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Abstract
Multivector fields and combinatorial dynamical systems have recently become a subject of interest
due to their potential for use in computational methods. In this paper, we develop a method to track
an isolated invariant set – a salient feature of a combinatorial dynamical system – across a sequence
of multivector fields. This goal is attained by placing the classical notion of the “continuation” of
an isolated invariant set in the combinatorial setting. In particular, we give a “Tracking Protocol”
that, when given a seed isolated invariant set, finds a canonical continuation of the seed across a
sequence of multivector fields. In cases where it is not possible to continue, we show how to use
zigzag persistence to track homological features associated with the isolated invariant sets. This
construction permits viewing continuation as a special case of persistence.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases combinatorial dynamical systems, continuation, index pair, Conley index,
persistent homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.35

Related Version Full Version: https://arxiv.org/abs/2203.05727

Funding This work is partially supported by NSF grants CCF-2049010, CCF-1839252, Polish
National Science Center under Maestro Grant 2014/14/A/ST1/00453, Opus Grant 2019/35/B/ST1/
00874 and Preludium Grant 2018/29/N/ST1/00449

1 Introduction

Dynamical systems enter the field of data science in two ways: either directly, as in the case
of dynamic data, or indirectly, as in the case of images, where gradient dynamics are useful.
Forman’s discrete Morse theory [10, 11, 16] combines topology with gradient dynamics via
combinatorial vector fields. Discrete Morse theory has been used to simplify datasets and to
extract topological features from them [1, 7, 15, 25]. When coupled with persistent homology
[7, 8, 9], this theory can be useful for analyzing complex data [12, 17, 18].

Conley theory [4] is a generalization of classical Morse theory beyond gradient dynamics.
Conley’s approach to dynamical systems is motivated by the observation that in many areas,
perhaps most notably biology, the differential equations governing systems of interest are
known only roughly. Generally, this is due to the presence of several parameters which
cannot be measured or estimated precisely. A similar situation occurs in data science, where
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35:2 Tracking via Continuation and Persistence

a time series dataset that is collected from a dynamical process only crudely approximates
the underlying system. This observation has motivated recent studies [2, 6, 14, 20, 21, 23]
on a variant of Conley theory for combinatorial vector fields.

The primary objects of interest in Conley theory are isolated invariant sets, each of
which is a salient feature of a vector field, together with an associated homological invariant
called the Conley index (Section 2). Notably, isolated invariant sets with non-trivial Conley
index persist under small perturbations. The geometry of the isolated invariant set may
change, and even the topology may change, but the Conley index associated with the isolated
invariant set remains the same. The isolated invariant set cannot suddenly vanish or change
from an attractor to a repeller or vice versa. From this observation, we get the notion of the
continuation of an isolated invariant set in a dynamical system to another one in a nearby
system. This local idea becomes global by making the continuation relation transitive.

Given a path in the space of dynamical systems, one can track an invariant set along the
path so long as the invariant set remains isolated. When the isolation is lost, continuation
“breaks” and the Conley index is not well-defined. Typically, this may be observed when
two isolated invariant sets merge. Isolation may eventually be regained, but there is no
guarantee that the Conley index will be recovered. We propose to use persistence [7, 8, 9]
in the discrete setting to connect continuations. First, we show how continuation can be
detected and maintained algorithmically in a combinatorial multivector field, which is a
discretized version of a continuous vector field. In fact, the continuation itself may be viewed
as a special case of persistence where all bars persist for the duration of the continuation.
When continuation “breaks,” we observe the birth and death of homology classes.

The combination of continuation and persistence allows us to algorithmically track an
isolated invariant set and its associated Conley index in the setting of combinatorial dynamical
systems. Recall that a combinatorial dynamical system is generated by a multivector field. A
multivector field is a partition of a simplicial complex into sets that are convex with respect
to the face poset. We track an isolated invariant set in a sequence of such fields where each
field differs from its adjacent ones by an atomic rearrangement. Each atomic rearrangement
is either an atomic coarsening or an atomic refinement. We show that an atomic refinement
always permits continuation and thus the Conley index of the tracked invariant set persists.
In the case of coarsening, we may not be able to continue. In such a case, we select an
isolated invariant set that is a minimal perturbation of the previous one and compute the
persistence of the Conley index between them. Hence, while there may come a point where
we can no longer track an isolated invariant set, we can use persistence to track the lifetime
of the homological features that are associated with the isolated invariant set.

The top row of Figure 1 presents flow lines from three flows on a simplicial complex with
vertices marked from A to N. The same figure also shows three combinatorial multivector
fields represented as three different partitions of the collection of cells into multivectors. Each
multivector is depicted as a connected component, and it is easy to see that they are convex
with respect to the face poset. The multivector fields are constructed as follows: if the flow
transversely crosses an edge e into a triangle t, then e and t are put in the same multivector.
Else, e is put into the same multivector as both of its incident triangles. If the flow line
originating at a vertex v immediately enters triangle t, then v and t are put into the same
multivector. See [22, 23] for additional information on this construction.

There are two saddle stationary points in each flow, indicated by small black dots. For
all three flows, the lower saddle is located in triangle GHK. However, the upper one moves
from triangle CDG in the left flow, through triangle DGH in the middle flow and finally it
shares triangle GHK with the lower saddle in the right flow. On the combinatorial level, the
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Figure 1 (Top) Three multivector fields, corresponding to merging saddles, where the middle
multivector field is an atomic refinement of the left and the right multivector field is an atomic
coarsening of the middle. The persistence barcode associated with the isolated invariant sets –
depicted in yellow – is shown in gray below the three figures. (Bottom) The multivector fields
associated with the figure at the top using the standard multivector drawing convention.

upper saddle in the left flow is represented by an isolated invariant set S1 consisting of one
multivector {CFG, CDG, DGH, CF, CG, DG, DH} marked in yellow. The Conley index of
S1 is non-trivial only in dimension one and has exactly one generator. Using methods from
this paper, S1 can be tracked to an isolated invariant set S2 containing the upper saddle of
the middle flow and consisting of one multivector {CDG, DGH, CG, DG, DH}, also marked
in yellow. The isolated invariant set S3 containing the upper saddle of the right flow consists
of one multivector {CDG, DGH, FGJ, GJK, GHK, CG, DG, DH, FG, JK, GH, GJ, GK},
again marked in yellow. It is not a continuation of S2, because in the right flow the
two saddles are too close to one another to be distinguishable with the resolution of the
triangulation. Furthermore, the Conley index has changed. It is only nontrivial in dimension
one, but unlike S1 and S2, it has two generators. Hence, in the right multivector field, a new
generator is born. We show how to capture the birth of this generator using persistence, and
we depict the associated barcode beneath the top row of Figure 1. The familiar reader will
note that the Conley index of S3 is the same as that of a monkey saddle. However, because
of the finite resolution, we cannot discriminate between two nearby saddles and a monkey
saddle. One can view a multivector field as a combinatorial object that represents flows up
to the resolution permitted by a triangulation. This purely combinatorial view of the top
row of Figure 1 is presented in the bottom row. In subsequent examples, we use this style.

SoCG 2022



35:4 Tracking via Continuation and Persistence

2 Combinatorial Dynamical Systems

In this section, we review multivector fields, combinatorial dynamical systems, and isolated
invariant sets. Throughout this paper, K will always denote a finite simplicial complex.
Furthermore, we will only consider simplicial homology [13, 24] with coefficients taken from
a finite field. Much of the foundational work on combinatorial dynamical systems was first
published in [21] and subsequently generalized in [20]. This work was heavily influenced by
Forman’s discrete Morse theory [10, 11]. Combinatorial dynamical systems are constructed
via multivector fields, which require a notion of convexity. Given a finite simplicial complex
K, we let ≤ denote the face relation on K. Formally, if σ, τ ∈ K, then σ ≤ τ if and only
if σ is a face of τ . The set A is convex if for each pair σ, τ ∈ A where there exists a ρ ∈ K

satisfying σ ≤ ρ ≤ τ , we have that ρ ∈ A.
A multivector is a convex subset of a simplicial complex. A partition of K into multivectors

is a multivector field on K. Multivectors are not required to have a unique maximal element
under ≤, nor are they required to be connected. Disconnected multivectors do not appear
in practice, and in the interest of legibility, all examples that we include in this paper only
depict connected multivectors. However, all of our theoretical results do hold for disconnected
multivectors. We draw a multivector V by drawing an arrow from each nonmaximal element
σ ∈ V to each maximal element τ ∈ V where σ ≤ τ . If σ is the only element of a multivector,
or a singleton, then we mark σ with a circle. Each σ ∈ K is contained in a unique multivector
V ∈ V. We denote the unique multivector in V containing σ as [σ]V .

A multivector field V induces dynamics on K. Given a simplex σ ∈ K, we denote the
closure of σ as cl(σ) := {τ ∈ K | τ ≤ σ}. For a set A ⊆ K, the closure of A is given by
cl(A) := ∪σ∈A cl(σ). A set A is closed if and only if A = cl(A). The multivector field V
induces a multivalued map FV : K ⊸ K where FV(σ) := cl(σ) ∪ [σ]V . Informally, this will
mean that if one is at a simplex σ, then one can move either to a face of σ or to a simplex τ

in the same multivector as σ. We allow moving within any single multivector because, on
the level of flows, the behavior within the multivector is beyond the resolution of the given
simplicial complex. Conversely, we do not allow moving from a cell to its coface, unless they
are in the same multivector, because this does not respect the underlying flow.

The multivalued map F gives a notion of paths and solutions to V . We let Z[i,j] := Z∩[i, j].
A path is a function ρ : Z[0,n] → K where ρ(i + 1) ∈ FV(ρ(i)) for i ∈ Z[0,n−1]. Likewise, a
solution is a function ρ : Z → K where ρ(i + 1) ∈ FV(ρ(i)) for i ∈ Z. However, there are
several trivial solutions in a multivector field. If σ ∈ K, then there is a solution ρ where
ρ(i) = σ for all i ∈ Z. That is, every simplex is a fixed point. This does not match the
intuition from differential equations: only a very select set of simplices should be fixed points
under FV . To enforce this, we use the notion of a critical multivector. But first, we define the
mouth of a set A, denoted mo(A), to be mo(A) := cl(A) \ A. The multivector V is critical if
H(cl(A), mo(A)) ̸= 0. Intuitively, critical multivectors with one maximal element correspond
to stationary points in the flow setting. Thus, only simplices in critical multivectors should
be fixed points under F . Essential solutions enforce this requirement [20].

▶ Definition 1 (Essential Solution). Let ρ : Z → K denote a solution to the multivector field
V. If for every i ∈ Z where [ρ(i)]V is not critical, there exists a pair of integers i− < i < i+

where [ρ(i−)]V ̸= [ρ(i)]V and [ρ(i)]V ̸= [ρ(i+)]V , then ρ is an essential solution.

The invariant part of a set A ⊆ K, denoted InvV(A), is given by the set of simplices
σ ∈ A for which there exists an essential solution ρ : Z → A where ρ(i) = σ for some i ∈ Z.
A set S ⊆ K is an invariant set if and only if S = InvV(S). For examples of invariant sets,
see Figure 2. We are interested in a special type of invariant set.
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Figure 2 Three examples of an invariant set, marked in yellow.

Figure 3 Three invariant sets on the same multivector field, marked in yellow. The left invariant
set is isolated by the entire rectangle. The middle invariant set is isolated by its closure, but not by
the rectangle because of the path in red. The right invariant set is isolated by neither its closure nor
the rectangle, because there is a path from a yellow triangle, to the red edge, to the yellow vertex.

Figure 4 Two invariant sets, marked in yellow, over the same multivector field. On the right, the
invariant set includes the two yellow vertices marked with filled discs, but it excludes the red edge.
The invariant set on the left is not V-compatible, while the invariant set on the right is.

▶ Definition 2 (Isolated Invariant Set, Isolating Set). Let S be an invariant set under V. If
there exists a closed set N such that FV(S) ⊆ N and every path ρ : Z[0,n] → N where
ρ(0), ρ(n) ∈ S has the property that ρ(Z[0,n]) ⊆ S, then S is isolated by N and S is an
isolated invariant set. Moreover, the set N is an isolating set for S.

Figure 3 illustrates the concept of isolation. An invariant set S is V-compatible if S is equal to
the union of a set of multivectors in V . For examples, see Figure 4. This gives an equivalent
formulation of an isolated invariant set.

▶ Proposition 3 ([19], Proposition 4.1.21). An invariant set S is isolated if and only if it is
convex and V-compatible.

3 Tracking Isolated Invariant Sets

In this section, we introduce the protocol for tracking an isolated invariant set across
multivector fields. Results in the continuous theory imply that under a sufficiently small
perturbation, some homological features of an isolated invariant set do not change. Hence,

SoCG 2022



35:6 Tracking via Continuation and Persistence

we require a notion of a small perturbation of a multivector field. In particular, let V and V ′

denote two multivector fields on K. If each multivector V ′ ∈ V ′ is contained in a multivector
V ∈ V, |V \ V ′| = 1, and |V ′ \ V| = 2, then V ′ is an atomic refinement of V. It is so-called
because V ′ is obtained by “splitting” exactly one multivector in V into two multivectors,
while all the other multivectors remain the same. Symmetrically, we say that V is an atomic
coarsening of V ′. More broadly, it is said that V and V ′ are atomic rearrangements of each
other. In Figures 5, 6, 7, 8, and 9, the two multivector fields are atomic rearrangements of
each other. In these figures, we draw the multivectors that are splitting or merging in red.

Given an isolated invariant set S under V , and an atomic rearrangement of V denoted V ′,
we aim to find an isolated invariant set S′ that is a minimal perturbation of S. We accomplish
this through two mechanisms: continuation and persistence. When we use continuation, or
when we attempt to continue, we check if there exists an S′ under V ′ that is in some sense
the same as S. If there is at least one such S′, then we choose a canonical one. This is
explained in Section 4. If there is no S′ to which we can continue, then we use persistence.
In particular, we choose a canonical isolated invariant set S′ under V ′, and while S does not
continue to S′, we can use zigzag persistence to observe which features of S are absorbed by
S′. We elaborate on this scheme in Section 5. To choose S′, we require the following result.

▶ Proposition 4 ([19], Corollary 4.1.22). Let A be a convex and V-compatible set. Then
InvV(A) is an isolated invariant set.

The set S is an isolated invariant set by assumption, so Proposition 3 implies that S

is convex and V-compatible. Thus, if S is also V ′-compatible, a natural choice is then to
use Proposition 4 and take S′ := InvV′(S). However, if S is not V ′-compatible, then the
situation is more complicated. The set S is not V ′-compatible precisely when V ′ is an atomic
coarsening of V, and the unique multivector V ∈ V ′ \ V, occasionally called the merged
multivector, has the properties that V ∩ S ̸= ∅ and V ̸⊆ S. In such a case, we use the
notation ⟨S ∪ V ⟩V′ to denote the intersection of all V ′-compatible and convex sets that
contain S ∪ V . The simplicial complex K is V ′-compatible and convex, so ⟨S ∪ V ⟩V′ always
exists and S ⊊ ⟨S ∪ V ⟩V′ . We observe that ⟨S ∪ V ⟩V′ is V ′-compatible and convex, and
thus it is the minimal convex and V ′-compatible set that contains S. In such a case, we
use Proposition 4 and take S′ := InvV′(⟨S ∪ V ⟩V′ ). These principles are enumerated in the
following Tracking Protocol.

Tracking Protocol

Given a nonempty isolated invariant set S under V , and an atomic rearrangement of V denoted
V ′, use the following rules to find an isolated invariant set S′ under V ′ that corresponds to S.
1. Attempt to track via continuation:

a. If V ′ is an atomic refinement of V, then take S′ := InvV′(S).
b. If V ′ is an atomic coarsening of V, and the unique merged multivector V has the

property that V ⊆ S, then take S′ := InvV′(S).
c. If V ′ is an atomic coarsening of V, and the unique merged multivector V has the

property that V ∩ S = ∅, then take S′ := InvV′(S) = S.
d. If V ′ is an atomic coarsening of V and the unique merged multivector V satisfies the

formulae V ∩ S ̸= ∅ and V ̸⊆ S, then consider A = ⟨S ∪ V ⟩V′ . If InvV(A) = S, then
take S′ := InvV′(A).

e. Else, it is impossible to track via continuation.
2. If it is impossible to track via continuation, then attempt to track via persistence:

f. If A := ⟨S ∪ V ⟩V , then take S′ := InvV′(A). If S and S′ have a common isolating set,
then use the technique in Equation 3 to find a zigzag filtration connecting them.

g. Otherwise, there is no natural choice of S′. See the full version for a possible strategy.
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We include an example of Step 1a in Figure 5, Step 1b in Figure 6, Step 1c in Figure 7,
Step 1d in Figure 8, and Step 2f in Figure 9. Each figure depicts a multivector field and
a seed isolated invariant set on the left, and an atomic rearrangement and the resulting
isolated invariant set on the right. By iteratively applying this protocol (until S′ = ∅, in
which case we are done), we can track how an isolated invariant set changes across several
atomic rearrangements. See Figure 10 and the associated barcode in Figure 11. Any two
multivector fields V1 and V2 can be related by a sequence of atomic rearrangements, and
hence the Tracking Protocol can be used to track how an isolated invariant set changes across
an arbitrary sequence of multivector fields. Additional details on this are in the full version.

Figure 5 Applying Step 1a to an invariant set (yellow, left) to get a new one (yellow, right).

Figure 6 Applying Step 1b to an invariant set (yellow, left) to get a new one (yellow, right).

Figure 7 Applying Step 1c to an invariant set (yellow, left) to get a new one (yellow, right). The
merged vector is outside of the invariant set on the left, so the invariant sets are the same.

SoCG 2022



35:8 Tracking via Continuation and Persistence

Figure 8 Applying Step 1d to an invariant set (yellow, left) to get a new one (yellow, right).

Dimension: 0

Dimension: 1

Figure 9 Applying Step 2f to an invariant set (yellow, left) to get a new one (yellow, right). The
associated persistence barcode is depicted below the figures.

4 Tracking via Continuation

Now, we introduce continuation in the combinatorial setting, and we justify the canonicity of
the choices made in Step 1 of the Tracking Protocol. In addition, we show that if Step 1 is
used to obtain S′ from S, then S and S′ are related by continuation. Continuation is closely
related to the Conley index, so we begin with a brief review of the topic.

4.1 Index Pairs and the Conley Index
Originally developed in the classical setting by Conley [4], the Conley index associates a
homological invariant with each isolated invariant set. It is defined through index pairs.

▶ Definition 5 (Index Pair). Let S denote an isolated invariant set under V, and let P and E

denote closed sets where E ⊆ P . If the following all hold, then (P, E) is an index pair for S:
1. FV(P \ E) ⊆ P

2. FV(E) ∩ P ⊆ E

3. S = InvV(P \ E)

For examples, see Figure 12. If (P, E) is an index pair for S, then the k-dimensional Conley
index of S is Hk(P, E). The authors in [20] showed that the Conley index is well-defined.

▶ Theorem 6 ([20], Theorem 5.16). Let (P, E) and (P ′, E′) denote index pairs for S. Then
Hk(P, E) = Hk(P ′, E′) for all k ≥ 0.
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(a) Initial multivector field. (b) Atomic coarsening of 10a. (c) Atomic refinement of 10b.

(d) Atomic refinement of 10c. (e) Atomic coarsening of 10d. (f) Atomic coarsening of 10e.

(g) Atomic refinement of 10f. (h) Atomic coarsening of 10g. (i) Atomic refinement of 10h.

Figure 10 Subfigure 10a contains an initial multivector field and a seed isolated invariant set,
which is a yellow edge. Each subsequent subfigure contains a multivector field that is an atomic
refinement or atomic coarsening of the previous. The isolated invariant set that we get by iteratively
applying the Tracking Protocol is depicted in yellow. Splitting and merging multivectors are in blue.

For a single isolated invariant set, there may be many possible index pairs. However, we
can choose a canonical one, namely, the minimal index pair.

▶ Proposition 7 ([20], Proposition 5.3). Let S denote an isolated invariant set. The pair
(cl(S), mo(S)) is an index pair for S.

The following two propositions show that convex and V-compatible sets are crucial for
finding index pairs.

▶ Proposition 8 ([20], Proposition 5.6). Let (P, E) be an index pair under V. Then P \ E is
convex and V-compatible.

▶ Proposition 9. If A is convex and V-compatible, then (cl(A), mo(A)) is an index pair for
InvV(A).

Dimension: 1
Dimension: 1

Figure 11 The barcode associated with the tracked invariant sets in Figure 10. Starting with
subfigure 10h, we see the birth of a new 1-dimensional homology generator.

SoCG 2022
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Figure 12 All three images depict an index pair for the yellow triangle marked with a black circle.
P is given by the red and yellow simplices, while E is given by the red simplices.

Proof. By Proposition 4 the set S = InvV(A) is an isolated invariant set. Since cl(A)\mo(A) =
A, we immediately get condition 3 from Definition 5. Since A is V-compatible we get
FV(A) = cl A, and thus, condition 1. To see condition 2 consider x ∈ FV(mo(A)). By
the definition of FV there exists an a ∈ mo(A) such that either x ∈ [a]V or x ∈ cl(a). In
the first case x ̸∈ A, because A is V-compatible and a ̸∈ A. Therefore [a]V ∩ cl(A) ⊆
cl(A) \ A = mo(A). If x ∈ cl(a) then x ∈ mo A, because mo(A) is closed. Hence, it follows
that FV(mo(A)) ∩ cl(A) ⊆ mo(A). ◀

4.2 Combinatorial Continuation and the Tracking Protocol
We now move to placing continuation in the combinatorial setting and explaining Step 1
of the Tracking Protocol. In essence, a continuation captures the presence of the “same”
isolated invariant set across multiple multivector fields. We then show that Step 1 of the
Tracking Protocol does use continuation to track an isolated invariant set.

▶ Definition 10. Let S1, S2, . . . , Sn denote a sequence of isolated invariant sets under the
multivector fields V1, V2, . . . , Vn, where each Vi is defined on a fixed simplicial complex K.
We say that isolated invariant set S1 continues to isolated invariant set Sn whenever there
exists a sequence of index pairs (P1, E1), (P2, E2), . . . , (Pn−1, En−1) where (Pi, Ei) is an
index pair for both Si and Si+1. Such a sequence is a sequence of connecting index pairs.

Figure 13 An index pair, where P is in yellow and E is empty, for the isolated invariant sets in
Figure 8. There is a common index pair for both isolated invariant sets, so they form a continuation.

Each index pair (Pi, Ei) in a connecting sequence of index pairs is an index pair for a
pair of consecutive isolated invariant sets Si and Si+1 (see Figures 13 and 14). Hence, the
isolated invariant sets in the continuation all have the same Conley index. In this sense, we
are capturing the “same” isolated invariant set. In Step 1 of the Tracking Protocol, we first
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Figure 14 An index pair, where P is given by the yellow and red simplices and E is given by the
red simplices, for the isolated invariant sets in Figure 6. Thus, they form a continuation.

attempt to track the isolated invariant set S via continuation. That is, if we use Step 1, then
we choose S′ such that S and S′ have a common index pair, say (P, E). It so happens that
(P, E) is easy to find algorithmically. We begin with the refinement case, or Step 1a.

▶ Theorem 11. Let V and V ′ denote multivector fields where V ′ is an atomic refinement
of V. Let A be a V-compatible and convex set. The pair (cl(A), mo(A)) is an index pair for
both InvV(A) under V and InvV′(A) under V ′.

The proof of Theorem 11 is included in the full version. In Step 1a of the Tracking
Protocol, where V ′ is an atomic refinement of V , we choose S′ := InvV′(S). By Proposition 3,
it follows that S is V-compatible. By identical reasoning to that presented in the proof
of Theorem 11, it follows that S is also V ′-compatible. Hence, Theorem 11 implies that
(cl(S), mo(S)) is an index pair for both S = InvV(S) and S′ = InvV′(S). Thus, S and S′

share an index pair.
The case of an atomic coarsening, corresponding to Steps 1b, 1c, and 1d of the Tracking

Protocol, is more complicated. Recall that if V ′ is an atomic coarsening of V , then the unique
multivector V ∈ V ′ \ V is called the merged multivector.

▶ Theorem 12. Let V and V ′ denote multivector fields where V ′ is an atomic coarsening of
V. Let A be a convex and V-compatible set, and let V ∈ V ′ be the unique merged multivector.
If V ⊆ A or V ∩ A = ∅, then (cl(A), mo(A)) is an index pair for both InvV(A) and InvV′(A).

Proof. If V ∩ A = ∅, then A is both V-compatible and V ′-compatible. Thus, Proposition 9
implies that (cl(A), mo(A)) is an index pair for both S = InvV(A) and S′ = InvV′(A).

If V ⊆ A, then by the same reasoning as in the proof of Theorem 11, it follows that A is
both V-compatible and V ′-compatible. Thus, Proposition 9 implies that (cl(A), mo(A)) is an
index pair for both InvV(A) and InvV(A). ◀

By Proposition 3, S is convex and V-compatible. Theorem 12 implies that if V ⊆ S or
V ∩ S = ∅, then (cl(S), mo(S)) is an index pair for both InvV(S) = S and InvV′(S) = S′. In
Steps 1b and 1c of the Tracking Protocol, S′ is chosen as InvV′(S). Hence, the index pair
(cl(S), mo(S)) is an index pair for both S and S′.

A more complicated case is Step 1d, where V ∩ S ≠ ∅ and V ̸⊆ S. Recall that
A := ⟨S ∪ V ⟩V′ denotes the intersection of all convex and V ′-compatible sets that contain
S ∪ V , and in particular, A is convex and V ′-compatible. In Step 1d of the Tracking Protocol,
we first check if S = InvV(A). By Proposition 9, if S = Inv(A), then (cl(A), mo(A)) is an
index pair for S. The set ⟨S ∪V ⟩V′ is necessarily V-compatible, because it is V ′-compatible by
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construction and it contains the unique merged multivector. Hence, Proposition 4 implies that
S′ := InvV′(A) is an isolated invariant set. Thus, Proposition 9 implies that (cl(A), mo(A))
is also an index pair for S′. Hence, if Step 1d gives S′, there is an index pair for S and S′.

In Step 1e of the Tracking Protocol, we claim that if S ̸= InvV(A), then it is not possible
to continue. Equivalently, there is no S′ that shares an index pair with S.

▶ Theorem 13. Let S denote an isolated invariant set under V and let V ′ denote an atomic
coarsening of V where the unique merged multivector V ∈ V ′ \ V satisfies the formulae
V ∩ S ̸= ∅ and V ̸⊆ S. Furthermore, let A := ⟨S ∪ V ⟩V′ . If S ̸= InvV(A), then there does not
exist an isolated invariant set S′ under V ′ for which there is an index pair (P, E) satisfying
InvV(P \ E) = S and InvV′(P \ E) = S′.

Proof. Suppose that S ̸= InvV(A) and there exists an index pair, (P, E), for both S under V
and some S′ under V ′. By Proposition 8, the set P \ E must be convex and V ′-compatible.
Since S ⊆ P \ E and A is the smallest convex and V ′-compatible set containing S, it follows
that A ⊆ P \ E. Hence, InvV(A) ⊆ InvV(P \ E). By assumption, S ⊊ InvV(A). Thus,
S ⊊ InvV(P \ E). This implies that (P, E) is not an index pair for S, a contradiction. ◀

4.3 Characterizing Tracked Isolated Invariant Sets
Step 1 of the Tracking Protocol provides an avenue for tracking an isolated invariant set
across a sequence of atomic rearrangements. In this subsection, we justify the canonicity of
the selected isolated invariant set in Step 1 of the Tracking Protocol. First, we observe that
we always have an inclusion. We prove Theorem 14 in the full version.

▶ Theorem 14. If S′ is obtained by applying Step 1 of the Tracking Protocol to S, then we
have S ⊆ S′ or S′ ⊆ S.

Furthermore, isolated invariant sets chosen by Step 1 minimize the perturbation to S in
terms of the number of inclusions. We include the proof for Proposition 15 in the full version.

▶ Proposition 15. Let S be an isolated invariant set under V, and let S′ be an isolated
invariant set under V ′ that is obtained by applying Step 1 of the Tracking Protocol to S.
If S′′ is any isolated invariant set under V ′ that shares a common index pair with S, then
S′ ⊆ S′′. Moreover, if S′′ ⊆ S, then S′ = S′′.

5 Tracking via Persistence

In the previous section, we explicated Step 1 of the protocol, which uses continuation to
track an isolated invariant set across a changing multivector field. In this section, we first
place continuation in the persistence framework by showing how to translate the idea of
combinatorial continuation into a zigzag filtration [3, 7] that does not introduce spurious
information. Then, we use the persistence view of continuation to justify Step 2f of the
Tracking Protocol, which permits us to capture changes in an isolated invariant set when no
continuation is possible. In particular, it permits us to track an isolated invariant set even in
the presence of a bifurcation that changes the Conley index. If the isolated invariant set that
we are tracking collides, or merges, with another isolated invariant set, then we follow the
newly formed isolated invariant set, and persistence captures which aspects of our original
isolated invariant set persist into the new one. Conversely, if an isolated invariant set splits,
we track the smallest isolated invariant set that contains all of the child invariant sets. We
begin by reviewing some results on computing the persistence of the Conley index from [5].
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5.1 Conley Index Persistence
In [5], the authors were interested in computing the changing Conley index across a sequence
of isolated invariant sets. A naive approach to computing the persistence of the Conley
index is, if given two index pairs (P1, E1) and (P2, E2), to take the intersection of the index
pairs to obtain the zigzag filtration (P1, E1) ⊇ (P1 ∩ P2, E1 ∩ E2) ⊆ (P2, E2). However, the
intersection of index pairs is generally not an index pair, and as a consequence, the barcode
associated with this zigzag filtration does not capture a changing Conley index. In addition,
due to the fact that (P1 ∩ P2, E1 ∩ E2) need not be an index pair, the barcode is frequently
erratic. An example is in Figure 15. To solve this issue, we consider index pairs in N [5].

Dimension: 2 Dimension: 2
Dimension: 1
Dimension: 1

Figure 15 All three images depict the same multivector field, which includes a yellow repelling
fixed point (triangle, marked with a black circle). (left) and (right) depict two different index
pairs, (Pl, El) and (Pr, Er), for the repelling fixed point: Pl and Pr consist of yellow and red
simplices and El and Er consist of red simplices. The intersection (Pl ∩ Pr, El ∩ Er) is depicted
in the middle. Check that this pair is not an index pair because if e denotes a yellow edge, then
FV(e) ̸⊆ Pl ∩ Pr. Beneath, we depict the barcode that is associated with the zigzag filtration
(Pl, El) ⊇ (Pl ∩ Pr, El ∩ Er) ⊆ (Pr, Er). Because (Pl, El) and (Pr, Er) are both index pairs for the
same repelling fixed point, we would expect the barcode to be full. However, as (Pl ∩ Pr, El ∩ Er) is
not an index pair for the repelling fixed point, its relative homology can change drastically.

▶ Definition 16. Let S denote an isolated invariant set, and let N denote an isolating set
for S. The pair of closed sets (P, E) is an index pair for S in N if all of the following hold:
1. FV(P \ E) ⊆ N

2. FV(E) ∩ N ⊆ E

3. FV(P ) ∩ N ⊆ P

4. S = InvV(P \ E)

Every index pair in N is also an index pair in the sense of Definition 5 (see [5]). The
canonical choice of an index pair for S can be used to obtain a canonical index pair for S in
N via the push forward. The push forward of a set A in N , denoted pfV(A, N), is given by
the set of simplices σ ∈ N for which there exists a path ρ : Z[0,n] → N in V where ρ(0) ∈ A

and ρ(n) = σ. If V is clear from the context we write pf(A, N).

▶ Theorem 17 ([5], Theorem 15). Let S be an isolated invariant set under V, and let N be
an isolating set for S. The pair (pfV(cl(S), N), pfV(mo(S), N)) is an index pair in N for S.

Index pairs in N are particularly useful because, unlike standard index pairs, their
intersection is guaranteed to be an index pair. For two multivector fields V1 and V2, an
intermediate multivector field is V1∩V2, where V1∩V2 := {V1 ∩ V2 | V1 ∈ V1, V2 ∈ V2}.
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▶ Theorem 18 ([5], Theorem 10). Let (P1, E1) and (P2, E2) denote index pairs in N under
V1 and V2, respectively. The pair (P1 ∩ P2, E1 ∩ E2) is an index pair in N under V1∩V2.

Hence, given an index pair (P1, E1) in N under V1 and an index pair (P2, E2) in N

under V2, we can obtain a relative zigzag filtration where each pair is an index pair under a
different multivector field. This zigzag filtration permits capturing a changing Conley index
via persistence. We include an example in Figure 16.

Dimension: 2

Figure 16 All three images depict the same multivector field in Figure 15. The left and the right
images depict an index pair in N , where N is the entire rectangle. The color convention is the same
as in Figure 15: red and yellow simplices are in P , and red simplices are in E. Unlike Figure 15,
Theorem 18 implies that that the intersected pair in the middle is an index pair. The persistence
barcode, capturing the static Conley index, is depicted below the three images.

5.2 From continuation to filtration
Now, we show that a continuation of an isolated invariant set S1 to Sn+1 can be expressed in
terms of persistence. Namely, a corresponding sequence of connecting index pairs (P1, E1),
(P2, E2), . . . , (Pn, En) can be turned into a zigzag filtration, that is a sequence of pairs
{(Ai, Bi)}m

i=1 such that either (Ai, Bi) ⊆ (Ai+1, Bi+1) or (Ai+1, Bi+1) ⊆ (Ai, Bi). Ideally,
each (Ai, Bi) would be an index pair for some Sj from the initial continuation so as to not
introduce spurious invariant sets or Conley indices. A connecting index pair (Pi, Ei) is an
index pair for both Si under Vi and for Si+1 under Vi+1. Thus, (Pi, Ei) and (Pi+1, Ei+1) are
both index pairs for Si+1 under Vi+1. We will construct auxiliary index pairs for Si+1 and
then relate (Pi, Ei) and (Pi+1, Ei+1) with a zigzag filtration using these auxiliary pairs. If
we can connect all adjacent pairs (Pi, Ei) and (Pi+1, Ei+1) with a zigzag filtration, then we
can concatenate all of these zigzag filtrations and transform a sequence of connecting index
pairs into a larger zigzag filtration. The following results are important for achieving this.

▶ Proposition 19 ([20], Proposition 5.2). Let (P, E) denote an index pair for S. The set P

is an isolating set for S.

▶ Proposition 20. Let (P, E) denote an index pair for S under V. The pair (P, E) is an
index pair for S in P under V.

Proof. First, we observe that S = InvV(P \ E) because (P, E) is an index pair. In addition,
FV(P ) ∩ N = FV(P ) ∩ P ⊆ P by definition. Since (P, E) is an index pair, it has the property
that FV(P \ E) ⊆ P . In the case of index pairs in N , we require that FV(P \ E) ⊆ N = P ,
so this case is immediately satisfied. Finally, because (P, E) is an index pair, FV(E) ∩ P ⊆ E.
Thus, FV(E) ∩ N = FV(E) ∩ P ⊆ E. ◀
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▶ Theorem 21. Let (P1, E1) and (P2, E2) denote index pairs for S in N under V. The pair
(P1 ∩ P2, E1 ∩ E2) is an index pair for S in N under V.

We include the proof of Theorem 21 in the full version.
Now, we move to using these results to translate a sequence of connecting index pairs

{(Pi, Ei)}n
i=1 into a zigzag filtration. For 1 < i ≤ n, (Pi−1, Ei−1) and (Pi, Ei) are both index

pairs for Si. By Proposition 7, the pair (cl(Si), mo(Si)) is an index pair for Si. Hence, a
natural approach is to find a zigzag filtration that connects (Pi, Ei) with (cl(Si), mo(Si)) and
a zigzag filtration that connects (Pi−1, Ei−1) with (cl(Si), mo(Si)). If we can find such zigzag
filtrations for all Si, then we can concatenate all of them and obtain a zigzag filtration that
connects (P1, E1) with (Pn, En). We depict the resulting zigzag filtration in Equation 1.

(P1, E1) ⊇ . . . ⊇ (cl(S2), mo(S2)) ⊆ . . . ⊆ (P2, E2) ⊇ . . . ⊇ (cl(S3), mo(S3)) ⊆ . . . (Pn, En)
(1)

We connect (cl(Si), mo(Si)) with (Pi, Ei), and (Pi−1, Ei−1) connects with (cl(Si), mo(Si))
symmetrically. By Proposition 19, Pi is an isolating set for Si. Thus, by Theorem 17,
(pfVi

(cl(Si), Pi), pfVi
(mo(Si), Pi)) is an index pair for Si in Pi. Proposition 20 implies

that (Pi, Ei) is an index pair for Si in Pi. By Theorem 21, (Pi ∩ pfVi
(cl(Si), Pi), Ei ∩

pfVi
(mo(Si), Pi)) is an index pair for Si in Pi. Hence, we get the following zigzag filtration:

(cl(Si), mo(Si)) ⊆ (pfVi
(cl(Si), Pi), pfVi

(mo(Si), Pi)) ⊇
(Pi ∩ pfVi

(cl(Si), Pi), Ei ∩ pfVi
(mo(Si), Pi)) ⊆ (Pi, Ei) (2)

Every pair in Equation 2 is an index pair for Si under Vi. Thus, we do not introduce any
spurious invariant sets. We can concatenate these filtrations to get Equation 1.

We now analyze the barcode obtained for 1. we prove Theorem 22 in the full version.

▶ Theorem 22. For every k ≥ 0, the k-dimensional barcode of a connecting sequence of
index pairs {(Pi, Ei)}n

i=1 has m bars [1, n] if dim Hk(P1, E1) = m.

5.3 Tracking beyond continuation
In the previous subsection, we showed how to convert a connecting sequence of index pairs
into a zigzag filtration. Furthermore, we observed that it produces “full” barcodes - they
have one bar for each basis element of the Conley index that persists for the length of the
filtration. This change of perspective allows us to generalize our protocol to handle cases
when it is impossible to continue.

In particular, we consider Step 2f of the protocol. Let S denote an isolated invariant
set under V, and V ′ is an atomic coarsening of V where the merged multivector V has the
property that V ∩ S ̸= ∅ and V ̸⊆ S. In such a case, we consider A := ⟨S ∪ V ⟩V′ and take
S′ = InvV′(A). Theorem 13 implies that if S ̸= InvV(A), then it is impossible to continue.
However, it may be possible to compute persistence in a way that resembles continuation.
Let B := cl(S) ∪ cl(S′). Trivially, B is closed. If B is an isolating set for both S and S′,
then we say that S and S′ are adjacent. By Theorem 17, (pfV(cl(S), B), pfV(mo(S), B)) is
an index pair for S in B. Similarly, (pfV′(cl(S′), B), pfV′(mo(S′), B)) is an index pair for S′

in B. Thus, we can use Theorem 18 to obtain the following zigzag filtration.

(cl(S), mo(S)) ⊆ (pfV(cl(S), B), pfV(mo(S), B))
⊇ (pfV(cl(S), B) ∩ pfV′(cl(S′), B), pfV(mo(S), B) ∩ pfV′(mo(S′), B)) ⊆

(pfV′(cl(S′), B), pfV′(mo(S′), B)) ⊇ (cl(S′), mo(S′)) (3)
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Suppose that we are iteratively applying Step 1 of the Tracking Protocol, finding a
sequence of isolated invariant sets where adjacent ones share an index pair, and we terminate
with an isolated invariant set S and an index pair (P, E). We can connect (P, E) with
(cl(S), mo(S)) with techniques from the previous section. That is, if (P, E) ̸= (cl(S), mo(S)),
then we can find a filtration that connects them:

(P, E) ⊇ (P ∩ pfV(cl(S), P ), E ∩ pfV(mo(S), P )) ⊆
(pfV(cl(S), P ), pfV(mo(S), P ) ⊇ (cl(S), mo(S1)) (4)

We can then concatenate this filtration with the zigzag filtration in Equation 3. This
effectively completes the Tracking Protocol: when continuation, represented as Step 1, is
impossible, we can attempt to apply Step 2f and persistence to continue to track.

In Step 2f, we choose to take S′ = InvV′(A). In practice, there may be many isolated
invariant sets under V ′ that are adjacent to S. However, our choice of S′ is canonical.

▶ Proposition 23. Let S′ denote an isolated invariant set under V ′ that is obtained from
applying Step 2f of the Tracking Protocol to the isolated invariant set S under V. If S′′ is an
isolated invariant set under V ′ where S ⊆ S′′, then S′ ⊆ S′′.

Proof. By Proposition 4, set S′′ is convex and V ′-compatible. Since A is the minimal convex
and V ′-compatible set containing S we get that S ⊆ A ⊆ S′′. By definition, S′ = InvV′(A),
so S′ ⊆ A ⊆ S′′. ◀

6 Conclusion

We conclude by briefly discussing some directions for future work. In Step 2g of the Tracking
Protocol, there is a canonical choice of S′. But, as there is no common isolating set for S

and S′, we cannot presently say anything about the persistence of the Conley index from S

to S′. Is it possible to compute the Conley index persistence here in a controlled way? Can
we meaningfully compute persistence for a different choice of invariant set? Investigation and
experiments are likely needed to determine the most practical course of action in this case.
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