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Abstract
In this paper we introduce the signed barcode, a new visual representation of the global structure of the
rank invariant of a multi-parameter persistence module or, more generally, of a poset representation.
Like its unsigned counterpart in one-parameter persistence, the signed barcode encodes the rank
invariant as a Z-linear combination of rank invariants of indicator modules supported on segments in
the poset. It can also be enriched to encode the generalized rank invariant as a Z-linear combination
of generalized rank invariants in fixed classes of interval modules. In the paper we develop the theory
behind these rank decompositions, showing under what conditions they exist and are unique – so
the signed barcode is canonically defined. We also illustrate the contribution of the signed barcode
to the exploration of multi-parameter persistence modules through a practical example.
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1 Introduction

1.1 Context and motivation
One of the central questions in the development of multi-parameter persistence theory is
to find a proper generalization of the concept of a persistence barcode, which plays a key
part in the one-parameter instance of the theory. Given a one-parameter persistence module,
i.e. a functor M from some subposet P ⊆ R to the vector spaces over a fixed field k, the
(persistence) barcode Dgm M is a multi-set of intervals in P that fully characterizes the
module M . Its role in applications is motivated by the fact that Dgm M provides a compact
encoding of the so-called rank invariant Rk M , a complete invariant that captures the ranks
of the internal morphisms of M , more precisely:

Rk M(s, t) = rank [M(s)→M(t)] for every s ≤ t ∈ P. (1.1)

The encoding decomposes Rk M as a Z-linear combination of rank invariants of interval
modules, i.e. indicator modules supported on intervals:

Rk M =
∑

I∈Dgm M

Rk kI = Rk

 ⊕
I∈Dgm M

kI

 , (1.2)

where each interval I ∈ Dgm M is considered with multiplicity, and where kI denotes the
interval module supported on I. Coefficients in the Z-linear combination are all positive.

© Magnus Bakke Botnan, Steffen Oppermann, and Steve Oudot;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.b.botnan@vu.nl
mailto:steffen.oppermann@ntnu.no
mailto:steve.oudot@inria.fr
https://doi.org/10.4230/LIPIcs.SoCG.2022.19
https://arxiv.org/abs/2107.06800
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Signed Barcodes for Multi-Parameter Persistence

k
( 10 ) // k2

( 0 1 ) // k
( 01 ) // k2

( 1 0
0 1 ) // k2

1 2 3 4 5

R

2− 4+

Figure 1 A one-parameter persistence module M (top) indexed over {1, 2, 3, 4, 5}, and its barcode
(in blue). The corresponding rank decomposition is Rk M = Rk kJ1,2K + Rk kJ2,5K + Rk kJ4,5K. The
rank Rk M(2, 4) = 1 is given by the one bar (thickened) connecting the down-set 2− to the up-set 4+.
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Figure 2 The indecomposable module M on the left does not have the same rank invariant as
any direct sum of interval modules on the 3 × 3 grid. However, Rk M is equal to the difference
between the rank invariants of the two direct sums of interval modules shown on the right. Blue is
for intervals counted positively in the decomposition, while red is for intervals counted negatively.

The encoding in (1.2) is unique, i.e. there is no other way to decompose Rk M as a Z-linear
combination, with positive coefficients, of rank invariants of interval modules. This is because
M itself decomposes essentially uniquely as a direct sum of interval modules [6]:

M ≃
⊕

I∈Dgm M

kI . (1.3)

Since the intervals in Dgm M are line segments – possibly closed, open, or half-open,
Dgm M can be represented graphically as an actual barcode (see Figure 1) that reveals the
global structure of the rank invariant Rk M , as well as of the module M itself.

Major difficulties arise when trying to generalize the concept of barcode to multi-parameter
persistence modules – i.e. functors M from Rd (equipped with the product order) to the
vector spaces over k. Foremost, while a direct-sum decomposition of M into indecomposables
still exists and is essentially unique [3], the summands may no longer be interval modules as
in (1.3), where intervals in Rd are defined to be connected convex subsets in the product
order. For instance, the module on the left-hand side of Figure 2 is indecomposable yet not
an interval module nor even an indicator module – its pointwise dimension is not everywhere
≤ 1. One may then ask whether rank decompositions such as (1.2) exist nonetheless. The
answer is unfortunately negative: still in Figure 2, the module M on the left-hand side does
not have the same rank invariant as any direct sum of interval modules, therefore it cannot
decompose as in (1.2). Nevertheless, Rk M can be expressed as the difference between the
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Figure 3 Left: the signed barcode corresponding to the rank decomposition of Figure 2. Each
bar is the diagonal with positive slope of one of the rectangles involved in the decomposition, with
the same color code (blue for positive sign, red for negative sign). Right: computing Rk M(s, t) for
a pair of indices s ≤ t – the thick bar is the only one connecting the down-set s− to the up-set t+.

rank invariants of two direct sums of interval modules, as illustrated in the same figure.
In other words, Rk M decomposes as a Z-linear combination of rank invariants of interval
modules, with possibly negative coefficients.

The fact that the signed rank decomposition of the module M in Figure 2 involves only
rectangles is not mere chance: the point of our work is to show that such decompositions of the
rank invariant (1.1) exist, and furthermore that they are essentially unique – which may not
be the case for decompositions of this invariant using larger classes of intervals. Uniqueness
in the case of rectangles comes from the known fact that the rank invariant is complete on
direct sums of rectangle modules, i.e. interval modules supported on rectangles [4, 8].

Rectangles are also interesting because they are entirely determined by their upper bound
and lower bound. They therefore allow for an alternative representation of the signed rank
decomposition as a signed barcode, where each bar is the diagonal (with positive slope) of a
particular rectangle in the decomposition, with the same sign. As illustrated in Figure 3,
the signed barcode encodes visually the global structure of the rank invariant (1.1), and it
gives access to the same information as the signed rank decomposition. For instance, the
rank Rk M(s, t) between a pair of indices s ≤ t is given by the number of positive bars that
connect the down-set s− = {u ∈ P | u ≤ s} to the up-set t+ = {u ∈ P | u ≥ t}, minus the
number of negative bars that connect s− to t+.

1.2 Our setting
We work more generally over a partially ordered set P , considered as a category in the
obvious way, and we let k be an arbitrary but fixed field. Closed rectangles in Rd now become
closed segments in P , defined by ⟨s, t⟩ = {u ∈ P | s ≤ u ≤ t}. Intervals in P are defined
as non-empty subsets I that are both convex and connected in the partial order. Denote
by Rep P the functor category consisting of all functors M : P → Veck where Veck is the
category of vector spaces over k. We shall refer to such a functor M either as a representation
of P or as a persistence module over P , without distinction. Let rep P be the subcategory of
pointwise finite-dimensional (pfd) representations, i.e. functors taking their values in the
finite-dimensional vector spaces over k. Denoting by {≤P } = {(a, b) ∈ P ×P | a ≤ b} the set
of pairs defining the partial order in P , we see the rank invariant (1.1) as a map {≤P } → N
(in the literature, the rank invariant is sometimes defined as a map on P × P that vanishes
outside {≤P }; such a map clearly holds the same information as our rank invariant). For
I ⊆ P , M |I denotes M ◦ ι where ι : I ↪→ P is the canonical inclusion.

SoCG 2022



19:4 Signed Barcodes for Multi-Parameter Persistence

Since the usual rank invariant is incomplete, even on the subcategory of interval-
decomposable modules (i.e. modules isomorphic to direct sums of interval modules), we will
consider a generalization of the rank invariant that probes the existence of “features” in the
module across arbitrary intervals I ⊆ P , not just across closed segments. This generalization
is known to be complete on interval-decomposable modules – see [8] or our Proposition 2.8:

▶ Definition 1.1. Let M ∈ Rep P . Given an interval I ⊆ P , the generalized rank of M over
I, denoted by RkI M , is defined by:

RkI M = rank
[
lim←−M |I → lim−→M |I

]
.

Given a collection I of intervals, the generalized rank invariant of M over I is the map
RkI M : I → N ∪ {∞} defined by RkI M(I) = RkI M .

▶ Remark 1.2. To see that Definition 1.1 generalizes the standard rank invariant, ob-
serve that when I is a closed segment ⟨i, j⟩ = {u ∈ P | i ≤ u ≤ j}, we have RkI M =
rank [M(i)→M(j)]. Hence, taking I = {⟨i, j⟩ | i ≤ j ∈ P} ≃ {≤P } in the above definition
gives RkI M = Rk M , the usual rank invariant of M .

In this work we focus on the subcategory repI P of representations M that have a finite
generalized rank invariant over a fixed collection I of intervals, i.e. such that RkI M ∈ N for
all I ∈ I. Our setting considers in fact arbitrary functions I → Z. Note that repI P ⊇ rep P ,
since the morphism lim←−M |I → lim−→M |I factors through the internal spaces of M |I .

▶ Definition 1.3. Given a collection I of intervals in P , and a function r : I → Z, a (signed)
rank decomposition of r over I is given by the following kind of identity:

r = RkI kR − RkI kS ,

where R and S are multi-sets of elements taken from I such that kR and kS lie in repI P ,
and where by definition kR =

⊕
R∈R kR and kS =

⊕
S∈S kS (note that elements R ∈ R and

S ∈ S are considered with multiplicity). By extension, we call the pair (R,S) itself a rank
decomposition of r over I. It is minimal if R and S are disjoint as multi-sets.

Note that RkI kR(I) = 1R⊇I for any I ∈ I and R ∈ R (Proposition 2.1), so RkI kR(I)
counts the number of elements in R that contain I. This number is requested to be finite in
the definition (kR ∈ repI P ): a sufficient condition for this is that R is pointwise finite, i.e.
that every index in P belongs to only finitely many elements of R, for then kR ∈ rep P .

An important consequence of having RkI kR(I) = 1R⊇I is that adding the same in-
terval I ∈ I to both R and S does not change the difference RkI kR − RkI kS , so rank
decompositions cannot be unique. This motivates the notion of minimal rank decomposition.

1.3 Contributions and structure of the paper
In Section 2 we study the existence and uniqueness of minimal rank decompositions. We
show in Theorem 2.9 and Corollary 2.10 that a minimal rank decomposition (R,S) of a
given map r : I → Z exists as soon as at least one rank decomposition of r exists, that it is
always unique, and that it satisfies a universality property justifying its name. To complete
the picture, in Corollary 2.5 we provide mild sufficient conditions for the existence of rank
decompositions in the first place. Our proofs emphasize the role played by the family of
generalized rank invariants (RkI kI)I∈I , which acts as a generalized basis (Theorem 2.4).

In Section 3 we reformulate our results in the specific context of multi-parameter persis-
tence. We thus obtain existence and uniqueness results for minimal rank decompositions of
finitely presented persistence modules over Rd (Theorem 3.3), and of pfd persistence modules



M. B. Botnan, S. Oppermann, and S. Oudot 19:5

over finite grids (Corollary 3.2). In the latter case, we derive an explicit inclusion-exclusion
formula to compute the coefficients in the minimal rank decompositions, which generalizes
the known formula for counting multiplicities in persistence diagrams in the one-parameter
case. We also discuss the stability of the minimal rank decompositions, and propose a
metric in which to compare them, based on the matching (pseudo-)distance from [9]. In this
metric we show that the minimal rank decompositions are the ones maximizing the distance
(Proposition 3.8), and that replacing the modules by their rank decompositions does not
expand their pairwise distances (Theorem 3.7).

In Section 4 we introduce the signed barcode as a visual representation of the minimal rank
decomposition of the usual rank invariant. We explain how the signed barcode reflects the
global structure of the usual rank invariant, and how its role in multi-parameter persistence
is similar to the one played by the unsigned barcode in one-parameter persistence. We
also discuss its extension to generalized rank invariants, for which it takes the form of a
“decorated” signed barcode with similar properties and extra information. The use of these
barcodes is illustrated on a practical example coming from 2-parameter clustering.

1.4 Related work
Rank decompositions have strong ties with the concept of generalized persistence diagram,
introduced by Patel [14] and further studied in [2, 8, 11]. This diagram is defined from the rank
invariant via a Möbius inversion, from which our inclusion-exclusion formula for computing
the coefficients in the minimal rank decomposition derives. Indeed, in the full version of
this paper [5] we show that, whenever it is defined, the generalized persistence diagram does
correspond to the minimal rank decomposition. However, our framework allows us to prove
the existence and uniqueness of the minimal rank decomposition using direct arguments
that: (1.) emphasize the role played by the family of rank invariants of interval modules
as a generalized basis for the space of maps I → Z, and (2.) hold in more general settings
where the Möbius inversion is not defined. It also allows us to derive stability results for rank
decompositions in general (not just minimal ones), in terms of the matching distance dmatch [9],
and to introduce the signed barcodes as a practical graphical representation of minimal rank
decompositions – hence of generalized persistence diagrams as well.

2 Rank Decompositions: Existence and Uniqueness

Let P be an arbitrary poset. The following result will be instrumental throughout our analysis.
It generalizes [8, Proposition 3.17] by dropping the assumption of local finiteness of the
poset P and allowing for generalized ranks, moreover it is given a more direct proof – see the
full version of this paper [5]. Note that the result is immediate when working with segments.

▶ Proposition 2.1. Let R be a multi-set of intervals of P . Then, for any interval I ⊆ P :

RkI(kR) = #{R ∈ R | I ⊆ R}.

▶ Corollary 2.2. Let I be a collection of intervals in P . For a multi-set R of intervals, we
have that kR ∈ repI P if and only if #{R ∈ R | I ⊆ R} <∞ for all I ∈ I.

2.1 The locally finite case
Let I be a locally finite collection of intervals in P . That is, for any two comparable intervals
in I, there are only finitely many intervals in I between the two. We say a map I → Z has
locally finite support if its restriction to the up-set of any element of I has finite support.

SoCG 2022
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▶ Remark 2.3. For any fixed I ∈ I, the map RkI kI : J 7→ RkJ kI has locally finite support,
by the description in Proposition 2.1. More generally, for any multi-set R of elements in
I, if kR ∈ repI P then the map RkI kR has locally finite support: for any fixed I ∈ I, by
Corollary 2.2 R only contains finitely many elements containing I, and these are the only
ones relevant when considering the restriction of RkI kR to the up-set of I.

▶ Theorem 2.4. Let I be a locally finite collection of intervals in P . Then any function
r : I → Z with locally finite support can uniquely be written as a (possibly infinite, but
pointwise finite) Z-linear combination of the functions RkI kI with I ∈ I.

Proof. Existence: Given I ∈ I we let SI = {J ⊇ I | ∃K ⊇ J with r(K) ̸= 0}. Since r is
locally finite, its support restricted to the up-set of I is finite, and so is SI since I is locally
finite. Now we can define a collection of scalars αI ∈ Z for I ∈ I, inductively on the size
of SI . If SI = ∅ we set αI = 0. Otherwise we set

αI = r(I)−
∑

J∈SI \{I}

αJ .

Note that for J ∈ SI \ {I} we have SJ ⊊ SI , so the terms in the sum are already defined.
Now, using the description of the map RkI kI in Proposition 2.1, one immediately verifies

that r =
∑

I∈I αI RkI kI . Note in particular that this infinite sum is pointwise finite – on a
given interval J the only possibly non-zero terms are the ones in SJ – hence well-defined.

Uniqueness: subtracting two different Z-linear combinations realizing r from each other,
we get a single linear combination

∑
I∈I αI RkI kI with non-zero coefficients which sums up

to zero. Note that there is at least one maximal I ∈ I such that αI ̸= 0, for otherwise the sum
would not be defined. It follows, again using Proposition 2.1, that (

∑
J∈I αJ RkI kJ)(I) =

αI ̸= 0, contradicting our assumption. ◀

▶ Corollary 2.5. Let I be a locally finite collection of intervals in P . Then, for any map
r : I → Z with locally finite support, there is a unique pair R,S of disjoint multi-sets of
elements of I such that r = RkI kR − RkI kS and kR, kS both lie in repI P .

Proof. By Theorem 2.4, there is a unique (possibly infinite, but pointwise finite) Z-linear
combination of functions r =

∑
I∈I αI RkI kI . Let then R = {I ∈ I | αI > 0} with

multiplicities I 7→ αI , and S = {I ∈ I | αI < 0} with multiplicities I 7→ |αI |. It follows
from the pointwise-finiteness of the linear combination that R and S satisfy the condition in
Corollary 2.2, so in particular kR and kS lie in repI P . ◀

Specializing Theorem 2.4 and Corollary 2.5 to the case where P is finite and I = {⟨i, j⟩ |
i ≤ j ∈ P} ≃ {≤P } yields the following results – where RkI becomes the usual rank
invariant Rk according to Remark 1.2:

▶ Corollary 2.6. If P is finite, then the maps Rk k⟨a,b⟩ for all a ≤ b ∈ P is a basis of Z{≤P }.

▶ Corollary 2.7. Given a finite poset P , for any map r : {≤P } → Z there is a unique pair
R,S of disjoint finite multi-sets of closed segments such that r = Rk kR − Rk kS .

2.2 The general case
We now drop our previous finiteness assumptions and consider arbitrary maps r : I → Z
over an arbitrary collection I of intervals in an arbitrary poset P . Our first result shows
that RkI is a complete invariant when restricted to interval-decomposable representations
supported on intervals in I. In fact, we show that the rank invariant is complete on a slightly
larger collection of intervals. This generalizes [8, Theorem 3.14].
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▶ Proposition 2.8. Given a collection I of intervals in P , let Î ⊇ I be the collection of
limit intervals (which by construction are also intervals):

Î :=
{ ⋃

x∈X

Ix | X totally ordered, Ix ∈ I and Ix ⊆ Iy ∀x ≤ y ∈ X

}
.

If R and R′ are two multi-sets of elements in Î, such that RkI kR = RkI kR′ and this
common rank invariant is finite, then R = R′.

Proof. Since the rank of a direct sum is the sum of the ranks we may remove the common
elements from R and R′, and thus assume that the two multi-sets are disjoint. It follows
from the description of multi-sets giving rise to finite ranks in Corollary 2.2 that R ∪R′

contains at least one maximal element, say J . Without loss of generality we assume J ∈ R.
By definition of Î we have J =

⋃
x∈X Jx with Jx ∈ I and Jx ⊆ Jy for all x ≤ y ∈ X. Now,

by assumption, for every x ∈ X we have

RkJx
kR′ = RkJx

kR ≥ RkJx
kJ ,

which is at least 1 by Proposition 2.1. It also follows from Proposition 2.1 that, for each
x ∈ X, there is some interval Ix ∈ R′ such that Jx ⊆ Ix. Since RkI kR′ is finite, Corollary 2.2
says that there are actually only finitely many choices for Ix. Hence, there is an I ∈ R′

independent of x such that Jx ⊆ I for all x ∈ X. Thus J ⊆ I. If this is a proper inclusion then
it contradicts the maximality of J , otherwise it contradicts the disjointness of R and R′. ◀

We can now show minimal rank decompositions satisfy a universality property when they exist.

▶ Theorem 2.9. Let R,S,R∗,S∗ be multi-sets of elements of Î, whose corresponding
representations lie in repI P , and such that R∗ ∩ S∗ = ∅. If

RkI kR − RkI kS = RkI kR∗ − RkI kS∗

then R ⊇ R∗, S ⊇ S∗, and R \R∗ = S \ S∗.

Proof. Rewriting the equation yields RkI kR + RkI kS∗ = RkI kR∗ + RkI kS , and by
additivity of the rank invariant, RkI(kR ⊕ kS∗) = RkI(kR∗ ⊕ kS). It follows then by
Proposition 2.8 that R ∪ S∗ = R∗ ∪ S. As R∗ ∩ S∗ = ∅, we conclude that R ⊇ R∗, S ⊇ S∗,
and R \R∗ = S \ S∗. ◀

As an immediate consequence of Theorem 2.9, we obtain uniqueness and conditional
existence of minimal rank decompositions:

▶ Corollary 2.10. The minimal rank decomposition (R∗,S∗) of any map r : I → Z is unique
if it exists. Furthermore, it exists as soon as any rank decomposition (R,S) of r does, being
obtained from it by removing common intervals, that is: (R∗,S∗) = (R \R ∩ S, S \R ∩ S).

We also get a connection between the various rank decompositions of a map I → Z:

▶ Corollary 2.11. R∪S ′ = R′ ∪S for any rank decompositions (R,S), (R′,S ′) of r : I → Z.

Proof. Let (R∗,S∗) be the minimal rank decomposition of r. By Theorem 2.9, we have
R = R∗∪T and S = S∗∪T for some finite multi-set T of elements of I, while R′ = R∗∪T ′

and S ′ = S∗ ∪ T ′ for some multi-set T ′. Then, R ∪ S ′ = R∗ ∪ S∗ ∪ T ∪ T ′ = R′ ∪ S. ◀

SoCG 2022
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Figure 4 Minimal rank decomposition of the generalized rank invariant of the module M from
Figure 2 over the full collection I of intervals in the 3 × 3 grid. Blue is for intervals in R, red is for
intervals in S.
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Figure 5 Taking I to be the collection of all intervals with one generator and at most two

cogenerators (which includes in particular all rectangles), the generalized rank invariant of the
interval 2-parameter persistence module kI on the left-hand side decomposes minimally as the
difference between the generalized rank invariants of the two modules on the right-hand side. Blue
is for intervals in R, red is for intervals in S.

3 Application to multi-parameter persistence

Here the poset P under consideration is either Rd, viewed as a product of d copies of the
totally ordered real line, or a subposet of Rd – usually Zd or some finite grid

∏d
i=1 J1, niK.

The role of segments is played by rectangles, i.e. products of 1-d intervals.

3.1 The finite grid case
In this case, Corollary 2.5 reformulates as follows:

▶ Corollary 3.1. Given an arbitrary collection I of intervals in a finite grid G =
∏d

i=1J1, niK ⊂
Rd, the generalized rank invariant RkI M of any pfd persistence module M indexed over G

admits a unique minimal rank decomposition (R,S) over I.

Taking I to be the collection of all closed rectangles in the grid G yields the following
reformulation of Corollary 2.7:

▶ Corollary 3.2. The usual rank invariant of any pfd persistence module M indexed over a
finite grid G =

∏d
i=1J1, niK ⊂ Rd admits a unique minimal rank decomposition (R,S), where

R and S are finite multi-sets of (closed) rectangles in G.

Figures 4 and 5 illustrate Corollary 3.1, while Figures 2 and 6 illustrate Corollary 3.2.
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Figure 6 The usual rank invariant of the interval module kI on the left-hand side decomposes
minimally as the difference between the usual rank invariants of the two rectangle-decomposable
modules on the right-hand side. Blue is for rectangles in R, red is for rectangles in S.

Computation
Given RkI M , computing its minimal rank decomposition can be done by applying the
inclusion-exclusion formula defining the so-called generalized persistence diagram of M – see
e.g. Definition 3.13 in [8]. Indeed, whenever it exists, the generalized persistence diagram
of M coincides with the minimal rank decomposition of RkI(M). This connection happens
as both objects derive from the Möbius inversion of the generalized rank invariant – see
Section 3 in the full version of our paper [5] for the details. While simple, this approach does
not scale up well because the inclusion-exclusion formula must be applied for every interval
in the collection I, whose size can be up to exponential in the size of the indexing grid G,
even in two dimensions [1].

In the special case of the usual rank invariant however, the approach scales up reasonably
as the number of rectangles is at most quadratic in the size of the grid G. To be more specific,
the inclusion-exclusion formula writes as follows in this case, where α⟨s,t⟩ is the coefficient
assigned to Rk k⟨s,t⟩ in the minimal rank decomposition of Rk M :

∀s ≤ t ∈ G, α⟨s,t⟩ =
∑
s′≤s

∥s′−s∥∞≤1

∑
t′≥t

∥t′−t∥∞≤1

(−1)∥s′−s∥1+∥t′−t∥1 Rk M(s′, t′). (3.1)

By applying (3.1) successively to every pair of comparable indices s ≤ t in the grid
G =

∏d
i=1J1, niK ⊂ Rd, one computes the minimal rank decomposition of Rk M in time

O
(
22d #{≤G}

)
, assuming constant-time access to the ranks Rk M(s′, t′) and constant-time

arithmetic operations1. This bound is in O
(

22d
∏d

i=1 n2
i

)
, and when d is fixed, it is linear in

the size of the encoding of the usual rank invariant as a map {≤G} → Z. When the module M

comes from a simplicial filtration over the grid G with n = maxi ni simplices in total, the
usual rank invariant itself can be pre-computed and stored, e.g. by naively computing the
ranks Rk M(s, t) for each pair s ≤ t ∈ G independently, which takes O(n2d+ω) time in
total, where 2 ≤ ω < 2.373 is the exponent for matrix multiplication [12]. Adding in the

1 We are considering an implementation that iterates over the indices s′, t′ such that ∥s′ − s∥∞ ≤ 1 and
∥t′ − t∥∞ ≤ 1 by increasing order of the 1-norms ∥s′ − s∥1 and ∥t′ − t∥1, so that the 1-norms do not
have to be re-computed from scratch at each step. Such an implementation boils down to iterating over
the vertices of the unit hypercube in Rd by increasing order of the number of 1’s in their coordinates.
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Figure 7 Left: an indecomposable persistence module with 2 generators, at a and b, and a
relation equating them at h (indices d, e, f, g, i lie at infinity). Right: minimal rank decomposition
of the usual rank invariant of the module, over the right-open rectangles. Blue is for rectangles in R,
red is for rectangles in S. Solid boundaries belong to the rectangles while dotted boundaries do not.

computation time for the minimal rank decomposition yields a bound in O(n2d+ω + (2n)2d).
While naive, this approach already compares favorably, in terms of running time, to the
computation of other (stronger) invariants such as for instance the direct-sum decomposition
of M – for which the best known algorithm runs in O(nd(2ω+1)) time [7]. Moreover, the
running time of computing the minimal rank decomposition is dominated by the running
time of pre-computing the usual rank invariant, for which there is room for improvement.
In the special case where d = 2 for instance, assuming the filtration is 1-critical (i.e. each
simplex has a unique minimal time of appearance in the filtration), there is an O(n4)-time
algorithm to compute the usual rank invariant [4, 13], and computing its minimal rank
decomposition also takes O(n4) time. By comparison, the best known algorithm to compute
the direct-sum decomposition of M in this setting takes O(n2ω+1) time [7], and computing
the line arrangement data structure in RIVET takes O(n5) time in the worst case [10].

3.2 The Rd case
The rectangles in this context are right-open rectangles, i.e. products

∏d
i=1[ai, bi) of right-open

intervals of the real line (ai < bi ∈ R ∪ {∞} for each i = 1, · · · , d).

▶ Theorem 3.3. The usual rank invariant of every finitely presented persistence module M

over Rd admits a unique minimal rank decomposition over the right-open rectangles in Rd.

This result, illustrated in Figure 7, follows from Corollary 2.10 and from the fact that
rank decompositions of finitely presented persistence modules over Rd exist in the first place
– this fact itself is a consequence of the existence of so-called rank-exact resolutions of such
modules, which are the subject of Section 4 in the full version of the paper [5].

3.3 Restrictions to lines
A line ℓ in Rd is called monotone if it can be parametrized by λ 7→ (1 − λ)s + λt where
s ≤ t ∈ Rd are fixed. If si < ti in every dimension i = 1, · · · , d, then ℓ is called strictly
monotone. The restriction of M to ℓ is a one-parameter persistence module and thus has a
well-defined barcode called the fibered barcode. We shall now see that the fibered barcode of
M |ℓ can be obtained by a rank decomposition of M . In the following we employ the notation
R|ℓ = {R ∩ ℓ : R ∈ R}. Note that the elements of R|ℓ are intervals in ℓ.
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Figure 8 Restricting an interval module kI to a monotone line ℓ (left) yields a restriction of the
minimal rank decomposition of Rk kI to ℓ (right) – for clarity, the rectangles’ boundaries are shown
with different line styles. Here, the restricted rank decomposition is not minimal, as the two interval
summands of kS|ℓ

cancel out with two of the three interval summands of kR|ℓ
.

▶ Proposition 3.4. Let M be a pfd persistence module over Rd such that the usual rank
invariant Rk M admits a rank decomposition (R,S). Then, for any monotone line ℓ in Rd,
(R,S) restricts to a rank decomposition (R|ℓ,S|ℓ) of Rk M|ℓ.

Proof. Observe that Rk kR|ℓ = Rk kR∩ℓ (and likewise for S). Thus, Rk M |ℓ = Rk kR|ℓ −
Rk kS |ℓ = Rk kR∩ℓ − Rk kS∩ℓ. ◀

▶ Remark 3.5. For a general discussion on restrictions of rank decompositions to subposets,
see Section 5 in the full version of the paper [5].

Note that the restriction of a minimal decomposition may not be minimal, as different
rectangles in R and S may restrict to the same 1-d interval – see Figure 8 for an illustration.
However, by Corollary 2.10, the minimal rank decomposition (R∗,S∗) of Rk M|ℓ is easily
obtained by removing all the common elements in R|ℓ and S|ℓ. Furthermore, as illustrated
in Figure 8 and formalized in the following result, (R∗,S∗) actually coincides with the
persistence barcode of the one-parameter module M |ℓ.

▶ Corollary 3.6. Every pfd persistence module M over R admits a unique minimal rank
decomposition (R,S), given by R = Dgm M , the persistence barcode of M , and S = ∅.

Proof. Follows from (1.3) and Corollary 2.10. ◀

3.4 Stability
We conclude this section by saying a few words about the stability of our rank decompo-
sitions. Recall from Corollary 2.11 that we have kR ⊕ kS′ ≃ kR′ ⊕ kS for any two rank
decompositions (R,S) and (R′,S ′) of the same persistence module M , or of two persistence
modules M, M ′ sharing the same (usual) rank invariant. In effect, this is telling us that
two rank decompositions are equivalent whenever their ground modules have the same rank
invariant. Using the matching (pseudo-)distance dmatch from [9], we can derive a metric
version of this statement (Theorem 3.7), which bounds the defect of equivalence between two
rank decompositions in terms of the fibered distance between the rank invariants of their
ground modules. Recall that the matching distance between two pfd persistence modules
M, N in Rd is defined as follows:

dmatch(M, N) = sup
ℓ strictly monotone

ω(ℓ) db(M |ℓ, N |ℓ), (3.2)

where db denotes the usual bottleneck distance between one-parameter persistence modules,
and where the weight of ℓ (parametrized as in Section 3.3) is

ω(ℓ) = (min
i

ti − si)/(max
i

ti − si) > 0.
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▶ Theorem 3.7. Let M, M ′ be pfd persistence modules indexed over Rd. Then, for any rank
decompositions (R,S) and (R′,S ′) of M and M ′ respectively, we have:

dmatch(kR ⊕ kS′ , kR′ ⊕ kS) ≤ dmatch(M, M ′).

Proof. Take any strictly monotone line ℓ in Rd. By (3.2), we have:

db(M|ℓ, M ′
|ℓ) ≤ ω(ℓ)−1 dmatch(M, M ′).

Meanwhile, by Corollary 3.4, (R|ℓ,S|ℓ) is a rank decomposition of M|ℓ, and (R′
|ℓ,S

′
|ℓ) is

a rank decomposition of M ′
|ℓ. By Proposition 2.8, we then have M|ℓ ⊕ kS|ℓ

≃ kR|ℓ
and

M ′
|ℓ ⊕ kS′

|ℓ
≃ kR′

|ℓ
, from which we deduce:

db(M|ℓ, M ′
|ℓ) ≥ db(M|ℓ ⊕ kS|ℓ

⊕ kS′
|ℓ

, M ′
|ℓ ⊕ kS|ℓ

⊕ kS′
|ℓ

) = db(kR|ℓ
⊕ kS′

|ℓ
, kR′

|ℓ
⊕ kS|ℓ

).

Combined with the previous equation, this gives:

db(kR|ℓ
⊕ kS′

|ℓ
, kR′

|ℓ
⊕ kS|ℓ

) ≤ ω(ℓ)−1 dmatch(M, M ′).

The result follows then by taking the supremum on the left-hand side over all possible choices
of strictly monotone lines ℓ. ◀

Note that different choices of rank decompositions (R,S) and (R′,S ′) for M and M ′

may yield different values for the matching distance dmatch(kR ⊕ kS′ , kR′ ⊕ kS). It turns
out that the rank decompositions maximizing this distance are precisely the minimal rank
decompositions, which therefore also satisfy a universal property in terms of the metric:

▶ Proposition 3.8. Let M, M ′ be pfd persistence modules indexed over Rd. Then, for any
rank decompositions (R,S) and (R′,S ′) of M and M ′ respectively, we have:

dmatch(kR ⊕ kS′ , kR′ ⊕ kS) ≤ dmatch(kR∗ ⊕ kS′∗ , kR′∗ ⊕ kS∗),

where (R∗,S∗) and (R′∗,S ′∗) are the minimal rank decompositions of M and M ′ respectively
– which exist as soon as (R,S) and (R′,S ′) do, by Corollary 2.10.

Proof. Let T := R \ R∗ = S \ S∗, and T ′ := R′ \ R′∗ = S ′ \ S ′∗. Note that T , T ′ are
well-defined by Theorem 2.9. Then, for any strictly monotone line ℓ, we have:

db(kR|ℓ
⊕ kS′

|ℓ
, kR′

|ℓ
⊕ kS|ℓ

) = db(kR∗|ℓ
⊕ kS′∗|ℓ

⊕ kT|ℓ
⊕ kT ′

|ℓ
, kR′∗|ℓ

⊕ kS∗|ℓ
⊕ kT|ℓ

⊕ kT ′
|ℓ

)

≤ db(kR∗|ℓ
⊕ kS′∗|ℓ

, kR′∗|ℓ
⊕ kS∗|ℓ

).

The result follows then after multiplying by ω(ℓ) and taking the supremum on both sides
over all possible choices of strictly monotone lines ℓ. ◀

4 Signed barcodes and prominence diagrams

In the context of topological data analysis, the minimal rank decomposition (R,S) of Rk M

encodes visually the structure of the rank invariant of M : Rd → Veck. However, representing
rectangles as rectangles quickly leads to arrangements that are hard to read – see e.g. Figure 8.
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Figure 9 From left to right: signed barcodes corresponding to the usual rank decompositions of
Figures 6, 7, and 8 respectively. Blue bars are diagonals of rectangles in R and therefore counted
positively, while red bars are diagonals of rectangles in S and therefore counted negatively. The
bars’ endpoints are marked in green (as a solid dot when the endpoint lies in the rectangle, as a
circled dot when it does not – e.g. when it lies at infinity), to discriminate them from intersections.
The thick red line segment in the center picture shows the overlap between a shorter red bar and a
longer red bar sharing the same lower endpoint and slope.

s

t

s−

t+

RkM(s, t) = 2− 1 = 1

`

Figure 10 Left: computing Rk M(s, t) for a pair of indices s ≤ t – the thick bars are the ones
connecting the down-set s− to the up-set t+. Right: restricting the minimal rank decomposition
of Rk M to a strictly monotone line ℓ – the thick blue and red bars are the ones projecting to
non-empty bars along ℓ, and among those projections, the thick gray bars get cancelled out during
the simplification while the thick black bar remains in the barcode of M |ℓ.

4.1 Signed barcodes
An alternate representation of the rectangles is by their diagonal with positive slope. We
call this representation the signed barcode of Rk M , where each bar is the diagonal (with
positive slope) of a particular rectangle in R or S, and where the sign is positive for bars
coming from R and negative for bars coming from S – see Figure 9 for an illustration. Like
the rectangles, the bars are considered with multiplicity. The signed barcode of Rk M gives
direct access to the same pieces of information as the rectangular representation, as shown
in Figure 10. Furthermore, the signed barcode makes it possible to visually grasp the global
structure of the usual rank invariant Rk M , and in particular, to infer the directions along
which topological features have the best chances to persist.

When the collection I of intervals under consideration contains more than just the
rectangles, the intervals involved in the corresponding minimal rank decomposition (R,S)
of M are no longer described by a single diagonal. Nevertheless, each interval I ∈ R ⊔ S is
still uniquely described by the signed barcode of the corresponding interval module kI . We

SoCG 2022
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Figure 11 Decorated signed barcode corresponding to the generalized rank decomposition (R,S)
of Figure 5. The orange squares indicate how the bars are grouped together according to their
originating element I ∈ R ⊔ S.
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(2)

∆ ∆ ∆

Figure 12 The signed prominence diagrams corresponding to the signed barcodes of Figure 9,
in the same order. Blue dots correspond to blue bars (hence to rectangles in R), while red dots
correspond to red bars (hence to rectangles in S). Multiplicities differring from 1 are indicated
explicitly. The union ∆ of the two coordinate axes plays the role of the diagonal.

can then collate all these signed barcodes together, negating the ones coming from intervals
in S, which yields a global decorated signed barcode for RkI M , where the decoration groups
the bars according to which element I ∈ R ⊔ S they originate from – see Figure 11.

4.2 Signed prominence diagrams
To each bar with endpoints s ≤ t in the (undecorated) signed barcode of Rk M , we can
associate its signed prominence, which is the d-dimensional vector t− s if the bar corresponds
to a rectangle in R, or s − t if the bar corresponds to a rectangle in S. We call signed
prominence diagram of M the resulting collection of vectors in Rd – see Figure 12.

In a signed prominence diagram, the union ∆ of the hyperplanes perpendicular to the
coordinate axes and passing through the origin plays the role of the diagonal: a bar whose
signed prominence lies close to ∆ can be viewed as noise, whereas a bar whose signed
prominence lies far away from ∆ can be considered significant for the structure of Rk M .
The right way to formalize this intuition is via smoothings, as in the one-parameter case.

▶ Definition 4.1. Given ε ∈ Rd
≥0, the ε-shift M [ε] is the persistence module defined pointwise

by M [ε](t) = M(t + ε) and M [ε](s ≤ t) = M(s + ε ≤ t + ε). There is a canonical morphism
of persistence modules M →M [ε], whose image Mε is called the ε-smoothing of M .

▶ Example 4.2. The ε-shift of a rectangle module kR is kR−ε, where by definition R− ε is
the shifted rectangle {t− ε | t ∈ R}. The ε-smoothing of kR is kRε , where by definition Rε

is the rectangle R ∩ (R− ε), obtained from R by shifting its upper-right corner by -ε.
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Figure 13 Behavior of the signed barcode and prominence diagram under ε-smoothing. Left: the
input module M from Figure 6, overlaid with its signed barcode. Center: the ε-smoothing Mε of M

(in dark gray), overlaid with its own signed barcode – obtained by shifting the right endpoints in the
signed barcode of M by -ε. Right: effect of the ε-smoothing on the signed prominence diagram.

As it turns out, rank decompositions of the usual rank invariant commute with smoothings:

▶ Lemma 4.3. If (R,S) is a rank decomposition of Rk M , then, for any ε ∈ Rd
≥0, the pair

(Rε,Sε) where Rε = {Rε | R ∈ R} and Sε = {Sε | S ∈ S} is a rank decomposition of Rk Mε.
If (R,S) is minimal, then so is (Rε,Sε) after removing the empty rectangles from Rε and Sε.

See our full version [5] for an elementary proof of this result, which says that the effect of
ε-smoothing M on its signed barcode is to shift the right endpoints of the bars by -ε, removing
those bars for which the shifted right endpoint is no longer greater than or equal to the left
endpoint. The effect on its signed prominence diagram is to shift the positive vectors by -ε
and the negative vectors by ε, removing those vectors that cross ∆. Alternatively, one can
inflate ∆ by ε, and remove the vectors that lie in the inflated ∆, as illustrated in Figure 13.

4.3 A practical example: two-parameter clustering
We consider the point set P shown in Figure 14, which consists of N = 90 planar points
sampled from three different Gaussian distributions. We build the Vietoris–Rips bifiltration
from this dataset, given by VR(P )r,s := VR(f−1

ε (−∞, s])r, where VR(·)r denotes the usual
Vietoris-Rips complex of parameter r, and where fε : P → R is a local co-density estimator:

fε(p) = #{q ∈ P : d(p, q) > ϵ}, for a fixed parameter ϵ ≥ 0.

As the Vietoris-Rips complex VR(P )r,s can be hard to visualize, we replace it in our plots

by a proxy union of balls, Ur,s =
{

z ∈ R2 : min
p∈P,fε(p)≤s

||p− z|| ≤ r/2.

}
, which is known to

be interleaved multiplicatively with it.
Applying simplicial 0-homology with coefficients in the field Z2 yields a bipersistence

module M : M(r, s) = H0(VR(P )r,s). In practice we discretize M over a 10 × 10 regular
grid G, which we identify with the grid {0, 1, . . . , 9} × {0, 1, . . . , 9} in our plots. We know
that2, if (R,S) is a rank decomposition of M , then (R|G,S|G) is a rank decomposition of M |G.
Note that the persistence module thus obtained is not interval-decomposable. Geometrically,
this is due to three clusters A, B, C merging in three different ways at incomparable grades,
as shown in the highlighted squares of Figure 14, so that we have the following diagrams:

2 This comes from an extension of Proposition 3.4 to lattices, proven in the full version of the paper [5].
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Figure 14 The bifiltration in our experiment. The highlighted black squares show that three
clusters (named A, B, C) merge in three different ways at incomparable scales. The lifespan of each
one of these three clusters is marked by an interval with matching color.
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Figure 15 Left: signed barcode of our experiment over the 10 × 10 grid G, where thicker bars
overlap with another bar. Right: corresponding prominence diagram, where the bars coming from
the lifespans of A, B, C are separated from the rest of the bars by the dashed curves. Each bar with
endpoints s ≤ t in the barcode (and diagram) has an intensity proportional to min{tx − sx, ty − sy}.
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Figure 16 Lifespans of A, B (left) and C (right) in the signed barcode.

The resulting signed barcode is shown in Figure 15. As expected, the lifespans of the
three clusters A, B, C appear as separate subsets of the bars, as shown in Figure 16. Checking
whether one of these three subsets does correspond to the lifespan of some feature can be
done by computing the coefficient assigned to the corresponding interval in the generalized
rank decomposition of M . The decorated barcode would provide this information as well.
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