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Abstract
We present an algorithm to compute the geodesic L1 farthest-point Voronoi diagram of m point

sites in the presence of n rectangular obstacles in the plane. It takes O(nm + n log n + m log m)
construction time using O(nm) space. This is the first optimal algorithm for constructing the
farthest-point Voronoi diagram in the presence of obstacles. We can construct a data structure in
the same construction time and space that answers a farthest-neighbor query in O(log(n + m)) time.
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1 Introduction

A Voronoi diagram of a set of sites is a subdivision of the space under consideration into
subspaces by assigning points to sites with respect to a certain proximity. Typical Voronoi
assignment models are the nearest-point model and the farthest-point model where every
point is assigned to its nearest site and its farthest site, respectively. There are results for
computing Voronoi diagrams in the plane [1, 13, 14, 24], under different metrics [9, 17, 18, 23],
or for various types of sites [2, 8, 22].

For m point sites in the plane, the nearest-point and farthest-point Voronoi diagrams of
the sites can be constructed in O(m log m) time [14, 24]. When the sites are contained in a
simple polygon with no holes, the distance between any two points in the polygon, called the
geodesic distance, is measured as the length of the shortest path contained in the polygon
and connecting the points (called the geodesic path). There has been a fair amount of work
computing the geodesic nearest-point and farthest-point Voronoi diagrams of m point sites

© Mincheol Kim, Chanyang Seo, Taehoon Ahn, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 51; pp. 51:1–51:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rucatia@postech.ac.kr
mailto:chan8616@postech.ac.kr
mailto:sloth@postech.ac.kr
mailto:heekap@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
https://doi.org/10.4230/LIPIcs.SoCG.2022.51
http://arxiv.org/abs/2203.03198
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


51:2 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

in a simple n-gon [3, 4, 20, 21] to achieve the lower bound Ω(n + m log m) [3]. Recently,
optimal algorithms of O(n + m log m) time were given for the geodesic nearest-point Voronoi
diagram [19] and for the geodesic farthest-point Voronoi diagram [25].

The problem of computing Voronoi diagrams is more challenging in the presence of
obstacles. Each obstacle plays as a hole and there can be two or more geodesic paths
connecting two points avoiding those holes. The geodesic nearest-point Voronoi diagram of m

point sites can be computed in O(m log m + k log k) time by applying the continuous Dijkstra
paradigm [16], where k is the number of total vertices of obstacles. However, no optimal
algorithm is known for the farthest-point Voronoi diagram in the presence of obstacles in the
plane, even when the obstacles are of elementary shapes such as axis-aligned line segments
and rectangles. The best result of the geodesic farthest-point Voronoi diagram known so far
takes O(mk log2(m + k) log k) time by Bae and Chwa [5]. They also showed that the total
complexity of the geodesic farthest-point Voronoi diagram is Θ(mk).

In the presence of n rectangular obstacles under L1 metric, there are some work for farthest-
neighbor queries. Ben-Moshe et al. [7] presented a data structure with O(nm log(n + m))
construction time and O(nm) space for m point sites that supports farthest point queries in
O(log(n + m)) time. They also showed that the L1 geodesic farthest-point Voronoi diagram
has complexity Θ(nm), but without presenting any algorithm for computing the diagram.
Later Ben-Moshe et al. [6] gave a tradeoff between the query time and the preprocessing/space
such that a data structure of size O((n+m)1.5) can be constructed in O((n+m)1.5 log2(n+m))
to support farthest point queries in O((n + m)0.5 log(n + m)) time.

The geodesic center of a set of objects in a polygonal domain is the set of points in the
domain that minimize the maximum geodesic distance from input objects. Thus, it can
be obtained once the geodesic farthest-point Voronoi diagram of the objects is constructed.
For m points in the presence of n axis-aligned rectangular obstacles in the plane, Choi et
al. [10] showed that the geodesic center of the points under the L1 metric consists of Θ(nm)
connected regions and they gave an O(n2m)-time algorithm to compute the geodesic center.
Later, Ben-Moshe et al. [7] gave an O(nm log(n + m))-time algorithm for the problem.

Our Result. In this paper, we present an algorithm that computes the geodesic L1 farthest-
point Voronoi diagram of m points in the presence of n rectangular obstacles in the plane in
O(nm + n log n + m log m) time using O(nm) space. The running time and space complexity
of our algorithm match the time and space bounds of the Voronoi diagram. Thus, it is the
first optimal algorithm for computing the geodesic farthest-point Voronoi diagram in the
presence of obstacles.

To do this, we construct a data structure for L1 farthest-neighbor queries in O(nm +
n log n + m log m) time using O(nm) space. This improves upon the results by Ben-Moshe et
al. [7], and the construction time and space are the best among the data structures supporting
O(log(n+m)) query time for L1 farthest neighbors. Then we present an optimal algorithm to
compute the explicit geodesic L1 farthest-point Voronoi diagram in O(nm+n log n+m log m)
time using O(nm) space, which matches the time and space lower bounds of the diagram.

As a byproduct, we compute the geodesic center under the L1 metric in O(nm + n log n +
m log m) time. This result improves upon the algorithm by Ben-Moshe et al. [7].

Outline. First, we construct four farthest-point maps, one for each of the four axis directions,
either the x- or y-axis, and either positive or negative. In the course, we construct a data
structure for L1 farthest-neighbor queries in O(nm + n log n + m log m) time using O(nm)
space. For each axis direction, we apply the plane sweep technique with a line orthogonal to
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the direction and moving along the direction. During the sweep, we maintain the status of the
sweep line in a balanced binary search tree and its associated structures while handling events
induced by the point sites and the sides of rectangles parallel to the sweep line. There are m

events induced by point sites and O(n) events induced by rectangles. After sorting the events
in O(n log n + m log m) time, we show that we can handle all events induced by point sites in
O(nm) time. Additionally, we show that each event induced by a rectangle can be handled in
O(m + log n) time. By the plane sweep, we construct a data structure consisting of O(n + m)
line segments parallel to the sweep line and O(nm) points in O(nm + n log n + m log m) time
in total. Given a query, it uses axis-aligned ray shooting queries on the data structure to
find the farthest site from the query. The four farthest-point maps are planar subdivisions,
and they can be constructed during the plane sweep in the same time and space.

With the four farthest-point maps and the data structure for farthest-neighbor queries,
we construct the geodesic L1 farthest-point Voronoi diagram explicitly. First, we decompose
the plane, excluding the holes, into rectangular faces using vertical line segments, each
extended from a vertical side of a hole. Then, we partition each face in the decomposition
into zones such that the farthest-point Voronoi diagram restricted to a zone coincides with
the corresponding region of a farthest-point map. This partition is done by using the
boundary between two farthest-point maps, which can be computed by traversing the cells
in the two maps in which the boundary lies. Finally, we glue the corresponding regions
along the boundaries of zones, and then glue all adjacent faces along their boundaries to
obtain the geodesic L1 farthest-point Voronoi diagram. We show that this can be done in
O(nm + n log n + m log m) time in total.

For the centers of m points in the presence of n axis-aligned rectangles in the plane, we
can find them from the farthest-point Voronoi diagram in time linear to the complexity of
the diagram.

2 Preliminaries

Let R be a set of n open disjoint rectangles and S be a set of m point sites lying in the free
space F = R2 −

⋃
R∈R R. We consider the L1 metric. For ease of description, we omit L1. We

use x(p) and y(p) to denote the x-coordinate and y-coordinate of a point p, respectively. For
two points p and q in F, we use pq to denote the line segment connecting them. Whenever
we say a path connecting two points in F, it is a path contained in F. There can be more
than one geodesic path connecting two points p and q avoiding the holes. We use π(p, q)
to denote a fixed geodesic path connecting p and q, and use d(p, q) to denote the geodesic
distance between p and q, which is the length of π(p, q).

We make a general position assumption that no point in F is equidistant from four or
more distinct sites. We use f(p) to denote the set of sites of S that are farthest from a point
p ∈ F under the geodesic distance, that is, a site s is in f(p) if and only if d(s, p) ≥ d(s′, p)
for all s′ ∈ S. If there is only one farthest site, we use f(p) to denote the site.

A horizontal line segment ℓ can be represented by the two x-coordinates x1(ℓ) and x2(ℓ)
of its endpoints (x1(ℓ) < x2(ℓ)) and the y-coordinate y(ℓ) of them. For an axis-aligned
rectangle R, let x1(R) and x2(R) denote the x-coordinates of the left and right sides of R.

A path is x-monotone if and only if the intersection of the path with any line perpendicular
to the x-axis is connected. Likewise, a path is y-monotone if and only if the intersection of
the path with any line perpendicular to the y-axis is connected. A path is xy-monotone if
and only if the path is x-monotone and y-monotone. Observe that if a path connecting two
points is xy-monotone, it is a geodesic path connecting the points.

SoCG 2022
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Figure 1 Gray rectangles are holes. (a) The eight paths partition F into eight regions reg1, . . . , reg8.
Region reg3 consists of two regions separated by a rectangle R. (b) Every geodesic path from s to p

is y+-monotone and p is y+-reachable from s. Every geodesic path from s to q is y−-monotone and
q is y−-reachable from s.

2.1 Eight Monotone Paths from a Point
Choi and Yap [11] gave a way of partitioning the plane with rectangular holes into eight
regions using eight xy-monotone paths from a point. We use their method to partition F
as follows. Consider a horizontal ray emanating from a point s = p1 ∈ F going rightwards.
The ray stops when it hits a rectangle R ∈ R at a point p′

1. Let p2 be the top-left corner of
R. We repeat this process by taking a horizontal ray from p2 going rightwards until it hits
a rectangle, and so on. Then we obtain an xy-monotone path πru(s) = p1p′

1p2p′
2 . . . from s

that alternates going rightwards and going upwards.
By choosing two directions, one going either rightwards or leftwards horizontally,

and one going either upwards or downwards vertically, and ordering the chosen direc-
tions, we define eight rectilinear xy-monotone paths with directions: rightwards-upwards
(ru), upwards-rightwards (ur), upwards-leftwards (ul), leftwards-upwards (lu), leftwards-
downwards (ld), downwards-leftwards (dl), downwards-rightwards (dr), and rightwards-
downwards (rd). Let πδ(s) denote one of the eight paths corresponding to the direction δ in
{ru, ur, ul, lu, ld, dl, dr, rd}.

Some of the eight paths πδ(s) may overlap in the beginning from s but they do not cross
each other. The paths partition F into eight regions reg1, . . . , reg8 with the indices sorted
around s in a counterclockwise order such that reg1 denotes the region lying to the right
of s, below πru(s) and above πrd(s). Observe that regi is not necessarily connected. See
Figure 1(a) for an illustration.

▶ Lemma 1 ([11, 12]). Every geodesic path connecting two points is either x-, y-, or
xy-monotone. For a point s ∈ F, following three statements hold.

If p ∈ reg1 ∪ reg5, every geodesic path from s to p is x-monotone but not y-monotone.
If p ∈ reg3 ∪ reg7, every geodesic path from s to p is y-monotone but not x-monotone.
If p ∈ reg2 ∪ reg4 ∪ reg6 ∪ reg8 ∪ Π(s), every geodesic path from s to p is xy-monotone,
where Π(s) is the union of the eight paths πδ(s).
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Based on Lemma 1, we define a few more terms. For any point p in reg2 ∪ reg3 ∪ reg4
(and the boundaries of the regions), we say p is y+-reachable from s, and every geodesic path
from s to p is y+-monotone. Any point q ∈ reg6 ∪ reg7 ∪ reg8 (and the boundaries of the
regions) is y−-reachable from s, and every geodesic path from s to q is y−-monotone. See
Figure 1(b). Similarly, any point p ∈ reg1 ∪ reg2 ∪ reg8 (and the boundaries of the regions)
is x+-reachable from s, and every geodesic path from s to p is x+-monotone. Any point
q ∈ reg4 ∪ reg5 ∪ reg6 (and the boundaries of the regions) is x−-reachable from s, and every
geodesic path from s to q is x−-monotone.

3 Farthest-point Maps

Based on Lemma 1 and the four directions of monotone paths in the previous section, we
define four farthest-point maps. A farthest-point map My+ = My+(S) of S in F corresponding
to the positive y-direction is a planar subdivision of F into cells. For a point p ∈ F, a site
s ∈ S is a farthest site of p in My+ if d(p, s) ≥ d(p, s′) for every site s′ ∈ S from which p is
y+-reachable. If p is y+-reachable from no site in S, p has no farthest site in My+ . Thus, a
cell of My+ is defined on F \ C∅, where C∅ denotes the set of points of F that are y+-reachable
from no site in S. A site s corresponds to one or more cells in My+ with the property that a
point p ∈ F \ C∅ lies in a cell of s if and only if d(p, s) > d(p, s′) for every s′ ∈ S \ {s} from
which p is y+-reachable.

We define My− , Mx+ and Mx− analogously with respect to their corresponding directions.
Since the four maps have the same structural and combinatorial properties with respect
to their corresponding directions, we describe only My+ in the following. Let B be an
axis-aligned rectangular box such that S, R, and all vertices of the four farthest-point maps
are contained in the interior of B. We focus on F ∩ B only, and use F as F ∩ B.

In the following, we analyze the edges of My+ using the bisectors of pairs of sites. Let
F (s, s′) denote a set of points of F that are y+-reachable from two sites s and s′. To be
specific, F (s, s′) is an intersection of two regions, one lying above πlu(s) and πru(s) and the
other lying above πlu(s′) and πru(s′). Thus, the boundary of F (s, s′) coincides with the upper
envelope of πlu(s), πru(s), πlu(s′) and πru(s′). We use F (s, s) to denote the set of points that
are y+-reachable from a site s.

For any two distinct sites s, s′ ∈ S, their bisector consists of all points x ∈ F satisfying
{x | d(x, s) = d(x, s′)}. Observe that the bisector may contain a two-dimensional region. We
use b(s, s′) to denote the line segments and the boundary of the two-dimensional region in
the bisector of s and s′.

A proof of the following lemma is given in the full version.

▶ Lemma 2. For any two sites s and s′, b(s, s′) ∩ F (s, s′) consists of axis-aligned segments.

Let fδ(p) denote the set of farthest sites from a point p ∈ F among the sites from which
p is δ-reachable for δ ∈ {y+, y−, x+, x−}. For each horizontal segment of πlu(s) ∪ πru(s),
we call the portion h of the segment such that fy+(p) = {s} for any point p ∈ h, a b-edge.
Observe that no point p′ with x1(h) ≤ x(p′) ≤ x2(h) and y(p′) = y(h) − ε for any ε > 0 is
y+-reachable from s. Thus, a b-edge is also an edge of My+ . Since every edge of My+ is part
of a bisector of two sites in S or a b-edge, it is either horizontal or vertical. See Figure 2(a).

▶ Corollary 3. Every edge of My+ is an axis-aligned line segment.

SoCG 2022



51:6 Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

s1

s2

s4

s5

C2C3C5

s6

C6

B

w

u v

z

s3 C∅
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Figure 2 (a) My+ for S = {s1, . . . , s6} restricted to a box B with four rectangular holes (gray). si

has a corresponding cell Ci for i = 2, 3, 5, 6 while s1 and s4 have no cell. A vertical edge vz is from
b(s3, s6) in the (red) region F (s3, s6). A horizontal edge uv is not part of b(s3, s6) but it is part of a
b-edge as no point lying below uv is y+-reachable from s6. (b) Illustration of Qy+ corresponding to
My+ . At the boundary point q, d(q, s3) = d(q, s6).

For sites contained in a simple polygon, Aronov et al. [4] gave a lemma, called Ordering
Lemma, that the order of sites along their convex hull is the same as the order of their
Voronoi cells along the boundary of a simple polygon. We give a lemma on the order of
sites in the presence of rectangular obstacles. We use it in analyzing the maps and Voronoi
diagrams. A proof of the following lemma is given in the full version.

▶ Lemma 4. Let pq be a horizontal segment contained in F \ C∅ with x(p) < x(q). For any
two sites fp ∈ f(p) and fq ∈ f(q) such that p and q are y+-reachable from both fp and fq, if
fp /∈ f(q) or fq /∈ f(p), x(fp) > x(fq).

Since there are at most m sites, we obtain the following corollary from Lemma 4.

▶ Corollary 5. Any horizontal line segment contained in F intersects at most m cells in My+ .

Using Corollary 3 and 5, we analyze the complexity of My+ as follows. Note that each
lower endpoint of a vertical edge of My+ appears on a horizontal line segment passing through
a site or the top side of a rectangle. By Corollary 5, the maximal horizontal segment through
the top side of a rectangle in R and contained in F intersects O(m) vertical edges of My+ .
Moreover, the maximal horizontal line segment through a site s and contained in F intersects
O(1) lower endpoints of vertical edges on the boundary of the cell of s. Since there are
n rectangles in R and m sites in S, My+ has O(nm + m) = O(nm) vertical edges. Every
horizontal edge of My+ is a segment of a bisector or a b-edge, and it is incident to a side of a
rectangle or another vertical edge. Since there are O(n) rectangle sides, and O(1) horizontal
edges of My+ that are incident to a vertical edge, My+ has O(n + nm) = O(nm) horizontal
edges. Thus, My+ has complexity O(nm).

Now we show that every farthest site s ∈ f(p) of a point p in F is one of the farthest
sites of p in the four farthest-point maps. By the definition of the farthest-point maps, p is
contained in a cell of My+ , My− , Mx+ or Mx− . Since every geodesic path connecting two
points is either y+-, y−-, x+-, or x−-monotone by Lemma 1, s ∈ f(p) is one of the farthest
sites of p in the four farthest-point maps. If p is contained in cells of two or more maps,
we compare their distances to the farthest sites defining the cells and take the ones with
the largest distance as the farthest sites of p. Thus, once the four farthest-point maps are
constructed, the farthest sites of a query point can be computed from the map.



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:7

T

dv(x)

q

C(s) C(s′)

B(v)

x

v Xv T

[x1(v), x2(v)]

B(v)

T T F

L

(b)(a)

Figure 3 (a) Illustration of a balanced binary search tree T . A node v in T has domain
[x1(v), x2(v)], array Xv, and a pointer to B(v). (b) Illustration of B(v) and dv(x).

4 Data Structure for Farthest-neighbor Queries

We present an algorithm that constructs a data structure for farthest site queries. We denote
m point sites of S by s1, . . . , sm such that x(s1) ≤ · · · ≤ x(sm), and n rectangular obstacles of
R by R1, . . . , Rn. The data structure consists of four parts, each for one axis direction. Since
the four parts can be constructed in the same way with respect to their directions, we focus
on the part corresponding to the positive y-direction, and thus the structure corresponds to
My+ . We use Qy+ to denote the query data structure.

By Corollary 3, we can find the farthest site of a query point using a vertical ray shooting
query to the horizontal edges of My+ and a binary search on the lower endpoints of vertical
edges of My+ lying on the horizontal edges of My+ . Thus, we construct Qy+ such that it
consists of the horizontal edges of My+ and the endpoints of vertical edges of My+ lying on
the horizontal edges of My+ .

A point q lying on a horizontal segment h of Qy+ is the lower endpoint of a vertical edge
of My+ if and only if there are two points q1 = (x(q) − ε, y(q)) and q2 = (x(q) + ε, y(q)) for
sufficiently small ε > 0 satisfying fy+(q1) ∪ fy+(q2) = fy+(q) and fy+(q1) ̸= fy+(q2). We call
each lower endpoint of vertical edges lying on h a boundary point on h. See Figure 2(b).

We use a plane sweep algorithm with a horizontal sweep line L to construct the horizontal
line segments in Qy+ . Note that F ∩ L consists of disjoint horizontal segments along L.
The status of L is the sequence of segments in F ∩ L along L. The status changes while
L moves upwards over the plane, but not continuously. Each update of the status occurs
at a particular y-coordinate, which we call an event. To do such updates efficiently, we
maintain three data structures for L: a balanced binary search tree T representing the status,
a boundary list B, and a list D of distance functions. The structures B and D are associated
structures of T .

We store the segments of F ∩ L in a balanced binary search tree T in increasing order
of x-coordinate of their left endpoints. Each node v of T corresponds to a horizontal line
segment hv of F ∩ L. We store x1(hv) and x2(hv), and an array Xv of m Boolean variables
at v. We set Xv[i] = T if a point on hv is y+-reachable from si for i = 1 . . . , m. Otherwise,
we set Xv[i] = F. The range of v is [x1(v), x2(v)] for x1(v) = x1(hv) and x2(v) = x2(hv).
There are at most n + 1 nodes in T , and each node maintains an array of size O(m), so T
itself uses O(nm) space in total. See Figure 3(a).

The list B consists of boundary lists B(v) for nodes v of T . Each node v of T has a pointer
to its boundary list B(v), which is a doubly-linked list of the boundary points (including
the endpoints of hv) lying on hv. Each boundary point in B is the intersection of L and a
vertical edge of My+ , so there are O(nm) boundary points in B.

SoCG 2022
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Figure 4 Three types of events. (a) site events. (b) bottom-side events. (c) top-side events.

Let dδ(p) = d(s, p) for a site s ∈ fδ(p) if fδ(p) ̸= ∅, or dδ(p) = −∞ for δ ∈
{y+, y−, x+, x−}. The list D consists of distance functions dv for nodes v of T . Let p(r)
denote a point on L with x(p(r)) = r for a real number r. Each node v of T has a pointer to
its distance function dv(x) = dy+(p(x)) for x in the range [x1(v), x2(v)] of v. It is a piecewise
linear function with pieces (segments) of slopes 1 or −1. See Figure 3(b).

There are three types of events: (1) a site event, (2) a bottom-side event, and (3) a
top-side event. A site event occurs when L encounters a site in S. A bottom-side event
occurs when L encounters the bottom side of a rectangle in R. A top-side event occurs when
L encounters the top side of a rectangle in R. Thus, there are m site events, n bottom-side
events, and n top-side events. See Figure 4.

We maintain and update T , B and D during the plane sweep for those events. To handle
events, we first sort the events in y-coordinate order, which takes O((n + m) log(n + m)) =
O(n log n + m log m) time. We update dv(x) only at those events and keep it unchanged
between two consecutive events. To reflect the distances from sites to p(x) ∈ hv correctly, we
assign an additive weight to dv(x), which is the difference in the y-coordinates between the
current event and the last event at which dv(x) is updated.

Initially, when L is at the bottom side of B, T consists of one node v with x1(v) = x1(B),
x2(v) = x2(B), and Xv[i] = F for all i ∈ {1, . . . , m}. B(v) has no boundary point and
dv(x) = −∞ for all x, since no points on L is y+-reachable from any sites.

4.1 Handling a site event

When L encounters a site si ∈ S, we find the node v ∈ T such that x1(v) ≤ x(si) ≤ x2(v).
Every point on hv is y+-reachable from si, so we set Xv[i] = T. We can find v in O(log n)
time, and set Xv[i] = T in constant time. Thus, it takes O(log n) time to update T .

For any point p(x) ∈ hv, d(si, p(x)) = |x − x(si)|. By Lemma 4, there is at most one
maximal interval I ⊂ [x1(v), x2(v)] such that dv(x) < d(si, p(x)) for every x ∈ I. Moreover,
I is bounded from left by x1(v) or from right by x2(v) because dv(x) is continuous and
consists of pieces (segments) of slopes 1 or −1, and d(si, p(x)) = |x − x(si)|. We find the
boundary point p(x∗) ∈ hv induced by si such that dv(x∗) = d(si, p(x∗)). If I is bounded
from left, we update dv(x) to dv(x) = d(si, p(x)) for x ≤ x∗. If I is bounded from right, we
update dv(x) to dv(x) = d(si, p(x)) for x ≥ x∗.

If there is no such point p(x∗), either dv(x) < d(si, p(x)) or dv(x) > d(si, p(x)) for all x

with x1(v) ≤ x ≤ x2(v). If dv(x) < d(si, p(x)), we update dv(x) to dv(x) = d(si, p(x)) for
x1(v) ≤ x ≤ x2(v). If dv(x) > d(si, p(x)), we do not update dv(x).

We update B(v) by removing all the boundary points of B(v) lying in the interior of I in
time linear to the number of the boundary points, and then inserting p(x∗) into B(v).
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Since there are m site events, it takes O(m log n) time in total to update T . The total
time to remove the boundary points is linear to the total number of boundary points in Qy+ ,
which is O(nm).

▶ Lemma 6. We can handle all site events in O(nm) time using O(nm) space.

4.2 Handling a bottom-side event

When L encounters the bottom side of a rectangle R ∈ R, the line segment of F ∩ L incident
to the bottom side is replaced by two line segments by the event. See Figure 4(b). Thus, we
update T by finding the node v ∈ T with x1(v) ≤ x1(R) < x2(R) ≤ x2(v), removing v from
T , and then inserting two new nodes u and w into T . We set (x1(u), x2(u)) = (x1(v), x1(R)),
(x1(w), x2(w)) = (x2(R), x2(v)), Xu = Xv, and Xw = Xv. This takes O(log n) time since T
is a balanced binary search tree. It takes O(m) time to copy the Boolean values of Xv to Xu

and Xw, and to remove Xv. Thus, it takes O(m + log n) time to update T .
We update B by inserting two lists B(u) and B(w) into B, copying the boundary points

of B(v) to the lists, and then removing B(v) from B. By Corollary 5, hv intersects O(m)
cells in My+ . Thus, B(v) has O(m) boundary points, and the update to B(u) and B(w) takes
O(m) time. There is no change to distance functions.

Since there are n bottom-side events, it takes O(nm + n log n) time to update T and
O(nm) time to update B for all bottom-side events.

▶ Lemma 7. We can handle all bottom-side events in O(nm + n log n) time using O(nm)
space.

4.3 Handling a top-side event

When L encounters the top side of a rectangle R ∈ R, the two consecutive segments in F ∩ L

incident to R are replaced by one segment spanning them by the event. See Figure 4(c).
We update T by finding the two nodes u, w ∈ T with x2(u) = x1(R) and x1(w) = x2(R),
removing u and w from T , and then inserting a new node v into T . We set x1(v) = x1(u),
x2(v) = x2(w), and Xv[i] = Xu[i] ∨ Xw[i] for each i = 1, . . . , m. This takes O(m + log n)
time.

We update the distance function dv(x) for x with x1(v) ≤ x ≤ x1(R) as follows. The
geodesic path from any point p(x) ∈ hu to si with Xu[i] = F and Xw[i] = T is xy-monotone by
Lemma 1, and thus d(si, p(x)) = y(p(x))−y(si)+ |x(si)−x|. Also, we observe that x(si) ≥ x

for any x. Thus, every p(x) has the same site s∗ as its farthest site among the sites si with
Xu[i] = F and Xw[i] = T. Then d(s∗, p(x)) = y(p(x)) − y(s∗) + x(s∗) − x. By Lemma 4,
there is at most one maximal interval I of x ∈ [x1(v), x1(R)] such that dv(x) ≤ d(s∗, p(x)).
Moreover, I is bounded from left by x1(v). We find the boundary point p(x∗) ∈ hu such that
dv(x∗) = d(s∗, p(x∗)), and update dv(x) to d(s∗, p(x)) for x ≤ x∗.

If there is no such point p(x∗), either dv(x) < d(s∗, p(x)) or dv(x) > d(s∗, p(x)) for all x

with x1(v) ≤ x ≤ x1(R). If dv(x) < d(s∗, p(x)), we update dv(x) to dv(x) = d(s∗, p(x)) for
x1(v) ≤ x ≤ x1(R). If dv(x) > d(s∗, p(x)), we do not update dv(x).

We update B[x1(v), x1(R)], which is a part of B(v) with range [x1(v), x1(R)], by removing
all the boundary points in the interior of I in time linear to the number of the boundary
points, and then inserting p(x∗) as a boundary point. We can handle the case of x with
x2(R) ≤ x ≤ x2(v), and update B[x2(R), x2(v)] analogously.
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R = Rk

βα
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Figure 5 ST = {s1, s2, s3, s4, s5, s6} is partitioned into Sk = {s2, s3, s4, s5}, S(α) = {s1}, and
S(β) = {s6}. For two rectangles Ra and Rb, Sa = {s2} and Sb = {s5}.

Computing distance functions for a top side

We show how to compute dv(x) for x ∈ [x1(R), x2(R)] and update B[x1(R), x2(R)] efficiently.

For an index k, let αk and βk denote the top-left corner and the top-right corner of
Rk ∈ R, and let Sk denote the set of the sites that lie below the polygonal curve consisting
of πdl(αk), the top side of Rk, and πdr(βk).

For the top-side event of R = Rk, let α = αk and β = βk. Note that x(α) = x1(R) and
x(β) = x2(R). Let ST be the set of the sites si, with Xv[i] = T for all i = 1, . . . , m. We
partition ST into three disjoint subsets, Sk, S(α), and S(β), such that S(α) = {si ∈ ST \ Sk |
x(si) ≤ x1(R)} and S(β) = {si ∈ ST \ Sk | x(si) ≥ x2(R)}. See Figure 5.

Every geodesic path from any site in S(α) or S(β) to any point on the top side of R is
xy-monotone. Thus for any point p(x) lying on the top side of R, we can compute d(sα, p(x))
and d(sβ , p(x)), where sα and sβ are the farthest sites of p(x) among sites in S(α) and among
sites in S(β), respectively, as we did for B[x1(v), x1(R)] or B[x2(R), x2(v)].

We denote by dα(i, x) = d(α, si) + x − x(α) the length of a geodesic path from a site si to
p(x) passing through α, and denote by dβ(i, x) = d(β, si) + x(β) − x the length of a geodesic
path from si to p(x) passing through β. Let D(x) = maxsi∈Sk

min{dα(i, x), dβ(i, x)} for
all x with x(α) ≤ x ≤ x(β). Then dv(x) = max{d(sα, p(x)), D(x), d(sβ , p(x))}. Thus, once
we compute D(x) in O(m) time, we can compute dv(x) in time linear to the complexity of
D(x), which is O(m). To compute D(x), we find the two rectangles hit first by the vertical
rays, one emanating from α and one emanating from β, going downwards. Using these two
rectangles we compute the distance functions d(α, si) and d(β, si) for all si ∈ Sk. Using these
distance functions, we can compute D(x) in O(m) time. Details are given in the full version.
We update B[x1(R), x2(R)] in O(m) time using dv(x).

There are n top-side events, so we can handle the top-side events in O(nm + n log n) time.
In addition, we compute distances from O(m) sites to each corner of O(n) rectangles, and
store them. Using ray shooting queries emanating from the corners of rectangles, it takes
O(nm) + O(n log n) time using O(nm) space. Therefore, we have the following lemma.

▶ Lemma 8. We can handle all top-side events in O(nm + n log n) time using O(nm) space.
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4.4 Constructing the query data structure
Initially, Qy+ = ∅. For each site event and top-side event, we update dv(x) and B(v) for node
v of T corresponding to the event. We insert a horizontal segment h corresponding to each
interval which is updated at the event into Qy+ , and copy the boundary points into h. For
each site event, at most one horizontal line segment h is inserted. There is no boundary point
in the interior of h, so we can copy h with two endpoints in O(1) time. For each top-side
event, at most three horizontal line segments are inserted. They have O(m) boundary points
by Lemma 4, so we can copy them in O(m) time. There are O(n + m) horizontal segments
and O(nm) boundary points in Qy+ , so the query structure Qy+ uses O(nm) space.

Farthest-point queries
Once Qy+ is constructed, we can find fy+(q) from a query point q ∈ F \ C∅. We find the
farthest sites from q in the other three maps using their query data structures.

By Corollary 3, our query problem reduces to the vertical ray shooting queries. We use
the data structure by Giora and Kaplan [15] for vertical ray shooting queries on O(n + m)
horizontal line segments in Qy+ , which requires O((n + m) log(n + m)) time and O(n + m)
space for construction. Let h be the horizontal segment in Qy+ hit first by the vertical ray
emanating from q going downwards. We can find h in O(log(n + m)) time using the ray
shooting structure. If no horizontal segment in Qy+ is hit by the ray, q is y+-reachable
from no site. Otherwise, there are O(m) boundary points on h, sorted in increasing order of
x-coordinate. With those boundary points, we can find f(q) for a query point q in O(log m)
time using binary search. Thus, a farthest-neighbor query takes O(log(n + m)) time in total.

Once the farthest sites of q for each of the four data structures is found, we take the
sites with the largest distance among them as the farthest sites f(q) of S from q. Combining
Lemmas 6, 7 and 8 with query time, we have the following theorem.

▶ Theorem 9. We can construct a data structure for m point sites in the presence of n

axis-aligned rectangular obstacles in the plane in O(nm + n log n + m log m) time and O(nm)
space that answers any L1 farthest-neighbor query in O(log(n + m)) time.

5 Computing the Explicit Farthest-point Voronoi Diagram

We construct the explicit farthest-point Voronoi diagram FVD = FVD(S, R) of a set S of m

point sites in the presence of a set R of n rectangular obstacles in the plane. It is known
that FVD requires Ω(nm) space [5, 7]. It takes Ω(n log n) time to compute the geodesic
distance between two points in F [12]. By a reduction from the sorting problem, it can be
shown to take Ω(m log m) time for computing the farthest-point Voronoi diagram of m point
sites in the plane. We present an O(nm + n log n + m log m)-time algorithm using O(nm)
space that matches the time and space lower bounds. This is the first optimal algorithm for
constructing the farthest-point Voronoi diagram of points in the presence of obstacles in the
plane in both time and space.

We construct Qy+ using the plane sweep in Section 4. During the plane sweep, we find
all horizontal edges of My+ and insert them into Qy+ as segments. We find all the lower
endpoints of the vertical edges of My+ and insert them as boundary points in B. We also
find the upper endpoints of vertical edges of My+ . By connecting those endpoints using
vertical segments appropriately, we can construct My+ from Qy+ in a doubly connected edge
list without increasing the time and space complexities. The other three maps can also be
constructed in the same way in the same time and space.
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Figure 6 (a) Vertical decomposition FV . f is a face of FV . (b) Zy+ is a region in f above
the upper envelope of three traces, T (y+, y−), T (y+, x+) and T (y+, x−). (c) Explicit geodesic L1

farthest-point Voronoi diagram FVD.

We construct the farthest-point Voronoi diagram FVD using the four maps explicitly.
Note that f(p) = fy+(p) for any point p lying on the top side of B. Thus, it suffices to
compute FVD in F ∩ B. For ease of description, we assume that the x-coordinates of the
rectangles in R are all distinct. We consider a vertical decomposition FV obtained by drawing
maximal vertical line segments contained in F ∩ B of which each is extended from a vertical
side of a hole of F. Let V be a set of such vertical line segments. F \

⋃
ℓ∈V ℓ consists of O(n)

connected faces. Each face is a rectangle since each hole of F is a rectangle and F is bounded
by B. See Figure 6(a).

Any two farthest-point maps M1, M2 have a bisector which consists of the points in F
having the same distance to their farthest sites in M1 and in M2. The four maps define
six bisectors. In a face of FV , the six bisectors and some axis-aligned segments partition
the face into zones such that FVD restricted to one zone coincides with the diagram in the
corresponding region of a farthest-point map. Thus, we compute the bisectors between maps
in each face of FV , partition the face into zones, find the region of a farthest-point map
corresponding to each zone, and then glue the regions and faces to compute FVD completely.

5.1 Bisectors of farthest-point maps

We define the bisector between Mδ and Mδ′ as B(δ, δ′) = {q ∈ F | dδ(q) = dδ′(q)} for any
two distinct δ, δ′ ∈ {y+, y−, x+, x−}. We show that any vertical line intersects B(y+, y−) in
at most one point, and any vertical line segment contained in F intersects B(y+, x+) (and
B(y+, x−)) in at most one connected component. Thus, these three bisectors contained in a
face of FV are x-monotone. Details are given in the full version.

For each face f of FV , we compute the portion of B(y+, y−) contained in f. As B(y+, y−)∩f
is x-monotone, we sweep a vertical line L from x1(f) to x2(f) maintaining a point p ∈ f ∩ L

with dy+(p) = dy−(p). First, we compute p lying on the left side of f as follows. There are
O(m) intersections of the left side of f with the horizontal segments of Qy+ and Qy− as
any vertical line segment contained in F intersects O(m) horizontal segments of them. For
each intersection point q, we compute dy+(q) and dy−(q), and find two consecutive points
q1 and q2 among the intersection points by y-coordinate such that dy+(q1) ≤ dy−(q1) and
dy−(q2) ≤ dy+(q2). We can compute q1 and q2 in O(m) time using Qy+ and Qy− . Then we
compute p lying on q1q2.



M. Kim, C. Seo, T. Ahn, and H.-K. Ahn 51:13

Having the distance functions, we have the slope of the bisector incident to p. Let ℓ⃗ be
the half-line from p with the slope going rightward. We find the first point p′ on ℓ⃗ from
p at which the slope of dy+(p′) or dy−(p′) changes. Since the slope of dy+(p′) changes at
most once within a cell of My+ , we can find p′ in time linear to the complexity of the cells
containing p of the maps. If there are two or more such points, p is the point with the
maximum y-coordinate among them.

There may be no point p satisfying dy+(p) = dy−(p) if there is a point q ∈ f ∩ L such that
dy+(q′) > dy−(q′) for every point q′ lying above q, and dy+(q′) < dy−(q′) for every point q′

lying below q. We maintain the point q in this case. Note that q follows a horizontal segment
during the plane sweep, and thus we can find the first point p with dy+(p) = dy−(p) using a
horizontal half-line from q.

During the plane sweep, p or q moves along B(y+, y−) rightwards until it meets the right
side of f. We compute the other bisectors in f similarly.

We compute the trace T (y+, y−) of p and q during the sweep. Observe that every vertical
line intersecting f also intersects the trace in one point t. Moreover, if the line intersects
B(y+, y−) ∩ f, t is the topmost point of the intersection. Since we have Mx+ and Mx− , we
can compute the two traces T (y+, x+) and T (y+, x−) similarly.

We observe that each bisector and trace in f has O(m) complexity. We get the distance
functions using Qy+ , Qy− , Qx+ , and Qx− which consist of O(n + m) line segments and
support O(log(n + m)) query time. After computing those distance functions, the traces can
be constructed in time linear to their complexities. Thus, in total it takes O(nm + n log n +
m log m) time to construct the traces for all faces.

5.2 Partitioning f into zones
With the three traces T (y+, y−), T (y+, x+), T (y+, x−) in f, we compute the zone Zy+ in
f corresponding to My+ in f. Let T be an upper envelope of T (y+, y−), T (y+, x+) and
T (y+, x−). Then Zy+ is the set of points lying above T in f. See Figure 6(b). The following
lemma can be shown using the lemmas in the full version.

▶ Lemma 10. For any point p ∈ Zy+ , f(p) = fy+(p).

Similarly, we define the other three zones Zy− , Zx+ , and Zx− . Note that dδ(p) > dδ′(p)
for every point p ∈ Zδ for distinct δ, δ′ ∈ {y+, y−, x+, x−}. By Lemma 10, FVD ∩ Zy+

coincides with My+ . We copy the corresponding farthest-point map of δ into Zδ for each
δ ∈ {y+, y−, x+, x−}.

We call f \ (Zy+ ∪ Zy− ∪ Zx+ ∪ Zx−) the bisector zone. Every point p in the bisector zone
lies on a bisector of two or more maps. Thus, for each bisector of two maps, we copy one of
the maps into the corresponding zone.

5.3 Gluing along boundaries
We first glue the zones along their boundaries in each face of FV . For each edge e incident to
two zones, we check whether the two cells incident to the edge have the same farthest site or
not. If they have the same farthest site, e is not a Voronoi edge of FVD. Then we remove the
edge and merge the cells into one. If they have different farthest sites, e is a Voronoi edge of
FVD. This takes O(nm) time in total, which is linear to the number of Voronoi edges and
cells in FVD.

After gluing zones in every face, we glue the faces of FV along their boundaries. Since e is
a vertical line segment and incident to more than two cells, we divide e into pieces such that
any point in the same piece e′ is incident to the same set of two cells. If both cells incident
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to e′ have the same farthest site, e′ is not a Voronoi edge of FVD. Then we remove the edge
and merge the cells. If they have different farthest sites, e′ is a Voronoi edge of FVD. There
are O(n) vertical line segments in V and each of them intersects O(m) cells of FVD, so it
takes O(nm) time in total. Then we obtain the geodesic L1 farthest-point Voronoi diagram
FVD explicitly. See Figure 6(c).

▶ Theorem 11. We can compute the L1 farthest-point Voronoi diagram of m point sites in
the presence of n axis-aligned rectangular obstacles in the plane in O(nm + n log n + m log m)
time and O(nm) space.

▶ Corollary 12. We can compute the L1 geodesic center of m point sites in the presence of n

axis-aligned rectangular obstacles in the plane in O(nm + n log n + m log m) time and O(nm)
space.

6 Concluding Remarks

We present an optimal algorithm for computing the farthest-point Voronoi diagram of point
sites in the presence of rectangular obstacles. However, our algorithm may not work for
more general obstacles as it is, because some properties we use for the axis-aligned rectangles
including their convexity may not hold any longer. Our results, however, may serve as a
stepping stone to closing the gap to the optimal bounds.
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