
Minimum Height Drawings of Ordered Trees in
Polynomial Time: Homotopy Height of Tree Duals
Tim Ophelders #

Department of Information and Computing Science, Utrecht University, The Netherlands
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Salman Parsa #

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

Abstract
We consider drawings of graphs in the plane in which vertices are assigned distinct points in the
plane and edges are drawn as simple curves connecting the vertices and such that the edges intersect
only at their common endpoints. There is an intuitive quality measure for drawings of a graph that
measures the height of a drawing ϕ : G ↪→ R2 as follows. For a vertical line ℓ in R2, let the height
of ℓ be the cardinality of the set ℓ ∩ ϕ(G). The height of a drawing of G is the maximum height
over all vertical lines. In this paper, instead of abstract graphs, we fix a drawing and consider plane
graphs. In other words, we are looking for a homeomorphism of the plane that minimizes the height
of the resulting drawing. This problem is equivalent to the homotopy height problem in the plane,
and the homotopic Fréchet distance problem. These problems were recently shown to lie in NP,
but no polynomial-time algorithm or NP-hardness proof has been found since their formulation in
2009. We present the first polynomial-time algorithm for drawing trees with optimal height. This
corresponds to a polynomial-time algorithm for the homotopy height where the triangulation has
only one vertex (that is, a set of loops incident to a single vertex), so that its dual is a tree.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Graph drawing, homotopy height

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.55

Related Version Full Version: https://arxiv.org/abs/2203.08364

Funding Tim Ophelders: This author was supported by the Dutch Research Council (NWO) under
project no. VI.Veni.212.260.
Salman Parsa: This author was funded in part by the SLU Research Institute and by NSF grant
CCF-1614562.

1 Introduction

A tree T is called an ordered tree if for each vertex, a fixed cyclic ordering of its incident
edges is given. Let T be an ordered tree and let f : |T | → R2 be a drawing of the tree, that
is, a continuous injection from the underlying topological space of the tree to the plane,
in which the clockwise order of edges around each vertex is as prescribed. Any ordered
tree can be recovered from any of its drawings up to degree 2 nodes. Any two drawings of
the same ordered tree can be obtained from one another using an orientation-preserving
homeomorphism of the plane. We are interested in drawings that minimize the height in the
following sense. Given a drawing ϕ and a vertical line ℓ, the height of the line ℓ is defined as
H(ℓ) := |ϕ(T) ∩ ℓ|. That is, the number of times that the line ℓ intersects the drawing, where
vertical segments count as infinitely many intersections. The problem of drawing a tree T

with optimal height asks for a drawing ϕ : |T | → R2 that minimizes the maximum height
over all vertical lines. We call such a drawing an optimal height drawing. We emphasize that
our drawings are not necessarily straight-line. In fact, there exist instances for which any

© Tim Ophelders and Salman Parsa;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 55; pp. 55:1–55:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.a.e.ophelders@uu.nl
https://orcid.org/0000-0002-9570-024X
mailto:sparsa@sci.utah.edu
https://orcid.org/0000-0002-8179-9322
https://doi.org/10.4230/LIPIcs.SoCG.2022.55
https://arxiv.org/abs/2203.08364
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Minimum Height Drawings of Ordered Trees in Polynomial Time

Figure 1 A bend is necessary in any drawing with height 5.

50

50
49

1 24 8
46

39
24

Figure 2 Spirals (e.g. the edge with weight 1) may be necessary to draw weighted trees optimally.

optimal drawing requires a bend in some edge. An example is given in Figure 1. One can
check that any optimal drawing of this tree requires a bend in some edge. Although we will
consider only unweighted trees, the definition of height naturally extends to edge-weighted
graphs. Already in the case of weighted trees with only one vertex of degree at least three,
an optimal drawing might even require an edge to form a spiral. Figure 2 depicts an instance
whose optimal drawing requires a spiral according to a computer-assisted enumeration of its
drawings. We do not know whether unweighted trees also require spiraling edges.

The optimal height drawing of graphs is related to two significant classes of problems
in computer science, and in particular, computational geometry and topology. If, instead
of ordered trees, we take (unordered) trees and allow edges to cross in the output drawing,
we obtain the classical min-cut linear arrangement problem. This problem is well-studied
[7, 11, 14] and Yannakakis [15] presented an O(n log n) time algorithm for drawing trees with
optimal height in this sense. Of course, optimal drawings with straight-line edges always
exist in this setting. On the other hand, it is known that the graph version as well as the
weighted tree version [13] of the same problem is NP-hard. Since the trees corresponding to
the reduction can be drawn optimally without self-intersection, it follows that optimal height
drawing of unordered weighted trees is also NP-hard. All the mentioned problems lie in NP.

The optimal height graph drawing problem also shows up as a special case of an important
open problem in computational geometry and topology called the homotopy height problem [2,
3, 5, 6, 10]. In this context, a homotopy corresponds to a one-parameter family of curves
γi (i ∈ [0, 1]) that sweeps a surface in a continuous way, where γ0 and γ1 are part of the
input. Roughly speaking, the homotopy height problem considers a surface homeomorphic
to a sphere, disk, or annulus, endowed with a metric, and asks for a homotopy of curves
that sweeps the surface in such a way that the longest curve γi is as short as possible. For a
perfectly round sphere, the homotopy height is the length of its equator. For the purpose
of computation, discrete versions of the problem have been considered, where the surface
is endowed with a cellular decomposition, and the lengths of curves are measured by the
number of intersections with cell boundaries. Each curve in general position with the cellular
decomposition can be represented as a walk on the dual graph of the decomposition. The
vertices of the dual graph are represented geometrically as representative points of cells, and
edges of the dual graph correspond to pieces of cell boundaries shared by two cells. As a curve

T. Ophelders and S. Parsa 55:3

P

Q

Figure 3 Left: a cellular decomposition of a disk (black) and its dual. Middle: some curves of a
homotopy whose curves start at P and end at Q, and a homeomorphism of the disk that sends the
curves to vertical lines. Right: the corresponding walks in the dual graph.

sweeps over the surface, it can sweep over vertices of the dual graph (resulting in a face flip),
or create or remove pairs of intersections with edges of the embedded graph (resulting in a
spike or unspike). Figure 3 illustrates a dual graph (of a cellular decomposition) with vertices
P and Q, and a homotopy through curves γi connecting P to Q. If the cell decomposition
contains exactly one vertex, then its dual is a tree and the problem of homotopy height
becomes equivalent to drawing trees with optimal height (In this case, the starting and
ending curves are nested circles in the unbounded face so that the curves sweep an annulus).

Although homotopy height admits an efficient O(log n)-approximation algorithm [10], its
exact computation appears to be very challenging. In fact, it was only recently shown to lie
in the complexity class NP [5] in the setting of edge-weighted graphs. If the curves at the
start and end of a homotopy are disjoint and shortest curves, it is known that there exists
an optimal homotopy that sweeps the surface in a monotone fashion [4]. Homotopy height is
closely related to other important graph parameters [2].

The duality relation between graph drawings and homotopy height is depicted in Figure 3.
In this paper instead of graphs we consider plane trees or ordered trees. We present the

first polynomial-time algorithm for the optimal height drawing of unit weight plane trees.
Our results give a polynomial algorithm for the homotopy height of unit-weight one-vertex
(multi-)graphs. This might point to the possibility that the problem for the general graphs is
also polynomial. However, already in our restricted setting, the algorithm is quite involved
and does not have a clear extension to general graphs.

Although our notion of height has frequently been studied in recent years, there exist
related parameters of graph drawings that also quantify some notion of height [1, 2, 12].

2 Background and terminology

2.1 Drawings and local disks
Drawings. Formally we work with plane trees instead of ordered trees. This is just some
reasonable, e.g. piecewise-linear, drawing g : T → R2 of a finite tree T in the Euclidean
plane. This plane drawing is fixed once and for all for any ordered tree T and respects the
given ordering around each vertex. In order to distinguish the Euclidean plane containing
the drawing g we use the symbol Π for this plane, so that g(T) ⊂ Π.

Convention. With a slight abuse of notation, we will not distinguish between T and its
embedding g(T) ⊂ Π in the plane. We use the words edge and path for edges and simple
curves on T exclusively, and reserve the word curve for curves in the drawing plane (the
plane to which Π is mapped).

SoCG 2022

55:4 Minimum Height Drawings of Ordered Trees in Polynomial Time

βt

βb

βl βr

Cl Cr

φ

Figure 4 A local disk and a drawing.

A drawing ϕ of a tree T , is a continuous injective function mapping Π into R2. We
consider only drawings ϕ in which the image of every edge e is piecewise-linear, and such
that every vertical line intersects the drawing in a finite number of points. It is not difficult
to see that this restriction does not affect the optimal height of the drawing. In our figures,
for aesthetic purposes, we often draw edges as smooth curves.

Let E = E(T), V = V (T) denote the set of edges and vertices of T . We always denote
the number of vertices by n. By H(ϕ) we denote the height of the drawing ϕ. That is, the
maximum number of points of the drawing on a vertical line.

Local disks. Let D ⊂ Π(T) be a topological disk in the plane in which T is drawn. We
denote the boundary of D by ∂D. Let TD = T ∩ D and assume TD is connected. We say
that an edge e ∈ E is a boundary edge of D if e ∩ ∂D ̸= ∅. We call an edge internal if it lies
in the interior of D. We denote by B(D) the set of boundary edges of D. Let ∂D = Cl ∪ Cr

where Cl ∩ Cr = {pN , pS} is a set of two points, where none is in T . Intuitively, we think of
Cl and Cr as the left and right boundary of D. This “partition” of ∂D divides the set of
boundary edges B(D) into left and right boundary edges B(D) = BL(D) ⊔ BR(D). We call
(D, BL(D), BR(D)) a local disk.

A drawing of a local disk (D, BL, BR) is a homeomorphism ϕ : D → Q onto a rectangle
Q with edges (βl, βt, βr, βd), such that under ϕ, the boundary edges in BL intersect βl, and
those in BR intersect βr and ϕ(TD) ∩ (βt ∪ βr) = ∅. See Figure 4. Note that we can select
a local disk whose interior contains the whole tree, such that TD = T and there are no
boundary edges. The height of the left (right) boundary in any drawing is the number of left
(right) boundary edges of the local disk, and we call this number as the left (right) boundary
height. When the two boundary heights are equal we simply say boundary height.

The move sequence of a drawing. Consider sweeping a vertical line over a drawing of T

(or the interior of a local disk). The sweep line encounters three types of events: left bends
(points interior to edges of T whose x-coordinate in the drawing is locally minimal), right
bends (symmetric to left bends), and vertices. We will refer to these events as moves, and
the corresponding point of T as its location (i.e. the vertex corresponding to a vertex move,
or the point interior to the edge corresponding to the bend move). We assume that all bends
and vertex moves occur at distinct x-coordinates, and refer to the left-to-right sequence of
moves of a drawing as its move sequence.

2.2 Cuts and shortcuts
Let D be a local disk. By a cut in the local disk (D, BL, BR) we mean the sequence of edges
crossed by a curve that connects pN to pS , where pN and pS are some two points giving rise
to the local disk (D, BL, BR) (an edge might repeat consecutively in the sequence). Some

T. Ophelders and S. Parsa 55:5

times we refer to the curve itself as a cut. Note that the same local disk can be defined with
many such pair of points but this choice is not important. The length (or height) of a cut is
the number of edges in it (counted with repetition), or the number of intersections of the
curve with the tree TD. A cut C is a shortcut if its length is smallest over all cuts of D. For
the proof of the following lemma we refer to [5, Lemma 4.2].

▶ Lemma 1 (Pausing at a shortcut). Let D be a local disk, ϕ : D → Q a drawing and C a
shortcut in D. There is a drawing ϕ′ of height less than or equal to the height of ϕ in which
there is a vertical line defining the cut C. Moreover, vertical lines of ϕ that are disjoint from
C are unaffected and appear in ϕ′.

We say that the drawing ϕ can pause at the shortcut C, resulting in the drawing ϕ′.
When a cut C is vertical in an optimal drawing and each sub-disk cut by C contains a
connected part of TD, then C subdivides the problem into two sub-problems whose optimal
drawings can easily be merged to form an optimal drawing of the original disk.

3 Overview of the algorithm

Our main result is an algorithm for computing optimal drawings of plane trees. This algorithm
is a dynamic program which in a high level works as follows. Each cell of the dynamic
programming table represents a local disk and stores the optimal height of that disk (or an
optimal drawing, if an optimal drawing is to be computed). The local disks represented by
the cells are of two special types: spine disks and skew spine disks (defined in Section 6).
These disks essentially are local disks that cannot be cut by shortcuts. Row m of the table
stores all spine or skew spine disks with exactly m interior vertices. For m > 1, row m of the
table is built using the information in lower rows in two phases. The first phase constructs
all possible m-vertex spine and skew spine disks. The second phase computes the height of
an optimal height drawing for each of the computed disks of row m (or computes a drawing,
if the the drawing is needed). The computed optimal height (or optimal drawing) will be
stored again in the table. The base of the table consists of spine or skew spine disks with a
single interior vertex. The possibilities for the decomposition of a single spine disk or skew
spine disk into such disks with fewer vertices are shown in Figures 10 and 11. With this
description, a final optimal drawing consists of drawings in Figures 10 and 11 nested inside
each other, and where the deepest level is a single vertex disk. A trapezoid (skew spine disk)
will fit into a trapezoid and a rectangle into a rectangle (spine disk).

There are two ingredients in the proof of correctness. First, we show in Proposition 6
that any (sufficiently general) drawing can be turned, without increasing the height, into
a drawing that has a hierarchical structure. The root of this structure tree is a spine disk
containing the whole tree (with zero boundary edges). The nodes of the structure tree
are (skew) spine disks. Each node is cut essentially into a collection of sub-disks, using
shortcuts that are made vertical via pausing. These sub-disks are (skew) spine disks that
form the children of the node. Each node, has one of polynomially many possibilities for the
decomposition, depicted in Figures 10 and 11. The spine disks corresponding to leaves of
any structure tree are single-vertex local disks and thus trivial to draw optimally. In brief,
any drawing can be turned into one which has a tree structure of spine and skew spine disks
without increasing the height.

The second ingredient of the proof of correctness is a proof that there exists some optimal
drawing such that a super-set of all the (skew) spine disks in its tree structure can be
enumerated in polynomial time. For this purpose, we define a quality measure for a drawing.
To rule out pathological drawings and simplify our arguments, we need to consider simplified

SoCG 2022

55:6 Minimum Height Drawings of Ordered Trees in Polynomial Time

drawings which are the result of applying simplification moves of Figure 6. We also consider
balanced drawings, which are ones where the height of the lines on both sides of (and very
close to) any vertex differ by at most one. Among all the optimal drawings, we take the
drawing which is simplified, balanced, and maximizes our quality measure. Lemma 7 asserts
that such an optimized drawing has itself a tree structure of (skew) spine disks. The tree
structure of a drawing which optimizes a slightly stronger measure, namely the secondary
quality, is called a fat structure. Proposition 10 characterizes the spine disks that can appear
in a fat structure. This description allows us to easily enumerate all possible spine disks that
can appear in a fat structure in polynomial time and only store the (skew) spine disks in our
table that conform to this characterization. This will result in a polynomial-sized table and
hence a polynomial algorithm. Omitted proofs can be found in the full version.

4 Simplifying the drawings

Let ϕ be a drawing of a local disk D and T = TD. We label the left (resp. right) bends of ϕ

as either stuck or not, depending on whether the bend encloses the next (resp. previous)
move. Figure 5 illustrates the two possible reasons for a right bend to be stuck. Two
consecutive moves of a drawing may admit a simplification (of the drawing) that replaces the
two sequences by a simpler sequence of moves without increasing the height of the drawing.
For each of these simplifications, either the first move is a non-stuck left bend, or the second
move is a non-stuck right bend. We explain the types of simplifications involving a non-stuck
right bend (see Figure 6), the types involving a non-stuck left bend are symmetric. As
mentioned, the second move is a non-stuck right bend, so we distinguish cases based on the
first move of the pair.
Stuck slide. In this case, the first move is a stuck right bend. The non-stuck right bend

does not enclose the stuck right bend (otherwise it would also be stuck). Exchanging the
order of the two bends ensures that neither of the resulting bends are stuck.

Bend-bend (resp. vertex-bend) separation. The first move is a left bend (resp. vertex)
that is not connected to the right bend. We exchange the moves, reducing the height of
the line in between.

Bend-bend cancellation. The first move is a left bend that is connected to the right bend.
We replace the bends by an x-monotone curve, reducing the number of bends.

Vertex-bend cancellation. The first move is a vertex that is connected to the right bend.
We replace the bend by an x-monotone curve, reducing the number of bends. We call
a vertex-bend cancellation strong if the simplification does not decrease the absolute
difference between the number of edges incident to the left and right of the vertex.

We say that a drawing ϕ is strongly simplified if no simplification move is possible, and
simplified if only strong simplification moves are possible.

We say that ϕ is balanced if for any vertex v, the heights of the vertical lines immediately
to the left and right of v are equal if the degree of v is even, and differ by 1 if the degree of v

is odd. Balanced drawings will be useful for our algorithms. However, strong vertex-bend
cancellations may make vertices less balanced.

Figure 5 A right bend (marked) stuck around a vertex (left) or stuck around a bend (right). The
bold line represents a bundle of arbitrarily many edges incident to the vertex.

T. Ophelders and S. Parsa 55:7

Figure 6 Left to right: stuck slide, bend-bend separation, bend-bend cancellation, vertex-bend
separation, (strong) vertex-bend cancellation.

T2 T1

e e T1

Figure 7 Two local disks (containing sub-trees T1 and T2) with a single boundary edge e (left).
An exposed drawing of the sub-tree T1 with anchor edge e (right).

▶ Lemma 2. If there is a drawing ϕ of height H of a local disk D, then there exists a balanced
simplified drawing of D of height at most H with a bounded number of moves.

▶ Lemma 3. Any simplified drawing of height H of a local disk D with n vertices has at
most (H + 1)n moves if n > 0, and at most H moves if n = 0.

▶ Observation 4. Let ϕ be a balanced drawing of the local disk D. Then applying all possible
non-strong simplifying moves to h keeps the drawing balanced.

5 Bubbling a sub-tree

Let e be an edge of a tree T . There are two sub-trees T1, T2 of T that result from removing
e. For i ∈ {1, 2}, we call the rooted trees Ti = Ti(e), with the root chosen to be the endpoint
of e in Ti, the rooted sub-trees anchored via the edge e and the edge e the anchor edge of the
rooted tree Ti. We call the endpoint of e which is not the root of Ti the anchor vertex of Ti.
The exposed height of the sub-tree Ti ∪ {e}, denoted eH(Ti, e), is the height of the optimal
height drawing of a local disk containing Ti in its interior and such that the anchor edge e is
the single boundary edge, see Figure 7. We call such a drawing of Ti an exposed drawing of
the sub-tree Ti with respect to e.

Let P be a simple path (possibly of length1 0) in T . The neighborhood of P , denoted
N(P), is the subset of vertices of T not in P which are connected in T to some vertex
of P by an edge. We say that a rooted sub-tree T ′′ ⊂ T is a sub-tree anchored at P if
V (T ′′) ⊂ V (T) − V (P) and the root of T ′′ is in N(P). It follows that, for any P , the edge-set
of T is partitioned into three sets, the edges of P , the edges of sub-trees anchored at P , and
the anchor edges incident to P .

1 The length of a path is the number of its edges.

SoCG 2022

55:8 Minimum Height Drawings of Ordered Trees in Polynomial Time

We call an exposed drawing of a sub-tree T ′ in a drawing of T a bubble if the strip of the
plane containing this exposed drawing contains no moves of the rest of the drawing. In other
words, we can compress the exposed drawing of T ′ into a drawing inside an arbitrary small
bubble, without affecting the height of the drawing of T .

Let ϕ be a drawing of the tree T and let T ′ ⊂ T be a sub-tree anchored using an edge e to
a vertex v. We say that ϕ′ is obtained by bubbling the sub-tree T ′ at the point t ∈ R2 if ϕ′ is
such that i) H(ϕ′) ≤ H(ϕ), ii) T ′ is drawn in a bubble with e the boundary edge and t being
the point of e on the boundary, iii) the drawing is changed only over T ′ and the edge e, and
iv) the ϕ′-image of e is contained in ϕ-image of T ′ ∪ e. See Figure 8 for an example, where
t = tr. One of our main observations is that bubbling is always possible at a suitable t.

T ′T ′

tl tr

v
e

tl

v
e

tr

Figure 8 Bubbling the sub-tree T ′, tl and tr are locations of extreme moves in the given drawing.

▶ Lemma 5. Let T be a tree and h be a drawing of T . Let T ′ a sub-tree anchored at a vertex
v. Let tl and tr be the points of T which have the smallest and the largest x-coordinate,
respectively. We can assume these points are unique. If T ′ contains exactly one of tl and tr,
then T ′ can be bubbled at that point.

6 Spine disks

Let D be a local disk and B(D) the set of its boundary edges. Recall that the boundary
edges of a local disk are divided into left boundary edges, BL(D), and right boundary edges,
BR(D). Let el ∈ BL(D) and er ∈ BR(D). We say that el and er are opposite one another if
they are incident to the same vertex in the interior of D. We call a local disk a spine disk
with spine P , if all of the following hold:
1. P is a simple path in TD, such that every boundary edge is incident to a vertex of P ,

and P is interior-disjoint from boundary edges of TD.
2. There is a bijection α : BL(D) → BR(D) such that each e is opposite α(e).
3. If P has at least two vertices, there are boundary edges incident to its extremal vertices.

If there are no boundary edges, we let P be an arbitrary vertex, so that P is always
defined. Therefore a local disk that contains all of the input tree T and P chosen to be any
vertex is a spine disk.

A skew spine disk is a spine disk to which a new boundary edge incident to some vertex
of P is added. It follows that the height of one boundary line of any drawing of a skew spine
disk is one more than the height of the other boundary line. We call a (skew) spine disk
a vertex disk if there is a single vertex in its interior. Figure 9 shows an optimal drawing
of a tree and a “decomposition” of the drawing into spine (rectangle) and skew spine disks
(trapezoids). Note that a skew spine disk with a single boundary edge is a bubble. All skew
spine disks in Figure 9 are bubbles.

T. Ophelders and S. Parsa 55:9

6.1 Spine decomposition
We introduce some terminology before stating one of our main propositions. Let D be a local
disk and let C be a collection of disjoint shortcuts (combinatorially distinct from the left and
the right boundary lines) in D, and let C cut the disk D into disks D1, . . . , Dm. According
to Lemma 1, an optimal drawing ϕ of D can be obtained by gluing optimal drawings ϕi of
the Di, i = 1, . . . , m. Then we say ϕ is obtained by merging the drawings ϕ1, . . . , ϕm. In
our schematics, we draw a rectangle for a spine disk and a trapezoid for a skew disk. The
shorter side of the trapezoid has one less boundary edge than the long side. A vertex inside
a rectangle or a trapezoid indicates a vertex disk. A thick black line is a collection of parallel
lines whose number is indicated. A pipe in a drawing bounded by two vertical lines l and r

is a subpath of an edge of T drawn as an x-monotone curve between these lines. Observe
that a pipe can always be drawn as a straight line connecting the lines l and r.

If D is a vertex spine disk or vertex skew spine disk then there is a trivial, straight-line,
optimal drawing of D. These disks form the building blocks of our drawings. The following
proposition shows how more complicated (skew) spine disks can be decomposed into less
complicated ones and eventually into vertex (spine) disks.

▶ Proposition 6 (Spine Decomposition). Let D be a spine (resp. skew spine) local disk with
b ≥ 0 boundary edges on one side and b (resp. b + 1) boundary edges on the other side. If
D is not a vertex disk and D has a drawing of height H, then D has a drawing of height at
most H that can be decomposed as one of the cases of Figure 10 (resp. 11), up to horizontal
and vertical reflection. In these drawings m, ai, cj are non-negative integers.

6.2 Structure tree
Recursive applications of Proposition 6 to an optimal-height drawing of a spine or a skew
spine disk, for instance one containing all of T , result in an optimal drawing that has a
hierarchical structure. Any node in the hierarchy is a spine or skew spine disk, and a node is
decomposed into its children using one of the possibilities of Proposition 6. The leaves of the
hierarchy are vertex disks. We call this hierarchy a structure tree of the optimal drawing.
We call a drawing which has such a structure tree a structured drawing. For instance the
drawings output by Proposition 6 are structured drawings.

7 Optimizing the optimal-height drawings

In this section, we first define the quality of drawings. We then consider those optimal
drawings that maximize this quality measure.

Figure 9 Spine and skew spine disks.

SoCG 2022

55:10 Minimum Height Drawings of Ordered Trees in Polynomial Time

. . .

a1

a2

am−1

amam

am−1

a2
a1 − 1

1.0.1

. . .

a1

a2

am−1

amam

am−1

a2
a1

1.2

1.0.2

b− 1 b

1.1.1

b
a2

a1

b = a1 + a2

1.1.2

bb

1.3

a
a

c
c

Figure 10 Decomposition of spine disks. Thick lines indicate bundles of parallel edges. The
number of parallel edges in bundles are indicated by the labels on the sides. The values ai can be 0.
Rectangles indicate spine disks and trapezoids indicate skew spine disks. A black dot indicates a
vertex disk.

. . .

a1

a2

am − 1am

a2
a1 − 1

2.0

a1 = c1 + c2

. . .

c2

a2

am − 1am

a2

a1

2.1

c1

. . .

a1

a2

am − 1am

a2
a1

2.2

. . .

a1

a2

am − 1am

a2
a1

2.3

Figure 11 Decomposition of skew spine disks.

T. Ophelders and S. Parsa 55:11

7.1 Quality of a drawing

Let ϕ be any drawing of a local disk D. We denote by Λ′ = Λ′(ϕ) = {λi} the set of
combinatorially distinct vertical lines in the plane (that lie in general position with the
drawing). That is, the strip Si bounded by λi and λi+1, after removing pipes, is either: i) a
vertex move, that is, contains a single vertex and no bends, or ii) contains a single bend and
no vertices. Such a set of vertical lines can be chosen for any drawing h in general position.
Consider a strip Sij bounded by λi and λj . If Sij contains only pipes we remove λi or λj

(whichever is to the right of the other) and all the lines in between form Λ′, and repeat this
operation. Let Λ = Λ(ϕ) be the remaining set of vertical lines. We again consider strips Sij

bounded by λi and λj in Λ. If after removing pipes from the strip Sij it becomes a bubble,
spine disk, skew spine disk, or bend, we respectively say that Sij is a bubble, spine disk,
skew spine disk or bend. Recall that a bubble is a special type of skew spine disk with only
one boundary edge in one side.

Note that bubbles are either disjoint or nested and therefore give rise to a hierarchical
structure. We say that a vertex v is of depth d if it is contained in exactly d bubbles. That
is, there are exactly d strips, bounded by the lines of Λ, that contain the vertex and that are
bubbles. We define the depth of a bubble and a (skew) spine disk analogously to depth of a
vertex to be the number of bubbles that properly contain them.

We say that a line λ ∈ Λ(ϕ) is of depth i if it is contained in exactly i strips which are
bubbles, and in none of them it is a boundary. For instance, lines of depth 0 do not cut any
bubble. Let Λi = Λi(ϕ) denote the set of lines of depth i. Let Λi,j = Λi,j(ϕ) ⊂ Λi be the set
of lines of height j and depth i, and let δi,j(ϕ) = |Λi,j | be the number of lines of depth i and
height j. Note that δi,j(ϕ) can be 0. Let ∆i(ϕ) be the sequence (δi,0(ϕ), δi,1(ϕ), . . .), and
define the quality of the drawing ϕ as

Q(ϕ) = (∆0(ϕ), ∆1(ϕ), . . .).

For two drawings ϕ and ϕ′, we compare their qualities Q(ϕ) and Q(ϕ′) lexicographically,
where we also compare the sequences ∆i(ϕ) to ∆i(ϕ′) lexicographically. Specifically, a
drawing of maximum quality maximizes the depth sequences ∆i from left to right. That is,
we are interested in the drawings where the sequence ∆0 is maximized, and among these the
sequences where ∆1 is maximized, and so on. We emphasize that maximizing the quality
does not necessarily minimize the height of the drawing. Instead, we merely use the quality
measure to reduce the search space for minimum height drawings.

There remains still some arbitrariness in optimal drawings with maximum quality. For
instance, a star with 2k leaves and a central vertex can be drawn with optimal height and
with maximum quality in an exponentially many different ways, giving rise to exponentially
many spine disks, by changing the order of the vertices. We get rid of these choices using
the notion of secondary quality to be defined in Section 7.3.

By Lemma 2, there exists an optimal simplified and balanced drawing of any local disk
D, and by Lemma 3, (H + 1)n is an upper bound on the complexities of simplified drawings
with height H. Therefore, the set of quality sequences of the set of all optimal, balanced and
simplified drawings of a local disk is non-empty. Moreover, each quality sequence for such a
drawing consists of at most H(H + 1)n terms δi,j , since the depth is at most the number of
lines in Λ and each depth-sequence ∆i contains at most H = O(n) different height values.

SoCG 2022

55:12 Minimum Height Drawings of Ordered Trees in Polynomial Time

l

e1

e2

fv

Figure 12 The edge f is sandwiched between e1 and e2 with respect to l.

7.2 Properties of drawings with maximum quality
Since the dynamic program only constructs structured drawings, we need to argue that the
maximum quality drawing is structured.

▶ Lemma 7. Let ϕ be a simplified, balanced drawing of a spine disk D that has maximum
quality Q(ϕ) over all drawings with the same height as ϕ. Then ϕ is a structured drawing.

Recall that for a path P the set of anchor edges, A(P), is the set of edges which have
exactly one endpoint on the path P . Also, the set of anchor edges of a spine disk D, A(D),
is the set of anchor edges of the spine path of D. Let D be a (balanced) spine disk with 2b

boundary edges and e ∈ A(D) be an anchor edge of D. Let H(D) denote, as always, the
optimal height of the disk D and eH(T ′, e′) denote the optimal exposed height of a sub-tree
T ′ with respect to the edge e′. Also recall that the sub-tree Te anchored by e is the sub-tree
rooted at the endpoint of e which is not in the spine of the disk D. We say e is light (with
respect to D) if the exposed height of the sub-tree Te satisfies eH(Te, e) ≤ H(D) − b + 1.

The significance of light edges is that if we know a boundary edge e of D is light then
given any drawing of D we can redraw the sub-tree Te near the boundary of D in a small
bubble without increasing the height, since the maximum height over the bubble would be
eH(Te, e) + b − 1 which would be at most H(D).

▶ Lemma 8. Let D be a spine disk of depth d in a drawing ϕ with maximum quality Q(ϕ).
Let e ∈ A(D) be a light edge and Te the sub-tree anchored by e. If e is a boundary edge then
Te is drawn in a bubble of depth d with e as the single boundary edge. Moreover, the strip
between the bubble of Te and the disk D is a sequence of bubbles of depth d anchored at the
spine of D, or bends.

7.3 Breaking ties while respecting the orders
In our arguments we will use a tie-breaking mechanism to decide between optimal drawings
which all have maximum quality. We first define a perturbation of the original heights.

Let v be a vertex in D and let e1, e2 and f be edges incident to v. Let l be a vertical line.
We say that f is sandwiched between e1 and e2 with respect to l if f does not intersect l

but e1 and e2 intersect l, and f lies in the resulting bigon, see Figure 12. We add a small ϵ

(0 < ϵ ≪ 1) for every sandwiched edge with respect to l to the height of l. The resulting
value is called the perturbed height of l.

Consider the set Λ of lines of a given drawing as defined above and let W (ϕ) = (w1, w2, . . .)
be the sequence of perturbed heights of lines in Λ, sorted in a non-decreasing order. Let
ϕ1 and ϕ2 be two drawings with maximum quality. We say that ϕ1 has a better secondary
quality than ϕ2 if the sequence W (ϕ1) is lexicographically smaller than W (ϕ2).

T. Ophelders and S. Parsa 55:13

1 2

3
4

5

6
7

8
9

10 11

1 2

3

4

5

6
7

8

9

10 11

T1 T2

T3

T4

T5

T6 T7

T8

T9

T10 T11

T6

T8

T5

Figure 13 Left: the path P (thick edges), anchor edges A(P) numbered 1 to 11, and the
anchored sub-trees. Right: A spine disk with spine path P and b = 3. Proposition 10 states the
following. 1) Edges 5, 6, 8 are light. 2) Among the six sets {1}, {2}, {3, 4}, {7, 9}, {10}, {11} at
most one can contain a light edge. Assume it is {7, 9}. 3) If eH(T7) = eH(T9) = H(D) − 3 then
eH(T8) ̸= H(D) − 3. If eH(T7) < H − 3 and eH(T9) < H − 3, then eH(T8) ≥ H − 3.

7.4 Fat structures
Let D be a local disk. Let ϕ be an optimal, simplified and balanced drawing such that Q(ϕ)
is maximal among such drawings and also its secondary quality is the best possible. By
Lemma 7, such a drawing has a structure tree. We call the resulting structure a fat structure2

for D. It follows that any drawing which is optimal, simplified and balanced has to have
worse or equal quality (or equal quality and equal or worse secondary quality).

The proof of the following is straightforward.

▶ Lemma 9. Let ϕ be a drawing of local disk D with a fat structure. Then for every local
disk D′, corresponding to a node in the structure tree, the restriction of the structure to D′

is a fat structure.

The following lemma allows us to enumerate the spine disks which are possible in a fat
structure. Refer to Figure 13 for an example.

▶ Proposition 10 (Characterization of Spine Disks in Fat Structures). Let P be a path in the
tree and let D be a spine disk with spine path P , such that D is a node in a fat structure.
Let b > 0 be the number of left (equivalently right) boundary edges of D.
1. Every edge e ∈ A(P) that lies entirely in the interior of D is light.
2. All light boundary edges of D are incident to a single vertex v, and intersect the same

(left or right) boundary.
3. For η ≥ 0, let E(η) ⊂ A(P) be the set of anchor edges of P , incident to v, for which the

exposed height of the sub-tree anchored by that edge is H(D) − b + 1 − η. Then, for η = 0,
if any edge e in E(0) is not a boundary edge, then e is not sandwiched, with respect to
the boundary lines, between two edges of E(0) that are boundary edges. Moreover, if any
edge e of E(≥ 1) :=

⋃
j≥1 E(j) is not a boundary edge, then e is not sandwiched between

two edges of E(≥ 1) that are boundary edges.

2 The name comes from the fact that the bubbles in a minimal drawing tend to contain a maximal part
of the tree.

SoCG 2022

55:14 Minimum Height Drawings of Ordered Trees in Polynomial Time

We remark that the secondary quality is needed only in the proof of the second part of
statement 3. That is, the rest of proposition holds for drawings with maximum quality.

8 The dynamic program

We describe the algorithm for computing the optimal height of an input drawing. Modifying
the dynamic program to compute an actual optimal height drawing is standard.

We think of row m of the dynamic programming table as containing (the description) of
those spine and skew spine disks that have exactly m vertices in their interior and satisfy
Proposition 10, together with their optimal heights. For m = 1, i.e. the first row, we
must consider the (skew) spine disks with exactly one vertex in their interior. Since we are
interested in balanced drawings, we know that each vertex v of even degree defines O(d(v))
distinct spine disks, where d(v) is the degree of the vertex v. These are given by all the
O(d(v)) possible balanced partitions of the edges incident to v into left and right edges,
maintaining the order around v. The optimal drawings are trivial. Similarly, vertices with
odd degree determine O(d(v)) distinct skew spine disks.

Assume that we have populated the table up to row m − 1. The algorithm first computes
all spine and skew spine disks with m vertices that satisfy Proposition 10. If m = n we take
the spine disk containing all the tree. If we are computing skew spine disks we take all the
bubbles with m vertices (there are at most 2(n − 1) bubbles). The rest of the (skew) spine
disks are computed as follows. We determine only spine disks, and this also determines all
possible skew spine disks. This is because a skew spine disk is the result of changing one
non-boundary anchor edge of a spine disk into a boundary edge.

If we know the exposed heights of anchored sub-trees, then Proposition 10 implies that a
spine disk is determined uniquely given the following parameters. We also indicate an upper
bound on the number of possibilities for each of them.
1. The spine path P : O(n2) possibilities.
2. The boundary height b: O(n) possibilities.
3. The height H: O(n) possibilities.
4. A partition of A(P) into cyclically contiguous subsequences AL(P) and AR(P): O(n2)

possibilities.
5. The vertex v to which light boundary edges are incident: O(n) possibilities.
6. Two consecutive sequences of edges around v: one for E(0) and the other for E(≥ 1):

O(n4) possibilities.

Therefore, there are polynomially many possible values for all these parameters, namely
O(n11). A particular set of values may or may not define a valid spine disk, and a more
careful analysis may result in asymptotically fewer relevant values. It is straightforward to
compute the disk (if any) that corresponds to a particular set of values for the parameters.

Let p be the number of vertices in (some choice for) the spine path P . If the sub-tree
anchored by an edge e has more than m − p vertices then e has to be a boundary edge.
Otherwise, the exposed height of the anchored sub-tree can be read from the table since it
has at most m − 1 vertices and is a bubble. Thus, we can determine which set of parameters
determine a spine disk with m internal vertices. Additional details can be found in the full
version of the paper.

After determining possible (skew) spine disks, we compute their optimal heights. This
can be done by considering the polynomially many different ways that a (skew) spine disk
can be decomposed into (skew) spine disks of smaller complexity (i.e vertices and edges),
given in Figures 10 and 11. For a given (skew) spine disk D, the number of possibilities is

T. Ophelders and S. Parsa 55:15

determined by the number of its possible first and last moves. These moves are either bends
or vertices which are determined by an edge or a vertex of the tree, respectively. It follows
that the total number of possibilities is polynomial. We consider all of the polynomially
many decompositions of D. For a given decomposition, we read the optimal heights of their
inner disks from the table. These heights can be used to derive the height of a drawing of D.
The optimal height of D is the minimum such value over all of its decompositions. For more
details to this part of the algorithm, and an exception to the general description above, we
refer to the full version of the paper, where we prove the following.

▶ Theorem 11. Let D be a (skew) spine disk. There is a polynomial-time algorithm for
drawing D with optimal height.

9 Discussion

We have presented the first polynomial-time algorithm for drawing plane trees with optimal
height. The case of weighted plane trees remains open. Moreover, the setting of unweighted
graphs remains open, but is believed to be NP-hard by some. However, we believe that a
polynomial time algorithm may exist even in this setting.

If the graph setting turns out to be NP-hard, then the situation resembles that of the
(non-embedded) min-cut linear arrangement problem, which has a polynomial time algorithm
for unweighted trees [15], but is NP-hard for graphs [9, 8].

There are other interesting problems around the complexity and properties of optimal
height drawings that might help in finding faster algorithms. As one such property, we
conjecture that for unweighted trees there always exists an optimal drawing without spiraling
edges. A spiral on an edge is depicted in Figure 2.

References
1 Hugo A Akitaya, Maarten Löffler, and Irene Parada. How to fit a tree in a box. In Proceedings

of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018),
pages 361–367. Springer, 2018.

2 Therese Biedl, Erin Wolf Chambers, David Eppstein, Arnaud de Mesmay, and Tim Ophelders.
Homotopy height, grid-major height and graph-drawing height. In Proceedings of the 27th
Graph Drawing and Network Visualization (GD 2019), pages 468–481. Springer, 2019.

3 Benjamin Burton, Erin Chambers, Marc van Kreveld, Wouter Meulemans, Tim Ophelders,
and Bettina Speckmann. Computing optimal homotopies over a spiked plane with polygonal
boundary. In Proceddings of the 25th Annual European Symposium on Algorithms (ESA),
2017.

4 Erin Wolf Chambers, Gregory R Chambers, Arnaud de Mesmay, Tim Ophelders, and Regina
Rotman. Constructing monotone homotopies and sweepouts. arXiv preprint, 2017. arXiv:
1704.06175.

5 Erin Wolf Chambers, Arnaud de Mesmay, and Tim Ophelders. On the complexity of optimal
homotopies. In Proceedings of the 29th Annual Symposium on Discrete Algorithms (SODA
2018), pages 1121–1134, 2018.

6 Erin Wolf Chambers and David Letscher. On the height of a homotopy. In Canadian Conference
on Computational Geometry (CCCG), volume 9, pages 103–106, 2009.

7 Moon-Jung Chung, Fillia Makedon, Ivan Hal Sudborough, and Jonathan Turner. Polynomial
time algorithms for the min cut problem on degree restricted trees. SIAM Journal on
Computing, 14(1):158–177, 1985.

8 Michael R Garey and David S Johnson. Computers and intractability, volume 174. Freeman
San Francisco, 1979.

SoCG 2022

http://arxiv.org/abs/1704.06175
http://arxiv.org/abs/1704.06175

55:16 Minimum Height Drawings of Ordered Trees in Polynomial Time

9 F Gavril. Some NP-complete problems on graphs. In Proc. Conf. on Inform. Sci. and Systems,
1977, pages 91–95, 1977.

10 Sariel Har-Peled, Amir Nayyeri, Mohammad Salavatipour, and Anastasios Sidiropoulos. How
to walk your dog in the mountains with no magic leash. Discrete & Computational Geometry,
55(1):39–73, 2016.

11 Thomas Lengauer. Upper and lower bounds on the complexity of the min-cut linear arrangement
problem on trees. SIAM Journal on Algebraic Discrete Methods, 3(1):99–113, 1982.

12 Debajyoti Mondal, Muhammad Jawaherul Alam, and Md. Saidur Rahman. Minimum-layer
drawings of trees. In Naoki Katoh and Amit Kumar, editors, WALCOM: Algorithms and
Computation, pages 221–232. Springer, 2011.

13 B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted trees. Theoretical
Computer Science, 58(1):209–229, 1988.

14 Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees. SIAM Journal
on Computing, 8(1):15–32, 1979.

15 Mihalis Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees.
Journal of the ACM, 32(4):950–988, 1985.

	1 Introduction
	2 Background and terminology
	2.1 Drawings and local disks
	2.2 Cuts and shortcuts

	3 Overview of the algorithm
	4 Simplifying the drawings
	5 Bubbling a sub-tree
	6 Spine disks
	6.1 Spine decomposition
	6.2 Structure tree

	7 Optimizing the optimal-height drawings
	7.1 Quality of a drawing
	7.2 Properties of drawings with maximum quality
	7.3 Breaking ties while respecting the orders
	7.4 Fat structures

	8 The dynamic program
	9 Discussion

