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Abstract
A famous theorem of Erdős and Szekeres states that any sequence of n distinct real numbers contains
a monotone subsequence of length at least

√
n. Here, we prove a positive fraction version of this

theorem. For n > (k − 1)2, any sequence A of n distinct real numbers contains a collection of
subsets A1, . . . , Ak ⊂ A, appearing sequentially, all of size s = Ω(n/k2), such that every subsequence
(a1, . . . , ak), with ai ∈ Ai, is increasing, or every such subsequence is decreasing. The subsequence
S = (A1, . . . , Ak) described above is called block-monotone of depth k and block-size s. Our theorem
is asymptotically best possible and follows from a more general Ramsey-type result for monotone
paths, which we find of independent interest. We also show that for any positive integer k, any finite
sequence of distinct real numbers can be partitioned into O(k2 log k) block-monotone subsequences
of depth at least k, upon deleting at most (k − 1)2 entries. We apply our results to mutually avoiding
planar point sets and biarc diagrams in graph drawing.
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1 Introduction

In 1935, Erdős and Szekeres [6] proved that any sequence of n distinct real numbers contains
a monotone subsequence of length at least

√
n. This is a classical result in combinatorics and

its generalizations and extensions have many important consequences in geometry, probability,
and computer science. See Steele [13] for 7 different proofs along with several applications.

In this paper, we prove a positive fraction version of the Erdős-Szekeres theorem. We
state this theorem using the following notion: A sequence (a1, a2, . . . , aks) of ks distinct real
numbers is said to be block-increasing (block-decreasing) with depth k and block-size s if
every subsequence (ai1 , ai2 , . . . , aik

), for (j − 1)s < ij ≤ js, is increasing (decreasing). We
call a sequence block-monotone if it’s either block-increasing or block-decreasing.

▶ Theorem 1. Let k and n > (k − 1)2 be positive integers. Then every sequence of n distinct
real numbers contains a block-monotone subsequence of depth k and block-size s = Ω(n/k2).
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We prove Theorem 1 by establishing a more general Ramsey-type result for monotone paths,
which we describe in detail in the next section. The theorem is also asymptotically best
possible, see Remark 9.

By a repeated application of Theorem 1, we can decompose any sequence of n distinct
real numbers into O(k log n) block-monotone subsequences of depth k upon deleting at most
(k −1)2 entries. Our next result shows that we can obtain such a partition, where the number
of parts doesn’t depend on n.

▶ Theorem 2. For any positive integer k, every finite sequence of distinct real numbers can
be partitioned into at most O(k2 log k) block-monotone subsequences of depth at least k upon
deleting at most (k − 1)2 entries.

Our Theorem 2 is inspired by a similar problem of partitioning planar point sets into
convex-positioned clusters, which is studied in [12]. A positive fraction Erdős-Szekeres-type
result for convex polygons is given previously by Bárány and Valtr [3].

In the full version of this paper, we present a polynomial time algorithm that computes the
block-monotone subsequence claimed by Theorem 1. Our proof of Theorem 2 is constructive
hence implying a polynomial time algorithm for the claimed partition as well.

We give two applications of Theorems 1 and 2.

Mutually avoiding sets. Let A and B be finite point sets of R2 in general position, that is,
no three points are collinear. We say that A and B are mutually avoiding if no line generated
by a pair of points in A intersects the convex hull of B, and vice versa. Aronov et al. [1]
used the Erdős-Szekeres Theorem to show that every n-element planar point set P in general
position contains subsets A, B ⊂ P , each of size Ω(

√
n), s.t. A and B are mutually avoiding.

Valtr [14] showed that this bound is asymptotically best possible by slightly perturbing the
points in an

√
n ×

√
n grid. Following the same ideas of Aronov et al., we can use Theorem 1

to obtain the following.

▶ Theorem 3. For every positive integer k there is a constant ϵk = Ω( 1
k2 ) s.t. every

sufficiently large point set P in the plane in general position contains 2k disjoint subsets
A1, . . . , Ak, B1, . . . , Bk, each of size at least ϵk|P |, s.t. every pair of sets A = {a1, . . . , ak}
and B = {b1, . . . , bk}, with ai ∈ Ai and bi ∈ Bi, are mutually avoiding.

This improves an earlier result of Mirzaei and the first author [9], who proved the theorem
above with ϵk = Ω( 1

k4 ). The result above is asymptotically best possible for both k and |P |:
Consider a k × k grid G and replace each point with a cluster of |P |/k2 points placed very
close to each other so that the resulting point set P is in general position. If we can find
subsets Ai’s and Bi’s as in Theorem 3, but each of size ϵ′

k|P | with ϵ′
k = ω( 1

k2 ), then we can
find mutually avoiding subsets in G of size ω(k), contradicting Valtr’s [14].

Finally, let us remark that a recent result due to Pach, Rubin, and Tardos [11] shows
that every n-element planar point set in general position determines at least n/eO(

√
log n)

pairwise crossing segments. By using Theorem 3 instead of Lemma 3.3 from their paper, one
can improve the constant hidden in the O-notation.

Monotone biarc diagrams. A proper arc diagram is a drawing of a graph in the plane,
whose vertices are points placed on the x-axis, called the spine, and each edge is drawn as a
half-circle. A classic result of Bernhard and Kainen [4] shows that a planar graph admits a
planar proper arc diagram if and only if it’s a subgraph of a planar Hamiltonian graph. A
monotone biarc diagram is a drawing of a graph in the plane, whose vertices are placed on a
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spine, and each edge is drawn either as a half-circle or two half-circles centered on the spine,
forming a continuous x-monotone biarc. See Figure 6 for an illustration. In [5], Di Giacomo
et al. showed that every planar graph can be drawn as a planar monotone biarc diagram.

Using the Erdős-Szekeres Theorem, Bar-Yehuda and Fogel [2] showed that every graph
G = (V, E), with a given order on V , has a double-paged book embedding with at most O(

√
E)

pages. That is, E can be partitioned into O(
√

|E|) parts, s.t. for each part Ei, (V, Ei) can
be drawn as a planar monotone biarc diagram, and V appears on the spine with the given
order. Our next result shows that we can significantly reduce the number of pages (parts), if
we allow a small fraction of the pairs of edges to cross on each page.

▶ Theorem 4. For any ϵ > 0 and a graph G = (V, E), where V is an ordered set, E can
be partitioned into O(ϵ−2 log(ϵ−1) log(|E|)) subsets Ei s.t. each (V, Ei) can be drawn as a
monotone biarc diagram having no more than ϵ|Ei|2 crossing edge-pairs, and V appears on
the spine with the given order.

This paper is organized as follows: In Section 2, we prove Theorem 1 in the setting
of monotone paths in multicolored ordered graphs. Section 3 is devoted to the proof of
Theorem 2. In Section 4, we present proofs for the applications claimed above. Section 5
lists some remarks.

2 A positive fraction result for monotone paths

Several authors [7, 10, 8] observed that the Erdős-Szekeres theorem generalizes to the following
graph-theoretic setting. Let G be a graph with vertex set [n] = {1, . . . , n}. A monotone path
of length k in G is a k-tuple (v1, . . . , vk) of vertices s.t. vi < vj for all i < j and all edges
vivi+1, for i ∈ [k − 1], are in G.

▶ Theorem 5. Let χ be a q-coloring of the pairs of [n]. Then there must be a monochromatic
monotone path of length at least n1/q.

Given subsets A, B ⊂ [n], we write A < B if every element in A is less than every element
in B.

▶ Definition 6. Let G be a graph with vertex set [n] and let V1, . . . , Vk ⊂ [n] and p1, . . . , pk+1 ∈
[n]. Then we say that (p1, V1, p2, V2, p3, . . . , pk, Vk, pk+1) is a block-monotone path of depth k

and block-size s if
1. |Vi| = s for all i,
2. we have p1 < V1 < p2 < V2 < p3 < . . . < pk < Vk < pk+1,

3. and every (2k + 1)-tuple of the form

(p1, v1, p2, v2, . . . , pk, vk, pk+1),

where vi ∈ Vi, is a monotone path in G.
Our main result in this section is the following Ramsey-type theorem.

▶ Theorem 7. There is an absolute constant c > 0 s.t. the following holds. Given integers
q ≥ 2, k ≥ 1, and n ≥ (ck)q, let χ be a q-coloring of the pairs of [n]. Then χ produces a
monochromatic block-monotone path of depth k and block-size s ≥ n

(ck)q .

A careful calculation shows that we can take c = 40 in the theorem above. We will need the
following lemma.

SoCG 2022
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▶ Lemma 8. Let q ≥ 2 and N > 3q. Then for any q-coloring of the pairs of [N ], there is a
monochromatic block-monotone path of depth 1 and block-size s ≥ N

q33q .

Proof. Let χ be a q-coloring of the pairs of [N ], and set r = 3q. By Theorem 5, every subset
of size r of [N ] gives rise to a monochromatic monotone path of length 3. Hence, χ produces
at least(

N
r

)(
N−3
r−3

) ≥ 6
r3

(
N

3

)

monochromatic monotone paths of length 3 in [N ]. Hence, there are at least 6
qr3

(
N
3
)

monochromatic monotone paths of length 3, all of which have the same color. By averaging,
there are two vertices p1, p2 ∈ [N ], s.t. at least N

qr3 of these monochromatic monotone paths
of length 3 start at vertex p1 and ends at vertex p2. By setting V1 to be the “middle” vertices
of these paths, (p1, V1, p2) is a monochromatic block-monotone path of depth 1 and block-size
s ≥ N

qr3 = N
q33q . ◀

Proof of Theorem 7. Let χ be a q-coloring of the pairs of [n] and let c be a sufficiently
large constant that will be determined later. Set s = ⌈ n

(ck)q ⌉. For the sake of contradiction,
suppose χ does not produce a monochromatic block-monotone path of depth k and block-size
s. For each element v ∈ [n], we label v with f(v) = (b1, . . . , bq), where bi denotes the depth of
the longest block-monotone path with block-size s in color i, ending at v. By our assumption,
we have 0 ≤ bi ≤ k − 1, which implies that there are at most kq distinct labels. By the
pigeonhole principle, there is a subset V ⊂ [n] of size at least n/kq, s.t. the elements of V all
have the same label.

By Lemma 8, there are vertices p1, p2 ∈ V , a subset V ′ ⊂ V , and a color α s.t. (p1, V ′, p2)
is a monochromatic block-monotone path in color α, with block-size t ≥ |V |

q33q . By setting c

to be sufficiently large, we have

t ≥ |V |
q33q

≥ n

kqq33q
≥

⌈
n

(ck)q

⌉
= s.

However, this contradicts the fact that f(p1) = f(p2), since the longest supported monotone
path with block-size s in color α ending at vertex p1 can be extended to a longer one ending
at p2. This completes the proof. ◀

Proof of Theorem 1. Let A = (a1, . . . , an) be a sequence of distinct real numbers. Let χ

be a red/blue coloring of the pairs of A s.t. for i < j, we have χ(ai, aj) = red if ai < aj and
χ(ai, aj) = blue if ai > aj . In other words, we color increasing pairs by red and decreasing
pairs by blue.

If n < (ck)2, notice that n/(ck)2 < 1. By our assumption n > (k−1)2, the classical Erdős-
Szekeres theorem gives us a monotone subsequence in A of length at least k, which can be
regarded as a block-monotone subsequence of depth at least k and block-size s = 1 > n/(ck)2.

If n ≥ (ck)2, by Theorem 7, there is a monochromatic block-monotone path of depth
k and block-size s ≥ n/(ck)2 in the complete graph on A, which can be regarded as a
block-monotone subsequence of A with the claimed depth and block-size. ◀

▶ Remark 9. For each k, q, s > 0, the simple construction below shows Theorem 7 is tight up
to the constant factor cq. We first construct K(k, q), for each k and q, a q-colored complete
graph on [kq], whose longest monochromatic monotone path has length k: K(k, 1) is just a
monochromatic copy of the complete graph on [k]. To construct K(k, q) from K(k, q − 1),
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take k copies of K(k, q − 1) with the same set of q − 1 colors, place them in order and color
the remaining edges by a new color. Now replace each point in K(k, q) by a cluster of s

points, where within each cluster one can arbitrarily color the edges. The resulting q-colored
complete graph has no k subsets V1, V2, . . . , Vk ⊂ [n] each of size s + 1 and edges between
them monochromatic, otherwise K(k, q) would have a monochromatic monotone path with
length larger than k.

It’s well-known that the sharpness of the classical Erdős-Szekeres theorem comes from
sequences such as

S(k) = (k, k − 1, . . . , 1, 2k, 2k − 1, . . . , 2k + 1, . . . , k2, k2 − 1, k(k − 1) + 1).

We note that if we color the increasing pairs of S(k) by red and the decreasing pairs of S(k)
by blue, we obtain the graph K(k, 2). If we replace each entry si ∈ S(k) by a cluster of
s distinct real numbers very close to si, we obtain an example showing that Theorem 1 is
asymptotically best possible.

3 Block-monotone sequence partition

This section is devoted to the proof of Theorem 2. We shall consider this problem geometrically
by identifying each entry ai of a given sequence A = (ai)n

i=1 as a planar point (i, ai) ∈ R2.
As we consider sequences of distinct real numbers, throughout this section, we assume that
all point sets have the property that no two members share the same x-coordinate or the
same y-coordinate.

Thus, we analogously define block-monotone point sets as follows: A set of ks planar
points is said to be block-increasing (block-decreasing) with depth k and block-size s if it can
be written as {(xi, yi)}ks

i=1 s.t. xi < xi+1 for all i and every sequence (yi1 , yi2 , . . . , yik
), for

(j − 1)s < ij ≤ js, is increasing (decreasing). We say that a point set is block-monotone
if it’s either block-increasing or block-decreasing. For each j ∈ [k] we call the subset
{(xi, yi)}js

i=(j−1)s+1 the j-th block of this block-monotone point set.
Hence, Theorem 2 immediately follows from the following.

▶ Theorem 10. For any positive integer k, every finite planar point set can be partitioned
into at most O(k2 log k) block-monotone point subsets of depth at least k and a remaining set
of size at most (k − 1)2.

Given a point set P ⊂ R2, let

U(P ) := {(x, y) ∈ R2; y > y′, ∀(x′, y′) ∈ P}, (up)
D(P ) := {(x, y) ∈ R2; y < y′, ∀(x′, y′) ∈ P}, (down)
L(P ) := {(x, y) ∈ R2; x < x′, ∀(x′, y′) ∈ P}, (left)
R(P ) := {(x, y) ∈ R2; x > x′, ∀(x′, y′) ∈ P}. (right)

Our proof of Theorem 10 relies on the following definitions. The constant c below (and
throughout this section) is from Theorem 7. See Figure 1 for an illustration.

▶ Definition 11. A point set P ⊂ R2 is said to be a (k, t)-configuration if P can be written
as a disjoint union of subsets P = Y1 ∪ Y2 ∪ · · · ∪ Y2t+1 s.t.

∀i ∈ [t], Y2i is a block-monotone point set of depth k and block-size at least |Y2j+1|/(3ck)2

for all j ∈ {0} ∪ [t];
either ∪2t+1

j=i+1Yj is located entirely in R(Yi) ∩ U(Yi) for all i ∈ [2t], or ∪2t+1
j=i+1Yj is located

entirely in R(Yi) ∩ D(Yi) for all i ∈ [2t].

SoCG 2022
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▶ Definition 12. A point set P ⊂ R2 is said to be a (k, l, t)-pattern if P can be written as a
disjoint union of subsets P = S1 ∪ S2 ∪ · · · ∪ Sl ∪ Y s.t.

Y is a (k, t)-configuration;
∀i ∈ [l], Si is a block-monotone point set of depth k and block-size at least |Y |/(3ck)2;
∀i ∈ [l], the set (∪l

j=i+1Sj) ∪ Y is located entirely in one of the following regions:
U(Si) ∩ L(Si), U(Si) ∩ R(Si), D(Si) ∩ L(Si) and D(Si) ∩ R(Si).

Y1

Y2

Y3

Y4

Y5

S1

S2

Y

(3, 2)-configuration

(i) (ii)

Figure 1 (i) A (3, 2)-configuration. (ii) A (3, 2, 2)-pattern.

If a planar point set P is a (k, 4k, t)-pattern or a (k, l, k)-pattern, the next two lemmas
state that we can efficiently partition P into few block-monotone point sets of depth at least
k and a small remaining set.

▶ Lemma 13. If P is a (k, 4k, t)-pattern, then P can be partitioned into O(k log k) block-
monotone point sets of depth at least k and a remaining set of size O(k2).

▶ Lemma 14. If P is a (k, l, k)-pattern, then P can be partitioned into O(k2 log k + l)
block-monotone point sets of depth at least k and a remaining set of size O(k3).

Starting with an arbitrary point set P , which can be regarded as a (k, 0, 0)-pattern, we will
repeatedly apply the following lemma until P is partitioned into few block-monotone point
sets, a set P ′ that is either a (k, 4k, t)-pattern or a (k, l, k)-pattern, and a small remaining
set.

▶ Lemma 15. For l < 4k and t < k, a (k, l, t)-pattern P can be partitioned into r block-
monotone point sets with depth at least k, a point set P ′, and a remaining set E s.t.
1. r = O(k), |P ′| ≤ k(3k − 1)2 and E = ∅; or
2. r = O(k log k), P ′ is a (k, l, t + 1)-pattern and |E| = O(k2); or
3. r = O(k log k), P ′ is a (k, l + t, 0)-pattern and |E| = O(k2).
Moreover, when t = 0, we can always have this partition of P as in either case 1 or case 2.

Before we prove the lemmas above, let us use them to prove Theorem 10.
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Proof of Theorem 10. Let P be the given point set. For i ≥ 0, we inductively construct a
partition Fi ∪ {Pi, Ei} of P s.t.

Pi is a (k, li, ti)-pattern,
|Ei| = O(ik2),
Fi is a disjoint family of block-monotone point sets of depth at least k, and |Fi| =
O(ik log k).

We start with P0 = P , which is a (k, 0, 0)-pattern, and F0 = E0 = ∅. Suppose we
have constructed the i-th partition Fi ∪ {Pi, Ei} of P . If |Pi| ≤ k(3k − 1)2, or li ≥ 4k, or
ti ≥ k, we end this inductive construction process, otherwise, we construct the next partition
Fi+1 ∪ {Pi+1, Ei+1} as follows.

According to Lemma 15, Pi can be partitioned into r block-monotone point sets with
depth at least k, denoted as {Pi,1, . . . , Pi,r}, a point set P ′, and a remaining set E, s.t. either
one of the following cases happens.

Case 1. We have r = O(k), |P ′| ≤ k(3k − 1)2, and E = ∅. In this case, we define Fi+1 =
Fi ∪ {Pi,1, . . . , Pi,r}, Pi+1 = P ′, and Ei+1 = Ei ∪ E. Notice that we have |Fi+1| =
|Fi| + O(k) = O((i + 1)k log k) and |Ei+1| = |Ei| + 0 = O((i + 1)k2).

Case 2. We have r = O(k log k), P ′ is a (k, li, ti + 1)-pattern, and |E| = O(k2). In this case,
we define Fi+1 = Fi∪{Pi,1, . . . , Pi,r}, Pi+1 = P ′, and Ei+1 = Ei∪E. This means li+1 = li
and ti+1 = ti + 1. Notice that we have |Fi+1| = |Fi| + O(k log k) = O((i + 1)k log k) and
|Ei+1| = |Ei| + O(k2) = O((i + 1)k2).

Case 3. We have r = O(k log k), P ′ is a (k, li + ti, 0)-pattern, and |E| = O(k2). In this
case, we define Fi+1 = Fi ∪ {Pi,1, . . . , Pi,r}, Pi+1 = P ′, and Ei+1 = Ei ∪ E. This
means li+1 = li + ti and ti+1 = 0. Again, we have |Fi+1| = O((i + 1)k log k) and
|Ei+1| = O((i + 1)k2).

When ti = 0, by Lemma 15, we can always partition Pi as in Case 1 or Case 2. So we
always construct Fi+1 ∪ {Pi+1, Ei+1} according to Case 1 or Case 2 when ti = 0.

Let Fw ∪ {Pw, Ew} be the last partition of P constructed in this process. Here, Pw is
a (k, lw, tw)-pattern. We must have either |Pw| ≤ k(3k − 1)2, or lw ≥ 4k, or tw ≥ k. Since
ti+1 ≤ ti + 1 and li+1 ≤ li + ti for all i, we have tw ≤ k and lw ≤ 5k. Since we always
construct the (i + 1)-th partition according to Case 1 or Case 2 when ti = 0, the sum li + ti

always increases by at least 1 after 2 inductive process. So we have w/2 ≤ tw + lw ≤ 6k and
hence w ≤ 12k.

Now we handle Fw ∪ {Pw, Ew} based on how the construction process ends.
If the construction process ended with |Pw| ≤ k(3k − 1)2, we define Ew+1 = Ew ∪ Pw and

Fw+1 = Fw. Since w ≤ 12k, we have |Fw+1| = O(k2 log(k)) and |Ew+1| = O(k3).
If the construction process ended with lw ≥ 4k, by Definition 12, we can partition Pw

into lw − 4k many block-monotone point sets of depth k, denoted as {Pw,1, . . . , Pw,lw−4k},
and a (k, 4k, tw)-pattern P ′

w. Then, by Lemma 13, P ′
w can be partitioned into r = O(k log k)

block-monotone point sets of depth at least k, denoted as {P ′
w,1, . . . , P ′

w,r}, and a remaining
set E of size O(k2). We define Ew+1 = Ew ∪ E and

Fw+1 = Fw ∪ {Pw,1, . . . , Pw,lw−4k, P ′
w,1, . . . , P ′

w,r}.

Using w ≤ 12k and other bounds we mentioned above, we can check |Fw+1| = O(k2 log(k))
and |Ew+1| = O(k3).

SoCG 2022
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If the construction process ended with tw ≥ k, we actually have tw = k and lw < 4k.
By Lemma 14, we can partition Pw into r = O(k2 log(k) + lw) block-monotone point sets
of depth at least k, denoted as {Pw,1, . . . , Pw,r}, and a remaining set E of size O(k3).
We define Ew+1 = Ew ∪ E and Fw+1 = Fw ∪ {Pw,1, . . . , Pw,r}. Again, we can check
|Fw+1| = O(k2 log(k)) and |Ew+1| = O(k3).

Overall, we can always obtain a partition Fw+1 ∪{Ew+1} of P with |Fw+1| = O(k2 log(k))
and |Ew+1| = O(k3). Using the classical Erdős-Szekeres theorem, we can always find a
monotone sequence of length at least k in Ew+1 when |Ew+1| > (k − 1)2. By a repeated
application of this fact, we can partition Ew+1 into O(k2) block-monotone point sets of depth
k and block-size 1, and a remaining set E of size at most (k − 1)2. We define F to be the
union of Fw+1 and these block-monotone sequences. The partition F ∪ {E} of P has the
desired properties and concludes the proof. ◀

We now give proofs for Lemmas 13, 14, and 15. We need the following facts.

▶ Fact 16. For any positive integer k, every point set P can be partitioned into O(k log(k))
block-monotone point sets of depth k and a remaining set P ′ with |P ′| ≤ max{|P |/k, (k−1)2}.

This fact can be established by repeatedly using Theorem 1 to pull out block-monotone point
sets and applying the elementary inequality (1 − x−1)x log(x) ≤ x−1 for any x > 1.

▶ Fact 17. For any positive integers k and m, every block-monotone point set P with depth
k and |P | ≥ m can be partitioned into a block-monotone point set of depth k, a subset of size
exactly m, and a remaining set of size less than k.

This fact can be established by taking out ⌈m/k⌉ points from each block of P . Then we have
taken out k · ⌈m/k⌉ = m + r points, where 0 ≤ r < k.

Proof of Lemma 13. Write the given (k, 4k, t)-pattern P = S1 ∪ · · · ∪ S4k ∪ Y as in Defini-
tion 12. By definition, each block-monotone point set Si is contained in one of the 4 regions:
U(Y ) ∩ L(Y ), U(Y ) ∩ R(Y ), D(Y ) ∩ L(Y ) and D(Y ) ∩ R(Y ). By Pigeonhole principle, there
are k indices i1, . . . , ik s.t. all Sij , for j ∈ [k], are contained in one of the regions above.
Without loss of generality, we assume S1, . . . , Sk are all located entirely in U(Y ) ∩ L(Y ).

We have Si2 ⊂ D(Si1)∩R(Si1) for all 1 ≤ i1 < i2 ≤ k. Indeed, since Y ⊂ D(Si1)∩R(Si1),
Definition 12 guarantees that (∪k

j=i1+1Sj) ∪ Y to be contained in D(Si1) ∩ R(Si1) and, in
particular, Si2 is contained in this region. See Figure 2 for an illustration.

Now apply Fact 16 to Y , we can partition Y into {A1, . . . , Aw, Y ′}, where w = O(k log(k)),
s.t. each Aj is block-monotone of depth 9c2k, and either |Y ′| ≤ |Y |/(9c2k) or |Y ′| ≤
(9c2k − 1)2. If |Y ′| ≤ (9c2k − 1)2, we have partitioned P into O(k log(k)) block-monotone
point sets of depth at least k, which are {A1, . . . , Aw, S1, . . . , S4k}, and a remaining set Y ′

of size O(k2), as wanted.
If |Y ′| ≤ |Y |/(9c2k), by Definition 12 we have |Y ′| ≤ |Si| for i ∈ [k]. We can apply Fact 17

with m := |Y ′| to Si to obtain a partition Si = S′
i ∪ Bi ∪ Ei where S′

i is block-monotone of
depth k, |Bi| = |Y ′| and |Ei| ≤ k. We observe that C = B1 ∪ B2 ∪ · · · ∪ Bk ∪ Y ′ is block-
monotone of depth k + 1 by its construction. Then we have partitioned P into O(k log(k))
many block-monotone point sets, which are {A1, . . . , Aw, S′

1, . . . , S′
k, Sk+1, . . . , S4k, C}, and

a remaining set E := ∪k
i=1Ei of size O(k2), as wanted. ◀

Proof of Lemma 14. Write the given (k, l, k)-pattern P = S1 ∪· · ·∪Sl ∪Y as in Definition 12
and the (k, k)-configuration Y = Y1 ∪ · · · ∪ Y2k+1 as in Definition 11. Since each Si is block-
monotone of depth k, it suffices to partition Y into O(k2 log(k)) many block-monotone point
sets of depth at least k and a remaining set of size O(k3).
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S1

S2

S3

Y

Figure 2 In proof of Lemma 13, Si2 ⊂ D(Si1 ) ∩ R(Si1 ) for i1 < i2.

For each j ∈ {0} ∪ [k], we apply Fact 16 to obtain a partition of Y2j+1 into O(k log(k))
many block-monotone point sets of depth 9c2k and a remaining set Y ′

2j+1 of size at most
|Y2j+1|/(9c2k) or at most (9c2k − 1)2. We can apply Fact 16 again to partition Y ′

2j+1 into
O(k log(k)) many block-monotone point sets of depth k + 1 and a remaining set Y ′′

2j+1 with

|Y ′′
2j+1| ≤ max{|Y2j+1|/(9c2k(k + 1)), (9c2k − 1)2}. (1)

Denote the block-monotone point sets produced in this process as {Aj,x; x ∈ [wj ]}, where
wj = O(k log(k)).

Next we denote J1 := {j ∈ {0} ∪ [k]; |Y ′′
2j+1| > (9c2k − 1)2} and J2 := ({0} ∪ [k]) \ J1.

For each j ∈ J1 and i ∈ [k], we must have

|Y ′′
2j+1| ≤ |Y2j+1|/(9c2k(k + 1)) ≤ |Y2i|/(k + 1),

where the second inequality is by Definition 11. Hence |Y2i| ≥ | ∪j∈J1 Y ′′
2j+1|. We can apply

Fact 17 with m := | ∪j∈J1 Y ′′
2j+1| to Y2i to obtain a partition Y2i = Y ′

2i ∪ Bi ∪ Ei where Y ′
2i is

block-monotone of depth k, |Bi| = m, and |Ei| ≤ k. Since |Bi| = | ∪j∈J1 Y ′′
2j+1|, we can take

a further partition Bi = ∪j∈J1Bj,i with |Bj,i| = |Y ′′
2j+1| for each j ∈ J1. Then we observe

that Cj = Bj,1 ∪ · · · ∪ Bj,j ∪ Y ′′
2j+1 ∪ Bj,j+1 ∪ · · · ∪ Bj,k is block-monotone of depth k + 1 for

each j ∈ J1 by its construction.
Finally, let E := (∪k

i=1Ei) ∪ (∪j∈J2Y ′′
2j+1), it easy to check that E = O(k3). So we have

partitioned Y into O(k2 log(k)) many block-monotone point sets, which are

{Aj,x}j∈{0}∪[k],x∈[wj ] ∪ {Cj}j∈J1 ∪ {Y ′
2i}i∈[k],

and a remaining set E of size O(k3), as wanted. ◀

Proof of Lemma 15. Write the given (k, l, t)-pattern P = S1 ∪· · ·∪Sl ∪Y as in Definition 12
and the (k, t)-configuration Y = Y1 ∪· · ·∪Y2t+1 as in Definition 11. Without loss of generality,
we assume ∪2t+1

j=i+1Yj is located entirely in R(Yi) ∩ U(Yi) for all i ∈ [2t]. We also assume that
Y1 has the largest size among {Y2j+1; j ∈ {0} ∪ [t]} because other scenarios can be proved
similarly.
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If |Y1| ≤ (3k − 1)2, we can partition P into r = l + t = O(k) many block-monotone point
sets of depth k, which are {S1, . . . , Sl, Y2, Y4, . . . , Y2t}, and a remaining set P ′ := ∪t

j=0Y2j+1
of size at most k(3k − 1)2, since t < k. So we conclude the lemma in case (1).

Now we assume |Y1| > (3k − 1)2. Apply Theorem 1 to extract a block-monotone point
set S ⊂ Y1 of depth 3k and block-size at least |Y1|/(3ck)2 and name the i-th block of S

as Bi for i ∈ [3k]. Our proof splits into two cases: S being block-increasing or S being
block-decreasing.

Case 1. Suppose S is block-increasing, write Sl+i := Y2(t+1−i) for each i ∈ [t] and set
P ′ = S1 ∪ · · · ∪ Sl+t ∪ (Y1 \ S). We can check that P ′ is a (k, k + l, 0)-pattern by Definition 12.
Let Z := ∪t

j=1Y2j+1. By an argument similar to (1), we can apply Fact 16 three times to
partition Z into {A1, . . . , Aw, Z ′}, where w = O(k log(k)), s.t. each Ai is block-monotone of
depth at least k and |Z ′| ≤ max{|Z|/(9c2k3), (9c2k − 1)2}.

If |Z ′| ≤ (9c2k − 1)2, let E = Z ′. We have partitioned P into O(k log(k)) block-monotone
point sets of depth at least k, which are {A1, . . . , Aw, S}, a (k, k + l, 0)-pattern P ′, and a
remaining set E of size O(k2). So we conclude the lemma in case (3).

If |Z ′| ≤ |Z|/(9c2k3), notice that |Z| ≤ k|Y1| since t < k, we have |Z ′| ≤ |Y1|/(3ck)2 ≤
|Bi|, for each i ∈ [3k]. We can take a partition Bi = B′

i ∪ B′′
i with |B′

i| = |Z ′|. We observe
that C := B′

1 ∪ · · · ∪ B′
3k ∪ Z ′ is block-increasing of depth 3k + 1 and S′ := B′′

1 ∪ · · · ∪ B′′
3k is

block-increasing of depth 3k by their construction. We have partitioned P into O(k log(k))
block-monotone point sets of depth at least k, which are {A1, . . . , Aw, C, S′}, and a (k, k+l, 0)-
pattern P ′. So we conclude the lemma in case (3).

Case 2. Suppose S is block-decreasing, we choose two points in the following regions:

(x1, y1) ∈ R(Bk) ∩ D(Bk) ∩ L(Bk+1) ∩ U(Bk+1),
(x2, y2) ∈ R(B2k) ∩ D(B2k) ∩ L(B2k+1) ∩ U(B2k+1).

Also we require x1 or x2 isn’t the x-coordinate of any element in P , and y1 or y2 isn’t the
y-coordinate of any element in P . We use the lines x = xi and y = yi for i = 1, 2 to divide
the plane into a 3 × 3 grid and label the regions Ri, i = 1, . . . , 9 as in Figure 3.

Let C := Bk+1 ∪ · · · ∪ B2k and notice that C is block-monotone of depth k and block-size
at least |Y1|/(3ck)2. Define

Y ′ := (R7 ∩ Y1) ∪ C ∪ (R3 ∩ Y1) ∪ Y2 ∪ Y3 ∪ · · · ∪ Y2t+1.

We can check that Y ′ is a (k, t + 1)-configuration and P ′ := S1 ∪ · · · ∪ Sl ∪ Y ′ is a (k, l, t + 1)-
pattern according to Definitions 11 and 12.

Next, we set Z1 := (Y1 \S)∩(R5 ∪R6 ∪R8 ∪R9) and Z2 := (Y1 \S)∩(R1 ∪R2 ∪R4). By an
argument similar to (1), we can apply Fact 16 twice to partition Zj into {Aj,1, . . . , Aj,wj

, Z ′
j},

where wj = O(k log(k)), s.t. each Aj,x is block-monotone of depth at least k and |Z ′
j | ≤

max{|Zj |/(3ck)2, (9c2k − 1)2}.
Writing C1 := B1 ∪ . . . Bk and C2 = B2k+1 ∪ . . . B3k, then, for j = 1, 2, either |Z ′

j | = O(k2)
or Cj ∪ Z ′

j can be partitioned into two block-decreasing point sets of depth at least k. Indeed,
if |Z ′

1| > (9c2k − 1)2, we must have

|Z ′
1| ≤ |Z1|/(3ck)2 ≤ |Y1|/(3ck)2 ≤ |Bi|,

for each i ∈ [k]. Take a partition Bi = B′
i ∪ B′′

i with |B′
i| = |Z ′

1|, then we can observe
C1 := B′

1 ∪ · · · ∪ B′
k ∪ Z ′

1 is block-decreasing of depth k + 1 and C ′
1 = B′′

1 ∪ · · · ∪ B′′
k is

block-decreasing of depth k by their construction, as wanted. A similar argument applies to
C2 ∪ Z ′

2.
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R1 R2 R3

R4 R5 R6

R7 R8

B1

Bk

Bk+1

Bk+2

B2k

x = x1 x = x2

y = y2

y = y1

R9B2k+1

B3k

Figure 3 Division of the plane into 9 regions according to (xi, yi), i = 1, 2. Each ellipse represents
a cluster of points as defined in the proof.

We have partitioned P \ (C1 ∪ Z ′
1 ∪ C2 ∪ Z ′

2) into O(k log(k)) block-monotone sequence of
depth at least k, which are {Aj,x; j = 1, 2, x ∈ [wj ]}, and a (k, l, t + 1)-pattern P ′. Combined
with the claim in previous paragraph, we conclude the lemma in case (2).

Finally, when we are in the special case t = 0 and S is block-increasing, we can still use
the arguments for the case when S is block-decreasing and conclude the lemma in case (2).
The condition t = 0 can be used to verify Y ′ is a (k, t + 1)-configuration, which is generally
not true when t > 0 and S is block-increasing. ◀

4 Applications

4.1 Mutually avoiding sets
We devote this subsection to the proof of Theorem 3. The proof is essentially the same as
in [1], but we include it here for completeness. Given a non-vertical line L in the plane, we
denote L+ to be the closed upper-half plane defined by L, and L− to be the closed lower-half
plane defined by L. We need the following result, which is Lemma 1 in [1].

▶ Lemma 18. Let P, Q ⊂ R2 be two n-element point sets with P and Q separated by a
non-vertical line L and P ∪ Q in general position. Then for any positive integer m ≤ n, there
is another non-vertical line H s.t. |H+ ∩ P | = |H+ ∩ Q| = m or |H− ∩ P | = |H− ∩ Q| = m.

Proof of Theorem 3. Let k be as given and n > 24k2. Let P be an n-element point set in
the plane in general position. We start by taking a non-vertical line L to partition the plane
s.t. each half-plane contains ⌊ n

2 ⌋ points from P . Then by Lemma 18, we obtain a non-vertical
line H with, say, H+ ∩ (L+ ∩ P ) = H+ ∩ (L− ∩ P ) = ⌊ n

6 ⌋. Next, we find a third line N , by
first setting N = H, and then sweeping N towards the direction of H−, keeping it parallel
with H, until H− ∩ N+ ∩ L+ or H− ∩ N+ ∩ L− contains ⌊ n

6 ⌋ points from P . Without loss of
generality, let us assume Q := P ∩ (H− ∩ N+ ∩ L+) first reaches ⌊ n

6 ⌋ points, and the region
H− ∩ N+ ∩ L− has less than ⌊ n

6 ⌋ points from P . Hence, both Ql := P ∩ (H+ ∩ L−) and
Qr := P ∩ (N− ∩ L−) have at least ⌊ n

6 ⌋ points. See Figure 4 for an illustration.
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Ql

L

H N

⌊n
6 ⌋ points

Q

⌊n
6 ⌋ points

Qr

⌊n
6 ⌋ points

Figure 4 The division of plane into regions according to L, H, N .

We can apply an affine transformation so that L and H are perpendicular, and N is on
the right side of H. Think of L as the x-axis, H as the y-axis, and N as a vertical line with
a positive x-coordinate. After ordering the elements in Q according to their x-coordinates,
we apply Theorem 1 to Q to obtain disjoint subsets Q1, . . . , Q2k+1 ⊂ Q s.t. (Q1, . . . , Q2k+1)
is block-monotone of depth 2k + 1 and block-size Ω(n/k2), where each entry represents its
y-coordinate. Without loss of generality, we can assume it is block-decreasing, otherwise we
can work with Qr rather than Ql in the following arguments.

Q1

Q2

Q3

Q5

Q6

Q7

q

A1

A2

A3
H

L

Figure 5 An example when Ai’s are increasing. Each ellipse represents a cluster of points as
defined in the proof.

Now fix a point q ∈ Qk+1. We express the points in Ql in polar coordinates (ρ, θ) with q

being the origin. We can assume no two points in Ql are at the same distance to q, otherwise
a slight perturbation may be applied. By ordering the points in Ql with respect to θ, in
counter-clockwise order, we apply Theorem 1 to Ql to obtain disjoint subsets A1, . . . , Ak ⊂ Ql

s.t. (A1, . . . , Ak) is block-monotone of depth k and block-size Ω(n/k2), where each entry
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represents its distance to q. If it’s block-decreasing, take Bi = Qi for i ∈ [k], and if it’s
block-increasing, take Bi = Qk+1+i. It is easy to check that the sets {A1, . . . , Ak} and
{B1, . . . , Bk} have the claimed properties. See Figure 5 for an illustration. ◀

4.2 Monotone biarc diagrams
We devote this subsection to the proof of Theorem 4. Our proof is constructive, hence
implying an recursive algorithm for the claimed outcome.

We start by making the simple observation that our main results hold for sequences
of (not necessarily distinct) real numbers, if the term block-monotone now refers to being
block-nondecreasing or block-nonincreasing. More precisely, a sequence (a1, a2, . . . , aks)
of real numbers is said to be block-nondecreasing (block-nonincreasing) with depth k and
block-size s if every subsequence (ai1 , ai2 , . . . , aik

), for (j − 1)s < ij ≤ js, is nondecreasing
(nonincreasing).

▶ Theorem 19. For any positive integer k, every finite sequence of real numbers can be
partitioned into at most Ck = O(k2 log k) block-monotone subsequences of depth at least k

upon deleting at most (k − 1)2 entries.

To see our main results imply the above variation, it suffices to slightly perturb the
possibly equal entries of a given sequence until all entries are distinct. Algorithms for our
main results can also be applied after such a perturbation.

We need the following lemma in [2] for Theorem 4.

▶ Lemma 20. For any graph G = (V, E) with V = [n], there exists b ∈ [n] s.t. both the
induced subgraphs of G on {1, 2, . . . , b} and {b + 1, b + 2, . . . , n} have no more than |E|/2
edges.

Proof. For U ⊂ [n], let GU denote the induced subgraph of G on U . Let b be the largest
among [n] s.t. E(G[b]) ≤ |E|

2 , so E(G[b+1]) > |E|
2 . Notice that E(G[b+1]) and E(G[n]\[b]) are

two disjoint subsets of E, so E(G[n]\[b]) ≤ |E| − E(G[b+1]) < |E|
2 , as wanted. ◀

Proof of Theorem 4. We prove by induction on |E|. The base case when |E| = 1 is trivial.
For the inductive step, by the given order on V , we can identify V with [n]. We find such a
b according to Lemma 20. Consider the set E′ of edges between [b] and [n] \ [b]. By writing
each edge e ∈ E′ as (x, y), where x ∈ [b] and y ∈ [n] \ [b], we order the elements in E′

lexicographically: for (x, y), (x′, y′) ∈ E, we have (x, y) < (x, y) when x < x′ or when x = x′

and y < y′.
Given the order on E′ described above, consider the sequence of right-endpoints in E′.

We apply Theorem 19 with parameter k = ⌈ϵ−1⌉ to this sequence, to decompose it into Ck

many block-monotone sequences of depth k, upon deleting at most (k − 1)2 entries. For each
block-monotone subsequence of depth k, we draw the corresponding edges on a single page
as follows. If the subsequence is block-nonincreasing of depth k and block-size s, we draw the
corresponding edges as semicircles above the spine. Then, two edges cross only if they come
from the same block. Since there are a total of

(
ks
2

)
pairs of edges, and only k

(
s
2
)

such pairs
from the same block, the fraction of pairs of edges that cross in such a drawing is at most 1/k.
See Figure 6(i). Similarly, if the subsequence is block-nondecreasing of depth k and block-size
s, we draw the corresponding edges as monotone biarcs, consisting of two semicircles with
the first (left) one above the spine, and the second (right) one below the spine. Furthermore,
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we draw the monotone biarc s.t. it crosses the spine at b + 1 − ℓ/n − r/(2n2), where ℓ and
r are the left and right endpoints of the edge respectively. See Figure 6(ii). By the same
argument above, the fraction of pairs of edges that cross in such a drawing is at most 1/k.

Hence, E′ can be decomposed into Ck + (k − 1)2 many monotone biarc diagrams, s.t.
each monotone biarc diagram has at most 1/k-fraction of pairs of edges that are crossing.

(i) (ii)

Figure 6 (i) A proper arc diagram. (ii) A monotone biarc diagram.

For edges within [b], Lemma 20 and the inductive hypothesis tell us that they can be
decomposed into (Ck + (k − 1)2)(log |E| − 1) monotone biarc diagrams, s.t. the fraction of
pairs of edges that are crossing in each diagram is at most 1/k. The same argument applies
to the edges within [n] \ [b]. However, notice that two such monotone biarc diagrams, one in
[b] and another in [n]\ [b], can be drawn on the same page without introducing more crossings.
Hence, we can decompose E\E′ into at most (Ck + (k − 1)2)(log |E| − 1) such monotone
biarc diagrams, giving us a total of (Ck + (k − 1)2) log |E| monotone biarc diagrams. ◀

5 Final remarks

1. We call a sequence (a1, a2, . . . , an) of n distinct real numbers ϵ-increasing (ϵ-decreasing) if
the number of decreasing (increasing) pairs (ai, aj), where i < j, is less than ϵn2. And we call
a sequence ϵ-monotone if it’s either ϵ-increasing or ϵ-decreasing. Clearly, a block-monotone
sequence of depth k is an ϵ-monotone sequence with ϵ = k−1. Hence, Theorem 1 implies the
following.

▶ Corollary 21. For all n > 0 and ϵ > 0, every sequence of n distinct real numbers contains
an ϵ-monotone subsequence of length at least Ω(ϵn).

This corollary is also asymptotically best possible. To see this, for n > (k − 1)2 and a
sequence A = (ai)n

i=1 of distinct real numbers, we can apply Corollary 21 with ϵ = (64k)−1

to A and obtain an ϵ-monotone subsequence S ⊂ A and then apply Lemma 2.1 in [11] to S

to obtain a block-monotone subsequence of depth k and block-size Ω(n/k2). So Corollary 21
implies Theorem 1.

2. Let f(k) be the smallest number N s.t. every finite sequence of distinct real numbers
can be partitioned into at most N block-monotone subsequences of depth at least k upon
deleting (k − 1)2 entries. Our Theorem 2 is equivalent to saying f(k) = O(k2 log(k)). The
K(k, 2)-type construction in Remark 9 implies f(k) ≥ k. What is the asymptotic order of
f(k)?

3. We suspect our algorithm for Theorem 1 presented in the full version of this paper can
be improved. How fast can we compute a block-monotone subsequence as large as claimed
in Theorem 1? Can we do it within time almost linear in n for all k?
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