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Abstract
A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately
related to that of its exterior, which is the complement of an open regular neighborhood of the
knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact
3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical
algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies
to links as well as knots, and allows us to recover links with hundreds of crossings. We use it to find
the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over
2,500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which
relates to questions about slice knots and the smooth 4D Poincaré conjecture.
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Figure 1 A planar diagram for a knot is a 4-valent graph with a planar embedding where every
vertex represents a crossing, a place where one part of the knot crosses in front of the other in 3D.
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37:2 Computing a Link Diagram from Its Exterior

1 Introduction

A knot is a piecewise-linear (PL) embedding of a circle S1 into the 3-sphere S3. The study of
knots goes back to the 19th century, and today is a central focus of low-dimensional topology,
with applications to chemistry [23], biology [24], engineering [40], and theoretical computer
science [16]. Two knots are topologically equivalent when they are isotopic, that is, when one
can be continuously deformed to the other without passing through itself. Computationally,
knots are typically encoded as planar diagrams (Figure 1); there are more than 350 million
distinct knots with diagrams of at most 19 crossings as enumerated by [11].

The topology of knots is intimately related to that of their exteriors, where the exterior of
a knot K is the compact 3-manifold with torus boundary E(K) := S3 \ N(K) where N(K) is
an open tubular neighborhood of K. Indeed, the exterior E(K) determines the knot K [26].
Many algorithms for knots work via their exteriors, starting with Haken’s foundational
method for deciding when a knot is equivalent to a round circle [27]. Consequently, the
problem of going from a diagram D of K to a triangulation of E(K) is well-studied [28, §7];
for ideal triangulations (see Section 2.1 below), one needs only four tetrahedra per crossing
of D [51, §3]. Here, we study the inverse problem:

▶ Find Diagram. Input a triangulation T of a knot exterior E(K), output a diagram of K.

If the input triangulation T is guaranteed to be that of a knot exterior (in fact, this
is decidable by Algorithm S of [33]), then a useless algorithm to find D is just this: start
generating all knot diagrams, triangulate each exterior, and then do Pachner moves (see
Section 2.4) on these triangulations. Since any two triangulations of a compact 3-manifold
are connected by a sequence of such moves, one eventually stumbles across T , thus finding a
diagram for the underlying knot. We do not explore the computational complexity of Find
Diagram here (though it is at least exponential space by Theorem E.1 in Appendix E of
the full version [18]), but rather give the first algorithm that is highly effective in practice.
We work more generally with links, where a link is a disjoint union of knots. While a link
exterior does not uniquely determine a link [3, Figure 9.28], this indeterminacy is removed by
specifying meridional curves for the link; hence we require such curves as part of the input
in Section 1.2. Figures 2 and 3 show diagrams that were found by our method; these are the
first known diagrams of these particular link exteriors, see Section 9.1.

1.1 Prior work
The case when the interior of E(K) has a complete hyperbolic structure, in short is hyperbolic,
is in practice generic for prime knots; for example, 99.999% of the knots in [11] are hyperbolic.
The homeomorphism problem for such 3-manifolds can be quickly solved in practice using
hyperbolic geometry, even for triangulations with 1,000 tetrahedra [53]. This allows a
table lookup method for Find Diagram when K is small enough; one uses hyperbolic and
homological invariants to form a hash of E(K), queries a database of knots to get a handful
of possible Ki, and then checks if any E(Ki) is homeomorphic to E(K). This technique is
used by the identify method of [15], but is hopeless for something like Figure 2, as the
number of links of that size exceeds the number of atoms in the visible universe [47].

A related approach was used in [14, 5] to find knot diagrams for all 1,267 knots where
E(K) is hyperbolic and can be triangulated with at most 9 ideal tetrahedra [8, 17]. While
knots with few crossing have simple exteriors, the converse is not the case, and the simplest
known diagrams for about 25% of these knots have 100–300 crossings. However, these knots
either fall into very special families which can be tabulated to a large number of crossings, or
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Figure 2 The first known diagram of a link whose exterior is M̊ = H3/Γ(I) where Γ(I) is
the principal congruence subgroup of PSL2Z[ 1+

√
15i

2 ] of level I =
〈
6, −3+

√
15i

2

〉
from [6]; it has 24

components and 294 crossings. The input ideal triangulation T̊ for M̊ had 249 tetrahedra. Since the
hyperbolic volume of M̊ ≈ 225.98, any diagram must have at least 66 crossings by [1, Theorem 5.1].
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37:4 Computing a Link Diagram from Its Exterior

Figure 3 The first known diagram of a link whose exterior is M̊ = H3/Γ(I) where Γ(I) is
the principal congruence subgroup of PSL2Z[ 1+

√
15i

2 ] of level I =
〈
5, 5+

√
15i

2

〉
from [6]; it has 24

components and 1,092 crossings. The input ideal triangulation T̊ for M̊ had 211 tetrahedra. Since
the hyperbolic volume of M̊ ≈ 188.32, any diagram must have at least 56 crossings [1, Theorem 5.1].

one can drill out additional curves to get a link exterior that appears in an existing table
and has special properties allowing the recovery of a diagram of the knot itself. There are
other ad hoc methods in the literature, see e.g. [7] and references therein, but this paper is
the first to give a generically applicable method for Find Diagram.

1.2 Outline of algorithm
As Figures 2 and 3 show, our method can solve Find Diagram in some cases where any
diagram for the link has 55 or more crossings. We also easily recover everything in Section 1.1,
and more applications are given in Sections 8 and 9. Experimental mean running time was
O(1.07n), see Figure 14. With the definitions of Section 2, the input for our algorithm is:
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▶ Input.
a. An ideal triangulation T̊ of a compact 3-manifold M̊ with toroidal boundary, with an

essential simple closed curve αi for each boundary component of M̊ .
b. A sequence (Pi) of Pachner moves transforming the layered filling triangulation T of the

manifold M = M̊(α1, . . . , αk) into a specific 2-tetrahedra base triangulation T0 of S3.

You might object that (b) is effectively cheating, since no polynomial-time algorithm for
finding (Pi) is known, or indeed for deciding if M is S3. Using the estimates in [37], one can
perform a naive search to find some (Pi), but the complexity of this is super-exponential.
However, recognizing S3 by finding such moves is easy in practice, see Section 7, with the
length of (Pi) linear in the size of T as per Figure 16. The output of the algorithm is a knot
diagram D, encoded as a planar graph with over/under crossing data for the vertices.

The main data structure is a triangulation T of S3 with a PL link L that is disjoint from
the 1-skeleton. The link L is encoded as a sequence of line segments, each contained in a
single tetrahedron of T , with endpoints recorded in barycentric coordinates. An initial pair
(T , L) in (b) is constructed from input (a) as described in Appendix A of the full version
[18]. The algorithm proceeds by performing the Pachner moves Pi from (b), keeping track of
the PL arcs encoding the link L throughout using the techniques of Section 3. The result
is the base triangulation enriched with PL arcs representing the link L. As detailed in
Section 5, this triangulation of S3 can be cut open along faces and embedded in R3, giving
an embedding of the cut-open link into R3 as a collection of PL arcs with endpoints on the
boundary of these tetrahedra. As in Figure 11, these PL arcs are then tied up using the
face identifications to obtain a collection of closed PL curves that represent L. An initial
link diagram D is obtained by projecting this PL link onto a plane and recording crossing
information. We then apply generic simplification methods to D and output the result.

This outline turns out to be deceptively simple. Some key difficulties are:
1. Understanding what 2 → 3 and 3 → 2 Pachner moves do to the link L is fairly straight-

forward as these correspond to changing the triangulation of a convex polyhedron in R3.
However, while these two moves theoretically suffice for (b), in practice one wants to use
2 → 0 moves as well, see Section 7, and these are much harder to deal with, as Figure 6
shows. We thus expand each 2 → 0 move into a (sometimes quite lengthy) sequence of
2 → 3 and 3 → 2 moves as discussed in Section 4. We give a simplified expansion for the
trickiest part, the endpoint-through-endpoint move, using 6 of the basic 2 → 3 and 3 → 2
moves instead of 14.

2. The complexity of the link grows very rapidly as we do Pachner moves, resulting in
enormously complicated initial diagrams. We greatly reduce this by elementary local
simplifications to the link after each Pachner move, see Section 3.2.

3. Prior work on simplifying link diagrams was focused on those with 30 or fewer crossings,
where random application of Reidemeister moves (plus flypes) are extremely effective.
Here, we need to simplify diagrams with 10,000 or even 100,000 crossings down to
something with less than 100, and such methods proved ineffective for this. Instead, we
used the more global strand pickup method of Section 6.

2 Background

2.1 Triangulations
Let M be a compact orientable 3-manifold, possibly with boundary. A triangulation of M is
a cell complex T made from finitely many tetrahedra by gluing some of their 2-dimensional
faces in pairs via orientation-reversing affine maps so that the resulting space is homeomorphic
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37:6 Computing a Link Diagram from Its Exterior

to M . These triangulations are not necessarily simplicial complexes, but rather what are
sometimes called semi-simplicial, pseudo-simplicial, or singular triangulations. Of particular
importance are those with a single vertex, the 1-vertex triangulations. We use T i to denote
the i-skeleton of T . When M has nonempty boundary, an ideal triangulation of M is a
cell complex T made out of finitely many tetrahedra by gluing all of their 2-dimensional
faces in pairs as above so that M \ ∂M is homeomorphic to T \ T 0. Put another way, the
manifold M is what you get by gluing together truncated tetrahedra in the corresponding
pattern. See [49] for background on ideal triangulations, which we use only for 3-manifolds
whose boundary is a union of tori. We always include the modifier “ideal”, so throughout
“triangulation” means a non-ideal, also called “finite”, triangulation.

2.2 Triangulations with PL curves
Consider a tetrahedron ∆ in Rn as the convex hull of its vertices v0, v1, v2, and v3. We
encode points in ∆ using barycentric coordinates, that is, write p ∈ ∆ as the unique convex
combination

∑
i xivi and then represent p by the vector (x0, x1, x2, x3), where of necessity∑

i xi = 1. For a 3-manifold triangulation T , we view each tetrahedron τ as having a fixed
identification with the tetrahedron in R4 whose vertices are the standard basis vectors; we
use this to encode points in τ by barycentric coordinates.

An oriented PL curve in T will be described by a sequence of such barycentric coordinates
as follows. A barycentric arc a is an ordered pair of points (u, v) in a tetrahedron τ ,
representing the straight segment joining them. We write a.start = u and a.end = v. A
barycentric curve C is a sequence of barycentric arcs ai such that ai.end and ai+1.start
correspond to the same point in M under the face identifications of T . For a barycentric curve,
we define ai.next = ai+1 and ai+1.past = ai; these may not lie in the same tetrahedron.
Suppose the barycentric curve C consists of N barycentric arcs. If a0.start and aN .end
correspond to the same point in M , we have a barycentric loop. An embedded barycentric
loop is a barycentric knot. A barycentric link is a finite disjoint union of such knots.

We always require that a barycentric curve C is in the following kind of general position
with respect to T . First, C is disjoint from T 1. Second, any intersection of a constituent
barycentric arc a with T 2 is an endpoint of a. Finally, arcs do not bounce off faces of T 2, so
if an arc ends in a face, the next arc must be in the adjacent tetrahedron on the other side
of that face. Throughout, we use only points whose barycentric coordinates are in Q.

2.3 Dehn filling
Suppose M̊ is a compact 3-manifold whose boundary is a union of tori. Given an essential
simple closed curve αi on each boundary component Ti, the Dehn filling of M̊ along
α = (α1, . . . , αk) is the closed 3-manifold M̊(α) obtained from M̊ by gluing a solid torus
D2 × S1 to each Ti so that ∂D2 × {point} is αi. When M̊ is the exterior of a link L in S3

and each αi is a small meridional loop about the i-th component of L, then M̊(α) is just
S3. Given an ideal triangulation T̊ of M̊ and Dehn filling curves α, we follow [52, 32, 33] to
create a 1-vertex triangulation T of M̊(α) that we call the layered filling triangulation; see
Appendix A of the full version [18]. A key point is that the link L consisting of the cores of
the k added solid tori is a barycentric link in T made of just k barycentric arcs.

2.4 Pachner moves
A 3-manifold triangulation T can be modified by local Pachner moves (bistellar flips) to
give a new triangulation of the same underlying manifold. Those we use are:
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0 → 2 2 → 3

4 → 4

Figure 4 Pachner moves which preserve the number of vertices.

1. The 2 → 3 move and its inverse 3 → 2 move. These take a triangulation of a ball, possibly
with boundary faces glued together, and retriangulate the interior without changing the
boundary triangulation. Specifically, the 2 → 3 move takes a pair of distinct tetrahedra
sharing a face and replaces them with three new tetrahedra around a new central edge.
The 3 → 2 move reverses this, replacing three distinct tetrahedra around a valence-3 edge
with two tetrahedra sharing a face.

2. The 4 → 4 move. The 4 → 4 move takes four tetrahedra around a central edge and
replaces them with four new tetrahedra assembled around a new valence-4 edge.

3. The 2 → 0 move and its inverse 0 → 2 move. The 2 → 0 move takes a pair of tetrahedra
sharing two faces to form a valence-2 edge and collapses them onto their common faces.
The 0 → 2 move reverses this by puffing air into a pair of faces sharing an edge and
adding two new tetrahedra. We call the complex created by the 0 → 2 move a pillow.
The 0 → 2 move inflates a pillow and the 2 → 0 move collapses a pillow.

If S and T are two 1-vertex triangulations of the same closed 3-manifold M , then there
is a sequence of Pachner moves that transforms S into T ; provided both S and T have at
least two tetrahedra, one needs only use 2 → 3 and 3 → 2 moves by [36, Theorem 1.2.5] (see
also [39, 42]). When M is S3, any triangulation T with n tetrahedra is related to a standard
triangulation by at most 12 · 106n222·103n2 Pachner moves [37]. Experimentally, one needs
many fewer moves [9]. In our data shown in Figure 16, the number is O(n); this is essential
for the utility of our algorithm for Find Diagram.

3 Modifying triangulations with arcs

Using part (a) of the input data, we first build the layered filled triangulation T of Section 2.3,
which comes enriched with a barycentric link L. Part (b) of the input data is a sequence of
Pachner moves (Pi) converting T to the base triangulation T0 of Section 5. The next step of
our algorithm is to apply the moves (Pi) to T , carrying the link L along as we go.

SoCG 2022



37:8 Computing a Link Diagram from Its Exterior

Figure 5 Two bipyramids with superimposed triangulations corresponding to before and after
applying the 4 → 4 move and 2 → 3 or 3 → 2 moves.

3.1 Pachner moves with arcs
We call the 2 → 3, 3 → 2, and 4 → 4 moves the simple Pachner moves. Each simple Pachner
move P takes a triangulated ball B in T , possibly with boundary faces glued together, and
re-triangulates B without changing the triangulation of ∂B to obtain PT . The arcs of the
link L contained in the ball are initially encoded using the barycentric coordinates of T , and
we need to re-express these arcs in the new barycentric coordinate system of PT . We model
each simple Pachner move as a pair of triangulations of concrete bipyramids in R3, as shown
in Figure 5. We identify the tetrahedra in T and PT involved in P with tetrahedra in the
corresponding bipyramid in R3. This identification allows us to map barycentric arcs from
T into R3, and then to map these arcs in R3 into PT . Appendix B of the full version [18]
details how this is used to give a method with_arcs[P ] that applies a simple Pachner move
P to T while transferring the barycentric arcs from T to PT . This approach cannot work
for the 2 → 0 move, as demonstrated by Figure 6. To implement with_arcs[2 → 0], we
factor the 2 → 0 move into a sequence of 2 → 3 and 3 → 2 moves as described in Section 4.

Figure 6 Cartoon showing the difficulty of doing a 2 → 0 move with arcs present. At left, the
two tetrahedra in the pillow to be collapsed are shaded. Here, you should regard the vertical purple
arc as the valence-2 edge, with the blue and red dots opposite being cross-sections of the two edges
of the pillow that become identified in the collapse. The problem is that we have to push all the
topology of the link out of the pillow before we collapse it, requiring us to move arcs into many of
the tetrahedra adjacent to the pillow.

3.2 Simplifying arcs
Given the inputs (a) and (b) of Section 1.2, the machinery of Section 3.1 always produces
the desired link L in the base triangulation T0. However, even in the smallest examples,
applying the sequence of Pachner moves to T produces incredibly complicated configurations
of arcs in T0 encoding L. This complexity makes necessary computational geometry tasks
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straighten

a b

push

a
b

τ

τ ′F

Figure 7 The straighten move removes unnecessary bends in the link, and the push move reduces
unnecessary intersections with the 2-skeleton.

prohibitively expensive. Fortunately, much of this complexity is not topologically essential,
and the number of arcs can be decreased dramatically by the basic simplifications we now
describe. Without these, applying our full algorithm to an ideal triangulation T̊ with just
two tetrahedra resulted in 838 arcs and an initial link diagram with 5,130 crossings; with the
simplifications, we get 19 arcs and 35 crossings. A 3-tetrahedra ideal triangulation resulted
in 129,265 arcs compared to 27 with simplifications, and something with 10 tetrahedra would
be impossible without them. Our two kinds of simplification moves are shown in Figure 7.

The first is straighten, which takes as input a tetrahedron τ with barycentric arcs. It
then checks for each arc a in τ if the pair of arcs a and b = a.next can be replaced with
a single arc that runs from a.start and b.end. The check is that no other arc in τ has
an interior intersection with the triangle spanned by a and b. The other move is push,
which removes unnecessary intersections with T 2. When a starts on the same face F that
b = a.next ends on, it checks whether any other arc intersects the triangle a and b span. If
there are none, the move replaces a and b with an arc in the tetrahedron τ ′ glued to τ along
F . This often produces a bend that can then be removed by a straighten move.

3.3 Computational geometry issues
Our algorithm requires many geometric computations with barycentric arcs, e.g. to test for
one of our simplifying moves and to ensure we do not violate the general position requirement
of Section 2.2. Difficult and subtle issues can arise here, and much work has been done to
ameliorate them; see [44] for a survey. We took the approach of having all coordinates in
Q so that so we can do these computations exactly. This entails a stiff speed penalty and
leads to points represented by rational numbers with overwhelmingly large denominators.
We handle such denominators by rounding coordinates so that the denominator is less than
232. One can certify at each step by simple local tests that this rounding does not change the
isotopy type of the link. However, when the input manifold is hyperbolic, we instead certify
correctness of the output diagram after the fact by checking that its exterior is homeomorphic
to the manifold in part (a) of the input; this is considerably faster than checking at each step.

SoCG 2022
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3.4 Putting the pieces together

Let T be a layered filling triangulation with arcs encoding the core curves of the filling and
let (Pi) be Pachner moves reducing T to T0. Our process for producing a barycentric link in
T0 that is isotopic to the initial L is:

Algorithm 1 with_arcs[apply_Pachner_moves]
(
T , (Pi)

)
.

Start with T ′ := T and loop over the P1, P2, . . . Pn as follows:
1. Apply with_arcs[Pi] to T ′ to get PiT ′ with arcs representing L. Set T ′ := PiT ′.
2. Loop over the tetrahedra τ in T ′, applying push and straighten until the arcs stabilize.

4 Factoring the 2-to-0 move

As mentioned in Section 3.1, we factor each 2 → 0 move into a sequence of 2 → 3 and 3 → 2
moves so that we can carry along the barycentric link. This factorization is quite delicate
in certain unavoidable corner cases; we outline our method in this section, but leave the
details to Appendix C of the full version [18]. To begin to understand the 2 → 0 move, first
consider its inverse 0 → 2 move shown in Figure 8. The possible 0 → 2 moves in Figure 8
correspond to a pillow splitting open the book of tetrahedra around the edge e. Following
[46], we call this pillow a bird beak with upper and lower mandibles that pivot around the
two outside edges of the beak (viewed from above, these are the purple and black vertices
in the top right of Figure 8). On both sides of the bird beak are half-books of tetrahedra,
together forming a split-book. When applying the inverse 2 → 0 move, the two half-books
combine to form a book of tetrahedra assembled around the central edge.

The simplest 2 → 0 move is when there are two valence-2 edges that are opposite each
other on a single tetrahedron, as shown in Figure 9; equivalently, one of the half-books has
a single tetrahedron. This base case is handled by Matveev’s V move, the composition of
four 2 → 3 and 3 → 2 moves of [36, Figure 1.15]. To reduce other instances of the 2 → 0
move to the base case, we rotate a mandible of the bird beak, moving tetrahedra from one
half-book to the other until one contains only a single tetrahedron. Because the tetrahedra
in the split-book may repeat or be glued together in strange ways, this is rather delicate.
When things are sufficiently embedded, Segerman [46] showed:

▶ Proposition 4.1. Suppose e is a valence-2 edge where the half-books adjacent to the bird
beak are embedded and contain m and n tetrahedra respectively. Then the 2 → 0 move can be
implemented by 2 · min(m, n) + 2 basic 2 → 3 and 3 → 2 moves.

Proof. We can rotate a mandible by one tetrahedron using the two basic moves of [46,
Figure 11]. With min(m, n) − 1 such rotations we can reduce the smaller of the half-books
to a single tetrahedron. As already noted, the base case can be done in four moves. ◀

▶ Remark 4.2. One cannot in general factor a 2 → 0 move into a sublinear number of 2 → 3
and 3 → 2 moves: the 2 → 0 move amalgamates two edges of valence m + 1 and n + 1 into a
single edge of valence m + n, and each 2 → 3 or 3 → 2 move only changes valences by a total
of 12 (counting with multiplicity).
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Figure 8 At top, a cross section of a 0 → 2 move; at bottom is a close-up of the inflation of the
pillow. The move is performed on the pair of green faces meeting along the purple edge e at left.
The resulting pillow is a bird beak, which splits open the book of tetrahedra about e. In the top
right, the purple and black dots give edges that join together above and below the cross section.

4.1 Twisted beaks and endpoint-through-endpoint moves

The tricky case is when additional faces of the bird beak are glued to each other. There are two
fundamentally different ways for this to happen, shown in Figures 28 and 29 of Appendix C
of the full version [18]. The untwisting of these extremely confusing arrangements is done by
the endpoint-through-endpoint move of Figure 10, which is in the dual language of special
spines from Appendix C of [18]. Matveev’s factorization of the endpoint-through-endpoint
move is described in Figure 1.19 of [36]. We simplify this factorization from 14 moves to 6;
the key is Proposition C.1 of Appendix C of [18] which shows that

α α

can be done with just two T moves, which is dual to two 2 → 3 Pachner moves. Proposition
C.1 in Appendix C of the full version [18] was essential for determining the exact sequence
of moves needed to factor the 2 → 0 move. Dual to the endpoint-through-endpoint move
are a pair of untwist the beak moves, one for each of the situations in Figures 28 and 29, see
Appendix C of [18]. We can thus factorize the 2 → 0 move as follows:

5 Building the initial diagram

The base triangulation T0 of S3 has two tetrahedra and one vertex and is shown in Fig-
ure 11a; its isomorphism signature in the sense of [9, § 3.2], which completely determines the
triangulation, is cMcabbgdv. We next give the method for obtaining a planar diagram D for
a barycentric link L in T0. We first build a PL link in R3 representing L and then project it
onto a plane to get D.

SoCG 2022



37:12 Computing a Link Diagram from Its Exterior

Figure 9 The base case of the 2 → 0 move at top with the cross section at bottom.

Figure 10 The endpoint-through-endpoint move in a special spine.

We cut open T0 along its faces and embed the resulting pair of tetrahedra in R3 as shown
in Figure 11a. This cuts open the link L along its intersections with the faces of T0, resulting
in a collection of curves in R3 inside the two tetrahedra. To reconnect these curves and
recover L, we use fins and lenses as shown in Figure 11b to interpolate between pairs of
faces that are identified in T0. There are two triangular fins, one attached vertically to each
tetrahedron, with each fin corresponding to one of the two valence-1 edges of T0. The gluing
of two faces incident to a valence-1 edge is realized by folding them onto the corresponding
fin. Thus for each barycentric arc that ends in a face corresponding to a fin, we add the line
segment joining this endpoint of the arc to the corresponding point in the fin.

Algorithm 2 factor[2 → 0].

1. If we are in the base case, do the sequence of moves in the triangulation dual to the
factorization of the V move in Figure 1.15 of [36] and exit.

2. If we are in the twisted cases described by Figures 28 and 29 in Appendix C of the full
version [18], do the appropriate untwist the beak move. Otherwise, rotate the mandible
by one tetrahedron.

3. Go to to step 1.
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(a) The base triangulation T0. (b) Two views of the same link.

b2

b1
b3

b0

a3 a2

a0

a1

a023 → a123

b213 → b013

a031

b021

a012

b032

Figure 11 The base triangulation T0 in R3, with fins and lenses shown in the middle and at left.

The two triangular lenses lie between the two tetrahedra in a horizontal plane. There is
an affine map taking the corresponding face in the top tetrahedron to its lens and a second
affine map taking the lens to the corresponding face in the bottom tetrahedron, arranged
so their composition is the face pairing in T0. For every arc in the top tetrahedron ending
on a face corresponding to a lens, we add the line segment between the endpoint and its
image under the affine map to the lens. For each such segment that terminates on a lens, we
add the line segment from this endpoint to its image in the face of the bottom tetrahedron
under the affine map. This results in a PL link in R3 ⊂ S3 that must be isotopic to L: just
imagine puffing out the two tetrahedra to fill all of S3 following the guides given by the fins
and lenses.

Given a collection of line segments in R3 corresponding to the link L, we can build
a diagram for L by projecting the line segments onto a plane, computing the crossing
information, and assembling this into a planar diagram. Our default choice is roughly to
project onto the plane of the page in Figure 11b, with the (so far unused) fall-back of a small
random matrix in SL3Z if a general-position failure occurs. The link diagrams resulting from
this process have many more crossings than is necessary, and we deal with this in Section 6.
Still, the specific configuration of fins, lenses, and projection were chosen to try minimize
the number of crossings created at this stage; our initial approach used a more compact
embedding where the tetrahedra shared a face, and this produced much larger diagrams.

6 Simplifying link diagrams

We now sketch how we simplified the initial link diagram constructed in Section 5, which
sometimes had 10,000–100,000 crossings, to produce the final output of our algorithm for
Find Diagram. Previous computational work focused on simplifying diagrams with 20 or
fewer crossings [30, 11]. In that regime, random Reidemeister moves combined with flypes
are extremely effective in reducing the number of crossings. However, these techniques alone
proved inadequate for our much larger links. Instead, we used the more global strand pickup
method of Figure 12. This technique was introduced by the third author and included in
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Figure 12 An example of the strand pickup method for diagram simplification. At left, an
overstrand, which runs over each crossing it partipates in, is indicated by the darker line. At right is
the result of isotoping the overstrand, fixing its endpoints, to get a diagram with fewer crossings. The
best possible location for an overstrand can be found by solving a weighted shortest-path problem
in the planar dual graph to the original diagram.
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Figure 13 Simplifying 300 diagrams with between 19 and 32,095 crossings, drawn from Sections 8
and 9.3. The dramatic amount of simplification is shown at left, with an n-crossing knot turned into
one with O(n0.8) crossings. The running time at right is roughly O(n1.5).

SnapPy [15] since version 2.3 (2015), but not previously documented in the literature. It
has similarities with the arc representation/grid diagram approach of [20, 21, 22], but it
works with arbitrary planar diagrams. When applying the pickup move, we start with the
longest overstrands and work towards the shorter ones if no improvement is made. When
a pickup move succeeds, we do more basic simplications before looking for another pickup
move. We also do the same move on understrands, going back and forth between the two
sides until the diagram stabilizes; for details, see [38]. The high amount of simplification and
sub-quadratic running time are shown in Figure 13. As further evidence of its utility, we
note that it strictly monotonically reduces the unknot diagrams D28, D43, and PZ78 in [12]
to the trivial diagram; in constrast, these require adding at least three crossings if one uses
only Reidemeister moves.
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7 Finding certificates

Part (b) of the input to our algorithm is a certificate that the Dehn filling M = M̊(α) is S3

in the form of Pachner moves simplifying a triangulation T of M to the base triangulation T0
of S3. In practice, one starts with an ideal triangulation T̊ and Dehn filling slopes α where it
is unknown if M(α) is S3. We therefore need a way of finding this sequence of Pachner moves
when it exists. While deciding if a closed 3-manifold M is the S3 is in NP by [31, 45] and
additionally in co-NP assuming the Generalized Riemann Hypothesis [54, Theorem 11.2], no
sub-exponential time algorithm is known. The current best algorithm for S3 recognition is to
heuristically simplify the input triangulation using Pachner moves and then apply the theory
of almost normal surfaces, see Algorithm 3.2 of [10]. However, triangulations of S3 that are
truly hard to simplify using Pachner moves have not been encountered in practice, and it is
open whether they exist at all [9]. Thus, when M is S3, the initial stage of Algorithm 3.2
of [10] nearly always arrives at a 1-tetrahedron triangulation of S3 and no normal surface
theory is needed. The usefulness of our algorithm for Find Diagram relies on the fact that
a heuristic search using Pachner moves gives a practical recognition algorithm for S3.
▶ Remark 7.1. The effectiveness of our heuristic search procedure relies on the 2 → 0 move
being atomic. Initially, we tried restricting our heuristic search to just the simple Pachner
moves, but were typically unable to find a sequence that simplified the input triangulation of
S3 down to one with just a few tetrahedra. (To square this with [9], note from Figure 16
that our triangulations are much larger.) As is clear from Appendix C of the full version [18],
factoring the 2 → 0 move as a sequence of 2 → 3 and 3 → 2 moves is complicated enough
that one cannot expect to stumble upon these sequences when the triangulation is large and
the search is restricted to simple Pachner moves.

Our simplification heuristic closely follows that of SnapPy [15], with some modifications
that reduce the complexity of the final barycentric link in T0. These include:
1. Simplifying the layered filling triangulation T of Section 2.3 as much as possible without

modifying the few tetrahedra containing the initial link.
2. Finding sequences of Pachner moves to T0 for several different layered filling triangulations,

and then using the one requiring the fewest moves for the computations in Sections 3–6.
3. Ensuring the tail of the sequence of moves is a geodesic in the Pachner graph of [9].
The details are in Appendix D of the full version [18].

8 Implementation and initial experiments

We implemented our algorithm in Python, building on the pure-Python t3mlite library for
3-manifold triangulations that is part of SnapPy [15]. We also used SnapPy’s C kernel to
produce the layered filled triangulation T of Section 2.3 from the input ideal triangulation T̊ .
The needed linear algebra over Q was handed by PARI [48]. Not including these libraries,
our implementation consists of 1,800 lines of Python code. We had to put some effort into
optimization to handle things as large as Figure 3, but more could be done. Our code and
data is archived at [19] and the code will be incorporated into version 3.1 of SnapPy [15].

To validate our implementation, we applied it to two samples, one where the input is
small and one where the best-possible output is small. The first, CK, is the 1,267 hyperbolic
knots whose exteriors have ideal triangulations with at most 9 tetrahedra [17, 5]. The
second, SK, consists of 1,000 knots whose minimal crossing number was between 10 and 19.
There are 100 knots for each crossing number, which were selected at random from all the
hyperbolic nonalternating knots with that crossing number [11]; the exception is that there
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are only 41 such 10-crossing knots, so 59 alternating 10-crossing knots were used as well.
(Alternating knots have unusually close connections between their diagrams and exteriors, so
were excluded as possibly being an easy case for Find Diagram.)

Our program found diagrams for all 2,267 of these exteriors. The running time was
under 20 seconds for 96.7% of them, with a max of 2.5 minutes (CPUs were Intel Xeon
E5-2690 v3 at 2.6GHz with 4G of memory per core, circa 2014); see Figure 14. The input
ideal triangulations T̊ had between 2 and 44 tetrahedra, and the resulting layered filling
triangulation T had between 13 and 77 tetrahedra (mean of 31.5), typically 60% larger
than T̊ ; see Figure 15. The sequence of simple Pachner moves used to reduce T to T0 had
length between 39 and 761 (mean of 241.0), see Figure 16; this was typically 7.5 times longer
than the initial sequence of Pachner moves that included 2 → 0 moves (Figure 17). For the
knots in SK, we compare the size of the output diagram to the minimal crossing number in
Figure 18; the output matched the crossing number for 42.1% of these exteriors, and it was
within 3 for 87.8%. For CK, the number of crossings in the output had max 303, mean 65.9,
and median 40.

9 Applications

9.1 Congruence links
Powerful tools from number theory apply to the special class of arithmetic hyperbolic
3-manifolds. Thurston asked which link exteriors are in the subclass of principal congruence
arithmetic manifolds; this was resolved in [6]: there are exactly 48 such exteriors. These 48
have hyperbolic volumes in [5.33348, 1365.37] and ideal triangulations with between 6 and
1,526 tetrahedra. Link diagrams for 15 of these 48 had previously been found by ad hoc
methods [7]. Our program has found diagrams for 23 more, including Figures 2 and 3;
collectively, we now have links for the 38 such exteriors of smallest volume, see Figure 20.

9.2 Dehn surgery descriptions
Every closed orientable 3-manifold is Dehn filling on some link exterior in S3 [43, Chapter 9],
and such Dehn surgery descriptions play a key role in both theory and practice. However,
finding a Dehn surgery description from e.g. a triangulation can be extremely challenging.
Thurston observed experimentally that, starting with a closed hyperbolic 3-manifold, one
frequently arrives at a link exterior by repeatedly drilling out short closed geodesics, see page
516 of [2]. Combining this with our algorithm for Find Diagram gives an effective tool for
finding Dehn surgery descriptions given a triangulation. We applied this to the Seifert–Weber
dodecahedral space, which is an old example [50] still of much current interest [13, 34]. The
resulting description in Figure 21 seems to be the first such published; a different description
appeared subsequently in [4].

9.3 Knots with the same 0-surgery
The 0-surgery Z(K) on a knot K is the unique Dehn filling N of E(K) where H1(N ;Q) ̸= 0.
Pairs of knots K and K ′ with Z(K) homeomorphic to Z(K ′) are of much interest in low-
dimensional topology. Most strikingly, if such a pair K and K ′ exist with K slice (i.e. bounds
a smooth D2 in D4) and the Rasmussen s-invariant of K ′ is nonzero, then the smooth
4-dimensional Poincaré conjecture is false. That is, there would exist a 4-manifold that is
homeomorphic but not diffeomorphic to S4. See [25, 35] for a general discussion, and also [41]
for an important recent result using pairs with Z(K) ∼= Z(K ′). There are many techniques
for constructing families of such pairs, which have been unified by the red-blue-green link
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Figure 14 Mean running time for the 2,267 knot exteriors in SK and CK appears exponential
with small base, roughly O(1.07n). Compare Figure 19 on the growth of the number of arcs in T0.
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Figure 15 The number of tetrahedra in the layered filled T compared to the input ideal T̊ .
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Figure 16 The number of simple Pachner moves used to transform the layered filled triangulation
T into the base triangulation T0 is generically linear in the size of T .
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Figure 17 This plot shows the increase in the number of Pachner moves when we factor the
2 → 0 moves into simple Pachner moves. The regression line is based on points with x < 75.
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Figure 18 For the knots in SK, grouped by minimum crossing number, the number of crossings
in the diagram output by our program. The dotted line indicates the mean.
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Figure 20 The 38 known link diagrams whose exteriors are principal congruence arithmetic; blue
are the 15 from [7], yellow are new. The plots are the same save for the scales on the axes. The
regression at right predicts that a link for the largest such exterior would have 9,000 crossings.
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Figure 21 A Dehn surgery description of the Seifert–Weber dodecahedral space.

framework of [35]. However, given a particular K, a practical algorithm to search for K ′ with
the same 0-surgery has been lacking. When Z(K) is hyperbolic, we attack this as follows.
First, find the short closed geodesics in Z(K) using [29]. Then drill out each geodesic in
turn, and test if the resulting manifold M̊ ′ has a Dehn filling which is S3; if it does, use our
algorithm for Find Diagram to M̊ ′ to get a diagram for K ′.

Figure 22 shows the result of applying our algorithm to 100 pairs (K, γ) where K is a
knot with at most 18 crossings and γ is a short closed geodesic in Z(K) whose exterior is
also that of a knot K ′ in S3. In all cases, we were able to recover a diagram for K ′, and
these were more challenging on average than the examples in Section 8.
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Figure 22 Data on the 100 knot exteriors from Section 9.3.

10 Future work

Having demonstrated the practicality of solving Find Diagram, we plan to refine our
implementation and then incorporate it as a standard feature of SnapPy [15] so that it can
be widely used. In particular, we aim to:

1. Explore whether the mean running time of O(1.07n) can be reduced. While Theorem E.1
in Appendix E of the full version [18] shows that the worst case running time must be at
least exponential, it is not implausible that the mean running time is polynomial in the
size of the output. The key issue is that the number of arcs in T0 is currently exponential
in the size of both the input and the output, compare Figure 19.

2. To reduce the number of arcs, we could consider additional local PL simplification moves,
or try the current moves in larger balls in T made up of several tetrahedra.

3. Explore whether modern methods in computational geometry can be used to speed up
the work in Sections 3 and 5.
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