,
but will intersect all hj with 1 ≤ j < c(i). Choose qi on f to the right of these intersection
points, then the segment si = piqi also intersects all hj with 1 ≤ j < c(i).

Notice that the long V-shape Vi consisting of hi and si constructed above satisfies the
conditions (i)–(v) listed above, further it intersects exactly those other long V-shapes Vj

(j < i) for which vj and vi are not adjacent in Sn. See Fig. 1. This means that the
disjointness graph of the collection of the

(
n
2
)

long V-shapes constructed above is exactly Sn.
This completes the proof of Theorem 1. ◀

In the above proof, we have constructed a collection of 1-way infinite V-shapes in which
each pair intersects at most twice. With a little additional care (namely, by insisting that
each qi is higher than p1), we can achieve the following. For 1 ≤ i < j ≤

(
n
2
)
, with vi = (a, b)

and vj = (a′, b′), we have
if a′ < b, then Vi and Vj intersect once;
if a′ = b, then Vi and Vj are disjoint;
if a′ > b, then Vi and Vj intersect twice.

3 Hypergraphs of large girth – Proof of Theorem 3

A hypergraph H is a pair (V, E), where V is a finite vertex set, E is the set of hyperedges,
that is, a collection of subsets of V . It is called n-uniform if each of its hyperedges has n

vertices. In a proper coloring of H, every vertex is assigned a color in such a way that none
of the hyperedges is monochromatic. The chromatic number of H is the smallest number of
colors used in a proper coloring of H. A Berge-cycle in H consists of a sequence of distinct
vertices v1, . . . , vk and a sequence of distinct hyperedges e1, . . . , ek ∈ E with vi, vi+1 ∈ ei for
1 ≤ i < k and vk, v1 ∈ ek. Here k is the length of the Berge-cycle and it is assumed to be at
least 2. The girth of a hypergraph is the length of its shortest Berge-cycle (or infinite if it
has no Berge-cycle).

For the proof, we need the following classical result.

▶ Erdős-Hajnal Theorem ([9], Corollary 13.4). For any integers n ≥ 2, g ≥ 3, and k ≥ 2,
there exists an n-uniform hypergraph with girth at least g and chromatic number at least k.

Theorem 3 is a direct consequence of part (5) of the following statement.

▶ Lemma 6. For any integers g ≥ 3, k ≥ 2, there is a natural number n = n(g, k) such
that for every set P of n points on the x-axis in R2 and for every real c > 0, there is an
arrangement Z = Z(P ) of n Z-shapes satisfying the following conditions.
(1) Each point in P is the endpoint of exactly one Z-shape in Z.
(2) Apart from a single endpoint in P , every Z-shape in Z lies strictly above the x-axis.
(3) No Z-shape in Z is self-intersecting and any two cross at most twice.
(4) For any Z-shape z = pqrs ∈ Z whose vertices p, q, r, s have x-coordinates xp, xq, xr, xs,

and p ∈ P , we have xq + c < xp < xs < xr − c.
(5) The disjointness graph of the Z-shapes in Z has girth at least g and chromatic number at

least k.

SoCG 2022



56:6 Disjointness Graphs of Short Polygonal Chains

Proof. For each g, we prove the lemma by induction on k. We fix g ≥ 3. For k = 2,
n(g, 2) = 2 is a good choice. For any two points on the x-axis and any c > 0, we can take two
disjoint Z-shapes satisfying the requirements. Their disjointness graph is K2, its chromatic
number 2 and it has infinite girth. See Fig. 2.

pp
1 2

s

1
q

1

s

q
2 2r r

12

Figure 2 The case k = 2.

Suppose now that k ≥ 2 and that we have already proved the statement for k. Now we
prove it for k + 1. Let n = n(g, k).

By the Erdős-Hajnal Theorem stated above, there exists an n-uniform hypergraph H

whose girth is at least g and chromatic number at least k + 1. Let v1, v2, . . . , vm denote the
vertices of H and e1, e2, . . . , eM the hyperedges of H. Let N = nM + m. We show that
n(g, k + 1) = N satisfies the requirements of the lemma.

Let P be an arbitrary set of N points on the x-axis and let c > 0. For any vi ∈ V (H),
let di denote the degree of vi, that is, the number of hyperedges that contain vi. Obviously,
we have

m∑
i=1

(di + 1) = nM + m = N.

Choose m disjoint open intervals, I1, . . . , Im, such that each Ii contains precisely di + 1
points of P . For every i, 1 ≤ i ≤ m, we associate the interval Ii with vertex vi of H. Let pi

denote the leftmost point in P ∩ Ii. For every i and j (1 ≤ i ≤ m, 1 ≤ j ≤ M) for which
vi ∈ ej , assign a distinct point pj

i ∈ (P ∩ Ii) \ {pi} to the pair (vi, ej).

Next, we construct a set of N Z-shapes that satisfy conditions (1)–(5) of the lemma
with parameters g, k + 1, and c. We construct subsets Zj of our eventual set of Z-shapes
for 1 ≤ j ≤ M . We construct these sets one by one starting at Z1 and using the inductive
hypothesis for various subsets of P of size n and with a parameter c′ that we choose to be
larger than c plus the diameter of P .

For j = 1, consider the n = n(g, k)-element point set P ′
1 = {p1

i : vi ∈ e1}. By the
induction hypothesis, there is a set Z1 of Z-shapes such that one of their endpoints belongs
to P ′

1, and they satisfy conditions (1)–(5) with parameter c′.
Suppose that j > 1 and that we have already constructed the sets of Z-shapes Z1, . . . , Zj−1.

Now let P ′
j = {pj

i : vi ∈ ej}. By the induction hypothesis, there is a set Z ′
j of Z-shapes

with one of their endpoints in P ′ which satisfy conditions (1)–(5) with parameter c′. Apply
an affine transformation (x, y) → (x, y/Kj) to all Z-shapes in Z ′

j , where Kj is a very large
constant to be specified later. The resulting family of Z-shapes, Zj , still satisfies all defining
conditions and, by choosing Kj large enough, we can achieve that every element of Zj

intersects every Z-shape in
⋃

h<j Zh exactly once or twice.

The set
⋃M

j=1 Zj contains exactly one Z-shape starting at each point pj
i . We still need

to add one Z-shape zi = piqirisi starting at each point pi, 1 ≤ i ≤ m. We define them
recursively for i = 1, . . . , m. We make sure that each zi = piqirisi satisfies the following
properties.



J. Pach, G. Tardos, and G. Tóth 56:7

(i) The segment qiri is horizontal and the y-coordinate of its points is larger than the
y-coordinate of any point of any Z-shape in (

⋃M
j=1 Zj) ∪ {zh : 1 ≤ h < i}.

(ii) The slope of piqi is −εi, the slope of risi is εi, for a sufficiently small constant εi > 0,
to be specified later.

(iii) The x-coordinate of si is equal to the x-coordinate of the right endpoint of Ii, and the
y-coordinate of si is εi.

Clearly, if we choose εi > 0 sufficiently small, then zi is disjoint from all Z-shapes in⋃M
j=1 Zj that start in Ii, but it intersects exactly once all other Z-shapes already defined.

Also, zi satisfies conditions (2) and (3), and it satisfies condition (4), too, provided that εi is
sufficiently small. See Fig. 3.

{

1

j

1

1

pp

z1

z

Figure 3 Inserting z1.

As we maintained conditions (1)–(4) throughout the construction, it remains only to
prove that the disjointness graph G of Z satisfies condition (5) with k + 1 in place of k.

To this end, let us explore the structure of G. The vertices of G can be partitioned into
the sets Zj for 1 ≤ j ≤ M and the independent set W = {zi : 1 ≤ i ≤ m}. Further, there is
no edge between two distinct sets Zj and Zj′ . There is a single edge from zi to Zj if vi ∈ ej ,
and there is no edge from zi to Zj otherwise. Finally, each vertex in Zj is adjacent to exactly
one of the vertices zi, and it satisfies vi ∈ ej .

The structure above implies that each cycle C of G is either contained in a single set
Zj , or it passes through several sets Zj and several vertices in W . In the former case,
by our assumption on the disjointness graph of Zj , the length of C is at most g. In the
latter case, let us record the vertices of W and the sets Zj as the cycle passes through
them: zi1 , Zj1 , zi2 , Zj2 , . . . , zih

, Zjh
. Here, the vertices vi1 , . . . , vih

are all distinct and, if the
same is true for the hyperedges ej1 , . . . , ejh

, then they form a Berge-cycle of length h in the
hypergraph H. If the hyperedges are not all distinct, then an even shorter Berge-cycle is
formed by any repetition-free interval between two occurrences of the same hyperedge. By
our assumption on the girth of H , we have h ≥ g in both cases, so all cycles of G have length
at least g, as required.

Suppose now that there is a proper k-coloring of G. Restricting it to the set W (and
identifying each zi ∈ W with the vertex vi of H), we obtain a k-coloring of the vertices of
the hypergraph H. By our assumption, this cannot be a proper coloring. Therefore, there
is a monochromatic hyperedge ej . In this case, no vertex in Zj can receive the common
color of the vertices of ej , so we have a proper (k − 1)-coloring of Zj . This contradicts our
assumption on the disjointness graph of Zj and, thus, proves that G has no proper k-coloring.
This concludes the proof of Lemma 6 and, hence, of Theorem 3. ◀

James Davies [5] used a very similar construction to show that there are intersection
graphs of axis-parallel boxes and intersection graphs of lines in 3-space with arbitrarily large
girths and chromatic numbers.

SoCG 2022



56:8 Disjointness Graphs of Short Polygonal Chains

4 Two-way infinite polygonal chains – Proof of Theorem 5

As we pointed out at the end of Section 2, the class of disjointness graphs of 1-way infinite
V-shapes is not χ-bounded. But if we require both ends of a V-shape to be long, the situation
will change.

A 2-way infinite polygonal k-chain is a continuous curve in the plane consisting of two
half-lines connected by an (ordinary) polygonal (k − 2)-chain. We can relax this definition
by requiring only that each of the k pieces are x-monotone, and the first and the last pieces
have unbounded projections to the x-axis. In this case, the curve is called a 2-way infinite
k-monotone chain.

According to this definition, a 2-way infinite polygonal 2-chain (V-shape)) whose half-lines
are not vertical is a 2-way infinite 2-monotone chain. It can also be regarded as a degenerate
2-way infinite 3-monotone chain. Note that by performing a suitable rotation, if necessary,
we can always assume that none of the half-line pieces of a finite arrangement of 2-way
infinite polygonal k-chains is vertical. Therefore, the following theorem implies Theorem 5.

A

B

B

A

A
B

Figure 4 The three partial orders: A is to the left of B, below B, and above B.

▶ Theorem 7. The disjointness graph G of a finite arrangement of 2-way infinite 3-monotone
chains satisfies χ(G) ≤ (ω(G))3 + ω(G).

Proof. We call a (possibly self-intersecting) 2-way infinite k-monotone chain A wide if it
intersects every vertical line. A chain A with this property divides the plane into (open)
connected components, exactly one of which contains a vertical half-line pointing upwards.
We call this component the upside of A. For any two wide 2-way infinite k-monotone chains,
A and B, we say that A is higher than B if A is contained in the upside of A. In this
case, the upside of B is also contained in the upside of A. Therefore, the relation “higher”
defines a partial order on any arrangement of wide k-monotone chains. According to this



J. Pach, G. Tardos, and G. Tóth 56:9

partial order, only disjoint pairs are comparable. Since any two disjoint wide 2-way infinite
k-monotone chains are comparable, the disjointness graph of any collection of wide 2-way
infinite k-monotone chains is a comparability graph.

Now we turn our attention to the non-wide case. The complement of a non-wide 2-way
infinite k-monotone chain A has precisely one connected component which contains a vertical
line. We call this component the large component. The chain A is said to be a right chain if
A is to the right of the vertical lines in the large component, otherwise it is a left chain. If A

is a right chain, we call its large component the left side of A. On the other hand, if A is
a left chain, we call the union of all connected components of the complement of A, other
than its large component, the left side of A.

For any two non-wide 2-way infinite k-monotone chains, A and B, we say that A is to
the left of B if both A and its left side are contained in the left side of B. Obviously, this
relation also defines a partial order, with respect to which only disjoint non-wide chains are
comparable. It is not true that any two disjoint non-wide 2-way infinite 3-monotone chains
are comparable. Therefore, we need to introduce two further partial orders.

For any two subsets of the plane, A and B, we say that A is below B (A is above B, resp.),
if the following two conditions are satisfied:
1. every vertical line that intersects A also intersects B;
2. if a ∈ A ∩ ℓ and b ∈ B ∩ ℓ for a vertical line ℓ, then the y-coordinate of a is strictly lower

(higher, resp.) than the y-coordinate of b.
Note that “above” and “below” are two separate partial orders and not the inverses of each
other. It is clear that both of these relations are partial orders on arbitrary planar sets and
that any two comparable sets are disjoint. See Fig. 4.

▶ Lemma 8. Any two disjoint non-wide 2-way infinite 3-monotone chains, A and B, are
comparable by one of the three relations “below”, “above”, or “to the left”.

To establish the lemma, note that non-wide 2-way infinite 3-monotone chains must be,
in fact, 2-way infinite 2-monotone chains. A left chain with this property is the union of
the graphs of two continuous functions f1, f2 : (−∞, a] → R, where f1(a) = f2(a). Let
B be another left chain obtained as the union of the graphs of two continuous functions
g1, g2 : (−∞, b] → R, and assume that A and B are disjoint. We can assume, by symmetry,
that b ≤ a. Consider g1(b) = g2(b). It is easy to see that if it is below both f1(b) and f2(b),
then B is below A. If it is above both f1(b) and f2(b), then B is above A. Finally, if g1(b) is
between f1(b) and f2(b), then B is to the left of A. A similar argument applies if both A

and B are right chains. Finally, if a left chain is disjoint from a right chain, then the left
chain is always to the left of the right chain. This completes the proof of Lemma 8.

Now we return to the proof of Theorem 7. Fix a family F of 2-way infinite 3-monotone
chains, and let G denote their disjointness graph. Let F1 and F2 consist of the wide and
non-wide elements of F , respectively. We have seen that the disjointness graph G[F1] of F1
is a comparability graph. Comparability graphs are perfect, so we have χ(G[F1]) = ω(G[F1]).
We also proved that the comparability graph G[F2] of F2 is the union of three comparability
graphs. This implies that χ(G[F2]) ≤ (ω(G[F2]))3.

For the entire graph G, we have

χ(G) ≤ χ(G[F1]) + χ(G[F2]) ≤ ω(G[F1]) + (ω(G[F2]))3 ≤ ω(G) + (ω(G))3,

as required. This completes the proof of the theorem. ◀

SoCG 2022



56:10 Disjointness Graphs of Short Polygonal Chains

In [25], for every k ≥ 2, we constructed arrangements of x-monotone curves such that
their left endpoints lie on the y-axis and their disjointness graphs have clique number k

and chromatic number
(

k+1
2

)
. We can extend these curves to the left by adding horizontal

half-lines without changing their intersection structure. Traversing the resulting curves twice,
we obtain families of 2-way infinite 2-monotone chains such that their disjointness graphs
satisfy χ(G) =

(
ω(G)+1

2
)
.

We were unable to improve on the bound in Theorem 7 even for 2-way infinite polygonal
3-chains. The best lower bound we have in this case is ω(G)(log 5/ log 2)−1 ≈ ω(G)1.32, and it
follows from a construction in [19].

5 Concluding remarks

A. Given an arrangement C of curves in the plane and a line ℓ, we say that C is grounded on
ℓ if every member c ∈ C lies in the same closed half-plane bounded by ℓ, and c has precisely
one point in common with ℓ, which is one of its endpoints.

The chromatic number of intersection graphs of grounded curves has been extensively
studied (see [6], for a survey), but less is known about the corresponding problem for
disjointness graphs. In the proof of Theorem 1, we constructed arrangements of 1-way
infinite V-shapes whose disjointness graphs are triangle-free and whose chromatic numbers
are arbitrarily large. Applying a suitable projective transformation, these arrangements can
be turned into arrangements of grounded V-shapes.

B. In Problem 2, we asked whether the disjointness graph of an arrangement of V-shapes can
have simultaneously arbitrarily high chromatic number and girth. The following statement
provides an affirmative answer to a relaxed version of this question. The odd-girth of a graph
is the length of the shortest odd cycle in it (or infinite if the graph is bipartite).

▶ Proposition 9. There exist arrangements of polygonal 2-chains in the plane whose dis-
jointness graphs have arbitrarily large odd-girths and chromatic numbers.

Proof. The proof is based on the same idea as the Proof of Theorem 1, where we represented
the shift graph Sn as the disjointness graph of an arrangement of V-shapes. The vertices
of Sn are pairs (a, b) of integers 1 ≤ a < b ≤ n, so they can be associated with the edges of
the complete graph Kn. Thus, the vertices of Sn associated with the edges of a subgraph
G ⊆ Kn induce a subgraph G∗ ⊆ Sn. It is easy to verify that for any G ⊆ Kn, we have
(1) χ(G∗) ≥ log(χ(G)) and
(2) the odd-girth of G∗ is strictly larger than the odd-girth of G.

For any integers g and k, there exist n = n(g, k) and a subgraph G ⊂ Kn with girth (and,
hence, odd-girth) at least g and chromatic number at least k. By properties (1) and (2),
the odd-girth of the corresponding induced subgraph G∗ of Sn will be larger than g, and its
chromatic number will be at least log k. The graph G∗ inherits from Sn a representation as
a disjointness graph of V-shapes. ◀

Unfortunately, getting rid of short even cycles, even 4-cycles, looks impossible by using
this simple trick.

C. The arrangements of polygonal curves proving Theorems 1 and 3 have the property
that any two of them have at most two points in common. It would be interesting to decide
whether these theorems remain true if we insist that the curves are single-crossing, that is,
any two curves have at most one point in common at which they properly cross.



J. Pach, G. Tardos, and G. Tóth 56:11

▶ Conjecture 10. The class of disjointness graphs of single-crossing polygonal 2-chains is
χ-bounded.

Mütze et al. [23] proved that the same statement is false for polygonal 3-chains.

D. To prove Theorem 1, we established that the shift graph Sn, a triangle-free graph
of unbounded chromatic number, can be obtained as the disjointness graph of V-shapes.
However, the fractional chromatic number of Sn is bounded: it is smaller than 4 for every n.
Do there exist triangle-free disjointness graphs of V-shapes with arbitrarily large fractional
chromatic number?

Analogously, our construction for Theorem 3 gives disjointness graphs with bounded
fractional chromatic number. Do there exist disjointness graphs of Z-shapes with arbitrarily
large girth and fractional chromatic number?

References
1 Edgar Asplund and Branko Grünbaum. On a coloring problem. Mathematica Scandinavica,

8(1):181–188, 1960.
2 Prosenjit Bose, Hazel Everett, Sándor P Fekete, Michael E Houle, Anna Lubiw, Henk Meijer,

Kathleen Romanik, Günter Rote, Thomas C Shermer, Sue Whitesides, et al. A visibility
representation for graphs in three dimensions. In Graph Algorithms And Applications I, pages
103–118. World Scientific, 2002.

3 James P. Burling. On coloring problems of families of prototypes. (PhD thesis), University of
Colorado, Boulder, 1965.

4 Parinya Chalermsook and Bartosz Walczak. Coloring and maximum weight independent set
of rectangles. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 860–868. SIAM, 2021.

5 James Davies. Box and segment intersection graphs with large girth and chromatic number.
Advances in Combinatorics, 2021.

6 James Davies, Tomasz Krawczyk, Rose McCarty, and Bartosz Walczak. Grounded l-graphs
are polynomially chi-bounded. arXiv preprint, 2021. arXiv:2108.05611.

7 Michelle Delcourt and Luke Postle. Reducing linear hadwiger’s conjecture to coloring small
graphs. arXiv preprint, 2021. arXiv:2108.01633.

8 Paul Erdős and András Hajnal. On chromatic number of infinite graphs, theory of graphs. In
Proc. Colloq. Tihany, Hungary, pages 83–98, 1966.

9 Paul Erdős and András Hajnal. On chromatic number of graphs and set-systems. Acta Math.
Acad. Sci. Hungar, 17(61-99):1, 1966.

10 Peter Frankl. A constructive lower bound for ramsey numbers. Ars Combinatoria, 3(297-
302):28, 1977.

11 Sylvain Gravier, Chınh T Hoang, and Frédéric Maffray. Coloring the hypergraph of maximal
cliques of a graph with no long path. Discrete mathematics, 272(2-3):285–290, 2003.

12 András Gyárfás. On ramsey covering-numbers. Infinite and Finite Sets, 2:801–816, 1975.
13 András Gyárfás. On the chromatic number of multiple interval graphs and overlap graphs.

Discrete mathematics, 55(2):161–166, 1985.
14 András Gyárfás. Problems from the world surrounding perfect graphs. Applicationes Mathem-

aticae, 19(3-4):413–441, 1987.
15 András Gyárfás and Jenő Lehel. Hypergraph families with bounded edge cover or transversal

number. Combinatorica, 3(3-4):351–358, 1983.
16 András Gyárfás and Jenő Lehel. Covering and coloring problems for relatives of intervals.

Discrete Mathematics, 55(2):167–180, 1985.
17 Hugo Hadwiger. Über eine klassifikation der streckenkomplexe. Vierteljschr. Naturforsch. Ges.

Zürich, 88(2):133–142, 1943.

SoCG 2022

http://arxiv.org/abs/2108.05611
http://arxiv.org/abs/2108.01633


56:12 Disjointness Graphs of Short Polygonal Chains

18 Navin Kashyap, Paul H Siegel, and Alexander Vardy. An application of ramsey theory to
coding for the optical channel. SIAM Journal on Discrete Mathematics, 19(4):921–937, 2005.

19 David Larman, Jiří Matoušek, János Pach, and Jenő Törőcsik. A ramsey-type result for convex
sets. Bulletin of the London Mathematical Society, 26(2):132–136, 1994.

20 Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal of
the European Mathematical Society, 9(2):253–275, 2007.

21 Friedhelm Meyer auf der Heide and Avi Wigderson. The complexity of parallel sorting. SIAM
Journal on Computing, 16(1):100–107, 1987.

22 Burkhard Monien and Ewald Speckenmeyer. Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Informatica, 22(1):115–123, 1985.

23 Torsten Mütze, Bartosz Walczak, and Veit Wiechert. Realization of shift graphs as disjointness
graphs of 1-intersecting curves in the plane. arXiv preprint, 2018. arXiv:1802.09969.

24 János Pach, Gábor Tardos, and Géza Tóth. Disjointness graphs of segments in the space.
Combinatorics, Probability and Computing, 30(4):498–512, 2021.

25 János Pach and István Tomon. On the chromatic number of disjointness graphs of curves.
Journal of Combinatorial Theory, Series B, 144:167–190, 2020.

26 Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr Micek, William T
Trotter, and Bartosz Walczak. Triangle-free intersection graphs of line segments with large
chromatic number. Journal of Combinatorial Theory, Series B, 105:6–10, 2014.

27 Vera Rosta. Ramsey theory applications. The Electronic Journal of Combinatorics, 1000:DS13–
Dec, 2004.

28 Alex Scott and Paul Seymour. A survey of χ-boundedness. Journal of Graph Theory,
95(3):473–504, 2020.

29 David P Sumner. Subtrees of a graph and chromatic number. The Theory and Applications
of Graphs,(G. Chartrand, ed.), John Wiley & Sons, New York, 557:576, 1981.

http://arxiv.org/abs/1802.09969


Covering Points by Hyperplanes and Related
Problems
Zuzana Patáková #

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Micha Sharir #

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract
For a set P of n points in Rd, for any d ≥ 2, a hyperplane h is called k-rich with respect to P if it
contains at least k points of P . Answering and generalizing a question asked by Peyman Afshani,
we show that if the number of k-rich hyperplanes in Rd, d ≥ 3, is at least Ω(nd/kα + n/k), with a
sufficiently large constant of proportionality and with d ≤ α < 2d − 1, then there exists a (d − 2)-flat
that contains Ω(k(2d−1−α)/(d−1)) points of P . We also present upper bound constructions that give
instances in which the above lower bound is tight. An extension of our analysis yields similar lower
bounds for k-rich spheres.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Rich hyperplanes, Incidences, Covering points by hyperplanes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.57

Funding Zuzana Patáková: Work partially supported by Charles University projects UNCE/SCI/022
and PRIMUS/21/SCI/014.
Micha Sharir : Work partially supported by ISF Grant 260/18.

Acknowledgements The authors thank Peyman Afshani for sharing his thoughts with us concerning
this problem.

1 Introduction

Let P be a set of n points in Rd. A hyperplane h is called k-rich with respect to P if
it contains at least k points of P . Assume that the number of k-rich hyperplanes is at
least Ω(nd/kd+1 + n/k), with a sufficiently large constant of proportionality. Is there a
lower-dimensional flat containing “a lot of points” of P ? This question was raised by Peyman
Afshani (personal communication), motivated by his recent work [1] on point covering
problems. We answer Afshani’s problem in the affirmative, in the following stronger form.

▶ Theorem 1. Let d ≥ 3, k ≥ d be integers, and d ≤ α < 2d − 1. Let P be a set of n

points in Rd, for which the number of k-rich hyperplanes is at least c(nd/kα + n/k), for
some sufficiently large constant c (depending only on d). Then there exists a (d − 2)-flat that
contains Ω

(
k(2d−1−α)/(d−1)) points of P .

We also present two upper bound constructions that give instances of the problem in which
the bound in Theorem 1 is tight. The first instance involves α = d + 1 (as in Afshani’s
original question) and certain values of k, and in the second instance we have α = d = 3.

We also extend our analysis to the case of k-rich spheres (spheres that contain at least k

points of P ). We show (see Theorem 4) that if the number of k-rich (d − 1)-spheres is at
least c(nd+1/kα + n/k), for d + 1 ≤ α < 2d + 1 and for some sufficiently large constant c,
then there exists a (d − 2)-sphere that contains Ω

(
k(2d+1−α)/d

)
points of P .

© Zuzana Patáková and Micha Sharir;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 57; pp. 57:1–57:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:patakova@karlin.mff.cuni.cz
https://orcid.org/0000-0002-3975-1683
mailto:michas@tauex.tau.ac.il
https://orcid.org/0000-0002-2541-3763
https://doi.org/10.4230/LIPIcs.SoCG.2022.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


57:2 Covering Points by Hyperplanes and Related Problems

The result is interesting by itself, but it may also find a potential application in the so
called hyperplane cover problem, one of the classical problems in computational complexity:
given a set S of n points in Rd and a number h, can we find h hyperplanes that cover
all points of S? It is a geometric variant of a set cover problem, and it was shown that
already for d = 2 the hyperplane cover problem is both NP-hard [13] and APX-hard [11].
However, several FPT-algorithms (in the fixed parameter k) are known, best of which is [16].
In the special cases d = 2 and d = 3 it has been further improved [1]. The improvement
is based on incidence bounds and builds on a simple observation that given a hyperplane
cover of cardinality h, some of the hyperplanes might contain many more points than the
others. The main idea is to deal with such hyperplanes first and the performance of the
algorithm depends on the number of such hyperplanes. For example, it follows from the
Szemerédi-Trotter theorem that there are at most O(nd/k3) k-rich hyperplanes defined by
n points in Rd. However, in the approach of [1] this bound turned out to be useful only in
the plane, in which case the exponent of n is strictly smaller than the exponent of k. The
3-dimensional case is treated using another incidence bound [9], but this approach also does
not extend to higher dimensions [1]. What could help for d ≥ 4 is to show that if there are
too many rich hyperplanes the points cannot be distributed arbitrarily, in fact, many of them
must lie on a common lower dimensional flat. The results of our paper address this issue.

The problem is also closely related to the problem of bounding the number of incidences
between n points and m hyperplanes, and we will indeed use tools from incidence theory to
tackle this problem. A major hurdle in obtaining sharp point-hyperplane incidence bounds,
in d ≥ 3 dimensions, is the possibility that there exists a (d − 2)-flat that contains many of
the points and is contained in many of the hyperplanes. In the worst case all the n points
could be contained in such a flat, and all the m hyperplanes could contain the flat, and
then the number of incidences would be nm, the largest possible value. To obtain sharper
bounds one usually needs to require that no (d − 2)-flat contains too many points, or that
is not contained in too many hyperplanes, or to impose other restrictions on the setup.
See [2, 4, 5, 7, 9, 14, 15] for a sample of earlier works on this topic. For example, better
bounds can be obtained if the points are restricted to be vertices of the arrangement of the
hyperplanes [2], or when the incidence graph between the points and hyperplanes does not
contain a complete bipartite subgraph of some small size (see [5]). Improved bounds can also
be obtained by assuming that no lower-dimensional flat is contained in too many hyperplanes,
or does not contain too many points [7]. Some of these works also derive lower bounds,
but for different quantities, which do not seem directly related to the setup considered in
this paper. See, for example, Apfelbaum and Sharir [4] and Brass and Knauer [5] for lower
bounds on the maximum size of a complete bipartite subgraph in the incidence graph of
points and hyperplanes.

2 Proof of Theorem 1

Let P be a set of n points in Rd that has many k-rich hyperplanes, in the sense of Theorem 1,
and let ℓ denote the maximum number of points of P contained in any (d − 2)-flat. We seek
a lower bound on ℓ.

Overview of the proof. Before we dive into the details, we describe the overall idea first.
Let H be the set of all k-rich hyperplanes spanned by P . By a simple argument we show that
H is finite and then we establish a lower and an upper bound on the number of incidences
between P and H. Comparing these bounds yields the desired result. As the lower bound



Z. Patáková and M. Sharir 57:3

on the number of incidences is trivially k|H|, the actual work here is to obtain a reasonable
upper bound – for that we use simplicial partitions (Theorem 3), point-hyperplane duality,
and the Cauchy-Schwartz inequality.

We start with a simple incidence bound.

▶ Lemma 2. Let P and H be finite sets of points and hyperplanes in Rd, respectively. We
have the following simple bound on the number I(P, H) of incidences between the points of P

and the hyperplanes of H.

I(P, H) = O(|H||P |1/2ℓ1/2 + |P |). (1)

Proof. This is a simple geometric application of the well known Kővári-Sós-Turán Theorem
(see, e.g., [3, 10]), which says that a Kt,2-free bipartite graph with n left and m right vertices
has at most O(mn1/2t1/2 +n) edges. The proof is based on the observation that the incidence
graph between P and H does not contain Kℓ+1,2 as a subgraph. Indeed, any pair of non-
parallel hyperplanes from H intersect in a (d − 2)-flat, which, by assumption, contains at
most ℓ points of P . ◀

Using simplicial partitions. We now proceed to sharpen the upper bound in Lemma 2. We
recall the following result, due to Matoušek [12].

▶ Theorem 3. Let Q be a set of m points in Rd, for any d ≥ 2, and let 1 < r ≤ m be a
given parameter. Then Q can be partitioned into q ≤ 2r subsets, Q1, . . . , Qq, so that, for
each i, m/(2r) ≤ |Qi| ≤ m/r, and Qi is contained in the relative interior of a (possibly
lower-dimensional) simplex ∆i, so that every hyperplane crosses (i.e., intersects but does not
contain) at most O(r1−1/d) of these simplices.

The partition in Theorem 3 is referred to as a simplicial partition of Q. We remark that the
theorem guarantees that none of the simplices is a single point when r ≤ m/4. This result
has more recently been refined by Chan [6], but the original version suffices for our purpose.

Proof of Theorem 1. First note that if there is a (d − 2)-flat containing at least k points of
P , the theorem trivially holds, as we then have ℓ ≥ k ≥ k(2d−1−α)/(d−1), since α ≥ d. Hence
we can assume that each (d − 2)-flat contains at most k − 1 points of P . This guarantees
that the number of all k-rich hyperplanes (with respect to P ) is finite, as every k-tuple of
points of P spans at most one k-rich hyperplane.

Let then H be the finite set of all k-rich hyperplanes, k ≥ d, set m := |H|, and recall
that we assume that m = |H| ≥ c

(
nd/kα + n/k

)
, for some sufficiently large constant c (that

depends on d) and for some d ≤ α < 2d − 1.
Our strategy is to derive an upper bound on the number of incidences between the points

of P and the hyperplanes of H, and combine it with the obvious lower bound mk on this
number, which follows since each of these hyperplanes is k-rich. A combination of these
bounds will lead to the desired lower bound on ℓ.

We apply standard geometric duality in Rd and get a set H∗ of m dual points and a set
P ∗ of n dual hyperplanes. The dual version of the fact that no (d − 2)-flat contains more
than ℓ points of P is that no line is contained in more than ℓ hyperplanes of P ∗. We also
know, as just mentioned, that I(P, H) ≥ mk, as each primal hyperplane in H contains at
least k points of P .

We fix some r, which we determine later, and apply Theorem 3 in the dual setting. We
obtain q ≤ 2r subsets H∗

1 , . . . , H∗
q , so that m/(2r) ≤ |H∗

i | ≤ m/r for each i = 1, . . . , q, and
each hyperplane crosses O(r1−1/d) of the corresponding simplices. Denote also by P ∗

i the set
of dual hyperplanes that cross the i-th simplex ∆i ⊃ H∗

i , for each i. Let Pi and Hi denote
the corresponding sets of points and hyperplanes in the primal space.

SoCG 2022



57:4 Covering Points by Hyperplanes and Related Problems

The number of incidences of dual points inside the partition cells and dual hyperplanes
crossing the corresponding simplices can be bounded as follows:

q∑
i=1

I(H∗
i , P ∗

i ) =
q∑

i=1
I(Pi, Hi) = O

(
q∑

i=1
|Pi|1/2|Hi|ℓ1/2 +

q∑
i=1

|Pi|

)
(2)

= O
(

m(ℓn)1/2r−1/(2d) + nr1−1/d
)

.

The first inequality follows by applying the bound (1) of Lemma 2 in the primal. For the
second inequality we use the property that each dual hyperplane crosses at most O(r1−1/d)
cells, so we have, using the Cauchy-Schwarz inequality, and recalling that q ≤ 2r,

|Hi| = |H∗
i | ≤ m

r
,

∑
|Pi| =

∑
|P ∗

i | = O(r1−1/dn), and

q∑
i=1

|Pi|1/2 ≤

(
q∑

i=1
|Pi|

)1/2

(2r)1/2 = O(n1/2r(2d−1)/(2d)),

and the second inequality follows.
It remains to count the incidences between points in a cell (simplex) and hyperplanes

that contain the simplex. Any such simplex σ is j-dimensional, for some 1 ≤ j ≤ d − 1
(zero-dimensional simplices do not arise when r ≤ m/4). When j = d − 1, each such σ is
contained in at most one hyperplane of P ∗, contributing in total at most m′ incidences,
where m′ is the number of dual points contained in such cells. When 1 ≤ j ≤ d − 2, σ

spans (affinely) a j-flat g, which cannot be contained in more than ℓ dual hyperplanes in
P ∗, for otherwise any line in g would also be contained in these hyperplanes, contrary to
our assumption. Hence the number of resulting incidences is at most ℓm′′, where m′′ is
the number of dual points contained in such simplices. In total, all the lower-dimensional
simplices contribute at most ℓm incidences.

Hence, combining this with (2), we get:

mk ≤ I(P, H) ≤ O
(

mℓ1/2n1/2r−1/(2d) + r1−1/dn
)

+ ℓm. (3)

We now balance the first two terms by choosing

r :=
(

ℓm2

n

)d/(2d−1)

.

For this to make sense r has to be between 1 and m/4. We note that r < 1 when m < (n/ℓ)1/2

and r > m/4 when m > c1nd/ℓd, for some constant c1 that depends on d. In the former case
we take r = 1 and the first two terms become O(n). (Note that the choice r = 1 corresponds
to a direct application of Lemma 2.) In the latter case we take r = m/4 and the first two
terms become

O(m(2d−1)/(2d)ℓ1/2n1/2 + m1−1/dn) = O
(

m(2d−1)/(2d)ℓ1/2n1/2
)

= O(mℓ),

where both inequalities hold because m > c1nd/ℓd. When neither of these two extreme cases
occurs, the first two terms become O(m(2d−2)/(2d−1)ℓ(d−1)/(2d−1)nd/(2d−1)). Altogether we
thus get

mk ≤ O
(

m(2d−2)/(2d−1)ℓ(d−1)/(2d−1)nd/(2d−1) + mℓ + n
)

. (4)



Z. Patáková and M. Sharir 57:5

The inequality in (4) implies that either ℓ = Ω(k) = Ω
(
k(2d−1−α)/(d−1)), since α ≥ d, or

m = O

(
ℓd−1nd

k2d−1 + n

k

)
, (5)

where we have distinguished two cases depending on whether the first or the last term in
the right-hand side of (4) dominates. Let c′ be the O-notation constant from (5). Since we
assume that m ≥ c(nd/kα + n/k), where c is a sufficicently large constant, we get

c

(
nd

kα
+ n

k

)
≤ c′

(
ℓd−1nd

k2d−1 + n

k

)
.

For c ≥ c′ it simplifies to

cnd

kα
≤ cnd

kα
+ (c − c′)n

k
≤ c′ ℓd−1nd

k2d−1 ,

which implies that ℓ = Ω(k(2d−1−α)/(d−1)). This completes the proof of Theorem 1. ◀

2.1 Upper bound constructions
First construction. The following construction only handles the case α = d + 1 (the original
question of Afshani) and certain restricted values of k; it is a variation of a construction of
Elekes [8].

Fix two integer parameters u > v ≥ 1 where v is a suitable constant. Let P be the set of
vertices of the u × · · · × u × duv integer grid in Rd. That is,

P = {(i1, . . . , id) | 0 ≤ i1, . . . , id−1 ≤ u − 1, 0 ≤ id ≤ duv − 1}.

We have n := |P | = dudv and we set k := ud−1. Any hyperplane of the form xd =
a1x1 + a2x2 + · · · + ad−1xd−1 + ad, with integer coefficients satisfying 0 ≤ ai ≤ v − 1, for
1 ≤ i ≤ d − 1, and 0 ≤ ad ≤ uv − 1, is trivially seen to be k-rich with respect to P . Hence
the number of k-rich hyperplanes is at least uvd. On the other hand, we have

nd

kd+1 = ddud2
vd

u(d+1)(d−1) = dduvd.

It is easily verified that a (d − 2)-flat λ that is not vertical (i.e., not parallel to the xd-axis)
contains at most ud−2 points of P , and that a vertical (d − 2)-flat can contain ud−3duv =
O(ud−2) = O(k(d−2)/(d−1)) points of P (but not more). Hence, setting ℓ to be ck(d−2)/(d−1),
for a suitable coefficient c, we have a construction with at least nd

ddkd+1 k-rich hyperplanes,
but no (d − 2)-flat contains more than ck(d−2)/(d−1) points of P . In other words, our bound
is asymptotically worst-case tight for this special setup.

We remark that in this construction we have k = Θ(n1−1/d), so one still needs to show
that the bound is tight for other values of k. We leave this as an open problem.

Second construction. A more significant open challenge is to extend the construction to
other values of α in the range d ≤ α < 2d − 1. We make a first step towards this goal, by
presenting, for α = d = 3, another simple construction. Let k ≥ 3, k ≥ u ≥ 2 be integer
parameters. Consider a set L of u pairwise skew lines in R3, each containing k distinguished
points. Let P be the set of all these points. We have n := |P | = ku. Note that there are
infinitely many k-rich planes with respect to P as any plane containing a single line from L

SoCG 2022



57:6 Covering Points by Hyperplanes and Related Problems

is k-rich. On the other hand, it follows from the construction that no line contains strictly
more than k points of P . Indeed, any line not contained in L intersects at most k lines from
L (since u ≤ k), so it can contain at most k points of P . Hence, ℓ = k, which shows that the
bound in Theorem 1 is tight for d = α = 3 and n/2 ≥ k ≥ n1/2.

3 The case of spheres

The analysis can be extended to the case of spheres in a straightforward manner. Specifically,
we have a set P of n points in Rd, for d ≥ 3. We say that a sphere σ is k-rich with respect
to P if it contains at least k points of P . The goal now is to show that if there are many
k-rich (d − 1)-spheres in Rd then there exists a (d − 2)-sphere that contains many points of
P . The concrete statement is:

▶ Theorem 4. Let d ≥ 3, k ≥ d + 1 be integers, and let d + 1 ≤ α < 2d + 1 be a parameter.
Let P be a set of n points in Rd, for which the number of k-rich (d − 1)-spheres is at least
c(nd+1/kα + n/k), for some sufficiently large constant c. Then there exists a (d − 2)-sphere
that contains Ω

(
k(2d+1−α)/d

)
points of P .

Note that if there is a k-rich (d − 2)-sphere, the theorem holds trivially, as we then have
ℓ ≥ k and α ≥ d + 1. Hence we can assume that no (d − 2)-sphere is k-rich, which implies,
as in the case of hyperplanes, that the number of k-rich (d − 1)-spheres is finite.

The proof is an adaptation of the preceding analysis. Let P be a set of n points in Rd,
for d ≥ 3, that has many k-rich (d − 1)-spheres, in the sense of Theorem 4. Let ℓ denote the
maximum number of points of P contained in any (d − 2)-sphere. As before, we seek a lower
bound on ℓ.

Lemma 2 continues to hold in the case of spheres, with more or less the same proof, using
the obvious property that two non-disjoint (d − 1)-spheres intersect in a (d − 2)-sphere or a
single point. To sharpen the bound we proceed as follows.

Let Σ be the set of all k-rich (d − 1)-spheres, k ≥ d + 1, and recall that we assume that
m := |Σ| ≥ c

(
nd+1/kα + n/k

)
, for some sufficiently large constant c (that depends on d)

and for d + 1 ≤ α < 2d + 1.
We apply the standard lifting transform (x1, . . . , xd) 7→ (x1, . . . , xd, x2

1 + · · · + x2
d), which

transforms (d − 1)-spheres in Rd to hyperplanes in Rd+1. Applying standard duality in Rd+1,
we get a set Σ∗ of m dual points and a set P ∗ of n dual hyperplanes in Rd+1. The lifted-dual
version of the fact that no (d − 2)-sphere, which is lifted to a (d − 1)-flat in Rd+1, contains
more than ℓ points of P is that no line is contained in more than ℓ hyperplanes of P ∗. As in
the case of rich hyperplanes, we also know that I(P, Σ) ≥ mk.

In other words, after this transform we reach the same problem involving points and
hyperplanes in Rd+1, and we can apply the preceding analysis verbatim with d + 1 replacing
d, and obtain the assertion in Theorem 4.

4 Discussion

The problem studied in this work can be considered as a variant in the study of incidences
between points and hyperplanes. As far as we can tell, the results in the previous works that
have studied such problems (e.g., [4, 5]) do not imply our results.

Several open problems arise. For example, are there variants of our assumptions, in d ≥ 4
dimensions, that imply the existence of an even lower-dimensional flat that contain many
points of P? This does not hold without any further assumptions, because we can place the



Z. Patáková and M. Sharir 57:7

points of P in general position in some (d − 2)-flat g, and then there are infinitely many
k-rich hyperplanes, for any k (all hyperplanes that contain g), but no (d − 3)-flat contains
more than d − 2 points of P .

Other problems, already mentioned earlier, are to obtain upper bound constructions,
other than the one in Section 2.1, for other values of k and of α.

References
1 P. Afshani, E. Berglin, I. van Duijn, and J. S. Nielsen. Applications of incidence bounds in

point covering problems. In Proc. 32nd ACM Sympos. Comput. Geom., pages 60:1–60:15,
2016.

2 P. K. Agarwal and B. Aronov. Counting facets and incidences. Discrete Comput. Geom.,
7:359–369, 1992.

3 P. K. Agarwal and J. Pach. Combinatorial Geometry. Wiley-Interscience, NY, 1995.
4 R. Apfelbaum and M. Sharir. Large bipartite graphs in incidence graphs of points and

hyperplanes. SIAM J. Discrete Math., 21:707–725, 2007.
5 P. Brass and C. Knauer. On counting point-hyperplane incidences. Comput. Geom. Theory

Appls., 25:13–20, 2003.
6 T. M. Chan. Optimal partition trees. Discrete Comput. Geom., 47:661–690, 2012.
7 H. Edelsbrunner, L. Guibas, and M. Sharir. The complexity and construction of many faces

in arrangements of lines and of segments. Discrete Comput. Geom., 5:61–196, 1990.
8 G. Elekes. Sums versus products in number theory, algebra and Erdős geometry – a survey. In

Paul Erdős and his Mathematics II, volume 11, pages 241–290. Bolyai Math. Soc. Stud., 2002.
9 G. Elekes and C. Tóth. Incidences of not-too-degenerate hyperplanes. In Proc. 21st ACM

Sympos. Comput. Geom., pages 13–20, 2005.
10 T. Kővari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloq. Math., 3:50–57,

1954.
11 V. S. A. Kumar, S. Arya, and H. Ramesh. Hardness of set cover with intersection 1. In

Automata, languages and programming (Geneva, 2000), volume 1853 of Lecture Notes in
Comput. Sci., pages 624–635. Springer, Berlin, 2000.

12 J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992.
13 N. Megiddo and A. Tamir. On the complexity of locating linear facilities in the plane. Oper.

Res. Lett., 1(5):194–197, 1982.
14 M. Rudnev. On the number of incidences between points and planes in three dimensions.

Combinatorica, 38:219–254, 2018.
15 N. Singer and M. Sudhan. Point-hyperplane incidence geometry and the log-rank conjecture.

arXiv:2101.09592.
16 J. Wang, W. Li, and J. Chen. A parameterized algorithm for the hyperplane-cover problem.

Theor. Comput. Sci., 411:4005–4009, 2010.

SoCG 2022

http://arxiv.org/abs/2101.09592




The Degree-Rips Complexes of an Annulus with
Outliers
Alexander Rolle # Ñ

Department of Mathematics, Technische Universität München, Germany

Abstract
The degree-Rips bifiltration is the most computable of the parameter-free, density-sensitive bifiltra-
tions in topological data analysis. It is known that this construction is stable to small perturbations
of the input data, but its robustness to outliers is not well understood. In recent work, Blumberg–
Lesnick prove a result in this direction using the Prokhorov distance and homotopy interleavings.
Based on experimental evaluation, they argue that a more refined approach is desirable, and suggest
the framework of homology inference. Motivated by these experiments, we consider a probability
measure that is uniform with high density on an annulus, and uniform with low density on the disc
inside the annulus. We compute the degree-Rips complexes of this probability space up to homotopy
type, using the Adamaszek–Adams computation of the Vietoris–Rips complexes of the circle. These
degree-Rips complexes are the limit objects for the Blumberg–Lesnick experiments. We argue that
the homology inference approach has strong explanatory power in this case, and suggest studying
the limit objects directly as a strategy for further work.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases multi-parameter persistent homology, stability, homology inference

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.58

Supplementary Material Software (Source Code): https://github.com/alexanderrolle/degree
Rips_annulus; archived at swh:1:dir:fa545846978022bdf95b9e2f53f5be18685d2882

Acknowledgements I would like to thank Michael Lesnick for helpful conversations about robustness
of degree-Rips, and Luis Scoccola and Fabian Roll for various helpful conversations about topics
related to this paper. I would also like to thank the reviewers for their constructive comments.

1 Introduction

1.1 Background
The degree-Rips bifiltration [15] is a density-sensitive construction based on the Vietoris–Rips
filtration. The sensitivity to density has two consequences: degree-Rips can distinguish
metric spaces that are close in the Gromov–Hausdorff distance but have different patterns of
density, and degree-Rips is more robust to noise and outliers. There are other bifiltrations
that share these goals, but degree-Rips is of particular interest because, using available
algorithms and software, it is the most computable of these bifiltrations that requires only a
metric on the data as input.

If X is a finite metric space, the degree-Rips complex DR(X), at parameter (s, k), is the
full subcomplex of the Vietoris–Rips complex VR(X)(s) on those vertices having degree at
least k − 1 in the one-skeleton. Equivalently, we take the Vietoris–Rips complex of the subset
X(s,k) = {x ∈ X : |B(x, s)| ≥ k}, where B(x, s) is the open ball in X about x of radius s.

There has now been work on the stability of degree-Rips by several authors. Recent
results of Blumberg–Lesnick [4] are notable in that they allows for true outliers: one can
add an arbitrary point to a finite metric space, and their results guarantee some relationship
between the respective degree-Rips bifiltrations. The main result of Blumberg–Lesnick for
degree-Rips says that if the Gromov–Prokhorov distance between the uniform probability

© Alexander Rolle;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 58; pp. 58:1–58:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.rolle@tum.de
https://alexanderrolle.github.io/
https://doi.org/10.4230/LIPIcs.SoCG.2022.58
https://github.com/alexanderrolle/degreeRips_annulus
https://github.com/alexanderrolle/degreeRips_annulus
https://archive.softwareheritage.org/swh:1:dir:fa545846978022bdf95b9e2f53f5be18685d2882;origin=https://github.com/alexanderrolle/degreeRips_annulus;visit=swh:1:snp:0741a9e51448cc88dc57eea93efaf39a80f8b81d;anchor=swh:1:rev:b7c156be42efd1a48c012e667ed855bb617ab11d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


58:2 The Degree-Rips Complexes of an Annulus with Outliers

measures of two finite metric spaces is less than δ, then one has a homotopy interleaving
between their degree-Rips bifiltrations, with additive term δ, and with a multiplicative factor
in the Rips parameter s. They show moreover that the multiplicative factor is tight.

This framework for studying the robustness of degree-Rips is very natural, but in the
same paper, Blumberg–Lesnick observe that the result does not fully capture the robustness
of degree-Rips observed in practice. They report on the following experiment. They consider
two pointclouds: a uniform sample of 475 points from an annulus, and another pointcloud
obtained by adding 25 points sampled uniformly from the disc inside the annulus. Then they
use the RIVET software [22] to visualize H1DR of both pointclouds. Given the output on
the sample with no outliers, their results guarantee that a certain region of the degree-Rips
parameter space for the sample with outliers must have non-zero Hilbert function (i.e., the
degree-Rips complexes in this region must have non-zero H1); however this region is small
compared to the observed region where the Hilbert function is non-zero. It appears that there
is a trade-off between the generality of this result, and the ability to provide explanatory
power in concrete cases such as this one.

We make one more remark before explaining the contribution of this paper. The degree-
Rips bifiltration is closely related to existing methods for clustering. Several widely-used
algorithms that arose independently of topological data analysis, such as the hierarchical
clustering algorithm robust single-linkage [8] and the clustering algorithms DBSCAN [11]
and HDBSCAN [7], can be computed directly from degree-Rips by taking the connected
components of the 1-skeleton. These algorithms are used in part because of their observed
robustness to noise and outliers. A satisfactory understanding of the robustness of degree-Rips
would also add to our understanding of the robustness of these algorithms.

1.2 Homology inference for degree-Rips
Motivated by their experiments, Blumberg–Lesnick suggest the framework of homology
inference for obtaining more refined results about the robustness of degree-Rips. We now
explain one approach to homology inference for degree-Rips.

There is a natural generalization of the degree-Rips complexes to metric probability spaces
(Definition 3). Given such a space (X, µ), the degree-Rips complex DR(X, µ) at parameter
(s, k) is the Vietoris–Rips complex of the subset X(s,k) = {x ∈ X : µ(B(x, s)) ≥ k}
(Definition 5). If one gives a finite metric space its uniform probability measure, then this
definition agrees with the previous one up to normalization. Furthermore, on compact
metric probability spaces, degree-Rips is 2-Lipschitz, comparing the input using the Gromov–
Hausdorff–Prokhorov distance, and comparing the output using the homotopy-interleaving
distance [21, Theorem 6.5.1]. For the sake of this paper, it is not necessary to know the
definition of the Gromov–Hausdorff–Prokhorov distance, but just the following consequence.
Say that µ is a compactly-supported probability measure on Euclidean space with support
C, let X be a finite sample from µ, let µX be the uniform measure on X, and let µ̄X be the
empirical measure on Euclidean space determined by X. If the Hausdorff distance dH(X, C)
and the Prokhorov distance dP(µ̄X , µ) are less than ϵ, then the homotopy interleaving distance
between DR(X, µX) and DR(C, µ) is less than 2ϵ. Here, the hypothesis is stronger than in the
result of Blumberg–Lesnick, because it includes the Hausdorff hypothesis, and the conclusion
is also stronger, since one obtains additive interleavings. So, we know the limit objects for
degree-Rips: in probability, DR(X, µX) converges to DR(C, µ) in the homotopy-interleaving
distance as the size of X goes to infinity.

What consequence does this have for the robustness of degree-Rips? One way to pose the
question of the robustness of degree-Rips is the following. If we have a finite metric space X,
and X ′ has been obtained from X by adding a small number of outliers, how do we expect



A. Rolle 58:3

that DR(X) and DR(X ′) are related? Roughly speaking, this is how Blumberg–Lesnick ask
the question. On the level of metric probability spaces, there is an analogous question: if
we have µ and C as before, and µ′ has been obtained from µ by mixing with the uniform
measure on some C ′ with C ⊂ C ′, how are DR(C, µ) and DR(C ′, µ′) related?

Consider the metric probability spaces from which the finite input in the Blumberg–Lesnick
experiments are sampled. Let A(R, Q, w) be the metric probability space that consists of
the union of the annulus {p ∈ R2 : R ≤ ||p|| ≤ Q} and the disc {p ∈ R2 : ||p|| < R}, with a
uniform measure on each piece, such that the measure of the disc is equal to w. If w = 0, take
the underlying metric space to be just the annulus. See Section 2 for a detailed definition.
In this paper, we compute the degree-Rips bifiltrations of A(R, Q, w) up to homotopy type,
using the Adamaszek–Adams computation of the Vietoris–Rips complexes of the circle [1].
We now state the result in the case w > 0. See Figure 1 for an illustration.1

▶ Theorem 1. Let A(R, Q, w) be a weighted annulus with w > 0. There are continuous
maps φℓ : (0, ∞) → [0, 1] for ℓ = 0, 1, 2, . . . , ∞ such that, for any s > 0 and any k ∈ [0, 1],

DR(A(R, Q, w))(s, k) ≃


∅ if k > φ0(s)
S2ℓ+1 if φℓ(s) > k > φℓ+1(s) for ℓ ̸= ∞
∗ if φ∞(s) > k

Moreover, if 0 < ℓ < ∞ and 0 < s ≤ s′ and 0 ≤ k′ ≤ k ≤ 1 are such that

φℓ(s) > k > φℓ+1(s) and φℓ(s′) > k′ > φℓ+1(s′) ,

then the inclusion DR(A(R, Q, w))(s, k) ↪→ DR(A(R, Q, w))(s′, k′) is a homotopy equivalence.

The result for the case w = 0 is similar, but the curves that bound the regions are no
longer continuous; we state the result in this case in Section 5. Varying w does not have
much effect on DR(A(R, Q, w)) while w remains small and non-zero. Setting w = 0 has a
large effect, as we see in Figure 1, because in this case only points on the annulus are allowed
to appear as vertices of degree-Rips.

Comparing these calculations with the results obtained from finite samples, we see that
the homology inference approach indeed provides strong explanatory power. See Figure 2.
The region of the parameter space where DR(A(R, Q, w)) has the homotopy type of S1, and
thus has rank 1 homology in dimension 1, is similar to the region where the Hilbert function
of the degree-Rips complexes of the sample is equal to 1. Note that when we set w > 0 and
allow for outliers, the region where we see non-zero Hilbert function in the sample extends a
little further in the direction of increasing Rips parameter value. For larger values of the Rips
parameter, outliers begin to appear as vertices in degree-Rips, and they create connections
between dense regions that would not otherwise appear. In A(R, Q, w), all points in the inner
disc are allowed to appear as vertices, and so these connections appear as soon as possible.

1.3 Related work
Along with the results mentioned in the introduction, Jardine has proved a stability result
for degree-Rips [14], using a hypothesis involving configuration spaces, rather than a distance
between pointclouds. Much work has been done on homology inference, using a variety
of approaches. See for example [3, 17, 2, 18, 5, 6]. The connection between degree-Rips
and existing clustering methods was observed by McInnes–Healy [16], and studied further
in [13, 20]. There is a large literature on consistency of density-based clustering methods.
See for example [10, 8, 19, 9].

1 Scripts to reproduce the figures are available at https://github.com/alexanderrolle/degreeRips_
annulus

SoCG 2022

https://github.com/alexanderrolle/degreeRips_annulus
https://github.com/alexanderrolle/degreeRips_annulus


58:4 The Degree-Rips Complexes of an Annulus with Outliers

Figure 1 On the left, we consider A(R, Q, w) with inner radius R = 0.4, outer radius Q = 0.5,
and w = 0.05, so one expects 25 outliers in a sample of 500, as in the Blumberg–Lesnick experiments.
We plot φ0 (red), φ1 (blue), φ2 (yellow), and φ∞ (black). The blue region is where the homotopy
type of DR(A(R, Q, w)) is S1, and the yellow region is where the homotopy type is S3. On the right,
we consider A(R, Q, 0). The meaning of the colors is the same. In this case the boundary curves are
not continuous. Note that the two figures are plotted at different scales.

Figure 2 We reproduce the Blumberg–Lesnick experiment. On the left we consider a sample
with outliers: we sample 500 points from A(R, Q, w), where R, Q, and w are as in Figure 1. We use
RIVET to compute the Hilbert function of H1DR of this sample; the light grey region is where the
Hilbert function is equal to 1, and darker grey corresponds to higher values of the Hilbert function.
The border of the S1 region of DR(A(R, Q, w)) is overlayed in black. On the right we consider a
sample without outliers: we sample 500 points from A(R, Q, 0). We compare the Hilbert function
of H1DR of the sample with the S1 region of DR(A(R, Q, 0)) in the same way. Note that the two
figures are plotted at different scales.



A. Rolle 58:5

2 Preliminaries

We now give definitions and conventions that are used throughout the paper. For real
numbers a and b, the statement a < b implies a ̸= b.

▶ Definition 2. Let X be a metric space and s > 0. The Vietoris–Rips complex VR(X)(s)
is the simplicial complex

VR(X)(s) = {{x0, . . . , xn} | dX(xi, xj) < s for all 0 ≤ i, j ≤ n}.

We use dX(xi, xj) < s in this definition because the argument for Proposition 7 does not
work for the version of Vietoris–Rips defined with dX(xi, xj) ≤ s.

▶ Definition 3. A metric probability space consists of a metric space X together with a
Borel probability measure µ on X.

For a metric space X and x ∈ X, we write B(x, s) for the open ball about x of radius s.

▶ Definition 4. Let (X, µ) be a metric probability space. The uniform filtration of (X, µ) is
the two-parameter filtration of X where, for s > 0 and k ∈ [0, 1], X(s,k) ⊆ X is the sub-metric
space X(s,k) = {x ∈ X : µ(B(x, s)) ≥ k}.

The uniform filtration is the special case of the kernel filtration [20, Def. 2.24], where the
kernel is chosen to be the uniform kernel [20, Ex. 2.21]. Given a metric probability space,
one can take the kernel filtration and then apply any functorial construction on metric spaces.
For clustering, a natural choice is single-linkage [20, Def. 2.25]. Applying Vietoris–Rips
to the uniform filtration, we get an extension of the usual definition of degree-Rips. This
is also considered in Scoccola’s thesis [21, Sec. 6.5]: the stability result mentioned in the
introduction is a corollary of a stability result for the kernel filtration.

▶ Definition 5. Let (X, µ) be a metric probability space. The degree-Rips complex
DR(X, µ)(s, k) is the simplicial complex VR(X(s,k))(s).

We now explain our conventions regarding the circle and annulus. For R ≥ 0 we write
S1

R = {p ∈ R2 : ||p|| = R}, though we sometimes exclude the degenerate case R = 0. For
0 ≤ R ≤ Q we write AR,Q = {p ∈ R2 : R ≤ ||p|| ≤ Q}. Unless otherwise stated, we view
these as metric spaces with the Euclidean metric.

Let 0 < R < Q, and let w > 0. We will consider a metric probability space A(R, Q, w)
that consists of the union of the annulus AR,Q and the inner disc {p ∈ R2 : ||p|| < R}, with
a uniform measure on each piece, such that the measure of the inner disc is equal to w. In
more detail, let A(R, Q, w) be the metric probability space with underlying metric space
{p ∈ R2 : ||p|| ≤ Q}, and with probability measure µ given by integrating a density f , where
f(p) = a = w/πR2 if ||p|| < R and f(p) = b = (1 − w)/(πQ2 − πR2) otherwise. We say
that A(R, Q, w) is a weighted annulus if a < b. Similarly, let A(R, Q, 0) be the metric
probability space with underlying metric space AR,Q, and with probability measure µ given
by integrating f , where f(p) = b = 1/(πQ2 − πR2).

3 The Vietoris–Rips complexes of an annulus

In this section we prove that the Vietoris–Rips complexes of an annulus AR,Q are homotopy
equivalent to the Vietoris–Rips complexes of the inner circle S1

R. This was observed by
Adamaszek–Adams [1, Prop. 10.1], who show that it follows from a result of Hausmann [12,
Prop. 2.2]. The author overlooked this when writing the first draft of this paper, and it was
pointed out by the reviewers.

SoCG 2022



58:6 The Degree-Rips Complexes of an Annulus with Outliers

Proposition 7 below is very similar to Hausmann’s result. If B is a deformation retract
of a metric space A, then both results say that the Vietoris–Rips complexes of A and B

are homotopy equivalent, provided the deformation retraction is sufficiently compatible
with the metric. Proposition 7 assumes slightly less about the deformation retraction than
Hausmann’s result, though this is a mild generalization, and may be known to experts. The
exposition of the proof here is perhaps more detailed than Hausmann’s, so it remains in the
paper, in case it is of interest to some readers.

▶ Definition 6. Let A be a metric space and B ⊆ A. We say that B is a Lipschitz
deformation retract of A if there is a continuous map r : A → B such that r ◦ i = idB

where i : B ↪→ A is the inclusion, and there is a homotopy H : A × I → A (rel B) from idA to
r such that for all t ∈ I, the map H(−, t) : A → A is 1-Lipschitz.

▶ Proposition 7. If A is a metric space and B is a Lipschitz deformation retract of A, then
the inclusion B ↪→ A induces a homotopy equivalence VR(B)(s) ≃ VR(A)(s) for all s > 0.

▶ Remark 8. Say B is a Lipschitz deformation retract of A, and let H : A × I → A be a
homotopy as in the definition. Then for any t ∈ I and any s > 0, there is a simplicial map
HVR

t : |VR(A)(s)| → |VR(A)(s)| defined by the vertex map x 7→ H(x, t). These maps appear
in the proof of Proposition 7, but note that the function |VR(A)(s)| × I → |VR(A)(s)| defined
by (p, t) 7→ HVR

t (p) is not continuous in general.

▶ Lemma 9. Let K be a simplicial complex, let X be compact, let f, g : X → |K| be continuous
maps, and let Z = {x ∈ X : f(x) = g(x)}. If for all x ∈ X, there is a simplex σ ∈ K with
f(x), g(x) ∈ |σ|, then f and g are homotopic (rel Z).

Proof. We begin by proving the statement assuming that K is finite. Define the homotopy
H : X × I → |K| as follows. For x ∈ X, write f(x) and g(x) in barycentric coordinates,
f(x) =

∑
i αivi and g(x) =

∑
j βjwj . For t ∈ I, let H(x, t) = (1 − t) ·

∑
i αivi + t ·

∑
j βjwj .

We have H(x, t) ∈ |K| since there is σ ∈ K with f(x), g(x) ∈ |σ|. We now show that H is
continuous. For σ ∈ K, let Vσ = f−1(|σ|) ∩ g−1(|σ|). As f and g are continuous, Vσ is closed
in X, and V = {Vσ × I : σ ∈ K} is a finite, closed cover of X × I. Now H|Vσ×I : Vσ × I → |σ|
is continuous for all σ, and therefore H is continuous.

Now we prove the general statement. As X is compact, there are finite subcomplexes
Kf , Kg ⊆ K such that f(X) ⊆ |Kf | and g(X) ⊆ |Kg|. Define L = Kf ∪ Kg ∪ {σ ∪ τ : σ ∈
Kf , τ ∈ Kg, and σ∪τ ∈ K}. Then L is a finite subcomplex of K such that f(X), g(X) ⊆ |L|.
For x ∈ X, let σ ∈ Kf be the minimal simplex with f(x) ∈ |σ| and let τ ∈ Kg be the
minimal simplex with g(x) ∈ |τ |. As f(x), g(x) lie in a common simplex of K, we must have
σ ∪ τ ∈ K, and thus f(x), g(x) lie in a common simplex of L. Now the statement follows
from the finite case. ◀

Proof of Proposition 7. By assumption, there is r : A → B such that r ◦ i = idB where
i : B ↪→ A is the inclusion, and there is a homotopy H : A × I → A (rel B) from idA

to r such that for all t ∈ I, the map H(−, t) : A → A is 1-Lipschitz. We show that
r∗ : |VR(A)(s)| → |VR(B)(s)| induces isomorphisms in πn for all n ≥ 0, and the statement
follows by Whitehead’s theorem. Since r ◦ i = idB it follows from functoriality that the
induced maps on πn are surjective for all n ≥ 0, and it remains to show they are injective.

We begin with π0. For x ∈ A, observe that [x] = [r(x)] in π0VR(A)(s), as H(x, −) : I → A

is a path from x to r(x). Now, let x, y ∈ A, and say r∗([x]) = r∗([y]) in π0VR(B)(s). Then
in π0VR(A)(s), [x] = [(i ◦ r)(x)] = i∗(r∗([x])) = i∗(r∗([y])) = [(i ◦ r)(y)] = [y].



A. Rolle 58:7

Now, let b ∈ B be a choice of basepoint. Since we know r induces an isomorphism on
π0, it suffices to consider basepoints in B. Say f : In → |VR(A)(s)| is a continuous map
representing an element of πn(|VR(A)(s)|, b). As In is compact, there is a finite subcomplex
K ⊆ VR(A)(s) such that f(In) ⊆ |K|. Let D = max{diameter(σ) : σ ∈ K}. As K is finite,
we have D < s. Write ϵ = s − D. For x ∈ A, let Px = H(x, −) : I → A. As I is compact,
Px is uniformly continuous, and thus there is δx > 0 such that dA(Px(t), Px(t′)) < ϵ when
|t − t′| < δx. Let δ = min{δx : x is a vertex of K}, and choose N such that 1/N < δ. For
0 ≤ m ≤ N , we write HVR

m = HVR
m
N

for the map induced by H, defined in Remark 8.
We now show that, for any 0 ≤ m < N , HVR

m ◦ f ≃ HVR
m+1 ◦ f (rel ∂In). By Lemma 9,

it suffices to show that, for all p ∈ In, (HVR
m ◦ f)(p) and (HVR

m+1 ◦ f)(p) lie in a com-
mon simplex of VR(A)(s). For this, choose σ = {x0, . . . , xℓ} ∈ K with f(p) ∈ |σ|; then
{HVR

m (x0), . . . , HVR
m (xℓ), HVR

m+1(x0), . . . , HVR
m+1(xℓ)} is the desired simplex. To see that it is

indeed a simplex of VR(A)(s), observe that

dA(HVR
m (xi), HVR

m+1(xj)) = dA(H(xi,
m
N ), H(xj , m+1

N ))
≤ dA(H(xi,

m
N ), H(xi,

m+1
N )) + dA(H(xi,

m+1
N ), H(xj , m+1

N ))
< ϵ + dA(xi, xj) ≤ s .

It follows that f ≃ HVR
N ◦ f (rel ∂In). Note that HVR

N = i∗ ◦ r∗, where r∗ : |VR(A)(s)| →
|VR(B)(s)| is as above, and i∗ : |VR(B)(s)| → |VR(A)(s)| is induced by the inclusion i : B ↪→
A. Now say that r∗([f ]) = 0 in πn (|VR(B)(s)|, b). Then in πn (|VR(A)(s)|, b), [f ] =
[i∗ ◦ r∗ ◦ f ] = i∗(r∗([f ])) = 0. ◀

▶ Corollary 10. For any 0 ≤ R ≤ Q, the inclusion S1
R ↪→ AR,Q induces a homotopy

equivalence VR(S1
R)(s) ≃ VR(AR,Q)(s) for all s > 0.

Proof. The homotopy H : AR,Q × I → AR,Q defined by ((r, θ), t) 7→ ((1 − t) · r + t · R, θ)
shows that S1

R is a Lipschitz deformation retract of AR,Q. ◀

4 Boundary curves in the degree-Rips parameter space

In this section we prove Theorem 1. To motivate the approach, we first explain the basic idea
for how to compute the homotopy type of DR(A(R, Q, w))(s, k) for a particular choice of s

and k. We will show in this section that the subspace A(R, Q, w)(s,k) is an annulus; write
P for its inner radius. By Corollary 10, DR(A(R, Q, w))(s, k) ≃ VR(S1

P )(s), and then one
concludes by the Adamaszek–Adams calculation of the Vietoris–Rips complexes of the circle.

To begin, we need to compute the measure of an s-ball in A(R, Q, w), and for this we
need to know the area of the intersection of the s-ball with the annulus, and with the inner
disc. We now briefly explain how to do this, though we omit most formulas for brevity.

Let R > 0 and s > 0. We write O for the origin in R2 and C(p, r) for the circle centred at
p of radius r. Define a function α : [0, ∞) → R by letting α(c) be the area of the intersection
B (O, R) ∩ B ((c, 0), s). We calculate α(c) using the usual formulas for the area of circular
segments, but there are several cases. In Figure 3 on the left we show the (c, s)-space, with
the curves that delimit the cases:

c + s = R (1)
s − c = R (2)
c − s = R (3)

c2 + s2 = R2 (4)
s2 − c2 = R2 (5)

SoCG 2022



58:8 The Degree-Rips Complexes of an Annulus with Outliers

If (c, s) is outside the region bounded by the lines 1, 2, 3, then the circles C(O, R) and
C((c, 0), s) do not intersect, and α is constant. If (c, s) is inside this region, then the circles
intersect in two points: if (c, s) is to the left of the circle 4, then the centre (c, 0) is to the
left of the chord connecting these points of intersection, otherwise it is to the right; if (c, s)
is to the left of the hyperbola 5, then the origin is to the right of this chord, otherwise it is
to the left. In each region, we calculate α(c) as a sum of areas of circular segments, or their
complements.

1

2

3
4

5

R

R

1R
1Q

2R

2Q

4R

4Q

5R

5Q

3R

R Q

R

Q

Figure 3 Let R > 0. We can think of αR as a function of two variables c and s. On the left, we
show the domain of αR, with c on the horizontal axis and s on the vertical axis. In each region we
compute αR using a sum of areas of circular segments, or their complements. To compute γ, we
need to compute αR and αQ. On the right we plot the domain of γ as a function of c and s, with
R = 0.4 and Q = 0.5. In green, we plot ω(s) with w = 0. In this case ω(s) is the value of c that
maximizes the area of the intersection between the annulus AR,Q and the s-ball centred at (c, 0).

In order to prove the main theorem, we need to understand how the area of a ball in
A(R, Q, w) changes as its centre varies. For this it will be helpful to understand the derivative
of α. This seems complicated to compute directly from the formula for the area of a circular
segment, but instead we can compute the derivative using a geometric argument. Define
y : [0, ∞) → R by

y(c) =
{

0 if C(O, R) ∩ C((c, 0), s) = ∅
max{x2 : (x1, x2) ∈ C(O, R) ∩ C((c, 0), s)} else

If the circles intersect in exactly two points, then y(c) is simply the y-coordinate of these
points, with positive sign, and then 2y(c) is the length of the chord connecting these points
of intersection.



A. Rolle 58:9

▶ Lemma 11. The map α is continuously differentiable and α′(c) = −2y(c).

Proof. Since α can be computed by summing the areas of circular segments, the formula for
this area shows that α is differentiable. By definition,

α′(c) = lim
δ→0

α(c + δ) − α(c)
δ

.

Now, α(c + δ) − α(c) is the (signed) area of the subset of B (O, R) between the circles
C((c, 0), s) and C((c + δ, 0), s). And, −2y(c) · δ approximates this area, in the sense that we
have the following inequality for all s, c and small enough δ:

| (α(c + δ) − α(c)) + 2y(c) · δ| ≤ 2 · |δ| · |y(c) − y(c + δ)| .

So,

|α′(c) + 2y(c)| ≤ lim
δ→0

2 · |δ| · |y(c) − y(c + δ)|
|δ|

= lim
δ→0

2 · |y(c) − y(c + δ)| = 0 . ◀

Let 0 < R < Q. We now consider the area of the intersection of the ball B ((c, 0), s) with
the annulus AR,Q = {p ∈ R2 : R ≤ ||p|| ≤ Q}. Define a function γ : [0, Q] → R by letting
γ(c) be the area of the intersection AR,Q ∩ B ((c, 0), s). We change notation in order to relate
γ with α: instead of α we write αR, where R is the radius of the circle centred at the origin.
With this notation, γ = αQ − αR. We calculate γ using this formula, though now there are
more cases; see Figure 3 on the right for the curves delimiting the cases.

Again we want to understand γ′. The interesting case is when the ball B ((c, 0), s)
intersects both circles C(O, R) and C(O, Q). This happens when (c, s) is in the region
bounded by the lines:

c + s = Q (1Q)
s − c = R (2R)
c − s = R (3R)

We now collect together the facts we will need about γ:

▶ Lemma 12. Say c + s > Q and s − c < R and c − s < R. Then,
γ′(c) = 0 if and only if c2 + s2 = 1

2 (R2 + Q2)
γ′(c) > 0 if and only if c2 + s2 < 1

2 (R2 + Q2)
γ′(c) < 0 if and only if c2 + s2 > 1

2 (R2 + Q2).
Moreover, if we have c ≤ c′ with c′ +s > Q and s−c′ < R and c′ −s < R and γ′(c), γ′(c′) > 0,
then γ′(c) ≥ γ′(c′).

Proof. As γ′(c) = α′
Q(c) − α′

R(c), we have γ′(c) = −2yQ(c) + 2yR(c) by Lemma 11. So,
γ′(c) = 0 if and only if yQ(c) = yR(c); and γ′(c) > 0 if and only if yQ(c) < yR(c); and
γ′(c) < 0 if and only if yQ(c) > yR(c).

Now, C(O, R) and C((c, 0), s) intersect in two points, and the x-coordinate of both points
is given by xR(c) = (c2 +R2 −s2)/2c, and then yR(c) =

√
R2 − xR(c)2. Similarly we compute

yQ(c). Now, a little algebra shows that yQ(c) = yR(c) if and only if c2 + s2 = 1
2 (R2 + Q2);

and yQ(c) < yR(c) if and only if c2 + s2 < 1
2 (R2 + Q2); and yQ(c) > yR(c) if and only if

c2 + s2 > 1
2 (R2 + Q2).

SoCG 2022



58:10 The Degree-Rips Complexes of an Annulus with Outliers

To prove the last statement of the lemma, we must show that yR(c) − yQ(c) ≥ yR(c′) −
yQ(c′). Towards a contradiction, assume yR(c) − yQ(c) < yR(c′) − yQ(c′). Then a little
more algebra shows that c′2(R2 + Q2 − 2s2) < c2(R2 + Q2 − 2s2). As we assume γ′(c) > 0,
we have c2 + s2 < 1

2 (R2 + Q2), and therefore s2 < 1
2 (R2 + Q2). So, we conclude c′ < c, a

contradiction. ◀

We are ready to show that the subspace A(R, Q, w)(s,k) is an annulus, for any choice of s

and k. This will follow from the next lemma.
Now, for s > 0, let ν : [0, Q] → [0, 1] be the function ν(c) = µ (B ((c, 0), s)), where µ is

the measure on A(R, Q, w). We write νs if it is necessary to specify s. Since ν is a linear
combination of γ and αR, we have already seen how to calculate ν. Define ω : (0, ∞) → [0, Q]
as follows. For any s > 0, let Ms = maxc∈[0,Q] νs(c). As νs is continuous, ν−1

s (Ms) ⊆ [0, Q]
is non-empty and closed, and we let ω(s) = min(ν−1

s (Ms)).

▶ Lemma 13. For any s > 0, νs is non-decreasing on [0, ω(s)] and non-increasing on
[ω(s), Q].

Proof. There are three cases: (1) 0 < s ≤ 1
2 (Q − R); (2) 1

2 (Q − R) < s < 1
2 (Q + R); and (3)

1
2 (Q + R) ≤ s. See Figure 3 for an idea of how ω behaves in the three cases.

Case (1) is straightforward. On [0, R − s] ν is constant, it is strictly increasing on
[R − s, R + s], and we have ν(c) = Ms for any c ∈ [R + s, Q − s]; so ω(s) = R + s. On
[Q − s, Q] ν is strictly decreasing.

We now consider Case (2). On [0, R − s] ν is constant. In the region bounded by lines
1R, 1Q, 2R, ν is strictly increasing. If c is to the left of line 2R, then ν is constant. The
interesting case is that c is to the right of line 1Q: c ≥ Q − s. We will show that ω(s) is in
this region, and that ν′ > 0 on [Q − s, ω(s)), ν′(ω(s)) = 0, and ν′ < 0 on (ω(s), Q].

Let z =
√

1
2 (R2 + Q2) − s2. Then by Lemma 12, γ′(c) < 0 for all c ∈ (z, Q], and

α′
R(c) ≤ 0, so ν′(c) < 0. When c = Q − s, so that c is on line 1Q, we have already seen that

ν′(c) ≥ 0. So, as ν′ is continuous, it must have a zero on [Q − s, z]. We now show that ν′

has at most one zero on this interval, and it follows that ω(s) is this zero.
Let c ≤ c′ in [Q − s, z] such that ν′(c) = ν′(c′) = 0. As ν = a · αR + b · γ, ν′(c) = 0 implies

that γ′(c) = −a
b ·α′

R(c). We have γ = αQ−αR, so ν′(c) = 0 implies that (1− a
b )·α′

R(c) = α′
Q(c).

By Lemma 12, since c ≤ c′ in [Q − s, z], we have γ′(c) ≥ γ′(c′). So,

−a
b · α′

R(c) ≥ −a
b · α′

R(c′)
(1 − a

b ) · α′
R(c) ≤ (1 − a

b ) · α′
R(c′)

α′
Q(c) ≤ α′

Q(c′)
yQ(c) ≥ yQ(c′).

As yQ is strictly increasing on [Q − s,
√

Q2 − s2] we have c = c′. This finishes Case (2).
Case (3) is straightforward; ω(s) = 0. If c is to the left of line 2Q, or c is in the region

bounded by lines 1Q and 2R, then ν is constant. If c is in the region bounded by lines
1Q, 2R and 2Q, then ν is strictly decreasing. If c is to the right of line 2R then ν′(c) < 0 by
Lemma 12. ◀

Note that this proof also shows how to compute ω(s). If 0 < s ≤ 1
2 (Q − R), then

ω(s) = R + s. If 1
2 (Q − R) < s < 1

2 (Q + R), then ω(s) is defined implicitly by the equation
(b − a) · yR(c) = b · yQ(c). In this case, if w = 0, then this last equation simplifies to
c2 + s2 = 1

2 (R2 + Q2). If 1
2 (Q + R) ≤ s, ω(s) = 0.



A. Rolle 58:11

We are almost ready to define the maps φℓ and prove Theorem 1. In order to make
use of the Adamaszek–Adams calculation of the Vietoris–Rips complexes of the circle, we
need to relate the Vietoris–Rips complexes of a circle with the Euclidean distance to the
Vietoris–Rips complexes of the circle with geodesic distance. For this we use the following
lemma, whose proof is straightforward.

▶ Lemma 14. Let (X1, d1) and (X2, d2) be metric spaces, let D1 = Im(d1) ⊆ R≥0 and
D2 = Im(d2) ⊆ R≥0, and say there is a bijection f : X1 → X2 and an order-preserving
bijection fd : D1 → D2 such that fd ◦ d1 = d2 ◦ (f × f). Then f induces an isomorphism
VR(X1, d1)(s) ∼= VR(X2, d2)(fd(s)) for any s ∈ D1.

For r > 0, we write (S1
r , dg) for the circle of radius r equipped with the geodesic

metric, and (S1
r , dE) for the circle of radius r equipped with the Euclidean metric. Define

σr : [0, 2r] → [0, πr] by σr(t) = 2r arcsin
(

t
2r

)
. If p, q ∈ S1

r , then σr(dE(p, q)) = dg(p, q).
By Adamaszek–Adams [1, Theorem 7.4],

VR(S1
1

2π
, dg)(s) ≃ S2ℓ+1 for ℓ

2ℓ+1 < s ≤ ℓ+1
2ℓ+3 , ℓ = 0, 1, . . . .

And, if ℓ
2ℓ+1 < s ≤ s′ ≤ ℓ+1

2ℓ+3 , then the inclusion VR(S1
1

2π
, dg)(s) ↪→ VR(S1

1
2π

, dg)(s′) is a
homotopy equivalence.

In order to define the maps φℓ, we need to find, for any Vietoris–Rips parameter value
s > 0, the radius r such that VR(S1

r , dE)(s) is isomorphic to VR(S1
1

2π
, dg)( ℓ

2ℓ+1 ). So, for any
integer ℓ > 0, let ρℓ : (0, ∞) → (0, ∞) be defined by

ρℓ(s) = s

2 sin( πℓ
2ℓ+1 )

.

Then, for any s > 0 we have

ℓ
2ℓ+1 =

σρℓ(s)(s)
2πρℓ(s) ,

and therefore by Lemma 14, we have

VR(S1
ρℓ(s), dE)(s) ∼= VR(S1

1
2π

, dg)( ℓ
2ℓ+1 ) .

Similarly, define ρ∞ : (0, ∞) → (0, ∞) by ρ∞(s) = s/2.
We can now define the maps φℓ : (0, ∞) → [0, 1] for ℓ = 0, 1, 2, . . . , ∞. For the case ℓ = 0,

we let φ0(s) = νs(ω(s)) = Ms. For ℓ > 0, let

φℓ(s) = νs (min (ρℓ(s), ω(s))) .

Note that, by Lemma 13, for any s > 0 and 0 ≤ ℓ < ℓ′ ≤ ∞, we have φℓ(s) ≥ φℓ′(s).

Proof of Theorem 1. Write A = A(R, Q, w). If k > φ0(s) = Ms, then A(s,k) = ∅, so that
DR(A)(s, k) = ∅. Next, we show that if A(s,k) is non-empty, then it is an annulus. Now,

A(s,k) = {p ∈ A | µ(B(p, s)) ≥ k}
= (νs ◦ || − ||)−1 ([k, 1])

which is closed as νs and || − || are continuous. It suffices to show that ν−1
s ([k, 1]) ⊂ [0, Q] is

an interval, and this follows from Lemma 13.

SoCG 2022



58:12 The Degree-Rips Complexes of an Annulus with Outliers

Now, say that 0 < ℓ < ∞ and s > 0 and k ∈ [0, 1] are such that φℓ(s) > k > φℓ+1(s).
Let P be the left endpoint of the interval ν−1

s ([k, 1]), so that A(s,k) is an annulus with inner
radius P . We show now that ρℓ+1(s) < P < ρℓ(s).

As φℓ(s) ̸= φℓ+1(s) and ρℓ(s) > ρℓ+1(s), we have ρℓ+1(s) < ω(s) and φℓ+1(s) =
νs(ρℓ+1(s)). As k > φℓ+1(s) = νs(ρℓ+1(s)) we have ρℓ+1(s) /∈ ν−1

s ([k, 1]); as ω(s) ∈
ν−1

s ([k, 1]) and ρℓ+1(s) < ω(s), we have ρℓ+1(s) < P , as desired. By continuity of νs, there
is r ∈ (ρℓ+1(s), P ] with νs(r) = k. By definition of P , we have P ≤ r, and thus P = r and
νs(P ) = k. Since φℓ(s) > k, we have P < ρℓ(s).

Now, by Corollary 10, the inclusion S1
P ↪→ A(s,k) induces a homotopy equivalence

VR(S1
P )(s) ≃ VR(A(s,k))(s). By Lemma 14, VR(S1

P )(s) ∼= VR(S1
1

2π
, dg)( σP (s)

2πP ).
As ρℓ+1(s) < P < ρℓ(s), we have

ℓ+1
2ℓ+3 =

σρℓ+1(s)(s)
2πρℓ+1(s) >

σP (s)
2πP

>
σρℓ(s)(s)
2πρℓ(s) = ℓ

2ℓ+1

So that DR(A)(s, k) = VR(A(s,k))(s) ≃ VR(S1
P )(s) ≃ S2ℓ+1 by [1, Theorem 7.4].

If s and k are such that φ∞(s) > k, then we have seen that A(s,k) is an annulus, and
again we write P for the inner radius. Then one checks that P < ρ∞(s) = s/2, and so
VR(S1

P )(s) is contractible.
The claim that inclusions DR(A)(s, k) ↪→ DR(A)(s′, k′) are homotopy equivalences

whenever (s, k) and (s′, k′) both lie between φℓ and φℓ+1 follows from Corollary 10 and the
statement in [1, Theorem 7.4] about inclusions of Vietoris–Rips complexes. ◀

5 The annulus without outliers

We now consider the case w = 0, when the measure of the inner disc {p ∈ R2 : ||p|| < R} is
zero. The measure of an s-ball B(p, s) is not much changed from the case where w is small
but non-zero. However, the degree-Rips complexes of A(R, Q, 0) exhibit different behavior
from the case w > 0, because now the vertices of the degree-Rips complexes must lie in the
annulus AR,Q. In this section, we modify the constructions of Section 4 accordingly, and
then prove the analogue of Theorem 1 in this case.

For s > 0, let ν̃s : [R, Q] → [0, 1] be defined by ν̃s(c) = µ (B ((c, 0), s)). Define ω̃ : (0, ∞) →
[R, Q] as follows. For any s > 0, let Ms = maxc∈[R,Q] ν̃s(c). As ν̃s is continuous, ν̃s

−1(Ms) ⊆
[R, Q] is non-empty and closed, and we let ω̃(s) = min(ν̃s

−1(Ms)).
As before, φ̃0 : (0, ∞) → [0, 1] is defined as φ̃0(s) = Ms = ν̃s(ω̃(s)). But now, for

0 < ℓ ≤ ∞, we define φ̃ℓ : (0, ∞) → [0, 1] by

φ̃ℓ(s) =
{

0 if ρℓ(s) ≤ R

ν̃s (min (ρℓ(s), ω̃(s))) else

Note that the φ̃ℓ need not be continuous.

▶ Theorem 15. For any s > 0 and any k ∈ [0, 1],

DR(A(R, Q, 0))(s, k) ≃


∅ if k > φ̃0(s)
S2ℓ+1 if φ̃ℓ(s) > k > ˜φℓ+1(s) for ℓ ̸= ∞
∗ if φ̃∞(s) > k

Moreover, if 0 < ℓ < ∞ and 0 < s ≤ s′ and 0 ≤ k′ ≤ k ≤ 1 are such that

φ̃ℓ(s) > k > ˜φℓ+1(s) and φ̃ℓ(s′) > k′ > ˜φℓ+1(s′) ,

then the inclusion DR(A(R, Q, 0))(s, k) ↪→ DR(A(R, Q, 0))(s′, k′) is a homotopy equivalence.



A. Rolle 58:13

Proof. The proof is quite similar to the proof of Theorem 1. If s > 0 and k ∈ [0, 1] are such
that φ̃ℓ(s) > k > ˜φℓ+1(s), then, arguing as before, A(R, Q, 0)(s,k) is an annulus with inner
radius P such that ρℓ+1(s) ≤ P < ρℓ(s). Therefore,

ℓ+1
2ℓ+3 =

σρℓ+1(s)(s)
2πρℓ+1(s) ≥ σP (s)

2πP
>

σρℓ(s)(s)
2πρℓ(s) = ℓ

2ℓ+1

So that

DR(A(R, Q, 0))(s, k) = VR(A(R, Q, 0)(s,k))(s) ≃ VR(S1
P )(s) ≃ S2ℓ+1

again by [1, Theorem 7.4]. The claim about inclusions of degree-Rips complexes is proved in
the same way as before. ◀

6 Conclusions

In various experiments, and in this paper, we have observed the following behavior. If there
is a strong topological signal in data, and this appears somewhere in the parameter space of
degree-Rips, then if one adds outliers, the topological signal is still visible (i.e., prominent)
in degree-Rips, but at a different location in the parameter space, where the values of the
Rips parameter are smaller.

The main interest of the calculation in this paper is that, in this case, it is possible to say
precisely how the location of the signal changes in the degree-Rips parameter space. We now
briefly mention one reason why we would like to understand this in more general settings. If
one is interested in taking one-parameter slices of degree-Rips (e.g., for computing a barcode,
or for clustering as in robust single-linkage [8] or γ-linkage [20]), then choosing the slice
is tricky in practice. But it seems that, both for computational reasons and to maximize
robustness, one wants to choose a slice through “small” values of the Rips parameter. A
satisfactory understanding of the robustness of degree-Rips may shed light on this.

There are several directions in which one could try to extend the results of this paper. Of
course it would be interesting to consider measures supported on more complicated spaces,
perhaps seeking only partial calculations or approximations. One could also consider other
models for outliers. For example, one could take a convolution with a kernel (as in [19,
Section 2.1]), rather than mixing with a uniform measure. Finally, a reviewer posed the
following question: is there a density on the disc that is rotationally invariant and monotone
in the radius such that the uniform filtration at some parameter (s, k) is not an annulus?

References
1 Michał Adamaszek and Henry Adams. The Vietoris–Rips complexes of a circle. Pac. J. Math,

290(1):1–40, 2017. doi:10.2140/pjm.2017.290.1.
2 Dominique Attali, André Lieutier, and David Salinas. Vietoris–Rips complexes also provide

topologically correct reconstructions of sampled shapes. Computational Geometry, 46(4):448–
465, 2013. 27th Annual Symposium on Computational Geometry (SoCG 2011). doi:10.1016/
j.comgeo.2012.02.009.

3 Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov.
Inferring local homology from sampled stratified spaces. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS2007), October 20-23, 2007, Providence, RI, USA,
Proceedings, pages 536–546. IEEE Computer Society, 2007. doi:10.1109/FOCS.2007.33.

4 Andrew J. Blumberg and Michael Lesnick. Stability of 2-parameter persistent homology, 2020.
arXiv:2010.09628.

SoCG 2022

https://doi.org/10.2140/pjm.2017.290.1
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1109/FOCS.2007.33
http://arxiv.org/abs/2010.09628


58:14 The Degree-Rips Complexes of an Annulus with Outliers

5 Omer Bobrowski, Sayan Mukherjee, and Jonathan E. Taylor. Topological consistency via
kernel estimation. Bernoulli, 23(1):288–328, 2017. doi:10.3150/15-BEJ744.

6 Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and Topological
Inference. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2018.
doi:10.1017/9781108297806.

7 Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based
on hierarchical density estimates. In Advances in Knowledge Discovery and Data Mining,
volume 7819 of Lecture Notes in Computer Science, pages 160–172. Springer, 2013.

8 Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for the cluster tree. In J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems 23, pages 343–351. Curran Associates, Inc., 2010.

9 Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. Persistence-based
clustering in Riemannian manifolds. J. ACM, 60(6), November 2013. doi:10.1145/2535927.

10 Antonio Cuevas, Manuel Febrero, and Ricardo Fraiman. Estimating the number of clusters.
Canadian Journal of Statistics, 28:367–382, 2000.

11 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD’96: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, pages 226–231.
AAAI Press, 1996.

12 Jean-Claude Hausmann. On the Vietoris–Rips complexes and a cohomology theory for metric
spaces. In Prospects in topology. Proceedings of a conference in honor of William Browder,
Princeton, NJ, USA, March 1994, pages 175–188. Princeton, NJ: Princeton University Press,
1995.

13 J. F. Jardine. Stable components and layers. Canad. Math. Bull., pages 1–15, 2019. doi:
10.4153/S000843951900064X.

14 J. F. Jardine. Persistent homotopy theory, 2020. arXiv:2002.10013.
15 Michael Lesnick and Matthew Wright. Interactive visualization of 2-D persistence modules,

2015. arXiv:1512.00180.
16 Leland McInnes and John Healy. Accelerated hierarchical density based clustering. In 2017

IEEE International Conference on Data Mining Workshops (ICDMW), volume 00, pages
33–42, November 2018. doi:10.1109/ICDMW.2017.12.

17 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete Comput. Geom., 39:419–441, 2008.
doi:10.1007/s00454-008-9053-2.

18 Steve Y. Oudot and Donald R. Sheehy. Zigzag zoology: Rips zigzags for homology inference.
Found Comput Math, 15(5):1151–1186, 2015. doi:10.1007/s10208-014-9219-7.

19 Alessandro Rinaldo and Larry Wasserman. Generalized density clustering. Ann. Statist.,
38(5):2678–2722, October 2010. doi:10.1214/10-AOS797.

20 Alexander Rolle and Luis Scoccola. Stable and consistent density-based clustering, 2020.
arXiv:2005.09048.

21 Luis Scoccola. Locally persistent categories and metric properties of interleaving distances.
Electronic Thesis and Dissertation Repository. https://ir.lib.uwo.ca/etd/7119, 2020.

22 The RIVET Developers. RIVET. 1.1.0, 2020. URL: https://github.com/rivetTDA/rivet/.

https://doi.org/10.3150/15-BEJ744
https://doi.org/10.1017/9781108297806
https://doi.org/10.1145/2535927
https://doi.org/10.4153/S000843951900064X
https://doi.org/10.4153/S000843951900064X
http://arxiv.org/abs/2002.10013
http://arxiv.org/abs/1512.00180
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1007/s00454-008-9053-2
https://doi.org/10.1007/s10208-014-9219-7
https://doi.org/10.1214/10-AOS797
http://arxiv.org/abs/2005.09048
https://github.com/rivetTDA/rivet/


Chains, Koch Chains, and Point Sets with Many
Triangulations
Daniel Rutschmann #

Department of Computer Science, ETH Zürich, Switzerland

Manuel Wettstein1 #

Department of Computer Science, ETH Zürich, Switzerland

Abstract
We introduce the abstract notion of a chain, which is a sequence of n points in the plane, ordered
by x-coordinates, so that the edge between any two consecutive points is unavoidable as far as
triangulations are concerned. A general theory of the structural properties of chains is developed,
alongside a general understanding of their number of triangulations.

We also describe an intriguing new and concrete configuration, which we call the Koch chain due
to its similarities to the Koch curve. A specific construction based on Koch chains is then shown to
have Ω(9.08n) triangulations. This is a significant improvement over the previous and long-standing
lower bound of Ω(8.65n) for the maximum number of triangulations of planar point sets.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Planar Point Set, Chain, Koch Chain, Triangulation, Maximum Number of
Triangulations, Lower Bound

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.59

Related Version Full Version: http://arxiv.org/abs/2203.07584

Acknowledgements The material presented in this paper originates from the first author’s Master’s
thesis [18] under the second author’s direct supervision. Both authors wish to express their gratitude
to Emo Welzl, the official advisor in this endeavor.

1 Introduction

Let P be a set of n points in the Euclidean plane. Throughout the paper, P is assumed to be
in general position, which means for us that no two points have the same x-coordinate and
that no three points are on a common line. A geometric graph on P is a graph with vertex
set P combined with an embedding into the plane where edges are realized as straight-line
segments between the corresponding endpoints. It is called crossing-free if the edges have no
pairwise intersection, except possibly in a common endpoint.

Triangulations. Perhaps the most prominent and most studied family of crossing-free
geometric graphs is the family of triangulations, which may be defined simply as edge-
maximal crossing-free geometric graphs on P . It is easy to see that such a definition implies
that the edges of any triangulation subdivide the convex hull of P into triangular regions.

Let tr(P ) denote the number of triangulations on a given point set P . Trying to better
understand this quantity is a fundamental question in combinatorial and computational
geometry. For very specific families of point sets, exact formulas or at least asymptotic

1 Corresponding author

© Daniel Rutschmann and Manuel Wettstein;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 59; pp. 59:1–59:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.rutschmann@inf.ethz.ch
mailto:manuelwe@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.SoCG.2022.59
http://arxiv.org/abs/2203.07584
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


59:2 Chains, Koch Chains, and Point Sets with Many Triangulations

estimates can be derived. For example, it is well-known that if P is in convex position,
then tr(P ) = Cn−2 where Ck = 1

k+1
(2k

k

)
= Θ(k−3/24k) is the k-th Catalan number [1]. In

general, however, this problem turns out to be much more elusive.
There is an elegant algorithm by Alvarez and Seidel [7] from 2013 that computes tr(P ) in

exponential time O(2nn2). It was surpassed by Marx and Miltzow [16] in 2016, who showed
how to compute tr(P ) in subexponential time nO(

√
n). Moreover, Avis and Fukuda [9] have

shown already in 1996 how to enumerate the set of all triangulations on P (i.e., to compute
an explicit representation of each element) by using a general technique called reverse search
in time tr(P ) · p(n) for some polynomial p. A particularly efficient implementation of that
technique with p(n) = O(log log n) has been described by Bespamyatnikh [10].

Extensive research has also gone into extremal upper and lower bounds in terms of the
number of points. That is, if we define

trmax(n) = max
P : |P |=n

tr(P ), trmin(n) = min
P : |P |=n

tr(P )

to be the respectively largest and smallest numbers of triangulations attainable by a set P

of n points in general position, then various authors have attempted to establish and improve
upper and lower bounds on these quantities.

As far as the maximum is concerned, a seminal result by Ajtai, Chvátal, Newborn, and
Szemerédi [6] from 1982 shows that the number of triangulations – and, more generally, the
number of all crossing-free geometric graphs – is at most 1013n. A long series of successive
improvements [23, 11, 20, 19, 22] using a variety of different techniques has culminated in
the currently best upper bound trmax(n) ≤ 30n due to Sharir and Sheffer [21], which has
remained uncontested for over a decade. Coming from the other side, attempts have been
made to construct point sets with a particularly large number of triangulations. For some
time, the double chain by García, Noy, and Tejel [17] with approximately Θ(8n) triangulations
was conjectured to have the largest possible number of triangulations. However, variants like
the double zig-zag chain by Aichholzer et al. [5] with Θ(8.48n) triangulations and a specific
instance of the generalized double zig-zag chain by Dumitrescu, Schulz, Sheffer, and Tóth [12]
with Ω(8.65n) triangulations have since been discovered. But also on this front, no further
progress on the lower bound trmax(n) = Ω(8.65n) has been made for a decade.

The situation for the minimum is different insofar that the double circle with Θ(3.47n)
triangulations, as analyzed by Hurtado and Noy [15] in 1997, is still conjectured by many to
have the smallest number of triangulations. In other words, it is believed that the resulting
upper bound trmin(n) = O(3.47n) is best possible. On the other hand, Aichholzer et al. [4]
have shown that every point set has at least Ω(2.63n) triangulations, thereby establishing
the lower bound trmin(n) = Ω(2.63n).

The focus of this paper lies on trmax(n) and, more specifically, on establishing an improved
lower bound on that quantity. Ultimately, we show how to construct a new infinite family of
point sets with Ω(9.08n) triangulations, thereby proving trmax(n) = Ω(9.08n).

General chains. It has occurred to us that almost all families of point sets whose numbers
of triangulations have been analyzed over the years have a very special structure, which we
are trying to capture in the following definition.

▶ Definition 1. A chain C is a sequence of points p0, . . . , pn sorted by increasing x-coordinates,
such that the edge pi−1pi is unavoidable (i.e., contained in every triangulation of C) for
each i = 1, . . . , n. These specific unavoidable edges are also referred to as chain edges.



D. Rutschmann and M. Wettstein 59:3

convex position “double circle” double chain double zig-zag chain

Figure 1 Some classic point sets realized as chains. For the double circle, we need to remove one
of the inner points. Chain edges are displayed black and bold, other unavoidable hull edges in gray.

In contrast to previous convention, we use the parameter n to denote the number of
chain edges and not the number of points in C, which is n + 1. Also note that Definition 1
implies that the edge p0pn is an edge of the convex hull and, hence, also unavoidable. Indeed,
since all chain edges are unavoidable, the edge p0pn cannot possibly cross any of them and,
hence, is either above or below all the points in between. Therefore, a chain always admits a
spanning cycle of unavoidable edges with at least one hull edge. We prove in Section 2 that
this is also a characterization of chains in terms of order types (see [14] for a definition).

▶ Theorem 2. For every point set that admits a spanning cycle of unavoidable edges including
at least one convex hull edge, there exists a chain with the same order type.

All of the mentioned families of point sets (convex position, double chain, and so on) are
usually neither defined nor depicted in a way that makes it clear that they may be thought of
as chains as in Definition 1. Still, the premise of Theorem 2 is easily verified for all of them
except for the double circle, which may however be transformed into a chain by removing
one of the inner points. Figure 1 shows realizations of some such point sets as chains.

Imagine walking along the chain edges and recording at each point the information whether
we make a left turn or a right turn. It can be noted already now that such information –
while crucial – is not enough to really capture all of the relevant combinatorial structure of a
given chain. Instead, the right way of looking at it turns out to be recording for each edge
pipj whether it lies above or below all the chain edges in between.

The simple linear structure inherent to chains allows us to develop a combinatorial theory
in Section 2, by which every chain admits a unique construction starting from the primitive
chain with only one edge. Two types of sum operations, so-called convex and concave sums,
are used to “concatenate” chains, while an inversion allows to “flip” a chain on its head. This
yields for every chain a concise and unique description as an algebraic formula. Based on
this, we will also see that the number of combinatorially different chains is equal to Sn−1,
where Sk =

∑k
i=0

1
i+1
(

k
i

)(
k+i

i

)
= Θ(k−3/2(3 +

√
8)k) is the k-th large Schröder number [2].

Triangulations of chains. The unavoidable chain edges separate every triangulation cleanly
into an upper triangulation of the region above the chain edges and into a lower triangulation
of the region below. Therefore, both upper and lower triangulations may be analyzed
separately. It also follows that there is no further complication due to inner vertices as one
would typically encounter them in general point sets.

There is a simple cubic time dynamic programming algorithm for counting triangulations
of simple polygons [13]. Such an algorithm can of course also be used to count both the
upper and lower triangulations of a given chain. However, we show in Section 3 that the
additional structure of chains allows us to devise an improved quadratic time algorithm,
which plays a crucial role in the derivation of our main result.

▶ Theorem 3. Given a chain C with n chain edges as input, it is possible to compute the
number tr(C) by using only O(n2) integer additions and multiplications.

SoCG 2022



59:4 Chains, Koch Chains, and Point Sets with Many Triangulations

K0

K1

K2

K3

K4

Figure 2 The Koch chains Ks for s = 0, . . . , 4 and the corresponding Koch curves. Even though
it is hard to recognize for larger values of s, the changes in direction along the Koch curve on the
right are reflected one-to-one by the chain edges of the corresponding Koch chain on the left.

The Koch chain. There is a particular type of chain that has caught our interest and
which, to the best of our knowledge, has not been described in the literature before. We call
it the Koch chain due to its striking similarity in appearance and definition to the famous
Koch curve. More precise definitions follow later in Definition 14; for now, suppose K0 is a
primitive chain with just one chain edge, and let the s-th iteration Ks of the Koch chain be
defined by concatenating two flipped and sufficiently flattened copies of Ks−1 in such a way
that the chain edges at the point of concatenation form a left turn, see Figure 2.

Koch chains turn out to have a particularly large number of triangulations, much more
so than any other known point sets. For values of s up to 21, we have computed the
corresponding numbers of upper and lower triangulations, as well as complete triangulations,
by using our algorithm from Theorem 3. The results are displayed in Table 1.

In consequence, concatenating copies of K21 side by side results in an infinite family of
point sets with at least 9.082798n triangulations. This alone already establishes the improved
lower bound of trmax(n) = Ω(9.082798n).



D. Rutschmann and M. Wettstein 59:5

Table 1 The computed numbers of triangulations of the Koch chain Ks for s = 0, . . . , 21. As
usual, n is the number of chain edges, whereas U , L, and T stand, respectively, for the numbers of
upper, lower, and complete triangulations of the corresponding Koch chain.

s n n
√

U n
√

L n
√

T s n n
√

U n
√

L n
√

T

0 1 1.0 1.0 1.0 11 2048 3.121029 2.858643 8.921910
1 2 1.0 1.0 1.0 12 4096 2.882177 3.121029 8.995359
2 4 1.189207 1.0 1.189207 13 8192 3.134955 2.882177 9.035496
3 8 1.791279 1.189207 2.130201 14 16384 2.889213 3.134955 9.057554
4 16 2.035453 1.791279 3.646065 15 32768 3.139056 2.889213 9.069406
5 32 2.558954 2.035453 5.208633 16 65536 2.891256 3.139056 9.075820
6 64 2.564646 2.558954 6.562814 17 131072 3.140236 2.891256 9.079229
7 128 2.935733 2.564646 7.529118 18 262144 2.891838 3.140236 9.081055
8 256 2.783587 2.935733 8.171870 19 524288 3.140569 2.891838 9.082019
9 512 3.075469 2.783587 8.560839 20 1048576 2.892001 3.140569 9.082530

10 1024 2.858643 3.075469 8.791671 21 2097152 3.140662 2.892001 9.082799

Poly chains and Twin chains. We were unable to nail down the exact asymptotic behavior
of the number of triangulations of Ks as s approaches infinity. It is also unclear how much is
lost due to undercounting by not considering any interactions between the different copies of
K21 in our simple lower bound construction from just before.

To remedy the situation somewhat, in Section 4 we define and analyze more carefully the
poly-C chain (a specific way of concatenating k copies of a given chain C) and the twin-C
chain (a construction where two copies of a poly-C chain face each other, similar in spirit to
the classic double chain). Based on these considerations, we get a slightly improved lower
bound construction, and we are also able to conclude that the numbers in the last column of
Table 1 will not grow significantly larger than what we already have.

▶ Theorem 4. Let Ck be the twin-K21 chain that uses 2k copies of K21 in total. Then,

lim
k→∞

n
√

tr(Ck) = 9.083095 . . . , trmax(n) = Ω(9.083095n).

▶ Theorem 5. For the Koch chain Ks with n = 2s chain edges, we have

9.082798 ≤ lim
s→∞

n
√

tr(Ks) ≤ 9.083139.

2 Structural Properties of Chains

Recall Definition 1 from the introduction. Note that the unavoidable chain edges form an
x-monotone curve p0p1 . . . pn, to which we refer as the chain curve. An edge pipj that is not
a chain edge cannot cross the chain curve, and so it lies either above or below that curve.

▶ Definition 6. To every chain C we associate a visibility triangle V (C) with entries

V (C)i,j =


+1, if pipj lies above the chain curve;
−1, if pipj lies below the chain curve;

0, if pipj is a chain edge (i.e., i + 1 = j);
(0 ≤ i < j ≤ n).

As an example, the visibility triangles of the chains that correspond to the classic point
sets from the introduction can be seen in Figure 3.

SoCG 2022



59:6 Chains, Koch Chains, and Point Sets with Many Triangulations

0 + + + + + + + + +
0 + + + + + + + +

0 + + + + + + +
0 + + + + + +

0 + + + + +
0 + + + +

0 + + +
0 + +

0 +
0

convex position

0 − + + + + + + + +
0 + + + + + + + +

0 − + + + + + +
0 + + + + + +

0 − + + + +
0 + + + +

0 − + +
0 + +

0 −
0

“double circle”

0 − − − + + + + +
0 − − + + + + +

0 − + + + + +
0 + + + + +

0 + + + +
0 − − −

0 − −
0 −

0
double chain

0 + − − + + + + +
0 − − + + + + +

0 + + + + + +
0 + + + + +

0 + + + +
0 + − −

0 − −
0 +

0
double zig-zag chain

Figure 3 The visibility triangles corresponding to the chains depicted earlier in Figure 1. For
improved clarity, we only display the signs of the respective entries.

For i < j < k, the triangle pipjpk is oriented counter-clockwise if and only if pj lies
below the edge pipk or, equivalently, if and only if V (C)i,k = +1. It follows that two chains
with the same visibility triangle have the same order type and, therefore, the same set of
crossing-free geometric graphs and triangulations. For this reason, we consider from now on
two chains to be equal if their visibility triangles are identical.

The edge p0pn plays a crucial role in determining the shape of a chain. For example,
if V (C)0,n = +1, then this edge is the only edge on the upper convex hull and, from a global
perspective, the chain curve looks like it is curving upwards. Conversely, if V (C)0,n = −1,
then the chain curve looks like it is curving downwards. Correspondingly, we call a chain C

with V (C)0,n ≥ 0 an upward chain, and a chain with V (C)0,n ≤ 0 a downward chain. This
implies that every chain is either an upward or a downward chain, and the primitive chain
with only n = 1 chain edge is the only chain that is both.

2.1 Flips
Chains may be flipped upside-down by reflection at the x-axis, thus turning an upward chain
into a downward chain, and vice versa. See Figure 4 for an example.

▶ Proposition 7. Let C be a chain with n chain edges. Then, there is another chain (which
we denote by C and call the flipped version of C) with n chain edges and visibility triangle

V (C)i,j = −V (C)i,j (0 ≤ i < j ≤ n).

C
0 − −

0 +
0

C
0 + +

0 −
0

Figure 4 A chain C and its flipped version C with the corresponding visibility triangles.



D. Rutschmann and M. Wettstein 59:7

C1
0 − −

0 +
0

C2

0 − + +
0 + +

0 −
0

C1 ∨ C2

0 − − + + + +
0 + + + + +

0 + + + +
0 − + +

0 + +
0 −

0

C1 ∧ C2

0 − − − − − −
0 + − − − −

0 − − − −
0 − + +

0 + +
0 −

0

Figure 5 In the top row, two chains C1 and C2 with their visibility triangles. Below, the
corresponding convex and concave sums C1 ∨C2 and C1 ∧C2. Red and blue color is used to highlight
the contained substructures and their origin.

2.2 Convex and Concave Sums
Given two chains C1 and C2, we would like to concatenate them so that we get a new chain
containing C1 and C2 as substructures. As shown in Figure 5, there are two ways to do so.

▶ Proposition 8. Let C1 and C2 be chains with n1 and n2 chain edges, respectively. Then,
there is an upward chain (which we denote by C1 ∨ C2 and call the convex sum of C1 and
C2) with n1 + n2 chain edges and visibility triangle

V (C1 ∨ C2)i,j =


V (C1)i,j , if i, j ∈ [0, n1];
V (C2)i−n1,j−n1 , if i, j ∈ [n1, n1 + n2];
+1, if i < n1 < j;

(0 ≤ i < j ≤ n1 + n2).

▶ Proposition 9. Similarly, there is a downward chain (which we denote by C1 ∧ C2 and
call the concave sum of C1 and C2) with n1 + n2 chain edges and visibility triangle

V (C1 ∧ C2)i,j =


V (C1)i,j , if i, j ∈ [0, n1];
V (C2)i−n1,j−n1 , if i, j ∈ [n1, n1 + n2];
−1, if i < n1 < j;

(0 ≤ i < j ≤ n1 + n2).

Proof of Proposition 8. We focus on the convex sum; the proof for the concave sum is
analogous. We have to show that there is a point set that forms a chain with the specified
visibility triangle. Intuitively speaking, this is achieved by first flattening the two given
chains and then arranging them in a ∨-shape.

To be more precise, we employ vertical shearings, which are maps (x, y) 7→ (x, y + λx) in
R2 for some λ ∈ R. Vertical shearings preserve signed areas and x-coordinates. Hence, if a
point set realizes a specific chain, then so does its image under any vertical shearing.

SoCG 2022



59:8 Chains, Koch Chains, and Point Sets with Many Triangulations

With the help of an appropriate vertical shearing, we may realize C1 as a point set in
the rectangle [−1, 0] × [−1, 1] in such a way that the first point is at (−1, 0) and the last
point is at (0, 0). Then, given any ε ≥ 0, we may rescale vertically to get a point set Q1(ε)
in the rectangle [−1, 0] × [−ε, ε]. Let now R1(ε) be the image of Q1(ε) under the vertical
shearing with λ = −1. Then, the first point of R1(ε) lies at (−1, 1), while the last point
remains at (0, 0). For ε > 0, since Q1(ε) is a realization of C1, so is R1(ε). On the other
hand, for ε = 0, the points of R1(ε) all lie on the segment between (−1, 1) and (0, 0).

With C2 we proceed similarly to get a point set Q2(ε) in the rectangle [0, 1] × [−ε, ε], but
we now apply the vertical shearing with λ = 1 to get R2(ε) with the first point at (0, 0) and
the last point at (1, 1).

Let T (ε) = R1(ε) ∪ R2(ε). We claim that for ε > 0 small enough, T (ε) is a chain with
visibility triangle V (C1 ∨ C2) as specified. Indeed, as Ri(ε) is a realization of Ci, we only
need to check that the edges between any point of R1(ε) and any point of R2(ε) (excluding
the common point at the origin) lie above all the points in between. Since this is the case
for ε = 0 and T (ε) depends continuously on ε, the claim follows. ◀

2.3 Algebraic Properties
Using the formulas for the visibility triangles from the corresponding transformations in
Propositions 7–9, it can be checked easily that the following algebraic laws hold.

▶ Lemma 10. Let C1, C2, C3 be arbitrary chains. Then, the following are all true.

Involution: C1 = C1

De Morgan: C1 ∨ C2 = C1 ∧ C2, C1 ∧ C2 = C1 ∨ C2

Associativity: (C1 ∨ C2) ∨ C3 = C1 ∨ (C2 ∨ C3), (C1 ∧ C2) ∧ C3 = C1 ∧ (C2 ∧ C3)

However, note that for example (C1 ∧ C2) ∨ C3 is not the same chain as C1 ∧ (C2 ∨ C3).

2.4 Examples
We denote by E the primitive chain with only n = 1 chain edge; that is, the visibility triangle
has just the entry V (E)0,1 = 0. Using this as a building block, we may define two more
fundamental chains, the convex chain Ccvx(n) and the concave chain Cccv(n), by setting

Ccvx(n) = E ∨ · · · ∨ E︸ ︷︷ ︸
n copies

, Cccv(n) = E ∧ · · · ∧ E︸ ︷︷ ︸
n copies

.

The convex chain is an upward chain, while the concave chain is a downward chain. Also,
since E = E, we get Ccvx(n) = Cccv(n) by using De Morgan’s law. Finally, note that Ccvx(n)
and Cccv(n) are distinct as chains, even though they both are in convex position.

As already mentioned in the introduction, many previously studied point sets are in fact
chains, or can be seen as such. Using flips as well as convex and concave sums, we can now
describe these configurations with very concise formulas.

▶ Example 11. The double chain with n = 2k + 1 chain edges is the chain

Cdbl(n) = Cccv(k) ∨ E ∨ Cccv(k).

▶ Example 12. The zig-zag chain with n = 2k chain edges (which, in essence, is a double
circle with one of the inner points removed) is the chain

Czz(n) = Cccv(2) ∨ · · · ∨ Cccv(2)︸ ︷︷ ︸
k copies

.



D. Rutschmann and M. Wettstein 59:9

▶ Example 13. The double zig-zag chain with n = 4k + 1 chain edges is the chain

Cdzz(n) = Czz(2k) ∨ E ∨ Czz(2k).

All these examples involve formulas of constant nesting depth only. But the tools
developed up to this point allow us to also define more complicated chains via formulas of
non-constant nesting depth, without having to worry about questions of realizability. One
such chain with logarithmic nesting depth is indeed the Koch chain.

▶ Definition 14. The Koch chain Ks is an upward chain with n = 2s chain edges, defined
recursively via K0 = E and Ks = Ks−1 ∨ Ks−1 for all s ≥ 1.

Indeed, after expanding the recursive definition twice and using De Morgan’s law on both
sides, we see that the formula Ks = (Ks−2 ∧ Ks−2) ∨ (Ks−2 ∧ Ks−2) has a complete binary
parse tree with alternating convex and concave sums on any path from the root to a leaf.

2.5 Unique Construction
We want to prove the following result. In essence, it states that every chain can be constructed
in a unique way by using only convex and concave sums.

▶ Theorem 15. Every chain can be expressed as a formula involving convex sums, concave
sums, parentheses, and copies of the primitive chain with only one chain edge. This formula
is unique up to redundant parentheses (redundant due to associativity as in Lemma 10).

In particular, the above theorem allows us to encode a chain with O(n) bits (as opposed
to the O(n2) bits required for the visibility triangle) and to easily enumerate all chains of a
fixed size. We further see that the number of upward chains is given by the little Schröder
numbers [3] and the number of all chains is given by the large Schröder numbers [2].

The theorem follows by induction from the following proposition (and from an analogous
proposition that expresses downward chains as a unique concave sum of upward chains).

▶ Proposition 16. Let C be an upward chain with n > 1 chain edges. Suppose that the
lower convex hull of C is pi0pi1 . . . pik

with 0 = i0 < · · · < ik = n. For j = 1, . . . , k, let
Cj be the chain with points pij−1 , . . . , pij

. Then, each Cj is a downward chain. Moreover,
C = C1 ∨ · · · ∨ Ck and any formula that evaluates to C has the same top-level structure.

Proof. As pij−1pij is an edge of the lower convex hull of C, it is below all the points in
between. Hence, each Cj is indeed a downward chain.

To prove C = C1 ∨ · · · ∨ Ck, we have to show that both chains have the same visibility
triangle. By definition of the Cj , the visibility triangles clearly agree on all entries that stem
from an edge papb where pa and pb are both part of the same Cj . On the other hand, if pa

and pb are not part of the same Cj , then there is a j with a < ij < b. As pij
is a vertex

of the lower convex hull, it lies below the edge papb and hence V (C)a,b = +1. But this is
precisely what we also get for the visibility triangle of the convex sum C1 ∨ · · · ∨ Ck.

For uniqueness, suppose we are given any formula for C. Since C is assumed to be an
upward chain and since any concave sum is a downward chain, the formula must be of the
form C ′

1 ∨ · · · ∨ C ′
k′ . We may further assume that each C ′

j is a downward chain by omitting
redundant parentheses. Observe now that in any such convex sum of downward chains, the
resulting lower convex hull is determined by the points that are shared by any two consecutive
chains C ′

j . Since the given formula evaluates to C, we must have k′ = k and C ′
j = Cj . ◀

SoCG 2022



59:10 Chains, Koch Chains, and Point Sets with Many Triangulations

p0

p1 p2

p3p4

p5

p6

p7

p8p9

p10 p11

p12

SC
SC2

SC4

SC6

Figure 6 The situation in the proof of Theorem 2. Beware that this is just a sketch; in reality,
the pockets would need to be much more narrow in order to make all edges of SC unavoidable.

2.6 Geometric Characterization

As already mentioned in the introduction, the chain edges together with the hull edge p0pn

form a spanning cycle of unavoidable edges. We are now ready to prove that this property
characterizes chains geometrically.

Proof of Theorem 2. Let SC = p0p1 . . . pn be the spanning cycle in counter-clockwise order,
with p0pn an edge of the convex hull, which we call the base edge. As SC consists of
unavoidable edges only, it cannot be crossed by any edge that is not part of SC. Hence, we
can associate a visibility triangle with the given point set, similar to the visibility triangle of
a chain, by setting

Vi,j =


+1, if pipj is inside SC or the base edge;
−1, if pipj is outside SC;

0, if pipj is part of SC (i.e., i + 1 = j);
(0 ≤ i < j ≤ n).

By using that p0pn is a hull edge and by some geometric considerations2, one can then
show that for i < j < k, the triangle pipjpk is oriented counter-clockwise if and only if
Vi,k = +1. Hence, it suffices to construct a chain whose visibility triangle agrees with V .

Let pi0 , pi1 , . . . , pik
be the vertices of the convex hull with 0 = i0 < · · · < ik = n. For

1 ≤ j ≤ k, let Pj = {pij−1 , . . . , pij
}. We now see that either Pj consists of only two points

or that it admits a spanning cycle of unavoidable edges, namely SCj = pij−1pij−1+1 . . . pij

with base edge pij−1pij
. The situation is depicted in Figure 6. Note that the inside of SCj is

outside of SC. In fact, SCj forms a so-called pocket of SC, which means that all edges of the
cycle SCj except for pij−1pij

are also edges of SC.
By induction, there is a chain Cj with the same order type as Pj , that is, with

V (Cj)a,b =


+1, if pij−1+apij−1+b is inside SCj or the base edge;
−1, if pij−1+apij−1+b is outside SCj ;

0, if pij−1+apij−1+b is part of SCj (i.e., a + 1 = b);
(0 ≤ a < b ≤ ij − ij−1).

2 This involves a lengthy case distinction that does not add much insight. We omit the details here.



D. Rutschmann and M. Wettstein 59:11

Let us consider the flipped version Cj . As noted before, the inside of SCj is outside of
SC. As SCj moreover forms a pocket of SC, any edge outside of SCj is inside SC. Hence,

V (Cj)a,b =


+1, if pij−1+apij−1+b is inside SC;
−1, if pij−1+apij−1+b is outside SC;

0, if pij−1+apij−1+b is part of SC (i.e., a + 1 = b);
(0 ≤ a < b ≤ ij − ij−1).

We claim that C = C1 ∨ · · · ∨ Ck has the desired visibility triangle V . We have just seen
that the entries stemming from the individual Cj are correct. So, all that is left to observe is
that edges between different pockets lie inside of SC, which is indeed the case. ◀

3 Triangulations of Chains

In the previous section, we have seen that any chain can be expressed as a formula involving
only convex and concave sums. Our goal here is to understand how triangulations behave
with respect to such convex and concave sums. In order for this to work out, we have to
consider not just triangulations, but a more general notion of partial triangulations.

We start by decomposing triangulations of a chain C into an upper and a lower part. An
edge pipj is an upper edge if V (C)i,j = +1, a chain edge if V (C)i,j = 0, and a lower edge
if V (C)i,j = −1. That is, upper edges lie above the chain curve, while lower edges lie below.

▶ Definition 17. An upper (lower) triangulation of a given chain C is a crossing-free
geometric graph on C that is edge-maximal subject to only containing chain edges and upper
(lower) edges. We denote the number of upper and lower triangulations by U(C) and L(C),
respectively, and as always the number of (complete) triangulations by tr(C).

Note that the chain edges are contained in every upper and lower triangulation. Moreover,
every triangulation is the union of a unique upper and a unique lower triangulation, which
implies tr(C) = U(C) · L(C). A lower triangulation of a chain C is an upper triangulation
of the flipped version C, and therefore L(C) = U(C). For this reason, we may restrict our
attention to studying only upper triangulations.

Intuitively speaking, we can create a partial upper triangulation by combining all the
chain edges with some upper edges, in such a way that all bounded faces are triangles. Note
that then, only some of the used edges are visible from above.

▶ Definition 18. Let C be any chain with n chain edges, and let V = pi0pi1 . . . piv
with

0 = i0 < i1 < · · · < iv = n be an (x-monotone) curve composed of chain edges and upper
edges only. A partial upper triangulation of C (with visible edges V ) consists of all chain
edges, all edges in V , and a triangulation of the areas between the two.

Figure 7 depicts some partial upper triangulations and their visible edges. We are
interested in counting such triangulations parameterized by the number of triangles. It can
be noted that a partial upper triangulation with k triangles has n − k visible edges.

▶ Definition 19. Let C be any chain with n chain edges. For k = 0, . . . , n − 1, let tk(C)
be the number of partial upper triangulations of C with k triangles (i.e., with n − k visible
edges). The upper triangulation polynomial of C is the corresponding generating function

TC(x) =
n−1∑
k=0

tk(C)xk.

SoCG 2022



59:12 Chains, Koch Chains, and Point Sets with Many Triangulations

Figure 7 Four partial upper triangulations of the “double circle” with ten, six, three, and one
visible edge, respectively. As usual, chain edges are in bold, while visible edges are in blue.

As an example, enumerating all partial upper triangulations of the convex chain Ccvx(4)
shows that TCcvx(4)(x) = 1 + 3x + 5x2 + 5x3. In general, note that for every chain C we have
t0(C) = 1 and that the leading coefficient of TC(x) is equal to U(C). Moreover, we may
again think of TC(x) as the “lower triangulation polynomial” of C.

3.1 Convex and Concave Sums
Let us start with the easy case. For concave sums, we can establish the following relation.

▶ Lemma 20. A partial upper triangulation of C1 ∧ C2 is the union of a unique partial upper
triangulation of C1 and a unique partial upper triangulation of C2. Hence,

TC1∧C2(x) = TC1(x) · TC2(x), U(C1 ∧ C2) = U(C1) · U(C2).

Convex sums are more tricky. The main insight is that every partial upper triangulation
of C1 ∨ C2 consists of a partial upper triangulation of C1, a partial upper triangulation of C2,
and some edges between C1 and C2. More precisely:

▶ Proposition 21. There is a triangle-preserving bijection between
all triples (T1, T2, T3) where T1 is a partial upper triangulation of C1 (with v1 visible
edges), T2 is a partial upper triangulation of C2 (with v2 visible edges), and T3 is a partial
upper triangulation of the convex sum Cccv(v1) ∨ Cccv(v2), and
all partial upper triangulations of C1 ∨ C2.

This bijection is defined by taking the union of all triangles, see Figure 8. The proposition
then directly implies the following equation for the upper triangulation polynomial.

▶ Lemma 22. Let C1 and C2 be chains with n1 and n2 chain edges, respectively. Then,

TC1∨C2(x) =
n1−1∑
k1=0

n2−1∑
k2=0

tk1(C1) · tk2(C2) · xk1+k2 · TCccv(n1−k1) ∨ Cccv(n2−k2)(x).

Let us consider the special case of a convex sum of two concave chains with n1 and n2
chain edges, respectively. Note that any partial upper triangulation of such a chain has at
most one upper edge that is visible. Summing over all possibilities for that edge, we get

TCccv(n1) ∨ Cccv(n2)(x) = 1 +
n1∑
l=1

n2∑
r=1

(
l + r − 2

l − 1

)
xl+r−1.

C1 C2 Cccv(2) ∨ Cccv(3) C1 ∨ C2

Figure 8 From left to right, the respective partial upper triangulations T1 of C1, T2 of C2, T3 of
Cccv(2) ∨ Cccv(3), and the resulting partial upper triangulation of C1 ∨ C2 as in Proposition 21.



D. Rutschmann and M. Wettstein 59:13

Combining the above equation with Lemma 22 allows us to compute TC1∨C2(x) from
TC1(x) and TC2(x). Furthermore, by comparing the leading coefficients in the formulas from
Lemmas 20 and 22, we get the following obvious but important fact.

▶ Corollary 23. C1 ∨ C2 has at least as many upper triangulations as C1 ∧ C2. That is,

U(C1 ∨ C2) ≥ U(C1 ∧ C2).

Finally, note that the two chains C1 ∨ C2 and C2 ∨ C1 can be quite different from a
geometric point of view. But in terms of the number of triangulations, they are the same.

▶ Corollary 24. For any two chains C1 and C2, we have

TC1∨C2(x) = TC2∨C1(x), TC1∧C2(x) = TC2∧C1(x).

3.2 Dynamic Programming
In this subsection, we show how to use dynamic programming in order to speed up the
computations for a convex sum. To simplify the analysis, we assume a computational model
where all additions and multiplications take only constant time.

▶ Proposition 25. Let C1 and C2 be chains with n1 and n2 chain edges, respectively. Given
the coefficients of TC1(x) and TC2(x), we can compute TC1∨C2(x) in O(n1n2) time.

Recall that by Theorem 15, we can write any chain C as a formula involving only
convex sums, concave sums, and primitive chains with only one chain edge. Therefore, using
Proposition 25 for convex sums and Lemma 20 for concave sums, we are able to compute
TC(x) in quadratic time. Clearly, this proves Theorem 3 from the introduction.

Proof of Proposition 25. Observe that every partial upper triangulation of C1 ∨ C2 either
corresponds to a partial upper triangulation of C1 ∧ C2, or it has a unique visible upper
edge that connects a vertex of C1 with a vertex of C2. Let us call this edge the bridge. Let
further DP[l][r] be the number of partial upper triangulations whose visible edges consist
of l visible edges in C1, followed by the bridge, followed by r visible edges in C2. Then,

TC1∨C2(x) = TC1∧C2(x) +
n1−1∑
l=0

n2−1∑
r=0

DP[l][r] · xn1+n2−l−r−1.

To compute the table DP, let us see what happens when we remove the bridge. We either
end up with a partial upper triangulation of C1 ∧ C2 with l + 1 and r + 1 visible edges in C1
and C2, respectively, or we get a new bridge, which used to be an edge of the triangle below
the old bridge. In the latter case, depending on which of the two possible edges this is, we
end up with one more visible edge in either C1 or C2. Figure 9 depicts these three cases. To
summarize, for all l and r (0 ≤ l < n1, 0 ≤ r < n2),

DP[l][r] = tn1−l−1(C1) · tn2−r−1(C2) + DP[l + 1][r] + DP[l][r + 1],

with the base case DP[n1][r] = DP[l][n2] = 0. Therefore, filling up the table DP takes
O(n1n2) time, as desired. ◀

SoCG 2022



59:14 Chains, Koch Chains, and Point Sets with Many Triangulations

C1 C2 C1 C2 C1 C2

Figure 9 The three cases when removing the bridge from a partial upper triangulation of C1 ∨ C2

in the proof of Proposition 25. On the left, both C1 and C2 gain a visible edge. In the middle, only
C1 gains a visible edge. On the right, only C2 gains a visible edge. The current bridge is red, and
the edge that becomes the new bridge is blue.

3.3 Koch Chains
Recall Definition 14 and that the formula for Koch chains expands to the nested expression

Ks = (Ks−2 ∧ Ks−2) ∨ (Ks−2 ∧ Ks−2)

with alternating convex and concave sums. This repeated mixing of the two types of sums
appears to make an exact analysis of the number of triangulations of Ks very difficult.

Instead, we have implemented the quadratic time algorithm from the previous subsection
and used it to compute TKs

(x) and TKs
(x) for all s ≤ 21. To deal with the exponentially

growing coefficients, we rely on a custom floating point type with a 64 bit mantissa and a 32
bit exponent from the boost multiprecision library. As only additions and multiplications are
involved, we do not have to deal with numerical issues; in fact, the rounding errors grow at
most linearly. In addition, we make use of multi-threading and take advantage of symmetries
of Ks for a constant factor speed-up. This allows us to compute TK21(x) in around a day on
a regular workstation (Intel i7-6700HQ, 2.6GHz).

Table 1 from the introduction lists the resulting numbers. For example, K21 has ap-
proximately 9.082799n triangulations, where n = 221. In the next section, we show how the
computed coefficients of TK21(x) can be used to give bounds on tr(Ks) as s → ∞.

4 Poly Chains and Twin Chains

Let C0 be a chain with m chain edges. We want to define two particular families of chains
that can be built from many copies of C0 via concave and convex sums.

▶ Definition 26. For N ≥ 1, the poly-C0 chains (of length n = mN) are the chains

Cpoly(C0, N) = C0 ∨ · · · ∨ C0︸ ︷︷ ︸
N copies

.

▶ Definition 27. For N ≥ 1, the twin-C0 chains (of length n = 2mN + 1) are the chains

Ctwin(C0, N) = Cpoly(C0, N) ∨ E ∨ Cpoly(C0, N).

Note that both resulting chains are upward chains, as long as N > 1. For example, the
poly-E chains are the convex chains, the twin-E chains are the classic double chains, and
the twin-(E ∨ E) chains are the double zig-zag chains.

We are interested in the asymptotic behavior of the number of triangulations of these
constructions as N → ∞. Lemma 20 gives us the number of lower triangulations.

L(Cpoly(C0, N)) = U(C0 ∧ · · · ∧ C0) = U(C0)N

L(Ctwin(C0, N)) = U(Cpoly(C0, N) ∧ E ∧ Cpoly(C0, N)) = U(Cpoly(C0, N))2

For the upper triangulations, we make use of the following general result.



D. Rutschmann and M. Wettstein 59:15

▶ Theorem 28. The chains Cpoly(C0, N) have Θ̃(λn) upper triangulations, while the chains
Ctwin(C0, N) have Θ̃(τn) upper triangulations, where

λ = m

√√√√ m∑
k=1

2k(k + 1) · tm−k(C0), τ = m

√√√√ m∑
k=1

2k · tm−k(C0).

It follows that the chains Ctwin(C0, N) have Θ̃((λτ)n) complete triangulations.

▶ Example 29. Let us analyze the poly-Ccvx(4) chains and twin-Ccvx(4) chains. We have

T
Ccvx(4)(x) = 1, TCcvx(4)(x) = 1 + 3x + 5x2 + 5x3,

which yields λ = 4
√

80 and τ = 4
√

70. Therefore, the twin-Ccvx(4) chains have Θ̃( 4
√

5600n)
triangulations, where 4

√
5600 ≈ 8.6506154. Note that these chains are the generalized double

zig-zag chains from [12]. By comparison, the numerical bound there was Ω̃(8.6504n).

Using the coefficients of TK21(x) and TK21
(x) that we computed with our algorithm, we

can also analyze the twin-K21 chains and, therefore, prove Theorem 4 from the introduction.

▶ Corollary 30. The chains Ctwin(K21, N) have Θ̃(λn) triangulations, for λ ≈ 9.083095.

The next lemma, combined with the first part of Theorem 28, can further be used to
show asymptotic upper bounds for families of chains that are built from the same C0.

▶ Lemma 31. Let C be any chain that can be written as a formula involving convex sums,
concave sums and exactly N copies of C0. Then,

U(C0)N ≤ U(C) ≤ U(Cpoly(C0, N)).

Proof. Use induction on N with Corollary 23. ◀

▶ Corollary 32. In the same setting, we have

tr(C0)N ≤ tr(C) ≤ U(Cpoly(C0, N)) · U(Cpoly(C0, N)).

Proof. Apply Lemma 31 twice. First to C with C0, then to C with C0. ◀

The Koch chains Ks with s ≥ 21 can be written as formulas involving copies of K21, so
Corollary 32 applies to them. We get 9.082798n ≤ tr(Ks) ≤ 9.083139n, as in Theorem 5.

4.1 Tools for the proof of Theorem 28
We only sketch the main steps here. We use similar ideas as Section 2 of [12] with three
improvements that yield an exact Θ̃ instead of a numerical lower bound. The first improvement
is that our chain framework allows us to analyze even more general “double circles”.

▶ Theorem 33. Let c1, . . . , cm ≥ 0 be integers. Define

V (c1, . . . , cm) = Cpoly(Ccvx(1), c1) ∨ · · · ∨ Cpoly(Ccvx(m), cm)

where we omit poly chains with ck = 0. Then,

U(V (c1, . . . , cm)) ∈ Ω̃
( m∏

k=1

(
2k(k + 1)

)ck
)

where the polynomial factors in the Ω̃ only depend on m (and not on the ck).

SoCG 2022



59:16 Chains, Koch Chains, and Point Sets with Many Triangulations

Proof. By Corollary 23 and Corollary 24, we get

U(V (c1, . . . , cm)) ≥ U(Cpoly(Ccvx(1), c1)) · · · U(Cpoly(Ccvx(m), cm)).

In [8] it is shown that U(Cpoly(Ccvx(k), N)) ∈ Ω̃((2k(k + 1))N ). ◀

The second improvement is to replace the numerical optimization in [12] by this lemma.

▶ Lemma 34. Let u1, . . . , um ≥ 0 be given. Let H(α1, . . . , αm) = −
∑

k αk ln αk be the
entropy function. Then,

max
0≤α1,...,αm≤1
α1+···+αm=1

eH(α1,...,αm) ·
m∏

k=1
uαk

k =
m∑

k=1
uk.

Proof. Without loss of generality, assume that uk > 0. Then, by Lagrange multipliers, the
only maximum is at αk = uk/(u1 + · · · + um). ◀

The third improvement is a special type of generating function that behaves well with
regards to convex sums, allowing us to prove a matching upper bound for Theorem 33.

▶ Definition 35. Let C be a chain of length n. The triangulation generating function is

ϕC(x) := TC(x) −
( x

1 − x

)n+1
TC(1 − x).

Note that ϕC(x) is a rational function. As a formal power series, ϕC(x) = TC(x) + O(xn+1).

▶ Theorem 36. For any two chains C1 and C2, we have

ϕC1∨C2(x) = ϕC1(x) · ϕC2(x) · 1 − x

1 − 2x
.

Proof. By Lemma 22, it suffices to prove this for Ci = Cccv(ni). We have

ϕCccv(n)(x) = 1 −
( x

1 − x

)n+1
, TCccv(n1)∨Cccv(n2)(x) = 1 +

n1∑
l=1

n2∑
r=1

(
l + r − 2

l − 1

)
xl+r−1.

Then, induction on (n1, n2) and raw computations on power series suffice. ◀

▶ Corollary 37. We have

U(V (c1, . . . , cm)) ≤
m∏

k=1
(2k(k + 1))ck .

Proof. Let n = c1 + 2c2 + · · · + mcm be the length of V (c1, . . . , cm). Theorem 36 allows us
to compute ϕV (c1,...,cm). We have U(V (c1, . . . , cm)) = [xn−1]ϕV (c1,...,cm)(x), so we compute

[xn−1]ϕV (c1,...,cm)(x) = [xn−1]
( 1 − x

1 − 2x

)c1+···+cm−1
·

m∏
k=1

(
ϕCccv(k)(x)

)ck

= [xn−1] 1 − 2x

1 − x

m∏
k=1

(
k∑

i=0

( x

1 − x

)i
)ck

≤ [xn−1]
m∏

k=1

(
k∑

i=0

( x

1 − x

)i
)ck

≤ 2n
m∏

k=1
(k + 1)ck

as expanding the second to last term gives us
∏

(k + 1)ck summands, each some power of
x

1−x , the xn−1-coefficient of which is always less than 2n. ◀



D. Rutschmann and M. Wettstein 59:17

4.2 Proof of Theorem 28 (only Poly Chains)
Using Lemma 22, we can expand TCpoly(C0,N)(x) into an N -fold sum where each summand is
a product of N triangulation numbers tki

and some TV (a1,...,am)(x). After grouping together
summands with the same monomial of triangulation numbers, the leading coefficients are

U(Cpoly(C0, N)) =
∑

0≤a1,...,am≤N
a1+···+am=N

(
N

a1, . . . , am

) m∏
k=1

tm−k(C0)ak · U(V (a1, . . . , am)).

Then, on one hand, by Corollary 37 and the multinomial theorem,

U(Cpoly(C0, N)) ≤
∑

0≤a1,...,am≤N
a1+···+am=N

(
N

a1, . . . , am

) m∏
k=1

tm−k(C0)ak ·
m∏

k=1

(
2k(k + 1)

)ak

≤
( m∑

k=1
2k(k + 1) · tm−k(C0)

)N

.

On the other hand, by Theorem 33 and the entropy bound for multinomial coefficients,

U(Cpoly(C0, N)) ≥ 1
N c(m)

∑
0≤a1,...,am≤N
a1+···+am=N

eH( a1
N ,..., am

N )
m∏

k=1
tm−k(C0)ak ·

m∏
k=1

(
2k(k + 1)

)ak

.

By picking the largest summand, given by Lemma 34, we get the lower bound

U(Cpoly(C0, N)) ∈ Ω̃
(( m∑

k=1
tm−k(C) · 2k(k + 1)

)N
)

.

References
1 OEIS Foundation Inc. (2021). The on-line encyclopedia of integer sequences. Catalan numbers.

URL: https://oeis.org/A000108.
2 OEIS Foundation Inc. (2021). The on-line encyclopedia of integer sequences. Large Schröder

numbers. URL: https://oeis.org/A006318.
3 OEIS Foundation Inc. (2021). The on-line encyclopedia of integer sequences. Little Schröder

numbers. URL: https://oeis.org/A001003.
4 Oswin Aichholzer, Victor Alvarez, Thomas Hackl, Alexander Pilz, Bettina Speckmann, and

Birgit Vogtenhuber. An improved lower bound on the minimum number of triangulations.
In Proceedings of the 32nd International Symposium on Computational Geometry, 2016.
doi:10.4230/LIPIcs.SoCG.2016.7.

5 Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, Hannes Krasser, and
Birgit Vogtenhuber. On the number of plane geometric graphs. Graphs Comb., 23(Supplement-
1):67–84, 2007. doi:10.1007/s00373-007-0704-5.

6 Miklós Ajtai, Václav Chvátal, Monroe M. Newborn, and Endre Szemerédi. Crossing-free
subgraphs. In Theory and Practice of Combinatorics, volume 60 of North-Holland Mathematics
Studies, pages 9–12. North-Holland, 1982.

7 Victor Alvarez and Raimund Seidel. A simple aggregative algorithm for counting triangulations
of planar point sets and related problems. In Proceedings of the 29th the Symposium on
Computational Geometry, 2013. doi:10.1145/2462356.2462392.

8 Andrei Asinowski, Christian Krattenthaler, and Toufik Mansour. Counting triangulations
of some classes of subdivided convex polygons. Eur. J. Comb., 62:92–114, 2017. doi:
10.1016/j.ejc.2016.12.002.

SoCG 2022

https://oeis.org/A000108
https://oeis.org/A006318
https://oeis.org/A001003
https://doi.org/10.4230/LIPIcs.SoCG.2016.7
https://doi.org/10.1007/s00373-007-0704-5
https://doi.org/10.1145/2462356.2462392
https://doi.org/10.1016/j.ejc.2016.12.002
https://doi.org/10.1016/j.ejc.2016.12.002


59:18 Chains, Koch Chains, and Point Sets with Many Triangulations

9 David Avis and Komei Fukuda. Reverse search for enumeration. Discret. Appl. Math.,
65(1-3):21–46, 1996. doi:10.1016/0166-218X(95)00026-N.

10 Sergei Bespamyatnikh. An efficient algorithm for enumeration of triangulations. Comput.
Geom., 23(3):271–279, 2002. doi:10.1016/S0925-7721(02)00111-6.

11 Markus Denny and Christian Sohler. Encoding a triangulation as a permutation of its point
set. In Proceedings of the 9th Canadian Conference on Computational Geometry, 1997.

12 Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth. Bounds on the maximum
multiplicity of some common geometric graphs. SIAM J. Discret. Math., 27(2):802–826, 2013.
doi:10.1137/110849407.

13 Peter Epstein and Jörg-Rüdiger Sack. Generating triangulations at random. ACM Trans.
Model. Comput. Simul., 4(3):267–278, 1994. doi:10.1145/189443.189446.

14 Jacob E. Goodman and Richard Pollack. Multidimensional sorting. SIAM J. Comput.,
12(3):484–507, 1983. doi:10.1137/0212032.

15 Ferran Hurtado and Marc Noy. Counting triangulations of almost-convex polygons. Ars Comb.,
45, 1997.

16 Dániel Marx and Tillmann Miltzow. Peeling and nibbling the cactus: Subexponential-time
algorithms for counting triangulations and related problems. In Proceedings of the 32nd
International Symposium on Computational Geometry, 2016. doi:10.4230/LIPIcs.SoCG.
2016.52.

17 Alfredo García Olaverri, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-
free subgraphs of kn. Comput. Geom., 16(4):211–221, 2000. doi:10.1016/S0925-7721(00)
00010-9.

18 Daniel Rutschmann. On chains and point configurations with many triangulations. Master’s
thesis, ETH Zurich, Zürich, Switzerland, 2021.

19 Francisco Santos and Raimund Seidel. A better upper bound on the number of trian-
gulations of a planar point set. J. Comb. Theory, Ser. A, 102(1):186–193, 2003. doi:
10.1016/S0097-3165(03)00002-5.

20 Raimund Seidel. On the number of triangulations of planar point sets. Comb., 18(2):297–299,
1998. doi:10.1007/PL00009823.

21 Micha Sharir and Adam Sheffer. Counting triangulations of planar point sets. Electron. J.
Comb., 18(1), 2011. URL: http://www.combinatorics.org/Volume_18/Abstracts/v18i1p70.
html.

22 Micha Sharir and Emo Welzl. Random triangulations of planar point sets. In Proceedings of the
22nd ACM Symposium on Computational Geometry, 2006. doi:10.1145/1137856.1137898.

23 Warren D. Smith. Studies in Computational Geometry Motivated by Mesh Generation. PhD
thesis, Princeton University, Princeton, USA, 1989.

https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1016/S0925-7721(02)00111-6
https://doi.org/10.1137/110849407
https://doi.org/10.1145/189443.189446
https://doi.org/10.1137/0212032
https://doi.org/10.4230/LIPIcs.SoCG.2016.52
https://doi.org/10.4230/LIPIcs.SoCG.2016.52
https://doi.org/10.1016/S0925-7721(00)00010-9
https://doi.org/10.1016/S0925-7721(00)00010-9
https://doi.org/10.1016/S0097-3165(03)00002-5
https://doi.org/10.1016/S0097-3165(03)00002-5
https://doi.org/10.1007/PL00009823
http://www.combinatorics.org/Volume_18/Abstracts/v18i1p70.html
http://www.combinatorics.org/Volume_18/Abstracts/v18i1p70.html
https://doi.org/10.1145/1137856.1137898


Nearly-Doubling Spaces of Persistence Diagrams
Donald R. Sheehy # Ñ

Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Siddharth S. Sheth
Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Abstract
The space of persistence diagrams under bottleneck distance is known to have infinite doubling
dimension. Because many metric search algorithms and data structures have bounds that depend on
the dimension of the search space, the high-dimensionality makes it difficult to analyze and compare
asymptotic running times of metric search algorithms on this space.

We introduce the notion of nearly-doubling metrics, those that are Gromov-Hausdorff close to
metric spaces of bounded doubling dimension and prove that bounded k-point persistence diagrams
are nearly-doubling. This allows us to prove that in some ways, persistence diagrams can be expected
to behave like a doubling metric space. We prove our results in great generality, studying a large
class of quotient metrics (of which the persistence plane is just one example). We also prove bounds
on the dimension of the k-point bottleneck space over such metrics.

The notion of being nearly-doubling in this Gromov-Hausdorff sense is likely of more general
interest. Some algorithms that have a dependence on the dimension can be analyzed in terms of the
dimension of the nearby metric rather than that of the metric itself. We give a specific example of
this phenomenon by analyzing an algorithm to compute metric nets, a useful operation on persistence
diagrams.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Topological Data Analysis, Persistence Diagrams, Gromov-Hausdorff Distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.60

Funding This research was supported by the NSF under grant CCF-2017980.

1 Introduction

A persistence diagram is a topological summary commonly used in topological data analysis
(TDA). Ever since their introduction, persistence diagrams have been a popular tool to
compare the shapes of point clouds, metric spaces, and real-valued functions.

A significant advantage of persistence diagrams over many other topological invariants is
that they come equipped with a natural metric, the bottleneck distance, and thus topological
features are rendered not only qualitative, but also quantitative. This opens the possibility
of doing metric analysis on persistence diagrams, such as (approximate) nearest neighbor
search or range search.

Many metric proximity search algorithms and data structures have asymptotic running
time bounds in terms of the doubling dimension of the search space [6, 10]. The metric
space of persistence diagrams with the bottleneck distance is known to have infinite doubling
dimension [8], making it unclear whether one ought to apply standard data structures
such as cover trees [1] or net trees [10] to search in this space. Although the space of all
persistence diagrams is infinite-dimensional, all hope is not lost. In this paper, we show
that the bottleneck space of bounded persistence diagram (i.e., those whose points are in
a bounded region) is close in a Gromov-Hausdorff sense to a finite-dimensional space. Our
approach is to consider a very general class of quotient metrics generalizing the persistence
plane and then bound the doubling dimension of bottleneck distances over such metrics. We
also show that for some algorithms whose running time depends on the doubling dimension,

© Donald R. Sheehy and Siddharth S. Sheth;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 60; pp. 60:1–60:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:don.r.sheehy@gmail.com
http://www.donsheehy.net
https://doi.org/10.4230/LIPIcs.SoCG.2022.60
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


60:2 Nearly-Doubling Spaces of Persistence Diagrams

it can sometimes suffice to be close to a low-dimensional metric in order to achieve similar
running times. Specifically, we show how to construct nets efficiently in these so-called
nearly-doubling metrics.

As a first attempt at explaining why the bottleneck space of peristence diagrams appears
to behave like a low-dimensional space in some experiments (see [16]), one might hope that
“real-world” persistence diagrams naturally live in a low-dimensional subspace. Certainly,
there are cases where data naturally live on a low-dimensional manifold and zooming in, one
sees only the low-dimensional structure. However, this is not true of persistence diagrams.
Zooming in can increase rather than decrease the apparent dimension. As a result, the
key idea in this paper is not to look for a low-dimensional subspace, but rather a different
low-dimensional space that is provably Gromov-Hausdorff close.

2 Related Work

There are numerous examples of metric search algorithms where search performance depends
on the underlying space’s doubling dimension. The performance guarantees of navigating
nets in [14] depend on an exponential function of the doubling dimension. The same is true
for Clarkson’s sb data structure [6] and Har-Peled and Mendel’s net-trees [10].

The bottleneck matching data structure of Efrat et al. [7] runs in time O(n1.5 logd n) in
Rd using ℓ∞ distance. Kerber et al. [12] apply the geometric intuition of Efrat et al. [7] to the
space of persistence diagrams and give the current state-of-the-art algorithm for computing
the bottleneck distance between persistence diagrams. The running time is O(n1.5 log n).
Kerber and Nigmetov also acknowledge the high dimensionality of some spaces as a problem
when they build spanners that minimize distance computations for such spaces [13]. In their
work, they explicitly mention persistence diagrams as a motivating example of an expensive
to compute metric, but their theoretical results only apply to doubling metrics. Nigmetov [16]
gave many experimental results showing that methods geared towards doubling spaces still
work well on persistence diagrams. In this paper, we give some indication for why similar
results could apply in the (non-doubling) setting of persistence diagrams.

Fasy et al. explore the infinite doubling dimension of persistence diagrams in [8] with a
nearest neighbor data structure. They replace the bounded persistence plane with a grid to
reduce the doubling dimension of the space of bounded persistence diagrams.

Our approach is based on the fact that the persistence plane is a quotient of the ℓ∞ plane
modulo the diagonal. This approach was first defined by Bubenik and Elchesen [2, 3]. They
use this definition of the persistence plane in terms of quotient metrics to prove results on
more general spaces of persistence diagrams.

Choudhary and Kerber [5] introduce the idea of a t-restricted doubling dimension where
the dimension is computed only by focusing on balls of radius at most t. The notion of
nearly-doubling metrics we introduce in this paper takes the opposite approach, capturing
the doubling behavior at sufficiently large scales. This is more appropriate for persistence
diagrams, because the high-dimensionality is present at arbitrarily small scales.

Huang et al. [11] present a similar result for clustering problems where they compute
weighted approximations of subsets of doubling metrics in polynomial time.



D. R. Sheehy and S. S. Sheth 60:3

3 Definitions

3.1 Metric Spaces
A metric space, (X, d) is a set X and a metric d. This is the default metric space used in
this paper. The distance between a ∈ X and a set Y is given by d(x, Y ) := infb∈Y d(a, b).
The diameter of a set X is diam(X) = supa,b∈X d(a, b). An r-ball centered at a, denoted by
B(a, r), is the set of all points in X within distance at most r from a. The spread of a finite
metric space is the ratio of its diameter to its smallest pairwise distance.

A collection of sets Y covers X if the union of the sets in Y contains X. An r-cover
is a collection of sets of diameter at most 2r that covers X. A special case of an r-cover
is a cover by metric balls of radius r. A minimum r-cover is an r-cover of X of minimum
cardinality. The covering number of X is Nr(X) = |Y | where Y is a minimum r-cover of X.
The r-metric entropy of X is defined as Hr(X) = log2 Nr(X).

The doubling dimension of X, denoted dim(X), is the minimum number d such that
every subset S ⊆ X can be covered by 2d sets of half the diameter of S. As observed in
the original work on doubling dimension [14], a ball in a d-dimensional metric space can be
covered with at most 22d balls of half the radius.1 If dim(X) is finite, then X is a doubling
metric. Throughout this paper, all mentions of dimension refer to the doubling dimension.

3.2 Packings and Coverings
A set Xr ⊂ X is said to be r-dense or an r-sample of X if X ⊂

⋃
x∈Xr

B(x, r). A set Z ⊂ X

is said to be r-separated or an r-packing of X if d(zi, zj) > r for all distinct zi, zj ∈ Z. If
Z ⊂ X is both, r-dense and r-separated, then Z is an r-net of X.

The packing number of a set X, given by Mr(X), is the size of the maximum r-packing
of X. The sampling number of X, given by Sr(X), is the size of the minimum r-sampling of
X. There is a well-known relationship between the packing and covering numbers of a set X

known from [15]. We present a proof for completeness.

▶ Lemma 1 (Packing-Covering Duality). If X is a metric set and r is some distance, then,

M2r(X) ≤ Nr(X) ≤ Mr(X).

Proof. For the second inequality, let P be a maximum r-packing of X and S =
⋃

p∈P B(p, r)
be such that S is not an r-cover of X. Thus, there exists y ∈ X such that d(y, p) > r for all
p ∈ P . Therefore, P is not a maximum r-packing of X and so Nr(X) ≤ Mr(X).

For the first inequality, let Y = {Y1, . . . YN } be an r-cover of X of size Nr(X). Assume
there exists P ′, a 2r-packing of X, of size Nr(X) + 1. By the pigeonhole principle there
exists Yi such that two elements of P ′, say p, p′, are in Yi because Y is an r-cover. Thus,
d(p, p′) ≤ diam(Yi) ≤ 2r. Therefore, P ′ is not a 2ε-packing and so M2r(X) ≤ Nr(X). ◀

A similar lemma holds for the covering number and sampling number.

▶ Lemma 2. If X is a metric set and r is some distance, then

S2r(X) ≤ Nr(X) ≤ Sr(X).

1 In some prior work, the definition of doubling dimension is given in terms of coverage of metric balls
rather than general covers. That definition suffers from several drawbacks; most notably, it is not
monotone with respect to subsets.

SoCG 2022



60:4 Nearly-Doubling Spaces of Persistence Diagrams

Lemma 2 gives us a relationship between the doubling dimension computed using centered
and uncentered balls of diameter 2r.

Krauthgamer and Lee [14] say that the doubling dimension computed by covering a
metric ball with balls of half the radius is a 2-approximation of the actual doubling dimension.
The following lemma shows that the converse of that statement is also true.

▶ Lemma 3. Let X be metric space. If, for any r > 0, there exists an r/2-sample of a ball
B(x, r) in X of cardinality 2ρ, then dim(X) ≤ 2ρ.

Proof. Let Z ⊂ X be a set of diameter 2r. Then Z ⊆ B(z, 2r) for any z ∈ Z. So there
exists Z ′, an r-sample of B(z, 2r), of cardinality 2ρ. Moreover, for every z′ ∈ Z ′ there exists
an r/2-sample of cardinality 2ρ of a ball B(z′, r). Therefore, there exists an r/2-sample of Z

of cardinality at most 22ρ. Thus, from Lemma 2 there exists an r/2-cover of Z of cardinality
at most 22ρ and so dim(X) ≤ 2ρ. ◀

Krauthgamer and Lee [14] prove that an r-packing of an O(r)-ball has at most 2O(d)

points. A version of this lemma with more precise constants is the following.

▶ Lemma 4 (Standard Packing Lemma). If X is a metric space of dimension d and Z ⊂ B(x, r)
for some x ∈ X is an λ-packing then |Z| ≤ (2∆)d where ∆ ≤ 2r

λ is the spread of Z.

Let X be a metric space and let Y be a subspace. The quotient metric space (X/Y, dX/Y )
is defined so that dX/Y ([a], [b]) := min{d(a, b), d(a, Y ) + d(b, Y )}. There also exists a
surjective quotient map, q : X → X/Y such that q(x) = [x].

3.3 Bottleneck Distance
Let X be a metric space and let A and B be two finite subsets of the same cardinality. A
matching between A and B is bijection m : A → B. The bottleneck of a matching m is

max
a∈A

d(a, m(a)).

The bottleneck distance between A and B is the minimum of the bottleneck over all possible
matchings between A and B.

3.4 The Persistence Plane
The persistence plane P is the quotient (R2, ℓ∞) modulo the diagonal {(x, x) | x ∈ R}. The
point associated with the equivalence class of the diagonal in the persistence plane is called
the diagonal point. The dimension of P is infinite as shown in Figure 1a. This means that a
quotient of two doubling metric spaces can be infinite-dimensional.

A persistence diagram is a multiset of points in the persistence plane. The natural metric
on persistence diagrams is the bottleneck distance. To ensure diagrams A and B have the
same cardinality, we augment A with |B| copies of the diagonal point and we augment B

with |A| copies of the diagonal point. Then the bottleneck distance for persistence diagrams
is the bottleneck distance between the augmented diagrams.

Treating the persistence plane as a quotient metric is due to Bubenik and Elchesen. [2].
Although this perspective is nonstandard, it provides several significant benefits. It simplifies
algorithms for computing bottleneck distance, because having a single “point” representing
the entire diagonal allows one to more easily perform augmentation compared to standard
approaches [12]. It also simplifies sketching [17], in which one uses an approximate persistence
diagram that has fewer distinct points with multiplicity.



D. R. Sheehy and S. S. Sheth 60:5

(a) The Persistence Plane.

b

(b) Bottleneck Matching.

Figure 1 (a) shows why the persistence plane has infinite doubling dimension. A ball of radius r

centered at the diagonal would contain infinitely many points at distance r from the diagonal but
a ball of radius r/2 centered off the diagonal can cover only one of them. (b) shows a bottleneck
matching between two persistence diagrams.

3.5 Gromov-Hausdorff Distance
Given compact sets A and B in a metric space X, the Hausdorff distance between them is

dH(A, B) = max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)}.

For metric spaces (P, dP ) and (Q, dQ), a correspondence between P and Q is a relation
R ⊆ P × Q such that for its canonical projections on P and Q, we have πP (R) = P and
πQ(R) = Q respectively. The distortion of R is defined as

distort(R) := sup
(p1,q1),(p2,q2)∈R

|dP (p1, p2) − dQ(q1, q2)|.

The Gromov-Hausdorff distance, dGH , is a metric on compact metric spaces [9] defined as

dGH(P, Q) := 1
2 inf{distort(R) | R ⊆ P × Q is a correspondence}.

In this paper we say two metric spaces are ε-close to mean that the Gromov-Hausdorff
distance between them is at most ε. The Gromov-Hausdorff distance is a generalization of the
Hausdorff distance in the sense that if P and Q are subsets of a common metric space, then
their Gromov-Hausdorff distance is bounded by their Hausdorff distance. So if the Hausdorff
distance between two subspaces of a metric space is bounded, the Gromov-Hausdorff distance
between them is also bounded.

4 ε-Close Quotient Metric Spaces

A quotient metric space X/Y can have very high (or infinite) dimension even if X and Y are
low-dimensional. A perfect example of this phenomenon is the persistence plane, which has
infinite dimension despite being the quotient of a 2-dimensional space by a 1-dimensional

SoCG 2022



60:6 Nearly-Doubling Spaces of Persistence Diagrams

subspace. In this section, we show how to approximate a quotient space with a lower
dimensional quotient space. We first present a lemma on the dimension of a quotient of a
doubling metric modulo a finite subset.

▶ Lemma 5. Let X be a d-dimensional metric space. If Y ⊂ X is finite, then

dim(X/Y ) ≤ d + log2 |Y |.

Proof. Let S ⊆ X/Y be such that diam(S) = 2ε. Let q : X → X/Y be the quotient map.
There exists a subset S′ ⊆ X such that q(S′) = S. For y ∈ Y , define the Voronoi cell of y

restricted to S′ to be

Vor|S′(y) := {x ∈ S′ | d(x, y) = d(x, Y )}.

Then, for each y ∈ Y , we have

diam(Vor|S′(y)) := sup
a,b∈Vor|S′ (y)

d(a, b)

≤ sup
a,b∈Vor|S′ (y)

min{d(a, b), d(a, y) + d(b, y)}

= sup
a,b∈Vor|S′ (y)

min{d(a, b), d(a, Y ) + d(b, Y )}

= sup
a,b∈Vor|S′ (y)

dX/Y (q(a), q(b))

≤ sup
a,b∈S′

dX/Y (q(a), q(b))

= 2ε

So, Vor|S′(y) is a set with diameter 2ε, and, by the definition of doubling dimension, has
an ε/2-cover of size at most 2d. Let C be the union of these covers for all y ∈ Y . Then C

will ε/2-cover S′ in X. Distances only decrease in the quotient, so the sets {q(U) | U ∈ C}
will ε/2-cover S in X/Y . So, we have an ε/2-cover of S of size at most |Y |2d and thus,

dim(X/Y ) ≤ log2(|Y |2d) = d + log2 |Y |. ◀

▶ Theorem 6. Let X and Y be compact metric spaces such that Y ⊆ X and dim(X) = d.
Then, X/Y is ε-close to a metric of dimension at most d + Hε/2(Y ).

Proof. Let Yε be a minimum ε-sample of Y . Then by Lemma 2, the cardinality of the min-
imum ε/2-cover of Y is at least |Yε|. Therefore, Hε/2(Y ) ≥ log |Yε|. So, Lemma 5 implies that
X/Yε has dimension at most d + Hε/2(Y ). It will suffice to show that dGH(X/Y, X/Yε) ≤ ε.

Let q : X → X/Y and qε : X → X/Yε denote the canonical quotient maps. Let
R ⊆ X/Y × X/Yε be the relation

R = {(q(x), qε(x)) | x ∈ X}.

Quotient maps are surjective, so the canonical projections of R satisfy πX/Y (R) = X/Y and
πX/Yε

(R) = X/Yε. Thus, R is a correspondence between X/Y and X/Yε.
Because Yε is an ε-sample of Y , for any a ∈ X, we have

d(a, Y ) ≤ d(a, Yε) ≤ d(a, Y ) + ε.



D. R. Sheehy and S. S. Sheth 60:7

It follows that

dX/Y (q(a), q(b)) = min{d(a, b), d(a, Y ) + d(b, Y )}
≤ min{d(a, b), d(a, Yε) + d(b, Yε)}
= dX/Yε

(qε(a), qε(b)),

and also,

dX/Yε
(qε(a), qε(b)) = min{d(a, b), d(a, Yε) + d(b, Yε)}

≤ min{d(a, b), d(a, Y ) + d(b, Y ) + 2ε}
≤ dX/Y (q(a), q(b)) + 2ε.

We can then bound the distortion of R as follows.

distort(R) = sup
a,b∈X

∣∣dX/Y (q(a), q(b)) − dX/Yε
(qε(a), qε(b))

∣∣ ≤ 2ε.

Because Y is compact, Yε is finite and X/Yε is the required ε-close space with doubling
dimension at most d + Hε/2(Y ). ◀

Note that the preceding theorem does not directly apply to the persistence plane because
it is not compact. We resolve this issue in Section 9 using bounded persistence diagrams.

5 Nearly-Doubling Metric Spaces

A metric space X is ε-nearly-doubling if there exists a doubling metric space Y such that
dGH(X, Y ) ≤ ε. In the previous section we showed that quotients of a doubling metric by a
compact set are ε-nearly-doubling with a dimension that depends on ε. In later sections,
we will show how bottleneck spaces are also nearly doubling with a focus on subsets of
persistence diagrams. Before proceeding to those results, we explain the sense in which
nearly doubling metrics share some of the properties of doubling metrics. In particular, they
can behave like doubling metrics down to scale O(ε). The most useful fact about doubling
metrics is that they satisfy the packing property described in Lemma 4. The following lemma
shows how to bound the size of packings of sufficiently large balls in nearly-doubling metrics.

▶ Lemma 7 (Nearly-Doubling Packing Lemma). Let r, λ ∈ R be such that λ < r. Let S be a
λ-packing of a ball B(c, r) in a metric space (X, d). Let (X ′, d′) be a d-dimensional metric

space such that dGH(X, X ′) ≤ ε. If λ = αε for some α > 2, then |X| ≤
(

2α+2
α−2 ∆

)d

where
∆ ≤ 2r

λ is the spread of S.

Proof. Because dGH(X, X ′) ≤ ε there exists a correspondence R between X and X ′ such
that |d(a, b) − d′(a′, b′)| ≤ 2ε for all (a, a′), (b, b′) ∈ R. For each x ∈ S, choose f(x) ∈ X ′ to
be a point such that (x, f(x)) ∈ R. Let S′ = {f(x) | x ∈ S}. For any a, b ∈ S,

|d(a, b) − d′(f(a), f(b))| ≤ 2ε.

Because S is a λ-packing, we have that for all a, b ∈ S,

d′(f(a), f(b)) ≥ d(a, b) − 2ε

≥ λ − 2ε.

SoCG 2022



60:8 Nearly-Doubling Spaces of Persistence Diagrams

In other words, distinct points of S map to points of distance at least λ − 2ε > 0. It follows
that f is a bijection and S′ is a (λ − 2ε)-packing. The distortion bound on R implies that

diam(S′) = sup
a,b∈S

d′(f(a), f(b))

≤ sup
a,b∈S

d(a, b) + 2ε

= diam(S) + 2ε

≤ 2r + 2ε.

So, the spread ∆′ of S′ is at most 2r+2ε
λ−2ε . Using the fact that αε = λ < r, we get the following

bound on ∆′ in terms of the spread ∆ of S.

∆′ ≤ 2r + 2ε

λ − 2ε
=

2r + 2λ
α

α−2
α λ

<
2rα + 2r

(α − 2)λ ≤ α + 1
α − 2∆.

We then use the fact that f is bijection and apply Lemma 4, to get

|S| = |S′| ≤
((

2α + 2
α − 2

)
∆

)d

. ◀

The nearly-doubling packing lemma explains why algorithms and data structures defined
for doubling metrics work for nearly-doubling metrics down to some scale. We give a specific
example and analysis in the following section.

6 Clarkson’s Algorithm in Nearly-Doubling Spaces

The main theme of this paper is that although some metric spaces are high-dimensional, they
are Gromov-Hausdorff close to low-dimensional metrics. We showed this is true for a wide
class of compact quotient metrics in Section 4 and will extend these results to the bottleneck
space of bounded persistence diagrams in Section 9. Before we tackle those problems, we will
show that being close to a low-dimensional metric has some benefit. In particular, there are
basic algorithms for doubling metrics that will also be efficient in nearly-doubling metrics.

In this section we analyze the performance of an algorithm for constructing a λ-net in a
nearly-doubling metric space. The main result will be that as long as λ ≥ 3ε, the running
time can be bounded in terms of the dimension of an ε-close metric.

The algorithm we will consider for computing the net is sometimes called Clarkson’s
Algorithm. It is a variation of an algorithm originally due to Clarkson [6] with some
simplifications due to Har-Peled and Mendel [10] and Sheehy [19]. The idea is to produce a
net by greedy sampling (also known as farthest point sampling or Gonzalez ordering). Any
point may be selected first and each subsequent point maximizes the distance to the points
selected so far, stopping when the distance is less than the target scale λ. An open source
Python implementation is available [18]. Given a finite subspace P of a doubling metric
space X with cardinality n, the algorithm computes a net of P in time O

(
n log diam(P )

λ

)
.

The big-O hides terms that are exponential in the dimension, but if the dimension is too
high, the simpler upper bound of O(n2) applies. So, for inputs with polynomial spread in
doubling metrics, the running time is O(n log n). Thus, our goal is to show that similar
guarantees hold in nearly-doubling metrics.

The algorithm follows an incremental construction of the greedy sampling. The points
in the net will be numbered p0, p1, . . .. The first point p0 is chosen arbitrarily. Let Pi :=
{p0, . . . , pi−1} be the ith prefix, and λi := d(pi, Pi) be the insertion radius of pi. For every



D. R. Sheehy and S. S. Sheth 60:9

point p ∈ Pi the algorithm maintains a list of q ∈ P\Pi that are the reverse nearest neighbors
of p. Essentially, this is the Voronoi cell of p. A neighbor graph is defined on the Voronoi
cells that is guaranteed to have an edge (pi, pj) if adding a point in the Voronoi cell of pi

can affect the Voronoi cell of pj . At each step i the algorithm has the points of Pi in a max
heap with the key of a point pa given by the distance from pa to the farthest point in its
Voronoi cell. The algorithm simply pops a point pa from the heap, and adds the farthest
point pi to the net. The Voronoi cells and the neighbor graph are updated. The neighbor
graph stores exactly the cells that could change so one only needs to check the Voronoi cells
of the neighbors of pa. New edges in the neighbor graph incident to pi can be found among
the 2-hop neighbors (i.e., neighbors of neighbors) of pa. A key insight to make the algorithm
efficient is to keep some extra edges (pa, pb) in the graph as long as d(pa, pb) ≤ 3λi. Clarkson
showed that the desired neighbors will all satisfy such a condition.

▶ Theorem 8. Let ε and λ be such that λ ≥ 3ε. If X is ε-close to a d-dimensional metric
space, then Clarkson’s algorithm computes a λ-net of X in 2O(d)n log2(n diam(X)

λ ) time.

Proof. There are three aspects of the algorithm that must be analyzed: the update to the
neighbor graph, the heap operations, and the update to the Voronoi cells. In the ith iteration,
the points Pi form a λi-net. So, Lemma 7 and the condition that d(pa, pb) ≤ 3λi for neighbors
pb of pa imply that the degree of pa is 2O(d). This means that updating the neighbor graph
takes constant time per point. It also means that the number of keys to update in the heap
is constant per iteration. So, the heap operations take 2O(d)n log2 n time in the worst case.

To analyze the number of distance computations performed when updating the Voronoi
cells, we apply an analysis similar to that used by Har-Peled and Mendel [10]. For each point
x ∈ P , we want to count how many times we compute the distance from q to the newly
inserted point pi (to see if it should change Voronoi cells). In such cases, we say pi touches x.

Let x ∈ Vor(pk) be touched by newly inserted point pi ∈ Vor(pj).

d(x, pi) ≤ d(x, pk) + d(pk, pi)
≤ d(x, pk) + d(pk, pj) + d(pj , pi)
≤ λi + 3λi + λi = 5λi.

For an integer m, define the annulus Am = {pi | 2m ≤ λi < 2m+1 and pi touches x}.
If pi ∈ Am then d(x, pi) ≤ 5λi ≤ 5 · 2m+1. So Am ⊂ B(x, 5 · 2m+1). Moreover Am is
2m-separated. Therefore, by Lemma 7, |Am| ≤ 2O(d). Thus, x is touched at most a constant
number of times in each annulus. The algorithm stops as soon as λi is smaller than λ, so,
the number of nonempty annuli that can contain x is at most log2

diam(P )
λ . It follows that

the total work of updating the Voronoi cells takes 2O(d)n log2
diam(P )

λ time.
Combining the running time of the graph update, the heap operations and the cell

updates, we get a total running time of 2O(d)n log2

(
n diam(P )

λ

)
. ◀

7 Bottleneck Metrics

If the doubling dimension of X is d, then a d-dimensional k-point diagram is a set of k

elements of X. Let X(k) be the space of k-point diagrams in X with the bottleneck metric.

▶ Theorem 9. If X is a d-dimensional metric space, then for all integers k ≥ 1, we have
dim(X(k)) ≤ 4kd.

SoCG 2022



60:10 Nearly-Doubling Spaces of Persistence Diagrams

Proof. Let D ∈ X(k) and positive r ∈ R be chosen arbitrarily. It will suffice to construct an
r/2-sample of B(D, r) of size 22kd. For each point pi ∈ D, there is an r/2-sample {xi,j}j∈[22d]
of B(pi, r) in X. For j : [k] → [22d], let

Cj := {xi,j(i) | i ∈ [k]}.

Assume all diagrams A = {ai}i∈[k] are indexed so the bottleneck matching with D has ai

matched to pi. This means that each ai ∈ A is in B(pi, r). If j(i) is the index of the nearest
point in the sample of B(pi, r), then there is a matching A → Cj with bottleneck at most
r/2. So, the set C = {Cj | j : [k] → [22d]} is an r/2-sample of B(D, r). Clearly, |C| = 22kd,
so the dimension of X(k) is at most 2 log2(|C|) = 4kd. ◀

If the bottleneck space is over a quotient metric, then Lemma 5 and Theorem 9 together
yield the following corollary.

▶ Corollary 10. Let X/Y be a quotient metric induced by a finite subspace Y over X. Then,
dim(X/Y

(k)) ≤ 4k(d + log2 |Y |).

For many metric spaces such as ℓp-spaces, maximal sets with a fixed diameter are metric
balls. In such metrics, or if the doubling dimension is defined in terms of metric balls (as
opposed to general covers), there is no need for the factor of 4 in the dimension for the
preceding two results. In particular this holds in the persistence plane.

For bottleneck spaces defined over nearly doubling metrics, it is useful to have the
following theorem showing that the mapping from metric spaces to bottleneck spaces is
Lipschitz.

▶ Theorem 11. If X and Y are compact metric spaces, then for all integers k ≥ 1,

dGH(X(k), Y (k)) ≤ dGH(X, Y ).

Proof. Let R be a minimum distortion correspondence between X and Y . Let 2ε be the
distortion of R. Let [k] = {0, . . . k − 1}. Let R(k) denote the correspondence between X(k)

and Y (k) defined as

R(k) = {({ai}i∈[k], {bi}i∈[k]) | ∃ bijection m : [k] → [k] s.t. ∀i, (ai, bm(i)) ∈ R}.

To show that dGH(X(k), Y (k)) ≤ ε, it is sufficient to bound the distortion of R(k).
Let (A, B) and (A′, B′) be arbitrary pairs in the R(k), where A = {ai}i∈[k], A′ = {a′

i}i∈[k],
B = {bi}i∈[k], and B′ = {b′

i}i∈[k]. Without loss of generality, we may assume they are indexed
so that for all j, we have (aj , bj) ∈ R and (a′

j , b′
j) ∈ R. Let η : [k] → [k] be the permutation

of indices that gives the bottleneck matching between A and A′, i.e.,

dB(A, A′) = max
i∈[k]

dX(ai, a′
η(i)).

It follows that

dB(B, B′) ≤ max
j∈[k]

dY (bj , b′
η(j))

≤ max
j∈[k]

(dX(aj , a′
η(j)) + 2ε)

= dB(A, A′) + 2ε.

Symmetrically, we have dB(A, A′) ≤ dB(B, B′) + 2ε and thus, distort(R(k)) ≤ 2ε =
distort(R). To conclude, we observe that

dGH(X(k), Y (k)) ≤ 1
2distort(R(k)) ≤ 1

2distort(R) = dGH(X, Y ). ◀



D. R. Sheehy and S. S. Sheth 60:11

1518

2

20

4

10

33

13

98

20

3

98

56

22

148

63

Figure 2 The image on the left shows a persistence diagram for points sampled on a sphere. The
image on the right shows a sketch of that persistence diagram with first 14 points. The number to
the right of each point shows its multiplicity in the sketch.

8 Bottleneck Spaces with Multiplicity

A k-point diagram D with multiplicity is a set D ⊆ X of cardinality k and a function
mD : D → Z+. The total multiplicity of D is mD =

∑
p∈D mD(p). In this section, we

consider the space X(k,N) of k-point diagrams with total multiplicity N . This may be
viewed as a subset of X(N), consisting of those diagrams with at most k distinct points. In
Theorem 12, we show that X(k,N) has a dimension that depends only logarithmically on N .

The motivation for studying such diagrams with multiplicity again comes from persistence
diagrams. It often happens that points in a persistence diagram have multiplicity. Recently, it
was shown that actively seeking such multiplicity can lead to efficient sketches of persistence
diagrams [17].

A simple sketching algorithm is to run Clarkson’s Algorithm (see Section 6) on a persistence
diagram starting with the diagonal point until k points have been added. The algorithm
maintains the Voronoi cells of the points in the net and therefore one simply sets the
multiplicity of each point to be the number of points in its Voronoi cell. The result is a
k-point sketch, Dk, of a diagram D. It is then straightforward to show that dB(D, Dk) is at
most dH(D, Dk) [17]. The advantage of the sketch is that it is a guaranteed approximation
and can be represented in much less size. In some cases (i.e., for k = O(log n)) it is
asymptotically faster to compute the bottleneck distance between sketches than the full
diagrams. There is nothing special about persistence diagrams in this algorithm. An example
of a sketch is shown in Figure 2.

If D ∈ X(N), then Dk ∈ X(k,N). Theorem 9 gives a bound of 4Nd on the dimension of
X(N). However, as we show in the theorem below, the sketch will live in a lower dimensional
space.

▶ Theorem 12. Let X be a d-dimensional metric space. If k and N are positive integers
such that k ≤ N , then dim(X(k,N)) ≤ min{4Nd, 2k(2d + log2(2Nk))}

Proof. Let C ∈ X(k,N) and r ∈ R be with r > 0 be chosen arbitrarily. We will construct
an r/2-cover of B(C, r) in X(k,N) by constructing an r/2-sample as follows. For each p ∈ C

there exists an r/2-sample Up of B(p, r) of size at most 22d. This means that if d(x, p) ≤ r,
then for some ui ∈ Up, we have d(x, ui) ≤ r/2.

SoCG 2022



60:12 Nearly-Doubling Spaces of Persistence Diagrams

Let U = ∪p∈CUp. Because |C| = k, we know that |U| ≤ 22dk. Let S ⊆ X(k,N) be defined
as

S := {D | D ⊂ U , |D| ≤ k, mD = N} .

For S to be an r/2-sample of B(C, r) we will show that for all E ∈ B(C, r) there exists
D ∈ S such that dB(D, E) ≤ r/2. Let E = (E, mE) be any diagram in B(C, r). For
every q ∈ E, there exists p ∈ C such that d(p, q) ≤ r. So, there exists q′ ∈ Up such that
d(q, ui) ≤ r/2 for some ui ∈ Up.

Consider a diagram D = (D, mD) where D = {q′ | q ∈ E} and mD(q′) = mE(q) for all
q′ ∈ D. By construction D ∈ S. The bottleneck distance is bounded as follows

dB(D, E) ≤ max
q∈E

d(q, q′) ≤ r/2.

It follows that S is an r/2-sample.
We bound the size of S as follows. Because |U| ≤ 22dk, there are at most

(22dk
k

)
≤ kk22kd

different choices of D for a diagram in S. The number of ways to distribute multiplicity N

over the k points of D is
(

N+k−1
k−1

)
≤ (2N)k, because N ≥ k. It then follows that

|S| ≤ kk22kd(2N)k = (2Nk22d)k.

So, the doubling dimension is at most

2 log2(|S|) ≤ 2 log2(2Nk22d)k = 2k(2d + log2(2Nk)).

On the other hand, treating the diagram as a collection of N points without multiplicity
and applying the bounds for diagrams without multiplicity (Theorem 9) yields a dimension
at most 4Nd. Combining these two upper bounds on the dimension completes the proof. ◀

9 The Space of Bounded Persistence Diagrams

From the preceding two sections we get an approximation of single-class quotient spaces
and a bound on the doubling dimension of finite point bottleneck spaces respectively. These
results come together in the space of bounded persistence diagrams to form a nearly low
dimensional subspace of persistence diagrams.

The persistence plane is denoted by P = (R2, ℓ∞)/{(x, x) | x ∈ R}. Let P0 denote the
bounded persistence plane obtained by restricting P to [0, 1] × [0, 1]. Then, P(N)

0 is the
bottleneck space of N -point bounded persistence diagrams.

The key to finding low-dimensional spaces near P(N)
0 is to first find a low-dimensional

space near the persistence plane. Theorem 6 gives a recipe for doing so. There is an ε-sample
of the diagonal of the bounded persistence plane of size

⌈ 1
2ε

⌉
. So, one can consider the plane

modulo the ε-sample rather than modulo the whole diagonal. The resulting metric space is
denoted Pε. It is a special case of the construction in Theorem 6, and thus the following
lemma is immediate.

▶ Lemma 13. For all ε > 0, dim(Pε) ≤ 2 + log2
⌈ 1

2ε

⌉
and dGH(P0, Pε) ≤ ε.

▶ Theorem 14. The bottleneck space of N -point bounded persistence diagrams, P(N)
0 is

ε-close to a space of dimension at most 4N(2 + log2
⌈ 1

2ε

⌉
).



D. R. Sheehy and S. S. Sheth 60:13

Proof. By Theorem 12 and Lemma 13,

dim(P(N)
ε ) ≤ 4N dim(Pε) ≤ 4N(2 + log2

⌈
1
2ε

⌉
).

Moreover, Theorem 11 implies that

dGH(P(N)
0 , P(N)

ε ) ≤ dGH(P0, Pε) ≤ ε. ◀

Thus, the space of bounded N -point persistence diagrams is nearly low-dimensional. We
can further lower the dimension of the space using sketching. Having fewer points with
multiplicity decreases the dimension.

▶ Lemma 15. For all positive integers N, k such that N ≥ k,

dGH(P(N)
0 , P(k,N)

0 ) ≤
√

1
2k

.

Proof. Given an N -point diagram D, the greedy sketching algorithm produces a k-point
diagram Dk with mass N . The bottleneck distance is well-defined for all persistence diagrams,
so it will suffice to bound the Hausdorff distance. As P(k,N)

0 is a subspace of P(N)
0 , the

Hausdorff distance will be the maximum of dB(D, Dk) over all bounded N -point persistence
diagrams. The greedy sketch produces for each k, an εk-net of D with multiplicities so
that dB(D, Dk) = εk. The maximum size of an εk-net in P0 restricted to the region above
the diagonal is 1

2ε2
k

. It follows that k ≤ 1
2ε2

k

and therefore, εk ≤
√

1
2k . So, for all bounded

N -point persistence diagrams D, we have dB(D, Dk) ≤
√

1
2k and so the Gromov-Hausdorff

distance bound follows. ◀

We can now combine the previous results to prove the following theorem.

▶ Theorem 16. The space P(N)
0 of bounded N -point persistence diagrams is (ε +

√
1

2k )-close
to a metric of dimension at most 2k(4 + 2 log2

⌈ 1
2ε

⌉
+ log2(2Nk)).

Proof. First, the triangle inequality, Lemma 15, and Theorem 6 that

dGH(P(N)
0 , P(k,N)

ε ) ≤ dGH(P(N)
0 , P(k,N)

0 ) + dGH(P(k,N)
0 , P(k,N)

ε ) ≤
√

1
2k

+ ε.

Then, Theorem 12 and Lemma 13 implies

dim(P(k,N)
ε ) ≤ 2k(2 dim(Pε) + log2(2Nk))

≤ 2k(2 dim(Pε) + log2(2Nk))

≤ 2k(4 + 2 log2

⌈
1
2ε

⌉
+ log2(2Nk)). ◀

10 Conclusion

In this paper, we analyze several generalizations of metric spaces that arise naturally in
topological data analysis, with the goal of bounding their dimension. Although the most
significant of these, the bottleneck distance for persistence diagrams is infinite-dimensional,
we show that in an important sense, it can behave like a low-dimensional space.

SoCG 2022



60:14 Nearly-Doubling Spaces of Persistence Diagrams

The idea of analyzing the running time of an algorithm in terms of the dimension of
a nearby metric leads to many natural questions. For example, it should be possible to
build linear-size spanners with ε (additive) slack if the input is ε-close to a doubling metric
by a direct application of the ideas from Section 6. It is interesting to ask what other
metric constructions that are known to be efficient in doubling metrics are also efficient in
nearly-doubling metrics.

Although our general study of bottleneck spaces over quotient metrics was primarily
motivated by the special case of persistence diagrams, this is not the only example. Other
methods in topological data analysis produce different quotient metrics of the type studied
in this paper, for example in the work of Carrière and Oudot on Mapper [4]. It remains
to find more such examples. It also remains to consider more general quotient metrics, i.e.,
those defined by an arbitrary equivalence relation rather than just a subset.

Lastly, the results of this paper imply that in many cases, one could hope that metric
analysis on collections of persistence diagrams is a reasonable thing to do. Not only will
the entropy of the collection be bounded, many standard algorithms designed for doubling
metrics should work well without change.

References

1 Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pages
97–104, New York, NY, USA, 2006. Association for Computing Machinery. doi:10.1145/
1143844.1143857.

2 Peter Bubenik and Alex Elchesen. Universality of persistence diagrams and the bottleneck
and wasserstein distances, 2021. arXiv:1912.02563.

3 Peter Bubenik and Alex Elchesen. Virtual persistence diagrams, signed measures, wasserstein
distances, and banach spaces, 2021. arXiv:2012.10514.

4 Mathieu Carrière and Steve Oudot. Structure and stability of the 1-dimensional mapper. In
SoCG, 2016.

5 Aruni Choudhary and Michael Kerber. Local doubling dimension of point sets. In CCCG
2015 Proceedings, 2015.

6 Kenneth L. Clarkson. Nearest neighbor searching in metric spaces: Experimental results for
‘sb(s)‘. Preliminary version presented at ALENEX99, 2003.

7 A. Efrat, A. Itai, and M. J. Katz. Geometry Helps in Bottleneck Matching and Related
Problems. Algorithmica, 31(1):1–28, September 2001. doi:10.1007/s00453-001-0016-8.

8 Brittany Terese Fasy, Xiaozhou He, Zhihui Liu, Samuel Micka, David L. Millman, and Binhai
Zhu. Approximate Nearest Neighbors in the Space of Persistence Diagrams. arXiv:1812.11257
[cs], March 2021. arXiv:1812.11257.

9 Misha Gromov. Metric Structure for Riemannian and Non-Riemannian Spaces. Birkhauser,
1999.

10 Sariel Har-Peled and Manor Mendel. Fast Construction of Nets in Low-Dimensional Metrics
and Their Applications. SIAM Journal on Computing, 35(5):1148–1184, January 2006.
doi:10.1137/S0097539704446281.

11 Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for clustering
(with outliers) in doubling metrics. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 814–825, 2018. doi:10.1109/FOCS.2018.00082.

12 Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry Helps to Compare
Persistence Diagrams. ACM Journal of Experimental Algorithmics, 22:1–20, December 2017.
doi:10.1145/3064175.

https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1145/1143844.1143857
http://arxiv.org/abs/1912.02563
http://arxiv.org/abs/2012.10514
https://doi.org/10.1007/s00453-001-0016-8
http://arxiv.org/abs/1812.11257
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1109/FOCS.2018.00082
https://doi.org/10.1145/3064175


D. R. Sheehy and S. S. Sheth 60:15

13 Michael Kerber and Arnur Nigmetov. Metric spaces with expensive distances. International
Journal of Computational Geometry and Applications, 30(02):141–165, June 2020. doi:
10.1142/S0218195920500077.

14 Robert Krauthgamer and James R. Lee. Navigating nets: Simple algorithms for proximity
search. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’04, pages 798–807, USA, 2004. Society for Industrial and Applied Mathematics.

15 G. G. Lorentz. Metric entropy and approximation. Bulletin of the American Mathematical
Society, 72(6):903–937, 1966. doi:bams/1183528486.

16 Arnur Nigmetov. Comparison of Topological Summaries. PhD thesis, TU Graz, 2019.
17 Don Sheehy and Siddharth Sheth. Sketching persistence diagrams. In SoCG, 2021.
18 Donald R. Sheehy. greedypermutations, 2020. URL: https://github.com/donsheehy/

greedypermutation.
19 Donald R. Sheehy. One hop greedy permutations. In Proceedings of the 32nd Canadian

Conference on Computational Geometry, pages 221–225, 2020.

SoCG 2022

https://doi.org/10.1142/S0218195920500077
https://doi.org/10.1142/S0218195920500077
https://doi.org/bams/1183528486
https://github.com/donsheehy/greedypermutation
https://github.com/donsheehy/greedypermutation




From Geometry to Topology: Inverse Theorems for
Distributed Persistence
Elchanan Solomon # Ñ

Department of Mathematics, Duke University, Durham, NC, USA

Alexander Wagner #

Department of Mathematics, Duke University, Durham, NC, USA

Paul Bendich
Department of Mathematics, Duke University, Durham, NC, USA
Geometric Data Analytics, Inc., Durham, NC, USA

Abstract
What is the “right” topological invariant of a large point cloud X? Prior research has focused on
estimating the full persistence diagram of X, a quantity that is very expensive to compute, unstable
to outliers, and far from injective. We therefore propose that, in many cases, the collection of
persistence diagrams of many small subsets of X is a better invariant. This invariant, which we call
“distributed persistence,” is perfectly parallelizable, more stable to outliers, and has a rich inverse
theory. The map from the space of metric spaces (with the quasi-isometry distance) to the space of
distributed persistence invariants (with the Hausdorff-Bottleneck distance) is globally bi-Lipschitz.
This is a much stronger property than simply being injective, as it implies that the inverse image
of a small neighborhood is a small neighborhood, and is to our knowledge the only result of its
kind in the TDA literature. Moreover, the inverse Lipschitz constant depends on the size of the
subsets taken, so that as the size of these subsets goes from small to large, the invariant interpolates
between a purely geometric one and a topological one. Lastly, we note that our inverse results do
not actually require considering all subsets of a fixed size (an enormous collection), but a relatively
small collection satisfying simple covering properties. These theoretical results are complemented by
synthetic experiments demonstrating the use of distributed persistence in practice.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases Applied Topology, Persistent Homology, Inverse Problems, Subsampling

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.61

Related Version Full Version: https://arxiv.org/abs/2101.12288

Supplementary Material Software (Source Code): https://github.com/aywagner/DIPOLE

Funding Elchanan Solomon: AFOSR Grant FA9550-18-1-0266.
Alexander Wagner : NSF CCF-1934964
Paul Bendich: AFOSR Grant FA9550-18-1-0266.

1 Introduction

Morphometric techniques in data analysis can be loosely divided into the geometric and the
topological. Geometric techniques, like landmarks, the Gromov-Hausdorff metric, optimal
transport methods, PCA, MDS [21], LLE [31], and Isomap [34], are designed to capture
some combination of global and local metric structure. Many geometric methods can be
solved exactly or approximately via spectral methods, and hence are fast to implement
using iterative and sketching algorithms. In contrast, topological techniques, like t-SNE [36],
UMAP [25], Mapper [33], and persistent homology, aim to capture large-scale connectivity
structure in data. The growing popularity of t-SNE and UMAP as dimensionality reduction
methods suggests that many data sets are topologically, but not metrically, low-dimensional.
In this paper, we introduce a new technique into topological data analysis (TDA) that:

© Elchanan Solomon, Alexander Wagner, and Paul Bendich;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 61; pp. 61:1–61:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elchanansolomon@gmail.com
http://www.elchanansolomon.com
https://orcid.org/0000-0003-3461-4556
mailto:alexander.wagner@duke.edu
https://orcid.org/0000-0002-5961-7852
https://doi.org/10.4230/LIPIcs.SoCG.2022.61
https://arxiv.org/abs/2101.12288
https://github.com/aywagner/DIPOLE
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


61:2 From Geometry to Topology: Inverse Theorems for Distributed Persistence

1. Provably interpolates between topological and geometric structure (Theorem 20).
2. Is perfectly parallelizable.
3. Is provably stable to perturbation of the data (Proposition 5).
4. Is provably invertible, with globally stable inverse (Theorems 14, 20, 25, and Corollary 23).

Moreover, these inverse results do not require computing the full invariant, but a relatively
small subset that can largely be chosen at random (Propositions 27 and 28).

5. Suggests new methods for a host of morphometric challenges, ranging from dimensionality
reduction to feature extraction (Section 6).

The theoretical guarantees provided here are, to our knowledge, unmatched by any other
method in topological data analysis. In addition to these theoretical contributions, we
demonstrate our theoretical results empirically on synthetic data sets.

2 The Distributed Topology Problem

Let λ be an invariant of metric spaces (X, dX). For k ∈ Z, we can define a distributed
invariant Λk that maps the metric space X to the set of pairs {(S, λ(S)) | S ⊂ X, |S| = k} if
k > 0 and to ∅ otherwise. Put another way, Λk(X) records the values of λ on subsets of X

of a fixed size.
When the computational complexity of λ scales poorly in the size of X, it is much faster to

compute λ for many small subsets of X. Λk takes this intuition to its limit by performing this
calculation for all subsets of a given size. Although it is unfeasible to actually compute Λk

in its entirety, sampling from Λk is simple. This distinguishes Λk from the original invariant
λ, which, in general, cannot be “sampled from” or broken into smaller pieces. Moreover, Λk

may contain just as much, if not more, information than λ:
Let λ send a finite point cloud X in Rd to its Euclidean distance matrix. For all k ≥ 2,
Λk contains the same information as λ.
Let λ send a finite point cloud X in Rd to its diameter. For any k ≥ 2, Λk can be used
to deduce λ.
Let λ send a finite point cloud X in Rd to its mean. For any k ≥ 1, Λk can be used to
deduce λ. In fact, if k < |X|, Λk determines X up to rigid motion.

Finally, Λk is more robust than λ, as outliers in X have no impact on Λk for outlier-free
subsets S ⊂ X. The theoretical goal of this paper is to address the following questions:

▶ Problem 1. If λ is a topological invariant of metric spaces, how much information is
contained in Λk for various k? Does Λk determine λ, or perhaps contain strictly more
information?

▶ Problem 2. How does the information contained in Λk depend on the parameter k?

▶ Problem 3. What information can be deduced from Λk if we can only compute it for a
relatively small collection of subsets?

2.1 Case Study: The Noisy Circle
To illustrate the advantage of working with distributed invariants, we compare three data
sets of 500 points. The first is spaced regularly around a circle, the second sampled uniformly
from the unit disc, and the third contains 450 points on the circle and 50 points sampled
from the disc (we call this the noisy circle), see Figure 1. For each of these point clouds, we
compute their full 1-dimensional persistence diagrams, see Figure 2. In addition, for each



E. Solomon, A. Wagner, and P. Bendich 61:3

point cloud, we sample 1000 subsets of size 10, compute the resulting 1000 1-dimensional
persistence diagrams, vectorize them as persistence images1, and average the results, see
Figure 3. The persistence diagram of the noisy circle is most similar to that of the disc (in
Bottleneck distance), demonstrating that ordinary persistence does not see the circle around
which most of the data points are clustered. The distributed persistence, however, tells a
different story. The distribution for the noisy circle interpolates between the distributions of
the other two spaces, but is substantially closer to that of the circle than the disc.

Figure 1 Three point clouds: the circle, the noisy circle, and the disc.

Figure 2 The persistence diagrams of our point clouds, plotted in birth-persistence coordinates.

3 Prior Work on Distributed Topology

In [9], Chazal et al. propose the following framework. Given a metric measure space (X, ρ, µ),
sample m points and compute the persistence landscape of the associated Vietoris-Rips
filtration. This procedure produces a random persistence landscape, λ, whose distribution
is denoted Ψm

µ . Repeating this procedure n times and averaging produces the empirical
average landscape, an unbiased estimator of the average landscape EΨm

µ
[λ]. This approach is

similar to the distributed topological invariants considered in this paper, except we consider
a collection of topological invariants as a labeled set rather than taking their sum. Though

1 This is a technique for turning a persistence diagram into a function by placing a Gaussian kernel at
each dot in the persistence diagram, with mean and variance varying by location, cf. [1].

SoCG 2022



61:4 From Geometry to Topology: Inverse Theorems for Distributed Persistence

Figure 3 Averaged distributed persistence images of our three spaces. The dominant orange/yellow
region is the overlay of the circle (red) distribution and the noisy circle (green) distribution.

Bubenik [3] gives conditions in Theorem 5.11 under which a collection of persistence diagrams
may be reconstructed from the average of their corresponding persistence landscapes, such
an inverse exists only generically, and is highly unstable.

The main theorem of [9] is that the average landscape is stable with respect to the
underlying measure. Specifically, if µ and ν are two probability measures on the same metric
space (X, ρ), the sup norm between induced average landscapes is bounded by m1/pWρ,p(µ, ν)
for any p ≥ 1. Similar results were obtained in [2] for distributions of persistence diagrams of
subsamples. In particular, Blumberg et al. showed that the distribution of barcodes with the
Prokhorov metric is stable with respect to the associated compact metric measure space in
the Gromov-Prokhorov metric. Both results are analogous to the stability of the distributed
topological invariants given in Proposition 5. However, working with labeled collections of
distributed topological invariants, we are also able to provide inverse stability results, such
as our main Theorem 20, which states that changes in the metric structure are bounded with
respect to changes in the distributed topological invariants.

In [26], Mémoli developed the study of curvature sets, an invariant introduced by Gromov
that consists of computing the distance matrices of every subset of a fixed size in an ambient
metric space. Shortly after this paper appeared, Gómez and Mémoli [18] released a manuscript
studying the collection of persistence diagrams of subsets of bounded cardinality in an ambient
metric space. This construction is similar to ours, with the following key differences: firstly,
we take subsets of a fixed cardinality k, or else cardinalities in a small neighborhood of k,
whereas Gómez and Mémoli consider all subsets of cardinality at most k, and, secondly, we
have different conventions for which homological degrees to compute. More importantly,
that paper differs from ours in the nature of the results: Gómez and Mémoli are focused
on computing this invariant for simple spaces, and giving examples of when their invariant
characterizes the homotopy type of the underlying space. This paper is focused on inverse
results of a geometric flavor, trying to understand how distributed topological invariants
characterize the quasi-isometry type of the underlying space.

In [4], Bubenik et al. consider unit disks, denoted DK , of surfaces of constant Gaussian
curvature K with K ∈ [−2, 2]. Since these spaces are all contractible, their reduced singular
homology is trivial and global homology cannot distinguish them. However, the authors
prove that the maximum Čech persistence for three points sampled from DK determines K.



E. Solomon, A. Wagner, and P. Bendich 61:5

The authors also successfully apply the same empirical framework of average persistence
landscapes from [9] to experimentally determine the curvature of DK for various K. The
authors in [14] used average persistence landscapes to provide experimental verification of
a known phase transition. Finally, the authors in [24] use average persistence landscapes
to achieve improved results, compared to standard machine learning algorithms, in disease
phenotype prediction based on subject gene expressions.

4 Background

The content of this paper assumes familiarity with the concepts and tools of persistent
homology. Interested readers can consult the articles of Carlsson [6] and Ghrist [16] and the
textbooks of Edelsbrunner and Harer [15] and Oudot [30]. We include the following primer
for readers interested in a high-level, non-technical summary.

Persistent homology records the way topology evolves in a parametrized sequence of
spaces. To apply persistent homology to a metric space, a pre-processing step is needed
that converts the metric space into such a sequence. The two classical ways of doing this
are called the Rips and Čech filtrations, respectively; the former is much easier to compute
than the latter, but contains less geometric information. Both consist of inserting simplices
into the metric space at a parameter value equal to the proximity of the associated vertex
points. As the sequence of spaces evolves, the addition of certain edges or higher-dimensional
simplices changes the homological type of the space – these simplices are called critical.
Persistent homology records the parameter values at which critical simplices appear, notes
the dimension in which the homology changes, and pairs critical values by matching the
critical value at which a new homological feature appears to the critical value at which it
disappears. This information is organized into a structure called a persistence diagram, and
there are a number of metrics with which persistence diagrams can be compared.

If one forgets about the pairing and retains only the dimension information of the critical
values, the resulting invariant is called a Betti curve. Betti curves are simpler to compute
and work with than persistence diagrams, but are less informative and harder to compare.
Finally, if one also drops the dimension information by taking the alternating sum of the Betti
curves, one gets an Euler curve. Euler curves are even less discriminative than Betti curves,
but enjoy the special symmetry properties of the Euler characteristic. These symmetries will
be put to good use in this paper.

Persistence theory guarantees that a small modification to the parametrization of a
sequence of spaces implies only small changes in its persistence diagram. To be precise, if
the appearance time of any given simplex is not delayed or advanced by more than ϵ, the
persistence diagram as a whole is not distorted by more than ϵ in the appropriate metric
(called the Bottleneck distance). Throughout this paper we will use the trick of modifying
filtrations by rounding their critical values to a fixed, discrete set.

As a rule, the map sending a metric space to its persistence diagram is not injective,
as many different point clouds share the same persistence diagram [11, 23, 22]. Moreover,
the set of metric spaces sharing a common persistence diagram need not be bounded, so
that arbitrarily distinct spaces might have the same persistence. There are a number of
constructions in the TDA literature that attempt to correct this lack of injectivity by
constructing more sophisticated invariants; these are often called topological transforms.
Examples include the Persistent Homology Transform [35, 17, 12, 20] and Intrinsic Persistent
Homology Transform [29]; consult [28] for a survey of inverse results in persistence. These
methods are largely infeasible to approximate, unstable, and provide no global Lipschitz

SoCG 2022



61:6 From Geometry to Topology: Inverse Theorems for Distributed Persistence

bounds on their inverse, so two wildly different spaces may produce arbitrarily similar (though
not exactly identical) transforms. The distributed topology invariant studied in this paper is
injective, easy to sample from, stable, and with Lipschitz inverse.

We conclude with an analysis of the computational complexity of persistence calculations.
Persistence calculations are O(Nω), where N is the number of simplices in the complex
and ω is the matrix multiplication constant [27]. For a metric space X, the number of
(d + 1)-dimensional simplices in the Rips complex is

( |X|
d+2
)
, which are needed for computing

persistence in degree d. Thus the computational complexity is O(
( |X|

d+2
)ω

), which is huge even
for small values of d. Computing persistence of M k-element subsets is O(M

(
k

d+2
)ω), which

is orders of magnitude smaller for the values of M used in the experiments of Section 7.

5 Theoretical Results

In what follows, we let λ be any of the following four topological invariants: (1) Rips
Persistence (RP), (2) Rips Euler Curve (RE), (3) Čech Persistence (CP), and (4) Čech Euler
Curve (CE). To be precise, RP and CP consist of persistence diagrams for every homological
degree. When working with either of these invariants, the Bottleneck or Wasserstein distance
is the maximum of the Bottleneck or Wasserstein distances over all degrees. Our decision
to focus on these four invariants is motivated by a desire to keep the following analysis
as simple and concrete as possible, and many of the arguments and theorems below carry
through, with minor modification, for other invariants. Indeed, a very similar analysis works
for functional persistence, where the sampling consists of picking k points at random and
computing functional persistence on their induced subcomplex; details of this proof will
appear in future work.

5.1 Stability
A result of the following form is standard in the TDA literature, and demonstrates the ease
of producing stable invariants using persistent homology.

▶ Definition 4. Let (X, dX) and (Y, dY ) be metric spaces. A map ϕ : (X, dX) → (Y, dY ) is an
ϵ-quasi-isometry if |dX(x1, x2)−dY (ϕ(x1), ϕ(x2))| ≤ ϵ for all x1, x2 ∈ X. The quasi-isometry
distance between X and Y is the smallest ϵ for which such a map exists.

▶ Proposition 5. Let ϕ : (X, dX) → (Y, dY ) be an ϵ-quasi-isometry of metric spaces. Then
for all subsets S ⊆ X, and λ either RP or CP, dB(λ(S), λ(ϕ(S))) ≤ ϵ, where dB is the
Bottleneck distance on persistence diagrams.

Proof. This follows immediately from the Gromov-Hausdorff stability theorem for persistence
diagrams of metric spaces [8, 10]. ◀

5.2 Injectivity
In this section, we show how distributed persistence can be used to reconstruct the isometry
type of a metric space. This provides an answer to Problem 1. To help motivate this result,
we consider the simple cases of k = 2 and k = 3.

▶ Lemma 6. For all of our invariants, Λ2 determines the isometry type of X, and hence
also λ(X).



E. Solomon, A. Wagner, and P. Bendich 61:7

Proof. For each invariant, the distance between two points x, y ∈ X can be read off of λ(x, y),
so Λ2 records all the pairwise distances between points in X, and hence the metric dX . The
metric then determines the Rips or Čech complex of X as an abstract metric space. When
considering the Čech complex of a point cloud X in Euclidean space, the metric determines
the embedding of X up to Euclidean isometry (see [32]), and hence the Čech filtration. ◀

Setting k = 3 is sufficient to break the implication of an isometry.

▶ Lemma 7. Λ3 does not determine the isometry type of X.

Proof. A simple counterexample suffices. Let X consist of the vertices of an obtuse triangle
with angle θ > π/2. Varying the angle θ in (π/2, π) alters the isometry type of X, but leaves
its persistent homology unchanged. ◀

To obtain stronger results, we introduce the following two generalizations, one to the
notion of distributivity, and the other to the invariants λ.

▶ Definition 8. Let k = {k1, k2, · · · , kr} be a set of positive integers . We write Λk for the
union

⋃r
i=1 Λkr

.

▶ Definition 9. For any of our four invariants λ, let λm be the invariant restricted to the
m-skeleton of the Rips or Čech complex, and define Λm

k analogously.

Setting m = 0 provides information only on the cardinality of X. The 1-skeleton
contains both geometric and topological information, and its persistence is fast to compute.
As m increases, computational complexity goes up, and the resulting invariants record
higher-dimensional topological information. The following results demonstrate how knowing
sufficiently many Euler characteristic invariants allows one to determine new ones.

▶ Definition 10. For a set X, let K(X) be the full simplicial complex on X, which is
abstractly equal to the power set of X. A function f : K(X) → R on the simplices of K is
called monotone if f(σ) ≤ f(τ) when σ is a face of τ . For a subcomplex T ⊆ K(X), we
write T (r) to denote the r-sublevel set of f on T .

▶ Lemma 11. Let R, T1, · · · , Tn be subcomplexes of K(X), the full complex on X. Writing Sm

to denote the m-skeleton of a subcomplex S, suppose that Rm =
⋃n

i=1 T m
i . For f : K(X) → R

a monotone function on K, we have:

χ(Rm(r)) = χ

(⋃
i

T m
i (r)

)
=
∑

i

χ(T m
i (r))

−
∑
i<j

χ(T m
i (r) ∩ T m

j (r))

+
∑

i<j<k

χ(T m
i (r) ∩ T m

j (r) ∩ T m
k (r)) · · ·

+ (−1)n−1χ(T m
1 (r) ∩ · · · ∩ T m

n (r)).

Proof. This follows from the inclusion-exclusion property of the Euler characteristic. ◀

▶ Lemma 12. Let λ be RE or CE. For any metric space X and k ≥ m + 2, let k =
{k, k − 1, · · · , k − m − 1}. Then Λm

k determines Λm
k−m−2.

SoCG 2022



61:8 From Geometry to Topology: Inverse Theorems for Distributed Persistence

Proof. Let Y ⊂ X be a subset of size (k − m − 2). Let {x1, · · · , xm+2} be points in
X \ Y , and set W = Y ∪ {x1, · · · , xm+2} and Wi = W \ {xi}. Let f : K(X) → R be the
function giving rise to the Rips or Čech filtration, and let R = K(W ) and Ti = K(Wi). By
construction, Rm =

⋃n
i=1 T m

i , since every (m + 1)-element subset of W lies in some Wi,
so we may apply Lemma 11. This gives a formula for the Euler characteristic of Rm(r)
in terms of the Euler characteristics of the T m

i (r) and their intersections. By hypothesis,
we know the Euler characteristics of every term in this equation other than the final
term, χ(T m

1 (r) ∩ · · · ∩ T m
n (r)) = χ(Km(Y )(r)), since every other term involves the Euler

characteristic of a set with cardinality in k. This means that we can solve for χ(Km(Y )(r))
in terms of known quantities, and hence deduce the Euler curve for the Rips or Čech filtration
on Y . See Figure 4 for a concrete example. ◀

k = 5

W1 W2

χ = 0

W1 \W2 W2 \W3 W1 \W3

Y

W

k = 4

k = 3

k = 2

χ = { 1

χ = 0 χ = 1

W3

χ = 1 χ = 2 χ = 0

χ = 1

{ 1 = (0 + 1 + 0) { (1 + 2 + 0) + 1

Figure 4 Our goal is to deduce the Euler Characteristic (at a fixed scale r) of Y , a 1-simplex
consisting of k = 2 points. This can be derived from the Euler Characteristics of the other
subcomplexes in the diagram above.

▶ Corollary 13. Let λ be RE or CE. For any metric space X and k ≥ m + 2, let k =
{k, k − 1, · · · , k − m − 1}. Then Λm

k determines Λm
2 .

Proof. Lemma 12 shows that {Λm
k , Λm

k−1, · · · Λm
k−m−1} determines Λm

k−m−2. By the same
logic, {Λm

k−1, Λm
k−2, · · · Λm

k−m−2} determines Λm
k−m−3. Repeating this argument, we can

deduce Λm
2 . ◀

Leveraging Lemma 12, we prove that all of our persistence invariants determine the
isometry type of X.

▶ Theorem 14. For any of the four invariants λ and k ≥ m + 2 > 2, let k = {k, k −
1, · · · , k − m − 1}. Then Λm

k determines the isometry type of X.

Proof. When m ≥ 1, the m-skeleton contains all edges in X, so Lemma 6 applies. If the set
{k, k − 1, · · · , k − m − 1} contains 2, this follows from Lemma 6. Otherwise, let us assume λ

is either RE or CE, as RP or CP contain more information than their Euler characteristic
counterparts. By Corollary 13, we can determine Λm

2 and then apply Lemma 6. ◀



E. Solomon, A. Wagner, and P. Bendich 61:9

▶ Remark 15. Note that m = 1 suffices to apply the prior theorem. As m gets larger, more
topological information is needed to determine the isomety type of the underlying space.

5.3 Inverse Stability
We now consider what happens if two metric spaces have distributed invariants which are
similar but not identical. We show that this implies a quasi-isometry between X and Y , with
constant depending quadratically on the subset size parameter k. This provides a precise
answer to Problem 2 on how the distributed invariant interpolates between geometry and
topology.

The key insight in the proof of this result is that there is always a way to modify the Rips
or Čech filtrations on X and Y to force their distributed invariants to coincide exactly. Taken
together with the telescoping trick of Corollary 13, this modified invariant must agree for all
subsets of size two. Persistence stability allows us to assert that the modified invariant and
the original persistence invariant are a bounded distance apart, so equality of the modified
invariant gives near-equality of the Rips or Čech persistences on subsets of size two, which is
nothing more than pairwise distance data.

The proposed modification to our filtration consists of rounding it to a discrete set of
values. The following technical lemma shows how to pick a rounding set R that aligns two
sets of real values without moving any value more than a bounded amount. The proof of
this lemma can be found in the full version of the paper.

▶ Lemma 16 (Rounding Lemma). Let P = {p1 ≤ p2 ≤ · · · pN } and Q = {q1, q2 · · · , qN } be
two multisets of real numbers. Define di = |pi − qi|, let ϵ = max di and δ =

∑n
i=1 di. Then

there exists a subset R ⊂ R and a map π : P ∪ Q → R sending a real value x to the unique
closest element in R (rounding up at midpoints), with:
1. π(pi) = π(qi) for all i.
2. |π(x) − x| ≤ 3ϵ + 4δ.
In particular, since ϵ ≤ δ, we can replace (2) with (2*) |π(x) − x| ≤ 7δ.

This lemma is central to the proof of the central result of this section, Theorem 20,
the details of which can be found in the full version. The preceding definitions clarify the
statement of the theorem:

▶ Definition 17. Let m < k be natural numbers. We define the following partial sum of
binomial coefficients:

S(k, m) =
(

k

2

)
+
(

k

3

)
+ · · · +

(
k

m + 1

)
.

▶ Definition 18. Let (K, f) be a filtered simplicial complex, i.e. a simplicial complex K with
a monotone function f : K → R encoding the appearance times of simplices. Given a subset
R ⊂ R, rounding this filtration to R consists of post-composing f with the map sending every
element of R to its nearest element in R (rounding up at midpoints).

▶ Remark 19. The appearance time of simplices in an R-rounded filtration occur only at
values contained in R. The effect of this rounding on the resulting persistence diagrams is to
round the birth and death times of its constituent dots; no new points are introduced.

▶ Theorem 20. Let λ be either RP or CP, and take k > m > 0. Let Z and Y be metric
spaces, ϕ : Z → Y a map of sets, and X ⊆ Z a subspace such that ϕX : X → Y is a surjection.
Let Γ ⊂ P (Z) be a collection of subsets of cardinality k through k − m − 1 satisfying the
following two properties:

SoCG 2022



61:10 From Geometry to Topology: Inverse Theorems for Distributed Persistence

(X-Covering property) For every pair of points {x1, x2} in X there is a subset S ∈ Γ such
that |S| = k and {x1, x2} ⊂ S.
(Closure property) If S ∈ Γ has |S| = k, and S′ ⊂ S has |S′| ≥ k − m − 1, then S′ ∈ Γ.

Suppose that dB(λm(S), λm(ϕ(S))) ≤ ϵ for all S ∈ Γ. If λ is RP, ϕX is a 112k2ϵ quasi-
isometry, and if λ is CP, ϕX is a 224S(k, m)ϵ quasi-isometry.

▶ Remark 21. The collection Γ of all subsets of size k through k − m − 1 enjoys the covering
and closure properties above. However, it is easy to find much smaller collections satisfying
the conditions of Theorem 20, see Section 5.5.

▶ Remark 22. Theorem 20 answers Problem 2 by showing that smaller values of k give more
control of quasi-isometry type than larger values. This justifies our claim that distributed
topology interpolates between local geometry and global topology.

One can shrink the collection Γ further by asking only that its elements cover sufficiently
close approximations for X and Y ; in this case, the resulting bound is not in the quasi-isometry
distance but in the Gromov-Hausdorff distance.

▶ Corollary 23. Let λ be either RP or CP, and take k > m > 0. Let ϕ : Z → Y be a map of
metric spaces, X ⊂ Z a subspace, and X ′ ⊂ Z another, potentially much smaller, subspace
with dGH(X, X ′) < δ. Suppose also that dGH(ϕ(X ′), Y ) < δ. Finally, let Γ ⊂ P (Z) be a
collection of subsets of cardinality k through k − m − 1 satisfying the covering and closure
properties for X ′, and such that dB(λm(S), λm(ϕ(S))) ≤ ϵ for all S ∈ Γ. If λ is RP, then
dGH(X, Y ) ≤ 112k2ϵ + 2δ, and if λ is CP, then dGH(X, Y ) ≤ 224S(k, m)km+1ϵ + 2δ.

Proof. Theorem 20 implies that ϕ is a quasi-isometry from X ′ to ϕ(X ′). We can turn this
into a a Gromov-Hausdorff matching between X and Y using the facts that dGH(X, X ′) < δ

and dGH(ϕ(X ′), Y ) < δ, and two applications of the triangle inequality increase the bound
by 2δ. ◀

▶ Corollary 24. If X ⊂ Rd1 and Y ⊂ Rd2 , then the quasi-isometry bound for Čech persistence
in Theorem 20 can be replaced with:

112k2

(
ϵ +

√
2d1

d1 + 1 +
√

2d2

d2 + 1

)

Note that the added terms sum at most to 2
√

2, so that this bound is better than the bound
given in Theorem 20 for large values of ϵ, but does fail to go to 0 as ϵ → 0.

Proof. The Rips and Čech persistence of point clouds in Rd are always within
√

2d
d+1 of

one another in the bottleneck distance, cf. Theorem 2.5 in [13]. The result then follows by
replacing Čech persistence with Rips persistence and using the triangle inequality. ◀

5.4 Topology + Sparse Geometry
Our goal now is improve the results of the prior section by giving quasi-isometry bounds
that scale linearly in k, rather than quadratically. This can be accomplished by using an
inclusion-exclusion argument on the 1-skeleton persistence of X that uses only subsets of
size k and k − 1, and does not need subsets of size k − 2. Namely, given a subset Y ⊂ X

with |Y | = (k − 2), we take Y = W1 ∩ W2 for |W1| = |W2| = (k − 1) and W = (W1 ∪ W2)
with |W | = k, as shown in Figure 5, and attempt to deduce the Euler characteristic of Y

from those of W1, W2, and W . However, the union of the 1-skeleton complexes on W1 and



E. Solomon, A. Wagner, and P. Bendich 61:11

W2 is not the 1-skeleton complex on W , owing to the fact that W contains an extra edge
connecting the pair of vertices in W \ Y . Indeed, this is why we chose to cover W with three
subsets of cardinality k − 1 in Lemma 11.

k = 5

W1 W2

W

k = 4

k = 3

Y

Figure 5 Our goal is to deduce the Euler Characteristic (at a fixed scale r) of Y , a subcomplex of
size k = 3, using subcomplexes of size k = 4 and k = 5. However, the inclusion-exclusion argument
fails because the union of the complexes of W1 and W2 is not the complex on W = W1 ∪ W2, and
the missing edge is shown in red.

The effect of this extra edge on persistence is quite subtle, but its effect on the Euler
curve is trivial, as it amounts to subtracting a step function supported on [r, ∞), where r is
the appearance time of the extra edge in the complex. If we knew r, we could correct the
deficit in our inclusion-exclusion argument. Note that the we have the freedom to choose W1
and W2 as we like, so to make this argument work we need only know the length of a single
edge in X that does not intersect Y . A very small collection of edge lengths suffice to patch
up the inclusion-exclusion argument for all subsets of X of size at most k. The following
theorem improves on the bounds in Theorem 20 by assuming that ϕ is already known to be
a quasi-isometry on a sparse subset L ⊂ Z. The proof can be found in the full version.

▶ Theorem 25. Let λ, ϕ, Z, Y , and X be as in the statement of Theorem 20, and let
k > m = 1. Let L ⊂ Z be a subset satisfying the following geometric condition:∑

(xi,xj)∈L×L

|∥xi − xj∥ − ∥ϕ(xi) − ϕ(xj)∥| ≤ ϵ2.

Let Γ ⊂ P (Z) be a collection of subsets of cardinality in {k, k − 1} satisfying the following
two properties:

((X, L)-Covering property) For every pair of points {x1, x2} in X, not both in L, there is
a subset S ∈ Γ such that |S| = k, {x1, x2} ⊂ S, and S \ {x1, x2} ⊂ L.
(Closure property) If S ∈ Γ has |S| = k, and S′ ⊂ S has |S′| = k − 1, then S′ ∈ Γ.

Finally, suppose that dB(λ1(S), λ1(ϕ(S))) ≤ ϵ1 for all S ∈ Γ. Then ϕX is a 56(k +1)ϵ1 +28ϵ2
quasi-isometry.

▶ Remark 26. Relatively few subsets of cardinality k are needed to satisfy the (X, L)-covering
property, as one subset is needed for every pair of points in (X \L), of which there are

(|X\L|
2
)
,

and S = L ∪ {x} works to cover all pairs of the form (l, x) for l ∈ L and x ∈ X, adding
|X \ L| more subsets. Finally, to satisfy the closure property, we include all (k − 1)-element
subsets of these sets, which multiplies the total number of subsets by at most (k + 1).

SoCG 2022



61:12 From Geometry to Topology: Inverse Theorems for Distributed Persistence

5.5 Probabilistic Results
Theorems 20 and 25 and Corollary 23 tell us that we do not need to consider all

(|X|
k

)
+( |X|

k−1
)

+ · · ·+
( |X|

k−m−1
)

subsets S ⊆ X of size |S| ∈ {k, · · · , k −m−1}, so long as the collection
Γ of subsets considered satisfies appropriate cover and closure properties. This still leaves
the question of how to produce such a collection Γ in practice. Of the two conditions, the
covering property is the more flexible, as the closure property explicitly requires the full
downward closure of the appropriate cardinalities. The aim of this section is to show that a
relatively small collection of randomly chosen size-k subsets are likely to satisfy the covering
property, and hence generate a collection Γ that is both covering and closed. We will assume
that Z = X in the language of Theorem 20, i.e. that we are randomly sampling from the
space we wish to cover. All proofs can be found in the full version.

The following two propositions, with p = 2, provide a lower bound on the probability
that a random collection of M subsets covers pairs in X.

▶ Proposition 27. Let X be a set of size n, and choose M subsets {S1, · · · , SM } of size k

by uniform sampling without replacement. Let p ≤ k and A be the outcome that every set of
p points (x1, · · · , xp) is contained in at least one Si. Then

P (A) ≥ 1 −
(

n

p

)(
1 −

(
k − p + 1
n − p + 1

)p)M

.

▶ Proposition 28. Let A be as in the prior proposition. For any ϵ ∈ (0, 1), if

M ≥ (p log
(

ne

p

)
− log(1 − ϵ))

(
n − p + 1
k − p + 1

)p

then P (A) ≥ ϵ.

These bounds are further improved in the setting of Corollary 23, when {S1, · · · , SM }
need not cover all pairs of points in X, but all pairs of points in some δ-GH approximation
X ′ of X, as there are typically many such approximates with many fewer points than X.

6 Applications

Distributed persistence has myriad applications in machine learning and data analysis, in
that it can be applied in many of the same settings as standard persistent homology. We list
here a few noteworthy examples.

(Dimensionality Reduction) Given a high-dimensional data set, the goal of dimensionality
reduction is to embed it in lower-dimensional space while preserving its shape. We can
force the embedding to preserve the topology of the data by computing a loss comparing
the persistence diagrams of many random subsets in the high-dimensional space and in
the embedding.
(Shape Registration) Given two embedded point clouds X and Y modeling the same
shape, it can be of interest to learn a map f : X → Y aligning corresponding points.
Using distributed topology, we can ask for f to preserve the persistence diagrams of many
random small subsets of X.
(Feature Extraction) Given a metric space X, we can compute the persistence diagrams
of many random small subsets of X, and, throwing away the subset labelings, obtain a
bag-of-persistence-diagrams feature. These features can then be used in machine learning
applications.



E. Solomon, A. Wagner, and P. Bendich 61:13

7 Experiments

The goal of the experiments below is to corroborate the theoretical results in this paper by
demonstrating that a loss function built on distributed persistence alone, and sampled on
a small number of random subsets, suffices to reconstruct simple metric spaces. Suppose
X and Y are finite subsets of Euclidean spaces and ϕ : X → Y is a surjection. Theorem
20 shows that we may test if ϕ is a quasi-isometry by evaluating dB(λm(S), λm(ϕ(S))) for
a certain collection of subsets S ⊆ X. If X is fixed and Y is variable, we can minimize
dB(λm(S), λm(ϕ(S))) thanks to the differentiability of persistence computations; this has the
effect of bringing Y closer in alignment with X. In the following two synthetic experiments,
we follow the methodology described above for X as (1) 100 points evenly distributed on
a circle in R2 and (2) 256 points evenly distributed on a torus in R3. The codomain Y is
initialized to be X with independent Gaussian noise added coordinate-wise. Our aim is to
see whether minimizing a distributed topological functional via gradient descent succeeds in
correcting for the large geometric distortion of adding Gaussian noise. In both cases, every
iteration step consists of uniformly sampling k = 25 points, denoted S, from X and taking a
step (i.e. perturbing Y ) to minimize the loss W 2

2 (D0(S), D0(ϕ(S))) + W 2
2 (D1(S), D1(ϕ(S))),

where Di is the degree i persistence diagram of the Rips filtration. Because we are updating Y

based on only a single sample S, we use the Adam optimizer [19] to benefit from momentum.
The results of these two experiments can be found in Figure 6, with the first row showing
the circle experiment and the second row the torus experiment. For the first (resp. second)
row, the first column shows the initial state of Y , and the following columns show Y after
successive multiples of 211 (resp. 215) iterations. For both experiments, we observe the
codomain space Y re-organizing itself to closely resemble X. The coloring of the points in
Figure 6 denotes their labeling in X, so that points with similar colors are nearby in X. The
fact that the color gradients in the final positions of Y are largely continuous affirm that our
optimization fixes not only the global geometry of Y , but also the labeled pairwise distances,
and hence gives a space quasi-isometric to X. The code used to generate these experiments
is available at https://github.com/aywagner/DIPOLE.

Figure 6 Synthetic optimization experiments. Columns correspond to initial, intermediate, and
final positions of Y . Color denotes labeling.

SoCG 2022

https://github.com/aywagner/DIPOLE


61:14 From Geometry to Topology: Inverse Theorems for Distributed Persistence

These experiments are a proof-of-concept but can be developed into a full pipeline for
dimensionality reduction. That line of investigation is beyond the scope of this paper, and
was carried out by the authors in a separate paper, cf. [38]. A key insight in [38] is that
adding a local metric term to the topological loss results in dramatically faster convergence
to high-quality embeddings.

8 Conclusion

It has long been understood that computational complexity and sensitivity to outliers are
major challenges in the application of persistent homology in data analysis. Moreover, the
lack of a stable inverse makes it hard to interpret which geometric information is retained
in the persistence diagram, and which is forgotten. Multiple lines of research have sought
to address these problems by constructing more sophisticated topological invariants and
tools, such as the persistent homology transform, multiparameter persistence, distributed
persistence calculations [39], and discrete Morse theory. However, any gains in invertibility
are compromised by sizeable increases in computational complexity.

The focus of this paper was the simplest scheme for speeding up persistence calculations:
subsampling. Subsampling and bootstrapping are ubiquitous in machine learning and are
already being applied in topological data analysis. What we have shown is that this simple
approach also enjoys uniquely strong theoretical guarantees. In particular, the manner in
which distributed persistence interpolates between geometry and topology is explicitly given
by quadratic bounds. Moreover, these theoretical guarantees are complemented by the success
that subsampling has seen in the TDA literature, and the robust synthetic experiments
shown above.

There remain a number of outstanding problems, both theoretical and computational,
that would complement the results of this paper and facilitate its practical application.

Distributed persistence, as we have defined it, consists of pairs of subsets and persistence
diagrams. In many applications, we may wish to take only the persistence diagrams and
forget the subset labels. What injectivity results can be obtained in this unstructured
setting?
Individual persistence diagrams can be challenging to work with, due to the fact that the
space of diagrams admits no Hilbert space structure [7, 5, 37], though there are a number
of effective vectorizations in the literature. How can these be extended or adapted to
provide vectorizations of sets of persistence diagrams coming from subsamples of a fixed
point cloud? This is a more structured problem than working with arbitrary collections
of persistence diagrams.
If we are interested in recovering the global topology of Euclidean point clouds rather than
their quasi-isometry or Gromov-Hausdorff type, it suffices to estimate pairwise distances
between points in adjacent Voronoi cells, at least when working with the full Rips or
Čech complex and not a skeleton. A careful analysis of this setting could dramatically
decrease the Lipschitz constants appearing in Theorem 20.

References
1 Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,

Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images:
A stable vector representation of persistent homology. The Journal of Machine Learning
Research, 18(1):218–252, 2017.



E. Solomon, A. Wagner, and P. Bendich 61:15

2 Andrew J. Blumberg, Itamar Gal, Michael A. Mandell, and Matthew Pancia. Robust
statistics, hypothesis testing, and confidence intervals for persistent homology on met-
ric measure spaces. Foundations of Computational Mathematics, 14(4):745–789, 2014.
doi:10.1007/s10208-014-9201-4.

3 Peter Bubenik. The persistence landscape and some of its properties. In Nils A. Baas,
Gunnar E. Carlsson, Gereon Quick, Markus Szymik, and Marius Thaule, editors, Topological
Data Analysis, pages 97–117, Cham, 2020. Springer International Publishing.

4 Peter Bubenik, Michael Hull, Dhruv Patel, and Benjamin Whittle. Persistent homology detects
curvature. Inverse Problems, 36(2):025008, January 2020. doi:10.1088/1361-6420/ab4ac0.

5 Peter Bubenik and Alexander Wagner. Embeddings of persistence diagrams into hilbert
spaces. Journal of Applied and Computational Topology, 4(3):339–351, 2020. doi:10.1007/
s41468-020-00056-w.

6 Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46(2):255–308, 2009.

7 Mathieu Carrière and Ulrich Bauer. On the metric distortion of embedding persistence
diagrams into separable Hilbert spaces. In 35th International Symposium on Computa-
tional Geometry, volume 129 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 21, 15.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019. URL: https://mathscinet.ams.org/
mathscinet-getitem?mr=3968607.

8 Frédéric Chazal, Vin De Silva, Marc Glisse, and Steve Oudot. The structure and stability of
persistence modules. Springer, 2016.

9 Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry
Wasserman. Subsampling methods for persistent homology. In Francis Bach and David Blei,
editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 2143–2151, Lille, France, 07–09 July 2015.
PMLR. URL: http://proceedings.mlr.press/v37/chazal15.html.

10 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & computational geometry, 37(1):103–120, 2007.

11 Justin Curry. The fiber of the persistence map for functions on the interval. Journal of Applied
and Computational Topology, 2(3):301–321, 2018.

12 Justin Curry, Sayan Mukherjee, and Katharine Turner. How many directions determine
a shape and other sufficiency results for two topological transforms. arXiv preprint, 2018.
arXiv:1805.09782.

13 Vin de Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algebraic
& Geometric Topology, 7(1):339–358, 2007.

14 Irene Donato, Matteo Gori, Marco Pettini, Giovanni Petri, Sarah De Nigris, Roberto Franzosi,
and Francesco Vaccarino. Persistent homology analysis of phase transitions. Phys. Rev. E,
93:052138, May 2016. doi:10.1103/PhysRevE.93.052138.

15 Herbert Edelsbrunner and John Harer. Computational Topology: an Introduction. American
Mathematical Society, 2010.

16 Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathe-
matical Society, 45(1):61–75, 2008.

17 Robert Ghrist, Rachel Levanger, and Huy Mai. Persistent homology and euler integral
transforms. Journal of Applied and Computational Topology, 2(1):55–60, 2018.

18 Mario Gómez and Facundo Mémoli. Curvature sets over persistence diagrams. arXiv preprint,
2021. arXiv:2103.04470.

19 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint, 2014. arXiv:1412.6980.

20 Henry Kirveslahti and Sayan Mukherjee. Representing fields without correspondences: the
lifted euler characteristic transform. arXiv preprint, 2021. arXiv:2111.04788.

21 J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964. doi:10.1007/BF02289565.

SoCG 2022

https://doi.org/10.1007/s10208-014-9201-4
https://doi.org/10.1088/1361-6420/ab4ac0
https://doi.org/10.1007/s41468-020-00056-w
https://doi.org/10.1007/s41468-020-00056-w
https://mathscinet.ams.org/mathscinet-getitem?mr=3968607
https://mathscinet.ams.org/mathscinet-getitem?mr=3968607
http://proceedings.mlr.press/v37/chazal15.html
http://arxiv.org/abs/1805.09782
https://doi.org/10.1103/PhysRevE.93.052138
http://arxiv.org/abs/2103.04470
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2111.04788
https://doi.org/10.1007/BF02289565


61:16 From Geometry to Topology: Inverse Theorems for Distributed Persistence

22 Jacob Leygonie and Gregory Henselman-Petrusek. Algorithmic reconstruction of the fiber of
persistent homology on cell complexes. arXiv preprint, 2021. arXiv:2110.14676.

23 Jacob Leygonie and Ulrike Tillmann. The fiber of persistent homology for simplicial complexes.
arXiv preprint, 2021. arXiv:2104.01372.

24 Sayan Mandal, Aldo Guzmán-Sáenz, Niina Haiminen, Saugata Basu, and Laxmi Parida. A
topological data analysis approach on predicting phenotypes from gene expression data. In
Carlos Martín-Vide, Miguel A. Vega-Rodríguez, and Travis Wheeler, editors, Algorithms for
Computational Biology, pages 178–187, Cham, 2020. Springer International Publishing.

25 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint, 2018. arXiv:1802.03426.

26 Facundo Mémoli. Some properties of gromov–hausdorff distances. Discrete & Computational
Geometry, 48(2):416–440, 2012.

27 Nikola Milosavljević, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology
in matrix multiplication time. In Proceedings of the twenty-seventh Annual Symposium on
Computational Geometry, pages 216–225, 2011.

28 Steve Oudot and Elchanan Solomon. Inverse problems in topological persistence. In Topological
Data Analysis, pages 405–433. Springer, 2020.

29 Steve Oudot and Elchanan Solomon. Barcode embeddings for metric graphs. Algebraic &
Geometric Topology, 21(3):1209–1266, 2021. doi:10.2140/agt.2021.21.1209.

30 Steve Y Oudot. Persistence theory: from quiver representations to data analysis, volume 209.
American Mathematical Society Providence, 2015.

31 Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000. doi:10.1126/science.290.5500.2323.

32 IJ Schoenberg. Remarks to maurice fréchet’s article “sur la définition axiomatique d’une
classe d’espace distanciés vector-iellement applicable sur l’espace de hilbert". Ann. of Math,
36:724–732, 1935.

33 Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. Topological Methods for the Analysis
of High Dimensional Data Sets and 3D Object Recognition. In M. Botsch, R. Pajarola, B. Chen,
and M. Zwicker, editors, Eurographics Symposium on Point-Based Graphics. The Eurographics
Association, 2007. doi:10.2312/SPBG/SPBG07/091-100.

34 Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000. doi:10.1126/
science.290.5500.2319.

35 Katharine Turner, Sayan Mukherjee, and Doug M Boyer. Persistent homology transform for
modeling shapes and surfaces. Information and Inference: A Journal of the IMA, 3(4):310–344,
2014.

36 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. URL: http://jmlr.org/papers/v9/
vandermaaten08a.html.

37 Alexander Wagner. Nonembeddability of persistence diagrams with p > 2 wasserstein metric.
Proceedings of the American Mathematical Society, 149(6):2673–2677, 2021.

38 Alexander Wagner, Elchanan Solomon, and Paul Bendich. Improving metric dimensionality
reduction with distributed topology. arXiv preprint, 2021. arXiv:2106.07613.

39 Simon Zhang, Mengbai Xiao, Chengxin Guo, Liang Geng, Hao Wang, and Xiaodong Zhang.
Hypha: A framework based on separation of parallelisms to accelerate persistent homology
matrix reduction. In Proceedings of the ACM International Conference on Supercomputing,
ICS ’19, pages 69–81, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3330345.3332147.

http://arxiv.org/abs/2110.14676
http://arxiv.org/abs/2104.01372
http://arxiv.org/abs/1802.03426
https://doi.org/10.2140/agt.2021.21.1209
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.2312/SPBG/SPBG07/091-100
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/2106.07613
https://doi.org/10.1145/3330345.3332147


A Positive Fraction Erdős-Szekeres Theorem and
Its Applications
Andrew Suk #

Department of Mathematics, University of California San Diego, La Jolla, CA, USA

Ji Zeng #

Department of Mathematics, University of California San Diego, La Jolla, CA, USA

Abstract
A famous theorem of Erdős and Szekeres states that any sequence of n distinct real numbers contains
a monotone subsequence of length at least

√
n. Here, we prove a positive fraction version of this

theorem. For n > (k − 1)2, any sequence A of n distinct real numbers contains a collection of
subsets A1, . . . , Ak ⊂ A, appearing sequentially, all of size s = Ω(n/k2), such that every subsequence
(a1, . . . , ak), with ai ∈ Ai, is increasing, or every such subsequence is decreasing. The subsequence
S = (A1, . . . , Ak) described above is called block-monotone of depth k and block-size s. Our theorem
is asymptotically best possible and follows from a more general Ramsey-type result for monotone
paths, which we find of independent interest. We also show that for any positive integer k, any finite
sequence of distinct real numbers can be partitioned into O(k2 log k) block-monotone subsequences
of depth at least k, upon deleting at most (k − 1)2 entries. We apply our results to mutually avoiding
planar point sets and biarc diagrams in graph drawing.

2012 ACM Subject Classification Mathematics of computing → Combinatorics

Keywords and phrases Erdős-Szekeres, block-monotone, monotone biarc diagrams, mutually avoiding
sets

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.62

Related Version Full Version: https://arxiv.org/abs/2112.01750

Funding Andrew Suk: Supported by NSF CAREER award DMS-1800746, NSF award DMS-1952786,
and an Alfred Sloan Fellowship.
Ji Zeng: Supported by NSF grant DMS-1800746.

Acknowledgements The authors wish to thank the anonymous SoCG referees for their valuable
suggestions.

1 Introduction

In 1935, Erdős and Szekeres [6] proved that any sequence of n distinct real numbers contains
a monotone subsequence of length at least

√
n. This is a classical result in combinatorics and

its generalizations and extensions have many important consequences in geometry, probability,
and computer science. See Steele [13] for 7 different proofs along with several applications.

In this paper, we prove a positive fraction version of the Erdős-Szekeres theorem. We
state this theorem using the following notion: A sequence (a1, a2, . . . , aks) of ks distinct real
numbers is said to be block-increasing (block-decreasing) with depth k and block-size s if
every subsequence (ai1 , ai2 , . . . , aik

), for (j − 1)s < ij ≤ js, is increasing (decreasing). We
call a sequence block-monotone if it’s either block-increasing or block-decreasing.

▶ Theorem 1. Let k and n > (k − 1)2 be positive integers. Then every sequence of n distinct
real numbers contains a block-monotone subsequence of depth k and block-size s = Ω(n/k2).

© Andrew Suk and Ji Zeng;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asuk@ucsd.edu
mailto:jzeng@ucsd.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.62
https://arxiv.org/abs/2112.01750
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


62:2 A Positive Fraction Erdős-Szekeres Theorem and Its Applications

We prove Theorem 1 by establishing a more general Ramsey-type result for monotone paths,
which we describe in detail in the next section. The theorem is also asymptotically best
possible, see Remark 9.

By a repeated application of Theorem 1, we can decompose any sequence of n distinct
real numbers into O(k log n) block-monotone subsequences of depth k upon deleting at most
(k −1)2 entries. Our next result shows that we can obtain such a partition, where the number
of parts doesn’t depend on n.

▶ Theorem 2. For any positive integer k, every finite sequence of distinct real numbers can
be partitioned into at most O(k2 log k) block-monotone subsequences of depth at least k upon
deleting at most (k − 1)2 entries.

Our Theorem 2 is inspired by a similar problem of partitioning planar point sets into
convex-positioned clusters, which is studied in [12]. A positive fraction Erdős-Szekeres-type
result for convex polygons is given previously by Bárány and Valtr [3].

In the full version of this paper, we present a polynomial time algorithm that computes the
block-monotone subsequence claimed by Theorem 1. Our proof of Theorem 2 is constructive
hence implying a polynomial time algorithm for the claimed partition as well.

We give two applications of Theorems 1 and 2.

Mutually avoiding sets. Let A and B be finite point sets of R2 in general position, that is,
no three points are collinear. We say that A and B are mutually avoiding if no line generated
by a pair of points in A intersects the convex hull of B, and vice versa. Aronov et al. [1]
used the Erdős-Szekeres Theorem to show that every n-element planar point set P in general
position contains subsets A, B ⊂ P , each of size Ω(

√
n), s.t. A and B are mutually avoiding.

Valtr [14] showed that this bound is asymptotically best possible by slightly perturbing the
points in an

√
n ×

√
n grid. Following the same ideas of Aronov et al., we can use Theorem 1

to obtain the following.

▶ Theorem 3. For every positive integer k there is a constant ϵk = Ω( 1
k2 ) s.t. every

sufficiently large point set P in the plane in general position contains 2k disjoint subsets
A1, . . . , Ak, B1, . . . , Bk, each of size at least ϵk|P |, s.t. every pair of sets A = {a1, . . . , ak}
and B = {b1, . . . , bk}, with ai ∈ Ai and bi ∈ Bi, are mutually avoiding.

This improves an earlier result of Mirzaei and the first author [9], who proved the theorem
above with ϵk = Ω( 1

k4 ). The result above is asymptotically best possible for both k and |P |:
Consider a k × k grid G and replace each point with a cluster of |P |/k2 points placed very
close to each other so that the resulting point set P is in general position. If we can find
subsets Ai’s and Bi’s as in Theorem 3, but each of size ϵ′

k|P | with ϵ′
k = ω( 1

k2 ), then we can
find mutually avoiding subsets in G of size ω(k), contradicting Valtr’s [14].

Finally, let us remark that a recent result due to Pach, Rubin, and Tardos [11] shows
that every n-element planar point set in general position determines at least n/eO(

√
log n)

pairwise crossing segments. By using Theorem 3 instead of Lemma 3.3 from their paper, one
can improve the constant hidden in the O-notation.

Monotone biarc diagrams. A proper arc diagram is a drawing of a graph in the plane,
whose vertices are points placed on the x-axis, called the spine, and each edge is drawn as a
half-circle. A classic result of Bernhard and Kainen [4] shows that a planar graph admits a
planar proper arc diagram if and only if it’s a subgraph of a planar Hamiltonian graph. A
monotone biarc diagram is a drawing of a graph in the plane, whose vertices are placed on a



A. Suk and J. Zeng 62:3

spine, and each edge is drawn either as a half-circle or two half-circles centered on the spine,
forming a continuous x-monotone biarc. See Figure 6 for an illustration. In [5], Di Giacomo
et al. showed that every planar graph can be drawn as a planar monotone biarc diagram.

Using the Erdős-Szekeres Theorem, Bar-Yehuda and Fogel [2] showed that every graph
G = (V, E), with a given order on V , has a double-paged book embedding with at most O(

√
E)

pages. That is, E can be partitioned into O(
√

|E|) parts, s.t. for each part Ei, (V, Ei) can
be drawn as a planar monotone biarc diagram, and V appears on the spine with the given
order. Our next result shows that we can significantly reduce the number of pages (parts), if
we allow a small fraction of the pairs of edges to cross on each page.

▶ Theorem 4. For any ϵ > 0 and a graph G = (V, E), where V is an ordered set, E can
be partitioned into O(ϵ−2 log(ϵ−1) log(|E|)) subsets Ei s.t. each (V, Ei) can be drawn as a
monotone biarc diagram having no more than ϵ|Ei|2 crossing edge-pairs, and V appears on
the spine with the given order.

This paper is organized as follows: In Section 2, we prove Theorem 1 in the setting
of monotone paths in multicolored ordered graphs. Section 3 is devoted to the proof of
Theorem 2. In Section 4, we present proofs for the applications claimed above. Section 5
lists some remarks.

2 A positive fraction result for monotone paths

Several authors [7, 10, 8] observed that the Erdős-Szekeres theorem generalizes to the following
graph-theoretic setting. Let G be a graph with vertex set [n] = {1, . . . , n}. A monotone path
of length k in G is a k-tuple (v1, . . . , vk) of vertices s.t. vi < vj for all i < j and all edges
vivi+1, for i ∈ [k − 1], are in G.

▶ Theorem 5. Let χ be a q-coloring of the pairs of [n]. Then there must be a monochromatic
monotone path of length at least n1/q.

Given subsets A, B ⊂ [n], we write A < B if every element in A is less than every element
in B.

▶ Definition 6. Let G be a graph with vertex set [n] and let V1, . . . , Vk ⊂ [n] and p1, . . . , pk+1 ∈
[n]. Then we say that (p1, V1, p2, V2, p3, . . . , pk, Vk, pk+1) is a block-monotone path of depth k

and block-size s if
1. |Vi| = s for all i,
2. we have p1 < V1 < p2 < V2 < p3 < . . . < pk < Vk < pk+1,

3. and every (2k + 1)-tuple of the form

(p1, v1, p2, v2, . . . , pk, vk, pk+1),

where vi ∈ Vi, is a monotone path in G.
Our main result in this section is the following Ramsey-type theorem.

▶ Theorem 7. There is an absolute constant c > 0 s.t. the following holds. Given integers
q ≥ 2, k ≥ 1, and n ≥ (ck)q, let χ be a q-coloring of the pairs of [n]. Then χ produces a
monochromatic block-monotone path of depth k and block-size s ≥ n

(ck)q .

A careful calculation shows that we can take c = 40 in the theorem above. We will need the
following lemma.

SoCG 2022



62:4 A Positive Fraction Erdős-Szekeres Theorem and Its Applications

▶ Lemma 8. Let q ≥ 2 and N > 3q. Then for any q-coloring of the pairs of [N ], there is a
monochromatic block-monotone path of depth 1 and block-size s ≥ N

q33q .

Proof. Let χ be a q-coloring of the pairs of [N ], and set r = 3q. By Theorem 5, every subset
of size r of [N ] gives rise to a monochromatic monotone path of length 3. Hence, χ produces
at least(

N
r

)(
N−3
r−3

) ≥ 6
r3

(
N

3

)

monochromatic monotone paths of length 3 in [N ]. Hence, there are at least 6
qr3

(
N
3
)

monochromatic monotone paths of length 3, all of which have the same color. By averaging,
there are two vertices p1, p2 ∈ [N ], s.t. at least N

qr3 of these monochromatic monotone paths
of length 3 start at vertex p1 and ends at vertex p2. By setting V1 to be the “middle” vertices
of these paths, (p1, V1, p2) is a monochromatic block-monotone path of depth 1 and block-size
s ≥ N

qr3 = N
q33q . ◀

Proof of Theorem 7. Let χ be a q-coloring of the pairs of [n] and let c be a sufficiently
large constant that will be determined later. Set s = ⌈ n

(ck)q ⌉. For the sake of contradiction,
suppose χ does not produce a monochromatic block-monotone path of depth k and block-size
s. For each element v ∈ [n], we label v with f(v) = (b1, . . . , bq), where bi denotes the depth of
the longest block-monotone path with block-size s in color i, ending at v. By our assumption,
we have 0 ≤ bi ≤ k − 1, which implies that there are at most kq distinct labels. By the
pigeonhole principle, there is a subset V ⊂ [n] of size at least n/kq, s.t. the elements of V all
have the same label.

By Lemma 8, there are vertices p1, p2 ∈ V , a subset V ′ ⊂ V , and a color α s.t. (p1, V ′, p2)
is a monochromatic block-monotone path in color α, with block-size t ≥ |V |

q33q . By setting c

to be sufficiently large, we have

t ≥ |V |
q33q

≥ n

kqq33q
≥

⌈
n

(ck)q

⌉
= s.

However, this contradicts the fact that f(p1) = f(p2), since the longest supported monotone
path with block-size s in color α ending at vertex p1 can be extended to a longer one ending
at p2. This completes the proof. ◀

Proof of Theorem 1. Let A = (a1, . . . , an) be a sequence of distinct real numbers. Let χ

be a red/blue coloring of the pairs of A s.t. for i < j, we have χ(ai, aj) = red if ai < aj and
χ(ai, aj) = blue if ai > aj . In other words, we color increasing pairs by red and decreasing
pairs by blue.

If n < (ck)2, notice that n/(ck)2 < 1. By our assumption n > (k−1)2, the classical Erdős-
Szekeres theorem gives us a monotone subsequence in A of length at least k, which can be
regarded as a block-monotone subsequence of depth at least k and block-size s = 1 > n/(ck)2.

If n ≥ (ck)2, by Theorem 7, there is a monochromatic block-monotone path of depth
k and block-size s ≥ n/(ck)2 in the complete graph on A, which can be regarded as a
block-monotone subsequence of A with the claimed depth and block-size. ◀

▶ Remark 9. For each k, q, s > 0, the simple construction below shows Theorem 7 is tight up
to the constant factor cq. We first construct K(k, q), for each k and q, a q-colored complete
graph on [kq], whose longest monochromatic monotone path has length k: K(k, 1) is just a
monochromatic copy of the complete graph on [k]. To construct K(k, q) from K(k, q − 1),



A. Suk and J. Zeng 62:5

take k copies of K(k, q − 1) with the same set of q − 1 colors, place them in order and color
the remaining edges by a new color. Now replace each point in K(k, q) by a cluster of s

points, where within each cluster one can arbitrarily color the edges. The resulting q-colored
complete graph has no k subsets V1, V2, . . . , Vk ⊂ [n] each of size s + 1 and edges between
them monochromatic, otherwise K(k, q) would have a monochromatic monotone path with
length larger than k.

It’s well-known that the sharpness of the classical Erdős-Szekeres theorem comes from
sequences such as

S(k) = (k, k − 1, . . . , 1, 2k, 2k − 1, . . . , 2k + 1, . . . , k2, k2 − 1, k(k − 1) + 1).

We note that if we color the increasing pairs of S(k) by red and the decreasing pairs of S(k)
by blue, we obtain the graph K(k, 2). If we replace each entry si ∈ S(k) by a cluster of
s distinct real numbers very close to si, we obtain an example showing that Theorem 1 is
asymptotically best possible.

3 Block-monotone sequence partition

This section is devoted to the proof of Theorem 2. We shall consider this problem geometrically
by identifying each entry ai of a given sequence A = (ai)n

i=1 as a planar point (i, ai) ∈ R2.
As we consider sequences of distinct real numbers, throughout this section, we assume that
all point sets have the property that no two members share the same x-coordinate or the
same y-coordinate.

Thus, we analogously define block-monotone point sets as follows: A set of ks planar
points is said to be block-increasing (block-decreasing) with depth k and block-size s if it can
be written as {(xi, yi)}ks

i=1 s.t. xi < xi+1 for all i and every sequence (yi1 , yi2 , . . . , yik
), for

(j − 1)s < ij ≤ js, is increasing (decreasing). We say that a point set is block-monotone
if it’s either block-increasing or block-decreasing. For each j ∈ [k] we call the subset
{(xi, yi)}js

i=(j−1)s+1 the j-th block of this block-monotone point set.
Hence, Theorem 2 immediately follows from the following.

▶ Theorem 10. For any positive integer k, every finite planar point set can be partitioned
into at most O(k2 log k) block-monotone point subsets of depth at least k and a remaining set
of size at most (k − 1)2.

Given a point set P ⊂ R2, let

U(P ) := {(x, y) ∈ R2; y > y′, ∀(x′, y′) ∈ P}, (up)
D(P ) := {(x, y) ∈ R2; y < y′, ∀(x′, y′) ∈ P}, (down)
L(P ) := {(x, y) ∈ R2; x < x′, ∀(x′, y′) ∈ P}, (left)
R(P ) := {(x, y) ∈ R2; x > x′, ∀(x′, y′) ∈ P}. (right)

Our proof of Theorem 10 relies on the following definitions. The constant c below (and
throughout this section) is from Theorem 7. See Figure 1 for an illustration.

▶ Definition 11. A point set P ⊂ R2 is said to be a (k, t)-configuration if P can be written
as a disjoint union of subsets P = Y1 ∪ Y2 ∪ · · · ∪ Y2t+1 s.t.

∀i ∈ [t], Y2i is a block-monotone point set of depth k and block-size at least |Y2j+1|/(3ck)2

for all j ∈ {0} ∪ [t];
either ∪2t+1

j=i+1Yj is located entirely in R(Yi) ∩ U(Yi) for all i ∈ [2t], or ∪2t+1
j=i+1Yj is located

entirely in R(Yi) ∩ D(Yi) for all i ∈ [2t].

SoCG 2022



62:6 A Positive Fraction Erdős-Szekeres Theorem and Its Applications

▶ Definition 12. A point set P ⊂ R2 is said to be a (k, l, t)-pattern if P can be written as a
disjoint union of subsets P = S1 ∪ S2 ∪ · · · ∪ Sl ∪ Y s.t.

Y is a (k, t)-configuration;
∀i ∈ [l], Si is a block-monotone point set of depth k and block-size at least |Y |/(3ck)2;
∀i ∈ [l], the set (∪l

j=i+1Sj) ∪ Y is located entirely in one of the following regions:
U(Si) ∩ L(Si), U(Si) ∩ R(Si), D(Si) ∩ L(Si) and D(Si) ∩ R(Si).

Y1

Y2

Y3

Y4

Y5

S1

S2

Y

(3, 2)-configuration

(i) (ii)

Figure 1 (i) A (3, 2)-configuration. (ii) A (3, 2, 2)-pattern.

If a planar point set P is a (k, 4k, t)-pattern or a (k, l, k)-pattern, the next two lemmas
state that we can efficiently partition P into few block-monotone point sets of depth at least
k and a small remaining set.

▶ Lemma 13. If P is a (k, 4k, t)-pattern, then P can be partitioned into O(k log k) block-
monotone point sets of depth at least k and a remaining set of size O(k2).

▶ Lemma 14. If P is a (k, l, k)-pattern, then P can be partitioned into O(k2 log k + l)
block-monotone point sets of depth at least k and a remaining set of size O(k3).

Starting with an arbitrary point set P , which can be regarded as a (k, 0, 0)-pattern, we will
repeatedly apply the following lemma until P is partitioned into few block-monotone point
sets, a set P ′ that is either a (k, 4k, t)-pattern or a (k, l, k)-pattern, and a small remaining
set.

▶ Lemma 15. For l < 4k and t < k, a (k, l, t)-pattern P can be partitioned into r block-
monotone point sets with depth at least k, a point set P ′, and a remaining set E s.t.
1. r = O(k), |P ′| ≤ k(3k − 1)2 and E = ∅; or
2. r = O(k log k), P ′ is a (k, l, t + 1)-pattern and |E| = O(k2); or
3. r = O(k log k), P ′ is a (k, l + t, 0)-pattern and |E| = O(k2).
Moreover, when t = 0, we can always have this partition of P as in either case 1 or case 2.

Before we prove the lemmas above, let us use them to prove Theorem 10.



A. Suk and J. Zeng 62:7

Proof of Theorem 10. Let P be the given point set. For i ≥ 0, we inductively construct a
partition Fi ∪ {Pi, Ei} of P s.t.

Pi is a (k, li, ti)-pattern,
|Ei| = O(ik2),
Fi is a disjoint family of block-monotone point sets of depth at least k, and |Fi| =
O(ik log k).

We start with P0 = P , which is a (k, 0, 0)-pattern, and F0 = E0 = ∅. Suppose we
have constructed the i-th partition Fi ∪ {Pi, Ei} of P . If |Pi| ≤ k(3k − 1)2, or li ≥ 4k, or
ti ≥ k, we end this inductive construction process, otherwise, we construct the next partition
Fi+1 ∪ {Pi+1, Ei+1} as follows.

According to Lemma 15, Pi can be partitioned into r block-monotone point sets with
depth at least k, denoted as {Pi,1, . . . , Pi,r}, a point set P ′, and a remaining set E, s.t. either
one of the following cases happens.

Case 1. We have r = O(k), |P ′| ≤ k(3k − 1)2, and E = ∅. In this case, we define Fi+1 =
Fi ∪ {Pi,1, . . . , Pi,r}, Pi+1 = P ′, and Ei+1 = Ei ∪ E. Notice that we have |Fi+1| =
|Fi| + O(k) = O((i + 1)k log k) and |Ei+1| = |Ei| + 0 = O((i + 1)k2).

Case 2. We have r = O(k log k), P ′ is a (k, li, ti + 1)-pattern, and |E| = O(k2). In this case,
we define Fi+1 = Fi∪{Pi,1, . . . , Pi,r}, Pi+1 = P ′, and Ei+1 = Ei∪E. This means li+1 = li
and ti+1 = ti + 1. Notice that we have |Fi+1| = |Fi| + O(k log k) = O((i + 1)k log k) and
|Ei+1| = |Ei| + O(k2) = O((i + 1)k2).

Case 3. We have r = O(k log k), P ′ is a (k, li + ti, 0)-pattern, and |E| = O(k2). In this
case, we define Fi+1 = Fi ∪ {Pi,1, . . . , Pi,r}, Pi+1 = P ′, and Ei+1 = Ei ∪ E. This
means li+1 = li + ti and ti+1 = 0. Again, we have |Fi+1| = O((i + 1)k log k) and
|Ei+1| = O((i + 1)k2).

When ti = 0, by Lemma 15, we can always partition Pi as in Case 1 or Case 2. So we
always construct Fi+1 ∪ {Pi+1, Ei+1} according to Case 1 or Case 2 when ti = 0.

Let Fw ∪ {Pw, Ew} be the last partition of P constructed in this process. Here, Pw is
a (k, lw, tw)-pattern. We must have either |Pw| ≤ k(3k − 1)2, or lw ≥ 4k, or tw ≥ k. Since
ti+1 ≤ ti + 1 and li+1 ≤ li + ti for all i, we have tw ≤ k and lw ≤ 5k. Since we always
construct the (i + 1)-th partition according to Case 1 or Case 2 when ti = 0, the sum li + ti

always increases by at least 1 after 2 inductive process. So we have w/2 ≤ tw + lw ≤ 6k and
hence w ≤ 12k.

Now we handle Fw ∪ {Pw, Ew} based on how the construction process ends.
If the construction process ended with |Pw| ≤ k(3k − 1)2, we define Ew+1 = Ew ∪ Pw and

Fw+1 = Fw. Since w ≤ 12k, we have |Fw+1| = O(k2 log(k)) and |Ew+1| = O(k3).
If the construction process ended with lw ≥ 4k, by Definition 12, we can partition Pw

into lw − 4k many block-monotone point sets of depth k, denoted as {Pw,1, . . . , Pw,lw−4k},
and a (k, 4k, tw)-pattern P ′

w. Then, by Lemma 13, P ′
w can be partitioned into r = O(k log k)

block-monotone point sets of depth at least k, denoted as {P ′
w,1, . . . , P ′

w,r}, and a remaining
set E of size O(k2). We define Ew+1 = Ew ∪ E and

Fw+1 = Fw ∪ {Pw,1, . . . , Pw,lw−4k, P ′
w,1, . . . , P ′

w,r}.

Using w ≤ 12k and other bounds we mentioned above, we can check |Fw+1| = O(k2 log(k))
and |Ew+1| = O(k3).

SoCG 2022



62:8 A Positive Fraction Erdős-Szekeres Theorem and Its Applications

If the construction process ended with tw ≥ k, we actually have tw = k and lw < 4k.
By Lemma 14, we can partition Pw into r = O(k2 log(k) + lw) block-monotone point sets
of depth at least k, denoted as {Pw,1, . . . , Pw,r}, and a remaining set E of size O(k3).
We define Ew+1 = Ew ∪ E and Fw+1 = Fw ∪ {Pw,1, . . . , Pw,r}. Again, we can check
|Fw+1| = O(k2 log(k)) and |Ew+1| = O(k3).

Overall, we can always obtain a partition Fw+1 ∪{Ew+1} of P with |Fw+1| = O(k2 log(k))
and |Ew+1| = O(k3). Using the classical Erdős-Szekeres theorem, we can always find a
monotone sequence of length at least k in Ew+1 when |Ew+1| > (k − 1)2. By a repeated
application of this fact, we can partition Ew+1 into O(k2) block-monotone point sets of depth
k and block-size 1, and a remaining set E of size at most (k − 1)2. We define F to be the
union of Fw+1 and these block-monotone sequences. The partition F ∪ {E} of P has the
desired properties and concludes the proof. ◀

We now give proofs for Lemmas 13, 14, and 15. We need the following facts.

▶ Fact 16. For any positive integer k, every point set P can be partitioned into O(k log(k))
block-monotone point sets of depth k and a remaining set P ′ with |P ′| ≤ max{|P |/k, (k−1)2}.

This fact can be established by repeatedly using Theorem 1 to pull out block-monotone point
sets and applying the elementary inequality (1 − x−1)x log(x) ≤ x−1 for any x > 1.

▶ Fact 17. For any positive integers k and m, every block-monotone point set P with depth
k and |P | ≥ m can be partitioned into a block-monotone point set of depth k, a subset of size
exactly m, and a remaining set of size less than k.

This fact can be established by taking out ⌈m/k⌉ points from each block of P . Then we have
taken out k · ⌈m/k⌉ = m + r points, where 0 ≤ r < k.

Proof of Lemma 13. Write the given (k, 4k, t)-pattern P = S1 ∪ · · · ∪ S4k ∪ Y as in Defini-
tion 12. By definition, each block-monotone point set Si is contained in one of the 4 regions:
U(Y ) ∩ L(Y ), U(Y ) ∩ R(Y ), D(Y ) ∩ L(Y ) and D(Y ) ∩ R(Y ). By Pigeonhole principle, there
are k indices i1, . . . , ik s.t. all Sij , for j ∈ [k], are contained in one of the regions above.
Without loss of generality, we assume S1, . . . , Sk are all located entirely in U(Y ) ∩ L(Y ).

We have Si2 ⊂ D(Si1)∩R(Si1) for all 1 ≤ i1 < i2 ≤ k. Indeed, since Y ⊂ D(Si1)∩R(Si1),
Definition 12 guarantees that (∪k

j=i1+1Sj) ∪ Y to be contained in D(Si1) ∩ R(Si1) and, in
particular, Si2 is contained in this region. See Figure 2 for an illustration.

Now apply Fact 16 to Y , we can partition Y into {A1, . . . , Aw, Y ′}, where w = O(k log(k)),
s.t. each Aj is block-monotone of depth 9c2k, and either |Y ′| ≤ |Y |/(9c2k) or |Y ′| ≤
(9c2k − 1)2. If |Y ′| ≤ (9c2k − 1)2, we have partitioned P into O(k log(k)) block-monotone
point sets of depth at least k, which are {A1, . . . , Aw, S1, . . . , S4k}, and a remaining set Y ′

of size O(k2), as wanted.
If |Y ′| ≤ |Y |/(9c2k), by Definition 12 we have |Y ′| ≤ |Si| for i ∈ [k]. We can apply Fact 17

with m := |Y ′| to Si to obtain a partition Si = S′
i ∪ Bi ∪ Ei where S′

i is block-monotone of
depth k, |Bi| = |Y ′| and |Ei| ≤ k. We observe that C = B1 ∪ B2 ∪ · · · ∪ Bk ∪ Y ′ is block-
monotone of depth k + 1 by its construction. Then we have partitioned P into O(k log(k))
many block-monotone point sets, which are {A1, . . . , Aw, S′

1, . . . , S′
k, Sk+1, . . . , S4k, C}, and

a remaining set E := ∪k
i=1Ei of size O(k2), as wanted. ◀

Proof of Lemma 14. Write the given (k, l, k)-pattern P = S1 ∪· · ·∪Sl ∪Y as in Definition 12
and the (k, k)-configuration Y = Y1 ∪ · · · ∪ Y2k+1 as in Definition 11. Since each Si is block-
monotone of depth k, it suffices to partition Y into O(k2 log(k)) many block-monotone point
sets of depth at least k and a remaining set of size O(k3).



A. Suk and J. Zeng 62:9

S1

S2

S3

Y

Figure 2 In proof of Lemma 13, Si2 ⊂ D(Si1 ) ∩ R(Si1 ) for i1 < i2.

For each j ∈ {0} ∪ [k], we apply Fact 16 to obtain a partition of Y2j+1 into O(k log(k))
many block-monotone point sets of depth 9c2k and a remaining set Y ′

2j+1 of size at most
|Y2j+1|/(9c2k) or at most (9c2k − 1)2. We can apply Fact 16 again to partition Y ′

2j+1 into
O(k log(k)) many block-monotone point sets of depth k + 1 and a remaining set Y ′′

2j+1 with

|Y ′′
2j+1| ≤ max{|Y2j+1|/(9c2k(k + 1)), (9c2k − 1)2}. (1)

Denote the block-monotone point sets produced in this process as {Aj,x; x ∈ [wj ]}, where
wj = O(k log(k)).

Next we denote J1 := {j ∈ {0} ∪ [k]; |Y ′′
2j+1| > (9c2k − 1)2} and J2 := ({0} ∪ [k]) \ J1.

For each j ∈ J1 and i ∈ [k], we must have

|Y ′′
2j+1| ≤ |Y2j+1|/(9c2k(k + 1)) ≤ |Y2i|/(k + 1),

where the second inequality is by Definition 11. Hence |Y2i| ≥ | ∪j∈J1 Y ′′
2j+1|. We can apply

Fact 17 with m := | ∪j∈J1 Y ′′
2j+1| to Y2i to obtain a partition Y2i = Y ′

2i ∪ Bi ∪ Ei where Y ′
2i is

block-monotone of depth k, |Bi| = m, and |Ei| ≤ k. Since |Bi| = | ∪j∈J1 Y ′′
2j+1|, we can take

a further partition Bi = ∪j∈J1Bj,i with |Bj,i| = |Y ′′
2j+1| for each j ∈ J1. Then we observe

that Cj = Bj,1 ∪ · · · ∪ Bj,j ∪ Y ′′
2j+1 ∪ Bj,j+1 ∪ · · · ∪ Bj,k is block-monotone of depth k + 1 for

each j ∈ J1 by its construction.
Finally, let E := (∪k

i=1Ei) ∪ (∪j∈J2Y ′′
2j+1), it easy to check that E = O(k3). So we have

partitioned Y into O(k2 log(k)) many block-monotone point sets, which are

{Aj,x}j∈{0}∪[k],x∈[wj ] ∪ {Cj}j∈J1 ∪ {Y ′
2i}i∈[k],

and a remaining set E of size O(k3), as wanted. ◀

Proof of Lemma 15. Write the given (k, l, t)-pattern P = S1 ∪· · ·∪Sl ∪Y as in Definition 12
and the (k, t)-configuration Y = Y1 ∪· · ·∪Y2t+1 as in Definition 11. Without loss of generality,
we assume ∪2t+1

j=i+1Yj is located entirely in R(Yi) ∩ U(Yi) for all i ∈ [2t]. We also assume that
Y1 has the largest size among {Y2j+1; j ∈ {0} ∪ [t]} because other scenarios can be proved
similarly.

SoCG 2022



62:10 A Positive Fraction Erdős-Szekeres Theorem and Its Applications

If |Y1| ≤ (3k − 1)2, we can partition P into r = l + t = O(k) many block-monotone point
sets of depth k, which are {S1, . . . , Sl, Y2, Y4, . . . , Y2t}, and a remaining set P ′ := ∪t

j=0Y2j+1
of size at most k(3k − 1)2, since t < k. So we conclude the lemma in case (1).

Now we assume |Y1| > (3k − 1)2. Apply Theorem 1 to extract a block-monotone point
set S ⊂ Y1 of depth 3k and block-size at least |Y1|/(3ck)2 and name the i-th block of S

as Bi for i ∈ [3k]. Our proof splits into two cases: S being block-increasing or S being
block-decreasing.

Case 1. Suppose S is block-increasing, write Sl+i := Y2(t+1−i) for each i ∈ [t] and set
P ′ = S1 ∪ · · · ∪ Sl+t ∪ (Y1 \ S). We can check that P ′ is a (k, k + l, 0)-pattern by Definition 12.
Let Z := ∪t

j=1Y2j+1. By an argument similar to (1), we can apply Fact 16 three times to
partition Z into {A1, . . . , Aw, Z ′}, where w = O(k log(k)), s.t. each Ai is block-monotone of
depth at least k and |Z ′| ≤ max{|Z|/(9c2k3), (9c2k − 1)2}.

If |Z ′| ≤ (9c2k − 1)2, let E = Z ′. We have partitioned P into O(k log(k)) block-monotone
point sets of depth at least k, which are {A1, . . . , Aw, S}, a (k, k + l, 0)-pattern P ′, and a
remaining set E of size O(k2). So we conclude the lemma in case (3).

If |Z ′| ≤ |Z|/(9c2k3), notice that |Z| ≤ k|Y1| since t < k, we have |Z ′| ≤ |Y1|/(3ck)2 ≤
|Bi|, for each i ∈ [3k]. We can take a partition Bi = B′

i ∪ B′′
i with |B′

i| = |Z ′|. We observe
that C := B′

1 ∪ · · · ∪ B′
3k ∪ Z ′ is block-increasing of depth 3k + 1 and S′ := B′′

1 ∪ · · · ∪ B′′
3k is

block-increasing of depth 3k by their construction. We have partitioned P into O(k log(k))
block-monotone point sets of depth at least k, which are {A1, . . . , Aw, C, S′}, and a (k, k+l, 0)-
pattern P ′. So we conclude the lemma in case (3).

Case 2. Suppose S is block-decreasing, we choose two points in the following regions:

(x1, y1) ∈ R(Bk) ∩ D(Bk) ∩ L(Bk+1) ∩ U(Bk+1),
(x2, y2) ∈ R(B2k) ∩ D(B2k) ∩ L(B2k+1) ∩ U(B2k+1).

Also we require x1 or x2 isn’t the x-coordinate of any element in P , and y1 or y2 isn’t the
y-coordinate of any element in P . We use the lines x = xi and y = yi for i = 1, 2 to divide
the plane into a 3 × 3 grid and label the regions Ri, i = 1, . . . , 9 as in Figure 3.

Let C := Bk+1 ∪ · · · ∪ B2k and notice that C is block-monotone of depth k and block-size
at least |Y1|/(3ck)2. Define

Y ′ := (R7 ∩ Y1) ∪ C ∪ (R3 ∩ Y1) ∪ Y2 ∪ Y3 ∪ · · · ∪ Y2t+1.

We can check that Y ′ is a (k, t + 1)-configuration and P ′ := S1 ∪ · · · ∪ Sl ∪ Y ′ is a (k, l, t + 1)-
pattern according to Definitions 11 and 12.

Next, we set Z1 := (Y1 \S)∩(R5 ∪R6 ∪R8 ∪R9) and Z2 := (Y1 \S)∩(R1 ∪R2 ∪R4). By an
argument similar to (1), we can apply Fact 16 twice to partition Zj into {Aj,1, . . . , Aj,wj

, Z ′
j},

where wj = O(k log(k)), s.t. each Aj,x is block-monotone of depth at least k and |Z ′
j | ≤

max{|Zj |/(3ck)2, (9c2k − 1)2}.
Writing C1 := B1 ∪ . . . Bk and C2 = B2k+1 ∪ . . . B3k, then, for j = 1, 2, either |Z ′

j | = O(k2)
or Cj ∪ Z ′

j can be partitioned into two block-decreasing point sets of depth at least k. Indeed,
if |Z ′

1| > (9c2k − 1)2, we must have

|Z ′
1| ≤ |Z1|/(3ck)2 ≤ |Y1|/(3ck)2 ≤ |Bi|,

for each i ∈ [k]. Take a partition Bi = B′
i ∪ B′′

i with |B′
i| = |Z ′

1|, then we can observe
C1 := B′

1 ∪ · · · ∪ B′
k ∪ Z ′

1 is block-decreasing of depth k + 1 and C ′
1 = B′′

1 ∪ · · · ∪ B′′
k is

block-decreasing of depth k by their construction, as wanted. A similar argument applies to
C2 ∪ Z ′

2.



A. Suk and J. Zeng 62:11

R1 R2 R3

R4 R5 R6

R7 R8

B1

Bk

Bk+1

Bk+2

B2k

x = x1 x = x2

y = y2

y = y1

R9B2k+1

B3k

Figure 3 Division of the plane into 9 regions according to (xi, yi), i = 1, 2. Each ellipse represents
a cluster of points as defined in the proof.

We have partitioned P \ (C1 ∪ Z ′
1 ∪ C2 ∪ Z ′

2) into O(k log(k)) block-monotone sequence of
depth at least k, which are {Aj,x; j = 1, 2, x ∈ [wj ]}, and a (k, l, t + 1)-pattern P ′. Combined
with the claim in previous paragraph, we conclude the lemma in case (2).

Finally, when we are in the special case t = 0 and S is block-increasing, we can still use
the arguments for the case when S is block-decreasing and conclude the lemma in case (2).
The condition t = 0 can be used to verify Y ′ is a (k, t + 1)-configuration, which is generally
not true when t > 0 and S is block-increasing. ◀

4 Applications

4.1 Mutually avoiding sets
We devote this subsection to the proof of Theorem 3. The proof is essentially the same as
in [1], but we include it here for completeness. Given a non-vertical line L in the plane, we
denote L+ to be the closed upper-half plane defined by L, and L− to be the closed lower-half
plane defined by L. We need the following result, which is Lemma 1 in [1].

▶ Lemma 18. Let P, Q ⊂ R2 be two n-element point sets with P and Q separated by a
non-vertical line L and P ∪ Q in general position. Then for any positive integer m ≤ n, there
is another non-vertical line H s.t. |H+ ∩ P | = |H+ ∩ Q| = m or |H− ∩ P | = |H− ∩ Q| = m.

Proof of Theorem 3. Let k be as given and n > 24k2. Let P be an n-element point set in
the plane in general position. We start by taking a non-vertical line L to partition the plane
s.t. each half-plane contains ⌊ n

2 ⌋ points from P . Then by Lemma 18, we obtain a non-vertical
line H with, say, H+ ∩ (L+ ∩ P ) = H+ ∩ (L− ∩ P ) = ⌊ n

6 ⌋. Next, we find a third line N , by
first setting N = H, and then sweeping N towards the direction of H−, keeping it parallel
with H , until H− ∩ N+ ∩ L+ or H− ∩ N+ ∩ L− contains ⌊ n

6 ⌋ points from P . Without loss of
generality, let us assume Q := P ∩ (H− ∩ N+ ∩ L+) first reaches ⌊ n

6 ⌋ points, and the region
H− ∩ N+ ∩ L− has less than ⌊ n

6 ⌋ points from P . Hence, both Ql := P ∩ (H+ ∩ L−) and
Qr := P ∩ (N− ∩ L−) have at least ⌊ n

6 ⌋ points. See Figure 4 for an illustration.

SoCG 2022



62:12 A Positive Fraction Erdős-Szekeres Theorem and Its Applications

Ql

L

H N

⌊n
6 ⌋ points

Q

⌊n
6 ⌋ points

Qr

⌊n
6 ⌋ points

Figure 4 The division of plane into regions according to L, H, N .

We can apply an affine transformation so that L and H are perpendicular, and N is on
the right side of H. Think of L as the x-axis, H as the y-axis, and N as a vertical line with
a positive x-coordinate. After ordering the elements in Q according to their x-coordinates,
we apply Theorem 1 to Q to obtain disjoint subsets Q1, . . . , Q2k+1 ⊂ Q s.t. (Q1, . . . , Q2k+1)
is block-monotone of depth 2k + 1 and block-size Ω(n/k2), where each entry represents its
y-coordinate. Without loss of generality, we can assume it is block-decreasing, otherwise we
can work with Qr rather than Ql in the following arguments.

Q1

Q2

Q3

Q5

Q6

Q7

q

A1

A2

A3
H

L

Figure 5 An example when Ai’s are increasing. Each ellipse represents a cluster of points as
defined in the proof.

Now fix a point q ∈ Qk+1. We express the points in Ql in polar coordinates (ρ, θ) with q

being the origin. We can assume no two points in Ql are at the same distance to q, otherwise
a slight perturbation may be applied. By ordering the points in Ql with respect to θ, in
counter-clockwise order, we apply Theorem 1 to Ql to obtain disjoint subsets A1, . . . , Ak ⊂ Ql

s.t. (A1, . . . , Ak) is block-monotone of depth k and block-size Ω(n/k2), where each entry



A. Suk and J. Zeng 62:13

represents its distance to q. If it’s block-decreasing, take Bi = Qi for i ∈ [k], and if it’s
block-increasing, take Bi = Qk+1+i. It is easy to check that the sets {A1, . . . , Ak} and
{B1, . . . , Bk} have the claimed properties. See Figure 5 for an illustration. ◀

4.2 Monotone biarc diagrams
We devote this subsection to the proof of Theorem 4. Our proof is constructive, hence
implying an recursive algorithm for the claimed outcome.

We start by making the simple observation that our main results hold for sequences
of (not necessarily distinct) real numbers, if the term block-monotone now refers to being
block-nondecreasing or block-nonincreasing. More precisely, a sequence (a1, a2, . . . , aks)
of real numbers is said to be block-nondecreasing (block-nonincreasing) with depth k and
block-size s if every subsequence (ai1 , ai2 , . . . , aik

), for (j − 1)s < ij ≤ js, is nondecreasing
(nonincreasing).

▶ Theorem 19. For any positive integer k, every finite sequence of real numbers can be
partitioned into at most Ck = O(k2 log k) block-monotone subsequences of depth at least k

upon deleting at most (k − 1)2 entries.

To see our main results imply the above variation, it suffices to slightly perturb the
possibly equal entries of a given sequence until all entries are distinct. Algorithms for our
main results can also be applied after such a perturbation.

We need the following lemma in [2] for Theorem 4.

▶ Lemma 20. For any graph G = (V, E) with V = [n], there exists b ∈ [n] s.t. both the
induced subgraphs of G on {1, 2, . . . , b} and {b + 1, b + 2, . . . , n} have no more than |E|/2
edges.

Proof. For U ⊂ [n], let GU denote the induced subgraph of G on U . Let b be the largest
among [n] s.t. E(G[b]) ≤ |E|

2 , so E(G[b+1]) > |E|
2 . Notice that E(G[b+1]) and E(G[n]\[b]) are

two disjoint subsets of E, so E(G[n]\[b]) ≤ |E| − E(G[b+1]) < |E|
2 , as wanted. ◀

Proof of Theorem 4. We prove by induction on |E|. The base case when |E| = 1 is trivial.
For the inductive step, by the given order on V , we can identify V with [n]. We find such a
b according to Lemma 20. Consider the set E′ of edges between [b] and [n] \ [b]. By writing
each edge e ∈ E′ as (x, y), where x ∈ [b] and y ∈ [n] \ [b], we order the elements in E′

lexicographically: for (x, y), (x′, y′) ∈ E, we have (x, y) < (x, y) when x < x′ or when x = x′

and y < y′.
Given the order on E′ described above, consider the sequence of right-endpoints in E′.

We apply Theorem 19 with parameter k = ⌈ϵ−1⌉ to this sequence, to decompose it into Ck

many block-monotone sequences of depth k, upon deleting at most (k − 1)2 entries. For each
block-monotone subsequence of depth k, we draw the corresponding edges on a single page
as follows. If the subsequence is block-nonincreasing of depth k and block-size s, we draw the
corresponding edges as semicircles above the spine. Then, two edges cross only if they come
from the same block. Since there are a total of

(
ks
2

)
pairs of edges, and only k

(
s
2
)

such pairs
from the same block, the fraction of pairs of edges that cross in such a drawing is at most 1/k.
See Figure 6(i). Similarly, if the subsequence is block-nondecreasing of depth k and block-size
s, we draw the corresponding edges as monotone biarcs, consisting of two semicircles with
the first (left) one above the spine, and the second (right) one below the spine. Furthermore,

SoCG 2022



62:14 A Positive Fraction Erdős-Szekeres Theorem and Its Applications

we draw the monotone biarc s.t. it crosses the spine at b + 1 − ℓ/n − r/(2n2), where ℓ and
r are the left and right endpoints of the edge respectively. See Figure 6(ii). By the same
argument above, the fraction of pairs of edges that cross in such a drawing is at most 1/k.

Hence, E′ can be decomposed into Ck + (k − 1)2 many monotone biarc diagrams, s.t.
each monotone biarc diagram has at most 1/k-fraction of pairs of edges that are crossing.

(i) (ii)

Figure 6 (i) A proper arc diagram. (ii) A monotone biarc diagram.

For edges within [b], Lemma 20 and the inductive hypothesis tell us that they can be
decomposed into (Ck + (k − 1)2)(log |E| − 1) monotone biarc diagrams, s.t. the fraction of
pairs of edges that are crossing in each diagram is at most 1/k. The same argument applies
to the edges within [n] \ [b]. However, notice that two such monotone biarc diagrams, one in
[b] and another in [n]\ [b], can be drawn on the same page without introducing more crossings.
Hence, we can decompose E\E′ into at most (Ck + (k − 1)2)(log |E| − 1) such monotone
biarc diagrams, giving us a total of (Ck + (k − 1)2) log |E| monotone biarc diagrams. ◀

5 Final remarks

1. We call a sequence (a1, a2, . . . , an) of n distinct real numbers ϵ-increasing (ϵ-decreasing) if
the number of decreasing (increasing) pairs (ai, aj), where i < j, is less than ϵn2. And we call
a sequence ϵ-monotone if it’s either ϵ-increasing or ϵ-decreasing. Clearly, a block-monotone
sequence of depth k is an ϵ-monotone sequence with ϵ = k−1. Hence, Theorem 1 implies the
following.

▶ Corollary 21. For all n > 0 and ϵ > 0, every sequence of n distinct real numbers contains
an ϵ-monotone subsequence of length at least Ω(ϵn).

This corollary is also asymptotically best possible. To see this, for n > (k − 1)2 and a
sequence A = (ai)n

i=1 of distinct real numbers, we can apply Corollary 21 with ϵ = (64k)−1

to A and obtain an ϵ-monotone subsequence S ⊂ A and then apply Lemma 2.1 in [11] to S

to obtain a block-monotone subsequence of depth k and block-size Ω(n/k2). So Corollary 21
implies Theorem 1.

2. Let f(k) be the smallest number N s.t. every finite sequence of distinct real numbers
can be partitioned into at most N block-monotone subsequences of depth at least k upon
deleting (k − 1)2 entries. Our Theorem 2 is equivalent to saying f(k) = O(k2 log(k)). The
K(k, 2)-type construction in Remark 9 implies f(k) ≥ k. What is the asymptotic order of
f(k)?

3. We suspect our algorithm for Theorem 1 presented in the full version of this paper can
be improved. How fast can we compute a block-monotone subsequence as large as claimed
in Theorem 1? Can we do it within time almost linear in n for all k?



A. Suk and J. Zeng 62:15

References
1 Boris Aronov, Paul Erdős, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman, János

Pach, and Leonard J. Schulman. Crossing families. In Proceedings of the seventh annual
symposium on Computational geometry, pages 351–356, 1991.

2 Reuven Bar-Yehuda and Sergio Fogel. Partitioning a sequence into few monotone subsequences.
Acta Informatica, 35(5):421–440, 1998.

3 Imre Bárány and Pavel Valtr. A positive fraction Erdős-Szekeres theorem. Discrete &
Computational Geometry, 19(3):335–342, 1998.

4 Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979.

5 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath. Curve-
constrained drawings of planar graphs. Computational Geometry, 30(1):1–23, 2005.

6 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,
2:463–470, 1935.

7 Jacob Fox, János Pach, Benny Sudakov, and Andrew Suk. Erdős–Szekeres-type theorems
for monotone paths and convex bodies. Proceedings of the London Mathematical Society,
105(5):953–982, May 2012.

8 Kevin Milans, Derick Stolee, and Douglas West. Ordered Ramsey theory and track represen-
tations of graphs. Journal of Combinatorics, 6(4):445–456, 2015.

9 Mozhgan Mirzaei and Andrew Suk. A positive fraction mutually avoiding sets theorem.
Discrete Mathematics, 343(3):111730, 2020.

10 Guy Moshkovitz and Asaf Shapira. Ramsey Theory, integer partitions and a new proof of the
Erdős–Szekeres Theorem. Advances in Mathematics, 262:1107–1129, 2014.

11 János Pach, Natan Rubin, and Gábor Tardos. Planar point sets determine many pairwise
crossing segments. Advances in Mathematics, 386:107779, 2021.

12 Attila Pór and Pavel Valtr. The partitioned version of the Erdős-Szekeres theorem. Discrete
& Computational Geometry, 28(4):625–637, 2002.

13 J. Michael Steele. Variations on the monotone subsequence theme of Erdős and Szekeres. In
Discrete Probability and Algorithms, pages 111–131, New York, NY, 1995. Springer New York.

14 Pavel Valtr. On mutually avoiding sets. In The Mathematics of Paul Erdös II, pages 324–328.
Springer, 1997.

SoCG 2022





Optimal Coreset for Gaussian Kernel Density
Estimation
Wai Ming Tai #

University of Chicago, IL, USA

Abstract
Given a point set P ⊂ Rd, the kernel density estimate of P is defined as

GP (x) = 1
|P |

∑
p∈P

e−∥x−p∥2

for any x ∈ Rd. We study how to construct a small subset Q of P such that the kernel density
estimate of P is approximated by the kernel density estimate of Q. This subset Q is called a coreset.
The main technique in this work is constructing a ±1 coloring on the point set P by discrepancy
theory and we leverage Banaszczyk’s Theorem. When d > 1 is a constant, our construction gives a
coreset of size O

(
1
ε

)
as opposed to the best-known result of O

(
1
ε

√
log 1

ε

)
. It is the first result to

give a breakthrough on the barrier of
√

log factor even when d = 2.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Discrepancy Theory, Kernel Density Estimation, Coreset

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.63

Related Version Full Version: https://arxiv.org/abs/2007.08031

1 Introduction

Kernel density estimation is a non-parametric way to estimate a probability distribution.
Given a point set P ⊂ Rd, the kernel density estimate (KDE) of P smooths out P to
a continuous function [35, 36]. More precisely, given a point set P ⊂ Rd and a kernel
K : Rd ×Rd → R, KDE is defined as the function GP (x) = 1

|P |
∑

p∈P K(x, p) for any x ∈ Rd.
Here, the point x is called a query. One common example of kernel K is the Gaussian kernel,
which is K(x, y) = e−∥x−y∥2 for any x, y ∈ Rd, and it is the main focus of this paper. A wide
range of application includes outlier detection [41], clustering [33], topological data analysis
[32, 10], spatial anomaly detection [1, 18], statistical hypothesis test [17] and other [19, 23].

Generally speaking, the techniques using kernels are called kernel methods, in which KDE
is the central role in these techniques. Kernel methods are prevalent in machine learning and
statistics and often involve optimization problems. Optimization problems are generally hard
in the sense that solving them usually has a super-linear or even an exponential dependence
on the input’s size in its running time. Therefore, reducing the size of the input will be
desirable. A straightforward way to achieve this is extracting a small subset Q of the input
P . This paper will study the construction of the subset Q such that GQ approximates GP .

Classically, statisticians concern about different types of error such as L1-error [14] or
L2-error [35, 36]. However, there are multiple modern applications that require L∞-error such
as preserving classification margin [34], density estimation [40], topology [32] and hypothesis
test on distributions [17]. For example, in topological data analysis, we might want to
study the persistent homology of a super-level set of a kernel density estimate. In this case,
L∞-error plays an important role here since a small perturbation could cause a significant
change in its persistence diagram. Formally, we would like to solve the following problem.

© Wai Ming Tai;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 63; pp. 63:1–63:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:waiming.tai@chicagobooth.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.63
https://arxiv.org/abs/2007.08031
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


63:2 Optimal Coreset for Gaussian Kernel Density Estimation

Given a point set P ⊂ Rd and ε > 0, we construct a subset Q of P such that

sup
x∈Rd

|GP (x) − GQ(x)| = sup
x∈Rd

| 1
|P |

∑
p∈P

e−∥x−p∥2
− 1

|Q|
∑
q∈Q

e−∥x−q∥2
| ≤ ε.

Then, how small can the size of Q, |Q|, be?

We call this subset Q an ε-coreset.

1.1 Known results
We now discuss some previous results for the size of an ε-coreset.

Josh et al. [20] showed that random sampling can achieve the size of O( d
ε2 ). They

investigated the VC-dimension of the super-level sets of a kernel and analyzed that the
sample size can be bounded by it. In particular, the super-level sets of the Gaussian kernel
are balls in Rd. It reduces the problem to bounding the sample size of the range space of
balls.

Lopaz-Paz et al. [24] later proved that the size of the coreset can be reduced to O( 1
ε2 ) by

random sampling. They studied the reproducing kernel Hilbert space (RKHS) associated
with a positive-definite kernel [3, 39, 38]. Note that the Gaussian kernel is a positive-definite
kernel. In RKHS, one can bound the L∞-error between two KDEs of point sets P and Q by
the kernel distance of P and Q. They showed that the sample size of O( 1

ε2 ) is sufficient to
bound the kernel distance.

Other than random sampling, Lacoste-Julien et al. [22] showed a greedy approach can
also achieve the size of O( 1

ε2 ). They applied Frank-Wolfe algorithm [13, 15] in RKHS to
bound the error of the kernel distance.

Note that all of the above results have a factor of 1
ε2 . Josh et al. [20] first showed that a

sub-O( 1
ε2 ) result can be obtained by reducing the problem to constructing an ε-approximation

for the range space of balls [26]. They assumed that d is constant. For the case of d = 1,
their result gives the size of O( 1

ε ).
Later, Phillips [29] improved the result to O(( 1

ε2 log 1
ε )

d
d+2 ) for constant d via geometric

matching. It is based on the discrepancy approach. Namely, they construct a ±1 coloring
on the point set, recursively drop the points colored −1 and construct another ±1 coloring
on the points colored +1. We will discuss it in more detail below. Notably, for the case of
d = 2, their bound is O( 1

ε

√
log 1

ε ) which is nearly-optimal (as a preview, the optimal bound
is Ω( 1

ε )) and is the first nearly-linear result for the case of d > 1.
Recently, Phillips and Tai [30] further improved the size of a coreset to O( 1

ε logd 1
ε ) for

constant d. It is also based on the discrepancy approach. They exploited the fact that the
Gaussian kernel is multiplicatively separable. It implies that the Gaussian kernel can be
rewritten as the weighted average of a family of axis-parallel boxes in Rd. Finally, they
reduced the problem to Tusnády’s problem [6, 2].

Also, Phillips and Tai [31] proved a nearly-optimal result of O(
√

d
ε

√
log 1

ε ) shortly after
that. It is also based on the discrepancy approach. They observed that the underlying
structure of the positive-definite kernel allows us to bound the norm of the vectors and apply
the lemma in [27], which used Banaszczyk’s Theorem [4, 5]. Recall that the Gaussian kernel
is a positive-definite kernel.

Except for the upper bound, there are some results on the lower bound for the size of an
ε-coreset. Phillips [29] provided the first lower bound for the size of a coreset. They proved
a lower bound of Ω( 1

ε ) by giving an example that all points are spread out. When assuming



W. M. Tai 63:3

d > 1
ε2 , Phillips and Tai [30] gave another example that forms a simplex and showed a lower

bound of Ω( 1
ε2 ). Later, Phillips and Tai [31] combined the techniques of the above two results

and showed the lower bound of Ω(
√

d
ε ).

There are other conditional bounds for this problem. We suggest the readers refer
to [31] for a more extensive review. Recently, Karnin and Liberty [21] defined the notion
of Class Discrepancy which governs the coreset-complexity of different families of functions.
Specifically, for analytic functions of squared distances (such as the Gaussian kernel), their
analysis gives a discrepancy bound Dm = O(

√
d

m ) which gives a coreset of size O(
√

d
ε ). Their

approach also used the discrepancy technique or, more precisely, Banaszczyk’s Theorem [4, 5].
Unfortunately, their analysis requires both the point set P and the query x lie in a ball of
a fixed radius R. Therefore, their result has a dependence on R. Strictly speaking, their
result is not comparable to ours. It is not clear how to remove this assumption of R based
on their result. Also, the lower bound constructions in [29, 31] rely on the fact that P is in
an unbounded region and hence it is not clear how their result is comparable to the existing
lower results.

1.2 Related works

In computational geometry, an ε-approximation is the approximation of a general set by a
smaller subset. Given a set S and a collection C of subsets of S, a subset A ⊂ S is called
an ε-approximation if | |T |

|S| − |T ∩A|
|A| | ≤ ε for all T ∈ C. The pair (S, C) is called a set system

(also known as a range space or a hypergraph). One can rewrite the above guarantee as
| 1

|S|
∑

x∈S 1T (x) − 1
|A|

∑
x∈A 1T (x)| ≤ ε where 1T is the indicator function of set T . If we

replace this indicator function by a kernel such as the Gaussian kernel, it is the same as our
ε-coreset. There is a rich history on the construction of an ε-approximation [11, 26]. One
notable method is discrepancy theory, which is also our main technique. There is a wide
range of techniques employed in this field. In the early 1980s, Beck devised the technique
of partial coloring [7], and later a refinement of this technique called entropy method was
introduced by Spencer [37]. The entropy method is first used to solve the famous “six
standard deviations” theorem: given a set system of n points and n subsets, there is a
coloring of discrepancy at most 6

√
n. In contrast, random coloring gives the discrepancy

of O(
√

n log n). A more geometric example in discrepancy theory is Tusnády’s problem. It
states that, given point set P of size n in Rd, construct a ±1 coloring σ on P such that
the discrepancy minσ maxR |

∑
P ∩R σ(p)| is minimized where maxR is over all axis-parallel

boxes R. One previous approach of our ε-coreset problem reduces the problem to Tusnády’s
problem.

On the topic of approximating KDE, Fast Gauss Transform [16] is a method to preprocess
the input point set such that the computation of KDE at a query is faster than the brute-force
approach. The idea in this method is expanding the Gaussian kernel by Hermite polynomials
and truncating the expansion. Assuming that the data set lies inside a bounded region, the
query time in this method is poly-logarithmic of n for constant dimension d. Also, Charikar et
al. [9] studied the problem of designing a data structure that preprocesses the input to answer
a KDE query in a faster time. They used locality-sensitive hashing to perform their data
structure. However, the guarantee they obtained is a relative error, while ours is an additive
error. More precisely, given a point set P ⊂ Rd, Charikar et al. designed a data structure
such that, for any query x′ ∈ Rd, the algorithm answers the value GP (x′) =

∑
p∈P e−∥x′−p∥2

within (1 + ε)-relative error. Also, the query time of their data structure is sublinear of n.

SoCG 2022



63:4 Optimal Coreset for Gaussian Kernel Density Estimation

1.3 Our result
We construct an ε-coreset and bound the size of the ε-coreset via discrepancy theory. Roughly
speaking, we construct a ±1 coloring on our point set such that its discrepancy is small.
Then, we drop the points colored −1 and recursively construct a ±1 coloring on the points
colored +1. Eventually, the remaining point set is the desired coreset. A famous theorem
in discrepancy theory is Banaszczyk’s Theorem [4, 5]. We will use Banaszczyk’s Theorem
to construct a coloring and prove the discrepancy is small by induction. To the best of our
knowledge, this induction analysis combining with Banaszczyk’s Theorem has not been seen
in discrepancy theory before. In the constant dimensional space, we carefully study the
structure of the Gaussian kernel and it allows us to construct an ε-coreset of size O(1/ε).
Our result is the first result to break the barrier of

√
log factor even when d = 2.

▶ Theorem 1. Suppose P ⊂ Rd a point set of size n. Let GP be the Gaussian kernel
density estimate of P , i.e. GP (x) = 1

|P |
∑

p∈P e−∥x−p∥2 for any x ∈ Rd. For a fixed
constant d, there is an algorithm that constructs a subset Q ⊂ P of size O( 1

ε ) such that
supx∈Rd |GP (x) − GQ(x)| < ε and has a polynomial running time in n.

Even if d = 1, the best known result is O(1/ε) by [20, 30], which is optimal. Their
approach is to reduce the problem to Tusnády’s problem. A trivial solution of Tusnády’s
problem (and hence our problem) is: sort P and assign ±1 on each point alternately. However,
it is not clear that how this simple solution can be generalized to the higher dimensional case.
Our algorithm gives a non-trivial perspective even though the optimal result was achieved
previously.

2 Preliminaries

Our approach for constructing a coreset relies on discrepancy theory, which is a similar
technique in range counting coreset [12, 28, 8]. We first introduce an equivalent problem (up
to a constant factor) as follows.

Given a point set P ⊂ Rd, what is the smallest quantity of supx∈Rd |
∑

p∈P σ(p)e−∥x−p∥2 |
over all σ in the set of colorings from P to {−1, +1}?

Now, one can intuitively view the equivalence in the following way. If we rewrite the objective
as:

1
|P |

|
∑
p∈P

σ(p)e−∥x−p∥2
| = | 1

|P |
∑
p∈P

e−∥x−p∥2
− 1

|P |/2
∑

p∈P+

e−∥x−p∥2
|

where P+ ⊂ P is the set of points that is assigned +1, then we can apply the halving
technique [12, 28] which recursively invokes the coloring algorithm and retains the points
assigned +1 until the subset of the desired size remains. Note that there is no guarantee
that half of the points are assigned +1, while the other half is assigned −1. However, we can
handle this issue by some standard techniques [26] or see our proof for details.

Also, we define the following notations. Given a point set P ⊂ Rd, a coloring σ : P →
{−1, +1} and a point x ∈ S, we define the signed discrepancy DP,σ(x) as

DP,σ(x) =
∑
p∈P

σ(p)e−∥x−p∥2

It is worth noting that we expect |DP,σ(x)| < O(1) in order to construct an ε-coreset of size
O( 1

ε ) via this halving technique.
An important result in discrepancy theory is Banaszczyk’s Theorem [4].



W. M. Tai 63:5

▶ Theorem 2 (Banaszczyk’s Theorem [4]). Suppose we are given a convex body K ⊂ Rm of the
Gaussian measure at least 1

2 and n vectors v(1), v(2), . . . , v(n) ∈ Rm of norm at most 1, there
is a coloring σ : [n] → {−1, +1} such that the vector

∑n
i=1 σ(i)v(i) ∈ cK = {c · y | y ∈ K}.

Here, c is an absolute constant and the Gaussian measure of a convex body K is defined as∫
x∈K

1
(2π)d/2 e−∥x∥2/2dx.

The original proof of this theorem is non-constructive. Bansal et al. [5] proved that there is
an efficient algorithm to construct the coloring in Banaszczyk’s Theorem. Moreover, assuming
m < n, the running time is O(nω+1) where ω is the exponent of matrix multiplication.

▶ Theorem 3 (Constructive version of Banaszczyk’s Theorem [5]). Suppose we are given n

vectors v(1), . . . , v(n) ∈ Rm of norm at most 1, there is an efficient randomized algorithm that
constructs a coloring σ on P with the following guarantee: there are two absolute constants
C ′, C ′′ such that, for any unit vector θ ∈ Rm and α > 0, we have

Pr[|⟨θ, X⟩| > α] < C ′e−C′′α2

where X is the random variable of
∑n

i=1 σ(i)v(i). The probability in the above statement is
distributed over all ±1 colorings.

Finally, we introduce a useful theorem which is Markov Brother’s Inequality.

▶ Theorem 4 (Markov Brother’s Inequality [25]). Let P(x) be a polynomial of degree ρ. Then,

sup
x∈[0,1]

|P ′(x)| ≤ 2ρ2 sup
x∈[0,1]

|P(x)|

Here, P ′ is the derivative of P.

3 Proof overview

As we mentioned before, our equivalent problem statement suggests that we need to construct
a ±1 coloring on the input point set such that the absolute value of the signed discrepancy at
all points is small. In this section, we will give an overview on how we construct the coloring
and how it gives us the desired guarantees.

For exposition purposes, we illustrate the idea for the case of d = 1 even though previous
results [20, 30] showed this case is trivial. Recall that our problem definition is: given a
point set P ⊂ R of size n, construct a ±1 coloring σ on P such that the absolute value of
the signed discrepancy

|DP,σ(x)| = |
∑
p∈P

σ(p)e−(x−p)2
|

is bounded from above by a constant for all x ∈ R.

Some general observations. We first make some observations. Note that DP,σ is a smooth
function of x that the slope at any x is bounded. It means that if |DP,σ(x0)| is small for
some point x0 then |DP,σ(y)| is also small for any point y at a neighborhood of x0. Another
observation is that DP,σ is basically a linear combination of Gaussians and hence |DP,σ(x)|
is small for any x that is far away from all points in P .

Combining these two observations, if we lay down a grid on R and consider the grid
points that is not too far away from P , then we only need to construct a coloring σ such
that |DP,σ(x)| is small for all x in a finite set and it implies that |DP,σ(x)| is small for all
x ∈ R. It is crucial because we preview that our algorithm for constructing the coloring σ is
a randomized algorithm and the size of the finite set controls the number of events when we
apply the union bound. Note that these observations hold for any coloring.

SoCG 2022



63:6 Optimal Coreset for Gaussian Kernel Density Estimation

Techniques from the previous result. Now, we make the above observations more quanti-
tative. Since the slope of each Gaussian at any point is bounded by O(1) and there are n

Gaussians in DP,σ, by triangle inequality, the absolute value of the slope of DP,σ at any point
is bounded by O(n). Hence, if |DP,σ(x0)| is bounded by α for any point x0 for any α then
|DP,σ(y)| is bounded by α + O(1) for all y that |x0 − y| < O(1/n). Also, Gaussians decay
exponentially and hence |DP,σ(x)| < O(1) for any x that |x − p| > Ω(

√
log n) for all p ∈ P .

If a coloring σ satisfies that

|DP,σ(x)| < α for any x ∈ R with probability at least 1 − O(e−Ω(α2)) for any α (1)

then it implies, by union bound, this coloring σ satisfies that

|DP,σ(x)| < α + O(1) for all x ∈ R with probability at least 1 − N · O(e−Ω(α2))

where N is the number of grid points that are in the grid of cell width Ω(1/n) and lie around
some point in P within a radius of O(

√
log n). The number N is bounded by O(n2√

log n)
because for each point p ∈ P there are O(

√
log n/(1/n)) = O(n

√
log n) grid points around

p within a radius of O(
√

log n) and there are n points in P . By setting α = O(
√

log n), we
have

|DP,σ(x)| < O(
√

log n) for all x ∈ R with probability at least 1 − 1/10

if we manage to construct a coloring σ satisfying (1). Phillips and Tai [31] managed to
construct such coloring σ by Banaszczyk’s Theorem and proved their result. Namely, a
coloring satisfying (1) is construct-able.

Attempts to improve the result. We have seen how to show |DP,σ(x)| < O(
√

log n). There
is still a gap from showing |DP,σ(x)| < O(1). We observe that the above argument aims
at minimizing α such that the total failure probability Ne−Ω(α2) is bounded by a constant.
If we manage to make the factor N smaller, it helps setting α smaller and hence we can
improve the result.

Recall that N = O(n2√
log n) = O(n · n

√
log n) and the first factor n comes from the

fact that P has n points and these n points could be widely spread out. Namely, we need at
most n neighborhoods to cover all relevant grid points. What if all points in P lie inside a
bounded region say [−1, 1]? In this case, we just need to consider one neighborhood to cover
all relevant grid points. Nonetheless, we do not assume that they are in a bounded region
and we take care of it in the following way. We partition R into infinitely many bounded
regions (say . . . , [−3, −1], [−1, 1], [1, 3], . . . ) and assign each point in P to its corresponding
region. Then, we construct a coloring on the points in each bounded region and each coloring
is constructed independently. By triangle inequality, we have

|DP,σ(x)| ≤
∑

|DPi,σi(x)| (2)

where each Pi ⊂ P is the set of points in the same bounded region and σi is the coloring σ

restricted on Pi.
If we manage to construct the colorings σi satisfying (1) then we will end up getting

|DP,σ(x)| < n0 · O(α) where n0 is the number of bounded regions that contain at least one
point in P . However, n0 can be as large as O(n). To address this issue, we take the advantage
of the assumption that all points in Pi are in a bounded region (say [−1, 1]). Since all points
in Pi are in [−1, 1] now and Gaussians decay exponentially, intuitively we should be able to
construct a coloring σi that

|DPi,σi
(x)| < αe− 2

3 x2
for any x ∈ R with probability at least 1 − O(e−Ω(α2)) for any α



W. M. Tai 63:7

if a coloring satisfying (1) is construct-able. It is because we can rewrite |DPi,σi
(x)| as

|DPi,σi
(x)| = |

∑
p∈Pi

σi(p)e−(x−p)2
| = e− 2

3 x2
· |

∑
p∈Pi

σi(p)e2p2
e

−( 1√
3

x−
√

3p)2
| (3)

and the expression in the RHS has a form similar to DPi,σi(x). The constant 2
3 in the factor

e− 2
3 x2 can be any constant between 0 and 1. The extra factor e− 2

3 x2 is crucial: when we
plug the bound αe− 2

3 x2 into (2), |DP,σ(x)| is bounded by O(1) · O(α) instead of n0 · O(α).
One minor issue here is that the failure probability is accumulated when we ensure all σi

have the desired discrepancy. We fix this issue by turning the construction of each σi into
a Las Vegas Algorithm. Namely, we check if each σi satisfies the desired discrepancy and
repeat the construction if not.

Now, if we manage to construct a coloring σ such that: given P ⊂ [−1, 1],

|DP,σ(x)| < αe− 2
3 x2

for any x ∈ R with probability at least 1 − O(e−Ω(α2)) for any α (4)

then we only need to consider one neighborhood to cover all relevant grid points when
applying the union bound. We also preview here that (4) is the only property a coloring
needs to show our result. From now on, we assume P ⊂ [−1, 1]. Even though (4) (the
properties of the coloring σ we are looking for) is slightly different than (1) (what we stated
in the beginning) because of the extra factor e− 2

3 x2 , we can still perform a similar argument
to prove that

|DP,σ(x)| < O(
√

log n)e− 2
3 x2

for all x ∈ R with probability at least 1 − 1/10 (5)

by arguing the slope of DP,σ(x) is bounded by O(n)e− 2
3 x2 for any x ∈ R.

Reusing the guarantees for DP,σ. Now, we look at the second factor n
√

log n in N . It
turns out that we are not going to make this factor smaller. Instead, we will look at what
guarantees this factor can give us and reuse these guarantees.

We further split n
√

log n into two parts: n and
√

log n. Recall that the first part n comes
from the configuration that the cell width of the grid is Ω(1/n) and the second part

√
log n

comes from the configuration that we need to consider the neighborhood of radius O(
√

log n)
to cover all relevant grid points. However, we set up these two configurations without taking
σ into consideration. As we mentioned before, if we have a coloring σ satisfying (4) then we
have (5). Can we reuse this guarantee and exploit the coloring σ? To answer this question,
we first investigate the term |DP,σ(x) − DP,σ(y)| for any x, y ∈ R and, by exploiting the
structure of the Gaussians, we can prove

|DP,σ(x) − DP,σ(y)
x − y

| < O(|ξ|) · |DP,σ(ξ)| (6)

for any x ̸= y where ξ is in between x and y. The takeaway from this inequality is the slope
of DP,σ is bounded by DP,σ itself. It is how we can reuse our guarantees.

If we plug our guarantee (5) into (6), we can show that the slope of DP,σ(x) for this σ is
bounded by O(

√
log n log log n)e− 2

3 x2 for any x within a radius of O(
√

log log n). For x that
lies beyond a radius of Ω(

√
log log n), we have

|DP,σ(x)| < O(
√

log n)e− 2
3 x2

<
O(

√
log n)

Ω(
√

log n)
e− 1

3 x2
< O(1)e− 1

3 x2
< O(

√
log log n)e− 1

3 x2
(7)

SoCG 2022



63:8 Optimal Coreset for Gaussian Kernel Density Estimation

Note that the constant in the exponent becomes 1
3 and it can be any constant smaller than 2

3 .
If we have a coloring σ satisfying additionally that |DP,σ(x)| < O(

√
log log n)e− 2

3 x2 for all x

in the set of grid points that are in the grid of cell width Ω(1/
√

log n) (instead of Ω(1/n))
and bounded within a radius of O(

√
log log n) (instead of O(

√
log n)), then we have

|DP,σ(x)| < O(
√

log log n)e− 1
3 x2

for all x ∈ R.

There is a caveat: to ensure the coloring σ satisfies the additional properties, we have
to include more events in the union bound when invoking (4). In other words, the failure
probability is now larger than 1/10. Nonetheless, we improved the previous result to
|DP,σ(x)| < O(

√
log log n)e− 1

3 x2 .

Hints of using induction. From the improvement we just made, it gives us a hint to refine
the quality of our result by induction. One may notice the following pattern. Suppose we
have a coloring σ satisfying

|DP,σ(x)| < βe−κx2
for all x ∈ R (8)

for some β where κ is any constant between 0 and 1 (like 2/3 before). Let S be the set of
grid points that are in the grid of cell width Ω(1/β) and lie within a radius of O(

√
log β).

Note that |S| = O(β
√

log β). If this coloring σ also satisfies that

|DP,σ(x)| < O(
√

log β)e−κx2
for all x ∈ S (9)

then we can modify the previous argument in the following way. From (8) and (6), we
have the absolute value of the slope of DP,σ at any point within a radius of O(

√
log β) is

bounded by O(β
√

log β)e−κx2 . From an argument similar to (7), we also have |DP,σ(x)| <

O(
√

log β)e−κ′x2 for all x that lies beyond a radius of Ω(
√

log β) where κ′ is any constant
between 0 and κ (like 1/3 before). We combine them with (9) and it implies

|DP,σ(x)| < O(
√

log β)e−κ′x2
for all x ∈ R. (10)

If we take (5) as the base step and the implication from (8) to (10) as the inductive step, we
should expect

|DP,σ(x)| < O(1)e− 1
3 x2

for all x ∈ R.

after O(log∗ n) inductive steps.
As we mentioned before, we also need to keep track of the failure probability and the

exponent κ in the factor e−κx2 . We first deal with the failure probability. In each inductive
step, we need extra guarantees on the set of grid points of a smaller size (i.e. (9) when
invoking (4)). Hence, the total failure probability is a sum of O(log∗ n) failure probabilities
in each inductive step. We can set these O(log∗ n) failure probabilities to be a geometric
sequence such that the total failure probability is a constant. The other issue is the exponent.
We can again make this exponent decrease from 2/3 to 1/3 geometrically as it proceeds in
the inductive steps. In each inductive step, we need to set α in (4) larger than what we
stated earlier accordingly when invoking (4) in the union bound. Nonetheless, we eventually
prove that |DP,σ(x)| < O(1)e− 1

3 x2 for all x ∈ R with probability 1/2.



W. M. Tai 63:9

Construction of the coloring. It all boils down to the problem of how to construct a
coloring σ satisfying (4). Namely, given a point set P ⊂ [−1, 1],

|DP,σ(x)| < αe− 2
3 x2

for any x ∈ R with probability at least 1 − O(e−Ω(α2)) for any α.

We introduced Banaszczyk’s Theorem (Theorem 3) before and if we can rewrite (4) as the
inner product form shown in Theorem 3 then we can apply the algorithm in Theorem 3. As
we mentioned in (3), we first rewrite

|DP,σ(x)| = |
∑
p∈P

σ(p)e−(x−p)2
| = e− 2

3 x2
· |

∑
p∈P

σ(p)e2p2
e

−( 1√
3

x−
√

3p)2
|.

and hence we can ease the notation by dropping the factor e− 2
3 x2 . Namely, we need a coloring

σ such that, given a point set P ⊂ [−1, 1],

|
∑
p∈P

σ(p)e2p2
e

−( 1√
3

x−
√

3p)2
| < α for any x ∈ R

with probability at least 1 − O(e−Ω(α2)) for any α. Since the Gaussian kernel is a positive-
definite kernel, it implies that the term e

−( 1√
3

x−
√

3p)2
can be rewritten as ⟨u( 1√

3
x)

, u(
√

3p)⟩
where u(·) is a vector such that ⟨u(s), u(t)⟩ = e−(s−t)2 for any s, t ∈ R. It is worth noting
that ∥u(s)∥2 = ⟨u(s), u(s)⟩ = e−(s−s)2 = 1 for any s ∈ R. Hence, we further rewrite (4) as:
given a point set P ⊂ [−1, 1],

|⟨u( 1√
3

x)
, Σ⟩| < α for any x ∈ R with probability at least 1 − O(e−Ω(α2)) for any α

where Σ =
∑

p∈P σ(p)e2p2
u(

√
3p). It is the inner product form we are looking for in order to

apply the algorithm in Theorem 3. Recall that the norms of the input vectors and the query
vectors in Banaszczyk’s Theorem are required to be not larger than 1. We check that the
norm of the query vector ∥u

( 1√
3

x)∥ = 1 and the norm of the input vector ∥e2p2
u(

√
3p)∥ = O(1)

since we assume that P ⊂ [−1, 1]. Karnin and Liberty [21] assumed both the point set P

and the query x lie within a constant radius because their result stops short of handling
the norms of these vectors when using Banaszczyk’s Theorem. If we take e2p2

u(
√

3p)

∥e2p2 u(
√

3p)∥
as the

input vectors, we can apply the algorithm in Theorem 3 to construct the desired coloring.

4 Proofs

In this section, we will show how to construct an ε-coreset via discrepancy theory. From now
on, we assume that d is a constant. The log function in this paper is base e. Also, we define
the following notations. Let Gridd(γ) ⊂ Rd be an infinite lattice grid of cell width γ, i.e.
{(γi1, . . . , γid) | i1, . . . , id are integers}. Denote Bd

∞(r) = {x | |xj | < r for j = 1, . . . , d} to
be a ℓ∞-ball of radius r. We define a decreasing sequence ni in the following way: n0 = log2 n,
n1 =

√
3 log n + 3 and ni+1 =

√
3 · 2ℓ(n)−i log ni for i = 1, . . . , ℓ(n) − 1. Here, ℓ(n) + 3 is

the smallest integer k that ilog(k, n) < 0 where ilog(k, n) = log · · · log n (there are k log
functions) and it is easy to see that ℓ(n) = O(log∗ n). For i = 0, . . . , ℓ(n) − 1, denote
Si = Gridd( 1

C0ni
) ∩ [−ni+1, ni+1]d = Gridd( 1

C0ni
) ∩ Bd

∞(ni+1) where C0 is a sufficiently large
constant. Namely, Si is a bounded lattice grid and its size is at most (2C0nini+1)d. Note
that Si may be interpreted as a subset of S0 but, for clarity, we still view them as different
sets. Throughout this section, the absolute constants C0, C1, C are unchanged. Also, C is
larger than C1 and C1 is larger than C0.

SoCG 2022



63:10 Optimal Coreset for Gaussian Kernel Density Estimation

4.1 Useful lemmas
Before we go into the main proof, we first present some important observations.

▶ Lemma 5. Suppose P ⊂ Bd
∞(1) be a point set of size n and σ is a coloring on P . Then,

we have

sup
x∈Bd

∞(
√

3 log n+3)
|
∑
p∈P

σ(p)e2∥p∥2
e− 1

3 ∥x−3p∥2
| ≤ 4 · sup

s∈S0

|
∑
p∈P

σ(p)e2∥p∥2
e− 1

3 ∥s−3p∥2
| + 7

where S0 = Gridd(w) ∩ [−
√

3 log n − 3,
√

3 log n + 3]d = Gridd(w) ∩ Bd
∞(

√
3 log n + 3) with

w = 1
C0 log2 n

. Here, Gridd(γ) = {(γi1, . . . , γid) | i1, . . . , id are integers} ⊂ Rd is an infinite
lattice grid.

The main technique in Lemma 5 is expanding the expression by Taylor expansion. Then,
by truncating the Taylor expansion with a finite number of terms, one can bound the
derivatives of the expression by using Markov Brother’s inequality (Theorem 4). Since the
width of the grid cell in S0 depends on the number of terms in the Taylor expansion, we
need to argue that a small number of terms suffices to bound the error.

▶ Lemma 6. Given a coloring σ. For any x, s ∈ Rd such that |xj | ≤ |sj | for all j = 1, 2, . . . , d,
we have

|
∑
p∈P

σ(p)e−∥x−p∥2
−

∑
p∈P

σ(p)e−∥s−p∥2
|

≤ (∥s∥2 − ∥x∥2)|
∑
p∈P

σ(p)e−∥x−p∥2
| + 2

d∑
j=1

|sj − xj | · |
∑
p∈P

σ(p)e−∥ξ(j)−p∥2
|

where ξ(j) = (x1, . . . , xj−1, ξj , sj+1, . . . , sd) for some ξj between |xj | and |sj |.

In the inductive step, the main observation is the absolute difference of the discrepancy
objective at two different points, |DP,σ(x) − DP,σ(y)|, can be bounded by the discrepancy
objective itself. Lemma 6 is the lemma providing the key inequality to perform the inductive
steps.

Finally, we also show the asymptotic bound of the recurrence equation ni in Lemma 7.

▶ Lemma 7. Let n0 = log2 n, n1 =
√

3 log n + 3 and ni+1 =
√

3 · 2ℓ(n)−i log ni for i =
1, . . . , ℓ(n) − 1. Then, nℓ(n) = O(1). Recall that ℓ(n) + 3 is the smallest integer k that
ilog(k, n) < 0.

4.2 Base step
Recall that the definition of DP,σ(x) is

∑
p∈P σ(p)e−∥x−p∥2 . Lemma 8 shows that if a coloring

σ satisfies that |DP,σ(x)| is small for all x in a finite subset (which is a grid) of Rd, then
the coloring σ also satisfies that |DP,σ(x)| is small for all x ∈ Rd. Note that we still haven’t
provided the detail on how to find such coloring and we will do it in the full algorithm.

▶ Lemma 8. Suppose P ⊂ Bd
∞(1). Given a coloring σ such that, for all s′ ∈ S0 =

Gridd(w) ∪ Bd
∞(n1) where w = 1

C0 log2 n
= 1

C0n0
is the same w shown in Lemma 5 and

n1 =
√

3 log n + 3,

|DP,σ(s′)| = |
∑
p∈P

σ(p)e−∥s′−p∥2
| < C1n1e− 2

3 ∥s′∥2



W. M. Tai 63:11

Then, we have, for all x ∈ Rd,

|DP,σ(x)| = |
∑
p∈P

σ(p)e−∥x−p∥2
| < Cn1e− 2

3 ∥x∥2
.

Here, C, C1, C0 are sufficiently large constant depending on d only.

We make a short remark here. One might notice that Lemma 8 states w = 1
C0 log2 n

while
it is sufficient to set w = Ω( 1

n ) as suggested in Section 3. As we mentioned before, our final
algorithm is a Las Vegas algorithm and hence we need to check if the output coloring has
the desired discrepancy. We check it by enumerating the relevant grid points and computing
the discrepancy at them. Making w larger reduces the size of the grid and hence improves
the running time. Nonetheless, w = 1

C0 log2 n
= Ω( 1

n ) and hence it doesn’t change the logic.

4.3 Inductive step
Lemma 9 suggests that if a coloring σ satisfies that |DP,σ(x)| is small for all x ∈ Rd, then
the coloring σ satisfies that the absolute difference |DP,σ(x) − DP,σ(s)| is also small for any
two close points x, s within a certain region. It is achieved by the observation that the slope
of DP,σ can be bounded by DP,σ itself in magnitude.

▶ Lemma 9. Suppose P ⊂ Bd
∞(1). Let Di = C · 5

4 (1 − 1
5i ) and Ii = 1

3 + 1
3 (1 − 1

2ℓ(n)−i ). Given
a coloring σ such that, for all x ∈ Rd,

|DP,σ(x)| = |
∑
p∈P

σ(p)e−∥x−p∥2
| < Di · nie

−Ii∥x∥2
.

If x ∈ Bd
∞(ni+1), then

|DP,σ(x) − DP,σ(s)| = |
∑
p∈P

σ(p)e−∥x−p∥2
−

∑
p∈P

σ(p)e−∥s−p∥2
| ≤ 1

5Di · ni+1e−Ii∥x∥2
.

where s ∈ Si is the closest point to x that |sj | > |xj | for all j = 1, 2, . . . , d.

Similar to Lemma 8, Lemma 10 shows that if a coloring σ satisfies that |DP,σ(x)| is small
for all x in a finite subset (which is a grid) of Rd, then the coloring σ also satisfies that
|DP,σ(x)| is small for all x ∈ Rd. The only difference is that we can take the advantage of
the discrepancy guarantee from the previous iterations.

▶ Lemma 10. Suppose P ⊂ Bd
∞(1). Recall that Di = C · 5

4 (1− 1
5i ) and Ii = 1

3 + 1
3 (1− 1

2ℓ(n)−i )
which is the same definition as in Lemma 9. Given a coloring σ such that, for all s′ ∈ Si,

|
∑
p∈P

σ(p)e−∥s′−p∥2
| < C1ni+1e− 2

3 ∥s′∥2

and, for all x ∈ Rd,

|
∑
p∈P

σ(p)e−∥x−p∥2
| ≤ Di · nie

−Ii∥x∥2
.

Then, we have, for all x ∈ Rd,

|
∑
p∈P

σ(p)e−∥x−p∥2
| < Di+1 · ni+1e−Ii+1∥x∥2

.

Here, C, C1 are sufficiently large constants.

SoCG 2022



63:12 Optimal Coreset for Gaussian Kernel Density Estimation

4.4 Full algorithm
For now, we still assume that P ⊂ Bd

∞(1). Now, we can apply the algorithm in Theorem 3
to construct our coloring σ that produces a low discrepancy, |DP,σ(x)|, for all x ∈ Rd. Recall
that ℓ(n) + 3 is the smallest integer k that ilog(k, n) < 0. Also, we defined ni before such
that n0 = log2 n, n1 =

√
3 log n + 3 and ni+1 =

√
3 · 2ℓ(n)−i log ni.

▶ Lemma 11. Assuming P ⊂ Bd
∞(1). Given a set of vectors VP defined as follows.

VP = { 1√
1 + e4d

( 1
v(p)e2∥p∥2) | p ∈ P}

such that ⟨v(p), v(q)⟩ = e−3∥p−q∥2 for any p, q ∈ P . Then, by taking VP as the input, the
algorithm in Theorem 3 constructs a coloring σ on P such that

|
∑
p∈P

σ(p)e−∥x−p∥2
| < C · 5

4 · nℓ(n)e
− 1

3 ∥x∥2

for all x ∈ Rd and |
∑

p∈P σ(p)| ≤ C with probability at least 1
2 .

Recall that we eventually would like to use the halving technique to construct our ε-coreset.
To use the halving technique, we need to ensure that half of the points in P are +1 and the
other half are −1. In Lemma 11, the 1s concatenated on top of the vectors v(p)e2∥p∥2 in VP

ensure the coloring has the above property.

▶ Lemma 12. Assuming P ⊂ Bd
∞(1). There is an efficient algorithm that constructs a

coloring σ such that |
∑

p∈P σ(p)e−∥x−p∥2 | = O(nℓ(n)e
− 1

3 ∥x∥2) for all x ∈ Rd and half of
points are assigned +1 with probability at least 1

2 .

Algorithm 1 Construction of the coloring.

input: a point set P ⊂ Rd

1: initialize Qg = ∅ for all g ∈ Gridd(2)
2: for each p ∈ P do
3: insert p into Qg where g ∈ Gridd(2) is the closest point to p.
4: for each non-empty Qg do

5: construct a collection Vg of vector { 1√
1+e4d

( 1
v(p)e2∥p∥2) | p ∈ Qg} such that ⟨v(p), v(q)⟩ =

e−3∥p−q∥2 for any p, q ∈ Qg

6: use Vg as the input and run the algorithm in Theorem 3 to obtain a coloring σg on Qg

7: check if σg satisfies the conditions in Lemma 8 and Lemma 10 and repeat line 6 if not
8: flip the color of any points such that half of points in Qg are colored +1.
9: return a coloring σ : P → {−1, +1} such that σ(p) = σg(p) when p ∈ Qg

We can now remove the assumption of P ⊂ Bd
∞(1). Algorithm 1 is a Las Vegas algorithm

that constructs a coloring on the input point set P . We can now show how to construct a
coloring such that the discrepancy is small. Recall that we defined Gridd(γ) = {(γi1, . . . , γid) |
i1, . . . , id are integers} ⊂ Rd to be an infinite lattice grid. The idea of Algorithm 1 is that we
first decompose the entire Rd into infinitely many ℓ∞-balls of radius 1. Then, we partition
our input P such that each point p ∈ P lies in some ℓ∞-ball. For each non-empty ℓ∞-ball,
run the algorithm in Theorem 3 to construct a coloring with the desired discrepancy by
Lemma 12. Finally, we argue that there is an extra constant factor in the final discrepancy.



W. M. Tai 63:13

▶ Lemma 13. Suppose P ⊂ Rd be a point set of size n. Then, Algorithm 1 constructs a
coloring σ on P efficiently such that supx∈Rd |

∑
p∈P σ(p)e−∥x−p∥2 | = O(1) and half of the

points in P are colored +1.

One can first perform random sampling [24] before running Algorithm 1 such that the
input size n = O( 1

ε2 ). Finally, by the standard halving technique, we have the following
theorem.

▶ Theorem 14 (Restated Theorem 1). Suppose P ⊂ Rd be a point set of size n. Let GP be
the Gaussian kernel density estimate of P , i.e. GP (x) = 1

|P |
∑

p∈P e−∥x−p∥2 for any x ∈ Rd.
For a fixed constant d, there is an algorithm that constructs a subset Q ⊂ P of size O( 1

ε )
such that supx∈Rd |GP (x) − GQ(x)| < ε and has a polynomial running time in n.

5 Conclusion and discussion

In this paper, we studied the question of constructing coresets for kernel density estimates.
We proved that the Gaussian kernel has an ε-coreset of the optimal size O(1/ε) when d is a
constant. This coreset can be constructed efficiently. We leveraged Banaszczyk’s Theorem
to construct a coloring such that the kernel discrepancy is small. Then, we constructed an
ε-coreset of the desired size via the halving technique.

Some open problems in discrepancy theory, such as Tusnády’s Problem, have an issue
that an extra factor shows up when we generalize the result from the case of d = 1 to the case
of larger d. A previous result of our problem is reducing our problem to Tusnády’s Problem.
It turns out that, if d = 1, the trivial solution gives the optimal result. Unfortunately, it
cannot be generalized to the higher dimensional case. Our new induction analysis combining
with Banaszczyk’s Theorem provides a non-trivial perspective even when d = 1. Hence, it
might open up a possibility of improving the results on these open problems.

Even though the Gaussian kernel is a major class of kernels in most of applications, it
would be interesting to investigate similar results on other kernel settings such as the Laplace
kernel. Our approach exploits the properties of the Gaussian kernel such as factoring out
the e−Ω(∥x∥2) factor while maintaining the positive-definiteness. Generalizing the result to a
broader class of kernels might require deeper understandings of the properties that other
kernels share with the Gaussian kernel.

In some applications, the input data might be in the high dimensional space. Our result
assumes that d is a constant. Note that one of the previous results is sub-optimal in terms
of ε but is optimal in terms of d. The dependence on d in our result is exponential which we
might want to avoid in the high dimensional case. Hence, improving the dependence on d to
polynomial is also interesting because it would be more practical in some applications.

References
1 Pankaj K Agarwal, Sariel Har-Peled, Haim Kaplan, and Micha Sharir. Union of random

minkowski sums and network vulnerability analysis. Discrete & Computational Geometry,
52(3):551–582, 2014.

2 Christoph Aistleitner, Dmitriy Bilyk, and Aleksandar Nikolov. Tusnády’s problem, the
transference principle, and non-uniform qmc sampling. In International Conference on Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 169–180. Springer, 2016.

3 Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathemat-
ical society, 68(3):337–404, 1950.

4 Wojciech Banaszczyk. Balancing vectors and gaussian measures of n-dimensional convex
bodies. Random Structures & Algorithms, 12(4):351–360, 1998.

SoCG 2022



63:14 Optimal Coreset for Gaussian Kernel Density Estimation

5 Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The gram-schmidt walk:
a cure for the banaszczyk blues. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 587–597, 2018.

6 Nikhil Bansal and Shashwat Garg. Algorithmic discrepancy beyond partial coloring. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
914–926, 2017.

7 József Beck. Roth’s estimate of the discrepancy of integer sequences is nearly sharp. Combi-
natorica, 1(4):319–325, 1981.

8 Jon Louis Bentley and James B Saxe. Decomposable searching problems i: Static-to-dynamic
transformation. J. algorithms, 1(4):301–358, 1980.

9 Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density
estimation through density constrained near neighbor search. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 172–183. IEEE, 2020.

10 Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Alessan-
dro Rinaldo, and Larry Wasserman. Robust topological inference: Distance to a measure and
kernel distance. The Journal of Machine Learning Research, 18(1):5845–5884, 2017.

11 Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge University
Press, 2001.

12 Bernard Chazelle and Jiřı Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. Journal of Algorithms, 21(3):579–597, 1996.

13 Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.
ACM Transactions on Algorithms (TALG), 6(4):1–30, 2010.

14 Luc Devroye and László Györfi. Nonparametric Density Estimation: The L1 View. Wiley,
1984.

15 Bernd Gärtner and Martin Jaggi. Coresets for polytope distance. In Proceedings of the
twenty-fifth annual symposium on Computational geometry, pages 33–42, 2009.

16 Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and
Statistical Computing, 12(1):79–94, 1991.

17 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773,
2012.

18 Mingxuan Han, Michael Matheny, and Jeff M Phillips. The kernel spatial scan statistic.
In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 349–358, 2019.

19 Phillips Jeff and Tai Wai Ming. The gaussiansketch for almost relative error kernel distance.
In International Conference on Randomization and Computation (RANDOM), 2020.

20 Sarang Joshi, Raj Varma Kommaraji, Jeff M Phillips, and Suresh Venkatasubramanian.
Comparing distributions and shapes using the kernel distance. In Proceedings of the twenty-
seventh annual symposium on Computational geometry, pages 47–56, 2011.

21 Zohar Karnin and Edo Liberty. Discrepancy, coresets, and sketches in machine learning. In
Conference on Learning Theory, pages 1975–1993, 2019.

22 Simon Lacoste-Julien, Fredrik Lindsten, and Francis Bach. Sequential kernel herding: Frank-
wolfe optimization for particle filtering. In Artificial Intelligence and Statistics, pages 544–552,
2015.

23 Jasper CH Lee, Jerry Li, Christopher Musco, Jeff M Phillips, and Wai Ming Tai. Finding
an approximate mode of a kernel density estimate. In 29th Annual European Symposium on
Algorithms (ESA 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

24 David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin. Towards a
learning theory of cause-effect inference. In International Conference on Machine Learning,
pages 1452–1461, 2015.

25 AA Markov. On a question of di mendeleev, zap. Petersburg Akad. Nauk, 62:1–24, 1889.



W. M. Tai 63:15

26 Jiri Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science &
Business Media, 2009.

27 Jiří Matoušek, Aleksandar Nikolov, and Kunal Talwar. Factorization norms and hereditary
discrepancy. International Mathematics Research Notices, 2020(3):751–780, 2020.

28 Jeff M Phillips. Algorithms for ε-approximations of terrains. In International Colloquium on
Automata, Languages, and Programming, pages 447–458. Springer, 2008.

29 Jeff M Phillips. ε-samples for kernels. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 1622–1632. SIAM, 2013.

30 Jeff M Phillips and Wai Ming Tai. Improved coresets for kernel density estimates. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2718–2727.
SIAM, 2018.

31 Jeff M Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. Discrete
& Computational Geometry, pages 1–21, 2019.

32 Jeff M Phillips, Bei Wang, and Yan Zheng. Geometric inference on kernel density estimates.
In 31st International Symposium on Computational Geometry (SoCG 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

33 Alessandro Rinaldo, Larry Wasserman, et al. Generalized density clustering. The Annals of
Statistics, 38(5):2678–2722, 2010.

34 Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2002.

35 David W Scott. Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons, 2015.

36 Bernard W Silverman. Density estimation for statistics and data analysis, volume 26. CRC
press, 1986.

37 Joel Spencer. Six standard deviations suffice. Transactions of the American mathematical
society, 289(2):679–706, 1985.

38 Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert RG
Lanckriet. Hilbert space embeddings and metrics on probability measures. The Journal of
Machine Learning Research, 11:1517–1561, 2010.

39 Grace Wahba et al. Support vector machines, reproducing kernel hilbert spaces and the
randomized gacv. Advances in Kernel Methods-Support Vector Learning, 6:69–87, 1999.

40 Yan Zheng and Jeff M Phillips. L∞ error and bandwidth selection for kernel density estimates
of large data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1533–1542, 2015.

41 Shaofeng Zou, Yingbin Liang, H Vincent Poor, and Xinghua Shi. Unsupervised nonpara-
metric anomaly detection: A kernel method. In 2014 52nd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 836–841. IEEE, 2014.

SoCG 2022





GPU Computation of the Euler Characteristic
Curve for Imaging Data
Fan Wang #

Stony Brook University, NY, US

Hubert Wagner #

University of Florida, Gainesville, FL, US

Chao Chen #

Stony Brook University, NY, US

Abstract
Persistent homology is perhaps the most popular and useful tool offered by topological data analysis
– with point-cloud data being the most common setup. Its older cousin, the Euler characteristic
curve (ECC) is less expressive – but far easier to compute. It is particularly suitable for analyzing
imaging data, and is commonly used in fields ranging from astrophysics to biomedical image analysis.
These fields are embracing GPU computations to handle increasingly large datasets.

We therefore propose an optimized GPU implementation of ECC computation for 2D and 3D
grayscale images. The goal of this paper is twofold. First, we offer a practical tool, illustrating its
performance with thorough experimentation – but also explain its inherent shortcomings. Second, this
simple algorithm serves as a perfect backdrop for highlighting basic GPU programming techniques
that make our implementation so efficient – and some common pitfalls we avoided. This is intended
as a step towards a wider usage of GPU programming in computational geometry and topology
software. We find this is particularly important as geometric and topological tools are used in
conjunction with modern, GPU-accelerated machine learning frameworks.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Combinatorial algorithms

Keywords and phrases topological data analysis, Euler characteristic, Euler characteristic curve,
Betti curve, persistent homology, algorithms, parallel programming, algorithm engineering, GPU
programming, imaging data

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.64

Related Version Full Version: https://arxiv.org/abs/2203.09087

Supplementary Material Software (Source Code): https://github.com/TopoXLab/GPU_ECC_
SoCG2022; archived at swh:1:dir:5f915660625457e3fbb99aeb77a7160385580560

Funding This work was partially supported by grants NSF IIS-1909038 and CCF-1855760.

1 Introduction

Describing the shape of data is the tenet of topological data analysis (TDA) – and at its
heart lies the idea of studying data across scales. Instead of characterizing the shape at a
fixed scale – we measure its evolution. A filtration encodes this evolution and thus becomes
an object of primary interest. Depending on the type of data, an appropriate filtration
is used: Alpha-shape filtration for point-cloud data embedded in three dimensional space;
Vietoris–Rips filtration for high dimensional metric data expressed by pairwise distances;
cubical filtration for two- or three-dimensional grayscale imaging data. This paper focuses on
imaging data, in which TDA methods have shown promise in recent years [21, 22, 24, 10].

© Fan Wang, Hubert Wagner, and Chao Chen;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 64; pp. 64:1–64:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fanwang1@cs.stonybrook.edu
mailto:hwagner@ufl.edu
mailto:chao.chen.1@stonybrook.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.64
https://arxiv.org/abs/2203.09087
https://github.com/TopoXLab/GPU_ECC_SoCG2022
https://github.com/TopoXLab/GPU_ECC_SoCG2022
https://archive.softwareheritage.org/swh:1:dir:5f915660625457e3fbb99aeb77a7160385580560
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


64:2 GPU Computation of the Euler Characteristic Curve for Imaging Data

Persistent homology is perhaps the most powerful topological descriptor applied to such
filtrations – and it proves especially useful in conjunction with modern deep learning (DL)
methods. However, integration of persistent homology with DL methods remains far from
seamless – despite significant progress, computing persistent homology takes significant
amount of time and resources for practical datasets. This is in contrast with modern learning
pipelines which often employ simple, highly optimized computations. In particular, many
neural network architectures are realized fully on graphical processing units (GPUs) attaining
massively parallel processing; the same applies to modern large-scale simulations. Existing
software for persistent homology is not at this level of advancement, at least not for imaging
data. We mention that the recent GPU implementation by Zhang et al. [25] is in the context
of Vietoris–Rips filtrations coming from point-cloud data and cannot handle imaging data.

In view of the above, we turn our attention to a simpler – but still expressive – topological
descriptor, namely the Euler characteristic curve (ECC). ECC has an excellent track record
in providing relevant topological information in various imaging applications [4, 2, 5] – we
elaborate on this in Section 3. More importantly, we demonstrate that we can compute ECC
at extremely fast speed – for example we can process a 3D image of size 5123 30 times per
second. We also managed to implement a streaming strategy, which allows us to handle
huge images of 40963 and beyond – despite the limited GPU memory. The above points
imply that a truly seamless integration with modern image processing pipelines is achievable.
Overall, we hope to impact the following field.

Machine learning. We are particularly interested in incorporating ECC computation into
machine learning frameworks, e.g., convolutional neural networks (CNNs) for computer
vision [12], biomedical image processing [19] or computational astrophysics [16]. In these
contexts, ECC can be used as topological features for prediction models.

Contributions. The main technical contribution of this paper is a streaming GPU imple-
mentation of ECC computation for imaging data. While the underlying algorithm is very
simple, our contribution lies in the implementation carefully tuned to modern GPUs. In
particular, when adapting computation into massive parallelism, we need to carefully design
the implementation so that the limited GPU memory resources can be exploited in the most
efficient manner.

2 Background

2.1 Images as cubical filtrations
The input to our algorithm is a d-dimensional grayscale image, by which we simply mean a
d-dimensional array of real values. Individual elements are called pixels (in 2D) and voxels (in
3D and above), and we collectively call them voxels. One common operation is thresholding,
which selects the subset of voxels not exceeding a certain threshold t. To talk about the
topology of a sequence of thresholdings, we impose more structures on the data.

To this end we follow [11]. First, we define an elementary interval as either [k, k + 1], or
a degenerate interval [k, k], for an integer k. An elementary (cubical) cell is a product of d

elementary intervals, and its dimension is the number of non-degenerate intervals entering its
product. This way we can talk about vertices, edges, squares, cubes etc as cells of dimension
0, 1, 2, 3 etc. We say that cell a is a face of cell b iff a ⊂ b, or a coface if b ⊂ a. Now, we
associate the input values with the top dimensional cells, which we call voxels. Finally we
extend the values from voxels to all lower dimensional cells: each cell inherits the minimum
value of its top-dimensional cofaces. The thresholding of the image at value t is now a cubical
complex, K≤t; the nested sequence of these complexes form a cubical filtration indexed by t.



F. Wang, H. Wagner, and C. Chen 64:3

Algorithm 1 Sequential computation of the VCEC.

Require: I: an input image
Ensure: V CEC: the vector of changes in the Euler characteristic.

1: initialize V CEC as an empty array
2: for all voxels v in I do
3: for all faces c of v do
4: if c was introduced by v then
5: V CEC[value of v in I]← V CEC[value of v in I] + (−1)dimension of face c

2.2 The Euler characteristic curve
With the above setup, we can define the Euler characteristic curve of a cubical filtration as
the sequence

ECCi = χ(K≤ti
) =

∑
j

(−1)jcj(K≤ti
) =

∑
j

(−1)jβj(K≤ti
) (1)

where ti is the i-th smallest grayscale value in the image, cj(.) counts the j-dimensional cells,
and βj(.) is the j-dimensional Betti number. The last equality comes from the Euler–Poincare
formula and ties ECC with the topology of the space.

We only mention that the Betti numbers are the ranks of the cubical homology groups [11]
of the cubical complex K≤t. For three dimensional complexes, the Betti numbers count
the number of connected components, tunnels and voids in an object. Therefore, the ECC
mixes up the numbers of topological features at each threshold. We can also define persistent
homology [6] in this setup [20]. Fig. 1 illustrates the relationship between persistent homology,
the Betti curves and the ECC.

2.3 ECC computation
A naive algorithm for ECC explicitly computes the Euler characteristic (EC) at each threshold.
This results in time complexity of O(mn), where m is the number of unique values in the
image, and n the number of voxels. We assume the dimension of the image is a constant.

An algorithm by Snidaro and Foresti [18] was the first offering O(n) complexity, but
is quite complicated and hard to generalize beyond 2D. Our approach is based on a much
simpler algorithm [8], which interprets an image as a cubical filtration.

Tracking the VCEC. The main idea is to compute the “Vector of Changes in the Euler
Characteristic” (VCEC), namely a sequence of length m such that V CEC0 = ECC0 and
V CECi = ECCi − ECCi−1, for 0 < i < m. Since ECCi =

∑i
j=0 V CECj by construction,

we compute in time O(m) with basic dynamic programming – although since m is small, a
log(m) parallel algorithm is a practical alternative on GPUs [17].

Faces introduced by a voxel. We say that a face is introduced by a voxel, if this voxel has
the smallest value among all voxels containing the given face (in other words: if the face
inherits the value from this voxel). One caveat is that ties have to be broken in a consistent
manner: if two voxels have the same value then we prefer the one with a lexicographically
lower position in the input array. Later we show that this turns in a fast computation,
without the need to explicitly compare the indices.

SoCG 2022



64:4 GPU Computation of the Euler Characteristic Curve for Imaging Data

t=50 t=116 t=173

Figure 1 (bottom) Input image at three thresholds. Their grayscale values correspond to terrain
elevations. (top) The three plots share the x-axis which represents the thresholds of the input image.
The topmost plot shows the persistence diagram (rotated for clarity). For each threshold, it marks
the lifetime of topological features: connected components in red, and holes in blue. The three
highlighted areas show the features alive at the three corresponding thresholds, which are visualized
as the Betti curves below. The ECC is the pointwise difference between the curves. This example
highlights the main downside of ECC: its reliance on counts of topological features, while persistence
also distinguishes their prominence.

Sequential algorithm. With this we can sketch a simple sequential algorithm for the
computation of VCEC for an image (see Algorithm 1). Note that there is no need to
explicitly store any information of the lower dimensional cells. This algorithm will be a basis
for our GPU algorithm.

3 Related work on ECC: applications and computations

Due to their simplicity, both the Euler characteristic curve (ECC) and the Euler characteristic
(EC) find usage in many fields – especially the ones related to imaging. A great introduction
to the topic is the review paper by Worsley [23] from which we sample some of the applications
below. We then discuss the related work on the computational side.



F. Wang, H. Wagner, and C. Chen 64:5

Figure 2 Visualizations of Gaussian random fields generated with different levels of smoothness.

Applications. Ideas related to the EC were present in astrophysics already in 1970s (ECC
is called the genus curve). They were formalized in 1986 by Gott and others [7] in the
study of the sponge-like topology of the large-scale structures in the universe; later ECC
became an important tool in the study of the imaging data describing the cosmic microwave
background (CMB) radiation [14]. This is closely related to earlier work on the topology
of Gaussian random fields (GRFs) by Adler and Hasofer [1] – GRFs are used to model the
CMB. See Fig. 2 for images of GRFs. Ideas related to the EC were popular in the field of
bone morphometry. They were formalized mathematically in 1993 [15]; there EC was used
to characterize the trabecular structures in bones – particularly to compute the first Betti
number (called the connectivity in this field). EC is a common tool in morphological image
processing [9]; it is widely used to characterize the shape of thresholded (binary) images
under the name Euler number ; later it was computed at all thresholds of a grayscale image –
this is ECC hiding under the name stable Euler number [18]. In particular the zero-crossing
of the ECC is used to select a segmentation threshold; see Fig. 1 for a rudimentary example
showing that the riverbeds in a terrain are clearly highlighted at this threshold.

ECC in TDA. Many of the above applications are close to the way topological descriptors
are used today in topological data analysis (TDA), although persistent homology is a much
more popular choice. Still, there is a number of recent TDA studies using EC and ECC.
Bobrowski and Skraba [4] demonstarate that ECC is surprisingly powerful in analyzing the
percolation threshold in random cubical filtrations (and other random models). Crawford and
collaborators propose [5] as a novel statistic based on EC; it proves useful in predicting clinical
outcomes of brain cancer based on brain imaging data. Amezquita and collaborators [2]
analyzed the shape of barley using an image transform based on EC.

Computations. However, the employed algorithmic techniques were different from the
simple setup outlined in the previous section. Instead, the computations often exploited the
connection of EC with differential geometry. In particular, an explicit, efficient algorithm for
EC of 3D voxel data was presented in [7]. Its efficiency stems from precomputed tables of
voxel neighbourhood. Our approach is different and based on the mathematical-algorithmic
setup of cubical homology. This direction emerged in the 1990s in the work of Kaczynski,
Mischaikow and Mrozek. Originating in the context of computational dynamics, it evolved in
a more general framework described in their book [11]. The first efficient, general-dimension
algorithm for EC of binary images uses this setup. The algorithm is due to Ziou and Allili [26]
in 2001. The idea is to view a binary image as a cubical complex and compactly encode
this information. Compared to existing algorithms, this approach is simple, efficient, and it
works in arbitrary dimension. One drawback is the memory overhead related to storing the
cubical complex.

SoCG 2022



64:6 GPU Computation of the Euler Characteristic Curve for Imaging Data

The first efficient algorithm for ECC computation is presented by Snidaro and Foresti [18]
in 2003. It focused on 2D images. The first efficient algorithm for ECC for 3D images – which
also works in arbitrary dimension – is due to Heiss and Wagner [8] in 2017. This approach
extends the idea of Ziou and Allili to cubical filtrations (i.e. from binary to grayscale data). It
also offers improvements: the cubical complex is not stored explicitly; computations are done
in parallel; the image is streamed into memory in small chunks so that images of arbitrary
size can be handled. Our GPU implementation is based on this approach.

𝑡1

RAM

GPU Memory

Write read

Block of threads

𝑡2

Block of threads

Local VCEC
Shared Memory

Local VCEC

image
write

Global Memory
Global VCEC

Write Results

RAM
Write Results

write

Figure 3 The image is first copied from RAM to GPU’s global memory. Each block of threads is
responsible for a patch of the image. Each thread in the block needs to access a voxel and its eight
neighbours (all marked in lighter blue). When the block is done, the block’s local result is added to
the global result. The final result for the entire image is transferred to RAM.

4 GPU implementation

Our GPU implementation is illustrated in Algorithm 2. The listed code is slightly simplified for
readability and covers only the case of 2-dimensional images with grayscale levels ranging from
0 to 255. After we cover the overall structure of computations, we explain the implementation
in details.

4.1 Challenges
Our GPU implementation tackles three main challenges: (1) We needed to adapt the CPU
algorithm to the GPU setting to fully exploit its massive parallelism. The main challenge was
that instead a dozen of threads we had to manage thousands of threads working in parallel –
which required us to structure the computations differently. Further, unlike the CPU version,
which employed a simple lock-free scheme, we needed to explicitly deal with race conditions
and other issues related to synchronization. Apart from ensuring correctness, we had to
experiment with different synchronization granularities to achieve optimized performance.

(2) Efficient use of GPU’s memory hierarchy and its limited resources. GPU is notorious for
its complicated memory hierarchy and limited memory resources. Unlike CPU programming
these have to be explicitly incorporated into algorithmic design. We managed to craft an
efficient multi-level caching hierarchy, taking into account the access patterns characteristic
of working with cubical complexes. With careful analysis of access probabilities, we managed
to ensure that only a single voxel (and not 9 or 27) per thread is fetched from main memory.
(3) Many of the technicalities are not visible when analyzing the GPU kernel. One particular



F. Wang, H. Wagner, and C. Chen 64:7

technical difficulty was achieving streaming operation without affecting the performance. This
enabled us to handle inputs of virtually unlimited size, despite limited GPU memory. We also
organized the streaming processing in a pipeline which allows to overlap the computations
with memory transfers.

4.2 Structure of the computations
The C++ implementation shown in Algorithm 2 defines a compute kernel which is the
computation realized by a thread. Thread-centric view is assumed hereafter, and we will
talk about the thread remembering that the same computations are done concurrently by
many threads.

Single thread. Each thread handles a single voxel, namely, realizes lines 3–5 of Algorithm 1.
In other words, each thread iterates over the faces of a given voxel, decides which of them
are introduced by this voxel, and updates the VCEC vector at the value of the voxel.

Blocks of threads. Threads are grouped into blocks, and we can imagine that the image
is decomposed into rectangular patches. Many such patches are processed concurrently –
although not necessarily in parallel. See Fig. 3 for an overview.

4.3 Optimizations
Computations structured this way perfectly fit the GPU pipeline – however, using the
potential of the hardware requires careful memory management. Specifically, GPUs have a
hierarchy of memory types with different sizes and performance characteristics. Unlike CPU
programming, the programmer must make thoughtful use of these various kinds of memories.

Below we explain some of our implementation choices, and mention common pitfalls. To
illustrate these issues, we start from a hypothetical naive implementation directly implement-
ing Algorithm 1 in GPU. We then improve it step by step, arriving at the implementation
listed in Algorithm 2.

Location of input image. The image data is initially copied from main memory (RAM) to
the GPU’s global memory – this is the only type of GPU memory large enough to store an
image of a reasonable size. Note that large images may exceed the size of the global memory.
For now we assume that the image fits in global memory – we solve this issue in Section 4.4.

Race conditions. We store the VCEC in global memory, simply as an array of 256 integers.
However, since multiple threads will update the same memory location, we need to be wary of
race conditions. Modern GPUs offer efficient implementation of atomic operations, including
atomicAdd, which ensures that all the updates to VCEC will be correctly recorded. However,
all updates issued simultanously on a single memory location will be serialized – which means
we lose the main advantage of the GPU hardware, namely, massive parallelism.

Using registers. We can mitigate the above problem by accumulating the contribution of
the given voxel in a register. Registers provide the fastest type of GPU memory. Additionally,
they are local to each thread, which means that we do not need to worry about race conditions
when updating the values stored in them. We still need to update the global VCEC using
atomicAdd, but the number of updates is now one per thread (instead of 9 in 2D or 27
in 3D).

SoCG 2022



64:8 GPU Computation of the Euler Characteristic Curve for Imaging Data

Shared memory. The above is an improvement but still far from ideal. The next step is to
use shared memory. This is another type of low-latency memory offered by GPUs, although
slower than registers. It is shared between all threads in a given block. So instead of updating
the global VCEC, each thread updates the local VCEC of its own block. This local VCEC is
simply an array of 256 integers, as declared in line 6.

We still need to use atomicAdd to avoid race conditions – but now the collision probability
is lower, since only threads belonging to a single block can access a given shared memory
location. And since the size of the block is configurable, we can find the size which yields
good performance. This optimization has two additional advantages: shared memory has
significantly lower latency than global memory; in modern GPUs atomic operations on shared
memory are significantly more efficient than on global memory. This is not true on older
GPUs, and using them would require a more elaborate way of merging the results.

4-Connectivity 8-Connectivity

6-Connectivity 18-Connectivity 26-Connectivity

Kernel ExecuteStream1:

Stream2:

Stream1:

Stream2:

Serialized Execution

Overlapped Execution

Time

(b)(a)

Memory Copy

Kernel ExecuteMemory Copy

Kernel ExecuteMemory Copy

Kernel ExecuteMemory Copy

Figure 4 (a) Various kinds of connectivity relations between voxels. (b) An illustration showing
that overlapping the computations and memory transfer can reduce the overall execution time.

Parallel initialization and finalization. The shared memory needs to be initialized, and
its final content needs to be added to the global VCEC vector. We perform both steps in
parallel: a single thread in the block is responsible for one location in the shared-memory
array. In line 10 the thread sets a specific location to zero – or does nothing. Similarly, in
line 32 the thread issues an atomicAdd, which updates the global result with the local one.
Note that in these two cases the index does not depend on the value of the voxel assigned to
the thread – we simply compute the unique number of the thread within its block; see line 7.
We use it to index the shared array.

Block-level synchronization. Since the threads in the block are not guaranteed to run in
parallel, we need to synchronize them – otherwise they could start working on uninitialized
memory, or update the global result using unfinished local results. Proper synchronization is
insured by placing a block-level synchronizing barrier in lines 11 and 33.

Accessing neighbors. To decide which cells are introduced by a given voxel, we compare
the value of the voxel with its neighbours (with careful tie-breaking). Specifically, we access
the 8-connectivity neighbors of a given voxel (and 26 in 3D); see Fig. 4(a) for an illustration.

Texture cache. Accessing these values is another source of inefficiency, linked with the high
latency of the global memory. We mitigate this by using a specialized caching mechanism,
called texture cache. It is often referred to as texture memory, which is misleading since
modern GPUs realize this as a caching layer on top of data residing in global memory. When



F. Wang, H. Wagner, and C. Chen 64:9

the value of a voxel is requested from global memory using this mechanism, the neighbours
of the accessed voxel are automatically cached in GPU’s specialized low-latency memory. It
is as fast as shared memory. Line 17 shows how a voxel value is requested via the texture
cache. This is a read-only cache, which suits our algorithm well, since we are not modifying
the image.

The texture cache is optimized exactly for the spatial access locality displayed by ECC
computations. Also, since neighboring voxels are generally processed in parallel, it is likely
that the neighbors’ values already reside in the fast cache. Overall, we can expect that on
average only a single uncached global memory access will be required per thread – but there
is no guarantee due to the limited size of the cache.

The danger of register spilling. We store the frequently used voxel values in registers.
In the case of 2D inputs, the 4-connectivity neighbors (marked in yellow in Fig. 4(a)) are
involved in 3 different comparison operations and therefore we cache them in registers. The
8-connectivity voxels (marked in green) are read once and used once, so we save registers and
rely on the aforementioned texture cache. Similarly for 3D inputs, only the 6-connectivity
voxels (used 9 times) and 18-connectivity voxels (used 3 times) are stored in registers. To
use the registers, we unroll the loop, namely, replace it with a series of statements.

Algorithm 2 Implementation of the VCEC on GPU for a 2D image.

1__constant__ int image_width, image_height;
2const int num_bins = 256;
3

4__global__ void vcec_kernel(cudaTextureObject_t voxels, int* vcec_global)
5{
6__shared__ int vcec_local[num_bins];
7const int thread_number = blockDim.x * threadIdx.y + threadIdx.x;
8

9if (thread_number < num_bins)
10vcec_local[thread_number] = 0;
11__syncthreads();
12

13const int ix = blockDim.x * blockIdx.x + threadIdx.x + 1;
14const int iy = blockDim.y * blockIdx.y + threadIdx.y + 1;
15if (ix >= image_width + 1 iy >= image_height + 1) return;
16

17int change = 1;
18int c = tex2D<float>(voxels, ix, iy);
19int t = tex2D<float>(voxels, ix, iy − 1);
20int b = tex2D<float>(voxels, ix, iy + 1);
21int l = tex2D<float>(voxels, ix − 1, iy);
22int r = tex2D<float>(voxels, ix + 1, iy);
23

24// Vertices
25change+=(c < l && c < t && c < tex2D<float>(voxels, ix − 1, iy − 1));
26change+=(c < t && c <= r && c < tex2D<float>(voxels, ix + 1, iy − 1));
27change+=(c < l && c <= b && c <= tex2D<float>(voxels, ix − 1, iy + 1));
28change+=(c <= b && c <= r && c <= tex2D<float>(voxels, ix + 1, iy + 1));

29// Edges
30change −= ((c < t) + (c < l) + (c <= r) + (c <= b));
31

32atomicAdd(&vcec_local[c], change);
33__syncthreads();
34if (thread_number < num_bins)
35atomicAdd(&vcec_global[thread_number], vcec_local[thread_number]);
36}

SoCG 2022



64:10 GPU Computation of the Euler Characteristic Curve for Imaging Data

Block 1 Block 2

Block 3 Block 4

Block 1 Block 2

Padded 
chunk 1

Padded 
chunk 2

Padded 
chunk 3

Chunk 1

Chunk 2

Chunk 3

Block 1 Block 2

Block 3 Block 4

Block 1 Block 2

Chunk 1

Chunk 2

Chunk 3 Padded 
chunk 3

Padded 
chunk 2

Padded 
chunk 1

(a) (b)

Figure 5 Chunking in 2D and 3D. We emphasize that the chunks are a disjoint decomposition of
the input – but the padded chunks are not. This extra padding provides information necessary to
ensure that each cell introduced by input voxels is counted exactly once.

It may seem like a good idea to cache everything in registers. This is especially misleading
since defining register variables is syntactically the same as defining stack-allocated variables
in C++ CPU programming; see line 17 for an example. We are careful with register allocation
– one common pitfall is register spilling. One danger stems from the fact that the number
of registers per block is limited by hardware – but the number of threads in the block is
configurable. So requesting a block of a certain size may cause the number of required blocks
to exceed the availability. In this case the values are – silently! – stored in what is called local
memory – which is a misnomer because the values are physically placed in global memory.
So instead of using the fastest memory, the slowest one is used. This simple mistake can
cause a performance hit of two orders of magnitude.

Branching. GPU performance can be significantly penalized by branching and loops. In
general, GPU programs allow for considerable flexibility – but they operate most efficiently
as SIMD (single instruction multiple data) units. In other words, kernels whose flow of
execution does not depend on the input data are preferred.

Warps of threads. The above is related to how the threads are scheduled by GPU. Namely,
the threads within each block are additionally grouped into warps of 32 threads. Any branch
(i.e. if statement) splits the execution of the entire warp into two divergent paths. This is
often called intra-warp branching. These two paths generally cannot be executed in parallel,
instead they are serialized. So a single thread can cause all the remaining threads in its
warp to remain idle, limiting parallel execution. We avoid branching in several ways: we
surround the data with a collar of voxels with infinite value, to avoid divergent branches due
to boundary conditions. We also update the change variable without a branching statement,
see e.g. line 25 where we add the truth value of a logical expression, even if it evaluates to 0.

Constant memory. Kernels often require additional information, e.g. the width and height
of the processed image. Accessing such information from global memory multiple times would
be inefficient. Instead, we use ensure quick access by declaring such variables as constant
memory, see e.g. line 1. With this, the values are stored in GPU’s constant memory, which
is specialized for fast broadcast of stored values to multiple threads.



F. Wang, H. Wagner, and C. Chen 64:11

4.4 Streaming
In practice, a lot of 3D images are too large to fit in GPU memory. We overcome this obstacle
by dividing an input into chunks and process them separately. Another benefit of streaming
lies in the CUDA’s asynchronous behaviour which allows us to overlap data transfers and
kernel executions. Breaking an input into smaller pieces helps hide the high latency related
to memory transfers between GPU and RAM; see Fig. 4.

Input of size (w0, w1, . . . ) is cut along the first coordinate. This way the image is
divided into c chunks of size at most (

⌊
w0
c

⌋
, w1, . . . ). This ensures that the resulting chunks

correspond to contiguous memory addresses as arrays are stored in row-major order in C++.
As illustrated in Fig. 5, we extend the chunks by a single-voxel padding. The collar contains
either the value of a voxel – to ensure that each input voxel has access to all of its neighbours;
or positive infinity – as explained before.

Each chunk is loaded into the GPU memory (including the collar). The chunk is
then processed with one or multiple CUDA blocks depending on the size. After finishing
computations, the free blocks will be reassigned to a new chunk for computation.

Overlapping computations and data transfers. CUDA devices contain engines for various
tasks. Modern devices typically have two copy engines, one for host-to-device transfers and
another for device-to-host transfers, as well as a kernel engine. With pinned (non-pageable)
host memory, the tasks launched into non-default different CUDA streams can be executed
concurrently assuming no dependencies amongst them. In other words, loading a chunk into
device, writing results back to host, and kernel execution can happen simultaneously. With
a reasonable choice of c, the overhead of data transfer can be greatly alleviated. Fig. 4(b)
illustrates a simplified case of overlapping transfers and kernel executions. Suppose we have
equal running time for memory copy and kernel execution. Compared to serialized execution,
overlapped execution practically hides the kernel execution time for one chunk when c = 2.

5 Experiments

We use the C++ compiler shipped with Visual Studio 2019 (v142) and language standard
of C++14 for the compilations of both CPU and GPU implementations. The following
experiments are conducted on a desktop machine with Intel Core i7-9700K CPU with 8
physical cores (and disabled hyper-threading), 16GB of RAM, Sabrent Rocket Q 2TB NVMe
PCIe M.2 2280 SSD drive, and a NVIDIA RTX 2070 graphics card with 8GB of GDDR6
memory. It is a modern commodity workstation.

Datasets. We use a mix of synthetic and real-world datasets:
Cosmic microwave background (CMB) imaging data comes from astrophysical measure-
ments. The original data is on a 2-dimensional sphere; we use a single image projection
in different resolution. Each image contains at most 256 unique values.
Virtual Imaging Clinical Trials for Regulatory Evaluation (VICTRE) [3] project provides
realistic simulation of breast phantoms. We generated 20 3D breast volumes. Each image
contains only 11 unique values.
We also use a set of 70 2D Gaussian Random Fields (GRF) with 7 sizes (10 samples for
each size) and 30 3D GRFs with 3 sizes (10 samples each). Each image contains only
1024 unique values.
For larger experiments we use data generated by sampling the uniform distribution for
each voxel. We call this data uniform noise.

SoCG 2022



64:12 GPU Computation of the Euler Characteristic Curve for Imaging Data

Table 1 This table compares the execution time of the CPU and GPU implementations. These are
end-to-end timings, include disk I/O and the GPU overhead related to initializing our computations.
The two rightmost columns are relevant in situations in which the input resides in GPU memory.

CPU GPU GPU GPU GPU
Input CPU GPU Overall disk disk over- exec. kernel

size(B) overall overall speedup read read head (kernel) Gvox/s
Uniform Noise

40963 256G 37.72m 9.10m 4.14x 7.30m 9.08m 0.67s 0.20m 5.62
20483 32G 4.86m 0.71m 6.77x 0.99m 0.71m 0.41s 0.03m 5.61
10243 4G 36.85s 5.63s 6.55x 6.85s 5.20s 0.37s 0.16s 6.57
5123 512M 4.97s 0.85s 5.86x 1.00s 0.64s 0.19s 0.02s 6.55

Gaussian Random Field
5123 512M 4.93s 0.86s 5.75x 0.90s 0.66s 0.19s 20.88ms 6.43
2563 64M 0.63s 0.24s 2.58x 0.13s 0.09s 0.15s 2.64ms 6.35
1283 8M 0.11s 0.12s 0.86x 0.02s 0.01s 0.12s 0.35ms 6.03

81923 256M 1.47s 0.53s 2.75x 0.44s 0.36s 0.16s 6.64ms 10.10
40963 64M 0.38s 0.21s 1.84x 0.12s 0.08s 0.14s 1.74ms 9.67
20483 16M 0.09s 0.18s 0.55x 0.04s 0.03s 0.12s 0.45ms 9.36

VICTRE
287 359 202 79.3M 0.59s 0.30s 1.98x 0.16s 0.13s 0.14s 3.85ms 5.41
440 518 488 424M 2.99s 0.77s 3.87x 0.98s 0.45s 0.24s 20.65ms 5.39
434 446 384 147M 1.11s 0.36s 3.02x 0.29s 0.15s 0.16s 7.13ms 5.40
434 446 384 283M 1.96s 0.53s 3.70x 0.79s 0.30s 0.18s 13.72ms 5.42

CMB
1500 750 1.07M 0.03s 0.12s 0.22x 0.01s 0.01s 0.11s 0.15ms 7.40

3000 1500 4.29M 0.09s 0.15s 0.61x 0.04s 0.02s 0.13s 0.44ms 10.16
6400 3200 19.5M 0.37s 0.25s 1.49x 0.13s 0.08s 0.14s 1.94ms 10.56

All datasets except for CMB are stored in binary format as 32 bit IEEE 754 floating
point values. CMB is stored in binary format as 8-bit unsigned integer values.

Voxel throughput. We are mostly interested in the size (counted in numbers of pixels or
voxels) of the image that can be processed in a second. We call this quantity the voxel
throughput and express it in GVox/s, namely billions (109) voxels per second. All time
measurements are given in ms (milliseconds, 10−3s).

5.1 Case study: Single image on disk
In this case we employ CHUNKYEuler by Heiss and Wagner [8] as a CPU baseline.
CHUNKYEuler is the state-of-the-art CPU parallel streaming ECC implementation. To the
best of our knowledge, no other software can handle the sizes of the data we experiment
with. We run experiments with all eight available CPU cores.

Overall execution time. In this setup, we simply measure the overall execution time
including reading the image from disk; see Table 1. For files smaller than around 16MB,
the CPU version is faster. This is due to the overhead related to initializing our GPU
computations. For files larger than 0.5GB, the GPU version is between 4 to 6 times faster –
although it is severely limited by disk I/O which takes between 75% and 99.7% of its total
execution time.

Streaming. Note that we handle files significantly larger than the available 8GB GPU
memory and 16GB RAM. This is achieved by a streaming algorithm described before. This
was a major difficulty and is described in Section 5. In particular, we handled an image of
size 40963 which takes 0.25TB.



F. Wang, H. Wagner, and C. Chen 64:13

Table 2 This table shows the timings for the pipeline involving the iterated ECC and Gaussian
smoothing computations. The key observations is that when averaged over multiple iterations the
overall time is dominated by the two kernel executions. This confirms that there are no additional
bottlenecks in this pipeline, and especially in our ECC computations. Note that the image is read
once, and so the time to load the image from disk is a one-time cost.

Overall ECC mem. ECC exec. Gaussian Disk
Overall avg. avg. avg. exec. avg. read

[ms] [ms] [ms] [ms] [ms] [ms]
Uniform Noise

(ECC+Gaussian) × 1 137.16 137.16 0.28 0.16 1.55 7.72
(ECC+Gaussian) × 10 172.80 17.28 0.06 0.15 0.20 7.38

(ECC+Gaussian) × 100 149.96 1.50 0.03 0.13 0.09 7.81
(ECC+Gaussian) × 1000 352.02 0.35 0.03 0.12 0.07 7.22
(ECC+Gaussian) × 1000 2786.64 0.28 0.03 0.17 0.07 7.57

GPU overhead. The overhead mentioned above is related to the initialization and shutdown
of the GPU device, and memory allocation specific to our implementation. This overhead
ranges between 100 and 700ms and is a one-time cost. This is why GPU is more effective for
larger datasets – but also for batches of smaller ones. We will focus on that next.

5.2 Case study: Batch processing of images on disk
In this case we read multiple files from disk. We focus on small files, because they were
problematic for the GPU implementation (due to the GPU overhead). Table 3 shows that the
overhead now amortizes when many files are processed. This means that in batch processing
the GPU implementation is always preferred over the CPU one. Still, this is not an ideal
setup for GPU, since the computations are heavily limited by disk I/O.

Prospects. The above issue opens up a new avenue – it may now be opportune to load
compressed images, which would limit the disk I/O time. We plan to investigate this in
future work.

5.3 Case study: GPU-only pipeline
In this scenario, the images are stored and processed entirely in GPU memory. This emulates
pipelines implemented entirely on GPUs, such as some implementations of CNNs [13].
As mentioned earlier, this case is our primary motivation. We are trying to determine
if our ECC kernel could be part of such a GPU pipeline without becoming a significant
performance bottleneck. We also need to verify that our computational setup does not incur
any unexpected additional bottlenecks.

Pipeline. To this aim, we consider a two-step pipeline: (1) compute the ECC; (2) apply a
Gaussian smoothing filter. Steps (1) and (2) are performed repeatedly on an image stored in
GPU memory. We iterate up to 10000 times using a 10242 GRF image. After each iteration,
the resulting VCEC is transferred to RAM and post-processed, including computing ECC.

Gaussian smoothing implementation. We implement the Gaussian smoothing filter as a
discrete Gaussian convolution. We exploit its separability and use a highly optimized GPU
kernel. We use a Gaussian kernel width of 13 pixels (see also Fig. 6).

SoCG 2022



64:14 GPU Computation of the Euler Characteristic Curve for Imaging Data

Table 3 We show timings averaged over running different numbers of files. This table confirms
that the GPU overhead, which dominates the computations for a single small file, amortizes across
many samples. It is clear that the GPU performance is heavily limited by disk I/O.

Input GPU GPU disk
size(B) overall avg. [ms] read avg. [ms]

Uniform Noise

1282× 1 64K 119.83 0.69
1282× 100 6.25M 1.77 0.46

1282× 1000 62.5M 0.66 0.45
1282× 10000 625M 0.52 0.42

Gaussian Random Field

1283× 1 8M 124.68 12.02
1283× 10 80M 28.13 13.86

1283× 100 800M 15.38 13.82
1283× 1000 8000M 11.96 11.67

Figure 6 Images at consecutive steps in the smoothing pipeline.

Potential performance bottlenecks. Since the initial image is loaded into GPU memory
once, the cost of reading from disk amortizes across many kernel runs. As we already checked,
the same applies to the GPU overhead. Column “ECC mem” in Table 2 shows the cost
of transferring the resulting VCEC from GPU memory to RAM and the cost of its CPU
post-processing; this does not incur a performance hit either. Overall, we see that the kernel
executions dominate the overall time.

Performance comparison. We can therefore directly compare the performance of the ECC
kernel and the convolution kernel. Table 2 shows that the throughput of the two kernels is
at the same order of magnitude. The Gaussian kernel is up to 2.5 times faster. However, the
impact on the overall performance of a CNN is likely to be significantly lower, since a single
convolution often contributes less than half of the total computation time performed by a
convolution layer in a CNN [13].

ECC kernel performance. We highlight the performance of the ECC kernel. The throughput
is between 5 and 10 GVox/s. To put things in perspective, it allows us to handle:
1. 3D images of size 5123 voxels at the rate of 30Hz;
2. 2D images of 8K resolution (7680× 4320 pixels) at the rate of 120Hz.

5.4 Dependence on dimension
Perhaps surprisingly, the performance does not depend on the dimension of the image –
which suggests that the caching hierarchy we devised works well – and that the neighbours



F. Wang, H. Wagner, and C. Chen 64:15

are typically retrieved from the cache. This way the dependence on the number of neighbours
(8 vs 26) largely disappears. This property would not extend to higher dimensions, since the
texture cache is only available in dimensions that are smaller or equal to 3.

6 Discussion

We proposed an efficient GPU implementation to compute the Euler characteristic curve of
imaging data. The resulting software is highly practical. Its three major advantages are:

High speed: for images present in GPU memory, it processes images at speed exceeding
5 × 109 voxels per second. This is a realistic scenario for example in the context of
convolutional networks.
Streaming: it can handle images of virtually unlimited size. This is crucial since GPU
memory is a limited resource.
ECC contains topological information which was successfully used in many application
domains.

We believe these results open up interesting avenues. Our plans are twofold. First, we
intend to integrate our ECC computations into CNNs. With the efficiency gap closed, we
hope that topological methods will start permeating mainstream machine learning. Second,
we hope that the full power of persistent homology can be used in such contexts. With the
gathered experience specific to handling cubical filtrations on GPUs, we hope to make the
first steps towards designing GPU algorithms for persistence analysis of imaging data.

References
1 Robert J. Adler and A. M. Hasofer. Level Crossings for Random Fields. The Annals of

Probability, 4(1):1–12, 1976. doi:10.1214/aop/1176996176.
2 Erik J Amezquita, Michelle Quigley, Tim Ophelders, Jacob Landis, Elizabeth Munch, Daniel

Chitwood, and Daniel Koenig. Quantifying barley morphology using the Euler characteristic
transform. In NeurIPS 2020 Workshop on Topological Data Analysis and Beyond, 2020.

3 Aldo Badano, Christian G. Graff, Andreu Badal, Diksha Sharma, Rongping Zeng, Frank W.
Samuelson, Stephen J. Glick, and Kyle J. Myers. Evaluation of Digital Breast Tomosynthesis
as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial. JAMA
Network Open, 1(7):e185474–e185474, November 2018. doi:10.1001/jamanetworkopen.2018.
5474.

4 Omer Bobrowski and Primoz Skraba. Homological percolation and the Euler characteristic.
Phys. Rev. E, 101:032304, March 2020. doi:10.1103/PhysRevE.101.032304.

5 Lorin Crawford, Anthea Monod, Andrew X Chen, Sayan Mukherjee, and Raúl Rabadán.
Predicting clinical outcomes in glioblastoma: an application of topological and functional data
analysis. Journal of the American Statistical Association, 115(531):1139–1150, 2020.

6 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st annual symposium on foundations of computer science,
pages 454–463. IEEE, 2000.

7 J Richard Gott III, Adrian L Melott, and Mark Dickinson. The sponge-like topology of
large-scale structure in the universe. The Astrophysical Journal, 306:341–357, 1986.

8 Teresa Heiss and Hubert Wagner. Streaming algorithm for Euler characteristic curves of
multidimensional images. In Michael Felsberg, Anders Heyden, and Norbert Krüger, editors,
Computer Analysis of Images and Patterns - 17th International Conference, CAIP 2017, Ystad,
Sweden, August 22-24, 2017, Proceedings, Part I, volume 10424 of Lecture Notes in Computer
Science, pages 397–409. Springer, 2017. doi:10.1007/978-3-319-64689-3_32.

9 Berthold Horn, Berthold Klaus, and Paul Horn. Robot vision. The MIT Press, 1986.

SoCG 2022

https://doi.org/10.1214/aop/1176996176
https://doi.org/10.1001/jamanetworkopen.2018.5474
https://doi.org/10.1001/jamanetworkopen.2018.5474
https://doi.org/10.1103/PhysRevE.101.032304
https://doi.org/10.1007/978-3-319-64689-3_32


64:16 GPU Computation of the Euler Characteristic Curve for Imaging Data

10 Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

11 Tomasz Kaczynski, Konstantin Mischaikow, and Marion Mrozek. Computational homology.
Bull. Amer. Math. Soc, 43:255–258, 2006.

12 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:1097–
1105, 2012.

13 Xiaqing Li, Guangyan Zhang, H Howie Huang, Zhufan Wang, and Weimin Zheng. Performance
analysis of GPU-based convolutional neural networks. In 2016 45th International conference
on parallel processing (ICPP), pages 67–76. IEEE, 2016.

14 Dmitri I. Novikov, Hume A. Feldman, and Sergei F. Shandarin. Minkowski functionals and
cluster analysis for CMB maps. International Journal of Modern Physics D, 08(03):291–306,
1999. doi:10.1142/S0218271899000225.

15 A Odgaard and HJG Gundersen. Quantification of connectivity in cancellous bone, with
special emphasis on 3-D reconstructions. Bone, 14(2):173–182, 1993.

16 Johanna Pasquet, Emmanuel Bertin, Marie Treyer, Stéphane Arnouts, and Dominique Fouchez.
Photometric redshifts from SDSS images using a convolutional neural network. Astronomy &
Astrophysics, 621:A26, 2019.

17 Shubhabrata Sengupta, Mark Harris, Michael Garland, et al. Efficient parallel scan algorithms
for GPUs. NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003, 1(1):1–17, 2008.

18 L. Snidaro and G. L. Foresti. Real-time thresholding with Euler numbers. Pattern Recogn.
Lett., 24(9–10):1533–1544, June 2003. doi:10.1016/S0167-8655(02)00392-6.

19 Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall,
Michael B Gotway, and Jianming Liang. Convolutional neural networks for medical image
analysis: Full training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312,
2016.

20 Hubert Wagner, Chao Chen, and Erald Vuçini. Efficient computation of persistent homology
for cubical data. In Topological methods in data analysis and visualization II, pages 91–106.
Springer, 2012.

21 Fan Wang, Saarthak Kapse, Steven Liu, Prateek Prasanna, and Chao Chen. TopoTxR: A
Topological Biomarker for Predicting Treatment Response in Breast Cancer. In Information
Processing in Medical Imaging - 27th International Conference, IPMI, volume 12729 of Lecture
Notes in Computer Science, pages 386–397. Springer, 2021. doi:10.1007/978-3-030-78191-0_
30.

22 Fan Wang, Huidong Liu, Dimitris Samaras, and Chao Chen. TopoGAN: A Topology-Aware
Generative Adversarial Network. In Computer Vision – ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III, pages 118–136. Springer-Verlag, 2020.
doi:10.1007/978-3-030-58580-8_8.

23 Keith J Worsley. The geometry of random images. Chance, 9(1):27–40, 1996.
24 Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dimitris

Metaxas, and Leon Axel. Optimal Topological Cycles and Their Application in Cardiac
Trabeculae Restoration. In In International Conference on Information Processing in Medical
Imaging (IPMI), 2017, pages 80–92, May 2017. doi:10.1007/978-3-319-59050-9_7.

25 Simon Zhang, Mengbai Xiao, and Hao Wang. GPU-Accelerated Computation of Vietoris-Rips
Persistence Barcodes. In 36th International Symposium on Computational Geometry (SoCG
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

26 Djemel Ziou and Madjid Allili. Generating cubical complexes from image data and computation
of the Euler number. Pattern Recognition, 35(12):2833–2839, 2002. Pattern Recognition in
Information Systems. doi:10.1016/S0031-3203(01)00238-2.

https://doi.org/10.1142/S0218271899000225
https://doi.org/10.1016/S0167-8655(02)00392-6
https://doi.org/10.1007/978-3-030-78191-0_30
https://doi.org/10.1007/978-3-030-78191-0_30
https://doi.org/10.1007/978-3-030-58580-8_8
https://doi.org/10.1007/978-3-319-59050-9_7
https://doi.org/10.1016/S0031-3203(01)00238-2


Space Ants:
Episode II – Coordinating Connected Catoms
Julien Bourgeois #

FEMTO-ST Institute, University of Bourgogne Franche-Comté, CNRS, Montbeliard, France

Sándor P. Fekete #

Department of Computer Science, TU Braunschweig, Germany

Ramin Kosfeld #

Department of Computer Science, TU Braunschweig, Germany

Peter Kramer #

Department of Computer Science, TU Braunschweig, Germany

Benoît Piranda #

FEMTO-ST Institute, University of Bourgogne Franche-Comté, CNRS, Montbeliard, France

Christian Rieck #

Department of Computer Science, TU Braunschweig, Germany

Christian Scheffer #

Faculty of Electrical Engineering and Computer Science, Hochschule Bochum, Germany

Abstract
How can a set of identical mobile agents coordinate their motions to transform their arrangement
from a given starting to a desired goal configuration? We consider this question in the context of
actual physical devices called Catoms, which can perform reconfiguration, but need to maintain
connectivity at all times to ensure communication and energy supply. We demonstrate and animate
algorithmic results, in particular a proof of hardness, as well as an algorithm that guarantees
constant stretch for certain classes of arrangements: If mapping the start configuration to the target
configuration requires a maximum Manhattan distance of d, then the total duration of our overall
schedule is in O(d), which is optimal up to constant factors.

2012 ACM Subject Classification Theory of computation → Computational geometry; Computing
methodologies → Motion path planning

Keywords and phrases Motion planning, parallel motion, bounded stretch, scaled shape, makespan,
connectivity, swarm robotics

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.65

Category Media Exposition

1 Introduction

Coordinating the motion of a set of objects is a fundamental problem that occurs in a
large spectrum of theoretical contexts and practical applications. A typical task arises from
relocating a large collection of agents from a given start into a desired target configuration,
while avoiding collisions between objects or with obstacles.

A crucial algorithmic aspect is efficiency: How can we reach the target configuration
in a timely or energy-efficient manner? Exploiting parallelism in a robot swarm to achieve
an efficient schedule was studied by Demaine et al. [2, 4], who showed that under certain
conditions, a labeled set of robots can be reconfigured with bounded stretch, i.e., there is a
collision-free motion plan such that the overall length of the schedule (the makespan) remains
within a constant of the lower bound that arises from the maximum distance between origin

© Julien Bourgeois, Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Benoît Piranda,
Christian Rieck, and Christian Scheffer;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 65; pp. 65:1–65:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julien.bourgeois@femto-st.fr
https://orcid.org/0000-0002-0686-2643
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-9062-4241
mailto:r.kosfeld@tu-bs.de
https://orcid.org/0000-0002-1081-2454
mailto:p.kramer@tu-bs.de
https://orcid.org/0000-0001-9635-5890
mailto:benoit.piranda@femto-st.fr
https://orcid.org/0000-0003-2149-871X
mailto:c.rieck@tu-bs.de
https://orcid.org/0000-0003-0846-5163
mailto:christian.scheffer@hs-bochum.de
https://orcid.org/0000-0002-3471-2706
https://doi.org/10.4230/LIPIcs.SoCG.2022.65
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


65:2 Coordinating Connected Catoms

and destination of individual robots. Practical computation of minimum makespan schedules
for a set of benchmark instances was also the subject of the 2021 Computational Geometry
Challenge; see [6] for an overview, and [3, 8, 13] for successful contributions.

Figure 1 (Top left) A Datom. (Top right) A Datom performing a local move between neighbors.
(Bottom right) A local arrangement. (Bottom left) A large-scale arrangement of 3D Catoms.

A practical application arises from coordinating a set of Datoms (for “Deformable Atom”
as a reference to the Claytronics Atom, Catom [7]), which are small-scale electronic devices
that can change their shape and interact with their neighbors to allow communication, energy
supply, and rearrangement; see [9, 10, 12]. This requires maintaining connectivity of the
overall arrangement, which is not guaranteed by the approach of Demaine et al. [4].

In this contribution, we illustrate and animate recent algorithmic results by Fekete et al. [5],
who presented an approach that does achieve constant stretch for connected, unlabeled swarms
of robots for the class of scaled arrangements; such arrangements arise by increasing all
dimensions of a given object by the same multiplicative factor and have been considered
in previous seminal work on self-assembly, often with unbounded or logarithmic scale
factors (along the lines of what has been considered in self-assembly [11]). The method by
Fekete et al. [5] relies strongly on the exchangeability of indistinguishable robots, which
allows a high flexibility in allocating robots to target destinations.

This also adds to previous work [1] on efficient reconfiguration of large-scale arrangements.
Space Ants: Episode I – The Rise of the Machines considers recognition and reconfiguration
of lattice-based cellular structures by very simple robots with only basic functionality.



J. Bourgeois et al. 65:3

2 Algorithmic results

We consider a given starting grid configuration Cs of unlabeled particles that needs to
be transformed into a target configuration Ct by a sequence of simultaneous, collision-
free motions in a minimum overall time, such that all intermediate configurations remain
connected. The main algorithmic results illustrated in this video are as follows.

It is NP-hard to decide whether Cs can be transformed into Ct within makespan 2.
There is a constant c∗ such that for any pair of start and target configurations with a
(generalized) scale of at least c∗, a schedule with constant stretch can be computed in
polynomial time.

The latter implies that there is a constant-factor approximation for the problem of com-
puting schedules with minimal makespan restricted to pairs of start and target configurations
with a scale of at least c∗.

The hardness proof considers an instance φ of Planar Monotone 3Sat and con-
structs an instance Iφ with start configuration Cs and target configuration Ct; see Figure 2,
with start configuration (red), target configuration (dark cyan), and positions in both
configurations (gray) indicated by colors. We consider a rectilinear planar embedding of
the variable-clause incidence graph Gφ of φ, with variable vertices placed horizontally in
a row, and clauses with unnegated and negated literals placed above and below, respectively.
Variables of φ are represented by horizontal variable gadgets (light red). Two additional
auxiliary gadgets (light blue) are positioned at the top and at the bottom boundary of the
instance, connected to the variable gadget via bridges at the right boundary, and a separation
gadget (yellow) between each adjacent and nested pair of clause gadgets (blue). All clause
gadgets are connected via bridges to separation gadgets and possibly to the auxiliary gadgets.
Further, there are bridges from a clause gadget to the respectively contained variables.

The overall approach for computing constant-stretch schedules works as follows; see Fig-
ure 3 (Top). In two preprocessing phases, we first ensure that the pair (Cs, Ct) overlaps in
at least one position. For this, we move Cs towards Ct along a bottleneck matching such
that the respective positions that realize the bottleneck distance, coincide. The overlap is
necessary to successfully construct the auxiliary structure in the third phase of our approach.
Afterwards, we use another bottleneck matching for mapping the start configuration Cs

to the target configuration Ct, minimizing the maximum distance d between a start and
a target location. Furthermore, we establish the scale in both configurations, set c to be the
minimum of both scale values, and compute a suitable tiling whose tile size is c · d, and that
contain both Cs and Ct.

In a third phase, we build a scaffolding structure around Cs and Ct, based on the
boundaries of cd-tiles of the specific tiling, see Figure 3 (Bottom). This provides connectivity
throughout the actual reconfiguration. Restricting robot motion to their current and adjacent
tiles also ensures constant stretch. Note that, as the size of the tiles is related to d, the
scaffolding structure is connected.

In a fourth phase, we perform the actual reconfiguration of the arrangement. This consists
of refilling the tiles of the scaffolding structure, achieving the proper number of robots within
each tile, based on elementary flow computations. As a subroutine, we transform the robots
inside each tile into a canonical “triangle” configuration, see Figure 3 (Top right).

In a fifth and final phase, we disassemble the scaffolding structure and move the involved
robots to their proper destinations.

SoCG 2022



65:4 Coordinating Connected Catoms

x5x4x3x2x1

gadget placement in Iϕ

x1 x2 x3 x4 x5

C1
C2

C3

C4 C5

clause-variable incidence graph Gϕ of ϕ

separation gadget clause / auxiliary gadget variable gadget

...

...

...

...

...

bridges

The complete instance Iϕ (consisting of Cs and Ct) constructed from ϕ

Figure 2 Symbolic overview of the NP-hardness reduction. The depicted instance is due to the
Planar Monotone 3Sat formula φ = (x1∨x2∨x4)∧(x2∨x4)∧(x1∨x4∨x5)∧(x1∨x3)∧(x3∨x4∨x5).
We use three different colors to indicate occupied positions in the start configuration (red), in the
target configuration (dark cyan), and in both configurations (gray).



J. Bourgeois et al. 65:5

3 The video

The video starts with a description of the basic challenge, followed by real-world demon-
strations of Catoms, their abilities to perform local reconfiguration and build large-scale
structures, subject to maintaining connectivity. Then the idea and components of the hard-
ness proof are shown. Finally, we provide a detailed animated description of the algorithmic
method for achieving connected reconfiguration with bounded stretch for scaled arrange-
ments, based on scaffold construction, flow computation and shifts between neighboring tiles,
canonical triangle transformations within tiles, and scaffold removal.

cd

cd

Figure 3 (Top) The algorithmic approach for achieving constant stretch while maintaining
connectivity. (Bottom) Idea of the scaffold construction and tile size.

SoCG 2022



65:6 Coordinating Connected Catoms

References
1 Amira Abdel-Rahman, Aaron T. Becker, Daniel Biediger, Kenneth C. Cheung, Sándor P. Fekete,

Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian
Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi. Space Ants: Constructing
and reconfiguring large-scale structures with finite automata. In Symposium on Computational
Geometry (SoCG), pages 73:1–73:6, 2020. Video at https://youtu.be/SFI57l5dOvk. doi:
10.4230/LIPIcs.SoCG.2020.73.

2 Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Matthias Konitzny, Lillian Lin, and
Christian Scheffer. Coordinated motion planning: The video. In Symposium on Computational
Geometry (SoCG), pages 74:1–74:6, 2018. Video at https://www.ibr.cs.tu-bs.de/users/
fekete/Videos/CoordinatedMotionPlanning.mp4. doi:10.4230/LIPIcs.SoCG.2018.74.

3 Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal
Lafourcade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion
planning. In Symposium on Computational Geometry (SoCG), pages 63:1–63:9, 2021. doi:
10.4230/LIPIcs.SoCG.2021.63.

4 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Christian Scheffer, and Henk Meijer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch.
SIAM Journal on Computing, 48(6):1727–1762, 2019. doi:10.1137/18M1194341.

5 Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer.
Connected coordinated motion planning with bounded stretch. In Symposium on Algorithms
and Computation (ISAAC), pages 9:1–9:16, 2021. doi:10.4230/LIPIcs.ISAAC.2021.9.

6 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Computing
coordinated motion plans for robot swarms: The CG:SHOP Challenge 2021, 2021. arXiv:
2103.15381.

7 Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. Programmable matter.
Computer, 38(6):99–101, 2005. doi:10.1109/MC.2005.198.

8 Paul Liu, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Coordinated motion
planning through randomized k-opt. In Symposium on Computational Geometry (SoCG),
pages 64:1–64:8, 2021. doi:10.4230/LIPIcs.SoCG.2021.64.

9 Benoît Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge modular
robot to create programmable matter. Autonomous Robots, 42(8):1619–1633, 2018. doi:
10.1007/s10514-018-9710-0.

10 Benoît Piranda and Julien Bourgeois. Datom: A deformable modular robot for building
self-reconfigurable programmable matter. In Symposium on Distributed Autonomous Robotic
Systems (DARS), pages 70–81, 2021. doi:10.1007/978-3-030-92790-5_6.

11 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007. doi:10.1137/S0097539704446712.

12 Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. Engineering efficient and massively
parallel 3d self-reconfiguration using sandboxing, scaffolding and coating. Robotics and
Autonomous Systems, 146:103875, 2021. doi:10.1016/j.robot.2021.103875.

13 Hyeyun Yang and Antoine Vigneron. A simulated annealing approach to coordinated motion
planning. In Symposium on Computational Geometry (SoCG), pages 65:1–65:9, 2021. doi:
10.4230/LIPIcs.SoCG.2021.65.

https://youtu.be/SFI57l5dOvk
https://doi.org/10.4230/LIPIcs.SoCG.2020.73
https://doi.org/10.4230/LIPIcs.SoCG.2020.73
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
https://doi.org/10.4230/LIPIcs.SoCG.2018.74
https://doi.org/10.4230/LIPIcs.SoCG.2021.63
https://doi.org/10.4230/LIPIcs.SoCG.2021.63
https://doi.org/10.1137/18M1194341
https://doi.org/10.4230/LIPIcs.ISAAC.2021.9
http://arxiv.org/abs/2103.15381
http://arxiv.org/abs/2103.15381
https://doi.org/10.1109/MC.2005.198
https://doi.org/10.4230/LIPIcs.SoCG.2021.64
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1007/978-3-030-92790-5_6
https://doi.org/10.1137/S0097539704446712
https://doi.org/10.1016/j.robot.2021.103875
https://doi.org/10.4230/LIPIcs.SoCG.2021.65
https://doi.org/10.4230/LIPIcs.SoCG.2021.65


A Cautionary Tale: Burning the Medial Axis Is
Unstable
Erin Chambers #

Saint Louis University, MO, USA

Christopher Fillmore #

IST Austria, Klosterneuburg, Austria

Elizabeth Stephenson #

IST Austria, Klosterneuburg, Austria

Mathijs Wintraecken #

IST Austria, Klosterneuburg, Austria

Abstract
The medial axis of a set consists of the points in the ambient space without a unique closest point on
the original set. Since its introduction, the medial axis has been used extensively in many applications
as a method of computing a topologically equivalent skeleton. Unfortunately, one limiting factor
in the use of the medial axis of a smooth manifold is that it is not necessarily topologically stable
under small perturbations of the manifold. To counter these instabilities various prunings of the
medial axis have been proposed. Here, we examine one type of pruning, called burning. Because
of the good experimental results, it was hoped that the burning method of simplifying the medial
axis would be stable. In this work we show a simple example that dashes such hopes based on
Bing’s house with two rooms, demonstrating an isotopy of a shape where the medial axis goes from
collapsible to non-collapsible.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Medial axis, Collapse, Pruning, Burning, Stability

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.66

Category Media Exposition

Funding Partially supported by the DFG Collaborative Research Center TRR 109, “Discretization
in Geometry and Dynamics” and the European Research Council (ERC), grant no. 788183, “Alpha
Shape Theory Extended”.
Erin Chambers: Supported in part by the National Science Foundation through grants DBI-1759807,
CCF-1907612, and CCF-2106672.
Mathijs Wintraecken: Supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 754411. The Austrian science
fund (FWF) M-3073

Acknowledgements We thank André Lieutier, David Letscher, Ellen Gasparovic, Kathryn Leonard,
and Tao Ju for early discussions on this work. We also thank Lu Liu, Yajie Yan and Tao Ju for
sharing code to generate the examples.

1 Introduction

The medial axis ax(S) of a closed set S ⊂ Rd is the set of points in Rd for which the closest
point in S is not unique. We note that although Federer [22] already studied the (complement
of the) medial axis, the name was coined later by Blum [8]. The medial axis is used in many
applications as a method of computing a topologically equivalent skeleton. The medial axis
also has deep connections to singularity theory [2, 9, 17, 28, 29, 34, 35, 38].

© Erin Chambers, Christopher Fillmore, Elizabeth Stephenson, and Mathijs Wintraecken;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 66; pp. 66:1–66:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:erin.chambers@slu.edu
https://orcid.org/0000-0001-8333-3676
mailto:christopher.fillmore@ist.ac.at
https://orcid.org/0000-0001-7631-2885
mailto:elizabeth.stephenson@ist.ac.at
https://orcid.org/0000-0002-6862-208X
mailto:m.h.m.j.wintraecken@gmail.com
https://orcid.org/0000-0002-7472-2220
https://doi.org/10.4230/LIPIcs.SoCG.2022.66
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


66:2 A Cautionary Tale: Burning the Medial Axis Is Unstable

Unfortunately, one limiting factor in the use of the medial axis is its (topological) instable
under small perturbations [3]. Here small is understood to be small with respect to the
Hausdorff distance. See Figure 1 for a standard example of such an instability. However the
medial axis does capture the homotopy type [26, 36]. The radius function and medial axis
together suffice to reconstruct the original set (under reasonable assumptions) [14, 15, 16, 18].

Figure 1 Small perturbations (with respect to the Hausdorff distance) can lead to large pertur-
bations of the medial axis.

Figure 2 Various pruning methods, from left to right: Object angles [4, 21], radius of the set of
closest points [12] (the λ-medial axis, also used in our computation), and a burning method proposed
in [37], with various undesirable features indicated. The value of the object angle, radius of of the
set of closest points, and burning time is indicated in colour on top. Reproduced from [37].

If we restrict ourselves to a smaller class of spaces and perturbations, stability results
are available: Chazal and Soufflet [11] proved that the medial axis is stable with respect to
the Hausdorff distance under ambient diffeomorphisms, if we assume that the set of positive
reach is a C2 manifold and the distortion is a C2 diffeomorphism of Rb.

Significant effort has gone into the simplification (pruning) of the medial axis. This was
motivated by applications in graphics (where it is used as a skeleton, see the surveys [30, 33]),
data reduction, shape recognition, and learning (see for example [5, 10, 19, 25, 27, 31, 32, 37]).



E. Chambers, C. Fillmore, E. Stephenson, and M. Wintraecken 66:3

Many prunings of the medial axis have been proposed in many different settings [1, 4, 7, 12,
20, 21, 24, 27, 32]. See Figure 2 for an illustration of some commonly used ones and their
pitfalls: the object angle, which is of historic importance in the community but can disconnect
the medial axis, the λ-medial axis, which is used to compute a close approximation of the
medial axis but which can truncate “thin” regions undesirably, and the burning method
which we consider in this work.

2 Burning Bing’s house

The simplification which we focus on for this work is the burning of the medial axis [37],
which generalizes Blum’s original “grassfire” analogy for the medial axis. The burning of the
medial axis removes the extremities of the medial axis by “starting a fire” at the boundary
of the medial axis which stops if the fire hits an obstacle, as illustrated in Figure 3.

Figure 3 The fire front progression on a the medial axis (grey) of a curve (black). As the fire
front (indicated by the red dot) hits an unburned junction, it stops. If the junction is already burned
(with the colour indicating the burn time) the fire continues.

Because of the good experimental results, it was conjectured that the burning method
of simplification of the medial axis would be stable [27], i.e. no discontinuous jumps. In
this work we show that this is not the case. The counter example is based on the standard
deformation retract from the closed ball to Bing’s house with two rooms [6], which is a
contractible but not collapsible two dimensional simplicial complex, see Figure 6. Bing’s
house is not collapsible, as there is no boundary.

Before we go into the main statement we consider a deformation of Bing’s house which
makes it collapsible. This deformation will be mirrored in the medial axis in our construction,
this deformation is depicted in Figure 5, see Figure 4 for the nomenclature. In this construction
we cut a flap open so that the room no longer completely runs around the corridor. This
cutting exposes an edge of one of the walls of the corridor and path that goes from the edge
to the bottom room. We can use this edge to collapse along the path into the bottom room,
then the room, and from this the rest of Bing’s house.

SoCG 2022



66:4 A Cautionary Tale: Burning the Medial Axis Is Unstable

Figure 4 The various parts of Bing’s house indicated.

Figure 5 This deformation, which cuts a flap open, makes Bing’s house collapsible.



E. Chambers, C. Fillmore, E. Stephenson, and M. Wintraecken 66:5

The precise result is the following:

▶ Theorem 1. There exists a smooth ambient isotopy Ht : [0, 1] × S2 → R3 such that:
The medial axis ax(H0(S2)) is collapsible/burn to a single point.
The medial axis ax(H1(S2)) is Bing’s house and is therefore non-collapsible/ cannot burn.
The burning of ax(Ht(S2)) is not continuous in t with respect to the Hausdorff distance.
The topology of the burned axis changes from a point to Bing’s house with two rooms at a
single t0 ∈ [0, 1].
The isotopy Ht can be chosen to be generic in the sense of singularity theory as developed
by Arnol’d and Thom [2], see in particular [23].

Proof. Bing constructed his house as a deformation retract from a solid cube, see Figure 6.
The isotopy of the sphere we consider is the boundary of this deformation. However instead
of reducing to a two dimensional object we skip the last step so that every point in the
deformation the set remains a topological (solid) ball and its boundary a sphere. The end
point of this deformation is a thickened version Bing’s house. We will only consider the
medial axis in the interior of the sphere and not the exterior. The medial axis of a thickened
version of Bing’s house is Bing’s house itself. The deformation is depicted in Figure 7. The
essential topological change only happens near the end of the deformation when the room
wraps around the corridor, see Figure 8. When the bisector between the corridor and the
wall disappears and is replaced by the bisector between the two parts of the room that are
wrapping around the corridor, the medial axis becomes non-collapsible. This transition can
be made generic in terms of the transitions of the singularities [23]. ◀

We illustrate this deformation in our video; see also Figures 6, 7, and 8. These animations
were made using the λ-medial axis (see https://github.com/cdfillmore/lambda_medial_
axis) and the open source software Blender [13]. Here λ is chosen very small to ensure that
the λ-medial axis is a good approximation of the medial axis.

▶ Corollary 2. Collapsing or pruning the medial axis of a domain such that it becomes
one-dimensional, as proposed in e.g. [7], is not always possible, even if the boundary of a
domain is a smooth sphere.

SoCG 2022

https://github.com/cdfillmore/lambda_medial_axis
https://github.com/cdfillmore/lambda_medial_axis


66:6 A Cautionary Tale: Burning the Medial Axis Is Unstable

Figure 6 The deformation retract of a solid cube (topological ball) to Bing’s house. In the final
frame we show the smoothed version of a thickened Bing’s house used in the computation.

Figure 7 The evolution of the medial axis (yellow) in the interior as the solid cube is deformed
into a thickened version of Bing’s house (blue/purple).



E. Chambers, C. Fillmore, E. Stephenson, and M. Wintraecken 66:7

Figure 8 The critical transition of the medial axis. There are points on the medial axis equidistant
to the two parts of the room that wrap around the corridor, the corridor itself and the exterior wall,
which can be avoided by a small perturbation. This transition occurs between frames 4 and 5 of
Figure 6.

References
1 Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust, unions of balls, and

the medial axis transform. Computational Geometry: Theory and Applications, 19(2-3):127–153,
2001. doi:10.1016/S0925-7721(01)00017-7.

2 Vladimir Arnol’d. Singularities of caustics and wave fronts, volume 62 of Mathematics and its
Applications. Springer Science & Business Media, 2013.

3 D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of medial axes -
a state-of-the-art report. In Mathematical Foundations of Scientific Visualization, Computer
Graphics, and Massive Data Exploration, Mathematics and Visualization, pages 109–125.
Springer Berlin Heidelberg, 2009.

4 Dominique Attali and Annick Montanvert. Modeling noise for a better simplification of
skeletons. In Proceedings of 3rd IEEE International Conference on Image Processing, volume 3,
pages 13–16. IEEE, 1996. doi:10.1109/ICIP.1996.560357.

SoCG 2022

https://doi.org/10.1016/S0925-7721(01)00017-7
https://doi.org/10.1109/ICIP.1996.560357


66:8 A Cautionary Tale: Burning the Medial Axis Is Unstable

5 Gulce Bal, Julia Diebold, Erin Wolf Chambers, Ellen Gasparovic, Ruizhen Hu, Kathryn
Leonard, Matineh Shaker, and Carola Wenk. Skeleton-based recognition of shapes in images
via longest path matching. In Research in Shape Modeling, volume 1 of Association for Women
in Mathematics Series, pages 81–99. Springer, 2015. doi:10.1007/978-3-319-16348-2_6.

6 RH Bing. Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. In
T.L. Saaty, editor, Lectures on modern mathematics, volume II, pages 93–128. John Wiley
and Sons, 1964.

7 Thibault Blanc-Beyne, Géraldine Morin, Kathryn Leonard, Stefanie Hahmann, and Axel
Carlier. A salience measure for 3D shape decomposition and sub-parts classification. Graphical
Models, 99:22–30, 2018. doi:10.1016/j.gmod.2018.07.003.

8 Harry Blum. A Transformation for Extracting New Descriptors of Shape. In Weiant Wathen-
Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380. MIT Press,
Cambridge, 1967.

9 Michael A. Buchner. The structure of the cut locus in dimension less than or equal to six.
Compositio Mathematica, 37(1):103–119, 1978. URL: http://www.numdam.org/item/CM_1978_
_37_1_103_0/.

10 Ming-Ching Chang and Benjamin B. Kimia. Measuring 3d shape similarity by graph-based
matching of the medial scaffolds. Computer Vision and Image Understanding, 115(5):707–720,
May 2011. doi:10.1016/j.cviu.2010.10.013.

11 F. Chazal and R. Soufflet. Stability and finiteness properties of medial axis and skeleton. Journal
of Dynamical and Control Systems, 10(2):149–170, 2004. doi:10.1023/B:JODS.0000024119.
38784.ff.

12 Frédéric Chazal and André Lieutier. The “λ-medial axis”. Graphical Models, 67(4):304–331,
2005. doi:10.1016/j.gmod.2005.01.002.

13 Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018. URL: http://www.blender.org.

14 James Damon. Smoothness and geometry of boundaries associated to skeletal structures I:
Sufficient conditions for smoothness. In Annales de l’institut Fourier, volume 53(6), pages
1941–1985, 2003. doi:10.5802/aif.1997.

15 James Damon. Smoothness and geometry of boundaries associated to skeletal structures,
II: Geometry in the Blum case. Compositio Mathematica, 140(6):1657–1674, 2004. doi:
10.1112/S0010437X04000570.

16 James Damon. Determining the geometry of boundaries of objects from medial data. Interna-
tional Journal of Computer Vision, 63(1):45–64, 2005.

17 James Damon. The global medial structure of regions in R3. Geometry & Topology, 10(4):2385–
2429, 2006. doi:10.2140/gt.2006.10.2385.

18 James Damon. Global geometry of regions and boundaries via skeletal and medial integrals.
Communications in Analysis and Geometry, 15(2):307–358, 2007. doi:10.4310/CAG.2007.v15.
n2.a5.

19 Ilke Demir, Camilla Hahn, Kathryn Leonard, Geraldine Morin, Dana Rahbani, Athina
Panotopoulou, Amelie Fondevilla, Elena Balashova, Bastien Durix, and Adam Kortylewski.
SkelNetOn 2019: Dataset and challenge on deep learning for geometric shape understanding.
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1143–1151, 2019. doi:10.1109/CVPRW.2019.00149.

20 Tamal K. Dey and Jian Sun. Defining and computing curve-skeletons with medial geodesic
function. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP
’06, pages 143–152, Goslar, DEU, 2006. Eurographics Association.

21 Tamal K Dey and Wulue Zhao. Approximating the medial axis from the Voronoi diagram with a
convergence guarantee. Algorithmica, 38(1):179–200, 2004. doi:10.1007/s00453-003-1049-y.

22 H. Federer. Curvature measures. Transactions of the American Mathematical Society, 93:418–
491, 1959. doi:10.1090/S0002-9947-1959-0110078-1.

https://doi.org/10.1007/978-3-319-16348-2_6
https://doi.org/10.1016/j.gmod.2018.07.003
http://www.numdam.org/item/CM_1978__37_1_103_0/
http://www.numdam.org/item/CM_1978__37_1_103_0/
https://doi.org/10.1016/j.cviu.2010.10.013
https://doi.org/10.1023/B:JODS.0000024119.38784.ff
https://doi.org/10.1023/B:JODS.0000024119.38784.ff
https://doi.org/10.1016/j.gmod.2005.01.002
http://www.blender.org
https://doi.org/10.5802/aif.1997
https://doi.org/10.1112/S0010437X04000570
https://doi.org/10.1112/S0010437X04000570
https://doi.org/10.2140/gt.2006.10.2385
https://doi.org/10.4310/CAG.2007.v15.n2.a5
https://doi.org/10.4310/CAG.2007.v15.n2.a5
https://doi.org/10.1109/CVPRW.2019.00149
https://doi.org/10.1007/s00453-003-1049-y
https://doi.org/10.1090/S0002-9947-1959-0110078-1


E. Chambers, C. Fillmore, E. Stephenson, and M. Wintraecken 66:9

23 Peter J Giblin, Benjamin B Kimia, and Anthony J Pollitt. Transitions of the 3D medial axis
under a one-parameter family of deformations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(5):900–918, 2008. doi:10.1109/TPAMI.2008.120.

24 Joachim Giesen, Balint Miklos, Mark Pauly, and Camille Wormser. The scale axis transform.
In Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, pages
106–115, New York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/
1542362.1542388.

25 Seng-Beng Ho and Charles R Dyer. Shape smoothing using medial axis properties. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(4):512–520, 1986. doi:
10.1109/TPAMI.1986.4767815.

26 André Lieutier. Any open bounded subset of Rn has the same homotopy type as its medial axis.
Computer-Aided Design, 36(11):1029–1046, 2004. Solid Modeling Theory and Applications.
doi:10.1016/j.cad.2004.01.011.

27 Lu Liu, Erin W. Chambers, David Letscher, and Tao Ju. Extended grassfire transform on
medial axes of 2d shapes. Computer-Aided Design, 43(11):1496–1505, 2011. Solid and Physical
Modeling 2011. doi:10.1016/j.cad.2011.09.002.

28 Eduard Looijenga. Structural Stability of smooth families of C∞-functions. PhD thesis,
Universiteit van Amsterdam, 1974.

29 John N Mather. Distance from a submanifold in Euclidean-space. In Proceedings of symposia
in pure mathematics, volume 40, pages 199–216. American Mathematical Society, 1983.

30 Punam K Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja. A survey on skeletonization
algorithms and their applications. Pattern recognition letters, 76:3–12, 2016.

31 T.B. Sebastian, P.N. Klein, and B.B. Kimia. Recognition of shapes by editing their shock
graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):550–571,
2004. doi:10.1109/TPAMI.2004.1273924.

32 Doron Shaked and Alfred M. Bruckstein. Pruning medial axes. Computer Vision and Image
Understanding, 69(2):156–169, 1998. doi:10.1006/cviu.1997.0598.

33 Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and Alexandru Telea.
3D skeletons: A state-of-the-art report. In Computer Graphics Forum, volume 35(2), pages
573–597. Wiley Online Library, 2016. doi:10.1111/cgf.12865.

34 R. Thom. Sur le cut-locus d’une variété plongée. Journal of Differential Geometry, 6(4):577–586,
1972. doi:10.4310/jdg/1214430644.

35 Martijn van Manen. Maxwell strata and caustics. In Singularities In Geometry And Topology,
pages 787–824. World Scientific, 2007.

36 Franz-Erich Wolter. Cut locus and medial axis in global shape interrogation and representation.
In MIT Design Laboratory Memorandum 92-2 and MIT Sea Grant Report, 1992.

37 Yajie Yan, Kyle Sykes, Erin Chambers, David Letscher, and Tao Ju. Erosion thickness
on medial axes of 3d shapes. ACM Transactions on Graphics, 35(4):38:1–38:12, July 2016.
doi:10.1145/2897824.2925938.

38 Yosef Yomdin. On the local structure of a generic central set. Compositio Mathematica,
43(2):225–238, 1981. URL: http://www.numdam.org/item/CM_1981__43_2_225_0/.

SoCG 2022

https://doi.org/10.1109/TPAMI.2008.120
https://doi.org/10.1145/1542362.1542388
https://doi.org/10.1145/1542362.1542388
https://doi.org/10.1109/TPAMI.1986.4767815
https://doi.org/10.1109/TPAMI.1986.4767815
https://doi.org/10.1016/j.cad.2004.01.011
https://doi.org/10.1016/j.cad.2011.09.002
https://doi.org/10.1109/TPAMI.2004.1273924
https://doi.org/10.1006/cviu.1997.0598
https://doi.org/10.1111/cgf.12865
https://doi.org/10.4310/jdg/1214430644
https://doi.org/10.1145/2897824.2925938
http://www.numdam.org/item/CM_1981__43_2_225_0/




Visualizing and Unfolding Nets of 4-Polytopes
Satyan L. Devadoss #

Department of Mathematics, University of San Diego, CA, USA

Matthew S. Harvey #

Department of Mathematics and Computer Science,
University of Virginia’s College at Wise, VA, USA

Sam Zhang #

Department of Applied Mathematics, University of Colorado Boulder, CO, USA

Abstract
Over a decade ago, it was shown that every edge unfolding of the Platonic solids was without
self-overlap, yielding a valid net. Recent work has extended this property to their higher-dimensional
analogs: the 4-cube, 4-simplex, and 4-orthoplex. We present an interactive visualization that allows
the user to unfold these polytopes by drawing on their dual 1-skeleton graph.

2012 ACM Subject Classification Theory of computation → Computational geometry; Applied
computing → Computer-assisted instruction

Keywords and phrases unfoldings, nets, polytopes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.67

Category Media Exposition

Supplementary Material Software (Web-Application): https://sam.zhang.fyi/html/unfolding/

Funding Sam Zhang: Supported by an NSF Graduate Research Fellowship Award DGE 2040434.

1 Unfolding Polytopes

The study of unfolding polyhedra was popularized by Albrecht Dürer in the early 16th century
who first recorded examples of polyhedral nets, connected edge unfoldings of polyhedra that
lay flat on the plane without overlap. Motivated by this, Shephard [8] conjectured that every
convex polyhedron can be cut along certain edges to admit a net. This claim remains open.

Consider this question for higher-dimensional polytopes: The codimension-one faces of a
polytope are facets and its codimension-two faces are ridges. The analog of an edge unfolding
of polyhedron is the ridge unfolding of an n-dimensional polytope: the process of cutting the
polytope along a collection of its ridges so that the resulting (connected) arrangement of its
facets develops isometrically into an Rn−1 hyperplane. Such an unfolding without overlap of
its facets yields a valid net. Instead of trying to find one net for each convex polyhedron (as
posed by Shephard), we consider a more aggressive property:

▶ Definition 1. A polytope P is all-net if every ridge unfolding of P yields a valid net.

A decade ago, Horiyama and Shoji [7] showed that the five Platonic solids are all-net. Recent
work [4] has shown applications in protein science: polyhedral nets are used to find a balance
between entropy loss and energy gain for the folding propensity of a given shape. The
higher-dimensional analogs of the Platonic solids are the regular polytopes. Three classes of
regular polytopes exist for all dimensions: the n-simplex, n-cube, and n-orthoplex (sometimes
called the cross-polytope or the cocube). The following is from [2] and [3]:

▶ Theorem 2. The 4-simplex, the 4-cube, and the 4-orthoplex are all-net.
© Satyan L. Devadoss, Matthew S. Harvey, and Sam Zhang;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 67; pp. 67:1–67:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:devadoss@sandiego.edu
mailto:msh3e@uvawise.edu
mailto:sam.zhang@colorado.edu
https://orcid.org/0000-0002-0371-9526
https://doi.org/10.4230/LIPIcs.SoCG.2022.67
https://sam.zhang.fyi/html/unfolding/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


67:2 Visualizing and Unfolding Nets of 4-Polytopes

▶ Remark 3. For n > 4, the n-simplex and n-cube are all-net, while the n-orthoplex fails.
Three additional regular polytopes appear only in four-dimensions: the 24-cell, 120-cell, and
600-cell. Their all-net property remain unexplored.

A ridge unfolding of a convex 4-dimensional polytope is given by a series of cuts along its
2-dimensional ridges so that the polytope may be unwrapped and “laid flat” in R3. The goal
of our visualization is to show the resulting net – the final placement of the unwrapped facets
– rather than the unwrapping itself. Such an unfolding is specified by the combinatorics of
the arrangement of its facets in the resulting net. In particular, a ridge unfolding of polytope
P induces a spanning tree in the 1-skeleton of the dual of P : a tree whose nodes are the
facets of the polytope and whose edges are the uncut ridges between the facets.

We now consider these associated graphs, the 1-skeleton of the duals of these polytopes:
Since the 4-simplex is self-dual, its 1-skeleton is simply the complete graph on 5 nodes
(corresponding to the 5 facets of the 4-simplex). The 4-cube is dual to the 4-orthoplex,
whose 1-skeleton forms the 4-Roberts graph. The 8 nodes of this graph can arranged on a
circle so that antipodal nodes represent opposite facets of the cube. Finally, the dual of the
4-orthoplex is the 4-cube, whose 1-skeleton forms the 4-hypercube graph. We chose a drawing
of this graph where its 16 nodes are arranged on a circle.

The work of Buekenhout and Parker [1] has enumerated the spanning trees on these three
graphs. Since unfoldings are in bijection with spanning trees, there are (up to symmetry), 3
distinct unfoldings of the 4-simplex, 261 distinct unfoldings of the 4-cube, and 110,912 distinct
unfoldings of the 4-orthoplex. By Theorem 2 above, each of these unfoldings is a valid net.
Our visualization software (https://sam.zhang.fyi/html/unfolding/) allows the user to
interactively create all of these nets. The figures in this paper show three examples.

Figure 1 A user-drawn spanning tree and its corresponding unfolded 4-simplex net.

2 Unfolding Geometry

An unfolding is specified, step-by-step, by drawing a spanning tree. As it is being drawn, the
corresponding net is formed by attaching new facets along the faces indicated by the tree.

In the case of the hypercube, the facets are cubes. The first cube is placed with its center
(centroid) at the origin and its faces parallel to the coordinate planes. Each subsequent facet
is attached to an exposed face f of one of the facets F in the existing structure as follows:
the center P of F is translated one edge length in the direction perpendicular to F , to a new
point Q (so that f bisects PQ). A new facet is then placed with Q as its center.

https://sam.zhang.fyi/html/unfolding/


S. L. Devadoss, M. S. Harvey, and S. Zhang 67:3

Figure 2 A user-drawn spanning tree and its corresponding unfolded 4-cube net.

In the case of the simplex and the orthoplex, the facets are tetrahedra. Unlike the cube,
a tetrahedron cannot be conveniently embedded in R3, making calculations there difficult. It
can be much more elegantly placed in R4, with its vertices at (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
and (0, 0, 0, 1). Each subsequent facet is then attached to an exposed face f of a facet F by
reflection across f . This reflection will fix all of f , hence all the vertices of F except for one,
say P . Thanks to the R4 embedding, its reflection, Q, can be calculated by a simple matrix
multiplication. A new facet is then constructed whose vertices are those of f , along with Q.
In this construction, the unfolded net will lie in the hyperplane x1 + x2 + x3 + x4 = 1. Once
vertex coordinates have been calculated, it is necessary to rotate the shape into standard
3-dimensional space x4 = 0 before displaying the final result.

Figure 3 A user-drawn spanning tree and its corresponding unfolded 4-orthoplex net.

SoCG 2022



67:4 Visualizing and Unfolding Nets of 4-Polytopes

3 Implementation

Our visualization is an interactive, open source browser application implemented using
HTML5 and JavaScript, and the application and source code can be accessed at https:
//sam.zhang.fyi/html/unfolding/. The user can select whether to unfold the 4-cube, the
4-simplex, or the 4-orthoplex. The user performs the unfolding by drawing a spanning tree on
the graph of the 1-skeleton of the dual polytope. The graph of the 1-skeleton is represented
using the JavaScript library JSXGraph [6], and the unfolded faces in R3 are drawn in WebGL
using ThreeJS [5]. We used built-in features of ThreeJS to allow the user to scroll to zoom
and click and drag to rotate the unfolded object.

The architecture of the application reuses common components for unfolding the cube,
simplex, and orthoplex. In particular, we implement our own spanning tree data structure,
which together with the underlying structure of the graph of the 1-skeleton of the dual
polytope allows us to determine the set of valid moves. We maintain an undo stack of a
single move, so that the visualization displays the outcome of a move when a valid node on
the 1-skeleton is moused over, and saves the move if and only if a click is registered on the
node before the mouse is moved off of the node. Otherwise, the move is undone when the
mouse leaves the node.

There are a variety of choices for embedding the 1-skeleton of the dual polytope onto
the plane, though we can pick elegant choices that position all of the nodes around the
circumference of a circle. For the simplex, we have a standard visualization of a clique, and
for the cube, we draw the 1-skeleton (a Roberts graph) as a clique with the opposite edges
removed. For the orthoplex, we embed its 1-skeleton in a way that all of the edges either
form part of the “circumference” of the graph or are parallel to the plane’s vertical and
horizontal axes.

We emphasize the current node by highlighting it as black on both the 1-skeleton as well
as in the unfolding. Unvisited nodes are colored blue (if accessible) and red (if inaccessible),
while visited nodes are shaded dark blue and dark red, appropriately. We arbitrarily fix
a node as the starting one. Due to the ability of the user to pan the camera around the
unfolding, all unfoldings up to rotation, but not reflection, are identified in the visualization.
We introduced a minor amount of transparency into the unfolding so that the user can more
clearly see the structure of the overall object.

References
1 Francis Buekenhout and Monique Parker. The number of nets of the regular convex polytopes

in dimension ≤ 4. Discrete mathematics, 186:69–94, 1998.
2 Kristin DeSplinter, Satyan L Devadoss, Jordan Readyhough, and Bryce Wimberly. Unfolding

cubes: Nets, packings, partitions, chords. Electronic Journal of Combinatorics, 27:4–41, 2020.
3 Satyan L Devadoss and Matthew Harvey. Unfoldings and nets of regular polytopes. arXiv,

2021. arXiv:2111.01359.
4 Paul Dodd, Pablo Damasceno, and Sharon Glotzer. Universal folding pathways of polyhedron

nets. Proceedings of the National Academy of Science, 115:6690–6696, 2018.
5 Mr. Doob. ThreeJS, 2021. URL: https://github.com/mrdoob/threejs.
6 Michael Gerhäuser, Bianca Valentin, and Alfred Wassermann. JSXGraph: Dynamic math-

ematics with JavaScript. International Journal for Technology in Mathematics Education,
17(4), 2010.

7 Takashi Horiyama and Wataru Shoji. Edge unfoldings of platonic solids never overlap. In
Proceedings of the 23rd Canadian Conference on Computational Geometry, 2011.

8 Geoffrey C Shephard. Convex polytopes with convex nets. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 78. Cambridge University Press, 1975.

https://sam.zhang.fyi/html/unfolding/
https://sam.zhang.fyi/html/unfolding/
http://arxiv.org/abs/2111.01359
https://github.com/mrdoob/threejs


Visualizing WSPDs and Their Applications
Anirban Ghosh #

School of Computing, University of North Florida, Jacksonville, FL, USA

FNU Shariful #

School of Computing, University of North Florida, Jacksonville, FL, USA

David Wisnosky #

School of Computing, University of North Florida, Jacksonville, FL, USA

Abstract
Introduced by Callahan and Kosaraju back in 1995, the concept of well-separated pair decomposition
(WSPD) has occupied a special significance in computational geometry when it comes to solving
distance problems in d-space. We present an in-browser tool that can be used to visualize WSPDs
and several of their applications in 2-space. Apart from research, it can also be used by instructors
for introducing WSPDs in a classroom setting. The tool will be permanently maintained by the
third author at https://wisno33.github.io/VisualizingWSPDsAndTheirApplications/.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases well-separated pair decomposition, nearest neighbor, geometric spanners,
minimum spanning tree

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.68

Category Media Exposition

Supplementary Material Software (Web-Application):
https://wisno33.github.io/VisualizingWSPDsAndTheirApplications/

Funding Research on This Paper Is Supported by the NSF Award CCF-1947887.

1 Introduction

Let P and Q be two finite pointsets in d-space and s be a positive real number. We say
that P and Q are well-separated with respect to s, if there exist two congruent disjoint balls
BP and BQ, such that BP contains the bounding-box of P , BQ contains the bounding-box
of Q, and the distance between BP and BQ is at least s times the common radius of BP

and BQ. The quantity s is referred to as the separation ratio of the decomposition. Using
this idea of well-separability, one can define a well-separated decomposition of a pointset
(WSPD) [4] in the following way. Let P be a set of n points in d-space and s be a positive
real number. A well-separated pair decomposition for P with respect to s is a collection
of pairs of non-empty subsets of P , {A1, B1}, {A2, B2}, . . . , {Am, Bm} for some integer m

(referred to as the size of the WSPD) such that
for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated with respect to s, and
for any two distinct points p, q ∈ P , there is exactly one index i with 1 ≤ i ≤ m, such
that p ∈ Ai, q ∈ Bi, or p ∈ Bi, q ∈ Ai.

Note that in some cases, m = C(n, 2) = Θ(n2). Refer to [5, 6, 7] for a detailed discussion on
WSPDs and their uses. In this work, we consider WSPDs in 2-space only. Our implementations
are based on the algorithms presented in the book by Narasimhan and Smid [6, Chapters 9
and 10]. These algorithms were originally presented in [2, 3, 4] by Callahan and Kosaraju.

© Anirban Ghosh, FNU Shariful, and David Wisnosky;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 68; pp. 68:1–68:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anirban.ghosh@unf.edu
https://orcid.org/0000-0003-0130-5968
mailto:n01501509@unf.edu
https://orcid.org/0000-0002-9561-3613
mailto:n01153911@unf.edu
https://orcid.org/0000-0001-5463-1949
https://wisno33.github.io/VisualizingWSPDsAndTheirApplications/
https://doi.org/10.4230/LIPIcs.SoCG.2022.68
https://wisno33.github.io/VisualizingWSPDsAndTheirApplications/
https://wisno33.github.io/VisualizingWSPDsAndTheirApplications/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


68:2 Visualizing WSPDs and Their Applications

2 Algorithms implemented

We have implemented the algorithms using the JSXGraph library. Some code segments have
been borrowed from the tool presented in [1].

2.1 Constructing WSPDs
Given a pointset P and a positive real number s, a WSPD of P can be constructed using
a split-tree. Our implementation is based on the naive quadratic time approach presented
in [6]. It accepts P and s, and returns the WSPD pairs in the WSPD decomposition. Refer
to Algorithm 1. An advanced linearithmic construction is also presented in [6].

Notations. Let x be a split-tree node. Let Sx denotes the points stored in the subtree
rooted at x and R(x) denotes the bounding-box of Sx. Further, Lmax(R(x)) denotes the
length of the longer side of R(x).

Algorithm 1 ConstructWspd(P, s > 0).

1. Construct a split-tree T on P in the following way:

If |P | = 1, then the split-tree consists of one single node that stores that point. Otherwise,
split the bounding-box of P into two rectangles by cutting the longer side of the bounding-
box into two equal parts. Let P1 and P2 be the two subsets of P that are contained in
these two new rectangles. The split-tree for P consists of a root having two subtrees,
which are recursively defined for P1 and P2.

2. For each internal node u of T , find WSPD pairs using v and w, the left and right child of
u, respectively, in the following way:

a. Compute Sv, Sw, Lmax(R(v)) and Lmax(R(w)).
b. If Sv, Sw are well-separated with respect to s, then node pair {v, w} is a WSPD pair.

Otherwise, if Lmax(R(v)) ≤ Lmax(R(w)), recursively find WSPD pairs using v,
LeftChild(w) and then recursively find WSPD pairs using v, RightChild(w).
Else, recursively find WSPD pairs using LeftChild(v), w, and then recursively find
WSPD pairs using RightChild(v), w.

2.2 Applications of WSPDs
Construction of t-Spanners. Given a pointset P and t ≥ 1, a t-spanner on P is a
Euclidean geometric graph G on P such that for every pair of points p, q ∈ P , the length
of the shortest-path between p, q in G is at most t times the Euclidean distance between
them. Refer to Algorithm 2. It returns the set of spanner edges and can be implemented
to run in O(n log n) time [6].

Algorithm 2 Construct-t-Spanner(P, t > 1).

Let s = 4(t + 1)/(t − 1). Construct a WSPD of P with separation ratio s. For every pair
(Ai, Bi) of the decomposition do the following: include the edge {ai, bi} in the spanner where
ai is an arbitrary point in Ai and bi is an arbitrary point in Bi.



A. Ghosh, F. Shariful, and D. Wisnosky 68:3

Finding Closest Pairs. The problem asks to find two distinct points of P whose
distance is minimum among the C(n, 2) point pairs. The idea of well-separatedness can
be used to design an algorithm for this problem. See Algorithm 3. It can be implemented
to run in O(n log n) time [6].

Algorithm 3 ClosestPair(P ).

Construct a 2-spanner using Algorithm 2. Since the closest pair is connected by an edge of
the spanner, find the pair by iterating over all the edges.

Finding k-Closest Pairs. It is a generalization of the closest-pair problem. Given a
positive integer k such that k ≤ C(n, 2), the goal is to find the k closest pairs among the
C(n, 2) pairs. See Algorithm 4. It can be implemented to run in O(n log n + k) time [6].

Algorithm 4 k-ClosestPairs(P ).

1. Create a WSPD with some s > 0. For every pair (Ai, Bi) in the decomposition, let R(Ai)
and R(Bi) be the bounding boxes of Ai and Bi, respectively. Further, by |R(Ai)R(Bi)|, we
denote the minimum distance between the two bounding-boxes R(Ai), R(Bi). Renumber
the m pairs in the decomposition such that |R(A1)R(B1)| ≤ |R(A2)R(B2)| ≤ . . . ≤
|R(Am)R(Bm)|.

2. Compute the smallest integer ℓ ≥ 1, such that
∑ℓ

i=1 |Ai| · |Bi| ≥ k.
3. Let r := |R(Aℓ)R(Bℓ)|.
4. Compute the integer ℓ′, which is defined as the number of indices with 1 ≤ i ≤ m, such

that |R(Ai)R(Bi)| ≤ (1 + 4/s)r.
5. Compute the set L consisting of all pairs {p, q} for which there is an index i with 1 ≤ i ≤ ℓ′,

such that p ∈ Ai, q ∈ Bi or q ∈ Ai, p ∈ Bi.
6. Compute and return the k smallest distances determined by the pairs in the set L.

Finding All-Nearest Neighbors. In this problem, for every point p in P , we need
to find its nearest neighbor q in P \ {p}. Refer to Algorithm 5 for a description of the
algorithm. It can be implemented to run in O(n log n) time [6].

Algorithm 5 AllNearestNeighbors(P ).

Choose s > 2 and obtain the pairs of WSPD. For every p ∈ P , compute its nearest neighbor
in the following way: Find all such pairs of the WSPD, for which at least one of their sets is
a singleton containing p. For every such pair (Ai, Bi), if Ai = {p}, then Sp = Sp ∪ Bi, else if
Bi = {p}, then Sp = Sp ∪ Ai. The nearest neighbor of p is the point in Sp closest to p (found
by exhaustive search).

t-Approximate Minimum Spanning Trees. Let t > 1, be a real number. A tree
connecting the points of P is called a t-approximate minimum spanning tree of P , if its
weight is at most t times the weight of the Euclidean minimum spanning tree of P . Refer
to Algorithm 6. In d-space, it runs in O(n log n + n/(t − 1)d) time [6].

Algorithm 6 t-ApproximateMinimumSpanningTree(P, t > 1).

Compute the t-spanner G using Algorithm 2. Using Prim’s algorithm compute a minimum
spanning tree T of G. Return T .

SoCG 2022



68:4 Visualizing WSPDs and Their Applications

References
1 Fred Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky.

An interactive tool for experimenting with bounded-degree plane geometric spanners (media
exposition). In 37th International Symposium on Computational Geometry (SoCG 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

2 Paul B Callahan and S Rao Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In SODA, volume 93, pages 291–300, 1993.

3 Paul B Callahan and S Rao Kosaraju. Algorithms for dynamic closest pair and n-body
potential fields. In SODA, volume 95, pages 263–272, 1995.

4 Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM (JACM),
42(1):67–90, 1995.

5 Sariel Har-Peled. Geometric approximation algorithms. Number 173 in Mathematical Surveys
and Monographs. American Mathematical Soc., 2011.

6 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press,
2007.

7 Michiel Smid. The well-separated pair decomposition and its applications. In Handbook of
Approximation Algorithms and Metaheuristics, pages 71–84. Chapman and Hall/CRC, 2018.



Subdivision Methods for Sum-Of-Distances
Problems: Fermat-Weber Point, n-Ellipses and the
Min-Sum Cluster Voronoi Diagram
Ioannis Mantas #

Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland

Evanthia Papadopoulou #

Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland

Martin Suderland #

Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland

Chee Yap #

Courant Institute, New York University (NYU), NY, USA

Abstract
Given a set P of n points, the sum of distances function of a point x is dP pxq :“

ř

pPP ||x ´ p||.
Using a subdivision approach with soft predicates we implement and visualize approximate solutions
for three different problems involving the sum of distances function in R2. Namely, (1) finding the
Fermat-Weber point, (2) constructing n-ellipses of a given set of points, and (3) constructing the
nearest Voronoi diagram under the sum of distances function, given a set of point clusters as sites.

2012 ACM Subject Classification Theory of computation Ñ Computational geometry

Keywords and phrases Fermat point, geometric median, Weber point, Fermat distance, sum of
distances, n-ellipse, multifocal ellipse, min-sum Voronoi diagram, cluster Voronoi diagram

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.69

Category Media Exposition

Supplementary Material Audiovisual (Video): https://youtu.be/wgG8uqLIizo

Funding Evanthia Papadopoulou: supported by the SNF project 200021E_201356.
Martin Suderland: supported by the SNF project 200021E_201356.
Chee Yap: supported by NSF Grant No. CCF-2008768.

1 Introduction

Let P denote a set of n points in R2. The sum of distances, or Fermat distance, function
of a point x P R2 to a set P is dP pxq :“

ř

pPP ||x ´ p||, where || ¨ || denotes the Euclidean
distance. We are considering the following problems involving the Fermat distance function.

The Fermat(-Weber) point of a set of points P is a point in R2 that minimizes the
Fermat distance, i.e., p˚

P :“ minxPR2dP pxq. The Fermat radius is the distance realizing
the Fermat point, i.e., d˚

P :“ dP pp
˚
P q. See Figure 1 (left) for an illustration.

An n-ellipse of a set of n points P of radius r, is the level set of the Fermat distance
function d´1

P prq :“ tx P R2 | dP pxq “ ru. An n-ellipse is non-empty only if r ě d˚
P . See

Figure 1 (middle) for an illustration.
The min-sum Voronoi diagram of a family S of point sets, called clusters, is the
subdivision of R2 into maximal regions, such that the region of a cluster P P S is the locus
of points closer to P than to any other cluster in S, i.e., vregpP q :“ tx P R2 | dP pxq ă

dQpxq @Q P SztP uu. See Figure 1 (right) for an illustration.

© Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland, and Chee Yap;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 69; pp. 69:1–69:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ioannis.mantas@usi.ch
https://orcid.org/0000-0001-8256-8107
mailto:evanthia.papadopoulou@usi.ch
https://orcid.org/0000-0003-0144-7384
mailto:martin.suderland@usi.ch
https://orcid.org/0000-0002-6604-6381
mailto:yap@cs.nyu.edu
https://orcid.org/0000-0003-2952-3545
https://doi.org/10.4230/LIPIcs.SoCG.2022.69
https://youtu.be/wgG8uqLIizo
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


69:2 Subdivision Methods for Sum-Of-Distances Problems

Figure 1 Illustration of the problems considered. (left) The Fermat point (‚) of 10 points.
(middle) An n-ellipse of 10 points of radius 10. (right) The min-sum Voronoi diagram of 4 clusters.

Contribution. In this work we present algorithms on how to find approximate solutions
to the three aforementioned problems within a starting box (axis-aligned rectangle), using
a subdivision approach augmented with soft predicates. This box is recursively split in a
quadtree fashion. Deciding whether a box should be split or not, is done with respect to some
tests, which we perform on this box. We typically derive the tests from predicates, evaluated
with interval arithmetic. In the rest of the paper, we briefly describe how our algorithms
work in each of the three problems, accompanied by illustrations from our visualization tool.
All algorithms directly generalize for weighted input points P .

2 Problem 1: Finding the Fermat point

Finding the Fermat point (or Fermat-Weber point [25]) is an old geometric problem dating
back to P. Fermat (1607–1665), which has attracted the attention of researchers of the
last centuries. Unless P is a collinear point set of even size, the Fermat point is unique.
Unfortunately, the coordinates of p˚

P are roots of polynomials of degree exponential in n,
more precisely up to 2n, see [5, 19]. For this reason there has been a profound interest in
approximating the Fermat point; see indicatively [4, 8, 9, 10, 13, 21, 12].

Algorithm overview. Our algorithm returns a point ĂpF which is an ε approximation to
the Fermat point, in the sense that ||ĂpF ´ p˚

P || ď ε; see our paper [15] for details including
improvements using Newton’s method. An illustration of the algorithm execution on two
instances is shown in Figures 2 and 3. The algorithm starts with an initial box B0 containing
P , which guarantees that p˚

P P B0. During the subdivision, we keep and split boxes B

that might contain p˚
P (green boxes in Figures 2 and 3). Boxes that are guaranteed not

to contain p˚
P are discarded (red boxes); this is determined using an exclusion test. The

algorithm stops when the set of remaining boxes (green) fit into a bounding box of radius ε;
this stopping test guarantees that the center of the bounding box is within ε distance to p˚

P .

3 Problem 2: Constructing n-ellipses

Constructing n-ellipses is also a very old geometric problem dating back to E. von Tschirnhaus
(1651–1708) [24]. When n “ 1, the curve d´1

P is a circle, and when n “ 2, it is the classic
ellipse. An n-ellipse is a convex piecewise smooth curve, with singularities occurring at



I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 69:3

Figure 2 Different steps during the execution of the Fermat point algorithm (“easy” instance).

Figure 3 Different steps during the execution of the Fermat point algorithm (“difficult” instance).

points of P [18, 23]. Further, analogously to the Fermat point, the polynomial equations
defining the n-ellipses have algebraic degree exponential in n [19], hence there is an interest
in designing approximation algorithms to construct n-ellipses.

Algorithm overview. Our algorithm returns a curve E which is isotopic to d´1
P and the

Hausdorff distance between the two curves is at most ε; refer to our paper [15] for details.
An illustration of different steps of the algorithm is shown in Figure 4.

In a nutshell, the algorithm can be considered as an “online” PV-construction [16, 22].
The PV-construction yields isotopic approximations to a target curve, assuming that this
curve is regular. The n-ellipse, though, is not regular when it passes through P [23]. During
the subdivision, we keep and split boxes B until the PV-construction is possible in each
of them; these boxes either definitely contain a piece of d´1

P (green boxes in Figure 4) or
might do so (orange boxes). Boxes guaranteed not to contain a piece of d´1

P are discarded
(red boxes). To ensure that E is an ε-approximation to d´1

P , we split the boxes in which we
draw edges until they have size ε. Boxes near P , which are additionally close to the n-ellipse
(gray boxes), require special treatment. For each such group of gray boxes we connect
the two incoming sides of the n-ellipse by just a single edge, if the group fits into a small
bounding box of size ε.

Elliptic contour plotting. The described algorithm can also be used to produce isotopic
ε-approximate elliptic contour plots, which are roughly equally spaced. By adapting the
algorithm, we can simultaneously construct multiple ellipses of different radii within the same
box subdivision (each ellipse corresponding to a contour line). See Figure 5 for an examples.

SoCG 2022



69:4 Subdivision Methods for Sum-Of-Distances Problems

Figure 4 Different steps during the execution of the n-ellipses algorithm.

Figure 5 Different steps during the execution of the elliptic contour plotting algorithm.

4 Problem 3: Constructing the min-sum Voronoi diagram

The min-sum Voronoi diagram of a set of point clusters is the nearest cluster Voronoi diagram
under the Fermat distance function; refer to Figure 6 for some instances. This diagram has
not been studied before, except a special case for input clusters of size 2 [6]. Various other
cluster Voronoi diagrams have been considered such as the (min-max) Hausdorff Voronoi
diagram [2, 11, 20], and the (max-min) farthest color Voronoi diagram [1, 14, 17].

Each cluster may have a different size, in fact, the diagram can be seen as a weighted
Voronoi diagram of point sites [3], where the weight of each point is determined by the cluster
size. Only the clusters of the smallest size may have unbounded faces, see Figure 6(left).
Further, given two clusters their bisector is smooth everywhere unless it passes through a
cluster point, see Figure 6 (left).

The diagram has Ωpn ` m2q worst-case complexity, where m is the number of clusters
and n is the total number of points. (1) Choose two clusters of n{2 points on a circle, such
that the points are equally spaced and alternate between the clusters, see Figure 6 (middle).
The diagram then consists of n cones emanating from the origin. (2) Choose m “ n{2 many
clusters of size 2, such that the line segments formed by connecting the 2 points of each
cluster form a grid structure, see Figure 6 (right). The diagram splits into Ωpm2q many faces.

Algorithm overview. Our algorithm returns a plane graph which is an approximation of
the min-sum Voronoi diagram of S with ε Hausdorff distance. It is based on a variant of the
algorithm presented in [7]; refer therein for details. In brief, the edges are drawn based on
the PV-construction, and in order to get an ε-approximation, prior to drawing the edges, the
boxes are split until they are of size ε. Refer to Figure 7 for an illustration of the algorithm.



I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 69:5

Figure 6 Three instances of a min-sum Voronoi diagram.

Figure 7 Different steps during the execution of the algorithm for min-sum Voronoi diagram.

References
1 Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong Ma,

Belén Palop, and Vera Sacristán. The farthest color Voronoi diagram and related problems.
In Proceedings of the 17th European Workshop on Computational Geometry (EuroCG 2001),
pages 113–116, 2001.

2 Elena Arseneva and Evanthia Papadopoulou. Randomized incremental construction for the
Hausdorff Voronoi diagram revisited and extended. Journal of Combinatorial Optimization,
37(2):579–600, 2019.

3 Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for constructing the
weighted Voronoi diagram in the plane. Pattern recognition, 17(2):251–257, 1984.

4 Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC ’02), pages
250–257. ACM, 2002.

5 Chanderjit Bajaj. The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry, 3(2):177–191, 1988.

6 Gill Barequet, Matthew T Dickerson, and Robert L Scot Drysdale. 2-point site Voronoi
diagrams. Discrete Applied Mathematics, 122(1-3):37–54, 2002.

7 Huck Bennett, Evanthia Papadopoulou, and Chee Yap. Planar minimization diagrams via
subdivision with applications to anisotropic Voronoi diagrams. Computer Graphics Forum,
35(5):229–247, 2016.

8 Prosenjit Bose, Anil Maheshwari, and Pat Morin. Fast approximations for sums of distances,
clustering and the Fermat-Weber problem. Computational Geometry, 24(3):135–146, 2003.

9 Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime guarantees
for regression problems. In Proceedings of the 4th Conference on Innovations in Theoretical
Computer Science (ITCS ’13), pages 269–282. ACM, 2013.

SoCG 2022



69:6 Subdivision Methods for Sum-Of-Distances Problems

10 Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the 48th Annual ACM Symposium on Theory
of Computing (STOC ’16), pages 9–21. ACM, 2016.

11 Herbert Edelsbrunner, Leonidas J Guibas, and Micha Sharir. The upper envelope of piecewise
linear functions: algorithms and applications. Discrete & Computational Geometry, 4(1):311–
336, 1989.

12 Sándor P Fekete, Joseph SB Mitchell, and Karin Beurer. On the continuous Fermat-Weber
problem. Operations Research, 53(1):61–76, 2005.

13 Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry, 37(1):3–19, 2007.

14 Daniel P Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of Voronoi
surfaces and its applications. Discrete & Computational Geometry, 9(3):267–291, 1993.

15 Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland, and Chee Yap.
Certified approximation algorithms for the Fermat point and n-ellipses. In Proceedings of
the 29th Annual European Symposium on Algorithms (ESA 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

16 Long Lin and Chee Yap. Adaptive isotopic approximation of nonsingular curves: the parame-
terizability and nonlocal isotopy approach. Discrete & Computational Geometry, 45(4):760–795,
2011.

17 Ioannis Mantas, Evanthia Papadopoulou, Vera Sacristán, and Rodrigo I Silveira. Farthest color
Voronoi diagrams: Complexity and algorithms. In Proceedings of the 14th Latin American
Symposium on Theoretical Informatics (LATIN 2020), pages 283–295. Springer, 2021.

18 Gyula Sz Nagy. Tschirnhaus’sche Eiflächen und Eikurven. Acta Mathematica Academiae
Scientiarum Hungarica, 1(1):36–45, 1950.

19 Jiawang Nie, Pablo A. Parrilo, and Bernd Sturmfels. Semidefinite representation of the
k-ellipse. In Algorithms in algebraic geometry, pages 117–132. Springer, 2008.

20 Evanthia Papadopoulou and Der-Tsai Lee. The Hausdorff Voronoi diagram of polygonal
objects: A divide and conquer approach. International Journal of Computational Geometry &
Applications, 14(06):421–452, 2004.

21 Pablo A. Parrilo and Bernd Sturmfels. Minimizing polynomial functions. Algorithmic and
quantitative real algebraic geometry, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 60:83–99, 2003.

22 Simon Plantinga and Gert Vegter. Isotopic approximation of implicit curves and surfaces. In
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing
(SGP), pages 245–254, 2004.

23 Junpei Sekino. n-ellipses and the minimum distance sum problem. The American mathematical
monthly, 106(3):193–202, 1999.

24 Ehrenfried Walther von Tschirnhaus. Medicina Mentis Et Corporis. Fritsch, Lipsiae, 1695.
URL: http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb10008248-3.

25 Alfred Weber. Über den Standort der Industrien. Tübingen: Verlag von JCB Mohr, 1909.

http://mdz -nbn-resolving.de/urn:nbn:de:bvb:12-bsb10008248-3


An Interactive Framework for Reconfiguration in
the Sliding Square Model
Willem Sonke #

TU Eindhoven, The Netherlands

Jules Wulms #

TU Wien, Austria

Abstract
We describe SquareSlider, a software framework for visualizing reconfiguration algorithms of modular
robots in the sliding square model. In this model, a robot consists of a configuration of squares in
a rectangular grid, which can reconfigure through a fixed set of possible moves. SquareSlider is a
web-based tool that implements an easy-to-use interface allowing the user to build a configuration,
run a reconfiguration algorithm on it, and examine the results.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Modular robots, Implementation, Visualization

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.70

Category Media Exposition

Supplementary Material
Software (Web Application): https://alga.win.tue.nl/software/squareslider/

archived at swh:1:dir:4970151973ae26eeaac474506f7e0fa400e414db

Acknowledgements We thank Bettina Speckmann for her useful comments on a draft of this paper.

1 Introduction

A popular research topic in robotics and computer science is the development of modular
robots [9]. These typically consist of homogeneous building blocks called modules, connected
in such a way that the robot is able to move modules relative to each other. This way, the
robot can transform by reconfiguring its modules. Such a reconfiguration requires careful
motion planning and efficient algorithms to be viable in practice. To enable the systematic
study of reconfiguration algorithms, many models of modular robots have been proposed,
such as the sliding cube model [3, 5, 6, 7] and the pivoting cube model [1, 2, 4, 8].

Here, we focus on reconfiguration in the sliding cube model in two dimensions (the “sliding
square model”). In this model, the elementary building blocks are square modules that live
in the rectangular unit grid. The modules can perform two types of moves: slides and convex
transitions (illustrated in Figure 1). The source and target configurations are assumed to be
face-connected, and at any time during the reconfiguration, the configuration also has to
stay face-connected.

In this paper we describe a software tool called SquareSlider which provides a framework
to visualize and interact with reconfigurations. We initially created SquareSlider to support
the development of the reconfiguration algorithm Gather&Compact [3], but the framework
can be useful for other algorithms as well. To this end, we designed SquareSlider to be
modular: algorithm implementations are separate from the core. This way, although only
Gather&Compact has currently been implemented, other algorithms can be plugged in easily.

We implemented SquareSlider as a web-based tool, thus ensuring that the visualization is
easily accessible, without the additional hurdle of having to compile and run a separate pro-
gram. SquareSlider is available at https://alga.win.tue.nl/software/squareslider/.

© Willem Sonke and Jules Wulms;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 70; pp. 70:1–70:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:w.m.sonke@tue.nl
https://orcid.org/0000-0001-9553-7385
mailto:jwulms@ac.tuwien.ac.at
https://orcid.org/0000-0002-9314-8260
https://doi.org/10.4230/LIPIcs.SoCG.2022.70
https://alga.win.tue.nl/software/squareslider/
https://archive.softwareheritage.org/swh:1:dir:4970151973ae26eeaac474506f7e0fa400e414db;origin=https://github.com/tue-alga/squareslider;visit=swh:1:snp:84bfc85faaa8065ba97e0ad43a9ad8886e072b2e;anchor=swh:1:rev:d89b294d762798e19720addaf105bd6633d13ca8
https://alga.win.tue.nl/software/squareslider/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


70:2 An Interactive Framework for Reconfiguration in the Sliding Square Model

(a) (b)

Figure 1 The two types of moves in the sliding square model: (a) slide, (b) convex transition.

For the implementation, we used TypeScript,1 a typed variant of JavaScript that compiles
down to JavaScript. For the graphics, we used WebGL via the PIXI.js2 project. The GUI
elements used (toolbars and buttons) are custom-built. In the remainder of this paper, we
will describe in detail the functionality offered by our framework.

2 Functionality

SquareSlider’s GUI consists of a large canvas that displays the configuration, and two toolbars:
one on the top and one on the bottom (see Figure 2). The functionality of SquareSlider can
be divided into four categories: visualization, interaction, animation, and framework utilities.
We will highlight the most interesting aspects of each category.

Figure 2 The GUI of SquareSlider after drawing a configuration and coloring two arbitrary
squares. The three squares on the right have been selected, as indicated by the blue outlines.

Visualization. By default, a configuration is visualized as gray squares in a grid, as shown
in Figure 3a. The grid has an x- and y-axis defining a coordinate system, where every grid
cell is indexed by its bottom-left corner. The coordinates are especially useful for interaction
and animation, as will be explained below.

Many reconfiguration algorithms use information about the connectivity of the configura-
tion, such as partitioning the squares into components, depending on their k-connectivity.
We therefore augment the visualization of the squares with marks indicating this information.
Currently, SquareSlider can capture the type of connectivity used by Gather&Compact [3]
(see Figure 3b). Firstly, a square has a filled (blue or red) mark if it can perform moves with-
out disconnecting the configuration, while a non-filled mark indicates that moving the square

1 https://www.typescriptlang.org/
2 https://pixijs.com/

https://www.typescriptlang.org/
https://pixijs.com/


W. Sonke and J. Wulms 70:3

(a) (b)

Figure 3 (a) A configuration visualized in our framework. (b) The same configuration, with
connectivity marks added (see the main text for an explanation of the marks).

disconnects the configuration (i.e., this square forms a cut vertex in the adjacency graph of
the configuration). Secondly, the color and shape of the marks indicates a partitioning of the
configuration into (roughly) 2-connected components. Blue square marks indicate squares
in a chunk, a variant of a 2-connected component introduced in [3]. Specifically, a chunk
is defined by an inclusion-maximal cycle C along with all its degree-1 neighbors and any
squares inside C. Red circle marks indicate squares that are not part of a chunk. A special
crossed mark shows where components connect to each other.

We use a variant of the classic algorithm to compute 2-connected components in graphs,
which is based on DFS. This algorithm can easily be adapted for different notions of
connectivity, as may be required by other reconfiguration algorithms.

Interaction. Input configurations can be provided to SquareSlider in two ways. Firstly, the
editing tools in the bottom toolbar (see Figure 2) allow users to place and remove squares
by clicking or dragging over grid cells. Clicking an empty grid cell adds a square in that
cell, while clicking an existing square removes that square. Dragging over a series of cells
adds or removes squares in all these cells, thus enabling quick editing of large configurations.
Furthermore, users can color squares to see how a specific square or set of squares moves
during reconfiguration. Secondly, users can export the configuration to a JSON string, which
can later be loaded again. Such a JSON string can also be generated by an external tool.

Animation. Once a connected configuration is built, a reconfiguration can be performed. The
top toolbar provides functionality to start an animation of the moves in such a reconfiguration.

(a)

(b)

Figure 4 The toolbars for animating reconfigurations. (a) The top toolbar. The left two buttons
allow the user to execute a reconfiguration algorithm, either by playing the whole sequence of
moves, or just a single step. The circular arrow button resets the configuration to the state before
reconfiguration. (b) The bottom toolbar (shown here for both Gather&Compact and a custom
move sequence) showing status information about the currently running algorithm.

SoCG 2022



70:4 An Interactive Framework for Reconfiguration in the Sliding Square Model

While the reconfiguration is running, the bottom toolbar is repurposed to show details on
the performed moves (see Figure 4). Functionality is available to play the reconfiguration
in one go (at various speeds), walk through the reconfiguration step by step, and to reset
the configuration to the original state (after which the bottom toolbar returns to its original
state, such that the configuration can be edited again).

Besides running an algorithm implementation, SquareSlider also has the option to manually
input a JSON string containing a sequence of moves. This can be useful to interface with
external tools. For example, the experiments in [3] used this functionality to interface with
the original implementation of [7].

Framework utilities. SquareSlider provides a wide range of utility functions that can be
used by algorithm implementations. For example, this includes functionality to check if a
configuration is connected, to determine if a given move is valid, to enumerate all squares on
the outer boundary of the configuration, and to compute a shortest sequence of moves to
move a given square to a target location.

An algorithm implementation consists of a TypeScript class containing a function that
produces moves that the algorithm wishes to perform. To ensure robustness, the core checks
if moves performed by an algorithm are valid in the sliding square model. Any invalid moves
halt the execution of the algorithm.

References
1 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin

Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera Sacristán.
Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers.
Algorithmica, 83(5):1316–1351, 2021. doi:10.1007/s00453-020-00784-6.

2 Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing
universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium
on Computational Geometry (SoCG), pages 10:1–10:20, 2021. doi:10.4230/LIPIcs.SoCG.
2021.10.

3 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem
Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. CoRR, abs/2105.07997, 2021. arXiv:
2105.07997.

4 Nora Ayanian, Paul J. White, Ádám Hálász, Mark Yim, and Vijay Kumar. Stochastic
control for self-assembly of XBots. In Proc. ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (IDETC-CIE), pages
1169–1176, 2008. doi:10.1115/DETC2008-49535.

5 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006. doi:10.1007/s00373-005-0640-1.

6 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent
Robots and System, volume 3, pages 2460–2467, 2003. doi:10.1109/IROS.2003.1249239.

7 Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In Proc.
36th European Workshop on Computational Geometry (EuroCG), pages 32:1–32:7, 2020.

8 Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for
pivoting cube modular robots. In Proc. 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1933–1940, 2015. doi:10.1109/ICRA.2015.7139451.

9 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins,
and Gregory S. Chirikjian. Modular self-reconfigurable robot systems. IEEE Robotics &
Automation Magazine, 14(1):43–52, 2007. doi:10.1109/MRA.2007.339623.

https://doi.org/10.1007/s00453-020-00784-6
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
http://arxiv.org/abs/2105.07997
http://arxiv.org/abs/2105.07997
https://doi.org/10.1115/DETC2008-49535
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/ICRA.2015.7139451
https://doi.org/10.1109/MRA.2007.339623


Shadoks Approach to Minimum Partition into
Plane Subgraphs
Loïc Crombez #

LIMOS, Université Clermont Auvergne, Aubière, France

Guilherme D. da Fonseca #

LIS, Aix-Marseille Université, France

Yan Gerard #

LIMOS, Université Clermont Auvergne, Aubière, France

Aldo Gonzalez-Lorenzo #

LIS, Aix-Marseille Université, France

Abstract
We explain the heuristics used by the Shadoks team to win first place in the CG:SHOP 2022 challenge
that considers the minimum partition into plane subgraphs. The goal is to partition a set of segments
into as few subsets as possible such that segments in the same subset do not cross each other. The
challenge has given 225 instances containing between 2500 and 75000 segments. For every instance,
our solution was the best among all 32 participating teams.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Plane graphs, graph coloring, intersection graph, conflict optimizer, line
segments, computational geometry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.71

Category CG Challenge

Supplementary Material Software (Source Code): https://github.com/gfonsecabr/shadoks-
CGSHOP2022; archived at swh:1:dir:ec88e5b901c034d5a91aa133e824d65cff3788a3

Funding Guilherme D. da Fonseca: This work is supported by the French ANR PRC grant ADDS
(ANR-19-CE48-0005).
Yan Gerard: This work is supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).
Aldo Gonzalez-Lorenzo: This work is supported by the French ANR PRC grant COHERENCE4D
(ANR-20-CE10-0002).

Acknowledgements We would like to thank Hélène Toussaint, Raphaël Amato, Boris Lonjon, and
William Guyot-Lénat from LIMOS, as well as the Qarma and TALEP teams and Manuel Bertrand
from LIS, who continue to make the computational resources of the LIMOS and LIS clusters available
to our research. We would also like to thank the challenge organizers and other competitors for their
time, feedback, and making this whole event possible.

1 Introduction

This paper presents our strategy to win first place in the CG:SHOP 2022 geometric opti-
mization challenge. This edition proposed a problem called minimum partition into plane
subgraphs. The goal is to partition the set of the edges of a given graph G embedded in the
plane (with line segments as edges) into a small number k of plane graphs. The problem
reduces to graph coloring a conflict graph GC where the vertices of GC are the segments of
G and two vertices of GC are connected by an edge if the corresponding segments cross each
other (for details on the definition of cross, see [4]).

© Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 71; pp. 71:1–71:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:loic.crombez@uca.fr
https://orcid.org/0000-0002-9542-5276
mailto:guilherme.fonseca@lis-lab.fr
https://orcid.org/0000-0002-9807-028X
mailto:yan.gerard@uca.fr
https://orcid.org/0000-0002-2664-0650
mailto:aldo.gonzalez-lorenzo@univ-amu.fr
https://orcid.org/0000-0003-3226-7650
https://doi.org/10.4230/LIPIcs.SoCG.2022.71
https://github.com/gfonsecabr/shadoks-CGSHOP2022
https://github.com/gfonsecabr/shadoks-CGSHOP2022
https://archive.softwareheritage.org/swh:1:dir:ec88e5b901c034d5a91aa133e824d65cff3788a3;origin=https://github.com/rdicosmo/parmap;visit=swh:1:snp:25490d451af2414b2a08ece0df643dfdf2800084;anchor=swh:1:rev:db44dc9cf7a6af7b56d8ebda8c75be3375c89282
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


71:2 Shadoks Approach to Minimum Partition into Plane Subgraphs

The study of graph coloring goes back to the 4-color problem (1852) and the problem has
been intensively studied since the 1970s [9]. Many heuristics have been proposed [6, 8, 13, 14],
as well as exact algorithms [3, 7, 12] (see for instance the book [11]). In this paper we present
the ideas we used in the competition. The main element is a Conflict Optimizer, that does
not use any geometry. It is based on the same approach we used to solve low-makespan
coordinated motion planning in the CG:SHOP 2021 challenge [2]. Our initial solutions,
however, make extensive use of geometry. The code is available on github.

The paper is organized as follows. Section 2 presents some heuristics that we used to
compute initial solutions. In Section 3 we describe the technique used to improve a solution.
Section 4 details our implementation of the algorithm and a parameter analysis. Section 5
describes the results we obtained.

2 Initial Solutions

The most simple method to produce a (reasonably small) coloring of a graph is the classic
greedy heuristic: for each segment e, we color e using the first color available, i.e. that is
not already used by any of the segments that cross e. If necessary, we create a new color.
The order by which we consider the segments influences the quality of the solution. We refer
to the greedy heuristic using the order by which the segments appear on the instance files
as Greedy when comparing the results. Sorting the segments in angular order (and trying
different starting angles) produces good solutions to the challenge instances. We refer to this
simple heuristic as Angle.

The squeaky wheel paradigm has been widely applied to graph coloring [10]. The idea is
to run a heuristic, detect elements that have been solved poorly, and run the same heuristic
again handling these elements earlier this time. The procedure is repeated several times and
the best solution found is returned. We use this paradigm together with Angle as follows.
Throughout the algorithm, the segments are partitioned into two lists Good, Bad, both kept
sorted by angle. Initially, all segments are in Good. At each step we apply the greedy coloring
first treating the segments in Bad and then in Good. Then, the segments that have been
assigned the last color are added to Bad and we repeat the procedure. The number of colors
used may eventually increase (since both lists are kept sorted by angle). We stop after a
certain time or number of steps and return the solution with the smallest number of colors
found. We refer to this heuristic as Bad.

A classic variation of the greedy coloring is the DSatur heuristic [1]. It does not use any
geometric information. At each step, we color the segment e that crosses the largest number
of different colors, breaking ties by the total number of segments that cross e. As in the
standard greedy heuristic, the color assigned to e is the first color that is available.

We modify the DSatur heuristic into the DSHull heuristic that uses geometric information.
We color the segments following the same order criterion as DSatur. However, instead of
assigning to e the first color available, we choose the color as follows. The segments that have
the same color are kept in a set called a color class. For each color class C, let w(C) be the
area of the convex hull of the segments in C. When coloring a segment e, we choose, among
the color classes C that are available for e, the one that minimizes w(C ∪ {e}) − w(C). Ties
are broken arbitrarily and if no color class is available for e, then we create a new color class
containing only e. The intuition is that a small increase in the convex hull areas corresponds
to a compact packing of the segments, producing larger color classes.

A comparison of the heuristics on several challenge instances is presented in Table 1.

https://github.com/gfonsecabr/shadoks-CGSHOP2022


L. Crombez, G. D. da Fonseca, Y. Gerard, and A. Gonzalez-Lorenzo 71:3

Table 1 Initial solutions produced by several heuristics compared against the best solution found.

instance density Greedy Angle Bad DSatur DSHull Best
rsqrpecn8051 41% 342 205 203 213 201 175
vispecn13806 19% 427 308 300 289 283 218
rsqrp14364 50% 294 139 139 165 157 136
vispecn19370 13% 370 285 278 265 248 192
visp26405 7% 154 101 97 94 92 81
visp31334 5% 152 90 88 99 98 81
visp38574 14% 287 148 146 168 168 133
sqrpecn45700 47% 952 504 500 562 522 462
reecn51526 24% 642 361 359 388 360 310
vispecn58391 12% 789 607 594 499 494 367
vispecn65831 12% 916 647 637 578 564 439
sqrp72075 47% 609 280 280 363 337 269

3 Improving Solutions

In this section we describe our optimization approach that we call Conflict Optimizer.
Section 3.1 describes the backbone of the conflict optimizer. Section 3.2 describes some
improvements that were made to the conflict optimizer in order to get better solutions.

3.1 Conflict optimizer
The goal of the conflict optimizer is to remove one color from a given solution with k colors.
Let C0 be a color class. The conflict optimizer puts all segments of C0 in a queue Q and
deletes C0. We now have a partial solution with k − 1 colors and a queue Q that contains
uncolored segments. The goal is to empty Q by coloring every segment in Q.

At each step until Q is empty, we pop a segment e from Q and color e as follows. If there
exists a color class C such that no segment in C crosses e, then we add e to C. In most
cases, such C does not exist and we choose C to minimize the following cost function. Let
q(e) be the number of times the segment e has been added to Q. The penalty for adding e to
Q is 1 + q(e)p. The cost of each color class C is the product of a Gaussian random variable
of mean 1 and variance σ with the sum of the penalties of the segments of C that cross e.
The values of the parameters p, σ are analysed in Section 4 (p = 1.2 and σ = 0.15 are good
default values).

3.2 Modifications to the conflict optimizer
In this section we describe several modifications that we made to the conflict optimizer
described in Section 3.1. In our code, we developed several options that can be toggled on or
off. The impact on the computation of solutions is discussed in Section 4.

Easy segments. Given an objective number of colors k, we call easy segments a list of
segments S such that, if the remainder of the segments of S are colored using k colors, then
we are guaranteed to be able to color all segments with k colors. To obtain S we iteratively
remove from the graph a segment e that has at most k − 1 crossings, appending e to S. We
repeat until no other segment can be added to S. Notice that, once we color the remainder

SoCG 2022



71:4 Shadoks Approach to Minimum Partition into Plane Subgraphs

of the graph with at least k colors, we can use a greedy coloring for S in order from last to
first without increasing the number of colors used. Removing the easy segments reduces the
total number of segments, making the conflict optimizer more effective.

Clique segments. A clique is a set of mutually crossing segments. We used several heuristics
to produce large cliques. Let K be the largest clique we found for a given instance. Since
the segments of K must have different colors, we forbid the segments in K from entering the
queue by setting a infinite penalty.

Restarting. We implemented a strategy to restart the conflict optimizer. We set a hard
limit qmax to how many times a segment can be queued. Once a segment e has been queued
qmax times, the penalty of e becomes infinite. Once it becomes impossible to color a segment
from the queue (that is, the minimum cost in infinite), the conflict optimizer aborts and
restarts. When restarting, the coloring is shuffled by moving segments that fit multiple color
classes.

Bounded Depth-First Search. The bounded depth-first search (BDFS) algorithm tries to
improve the dequeuing process. The goal is to prevent a segment from being queued by
locally recoloring a bounded number of segments in the current partial solution. To do so,
we perform a local search into the tree of possible ways to color the segments.

The BDFS algorithm has two parameters: crossing bound cmax and depth d. In order to
recolor a segment e, BDFS gets the set C of color classes with at most cmax crossings with e.
If a class of C has no crossings with e, we assign e to C. Otherwise, for each class C ∈ C,
BDFS tries to recolor the list of segments in C that cross e by recursively calling itself with
depth d − 1. At depth d = 0 the algorithm stops trying coloring the segments.

During the challenge we used BDFS with parameters cmax = 3 and d = 3. The depth
was increased to 5 (resp. 7) when the number of segments in the queue was 2 (resp. 1).

4 Implementation and Experiments

In this section, we describe the techniques we used to efficiently implement the conflict
optimizer. We also analyze the influence of the different parameters and options.

4.1 Implementation
We implemented our algorithm in C++ using only the standard library. As the conflict
optimizer spends most of its time testing crossings, we precompute the crossings. To save
memory space, we stored the crossing state of each pair of segments using just one bit, which
allows us to store the largest instances of the challenge on less than 800MB.

4.2 Parameter analysis
The two parameters of the conflict optimizer are the variance σ of the Gaussian noise and
the exponent p of the penalty. The two others options BDFS and multistart can be activated
to improve solutions that have already been optimized several times.

Parameters σ and p. Figure 1 shows the influence of both these parameters (the initial
solutions used for the figure are computed using Greedy). In all figures, the number of colors
shown is the average of multiple executions of the code using different random numbers.



L. Crombez, G. D. da Fonseca, Y. Gerard, and A. Gonzalez-Lorenzo 71:5

 220

 230

 240

 0  1  2  3  4  5

N
u
m

b
e
r 

o
f 

co
lo

rs

Running time (CPU hours)

σ=0.00 σ=0.05 σ=0.10 σ=0.15 σ=0.20

 220

 230

 240

 0  1  2  3  4  5

N
u
m

b
e
r 

o
f 

co
lo

rs

Running time (CPU hours)

p=0.5 p=1.0 p=1.5 p=2.0 p=3.0 p=5.0

Figure 1 Number of colors over time for the instance vispecn13806 using different parameters.
In both figures the algorithm uses easy segments, qmax = 59022, but does not use the BDFS nor any
clique. The first plot shows results with different values of σ for p = 1.2. The second plot shows
results with different values of p for σ = 0.15.

 220

 230

 240

 0  12  24  36  48  60  72

N
u
m

b
e
r 

o
f 

co
lo

rs

Running time (CPU hours)

no clique, no BDFS
no clique, BDFS

clique, no BDFS
clique, BDFS

Figure 2 Number of colors over time with and without clique knowledge and BDFS obtained on
the instance vispecn13806. Parameters are σ = 0.15, p = 1.2, and qmax = 1500000).

 220

 230

 240

 0  1  2  3  4  5

N
u
m

b
e
r 

o
f 

co
lo

rs

Running time (CPU hours)

qmax=0.5k qmax=5k qmax=50k qmax=100k qmax=250k

Figure 3 Number of colors over time with different values of qmax obtained on the instance
vispecn13806. Parameters are σ = 0.15, p = 1.2, no clique knowledge, and no BDFS.

SoCG 2022



71:6 Shadoks Approach to Minimum Partition into Plane Subgraphs

Options multistart and BDFS. The goal of multistart and BDFS is to further optimize very
good solutions that the conflict optimizer is not able to improve otherwise. Figure 2 shows
the influence of large clique knowledge and BDFS. While on this figure, the advantages of
BDFS cannot be noticed, its use near the end of the challenge improved about 30 solutions.

Looking at Figure 3, the maximal number of times a segment can be queued does not
seem to have much influence as long as its value is not too small. Throughout the challenge
we almost exclusively used qmax = 2000 · (75000/m)2, where m is the number of segments.
This value roughly ensures a restart every few hours.

5 Challenge Results

We won first place in the challenge with the best solution among all 32 participating teams
for all 225 instances. We also showed that 23 of those solutions are optimal by identifying a
clique as large as the number of colors.

 180

 190

 200

 210

 220

 0  6  12  18  24  30  36  42  48  54  60  66  72

S
co

re

Running time (CPU hours)

easy, 1.2,0.15 2nd place 3rd place 4th place

Figure 4 Evolution of the score over time compared to the scores of second to fourth place. The
same parameters are used on all instances (p = 1.2, σ = 0.15, and easy segments are computed).

After generating initial solutions we ran our conflict optimizer with various parameters.
The clique knowledge and the easy segments reduction were always used. Most of the time
we used σ = 0.15 ± 0.05 and p = 1.2 ± 0.1. The BDFS strategy was used in the last couple of
weeks of the challenge. We estimate that on average, we spent two to three weeks of single
core of an Intel Xeon E5-2670 CPU per instance. However, despite the large amount of
computing power used during the challenge, and the varying parameters of our algorithms,
we note that after 25 hours of computation on each file, starting from the Greedy solution,
using only the easy segments optimization and parameters p = 1.2, σ = 0.15, our conflict
optimizer reaches a score of 217.64 on the CG:SHOP 2022 instances, which is better than
the second place score (see Figures 4, 5). We note that the second and third team [16, 5]
also use a conflict optimizer heuristic, while the forth team [15] uses instead a SAT solver
coupled with tabu search. Despite several parameters that allow for increased diversity in
order to find really good solutions, our conflict optimizer still performs well with default
parameters. Finally, as the optimizer does not make use of any geometric property, it might
be interesting in the future to test its performance on other classes of graphs.



L. Crombez, G. D. da Fonseca, Y. Gerard, and A. Gonzalez-Lorenzo 71:7

 600

 800

 1000

 1200

 0  5  10  15  20  25

N
u
m

b
e
r 

o
f 

co
lo

rs

Running time (CPU hours)

sqrpecn71571 vispecn71708 sqrpecn69904 sqrpecn73925

 200

 400

 600

 0  5  10

N
u
m

b
e
r 

o
f 

co
lo

rs

Running time (CPU hours)

sqrpecn10560 sqrpecn17395 reecn25913 sqrpecn32073

Figure 5 Challenge scores over time for several instances.

References
1 Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM,

22(4):251–256, 1979.
2 Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafour-

cade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion planning
(CG challenge). In 37th International Symposium on Computational Geometry, SoCG 2021,
pages 63:1–63:9, 2021.

3 David Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph
Algorithms Appl, 7(2):131–140, 2002.

4 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum partition
into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.07444, 2022. arXiv:
2203.07444.

5 Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. Local search with
weighting schemes for the CG:SHOP 2022 competition. In Symposium on Computational
Geometry (SoCG), pages 73:1–73:7, 2022.

6 Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of combinatorial optimization, 3(4):379–397, 1999.

7 Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via
constraint programming and column generation. INFORMS Journal on Computing, 24(1):81–
100, 2012.

8 Alain Hertz and Dominique de Werra. Using tabu search techniques for graph coloring.
Computing, 39(4):345–351, 1987.

9 Tommy R. Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons, 2011.
10 David E. Joslin and David P. Clements. Squeaky wheel optimization. Journal of Artificial

Intelligence Research, 10:353–373, 1999.
11 R. M. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer Publishing

Company, Incorporated, 1st edition, 2015.

SoCG 2022

http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2203.07444


71:8 Shadoks Approach to Minimum Partition into Plane Subgraphs

12 Corinne Lucet, Florence Mendes, and Aziz Moukrim. An exact method for graph coloring.
Computers & Operations Research, 33(8):2189–2207, 2006.

13 David W. Matula, George Marble, and Joel D. Isaacson. Graph coloring algorithms. In Graph
theory and computing, pages 109–122. Elsevier, 1972.

14 Isabel Méndez-Díaz and Paula Zabala. A branch-and-cut algorithm for graph coloring. Discrete
Applied Mathematics, 154(5):826–847, 2006.

15 André Schidler. SAT-based local search for plane subgraph partitions. In Symposium on
Computational Geometry (SoCG), pages 74:1–74:8, 2022.

16 Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Conflict-based local search for
minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG),
pages 72:1–72:6, 2022.



Conflict-Based Local Search for Minimum Partition
into Plane Subgraphs
Jack Spalding-Jamieson #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Brandon Zhang #

Vancouver, Canada

Da Wei Zheng # Ñ

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
This paper examines the approach taken by team gitastrophe in the CG:SHOP 2022 challenge. The
challenge was to partition the edges of a geometric graph, with vertices represented by points in the
plane and edges as straight lines, into the minimum number of planar subgraphs. We used a simple
variation of a conflict optimizer strategy used by team Shadoks in the previous year’s CG:SHOP to
rank second in the challenge.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases local search, planar graph, graph colouring, geometric graph, conflict
optimizer

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.72

Category CG Challenge

Supplementary Material
Software (Source Code): https://github.com/jacketsj/cgshop2022-gitastrophe

archived at swh:1:dir:0e86e287cc9a882064e46283cb35cbd64b0df4e8

1 Introduction

Given a graph G = (V, E) and an assignment f : V → Z2 inducing a straight-line drawing in
R2 with integer vertex coordinates, the minimum partition into plane subgraphs problem
asks for a partition of the edges E into a minimal number of sets E1, E2, . . . , Ek such that
for each subgraph Gi = (V, Ei), f induces a planar straight-line drawing. That is, no pair of
edges from the same subset intersect, except possibly at their common endpoint. This was
the problem posed in the 2022 Computational Geometry Challenge (CG:SHOP 2022). For
more detail about the challenge, we refer readers to the summary paper [5].

Reduction to vertex-colouring

Solving the minimum partition into plane subgraphs problem for G = (V, E) is equivalent
to solving the well-studied minimum vertex-colouring problem for the intersection conflict
graph G′ with V (G′) = E(G) and E(G′) equal to the set of intersections in the provided
straight-line drawing. We did not explicitly use the geometric properties of the instances
and instead solved the aforementioned vertex colouring problem.

Henceforth, we will only refer to the intersection conflict graph G′ induced by the instance.
Vertices will refer to the vertices V (G′), and edges will refer to the edges E(G′). Our goal
is to partition the vertices using a minimum set of colour classes C = {Ci}, where no two
vertices in the same colour class Ci are incident to a common edge.

© Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 72; pp. 72:1–72:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacksj@uwaterloo.ca
https://orcid.org/0000-0002-1209-4345
mailto:brandon.zhang@alumni.ubc.ca
https://orcid.org/0000-0001-8775-0709
mailto:dwzheng2@illinois.edu
https://davidzheng.web.illinois.edu/
https://orcid.org/0000-0002-0844-9457
https://doi.org/10.4230/LIPIcs.SoCG.2022.72
https://github.com/jacketsj/cgshop2022-gitastrophe
https://archive.softwareheritage.org/swh:1:dir:0e86e287cc9a882064e46283cb35cbd64b0df4e8;origin=https://github.com/jacketsj/cgshop2022-gitastrophe;visit=swh:1:snp:b91cad15b07a44afb2c1fe72013d7836d7654ad1;anchor=swh:1:rev:89410fbdbb97511881ee4830d28604fcffa0c314
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


72:2 CG:SHOP Challenge 2022

Existing literature

There are many existing practical heuristic algorithms [11, 10, 13, 14, 1] to the vertex-colouring
problem. Many of these algorithms used DIMACS benchmark [9] graphs to evaluate their
results. In subsection 3.3 we compare the results of our methods for these instances. Most of
the benchmark instances had comparatively few edges (on the order of thousands or millions);
the largest intersection graphs considered in the CG:SHOP challenge had over 1.5 billion
edges.

We found a variation of the conflict optimizer strategy employed by team Shadoks for
CG:SHOP 2021 [4] to be effective. We describe this strategy in Section 2. Using this
strategy, we, team gitastrophe, placed second overall, and first among all junior teams.
This result was surprising to us, as our methods were relatively simple, relying exclusively
on the naive reduction to vertex-colouring. The first- and third-place teams also make use of
similar techniques [3] [6], although the fourth place team uses a very different SAT-based
approach [12].

2 Methods

2.1 Solution initialization
We used the traditional greedy algorithm of Welsh and Powell [15] to obtain initial solutions:
order the vertices in decreasing order of degree, and assign each vertex the minimum-label
colour not used by its neighbours. We attempted to use different orderings for the greedy
algorithm, such as sorting by the slope of the line segment associated with each vertex, and
we also tried numerous other strategies. Ultimately, we found that after running our solution
optimizer for approximately the same amount of time, all initializations resulted in equal
number of colours.

2.2 Solution optimization: conflict search
Our most successful method for improvement of the solutions was inspired by the conflict
optimization approach used by the Shadoks team for CG:SHOP 2021 [4]. At a high-level,
our algorithm will iteratively attempt to eliminate a selected colour class. The details are as
follows:
1. Pick a random colour class C to be eliminated. Uncolour all vertices in C and add all

vertices in that colour class to a conflict set S. We maintain only a valid vertex-colouring
for the set V (G′) − S. Once S is empty, we will have produced a valid vertex colouring
of G′ which uses one fewer colour.

2. Pick and remove a random element v from S. For each colour class, we compute the
conflict score with v. The conflict score of a colour class Ci is∑

u∈Ci

(u,v)∈E(G′)

1 + q(u)2 (1)

where q(u) is the number of times that u has been removed from the conflict set S in
previous iterations of this step.

3. Pick the colour class Ci with the lowest conflict score. Uncolour all vertices in Ci which
are adjacent to v and add those vertices to S. Insert v into Ci.

4. Repeat steps 2 and 3 until the set S is empty.



J. Spalding-Jamieson, B. Zhang, and D. Zheng 72:3

There is no guarantee that this algorithm terminates. In practice, we restart the procedure
when any value of q(u) surpasses a fixed threshold.

The primary differences between our approach to conflict optimization and those of the
first and third place teams are the choice of an exponent of 2 in Step 2, and the behaviour
when q(u) surpasses its fixed threshold.

Modifications to the conflict optimizer

Taking inspiration from memetic algorithms, which alternate between an intensification and
a diversification stage, we continually switched between a phase where we used the above
conflict score, and one where we minimized only the number of conflicts (i.e. we replaced the
conflict score of (1) with

∑
u∈Ci,(u,v)∈E(G′) 1). Each phase lasted for 105 iterations. Adding

the conflict-minimization phase gave minor improvements to some of the challenge instances.

2.3 Failed approach: memetic algorithms

Although many of the leading approaches to vertex colouring are memetic, our attempts at
implementing them performed poorly. These memetic algorithms take a long time to run on
the standard DIMACS instances [9], and did not scale well to the much larger intersection
graphs in the challenge.

We implemented the memetic algorithms Evo-Div [11] and HEAD [10], but neither of
these approaches were able to improve on the scores obtained by the conflict optimizer.
Both of these algorithms use TABUCOL [8], a tabu search algorithm, as their local search
component, so we tried to replace it with the conflict optimizer. However, this proved
to be ineffective. This may be attributed to a critical difference between TABUCOL and
the conflict optimizer: the conflict optimizer does not expressly minimize the number of
conflicting edges in the colouring, and only hopes to eventually resolve all conflicting vertices.

3 Results

3.1 Implementation

The conflict optimizer frequently looked up edges in the intersection graph. To speed this
process up, we precomputed the adjacency matrix of the graph and stored it in memory for
fast access. Our C++ implementation is available on Github.

3.2 Challenge computing environment

To perform our computations during the challenge, we mainly used a 32-core server with
two Xeon E5-2698 v3s. We spent about 2 days of CPU time per instance to obtain our best
solutions. Table 1 shows the scores of our greedy initialization, scores after running the
conflict optimizer for 10 minutes, 1 hour, and 24 hours, and the best result we obtained in
the challenge. Our algorithm obtains good results on many instances after a short period of
time; it comes close to matching the best solutions we obtained in the challenge within 24
hours (and surpasses some, as there is randomness in the algorithm).

SoCG 2022



72:4 CG:SHOP Challenge 2022

Table 1 Results of our algorithm on a subset of the challenge instances after fixed amounts of
optimization time. Note that on instances visp31334 and reecn51526 we obtained better results
after 24 hours than our final results from the challenge.

Instance Greedy 10m 1h 24h Final
rvisp5013 71 50 49 49 49
rsqrpecn8051 284 177 176 176 176
sqrp10642 186 124 124 124 124
rsqrp14364 225 137 137 137 137
reecn16388 210 152 152 151 151
vispecn19370 285 199 196 194 194
sqrpecn23715 657 436 425 423 423
visp26405 119 83 83 82 81
sqrp28863 316 209 192 191 191
visp31334 132 83 83 83 82
vispecn35198 379 262 246 242 243
visp38574 193 143 136 135 134
sqrp41955 362 236 214 204 204
sqrpecn45700 802 503 471 465 465
visp48558 230 159 147 144 144
reecn51526 456 334 317 311 312
visp55158 182 130 123 122 122
vispecn58391 609 440 394 370 369
visp62685 174 132 120 119 117
vispecn65831 711 522 473 442 440
sqrpecn69904 1152 740 693 651 650
sqrp72075 483 342 312 272 271

3.3 Comparison on DIMACS dataset

We ran our algorithm on the difficult DIMACS instances [9] to gauge our algorithm’s
performance on non-geometric graphs.

Table 2 shows our results after running our algorithm for 10 minutes, compared with
some of the state of the art colouring algorithms HEAD [10] and QACOL [13, 14].

Surprisingly, the conflict optimizer works extremely poorly on random graphs, but is
fast and appears to perform well on geometric graphs, matching the best-known results [7].
Interestingly, these geometric graphs are not intersection graphs as in the Challenge, but are
generated based on a distance threshold.

Applying Cheeger’s inequality [2], we note the intersection graphs resulting from the
challenge instances have noticeably lower edge conductance than random graphs, and we
believe this plays a part in the performance of the conflict optimizer.

4 Conclusion

The conflict optimizer approach was very effective for the large geometric intersection graphs
for the CG:SHOP 2022 challenge. Further investigation is needed into the reason the conflict
optimizer approach was effective.



J. Spalding-Jamieson, B. Zhang, and D. Zheng 72:5

Table 2 Comparison of our method with state-of-the-art graph colouring algorithms. The conflict
optimizer underperforms except on the geometric graphs rX.Y and dsjrX.Y .

Instance Colours HEAD [10] QACOL [13, 14]
dsjc250.5 29 28 28
dsjc500.1 13 12 12
dsjc500.5 52 47 48
dsjc500.9 130 126 126
dsjc1000.1 21 20 20
dsjc1000.5 93 82 82
dsjc1000.9 235 222 222
r250.5 65 65 65
r1000.1c 98 98 98
r1000.5 234 245 238
dsjr500.1c 85 85 85
dsjr500.5 122 - 122
le450_25c 26 25 25
le450_25d 26 25 25
flat300_28_0 33 31 31
flat1000_50_0 91 50 -
flat1000_60_0 93 60 -
flat1000_76_0 92 81 81
C2000.5 173 146 145
C4000.5 317 266 259

References
1 Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM,

22(4):251–256, 1979.
2 Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis,

625(195-199):110, 1970.
3 Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo. Shadoks

approach to minimum partition into plane subgraphs. In Symposium on Computational
Geometry (SoCG), pages 71:1–71:8, 2022.

4 Loïc Crombez, Guilherme D da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourc-
ade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion planning
(cg challenge). In 37th International Symposium on Computational Geometry (SoCG 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

5 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum partition
into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.07444, 2022. arXiv:
2203.07444.

6 Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. Local search with
weighting schemes for the CG:SHOP 2022 competition. In Symposium on Computational
Geometry (SoCG), pages 73:1–73:6, 2022.

7 Olivier Goudet, Cyril Grelier, and Jin-Kao Hao. A deep learning guided memetic framework
for graph coloring problems, 2021. arXiv:2109.05948.

8 Alain Hertz and Dominique de Werra. Using tabu search techniques for graph coloring.
Computing, 39(4):345–351, 1987.

9 David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soc.,
1996.

SoCG 2022

http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2109.05948


72:6 CG:SHOP Challenge 2022

10 Laurent Moalic and Alexandre Gondran. Variations on memetic algorithms for graph coloring
problems. Journal of Heuristics, 24(1):1–24, 2018.

11 Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. An evolutionary approach with
diversity guarantee and well-informed grouping recombination for graph coloring. Computers
& Operations Research, 37(10):1822–1832, 2010.

12 André Schidler. SAT-based local search for plane subgraph partitions. In Symposium on
Computational Geometry (SoCG), pages 74:1–74:8, 2022.

13 Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring problem. Discret.
Optim., 8:376–384, 2011.

14 Olawale Titiloye and Alan Crispin. Parameter tuning patterns for random graph coloring with
quantum annealing. PloS one, 7(11):e50060, 2012.

15 D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and
its application to timetabling problems. The Computer Journal, 10(1):85–86, January 1967.



Local Search with Weighting Schemes for the
CG:SHOP 2022 Competition
Florian Fontan #

Independent Researcher, Paris, France

Pascal Lafourcade # Ñ

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, LIMOS,
63000 Clermont-Ferrand, France

Luc Libralesso # Ñ

Atoptima, 16 Place Sainte Eulalie, 33000 Bordeaux, France

Benjamin Momège #

Independent Researcher, Clermont-Ferrand, France

Abstract
This paper describes the heuristics used by the LASAOFOOFUBESTINNRRALLDECA1 team for the
CG:SHOP 2022 challenge. We introduce a new greedy algorithm that exploits information about
the challenge instances, and hybridize two classical local-search schemes with weighting schemes.
We found 211/225 best-known solutions. Hence, with the algorithms presented in this article, our
team was able to reach the 3rd place of the challenge, among 40 participating teams.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases heuristics, vertex coloring, digital geometry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.73

Category CG Challenge

Supplementary Material Software (Source Code): https://github.com/librallu/dogs-color
archived at swh:1:dir:9388a1f6c982c53a827264e5503824a4ee44c224

Funding Pascal Lafourcade: This work is supported by the French ANR PRC grant MobiS5
(ANR-18-CE39-0019), DECRYPT (ANR-18-CE39-0007), and SEVERITAS (ANR-20-CE39-0005).

1 Introduction

The Fourth Geometric Optimization Challenge proposed in SoCG 2022 is about finding
Minimum Plane Partitions. Given a geometric graph with vertices represented by points in
the plane, and edges by straight-line connections between vertices, we aim to partition edges
into as few subsets of disjoint lines, and to minimize the partition size.

Solving an instance of this challenge is equivalent to solving an instance of the classical
vertex coloring problem (VCP). Indeed, we can define a graph G′ = (V ′, E′) where V ′ is the
set of lines, and there is an edge in E′ between two intersecting lines. Finding a valid vertex
coloring of G′ with k colors is equivalent to finding a coloring of the original problem with
k colors. We refer the reader to the competition survey for more details about the vertex
coloring problem transformation [4], and to the other participants articles [2, 15, 14].

1 At the beginning of the competition, we could not find some team name. Thus, we used a simple
permutation of the first team members names letters, hence the funny name.

© Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 73; pp. 73:1–73:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dev@florian-fontan.fr
mailto:pascal.lafourcade@uca.fr
https://sancy.iut-clermont.uca.fr/~lafourcade/
https://orcid.org/0000-0002-4459-511X
mailto:luc.libralesso@atoptima.com
https://librallu.github.io/
https://orcid.org/0000-0001-9908-4811
mailto:benjamin.momege@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.73
https://github.com/librallu/dogs-color
https://archive.softwareheritage.org/swh:1:dir:9388a1f6c982c53a827264e5503824a4ee44c224;origin=https://github.com/librallu/dogs-color;visit=swh:1:snp:77aadf6ad37e36d61079aca97fd663a60e4c907c;anchor=swh:1:rev:30e17b2583d4485c16852a21ff77c9ceb1cb85f0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


73:2 Local Search with Weighting Schemes for the CG:SHOP 2022 Competition

In our approach for the SoCG challenge, we made the choice to focus only on solving
the equivalent vertex coloring problem instances instead of directly solving the competition
instances. We show that “classical” graph coloring algorithms are competitive, even with
ad-hoc approaches for the SoCG challenge.

We combined some classical algorithms found in the vertex coloring literature (two local-
search neighborhoods presented below) with a dynamic weighting scheme present in many
methods for solving other graphs problems (and closely related to the conflict optimizer used
in the previous CG:SHOP competition [3]). Furthermore, we show that this new algorithm
is simple to implement, yet efficient as it enabled us to reach the 3rd place in the CG:SHOP
2022 competition.

The main idea of our approach is to optimize some solutions with some local search
algorithms. We use two techniques to find some solutions: a segment orientation greedy
ad-hoc algorithm, and DSATUR, one of the most common greedy algorithms in the vertex
coloring literature. Then, using these initial solutions, we apply two optimization techniques:
a conflict minimization approach with a weighting scheme: Conflict Weighting Local Search
(CWLS), a partial coloring approach with a weighting scheme: Partial Weighting Local
Search (PWLS).

In Section 2, we present some mainstream algorithmic components to solve the vertex
coloring problem. Section 3 present the greedy algorithms we implemented (namely the
saturation degree and orientation-based greedy algorithms). Sections 4 and 5 present the local-
search and weighting schemes we used for the competition (namely the conflict minimization,
and vertices non-colored minimization). Finally, we compare our approaches in Section 6.

2 Related work

Multiple resolution methods were developed these last 40 years:
A first category consists of greedy algorithms. These algorithms are used to find good

quality initial solutions in a short amount of time. We present two of most considered greedy
approaches in Section 3.

A second category of algorithms consists of exact methods using branch-and-bound
algorithms. These algorithms are complete search methods, thus are able to find an optimal
solution and prove that they are indeed optimal. Such methods extend the DSATUR
heuristic by allowing it to backtrack [13, 5]. Another category of exact methods (branch-
and-cut-and-price) decompose the vertex coloring problem into an iterative resolution of
two sub-problems [12, 8, 6]. The higher level that maintains a set of valid colors (defined
by an independent set). It aims to cover all the vertices with a minimum-size set of colors,
thus solving a set-covering problem (often described as the “master problem”). A lower
level (solving a sub-problem) aiming to find a new valid coloring that would be promising,
thus solving a maximum weight independent set problem (often described as the “pricing
problem”). Such methods are usually able to find the optimal coloring for graphs with a few
hundred vertices. However, the CG:SHOP 2022 competition instances involve at least a few
thousands vertices, thus they appear to be not suited for this competition.

Finally, a third category of algorithms consists of local search algorithms. These methods
start by an initial solution (often found by some greedy algorithm), remove some color, thus
making the solution infeasible but with fewer colors, then apply some perturbations, aiming
to make it feasible again. We present this approach in more details in Sections 4 and 5.



F. Fontan, P. Lafourcade, L. Libralesso, and B. Momège 73:3

3 Finding Initial Solutions

Applying some local search scheme requires some initial solutions. We present in this section
two greedy algorithms that enable us to find promising initial solutions quickly.

We use two approaches to find initial solutions. The best one is used for our other
algorithms.

1. DSATUR. DSATUR is one of the most common greedy algorithms in the vertex coloring
literature. It was introduced in 1979 [1]. It selects the vertex that has the most colors in
its neighborhood, and assigns it to the first non-conflicting color until no vertex is left
uncolored. Ties are broken by selecting the vertex with maximum degree. This algorithm
does not take into account the specificities of the CG:SHOP 2022 competition.

2. Segment Oriented Greedy. We introduce a greedy algorithm that exploits the segment
orientations. This algorithm is inspired from the Recursive Largest First algorithm,
introduced in 1979 [10]. Recursive Largest first colors the graph one color at a time. The
algorithm searches for an independent set of maximum size, assigns these vertices the
same color, removes the newly colored vertices, and repeats until all vertices are assigned
a color. The algorithm we propose (Segment Oriented Greedy) takes advantage of the
fact that most of the challenge instances consist of long segments. Thus, if segments are
almost parallel, it is likely that they do not intersect (thus forming an independent set).
This greedy algorithm first sorts the segments by orientation, ranging from − π

2 to π
2 . For

each segment in this order, we try to color it using the first available color. If we fail, we
introduce a new color. This algorithm is efficient, produces interesting initial solutions
and takes into account the specificities of the competition.

4 Conflict Weighting Local Search (CWLS)

One classical approach for the vertex coloring involves allowing solutions with conflicting
vertices (two adjacent vertices with the same color). It was introduced in 1987 [9] and
called TABUCOL (more details in Section 4). It starts with an initial solution, removes
a color (usually the one with the least number of vertices), and assigns uncolored vertices
with a new color among the remaining ones. This is likely to lead to some conflicts (i.e.
two adjacent vertices sharing a same color). The local search scheme selects a conflicting
vertex, and tries to swap its color, choosing the new coloring that minimizes the number of
conflicts. If it reaches a state with no conflict, we obtain a new best-known solution. The
process is repeated until the stopping criterion is met. Originally, TABUCOL also contains
some tabu mechanism to avoid cycling through some states. In this article, we refer to this
local-search neighborhood as conflict-minimization. TABUCOL and its conflict-minimization
neighborhood, obtained at the time excellent performance. It was later embedded in a
large variety of algorithms, including many state-of-the-art algorithms (to the best of our
knowledge). For instance MACOL [11] that uses TABUCOL as a mutation operator, and
the GPX crossover to combine solutions.

Learning scheme. While the original TABUCOL algorithm includes this “tabu-list” mecha-
nism to avoid cycling, it is not always sufficient, and requires some hyperparameter tuning
in order to obtain a good performance on a large variety of instances. To overcome this
issue, we developed a weighting scheme inspired from recent work in graph problems (namely
Row Weighting Local Search for the set covering problem [7]). The idea is to penalize each
conflict the algorithm introduces, so frequently occurring conflicts have a larger penalty, thus
less likely to be selected in the future. This allows the algorithm to naturally diversify the
solutions it obtains. Similarly to the Row Weighting Local Search algorithm, we use a simple

SoCG 2022



73:4 Local Search with Weighting Schemes for the CG:SHOP 2022 Competition

weighting scheme that initializes all the weights to 1 (thus one weight per edge). Each time a
conflict is introduced, its weight is increased by 1. The algorithm minimizes the total weight
instead of the total number of conflicts.

5 Partial Weighting Local Search (PWLS)

Another local search algorithm solving the vertex coloring problem was introduced in 2008
(PARTIALCOL). This algorithm proposes a new local search scheme that allows partial
coloring (thus allowing uncolored vertices). The goal is to minimize the number of uncolored
vertices. Similarly to TABUCOL, PARTIALCOL starts with an initial solution, removes one
color (unassigning its vertices), and performs local search iterations until no vertex is left
uncolored. When coloring a vertex, the adjacent conflicting vertices are uncolored. Then, the
algorithm repeats the process until all vertices are colored, or the stopping criterion is met.

Learning scheme. We also introduce some weighting scheme for the PARTIALCOL local-
search neighborhood. We assign a weight for each vertex, and the objective of the local
search is to minimize the total weight of uncolored vertices. Each time a vertex becomes
colored, its weight is increased by 1.

6 Results and Conclusions

All algorithms were executed on an Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00 GHz CPU,
with 30 MB cache, and 768 GB RAM for 24 hours for each instance. To speed up the
experiments, we ran 24 parallel runs on our machine. All algorithms have been implemented
in the rust programming language and are publically available on a GitHub repository2.

In order to compare the efficiency of our algorithms, we use the ARPD (Average Relative
Percentage Deviation) as a comparison metric, which is defined as follows:

ARPDIa =
∑
i∈I

Mai − M∗
i

M∗
i

.
100
|I|

where I is a set of instances with similar characteristics (in the same instance class), Mai

corresponds to the objective obtained by algorithm a on instance i. And M∗
i the reference

solution objective for the instance i. The reference value is the best solution found by our
team during the competition. The ARPD describes the performance of a given algorithm on
a given instance class. This aggregation allows us to observe the overall behavior of some
algorithm on some instance class. An ARPD close to 0 indicates that the algorithm is close
to the best solutions we found during the competition (thus, the lower, the better).

Table 1 compares all the algorithms we implemented on each class of instances. Greedy
algorithms report large ARPDs, thus being far from the best-known solutions. The orientation
greedy generally outperforms the DSATUR algorithm as it handles instances with long
segments, where the orientation is a good conflict predictor (thus all instances but the
VISP-like). DSATUR outperforms the orientation greedy on the visp-like instances (where
the segment localization is more important than the orientation). Local search weighting
schemes allow getting closer to the best-known solutions. It is interesting to note that
CWLS and PWLS are complementary, as CWLS seems to be more efficient than PWLS on
RVISP/VISP classes of instances, and PWLS being more efficient on the others. Both local
search methods are able to reach almost optimal solutions (less than 2% deviation to the
best-known solution in average).

2 https://github.com/librallu/dogs-color

https://github.com/librallu/dogs-color


F. Fontan, P. Lafourcade, L. Libralesso, and B. Momège 73:5

Table 1 Average Relative Percentage Deviation comparison for all instance classes over 24h runs.
Bold values indicate the algorithm that is statistically significantly better than the other one using a
Wilcoxon signed-rank test with α = 0.05.

Instance class CWLS PWLS DSATUR orientation greedy
reecn 1.04 0.0 24.31 16.41
rsqrp 0.51 0.11 24.03 5.89

rsqrpecn 0.0 0.0 24.86 18.08
rvisp 0.06 0.99 25.06 26.94

rvispecn 0.0 0.14 30.9 49.93
sqrp 1.06 0.0 31.22 4.9

sqrpecn 0.88 0.03 22.74 14.11
visp 0.19 1.77 29.23 27.6

vispecn 0.49 0.08 34.75 54.66

Figure 1 compares the solution quality over time of CWLS and PWLS on the SQRP and
VISP instances. Both algorithms seem to be complementary depending on the instance class.

0

0.5

1

1.5

2

2.5

0 10k 20k 30k 40k 50k 60k 70k 80k 90k
CPU time in seconds on instance of type SQRP.

Av
er

ag
e

re
la

tiv
e

pe
rc

en
ta

ge
de

vi
at

io
n.

coloring PWLS
coloring CWLS

0

5

10

0 10k 20k 30k 40k 50k 60k 70k 80k 90k
CPU time in seconds on instance of type VISP.

Av
er

ag
e

re
la

tiv
e

pe
rc

en
ta

ge
de

vi
at

io
n.

coloring PWLS
coloring CWLS

Figure 1 Comparison of the performance of CWLS and PWLS over time.

SoCG 2022



73:6 Local Search with Weighting Schemes for the CG:SHOP 2022 Competition

From this competition, we study that adding a weighting scheme significantly improves the
algorithm performance, making the algorithm more robust. This weighting allows a simple
adaptive diversification mechanism. We studied two local-search neighborhoods (conflict-
minimization and partial-coloring-minimization). For both of them, we presented some
weighting scheme: Conflict Weighting Local Search (CWLS), and Partial Weighting Local
Search (PWLS). CWLS and PWLS are both performant, and complementary depending on
the instance class.

In the future, we plan to study the integration of such weighting schemes within memetic
algorithms. Indeed, memetic algorithms are known to obtain excellent performance on
classical vertex coloring instances.

References
1 Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM,

22(4):251–256, 1979.
2 Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo. Shadoks

approach to minimum partition into plane subgraphs. In Symposium on Computational
Geometry (SoCG), pages 71:1–71:6, 2022.

3 Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafour-
cade, and Luc Libralesso. Shadoks Approach to Low-Makespan Coordinated Motion Planning.
In 37th International Symposium on Computational Geometry (SoCG 2021), volume 189,
pages 63:1–63:9, 2021. doi:10.4230/LIPIcs.SoCG.2021.63.

4 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum partition
into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.xxx, 2022. arXiv:
2203.07444.

5 Fabio Furini, Virginie Gabrel, and Ian-Christopher Ternier. An improved dsatur-based branch-
and-bound algorithm for the vertex coloring problem. Networks, 69(1):124–141, 2017.

6 Fabio Furini and Enrico Malaguti. Exact weighted vertex coloring via branch-and-price.
Discrete Optimization, 9(2):130–136, 2012.

7 Chao Gao, Xin Yao, Thomas Weise, and Jinlong Li. An efficient local search heuristic with
row weighting for the unicost set covering problem. European Journal of Operational Research,
246(3):750–761, 2015.

8 Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via
constraint programming and column generation. INFORMS Journal on Computing, 24(1):81–
100, 2012.

9 Alain Hertz and Dominique de Werra. Using tabu search techniques for graph coloring.
Computing, 39(4):345–351, 1987.

10 Frank Thomson Leighton. A graph coloring algorithm for large scheduling problems. Journal
of research of the national bureau of standards, 84(6):489, 1979.

11 Zhipeng Lü and Jin-Kao Hao. A memetic algorithm for graph coloring. European Journal of
Operational Research, 203(1):241–250, 2010.

12 Anuj Mehrotra and Michael A Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344–354, 1996.

13 Pablo San Segundo. A new dsatur-based algorithm for exact vertex coloring. Computers &
Operations Research, 39(7):1724–1733, 2012.

14 André Schidler. SAT-based local search for plane subgraph partitions. In Symposium on
Computational Geometry (SoCG), pages 74:1–74:6, 2022. To appear.

15 Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Conflict-based local search for
minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG),
pages 72:1–72:6, 2022.

https://doi.org/10.4230/LIPIcs.SoCG.2021.63
http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2203.07444


SAT-Based Local Search for Plane Subgraph
Partitions
André Schidler #

TU Wien, Austria

Abstract
The Partition into Plane Subgraphs Problem (PPS) asks to partition the edges of a geometric graph
with straight line segments into as few classes as possible, such that the line segments within a class
do not cross. We discuss our approach GC-SLIM : a local search method that views PPS as a graph
coloring problem and tackles it with a new and unique combination of propositional satisfiability
(SAT) and tabu search, achieving the fourth place in the 2022 CG:SHOP Challenge.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases graph coloring, plane subgraphs, SAT, logic, SLIM, local improvement, large
neighborhood search

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.74

Category CG Challenge

Supplementary Material Software (Source Code): https://github.com/ASchidler/coloring
archived at swh:1:dir:2b7057f17495a9a12cf7de4f857037c9ab0d6654

Dataset (Results): https://doi.org/10.5281/zenodo.6352601

Funding FWF (P32441, W1255) and the WWTF (ICT19-065).

1 Introduction

Expressing the Partition into Plane Subgraphs Problem (PPS) in terms of graph coloring
allows us to use decades of research on this important and well-researched NP-hard problem.
While recent research investigated how to color massive graphs with several million vertices [11,
12], closer analysis of the used instances show that they are large but also very sparse. In
contrast, the conflict graphs of this year’s challenge are smaller in size, with up to 73000
vertices, but have an edge density of up to 62% leading to conflict graphs with over 1.5
billion edges. Many established methods for graph coloring do not perform well on such
dense graphs, making local search methods very appealing.

We present our approach GC-SLIM, a combination of propositional satisfiability (SAT) and
tabu search based on the SAT-based local improvement (SLIM) meta-heuristic [9, 13, 14, 15,
16]. While a SAT-encoding of graph coloring can compute colorings for 26 of the 225 challenge
instances, GC-SLIM scales to the largest challenge instances, improves upon established tabu
search, and placed 4th overall and 2nd among student submission [7, 8, 10, 17].

2 Preliminaries

In this paper, we only consider PPS in terms of graph coloring, i.e., we consider the
conflict graph G′ = (V ′, E′), containing a vertex for each line segment, and two vertices
are adjacent if the corresponding line segments intersect [8]. Since GC-SLIM performs
local search, we assume a given k-coloring c : V (G′) → {1, . . . , k}. We use the shorthands
Sℓ = { v ∈ V (G′) | c(v) = ℓ }, [k] = {1, . . . , k}, and N(v) = { w | {v, w} ∈ E(G′) }.

© André Schidler;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 74; pp. 74:1–74:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aschidler@ac.tuwien.ac.at
https://orcid.org/0000-0001-6790-7158
https://doi.org/10.4230/LIPIcs.SoCG.2022.74
https://github.com/ASchidler/coloring
https://archive.softwareheritage.org/swh:1:dir:2b7057f17495a9a12cf7de4f857037c9ab0d6654;origin=https://github.com/ASchidler/coloring;visit=swh:1:snp:a8e57350a15e609e466feceb6a7e9fb007565fc3;anchor=swh:1:rev:dd03517187447fd44cfd9f03db6ab7313a21a64a
https://doi.org/10.5281/zenodo.6352601
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


74:2 SAT-Based Local Search for Plane Subgraph Partitions

We compute the initial solution using DSATUR [6], one of the best greedy heuristics
for graph coloring. DSATUR colors one vertex after another, assigning each vertex the
smallest possible color that avoids monochromatic edges. DSATUR always colors the most
constrained vertex next, i.e., the vertex that has the fewest viable colors available.

GC-SLIM extends the tabu search PARTIALCOL [5]. The idea of PARTIALCOL is
to focus on eliminating a single color ℓ through a series of swaps: given a vertex v colored
with ℓ and another color ℓ′, a swap changes v’s color to ℓ′ and the color of all vertices in
N(v) ∩ Sℓ′ to ℓ. Whenever ℓ′ does not occur in v’s neighborhood, the number of vertices
colored with ℓ decreases. Otherwise, ℓ is propagated in the graph in the hope of success with
a later swap. PARTIALCOL picks ℓ′ among the least prevalent colors in the neighborhood
of v, i.e., that minimizes |N(v) ∩ Sℓ′ |, with ties broken arbitrarily. The choice of ℓ′ is further
informed by a list of tabus for each vertex. This list contains all colors a vertex had in the
last few iterations, these cannot be used for swaps to avoid getting stuck in local optima.

3 Method

We use a combination of tabu search and SAT-solving based on the SLIM method [9, 13, 14,
15, 16]. This method improves a heuristic solution through a series of local improvements,
where each local improvement is accomplished by solving a smaller local instance with a
SAT solver. Key to this method is a way to extract local instances that achieves overall
improvement. For GC-SLIM the goal is eliminating color k from a given k-coloring c, thereby
changing c to a (k − 1)-coloring. Note that colors are interchangeable. GC-SLIM is then
called again with the new coloring, until no more improvements are possible.

We use list coloring for the local instances, as it enables us to color a subgraph of G′ in a
way that remains compatible with the coloring outside the subgraph.

▶ Definition 1 (List Coloring). Given a k-annotated graph (G∗, L), where L : V (G∗) → 2[k], a
k-list coloring is a k-coloring c for G∗, such that for all v ∈ V (G∗) it holds that c(v) ∈ L(v).

Given a set X ⊆ V (G′) and a coloring c for G′, we create a list coloring instance (G∗, L):
G∗ = G′[X], the subgraph induced by X, and for each v ∈ X, we let L(v) := [k]\{ c(w) | w ∈
N(v) \ X }. Given a list coloring c′ for G∗, we combine c′ and c by changing c(v) to c′(v) for
all v ∈ X. Afterwards, c is still a coloring for G′, as the lists ensure no monochromatic edges
between X and V (G∗) \ X. If we are able to solve all local instances for vertices colored with
k, we eventually eliminate color k from c.

We can solve the list coloring problem with a simple SAT encoding. We use for each
vertex v ∈ V (G∗) and color ℓ ∈ L(v) the variable cv,ℓ which is true if and only if v can take
color ℓ. We encode that each vertex needs a color with

∧
v∈V (G∗)

∨
ℓ∈L(v) cv,ℓ. Further, we

ensure that adjacent vertices have different colors:
∧

{u,v}∈E(G∗),ℓ∈L(u)∩L(v) ¬cu,ℓ ∨ ¬cv,ℓ.
Finding good local instances is surprisingly difficult. While it was possible to find k-

colorings for many local instances, eventually we would always come upon a vertex that
could not be recolored, no matter how we created the local instance. We overcame this issue
with inspiration taken from PARTIALCOL.

GC-SLIM does not try to eliminate k from the local instance. Instead, our method is
satisfied with any k-coloring that is different and that minimizes the number of k-colored
vertices. Given a set X of vertices that defines the local instance (G∗, L), we perform the
following two changes on L: (i) for all vertices v ∈ Sk we remove k from L(v), thereby forcing
all k-colored vertices to change their color, and (ii) for all vertices v ∈ X \ Sk, we add k to
L(v). Since we eventually eliminate k, monochromatic edges using k are not an issue. Finally,



A. Schidler 74:3

we constrain the number of vertices colored by k using a cardinality constraint [3]. Whenever
we find a coloring for the local instance, we reduce the cardinality of the constraint. This
follows the idea of swaps, where no vertex remains colored with k if possible, and otherwise k

is propagated through the graph.
We complement this change in goal with our method for constructing local instances:

starting from a single vertex v ∈ Sk, X0 = ∅ and X1 = {v}, GC-SLIM constructs X =
⋃

Xi

iteratively such that the two invariants X ∩ Sk = {v} and |X| ≤ b hold, i.e., v is the only
vertex with color k and |X| does not exceed a budget b. The set Xi>1 is constructed by
adding specific neighbors of each vertex w ∈ Xi−1 \ Xi−2, the vertices added in the last
iteration. For each w, GC-SLIM adds the neighbors colored in the m least prevalent colors
to Xi. The process stops when no more vertices can be added without exceeding the budget.
We call m the branching limit, as the whole process resembles breadth-first search where the
breadth in each step is limited by m. The budget ensures that the local instances stay small
enough to be tackled by a SAT solver. Further, we use minℓ∈[k−1] |cℓ ∩ N(v)| as the upper
bound on the number of vertices colored with k in the local instance. This corresponds to a
normal swap and ensures that GC-SLIM does not perform worse than PARTIALCOL.

Similar to tabu search, GC-SLIM stores the last colors of a vertex and disregards them
during the construction of X, even if they are the least prevalent. We also considered
removing tabu colors from the lists of the local instances. This yielded worse results as it
restricts the possibilities for the SAT solver too much.

3.1 Hyperparameters

There are several hyperparameters that can severely impact GC-SLIM’s performance.
The timeout for the SAT solver determines the time the solver has to find a solution. A

large number allows for more improvements but may waste time without finding a solution.
Depending on the instance and the concrete timeout, 25% to 50% of the SAT calls time out.
Generally, a small timeout of 5 seconds performs well initially as it finds improvements fast,
and a higher timeout can reveal more improvements once the low timeout fails.

The iteration limit determines the number of local instances GC-SLIM generates per
color. Higher numbers increase the chance of success, but may waste time if unsuccessful.
Again, low limits are good initially and higher iteration limits perform better in later stages.

The branching limit controls the breadth versus depth of the exploration when generating
the local instance. Varying this parameter leads to different results, where smaller values of
2 and 3 find the most improvements, and values up to 15 reveal further improvements.

GC-SLIM adjusts the budget for the local instance automatically. Starting from an initial
budget of 300 vertices, after any three consecutive SAT solver calls that time out, the budget
decreases by 60 vertices. Whenever three consecutive SAT solver calls are successful, the
budget increases by 60 vertices. In practice, the budget varies between 60 vertices – the
lower limit – for very dense graphs and over 2000 vertices for sparse graphs.

3.2 Parallelisation

GC-SLIM uses multithreading as follows. Each thread tries to eliminate a color on its own
and threads only synchronize if one of them succeeds. At this point, the successful thread
shares the improved coloring and each thread starts again picking a color to eliminate.

We use multithreading in two ways: (i) to eliminate more colors in the same amount of
time, and (ii) to try different hyperparameter settings, potentially on the same colors.

SoCG 2022



74:4 SAT-Based Local Search for Plane Subgraph Partitions

4 Experiments

We discuss both the results from the competition and experiments with a specific time limit.
GC-SLIM was implemented in C++, compiled with gcc 7.5.0, and run under Ubuntu 18.04.

The servers we used during the competition had two Xeon E5-2640v CPUs, each with 10
cores running at 2.4 GHz. The experiments ran on nodes with two AMD EPYC 7402 CPUs,
each with 24 cores running at 2.8 GHz. Each run was limited to 64 GB of memory and 24
hours runtime. We used all available cores and no other experiments ran in parallel.

GC-SLIM uses the SAT solvers Glucose 3 [2] and Cadical 1.5.0 [1, 4]. Cadical is the
default solver and when varying the hyperparameters, we also varied solvers.

4.1 Competition

During the competition, we kept the current best coloring for each instance in a repository.
This allows us to give a rough timeline of the changes, particularly on the impact of GC-SLIM.
Figure 1 shows the initial number of colors, the number of colors achieved with PARTIALCOL
right before introducing GC-SLIM, and the final number of colors.

100 200 300 400 500 600 700 800
Colors

0

50

100

150

200

In
st

an
ce

s

DSATUR
Partialcol
GC-SLIM

Figure 1 Comparison of the best colorings at different phases of the competition. The instances
are ordered by the number of colors in the best result.

In the first phase, we used PARTIALCOL with varied parameters. In each iteration, the
color for swaps was initially the least prevalent color, until PARTIALCOL failed to find
improvements. Then, we added small random values to the color counts to diversify the
exploration of the search space, until eventually, we picked random colors, which enabled
further improvements. At the end of this phase, PARTIALCOL could not eliminate any
color within 10 million swaps.

In the last phase, we used several runs of GC-SLIM per instance. Each run had up to
twelve hours to eliminate one or more colors. For each run, we varied hyperparameters and
SAT solvers. Towards the end, we used multithreading for instances with a large gap between
upper bound and a clique lower bound. As Figure 1 shows, GC-SLIM was able to improve
the colorings of most instances. On average, GC-SLIM removed over 50 additional colors
per instance. Unfortunately, developing GC-SLIM was a long process and the final version
finished too close to the deadline to achieve the best possible results.



A. Schidler 74:5

100 200 300 400 500 600 700
Colors

0

50

100

150

200
In

st
an

ce
s

Partialcol
GC-SLIM
Competition

Figure 2 Comparison of 24 hour runs of tabu search and GC-SLIM. Our competition results are
added as a reference. The instances are ordered by the number of colors in the best coloring.

4.2 24-hour experiment

The usefulness of our method is not fully captured by the competition results, as applying
local search for several weeks is usually not an option. We therefore ran PARTIALCOL
and GC-SLIM with various configurations for 24 hours. For this purpose, we tried different
hyperparameter settings in a shorter 5-hour run on ten instances and picked the settings
that performed best as best configuration. The varied configuration uses a different set
of hyperparameters in each thread. Both configurations use five parallel threads. These
configurations run either alone, or combined with PARTIALCOL, where PARTIALCOL runs
for twelve hours and then GC-SLIM for another twelve hours.

The overall results in Figure 2 – GC-SLIM shows the best result over all configurations –
show that GC-SLIM improves upon PARTIALCOL even in this shorter timeframe. Further,
the experimental results are comparable to our competition results on many instances: the
competition results use only 3 fewer colors on average. This suggests the strong possibility
for further improvements, given more time.

In Figure 3 we show how the number of colors develops over time for the largest instances
of their respective set. We can see that the majority of improvements are achieved within a
short amount of time, and PARTIALCOL quickly struggles, while GC-SLIM is able to find
further improvements. Interestingly, the combination of both methods is sometimes able to
find more improvements than either method alone.

5 Conclusion

GC-SLIM showed good results both in the experiments and in the competition. Key to
the performance of our algorithm is the local instance selection that is closely tied to
PARTIALCOL. We hope that our method will serve as a template for combining local search
and SAT, and considering other local search methods will lead to further improvements.

SoCG 2022



74:6 SAT-Based Local Search for Plane Subgraph Partitions

0 250 500 750 1000 1250
Runtime [m]

375

400

425

450

475

500

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(a) vispecn74166 (0.07).

0 250 500 750 1000 1250
Runtime [m]

200

220

240

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(b) rvispecn17968 (0.09).

0 250 500 750 1000 1250
Runtime [m]

115

120

125

130

135

140

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(c) rvisp24116 (0.12).

0 250 500 750 1000 1250
Runtime [m]

260

280

300

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(d) visp73369 (0.22).

0 250 500 750 1000 1250
Runtime [m]

360

380

400

420

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(e) reecn73116 (0.23).

0 250 500 750 1000 1250
Runtime [m]

700

725

750

775

800

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(f) sqrpecn73925 (0.47).

0 250 500 750 1000 1250
Runtime [m]

180

190

200

210

220

230

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(g) rsqrp24641 (0.48).

0 250 500 750 1000 1250
Runtime [m]

340

360

380

400

420

Co
lo

rs

Partialcol
GC-SLIM Best
GC-SLIM Best + PC
GC-SLIM Vary
GC-SLIM Vary + PC

(h) sqrp73525 (0.58).

Figure 3 Color reduction (y-axis) over time (x-axis in minutes) for different configurations.



A. Schidler 74:7

References
1 Cadical. http://fmv.jku.at/cadical/. Accessed: 2022-02-20.
2 Glucose. https://www.labri.fr/perso/lsimon/glucose/. Accessed: 2022-02-20.
3 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality con-

straints. In Francesca Rossi, editor, Principles and Practice of Constraint Programming - CP
2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3,
2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 108–122. Springer,
2003. doi:10.1007/978-3-540-45193-8_8.

4 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

5 Ivo Blöchliger and Nicolas Zufferey. A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Comput. Oper. Res., 35(3):960–975, 2008. doi:10.1016/j.cor.2006.
05.014.

6 Daniel Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–256,
April 1979.

7 Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo. Shadoks
approach to minimum partition into plane subgraphs. In Symposium on Computational
Geometry (SoCG), pages 71:1–71:8, 2022.

8 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum partition
into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.07444, 2022. arXiv:
2203.07444.

9 Johannes K. Fichte, Neha Lodha, and Stefan Szeider. SAT-based local improvement for finding
tree decompositions of small width. In Proceedings of SAT 2017, volume 10491 of Lecture
Notes in Computer Science, pages 401–411. Springer Verlag, 2017.

10 Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. Local search with
weighting schemes for the CG:SHOP 2022 competition. In Symposium on Computational
Geometry (SoCG), pages 73:1–73:7, 2022.

11 Emmanuel Hebrard and George Katsirelos. A hybrid approach for exact coloring of massive
graphs. In Louis-Martin Rousseau and Kostas Stergiou, editors, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 16th International Conference,
CPAIOR 2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings, volume 11494 of Lecture
Notes in Computer Science, pages 374–390. Springer, 2019. doi:10.1007/978-3-030-19212-9_
25.

12 Jinkun Lin, Shaowei Cai, Chuan Luo, and Kaile Su. A reduction based method for coloring
very large graphs. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
pages 517–523. ijcai.org, 2017. doi:10.24963/ijcai.2017/73.

13 Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A SAT approach to branchwidth.
In Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 4894–4898.
ijcai.org, 2017. doi:10.24963/ijcai.2017/689.

14 Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. Learning fast-inference bayesian
networks. Advances in Neural Information Processing Systems, 34, 2021.

15 Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. Turbocharging treewidth-bounded
Bayesian network structure learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pages 3895–3903. AAAI Press, 2021.

SoCG 2022

http://fmv.jku.at/cadical/
https://www.labri.fr/perso/lsimon/glucose/
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1016/j.cor.2006.05.014
https://doi.org/10.1016/j.cor.2006.05.014
http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2203.07444
https://doi.org/10.1007/978-3-030-19212-9_25
https://doi.org/10.1007/978-3-030-19212-9_25
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.24963/ijcai.2017/689


74:8 SAT-Based Local Search for Plane Subgraph Partitions

16 André Schidler and Stefan Szeider. SAT-based decision tree learning for large data sets. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 3904–3912. AAAI Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/16509.

17 Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Conflict-based local search for
minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG),
pages 72:1–72:6, 2022.

https://ojs.aaai.org/index.php/AAAI/article/view/16509
https://ojs.aaai.org/index.php/AAAI/article/view/16509

	p000-Frontmatter
	Preface
	Conference Organization
	Additional Reviewers

	p001-Aamand
	1 Introduction
	1.1 Our techniques

	2 Preliminaries
	3 Tiling with squares
	3.1 Naive algorithm
	3.2 Sweep-line algorithm

	4 Simple domino packing algorithm
	4.1 Naive algorithm
	4.2 Simple polynomial-time algorithm
	4.3 Structural results on polyominos and domino packings
	4.4 Correctness of the algorithm


	p002-Afshani
	1 Introduction
	2 Challenges, Notation, and Problem Statement
	2.1 Notation and Problem Statement
	2.2 Challenges

	3 Turning an Optimal Solution into a Cyclic Solution
	3.1 Bidirectional sweep to find ``bottleneck'' sites
	3.2 Patrol graph, shortcut graph, and bag graph

	4 Cyclic Solutions
	5 Conclusion and Future Work

	p003-Afshani
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Technical Contributions

	2 Preliminaries
	2.1 A Geometric Lower Bound Framework
	2.2 A Lemma for Polynomials
	2.3 Useful Properties about Matrices

	3 Lower Bound for Range Reporting with General Polynomial Slabs
	3.1 Technical Challenges
	3.2 A Geometric Lemma
	3.3 Lower Bound for General Polynomial Slabs

	4 Data Structures for Uniform Random Point Sets
	4.1 A Curvature-based Approach
	4.2 A Derivative-based Approach

	5 Conclusion and Open Problems

	p004-Agarwal
	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Intersection searching with query arcs amid plates
	2.1 The overall data structure
	2.2 The query procedure
	2.3 Space/query-time trade-offs

	3 Handling wide plates
	3.1 An overview of cylindrical algebraic decomposition
	3.2 Constructing a CAD of the partitioning polynomial
	3.3 Decomposing wide plates into pseudo-trapezoids
	3.4 Reduction to semi-algebraic range searching


	p005-Aichholzer
	1 Introduction
	2 Twisted preliminaries
	3 Disjoint edges in simple drawings
	4 Plane paths in simple drawings
	4.1 Plane paths in c-monotone drawings
	4.2 Plane paths in simple drawings

	5 Characterizing generalized twisted drawings
	6 Conclusion and outlook

	p006-Aichholzer
	1 Introduction
	2 Bumpy wheels
	2.1 Partition into plane spanning trees
	2.2 Partition into plane subgraphs

	3 Generalized wheels
	4 Partitions into k-planar subgraphs
	5 Partitions into k-quasi-planar subgraphs and spanning trees
	6 Conclusion

	p007-Arutyunova
	1 Introduction
	2 The triangulation problem
	3 Related works
	4 Minimum-error triangulation is NP-hard
	4.1 Notation and local properties
	4.2 The gadgets

	5 Higher-order Delaunay optimization
	5.1 The order-k fixed-edge graph

	6 Experiments
	6.1 The datasets
	6.2 The fixed-edge graphs of the tide gauge set
	6.3 Sea surface reconstruction

	7 Conclusion

	p008-Attali
	1 Introduction
	2 Preliminaries
	2.1 Subsets and submanifolds
	2.2 Simplicial complexes
	2.3 Height, circumsphere and smallest enclosing ball
	2.4 Delaunay complexes
	2.5 Delaunay energy for triangulations
	2.6 Delaunay weight
	2.7 Chains and weighted norms

	3 Delloc complex
	4 Statement of main result
	5 Technical lemma
	6 Comparing power distances
	7 Proving the main result

	p009-BakkeBjerkevik
	1 Introduction
	1.1 Our contributions

	2 Definitions and notation
	3 Proof that 0.66-samples allow reconstruction
	3.1 Basic observations about S and C
	3.2 Restrictions of angles between points on C
	3.3 The closest compatible neighbors are the correct neighbors

	4 Counterexample to curve reconstruction for epsilon = 0.72
	5 Counterexample to hypersurface reconstruction for epsilon = 0.72
	6 Discussion

	p010-Balko
	1 Introduction
	1.1 Erdős-Szekeres-type results in the Euclidean plane
	1.2 Convex sets in the real projective plane

	2 Our results
	3 Discussion
	4 Proof of Theorem 5
	5 Sketch of the proofs of Theorem 6 and Theorem 7
	5.1 Quadratic upper bounds on the number of k-holes

	6 Outline of the construction giving Theorems 9 and 10
	7 Proof of Theorem 13

	p011-Bandyapadhyay
	1 Introduction
	2 Preliminaries
	3 The main theorem
	3.1 A layering for the unit disks
	3.2 Constructing the partition {D_1,...,D_p}
	3.3 Bounding the treewidth when D' = emptyset
	3.4 Handling the general case

	4 Applications
	4.1 Contraction decomposition for unit-disk graphs
	4.2 Near-optimal bipartization for unit-disk graphs


	p012-Banyassady
	1 Introduction
	2 Definitions and notation
	3 Tighter separation bounds
	4 A single free space component
	4.1 Preliminaries
	4.2 The motion graph
	4.3 The algorithm

	5 Multiple free space components
	6 Conclusion

	p013-Bartal
	1 Introduction
	2 Lower bound for average distortion and additive measures
	2.1 Encoding algorithm
	2.2 Decoding algorithm
	2.3 Deducing the lower bound

	3 Lower bounds for q-moments of distortion
	3.1 Encoding and decoding
	3.2 Deducing the lower bound


	p014-Bauer
	1 Introduction
	2 Preliminaries
	3 Bi-Lipschitz bounds for Reeb graph distances
	3.1 The inequalities d_I < = d_{FD} < = d_{FC} < = d_U
	3.2 Relating universal and functional distortion distance
	3.3 Relating universal and interleaving distance
	3.4 Relating functional contortion and interleaving distance

	4 Contour trees
	5 Merge trees
	5.1 The epigraph and merge trees
	5.2 Interleavings, contortions, and merge trees


	p015-Bauer
	1 Introduction
	2 Preliminaries
	2.1 Discrete Morse theory and the apparent pairs gradient
	2.2 Rips' Contractibility Lemma via the injective hull

	3 Filtered collapsibility of Vietoris–Rips complexes
	4 Collapsing Vietoris–Rips complexes of trees by apparent pairs
	4.1 Generic tree metrics
	4.2 Arbitrary tree metrics
	4.2.1 The canonical gradient
	4.2.2 The perturbed gradient
	4.2.3 The apparent pairs gradient



	p016-Biniaz
	1 Introduction
	2 Preliminaries for the proof
	3 Proof of Theorem 1
	3.1 The proof setup
	3.2 The tour construction

	4 Concluding remarks

	p017-Black
	1 Introduction
	1.1 Subsurface recognition problems
	1.2 Our results
	1.3 Related work

	2 Background
	2.1 Simplicial complexes and directed graphs
	2.2 Surfaces
	2.3 Tree decompositions
	2.4 The exponential time hypothesis

	3 Overview of the algorithms
	4 Overview of the lower bounds
	4.1 The reduction
	4.2 Pathwidth preservation

	5 Conclusion

	p018-Bonnet
	1 Introduction
	1.1 Diameter of Random Polytopes
	1.2 Prior work
	1.3 Proof Overview
	1.3.1 The Upper Bound
	1.3.2 The Lower Bound

	1.4 Organization

	2 Preliminaries
	2.1 Density Estimates

	3 Shadow size and upper bounding the diameter
	3.1 Only ``nearby'' constraints are relevant
	3.2 Locality, independence, and concentration
	3.3 Upper bound on the diameter

	4 Lower Bounding the Diameter of P(A)

	p019-Botnan
	1 Introduction
	2 Rank Decompositions: Existence and Uniqueness
	3 Application to multi-parameter persistence
	4 Signed barcodes and prominence diagrams

	p020-Bringmann
	1 Introduction
	1.1 Our results
	1.2 Technical overview

	2 Preliminaries & notation
	3 Approximating DTW under translation in L_p
	3.1 Cubic algorithm
	3.2 Reduction to dynamic graph problem
	3.3 Solving the dynamic graph problem

	4 Conclusion and open problems

	p021-Bringmann
	1 Introduction
	2 Preliminaries
	2.1 Hardness assumptions

	3 Solving the Diameter-2 problem on unit square graphs
	4 Lower bounds based on the Orthogonal Vectors Hypothesis
	4.1 The Diameter-3 problem for line segment intersection graphs
	4.2 The diameter problem for unit ball graphs

	5 The Diameter-2 problem for hypercube graphs: a hyperclique lower bound

	p022-Buchin
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Parameter space under CDTW
	2.2 Properties of the parameter space

	3 Algorithm
	3.1 Dynamic program
	3.2 Base case
	3.3 Propagation step
	3.4 Running time analysis
	3.5 Bounding the cost function's complexity

	4 Conclusion

	p023-Cabello
	1 Introduction
	2 An improved approximation algorithm
	3 Convex and flat convex point sets
	4 Polynomial time algorithms for small diameter
	5 Local improvements fail
	6 Conclusions

	p024-Cardona
	1 Introduction
	1.1 Overview
	1.2 Other metrics on merge trees

	2 Merge trees
	3 Presentations of merge trees
	4 Presentation metric on merge trees
	4.1 Equality of the infinity-presentation distance and interleaving distance
	4.2 Comparison with Wasserstein distance on barcodes

	5 Stability and universality
	5.1 Stability
	5.2 Universality


	p025-Chambers
	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Bottleneck and lex-optimal cycles
	2.1 Problem definitions
	2.2 The Sub-level bottleneck weight function
	2.3 Bottleneck weight function and persistent homology

	3 An efficient algorithm for 2-dimensional manifolds
	4 Reductions

	p026-Chaplick
	1 Introduction
	2 Preliminaries
	3 The Shapes of Components
	4 General Algorithm
	5 Extension to the Single-Connected Case
	6 An Algorithm Parameterized by the Number of Sources
	7 An Algorithm Parameterized by Treewidth
	8 Concluding Remarks

	p027-Chartier
	1 Introduction
	2 Preliminaries
	3 Disk flow and sweep-outs
	4 Existence of a simple closed quasigeodesic
	5 An algorithm to compute a weakly simple closed quasigeodesic

	p028-Chitnis
	1 Introduction
	1.1 Prior work on exact & approximate algorithms for discrete k-Center
	1.2 From 2-dimensions to higher dimensions
	1.3 Motivation & Our Results
	1.4 Discussion of the continuous k-Center problem
	1.5 Notation

	2 Lower bounds for exact & approximate k-Center in d-dimensional Euclidean space
	2.1 Lower bound for d-dimensional geometric > =-CSP [40]
	2.2 Reduction from d-dimensional geometric > =-CSP to k-Center in R^d
	2.2.1 Preliminary lemmas

	2.3 I has a satisfying assignment = = > OPT for the instance U of |V|-Center is < 2r
	2.4 I does not have a satisfying assignment = = > OPT for the instance U of |V|-Center is > = 2r(1+epsilon)
	2.5 Finishing the proof of Theorem 1


	p029-Chung
	1 Introduction
	2 Background
	3 Algorithm Overview
	4 Single Face Constraints
	5 Compatibility Constraints
	6 Solving the Constraint Satisfaction Problem
	7 Putting Things Together
	7.1 Extension to Specified Flat Angles
	7.2 Extension to Disconnected Graphs
	7.3 Finding an Exterior Face
	7.4 Finale


	p030-Conroy
	1 Introduction
	2 Two-Hop Spanners for Unit Disk Graphs
	2.1 Properties of Unit-Disk Hulls
	2.2 One Incremental Step
	2.3 Proof of Lemma 1

	3 Two-Hop Spanners for Axis-Aligned Squares
	3.1 Two-Hop Spanners for Interval Graphs
	3.2 Two-Hop Spanners for Axis-Aligned Fat Rectangles

	4 Lower Bound Constructions
	5 Outlook

	p031-Contessoto
	1 Introduction
	2 Persistent cup-length function
	2.1 Cohomology rings and the cup-length invariant
	2.2 Persistent cohomology rings and persistent cup-length functions

	3 The persistent cup-length diagram
	3.1 Persistent cup-length diagram
	3.2 An algorithm for computing the persistent cup-length diagram over Z_2
	3.3 Checking whether a cochain is a coboundary
	3.4 Main algorithm and its complexity


	p032-Damasdi
	1 Introduction
	2 Tools
	2.1 Union Lemma
	2.2 Erdős-Sands-Sauer-Woodrow conjecture
	2.3 Hadwiger's Illumination conjecture and pseudolines

	3 Proof of Theorem 1
	3.1 Quasi-orders on planar point sets
	3.2 Proof of Theorem 1

	4 Overview of the computational complexity of the algorithm
	5 Open questions

	p033-Davies
	1 Introduction
	2 Gallai's theorem with constraints
	3 Proof of Theorem 2 for θ>0
	4 Proof of Theorem 1
	4.1 High-level description of the construction
	4.2 Proof of Theorem 9


	p034-Dey
	1 Introduction
	2 Preliminaries
	2.1 Persistence Modules and their decompositions
	2.2 Generalized rank invariant and generalized persistence diagrams 
	2.3 Canonical constructions of limits and colimits

	3 Computing generalized rank via boundary zigzags
	3.1 Lower and upper fences of a poset
	3.2 Boundary cap of an interval in Z^2
	3.3 Generalized rank invariant via boundary zigzags

	4 Computing intervals and detecting interval decomposability
	4.1 Detecting interval modules
	4.2 Interval decomposable modules and its summands
	4.3 Interval decomposability

	5 Discussion

	p035-Dey
	1 Introduction
	2 Combinatorial Dynamical Systems
	3 Tracking Isolated Invariant Sets
	4 Tracking via Continuation
	4.1 Index Pairs and the Conley Index
	4.2 Combinatorial Continuation and the Tracking Protocol
	4.3 Characterizing Tracked Isolated Invariant Sets

	5 Tracking via Persistence
	5.1 Conley Index Persistence
	5.2 From continuation to filtration
	5.3 Tracking beyond continuation

	6 Conclusion

	p036-Driemel
	1 Introduction
	2 Preliminaries
	3 A (kappa+1)-approximation for the discrete Fréchet distance
	4 A (1+epsilon)-approximation for Fréchet distance
	5 A conditional lower bound for computing the Fréchet distance
	6 Concluding remarks

	p037-Dunfield
	1 Introduction
	1.1 Prior work
	1.2 Outline of algorithm

	2 Background
	2.1 Triangulations
	2.2 Triangulations with PL curves
	2.3 Dehn filling
	2.4 Pachner moves

	3 Modifying triangulations with arcs
	3.1  Pachner moves with arcs
	3.2 Simplifying arcs
	3.3 Computational geometry issues
	3.4 Putting the pieces together

	4 Factoring the 2-to-0 move
	4.1 Twisted beaks and endpoint-through-endpoint moves

	5 Building the initial diagram
	6 Simplifying link diagrams
	7 Finding certificates
	8 Implementation and initial experiments
	9 Applications
	9.1 Congruence links
	9.2 Dehn surgery descriptions
	9.3 Knots with the same 0-surgery

	10 Future work

	p038-Dvorak
	1 Introduction
	2 Parameters
	3 Operations
	3.1 Vertex addition
	3.2 Strong product
	3.3 Taking a subgraph
	3.4 Clique-sums

	4 The strong product structure and minor-closed classes
	5 Fractional treewidth-fragility

	p039-Dvorak
	1 Introduction
	1.1 Properties and applications of generalized coloring numbers
	1.2 Bounds on generalized coloring numbers
	1.3 Strong coloring numbers of intersection graphs

	2 Our results
	3 Upper bounds
	4 Lower bounds
	5 Conclusions

	p040-Eskenazis
	1 Introduction
	1.1 Metric dimension reduction
	1.2 Dimensionality and structure
	1.3 Method of proof
	1.4 epsilon-isometric dimension reduction
	1.5 epsilon-isometric dimension reduction by linear maps

	2 Proof of Theorem 2
	2.1 Maurey's empirical method and its algorithmic counterparts
	2.2 Dimension reduction in L_p(mu) for uniformly bounded vectors
	2.3 Factorization and proof of Theorem 2

	3 Proof of Theorem 6

	p041-Fuladi
	1 Introduction
	2 Preliminaries
	3 Correcting the proof of Negami
	4 Non-orientable Canonical System of Loops
	4.1 The Schaefer-Štefankovič Algorithm
	4.2 Our Modification to the Schaefer-Štefankovič algorithm
	4.3 The Non-orientable Canonical System of Loops


	p042-Garg
	1 Introduction
	1.1 Main results
	1.1.1 Robust radical Sylvester-Gallai theorem
	1.1.2 Results on structure of ideals generated by two quadratics

	1.2 Sketch of the proof of Theorem 3
	1.3 Related work
	1.4 Organization

	2 Clean vector spaces
	3 Proof of main theorem
	4 Conclusion and open problems

	p043-Peleg
	1 Introduction
	1.1 Proof idea
	1.2 The work of [Garg et al., 2021]
	1.3 Discussion

	2 Robust-SG theorems in C^n
	3 Strengthening Case iii of Theorem 11 
	4 Robust Sylvester-Gallai theorem for quadratic polynomials

	p044-Glisse
	1 Introduction
	2 Background
	3 Swapping, shifting and trimming
	4 Persistence simplification
	5 Parallelisation
	6 Approximation
	7 Zigzag persistence
	8 Experiments

	p045-Grelier
	1 Introduction
	1.1 NP-hardness results
	1.2 Approximation algorithms
	1.3 Exact algorithms, FPT algorithms

	2 The relation between MCP, MCT and CPNCS
	3 Approximation algorithms for CPNCS
	4 Fixed-parameter algorithm for CPNCS
	5 NP-hardness of MCP and MCT
	6 Open problems

	p046-Hamm
	1 Introduction
	2 Preliminaries
	2.1 Partial graph drawings
	2.2 Problem definitions
	2.3 A parameterised algorithm for classical crossing number
	2.4 Characterising partially predrawn planarity

	3 Algorithm for partially predrawn crossing number
	3.1 Phase I – Treewidth
	3.2 Phase II – MSO_2-encoding

	4 Restricting crossings per edge
	5 Conclusion

	p047-Har-Peled
	1 Introduction
	1.1 Our results

	2 Preliminaries
	2.1 Notations
	2.2 Low density and separators
	2.3 Importance sampling
	2.4 Background on matchings

	3 Approximate matchings for unit disk graph
	3.1 Greedy maximal matching
	3.2 1-epsilon-approximation
	3.3 Matching size estimation

	4 Approximate maximum matching for general disks
	4.1 The greedy algorithm
	4.2 Approximation algorithm when the graph is sparse
	4.3 The bipartite case
	4.4 Approximate matching via reduction to the bipartite case
	4.4.1 The Algorithm
	4.4.2 Analysis
	4.4.3 The result

	4.5 Algorithm for the case the maximum matching is small
	4.6 Estimation of matching size using separators
	4.6.1 Preliminaries
	4.6.2 Algorithm idea and divisions
	4.6.3 The algorithm
	4.6.4 Analysis



	p048-Jungeblut
	1 Introduction
	1.1 Related work
	1.2 Techniques and proof overview

	2 Preliminaries on the first-order theory of the reals and UER
	3 Mathematical tools
	4 Counterexamples of Strict-UETR
	5 UE<R-Hardness
	6 Open problems

	p049-Kaplan
	1 Introduction
	2 Preliminaries
	3 Fully dynamic unit disk graphs
	4 Fully dynamic bounded radius ratio
	4.1 Improving the dependence on the radius ratio

	5 Semi-dynamic bounded radius ratio
	5.1 The proxy graph
	5.2 The decremental data structure

	6 Semi-dynamic arbitrary radius ratio

	p050-Keller
	1 Introduction
	1.1 Background
	1.2 Our contributions

	2 Definitions, Notations, and Basic Observations
	2.1 Definitions and notations
	2.2 Basic claims and observations

	3 A Technical Lemma
	4 Proof of the Main Theorem
	5 Proof of Proposition 6
	6 An 0-flat Transversal With no Restriction on the Radii
	7 Comparison of Corollary 7 with Generic Infinite Ramsey-type Theorems
	8 Open Problem

	p051-Kim
	1 Introduction
	2 Preliminaries
	2.1 Eight Monotone Paths from a Point

	3 Farthest-point Maps
	4 Data Structure for Farthest-neighbor Queries
	4.1 Handling a site event
	4.2 Handling a bottom-side event
	4.3 Handling a top-side event
	4.4 Constructing the query data structure

	5 Computing the Explicit Farthest-point Voronoi Diagram
	5.1 Bisectors of farthest-point maps
	5.2 Partitioning f into zones
	5.3 Gluing along boundaries

	6 Concluding Remarks

	p052-Kumar
	1 Introduction
	2 Preliminaries
	3 Labeled Intersection Graph of Obstacles
	4 Application to Obstacle-removal
	5 Generalized Points-separation
	5.1 A 2^{O(p^2)} n^{O(p)} Algorithm
	5.2 Faster Algorithms for Points-separation
	5.3 Hardness of Points-separation


	p053-Lazarus
	1 Introduction
	2 Background and definitions
	3 The construction of Burago and Zalgaller
	3.1 Embedding a triangle
	3.2 Embedding arbitrary polyhedral surfaces

	4 Embedding flat tori
	4.1 Acute triangulation of flat tori
	4.2 Conformal embedding of flat tori
	4.3 The final construction

	5 Universal triangulation
	5.1 Embedding long tori
	5.2 The flat tori of Tsuboi and Arnoux et al.
	5.3 Realizing the short tori with three diplotori

	6 Merging short and long tori

	p054-Le
	1 Introduction
	1.1 Known upper bounds
	1.2 Known lower bounds
	1.3 Our contribution

	2 Preliminaries
	3 Warm-up: lower bounds for hop-diameters 2 and 3
	3.1 Hop diameter 2
	3.2 Hop diameter 3

	4 Lower bound for constant hop-diameter

	p055-Ophelders
	1 Introduction
	2 Background and terminology
	2.1 Drawings and local disks
	2.2 Cuts and shortcuts

	3 Overview of the algorithm
	4 Simplifying the drawings
	5 Bubbling a sub-tree
	6 Spine disks
	6.1 Spine decomposition
	6.2 Structure tree

	7 Optimizing the optimal-height drawings
	7.1 Quality of a drawing
	7.2 Properties of drawings with maximum quality
	7.3 Breaking ties while respecting the orders
	7.4 Fat structures

	8 The dynamic program
	9 Discussion

	p056-Pach
	1 Introduction
	2 Shift graphs – Proof of Theorem 1
	3 Hypergraphs of large girth – Proof of Theorem 3
	4 Two-way infinite polygonal chains – Proof of Theorem 5
	5 Concluding remarks

	p057-Patakova
	1 Introduction
	2 Proof of Theorem 1
	2.1 Upper bound constructions

	3 The case of spheres
	4 Discussion

	p058-Rolle
	1 Introduction
	1.1 Background
	1.2 Homology inference for degree-Rips
	1.3 Related work

	2 Preliminaries
	3 The Vietoris–Rips complexes of an annulus
	4 Boundary curves in the degree-Rips parameter space
	5 The annulus without outliers
	6 Conclusions

	p059-Rutschmann
	1 Introduction
	2 Structural Properties of Chains
	2.1 Flips
	2.2 Convex and Concave Sums
	2.3 Algebraic Properties
	2.4 Examples
	2.5 Unique Construction
	2.6 Geometric Characterization

	3 Triangulations of Chains
	3.1 Convex and Concave Sums
	3.2 Dynamic Programming
	3.3 Koch Chains

	4 Poly Chains and Twin Chains
	4.1 Tools for the proof of Theorem 28
	4.2 Proof of Theorem 28 (only Poly Chains)


	p060-Sheehy
	1 Introduction
	2 Related Work
	3 Definitions
	3.1 Metric Spaces
	3.2 Packings and Coverings
	3.3 Bottleneck Distance
	3.4 The Persistence Plane
	3.5 Gromov-Hausdorff Distance

	4 epsilon-Close Quotient Metric Spaces
	5 Nearly-Doubling Metric Spaces
	6 Clarkson's Algorithm in Nearly-Doubling Spaces
	7 Bottleneck Metrics
	8 Bottleneck Spaces with Multiplicity
	9 The Space of Bounded Persistence Diagrams
	10 Conclusion

	p061-Solomon
	1 Introduction
	2 The Distributed Topology Problem
	2.1 Case Study: The Noisy Circle

	3 Prior Work on Distributed Topology
	4 Background
	5 Theoretical Results
	5.1 Stability
	5.2 Injectivity
	5.3 Inverse Stability
	5.4 Topology + Sparse Geometry
	5.5 Probabilistic Results

	6 Applications
	7 Experiments
	8 Conclusion

	p062-Suk
	1 Introduction
	2 A positive fraction result for monotone paths
	3 Block-monotone sequence partition
	4 Applications
	4.1 Mutually avoiding sets
	4.2 Monotone biarc diagrams

	5 Final remarks

	p063-Tai
	1 Introduction
	1.1 Known results
	1.2 Related works
	1.3 Our result

	2 Preliminaries
	3 Proof overview
	4 Proofs
	4.1 Useful lemmas
	4.2 Base step
	4.3 Inductive step
	4.4 Full algorithm

	5 Conclusion and discussion

	p064-Wang
	1 Introduction
	2 Background
	2.1 Images as cubical filtrations
	2.2 The Euler characteristic curve
	2.3 ECC computation

	3 Related work on ECC: applications and computations
	4 GPU implementation
	4.1 Challenges
	4.2 Structure of the computations
	4.3 Optimizations
	4.4 Streaming

	5 Experiments
	5.1 Case study: Single image on disk
	5.2 Case study: Batch processing of images on disk
	5.3 Case study: GPU-only pipeline
	5.4 Dependence on dimension

	6 Discussion

	p065-Bourgeois
	1 Introduction
	2 Algorithmic results
	3 The video

	p066-Chambers
	1 Introduction
	2 Burning Bing's house

	p067-Devadoss
	1 Unfolding Polytopes
	2 Unfolding Geometry
	3 Implementation

	p068-Ghosh
	1 Introduction
	2 Algorithms implemented
	2.1 Constructing WSPDs
	2.2 Applications of WSPDs


	p069-Mantas
	1 Introduction
	2 Problem 1: Finding the Fermat point
	3 Problem 2: Constructing n-ellipses
	4 Problem 3: Constructing the min-sum Voronoi diagram

	p070-Sonke
	1 Introduction
	2 Functionality

	p071-Crombez
	1 Introduction
	2 Initial Solutions
	3 Improving Solutions
	3.1 Conflict optimizer
	3.2 Modifications to the conflict optimizer

	4 Implementation and Experiments
	4.1 Implementation
	4.2 Parameter analysis

	5 Challenge Results

	p072-Spalding-Jamieson
	1 Introduction
	2 Methods
	2.1 Solution initialization
	2.2 Solution optimization: conflict search
	2.3 Failed approach: memetic algorithms

	3 Results
	3.1 Implementation
	3.2 Challenge computing environment
	3.3 Comparison on DIMACS dataset

	4 Conclusion

	p073-Fontan
	1 Introduction
	2 Related work
	3 Finding Initial Solutions
	4 Conflict Weighting Local Search (CWLS)
	5 Partial Weighting Local Search (PWLS)
	6 Results and Conclusions

	p074-Schidler
	1 Introduction
	2 Preliminaries
	3 Method
	3.1 Hyperparameters
	3.2 Parallelisation

	4 Experiments
	4.1 Competition
	4.2 24-hour experiment

	5 Conclusion




