
ETH-Tight Algorithms for Finding Surfaces in
Simplicial Complexes of Bounded Treewidth
Mitchell Black #

School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA

Nello Blaser #

Department of Informatics, University of Bergen, Norway

Amir Nayyeri #

School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA

Erlend Raa Vågset #

Department of Informatics, University of Bergen, Norway

Abstract
Given a simplicial complex with n simplices, we consider the Connected Subsurface Recognition
(c-SR) problem of finding a subcomplex that is homeomorphic to a given connected surface with
a fixed boundary. We also study the related Sum-of-Genus Subsurface Recognition (SoG)
problem, where we instead search for a surface whose boundary, number of connected components,
and total genus are given. For both of these problems, we give parameterized algorithms with respect
to the treewidth k of the Hasse diagram that run in 2O(k log k)nO(1) time. For the SoG problem, we
also prove that our algorithm is optimal assuming the exponential-time hypothesis. In fact, we prove
the stronger result that our algorithm is ETH-tight even without restriction on the total genus.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology; Theory of computation → Design and analysis of algorithms

Keywords and phrases Computational Geometry, Surface Recognition, Treewidth, Hasse Diagram,
Simplicial Complexes, Low-Dimensional Topology, Parameterized Complexity, Computational Com-
plexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.17

Related Version Full Version: https://arxiv.org/abs/2203.07566 [5]

Funding Mitchell Black: This author was supported in part by NSF grants CCF-1941086 and
CCF-1816442.
Amir Nayyeri: This author was supported in part by NSF grants CCF-1941086 and CCF-1816442.
Erlend Raa Vågset: This author was supported in part by the Research Council of Norway grant
“Parameterized Complexity for Practical Computing (PCPC)” (NFR, no. 274526).

1 Introduction

Simplicial complexes are a generalization of graphs that give a discrete representation of
higher-dimensional spaces. A natural and interesting class of such spaces are manifolds. A
d-manifold is a space that is “locally d-dimensional”, meaning each point has a neighborhood
homeomorphic to Rd. Circles and spheres are prototypical examples of 1- and 2-manifolds
respectively. Manifolds are important in both mathematics and computer science. For
example, triangular meshes in computer graphics are typically 2-manifolds, and the manifold
hypothesis in machine learning is the assumption that real-world data often lie on low-
dimensional submanifolds of high-dimensional spaces.

© Mitchell Black, Nello Blaser, Amir Nayyeri, and Erlend Raa Vågset;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blackmit@oregonstate.edu
mailto:nello.blaser@uib.no
https://orcid.org/0000-0001-9489-1657
mailto:nayyeria@eecs.oregonstate.edu
mailto:erlend.vagset@uib.no
https://orcid.org/0000-0003-2289-2268
https://doi.org/10.4230/LIPIcs.SoCG.2022.17
https://arxiv.org/abs/2203.07566
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 ETH-Tight Algorithms for Finding Surfaces

Since manifolds are so important, it is natural to ask if a given simplicial complex is a
manifold, or whether two manifolds are homeomorphic. There are fascinating complexity
results on these problems. While both recognizing and classifying a 2-manifold have poly-
nomial algorithms, this problem becomes much harder for arbitrary d-manifolds. Deciding
whether two manifolds are homeomorphic is undecidable for d ≥ 4 [20]. Deciding whether or
not a simplicial complex is homeomorphic to the d-sphere is undecidable for d ≥ 5 (see [13]),
which implies deciding whether or not a simplicial complex is an n-manifold is undecidable
for d ≥ 6.

We consider several variants of the problem of finding subcomplexes homeomorphic to 2-
manifolds, or surfaces, in simplicial complexes. While there are polynomial time algorithms for
deciding if a simplicial complex is homeomorphic to a surface or deciding the homeomorphism
class of a surface, it is a hard problem deciding whether or not a simplicial complex contains
a surface as a subcomplex. In particular, Ivanov proved that it is NP-Hard to decide if a
simplicial complex contains a 2-sphere [19], and Burton et al. proved that finding a 2-sphere
is W[1]-hard when parameterized by solution size [9]. The complexity of this problem is
analogous to the graph isomorphism problem. While there is a quasipolynomial algorithm to
determine if two graphs are isomorphic [3], it is NP-Hard to determine if one graph contains
a subgraph isomorphic to another graph [14].

As this problem is NP-Hard, it is natural to ask whether there are any class of simplicial
complexes for which polynomial time algorithms exist. In this paper, we consider the
parameterized complexity of this problem and related problems with respect to the treewidth
of the Hasse diagram. A tree decomposition of the Hasse diagram defines a recursive series
of subcomplexes of K that we can use to incrementally build our surfaces. We also give tight
lower bounds for a subset of our algorithms based on the Exponential Time Hypothesis.

1.1 Subsurface recognition problems

Figure 1 A solution to an instance of the Subsurface Recognition problem where we have
found an orientable surface consisting of seven connected components with genus 0, 1, 1, 2, 3, 3
and 4 respectively.

We consider several variants of the following generic problem: given a 2-dimensional
simplicial complex K and a 1-dimensional subcomplex B ⊂ K, does K contain a subcomplex
homeomorphic to a surface with boundary B? Note that this includes finding surfaces
without boundary, as we can set B = ∅.

The Subsurface Recognition (SR) problem places the most restrictions on the manifold
we are looking for. In this problem, we are asked to find a subcomplex of K homeomorphic
to a given (possibly disconnected) surface X. Figure 1 shows an example of SR.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:3

▶ Problem 1. The Subsurface Recognition (SR) problem:
Input: A simplicial complex K, a subcomplex B ⊂ K, and a surface X.
Question: Does K contain a subcomplex homeomorphic to X with boundary B?

Although there is no known FPT algorithm for SR, several variants of SR with looser
requirements admit FPT algorithms. One special case of SR requires the surface X to
be connected. This variant is called the Connected Subsurface Recognition (c-SR)
problem. The extra requirement of connectivity allows us to find an FPT algorithm.

▶ Problem 2. The Connected Subsurface Recognition (c-SR) problem:
Input: A simplicial complex K, a subcomplex B ⊂ K, and a connected surface X.
Question: Does K contain a subcomplex homeomorphic to X with boundary B?

We can also ask for a surface of a certain genus and orientability in K, which is a slightly
weaker criterion than finding a surface up to homeomorphism. For a disconnected surface, we
define its total genus to be the sum of the genus of each of its connected components1. While
a connected surface is characterized up to homeomorphism by its genus and orientability,
this is not true for disconnected surfaces. As an example, consider a surface X that is a
genus 2 surface and a surface Y that is the disjoint union of two tori. The two surfaces both
have total genus 2, but they are not homeomorphic.

▶ Problem 3. The Sum-of-Genus Subsurface Recognition (SoG) problem:
Input: A simplicial complex K, a subcomplex B ⊂ K, and integers g and c.
Question: Does K contain a surface X of total genus g with c connected components and
with boundary B?

The Subsurface Packing problem asks to find any set of c disjoint surfaces. In
particular, no restriction is placed on the genus or orientability of these surfaces.

▶ Problem 4. The Subsurface Packing (SP) problem:
Input: A simplicial complex K, a subcomplex B, and an integer c.
Question: Does K contain a surface X with c connected components and boundary B?

1.2 Our results

Table 1 Upper and ETH lower bounds for times to solve the different problems considered in
this manuscript. Here n is the number of simplices and k is the treewidth of the Hasse diagram.
The results of this paper are highlighted.

Problem SR c-SR SoG SP
Upper 2O(n) 2O(k log k)nO(1) 2O(k log k)nO(1) 2O(k log k)nO(1)

Lower 2o(k log k)nO(1) NP-Hard [19] 2o(k log k)nO(1) 2o(k log k)nO(1)

We consider the parameterized complexity of the above problems with respect to the
treewidth k of the Hasse diagram. Table 1 summarizes the known upper and lower bounds.
The results of this paper are highlighted. We give FPT algorithms for c-SR, SoG, and SP,
and ETH-based lower bounds for SR, SP, and SoG. In fact, we show that these lower bounds
are true even when k is the pathwidth of the Hasse diagram. The algorithms for SoG and
SP are ETH-tight.

1 If any connected component of a surface is non-orientable, we will add twice the genus of any orientable
components.

SoCG 2022



17:4 ETH-Tight Algorithms for Finding Surfaces

1.3 Related work
Tree decompositions and simplicial complexes

Tree decompositions have seen much success as an algorithmic tool on graphs. Often, graphs
having tree decompositions of bounded-width admit polynomial-time solutions to otherwise
hard problems. A highlight of the algorithmic application of tree decompositions is Courcelle’s
Theorem [15], which states that any problem that can be stated in monadic second order
logic can be solved in linear time on graphs with bounded treewidth. We recommend [16,
Chapter 7] for an introduction to the algorithmic use of tree decompositions.

While tree decompositions have long been successful for algorithms on graphs, they have
only recently seen attention for algorithms on simplicial complexes. Existing algorithms use
tree decompositions of a variety of graphs associated with a simplicial complex. The most
commonly used graph is the dual graph of combinatorial d-manifolds [4, 10, 11, 12]. Other
graphs that have been used are level d of the Hasse diagram [11, 7, 6], the adjacency graph
of the d-simplices [7], and the 1-skeleton [4]. Our algorithm uses a tree decomposition of the
entire Hasse diagram. As far as we know, we are the first to consider tree decompositions
of the full Hasse diagram. The condition on vertex links that makes a simplicial complex a
surface is dependent on the incidence of vertices and triangles (see Section 2.2), so considering
only one level of the Hasse diagram would likely not be sufficient for our problem.

Normal surface theory

Normal surface theory is the study of which surfaces exist as submanifolds of a given 3-
manifold. Many algorithms on 3-manifolds, like those for unknot recognition [18] and 3-sphere
recognition [21, 22], use normal surface theory. While normal surface theory appears to be
similar to our problems, the distinction is that the surfaces in normal surface theory are
not subcomplexes of the 3-manifold and can instead intersect 3-simplices in the manifold.
Accordingly, the techniques in normal surface theory are quite different from the algorithms
we present in this paper.

2 Background

2.1 Simplicial complexes and directed graphs
A simplicial complex is a set K such that (1) each element σ ∈ K is a finite set and (2) for
each σ ∈ K, if τ ⊂ σ, then τ ∈ K. An element σ ∈ K is a simplex. A simplex σ is a face
of a simplex τ if σ ⊂ τ . Likewise, τ is a coface of σ. The simplices σ and τ are incident.
Two simplices σ1 and σ2 are adjacent if they are both the face or coface of a simplex τ .

A simplex σ with |σ| = d + 1 is a d-simplex. The set of all d-simplices in K is denoted
Kd. The dimension of a simplicial complex is the largest integer d such that K contains a
d-simplex. A d-dimensional simplicial complex K is pure if each simplex in K is a face of
d-simplex. We call a 0-simplex a vertex, a 1-simplex an edge, and a 2-simplex a triangle.

The Hasse diagram of K is a graph H with vertex set K and edges between each
d-simplex σ ∈ K and each (d − 1)-dimensional face of σ for all d > 0.

Let Σ ⊂ K. The closure of Σ is cl Σ := {τ ⊂ σ | σ ∈ Σ}. Note that the closure of Σ is a
simplicial complex, even if Σ is not. Note also that the closure cl Σ is defined only by the set
Σ and not the complex K. The star of Σ is stK Σ := {σ ∈ K | ∃ τ ∈ Σ such that τ ⊂ σ}.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:5

The link of a simplex σ is lkK σ = cl stK σ − stK cl σ. Alternatively, the link lkK σ is all
simplices in cl stK σ that do not intersect σ. Note that for any simplex τ ∈ lkK σ that σ and
τ are incident to a common coface in stK σ.

A simple path is a 1-dimensional simplicial complex P = {{v1}, {v1, v2}, {v2}, . . . , {vl}}
such that the vertices {vi} are distinct. The vertices {v1}, {vl} are the endpoints of P . We
will denote a simple cycle as a tuple P = (v1, . . . , vl) as the edges are implied by the vertices.
A simple cycle is a simple path, with the exception that the endpoints v1 = vl. We denote
a simple cycle with an overline, e.g. (v1, . . . , vl).

A directed graph D consists of a set of vertices and a set of directed edges, i.e. ordered
pairs of vertices (u, v) := uv so that uv ̸= vu. A directed simple cycle C in D (not to be
confused with a simple cycle) is a sequence of directed edges (v1v2, v2v3, . . . , vlv1) where all
the vertices vi are all distinct. We say that C has the vertex set {v1, . . . , vl}. Two cycles, C

and C ′, are said to be vertex disjoint if their vertex sets are disjoint. A family of cycles is
said to be vertex disjoint if they are pairwise vertex disjoint.

v

lkSv

v

lkSv

Figure 2 Left: A combinatorial surface. The vertex v is an interior vertex. Right: A vertex v

with link that is neither a simple path or cycle. We conclude that S is not a combinatorial surface.
The point v has no neighborhood homeomorphic to the plane or half-plane, so S is not “locally
2-dimensional” at v.

2.2 Surfaces
Informally, a surface with boundary is a compact topological space where each point has
a neighborhood homeomorphic to the plane or the half plane, and the boundary of the
surface is all points with a neighborhood homeomorphic to the half plane. Intuitively, a
surface is “locally 2-dimensional”.

Any connected surface with boundary can be constructed by adding handles, crosscaps,
and boundary components to a sphere. A handle is constructed by removing two disjoint
disks from a surface and identifying the boundaries of the removed disks. A crosscap is
constructed by taking the disjoint union of the surface and the real projective plane, removing
a disk from each, and identifying the boundaries of the removed disks. A boundary
component is constructed by removing a disk from a surface. A surface is non-orientable
if it has a crosscap and orientable otherwise. The genus of an orientable surface is the
number of handles on the surface, and the genus of a non-orientable surface is the number of
crosscaps plus twice the number of handles.

In this paper, we are only concerned with surfaces that are also simplicial complexes,
which we call combinatorial surfaces. A combinatorial surface with boundary is a pure
2-dimensional simplicial complex S such that the link of each vertex is a simple path or a
simple cycle. The condition on the link of the vertices is the combinatorial way of saying
that a combinatorial surface is “locally 2-dimensional”. A vertex v ∈ S such that lkS v is a
simple path is a boundary vertex. A vertex v ∈ S such that lkS v is a simple cycle is an
interior vertex. Figure 2 shows examples of an interior vertex and a vertex that is neither

SoCG 2022



17:6 ETH-Tight Algorithms for Finding Surfaces

an interior or boundary vertex. It follows from the condition on the links of the vertices that
each edge e ∈ S has link lkS e that is either one or two vertices. An edge e ∈ S such that
lkS e is a single vertex is a boundary edge. An edge e ∈ S such that lkS e is two vertices
is an interior edge. A triangle t ∈ S has empty link lkS t = ∅ as S is a 2-dimensional
simplicial complex. We denote the set of boundary vertices and boundary edges ∂S. The
boundary ∂S is a collection of simple cycles.

2.3 Tree decompositions

Let G = (V, E) be a graph. A tree decomposition of G is a tuple (T, X), where T = (I, F )
is a tree with nodes I and edges F , and X = {Xt ⊂ V | t ∈ I} such that (1) ∪t∈IXt = V ,
(2) for any {v1, v2} ∈ E, {v1, v2} ⊂ Xt for some t ∈ I, and (3) for any v ∈ V , the subtree
of T induced by the nodes {t ∈ I | v ∈ Xt} is connected. A set Xt is the bag of T . The
width of (T, X) is maxt∈I |Xt| − 1. The treewidth of a graph G is the minimum width
of any tree decomposition of G. Computing the treewidth of a graph is NP-hard [2], but
there are algorithms to compute tree decompositions that are within a constant factor of the
treewidth, e.g. [8].

Tree decompositions are used to perform dynamic programs on graphs, and a certain type
of tree decomposition, called a nice tree decomposition, makes defining dynamic programs
easier. A nice tree decomposition is a tree decomposition with a specified root r ∈ I

such that (1) Xr = ∅, (2) Xl = ∅ for all leaves l ∈ I, and (3) all non-leaf nodes are
either an introduce node, a forget node, or a join node, which are defined as follows. An
introduce node is a node t ∈ I with exactly one child t′, and for some w ∈ V , w /∈ Xt′ and
Xt = Xt′ ∪ {w}. We say t introduces w. A forget node is a node t ∈ I with exactly one
child t′, and for some w ∈ V , w /∈ Xt and Xt ∪{w} = Xt′ . We say t forgets w. A join node
is a node t ∈ I with exactly two children t′ and t′′ where Xt = Xt′ = Xt′′ . The following
lemma proves that we can convert any tree decomposition to a nice tree decomposition
without increasing width.

▶ Lemma 1 (Lemma 7.4 of [16]). Given a tree decomposition (T = (I, F ), X) of width k of
a graph G = (V, E), a nice tree decomposition of width k with O(kn) nodes can be computed
in O(k2 max{|V |, |I|}) time.

Figure 3 Left: A graph. Right and Center: A (not nice) tree decomposition of the graph of
width 3. Each node of the tree corresponds to a subset of the vertices of the graph.

A path decomposition is a special kind of tree decomposition (T, X) where T is a
path. A nice path decomposition is a tree decomposition without join nodes, i.e. where
every node is either an introduce node or a forget node. The pathwidth of a graph G is the
smallest width of any path decomposition of G. As any path decomposition is also a tree
decomposition, the treewidth of G is at most the pathwidth of G.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:7

2.4 The exponential time hypothesis
When a new algorithm is discovered it is natural to ask if it is possible to improve it. To
prove that the algorithm was sub-optimal it is enough to find a new and better algorithm.
On the other hand, if the algorithm is actually the best possible, then the situation becomes
more complicated. Although there are optimality results for a few problems in P,2 none are
known for algorithms solving NP-complete problems. Such a result would imply P ̸= NP,
which remains famously unproven.

This theoretical barrier does not make the question of optimality less relevant. No one
wants to spend years searching for improvements to an algorithm that cannot be improved!
For instance, the algorithms in this paper need 2O(k log k)nO(1) time, which may prompt the
question “Why were you unable to deliver a 2O(k)n time solution?”.

A pragmatic and popular response to these kinds of questions is to prove that you have
optimality under the Exponential Time Hypothesis (ETH). The ETH is a conjecture stating
that there is no sub-exponential algorithm for 3-SAT. More precisely, let n be the number of
variables in a given instance of 3-SAT.

▶ Hypothesis 1 (ETH). 3-SAT cannot be solved in time 2o(n).

Similar to NP-hardness, an ETH-lower bound is a way of connecting the hardness of a
new and often poorly understood problem to problems we already have a good understanding
of. The idea is to show that an improvement on the runtime of the currently best algorithm
for a new problem would disprove the ETH. Although the ETH remains unproven, the
continued absence of any algorithm for 3-SAT fast enough to disprove the ETH is itself
strong empirical evidence in support of the hypothesis.

3 Overview of the algorithms

Our algorithms are all dynamic programs on a tree decomposition (T, X) of the Hasse
diagram of a simplicial complex K. For each node t ∈ T , starting at the leaves of T and
moving towards the root, we compute a set of candidate solutions to our problem, where a
candidate solution is a subcomplex of K that might be a subcomplex of a solution to our
problem. We recursively use candidate solutions at the children of t to build the candidate
solutions at t. At the end of the algorithm, candidate solutions at the root of t will be
solutions to our problem. In this section, we explore how a candidate solution to our problem
is defined, and how we can effectively store representations of these candidate solutions so
that our final algorithm is FPT.

Certain nice tree decompositions3 (T, X) of the Hasse diagram of a simplicial complex
K define a recursively-nested set of subcomplexes of K. Recall that each bag of the tree
decomposition is a set of simplices of K. For each node t ∈ T , the subcomplex Kt ⊂ K is
the union of the bags of each descendant of t minus the triangles in the bag of t. These
subcomplexes have the property that if t′ is a child of t, then Kt′ ⊂ Kt.

We use this set of subcomplexes to recursively build solutions to our problems. Our
algorithm computes a set of candidate solutions at each node t. The exact definition
of candidate solution is given in Section 3.5 of the extended version of this paper [5], but

2 One such example is sorting, which we know can at best be done in Ω(n log n) time.
3 Certain here means “closed”, which is a type of tree decomposition of the Hasse diagram we define in

Section 3.3 of the the extended version of this paper [5]. In particular, the set Kt as defined above is a
simplicial complex in a closed tree decomposition, which is not true for general tree decompositions.

SoCG 2022



17:8 ETH-Tight Algorithms for Finding Surfaces

intuitively, a candidate solution at a node t is a subcomplex of Kt that could be a subcomplex
of a combinatorial surface in K. In particular, the link of each vertex in a candidate solution
must be a subset of a simple path or simple cycle. Our definition of candidate solution works
recursively: if Σ is a candidate solution at t, then for each child t′ of t, the complex Σ ∩ Kt′

is a candidate solution at t′. Our algorithm uses this fact to find candidate solutions at t.
Specifically, our algorithm attempts to build candidate solutions at t by growing candidate
solutions at t′.

The main challenge with this approach is storing candidate solutions. There can be an
exponential number of candidate solutions at a given node t, so we cannot simply store all
candidate solutions. Generally, dynamic programs on tree decompositions work by storing
some local representation of candidate solutions at t, where a local representation is a
description of a candidate solution only in terms of vertices and edges in the bag Xt. Two
candidate solutions with the same local representation are typically interchangeable in the
sense that one candidate solution can be extended to a complete solution if and only if the
other can too. The number of these local representations at t is typically a function of the
size of Xt, which allows for FPT algorithms parameterized by the treewidth.

The local representation of candidate solutions for our problems should have several
properties. First, they should represent a candidate solution using only simplices in Xt.
Second, they should retain enough information that we can verify that a subcomplex is a
candidate solution, i.e. it could be extended to a surface in K. In particular, we should be
able to deduce information about the links of simplices in Xt from the local representation.
The first and second properties are at odds, as even if a simplex σ is contained in Xt, the link
of σ need not be contained in Xt. Finally, we should be able to deduce the homeomorphism
class of a candidate solution from the local representation. Again, this property is at odds
with the first property, as topological properties like the genus and orientability of a surface
are global, not local, properties of a surface. One of our contributions is introducing a data
structure to store local representations of candidate solution with each of these properties
called the annotated cell complex.

A (non-annotated) cell complex is an algebraic representation of a surface that was
originally introduced by Ahlfors and Sario [1] to prove the Classification Theorem of Compact
Surfaces. Intuitively, a cell complex is a collection of disks, called faces, joined by shared
edges in their boundaries. The faces in a cell complex differ from triangles in a simplicial
complex as the faces in a cell complex can have more than three edges in their boundary. A
definition of cell complex and a discussion of their properties can be found in Section 3.2 of
the extended version of this paper [5].

The advantage of using cell complexes rather than simplicial complexes to store surfaces is
that there is a simple equivalence relation that partitions cell complexes into homeomorphism
classes. This is of obvious benefit as the surface S we are looking for may be specified by its
homeomorphism class, but there is a secondary benefit. We define a set of equivalence-
preserving moves, operations on cell complexes that preserve their homeomorphism class.
We use these moves to compress the local representation of each candidate solution we keep
during our algorithm. The most important benefit that these moves provide is the ability to
merge two faces that share an edge.

To see why merging faces is helpful, suppose that we have a candidate solution Σ at a
node t that is represented as a cell complex. We would like to store a local representation of
Σ using only edges in Xt. There would then be a bounded number of local representations
of candidate solutions at a node t, as there are a bounded number of edges in Xt. To this
end, each time we forget an edge e, we would like to merge the two faces incident to e into a
single face. See Figure 4, left panel.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:9

e

e

Figure 4 Left: The edge e is removed by merging the two incident faces. Right: The edge e

appears twice on the boundary of the same face, so e cannot be removed by merging incident faces
as this would make the interior of the face an annulus. We use annotated cell complexes to remove e.

The idea of merging faces when we forget e works unless e is incident to the same face
twice; the right panel of Figure 4 gives an example. After merging some faces, it is possible
that a face may have two edges on its boundary identified. If two edges on the boundary
of the same face are identified, then we can no longer remove these edges by merging their
incident faces, as then the interior of this face would no longer be a disk.

We therefore modify the definition of cell complex to allow for a more general type of
face. Our first change is to allow a face to be a disk with multiple boundary components like
in Figure 4, but we need to go a step further. Topological features like handles, crosscaps,
and boundaries in cell complexes are the result of a single face having edges on its boundary
identified in certain ways; thus, we need a way of removing the edges that constitute these
topological features. An annotated cell complex annotates each face with the number of
topological features like handles, crosscaps, and boundaries on this face, rather than storing
these features explicitly with edges. In effect, an annotated cell complex is a representation
of a surface where the interior of a face is allowed to be any compact connected surface.

4 Overview of the lower bounds

Here we present the main ideas that go into the proof of our lower bounds. The omitted
details can be found in Section 4 of the extended version of this paper [5].

▶ Theorem 2. Assuming the ETH, no algorithm can solve Subsurface Recognition,
Sum-of-Genus Subsurface Recognition or Subsurface Packing in 2o(k log k)nO(1)

time. The parameter k denotes the width of a given (nice) path decomposition of the Hasse
diagram of the input simplicial complex.

Since every path decomposition is also a tree decompositions, the treewidth of a graph is
never higher than its pathwidth. Theorem 2 therefore implies that none of our problems can
be solved in 2o(k log k)nO(1) time, where k is now the treewidth of the Hasse diagram.

We focus on proving the result for Subsurface Recognition. After this, it will be easy
to modify our arguments to prove similar results for the two other problems. At a conceptual
level there are two parts to the proof.

1. Define a reduction from Directed Cycle Packing to Subsurface Recognition.
2. Show that the reduction can always be chosen so that the pathwidth of the output space

is bounded by some linear function of the pathwidth of the input graph.

4.1 The reduction
Directed Cycle Packing asks us to find as many vertex disjoint cycles in a graph as
possible (see Figure 5). This problem is essentially a directed, 1-dimensional version of the
SP problem, since we know that the only compact 1-manifolds are circles (cycles) and closed
intervals (paths).

SoCG 2022



17:10 ETH-Tight Algorithms for Finding Surfaces

▶ Problem 5. The Directed Cycle Packing (DCP) problem
INPUT: A directed graph D on n vertices and an integer ℓ.
PARAMETER: The pathwidth k of D.
QUESTION: Does D contain ℓ vertex disjoint cycles?

v2

v1 v3

v4 v6

v5 v7

v2

v1 v3

v4 v6

v5 v7

v2

v1 v3

v4 v6

v5 v7

Figure 5 A directed graph D (left), two vertex disjoint cycles contained in D (middle) and two
cycles in D intersecting at a common vertex (right). This will be a guiding example for this section.

The DCP problem is a good starting point for our reduction not only because of its
similarity to the SP problem but also because of the following theorem.

▶ Theorem 3 ([17]). Assuming the ETH, the DCP problem cannot be solved in 2o(k log k)nO(1)

time, where the parameter k denotes the width of a given (nice) path decomposition of the
input graph.

Given a digraph D, the reduction will construct a 2-dimensional simplicial complex Y

that contains ℓ disjoint tori if and only if D contains ℓ vertex disjoint cycles. In fact, we
show that the only connected subsurfaces without boundary in Y are tori and that these are
in a bijection with the directed cycles in D. Furthermore, any pair of these tori are disjoint
if and only if the corresponding directed cycles are vertex disjoint.

In Figure 6 we introduce some shorthand notation that will help make the reduction
clearer. Each column of the figure shows a different component that we will use when
constructing the space Y . The first row shows the shorthand notation. The second row shows
the “topological space” that the notation represents. The third and fourth row indicate
which triangulation we use to represent this space.

The first column shows a cylinder, S1. The second column shows a space S2 consisting
of two cylinders, X ′

1 and X ′
2. These cylinders are glued together at a single interior point,

called a (0-dimensional) singularity. The third column shows a space S3 consisting of three
cylinders X ′′

1 , X ′′
2 and X ′′

3 , each with a single boundary component attached to the same circle.
The fourth and final column shows the space S4, obtained by gluing S2 and S3 together. More
precisely, S4 also consists of three cylinders, X1 = X ′

1 ∪ X ′′
1 , X2 = X ′

2 ∪ X ′′
2 and X3 = X ′′

3 ,
each having a single boundary component attached to the same circle. Additionally, X1 ∪ X2
contains a 0-dimensional singularity.

We establish some important properties of the spaces S1, S2, S3 and S4 from Figure 6. In
order to describe these properties we temporarily extend the notion of a “boundary”, a term
usually reserved for manifolds, to the world of simplicial complexes. In the remainder of this
section, the word boundary will refer to the closure of the set of 1-simplices in X that only
have a single coface. We denote this subcomplex by ∂(X).

▶ Remark 4. Let S1, S2, S3 and S4 be the spaces introduced in Figure 6.
1. The only (non-empty) 2-manifold X ⊆ S1 where ∂(X) ⊆ ∂(S1) is S1 itself.
2. The only 2-manifolds X ⊆ S2 where ∂(X) ⊆ ∂(S2) are X ′

1 and X ′
2.

3. The only 2-manifolds X ⊆ S3 where ∂(X) ⊆ ∂(S3) are X ′′
1 ∪ X ′′

2 , X ′′
1 ∪ X ′′

3 and X ′′
2 ∪ X ′′

3 .
4. The only 2-manifolds X ⊆ S4 where ∂(X) ⊆ ∂(S4) are X1 ∪ X3 and X2 ∪ X3.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:11

Notation

Space

Simplicial
Complex

S1

X ′
1

X ′
2 X ′′

2

X ′′
1

X ′′
3

X2

X1
X3

Simplicial
Complex

Unfolded

S2 S3 S4

Detailed &

Name

Figure 6 Shorthand notation for specific triangulations of S1, . . . , S4 that we will use frequently
throughout the section.

That these properties holds is intuitively obvious. Formally, this can be proved easily by
brute force: Simply go through all the 2-simplices in Si and assume that it is contained in a
submanifold X. It is then easy to see which adjacent 2-simplices must necessarily also be
contained in the same submanifold. Whenever a choice has to be made, simply branch and
try all possibilities.

The reduction is perhaps best understood in terms of vertex gadgets and edge gadgets.
In particular, Figure 7 shows how a vertex ξ is mapped to the vertex gadget Y ξ, using the
notation from Figure 6. The figure also shows six edge gadgets (in black), three corresponding
to the edges entering ξ and three corresponding to the edges leaving ξ. The edge gadgets are
unlabeled in the figure but can be identified by the vertex gadgets they are attached to. We
think of each vertex gadget as composed of two sub-cylinders, one half for the incoming edge
gadgets and the other half for outgoing edge gadgets. To better see this separation we draw
the vertex gadget with a U-turn at the location of this divide in our figures.

a b c

α β γ

ξ

Y a Y b Y c

Y α Y β Y γ

Y ξ

a b c

α β γ

ξ

Y a Y b Y c

Y α Y β Y γ

Y ξ

Figure 7 A local view of how a vertex ξ is mapped to its vertex gadget Y ξ (left) and an illustration
of how a directed cycle passing through the vertex ξ is mapped to a submanifold in the space (right).

SoCG 2022



17:12 ETH-Tight Algorithms for Finding Surfaces

Each edge gadget is connected to the vertex gadgets corresponding to each of its two
ends through a copy of S4. The edge gadget contains the cylinder X1 while the vertex
gadget contains the other cylinders X2 and X3. Both the incoming and outgoing part of the
vertex gadget consists primarily of a sequence of smaller cylinders, X2 ∪ X3, one for each
incoming/outgoing edge. The boundary of the X3 corresponding to one edge is attached to the
boundary of the copy of X2 corresponding to the next edge. The boundary of the “last” X3
of the incoming edges is attached to one boundary component of a single additional cylinder,
while the “last” X3 of the outgoing edges is attached to the other boundary component.

By repeated use of property 4, any potential manifold contained in this space must contain
precisely one incoming and one outgoing edge gadget per vertex, assuming the manifold is
not allowed to have a boundary. This is illustrated in Figure 8. This figure also shows the
importance of the 0 dimensional singularities in the reduction. The resulting space could
otherwise contain tori that do not correspond to any directed cycle. An example of the
correspondence between disjoint tori and vertex disjoint directed cycles is shown in Figure 9.

a b c

α β γ

ξSINGULARITIES

a b c

α β γ

ξ

Y a Y b Y c

Y α Y β Y γ

Y ξ

Y a Y b Y c

Y α Y β Y γ

Figure 8 The leftmost figure shows how the singularities keeps “badly behaved” subcomplexes
from becoming manifolds. The rightmost figure shows how the reduction would fail without the use
of singularities between the vertex gadgets and edge gadgets.

We see in Figure 9 that we can associate any pair of vertex disjoint cycles in the input
graph to a pair of non-intersecting tori in the output space in an obvious way. Concretely,
a cycle is mapped to a torus by sending the edges to edge gadgets and by then connecting
these through the vertex gadgets. This association turns out to be a bijection with an inverse
that maps a submanifold to the set of edges whose edge gadgets intersects the submanifold.
That this inverse is well-defined is proved for the pathwidth-preserving reduction in Section
4.5 of the extended version of the paper; see [5].

SINGULARITIES

Figure 9 An illustration of how the graph from Figure 5 is mapped to spaces and how valid/invalid
subsets of edges are mapped to manifolds/non-manifolds respectively.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:13

4.2 Pathwidth preservation
The main idea of this section can be summarized in a single sentence: By carefully choosing
the order in which we attach edge/vertex gadgets to each other, we can make a space that
has a similar structure to a nice path decomposition of the input graph. This is an absolutely
necessary “fine tuning” of the reduction we saw in the previous subsection. Without it, we
have no guarantee that the Hasse diagram of the space we construct will have low pathwidth.
In fact, if the ordering is chosen in an adversarial way, we may end up mapping a graph of
bounded pathwidth to spaces whose Hasse diagram has arbitrarily large pathwidth.

We discuss this in detail in Section 4.4.1 of the extended version of the paper [5], but the
rough idea is captured in Figure 10. Here we see a graph of pathwidth 2 being mapped to
two very different spaces. While both are constructed in a way that is compatible with the
reduction described in Section 4.1, intuitively it is the topmost space that has retained most
of the “pathlikeness” of the input graph. This intuition is reflected in the fact that the Hasse
diagram of the lower figure really is higher than that of the one above it.

9321 654 87

9321 654 87

9321 654 87

Figure 10 A directed graph of pathwidth 2 (top) together with a “sensible” version of the
reduction explained in Section 4.1 (middle) and an “adversarial” version of the reduction (bottom).

It can be quite hard to prove lower bounds on the path-/treewidth of graphs/spaces, but
for this particular family it is reasonably straightforward. Once you generalize the above
“adversarial” layout for any input graph on n2 + 1 vertices there is a nice geometric argument
that the Hasse diagram of the outputted space will always contain an n × n-grid as a graph
minor. It is well known that such graphs have treewidth at least n which gives us our desired
lower bound.

If we are given a less structured graph than the one we saw in Figure 10, it might be
hard to see how we can best glue the gadgets together. Our way around this is to construct
a space where the order in which vertex gadgets are attached to each other is determined
by the order in which the nodes are forgotten in the nice path decomposition of the input
graph. The idea is that a vertex gadget is attached to a neighbouring vertex gadget in the
current bag when it (or its neighbour) is forgotten, see Figure 11.

The way we make the above idea precise is rather technical. It is in essence all about
structural induction over the given nice path decomposition, which we use to construct a nested
sequence of spaces Y0 ⊂ · · · ⊂ Yr, one for each bag. We also compute an accompanying path
decomposition for the Hasse diagram of each of the nested spaces. These path decompositions

SoCG 2022



17:14 ETH-Tight Algorithms for Finding Surfaces

X6X0 X1 X2 X3 X4 X5 X7 X8 X9 X10 X11 X12 X13 Xr

Figure 11 An illustration of how the graph from Figure 5 (top left) is mapped to a space (bottom)
having the same “structure”/“order” as the given nice path decomposition (top right) of the graph.

R0 R3 R4R2R1 R5 R6

Y6
Y5

Y4

Y3Y2Y1Y0

R3+1
2

R4+1
2

R0 R1R0 R1 R1 R2

R5R
3+1

2
R6R3 R

4+1
2

R4 R4 R4 R5R5

∪ ∪

∪∪∪

R2 R2∪R3 R3

R6∪ ∪

Figure 12 The space Y6 (top) associated to bag X6 in the nice path decomposition of the graph
in Figure 11. The location of the sub complexes Y0 ⊂ · · · ⊂ Y5 are indicated. Below is the path
decomposition of Y6. Path decomposition of the other spaces Yi, 0 ≤ i ≤ 5 are all present as the
path decomposition induced by “sub-paths” starting at the bag containing R0 and ending at the
bag containing Ri.

are not optimal, but their width is bounded above by the width of the inputted nice path
decomposition times a constant, which is sufficient for our purposes. The induction involves
going trough a lot of elementary claims about the space we have constructed at each step.
For details on this, see Section 4.4.2 of the extended version of this paper [5]. The space Y6
and its path decomposition are shown in Figure 12.



M. Black, N. Blaser, A. Nayyeri, and E. R. Vågset 17:15

5 Conclusion

In this paper, we consider the parameterized complexity of several variants of the problem
of finding surfaces in 2-dimensional simplicial complexes with respect to the treewidth of
the Hasse diagram. We give ETH-optimal algorithms for the Sum-of-Genus Subsurface
Recognition and Subsurface Packing problems. We also give an ETH-based lower
bound for Subsurface Recognition and an FPT algorithm for Connected Subsurface
Recognition. Several questions surrounding subsurface recognition remain open, such as

whether the algorithm presented in this paper for Connected Subsurface Recogni-
tion is ETH-optimal;
whether or not the Subsurface Recognition Problem is W[1]-hard when parameterized by
the treewidth of the Hasse diagram.

Future work could either attempt to find better parameterized algorithms or prove stronger
lower bounds for these problems.

References
1 L.V. Ahlfors and L. Sario. Riemann Surfaces. Princeton mathematical series. Princeton

University Press, 2015. URL: https://books.google.com/books?id=4C4PAAAAIAAJ.
2 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-

beddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
doi:10.1137/0608024.

3 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings
of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages
684–697, New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/
2897518.2897542.

4 Bhaskar Bagchi, Basudeb Datta, Benjamin A. Burton, Nitin Singh, and Jonathan Spreer.
Efficient Algorithms to Decide Tightness. In Sándor Fekete and Anna Lubiw, editors, 32nd
International Symposium on Computational Geometry (SoCG 2016), volume 51 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1–12:15, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SoCG.2016.12.

5 Mitchell Black, Nello Blaser, Amir Nayyeri, and Erlend Raa Vågset. ETH-tight algorithms for
finding surfaces in simplicial complexes of bounded treewidth. CoRR, abs/2203.07566, 2022.
arXiv:2203.07566.

6 Nello Blaser, Morten Brun, Lars M. Salbu, and Erlend Raa Vågset. The parameterized
complexity of finding minimum bounded chains. CoRR, 2021. arXiv:2108.04563.

7 Nello Blaser and Erlend Raa Vågset. Homology localization through the looking-glass of
parameterized complexity theory, 2020. arXiv:2011.14490.

8 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

9 Benjamin Burton, Sergio Cabello, Stefan Kratsch, and William Pettersson. The Parameterized
Complexity of Finding a 2-Sphere in a Simplicial Complex. In Heribert Vollmer and Brigitte
Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017),
volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:14,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.STACS.2017.18.

10 Benjamin Burton and Rodney Downey. Courcelle’s theorem for triangulations. Journal of
Combinatorial Theory, Series A, 146, March 2014. doi:10.1016/j.jcta.2016.10.001.

11 Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized
complexity of discrete Morse theory. ACM Transactions on Mathematical Software, 42(1):1–24,
March 2016. doi:10.1145/2738034.

SoCG 2022

https://books.google.com/books?id=4C4PAAAAIAAJ
https://doi.org/10.1137/0608024
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.4230/LIPIcs.SoCG.2016.12
http://arxiv.org/abs/2203.07566
http://arxiv.org/abs/2108.04563
http://arxiv.org/abs/2011.14490
https://doi.org/10.1137/130947374
https://doi.org/10.4230/LIPIcs.STACS.2017.18
https://doi.org/10.4230/LIPIcs.STACS.2017.18
https://doi.org/10.1016/j.jcta.2016.10.001
https://doi.org/10.1145/2738034


17:16 ETH-Tight Algorithms for Finding Surfaces

12 Benjamin A. Burton and Jonathan Spreer. The complexity of detecting taut angle structures
on triangulations. Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 2013. doi:10.1137/1.9781611973105.13.

13 A.V. Chernavsky and V.P. Leksine. Unrecognizability of manifolds. Annals of Pure and
Applied Logic, 141(3):325–335, 2006. Papers presented at the Second St. Petersburg Days of
Logic and Computability Conference on the occasion of the centennial of Andrey Andreevich
Markov, Jr. doi:10.1016/j.apal.2005.12.011.

14 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY,
USA, 1971. Association for Computing Machinery. doi:10.1145/800157.805047.

15 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

16 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Interna-
tional Publishing, 2015. doi:10.1007/978-3-319-21275-3.

17 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

18 Wolfgang Haken. Theorie der normalflächen. Acta Mathematica, 105(3):245–375, September
1961. doi:10.1007/BF02559591.

19 Sergei Ivanov. Computational complexity. MathOverflow. URL: https://mathoverflow.net/
q/118428.

20 A. Markov. The insolubility of the problem of homeomorphy. Dokl. Akad. Nauk USSR,
12(2):218–220, 1958.

21 Hyam Rubinstein. The solution to the recognition problem for S3. Lecture, 1992.
22 Abigail Thompson. Thin position and the recognition problem for S3. Mathematical Research

Letters, 1(5):613–630, 1994.

https://doi.org/10.1137/1.9781611973105.13
https://doi.org/10.1016/j.apal.2005.12.011
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1007/BF02559591
https://mathoverflow.net/q/118428
https://mathoverflow.net/q/118428

	1 Introduction
	1.1 Subsurface recognition problems
	1.2 Our results
	1.3 Related work

	2 Background
	2.1 Simplicial complexes and directed graphs
	2.2 Surfaces
	2.3 Tree decompositions
	2.4 The exponential time hypothesis

	3 Overview of the algorithms
	4 Overview of the lower bounds
	4.1 The reduction
	4.2 Pathwidth preservation

	5 Conclusion

