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Abstract
We consider the Minimum Convex Partition problem: Given a set P of n points in the plane,
draw a plane graph G on P , with positive minimum degree, such that G partitions the convex
hull of P into a minimum number of convex faces. We show that Minimum Convex Partition
is NP-hard, and we give several approximation algorithms, from an O(log OPT)-approximation
running in O(n8)-time, where OPT denotes the minimum number of convex faces needed, to an
O(

√
n log n)-approximation algorithm running in O(n2)-time. We say that a point set is k-directed

if the (straight) lines containing at least three points have up to k directions. We present an
O(k)-approximation algorithm running in nO(k)-time. Those hardness and approximation results
also holds for the Minimum Convex Tiling problem, defined similarly but allowing the use of Steiner
points. The approximation results are obtained by relating the problem to the Covering Points
with Non-Crossing Segments problem. We show that this problem is NP-hard, and present an FPT
algorithm. This allows us to obtain a constant-approximation FPT algorithm for the Minimum
Convex Partition Problem where the parameter is the number of faces.
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1 Introduction

The CG Challenge 2020 organised by Demaine, Fekete, Keldenich, Krupke and Mitchell [5],
was about solving instances of Minimum Convex Partition (MCP).

▶ Definition 1 (Demaine et al. [5]: Minimum Convex Partition problem). Given a set P of
n points in the plane. The objective is to compute a plane graph with vertex set P (with
each point in P having positive degree) that partitions the convex hull of P into the smallest
possible number of convex faces. Note that collinear points are allowed on face boundaries,
so all internal angles of a face are at most π.

As explained by Bose et al., this problem has applications in routing [3]. They show that
a routing algorithm named Random-Compass that works for triangulations can be extended
to convex partitions. Having a convex partition with few faces reduces the amount of data
to store. From now on, we denote by P a set of n points in the plane.

In this paper, we present several approximation algorithms for MCP. We obtain those
approximation algorithms by relating the MCP problem to the Covering Points with Non-
Crossing Segments (CPNCS) problem. First, we define what non-crossing segments are.
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45:2 Hardness and Approximation of Minimum Convex Partition

▶ Definition 2 (Non-Crossing Segments). We call a part of a (straight) line bounded by
two points a segment. The two points are referred to as endpoints of the segment. Note
that we do not force the endpoints to be distinct, therefore we consider a point p as being a
segment. The endpoint of p is p itself. Two segments are non-crossing if the intersection of
their relative interior is empty.

▶ Definition 3 (Covering Points with Non-Crossing Segments). Given a set P of n points, find
a minimum number of non-crossing segments whose endpoints are in P such that each point
of P is contained in at least one segment.

The condition that the endpoints of the segments must be in P has no effect on the
number of segments required. We add it as it simplifies some arguments. Note that CPNCS
is not a so-called set cover problem nor an exact cover problem. We believe that CPNCS is
interesting in itself. Even though it is a very natural problem, to the best of our knowledge
it had not been introduced before.

1.1 NP-hardness results
Fevens, Meijer and Rappaport first considered the MCP problem in 2001 [7], and its
complexity was explicitly asked about by Knauer and Spillner in 2006 [12]. It has remained
open since then [2, 5]. We show in Section 5 that MCP is NP-hard. To do this, we use the
decision version of the problem, as stated below:

▶ Definition 4 (MCP - decision version). Given a set P of points in the plane and a natural
number k, is it possible to find at most k closed convex polygons whose vertices are points of
P , with the following properties: a) The union of the polygons is the convex hull of P , b)
the interiors of the polygons are pairwise disjoint, and c) no polygon contains a point of P in
its interior.

We also show NP-hardness of a similar problem, which we call Minimum Convex Tiling
problem (MCT). The problem is exactly as in Definition 4, but the constraint about the
vertices of the polygons is removed (i.e. they need not be points of P ). This can make a
difference as shown in Figure 1. Equivalently, the MCT problem corresponds to the MCP
problem when Steiner points are allowed. A Steiner point is a point that does not belong to
the point set given as input, and which can be used as a vertex of some polygons. The MCT
problem has been studied in 2012 by Dumitrescu, Har-Peled and Tóth, who asked about the
complexity of the problem [6]. We answer their question, and our proofs are very similar for
MCP and MCT. We also show in the full version of the paper [10] that CPNCS is NP-hard,
even for some constrained point sets.
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Figure 1 A minimum partition with three convex polygons and a tiling with two.
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1.2 Approximation algorithms
For the related problem Minimum Convex Partition of Polygons with Holes, Bandyapadhyay,
Bhowmick and Varadarajan showed the existence of a (1 + ε)-approximation algorithm
running in time nO((log n/ε)4) [1]. Although they only consider holes with non empty interior,
one can observe that their proof extends to the case of point holes. This is an even more
general setting than MCP for point sets, so their algorithm also applies in our setting. This
implies that MCP is not APX-hard unless NP ⊆ DTIME(2polylog n).

•
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•
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•
•

•
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Figure 2 The number of inner points can be arbitrarily much larger than the number of convex
faces required.

Under the assumption that no three points are collinear, Knauer and Spillner have shown
the existence of a 30

11 -approximation algorithm for MCP in 2006 [12]. As a lower bound on
the number of convex faces for one particular point set, they rely on the observation that
each inner point has degree at least 3. The inner points of P are the points not on the
boundary of the convex hull. This gives a lower bound on the number of edges, and therefore
on the number of faces, by Euler’s formula. Note that the restriction that no three points are
on a line is necessary, as shown in Figure 2. There are only two faces in a minimum convex
partition of this point set, and all the inner points have degree 2.

Additionally, Knauer and Spillner showed how to adapt any constructive upper bound on
the number of faces into an approximation algorithm. More explicitly, they showed that if
one can compute in polynomial time a convex partition with at most λn convex faces, then
there exists a 2λ-approximation algorithm running in polynomial time. The best result to
date is a proof by Sakai and Urrutia that one can partition a point set in quadratic time
using at most 4

3 n convex faces (the result was presented at the 7th JCCGG in 2009, the paper
appeared on arXiv in 2019) [19]. Although they do not mention it, combining this result
with the one by Knauer and Spillner gives a quadratic time 8

3 -approximation algorithm.
Concerning previous upper bounds, Neumann-Lara, Rivero-Campo and Urrutia first

showed in 2004 how to construct in quadratic time a partition of any point set with at most
10
7 n convex faces [17]. In 2006, Knauer and Spillner improved this to 15

11 n convex faces [12].
As said above, the best known upper bound is 4

3 n, as proven by Sakai and Urrutia in 2009.
Relatedly for lower bounds, García-Lopez and Nicolás have given in 2013 a construction

of point sets for which any convex partition has at least 35
32 n − 3

2 faces [8].
All these results concerning upper bounds hold for all point sets, even where many points

are on a line. Indeed, slightly shifting the points so that no three points are on a line can only
increase the number of convex faces needed. So an upper bound for point sets where no three
points are on a line also holds for all point sets. However, as mentioned above, the lower
bound used by Knauer and Spillner does not extend to our setting, where we consider all point
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sets. They say that a constant-approximation algorithm would be desirable for unrestricted
point sets, but so far not even an O(n1−ε)-approximation is known. For the MCT problem,
Dumitrescu, Har-Peled and Tóth showed the existence of a 3-approximation algorithm for
point sets with no three collinear points [6]. They also ask whether a constant-approximation
algorithm exists when this constraint is removed. However, so far no O(n1−ε)-approximation
algorithm is known. In Section 3, we prove the following:

▶ Theorem 5. There exists O(log OPT)-approximation algorithms for MCP, MCT and
CPNCS running in O(n8)-time.

Allowing several points to be on a line does not simply create tedious technicalities to
deal with. The crux of the matter is to find, for a fixed point set, an exploitable lower bound
on the number of faces in a minimum convex partition. When no three points are on a line,
the number of inner points in P gives a linear lower bound on the number of faces in a
convex partition [12], and in a convex tiling [6]. In this paper, we consider point sets with no
restriction. We introduce the CPNCS problem as it pinpoints where the difficulty of finding
a constant-approximation algorithm for MCP is and makes the problem easier to study. We
show in Section 2 the following theorem, which is used to prove Theorem 5:

▶ Theorem 6. Let P be a set of n points with at least one inner point, and let λ ≥ 1 be a
real number. Let fm denote the minimum number of faces in a convex partition of P . Let
sm denote the minimum number of non-crossing segments in a covering of the inner points
of P , denoted by Pi.
1. It holds that sm

6 ≤ fm ≤ 8sm.
2. Given a covering of Pi with s ≤ λsm non-crossing segments, it is possible to compute in

O(n2)-time a convex partition of P with at most 24λfm convex faces.
3. Given a convex partition of P with f ≤ λfm convex faces, it is possible to compute in

O(n)-time a covering of Pi with at most 44λsm non-crossing segments.
The theorem also holds when considering convex tilings instead of convex partitions.

The idea behind the similarity of MCP, MCT and CPNCS is that they are all about
maximizing the number of vertices of degree 2 with incident edges being aligned in a plane
straight-line drawing of a graph on a point set. We show in the full version of the paper [10]
that MCP and CPNCS are however not equivalent, meaning that one cannot use an optimal
solution for one to deduce an optimal solution for the other.

1.3 Exact algorithms, FPT algorithms
Under the assumptions that the points lie on the boundaries of a fixed number h of nested
convex hulls, and that no three points lie on a line, Fevens, Meijer and Rappaport gave
an algorithm for solving MCP in time O(n3h+3) [7]. Observe that this is not an FPT
algorithm. Some integer linear programming formulations of the problem have been recently
introduced [2, 20, 4].

A first FPT algorithm with respect to the number k of inner points was introduced by
Grantson and Levcopoulos, with running time O(216kk6k−5n) [9]. The idea of the algorithm
is to enumerate all plane graphs on the inner points, and then for each to them to guess
how to connect the inner points to points on the boundary of the convex hull. Another
FPT algorithm with respect to the number of inner points was later found by Spillner, with
running time O(2kk4n3 + n log n) [21].

We show in Section 4 the existence of an FPT algorithm that checks whether there is
a solution for CPNCS with at most k non-crossing segments, running in time O(2k2

k7k +
n4 log n). By Theorem 6, this gives us a constant-approximation FPT algorithm for MCP
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and MCT, where the parameter is the number of convex faces needed. Under the assumption
that no three points are on a line, the number of faces in a minimum convex partition or
in a minimum convex tiling is the same as the number of inner points, up to a constant
multiplicative factor [12, 6]. However, without this assumption the number of inner points
can be arbitrarily much larger than the minimum number of convex faces, as shown in
Figure 2.

2 The relation between MCP, MCT and CPNCS

Throughout this section, we denote by P a point set in the plane. We denote by Pi the set of
inner points of P . Let p be in P . If P and P \ {p} do not have the same convex hull, we say
that p is an extreme point. We denote by P ′

i ⊆ Pi the extreme points in Pi, where Pi denotes
the inner points in P . Note that a point might lie on the boundary of the convex hull of a
point set without being an extreme point. We say that P is special if |P ′

i | ≤ 2. Recall that
for a given covering of a point set Q with non-crossing segments, we always assume that the
endpoints of the segments are in Q.

▶ Lemma 7. Let P be a set of n points that is not special. Given a covering K of Pi with s

non-crossing segments, one can compute in O(n2)-time a convex partition Σ of P with at
most 4s + 2|P ′

i | faces. Moreover every segment in K is the union of some edges in Σ.

Due to space constraints, we postpone the proof of Lemma 7 to the full version of the
paper [10]. The idea of the proof is to compute a constrained triangulation with respect to
the segments of the covering. This gives us a convex partition of the inner points, and it
remains to connect the points in P ′

i to points on the boundary of the convex hull.

▶ Lemma 8. Let P be a set of n points. Given a convex tiling Σ of P with f faces, one can
compute in O(n)-time a covering K of Pi with at most 6f − 2|P ′

i | non-crossing segments.
Moreover every segment in K is the union of some edges in Σ.

Proof. The proof is illustrated in Figure 3. Let us denote by G0 = (V0, E0) the plane graph
corresponding to the convex tiling, where a point in V0 is extreme or has degree at least 3.
Observe that some points in V0 might not be in P . Also, the relative interior of an edge in
E0 might overlap with points in P . We assume that G0 is given with a doubly connected
edge list (DCEL) structure. If there is an edge between two points on the boundary of the
convex hull of V0, but not consecutive, we remove this edge. Note that this decreases the
number of faces by 1, and does not break the convexity property. We denote by m the
number of such edges that we have removed. We also remove from P all points contained
in the relative interior of an edge between two points on the boundary of the convex hull.
We denote by P ′′

i the extreme points in Pi that we have not removed. As an edge contains
at most two points in P ′

i , we have |P ′′
i | ≥ |P ′

i | − 2m. Using the DCEL structure, this can
be done in O(n)-time. We have obtained a new graph G = (V, E), and there are f − m

convex faces in G. We denote by Q the set of inner points that are of degree at least 3
in G. We set k := |Q|. Now observe that for each point p in P ′′

i , there exists at least one
edge e in E with one endpoint in Q, one endpoint on the boundary of the convex hull, such
that e overlaps with a point in P ′′

i . This is because if we consider p and the two lines going
through p and one of the two consecutive vertices in P ′′

i (the one before p and the one after p

when going around P ′′
i in clockwise order), they define a wedge that one edge must intersect

because of convexity. The point in P ′′
i can be an endpoint of e or in its relative interior.

If for a point p ∈ P ′′
i there are several edges that satisfy the conditions, we choose one
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Figure 3 Illustration of Lemma 8. The green dashed edge and the triangle points are removed at
the beginning for the analysis, and added back at the end. The extreme points in P ′′

i are represented
as square points. The edges in E′ are in red. The other edges from P ′′

i to the boundary of the
convex hull are in blue.

arbitrarily. We denote these edges by E′. An edge in E′ overlaps with exactly one point
in P ′′

i , thus |E′| = |P ′′
i |. We denote by Eb the edges not in E′ that have a point on the

boundary of the convex hull and the other in Q, and we denote |Eb| by m′. The vertices on
the boundary of the convex hull are adjacent to two other vertices on the boundary of the
convex hull. Moreover, those vertices are incident to |P ′′

i | + m′ additional edges. We have
2|E| =

∑
v∈V deg(v) ≥ 3k + 2(n − k) + |P ′′

i | + m′ = k + 2n + |P ′′
i | + m′. By Euler’s formula,

we have f − m = |E| − n + 1 ≥ k+|P ′′
i |+m′

2 + 1.
Now, the solution consists of the union of all edges in E incident to two points in Q,

with the m edges in E0 that we have removed, and with the |P ′′
i | + m′ edges in E′ ∪ Eb.

We may need those edges as they might overlap with points in Pi. Note that there are at
most 3k edges in E incident to two points in Q as G is plane. Moreover, all points in Pi

are indeed covered by the edges in our solution. Thus, we obtain a covering of Pi with s

segments, where s ≤ 3k + m + m′ + |P ′′
i | ≤ 3(2(f − m) − |P ′′

i | − m′) + m + m′ + |P ′′
i | ≤

6f − 5m − 2|P ′′
i | ≤ 6f − 5m − 2(|P ′

i | − 2m) ≤ 6f − 2|P ′
i |. ◀

It is now possible to combine Lemmas 7 and 8 to prove Theorem 6. The proof can be
found in the full version of the paper [10].

3 Approximation algorithms for CPNCS

We present several approximation algorithms for CPNCS. Let us first consider the ones whose
approximation ratio is not output-dependent. The best algorithms in terms of approximation
ratio are constant-approximation algorithms. The fastest algorithms take quadratic time.
Therefore by 2. of Theorem 6, all the algorithms we present for CPNCS can be used to
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obtain approximation algorithms for MCP and MCT with the same order of approximation
ratio, and the same order of running time. We have also one algorithm for CPNCS which
realises an O(log OPT )-approximation in time O(n8), where OPT denotes the minimum
number of segments needed. Using 1. and 2. of Theorem 6, we also derive from it the
O(log OPT )-approximation algorithm for MCP and MCT running in time O(n8), where now
OPT denotes the minimum number of faces needed in a convex partition, or in a convex
tiling, respectively. This is how we prove Theorem 5. We first mention an easy approximation
algorithm running relatively fast, at the cost of a high approximation ratio. The proof can
be found in the full version of the paper [10]. The idea is to use the greedy algorithm to
solve Covering Points with lines on P (a set cover problem), and then to split the lines into
non-crossing segments.

▶ Theorem 9. There exists an
√

n log(n)-approximation algorithm for CPNCS running in
O(n2)-time.

Mitchell presented in a technical report some approximation algorithms for the problem
of covering a point set with a minimum number of pairwise-disjoint triangles [16]. In his
problem, the triangles of the covering must be subtriangles of some triangles given as input,
for otherwise the problem would be trivial. He makes the assumption that no three points
are on a line. We adapt his algorithms to our setting of CPNCS for point sets with no
constraint. Let P be a set of n points. By doing a rotation if necessary, we can assume that
no two points in P have the same x-coordinate. We say that a trapezoid is constrained if 1)
it has two disjoint vertical sides, each lying on a line that contains a point in P , and 2) the
two remaining sides are lying on lines that contain each at least two points in P . Note that
there are O(n6) constrained trapezoids.

We also allow for some degeneracies. Let us consider a triangle with vertices a, b and c,
not all three on a line. If a is in P , the segment with endpoints b, c is vertical and lies on a
line that contains a point in P , and the segments with endpoints a, b and a, c respectively
are contained in some lines ℓ and ℓ′ such that ℓ and ℓ′ contains at least two points in P , then
we say that the triangle is a constrained trapezoid. If a constrained trapezoid is split into
two halves by a vertical line ℓ going through its interior, with ℓ containing a point in P , we
obtain two constrained trapezoids. Likewise, if a segment s is in a constrained trapezoid τ ,
such that s lies on a line that contains at least two points in P , s intersects the interior of
τ , and the endpoints of s are contained in the vertical sides of τ , then s splits τ into two
constrained trapezoids.

For a set of points P where no two points have the same x-coordinate, we define the
enclosing trapezoid as follows. Let ℓ1 be the vertical line that contains the leftmost point in
P , and let ℓ2 be the vertical line that contains the rightmost point in P . Let L be the set
of all lines containing at least two points in P . Observe that no line in L is vertical. We
denote by a the highest intersection point between ℓ1 and a line in L. We denote by b the
lowest point intersection point between ℓ1 and a line in L. Similarly, we denote by c and d,
respectively, the highest intersection point, respectively the lowest intersection point, between
ℓ2 and a line in L. We denote by ℓ3 the line containing a and c, and by ℓ4 the line containing
b and d. The enclosing trapezoid of P is the constrained trapezoid of P ∪ {a, b, c, d} defined
by ℓ1, ℓ2, ℓ3 and ℓ4. It is denoted by TP .

We define the strong guillotine property in the special case of segments. We show that
if there is a covering of P with s non-crossing segments, then there is a covering of S with
O(s log s) non-crossing segments having the strong guillotine property. We then present
an algorithm that outputs an optimal solution among all the coverings with non-crossing
segments having the strong guillotine property. Let S be a set of non-crossing segments
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covering P . We assume that the endpoints of the segments in S are in P . We say that S

has the strong guillotine property with respect to a constrained trapezoid T that contains
all segments in S if a) S contains at most one segment, or if b) there exists a partitioning
line ℓ containing at least two points in P and at least one segment in S, such that for any
segment s ∈ S, ℓ either contains s or does not intersect the relative interior of s, and ℓ splits
T into two constrained trapezoids T1 and T2, such that the segments in T1, respectively T2,
have the strong guillotine property with respect to T1, respectively T2, or if c) there exists
a vertical line not intersecting with the relative interior of any segment in S, that splits T
into two constrained trapezoids T1 and T2, such that the segments in T1, respectively T2,
have the strong guillotine property with respect to T1, respectively T2. Observe that the line
ℓ in case b) only intersects the vertical sides of T , for otherwise ℓ would not split T into
constrained trapezoids. We simply say that S has the strong guillotine property if it has the
strong guillotine property with respect to the enclosing trapezoid TP .

▶ Lemma 10. If there exists a covering of P with s non-crossing segments, then there exists
a covering of P with O(s log(s)) non-crossing segments with the strong guillotine property.

Proof. Recall that we assume that the endpoints of the segments are in P , by cropping them
if need be. We can even crop some segments further such that they are pairwise-disjoint
(it may be that now some segments are reduced to points). Consider the endpoints of the
segments in that covering, that we denote by P ′. We denote |P ′| by n′, and we have n′ ≤ 2s.
Note that no two points in P ′ have the same x-coordinate. We denote by X the set of
x-coordinates of the points in P ′. We now consider the segment tree based on X, as defined
in [18]. The segment tree defines some canonical intervals. Each interval, whose endpoints
are in X, is partitioned into O(log s) canonical intervals. We partition each segment in the
covering, such that the projection on the x-axis of each new segment is a canonical interval.
Therefore we obtain a covering of P with O(s log(s)) non-crossing segments. We claim that
this family of segments has the strong guillotine property. Let us denote by xi, 1 ≤ i ≤ n′

the elements in X, ordered by increasing value. We distinguish two cases. If there exists a
segment σ whose projection on the x-axis is equal to the interval [x1, xn′ ], then we recurse
on the parts above and below σ which contain some segments. Observe that if n′ = 2 we are
done. If there is no such segment, then by definition of a segment tree, there is no segment
in the covering whose relative interior intersects the vertical line ℓ with x-coordinate equal
to x⌊(1+n′)/2⌋. Thus we can recurse on the left and right side of ℓ. ◀

▶ Theorem 11. There exists an O(log(OPT ))-approximation algorithm running in O(n8)-
time for CPNCS.

Proof. We explain how to recursively compute a minimum covering of P with non-crossing
segments under the constraint that the solution has the strong guillotine property. The
approximation ratio for the CPNCS problem when this additional constraint is removed
follows from Lemma 10. If P is empty, we return no segment, which is a valid solution. If P

can be covered with a single segment, we return that segment. This can be tested in O(n2)
time using duality. Now let us assume that not all points in P are on a line. We compute
the enclosing trapezoid TP of P . We consider the four vertices a, b, c, d of TP . We start by
adding the segment with endpoints a, c, and the segment with endpoints b, d. Now all the
points to cover are within the enclosing trapezoid TP . We distinguish two cases, according to
whether a segment with endpoints on the vertical sides of TP is in a minimum covering with
non-crossing segments having the strong guillotine property. If it is, we can add it to the
solution and recurse on the two new constrained trapezoids. If no such segment is part of a
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minimum solution, then there exists a vertical line ℓ that splits a minimum solution into two
parts, such that ℓ does not intersect the relative interior of any segment in that minimum
solution. We can recurse on the O(n) choices of splitting vertically the constrained trapezoid
into two constrained trapezoids. For each of the O(n2) recursions, we compute the number
of segments corresponding to that solution, and we output the solution corresponding to the
one that minimises the number of segments.

To optimise we can do dynamic programming, and solve first the thinnest constrained
trapezoids (in terms of width on the x-axis). There are O(n6) constrained trapezoids, and
we take quadratic time for each of them, so the total running time is O(n8). ◀

We prove the following theorem in the full version of the paper [10].

▶ Theorem 12. There exists an O(log(n))-approximation algorithm running in O(n7)-time
for CPNCS.

We say that a point set P is k-directed if there exists a set D of k directions, such that for
any line ℓ that contains at least three points in P , the direction of ℓ is in D. For convenience,
for any set of directions D and any segment s reduced to a point, we say that the direction
of s is in D. We say that a set of segments S has the autopartition property if |S| ≤ 1, or if
there exists a line ℓ which contains at least one segment in S, and splits S into two sets that
have the autopartition property. The relative interior of a segment in S is either contained in
ℓ or does not intersect ℓ. Tóth has shown that any set of s′ disjoint segments having up to k

directions have an autopartition of size O(s′k) [22]. Using this result and similar techniques
to the ones of Theorem 11, we show in the full version of the paper [10] the following:

▶ Theorem 13. There exists an O(k)-approximation algorithm for CPNCS in k-directed
sets running in nO(k). Furthermore, there exists a 4-approximation algorithm for CPNCS in
2-directed sets running in time O(n5).

4 Fixed-parameter algorithm for CPNCS

As mentioned in the introduction, there are known fixed-parameter algorithms for MCP,
where the parameter is the number of inner points. We present here a fixed-parameter
constant-approximation algorithm for MCP and MCT, where the parameter is the number
of faces in a minimum convex partition or a minimum convex tiling, respectively. For point
sets where no three points are on a line, the minimum number of convex faces is at least
half the number of inner points [12], and the number of convex tiles is at list a sixth of the
number of inner points [6]. However, as shown in Figure 2, when we allow for several points
to be on a line, the number of inner points can be arbitrarily much larger than the number
of convex faces in a minimum convex partition. If the number of inner points is significantly
larger than the number of convex faces needed, our algorithm has a lower running time. We
first show that CPNCS is in FPT.

▶ Theorem 14. We can compute in time O(2k2
k7k + n4 log n) whether a point set P can be

covered with at most k non-crossing segments, and to output such a covering if it exists.

The proof uses a kernelisation technique presented by Langerman and Morin for Covering
Points with Lines [13]. Assume there is a line ℓ that contains at least k + 1 points in P .
Then in any covering of P with at most k lines, ℓ must be in the covering. Otherwise, we
would need at least k + 1 lines to cover the points contained in ℓ. Now one can compute all
of these lines that contain at least k + 1 points, dismiss all of the covered points, until no line
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covers more than k of the remaining points. If there remains more than k2 points, then there
is no covering of the point set with at most k lines. Otherwise, one can compute every way
of covering the O(k2) remaining points, and check whether there is one that uses in total
at most k lines. In our setting, we are looking for a covering with non-crossing segments,
which makes it more difficult. Indeed, if a line ℓ contains at least k + 1 points, we only know
that ℓ must contain at least one segment of the covering. This means that we cannot simply
dismiss the points covered by such a line. Also, we have to be careful about crossings. To
prove Theorem 14, we need several lemmas. For a point set P , we say that a segment s is a
P -segment if its endpoints are in P . Recall that we only consider coverings of a point set P

with non-crossing P -segments.

▶ Definition 15. Let P be a point set, and let s and t be two crossing P -segments. We
denote by p the intersection of s and t. We determine four points in P , that we call the
points enclosing p. There are two points on s ∩ P and two points on t ∩ P . The two points
on s ∩ P , denoted by u and v, are such that the segment with endpoints u and v, which we
denote by uv, is the shortest P -segment contained in s whose relative interior contains p.
Likewise, the two points u′ and v′ are such that u′v′ is the shortest P -segment contained in
t whose relative interior contains p. The points u, v, u′ and v′ are the points enclosing p.

▶ Lemma 16. Given a set P of n points, it is possible to compute in time O(n4 log n) the
pairs of crossing P -segments, to find whether their intersection p is in P , and to store the
points enclosing p. Additionally, we can also store for each P -segment how many points in
P they contain, and the list of those points.

The proof of Lemma 16 can be found in the full version of the paper [10].

▶ Lemma 17. Given a set P of n points, and a natural number k, it is possible to find
in time O(2k2 + n4 log n) either a certificate that there is no covering of P with at most
k non-crossing segments, or to output a family F of O(2k2) sets S containing at most k

non-crossing P -segments, with the following properties: For any fixed covering of P with at
most k non-crossing P -segments, there exists a set S in F such that a) any segment s ∈ S

contains at least k + 1 points in P , b) for each segment t of the covering, if |P ∩ t ∩ s| ≥ 2
for some s ∈ S, then t is contained in s, and c) if a segment of the covering contains at least
k + 1 points in P , then it is contained in a segment in S.

Let P be a point set and let k be a natural number. Observe that if a set S of segments
satisfies property a), then in a covering with at most k segments of P , each segment s in S

contains at least one segment t of the covering, such that |P ∩ t| ≥ 2. Indeed if there exists a
segment s ∈ S such that for any segment t in the covering, we have that s ∩ t contains at
most one point in P , then at least k + 1 segments are needed to cover the points in P ∩ s.
This implies that if S consists of m segments and satisfies properties a) and b), then there
are at least m segments in the considered covering of P with non-crossing segments.

Proof of Lemma 17. We first do some preprocessing by using the algorithm of Lemma 16.
This takes O(n4 log n) time. We create a list L of segments, which at the beginning is empty,
and will contain the segments in S when we are done. For each line ℓ that contains at least
k + 1 points, we find the extremal points p and q of P contained in ℓ in time O(n). Then we
add the line segment with endpoints p and q to L. Using the algorithm presented by Guibas
et al. [11], we can compute all lines containing more than k points in time O( n2

k log( n
k )). If

there are more than k of such lines, we already know that there is no covering of P with at
most k non-crossing segments of P . Indeed such a covering can only exist if there exists a
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covering of P with at most k lines. Let us now assume that there are at most k such lines.
We add all corresponding segments to L in total time O(kn + n2

k log( n
k )). Let us show that

the segments in L satisfy properties a), b) and c), although they might still be crossing.
First, property a) holds by definition. Moreover property b) holds for all coverings of P with
at most k segments because a segment in L containing points p and q also contains all points
on the line (p, q). Finally, property c) also holds trivially for all coverings of P with at most
k segments.

We are now going to modify L and make copies of it while maintaining the fact that
properties a), b) and c) hold. Our aim is that no two segments in L cross. Let us consider one
segment s in L which is crossed by another segment s′ in L. We denote by p the intersection
of s and s′. We retrieve the points u and v such that uv is the shortest P -segment in s

whose relative interior contains p. We do likewise with u′ and v′ in s′. Observe that not
both uv and u′v′ can be in a covering of P with non-crossing segments. More generally, in a
valid covering, at least one of uv and u′v′ is not contained in any segment of the covering.
We create one copy of L, and recurse on two cases, one where we assume that uv is not
contained in a segment of the covering, and one where we assume that u′v′ is not contained
in a segment of the covering. Let us assume for now that uv is not contained in a segment of
the covering. We keep s′ in L, and s′ might still be removed at a later step. We remove s

from L. The segment s′ splits s at p into two sides. Let us denote by x and y the endpoints
of s, with u being closer to x than v is. If p is not in P , we consider the segments xu and
vy. If p is in P , we consider the segments xp and py. Any of the two new segments that
contains more than k points in P is added to L. Indeed property a) holds by definition.
Moreover property b) holds because s was in L, and we are assuming that the segment uv

is not contained in a segment of the covering. If a segment contains at most k points, we
do not add it to L. We claim that property c) still holds. This is because if a point q ∈ P

which lies on a line that contains more than k points is not contained in some segment in L,
that means that if a segment t contains q as well as at least k other points in P , then t also
contains some segment which we are assuming not to be contained in the covering.

If we obtain more than k segments in L, we stop this branch of the recursion, as we
already know that there is no valid covering of P with at most k segments, assuming that uv

is not contained in a segment of the covering. We now iterate over all crossing segments in
L. We obtain O(k) segments in L, which are by construction non-crossing. As the depth of
the recursion tree is in O(k2), the number of leaves is in O(2k2). We would like to say that
each recursion implies the existence of one more segment in a covering with non-crossing
segments, but this is a priori not the case. Therefore, if the number of lines containing more
than k points is in Ω(k), we might have to do Ω(k2) recursions. We can do the computation
in total time O(2k2 + kn + n2

k log(n
k )), using the information we preprocessed. If we add

to it the running time of the preprocessing, the total running time of the algorithm is in
O(2k2 + n4 log n). ◀

The proof of Theorem 14 appears in the full version of the paper [10]. The idea is to fix
one valid covering K if it exists, and then to guess in time O(2k2) the set S ∈ F of segments
which corresponds to this covering K. Then we can argue by property c) that there are at
most k2 points in P not contained in some segments in S. It remains to guess what are the
segments in K covering those points. If some of these segments split a segment in S, then
we simply do as in the proof of Lemma 17 and update the set S of segments.

▶ Theorem 18. It is possible to compute in time O(236f2
f42f+1 +n4 log n) a convex partition

of a point set P with at most 24f convex faces, where f denotes the minimum number of
convex faces required. The same holds when considering convex tilings.
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Proof. We first compute a minimum covering of the inner points in time O(2s2
s7s+1+n4 log n)

by applying the algorithm of Theorem 14 for k = 1, 2, . . . , s, where s denotes the minimum
number of segments required in a covering of the inner points. Then, by 2. of Theorem 6,
we obtain in O(n2)-time a convex partition with at most 24f convex faces. The same holds
with convex tilings for the same arguments. As by 1. of Theorem 6, we have s ≤ 6f , the
total running time of the algorithm is as stated. ◀

We discuss in the full version of the paper [10] why the membership of CPNCS in FPT
does not contradict the W[1]-hardness of Maximum Independent Set in Segment Intersection
Graphs shown by Marx [15]. We also discuss why our techniques are not sufficient to obtain
an exact FPT algorithm for MCP.

5 NP-hardness of MCP and MCT

Our proof of NP-hardness of MCP and MCT builds upon gadgets introduced by Lingas [14].
He used them to prove NP-hardness of several decision problems, including Minimum
Convex Partition for Polygons with Holes and Minimum Rectangular Partition for Rectilinear
Polygons with Holes. The entire proof appears in the full version of the paper [10]. The
idea is to first mimic Lingas’ proof. We show how we can embed the rectilinear polygon
with holes into a grid Λ of polynomial size. Then we add all edges of the grid outside of the
polygon and inside of the holes to the drawing. This gives us a set Φ of unit length segments.
We finally replace each unit segment by K collinear points, where K depends polynomially
on the size of the input, and obtain a point set P . We show that the convex faces in a
minimum convex partition of P have large area, and that if the interior of a convex face F

in a convex partition of P intersects a segment in Φ, then the area of F , denoted by A(F ), is
not large enough. Therefore, the interior of a convex face F in a minimum convex partition
of P does not intersect a segment in Φ. From this we can conclude that convex partitions on
P behave as if the segments of the polygon where there as constraints. Thus, the reduction
works similarly as Lingas’. We present here our key lemma in the proof. It states that if the
interior of a convex face F intersects a segment σ in Φ, then F cannot have large area within
two cells of Λ on different sides of σ, where large area means larger than 1/K.

▶ Lemma 19. Let L and L′ be two unit cells in Λ, and let F be a convex polygon whose
interior does not contain any point in P . If A(F ∩ L) > 1/K, and the boundary of F crosses
a segment of Φ between L and L′, then A(F ∩ L′) < 1/K.

Proof. The proof is illustrated in Figure 4. By assumption, F intersects a line segment
whose endpoints p and q are at distance 1/K. Let us consider the two line segments s

and s′ of the boundary of S that intersect the line ℓ which contains p and q. Assume for
contradiction that the lines containing respectively s and s′ do not intersect, or intersect
on the side of ℓ where L lies. This implies that F ∩ L is contained in a parallelogram that
has area 1/K, as illustrated in Figure 5. Indeed such a parallelogram has base 1/K and
height 1, therefore A(F ∩ L) ≤ 1/K. This shows that the lines containing respectively s and
s′ intersect on the side of ℓ where L′ lies. Using the same arguments as above, this implies
A(F ∩ L′) < 1/K. ◀
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Figure 4 If A(S ∩ L) > 1/K, the two lines containing s and s′ intersect on the left side.

•

•p

q

L

Figure 5 The area of the parallelograms is 1/K.

6 Open problems

It would be interesting to have approximation algorithms for MCP, MCT and CPNCS with
better ratio than O(log OPT ). As MCP is not APX-hard unless NP ⊆ DTIME(2polylog n) [1],
we expect that some improvement can be achieved.

A natural question is to ask whether MCP is FPT with respect to the number of faces in
an optimal convex partition, as we have only shown a constant-approximation FPT algorithm.
This question is open when having several points on a line is allowed, since otherwise the
minimum number of convex faces is linear in the number of inner points.

We have shown that the decision versions of MCP and CPNCS are NP-complete, and
that the one of MCT is NP-hard, but the question whether the decision version of MCT is
in NP remains open. We also do not know the complexity of MCP and MCT when it is
assumed that no three points are collinear.
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