
Parameterized Algorithms for Upward Planarity
Steven Chaplick #

Maastricht University, The Netherlands

Emilio Di Giacomo #

Università degli Studi di Perugia, Italy

Fabrizio Frati #

Roma Tre University, Rome, Italy

Robert Ganian #Ñ

Technische Universität Wien, Austria

Chrysanthi N. Raftopoulou #

National Technical University of Athens, Greece

Kirill Simonov #

Technische Universität Wien, Austria

Abstract
We obtain new parameterized algorithms for the classical problem of determining whether a directed
acyclic graph admits an upward planar drawing. Our results include a new fixed-parameter algorithm
parameterized by the number of sources, an XP-algorithm parameterized by treewidth, and a fixed-
parameter algorithm parameterized by treedepth. All three algorithms are obtained using a novel
framework for the problem that combines SPQR tree-decompositions with parameterized techniques.
Our approach unifies and pushes beyond previous tractability results for the problem on series-parallel
digraphs, single-source digraphs and outerplanar digraphs.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Human-centered computing → Graph drawings

Keywords and phrases Upward planarity, parameterized algorithms, SPQR trees, treewidth, treedepth

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.26

Related Version Full Version: https://arxiv.org/abs/2203.05364

Funding Emilio Di Giacomo: MIUR, grant 20174LF3T8, Dip. Ing. – UNIPG, grants RICBA19FM
and RICBA20EDG.
Fabrizio Frati: MIUR, grant 20174LF3T8.
Robert Ganian: Austrian Science Fund (FWF) Project Y1329.
Chrysanthi N. Raftopoulou: NTUA research program ΠEBE 2020.
Kirill Simonov: Austrian Science Fund (FWF) Project P31336.

Acknowledgements The authors thank Fabrizio Montecchiani and Giuseppe Liotta for fruitful
discussions on the topic of upward planarity. This research was initiated at Dagstuhl Seminar 21293:
Parameterized Complexity in Graph Drawing [19].

1 Introduction

A digraph is called upward planar if it admits an upward planar drawing, that is, a planar
drawing where all edges are oriented upward. The problem of upward planarity testing
(Upward Planarity) and constructing an associated upward planar drawing arises, among
others, in the context of visualization of hierarchical network structures; application domains
include project management, visual languages and software engineering [2]. Upward planarity

© Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian,
Chrysanthi N. Raftopoulou, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.chaplick@maastrichtuniversity.nl
https://orcid.org/0000-0003-3501-4608
mailto:emilio.digiacomo@unipg.it
https://orcid.org/0000-0002-9794-1928
mailto:frati@dia.uniroma3.it
https://orcid.org/0000-0001-5987-8713
mailto:rganian@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/rganian/
https://orcid.org/0000-0002-7762-8045
mailto:crisraft@mail.ntua.gr
https://orcid.org/0000-0001-6457-516X
mailto:ksimonov@ac.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2022.26
https://arxiv.org/abs/2203.05364
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Parameterized Algorithms for Upward Planarity

is the most prominent notion of planarity that is inherently directed, and also has classical
connections to the theory of ordered sets: the orders arising from the transitive closure of
upward planar single-source digraphs have bounded dimension [30].

Since the introduction of the notion, Upward Planarity has become the focus of
extensive theoretical research. The problem has been shown to be NP-complete more than 25
years ago [20, 21], but the first polynomial-time algorithms for restricted variants of Upward
Planarity have been published even earlier [25, 26]. Among others, the problem is known
to be polynomial-time tractable when G is provided with a planar embedding [3] (which
also implies polynomial-time tractability for triconnected DAGs, since these admit a single
planar embedding), or when restricted to the class of outerplanar DAGs [28], DAGs whose
underlying graph is series-parallel [13], and most prominently single-source DAGs [2, 5, 26].

In spite of the number of results on Upward Planarity that analyze the classical
complexity of the problem on specific subclasses of instances, the problem was up to now
mostly unexplored from the more fine-grained perspective of parameterized complexity
analysis [10, 15]. In particular, while it was known that Upward Planarity is fixed-
parameter tractable when parameterized by the cyclomatic number of the input DAG (or,
equivalently, the feedback edge number of the underlying undirected graph) [7], by the
number of triconnected components and cut vertices [23], or the number of triconnected
components plus the maximum diameter of a split component [13], the complexity of the
problem under classical structural parameterizations has remained completely open.

Contribution. We develop a novel algorithmic framework for solving Upward Planarity
which combines parameterized dynamic programming with the SPQR-tree decompositions of
planar graphs [12, 22, 24]. In essence, our framework uses a characterization of the “shapes”
of faces in an upward planar drawing that is inspired by earlier work on the notion of
spirality [3, 13] and reduces Upward Planarity to the task of handling the “rigid” nodes
in these decompositions. Informally, the task that needs to be handled there can be stated as
follows: what are all the possible ways to combine the possible shapes of the children of a rigid
node to obtain an upward planar drawing for the node itself? The framework is formalized
in the form of a general “Interface Lemma” (Lemma 13) which can be complemented with
numerous parameterizations as well as other algorithmic approaches.

In the remainder of this article, we use this framework to push the boundaries of tractability
for Upward Planarity. Our first result in this direction is a fixed-parameter algorithm
for Upward Planarity parameterized by the number of sources in the input graph. This
result generalizes the polynomial-time tractability of the single-source case [2, 5] and answers
an open question from a recent Dagstuhl seminar [19]. On a high level, we use the Interface
Lemma to reduce the problem to a case where almost all children of a rigid node have a
simple shape, and we show how this can be handled via a flow network approach.

Having established the tractability of instances with few sources, we turn towards
understanding which structural properties of the underlying undirected graph can be used
to solve Upward Planarity efficiently. In this context, apart from the fixed-parameter
tractability of Upward Planarity parameterized by the feedback edge number [7], nothing
was known about whether the more widespread “decompositional” parameters can be used
to solve the problem. The parameters that will be of interest here are treewidth [29], the
most prominent structural graph parameter, and treedepth [27], the arguably best known
parameter that lies below treewidth in the parameter hierarchy (see, e.g., [1, Figure 1]).

To obtain new boundaries of tractability for Upward Planarity with respect to these
two parameters, we first show that the problem posed by the Interface Lemma can be
restated as a purely combinatorial problem on a suitable combinatorization of the embedding

S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:3

of the graph represented by the rigid node, and – crucially – that a bound on the input
graph’s treewidth also implies a bound for the treewidth of this combinatorization. Once
that is done, we design a non-trivial dynamic program that exploits this treewidth bound to
handle the rigid nodes, which together with the Interface Lemma allows us to solve Upward
Planarity. This yields an XP-algorithm for Upward Planarity parameterized by the
treewidth of the underlying undirected graph – a result which unifies and generalizes the
polynomial-time tractability of Upward Planarity on outerplanar as well as series-parallel
graphs [13, 28]. Furthermore, a more detailed analysis of the dynamic program reveals that
the same algorithm runs in fixed-parameter time when parameterized by treedepth.

Due to space limitations some proofs are omitted and can be found in [8].

2 Preliminaries

We refer to the usual sources for graph drawing and parameterized complexity terminology [10,
11, 14, 15]. We use NG(v) to denote the set of vertices adjacent to a vertex v in a graph G.

Upward planar drawings and embeddings. A planar embedding is an equivalence class of
planar drawings of a graph, where two drawings are equivalent if the clockwise order of the
edges incident to each vertex is the same and the outer faces are delimited by the same walk.

A vertex in a digraph is a switch if it is a source or a sink, and it is a non-switch otherwise.
The underlying graph of a digraph is the undirected graph obtained from the digraph by
ignoring the edge directions. A drawing of a digraph is upward if every edge is represented
by a Jordan arc monotonically increasing from the source to the sink of the edge, and it is
upward planar if it is both upward and planar. A digraph is upward planar if it admits an
upward planar drawing; we use Upward Planarity to denote the problem of determining
whether a digraph is upward planar; w.l.o.g., we assume that the input digraph is connected.

In an upward planar drawing Γ of a digraph G, an angle represents an incidence between
a vertex v and a face f . The angle is either flat (if precisely one of the two edges incident to
v and f is incoming at v), large (if v is a switch vertex and the angle has more than 180◦

in Γ), or small (otherwise) [3]; the latter two cases are jointly called switch angles. Then Γ
defines an angle assignment, which assigns the value −1, 0, and 1 to each small, flat, and
large angle, respectively, in every face of Γ. The angle assignment, together with the planar
embedding of the underlying graph of G in Γ, constitutes an upward planar embedding of G.

The angle assignments that enhance a planar embedding into an upward planar embedding
have been characterized by Didimo et al. [13], building on the work by Bertolazzi et al. [3].
Note that, once the planar embedding E of a digraph G is specified, then so are the angles of
the faces of E ; in particular, whether an angle is flat or switch only depends on E . Consider
an angle assignment for E . If v is a vertex of G, we denote by ni(v) the number of angles at
v that are labeled i, with i ∈ {−1, 0, 1}. If f is a face of G, we denote by ni(f) the number
of angles of f that are labeled i, with i ∈ {−1, 0, 1}. The cited characterization is as follows.

▶ Theorem 1 ([3, 13]). Let G be a digraph, E be a planar embedding of the underlying graph
of G, and λ be an assignment of each angle of each face in E to a value in {−1, 0, 1}. Then
E and λ define an upward planar embedding of G if and only if the following properties hold:
UP0 If α is a switch angle, then λ(α) ∈ {−1, 1}, and if α is a flat angle, then λ(α) = 0.
UP1 If v is a switch vertex of G, then n1(v) = 1, n−1(v) = deg(v) − 1, n0(v) = 0.
UP2 If v is a non-switch vertex of G, then n1(v) = 0, n−1(v) = deg(v) − 2, n0(v) = 2.
UP3 If f is a face of G, then n1(f) = n−1(f) − 2 if f is an internal face and n1(f) =

n−1(f) + 2 if f is the outer face.

SoCG 2022

26:4 Parameterized Algorithms for Upward Planarity

Treewidth and Treedepth. Here we consider the treewidth and treedepth of the underlying
graphs1. A tree-decomposition T of a graph G = (V,E) is a pair (T, χ), where T is a tree
(whose vertices we call nodes) rooted at a node r and χ is a function that assigns each node
t a set χ(t) ⊆ V such that the following holds: for every uv ∈ E there is a node t such
that u, v ∈ χ(t), and for every vertex v ∈ V , the set of nodes t satisfying v ∈ χ(t) forms a
nonempty subtree of T . The width of a tree-decomposition (T, χ) is the size of a largest set
χ(t) minus 1, and the treewidth of the graph G, denoted tw(G), is the minimum width of a
tree-decomposition of G. The second structural parameter that we will be considering here
is the treedepth of a graph G, denoted td(G) [27]. A useful way of thinking about graphs of
bounded treedepth is that they are (sparse) graphs with no long paths.

Expansion. In our algorithms, we will employ a linear-time preprocessing step called
expansion to simplify the input digraphs so that every vertex has at most one incoming edge
(in which case it is a top vertex) or at most one outgoing edge (in which case it is a bottom
vertex) [2]. The expansion is obtained by replacing each non-switch vertex v with two new
vertices v1 and v2, which inherit the incoming and outgoing edges of v, respectively, and
the edge (v1, v2) (called the special edge of v1 and v2). It is known that expansion preserves
upward planarity, and it is possible to observe that it preserves biconnectivity, does not
create new sources, and only increases treewidth and treedepth by at most a factor of 2.

SPQR-tree decomposition. Let G be a biconnected undirected graph. A pair of vertices is
a separation pair if its removal disconnects G. A split pair is either a separation pair or a
pair of adjacent vertices. A split component of G with respect to a split pair {u, v} is either
an edge (u, v) or a maximal subgraph Guv ⊂ G such that {u, v} is not a split pair of Guv. A
split pair {s′, t′} of G is maximal with respect to a split pair {s, t} of G, if for every other
split pair {s∗, t∗} of G, there is a split component that includes the vertices s′, t′, s and t.

An SPQR-tree T of G with respect to an edge e∗ is a rooted tree that describes a
recursive decomposition of G induced by its split pairs [12]. Each node µ of T is associated
with a split pair {u, v} of G, where u and v are the poles of µ, with a subgraph Gµ of G,
called the pertinent graph of µ, which consists of one or more split components of G with
respect to {u, v}, and with a multigraph sk(µ), called the skeleton of µ, which represents
the arrangement of such split components in Gµ. The edges of sk(µ) are called virtual
edges. Each node µ of T whose pertinent graph is not a single edge has some children, each
corresponding to a split components of G in Gµ. Each of these children is the root of a
subtree of T . The nodes of T are of four types S, P, Q, and R. Q-nodes correspond to edges
of G, while S-, P- and R-nodes correspond to so-called series, parallel and rigid compositions
of the pertinent graphs of the children of the given node [12].

Note that each virtual edge ei in the skeleton of a node µ of T corresponds to the pertinent
graph Gνi

of a child νi of µ. We say that Gνi
is a component of Gµ. Figs. 1a and 1b show a

planar graph and its SPQR-tree. To simplify our algorithms, we assume that every S-node
of T has two children. If this is not the case, we can modify T to achieve this property (see
Fig. 1c). An SPQR-tree T of an n-vertex planar graph has O(n) Q-, S-, P-, and R-nodes.
Also, the total number of vertices of the skeletons for the nodes in T is O(n) [12].

When talking about an SPQR-tree T of a biconnected directed graph G, we mean an
SPQR-tree of its underlying graph. Let µ be a node of T with poles u and v. A uv-external
upward planar embedding of Gµ is an upward planar embedding of Gµ such that u and v

1 Directed alternatives to treewidth exist, but are typically not well-suited for algorithmic applications [18].

S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:5

2

1

3

4
5

6

7

8

9
10

11

12 13

14

(a)

(3,4)

(1,3)

(1,14)

(7,11)

S

R

(4,5) (1,5) (4,7)

P

S

(1,2)

P

(2,3)

S

S S

P

(5,6) (6,7) (5,8) (10,7)

(8,10)

(8,9)

P

(9,10)

S

(11,12)(12,14) (11,13)(13,14)

S S

5 4

7

1

14

11

7

5
3

1

1

4
3

1

3
2

5

7

6

8

10

9

10

8

5

7
10
8

11

14
1311

14
12

1

14
11
7

(b)

(3,4)

(1,3)

(1,14)

(7,11)

S

R

(4,5) (1,5) (4,7)

P

S

(1,2)

P

(2,3)

S

S S

P

(5,6) (6,7) (5,8)

(10,7)

(8,10)

(8,9)

P

(9,10)

S

(11,12)(12,14) (11,13)(13,14)

S S

5 4

7

1

14

11

7

5
3

1

1

4
3

1

3
2

5

7
6

8

10
9

10

8

11

14
1311

14
12S

S

1

14
11

1

11
7

5

7
8

8

7
10

(c)

Figure 1 (a) A planar DAG G. (b) An SPQR-tree of G. For each node that is not a Q-node, the
skeleton is depicted together with a dashed edge to represent the rest of the graph; for each Q-node,
the corresponding edge is shown. (c) An SPQR-tree of G whose S-nodes have exactly two children.

are incident to the outer face. In our algorithms, when testing the upward planarity of a
digraph G, the fact that its SPQR-tree T is rooted at an edge e∗ of G corresponds to the
requirement that e∗ is incident to the outer face of the upward planar embedding E of G we
are looking for. For each node µ of T , the restriction of E to the vertices and edges of the
pertinent graph Gµ of µ is a uv-external upward planar embedding of Gµ.

3 The Shapes of Components

Let G be a biconnected DAG, let T be an SPQR-tree of G rooted at an edge e∗, let µ be a node
of T with poles u and v, and let Eµ be a uv-external upward planar embedding of Gµ. Let λ be
the angle assignment defined by Eµ. The poles u and v identify two paths on the boundary of
the outer face f0 of Eµ: the left outer path Pl = ⟨v0 = u, v1, . . . , vk = v⟩ is the path that leaves
f0 on the left when walking from u to v; the right outer path Pr = ⟨w0 = u,w1, . . . , wh = v⟩
of Eµ is the path that leaves f0 on the right when walking from u to v; see Fig. 2. For
i = 0, 1, . . . , k, let αi denote the angle at vi inside f0 and, for i = 0, 1, . . . , h, let βi denote the
angle at wi inside f0. The left-turn-number τl(Eµ, u, v) of Eµ is defined as

∑k−1
i=1 λ(αi), while

the right-turn-number τr(Eµ, u, v) of Eµ is
∑h−1

i=1 λ(βi). Note that α0 = β0 and αk = βh are
the angles at u and v inside f0, respectively. The values λ(α0) and λ(αk) are also denoted by

SoCG 2022

26:6 Parameterized Algorithms for Upward Planarity

λ(Eµ, u) and λ(Eµ, v), respectively. Finally, given a vertex w ∈ {u, v}, let ρl(Eµ, w) denote
the orientation of the edge el of Pl incident to w, that is, ρl(Eµ, w) = in if el is an incoming
edge for w, ρl(Eµ, w) = out otherwise. Analogously, let ρr(Eµ, w) denote the orientation
of the edge er of Pr incident to w. The shape description of Eµ is the tuple ⟨τl(Eµ, u, v),
τr(Eµ, u, v), λ(Eµ, u), λ(Eµ, v), ρl(Eµ, u), ρr(Eµ, u), ρl(Eµ, v), ρr(Eµ, v)⟩; see Fig. 2.

u v
00

0

0

1

1

1

1

11

0

−1

−1

−1

−1

Figure 2 An upward planar embedding of a split component Gµ with poles u and v and shape
description ⟨3, 0, 0, −1, out, in, out, out⟩. The left (right) outer path is shown in green (orange).

There are some dependencies between the values of a shape description. For example,
ρl(Eµ, u) ̸= ρr(Eµ, u) if λ(Eµ, u) = 0. As a further example, we have the following observation,
which comes from Property UP3 of Theorem 1 and uses the notation of this theorem.

▶ Observation 2. We have τl(Eµ, u, v) + τr(Eµ, u, v) + λ(Eµ, u) + λ(Eµ, v) = 2.

Recall that if u is a top or bottom vertex of G, then it has at most one incoming edge or
at most one outgoing edge, respectively, which is called the special edge of u. If Gµ contains
this edge, then Gµ is a special component for u, otherwise we say that Gµ is a normal
component for u. Note that, if u is a source or a sink of G, then it has no special component.

▶ Lemma 3. We have τr(Eµ, u, v) = −τl(Eµ, u, v) + h, with h ∈ {0, 1, 2, 3, 4}.

4 General Algorithm

Let G be an n-vertex biconnected expanded DAG whose underlying graph is planar and
let T be an SPQR-tree of G. Let τmin and τmax be two integers with τmin ≤ τmax and
let τ = τmax − τmin + 1. We present a general algorithm to compute all possible shape
descriptions of G with respect to T , and such that the left- and right-turn numbers of all
shape descriptions for all pertinent graphs of T are in the range [τmin, τmax]. We visit the
nodes of T bottom-up and we compute for each node µ its feasible set Fµ, i.e., the set of all
realizable shape descriptions of its pertinent graph Gµ. If Fµ = ∅, the process stops and G is
not upward planar (under the above restrictions), otherwise we continue the traversal of T .

Storing feasible sets. For each node µ of T we associate a matrix M(µ) of size (τmax −
τmin + 1) × 5 where the element M(µ)[i, j] of the matrix contains all shape descriptions of
Gµ with left turn-number τl = τmin + i and right-turn-number τr = −τl + j. Note that by
Lemma 3, τr can only take values in [−τl,−τl + 4].

▶ Lemma 4. There are at most 18 shape descriptions with given left- or right-turn-number.

We describe how to compute the feasible set Fµ of a node µ of T depending on its type.

S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:7

Q-node. The pertinent graph Gµ is either the edge (u, v) or (v, u). Hence, the feasible set
consists of the tuple ⟨0, 0, 1, 1, out, out, in, in⟩ or ⟨0, 0, 1, 1, in, in, out, out⟩, respectively.

▶ Lemma 5. Let µ be a Q-node of T . The feasible set Fµ can be computed in O(1) time.

S-node. Let ν1 and ν2 be the children of µ, with poles u, w and w, v, respectively. Let ⟨τ1
l ,

τ1
r , λ

1
u, λ

1
w, ρ

1
l,u, ρ

1
r,u, ρ

1
l,w, ρ

1
r,w⟩ be a tuple in Fν1 and let ⟨τ2

l , τ
2
r , λ

2
w, λ

2
v, ρ

2
l,w, ρ

2
r,w, ρ

2
l,v, ρ

2
r,v⟩ be

a tuple in Fν2 . Let αl (resp. αr) be the angle at w created by the two left (resp. right) outer
paths of Gν1 and Gν2 (see Fig. 3). We assign the labels λl and λr to αl and αr respectively
as follows: λl = 0 if ρ1

l,w ̸= ρ2
l,w otherwise λl ∈ {−1, 1}, and λr = 0 if ρ1

r,w ̸= ρ2
r,w otherwise

λr ∈ {−1, 1}. Note that, by UP1 it must be λl + λr < 2. For all possible values of λl and
λr satisfying the previous constraints, we construct a candidate tuple ⟨τl, τr, λu, λv, ρl,u, ρr,u,

ρl,v, ρr,v⟩ with: (i) τl = τ1
l + τ2

l + λl, (ii) τr = τ1
r + τ2

r + λr, (iii) λu = λ1
u, (iv) λv = λ2

v, (v)
ρl,u = ρ1

l,u, (vi) ρr,u = ρ1
r,u, (vii) ρl,v = ρ2

l,v, (viii) ρr,v = ρ2
r,v. We accept the candidate tuple

if and only if it satisfies Observation 2.

u

w
v

Gν1

Gν2

αl

αr

⟨2, 0,−1, 1, in, in, out, out⟩

⟨1, 2, 0,−1, out, in, out, out⟩

Figure 3 Series composition. The resulting shape description is ⟨2, 2, −1, −1, in, in, out, out⟩.

▶ Lemma 6. Let µ be an S-node of T with children ν1 and ν2. The feasible set Fµ can be
computed in O(τ + |Fν1 | · |Fν2 |) time.

P-node. Let µ be a P-node with poles u and v and k children ν1, ν2 . . . , νk. Let N ′ be
a subset of the children of µ and let G′

µ be the subgraph of Gµ consisting of components
Gν′ for ν′ ∈ N ′. Consider a uv-external upward planar embedding E ′

µ of G′
µ. Denote by S′

the sequence of shape descriptions of the components of G′
µ in the clockwise order in which

they appear around u starting from the outer face. The sequence S′ is the shape sequence of
G′

µ with respect to E ′
µ. To describe S′ we write: a∗∗∗ (resp. a+++) to denote a subsequence of

S′ consisting of 0 (resp. 1) or more elements equal to a. We say that a shape description
s′ of G′

µ corresponds to S′ if there exists an upward planar embedding of G′
µ with shape

description s′ and whose shape sequence is S′. Let S be a sequence of shape descriptions;
the reduced sequence of S is obtained from S by replacing each maximal subsequence a+++ of
S with the single element a. The size of S is the number of elements in its reduced sequence.

▶ Lemma 7. Let S′ be a sequence of shape descriptions from the feasible sets of every
Gν′ , with ν′ ∈ N ′. We can decide whether S′ is a shape sequence of G′

µ and compute the
corresponding shape descriptions of G′

µ in O(r3) time, where r is the size of S′. Furthermore
there are O(r2) computed shape descriptions of G′

µ.

Let ν be a child of Gµ with ν ̸∈ N ′, let s be a shape description of Gν , and let G′′
µ be the

union of Gν and G′
µ. We say that S′ can be extended with s to a shape sequence S′′ of G′′

µ if
S′′ is a shape sequence of G′′

µ, s belongs to S′′, and removing s from S′′ we obtain S′.

SoCG 2022

26:8 Parameterized Algorithms for Upward Planarity

▶ Lemma 8. Let S′ be a shape sequence of G′
µ. Given a shape description s of Gν , we can

decide whether S′ can be extended with s to a shape sequence S′′ of G′′
µ and compute the

corresponding shape descriptions of G′′
µ in O(r4) time, where r is the size of S′.

Suppose that Gµ is upward planar and consider a uv-external upward planar embedding
Eµ of Gµ. We remove the special components of u and v and the normal components Gν

whose shape description labels the angle at u or v with −1. There are at most two such
components, as each one labels an internal angle at a pole with 1. Let G′

µ be the subgraph
of Gµ obtained after this removal; G′

µ is the thin subgraph of Gµ with respect to Eµ. In the
next lemma, if w ∈ {u, v} is a top vertex then ρw = out, otherwise ρw = in.

▶ Lemma 9. Let µ be a P -node such that Gµ is upward planar and let Eµ be a uv-external
upward planar embedding of Gµ such that the left-turn-number of G′

µ is c. Then the shape
sequence of G′

µ with respect to Eµ is [s1
+++, s2

∗∗∗, s3
∗∗∗], with s1 = ⟨c,−c, 1, 1, ρu, ρu, ρv, ρv⟩,

s2 = ⟨c− 2,−c+ 2, 1, 1, ρu, ρu, ρv, ρv⟩, s3 = ⟨c− 4,−c+ 4, 1, 1, ρu, ρu, ρv, ρv⟩.

Based on Lemma 9, our algorithm computes in three steps the shape descriptions of Gµ

that match some fixed left-turn-number cl and right-turn-number cr. Let c′
l be equal to cl or

cl − 1, depending on whether exactly one of u and v is a bottom vertex or not. For the first
step, we consider all sequences S′ = [s1

∗∗∗, s2
∗∗∗, s3

∗∗∗] where si = ⟨c′
l − 2(i− 1),−c′

l + 2(i− 1),
1, 1, ρu, ρu, ρv, ρv⟩, for i = 1, 2, 3. For each of them we identify a maximal subgraph G′

µ of
Gµ such that S′ is a shape sequence of G′

µ. For each child νi of µ (with i = 1, 2, . . . , k), we
check whether the feasible set Fνi

contains shape descriptions of S′ in the order that they
appear in S′; if so, we choose it for Gνi

. This greedy process does not necessarily produce
the desired sequence S′. By reassigning at most two components of G′

µ either we get S′ or
no subgraph G′

µ has S′ as its shape sequence.
For the second step, we focus on the children of µ that, when considering a shape sequence

S′, have not been assigned a shape description so far. There are at most two such children,
say ν and ν′, otherwise Gµ does not admit an upward planar embedding whose thin subgraph
has S′ as its shape sequence. Let sν (resp. sν′) be a shape description in Fν (resp. Fν′).
Using Lemma 8 we compute all possible extensions of S′ with sν and sν′ to shape sequences
of Gµ (in O(1) time since the size r of S′ is at most 3). For every computed shape sequence
S of Gµ we check whether it matches cl and cr. If so, we add to Fµ all shape descriptions of
Gµ that correspond to S (in O(1) time since the size r of S is at most 5). Otherwise, we
proceed to the third step with S.

To complete the procedure, we perform a case analysis to handle situations where one
or both of cl and cr are not matched. Intuitively, our goal is to find a component of the
thin subgraph G′

µ, remove its current shape description from S and use another one from its
feasible set at the beginning or at the end of the sequence in order to match cl or cr. If none
of the components of G′

µ can be used for this purpose, we conclude that the pair cl and cr

cannot be realized. Otherwise, using Lemma 7 (where the size r is at most 5), we compute
all corresponding shape descriptions of Gµ and add them to Fµ.

▶ Lemma 10. Let µ be an P-node of T with k children. The feasible set Fµ can be computed
in O(τ · k) time.

R-node. The R-nodes will be handled differently in Sections 6 and 7 depending on the
parameter we use. To complete the description of our framework we introduce the notion of
an R-node subprocedure. Formally, an R-node subprocedure is an algorithm which takes as

S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:9

input an R-node µ of T and a mapping Sµ which assigns each child of µ to its feasible set,
and computes the feasible set Fµ in at most α(Gµ,Sµ) time. For a DAG G with SPQR-tree
T , α(G) =

∑
R-node µ

α(Gµ,Sµ) is the total time complexity of the R-node subprocedure for G.

Root node. The root node r corresponds to an edge e = (u, v) of G that lies on its outer
face and has only one child µ with poles u and v. Since Gµ = G \ e, node r can be treated
as a P-node with poles u and v and two children; one of them is µ and the other one is a
Q-node for the edge (u, v). By Lemma 10, we can compute the feasible set of r in O(τ) time.

▶ Lemma 11. The feasible set Fr of the root node r of T can be computed in O(τ) time.

Combining Lemmata 5, 6, 10 and 11, we obtain the following lemma.

▶ Lemma 12. Let G be a biconnected DAG with n vertices and let T be an SPQR-tree of G
rooted at a Q-node corresponding to an edge e = (u, v). Let τmin and τmax be two given integer
values, and let τ = τmax − τmin + 1. Given an R-node subprocedure with total time complexity
α(G), it is possible to compute in time O(α(G) + τ2 · n) the shape descriptions of every
upward planar embedding with e on the outer face, such that the left- and right-turn-numbers
of the pertinent graph of every node of T are in the range [τmin, τmax].

5 Extension to the Single-Connected Case

In this section, we establish the Interface Lemma, which reduces the task of solving Upward
Planarity to the one of obtaining an R-node subprocedure, for all graphs including single-
connected ones. To formalize the lemma, we call a digraph G [τmin, τmax]-turn-bounded if
every upward planar embedding of G has the following property: the pertinent graphs of any
SPQR-tree of each biconnected component in G have left- and right-turn numbers in the
range [τmin, τmax].

▶ Lemma 13 (Interface Lemma). Let G be an n-vertex digraph, and τmin, τmax be integers
such that G is [τmin, τmax]-turn-bounded. Given an R-node subprocedure with total time
complexity α(G), it is possible to determine whether G admits an upward planar embedding
in time O(n(α(G) + τ2 · n)) where τ = τmax − τmin + 1.

Note that, for a single-connected graph G, we define the total time complexity α(G) of
an R-node subprocedure to be the sum of α(B) over all biconnected components B of G.

To give an intuition of the proof, consider a fixed rooting of the block-cut tree of G. The
core of our algorithm is a procedure that, given suitable embeddings of leaf components
containing the same cut-vertex, attaches these embeddings to an arbitrary upward planar
embedding of the rest of the graph. This allows us to process the block-cut tree upwards:
we iteratively verify that there exist desired embeddings for a group of leaf blocks via the
biconnected algorithm (Lemma 12), and reduce to a smaller tree by removing these blocks.

6 An Algorithm Parameterized by the Number of Sources

Let G be an acyclic digraph with n vertices and σ sources, whose underlying graph is planar.
In order to obtain an algorithm for Upward Planarity parameterized by σ, in view of
Lemma 13, we devise an R-node subprocedure whose runtime depends on σ and, polynomially,
on n. We hence assume that G is biconnected and that has been expanded. Let e∗ be any
edge of G; we compute an SPQR-tree T of G rooted at the Q-node representing e∗ in O(n)
time [12, 22]. A key ingredient of our algorithm is the following.

SoCG 2022

26:10 Parameterized Algorithms for Upward Planarity

vi

ui

(a)

vi

ui

(b)

vi

ui

(c)

vi

ui

(d)

vi

ui

(e)

Figure 4 Shape descriptions of boring components.

▶ Lemma 14. Let µ be a node of T , let u and v be the poles of µ, let σµ be the number of
sources of Gµ different from its poles, and let Eµ be any uv-external upward planar embedding
of Gµ. The left- and right-turn-numbers of Eµ are in the interval [−2σµ − 1, 2σµ + 1].
Furthermore, the size of the feasible set Fµ of µ is at most 72σµ + 54.

Let µ be an R-node of T with children ν1, . . . , νk. Let u and v be the poles of µ, σµ be
the number of sources of Gµ different from its poles; for i = 1, . . . , k, let ui and vi be the
poles of νi and ei be the virtual edge representing νi in the skeleton sk(µ) of µ. We give an
algorithm that computes Fµ from the feasible sets Fν1 , . . . ,Fνk

in O(σ1.45σ · k log3 k) time.
We introduce two classifications of the components of Gµ. A component Gνi

is interesting
if it contains sources other than its poles, and boring otherwise. Because G has σ sources, at
most σ components among Gν1 , . . . , Gνk

are interesting, while any number of components
can be boring. Second, a component Gνi is extreme if ei is incident to a pole of µ and is
incident to the face containing u and v of any planar embedding of sk(µ), and non-extreme
otherwise. Note that there are four extreme components among Gν1 , . . . , Gνk

, because there
are exactly two virtual edges incident to each of u and v in the considered face. We can order
Gν1 , . . . , Gνk

in O(k log k) time so that all the extreme or interesting components come first.
Despite their name, boring components play an important role in our algorithm. A key

feature is that a uivi-external upward planar embedding of a boring component Gνi
can

only have one of O(1) shape descriptions: the sausage ⟨0, 0, 1, 1, out, out, in, in⟩, see Fig. 4a;
the inverted-sausage ⟨0, 0, 1, 1, in, in, out, out⟩, see Fig. 4a with ui and vi inverted; the
right-wing ⟨0, 1, 1, 0, out, out, in, out⟩, see Fig. 4b; the inverted-right-wing ⟨1, 0, 0, 1, out,
in, out, out⟩, see Fig. 4b with ui and vi inverted; the left-wing ⟨1, 0, 1, 0, out, out, out, in⟩,
see Fig. 4c; the inverted-left-wing ⟨0, 1, 0, 1, out, in, out, out⟩, see Fig. 4c with ui and vi

inverted; the hat ⟨−1, 1, 1, 1, out, out, out, out⟩, see Fig. 4d; the inverted-hat ⟨1,−1, 1, 1,
out, out, out, out⟩, see Fig. 4d with ui and vi inverted; the heart ⟨1, 1, 1,−1, out, out, out,
out⟩, see Fig. 4e; and the inverted-heart ⟨1, 1,−1, 1, out, out, out, out⟩, see Fig. 4e with ui

and vi inverted. Furthermore, we can prove that not all such shape descriptions can occur
simultaneously in the feasible set of a node νi and that some shape descriptions are “better”
than others. This allows us to assume that the feasible set of a node νi contains: only the
sausage, or only the inverted-sausage, or only the left-wing and the right-wing, or only the
inverted-left-wing and the inverted-right-wing, or only the hat and the inverted-hat, or only
the heart, or only the inverted-heart, or only the heart and the inverted-heart.

We test independently whether each shape description s = ⟨τl, τr, λu, λv, ρl,u, ρr,u, ρl,v,

ρr,v⟩, where τl ∈ [−2σµ − 1, 2σµ + 1], τr ∈ [−τl,−τl + 4], λu ∈ {−1, 0, 1}, λv ∈ {−1, 0, 1},
ρl,u ∈ {in, out}, ρr,u ∈ {in, out}, ρl,v ∈ {in, out}, and ρr,v ∈ {in, out} belongs to Fµ or not.
Note that τl ∈ [−2σµ − 1, 2σµ + 1] and τr ∈ [−τl,−τl + 4] can be assumed without loss of
generality by Lemmata 14 and 3, respectively, thus the number of shape descriptions to be
tested is in O(σµ). We select shape descriptions s1 ∈ Fν1 , . . . , sh ∈ Fνh

for the extreme or
interesting components Gν1 , . . . , Gνh

of Gµ. Clearly, the number ℓ of ways this selection can

S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:11

be done is ℓ =
∏h

i=1 |Fνi
|; by exploiting the bound on |Fνi | given by Lemma 14, we can

prove that ℓ ∈ O(1.45σ). We also fix Sµ to be a planar embedding of the skeleton sk(µ) of µ
in which u and v are incident to the outer face. Since µ is an R-node, there are two such
planar embeddings, which are flips of each other. The goal now becomes the one of testing
whether Gµ admits a uv-external upward planar embedding Eµ such that: (P1) the shape
description of Eµ is s; (P2) for i = 1, . . . , h, the uivi-external upward planar embedding Eνi

of Gνi
in Eµ has shape description si; and (P3) the planar embedding of sk(µ) induced by

Eµ is Sµ. Then we have that s belongs to Fµ if and only if this test is successful for at least
one selection of the shape descriptions s1, . . . , sh and of the planar embedding Sµ.

We now borrow ideas from an algorithm by Bertolazzi et al. [3] for testing the upward
planarity of a digraph D with a prescribed planar embedding E . The algorithm in [3]
constructs a bipartite flow network N (S, T,A), where each source sw ∈ S corresponds to a
switch vertex w of D, each sink tf ∈ T corresponds to a face f of E , and A has an arc from
sw to tf if w is incident to f . A unit of flow passing from sw to tf corresponds to a large
angle at w in f . Each source supplies 1 unit of flow, each arc has capacity 1, and each sink
tf demands nf/2 − 1 units of flow if f is an internal face of E and nf/2 + 1 if f is the outer
face of E , where nf is the number of switch angles incident to f . Then D has an upward
planar embedding which respects E if and only if N has a flow in which each sink is supplied
with a number of units of flow equal to its demand.

After some preliminary checks, which ensure that the values s, s1, . . . , sh,Sµ are “coherent”
with each other, we also construct a flow network N (S, T,A). Note that the skeleton sk(µ)
of our R-node µ has a prescribed planar embedding Sµ. However, the edges of sk(µ) are
not actual edges, but rather virtual edges that correspond to components of Gµ. These
components introduce new sources, sinks, and arcs in N , and contribute to the demands of
their incident faces. As we have already fixed the shape description si of each extreme or
interesting component Gνi

, we know the excess of large angles with respect to small angles
“on the sides” of Gνi

, as these are the first two values of si. These values introduce sources (if
they are positive) and contribute to the demands of the faces of Sµ incident to ei. Handling
non-extreme boring components is more challenging. Each boring component has at most
two shape descriptions in its feasible set, however the number of such components is not, in
general, bounded by a function of σ only, hence we cannot try all possible combinations for
their shape descriptions. Rather, we plug the freedom of choosing a shape description for each
non-extreme boring component directly into the flow network. For example, a component
Gνi

such that Fνi
contains the hat and the inverted-hat is modeled by a source with two

incident arcs to the faces of Sµ incident to ei, reflecting the fact that each of the two shape
descriptions provides a large angle in a different face incident to ei. As another example,
a component Gνi such that Fνi contains the left-wing and the right-wing also provides a
large angle in a different face incident to ei depending on the choice of the shape description,
however in this case the choice might also affect whether a pole of the component creates a
switch angle in a face of Sµ or not, which affects the demand of the face. This is solved either
by “ignoring” the component, or by transfering its effect to an adjacent non-switch vertex.

Figure 5 shows an example of the construction of N . We have that N has O(k) nodes
and arcs. We test whether every sink has a non-negative demand and whether N admits a
flow in which every sink receives an amount of flow equal to its demand. The latter can be
done in O(k log3 k) time by means of an algorithm by Borradaile et al. [4]. We conclude that
Gµ admits a uv-external upward planar embedding satisfying Properties P1–P3 if and only
if the tests are successful. This leads to the following.

SoCG 2022

26:12 Parameterized Algorithms for Upward Planarity

u

v

f

ba c

d

g

* *
*

〈1, 0, 0, 1, in, out, in, in〉

〈−1, 1, 1, 1, in, in, in, in〉

*

〈0, 0, 1, 1, out, out, in, in〉

〈1, 1,−1, 1, in, in, in, in〉

〈3, 0, 0,−1, in, out, in, in〉
〈0, 0, 1, 1, out, out, in, in〉

*

*

*
*

,{ }

{ , }

* *

* *

,{ }
*

*

*
*

*
* e *

*

*

(a)
u

v

f

ba c

d

g

e

tv1

1

3

1

1

1

1

1

1

1

1

1

tl tr

1
1

1

1

4

1

1

2

1

22

1

(b)

u

v

f

ba c

d

g

e

tv1

1

3

1

1

1

1

1

1

1

1

1

tl tr

1
1

1

1

4

1

1

2

1

22

1

(c)

u

a b

c
d

e

f

g

v

(d)

Figure 5 The construction of a flow network N that allows us to determine whether a shape
description s = ⟨1, 0, −1, 0, in, out, in, in⟩ belongs to Fµ. (a) shows the input: a shape description si

for each extreme or interesting component Gνi of Gµ and the feasible set Fνi for each non-extreme
boring component Gνi of Gµ. (b) shows N ; arc capacities are not shown (each of them is equal to
the supply of the source of the arc). (c) shows a flow for N in which every sink receives an amount
of flow equal to its demand; each shown arc is traversed by a flow equal to its capacity. (d) shows a
uv-external upward planar embedding of Gµ with shape description s corresponding to the flow.

▶ Lemma 15. The feasible set Fµ of an R-node µ of T can be computed in O(σ1.45σ ·k log3 k)
time, where k is the number of children of µ in T and σ is the number of sources of G.

Lemmata 13 and 15 imply the following main result.

▶ Theorem 16. Upward Planarity can be solved in O(σ1.45σ · n2 log3 n) time for a
digraph with n vertices and σ sources.

7 An Algorithm Parameterized by Treewidth

The aim of this section is to provide an R-node subprocedure which yields parameterized
algorithms for Upward Planarity when parameterized by treewidth and treedepth. The
idea behind this is to obtain a combinatorization of the task that is asked in the subprocedure.
This will be done by extending the skeleton of the R-node with additional information,
notably via a so-called embedding graph2. The R-node subprocedure is then obtained by
performing dynamic programming over the embedding graph. However, to obtain the desired
runtime, we will first have to show that the embedding graph has bounded treewidth.

2 Note that this notion differs from the embedding graphs used in recent drawing extension problems [16,
17]; unlike in those problems, here it seems impossible to use Courcelle’s Theorem [9].

S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:13

A Combinatorial Representation of the Skeleton. Let G be a connected graph with a
planar embedding G, and let F be the set of faces of G. Let G− be the graph obtained
from G by subdividing each edge e once, creating the vertex ve. We define the embedding
graph G̃ of G as the graph obtained from G− by adding a vertex f for each face in F , and
connecting f to each vertex in G− incident to f . Observe that G̃ is tripartite, and we call
the three sets of vertices that occur in the definition of V (G̃) the true vertices, face-vertices
and edge-vertices of G̃, respectively. An illustration is shown in Fig. 6.

G

(a)
G̃

(b)

Figure 6 (a) A planar graph G. (b) The embedding graph G̃ of G. True-, face-, and edge-vertices
are shown in black, green, and orange, respectively.

Our aim in this section is to show that tw(G̃) is linearly bounded by tw(G). To do so, we
identify the faces that are, in some sense, “relevant” for a bag in a tree decomposition of
G−, and prove that (1) the number of such relevant faces is linearly bounded by the width
of that decomposition and (2) adding these faces to the decomposition of G− results in a
tree-decomposition of G̃. We can then prove:

▶ Theorem 17. Let G be a graph with a planar embedding of treewidth k where k ≥ 1. Then
the embedding graph G̃ has treewidth at most 11k − 4 ∈ O(k).

Problem Reformulation. Our second task is to formulate the problem we have to solve on
a given embedding graph. First of all, the R-node subprocedure required by Lemma 13 can
be straightforwardly reduced to the task of checking whether a specific shape description ψ

can be achieved at the R-node. This reduction takes at most O(τ) time by Lemma 4. At
this point, the input consists of (1) an R-node µ of T with skeleton H, (2) a mapping Sµ

which assigns each virtual edge in H to its feasible set, (3) a bound κ on the treewidth of
the embedding graph H̃ obtained from H, and (4) a target shape description ψ.

The combinatorial reformulation we obtain can be stated as follows: Determine if there
exists an angle mapping α and shape selector β which is valid, where

an angle mapping α maps each switch vertex v ∈ V (H̃) to a vertex in N
H̃

(v); intuitively,
this describes where the large angle at v is in the upward planar embedding of the
pertinent graph (this may be in a face between two virtual edges–and α maps v to the
corresponding face vertex – or in a virtual edge–and α maps v to that virtual edge),
a shape selector β maps each edge-vertex ve obtained from the virtual edge e of H to a
shape description that occurs in a feasible set in the range of Sµ(e), and
intuitively, a pair (α, β) is valid if it satisfies three Validity Conditions: (1) all face-vertices
receive the correct number of small and large angles from α and β, (2) for each true-vertex
v and adjacent edge-vertex w, α(v) is consistent with the requirements of the shape
selected by β(w), and (3) the shape of the outer face is consistent with ψ.

SoCG 2022

26:14 Parameterized Algorithms for Upward Planarity

▶ Lemma 18. There is an upward planar embedding of Gµ with the shape description ψ if
and only if there is a valid pair (α, β).

Finding Valid Pairs Using Treewidth. At this point, what is left to do is solve this
combinatorial problem. For the runtime analysis of the algorithm we will develop, we let
ζ be the maximum over n1(f) and n−1(f) (see Theorem 1), over all faces f of all possible
planar embeddings of the pertinent graph Gµ of µ. Recalling that no path in G can have
length greater than 2td(Gµ) [27], we obtain:

▶ Observation 19. ζ ≤ V (Gµ), and moreover ζ ≤ 2td(Gµ).

We can now design a dynamic program that solves the task at hand. The program
computes sets of records for each node of a tree-decomposition in a leaf-to-root fashion,
where each record is a tuple of the form (angle, shape, score, left, right) where angle
and shape contain snapshots of α and β in the given bag, respectively; score keeps track
of the sum of large and small angles for each face in the given bag; and left, right store
information about the left-and right-turn-numbers of the outer face.

▶ Lemma 20. There is an algorithm that runs in time ζO(tw(H)) · (|V (H)| + |Sµ|) and either
computes a valid pair, or correctly determines that no such pair exists.

We now have an R-node subprocedure that runs in XP-time parameterized by treewidth
and fixed-parameter time parameterized by treedepth. By invoking Lemma 13, we conclude:

▶ Theorem 21. It is possible to solve Upward Planarity in time nO(tw(G)) and time
2O(td(G)2) · n2, where n is the number of vertices of the input digraph G.

8 Concluding Remarks

The presented results show that the combination of SPQR-trees with parameterized techniques
is a promising algorithmic tool for geometric graph problems. Indeed, for the case of upward
planarity, our framework allows us to reduce the general problem to a similar one on 3-
connected graphs, at which point it is possible to use parameter-specific approaches such as
dynamic programming or flow networks to obtain a solution. We believe not only that the
framework developed here can help obtain other algorithms for Upward Planarity, but
that the idea behind the framework can be adapted to solve other problems of interest as
well – a candidate problem in this regard would be constrained level planarity testing [6].

All algorithms and arguments given within this paper are constructive and can be extended
to output an upward planar drawing for each yes-instance of Upward Planarity. An open
problem is whether Upward Planarity is W[1]-hard when parameterized by treewidth, or
fixed-parameter tractable. Another question is whether the fixed-parameter tractability of
Upward Planarity parameterized by the number of sources can be lifted to parameterizing
by the maximum turn number of a face in the final drawing.

References
1 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy

distinguishes treewidth from pathwidth. In 28th Annual European Symposium on Algorithms,
ESA 2020, volume 173 of LIPIcs, pages 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.14.

2 Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM J. Comput., 27(1):132–169, 1998.

https://doi.org/10.4230/LIPIcs.ESA.2020.14

S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov 26:15

3 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994.

4 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM J. Comput., 46(4):1280–1303, 2017.

5 Guido Brückner, Markus Himmel, and Ignaz Rutter. An SPQR-tree-like embedding repre-
sentation for upward planarity. In Daniel Archambault and Csaba D. Tóth, editors, 27th
International Symposium on Graph Drawing and Network Visualization, GD 2019, volume
11904 of Lecture Notes in Computer Science, pages 517–531. Springer, 2019.

6 Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Philip N.
Klein, editor, 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages
2000–2011. SIAM, 2017.

7 Hubert Y. Chan. A parameterized algorithm for upward planarity testing. In Susanne Albers
and Tomasz Radzik, editors, 12th Annual European Symposium on Algorithms, ESA 2004,
volume 3221 of Lecture Notes in Computer Science, pages 157–168. Springer, 2004.

8 Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N.
Raftopoulou, and Kirill Simonov. Parameterized algorithms for upward planarity. CoRR,
abs/2203.05364, 2022. URL: https://arxiv.org/abs/2203.05364.

9 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

12 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996.

13 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward spirality and upward
planarity testing. SIAM J. Discret. Math., 23(4):1842–1899, 2009.

14 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

15 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

16 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending
partial 1-planar drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, volume
168 of LIPIcs, pages 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

17 Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-
optimal extension of simple drawings. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, volume 198 of LIPIcs, pages 72:1–72:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

18 Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Obdrzálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? J. Comb. Theory, Ser. B,
116:250–286, 2016.

19 Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized
Complexity in Graph Drawing (Dagstuhl Seminar 21293). Dagstuhl Reports, 11(6):82–123,
2021.

20 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. In Roberto Tamassia and Ioannis G. Tollis, editors, DIMACS International
Workshop on Graph Drawing, GD ’94, volume 894 of Lecture Notes in Computer Science,
pages 286–297. Springer, 1994.

SoCG 2022

https://arxiv.org/abs/2203.05364
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1

26:16 Parameterized Algorithms for Upward Planarity

21 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

22 Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In Joe
Marks, editor, 8th International Symposium on Graph Drawing, GD ’00, volume 1984 of
Lecture Notes in Computer Science, pages 77–90. Springer, 2000.

23 Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing
upward planarity. Int. J. Found. Comput. Sci., 17(5):1095–1114, 2006. doi:10.1142/
S0129054106004285.

24 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

25 Michael D. Hutton and Anna Lubiw. Upward planar drawing of single source acyclic di-
graphs. In Alok Aggarwal, editor, 2nd Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, SODA 1991, pages 203–211. ACM/SIAM, 1991.

26 Michael D. Hutton and Anna Lubiw. Upward planar drawing of single-source acyclic digraphs.
SIAM J. Comput., 25(2):291–311, 1996. doi:10.1137/S0097539792235906.

27 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

28 Achilleas Papakostas. Upward planarity testing of outerplanar dags. In Roberto Tamassia
and Ioannis G. Tollis, editors, DIMACS International Workshop on Graph Drawing, GD
’94, volume 894 of Lecture Notes in Computer Science, pages 298–306. Springer, 1994. doi:
10.1007/3-540-58950-3_385.

29 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984.

30 William T. Trotter and John I. Moore Jr. The dimension of planar posets. J. Comb. Theory,
Ser. B, 22(1):54–67, 1977.

https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1137/0202012
https://doi.org/10.1137/S0097539792235906
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1007/3-540-58950-3_385

	1 Introduction
	2 Preliminaries
	3 The Shapes of Components
	4 General Algorithm
	5 Extension to the Single-Connected Case
	6 An Algorithm Parameterized by the Number of Sources
	7 An Algorithm Parameterized by Treewidth
	8 Concluding Remarks

