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Abstract

We consider point sets in the real projective plane RP2 and explore variants of classical extremal
problems about planar point sets in this setting, with a main focus on Erdős–Szekeres-type problems.

We provide asymptotically tight bounds for a variant of the Erdős–Szekeres theorem about point
sets in convex position in RP2, which was initiated by Harborth and Möller in 1994. The notion of
convex position in RP2 agrees with the definition of convex sets introduced by Steinitz in 1913.

For k ≥ 3, an (affine) k-hole in a finite set S ⊆ R2 is a set of k points from S in convex position
with no point of S in the interior of their convex hull. After introducing a new notion of k-holes
for points sets from RP2, called projective k-holes, we find arbitrarily large finite sets of points
from RP2 with no projective 8-holes, providing an analogue of a classical result by Horton from
1983. We also prove that they contain only quadratically many projective k-holes for k ≤ 7. On the
other hand, we show that the number of k-holes can be substantially larger in RP2 than in R2 by
constructing, for every k ∈ {3, . . . , 6}, sets of n points from R2 ⊂ RP2 with Ω(n3−3/5k) projective
k-holes and only O(n2) affine k-holes. Last but not least, we prove several other results, for example
about projective holes in random point sets in RP2 and about some algorithmic aspects.

The study of extremal problems about point sets in RP2 opens a new area of research, which we
support by posing several open problems.
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1 Introduction

1.1 Erdős-Szekeres-type results in the Euclidean plane
Throughout the whole paper, we consider each set S of points from the Euclidean plane R2

to be finite and in general position, that is, no three points of S lie on a common line. We
say that a set S of k points in the Euclidean plane is in convex position if S forms the vertex
set of a convex polygon, which we call a k-gon or an affine k-gon.

In 1935, Erdős and Szekeres [16] showed that, for every integer k ≥ 3, there is a smallest
positive integer ES(k) such that every finite set of at least ES(k) points in the plane in
general position contains a subset of k points in convex position. This result, known as
the Erdős–Szekeres theorem, was one of the starting points of both discrete geometry and
Ramsey theory. It motivated various lines of research that led to several important results as
well as to many difficult open problems. For example, there were many efforts to determine
the growth rate of the function ES(k). Erdős and Szekeres [16] showed ES(k) ≤

(2k−4
k−2

)
+ 1

and conjectured that ES(k) = 2k−2 + 1 for every k ≥ 2. This conjecture, known as the
Erdős–Szekeres conjecture, was later supported by Erdős and Szekeres [17], who proved the
matching lower bound ES(k) ≥ 2k−2 + 1. The Erdős–Szekeres conjecture was verified for
k ≤ 6 [37] (see also [29, 33]), but is still open for k ≥ 7. In fact, Erdős even offered $500
reward for its solution. The currently best upper bound ES(k) ≤ 2k+O(

√
k log k) is due to

Holmsen, Mojarrad, Pach, and Tardos [25], who improved an earlier breakthrough by Suk [36]
who showed ES(k) ≤ 2k+O(k2/3 log k). Altogether, these estimates give, for every k ≥ 2,

2k−2 + 1 ≤ ES(k) ≤ 2k+O(
√

k log k). (1)

Several variations of the Erdős–Szekeres theorem have been studied in the literature.
In the 1970s, Erdős [15] asked whether there is a smallest positive integer h(k) such that
every set S of at least h(k) points in the plane in general position contains an (affine) k-hole,
which is a convex polygon spanned by a subset of k points from S that does not contain any
point from S in its interior. In other words, a k-hole in a finite points set S in the plane
in general position is a k-gon which is empty in S, that is, its interior does not contain any
point from S. After Horton [26] constructed arbitrarily large point sets with no 7-hole, it
took more than 20 years until Gerken [21] and Nicolas [31] independently showed that every
sufficiently large set of points contains a 6-hole. Therefore, h(k) is finite if and only if k ≤ 6.

Estimating the minimum number of k-holes is another example of a classical Erdős–
Szekeres-type problem. For a fixed integer k ≥ 3 and a positive integer n, let hk(n) be the
minimum number of k-holes in any finite set of n points in the plane. The growth rate of the
function hk(n) was also studied extensively. Horton’s result implies hk(n) = 0 for k ≥ 7. The
minimum numbers of 3- and 4-holes are known to be quadratic in n, but we only have the
bounds Ω(n log4/5 n) ≤ h5(n) ≤ O(n2) and Ω(n) ≤ h6(n) ≤ O(n2) [3, 9] for 5- and 6-holes,
respectively. However, it is widely conjectured that h5 and h6 are also both quadratic in n.

In this paper, we consider analogous Erdős–Szekeres-type problems in the real projective
plane RP2. We define notions of convex position, k-gons, and k-holes in RP2 and study the
corresponding extremal problems, providing several new results as well as numerous open
problems in this new line of research.

1.2 Convex sets in the real projective plane
As in the planar case, we consider only sets P of points from the real projective plane RP2

that are finite and in general position, that is, no three points from P lie on a common
projective line. We say that P is in projective convex position if it is a set in convex position
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in some Euclidean plane ρ ⊂ RP2. Recall that by removing a projective line from RP2 one
obtains a Euclidean plane. Following the notation introduced by Steinitz [35], we say that a
subset X of RP2 is semiconvex if any two points of X can be joined by a line segment fully
contained in X. The set X is convex if it is semiconvex and does not contain some projective
line, that is, X is contained in a plane ρ ⊂ RP2; see also [13]. A projective convex hull of
a set Y ⊂ RP2 is an inclusion-wise minimal convex subset of RP2 containing Y . We note
that, unlike the situation in the plane, a projective convex hull of Y does not have to be
determined uniquely; see Figure 1.

(a) (b) (c)

Figure 1 An example of three projective 4-gons determined by the same subset of four points
from a set P of six points in RP2. The projective 4-gons in (a) and (b) are not projective 4-holes in
P , but the projective 4-gon in (c) is a projective 4-hole in P .

▶ Definition 1 (A projective k-gon). For a positive integer k and a finite set P of points
from RP2 in general position, a projective k-gon determined by P is a projective convex hull
of a set I of k points from P which contains all points of I on its boundary; see Figure 1.

The notion “projective k-gon” in RP2 is a natural analogue of the notion “affine k-gon”
in R2, since projective k-gons in RP2 are exactly those subsets of RP2 which are convex
k-gons in some of the planes contained in RP2.

Since a projective convex hull is not determined uniquely, a set of k points in RP2 can
determine several projective k-gons. In particular, it is not difficult to verify that

(i) any three points in general position in RP2 determine four projective 3-gons,
(ii) any four points in general position in RP2 determine three projective 4-gons,
(iii) any five points in general position in RP2 determine exactly one projective 5-gon, and
(iv) any k ≥ 6 points in general position in RP2 determine at most one projective k-gon.

We also introduce the following natural analogue of holes in the real projective plane.

▶ Definition 2 (A projective k-hole). For an integer k ≥ 3 and a finite set P of points from
RP2 in general position, a projective k-hole in P is a projective k-gon determined by points
from P that does not contain any point from P in its interior; see Figure 1.

The notion of a “projective k-hole” in RP2 is a natural analogue of the notion of an
“(affine) k-hole” in R2, since projective k-holes in RP2 are exactly those subsets of RP2 which
are (affine) k-holes in some of the planes contained in RP2.

We note that, again, a single set of k ∈ {3, 4} points in general position in RP2 can
determine several different projective k-holes. Also note that, if H is a projective k-hole in
a finite set P of points from RP2 in general position, then in every affine plane ρ ⊂ RP2

containing H, the set H is an affine k-hole. A subset of RP2 is a projective hole in P if it is
a projective k-hole in P for some integer k ≥ 3.

We also describe the following alternative view on projective k-gons and k-holes via planar
point sets. A double chain [27] is a set S = A ∪ B of k points from R2 with A = {s1, . . . , sm}
and B = {sm+1, . . . , sk} for some m with 1 ≤ m ≤ k − 1 such that, for every i = 1, . . . , k, the

SoCG 2022
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line sisi+1 separates A \ {si, si+1} from B \ {si, si+1} (indices modulo k); see Figure 2. The
sets A and B are the chains of the double chain. For a line ℓ not separating A, let HA

ℓ be the
closed half-plane bounded by ℓ that contains A and we similarly define HB

ℓ . The double chain
k-wedge of S is the union WA ∪ WB where WA =

⋂m
i=0 HA

sisi+1
and WB =

⋂k
i=m HB

sisi+1
.

▶ Observation 3. Let P be a set of k points from RP2 in general position and let ρ ⊂ RP2

be an affine plane containing P . A convex set G in RP2 is a projective k-gon determined
by P if and only if, in ρ, G is either a convex polygon with k vertices (that is, an affine
k-gon) or a double chain k-wedge. ◀

s1
s2 s3

s4

s5
s6

s7 s8
s9

WA

WB

Figure 2 A double chain S on 9 points and the corresponding double chain 9-wedge.

▶ Observation 4. Let P be a set of k points from RP2 in general position and let ρ ⊂ RP2

be an affine plane containing P . A convex set H in RP2 is a projective k-hole in P if and
only if, in ρ, H is either a convex polygon with k vertices that is empty in P (that is, an
affine k-hole) or a double chain k-wedge that is empty in P . ◀

Convex sets in the real projective plane were considered by many authors [10, 13, 14, 23, 28]
and their study goes back more than 100 years to Steinitz [35]. Besides the article of Harborth
and Möller [24], which introduced the notion of projective k-gons, we are not aware of any
further literature on projective k-gons or projective k-holes. Thus, our goal is to conduct a
first extensive study of extremal properties of point sets in RP2.

2 Our results

First, we consider an analogue of the Erdős–Szekeres theorem in the real projective plane.
For an integer k ≥ 2, let ESp(k) be the minimum positive integer N such that every set
of at least N points in RP2 in general position contains k points in projective convex
position. Interestingly, due to Observation 3, ESp(k) equals the minimum positive integer
such that every set of at least ESp(K) points in R2 in general position contains either
k points in convex position or a double chain of size k. As already noted in [24], one
immediately gets ESp(k) ≤ ES(k). On the other hand, ESp(k) ≥ ES(⌈k/2⌉), since the
largest chain of a double chain of size k has at least ⌈k/2⌉ points. Thus, by (1), we have
2⌈k/2⌉−2 + 1 ≤ ESp(k) ≤ 2k+O(

√
k log k) for every k ≥ 2 and, in particular, the numbers

ESp(k) are finite. As our first result, we prove an almost matching lower bound on ESp(k).

▶ Theorem 5. There are constants c, c′ > 0 such that, for every integer k ≥ 2,

2k−c log k ≤ ESp(k) ≤ 2k+c′
√

k log k.

The precise value of ESp(k) is known for small values of k. For k ≤ 5, all sets of k

points from RP2 determine a projective k-gon by properties (i)–(iii) below Definition 1 and
thus ESp(k) = k. Using SAT-solver-based computations, we have also verified the value
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ESp(6) = 9, which was determined by Harborth and Möller [24]. This value can also be
verified with an exhaustive search, or by using the database of order types of planar point
sets [1, 2] or the database of (acyclic) oriented matroids [19, 20]. We also found sets of 17
points from RP2 with no projective 7-gon, witnessing ESp(7) ≥ 18.

Now, we focus on extremal problems about holes in the real projective plane. As our first
result, we show that the existence of projective 8-holes is not guaranteed in large point sets
in RP2, proving an analogue of the result by Horton [26].

▶ Theorem 6. For every n ∈ N, there exist sets of n points from RP2 in general position
with no projective 8-hole.

We recall that Theorem 6 implies that there are arbitrarily large finite sets of points
from RP2 in general position with no projective k-holes for any k ≥ 8. The proof of Theorem 6
uses Horton sets defined by Valtr [38] as a generalization of a construction of Horton [26] of
an arbitrarily large planar point set in general position (so-called perfect Horton set) with no
7-hole; see Section 5 for the definition of Horton sets. Horton sets contain no affine 7-holes
in R2 and we actually show that, if they are embedded in RP2, they contain no projective
8-holes. Moreover, we show quadratic bounds on the number of projective k-holes in Horton
sets for k ≤ 7.

▶ Theorem 7. Let H be a Horton set of size n in R2 ⊂ RP2. Then H has Θ(n2) projective
k-holes for every k ≤ 7. Moreover, if H is the perfect Horton set of size n = 2z, then the
number of projective 3-holes in H equals

4.25 · 22z + 2z(−3z2/2 − z/2 − 5.5) − 4z + 2 = 4.25n2 − 1.5n log2 n − Θ(n log n).

For positive integers k ≥ 3 and n, let hp
k(n) be the minimum number of projective k-holes

in any set of n points in RP2 in general position. Theorem 7 gives hp
k(n) ≤ O(n2) for every

k ≤ 7 and Theorem 6 gives hp
k(n) = 0 for every k > 7.

In contrast to the planar case, each sufficiently large Horton set in RP2 contains a
projective 7-hole. We do not have examples of large point sets in RP2 without projective
7-holes, thus it is natural to ask whether there are projective 7-holes in every sufficiently large
point set in RP2. We believe this to be the case; see Subsection 3 for more open problems.

We also prove that every set of at least 7 points in RP2 contains a projective 5-hole
while there are sets of 6 points in RP2 with no projective 5-hole. Interestingly, every set of
5 points in RP2 contains a projective 5-hole. This is in contrast with the situation in the
plane, where we have hk(n) ≤ hk(n + 1) for every k and n, which can be seen by removing a
vertex of the convex hull of a set S of n + 1 points from R2 with hk(n + 1) affine k-holes.

▶ Proposition 8. Every set of at least 7 points in general position in RP2 contains a projective
5-hole. Also, hp

5(5) = 1 and hp
5(6) = 0.

The proof of Proposition 8 can be found in [7]. The following theorem shows that for
some point sets the number of holes is substantially larger in RP2 than in R2.

▶ Theorem 9. For every k ∈ {3, . . . , 6} and every positive integer n, there is a set Sk(n)
of n points in general position in R2 ⊂ RP2 such that Sk(n) has O(n2) affine k-holes in R2

and Ω(n3− 5
3k ) projective k-holes.

More generally, for every k ∈ {3, . . . , 6}, every real number α ∈ [0, k − 2], and each
positive integer n, there is a set Sα

k (n) of n points in general position in R2 ⊂ RP2 such that
Sα

k (n) has O(n2+α) affine k-holes in R2 and Ω(n2+β) projective k-holes, where

β :=
{

1 − 5
3k + α · k−1

k if 0 ≤ α ≤ 2k−5
3 ,

(1 + α) k−2
k−1 if 2k−5

3 < α ≤ k − 2.

SoCG 2022
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The following result shows a significant difference between the number of holes of all sizes
in the plane and in the real projective plane.

▶ Theorem 10. For any two positive integers n and x with x ≤ 2n/2, there is a set S(n, x)
of n points in general position in R2 ⊂ RP2 containing at most O(x + n2) affine holes in R2

and at least Ω(x2) projective holes.

In general, we can show that every set P of n points from R2 ⊂ RP2 contains at least
quadratically many projective holes which are not affine holes in R2.

▶ Proposition 11. Let P be a set of n points in R2 ⊂ RP2 in general position, and let hp
k(P )

be the number of projective k-holes in P . Then,

hp
3(P ) ≥ h3(P ) + 1

3

(
n

2

)
and hp

4(P ) ≥ h4(P ) + 1
2

((
n

2

)
− 3n + 3

)
,

where hk(P ) is the number of affine k-holes in P in the plane R2.

The proof of Proposition 11 can be found in [7]. Together with the best known lower
bounds on h3(n) and h4(n) by Aichholzer et al. [3], the estimates from Proposition 11 give

hp
3(n) ≥ 7

6n2 + Ω(n log2/3 n) and hp
4(n) ≥ 3

2n2 + Ω(n log3/4 n).

We also discuss random point sets in the real projective plane and provide the following
analogue to results for random point sets in the plane [8, 40]. This gives an alternative proof
of the upper bound hp

3(n) ≤ O(n2). The proof of Theorem 12 can be found in [7].

▶ Theorem 12. Let K be a compact convex subset in R2 of unit area. If P is a set of n

points chosen uniformly and independently at random from K ⊂ R2 ⊂ RP2, then the expected
number of projective 3-holes in P is in Θ(n2). Moreover, the expected number of projective
holes in P , which are not affine holes in R2, is in Θ(n2).

Last but not least, we discuss the computational complexity of determining the number of
k-gons and k-holes in a given point set. Mitchell et al. [30] gave an O(mn3) time algorithm
to compute, for all k = 3, . . . , m, the number of k-gons and k-holes in a given set S of n

points in the Euclidean plane. Their algorithm also counts k-islands in O(k2n4) time. Here,
an (affine) k-island in a finite point set S in the plane in general position is the convex hull
of a k-tuple I of points from S that does not contain any point from S \ I. Note that a
convex set in R2 is a k-hole in S if and only if it is a k-gon and a k-island in S.

Here, we consider the algorithmic aspects of the analogous problems in the real projective
plane. By modifying the algorithm by Mitchell et al. [30], we can efficiently compute the
number of projective k-gons, k-holes, and k-islands of a finite set in the real projective plane.
Here, a projective k-island in a finite set P of points from RP2 in general position is a
projective convex hull of a k-tuple I of points from P that does not contain any point from
P \ I. Note that, similarly as in the affine case, a convex set in RP2 is a projective k-hole
in P if and only if it is a projective k-gon and a projective k-island in P .

▶ Theorem 13. Let P be a set of n points in R2 ⊂ RP2 in general position. Assuming a
RAM model of computation which can perform arithmetic operations on integers in constant
time, we can compute the total number of projective k-gons and k-holes in P for k = 3, . . . , m

in O(mn4) time and O(mn2) space. The number of projective k-islands in P for k = 3, . . . , m

can be computed in O(m2n5) time and O(m2n3) space.
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3 Discussion

The study of extremal questions about finite point sets in RP2 suggests a wealth of interesting
open problems and topics one can consider. Here, we draw attention to some of them.

By Theorem 6, there are arbitrarily large finite point sets in RP2 that avoid k-holes
for any k ≥ 8. On the other hand, the result by Gerken [21] and Nicolas [31] implies that
every sufficiently large finite subset of RP2 contains a projective k-hole for any k ≤ 6, as an
analogous statement is true already in the affine setting. The existence of projective 7-holes
in sufficiently large finite subsets of RP2 remains an intriguing open problem and we believe
that projective 7-holes can be always found in large points sets in RP2.

▶ Conjecture 14. Every sufficiently large point set in RP2 contains a projective 7-hole.

As we already mentioned, point sets in the plane satisfy hk(n) ≤ hk(n + 1) for all k and n.
By Proposition 8, this is no longer true in the real projective plane. However, we do not
know any other example violating this inequality except of the single case for 5-holes in RP2.
Thus, it is natural to ask the following question.

▶ Problem 15. Is it true that for every integer k ≥ 3 there is n0 = n0(k) such that
hp

k(n + 1) ≥ hp
k(n) for every n ≥ n0?

We have shown in Theorem 7 that Horton sets only contain Θ(n2) projective k-holes.
Since Horton sets only contain Θ(n2) affine k-islands [18], which is asymptotically minimal,
we wonder whether the same bound applies to projective k-islands.

▶ Problem 16. For every fixed integer k ≥ 3, is the minimum number of projective k-islands
among all sets of n points from RP2 in general position in Θ(n2)?

We have shown in Theorem 12 that the expected number of 3-holes in random sets of n

points from RP2 is in Θ(n2). In the plane, we know that the expected number of k-holes
and k-islands is in Θ(n2) for any fixed k [5, 6]. Can analogous estimates be obtained also in
the real projective plane? We note that the lower bound Ω(n2) follows from the planar case.

▶ Problem 17. Let K be a compact convex subset in R2 of unit area and let k ≥ 3. Is the
expected number of projective k-holes and k-islands in a set of n points, which is chosen
uniformly and independently at random from K ⊂ R2 ⊂ RP2, in Θ(n2)?

Besides all these Erdős–Szekeres-type problems related to k-gons, k-holes and k-islands,
many other classical problems have natural analogues in the projective plane. In the following,
we discuss the problem of crossing families. Let P be a finite set of points in the plane.
For a positive integer n, let T (n) be the largest number such that any set of n points in
general position in the plane determines at least T (n) pairwise crossing segments. The
problem of estimating T (n) was introduced in the 1990s by Erdős et al. [4] who proved
T (n) ≥ Ω(

√
n). Since then it was widely conjectured that T (n) ∈ Θ(n). However, nobody

has been able to improve the lower bound from [4] until a recent breakthrough by Pach,
Rubin, and Tardos [32] who showed T (n) ≥ n1−o(1).

In RP2, every pair of points determines a projective line that can be divided into two
projective line segments. Given 2n points p1, . . . , pk, q1, . . . , qk from RP2, we say that they
form projective crossing family of size k if, for each i, we can choose a projective line segment
si between pi and qi such that for any pair i, j with 1 ≤ i < j ≤ k the projective line segments
si and sj intersect. We can then ask about the maximum size T p(n) of a projective crossing
family in a set P of n points from RP2. Note that any set of k pairwise crossing segments
of P , which live in a plane ρ ⊂ RP2, gives a projective crossing family of size k in P . Thus,
proving a linear lower bound might be simpler for T p(n) than for T (n).

SoCG 2022
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▶ Problem 18. Is the maximum size T p(n) of a projective crossing family in a set of n

points from RP2 in general position in Θ(n)?

All the notions we discussed (general position, convex position, k-gons, k-holes, k-islands,
crossing families, and various others) naturally extend to higher dimensional Euclidean
spaces and also to higher dimensional projective spaces. In fact, k-gons and k-holes in higher
dimensional Euclidean spaces are currently quite actively studied:

One central open problem in higher dimensions is to determine the largest value H(d)
such that every sufficiently large set in Rd contains an H(d)-hole. While H(2) = 6 is
known, the gap between the upper and the lower bound for H(d) remains huge for d ≥ 3.
[11, 12, 34, 39]
For sets of n points sampled independently and uniformly at random from a unit-volume
convex body in Rd, the expected number of k-holes and k-islands is in Θ(nd). [5, 6]
While the k-gons and k-holes can be counted efficiently in the Euclidean plane, determining
the size of the largest gon or hole is NP-hard already in R3. [22]

These analogues in RP2 and in high dimensional projective spaces are interesting by
themselves, but they might also shed new light on the original problems. We plan to address
further such analogues and we hope to also motivate some readers for this line of research.

4 Proof of Theorem 5

Here, we show, for every integer k ≥ 2, almost matching bounds on the minimum size ESp(k)
that guarantees the existence of a projective k-gon in every set of at least ESp(k) points
from RP2. More precisely, we prove that there are constants c, c′ > 0 such that

2k−c log k ≤ ESp(k) ≤ 2k+c′
√

k log k.

The upper bound follows from (1), thus it remains to prove the lower bound on ESp(k). To do
so, we construct sets of 2k−c log k points in RP2 with no projective k-gon. By Observation 3,
it suffices to show that S contains no k points in convex position and no double chain of
size k. To obtain such sets, we employ a recursive construction by Erdős and Szekeres [16].
By choosing c sufficiently large, we can assume k ≥ 7.

Let X and Y be finite sets of points in the Euclidean plane. We say that X lies deep
below Y and Y lies high above X if each point of X lies below every line through two points
of Y , and each point of Y lies above every line through two points of X. For k ≥ 2, we say
that a set C of k points in the plane is a k-cup if its points lie on the graph of a convex
function and we call C a k-cap if its points lie on the graph of a concave function.

We now construct the set S inductively as follows. For a ≤ 2 or u ≤ 2, let Sa,u be a set
consisting of a single point from R2 and note that Sa,u then does not contain a 2-cap nor a 2-
cup. For integers a, u ≥ 3, we let Sa,u be a set obtained by placing a copy of Sa,u−1 to the left
and deep below a copy of Sa−1,u. It follows by induction that |Sa,u| =

(
a+u−4

a−2
)

=
(

a+u−4
u−2

)
and

that Sa,u does not contain an a-cap nor a u-cup; see [16]. Finally, we let S = S⌊k/2⌋−1,⌊k/2⌋−1.
Since k ≥ 7, we have ⌊k/2⌋ − 1 ≥ 2 and thus the set S is well-defined.

Note that |S| =
(⌊k/2⌋+⌊k/2⌋−4

⌊k/2⌋−2
)

≥ 2k−c log k for some constant c > 0. The set S does not
contain k points in convex position, as such a k-tuple contains either a (⌊k/2⌋ − 1)-cap or a
(⌊k/2⌋ − 1)-cup. Thus, it remains to show that S does not contain a double chain of size k.

Suppose for contradiction that W is a double chain k-wedge with A ∪ B in S with
A = {s1, . . . , sm} and B = {r1, . . . , rk−m} for some m with 1 ≤ m ≤ k − 1; using the
notation from Subsection 1.2. We let ℓ1 be the line s1rk−m and ℓ2 be the line smr1. Let
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a ≤ ⌊k/2⌋ − 1 and u ≤ ⌊k/2⌋ − 1 be two numbers such that W has all vertices in Sa,u

but it does not have all vertices in Sa−1,u nor in Sa,u−1. Let D and U be the copies of
Sa−1,u and Sa,u−1, respectively, forming Sa,u. We can assume without loss of generality
that |{s1, sm, r1, rk−m} ∩ D| ≥ 2, as the other case |{s1, sm, r1, rk−m} ∩ U | ≥ 2 is treated
analogously. We distinguish the following two cases.

Case 1. Assume |{s1, sm, r1, rk−m} ∩ D| = 2. Then two points from {s1, sm, r1, rk−m} are
in D and the other two points are in U . By symmetry, we can assume s1 ∈ U . We distinguish
the following two subcases, which are shown in Figure 3. Note that, since the line segments
s1rk−m and smr1 cross, the cases s1, rk−m ∈ U and r1, sm ∈ D cannot occur.

s1 sm

r1 sm

r1
s1 s1

Case 1a: Case 1b: Case 2:
s1

U U U U

rk−mrk−m

D D D D

sm
sm

rk−m

r1
rk−m

r1

Figure 3 The cases in the proof of Theorem 5.

Case 1a. Assume s1, sm ∈ U and r1, rk−m ∈ L. We assume that s1 is to the left of sm,
otherwise we reverse the order of the elements in A and B which, in particular, exchanges
the roles of s1 and sm. Since U is high above D, the line s1rk−m is almost vertical and
separates sm from r1, where s1 is to the left of sm and r1 is to the left of rk−m. All
points of A \ {s1} lie to the right of s1rk−m and to the left of smrk−m. Since D is deep
below U , no point of D satisfies these two conditions. Hence all points of A lie in U . An
analogous argument shows that all points of B lie in D. Since A forms an m-cup in U

and B forms a (k − m)-cap in D, we have m ≤ u − 1 and k − m ≤ a − 1. Consequently,
k = m + (m − k) ≤ a + u − 2 ≤ ⌊k/2⌋ + ⌊k/2⌋ − 4 < k, which is impossible.

Case 1b. Assume s1, r1 ∈ U and sm, rk−m ∈ L. We assume that s1 is to the left of r1,
as otherwise we exchange the roles of A and B which, in particular, exchanges the roles of
s1 and r1. Since U is high above D, the line s1rk−m is almost vertical and separates sm

from r1 and sm is to the left of rk−m. All points of A \ {s1} lie to the left of the almost
vertical line s1rk−m and to the right of the almost vertical line s1sm. Hence, A ∩ U = {s1}
and all points from A \ {s1} lie in D. The set A \ {s1} forms an (m − 1)-cup in D and
thus m − 1 ≤ u − 1. An analogous argument shows that B \ {r1} forms a (k − m − 1)-cap
in D and thus (k − m) − 1 ≤ a − 1. In total, we obtain k = (m − 1) + (k − m − 1) + 2 ≤
(u − 1) + (a − 1) + 2 ≤ ⌊k/2⌋ + ⌊k/2⌋ − 2 < k, which is again impossible.

Case 2. Assume |{s1, sm, r1, rk−m} ∩ D| = 3. We can assume that either s1 or sm lies in U ,
as otherwise we exchange the roles of A and B. Furthermore, we can assume that s1 ∈ U , as
otherwise we reverse the order of the elements in A and B. Since U is high above D, the
line s1rk−m is almost vertical and separates r1 and sm. Since all vertices of W lie either to
the left of the almost vertical line s1sm and to the right of the almost vertical line s1r1 or to
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the right of s1sm and to the left of s1r1, the point s1 is the only vertex of W in U . Hence,
the points S \ {s1} lie in D and form an (m − 1)-cup in D. Thus, m − 1 ≤ u. The points
of B all lie in D and form a (k − m)-cap in D. Thus, k − m ≤ a − 1. Altogether, we have
k = (m − 1) + 1 + (k − m) ≤ u + 1 + a − 1 ≤ ⌊k/2⌋ + ⌊k/2⌋ − 2 < k, which is impossible.

Since there is no case left, we have a contradiction with the assumption that W is a
double chain k-wedge with vertices in S. This completes the proof of Theorem 5.

5 Sketch of the proofs of Theorem 6 and Theorem 7

Here, we sketch the proof of the fact that there are arbitrarily large finite sets of points
from RP2 in general position with no projective 8-hole and with only quadratically many
projective k-holes for every k ≤ 7. For the full proof see [7].

The construction uses so-called Horton sets defined by Valtr [38]. Let H be a set of n

points p1, . . . , pn from R2, sorted according to increasing x-coordinates. Let H0 be the set of
points pi with odd i and let H1 be the set of points pi with even i. The set H is Horton if
either |H| ≤ 1 or if |H| ≥ 2, H0 and H1 are both Horton and H0 lies deep below or high
above H1. In the second case, we call H0 and H1 the layers of H. As in Section 4, we say
that H0 lies deep below H1 and H1 lies high above H0 if each point of H0 lies below every
line spanned by two points of H1, and each point of H1 lies above every line spanned by two
points of H0. For a nonempty subset A of H, we define the base of A in H as the smallest
recursive layer of H containing A.

As in Section 4, we use the terms k-cup and k-cap. A cap is a set that is a k-cap for
some integer k and, analogously, a cup is a set that is a k-cup for some k. A cap C is open
in a set S ⊆ R2 if there is no point of S below C, that is, for each pair of points c1, c2 from
C, no point of S has its coordinate between x(c1) and x(c2) and lies below the line c1c2.
Analogously, a cup in S is open in S if there is no point of S above it.

5.1 Quadratic upper bounds on the number of k-holes
We show that any Horton set on n points embedded in the real projective plane does
not contain 8-holes and that H has at most O(n2) k-holes for every k ∈ {3, . . . , 7}. By
Observation 4, it suffices to show that any Horton set H on n points in the plane does not
contain 8-holes nor an empty double chain 8-wedge and that, for every k ∈ {3, . . . , 7}, H

contains only at most O(n2) k-holes and empty double chain k-wedges. Valtr [38] showed
that any Horton set in the plane does not contain 7-holes and that it does not contain any
open 4-cap nor an open 4-cup. Bárány and Valtr [9] showed that the number of k-holes
in any Horton set of size n is at most O(n2) for every k ∈ {3, . . . , 6}. Thus, it suffices to
estimate the number of double chain k-wedges in Horton sets.

Let H be a Horton set with n points in the plane. We first show that the number of open
caps in every Horton set H with n points in the plane is at most O(n) and that analogous
statement is true for open cups. To prove this claim, it suffices to consider only open 2-caps
and 3-caps, as H does not contain open 4-caps.

We proceed by induction on log2 n and show that the number t2(H) of open 2-caps equals
2n − log2 (n) − 2 and that the number t3(H) of open 3-caps in H equals n − log2 (n) − 1 if n

is a power of 2. Both expressions hold for n = 1 and thus we assume n ≥ 2. Let p1, . . . , pn

be the points of H ordered according to increasing coordinates and let H0 = L(H) and
H1 = U(H) be the sets that partition H such that H0 is deep below H1. Every line segment
pipi+1 forms an open 2-cap in H and there is no other open 2-cap in H with points in H0
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and H1, as there is a point of H1 above any such line segment pipj with j > i + 1. Since no
two points from H1 form an open 2-cap in H, we have t2(H0) + n − 1 open 2-caps in H. By
the induction hypothesis, it follows t2(H) = 2n − log2 (n) − 2.

To determine the number of open 3-caps in H, note that every triple pipi+1pi+2 with odd
i forms an open 3-cap in H. In fact, there is no other open 3-cap in H with a point in H0
and also in H1, as there is a point of H1 above any such line segment pipj with j > i + 1.
Since no three points in H1 form an open 3-cap in H, we obtain t3(H0) + n/2 − 1 open 3-caps
in H. The induction hypothesis then gives t3(H) = n − log2 (n) − 1.

If n is not a power of two, we consider a Horton set H ′ of size m instead, where m is as the
smallest power of 2 larger than n, and denote its leftmost n points by H ′′. Since H ′′ is also a
Horton set of n points and contains the same open caps as H, we obtain t2(H) ≤ t2(H ′) < 4n

and t3(H) ≤ t3(H ′) < 2n. Overall, the number of open caps in H is at most O(n). With an
analogous argument we obtain the same upper bound on the number of open cups in H.

We now proceed with the proof by induction on n. Clearly, the claims about the double
chain k-wedges are true in any Horton set with one or two points, so we assume n ≥ 3. For
some integer k ≥ 3, let W ⊆ H be a double chain k-wedge that is empty in H. We will show
that k ≤ 7 and estimate the number of such double chain k-wedges for each k ∈ {3, . . . , 7}.

If W is contained in H0 or in H1, then k ≤ 7 by the induction hypothesis. Thus, we
assume that W contains a point from H0 and also from H1. An elaborate case analysis
shows that H contains no double chain 8-wedge that is empty in H and that has points in
H0 and H1; see [7]. By the induction hypothesis, the sets H0 and H1 do not contain any
double chain 8-wedge that is empty in H0 and in H1, respectively. Since every double chain
8-wedge that is contained in Hi and is empty in H is also empty in Hi for every i ∈ {0, 1},
we see that there is no double chain 8-wedge in H that is empty in H. This completes the
proof of Theorem 6.

Let k ∈ {3, . . . , 7}. For the quadratic upper bounds, it can be shown that there is a
constant c such that H contains at most cn2 double chain k-wedges that are empty in H

and that have points in H0 and H1 (again, see [7]). Altogether, the number wk(H) of
empty double chain k-wedges in H satisfies wk(H) ≤ wk(H0) + wk(H1) + cn2. Solving this
linear recurrence with the initial condition wk(H ′) = 0 for any set H ′ with |H ′| = 1 gives
wk(H) ≤ O(n2). This completes the proof of the first part of Theorem 7.

6 Outline of the construction giving Theorems 9 and 10

Here we outline the construction giving Theorems 9 and 10. For the full proof, see [7].
We are given a k ∈ {3, . . . , 6} and a positive integer n. Our construction uses two

integer parameters a, b ≥ 2 satisfying a ≤ n1/3 and ab ≤ n. In the proof of Theorem 9,
these parameters depend on the value of the parameter α in the theorem. For the proof of
Theorem 10, where we are given an integer parameter x, we choose a := 2 and b ≈ log2(x).

Assuming
√

n is an integer, we start the construction with the
√

n ×
√

n integer lattice
in the plane, denoted by L(

√
n ×

√
n), and we fix a subset C3 of Θ(n1/3) points in convex

position in L(
√

n ×
√

n). We then perturb the lattice to get a so-called random squared
Horton set, denoted by H(

√
n ×

√
n), which is a randomized version [9] of the lattice version

of so-called Horton sets [38], which generalize the famous construction of Horton [26] of
planar point sets in general position with no 7-holes. The random squared Horton set is
described in [9, Section 2] and denoted by Λ∗ there.

We consider the |C3|-element subset CH
3 of H(

√
n ×

√
n) corresponding to C3. Since C3

is in convex position, the set CH
3 is also in convex position. We fix an a-element subset C

of CH
3 , where a is the above mentioned parameter. For each c ∈ C, we take a set Sc of b
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points lying in a very small neighborhood of c and on a unit circle touching the polygon
conv CH

3 in the point c. Since the points of Sc are placed very close together on a unit circle,
they are almost collinear. We consider the set H(

√
n ×

√
n) ∩ conv CH

3 , and denote its union
with the sets Sc, c ∈ C, by T = T (a, b); see Figure 4. The set T has at most n + ab ≤ 2n

points, and it is just a little technicality to adjust its size to n at the right place in the proof.

c

Sc

H(
√
n×
√
n) ∩ convCH

3

Figure 4 An illustration of the set T (a, b) for a = 3 and b = 5 (we assume each c lies in Sc).

We now sketch a proof that the set T satisfies Theorems 9 and 10 for properly chosen
parameters a and b. The random squared Horton set of size n has O(n2) affine holes [9, 38].
Likewise, using the condition ab ≤ n and two additional facts, it can be argued that the set
T has at most O(n2) affine holes that do not lie completely in some Sc. The two additional
facts are that (i) the expected number of affine holes containing a fixed point of C is at most
O(n) and (ii) the expected number of affine holes containing a fixed pair of points of C is at
most O(n). The number of affine k-holes that lie completely in one of the sets Sc is clearly
a
(

b
k

)
< abk. Thus, the total number of affine k-holes in T = T (a, b) is at most O(n2 + abk).

Due to the construction, any (k − 1)-element subset of any set Sc, together with any
point of T \ Sc, forms a projective k-hole. There are a sets Sc and each of them has size b.
Thus, there are at least a ·

(
b

k−1
)

· (|T | − b) = Θ(abk−1n) projective k-holes in T .
Now, Theorem 9 is obtained from the above construction by setting the parameters a, b

carefully with respect to α. Namely, for α ∈ [0, 2k−5
3 ] we set a ≈ n1/3 and b := n(5/3+α)/k,

and for α ∈ ( 2k−5
3 , k − 2] we set a ≈ n1−(1+α)/(k−1) and b := n(1+α)/(k−1). We remark

that in the range α ∈ [0, 2k−5
3 ], the parameter a corresponds to its maximum possible size

which is the maximum size of a subset in the lattice L(
√

n ×
√

n) in convex position, and
the parameter b grows with α, since increased α allows bigger affine holes. In the range
α ∈ ( 2k−5

3 , k − 2], the parameter b continues to grow with α but a is decreasing to keep the
size ab of S below n.

To obtain Theorem 10 from the above construction, we set a := 2 and b ≈ log2 x. Then
the number of affine holes contained in one of the two sets Sc is ≈ a2b = Θ(x) and the
number of other affine holes in T is again in O(n2). Any subset of the (ab =)2b-element
union of the two sets Sc is in convex position or is a double chain, determining a projective
hole. Thus, T = T (2, b) has at least Θ(22b) = Θ(x2) projective holes. Theorem 10 follows.
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7 Proof of Theorem 13

Let S be a set of n points in the Euclidean plane in general position. Mitchell et al. [30]
use a dynamic programming approach to determine, for every point p ∈ S, the number of
k-gons and k-holes for k = 3, . . . , m, which have p as the bottom-most point. The algorithm
performs in O(mn2) time and space. They also determine the number of k-islands in S, which
have p as the bottom-most point, in O(m2n3) time and space. Note that the bottom-most
point is unique without loss of generality, as otherwise we perform an affine transformation
which does not affect the number of k-gons, k-holes, and k-islands.

Here, we introduce an algorithm that efficiently computes the number of projective k-gons,
k-holes, and k-islands of a finite set P of n points from R2 ⊂ RP2. First, we discuss how to
determine the number of projective k-gons in P .

Let G be a projective k-gon with k ≥ 3 and let p1, p2 be two vertices that are consecutive
on the boundary of G. If we start at p1 and trace the boundary of G in the direction of p2,
we obtain a unique cyclic permutation p1, . . . , pk of the vertices of G. By starting at p2
and tracing in the direction of p1, we obtain the reversed cyclic permutation. It is crucial
that, independently from the starting point and the direction, only the k pairs {pi, pi+1} for
i = 1, . . . , k (indices modulo k) appear as consecutive vertices along the boundary of G.

For every pair of points {s, t} ∈ P , the algorithm will count (with multiplicities) the
number of projective k-gons in P , which have s and t as consecutive vertices on the boundary.
Since each projective k-gon is counted exactly k times, we can then derive the number
projective k-gons in P by a simple division by k.

For a pair {s, t} of distinct points from P , we can choose a line ℓ+
s,t (ℓ−

s,t) which is parallel
to the line st and lies very close and to the left (right) of st. By removing ℓ+

s,t and ℓ−
s,t,

respectively, from RP2, we obtain two planes ρ+
s,t ⊂ RP2 and ρ−

s,t ⊂ RP2. Now, every
projective k-gon G of P , which has s and t as consecutive vertices on its boundary, is a
convex k-gon either in ρ+

s,t or in ρ−
s,t, but not in both. Note that in both planes ρ+

s,t and ρ−
s,t,

s and t lie on the boundary of the convex hull of P . Moreover, we can assume that s is the
bottom-most point in both planes ρ+

s,t and ρ−
s,t, as otherwise we apply a suitable rotation.

For each of the
(

n
2
)

pairs {s, t} of distinct points from P , we now count the number of
convex k-gons in the planes ρ+

s,t and ρ−
s,t, which have s and t as consecutive vertices on the

boundary. This counting can be done in O(mn2) time and space by using the algorithm
of Mitchell et al. [30] with the slight modification that, in the initial phase, we only count
3-gons of the form p1 = s, p2 = t, p3; see equation (3) in [30]. Since each projective k-gon G is
now counted precisely k times, once for each pair of consecutive vertices along the boundary
of G, this completes the argument for projective k-gons.

Similarly, we count projective k-holes and k-islands. The time and space requirements of
the algorithm from [30] for counting projective k-holes, which are incident to the bottom-most
point, are the same as for projective k-gons. For counting projective k-islands, which are
incident to the bottom-most point, the algorithm from [30] uses O(m2n3) time and space.
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