
On the Discrete Fréchet Distance in a Graph
Anne Driemel #

Hausdorff Center for Mathematics, Universität Bonn, Germany

Ivor van der Hoog #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

Abstract
The Fréchet distance is a well-studied similarity measure between curves that is widely used
throughout computer science. Motivated by applications where curves stem from paths and walks
on an underlying graph (such as a road network), we define and study the Fréchet distance for paths
and walks on graphs. When provided with a distance oracle of G with O(1) query time, the classical
quadratic-time dynamic program can compute the Fréchet distance between two walks P and Q in a
graph G in O(|P | · |Q|) time. We show that there are situations where the graph structure helps with
computing Fréchet distance: when the graph G is planar, we apply existing (approximate) distance
oracles to compute a (1 + ε)-approximation of the Fréchet distance between any shortest path P and
any walk Q in O(|G| log |G|/

√
ε + |P | + |Q|

ε
) time. We generalise this result to near-shortest paths,

i.e. κ-straight paths, as we show how to compute a (1 + ε)-approximation between a κ-straight path
P and any walk Q in O(|G| log |G|/

√
ε + |P | + κ|Q|

ε
) time. Our algorithmic results hold for both the

strong and the weak discrete Fréchet distance over the shortest path metric in G.
Finally, we show that additional assumptions on the input, such as our assumption on path

straightness, are indeed necessary to obtain truly subquadratic running time. We provide a conditional
lower bound showing that the Fréchet distance, or even its 1.01-approximation, between arbitrary
paths in a weighted planar graph cannot be computed in O((|P | · |Q|)1−δ) time for any δ > 0 unless
the Orthogonal Vector Hypothesis fails. For walks, this lower bound holds even when G is planar,
unit-weight and has O(1) vertices.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Fréchet, graphs, planar, complexity analysis

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.36

Related Version Full Version: https://arxiv.org/abs/2201.02121

Funding Partially supported by Independent Research Fund Denmark grants 2020-2023 (9131-
00044B) “Dynamic Network Analysis”.

Acknowledgements We thank David Goeckede and Petra Mutzel for useful discussions.

1 Introduction

The Fréchet distance is a popular metric for measuring the similarity between (polygonal)
curves. The Fréchet distance is often intuitively defined through the following metaphor:
suppose that we have two curves that are traversed by a person and their dog. Over all
possible traversals by both the person and the dog, what is the minimum length of their
connecting leash? The Fréchet distance has many applications; in particular in the analysis
and visualization of movement data [10, 14, 31, 44]. It is a versatile distance measure that
can be used for a variety of objects, such as handwriting [38], coastlines [34], outlines of
geometric shapes in geographic information systems [20], trajectories of moving objects,

© Anne Driemel, Ivor van der Hoog, and Eva Rotenberg;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 36; pp. 36:1–36:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:driemel@cs.uni-bonn.de
mailto:vanderhoog@gmail.com
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.SoCG.2022.36
https://arxiv.org/abs/2201.02121
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On the Discrete Fréchet Distance in a Graph

such as vehicles, animals or sports players [37, 39, 6, 14], air traffic [5] and also protein
structures [28]. There are many variants of the Fréchet distance, some of which we also
discuss further below. The two most-studied variants are the continuous and discrete Fréchet
distance (based on whether the entities traverse a curve continuously or vertex-by-vertex).

Alt and Godau [2] were the first to study the Fréchet distance from a computational
perspective. They studied how to compute the continuous Fréchet distance between two
polygonal curves of n and m vertices each in O(mn log(n + m)) time. Recently, this running
time was improved by Buchin et al. [11] to O(n2√

log n(log log n)3/2) on a real-valued pointer
machine and O(n2 log log n) on a word RAM with word size Ω(log n). Eiter and Manila [23]
showed how to compute the discrete Fréchet distance between two polygonal curves in O(nm)
time, which was later improved to O(nm(log log nm)/ log nm) by Buchin et al. [11].

Conditional lower bounds for the Fréchet distance. The above (near-) quadratic upper
bound algorithms are accompanied by a series of conditional lower bounds for computing
the Fréchet distance or a constant factor approximation. All these results assume the
Orthogonal Vector Hypothesis (OVH) or, by extension, the strong exponential time hypothesis
(SETH) [42]. Bringmann [7] shows that there is no O(n2−δ) algorithm, for any δ > 0, for
computing the (discrete or continuous) Fréchet distance between two polygonal curves of n

vertices each. The statement also holds for approximation algorithms with small constant
approximation factor. Bringmann’s original proof uses self-intersecting curves in the plane.
Later, Bringmann and Mulzer [9] showed the same conditional lower bound for intersecting
curves in R1. Bringmann [7] also showed the following conditional lower bound tailored
to the unbalanced setting where the two input curves have different complexities: given
two polygonal curves of n and m vertices each, there is no O((nm)1−δ) time algorithm for
computing the Fréchet distance. Recently Buchin, Ophelders and Speckmann [13] showed
that (assuming OVH) there can be no O((nm)1−δ) time algorithm that computes anything
better than a 3-approximation of the Fréchet distance for pairwise disjoint planar curves in
R2 and intersecting curves in R1.

Avoiding lower bounds. These lower bounds can be circumvented whenever the input
curves come from well-behaved classes of curves, such as c-packed curves [22, 8], ϕ-low density
curves [22], and κ-straight curves [3, 4], and in special cases when the edges of the input
curves are long [26]. Another way to avoid the quadratic complexity is to allow relatively large
approximation factors. Bringmann and Mulzer [9] presented an α-approximation algorithm
for the discrete Fréchet distance, that runs in time O(n log n + n2/α), for any α in [1, n].
This was recently improved by Chan and Rahmati [16] to O(n log n + n2/α2) for any α in
[1, n/ log n]. For the continuous Fréchet distance a weaker result was presented by Colombe
and Fox [19]. They show an O(α)-approximation algorithm for any α in [

√
n, n] that runs in

time O((n3/α2) log n). For general polygonal curves, without further input assumptions, the
best-known approximation factors with near-linear running times are still quite high, α ≈ n

for the continuous Fréchet distance and α ≈
√

n for the discrete case.

Fréchet distance variants. Variants of the Fréchet distance include those that model
partial similarity by allowing straight-line shortcuts along a curve [21], or by maximizing
the portions of the curves that a matched to each other within a fixed distance [12]. Other
variants constrain the class of mappings by applying speed constraints [33] or topological
constraints [15], or model the distance metric to the geodesics inside a simple polygon [27].
Even other variants extend the class of mappings, such as the weak Fréchet distance, which

A. Driemel, I. van der Hoog, and E. Rotenberg 36:3

(a) (b)

Figure 1 (a) A road network can be represented as a graph G. (b) Edges in G can be weighted,
e.g. depending on whether traffic flows fast (grey) or slow (black). Under the shortest path metric,
the Fréchet distance between blue and green may be smaller than the distance between red and
black; even though under the Euclidean metric, the red-black Fréchet distance is smaller.

was already studied by Alt and Godau [2]. Strikingly, the Fréchet distance has not been
studied in the context of graphs. Edge-weighted graphs with their shortest-path metric
are commonly used to model discrete metric spaces [35], and the Fréchet distance can be
derived from the underlying distance metric (Figure 2). In this paper, we intend to initiate a
study of the computational complexity of the discrete Fréchet distance between paths in a
planar graph, where distances between nodes are measured by their shortest path metric
in this graph. This is a natural model when, for example, measuring the similarity of two
trajectories in the same street network (Figure 1).

Contribution and organisation. This is the first paper that considers computing the Fréchet
distance in the graph domain.1 Section 2 contains the preliminaries where we present an
overview of distance oracles and the problem statement. Section 3 serves as an introduction
to our setting and techniques. We assume that P is a κ-straight path and that Q is a walk
in a planar weighted graph G. We use an exact distance oracle with O(log2+o(1) |G|) query
time to compute a (κ + 1)-approximation of DF (P, Q). This is the first nontrivial algorithm
for computing the (approximate) Fréchet distance in a planar graph. In Section 4 we extend
our results. We use a (1 + α)-stretch distance oracle to compute a (1 + ε)-approximation
of DF (P, Q). The full version contains the analogous result for the weak Fréchet distance.
Finally, we show in Section 5 a conditional lower bound for computing the Fréchet distance.
Specifically, assuming the Orthogonal Vector Hypothesis (OVH), we show that if G is an
integer-weighted planar graph, P and Q are paths in G and m = nγ for some constant
γ > 0, then for every δ > 0 there can be no algorithm that computes DF (P, Q) (or a
1.01-approximation) in O((nm)1−δ) time unless OVH fails. In the full version we consider
walks P and Q in a planar unit-weight graph with a constant number of vertices.

2 Preliminaries

Let G = (V, E) be a planar undirected weighted graph with N vertices, where every edge
ei has some corresponding integer weight ωi and all weights can be expressed in a word of
Θ(log N) bits. For any two vertices v1, v2 ∈ V their distance, denoted by d(v1, v2), is the

1 Similar ideas were used in the master’s thesis of David Goeckede [24]. In particular, the approach we
use in Section 3 and a lower bound construction for walks was used there.

SoCG 2022

36:4 On the Discrete Fréchet Distance in a Graph

(a) (b)

Figure 2 The Fréchet distance may be derived from the Euclidean or the shortest path metric.

length of the shortest path from v1 to v2 in G. A walk in G is any sequence of vertices where
every subsequent pair of vertices is connected by an edge in E. A path in G is a walk where
no vertex appears twice in the sequence. Let P be any walk in G, represented by an ordered
set of vertices P = (p1, p2, . . . pn). We denote by |P | = n the number of vertices in P and by
[n] the set (1, 2, . . . , n). We denote the walk Q = (q1, q2, . . . qm), |Q| and [m] analogously.

Discrete Fréchet distance. Given two walks P and Q in G, we denote by [n] × [m] ⊂ N×N
the integer lattice of n by m integers. We say that an ordered sequence F of points in [n]× [m]
is a discrete walk if for every consecutive pair (i, j), (k, l) ∈ F , we have k ∈ {i − 1, i, i + 1}
and l ∈ {j − 1, j, j + 1}. It is furthermore xy-monotone when we restrict to k ∈ {i, i + 1} and
l ∈ {j, j + 1}. Let F be a discrete walk from (1, 1) to (n, m). The cost of F is the maximum
over (i, j) ∈ F of d(pi, qj). The (weak) discrete Fréchet distance is the minimum over all
(not necessarily xy-monotone) walks F from (1, 1) to (n, m) of its associated cost:

DF (P, Q) := min
F

cost(F) = min
F

max
(i,j)∈F

d(pi, qj).

The discrete free-space matrix. In this paper we show an algorithm for computing the
discrete Fréchet distance between two walks P and Q in a graph G. To this end, we use
what we will call a free-space matrix which can be seen as a discrete free-space diagram.
Given P , Q and some real value ρ, we construct a |P | × |Q| matrix M which we call the
free-space matrix Mρ. The i’th column of Mρ corresponds to the vertex pi ∈ P and the j’th
row corresponds qj ∈ Q. We assign to each matrix cell Mρ[i, j] the integer −1 if d(pi, qj) ≤ ρ,
and a 0 if d(pi, qj) > ρ. From our above definition of the discrete Fréchet distance, we
immediately conclude the following:

▶ Lemma 1. The Fréchet distance between P and Q is at most ρ, if and only if there exists
a discrete (xy-monotone) walk F from (1, 1) to (n, m) such that ∀(i, j) ∈ F , Mρ[i, j] = −1.

Orthogonal Vectors Hypothesis. The Orthogonal Vectors problem can be stated as follows.
Given are a set A and B of d-dimensional Boolean vectors with |A| = n and |B| = m. The
goal is to identify whether there exist two vectors a = (a1, a2, . . . ad) and b = (b1, b2, . . . bd)
with a ∈ A and b ∈ B, such that a and b are orthogonal (i.e.

∑d
i=1 ai · bi = 0). In this paper,

we use the following variant of the Orthogonal Vectors hypothesis. It is implied by SETH,
see Abboud and Williams [1, Section 3], and it is equivalent to the standard variant of OVH
defined by Williams [42], see Bringmann [7].

▶ Definition 2. The Orthogonal Vectors Hypothesis states that for every δ > 0 and 1 > γ > 0,
there exists an ω > 0 and such that the Orthogonal Vectors problem for d-dimensional vectors
with d = ω log n and m = nγ , cannot be solved in O((nm)1−δ) time.

A. Driemel, I. van der Hoog, and E. Rotenberg 36:5

Distance oracles. A distance oracle is a compact data structure that facilitates fast exact
or approximate distance queries between vertices in a graph. A distance oracle has stretch
S if it never underestimates the distance, and it at most overestimates by a factor S, i.e.
d(a, b) ≤ destim.(a, b) ≤ S · d(a, b). For general graphs [36, 41, 43], the best possible stretch
in sub-quadratic space is 3, but for planar graphs on N vertices, Thorup [40] shows that it
is possible to compute (1 + ε)-stretch distance oracles in the near-linear O(N/ε log N) time
and space, and with a query-time of O(1/ε). The study of distance oracles for planar graphs
is an active research area [17, 18, 25, 29, 30, 32, 40]. For (1 + ε)-stretch oracles, Gu and
Xu [25] show that it is possible to achieve constant query-time independently of ε at the
cost of an increased construction time and space of O

(
N(log N)4/ε + 2O(1/ε)). Even for

exact distances, Charalampopoulos et al. [17] give an O
(
N1+o(1))-space and O

(
No(1))-query

time data structure. Long and Pettie [32] improve these exact queries to polylogarithmic
O

(
(log(N))2+o(1)) time while maintaining the O

(
N1+o(1))-space bound.

In the following sections we use the exact distance oracle by Long and Pettie [32] and the
(1 + ε)-stretch oracle by Thorup [40]. Any distance oracle that improves the efficiency of
these data structures, or any extension of them to larger classes of graphs, immediately leads
to improving or extending our results correspondingly.

From distance oracles to an upper bound. Given a distance oracle with T (G) query time it
is straightforward to find an O(nm · T (G)) time algorithm for computing DF (P, Q) between
two walks P and Q in G that “matches” the conditional Ω(nm1−δ) lower bound. Indeed, for
any pair (p, q) ∈ P × Q we can query their pairwise distance in G. Given such a weighted
graph, we want to find an xy-monotone path from (1, 1) to (n, m) with minimal cost (which
can be done with an O(nm · T (G)) dynamic program as by Eiter and Manila [23]).

κ-straight paths. Alt, Knauer and Wenk [3] define κ-straight paths as a generalisation of
shortest paths. A path P is κ-straight if for any two points s, t ∈ P , the length of the subpath
P [s, t] from s to t is at most κ · d(s, t). Shortest paths are 1-straight. When we replace the
term “points” by “vertices”, this definition immediately transfers to our graph setting.

3 A (κ + 1)-approximation for the discrete Fréchet distance

Let G = (V, E) be a planar weighted graph with N vertices and integer weights. We use the
structure by Long and Pettie [32] to preprocess G, such that given two walks P = (p1, . . . pn)
and Q = (q1, . . . qm), where P is a κ-straight path we can compute a (κ + 1)-approximation
of DF (P, Q). In the following section we extend this approach to an algorithmic result for
computing a (1 + ε)-approximation. Recall that the decision variant of the Fréchet distance
may be answered with the help of a free-space matrix Mρ. Here, we extend its definition:

▶ Definition 3. We denote by Mκ
ρ the κ-straight free-space matrix, which is a matrix with

dimensions n × m. We define the matrix Mκ
ρ [i, j] as follows:

Mκ
ρ [i, j] = −1 if the distance d(pi, qj) ≤ ρ,

Mκ
ρ [i, j] = 1 if the distance d(pi, qj) > (κ + 1)ρ, or

Mκ
ρ [i, j] = 0 otherwise.

Every cell Mκ
ρ [i, j] has a corresponding point (i, j) in the integer lattice [n] × [m]. The

discrete Fréchet distance is at most ρ, iff there exists a discrete walk F through [n] × [m]
where for every pair (i, j) ∈ F , Mκ

ρ [i, j] = −1. Explicitly constructing Mκ
ρ takes at least

Ω(nm) time. However, we show that we can use the distance oracle to implicitly traverse
Mκ

ρ to find the existence of such a discrete walk. To this end, we first show the following:

SoCG 2022

36:6 On the Discrete Fréchet Distance in a Graph

pa

pb

pc

≤ ρ

≤ ρ

> κρ

> κρ

> κρ

≤ ρ

≤ ρ

qj

(a) (b) (c)

qj qj
pa pa

pb pb

pc pc
> κρ

Figure 3 (a) Three vertices pa, pb, pc ∈ P and a vertex qj ∈ Q such that Mκ
ρ [a, j] = Mκ

ρ [c, j] = −1
and Mκ

ρ [b, j] = 1. (b) We show that the distance between pa and pb must be more than κρ. (c)
However, this implies that P is not κ-straight, as there is a shortcut from pa to pc through qj .

▶ Lemma 4. Let P be a κ-straight path and Q a walk in G, ρ be some fixed value and j ≤ m

some integer. For any two integers a, c such that Mκ
ρ [a, j] = −1 and Mκ

ρ [c, j] = −1, there
cannot be an integer b ∈ [a, c] for which Mκ

ρ [b, j] = 1.

Proof. Suppose for the sake of contradiction that there are three integers a, b, c with b ∈ [a, c],
Mκ

ρ [a, j] = −1 and Mκ
ρ [c, j] = −1 and Mκ

ρ [b, j] = 1. It cannot be that b = a or b = c, so
there are three vertices pa, pb, pc ∈ P with d(pa, qj) ≤ ρ, d(pc, qj) ≤ ρ and d(pb, qj) > (κ+1)ρ
(Figure 3). Moreover, pb lies on the κ-straight subpath P [pa, pc]. It follows that the length of
the subtrajectory P [pa, pb] is more than κρ (otherwise, the distance between pb and qj is at
most (κ+1)ρ by the path through pa to qj). We can apply a symmetric argument to P [pb, pc].
Thus, the length of P [pa, pc] is more than 2κρ. At the same time, there exists a path in G

from pa to pb through qj of length at most 2ρ. This contradicts that P is κ-straight. ◀

A consequence of the above lemma is the following: let (i, j) be a lattice point for which
Mκ

ρ [i, j] = −1. For the nearest lattice point (l, j) left of (i, j) for which Mκ
ρ [l, j] = 1, there

can be no lattice point left of (l, j) for which the matrix evaluates to −1. A symmetrical
statement holds for the nearest such point right of (i, j). This leads to the following algorithm
to conclude if DF (P, Q) ≤ (κ + 1)ρ or DF (P, Q) > ρ, where we construct a discrete walk F ′:

We compute the distance oracle in O(N1+o(1)) time. If Mκ
ρ [1, 1] > −1 then our algorithm

terminates and concludes that DF (P, Q) > ρ. We iteratively perform the following procedure,
to construct a path F ′. Let (i, j) be the latest point added to F ′, then:
1. If (i, j) = (n, m) the algorithm terminates and concludes that DF (P, Q) ≤ (κ + 1)ρ.
2. If (j + 1) > m, go to the last step.
3. Otherwise, we use two distance queries to check Mκ

ρ [i, j + 1] and Mκ
ρ [i + 1, j + 1]:

(i) If Mκ
ρ [i, j + 1] = −1, add (i, j + 1) to F ′.

(ii) Else if Mκ
ρ [i + 1, j + 1] = −1, add (i + 1, j + 1) to F ′.

4. Otherwise, we use a distance query to check if Mκ
ρ [i + 1, j]:

(i) If (i + 1) > n or Mκ
ρ [i + 1, j] = 1,

we terminate the procedure and conclude that DF (P, Q) > ρ.
(ii) Otherwise, we add (i + 1, j) to F ′.

(a) (b) (c)

Figure 4 Lattice points to prove Lemma 5. Blue ∈ F . Orange ∈ F ′ and Red ̸∈ F .

A. Driemel, I. van der Hoog, and E. Rotenberg 36:7

▶ Lemma 5. Let P be κ-straight in G, Q be any walk and DF (P, Q) < ρ. Denote by F an
xy-monotone path over the lattice [n] × [m] such that for all (i, j) ∈ F , M [i, j] = −1. All
lattice points in our constructed path F ′ are either in F or lie to the left of a point of F .

Proof. Consider for the sake of contradiction the first iteration where the algorithm would
add a lattice point (c, d) right of a point in F . Let (a, b) ∈ F ′ be the point preceding (c, d).
We make a case distinction based on whether (c, d) was added through step 3(i), 3(ii) or 4(ii).
The three cases are illustrated by Figure 4, (a) (b) and (c) respectively.

First suppose that (c, d) = (a, b + 1). Since (c, d) is the first point right of F , it must be
that F contains either (a, b) or a point right of (a, b). Moreover (since (c, d) is right of F), F

also contains a point left of (a, b + 1). This implies that F is not xy-monotone, contradiction.
Now suppose that (c, d) = (a + 1, b + 1). Because we reached step 3(ii), we know that

Mκ
ρ [a, b + 1] > −1 and thus (a, b + 1) ̸∈ F . However, since (c, d) is the first point right of F ,

F either contains (a, b) or a point right of (a, b), and a point strictly left of (a, b + 1). This
implies that F is not xy-monotone which is a contradiction.

Finally, suppose that (c, d) = (a + 1, b). Since (c, d) is the first point right of F , it must be
that (a, b) ∈ F . However, consider now the successor of (a, b) in F . Since F is xy-monotone,
this successor is either (a, b + 1) or (a + 1, b + 1), as it cannot be (a + 1, b) = (c, d). However,
this implies that either Mκ

ρ [a, b + 1] = −1 or Mκ
ρ [a + 1, b + 1] = −1, which contradicts the

assumption that we have reached step 4 of the algorithm. ◀

With these two observations, we are ready to prove our main theorem:

▶ Theorem 6. We can preprocess a planar graph G with N vertices in O(N1+o(1)) time and
space s.t: for any κ-straight path P = (p1, . . . , pn), walk Q = (q1, . . . , qm) and ρ ∈ R, we can
conclude either DF (P, Q) > ρ or DF (P, Q) ≤ (κ + 1)ρ in O((n + m) log2+o(1) N) time.

Proof. We first preprocess G to construct a distance oracle using O(N1+o(1)) time and space.
Given ρ, our algorithm spends at most n + m iterations before it either reaches (n, m) or step
4(i) and terminates. At each iteration we perform at most three distance queries. We prove
that if DF (P, Q) ≤ ρ, we always conclude that DF (P, Q) ≤ (κ + 1)ρ. Indeed, suppose that
DF (P, Q) ≤ ρ then there exists a discrete walk F such that for every (i, j) ∈ F , Mκ

ρ [i, j] = −1
and F is xy-monotone. Per construction, the path F ′ is xy-monotone and for all (i, j) ∈ F ′,
M [i, j] < 1. What remains to show is that F ′ is from (1, 1) to (n, m). Suppose for the sake
of contradiction that F ′ does not reach (n, m) and let (i, j) be the last element added to F ′

before the algorithm terminated in step 4. Since we reached step 4 it must be that:

Mκ
ρ [i, j + 1] > −1 and Mκ

ρ [i + 1, j + 1] > −1 (or (j + 1 ≤ m)).

Let ℓ ≤ i be the lowest integer such that Mκ
ρ [ℓ, j] = −1. Such an ℓ must always exist, since

we only enter the j’th row through a point (k, j) for which Mκ
ρ [k, j] = −1 (step 3(i) or 3(ii)).

Since we arrived in step 4(i), it must be that either Mκ
ρ [i + 1, j] = 1 or (i + 1) > n. However,

this implies that (i, j) ∈ F (indeed, by Lemma 5 there exists a point equal to or to the right
of (i, j) in F . However, given Lemma 4 and (ℓ, i), there is no a point in F right of (i, j)).
Because if F is xy-monotone, the successor of (i, j) ∈ F is either (i + 1, j + 1), (i + 1, j) or
(i, j + 1). Since we terminated, none of these elements can be in F , contradiction. ◀

The following corollary is a direct result of the assumption that edge weights each fit in a
constant number of words (thus, the range of values for DF (P, Q) is polynomial in N).

▶ Corollary 7. We can preprocess a planar graph G with N vertices in O(N1+o(1)) time such
that: for any κ-straight path P = (p1, . . . , pn) and walk Q = (q1, . . . , qm), we can compute a
(κ + 1)-approximation of D(G)(P, Q) in O((n + m) log3+o(1) N) time.

SoCG 2022

36:8 On the Discrete Fréchet Distance in a Graph

4 A (1 + ε)-approximation for Fréchet distance

We present a more involved approach to compute a (1 + ε) approximation of DF (P, Q).
Specifically, we choose (1 + ε) = (1 + α)(1 + α + β) for some α and β. We show for any ρ

how to correctly conclude either DF (P, Q) ≤ (1 + α)(1 + α + β)ρ or DF (P, Q) > ρ.
To obtain this result, we use two data structures. A Voronoi diagram of P in G marks

every vertex v in G with the closest vertex p ∈ P (and the exact distance d(v, p)). For
completeness, we prove in the full version the following (folklore) result:

▶ Theorem 8. For any planar weighted graph G = (V, E) and any vertex set P ⊆ V , it is
possible to construct the Voronoi diagram of P in G in O(|V | log |V |) time.

Additionally, we use the (1+α)-stretch distance oracle D(G) by Thorup [40]. We differentiate
between the distance d(pi, qj) and what we call the preceived distance between pi and qj .
For any two vertices pi, qj we denote by do(pi, qj) their perceived distance (the result of the
distance query of D(G)). Per definition d(pi, qj) ≤ do(pi, qj) ≤ (1 + α) · d(pi, qj).

▶ Definition 9. For a given value ρ ∈ R we denote by Mβ
ρ the approximate free-space matrix,

which is a matrix with dimensions n × m where:
Mβ

ρ [i, j] = −1 if the perceived distance do(pi, qj) ≤ (1 + α)ρ,
Mβ

ρ [i, j] = 1 if the perceived distance do(pi, qj) > (1 + α)(1 + α + β)ρ, or
Mβ

ρ [i, j] = 0 otherwise.

β-compression. Given a κ-straight path P and real values (ρ, β) we define the β-compression
P β as an ordered set that is obtained in three steps (Figure 5):

The first step is a greedy iterative process where:
we remove (consecutive) px where the length of P [p1, px] is fewer than βρ.
the first such vertex pi that does not meet this criterion is added to P β . Then, we
remove (consecutive) px where the length of P [pi, px] is fewer than βρ. and so forth.

In the second step we add for every vertex in P β its preceding vertex in P .
In the third step we add pn.

The result of this procedure is that we have an ordered set P β with n′ ≤ n vertices. We
create a map π : [n′] ↪→ [n] that maps every vertex in P β to its corresponding vertex in P

(i.e. the k’th element of P β is denoted by pπ(k)) ∈ P) and we observe:
π(1) = 1 and π(n′) = n,
for all i, the length of P [pπ(i), pπ(i+3)] is greater than βρ and
for all x ∈ [π(i), π(i + 1)], the exact distance d(pπ(i), px) < βρ and d(pπ(i+1), px) < βρ.

We denote P β =
(
pπ(1), pπ(2), . . . pπ(n′)

)
. The global approach is to approximate the Fréchet

distance between P β and Q instead. We first note the following three properties of P β :

▶ Lemma 10. For every two integers i and j, if Mβ
ρ [π(i), j] = −1, then for all integers

x ∈ (π(i − 1), π(i + 1)) it must be that Mβ
ρ [i, j] ≤ 1.

Proof. Either pπ(i−1) and pπ(i) are consecutive in P (thus, the set (π(i − 1), π(i)) is empty)
or per construction the length of P [pπ(i−1), pπ(i)] is less than βρ.

Thus, if the perceived distance do(pπ(i), qj) ≤ (1 + α)ρ, then for all points px with
x ∈ (π(i − 1), π(i)), the exact distance d(px, qj) ≤ (1 + α + β)ρ by traversing through pπ(i).
Thus, the perceived distance do(px, qj) ≤ (1 + α)(1 + α + β)ρ. A symmetrical argument holds
for all x ∈ (π(i), π(i + 1)). ◀

A. Driemel, I. van der Hoog, and E. Rotenberg 36:9

π(7) = 12

(a)

(b)

Figure 5 A planar path where the edge weights correspond to their length. (a) We greedily add
vertices to P β such that for all vertices px ∈ P with preceding vertex pi ∈ P β the length of P [pi, px]
is at most βρ. (b) For every vertex in P β , we subsequently add its preceding vertex in P to P β .

▶ Lemma 11. For all i and j, if there exists an integer x ∈ (π(i), π(i + 1)) such that
Mβ

ρ [x, j] = −1, then Mβ
ρ [π(i), j] ≤ 1 and Mβ

ρ [π(i + 1), j] ≤ 1.

Proof. As in Lemma 10, d(px, pπ(i)) ≤ βρ and d(px, pπ(i+1)) ≤ βρ implies the lemma. ◀

▶ Lemma 12. For any j, let i be an integer such that there exists an x ∈ [π(i), π(i + 1)]
with Mβ

ρ [x, j] = −1. Denote a = i − ⌈ 9κ
β ⌉ and b = i + ⌈ 9κ

β ⌉. There can be no integer
y ̸∈ [π(a), π(b)] such that Mβ

ρ [y, j] = −1.

Proof. For all i, the length of P [pπ(i), pπ(i+3)] is greater than βρ. It follows that the length
of the subpath P [pπ(a), px] is more than:

∑⌈3κ/β⌉
t=1 βρ = 3κ

β βρ = 3κρ (Figure 6). Suppose for
the sake of contradiction that there exists an integer y < π(a) such that do(py, qj) ≤ (1 + α)ρ.
Then the exact distance d(py, px) is at most 2(1 + α)ρ through traversing from py to qj to px.

However, the subpath P [py, px] is longer than P [pπ(a), px] and thus longer than 3κρ. For
α < 0.5, this contradicts the assumption that P is κ-straight.

A symmetrical argument holds for y > π(b). ◀

px
pπ(i)pπ(a)

py

> βρ

> 3κρ

Figure 6 A schematic representation of P β . For any i as in Lemma 12, we consider an integer
a = i − ⌈ 9κ

β
⌉ and some py preceding pπ(a).

SoCG 2022

36:10 On the Discrete Fréchet Distance in a Graph

Defining β-windows. Now, we use two lattices: [n] × [m] and the smaller lattice [n′] × [m].
Points on the first lattice will be denoted by (x, j) and (y, j). Points on the second lattice
will be denoted by (i, j) or (a, j) or (b, j). Intuitively, Lemma 12 shows for every integer j a
“horizontal window” in [n′] × [m] (of width O(κ

β)) that bounds the subpath of P of vertices
that may have perceived distance fewer than (1 + α)ρ to the vertex qj ∈ Q. We formalise
this intuition by defining β-windows (denoted by W1, W2, . . . Wm, see Figure 7):

Let for an index j, px be any vertex in P with minimal distance to qj in the graph G.
Let i be the integer such that pπ(i) is the point in P β that precedes px.
We distinguish two cases:

1. If the exact distance d(px, qj) > ρ then: Wj is empty.
2. Otherwise: Wj = [i − ⌈ 9κ

β ⌉, i + ⌈ 9κ
β ⌉] × {j} ⊂ [n′] × [m].

The high-level approach. We first construct the Voronoi diagram of P in G in O(N log N)
time. For every qj ∈ Q, we obtain from the diagram the vertex px ∈ P that is closest to qj

and the exact distance d(pi, qj) in O(1) time. With qj , we construct Wj in O(κ
β) time. For

every point (a, j) ∈ Wj we compute d(pπ(a), j) in O(1
α) time. Any lattice walk that realises

a distance DF (P, Q) ≤ (1 + α)(1 + α + β)ρ must be contained in the grid: A = ∪j Wj which
has O(m · κ

β) complexity. We compute a minimal cost path in time linear in the size of A.

q1

q2

q3

q4

qm

[n]

q1

q2

q3

q4

qm

[n′]

[m]

[m]

(a)

(b)

(c)

P β

q1

q2

q3

q4

q1

q2

q3

q4

qm

(a)

(b)

(c)

P β

Figure 7 (a) a schematic representation of a path P with P β in red. (b) For every j ∈ [m], we
observe the closest point px. If d(px, qj) ≤ ρ we color it green. Otherwise, we color it orange. In
addition, if px ̸∈ P β we color its predecessor in P β yellow. (c) For every yellow or green vertex in
[n′] × [m], we create a horizontal window in blue. We show the window for κ = β = 1.

▶ Theorem 13. Let G be a planar graph with N vertices, P = (p1, . . . , pn) a κ-straight
path and Q = (q1, . . . , qm) be any walk in G. Given a value ρ ∈ R and some β and
α ≤ 0.5, we correctly conclude either DF (P, Q) > ρ or DF (P, Q) ≤ (1 + α)(1 + α + β)ρ in
O(N log N/α + n + κ

αβ m)) time using O(N log N/α) space.

A. Driemel, I. van der Hoog, and E. Rotenberg 36:11

Proof. We construct the approximate distance oracle D(G) using O(N log N/α) time and
space. Given P and Q, we construct the β-compressed path P β in O(n) time. We supply
every point in P\P β with a pointer to the point in P β that precedes it. We construct the
Voronoi diagram of P in the graph G in O(N log N) time. Given P β , we construct for every
integer j ∈ [m] the window Wj in O(κ

β) time. Specifically, for any point qj we obtain the point
px that is closest to qj . If d(px, qj) ≤ ρ then we obtain the point pπ(i) in P β that precedes px

in constant time through the pre-stored pointer and we set: Wj = [i − ⌈ 9κ
β ⌉, i + ⌈ 9κ

β ⌉] × {j}.
The union of windows (A = ∪jWj) is a grid in [n′] × [m] of at most O(m · κ

β) lattice
points. For each (a, j) ∈ A we query D(G) in O(1

α) time to determine the value Mβ
ρ [π(a), j]

in O(m κ
αβ) total time. Given this grid, we construct a directed grid graph where there is:

a vertical edge from (a, j) to (a, j + 1) if Mβ
ρ [π(a), j] < 1 and Mβ

ρ [π(a), j + 1] < 1,
a horizontal edge from (a, j) to (a + 1, j) if Mβ

ρ [π(a), j] < 1 and Mβ
ρ [π(a + 1), j] = −1,

diagonal edge from (a, j) to (a + 1, j + 1) if Mβ
ρ [π(a), j] < 1 and Mβ

ρ [π(a + 1), j + 1] = −1.
We can determine if there exists a path in A from (1, 1) to (n′, m) in O(mκ

β) time.

If such a path F ∗ exists. we claim that DF (P, Q) ≤ (1 + α)(1 + α + β)ρ. Indeed, we
transform F ∗ into a path over [n] × [m] as follows: for all (a, j) ∈ F ∗ we add (π(a), j). Note
that per construction of the grid graph, for all points in F ∗ it must be that Mβ

ρ [π(a), j] < 1
and thus do(π(a), j) ≤ (1 + α)(1 + α + β)ρ. For every two consecutive points (a, j), (a + 1, j′)
in F ∗, per construction, Mβ

ρ [π(a+1), j′] = −1. We add all points (x, j′) with x ∈ [π(a), π(b)].
By Lemma 10, for all these points (x, j′) it must be that Mβ

ρ [x, j′] < 1. Thus, we found a
walk F from (1, 1) to (n, m) where for every (i, j) ∈ F , Mβ

ρ [i, j] < 1 and the Fréchet distance
between P and Q is at most (1 + α)(1 + α + β)ρ.

If no such path F ∗ exists. we claim that DF (P, Q) > ρ. Suppose for the sake of contra-
diction that DF (P, Q) ≤ ρ then there exists an xy-monotone path F from (1, 1) to (n, m)
where for all (i, j) ∈ F , d(pi, qj) ≤ ρ. We use F to construct a path F ∗ from (1, 1) to (n′, m)
in our grid graph. Specifically, for every element (x, j) ∈ F we check if px has been removed
during compression.

If px has an equivalent in P β then there exists an integer a such that pπ(a) = px and we
add the lattice point (a, j) ∈ [n′] × [m] to F ∗. Per definition of F , Mβ

ρ [π(a), j] = −1.
Otherwise, we identify the index i such that π(i) is the vertex of P β preceding px and we
add the point (i, j) ∈ [n′] × [m] to F ∗. By Lemma 11, Mβ

ρ [π(i), j] < 1.
Since F is a connected xy-monotone path from (1, 1) to (n, m), we obtain an xy-monotone
path F ∗ from (1, 1) to (n′, m). Moreover, whenever this path traverses a horizontal or
diagonal edge to a point (a, j) it must be that (π(a), j) ∈ F and thus Mβ

ρ [π(a), j] = −1.
Thus, F ∗ is a path from (1, 1) to (n′, m) in our grid graph which contradicts the earlier
assumption that no such path exists. ◀

This corollary follows immediately from choosing α = β = 0.25(
√

8ε + 9 − 3).

▶ Corollary 14. Let G be a planar graph with N vertices, P = (p1, . . . , pn) a κ-straight path
and Q = (q1, . . . , qm) be any walk in G. Given a value ρ ∈ R and some ε > 0 we correctly
conclude either DF (P, Q) > ρ or DF (P, Q) ≤ (1 + ε)ρ in O(N log N/

√
ε + n + κ

ε m)) time.

5 A conditional lower bound for computing the Fréchet distance

We show that for every δ > 0 there is no O((nm)1−δ) algorithm for computing for the discrete
Fréchet distance between two paths in a planar graph (unless OVH fails). We show this using a
planar graph G = (V, E) where the edges have integer weights in {0.001, 0.35, 0.6, 0.65, 1, 2, 3}.

SoCG 2022

36:12 On the Discrete Fréchet Distance in a Graph

In the full version we prove a similar statement for walks in a constant-complexity unit-weight
graph. Throughout this section, we fix some δ > 0 and γ > 0 and consider two sets A and B

of d-dimensional Boolean vectors (with d = ω log n where the constant ω depends on δ). In
addition, we assume that A and B contain n′ and m′ vectors respectively with n′ = (m′)γ .
Using A and B, we reduce from Orthogonal Vectors using what we call a vector gadget. We
construct a graph G and two paths P and Q where DF (P, Q) < 3 if and only if there exists
(a, b) ∈ A × B such that a and b are orthogonal.

Proof notation. Throughout this section, we label vertices to represent an equivalence class.
We construct a graph where we label “blue” vertices with a label in {x, y, z, B{0}, B{1}, B}
and “red” vertices with a label in {α, α∗, β, β∗, γ, A{0}, A{1}, A}. Ideally, we would construct a
graph where for every red-blue pair of labels, all red-blue vertices with those two labels have the
same distance. We maintain a slightly weaker property: consider any red-blue pair of vertices
b, r with label(b) ∈ {x, y, z, B{0}, B{1}, B} and label(r) ∈ {α, α∗, β, β∗, γ, A{0}, A{1}, A}.
We demand the following: if d(b, r) < 3 then for all (b′, r′) with label(b′) = label(b) and
label(r′) = label(r) it must be that d(b′, r′) < 3.

We construct for every vector in A (and B) a vector gadget. This gadget resembles the
gadget used in the conditional lower bound for the Fréchet distance in the Euclidean plane
by Bringmann [7]. The path P will traverse all vector gadgets of A in sequence (and Q will
traverse gadgets of B). We connect all gadgets of A to all gadgets of B via “star” vertices
(grey triangles or diamonds). These stars ensure that there can be a matching between every
pair of gadgets (vectors). Finally, we add “park” vertices (square vertices) which are vertices
of A (or B) that are close to all vertices of B (or A). The intuition is, that during a traversal
(reparametrization) of P and Q an entity can remain stationary at a park vertex, whilst the
other entity traverses their corresponding path until the appropriate gadgets can be matched.

Vector gadget. We illustrate the vector gadget for vectors b ∈ B (see Figure 8). The “core”
of this subgraph is vertex y connected to the following construction (repeated d times): there
are two Boolean vertices (B{0}, B{1}), followed by an intermediary vertex B. This core
will allow us to model a d-dimensional Boolean vector. We connect the core to two park
vertices x and z where we add an edge (x, y) and (B, z) of weight 3. Finally, we add two star
vertices where every vertex B, y and x get connected to the top star vertex, and every vertex
x, B{0}, z get connected to the bottom star vertex. For every vector in A, the corresponding
vector gadget is nearly identical. Most crucially, this subgraph is vertically mirrored and the
edges attached to star vertices have different weights.

From gadgets to a graph. Given our instance of OV, we construct (n + m) vector gadgets.
Next, we combine the gadgets (Figure 9). We highlight the important steps: all the vector
gadgets of B (and A) are placed horizontally adjacent to each other.
The vertices {s↓, z, σ↑} get connected via a star vertex in the centre of the graph. Each vertex
s↑ gets connected to a star vertex at the top of the graph. Each vertex σ↓ gets connected
to a star vertex at the bottom of the graph. These two stars get connected via an edge
with weight 2. Given this graph G, we say that a red vertex r is close to a blue vertex b if
d(r, b) < 3. For every blue label, we observe the set of close red labels (Table 1):

Constructing the paths P and Q. Given G, A and B, we construct a path P consisting of
n = O(n′ · d) vertices and a path Q consisting of m = O(m′ · d) vertices (refer to Figure 9).
The path P starts in α and then moves to α∗. Then, P traverses every vector gadget of A in

A. Driemel, I. van der Hoog, and E. Rotenberg 36:13

y

B{1}

B{0} γ

A{0}

σ↑

A{1}

A

B B B
B{1}

A A A
A{1}

B
B{1} B{1}

A{1} A{1}

= 0.65 = 1

= 0.6

= 0.35

zx

= 3

s↓

s↑

σ↓

B{0}
B{0}B{0}

A{0}A{0}A{0}

Figure 8 The gadgets for vectors in B and in A. The path corresponding to B will traverse blue
vertices, the path corresponding to A red.

Table 1 The shortest distance between vertices with a label in {α, α∗, β, β∗, γ, A{0}, A{1}, A}

and in { x, y, z, B{0}, B{1}, B } , showing far and near pairs of labels.

dist. α α∗ β β∗ γ A{0} A{1} A

x .65 2.65 2.3 4.3 2.702 2.301 2.951 2.952
y 1.6 3.6 2.601 4.601 2.952 3.251 3.302 3.202
z 2.3 4.3 .65 2.65 1.652 0.652 1.302 1.652

B{0} 1.95 3.95 2.3 4.3 3.301 2.301 2.951 3.301
B{1} 1.7 3.7 2.701 4.701 3.051 2.951 3.402 3.302

B 1.35 3.35 2.351 4.351 2.702 3.001 3.051 2.951

sequence. Let v be the first vector in A. The path P arrives at y and traverses the Boolean
vertices and intermediate vertices in an alternating manner (where P traverses A{0} if the
corresponding Boolean in v is false and A{1} if the corresponding Boolean is true). Having
traversed every vector gadget, P moves through β∗ to β. The path Q traverses every vector
gadget of B in sequence. Let a gadget correspond to a vector v′ ∈ B:

The path Q starts at the vector x in the gadget and then traverses the Boolean vertices and
intermediate vertices in an alternating manner (where Q traverses B{0} if the corresponding
Boolean in v′ is false and B{1} if the corresponding Boolean is true). The path Q ends at
the vector z, and continues to the next gadget.

▶ Theorem 15. Let G be a planar, integer-weighted graph, P and Q be two paths in G with
n and m vertices and n = mγ for some constant 0 < γ ≤ 1. For all δ > 0, there can be no
algorithm that computes (a 1.01-approximation of DF (P, Q)) in O((nm)1−δ) time.

Proof. For any given A and B of n′ and m′ vectors, we construct two paths P and G with
n = O(n′ log n′) and m = O(m′ log m′) vertices respectively. OVH postulates that there
exists no algorithm that can conclude if there exists two orthogonal vectors (a, b) ∈ A × B in
O((nm)1−δ) time, for any δ > 0. We prove this theorem by showing that there are two such
vectors if and only if DF (P, Q) < 3. We observe that in our graph for all red/blue vertices r

and b either d(r, b) ≤ 2.96 or d(r, b) ≥ 3 (which implies this proof for the 1.01-approximation).

SoCG 2022

36:14 On the Discrete Fréchet Distance in a Graph

y B

γ

α

α∗

y

s↑

γ

σ↓

B

γ

σ↓

β∗β

s↑

B

B = {(1, 0, 1, 0), (1, 1, 1, 0), (0, 0, 1, 1)}

A = {(0, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0)}

y

x z

γ

y

B{1}

B{0}

s↑

γ

A{0}

σ↓

A{1}

A

B

A
A{1} A{1} A{1}

γ
A{1}

A
A A A

A{1} A{1} A{1}

α

α∗

β∗

β

x

= 0.001

= 0.65

= 1

= 2

= 0.6

= 0.35

z = 3

σ↓ σ↓

s↓

σ↑ σ↑

s↑

σ↓

B B B
B{1} B{1} B{1}

B{0} B{0} B{0}

A A

A{0}A{0}A{0} A{0}A{0}A{0}A{0}

Figure 9 Top: we show how pairwise gadgets get connected. Bottom: given a set A of four and
B of three vectors, we construct the corresponding graph and path.

A. Driemel, I. van der Hoog, and E. Rotenberg 36:15

We show that if there exist two orthogonal vectors (a, b) ∈ A × B then DF (P, Q) < 3.
We construct a traversal of P and Q where the red entity (henceforth “Red”) traversing P

remains close to the blue entity (“Blue”) traversing Q. First, Red is stationary at the park
vertex α, whilst Blue traverses B until it reaches the vector gadget corresponding to b ∈ B.
Then, whilst Blue remains stationary at the park vertex x, Red traverses P until it reaches
the vector gadget corresponding to a ∈ A. At this point, Blue moves to y as Red moves to γ.
Both entities simultaneously traverse their vector gadgets. During this traversal (since a and
b are orthogonal) the entities remain close. Then, Blue remains stationary at z, whilst Red
traverses the rest of P . Finally, Red remains at β whilst Blue traverses the rest of Q.

We show that if DF (P, Q) < 3 then there exists a pair of vectors (a, b) ∈ A × B such
that a and b are orthogonal. Indeed, fix any traversal of P and Q that realises the Fréchet
distance. When Red is at α∗, Blue must be at some vertex x.

Consider now the time when Blue moves from x to y (where y lies in a gadget corresponding
to some vector b ∈ B). At this time, Red cannot be at the park vertex α because α precedes
α∗. Similarly, Red cannot be at the park vertex β because β∗ precedes β (and β∗ is not close
to x). Since close(y) = {γ, α, β}, it must be that Blue is at some vertex γ (corresponding
to some vector a ∈ A). Now consider the next time step, when we assume that Red moves
to {A{0}, A{1}} (the argument for when Blue moves to {B{0}, B{1}} is symmetrical). If Red
moves to A{0} then, via the same argument as above, Blue has to simultaneously move to
B{0} or B{1}. If Red moves to A{1} then Blue must move to B{0}. For the next time step,
via the same argument, both entities must move to A and B. We can continue this same
argument, which shows that the two vectors a and b must be orthogonal. ◀

6 Concluding remarks

This paper is the first to study the natural question of computing the Fréchet distance
between walks P and Q in graphs. Our algorithmic results (including the Voronoi diagram
construction) do not depend on the planarity of G; we rely only on a distance oracle. Hence,
our result immediately holds for other classes of graphs where it is possible to efficiently
construct distance oracles or in computational models where the distance oracle is provided.
Given a distance oracle, our (κ + 1) approximation is obtained in time (near-) linear in
(|P | + |Q|). In other words, our result in Section 3 allows us to pre-process a graph G in time
nearly linear to its vertices, in order to efficiently facilitate Fréchet distance queries between
two any two walks in (as long as one of the two walks is κ straight for some query constant
κ). This is not true for our (1 + ε)-approximation algorithm, which currently requires the
construction of a Voronoi diagram of P in G and thus, for every pair of walks, must spend
near-linear time in G.

References

1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pages 434–443. IEEE, 2014.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004.

SoCG 2022

36:16 On the Discrete Fréchet Distance in a Graph

4 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In European symposium on algorithms, pages 52–63. Springer,
2006.

5 Alessandro Bombelli, Lluis Soler, Eric Trumbauer, and Kenneth D Mease. Strategic air traffic
planning with Fréchet distance aggregation and rerouting. Journal of Guidance, Control, and
Dynamics, 40(5):1117–1129, 2017.

6 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle
tracking data. In Proceedings of the 31st international conference on Very large data bases,
pages 853–864, 2005.

7 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 661–670. IEEE, 2014.

8 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27(01n02):85–119, 2017.

9 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2016.

10 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan,
Rodrigo I Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construction.
In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 1–10, 2017.

11 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017.

12 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 645–654. SIAM, 2009.

13 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Seth says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2887–2901. SIAM, 2019.

14 Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for representing
trajectories. International Journal of Geographical Information Science, 34(12):2401–2433,
2020.

15 Erin Wolf Chambers, Eric Colin De Verdiere, Jeff Erickson, Sylvain Lazard, Francis Lazarus,
and Shripad Thite. Homotopic Fréchet distance between curves or, walking your dog in the
woods in polynomial time. Computational Geometry, 43(3):295–311, 2010.

16 Timothy M Chan and Zahed Rahmati. An improved approximation algorithm for the discrete
Fréchet distance. Information Processing Letters, 138:72–74, 2018.

17 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Almost
optimal distance oracles for planar graphs. In Moses Charikar and Edith Cohen, editors,
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 138–151. ACM, 2019. doi:10.1145/
3313276.3316316.

18 Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact exact
distance oracle for planar graphs. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 962–973. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.93.

19 Connor Colombe and Kyle Fox. Approximating the (continuous) Fréchet distance. In 37th
International Symposium on Computational Geometry (SoCG 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

20 Thomas Devogele. A new merging process for data integration based on the discrete Fréchet
distance. In Advances in spatial data handling, pages 167–181. Springer, 2002.

https://doi.org/10.1145/3313276.3316316
https://doi.org/10.1145/3313276.3316316
https://doi.org/10.1109/FOCS.2017.93

A. Driemel, I. van der Hoog, and E. Rotenberg 36:17

21 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.

22 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. doi:
10.1007/s00454-012-9402-z.

23 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

24 David Göckede. Computing the Fréchet distance in graphs efficiently using shortest-path
distance oracles. Master’s thesis, Department of Computer Science, University of Bonn, 2021.

25 Qian-Ping Gu and Gengchun Xu. Constant query time (1+ε)-approximate distance oracle for
planar graphs. Theor. Comput. Sci., 761:78–88, 2019. doi:10.1016/j.tcs.2018.08.024.

26 Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk. Fast Fréchet
distance between curves with long edges. International Journal of Computational Geometry &
Applications, 29(02):161–187, 2019.

27 Atlas F Cook IV and Carola Wenk. Geodesic Fréchet distance inside a simple polygon. ACM
Transactions on Algorithms (TALG), 7(1):1–19, 2010.

28 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with discrete
Fréchet distance. Journal of bioinformatics and computational biology, 6(01):51–64, 2008.

29 Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate
distance queries. In David Eppstein, editor, Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages
820–827. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545488.

30 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver,
British Columbia, Canada, January 23-25, 2005, pages 146–155. SIAM, 2005. URL: http:
//dl.acm.org/citation.cfm?id=1070432.1070454.

31 Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca Giuggioli,
Jed Long, Trisalyn Nelson, Michel A Westenberg, and Kevin Buchin. Visual analytics of delays
and interaction in movement data. International Journal of Geographical Information Science,
31(2):320–345, 2017.

32 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517–2537. SIAM, 2021.
doi:10.1137/1.9781611976465.149.

33 Anil Maheshwari, Jörg-Rüdiger Sack, Kaveh Shahbaz, and Hamid Zarrabi-Zadeh. Fréchet
distance with speed limits. Computational Geometry, 44(2):110–120, 2011.

34 Ariane Mascret, Thomas Devogele, Iwan Le Berre, and Alain Hénaff. Coastline matching
process based on the discrete Fréchet distance. In Progress in Spatial Data Handling, pages
383–400. Springer, 2006.

35 Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science & Business Media,
2013.

36 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approxi-
mate distance oracles and spanners. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming,
32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceed-
ings, volume 3580 of Lecture Notes in Computer Science, pages 261–272. Springer, 2005.
doi:10.1007/11523468_22.

37 Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle trajectory
similarity: Models, methods, and applications. ACM Comput. Surv., 53(5), September 2020.
doi:10.1145/3406096.

SoCG 2022

https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1016/j.tcs.2018.08.024
http://dl.acm.org/citation.cfm?id=545381.545488
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1007/11523468_22
https://doi.org/10.1145/3406096

36:18 On the Discrete Fréchet Distance in a Graph

38 E Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), volume 1, pages 461–465. IEEE, 2007.

39 Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation. The VLDB Journal, 29(1):3–32, 2020.

40 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993–1024, 2004.

41 Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Jeffrey Scott Vitter, Paul G.
Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 183–192. ACM, 2001.
doi:10.1145/380752.380798.

42 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

43 Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Encyclo-
pedia of Algorithms, pages 94–97. Springer, 2016. doi:10.1007/978-1-4939-2864-4_568.

44 Dong Xie, Feifei Li, and Jeff M Phillips. Distributed trajectory similarity search. Proceedings
of the VLDB Endowment, 10(11):1478–1489, 2017.

https://doi.org/10.1145/380752.380798
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1007/978-1-4939-2864-4_568

	1 Introduction
	2 Preliminaries
	3 A (kappa+1)-approximation for the discrete Fréchet distance
	4 A (1+epsilon)-approximation for Fréchet distance
	5 A conditional lower bound for computing the Fréchet distance
	6 Concluding remarks

