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Abstract
Motivated by computational aspects of persistent homology for Vietoris–Rips filtrations, we generalize
a result of Eliyahu Rips on the contractibility of Vietoris–Rips complexes of geodesic spaces for a
suitable parameter depending on the hyperbolicity of the space. We consider the notion of geodesic
defect to extend this result to general metric spaces in a way that is also compatible with the
filtration. We further show that for finite tree metrics the Vietoris–Rips complexes collapse to
their corresponding subforests. We relate our result to modern computational methods by showing
that these collapses are induced by the apparent pairs gradient, which is used as an algorithmic
optimization in Ripser, explaining its particularly strong performance on tree-like metric data.
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1 Introduction

The Vietoris–Rips complex is a fundamental construction in algebraic, geometric, and applied
topology. For a metric space X and a threshold t > 0, it is defined as the simplicial complex
consisting of nonempty and finite subsets of X with diameter at most t:

Ripst(X) = {∅ ≠ S ⊆ X | S finite, diamS ≤ t}.

First introduced by Vietoris [27] in order to make homology applicable to general compact
metric spaces, it has also found important applications in geometric group theory [16] and
topological data analysis [26]. The role of the threshold in these three application areas is
notably different. The homology theory defined by Vietoris arises in the limit t → 0. In
contrast, the key applications in geometric group theory rely on the fact that the Vietoris–
Rips complex of a hyperbolic geodesic space is contractible for a sufficiently large threshold.
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This observation, originally due to Rips and first published in Gromov’s seminal paper on
hyperbolic groups [16], is a fundamental result about the topology of Vietoris–Rips complexes
and plays a central role in the theory of hyperbolic groups.

▶ Lemma 1 (Contractibility Lemma; Rips, Gromov [16]). Let X be a δ-hyperbolic geodesic
metric space. Then the complex Ripst(X) is contractible for every t > 0 with t ≥ 4δ.

Here, a metric space (X, d) is called geodesic if for any two points x, y ∈ X there exists an
isometric map [0, d(x, y)] → X such that 0 7→ x and d(x, y) 7→ y, and it is called δ-hyperbolic
(in the sense of Gromov [16]) for δ ≥ 0 if for any four points w, x, y, z ∈ X we have

d(w, x) + d(y, z) ≤ max{d(w, y) + d(x, z), d(w, z) + d(x, y)} + 2δ. (1)

Finally, in applications of Vietoris–Rips complexes to topological data analysis, one is typically
interested in the persistent homology of the entire filtration of complexes for all possible
thresholds. A notable difference to the classical applications is that the metric spaces under
consideration are typically finite, and in particular not geodesic. This motivates the interest
in a meaningful generalization of the Contractibility Lemma to finite metric spaces. Based
on the notion of a discretely geodesic space defined by Lang [22], which is the natural setting
for hyperbolic groups, and motivated by techniques used in that paper, we consider the
following quantitative geometric property (called ν-almost geodesic in [10, p. 271]).

▶ Definition 2. A metric space X is ν-geodesic if for all x, y ∈ X and r, s ≥ 0 with
r + s = d(x, y) there exists a point z ∈ X with d(x, z) ≤ r + ν and d(y, z) ≤ s + ν. The
geodesic defect of X, denoted by ν(X), is the infimum over all ν such that X is ν-geodesic.

Our first main result is a generalization of the Contractibility Lemma that also applies to
non-geodesic spaces using our notion of geodesic defect, and further produces collapses that
are compatible with the Vietoris–Rips filtration above the collapsibility threshold.

▶ Theorem 3. Let X be a finite δ-hyperbolic ν-geodesic metric space. Then there exists a
discrete gradient that induces, for every u > t ≥ 4δ + 2ν, a sequence of collapses

Ripsu(X) ↘ Ripst(X) ↘ {∗}.

▶ Example 4. An important special case is given by a finite tree metric space (V, d), where V
is the vertex set of a positively weighted tree T = (V,E), and where the edge weights are
taken as lengths and d is the associated path length metric, i.e., for two points x, y ∈ V their
distance is the infimum total weight of any path starting in x and ending in y. The geodesic
defect is ν(V ) = 1

2 maxe∈E l(e), where l(e) is the length of the edge e. Moreover, (V, d) is
0-hyperbolic (see [13, Theorems 3.38 and 3.40] for a characterization of 0-hyperbolic spaces).

This example is of particular relevance in the context of evolutionary biology, where persistent
Vietoris–Rips homology has been successfully applied to identify recombinations and recurrent
mutations [11, 24, 8]. The metrics arising as genetic distances of aligned RNA or DNA
sequences are typically very similar to trees, capturing the phylogeny of the evolution. This
motivates our interest in the particular case of tree metrics. These metric spaces are known
to have acyclic Vietoris–Rips homology in degree > 0, and so any homology is an indication
of some evolutionarily relevant phenomenon.

Our second main result is a strengthened version of Theorem 3 for the special case of tree
metric spaces that connects the collapses of the Vietoris–Rips filtration to the construction
of apparent pairs, which play an important role as a computational shortcut in the software
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Ripser [6]. This result depends on a particular ordering of the vertices: we say that a total
order of V is compatible with the tree T if it extends the unique tree partial order resulting
from choosing some arbitrary root vertex as the minimal element.

▶ Theorem 5. Let V be a finite tree metric space for a weighted tree T = (V,E), whose
vertices are totally ordered in a compatible way. Then the apparent pairs gradient for the
lexicographically refined Vietoris–Rips filtration induces a sequence of collapses

Ripsu(V ) ↘ Ripst(V ) ↘ Tt

for every u > t > 0 such that no edge e ∈ E has length l(e) ∈ (t, u], where Tt is the subforest
with vertices V and all edges of E with length at most t. In particular, the persistent homology
of the Vietoris–Rips filtration is trivial in degree > 0.

In the special case of trees with unit edge length, the proofs in [1, Proposition 2.2] and [2,
Proposition 3] are similar in spirit to our proof of Theorem 25, which is based on discrete
Morse theory. Related results about implications of the geometry of a metric space on the
homotopy types of the associated Vietoris–Rips complexes can be found in [3, 4, 23].

▶ Remark 6. Given a vertex order ≤, the lexicographic order on simplices for the reverse
vertex order ≥ coincides with the reverse colexicographic order for the original order ≤,
which is used for computations in Ripser. As a consequence, when the input is a tree metric
with the points ordered in reverse order of the distances to some arbitrarily chosen root, then
Ripser will identify all non-tree simplices in apparent pairs, requiring not a single column
operation to compute its trivial persistent homology. In practice, we observe that on data
that is almost tree-like, such as genetic evolution distances, Ripser exhibits exceptionally
good computational performance. The results of this paper provide a partial geometric
explanation for this behavior and yield a heuristic for preprocessing tree-like data by sorting
the points to speed up the computation in such cases. In the application to the study
of SARS-CoV-2 described in [8], ordering the genome sequences in reverse chronological
order, as an approximation of the reverse tree order for the phylogenetic tree, lead to a huge
performance improvement, bringing down the computation time for the persistence barcode
from a full day to about 2 minutes.

2 Preliminaries

2.1 Discrete Morse theory and the apparent pairs gradient
A simplicial complex K on a vertex set VertK is a collection of nonempty finite subsets
of VertK such that for any set σ ∈ K and any nonempty subset ρ ⊆ σ one has ρ ∈ K. A
set σ ∈ K is called a simplex, and dim σ = cardσ− 1 is its dimension. Moreover, ρ is said to
be a face of σ and σ a coface of ρ. If dim ρ = dim σ − 1, then we call ρ a facet of σ and σ a
cofacet of ρ. The star of σ, Stσ, is the set of cofaces of σ in K, and the closure of σ, Cl σ, is
the set of its faces. For a subset E ⊆ K, we write StE =

⋃
e∈E St e.

Generalizing the ideas of Forman [14], a function f : K → R is a discrete Morse function
[7, 15] if f is monotonic, i.e., for any σ, τ ∈ K with σ ⊆ τ we have f(σ) ≤ f(τ), and there
exists a partition of K into intervals [ρ, ϕ] = {ψ ∈ K | ρ ⊆ ψ ⊆ ϕ} in the face poset such that
f(σ) = f(τ) for any σ ⊆ τ if and only if σ and τ belong to a common interval in the partition.
The collection of regular intervals, [ρ, ϕ] with ρ ≠ ϕ, is called the discrete gradient of f , and
any singleton interval [σ, σ], as well as the corresponding simplex σ, is called critical.

SoCG 2022
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▶ Proposition 7 (Hersh [18, Lemma 4.1]; Jonsson [20, Lemma 4.2]). Let K be a finite
simplicial complex, and {Kα}α∈A a set of subcomplexes covering K, each equipped with a
discrete gradient Vα, such that for any simplex of K

there is a unique minimal subcomplex Kα containing that simplex, and
the simplex is critical for the discrete gradients of all other such subcomplexes.

Then the regular intervals in the Vα are disjoint, and their union is a discrete gradient on K.

An elementary collapse K ↘ K \ {σ, τ} is the removal of a pair of simplices, where σ is a
facet of τ , with τ the unique proper coface of σ. A collapse K ↘ L onto a subcomplex L is a
sequence of elementary collapses starting in K and ending in L. An elementary collapse can
be realized continuously by a strong deformation retraction and therefore collapses preserve
the homotopy type. A discrete gradient can encode a collapse.

▶ Proposition 8 (Forman [14]; see also [21, Theorem 10.9]). Let K be a finite simplicial
complex and let L ⊆ K be a subcomplex. Assume that V is a discrete gradient on K such that
the complement K \ L is the union of intervals in V . Then there exists a collapse K ↘ L.

Let f : K → R be a monotonic function. Assume that the vertices of K are totally
ordered. The f -lexicographic order is the total order ≤f on K given by ordering the simplices

by their value under f ,
then by dimension,
then by the lexicographic order induced by the total vertex order.

We call a pair (σ, τ) of simplices in K a zero persistence pair if f(σ) = f(τ). An apparent
pair (σ, τ) with respect to the f -lexicographic order is a pair of simplices in K such that σ is
the maximal facet of τ , and τ is the minimal cofacet of σ. The collection of apparent pairs
forms a discrete gradient [6, Lemma 3.5], called the apparent pairs gradient.

Assume that K is finite and f : K → R a discrete Morse function with discrete gradient V .
Refine V to another discrete gradient

Ṽ = {(ψ \ {v}, ψ ∪ {v}) | ψ ∈ [ρ, ϕ] ∈ V, v = min(ϕ \ ρ)}

by doing a minimal vertex refinement on each interval.

▶ Lemma 9. The zero persistence apparent pairs with respect to the f-lexicographic order
are precisely the gradient pairs of Ṽ .

Proof. Let (σ, τ) be a zero persistence apparent pair. Then f(σ) = f(τ), and σ and τ are
contained in the same regular interval I = [ρ, ϕ] of V . Let v be the minimal vertex in ϕ \ ρ.
By assumption, σ is the maximal facet of τ , and τ is the minimal cofacet of σ. Hence, σ
is lexicographically maximal among all facets of τ in I, and τ is lexicographically minimal
under all cofacets of σ in I. By the assumption that (σ, τ) forms an apparent pair, we
cannot have v ∈ σ, as otherwise τ \ {v} would be a larger facet of τ than σ. Similarly, we
cannot have v /∈ τ , as otherwise σ ∪ {v} would be a smaller cofacet of σ than τ . This means
that τ = σ ∪ {v} and therefore {σ, τ} ∈ Ṽ .

Conversely, assume that {σ, τ} ∈ Ṽ holds. Consider the interval I = [ρ, ϕ] of V
with {σ, τ} ⊆ I and let v be the minimal vertex in ϕ \ ρ. By construction of Ṽ , σ = τ \ {v}
is the lexicographically maximal facet of τ in I and τ = σ ∪ {v} is the lexicographically
minimal cofacet of σ in I. Therefore, (σ, τ) is a zero persistence apparent pair. ◀
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2.2 Rips’ Contractibility Lemma via the injective hull
In this section, we recall some known facts about embeddings of metric spaces into their
injective hull. We adapt these results using our notion of geodesic defect to prove a version
of the Contractibility Lemma for finite δ-hyperbolic ν-geodesic metric spaces, following [25].

Let Y be a metric space. The Čech complex of a subspace X ⊆ Y for radius r > 0 is the
nerve of the collection of closed balls in Y with radius r centered at points in X:

Čechr(X,Y ) = {∅ ≠ S ⊆ X | S finite,
⋂

x∈S

Dr(x) ̸= ∅},

where Dr(x) = {y ∈ Y | d(x, y) ≤ r} denotes the closed ball in Y of radius r centered at x.
A metric space is hyperconvex [12] if it is geodesic and if any collection of closed balls has

the Helly property, i.e., if any two of these balls have a nonempty intersection, then all balls
have a nonempty intersection. The following lemma is a direct consequence of this definition.

▶ Lemma 10. If Y is hyperconvex and X ⊆ Y is a subspace, then Čechr(X,Y ) = Rips2r(X).

Let X be a metric space. We describe its injective hull E(X), following Lang [22].
A function f : X → R with f(x) + f(y) ≥ d(x, y) for all x, y ∈ X is extremal if f(x) =
supy∈X(d(x, y) − f(y)) for every x ∈ X. The difference between any two extremal functions
turns out to be bounded, and so we can equip the set E(X) of extremal functions with the
metric induced by the supremum norm, i.e., d(f, g) = supx∈X |f(x) − g(x)|. We define an
isometric embedding e : X → E(X) by y 7→ dy, where dy(x) = d(y, x).

▶ Remark 11. E(X) is a hyperconvex space. In particular, E(X) is contractible, and
nonempty intersections of closed metric balls are contractible [22, 19]. Moreover, nonempty
intersections of open metric balls are also contractible [25, Proposition 2.8 and Lemma 2.15].

The following theorem is essentially due to Lang [22]. Originally, it has been stated for a
special case, but the proof applies verbatim to the below statement involving our notion of
the geodesic defect, which indeed provided the motivation for our definition. Note that the
definition of δ-hyperbolic used in [22] differs from the one used here by a factor of 2.

▶ Proposition 12 (Lang [22, Proposition 1.3]). Let X be a δ-hyperbolic ν-geodesic metric
space. Then the injective hull E(X) is δ-hyperbolic, and every point in E(X) has distance at
most 2δ + ν to e(X).

Now we prove a generalization of the Contractibility Lemma using the injective hull
analogously to the proof for geodesic spaces in [25, Corollary 8.4].

▶ Theorem 13. Let X be a finite δ-hyperbolic ν-geodesic metric space. Then the com-
plex Ripst(X) is contractible for every t ≥ 4δ + 2ν.

Proof. By Proposition 12, we know that for r > t
2 ≥ 2δ + ν the collection of open balls

with radius r centered at the points in e(X) covers E(X). By finiteness of X, there exists
an r > t

2 such that the nerve of this cover is isomorphic to Čech t
2
(e(X), E(X)). As e is an

isometric embedding, Lemma 10, Remark 11, and the Nerve Theorem [17, Section 4.G] imply

Ripst(X) = Ripst(e(X)) = Čech t
2
(e(X), E(X)) ≃ E(X) ≃ ∗. ◀

SoCG 2022
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3 Filtered collapsibility of Vietoris–Rips complexes

In this section, we revisit the original proof of the Contractibility Lemma in [16], adapted to
the language of discrete Morse theory [14]. Focusing on the finite case, which also constitutes
the key part of the original proof, we extend the statement beyond geodesic spaces using
our notion of geodesic defect, strengthen the assertion of contractibility to collapsibility, and
further extend the result to become compatible with the Vietoris–Rips filtration.

▶ Theorem 14. Let X be a finite δ-hyperbolic ν-geodesic metric space. Then for every
t ≥ 4δ + 2ν there exists a discrete gradient that induces a collapse Ripst(X) ↘ {∗}.

Proof. Without loss of generality, assume that δ > 0; if X is 0-hyperbolic, then it is also
ϵ-hyperbolic for any ϵ > 0, and for sufficiently small ϵ > 0 we have Rips4ϵ+2ν(X) = Rips2ν(X).

Choose a reference point p ∈ X and order the points according to their distance to p,
choosing a total order p = x1 < · · · < xn on X such that xi < xj implies d(xi, p) ≤ d(xj , p).
Let t ≥ 4δ + 2ν and consider the filtration

{p} = K1 ⊆ · · · ⊆ Kn = Ripst(X),

where Ki = Ripst(Xi) for Xi := {x1, . . . , xi}. We prove that for i ∈ {2, . . . , n} there exists a
discrete gradient Vi on Ki inducing a collapse Ki ↘ Ki−1.

First assume d(xi, p) < t. Then for any vertex xk of Ki we have k ≤ i and d(xk, p) ≤
d(xi, p) < t, so Ki is a simplicial cone with apex p. Pairing the simplices containing p with
those not containing p, we obtain a discrete gradient inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {p}, σ ∪ {p}) | σ ∈ Ki \Ki−1}.

Now assume d(xi, p) ≥ t. We show that there exists a point z ∈ Xi−1 such that for every
simplex σ ∈ Ki \ Ki−1, the union σ ∪ {z} is also a simplex in Ki \ Ki−1. To this end, we
show that any vertex y of σ has distance d(y, z) ≤ t to z. For r = d(xi, p) − 2δ − ν and
s = 2δ + ν we have r + s = d(xi, p), and therefore, by the assumption that X is a ν-geodesic
space, there exists a point z ∈ X with d(z, p) ≤ r + ν = d(xi, p) − 2δ, implying z < xi, and
d(z, xi) ≤ s + ν = 2δ + 2ν. By assumption t ≥ 4δ + 2ν, and thus we get d(z, xi) ≤ t − 2δ.
Note that y ∈ Xi implies d(y, p) ≤ d(xi, p), and y, xi ∈ σ implies d(y, xi) ≤ diam σ ≤ t. The
four-point condition (1) now yields

d(y, z) ≤ max{d(y, xi) + d(z, p), d(y, p) + d(z, xi)} + 2δ − d(xi, p)
= max{d(y, xi)︸ ︷︷ ︸

≤t

+ d(z, p) − d(xi, p)︸ ︷︷ ︸
≤−2δ

, d(y, p) − d(xi, p)︸ ︷︷ ︸
≤0

+ d(z, xi)︸ ︷︷ ︸
≤t−2δ

} + 2δ ≤ t. (2)

Similarly to the above, pairing the simplices containing z with those not containing z yields
a discrete gradient inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {z}, σ ∪ {z}) | σ ∈ Ki \Ki−1}.

Finally, by Proposition 7, the union V =
⋃

i Vi is a discrete gradient on Ripst(X) and by
Proposition 8 it induces a collapse Ripst(X) ↘ {p}. ◀

▶ Remark 15. For a simplicial complex K, a particular type of simplicial collapse called an
elementary strong collapse from K to K \ St v is defined in [5] for the case where the link of
the vertex v is a simplicial cone. The proof of Theorem 14 actually shows that for t ≥ 4δ+ 2ν
there exists a sequence of elementary strong collapses from Ripst(X) to {∗}.
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We can now extend the proof strategy of Theorem 14 to obtain a filtration-compatible
strengthening of the Contractibility Lemma.

Proof of Theorem 3. As in the proof of Theorem 14, we can assume that δ > 0, and order
the points in X according to their distance to a chosen reference point p = x1 < · · · < xn.

As X is finite, we can enumerate the values of pairwise distances by 0 = r0 < · · · < rl. For
every rm > 4δ + 2ν we construct a discrete gradient Wm inducing a collapse Ripsrm

(X) ↘
Ripsrm−1(X). This will prove the theorem, because it follows from Theorem 14 that there
exists a discrete gradient V that induces a collapse Rips4δ+2ν(X) ↘ {∗}, and an application
of Proposition 7 assembles these gradients into a single gradient W = V ∪

⋃
m Wmon Cl(X)

inducing collapses Ripsu(X) ↘ Ripst(X) ↘ {∗} for every u > t ≥ 4δ + 2ν.
Let m be arbitrary such that rm > 4δ + 2ν. Consider the filtration

Ripsrm−1(X) = K1 ⊆ · · · ⊆ Kn = Ripsrm
(X),

where Ki = Ripsrm−1(X) ∪ Ripsrm
(Xi) for Xi := {x1, . . . , xi}. We prove that for i ∈

{2, . . . , n} there exists a discrete gradient Vi on Ki inducing a collapse Ki ↘ Ki−1. Note
that Ki \Ki−1 consists of all simplices of diameter rm that contain xi as the maximal vertex.

First assume d(xi, p) < rm. Let σ ∈ Ki \ Ki−1. As xi is the maximal vertex of σ, we
have d(v, p) ≤ d(xi, p) < rm for all v ∈ σ. Since σ has diameter rm, this implies that σ ∪ {p}
also has diameter rm. Moreover, this implies that there exists an edge e ⊆ σ \ {p} ⊆ σ

not containing p with diam e = rm. Therefore, σ \ {p} also has diameter rm. As p < xi,
both simplices σ \ {p} and σ ∪ {p} contain xi as the maximal vertex and are thus contained
in Ki \Ki−1. Pairing the simplices containing p with those not containing p, we obtain a
discrete gradient inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {p}, σ ∪ {p}) | σ ∈ Ki \Ki−1}.

Now assume d(xi, p) ≥ rm. We show that there exists a point z ∈ Xi−1 such that for
every simplex σ ∈ Ki \Ki−1, the simplices σ \{z} and σ∪{z} are also contained in Ki \Ki−1.
To this end, we show first that any vertex y of σ has distance d(y, z) ≤ rm to z. As in the
proof of Theorem 14, there exists a point z ∈ X with d(z, p) ≤ d(xi, p) − 2δ, implying z < xi,
and d(z, xi) ≤ 2δ + 2ν. By assumption rm > 4δ + 2ν, and thus we get d(z, xi) < rm − 2δ.
Similar to Equation (2), we have the following estimate

d(y, z) ≤ max{d(y, xi)︸ ︷︷ ︸
≤rm

+ d(z, p) − d(xi, p)︸ ︷︷ ︸
≤−2δ

, d(y, p) − d(xi, p)︸ ︷︷ ︸
≤0

+ d(z, xi)︸ ︷︷ ︸
<rm−2δ

} + 2δ ≤ rm,

and if d(y, xi) < rm, then d(y, z) < rm. Hence, diam(σ ∪ {z}) = rm, and diam σ = rm

implies diam σ \ {z} = rm, by an argument similar to the above. As z < xi, both simplices
σ \ {z} and σ ∪ {z} contain xi as the maximal vertex and are thus contained in Ki \Ki−1.
Pairing the simplices containing z with those not containing z, we obtain a discrete gradient
inducing a collapse Ki ↘ Ki−1:

Vi = {(σ \ {z}, σ ∪ {z}) | σ ∈ Ki \Ki−1}.

By Proposition 7 the union Wm =
⋃
Vi is a discrete gradient on Ripsrm

(X), and by
Proposition 8 it induces a collapse Ripsrm

(X) ↘ Ripsrm−1(X). ◀

SoCG 2022
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4 Collapsing Vietoris–Rips complexes of trees by apparent pairs

In this section, we analyze the Vietoris–Rips filtration of a tree metric space (V, d) for a
positively weighted finite tree T = (V,E), with the goal of proving the collapses in Theorem 5
using the apparent pairs gradient. To this end, we introduce two other discrete gradients: the
canonical gradient, which is independent of any choices, and the perturbed gradient, which
coarsens the canonical gradient and can be interpreted as a gradient that arises through a
symbolic perturbation of the edge lengths. We then show that the intervals in the perturbed
gradient are refined by apparent pairs of the lexicographically refined Vietoris–Rips filtration,
with respect to a particular total order on the vertices.

We write Dr(x) = {y ∈ V | d(x, y) ≤ r} and Sr(x) = {y ∈ V | d(x, y) = r}.

▶ Lemma 16. Let x, y ∈ V be two distinct points at distance d(x, y) = r. Then we
have diamDr(x)∩Dr(y) = r. Furthermore, if a, b ∈ Dr(x)∩Dr(y) are points with d(a, b) = r,
then these points are contained in the union Sr(x) ∪ Sr(y).

Proof. We start by showing the first claim. Let a, b ∈ Dr(x) ∩Dr(y) be any two points. We
show that d(a, b) ≤ r holds, implying diamDr(x) ∩Dr(y) ≤ r. Because x, y ∈ Dr(x) ∩Dr(y)
we also have diamDr(x) ∩Dr(y) ≥ r, proving equality.

Write [n] = {1, . . . , n} and let γ : ([n], {{i, i+1} | i ∈ [n−1]}) → T be the unique shortest
path x ⇝ y. Moreover, let Ψa and Ψb be the unique shortest paths x ⇝ a and x ⇝ b,
respectively. Consider the largest numbers ta, tb ∈ [n] with γ(ta) = Ψa(ta) and γ(tb) = Ψb(tb)
and assume without loss of generality ta ≤ tb. Note that the unique shortest path a⇝ b is
then given by the concatenation a⇝ γ(ta)⇝ γ(tb)⇝ b, where γ(ta)⇝ γ(tb) is the restricted
path γ|[ta,tb]. By assumption, we have d(a, y) ≤ r and this implies the inequality

d(a, γ(ta)) + d(γ(ta), y) = d(a, y) ≤ r = d(x, y) = d(x, γ(ta)) + d(γ(ta), y),

which is equivalent to d(a, γ(ta)) ≤ d(x, γ(ta)). Similarly, the assumption d(x, b) ≤ r implies
d(γ(tb), b) ≤ d(γ(tb), y). Thus, the distance d(a, b) satisfies

d(a, b) = d(a, γ(ta)) + d(γ(ta), γ(tb)) + d(γ(tb), b)
≤ d(x, γ(ta)) + d(γ(ta), γ(tb)) + d(γ(tb), y) = d(x, y) = r, (3)

which finishes the proof of the first claim.
We now show the second claim; assume d(a, b) = r. From the inequalities (3) and

d(a, γ(ta)) ≤ d(x, γ(ta)), d(γ(tb), b) ≤ d(γ(tb), y) together with the assumption d(a, b) = r,
we deduce the equalities d(a, γ(ta)) = d(x, γ(ta)) and d(γ(tb), b) = d(γ(tb), y). Hence,

d(a, y) = d(a, γ(ta)) + d(γ(ta), y) = d(x, γ(ta)) + d(γ(ta), y) = d(x, y) = r

and similarly d(x, b) = r, proving the second claim. ◀

Enumerate the values of pairwise distances by 0 = r0 < · · · < rl = diamV . Let
Km := Ripsrm−1(V ) ∪ Trm

. We show that the complement Cm := Ripsrm
(V ) \ Km is the

set of all cofaces of non-tree edges of length rm. We further show that it is partitioned into
regular intervals in the face poset, and that this constitutes a discrete gradient.

▶ Lemma 17. Every edge e ∈ Ripsrm
(V ) \ Ripsrm−1(V ) is contained in a unique maximal

simplex ∆e ∈ Ripsrm
(V ) \ Ripsrm−1(V ). Moreover, if e is a tree edge of length rm, then

∆e = e, and if e ∈ Cm, then ∆e ∈ Cm and e ⊊ ∆e.
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Proof. By definition, e corresponds to two points x, y ∈ V at distance d(x, y) = rm. If e
is contained in the simplex ∆ ∈ Ripsrm

(V ), then the points in ∆ lie in the intersection
Drm

(x) ∩Drm
(y), which has diameter rm by Lemma 16. Hence, the maximal simplex ∆e is

spanned by all the points in Drm(x) ∩Drm(y).
If e is a tree edge of length rm, then this intersection only contains x and y, and hence

∆e = e. If e ∈ Cm, then this intersection contains at least one vertex different from x and y

that lies on the unique shortest path x⇝ y. This implies e ⊊ ∆e. ◀

For every maximal simplex ∆ ∈ Cm ⊆ Ripsrm
(V ), we write E∆ for the set of edges e ∈ Cm

with ∆e = ∆. Note that E∆ is the set of non-tree edges of length rm contained in ∆.

4.1 Generic tree metrics
Before dealing with the general case, let us focus on the special case where the metric
space (V, d) is generic, meaning that the pairwise distances are distinct. In this case,
Lemma 17 implies that the diameter function diam: Cl(V ) → R is a discrete Morse function,
defined on the full simplicial complex on V , with discrete gradient

{[e,∆e] | non-tree edge e ⊆ Cl(V )},

which we call the generic gradient, and only the vertices V and the tree edges E are critical.
Together with Proposition 8, this yields the following theorem.

▶ Theorem 18. If the tree metric space (V, d) is generic, then the generic gradient induces,
for every m ∈ {1, . . . , l}, a sequence of collapses

Ripsrm
(V ) ↘ (Ripsrm−1(V ) ∪ Trm

) ↘ Trm
.

Moreover, it follows from Lemma 9 that for the Vietoris–Rips filtration, refined lexico-
graphically with respect to an arbitrary total order on the vertices, the zero persistence
apparent pairs refine the generic gradient, and therefore also induce the above collapses.

▶ Theorem 19. If the tree metric space (V, d) is generic, then the apparent pairs gradient
induces, for every m ∈ {1, . . . , l}, a sequence of collapses

Ripsrm
(V ) ↘ (Ripsrm−1(V ) ∪ Trm

) ↘ Trm
.

4.2 Arbitrary tree metrics
We now turn to the general case, where Lemma 9 is not directly applicable anymore, as the
diameter function is not necessarily a discrete Morse function. Nevertheless, we show that
Theorem 19 is still true without the genericity assumption, if the vertices V are ordered in a
compatible way. Let ∆ be a maximal simplex ∆ ∈ Cm ⊆ Ripsrm

(V ).

▶ Lemma 20. We have StE∆ = Cm ∩ Cl ∆.

Proof. The inclusion StE∆ ⊆ Cm ∩ Cl ∆ holds by definition of E∆. To show the inclusion
StE∆ ⊇ Cm ∩ Cl ∆, let σ ∈ Cm ∩ Cl ∆ be any simplex. As the Vietoris–Rips complex is a
clique complex, there exists an edge e ⊆ σ ⊆ ∆ with diam e = rm. By Lemma 17, this edge
can not be a tree edge end hence e ∈ Cm. Therefore, e ∈ E∆ and σ ∈ St e ⊆ StE∆. ◀

▶ Lemma 21. If two distinct maximal simplices ∆,∆′ ∈ Cm = Ripsrm
(V ) \Km intersect in

a common face ∆ ∩ ∆′, then this face is contained in Km.

SoCG 2022
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Proof. Assume for a contradiction that ∅ ≠ ∆ ∩ ∆′ /∈ Km, implying ∆ ∩ ∆′ ∈ Cm. By
Lemma 20, there exists an edge e ∈ E∆ ⊆ Cm with e ⊆ ∆ ∩ ∆′, and therefore ∆ = ∆′ by
uniqueness of the maximal simplex containing e (Lemma 17), a contradiction. ◀

We denote by L∆ the set of all vertices of ∆ that are not contained in any edge in E∆.

▶ Lemma 22. Let e = {u,w} ∈ E∆ be an edge. Then any point x ∈ V \{u,w} on the unique
shortest path u⇝ w of length rm in T is contained in L∆. In particular, L∆ is nonempty.

Proof. By assumption, we have d(u, x) < rm, d(w, x) < rm and d(u,w) = rm. Therefore,
diam{u,w, x} = rm and x ∈ {u,w, x} ⊆ ∆e = ∆. Assume for a contradiction that x is
contained in an edge in E∆. Then it follows from Lemma 16 that we have d(u, x) = rm or
d(w, x) = rm, contradicting the above. We conclude that x ∈ L∆. ◀

4.2.1 The canonical gradient
We now describe a discrete gradient that is compatible with the diameter function and
induces the same collapses as in Theorem 18 even if the tree metric is not generic. This
construction is canonical in the sense that it does not depend on the choice of an order on
the vertices, in contrast to the subsequent constructions.

▶ Lemma 23. For any two edges f, e ∈ E∆ and any vertex v ∈ f there exists a vertex z ∈ e

such that {v, z} ∈ E∆ is an edge in E∆.

Proof. Let f = {v, w}, e = {x, y}; note that d(v, w) = d(x, y) = rm. Since f and e are
both contained in the maximal simplex ∆, we have v, w ∈ Drm

(x) ∩ Drm
(y). Both {v, x}

and {v, y} are contained in {v, x, y} ⊆ ∆ and Lemma 16 implies that at least one of these two
edges is contained in Ripsrm

(V ) \ Ripsrm−1(V ); call this edge ev. It follows from Lemma 17
that ev is not a tree edge, and therefore ev ∈ E∆. ◀

▶ Lemma 24. The set StE∆ = Cm ∩ Cl ∆ is partitioned by the intervals

W∆ = {[∪S, (∪S) ∪ L∆] | ∅ ̸= S ⊆ E∆}, (4)

and these form a discrete gradient on Cl ∆ inducing a collapse Cl ∆ ↘ (Km ∩ Cl ∆).

Proof. The intervals in W∆ are disjoint and contained in StE∆ by construction. They are
regular, because L∆ is nonempty (by Lemma 22). By Proposition 8, it remains to show that
the intervals in W∆ partition StE∆ = Cl ∆ \ (Km ∩ Cl ∆) and that W∆ is a discrete gradient.

To show the first claim, it suffices to prove that any simplex σ ∈ StE∆ is contained in a
regular interval of W∆. Consider the simplex τ = σ \ L∆ ⊆ σ. As σ ∈ StE∆, there exists
an edge e ∈ E∆ with e ⊆ σ. By the definition of L∆, we have e ⊆ σ \ L∆ = τ . Any other
vertex v ∈ τ \ e is also contained in one of the edges E∆. By Lemma 23, there exists an edge
ev = {v, w} ∈ E∆, where w ∈ e. Then τ = e ∪

⋃
v∈τ\e ev and σ ∈ [τ, τ ∪ L∆] ∈ W∆.

The second claim now follows from the observation that the function

σ 7→

{
dim(σ ∪ L∆) σ ∈ StE∆

dim σ σ /∈ StE∆

is a discrete Morse function with discrete gradient W∆. ◀

Consider the union Wm =
⋃

∆ W∆, where ∆ runs over all maximal simplices in Cm and
W∆ is as in (4). We call W =

⋃
m Wm the canonical gradient.
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▶ Theorem 25. The canonical gradient is a discrete gradient on Cl(V ). For every m ∈
{1, . . . , l}, it induces a sequence of collapses

Ripsrm
(V ) ↘ Ripsrm−1(V ) ∪ Trm ↘ Trm .

Proof. Let ∆ be a maximal simplex in ∆ ∈ Cm = Ripsrm
(V ) \ Km, where Km =

Ripsrm−1(V ) ∪ Trm . It follows from Lemma 24 that the set W∆ is a discrete gradient
on the full subcomplex Cl ∆ ⊆ Ripsrm

(V ) that partitions StE∆ = Cl ∆ \ (Km ∩ Cl ∆) and
that induces a collapse Cl ∆ ↘ (Km ∩ Cl ∆).

It follows directly from Lemma 21 and Proposition 7 that the union Wm =
⋃

∆ W∆ is
a discrete gradient on Ripsrm

(V ). Again by Proposition 7, the union W =
⋃

m Wm is a
discrete gradient on Cl(V ).

By construction of the W∆, the union Wm partitions the complement Ripsrm
(V ) \Km.

Hence, by Proposition 8, it induces a collapse Ripsrm
(V ) ↘ Km = Ripsrm−1(V ) ∪Trm . Since

only the vertices and the tree edges are critical for W , this also yields the collapse to Trm
. ◀

4.2.2 The perturbed gradient
Assume that V is totally ordered. We construct a coarsening of the canonical gradient to
the perturbed gradient, such that under a specific total order of V the perturbed gradient is
refined by the zero persistence apparent pairs of the diam-lexicographic order < on simplices.

Consider a maximal simplex ∆ ∈ Cm, where m ∈ {1, . . . , l}. Note that all edges in E∆
have length rm and thus are ordered lexicographically. Enumerate them as e1 < · · · < eq.
Every simplex σ ∈ Cm ∩ Cl ∆ contains a maximal edge eσ ∈ Cl σ ∩ E∆.

▶ Lemma 26. For every edge ei ∈ E∆ the union Σi =
⋃

eσ=ei
σ ⊆ ∆ is a simplex in Cm

and the maximal edge among Cl Σi ∩ E∆ is ei.

Proof. Note that Σi ⊆ ∆ ∈ Ripsrm
(V ) is a simplex and it is contained in Cm, because it is

a coface of the non-tree edge ei of length rm.
To prove the second claim, let ej ∈ Cl Σi ∩E∆ be any edge. Write ei = {x, y} with x < y

and ej = {a, b} with a < b. By construction of Σi, there exist simplices σa, σb ∈ Cm ∩ Cl ∆
with a ∈ σa, b ∈ σb and eσa

= eσb
= ei. Note that {x, y, a} ⊆ σa and {x, y, b} ⊆ σb.

By Lemma 16, we have x, y ∈ Srm(a) ∪ Srm(b) and therefore d(a, y) = rm (implying
a ̸= y) or d(b, y) = rm (implying b ̸= y). As {a, y} ⊆ σa and {b, y} ⊆ σb, this implies
{a, y} ≤ eσa = ei = {x, y} or {b, y} ≤ eσb

= ei = {x, y}, respectively. In particular, we have
a ≤ x or a < b ≤ x, and if a = x, then ej ⊆ σb. In any case, ej < ei = eσb

as claimed. ◀

This lemma implies that N∆ = {[ei,Σi]}q
i=1 is a collection of disjoint intervals. It follows

from Lemma 24 that for each j ∈ {1, . . . , q} the interval [ej ,Σj ] is the union

[ej ,Σj ] =
⋃

{[∪S, (∪S) ∪ L∆] | S ⊆ E∆, ej maximal element of Cl(∪S) ∩ E∆} (5)

and that N∆ partitions Cm ∩ Cl ∆. Moreover, it is the discrete gradient of the function

f∆ : Cl ∆ → R, σ 7→

{
i σ ∈ [ei,Σi]
dim σ − dim ∆ σ ∈ Km

(6)

and the intervals are regular, because L∆ is nonempty (Lemma 22). By Proposition 8, N∆
induces a collapse Cl ∆ ↘ Km ∩ Cl ∆. Therefore, the total order on V induces a symbolic
perturbation scheme on the edges, establishing the situation of a generic tree metric as
in Section 4.1.

SoCG 2022
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Consider the union Nm =
⋃

∆ N∆, where ∆ runs over all maximal simplices in Cm. We
call N =

⋃
m Nm the perturbed gradient. By (5), the perturbed gradient N coarsens the

canonical gradient W . Analogously to Theorem 25, we obtain the following result.

▶ Theorem 27. The perturbed gradient is a discrete gradient on Cl(V ). For every m ∈
{1, . . . , l}, it induces a sequence of collapses

Ripsrm
(V ) ↘ Ripsrm−1(V ) ∪ Trm ↘ Trm .

▶ Remark 28. As the lower bounds of the intervals in the perturbed gradient are edges, it
follows from Theorem 27 that these collapses can be expressed as edge collapses [9], a notion
that is similar to the elementary strong collapses described in Remark 15.

4.2.3 The apparent pairs gradient
Finally, we show that for a specific total order of V , which we describe next, the perturbed
gradient is refined by the zero persistence apparent pairs of the diam-lexicographic order.

From now on, assume that the tree T is rooted at an arbitrary vertex and orient every
edge away from this point. Let ≤V be the partial order on V where u is smaller than w if
there exists an oriented path u ⇝ w. In particular, we have the identity path id: u ⇝ u.
Note that for any two vertices u,w ∈ V the unique shortest unoriented path u↭ w can be
written uniquely as a zig-zag u γ

⇝z
η
⇝ w, where z is the greatest point with z ≤V u, z ≤V w,

and γ, η are oriented paths in T that intersect only in z. If w↭ p is another unique shortest
unoriented path with the zig-zag w φ

⇝z′ µ
⇝ p, then we can form the following diagram

z′′

z z′

u w p,

ξ λ

γ η φ µ

(7)

where z′′ is the greatest point with z′′ ≤V z, z′′ ≤V z′. Moreover, as T has no cycles, it
follows that either ξ or λ is the identity path and φ ◦ λ = η or η ◦ ξ = φ, respectively.

Extend the partial order ≤V on V to a total order < and consider the diam-lexicographic
order on simplices. As this total order on the simplices extends < under the identification
v 7→ {v}, we will also denote it by <. The following lemma directly implies Theorem 5.

▶ Lemma 29. The intervals in the perturbed gradient N are refined by apparent pairs with
respect to <. For every m ∈ {1, . . . , l}, the zero persistence apparent pairs induce the collapse

Ripsrm
(V ) ↘ Ripsrm−1(V ) ∪ Trm

.

Proof. Consider a maximal simplex ∆ ∈ Cm. Recall that N∆ is the discrete gradient of the
function f∆ : Cl ∆ → R defined in (6), using the same vertex order as above. By Lemma 9,
the zero persistence apparent pairs with respect to the f∆-lexicographic order <f∆ are
precisely the gradient pairs of the minimal vertex refinement of N∆.

We next show that each apparent pair (σ, τ = σ ∪ {v}) ⊆ [ei,Σi] with respect to <f∆ ,
where v is the minimal vertex in Σi \ ei, is an apparent pair with respect to <. Clearly,
these pairs have persistence zero with respect to the diameter function, as they appear in
the same interval of the perturbed gradient. As the apparent pairs of <f∆ , taken over all ∆,
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yield a partition of Cm = Ripsrm
(V ) \ (Ripsrm−1(V ) ∪ Trm), the same is then true for the

apparent pairs of <. Thus, by Proposition 8, the apparent pairs gradient induces a collapse
Ripsrm

(V ) ↘ Ripsrm−1(V ) ∪ Trm
.

First, let σ ∪ {p} ∈ Cm be a cofacet of σ not equal to τ . We show that we must
have τ < σ ∪ {p}, proving that τ is the minimal cofacet of σ with respect to <: If p ∈ Σi,
then p ∈ Σi \ ei, as p /∈ σ ⊇ ei, and the statement is true by minimality of v in the minimal
vertex refinement. Now assume that p /∈ Σi and write ei = {u,w} with u < w. By (5), we
have L∆ ⊆ Σi and hence it follows that p /∈ L∆ and that the point p is contained in an edge
in E∆, by definition of L∆. It follows from Lemma 16 that p together with at least one
vertex of ei forms an edge in E∆. Call this edge g; if there are two such edges, consider the
larger one, and call it g. From {u,w, p} ⊆ ∆ and p /∈ Σi we get ei < g: The edge ei is not
the maximal edge of the two simplex {u,w, p}, since otherwise p would be contained in Σi.
Hence, one of the two other edges is maximal, and that edge is g by definition. Considering
the two possible cases g = {u, p} and g = {w, p}, we must have u < p. We will argue that
v < p holds, which proves τ = σ ∪ {v} < σ ∪ {p}.

Consider the diagram (7). If γ ≠ id, then it follows from the fact that ei = {u,w} is
not a tree edge that along the unique shortest path u↭ w there exists a vertex x distinct
from u and w with x < u < p. Then x ∈ L∆ ⊆ Σi \ ei by Lemma 22, and as v is the minimal
element in Σi \ ei, we get v ≤ x < p.

If γ = id, then u = z, and it follows from d(w, p) ≤ rm and p /∈ ei = {u,w} that we must
have λ ̸= id and ξ = id: Otherwise λ = id and u = z lies on φ. Therefore, u lies on the unique
shortest path from w to p and d(w, p) = d(w, u) + d(u, p) = rm + d(u, p) > rm, yielding a
contradiction. Thus, the unique shortest path (u = z) ↭ p decomposes as u ⇝ z′ ⇝ p,
where u⇝ z′ is contained in u⇝ z′ ⇝ w. Note that u ̸= z′, because λ ̸= id. Hence, as ei

is not a tree edge, the immediate successor x of u on the path u ⇝ w is distinct from u

and w with x ≤ z′. This point satisfies x ≤ z′ ≤ p, and it follows from Lemma 22 that we
have x ∈ L∆ ⊆ Σi \ ei. Because p /∈ L∆ we even have x < p. Therefore, as v is the minimal
vertex in Σi \ ei, it follows that v ≤ x < p.

It remains to prove that σ is the maximal facet of τ with respect to<. We write ei = {u,w}
with u < w and τ = {b0, . . . , bdim τ } with b0 < · · · < bdim τ . As ei ⊆ τ , there are indices
k1 < k2 with u = bk1 < bk2 = w. If k1 > 0, then v = b0, so σ is of the form {b1, . . . , bdim τ }
and is the maximal facet of τ with respect to < as claimed. Now assume k1 = 0. If τ contains
no edges e ∈ E∆ other than ei, then the facets τ \ {u} and τ \ {w} are both contained in
Ripsrm−1(V ), because they do not contain any edge of length rm, and the maximal facet of
τ is τ \ {x} with x the minimal vertex in τ \ ei. By assumption, we have x = v and hence
τ \ {x} = τ \ {v} = σ. If τ contains other edges e ̸= ei with e ∈ E∆, label them s1, . . . , sa.
As ei ⊆ τ ⊆ Σi, it follows from Lemma 26 that we have sb < ei for all b. Because of this and
our assumption k1 = 0, i.e., u is the minimal vertex of τ , we have sb = {u, xb} < {u,w} = ei

with u < xb < w. Therefore, the facet {b1, . . . , bdim τ } contains no edges in E∆ and hence
it is contained in Ripsrm−1(V ). The facet {b0, b2, . . . , bdim τ } of τ contains ei, hence it is
an element of Cm, and so it is maximal among the facets containing b0, implying that it
is the maximal facet of τ with respect to <. Because b1 is the minimal vertex in τ \ ei

and v ∈ τ \ ei, it follows from the minimality of v ∈ Σi \ ei that we have b1 = v, implying
{b0, b2, . . . , bdim τ } = σ. Therefore, σ is the maximal facet of τ with respect to <. ◀

▶ Remark 30. The preceding Lemma 29 also implies Theorem 3 in the special case of tree
metrics: if u > t ≥ 2ν(V ) = maxe∈E l(e) are real numbers, then Tt = T is the entire tree,
and we obtain collapses Ripsu(V ) ↘ Ripst(V ) ↘ T ↘ {∗}. If all edges of T have the same
length, it turns out that the collapse T ↘ {∗} is also induced by the apparent pairs gradient
for the same order <.
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