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Abstract
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges
share at most one point (a proper crossing or a common endpoint). We introduce a special kind of
simple drawings that we call generalized twisted drawings. A simple drawing is generalized twisted
if there is a point O such that every ray emanating from O crosses every edge of the drawing at
most once and there is a ray emanating from O which crosses every edge exactly once.

Via this new class of simple drawings, we show that every simple drawing of the complete
graph with n vertices contains Ω(n 1

2 ) pairwise disjoint edges and a plane path of length Ω( log n
log log n

).
Both results improve over previously known best lower bounds. On the way we show several
structural results about and properties of generalized twisted drawings. We further present different
characterizations of generalized twisted drawings, which might be of independent interest.
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1 Introduction

Simple drawings are drawings of graphs in the plane such that vertices are distinct points
in the plane, edges are Jordan arcs connecting their endpoints, and edges intersect at most
once either in a proper crossing or in a shared endpoint. The edges and vertices of a drawing
partition the plane (or, more exactly, the plane minus the drawing) into regions, which are
called the cells of the drawing. If a simple drawing is plane (that is, crossing-free), then its
cells are classically called faces.

In the past decades, there has been significant interest in simple drawings. Questions
about plane subdrawings of simple drawings of the complete graph on n vertices, Kn, have
attracted particularly close attention.

Rafla [18] conjectured that every simple drawing of Kn contains a plane Hamiltonian
cycle. The conjecture has been shown to hold for n ≤ 9 [1], as well as for several special
classes of simple drawings, like straight-line, monotone, and cylindrical drawings, but remains
open in general. If Rafla’s conjecture is true, then this would immediately imply that every
simple drawing of the complete graph contains a plane perfect matching. However, to-date
even the existence of such a matchging is still unknown.

Ruiz-Vargas [20] showed in 2017 that every simple drawing of Kn contains Ω(n 1
2 −ε)

pairwise disjoint edges for any ε > 0, which improved over a series of previous results:
Ω((log n) 1

6 ) in 2003 [15], Ω( log n
log log n ) in 2005 [16], Ω((log n)1+ε) in 2009 [9], and Ω(n 1

3 ) in
2013 and 2014 [10, 12, 21].

Pach, Solymosi, and Tóth [15] showed that every simple drawing of Kn contains a
subdrawing of K

c log
1
8 n

, for some constant c, that is either convex or twisted1. They further
showed that every simple drawing of Kn contains a plane subdrawing isomorphic to any
fixed tree with up to c log

1
6 n vertices, for some constant c. This implies that every simple

drawing of Kn contains a plane path of length Ω((log n) 1
6 ), which has been the best lower

bound known prior to this paper.
Concerning general plane substructures, it follows from a result of Ruiz-Vargas [20] that

every simple drawing of Kn contains a plane subdrawing with at least 2n − 3 edges. Further,
García, Pilz, and Tejel [13] showed that every maximal plane subdrawing of a simple drawing
of Kn is biconnected. Note that, in contrast to straight-line drawings, simple drawings of Kn

in general do not contain triangulations, that is, plane subdrawings where all faces (except
at most one) are 3-cycles.

In this paper, we introduce a new family of simple drawings, which we call generalized
twisted drawings. The name stems from the fact that one can show that any twisted drawing
is weakly isomorphic to a generalized twisted drawing (but not every generalized twisted
drawing is weakly isomorphic to a twisted drawing). It follows, that for any n there exists a
generalized twisted drawing. Two drawings D and D′ are weakly isomorphic if there is a
bijection between the vertices and edges of D and D′ such that a pair of edges in D crosses
exactly when the corresponding pair of edges in D′ crosses.

▶ Definition 1. A simple drawing D is c-monotone (short for circularly monotone) if there
is a point O such that any ray emanating from O intersects any edge of D at most once.

A simple drawing D of Kn is generalized twisted if there is a point O such that D

is c-monotone with respect to O and there exists a ray r emanating from O that intersects
every edge of D.

1 In their definition for simple drawings, convex means that there is a labeling of the vertices to v1, v2, ..., vn

such that (vi, vj) (i < j) crosses (vk, vl) (k < l) if and only if i < k < j < l or k < i < l < j, and twisted
means that there is a labeling of the vertices to v1, v2, ..., vn such that (vi, vj) (i < j) crosses (vk, vl)
(k < l) if and only if i < k < l < j or k < i < j < l.
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Figure 1 A generalized twisted drawing of K5. All edges cross the (red) ray r.

We label the vertices of c-monotone drawings v1, . . . , vn in counterclockwise order
around O. In generalized twisted drawings, they are labeled such that the ray r emerges
from O between the ray to v1 and the one to vn. Figure 1 shows an example of a generalized
twisted drawing of K5.

Generalized twisted drawings turn out to have quite surprising structural properties.
We show some crossing properties of generalized twisted drawings in Section 2 and with
that also prove that they always contain plane Hamiltonian paths (Theorem 3). This
result is an essential ingredient for showing that any simple drawing of Kn contains Ω(

√
n)

pairwise disjoint edges (Theorem 9 in Section 3), as well as a plane path of length Ω( log n
log log n )

(Theorem 10 in Section 4). In Section 5, we present different characterizations of generalized
twisted drawings that are of independent interest. We conclude with an outlook on further
work and open problems in Section 6. Full proofs are available at arXiv:2203.06143.

2 Twisted preliminaries

In this section, we show some properties of generalized twisted drawings, which will be used
in the following sections.

▶ Lemma 2. Let D be a generalized twisted drawing of K4, with vertices {v1, v2, v3, v4}
labeled counterclockwise around O. Then the edges v1v3 and v2v4 do not cross.

Proof Sketch. Assume, for a contradiction, that the edge v1v3 crosses the edge v2v4. There
are (up to strong isomorphism) two possibilities to draw the crossing edges v1v3 and v2v4,
depending on whether v1v3 crosses the (straight-line) segment from O to v4 or not; cf.
Figure 2. In both cases, there is only one way to draw v1v2 such that the drawing stays
generalized twisted, yielding two regions bounded by all drawn edges (v1v3, v2v4, v1v2). The
vertices v3 and v4 lie in the same region. It is well-known that every simple drawing of K4 has
at most one crossing. Thus, the edge v3v4 cannot leave this region. However, it is impossible
to draw v3v4 without leaving the region such that it is c-monotone and crosses the ray r (see
the dotted arrows in Figure 2 for necessary emanating directions of v3v4). ◀

Using the crossing property of Lemma 2, it follows directly that generalized twisted
drawings always contain plane Hamiltonian paths.

SoCG 2022
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Figure 2 The two possibilities to draw v1v3 and v2v4 crossing and generalized twisted.

▶ Theorem 3. Every generalized twisted drawing of Kn contains a plane Hamiltonian path.

Proof of Theorem 3. Let D be a generalized twisted drawing of Kn. Consider the Hamilto-
nian path v1, v⌈ n

2 ⌉+1, v2, v⌈ n
2 ⌉+2, v3, . . . , v⌈ n

2 ⌉−1, vn, v⌈ n
2 ⌉ if n is odd or the Hamiltonian path

v1, v⌈ n
2 ⌉+1, v2, v⌈ n

2 ⌉+2, v3, . . . , vn−1, v⌈ n
2 ⌉, vn if n is even. See for example the Hamiltonian

path v1, v4, v2, v5, v3 in Figure 1. Take any pair of edges (vi, vj) and (vk, vl) of the path,
where we can assume without loss of generality that i < j and k < l. If the two edges share
an endpoint, they are adjacent and do not cross. Otherwise, if they do not share an endpoint,
either i < k < j < l or k < i < l < j by definition of the path. In any of the two cases,
(vi, vj) and (vk, vl) cannot cross by Lemma 2. Therefore, no pair of edges cross, and the
Hamiltonian path is plane. ◀

Analogous to the proof of Theorem 3, one can argue that in every generalized twisted draw-
ing of Kn with n odd, the Hamiltonian cycle v1, v⌈ n

2 ⌉+1, v2, v⌈ n
2 ⌉+2, . . . , v⌈ n

2 ⌉−1, vn, v⌈ n
2 ⌉, v1

is plane. We strongly conjecture that every generalized twisted drawing of Kn contains a
plane Hamiltonian cycle, but its structure for even n is still an open problem.

Theorem 3 will be used heavily in the next two sections. Further, the following statement,
which has been implicitly shown in [10] and [12], will be used in all remaining sections.

▶ Lemma 4. Let D be a simple drawing of a complete graph containing a subdrawing D′,
which is a plane drawing of K2,n. Let A = {a1, a2, . . . , an} and B = {b1, b2} be the sides of
the bipartition of D′. Let DA be the subdrawing of D induced by the vertices of A. Then DA

is weakly isomorphic to a c-monotone drawing. Moreover, if all edges in DA cross the edge
b1b2, then DA is weakly isomorphic to a generalized twisted drawing.

3 Disjoint edges in simple drawings

In this section, we show that every simple drawing of Kn contains at least
⌊√

n
48

⌋
pairwise

disjoint edges, improving the previously known best bound of Ω(n 1
2 −ε), for any ε > 0, by

Ruiz-Vargas [20]. In addition to the properties of generalized twisted drawings from Section 2,
we use the following theorems and observations to prove this new lower bound.

▶ Theorem 5 ([13]). For n ≥ 3, every maximal plane subdrawing of any simple drawing
of Kn is biconnected.
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The following theorem is a direct consequence of Corollary 5 in [19].

▶ Theorem 6. Let D be a simple drawing of Kn with n ≥ 3. Let H be a connected plane
subdrawing of D containing at least two vertices, and let v be a vertex in D \ H. Then D

contains two edges incident to v that connect v with H and do not cross any edges of H.

▶ Observation 7. For any n ≥ 3, the number of edges in a planar graph with n vertices is
at most 3n − 6.

A drawing is outerplane if it is plane, and all vertices lie on the unbounded face of the
drawing. A graph is outerplanar if it can be drawn outerplane. Outerplanar graphs have a
smaller upper bound on their number of edges than planar graphs.

▶ Observation 8. For any n ≥ 3, the number of edges in an outerplanar graph with n vertices
is at most 2n − 3.

▶ Theorem 9. Every simple drawing of Kn contains at least
⌊√

n
48

⌋
pairwise disjoint edges.

Proof. Let D be a simple drawing of Kn, and let M be a maximal plane matching of D. If
m := |M | ≥

√
n
48 , then Theorem 9 holds. So assume that |M | <

√
n
48 . We will show how to

find another plane matching, whose size is at least ⌊
√

n
48 ⌋.

The overall idea is the following: Let H be a maximal plane subdrawing of D whose vertex
set is exactly the vertices matched in M and that contains M . We will find a face f in H

that contains much more unmatched vertices inside than matched vertices on its boundary.
Then we will show that there exists a subset of the vertices inside that face, which induces a
subdrawing of D that is weakly isomorphic to a generalized twisted drawing and contains
enough vertices to guarantee the desired size of the plane matching.

We start towards finding the face f . By Theorem 5, H is biconnected. Thus, H partitions
the plane into faces, where the boundary of each face is a simple cycle. Note that the vertices
of H are exactly the vertices that are matched in M , and the vertices inside faces are the
vertices that are unmatched in M . Let U be the set of vertices of D that are not matched by
any edge of M . We denote the set of vertices of U inside a face fi by U(fi), the number of
vertices in U(fi) by u(fi), and the number of vertices on the boundary of the face fi by |fi|.

We next show that there exists a face f of H such that u(f) ≥
√

48n
12 |f |. Assume for a

contradiction that for every face fi it holds that

u(fi) <

√
48n

12 |fi|.

There are exactly n − 2m unmatched vertices. As every unmatched vertex is in the interior
of a face of H (that might be the unbounded face), we can count the unmatched vertices by
summing over the number of vertices in each face (including the unbounded face). Thus,

n − 2m ≤
∑
fi

u(fi) <

√
48n

12
∑
fi

|fi|. (1)

The number of edges in H is 1
2

∑
fi

|fi|. Since H is plane, we can use Observation 7 to bound
the number of edges of H by 3n′ − 6, where n′ is the number of vertices in H. As the vertices
of H are exactly the matched vertices, their number is n′ = 2m. Hence,∑

fi

|fi| ≤ 6 · 2m − 12.

SoCG 2022



5:6 Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

From m <
√

n
48 it follows that

∑
fi

|fi| < 12
√

n

48 − 12 (2)

and

n − 2
√

n

48 < n − 2m. (3)

Putting equations (1) to (3) together we obtain that

n − 2
√

n

48 <

√
48n

12 (12
√

n

48 − 12) = n −
√

48n.

However, this inequality cannot be fulfilled by any n ≥ 0. Thus, there exists at least one
face fi with u(fi) ≥

√
48n
12 |fi|. We call that face f . (If there are several such faces, we take

an arbitrary one of them and call it f .)
As a next step, we will find two vertices on the boundary of f to which many vertices

inside f are connected via edges that do not cross each other or H. From f and the set
U(f), we construct a plane subdrawing H ′ as follows; cf. Figure 3 (left). We add the vertices
and edges on the boundary of f . Then we iteratively add all the vertices in U(f), where
for each added vertex v we also add two edges of D incident to v such that the resulting
drawing stays plane. Two such edges exist by Theorem 6. Since the matching M is maximal,
any edges between two unmatched vertices must cross at least one edge of M and thus must
cross the boundary of f . Hence, no edge in H ′ can connect two vertices of U(f) (as they are
unmatched). Consequently, every vertex in U(f) is connected in H ′ to exactly two vertices
that both lie on the boundary of f .

v

w

ff

v

w

Figure 3 Left: The face f in H containing the plane drawing H ′ (blue lines) inside. Right: We
can obtain an outerplane drawing from H ′ by interpreting bundles of edge pairs incident to the
same black vertices as plane edges.

We consider the edges in H ′ that connect a vertex in U(f) as a pair of edges. Every edge
in such a pair is contained in exactly one pair, since it is incident to exactly one unmatched
vertex. Thus, we can see every such pair of edges as one long edge incident to two vertices
on the boundary of f . If several of those long edges have the same endpoints, we call them a
bundle of edges; see Figure 3 (right).

From the long edges, we can define a graph G′ as follows. The vertices of G′ are the
vertices of D that lie on the boundary of f . Two vertices u and v are connected in G′ if
there is at least one long edge in H ′ that connects them. By the definition of long edges, G′

is outerplanar (as can be observed in Figure 3 (right)). Note that every unmatched vertex in
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U(f) defines a long edge, so the number of long edges is u(f) ≥
√

48n
12 |f |. From Observation 8,

it follows that G′ has at most 2|f | − 3 edges. As a consequence, there is a pair of vertices on
the boundary of f such that the number of long edges in its bundle is at least

1
(2|f | − 3)

√
48n

12 |f | >

√
48n

24 .

This implies that there are two vertices, say v and w, to which more than
√

48n
24 vertices

inside f have two plane incident edges. We call the set of vertices in U(f) that have plane
edges to both vertices v and w the set Uvw. This set is marked in Figure 4 (left). We denote
the subdrawing of D induced by Uvw by Dvw; see Figure 4 (right).

v

w

f

vw

Uvw

v

w

vw

v1 v2
vk−1

vk

Figure 4 The subdrawing D′ induced by Uvw and the edges in Dvw. Left: The set Uvw. Right:
The edges adjacent to the leftmost vertex, v1, are drawn (in red).

We show that all edges between vertices in Uvw cross the edge vw. Let x and y be two
vertices of Dvw. Let R1 be the region bounded by the edges xv, vy, yw, and wx that lies
inside the face f ; see Figure 5. We show that xy and vw lie completely outside R1. The edge
xy has to lie either completely inside or completely outside R1, because it is adjacent to all
edges on the boundary of R1. As M is maximal and the edge xy connects two unmatched
vertices, it has to cross at least one matching edge. Thus, xy has to lie completely outside R1.
(There can be no matching edges in R1, as R1 is contained inside the face f .) As H is a
maximal plane subdrawing, vw cannot lie inside the face f and thus has to be outside R1.
Since both edges vw and xy lie completely outside R1 and the vertices along the boundary of
R1 are sorted vxwy, the two edges have to cross. Thus, all edges of Dvw cross the edge vw.

v

w

vw

f

x y
R1

Figure 5 The edge xy has to cross the edge vw.

Since the edges from vertices in Uvw to v and w are plane, it follows from Lemma 4 that
Dvw is weakly isomorphic to a generalized twisted drawing. Thus, Dvw contains at least
⌊ 1

2

√
48n
24 ⌋ pairwise disjoint edges by Theorem 3. Hence, D contains at least ⌊

√
n
48 ⌋ pairwise

disjoint edges. ◀

SoCG 2022
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4 Plane paths in simple drawings

In the previous section, we used generalized twisted drawings to improve the lower bound
on the number of disjoint edges in simple drawings of Kn. In this section, we show that
generalized twisted drawings are also helpful to improve the lower bound on the length of
the longest path in such drawings, where the length of a path is the number of its edges, to
Ω( log n

log log n ). This improves the previously known best bound of Ω((log n) 1
6 ), which follows

from a result of Pach, Solymosi, and Tóth [15].

▶ Theorem 10. Every simple drawing D of Kn contains a plane path of length Ω( log n
log log n ).

To prove the new lower bound, we first show that all c-monotone drawings on n vertices
contain either a generalized twisted drawing on

√
n vertices or a drawing weakly isomorphic

to an x-monotone drawing on
√

n vertices. We know that drawings weakly isomorphic to
generalized twisted drawings or x-monotone drawings contain plane Hamiltonian paths (by
Theorem 3 and Observation 11 below). We conclude that c-monotone drawings contain plane
paths of the desired size. We then show that every simple drawing of the complete graph
contains either a c-monotone drawing or a plane d-ary tree. With easy observations about
the length of the longest path in d-ary trees and by putting all results together, we obtain
that every simple drawing D of Kn contains a plane path of length Ω( log n

log log n ).

4.1 Plane paths in c-monotone drawings
A simple drawing is x-monotone if any vertical line intersects any edge of the drawing at most
once (see Figure 6b). This family of drawings has been studied extensively in the literature
(see for example [2, 5, 7, 11, 17]). By definition, c-monotone drawings in which there exists
a ray emanating from O, which crosses all edges of the drawing, are generalized twisted.
In contrast, consider a c-monotone drawing D such that there exists a ray r emanating
from O that crosses no edge of D. Then it is easy to see that D is strongly isomorphic to an
x-monotone drawing. (A c-monotone drawing on the sphere can be cut along the ray r and
the result drawn on the plane such that all rays are vertical lines and the ray r is to the very
left of the drawing.) Figure 6a shows a c-monotone drawing D of K5 where no edge crosses
the ray r, and Figure 6b shows an x-monotone drawing of K5 strongly isomorphic to D. We
will call simple drawings that are strongly isomorphic to x-monotone drawings monotone
drawings. In particular, any c-monotone drawing for which there exists a ray emanating
from O that crosses no edge of the drawing is monotone.

It is well-known that any x-monotone drawing of Kn contains a plane Hamiltonian path.
For instance, assuming that the vertices are ordered by increasing x-coordinates, the set of
edges v1v2, v2v3 . . . , vn−1vn form a plane Hamiltonian path.

▶ Observation 11. Every monotone drawing of Kn contains a plane Hamiltonian path.

We will show that c-monotone drawings contain plane paths of size
√

n, by showing that
any c-monotone drawing of Kn contains a subdrawing of K√

n that is either generalized
twisted or monotone. To do so, we will use Dilworth’s Theorem on chains and anti-chains
in partially ordered sets. A chain is a subset of a partially ordered set such that any two
distinct elements are comparable. An anti-chain is a subset of a partially ordered set such
that any two distinct elements are incomparable.

▶ Theorem 12 (Dilworth’s Theorem, [8]). Let P be a partially ordered set of at least
(s−1)(t−1)+1 elements. Then P contains a chain of size s or an antichain of size t.
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v1

v3

v2v4

v5

O

r

(a) A c-monotone drawing D of K5 such
that the ray r crosses no edge of D.

v1

v2

v3

v4

v5

(b) An x-monotone drawing of K5 strongly
isomorphic to D of Figure 6a.

Figure 6 Two strongly isomorphic monotone drawings of K5.

vj

vi

vk

O

r

vj

vi

vk

O

r

Figure 7 If edges vivj and vjvk cross r in a c-monotone drawing, then vivk must also cross r.

▶ Theorem 13. Let s, t be two integers, 1 ≤ s, t ≤ n, such that (s − 1)(t − 1) + 1 ≤ n. Let D

be a c-monotone drawing of Kn. Then D contains either a generalized twisted drawing of Ks

or a monotone drawing of Kt as subdrawing. In particular, if s = t = ⌈
√

n⌉, D contains a
complete subgraph Ks whose induced drawing is either generalized twisted or monotone.

Proof Sketch. Without loss of generality we may assume that the vertices of D appear
counterclockwise around O in the order v1, v2, . . . , vn. Let r be a ray emanating from O,
keeping v1 and vn on different sides. We define an order, ⪯, in this set of vertices as follows:
vi ⪯ vj if and only if either i = j or i < j and the edge (vi, vj) crosses r.

We show that ⪯ is a partial order. The relation is clearly reflexive and antisymmetric.
Besides, if vi ⪯ vj and vj ⪯ vk, then vi ⪯ vk, because i < j and j < k imply i < k, and if
vivj and vjvk cross r, then vivk also crosses r (see Figure 7). Hence, the relation is transitive.

In this partial order ⪯, a chain consists of a subset vi1 , . . . , vis−1 of pairwise comparable
vertices, that is, a subset of vertices such that their induced subdrawing is generalized twisted
(all edges cross r). An antichain, vj1 , . . . , vjt−1 , consists of a subset of pairwise incomparable
vertices, that is, a subset of vertices such that their induced subdrawing is monotone (no
edge crosses r). Therefore, the first part of the theorem follows from applying Theorem 12
to the set of vertices of D and the partial order ⪯.

Finally, observe that if s = t ≤ ⌈
√

n⌉, then (s − 1)(t − 1) + 1 ≤ n. Thus, D contains
a complete subgraph K⌈

√
n⌉ whose induced subdrawing is either generalized twisted or

monotone. ◀

SoCG 2022
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Combining Theorems 3 and 13 with Observation 11, we obtain the following theorem.

▶ Theorem 14. Every c-monotone drawing of Kn contains a plane path of length Ω(
√

n).

4.2 Plane paths in simple drawings
To show that any simple drawing of Kn contains a plane path of length Ω( log n

log log n ), we will
use d-ary trees. A d-ary tree is a rooted tree in which no vertex has more than d children. It
is well-known that the height of a d-ary tree on n vertices is Ω( log n

log d ).

Proof of Theorem 10. Let v be a vertex of D and let S(v) be the star centered at v, that
is, the set of edges of D incident to v. S(v) can be extended to a maximal plane subdrawing
H that must be biconnected by Theorem 5. See Figure 8 for a depiction of S(v) and H.

v

Figure 8 A simple drawing of K7. The red edges show the star S(v), the red and blue edges
together form a maximal plane subdrawing H. Dashed edges are edges of K7 that are not in H.

Assume first that there is a vertex w in H \ v that has degree at least (log n)2 in H. Let
Uvw be the set of vertices neighboured in H to both, v and w. Note that |Uvw| ≥ (log n)2.
The subdrawing H ′ of H consisting of the vertices in Uvw, the vertices v, and w, and the
edges from v to vertices in Uvw, and from w to vertices in Uvw is a plane drawing of K2,|Uvw|.
From Lemma 4, it follows that the subdrawing of D induced by Uvw is weakly isomorphic to
a c-monotone drawing. Therefore, by Theorem 14, the subdrawing induced by Uvw contains
a plane path of length Ω(

√
|Uvw|) = Ω(log n).

Assume now that the maximum degree in H\v is less than (log n)2. Since H is biconnected,
H \ v contains a plane tree T of order n − 1 whose maximum degree is at most (log n)2. Thus,
considering that T is rooted, the diameter of T is at least Ω( log n

log log n ). Therefore, since T is
plane, it contains a plane path of length at least Ω( log n

log log n ) and the theorem follows. ◀

5 Characterizing generalized twisted drawings

In previous sections, we have seen how generalized twisted drawings were used to make
progress on open problems of simple drawings. In addition to this, generalized twisted
drawings are also interesting in their own right and have some quite surprising structural
properties. Despite the fact that research on generalized twisted drawings is rather recent
and still ongoing, there are already several interesting characteristics and structural results.
Some of them will be presented in this section.

One characterization involves curves crossing every edge once. From the definition of
generalized twisted drawing (see Figure 1), there always exists a simple curve that crosses all
edges of the drawing exactly once (for instance, a curve that starts at O and follows r until
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it reaches a point Z on r in the unbounded cell). In Theorem 15, we show that the converse
is also true. That is, every simple drawing D of Kn in which we can add a simple curve that
crosses every edge of D exactly once is weakly isomorphic to a generalized twisted drawing.

Another characterization is based on what we call antipodal vi-cells. For any three vertices
in a simple drawing D of Kn, the three edges connecting them form a simple cycle which we
call a triangle. Every such triangle partitions the plane (or sphere) into two disjoint regions
which are the sides of the triangle (in the plane a bounded and an unbounded one). Two
cells of D are called antipodal if for each triangle of D, they lie on different sides. Further,
we call a cell with a vertex on its boundary a vertex-incident-cell or, for short, a vi-cell.

By definition, every generalized twisted drawing D contains two antipodal cells, namely,
the cell containing the starting point of the ray r and the unbounded cell. This follows from
the fact that the ray r crosses every edge exactly once. Hence, r crosses the boundary of any
triangle exactly three times, so the cells containing the “endpoints” of r must be on different
sides of the triangle.

1

2

3
4

6

5

1

2

3
4

6

5

Figure 9 Two weakly isomorphic drawings of K6 that are not weakly isomorphic to any generalized
twisted drawing. Antipodal cells are marked in blue.

It turns out that the converse (existence of two antipodal cells implies weakly isomorphic
to generalized twisted) is not true. Figure 9 (left) shows a drawing of K6 that contains
two antipodal cells, but no antipodal vi-cells. From Theorem 15 bellow it will follow that
such drawings cannot be weakly isomorphic to a generalized twisted drawing. However, we
observed that for all generalized twisted drawings of Kn with n ≤ 6, both, the cell containing
the startpoint of the ray r and the unbounded cell, are vi-cells. Figure 10 shows all (up to
strong isomorphism) simple drawings of K6 that are weakly isomorphic to generalized twisted
drawings. We show that this is true in general. More than that, we show in Theorem 16 that
every drawing of Kn that is weakly isomorphic to a generalized twisted drawing contains a
pair of antipodal vi-cells. In the other direction, we show in Theorem 15 that every simple
drawing containing a pair of antipodal vi-cells is weakly isomorphic to a generalized twisted
drawing.

The final characterization is based on the extension of a given drawing of the complete
graph to a drawing containing a spanning, plane bipartite graph that has all vertices of the
original drawing on one side of the bipartition. From the definition of generalized twisted
drawings, it follows that any genereralized twisted drawing D of Kn can be extended to a
simple drawing D′ of Kn+2 including new vertices O and Z such that D′ contains a plane
drawing of a spanning bipartite graph. One side of the bipartition consists of all vertices
in D and the other side of the bipartition consists of the new vertices O and Z. Moreover,
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v1

v2

v3v4

v5

v6 v1

v2

v3
v4

v5

v6v1

v2

v3v4

v5

v6

O O O

Figure 10 All different generalized twisted drawings of K6 (up to weak isomorphism). The
rightmost drawing is twisted.

the edge OZ crosses all edges of D. One way to add the new vertices and edges incident to
them is to draw (1) the vertex O at point O, (2) the vertex Z in the unbounded cell on the
ray r, (3) the edge OZ straight-line (along the ray r), (4) edges from O to the vertices of
D straight-line (along the inner segment of the rays crossing through the vertices), and (5)
edges from Z to the vertices of D first far away in a curve and the final part straight-line
(along the outer segment of the rays crossing through the vertices). The converse, that every
drawing that can be extended like this is weakly isomorphic to a generalized twisted drawing,
has already been shown in Lemma 4.

We show the following characterizations.

▶ Theorem 15 (Characterizations of generalized twisted drawings). Let D be a simple drawing
of Kn. Then, the following properties are equivalent.
Property 1 D is weakly isomorphic to a generalized twisted drawing.
Property 2 D contains two antipodal vi-cells.
Property 3 D can be extended by a simple curve c such that c crosses every edge of D exactly

once.
Property 4 D can be extended by two vertices, O and Z, and edges incident to the new

vertices such that D together with the new vertices and edges is a simple drawing
of Kn+2, the edge OZ crosses every edge of D, and no edge incident to O crosses
any edge incident to Z.

To prove Theorem 15, we will first show that Property 1 implies Property 2 (Theorem 16).
We next show that Property 2 implies Property 3 (Theorem 17). Then, we show that
Property 3 implies Property 4 (Theorem 18). By Lemma 4, Property 4 implies Property 1.
Thus, all properties are equivalent. In a full version of this work, we will extend the theorem
to show that also strong isomorphism to a generalized twisted drawing is equivalent to
the properties of Theorem 15. We show this by proving that any simple drawing of Kn

fulfilling Property 4 is strongly isomorphic to a generalized twisted drawing. However, the
reasoning for strong isomorphism is quite lengthy and would exceed the space constraints of
this submission.

▶ Theorem 16. Every simple drawing of Kn which is weakly isomorphic to a generalized
twisted drawing of Kn, with n ≥ 3, contains a pair of antipodal vi-cells. In generalized twisted
drawings the cell containing O and the unbounded cell form such a pair.
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vi

vk
vl

R

x

r

O

vivi+1

vj

vk

ri
ri+1

rj

rk

rk′

vk′

vj′
rj′

O

r

Figure 11 Left: If there is a vertex vl in R, it cannot be connected to vi without crossing r

before x. Right: If the edge vjvk crosses the segment Ovi and the edge vj′ vk′ crosses the segment
Ovi+1, then there is no way of connecting vi+1 and vj′ .

Proof sketch. We first show that every generalized twisted drawing D of Kn, with n ≥ 3,
contains a pair of antipodal vi-cells, where O lies in a cell of that pair. Let c be the segment
OZ, where Z is a point on r in the unbounded cell. By definition of generalized twisted, c

crosses every edge of D once, so O and Z are in two antipodal cells C1 and C2, respectively.
To prove that C1 is a vi-cell, we use the following properties. First, if we take the first

edge vivk that crosses c (as seen from O) at point x, then we can prove that k = i + 1
and the bounded region R defined by the edge vivi+1 and the segments Ovi and Ovi+1 is
empty (see Figure 11, left). Second, using this empty region we can prove that D cannot
contain simultaneously an edge vjvk crossing Ovi and another edge vj′vk′ crossing Ovi+1
(see Figure 11, right). Therefore, at least one of the segments Ovi and Ovi+1 is uncrossed,
and O necessarily lies in a vi-cell (with either vi or vi+1 on the boundary). Finally, arguing
on the last edge crossing c and the unbounded cell, we can show that Z also lies in a vi-cell.

To show that also every drawing which is weakly isomorphic to a generalized twisted
drawing contains a pair of antipodal vi-cells, we use Gioan’s Theorem [6, 14]. By Gioan’s
Theorem, any two weakly isomorphic drawings of Kn can be transformed into each other
with a sequence of triangle-flips and at most one reflection of the drawing. A triangle-flip is
an operation which transforms a triangular cell △ that has no vertex on its boundary by
moving one of its edges across the intersection of the two other edges of △. We show that if
a drawing D1 contains two antipodal vi-cells, then after performing a triangle flip on D1, the
resulting drawing D2 still has two antipodal vi-cells. The main argument is that triangle-flips
are only applied to cells without vertices on their boundary, and thus the antipodality of the
vi-cells cannot change. ◀

▶ Theorem 17. In any simple drawing D of Kn that contains a pair of antipodal vi-cells, it
is possible to draw a curve c that crosses every edge of D exactly once.

Proof sketch. Let (C1, C2) be a pair of antipodal vi-cells of D. Let v1 be a vertex on the
boundary of C1 and v2 a vertex on the boundary of C2. We construct the curve as follows:
First, we draw a simple curve c from C1 to C2 such that (1) it emanates from v1 in C1 and
ends in C2 very close to v2, (2) does not cross any edge incident to v1, (3) only intersects
edges of D in proper crossings, and (4) has the minimum number of crossings with edges of
D among all curves that fulfill (1), (2) and (3). This curve c always exists since S(v1) is a
plane drawing that has only a face in which both v1 and v2 lie (see Figure 12, left).
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v1

v2

c C2

C1

v1

v2

c C2

C1

Figure 12 Building a curve such that it crosses every edge of D once and its endpoints do not lie
on any edges or vertices of D.

C1

v1

v2

w2
w3

v1

v2

w2
w3

c c

C2 C2

C1

Figure 13 Decreasing the number of crossings between c and the edge w2w3.

Then, we prove that c crosses every edge w2w3 in D that is not incident to v1 exactly
once. On the one hand, since c connects two antipodal cells, the endpoints of c have to be
on two different sides of the triangle T formed by v1, w2 and w3. Thus, c has to cross w2w3
an odd number of times because it does not cross S(v1) and must cross the boundary of T

an odd number of times. On the other hand, if c crosses w2w3 at least three times, then we
can prove that c can be redrawn as shown in Figure 13, decreasing the number of crossings,
which contradicts (4). Therefore, c crosses every edge w2w3 at most twice and, consequently,
only once.

Finally, we change the end of c from v1 to a point in C1 in the following way (see Figure 12,
right). From some point of c sufficiently close to v1 and inside C1, we reroute c by going
around v1 such that only the edges incident to v1 are crossed, and end at a point in C1. ◀

▶ Theorem 18. Let D be a simple drawing of Kn in which it is possible to draw a simple
curve c that crosses every edge of D exactly once. Then, D can be extended by two vertices
O and Z (at the position of the endpoints of the curve), and edges incident to those vertices
such that the obtained drawing is a simple drawing of Kn+2, no edge incident to O crosses
any edge incident to Z, and all edges in D cross the edge OZ.

Proof sketch. Let c = OZ be the curve crossing every edge of D once, oriented from O to Z.
Let wu be an edge of D, oriented from w to u, crossing OZ at a point x. We say that wu is
a top (respectively bottom) edge if the clockwise order of w, Z, u and O around x is w, Z, u, O

(respectively w, O, u, Z). See Figure 14. With these definitions, we can prove that there is a
vertex w1 in D such that all the oriented edges emanating from w1 are top in relation to c.
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O Z
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O
Z

w

x

u

O
Z

w

x

u

Figure 14 Top and bottom edges. For simplicity, the curve OZ is drawn as a horizontal line.
Left: A top edge wu. Centre: A bottom edge wu. Right: The (black) top and (blue) bottom edges
of S(w).

O Z

w1

O Z

wi−1

wi

O Z

wi−1

wi

x y

O

Z

wn−1

wn

Figure 15 Building the (dashed) edges wiO and wiZ.

Thus, by removing w1 and all its incident edges from D, there is a vertex w2 in the new
drawing such that all its incident edges are top, and so on. As a consequence, there is a
natural order w1, w2, . . . , wn of the vertices of D such that for any vertex wi, the edges wiwj

with j > i are top, and the edges wiwj with j < i are bottom.

Given the natural order w1, w2, . . . , wn, our construction of the extended drawing is as
follows. Let D′

0 be the simple drawing formed by the vertices and edges of D, O and Z

as new vertices, and c as the edge connecting O and Z. From D′
0, we build new drawings

D′
1, D′

2, . . . , D′
n, by adding in step i the edges wiO and wiZ. These two edges are added very

close to some edges in D′
i−1. Figure 15 illustrates how these two edges are added in each

step.
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In the first step, the edge Ow1 follows the curve OZ until the crossing point between
OZ and the first top edge w1u emanating from w1, and then it follows this top edge until
reaching w1. The edge Zw1 is built in an analogous way, taking the last top edge emanating
from w1. See Figure 15 top-left. For i = 2, . . . , n − 1, in step i we do different constructions
depending on whether the first and last top edges of S(wi) cross the edges wi−1O and wi−1Z.
If the first top edge wiu1 crosses wi−1O at a point x and the last top edge wiuk crosses
wi−1Z at a point y (see Figure 15 top-right), then Owi follows Owi−1 until x, and then it
follows u1wi until wi. The edge Zwi is built following Zwi−1 until y and then following
ukwi. On the contrary, if the first and the last top edges of S(wi) only cross one of wi−1O

and wi−1Z, say wi−1Z (see Figure 15 bottom-left), then Owi follows OZ until the crossing
point between OZ and the last bottom edge of S(wi), and then it follows this bottom edge
until wi. The edge Zwi is built as in the first step, using the last top edge of S(wi). In the
last step, we build Own and Zwn as in the first step, but using the first and the last bottom
edges of S(wn) instead of the first and last top edges. See Figure 15 bottom-right.

By a detailed analysis of cases, we can prove for i = 1, . . . , n that D′
i is a simple drawing

such that no edge incident to O crosses any edge incident to Z. Therefore, D′
n is the drawing

of Kn+2 satisfying the required properties. ◀

6 Conclusion and outlook

Generalized twisted drawings have a suprisingly rich structure and many useful properties. We
showed several of those properties in Section 2 and different characterizations of generalized
twisted drawings in Section 5. We have proven in Section 2 that every generalized twisted
drawing on an odd number of vertices contains a plane Hamiltonian cycle, and therefore one
especially interesting open question is the following.

▶ Conjecture 19. Every generalized twisted drawing of Kn contains a plane Hamiltonian
cycle.

Using properties of generalized twisted drawings has turned out to be helpful for inves-
tigating simple drawings in general. We first improved the lower bound on the number of
disjoint edges in simple drawings of Kn to Ω(

√
n) (Section 3). Then generalized twisted

drawings played the central role to improve the lower bound on the length of plane paths
contained in every simple drawing of Kn to Ω( log n

log log n ) (Section 4).
On the other hand, from Theorem 17 it immediately follows that no drawing that is weakly

isomorphic to a generalized twisted drawing can contain three interior-disjoint triangles
(since the endpoints of the curve crossing every edge once must be on opposite sides of
every triangle, the maximum number of interior-disjoint triangles is two). Up to strong
isomorphism, there are only two simple drawings of K4. The plane drawing contains three
interior-disjoint triangles. Thus, (up to strong isomorphism) the only drawing of K4 that is
weakly isomorphic to a generalized twisted drawing, is the drawing with a crossing. Hence,
in every generalized twisted drawing all subdrawings induced by 4 vertices contain a crossing
and thus every generalized twisted drawing is crossing maximal. Up to strong isomorphism,
there are two crossing maximal drawings of K5: the convex drawing of K5 and the twisted
drawing of K5. Since the convex drawing contains three interior-disjoint triangles, the only
(up to strong isomorphism) drawing of K5 that is weakly isomorphic to a generalized twisted
drawing is the twisted drawing of K5 (that is drawn generalized twisted in Figure 1).

It is part of our ongoing work to show that for n ≥ 7, a drawing is weakly isomorphic to a
generalized twisted drawing if and only if all subdrawings induced by five vertices are weakly
isomorphic to the twisted K5. Interestingly, the n ≥ 7 is necessary as there is a drawing
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with 6 vertices that contains only twisted drawings of K5 but is not weakly isomorphic
to a generalized twisted drawing (see the drawings in Figure 9). There are (up to strong
isomorphism) three more simple drawings of K6 that consist of only twisted drawings of K5
and they are all weakly isomorphic to generalized twisted drawings (see Figure 10).
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