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—— Abstract

A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which
may have holes. In this paper, we consider planar tiling and packing problems with polyomino
pieces and a polyomino container P. We give polynomial-time algorithms for deciding if P can be
tiled with k x k squares for any fixed k& which can be part of the input (that is, deciding if P is
the union of a set of non-overlapping k X k squares) and for packing P with a maximum number
of non-overlapping and axis-parallel 2 x 1 dominos, allowing rotations by 90°. As packing is more
general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2 x 1 dominos.

These are classical problems with important applications in VLSI design, and the related problem
of finding a maximum packing of 2 x 2 squares is known to be NP-hard [J. Algorithms 1990]. For
our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with
running times polynomial in the area or perimeter of P. However, the standard, compact way to
represent a polygon is by listing the coordinates of the corners in binary. We use this representation,
and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple
O(nlogn)-time algorithm for tiling with squares, where n is the number of corners of P. We then
give a more involved algorithm that reduces the problems of packing and tiling with dominos to
finding a maximum and perfect matching in a graph with O(ng) vertices. This leads to algorithms
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with running times O(n” ;#-0) and O(n® 255, respectively.
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1 Introduction

A chessboard has been mutilated by removing two diagonally opposite corners, leaving 62
squares. Philosopher Max Black asked in 1946 whether one can place 31 dominos of size
1 X 2 so as to cover all of the remaining squares? Tiling problems of this sort are popular in
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Figure 1 The chessboard polyomino envisioned by Max Black.

recreational mathematics, such as the mathematical olympiads' and have been discussed
by Golomb [14] and Gamow and Stern [12]. The mutilated chessboard and the dominos
are examples of the type of polygon called a polyomino, which is a polygonal region of the
plane with axis-parallel edges and corners of integral coordinates. We allow polyominos to
have holes.

From an algorithmic point of view, it is natural to ask whether a given (large) polyomino
P can be tiled by copies of another fixed (small) polyomino @, which means that P is the
union of non-overlapping copies of @ that may or may not be rotated by 90° and 180°. As
the answer is often a boring no, one can ask more generally for the largest number of copies of
@ that can be packed into the given container P without overlapping. Algorithms answering
this question (for various @) turn out to have important applications in very large scale
integration (VLSI) circuit technology. As a concrete example, Hochbaum and Maass [15]
gave the following motivation for their development of a polynomial-time approximation
scheme for packing 2 x 2 squares into a given polyomino P (using the area representation of
P, to be defined later).

“For example, 64K RAM chips, some of which may be defective, are available on a
rectilinear grid placed on a silicon wafer. 2 x 2 arrays of such nondefective chips could
be wired together to produce 256K RAM chips. In order to maximize yield, we want
to pack a maximal number of such 2 x 2 arrays into the array of working chips on a
wafer.”

Although the mentioned amounts of memory are small compared to those of present day
technology, the basic principles behind the production of computer memory are largely
unchanged, and methods for circumventing defective cells of wafers (the cells are also known
as dies in this context) is still an active area of research in semiconductor manufacturing
[7,9, 17, 19].

The most important result in tiling is perhaps the combinatorial group theory approach
by Conway and Lagarias [8]. Their algorithmic technique is used to decide whether a given
finite region consisting of cells in a regular lattice (triangular, square, or hexagonal) can be
tiled by pieces drawn from a finite set of tile shapes. Thurston [25] gives a nice introduction
to the technique and shows how it can be used to decide if a polyomino without holes can

1 See e.g. the “hook problem” of the International Mathematical Olympiad 2004.
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be tiled by dominos. The running time is O(aloga), where a is the area of P. Pak, Sheffer,
and Tassy [22] described an algorithm with running time O(plogp), where p is the perimeter
of P.

The problem of packing a maximum number of dominos into a given polyomino P was
apparently first analyzed by Berman, Leighton, and Snyder [5] who observed that this
problem can be reduced to finding a maximum matching of the incidence graph G(P) of the
cells in P: There is a vertex for each 1 x 1 cell in P, and two vertices are connected by an
edge if the two cells share a geometrical edge. The graph G(P) is bipartite, so the problem
can be solved in O(a/?) time using the Hopcroft-Karp algorithm, where a is the number of
cells (i.e., the area of P).

On the flip-side, a number of hardness results have been obtained for simple tiling and
packing problems: Beauquier, Nivat, Remila, and Robson [2] showed that if P can have holes,
the problem of deciding if P can be tiled by translates of two rectangles 1 x m and k x 1
is NP-complete as soon as max{m, k} > 3 and min{m, k} > 2. Pak and Yang [23] showed
that there exists a set of at most 10° rectangles such that deciding whether a given hole-free
polyomino can be tiled with translates from the set is NP-complete. Other generalizations
have even turned out be undecidable: Berger [3] proved in 1966 that deciding whether pieces
from a given finite set of polyominos can tile the plane is Turing-complete (interestingly,
Wijshoff and van Leeuwen [26] and Beauquier and Nivat [1] gave algorithms for deciding
whether a single polyomino tiles the plane). For packing, Fowler, Paterson, and Tanimoto [11]
showed already in the early 80s that deciding whether a given number of 3 x 3 squares can
be packed into a polyomino (with holes) is NP-complete, and the result was strengthened to
2 x 2 squares by Berman, Johnson, Leighton, Shor, and Snyder [4].

As it turns out, for all of the above results, it is assumed that the container P is
represented either as a list of the individual cells forming the interior of P or as a list of the
boundary cells. We shall call these representations the area representation and perimeter
representation, respectively. The area and perimeter representations correspond to a unary
rather than binary representation of integers and the running times of the existing algorithms
are thus only pseudo-polynomial. It is much more efficient and compact to represent P by the
coordinates of the corners, where the coordinates are represented as binary numbers. This is
the way one would usually represent polygons (with holes) in computational geometry: The
corners are given in cyclic order as they appear on the boundary of P, one cycle for the outer
boundary and one for each of the holes of P. We shall call such a representation a corner
representation. With a corner representation, the area and perimeter can be exponential in
the input size, so the known algorithms which rely on an area or perimeter representation to
be polynomial, are in fact exponential when using this more efficient encoding of the input.
Problems that are NP-complete in the area or perimeter representation are also NP-hard in
the corner representation, but NP-membership does not necessarily follow. In our practical
example of semiconductor manufacturing, the corner representation also seems to be the
natural setting for the problem: Hopefully, there are only few defective cells to be avoided
when grouping the chips, so the total number of corners of the usable region is much smaller
than its area.

El-Khechen, Dulieu, Iacono, and Van Omme [10] showed that even using a corner
representation for a polymino P, the problem of deciding if m squares of size 2 x 2 can be
packed into P is in NP. That was not clear before since the naive certificate specifies the
placement of each of the m squares, and so, would have exponential length. Beyond this,
we know of no other work using the corner representation for polyomino tiling or packing
problems.

1:3
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Our contribution

While the complexity of the problem of packing 2 x 2 squares into a polyomino P has thus
been settled as NP-complete, the complexity of the tiling problem was left unsettled. Tiling
and packing are closely connected in this area of geometry, but their complexities can be
drastically different. Indeed, we show in Section 3 that it can be decided in O(nlogn) time
by a surprisingly simple algorithm whether P can be tiled by k x k squares for any fixed
k € N which can even be part of the input. Here, n is the number of corners of P.2 With
the area and perimeter representations, it is trivial to decide if P can be tiled in polynomial
time (see Section 3), but as noted above, using the corner representation, it is not even
immediately obvious that the problem is in NP.

In Section 4, we provide and analyze a simple algorithm, which we denote simple-packer,
that can decide if m dominos (i.e., rectangles of size 1 x 2 that can be rotated 90°) can be
packed in a given polyomino P. The algorithm works by truncating long edges of P, so that
the resulting polyomino P” has area O(n?). The graph G(P”) induced by the unit square
cells constituting P” can likewise be constructed in time O(n?). We then use a multiple-sink
multiple-source maximum flow algorithm as a black box [6, 13] to find a maximum matching
in G(P"), which results in a running time of O(n4%). In order to decide if P can be
tiled with dominos, we can instead use a single-source shortest path algorithm [21], with
which one can find perfect matchings in bipartite planar graphs [20], and we obtain a slightly
4 1c1§glzgnn)' Although the truncation process of reducing the size to
O(n%) is simple, the proof of correctness is nontrivial and requires some structural lemmas

better running time of O(n

on domino packings.

In the full version of this paper, we manage to reduce the domino packing and tiling
problems to finding a maximum and perfect matching in a bipartite planar graph G*
with O(n?®) vertices, instead of O(n?) as for simple-packer. We denote this algorithm
fast-packer. The actual graph G* can also be constructed in time O(n3). This reduction
relies on the same structural results as are needed for simple-packer, but it is however
quite a bit more complicated, and many techniques and technical lemmas are required to

P 3
prove correctness and bound the size of G*. We obtain running times of O(n‘slolggg:ib’gln) and

o(n? lg‘;’ig"n) for packing and tiling, respectively. Table 1 summarises the known and new

results.

Table 1 Complexities of the four fundamental tiling and packing problems. Here, n is the number
of corners of the container P. The algorithm for tiling with squares works for any size k x k.

Shapes Tiling Packing
og2n . og3 n .
(1] B O(n? lolgglogn) [This paper] | O(n? 101gleogn) [This paper]
EH O(nlogn) [This paper] NP-complete [4, 10]

2 We assume throughout the paper that we can make basic operations (additions, subtractions, compar-
isons) on the coordinates in O(1) time. Otherwise, the time complexity of our square tiling algorithm

3 log®n
log? logn

will be O(ntlogn) and the domino packing algorithm will have complexity O(n3t 4+ n ), where

t is the time it takes to make one such operation.
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Open problems

Many interesting questions remain for slightly more complex shapes than studied in this
paper. For instance, polynomial-time algorithms are known for tiling polyominos with
larger rectangles in the area representation [18, 24]. Are there also algorithms in the corner
representation? For the problems that are NP-complete in the area representation [2, 16, 23],
which are also contained in NP in the corner representation?

Another interesting problem is to design domino tiling and packing algorithms with better
running times than our O(n3) in the corner representation, e.g., near-linear time algorithms.
It seems conceivable that the techniques of [22] can lead to such improvements for tiling
simply connected polyominos with dominos. Specifically, it is shown that to decide tilability
of a simply connected polyomino P, it suffices to check a certain Lipschitz condition on a
height function defined on the boundary P of P, and that (essentially) this check can be
carried out by considering only O(p) pairs of boundary points, where p is the perimeter of P.
It is plausible that one could obtain a similar bound on the number of pairs to be checked in
terms of n, which would lead to a faster domino tiling algorithm for hole-free polyominos.

1.1  Our techniques
Tiling with k£ X k squares

We sort the corners of the given polyomino P by the z-coordinates and use a vertical sweep-
line ¢ that sweeps over P from left to right. The intuition is that the algorithm keeps track
of how the tiling looks in the region of P to the left of £ if a tiling exists. As £ sweeps over
P, we keep track of how the tiling pattern changes under ¢. Each vertical edge of P that ¢
sweeps over causes changes to the tiling, and we must update our data structure accordingly.

Packing dominos

The basic approach of both the simple-packer and the fast-packer algorithm is to reduce
the packing problem in the polyomino P (with n corners) to a maximum matching problem
in a graph G* with only polynomially many vertices and edges. We prove that a maximum
matching in G* corresponds to a maximum packing of dominos in P. The construction of
G* relies on some non-trivial structural results on domino packings.

The algorithm simple-packer first sorts the corners by z-coordinates and considers
the corners in this order ¢y,...,¢,. When z(c¢i11) — 2(¢;) > 9n, we move all the corners
Cit+1,-- -, Cpn to the left by a distance of = x(c;41) — x(¢;) — 6n, so that the new distance is
~ 6n. We then do a similar truncation of vertical edges, and the resulting polyomino P” has
area O(n*). We define G* as the induced graph G* := G(P") and then compute a maximum
matching M in G* using a multiple-source multiple-sink maximum flow algorithm [6, 13].
The structural lemmas are used to ensure that the number of uncovered cells in maximum
domino packings of the original polyomino P and the reduced P are the same, so it follows
that a maximum domino packing in P has size | M| + w.

The algorithm fast-packer works by reducing the packing problem to finding a maximum
matching in a bipartite planar graph G* with O(n?) vertices. The number of dominos in
a maximum packing in the original polyomino P is then |M| + w, where M is
a maximum matching in G* and V(G*) is the set of vertices of G*. The construction of
G* requires many techniques and technical lemmas regarding the particular way we define

intermediate polyominos and graphs that are used to eventually arrive at G*. The process
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consists of five steps, and they are illustrated and described informally in Figures 2—4. We
refer the reader to the full version for a detailed description of the steps and proofs that the
algorithm works as claimed.

P il

Figure 2 Steps 1 and 2 made by the fast-packer algorithm. Top left: In step 1, we define
P; C P to be the maximum subpolyomino with all corner coordinates even. The removed part
P\ P is shown in red along the edges. Top right: In step 2, we carve channels from the holes of
P to the outer boundary, to get a hole-free polyomino P,. Bottom: Closeup of the region in the
dashed rectangle.

2 Preliminaries

We define a cell to be a 1 x 1 square of the form [i,7 + 1] x [j,5 + 1], i,j € Z. A subset
P C R? is called a polyomino if it is a finite union of cells. For a polyomino P, we define
G(P) to be the graph which has the cells in P as vertices and an edge between two cells if
they share a (geometric) edge. We say that P is connected if G(P) is a connected graph.
Figure 5 (a) illustrates a connected polyomino. For a simple closed curve v C R?, we denote
by Inty the interior of 4. An alternative way to represent a connected polyomino is by a
sequence of simple closed curves (yo,71,-..,7s) such that (1) each of the curves follows the
horizontal and vertical lines of the integral grid Z?, (2) for each i € {1,...,h}, Int; C Int o,
(3) for each distinct 4,5 € {1,...,h}, Inty; NIntvy; = 0, and (4) for distinct i, j € {0,...,h},
v; Nv; C Z?. For a connected polyomino P, there exists a unique such sequence (up to
permutations of v1,...,7,) with P = Int~yg \ (U?:1 Int ;). It is standard to reduce our
tiling and packing problems to corresponding tiling and packing problems for connected
polyominos, so for simplicity we will assume that the input polyominos to our algorithms



A. Aamand, M. Abrahamsen, T. Ahle, and P. M. R. Rasmussen

[ ] ]
P Q Ps

- =

5]

Figure 3 Steps 3 and 4 made by the fast-packer algorithm, performed on the instance from
Figure 2. Left: In step 3, we compute the grey region ), which is obtained by offsetting the boundary
of the hole-free polyomino P, inwards by a distance of ©(n). In this example, @ is connected, but
that is in general not the case. Right: In step 4, we consider the polyomino P3 := P\ @ in which all
cells have distance O(n) to the boundary. We identify long pipes (the dark, blue rectangles). These
may be exponentially long and must therefore be reduced.

Figure 4 In step 5, the algorithm fast-packer reduces each pipe T; of Ps, here of size ¢ X k, to
a graph of polynomial size. The part of the induced graph G(T;) in between the dashed vertical
lines is replaced by long horizontal edges.

are connected. The corners of a polyomino P (specified by a sequence (v9,7v1,...,71)), are
the corners of the curves 7, ...,7,. We assume that an input polyomino with n corners
is represented using O(n) words of memory by describing the corners of each of the curves
Y0, - - -, Yn in cyclic order.

Yo

mE . T

[ ] :
(a) (b)

Figure 5 (a) A polyomino with two holes. (b) Extending a domino packing using an augmenting
path in G(P).

In this paper we will exclusively work with the L.,-norm when measuring distances. For
two points a,b € R? we define dist(a,b) = ||a — b||oo. For two subsets A, B C R? we define

dist(4,B) = inf  dist(a,b).
(a,b)eAxXB

1:7
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In our analysis, A and B will always be closed and bounded (they will in fact be polynomios),
and then the inf can be replaced by a min. Finally, we need the notion of the offset B(A,r)
of a set A C R? by a value r € R. If » > 0, we define

B(A,r) = {z € R? | dist(z, A) <r},

and otherwise, we define B(A,r) := B(A¢, —r)°. Note that if » > 0, we have A C B(A,r)
and otherwise, we have B(A4,r) C A.

Note that a domino packing of P naturally corresponds to a matching of G(P) and we
will often take this viewpoint. We therefore require some basic matching terminology and
a result on how to extend matchings. Let G be a graph and M a matching of G. A path
(v1,...,v2k) of G is said to be an augmenting path if v1 and vgi are unmatched in M and for
each 1 <i <k — 1, vg; and wvy; 41 are matched to each other in M. Modifying M restricted
to {v1,...,v9,} by instead matching (vg;_1,v2;) for 1 < i < k, we obtain a larger matching
which now includes the two vertices v; and vgi. See Figure 5 (b) for an illustration in the
context of domino packings. We require the following basic result by Berge which guarantees
that any non-maximum matching of G can always be extended to a larger matching using
an augmenting path as above.

» Lemma 1 (Berge). Let G be a graph and M a matching of G which is not maximum.
Then there exists an augmenting path between two unmatched vertices G.

3 Tiling with squares

3.1 Naive algorithm

The naive algorithm to decide if P can be tiled with k& x k tiles works as follows. Consider
any convex corner ¢ of P. A k X k square S must be placed with a corner at ¢. If S is not
contained in P, we conclude that P cannot be tiled with k x k squares. Otherwise, we recurse
of the uncovered part P\ S. When nothing is left, we conclude that P can be tiled. This
algorithm runs in time polynomial in the area of P and also shows that if P can be tiled,
there is a unique way to do it.

3.2 Sweep-line algorithm

For the ease of presentation, we focus on the case of deciding tileability using 2 x 2 squares.
It is straightforward to adapt the algorithm to decide tileability by k& x k squares for any
fixed k € N, as explained in the full version.

Our algorithm for deciding if a given polyomino P can be tiled with 2 x 2 squares uses a
vertical sweep line that sweeps over P from left to right. The intuition is that the algorithm
keeps track of how the tiling looks in the region of P to the left of £ if a tiling exists. As £
sweeps over P, we keep track of how the tiling pattern changes under ¢. Each vertical edge
of P that ¢ sweeps over causes changes to the tiling, and we must update our data structures
accordingly.

Recall that if P is tileable, then the tiling is unique. We define T'(P) C P to be the union
of the boundaries of the tiles in the tiling of P, i.e., such that P\ T'(P) is a set of open 2 x 2
squares. If P is not tileable, we define T'(P) := L.

Consider the situation where the sweep line is some vertical line ¢ with integral z-
coordinate z(¢). The algorithm stores a set Z of pairwise interior-disjoint closed intervals
IT=1,...,I, CR, ordered from bottom to top. Each interval I; has endpoints at integers
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and represents the segment I} := {z(¢)} x I; on £. In the simple case that no vertical edge
of P has z-coordinate z(¢) (so that no change to the set P N ¢ happens at this point), the
intervals Z together represent the part of £ in P, i.e., we have PN/ = Uie[m] I!. If one or
more vertical edges of P have z-coordinate x({), then P N ¢ changes at this point and the
intervals Z must be updated accordingly.

For each interval I; we store a parity p(I;) € {0,1}, which encodes how the tiling must
be at I] if P is tileable. To make this precise, we state the following parity invariant of the
algorithm under the assumption that P is tileable; see also Figure 6.

T I I I ey
— —\T{ H ’ﬂh‘ I I R
1 1 I O O
1 — — —ﬁ 1 I Y O
— €2 €3 — I I A
1 . — T 1 S Y O
1 ] 1 i
— 1 C4 [ ] e
[ T 1 [T] €3] ]
[ 11 [T] | | | |

T | | | | | |

|

Figure 6 Two instances that cannot be tiled. Left: The edge ex splits the only interval in Z into
two smaller intervals. Then e3 introduces a new interval with a different parity than the existing
two. The edge es makes the algorithm conclude that P cannot be tiled since e4 overlaps an interval
with the wrong parity. Right: The edges es and e4 introduce new intervals that are merged with
the existing one. Edge e¢ introduces an interval which is merged with the existing interval and the
result has odd length, so the algorithm concludes that P cannot be tiled.

If p(1;) and x(¢) have the same parity, then I} C T'(P), i.e., I/ follows the boundaries of
some tiles and does not pass through the middle of any tile.

Otherwise, I NT(P) consists of isolated points, i.e., I/ passes through the middle of some
of the tiles and does not follow the boundary of any tile.

We say that two neighboring intervals I;, I; 11 of Z are true neighbors if I; and I;;1 share
an endpoint. In addition to the parity invariant, we require Z to satisfy the following neighbor
invariant: Any pair of true neighbors of Z have different parity.

The pseudocode of the algorithm is shown in Algorithm 1. Initially, we sort all vertical
edges after their z-coordinates and break ties arbitrarily. We then run through the edges in
this order. Each edge makes a change to the set P N ¢, and we need to update the intervals
7 accordingly so that the parity and the neighbor invariants are satisfied after each edge has
been handled. Figure 6 shows examples of the two cases where the algorithm concludes that
there is not tiling.

Using the parity and neighbour invariants, it is proven in the full version that the algorithm
returns “tileable” if and only if P is tileable. Moreover, it is shown that the algorithm can
be implemented to run in O(nlogn) time.

4 Simple domino packing algorithm

In this section we will present our polynomial-time algorithm simple-packer for finding the
maximum number of 1 X 2 dominos that can be packed in a polyomino P. We assume that
the dominos must be placed with axis-parallel edges, but they can be rotated by 90°. In
any such packing, we can assume the pieces to have integral coordinates: if they do not, we

1:9
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Algorithm 1 Our simple sweep line algorithm for deciding if a polyomino (that may have
wholes) can be tiled with 2 x 2 square polyominos.

1 Let ey, ..., e be the vertical edges of P in sorted order.

2 forj=1,...,kdo

3 Let [yo,y1] be the interval of y-coordinates of e;.

4 if the interior of P is to the left of e;

5 for each I; € 7 that overlaps [yo, y1] do

6 if I, and z(e;) have different parity

7 L return “no tiling”

8 Remove I; from Z, let J := I; \ [yo, 1], and if J # 0, add the interval(s) in

JtoZ.
9 else
10 Make a new interval I := [yo,y1] with the parity p(I) := z(e;) mod 2 and add
ItoX.

11 if I has one or two true neighbors in Z that also have the same parity as I
12 L Merge those intervals in Z.

13 if j <k and x(e;j41) > z(e;) and some I; € Z has odd length
14 L return “no tiling”

15 return “tileable”

can translate the pieces as far down and to the left as possible, and the corners will arrive
at positions with integral coordinates. We first describe a naive algorithm which runs in
polynomial time in the area of the polyomino.

4.1 Naive algorithm

The naive algorithm considers the graph G(P) = (V, E) where V is the set of cells of P and
e = (u,v) € E if and only if the two cells u and v have a (geometrical) edge in common.
The maximum number of 1 X 2 dominos that can be packed in P is exactly the size of a
maximum matching of G and it is well known that such a maximum matching can be found
in polynomial time in |V, i.e., in the area of P.

4.2 Simple polynomial-time algorithm

Our polynomial-time algorithm, simple-packer, first sorts the corners of P by x-coordinates
and consider the corners in this order ¢y, ..., ¢,. When x(c;4+1) — z(¢;) > 9n, we move all the
COrners ¢;i1,...,C, to the left by a distance of 2ij — 6n. We call this operation
a contraction. The result after all of the contractions is a polyomino P’ with the parities
of the z-coordinates unchanged and with the difference between the z-coordinates of any
two consecutive corners at most 6n. We then consider the corners in order according to
y-coordinates and do a similar truncation of the long vertical edges. We have now reduced
the container P to an orthogonal polygon P of area at most O(n*), since the span of the
x-coordinates is O(n?), as is the span of the y-coordinates. We proceed by finding maximum
or perfect matchings in G(P"), as described in the introduction.

For some containers P, the graph G(P”) really has Q(n?) vertices, so simple-packer
is indeed slower than fast-packer. For instance when the boundary of P consists of four
“staircases”, each consisting of n/4 vertices, where each step has width and height n; see
Figure 7 (left). Here, fast-packer will remove most of the interior, leaving a layer of cells
of thickness O(n) around the boundary, but simple-packer will not make any contractions.
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|

|

P P

Figure 7 Left: A polyomino with area Q(n?) that simple-packer will not reduce. Right: If we
truncate edges so that consecutive z-coordinates have difference either 1 or 2 (keeping the parities
invariant), then there may be more uncovered cells in a maximum packing of the reduced instance
than in the original.

One might be tempted to think that we can even truncate the edges so that the difference

between consecutive z- and y-coordinates is either 1 or 2, keeping the parity of all coordinates.

However, this does not work, as seen in Figure 7 (right). Two dominos can be packed in the
reduced container P’, and the reduction decreases the area by eigth cells, so the formula
would give that the original container P has room for six dominos, but there is actually room
for seven.

4.3 Structural results on polyominos and domino packings

Building up to our structural results on domino packings, we require a few definition and
simple lemmas. We first introduce the notion of a pipe (see Figure 8) and consistent parity.

» Definition 2. Let P and Q be polyominos with Q C P. We say that Q is a pipe of P if
Q is rectangular and both vertical edges of Q@ or both horizontal edges of QQ are contained
in edges of P. The width of the pipe is the distance between this pair of edges. The length
of the pipe is the distance between the other pair of edges. We say that a pipe is long if its
length s at least 3 times its width.

k 0 —

Figure 8 A pipe Q of width k£ and length ¢.

» Definition 3. We say that a polyomino P has consistent parity if all first coordinates of
the corners of P have the same parity and likewise for the second coordinates. Equivalently,
P has consistent parity if there exists an open 2 X 2 square, S, such that for all choices of
integers i,j and S" = S + (2i,25), either S" C P or S'NP =10.

Variations of the following lemma are well-known. We present a proof for completeness.

» Lemma 4. Let P be an orthogonal polygon with n corners and h holes. P can be divided
into at most n/2 + h — 1 rectangular pieces by adding only vertical line segments to the
interior of P. If P is a polyomino, the rectangular pieces can be chosen to be polyominos too.
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Figure 9 A partition of a polyomino with two holes into rectangles using vertical line segments
(blue).

Proof. For each concave corner of the polygon we add a vertical line segment in the interior
of the polygon starting from that corner and going upwards or downwards (depending on
the rotation of the given corner). This is illustrated in Figure 9. Let s be the number
of line segments added. It is easy to check that this gives a partition of P into exactly
s —h + 1 rectangles. With h holes, the number of concave corners is n/2 + 2(h — 1), so also
s <n/2+2(h—1) and the result follows. <

Note that for a polygon with n corners, h < (n —4)/4, so we have the following trivial
corollary.

. . . 3
» Corollary 5. The number of rectangular pieces in Lemma 4 is at most 3n — 2.
We next show that the property of consisting parity is preserved under integral offsets.

» Lemma 6. Let P be a polyomino. If P has consistent parity, then B(P,1) and B(P,—1)
have consistent parity.

Proof. Suppose P has consistent parity. Let S be a 2 x 2 square as in Definition 3. Define
S1 =84 (1,1). It is easy to check that for all choices of integers 4, j and S} := S; + (2¢, 25),
either S7 C B(P,1) or S; N B(P,1) = (. Thus B(P,1) has consistent parity. The argument
that B(P, —1) has consistent parity is similar. <

» Lemma 7. Let P be a connected polyomino of consistent parity and without holes. Define
L, =B(P,1)\P and L_y = P\B(P,—1). Then G(L1) and G(L_1) both have a Hamiltonian
cycle of even length.

Proof. To obtain a Hamiltonian cycle of G(L1), we can simply trace P around the outside of
its boundary, visiting all cells of L; in a cyclic order. The corresponding closed trail of G(L;)
visits each vertex at least once. The assumption of consistent parity is easily seen to imply
that we in fact visit each vertex exactly once, so the obtained trail is a Hamiltonian cycle.
The graph G(L1) is bipartite, so the cycle has even length. The argument that G(L_1) has
a Hamiltonian cycle of even length is similar. |

With the above in hand, we are ready to state and prove our main structural results on
domino packings. They are presented in Lemma 8 and Lemma 10.

» Lemma 8. Let P and Py be polyominos such that Py C P, Py has no holes, and Py has
consistent parity. Let the total number of corners of P and Py be n. Define r = L%n] and
Q = B(Py, —7). There exists a mazimum packing of P with 1 X 2 dominos which restricts to

a tiling of Q.
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Let us briefly pause to explain the importance of Lemma 8. Suppose that P contains a
region () as described. Then Lemma 8 tells us that any domino tiling of () can be extended to
a maximum domino packing of P. We can thus disregard @) and focus on finding a maximum
packing of P\ @, thus reducing the problem to a smaller instance. This is one of our key
tools for reducing the size of the original polyomino P to a matching problem of polynomial
size.

Proof. It follows from Lemma 6 that () has consistent parity, and it can thus be tiled with
2 x 2 squares and hence with dominos. Let Q be a tiling of Q.

L T P || |

Figure 10 The polyomino P, and the offset @ (shown in green). The figure also illustrates the
“layers” A; and their domino tilings, A;.

Define R = P\ Py and note that R has at most n corners. It follows from Corollary 5 that
R can be partitioned into less than %n rectangular polyominos. FEach of these rectangles has
a domino packing with at most one uncovered cell (which happens when the total number of
cells in the rectangle is odd). Fix such a packing R of the rectangles of R with dominos.

We next describe a tiling of Py \ @ as follows. For integers 1 < i < r we define,
A; = B(Py,—i+ 1)\ B(Py, —i). Intuitively, we can construct @ from Py by peeling off the
“layers” A; of Py one at a time. Let i € {1,...,r} be fixed. As Py has consistent parity, it
follows from Lemma 6 that B(Py, —i + 1) has consistent parity. It is also easy to check that
B(Py,—i + 1) has no holes either, and it then follows from Lemma 7 that each connected
component of G(A;) has a Hamiltonian cycle of even length. These cycles give rise to a
natural tiling of A;; if (vy,...,vo) is the sequence of cells corresponding to such a cycle, then
{v1 Uvg,v3 Uwy,...,vak_1 Uvgg} is a tiling of the cells of the cycle, and the union of such
tilings over all connected components in G(A;) gives a tiling of A; with dominos. Denote
this tiling by A;. See Figure 10 for an illustration of this construction.

Combining the tilings Aj, ..., A, and Q with the packing R, we obtain a domino packing,
P, of P where at most %n cells of P are uncovered. We now wish to extend this packing to
a maximum packing in a way where we do not alter the tiling Q of Q. If we can do this,
the result will follow. Let M be the matching corresponding to P in G(P). We make the
following claim.

> Claim 9. Let k < r. Suppose that the matching M can be extended to a matching of
size |M| + k. Then this extension can be made using a sequence C1, ..., C of k augmenting
paths one after the other (that is, C; is an augmenting path after the matching has been
extended using C1,...,C;_1) such that for each i € {1,...,k}, we have that C; only uses
vertices of G(RU Uj.:l Aj).

1:13
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Before proving this claim, we first argue how the result follows. Since there are less than
%n unmatched vertices in M, we can extend M to a maximum matching using at most
r= L%nj augmenting paths. By the claim, these paths can be chosen so that they avoid the
vertices of G(Q). In particular, we never alter the matching of G(@), so the final maximum

matching restricted to G(Q) is just the tiling Q.

- =

J [ E— ]

Figure 11 Left: An alternating path between two unmatched vertices which enters a connected
component of G(Ag). Right: Modifying the alternating path using the the Hamiltonian cycle of the
connected component.

r_l
=1

We proceed to prove the claim by induction on k. The statement is trivial for k£ = 0, so
let 1 < k < r satisfy the assumptions of the claim and suppose inductively that C1, ..., Cg_1
can be chosen such that for each i € {1,...,k — 1}, we have that C; only uses vertices of
G(RU U;‘:1 Aj). After augmenting the matching using Ci,. .., Ck_1, we have only modified
the matching restricted to G(R U U?:l Aj). By Lemma 1, we can find an augmenting path
C}, connecting two unmatched vertices u, v of G(P). We will modify C), to a path Cj with
Cr. CRU U?Zl Aj. Write C}, : u = uq,ug,...,uz¢ = v. Let D be a Hamiltonian cycle of
one of the connected components of G(Ay); see Figure 11. If the path C}, ever enters the
vertices of D, we let ¢ be minimal such that u; € D and j be maximal such that u; € D. We
can now replace the subpath u;, u;y1,...,u; of ) with part of the Hamiltonian cycle D.
Whether we go clockwise or counterclockwise along D depends on whether u; is matched
with u; 41 in a clockwise or counterclockwise fashion in D. We do the same modification
for every Hamiltonian cycle D corresponding to a connected component of G(Ay) that Cj,
intersects. Note that each cycle D partitions the vertices G(P) \ D into an interior and an
exterior part. Since Py has no holes and u,v € R, the original path C}, enters D from the
exterior at u; and likewise leaves D into the exterior at u;. Also note that @) is contained
in the interior parts of the cycles of G(Ay). It then follows that the final resulting path Cj
avoids @) and A; for j > k, so it is contained in R U U§:1 Aj. <

Lemma 8 allows us to “ignore” parts of the polyomino P with distance Q(n) to the
boundary. In order to argue that the answer output by simple-packer is correct, we also
need to argue that we can ignore long pipes (see Definition 2). This is what motivates the
following lemma which intuitively yields a reduction for shortening long pipes. We defer the
proof to the full version.

» Lemma 10. Let k,¢ € N with { even. Let L C [—1,0] x [0,k], R C [¢,£ + 1] x [0, k] be
polyominos and define P = LURU ([0, ¢] x [0, k]). Color the cells of the plane in a chessboard
like fashion and let b and w be respectively the number of black and white cells contained in
P. Assume without loss of generality that b > w. If £ > 2k, then the number of uncovered
cells in a maximum domino packing of P is exactly b—w. Moreover, there exists a mazimum
domino packing such that the rectangle [k + 1,¢ — k — 1] x [0, k] is completely covered and all
dominos intersecting the rectangle are horizontal.
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Figure 12 A contraction made by the algorithm simple-packer with one fat and two skinny
rectangles. The algorithm moves all corners ciy1, ..., c, to the left, essentially contracting the area
between the vertical lines v] and v} to nothing.

4.4 Correctness of the algorithm

We now verify that the number of uncovered cells in maximum packings is invariant under a
single contraction, and the correctness of the algorithm hence follows. To this end, suppose
that 2(c;+1) — x(¢;) > 9n, so that we move the corners ¢; 11, ..., ¢, to the left; see Figure 12.
It is clear that a domino packing with exactly £ uncovered cells after the contraction gives
rise to a domino packing with exactly ¢ uncovered cells before the contraction, simply by
inserting extra horizontal dominos in the rectangles that were contracted. For the converse,
let v1 and ve be vertical lines with z-coordinates z(c¢;) and z(c;41), respectively, and let V
be the vertical strip bounded by v; and vy. The intersection P NV is a collection of disjoint
rectangles Ry, ..., Ry of width x(¢;+1) — x(¢;) and various heights. We define a rectangle R;
to be fat if its height is more than 3n, and otherwise R; is skinny. We now define a polyomino
Py in order to apply Lemma 8. For each fat rectangle R;, we let R, C R; be the maximum
rectangle with even coordinates and add R, to Py. As each rectangle R; corresponds to
exactly two horizontal edges, the number of rectangles k is at most n/4 and in particular,
the number of corners of P\ Py is at most 2n. Letting @ := B(Fy, —|3n/2]), we get from
Lemma 8 that there exists a maximum packing of P that restricted to @ is a tiling.

We define P; := P\ Q and observe that the contraction corresponds to contracting a
set of long pipes in P;. These pipes are the skinny rectangles R; and the parts of the fat
rectangles vertically above and below the removed part (). We therefore get from Lemma 10
that a maximum packing before the contraction having ¢ uncovered cells, gives rise to a
packing of the contracted polyomino with exactly ¢ uncovered cells.
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