
GPU Computation of the Euler Characteristic
Curve for Imaging Data
Fan Wang #

Stony Brook University, NY, US

Hubert Wagner #

University of Florida, Gainesville, FL, US

Chao Chen #

Stony Brook University, NY, US

Abstract
Persistent homology is perhaps the most popular and useful tool offered by topological data analysis
– with point-cloud data being the most common setup. Its older cousin, the Euler characteristic
curve (ECC) is less expressive – but far easier to compute. It is particularly suitable for analyzing
imaging data, and is commonly used in fields ranging from astrophysics to biomedical image analysis.
These fields are embracing GPU computations to handle increasingly large datasets.

We therefore propose an optimized GPU implementation of ECC computation for 2D and 3D
grayscale images. The goal of this paper is twofold. First, we offer a practical tool, illustrating its
performance with thorough experimentation – but also explain its inherent shortcomings. Second, this
simple algorithm serves as a perfect backdrop for highlighting basic GPU programming techniques
that make our implementation so efficient – and some common pitfalls we avoided. This is intended
as a step towards a wider usage of GPU programming in computational geometry and topology
software. We find this is particularly important as geometric and topological tools are used in
conjunction with modern, GPU-accelerated machine learning frameworks.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Combinatorial algorithms

Keywords and phrases topological data analysis, Euler characteristic, Euler characteristic curve,
Betti curve, persistent homology, algorithms, parallel programming, algorithm engineering, GPU
programming, imaging data

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.64

Related Version Full Version: https://arxiv.org/abs/2203.09087

Supplementary Material Software (Source Code): https://github.com/TopoXLab/GPU_ECC_
SoCG2022; archived at swh:1:dir:5f915660625457e3fbb99aeb77a7160385580560

Funding This work was partially supported by grants NSF IIS-1909038 and CCF-1855760.

1 Introduction

Describing the shape of data is the tenet of topological data analysis (TDA) – and at its
heart lies the idea of studying data across scales. Instead of characterizing the shape at a
fixed scale – we measure its evolution. A filtration encodes this evolution and thus becomes
an object of primary interest. Depending on the type of data, an appropriate filtration
is used: Alpha-shape filtration for point-cloud data embedded in three dimensional space;
Vietoris–Rips filtration for high dimensional metric data expressed by pairwise distances;
cubical filtration for two- or three-dimensional grayscale imaging data. This paper focuses on
imaging data, in which TDA methods have shown promise in recent years [21, 22, 24, 10].

© Fan Wang, Hubert Wagner, and Chao Chen;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 64; pp. 64:1–64:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fanwang1@cs.stonybrook.edu
mailto:hwagner@ufl.edu
mailto:chao.chen.1@stonybrook.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.64
https://arxiv.org/abs/2203.09087
https://github.com/TopoXLab/GPU_ECC_SoCG2022
https://github.com/TopoXLab/GPU_ECC_SoCG2022
https://archive.softwareheritage.org/swh:1:dir:5f915660625457e3fbb99aeb77a7160385580560
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


64:2 GPU Computation of the Euler Characteristic Curve for Imaging Data

Persistent homology is perhaps the most powerful topological descriptor applied to such
filtrations – and it proves especially useful in conjunction with modern deep learning (DL)
methods. However, integration of persistent homology with DL methods remains far from
seamless – despite significant progress, computing persistent homology takes significant
amount of time and resources for practical datasets. This is in contrast with modern learning
pipelines which often employ simple, highly optimized computations. In particular, many
neural network architectures are realized fully on graphical processing units (GPUs) attaining
massively parallel processing; the same applies to modern large-scale simulations. Existing
software for persistent homology is not at this level of advancement, at least not for imaging
data. We mention that the recent GPU implementation by Zhang et al. [25] is in the context
of Vietoris–Rips filtrations coming from point-cloud data and cannot handle imaging data.

In view of the above, we turn our attention to a simpler – but still expressive – topological
descriptor, namely the Euler characteristic curve (ECC). ECC has an excellent track record
in providing relevant topological information in various imaging applications [4, 2, 5] – we
elaborate on this in Section 3. More importantly, we demonstrate that we can compute ECC
at extremely fast speed – for example we can process a 3D image of size 5123 30 times per
second. We also managed to implement a streaming strategy, which allows us to handle
huge images of 40963 and beyond – despite the limited GPU memory. The above points
imply that a truly seamless integration with modern image processing pipelines is achievable.
Overall, we hope to impact the following field.

Machine learning. We are particularly interested in incorporating ECC computation into
machine learning frameworks, e.g., convolutional neural networks (CNNs) for computer
vision [12], biomedical image processing [19] or computational astrophysics [16]. In these
contexts, ECC can be used as topological features for prediction models.

Contributions. The main technical contribution of this paper is a streaming GPU imple-
mentation of ECC computation for imaging data. While the underlying algorithm is very
simple, our contribution lies in the implementation carefully tuned to modern GPUs. In
particular, when adapting computation into massive parallelism, we need to carefully design
the implementation so that the limited GPU memory resources can be exploited in the most
efficient manner.

2 Background

2.1 Images as cubical filtrations
The input to our algorithm is a d-dimensional grayscale image, by which we simply mean a
d-dimensional array of real values. Individual elements are called pixels (in 2D) and voxels (in
3D and above), and we collectively call them voxels. One common operation is thresholding,
which selects the subset of voxels not exceeding a certain threshold t. To talk about the
topology of a sequence of thresholdings, we impose more structures on the data.

To this end we follow [11]. First, we define an elementary interval as either [k, k + 1], or
a degenerate interval [k, k], for an integer k. An elementary (cubical) cell is a product of d

elementary intervals, and its dimension is the number of non-degenerate intervals entering its
product. This way we can talk about vertices, edges, squares, cubes etc as cells of dimension
0, 1, 2, 3 etc. We say that cell a is a face of cell b iff a ⊂ b, or a coface if b ⊂ a. Now, we
associate the input values with the top dimensional cells, which we call voxels. Finally we
extend the values from voxels to all lower dimensional cells: each cell inherits the minimum
value of its top-dimensional cofaces. The thresholding of the image at value t is now a cubical
complex, K≤t; the nested sequence of these complexes form a cubical filtration indexed by t.



F. Wang, H. Wagner, and C. Chen 64:3

Algorithm 1 Sequential computation of the VCEC.

Require: I: an input image
Ensure: V CEC: the vector of changes in the Euler characteristic.

1: initialize V CEC as an empty array
2: for all voxels v in I do
3: for all faces c of v do
4: if c was introduced by v then
5: V CEC[value of v in I]← V CEC[value of v in I] + (−1)dimension of face c

2.2 The Euler characteristic curve
With the above setup, we can define the Euler characteristic curve of a cubical filtration as
the sequence

ECCi = χ(K≤ti
) =

∑
j

(−1)jcj(K≤ti
) =

∑
j

(−1)jβj(K≤ti
) (1)

where ti is the i-th smallest grayscale value in the image, cj(.) counts the j-dimensional cells,
and βj(.) is the j-dimensional Betti number. The last equality comes from the Euler–Poincare
formula and ties ECC with the topology of the space.

We only mention that the Betti numbers are the ranks of the cubical homology groups [11]
of the cubical complex K≤t. For three dimensional complexes, the Betti numbers count
the number of connected components, tunnels and voids in an object. Therefore, the ECC
mixes up the numbers of topological features at each threshold. We can also define persistent
homology [6] in this setup [20]. Fig. 1 illustrates the relationship between persistent homology,
the Betti curves and the ECC.

2.3 ECC computation
A naive algorithm for ECC explicitly computes the Euler characteristic (EC) at each threshold.
This results in time complexity of O(mn), where m is the number of unique values in the
image, and n the number of voxels. We assume the dimension of the image is a constant.

An algorithm by Snidaro and Foresti [18] was the first offering O(n) complexity, but
is quite complicated and hard to generalize beyond 2D. Our approach is based on a much
simpler algorithm [8], which interprets an image as a cubical filtration.

Tracking the VCEC. The main idea is to compute the “Vector of Changes in the Euler
Characteristic” (VCEC), namely a sequence of length m such that V CEC0 = ECC0 and
V CECi = ECCi − ECCi−1, for 0 < i < m. Since ECCi =

∑i
j=0 V CECj by construction,

we compute in time O(m) with basic dynamic programming – although since m is small, a
log(m) parallel algorithm is a practical alternative on GPUs [17].

Faces introduced by a voxel. We say that a face is introduced by a voxel, if this voxel has
the smallest value among all voxels containing the given face (in other words: if the face
inherits the value from this voxel). One caveat is that ties have to be broken in a consistent
manner: if two voxels have the same value then we prefer the one with a lexicographically
lower position in the input array. Later we show that this turns in a fast computation,
without the need to explicitly compare the indices.

SoCG 2022



64:4 GPU Computation of the Euler Characteristic Curve for Imaging Data

t=50 t=116 t=173

Figure 1 (bottom) Input image at three thresholds. Their grayscale values correspond to terrain
elevations. (top) The three plots share the x-axis which represents the thresholds of the input image.
The topmost plot shows the persistence diagram (rotated for clarity). For each threshold, it marks
the lifetime of topological features: connected components in red, and holes in blue. The three
highlighted areas show the features alive at the three corresponding thresholds, which are visualized
as the Betti curves below. The ECC is the pointwise difference between the curves. This example
highlights the main downside of ECC: its reliance on counts of topological features, while persistence
also distinguishes their prominence.

Sequential algorithm. With this we can sketch a simple sequential algorithm for the
computation of VCEC for an image (see Algorithm 1). Note that there is no need to
explicitly store any information of the lower dimensional cells. This algorithm will be a basis
for our GPU algorithm.

3 Related work on ECC: applications and computations

Due to their simplicity, both the Euler characteristic curve (ECC) and the Euler characteristic
(EC) find usage in many fields – especially the ones related to imaging. A great introduction
to the topic is the review paper by Worsley [23] from which we sample some of the applications
below. We then discuss the related work on the computational side.



F. Wang, H. Wagner, and C. Chen 64:5

Figure 2 Visualizations of Gaussian random fields generated with different levels of smoothness.

Applications. Ideas related to the EC were present in astrophysics already in 1970s (ECC
is called the genus curve). They were formalized in 1986 by Gott and others [7] in the
study of the sponge-like topology of the large-scale structures in the universe; later ECC
became an important tool in the study of the imaging data describing the cosmic microwave
background (CMB) radiation [14]. This is closely related to earlier work on the topology
of Gaussian random fields (GRFs) by Adler and Hasofer [1] – GRFs are used to model the
CMB. See Fig. 2 for images of GRFs. Ideas related to the EC were popular in the field of
bone morphometry. They were formalized mathematically in 1993 [15]; there EC was used
to characterize the trabecular structures in bones – particularly to compute the first Betti
number (called the connectivity in this field). EC is a common tool in morphological image
processing [9]; it is widely used to characterize the shape of thresholded (binary) images
under the name Euler number ; later it was computed at all thresholds of a grayscale image –
this is ECC hiding under the name stable Euler number [18]. In particular the zero-crossing
of the ECC is used to select a segmentation threshold; see Fig. 1 for a rudimentary example
showing that the riverbeds in a terrain are clearly highlighted at this threshold.

ECC in TDA. Many of the above applications are close to the way topological descriptors
are used today in topological data analysis (TDA), although persistent homology is a much
more popular choice. Still, there is a number of recent TDA studies using EC and ECC.
Bobrowski and Skraba [4] demonstarate that ECC is surprisingly powerful in analyzing the
percolation threshold in random cubical filtrations (and other random models). Crawford and
collaborators propose [5] as a novel statistic based on EC; it proves useful in predicting clinical
outcomes of brain cancer based on brain imaging data. Amezquita and collaborators [2]
analyzed the shape of barley using an image transform based on EC.

Computations. However, the employed algorithmic techniques were different from the
simple setup outlined in the previous section. Instead, the computations often exploited the
connection of EC with differential geometry. In particular, an explicit, efficient algorithm for
EC of 3D voxel data was presented in [7]. Its efficiency stems from precomputed tables of
voxel neighbourhood. Our approach is different and based on the mathematical-algorithmic
setup of cubical homology. This direction emerged in the 1990s in the work of Kaczynski,
Mischaikow and Mrozek. Originating in the context of computational dynamics, it evolved in
a more general framework described in their book [11]. The first efficient, general-dimension
algorithm for EC of binary images uses this setup. The algorithm is due to Ziou and Allili [26]
in 2001. The idea is to view a binary image as a cubical complex and compactly encode
this information. Compared to existing algorithms, this approach is simple, efficient, and it
works in arbitrary dimension. One drawback is the memory overhead related to storing the
cubical complex.

SoCG 2022



64:6 GPU Computation of the Euler Characteristic Curve for Imaging Data

The first efficient algorithm for ECC computation is presented by Snidaro and Foresti [18]
in 2003. It focused on 2D images. The first efficient algorithm for ECC for 3D images – which
also works in arbitrary dimension – is due to Heiss and Wagner [8] in 2017. This approach
extends the idea of Ziou and Allili to cubical filtrations (i.e. from binary to grayscale data). It
also offers improvements: the cubical complex is not stored explicitly; computations are done
in parallel; the image is streamed into memory in small chunks so that images of arbitrary
size can be handled. Our GPU implementation is based on this approach.

𝑡1

RAM

GPU Memory

Write read

Block of threads

𝑡2

Block of threads

Local VCEC
Shared Memory

Local VCEC

image
write

Global Memory
Global VCEC

Write Results

RAM
Write Results

write

Figure 3 The image is first copied from RAM to GPU’s global memory. Each block of threads is
responsible for a patch of the image. Each thread in the block needs to access a voxel and its eight
neighbours (all marked in lighter blue). When the block is done, the block’s local result is added to
the global result. The final result for the entire image is transferred to RAM.

4 GPU implementation

Our GPU implementation is illustrated in Algorithm 2. The listed code is slightly simplified for
readability and covers only the case of 2-dimensional images with grayscale levels ranging from
0 to 255. After we cover the overall structure of computations, we explain the implementation
in details.

4.1 Challenges
Our GPU implementation tackles three main challenges: (1) We needed to adapt the CPU
algorithm to the GPU setting to fully exploit its massive parallelism. The main challenge was
that instead a dozen of threads we had to manage thousands of threads working in parallel –
which required us to structure the computations differently. Further, unlike the CPU version,
which employed a simple lock-free scheme, we needed to explicitly deal with race conditions
and other issues related to synchronization. Apart from ensuring correctness, we had to
experiment with different synchronization granularities to achieve optimized performance.

(2) Efficient use of GPU’s memory hierarchy and its limited resources. GPU is notorious for
its complicated memory hierarchy and limited memory resources. Unlike CPU programming
these have to be explicitly incorporated into algorithmic design. We managed to craft an
efficient multi-level caching hierarchy, taking into account the access patterns characteristic
of working with cubical complexes. With careful analysis of access probabilities, we managed
to ensure that only a single voxel (and not 9 or 27) per thread is fetched from main memory.
(3) Many of the technicalities are not visible when analyzing the GPU kernel. One particular



F. Wang, H. Wagner, and C. Chen 64:7

technical difficulty was achieving streaming operation without affecting the performance. This
enabled us to handle inputs of virtually unlimited size, despite limited GPU memory. We also
organized the streaming processing in a pipeline which allows to overlap the computations
with memory transfers.

4.2 Structure of the computations
The C++ implementation shown in Algorithm 2 defines a compute kernel which is the
computation realized by a thread. Thread-centric view is assumed hereafter, and we will
talk about the thread remembering that the same computations are done concurrently by
many threads.

Single thread. Each thread handles a single voxel, namely, realizes lines 3–5 of Algorithm 1.
In other words, each thread iterates over the faces of a given voxel, decides which of them
are introduced by this voxel, and updates the VCEC vector at the value of the voxel.

Blocks of threads. Threads are grouped into blocks, and we can imagine that the image
is decomposed into rectangular patches. Many such patches are processed concurrently –
although not necessarily in parallel. See Fig. 3 for an overview.

4.3 Optimizations
Computations structured this way perfectly fit the GPU pipeline – however, using the
potential of the hardware requires careful memory management. Specifically, GPUs have a
hierarchy of memory types with different sizes and performance characteristics. Unlike CPU
programming, the programmer must make thoughtful use of these various kinds of memories.

Below we explain some of our implementation choices, and mention common pitfalls. To
illustrate these issues, we start from a hypothetical naive implementation directly implement-
ing Algorithm 1 in GPU. We then improve it step by step, arriving at the implementation
listed in Algorithm 2.

Location of input image. The image data is initially copied from main memory (RAM) to
the GPU’s global memory – this is the only type of GPU memory large enough to store an
image of a reasonable size. Note that large images may exceed the size of the global memory.
For now we assume that the image fits in global memory – we solve this issue in Section 4.4.

Race conditions. We store the VCEC in global memory, simply as an array of 256 integers.
However, since multiple threads will update the same memory location, we need to be wary of
race conditions. Modern GPUs offer efficient implementation of atomic operations, including
atomicAdd, which ensures that all the updates to VCEC will be correctly recorded. However,
all updates issued simultanously on a single memory location will be serialized – which means
we lose the main advantage of the GPU hardware, namely, massive parallelism.

Using registers. We can mitigate the above problem by accumulating the contribution of
the given voxel in a register. Registers provide the fastest type of GPU memory. Additionally,
they are local to each thread, which means that we do not need to worry about race conditions
when updating the values stored in them. We still need to update the global VCEC using
atomicAdd, but the number of updates is now one per thread (instead of 9 in 2D or 27
in 3D).

SoCG 2022



64:8 GPU Computation of the Euler Characteristic Curve for Imaging Data

Shared memory. The above is an improvement but still far from ideal. The next step is to
use shared memory. This is another type of low-latency memory offered by GPUs, although
slower than registers. It is shared between all threads in a given block. So instead of updating
the global VCEC, each thread updates the local VCEC of its own block. This local VCEC is
simply an array of 256 integers, as declared in line 6.

We still need to use atomicAdd to avoid race conditions – but now the collision probability
is lower, since only threads belonging to a single block can access a given shared memory
location. And since the size of the block is configurable, we can find the size which yields
good performance. This optimization has two additional advantages: shared memory has
significantly lower latency than global memory; in modern GPUs atomic operations on shared
memory are significantly more efficient than on global memory. This is not true on older
GPUs, and using them would require a more elaborate way of merging the results.

4-Connectivity 8-Connectivity

6-Connectivity 18-Connectivity 26-Connectivity

Kernel ExecuteStream1:

Stream2:

Stream1:

Stream2:

Serialized Execution

Overlapped Execution

Time

(b)(a)

Memory Copy

Kernel ExecuteMemory Copy

Kernel ExecuteMemory Copy

Kernel ExecuteMemory Copy

Figure 4 (a) Various kinds of connectivity relations between voxels. (b) An illustration showing
that overlapping the computations and memory transfer can reduce the overall execution time.

Parallel initialization and finalization. The shared memory needs to be initialized, and
its final content needs to be added to the global VCEC vector. We perform both steps in
parallel: a single thread in the block is responsible for one location in the shared-memory
array. In line 10 the thread sets a specific location to zero – or does nothing. Similarly, in
line 32 the thread issues an atomicAdd, which updates the global result with the local one.
Note that in these two cases the index does not depend on the value of the voxel assigned to
the thread – we simply compute the unique number of the thread within its block; see line 7.
We use it to index the shared array.

Block-level synchronization. Since the threads in the block are not guaranteed to run in
parallel, we need to synchronize them – otherwise they could start working on uninitialized
memory, or update the global result using unfinished local results. Proper synchronization is
insured by placing a block-level synchronizing barrier in lines 11 and 33.

Accessing neighbors. To decide which cells are introduced by a given voxel, we compare
the value of the voxel with its neighbours (with careful tie-breaking). Specifically, we access
the 8-connectivity neighbors of a given voxel (and 26 in 3D); see Fig. 4(a) for an illustration.

Texture cache. Accessing these values is another source of inefficiency, linked with the high
latency of the global memory. We mitigate this by using a specialized caching mechanism,
called texture cache. It is often referred to as texture memory, which is misleading since
modern GPUs realize this as a caching layer on top of data residing in global memory. When



F. Wang, H. Wagner, and C. Chen 64:9

the value of a voxel is requested from global memory using this mechanism, the neighbours
of the accessed voxel are automatically cached in GPU’s specialized low-latency memory. It
is as fast as shared memory. Line 17 shows how a voxel value is requested via the texture
cache. This is a read-only cache, which suits our algorithm well, since we are not modifying
the image.

The texture cache is optimized exactly for the spatial access locality displayed by ECC
computations. Also, since neighboring voxels are generally processed in parallel, it is likely
that the neighbors’ values already reside in the fast cache. Overall, we can expect that on
average only a single uncached global memory access will be required per thread – but there
is no guarantee due to the limited size of the cache.

The danger of register spilling. We store the frequently used voxel values in registers.
In the case of 2D inputs, the 4-connectivity neighbors (marked in yellow in Fig. 4(a)) are
involved in 3 different comparison operations and therefore we cache them in registers. The
8-connectivity voxels (marked in green) are read once and used once, so we save registers and
rely on the aforementioned texture cache. Similarly for 3D inputs, only the 6-connectivity
voxels (used 9 times) and 18-connectivity voxels (used 3 times) are stored in registers. To
use the registers, we unroll the loop, namely, replace it with a series of statements.

Algorithm 2 Implementation of the VCEC on GPU for a 2D image.

1__constant__ int image_width, image_height;
2const int num_bins = 256;
3

4__global__ void vcec_kernel(cudaTextureObject_t voxels, int* vcec_global)
5{
6__shared__ int vcec_local[num_bins];
7const int thread_number = blockDim.x * threadIdx.y + threadIdx.x;
8

9if (thread_number < num_bins)
10vcec_local[thread_number] = 0;
11__syncthreads();
12

13const int ix = blockDim.x * blockIdx.x + threadIdx.x + 1;
14const int iy = blockDim.y * blockIdx.y + threadIdx.y + 1;
15if (ix >= image_width + 1 iy >= image_height + 1) return;
16

17int change = 1;
18int c = tex2D<float>(voxels, ix, iy);
19int t = tex2D<float>(voxels, ix, iy − 1);
20int b = tex2D<float>(voxels, ix, iy + 1);
21int l = tex2D<float>(voxels, ix − 1, iy);
22int r = tex2D<float>(voxels, ix + 1, iy);
23

24// Vertices
25change+=(c < l && c < t && c < tex2D<float>(voxels, ix − 1, iy − 1));
26change+=(c < t && c <= r && c < tex2D<float>(voxels, ix + 1, iy − 1));
27change+=(c < l && c <= b && c <= tex2D<float>(voxels, ix − 1, iy + 1));
28change+=(c <= b && c <= r && c <= tex2D<float>(voxels, ix + 1, iy + 1));

29// Edges
30change −= ((c < t) + (c < l) + (c <= r) + (c <= b));
31

32atomicAdd(&vcec_local[c], change);
33__syncthreads();
34if (thread_number < num_bins)
35atomicAdd(&vcec_global[thread_number], vcec_local[thread_number]);
36}

SoCG 2022



64:10 GPU Computation of the Euler Characteristic Curve for Imaging Data

Block 1 Block 2

Block 3 Block 4

Block 1 Block 2

Padded 
chunk 1

Padded 
chunk 2

Padded 
chunk 3

Chunk 1

Chunk 2

Chunk 3

Block 1 Block 2

Block 3 Block 4

Block 1 Block 2

Chunk 1

Chunk 2

Chunk 3 Padded 
chunk 3

Padded 
chunk 2

Padded 
chunk 1

(a) (b)

Figure 5 Chunking in 2D and 3D. We emphasize that the chunks are a disjoint decomposition of
the input – but the padded chunks are not. This extra padding provides information necessary to
ensure that each cell introduced by input voxels is counted exactly once.

It may seem like a good idea to cache everything in registers. This is especially misleading
since defining register variables is syntactically the same as defining stack-allocated variables
in C++ CPU programming; see line 17 for an example. We are careful with register allocation
– one common pitfall is register spilling. One danger stems from the fact that the number
of registers per block is limited by hardware – but the number of threads in the block is
configurable. So requesting a block of a certain size may cause the number of required blocks
to exceed the availability. In this case the values are – silently! – stored in what is called local
memory – which is a misnomer because the values are physically placed in global memory.
So instead of using the fastest memory, the slowest one is used. This simple mistake can
cause a performance hit of two orders of magnitude.

Branching. GPU performance can be significantly penalized by branching and loops. In
general, GPU programs allow for considerable flexibility – but they operate most efficiently
as SIMD (single instruction multiple data) units. In other words, kernels whose flow of
execution does not depend on the input data are preferred.

Warps of threads. The above is related to how the threads are scheduled by GPU. Namely,
the threads within each block are additionally grouped into warps of 32 threads. Any branch
(i.e. if statement) splits the execution of the entire warp into two divergent paths. This is
often called intra-warp branching. These two paths generally cannot be executed in parallel,
instead they are serialized. So a single thread can cause all the remaining threads in its
warp to remain idle, limiting parallel execution. We avoid branching in several ways: we
surround the data with a collar of voxels with infinite value, to avoid divergent branches due
to boundary conditions. We also update the change variable without a branching statement,
see e.g. line 25 where we add the truth value of a logical expression, even if it evaluates to 0.

Constant memory. Kernels often require additional information, e.g. the width and height
of the processed image. Accessing such information from global memory multiple times would
be inefficient. Instead, we use ensure quick access by declaring such variables as constant
memory, see e.g. line 1. With this, the values are stored in GPU’s constant memory, which
is specialized for fast broadcast of stored values to multiple threads.



F. Wang, H. Wagner, and C. Chen 64:11

4.4 Streaming
In practice, a lot of 3D images are too large to fit in GPU memory. We overcome this obstacle
by dividing an input into chunks and process them separately. Another benefit of streaming
lies in the CUDA’s asynchronous behaviour which allows us to overlap data transfers and
kernel executions. Breaking an input into smaller pieces helps hide the high latency related
to memory transfers between GPU and RAM; see Fig. 4.

Input of size (w0, w1, . . . ) is cut along the first coordinate. This way the image is
divided into c chunks of size at most (

⌊
w0
c

⌋
, w1, . . . ). This ensures that the resulting chunks

correspond to contiguous memory addresses as arrays are stored in row-major order in C++.
As illustrated in Fig. 5, we extend the chunks by a single-voxel padding. The collar contains
either the value of a voxel – to ensure that each input voxel has access to all of its neighbours;
or positive infinity – as explained before.

Each chunk is loaded into the GPU memory (including the collar). The chunk is
then processed with one or multiple CUDA blocks depending on the size. After finishing
computations, the free blocks will be reassigned to a new chunk for computation.

Overlapping computations and data transfers. CUDA devices contain engines for various
tasks. Modern devices typically have two copy engines, one for host-to-device transfers and
another for device-to-host transfers, as well as a kernel engine. With pinned (non-pageable)
host memory, the tasks launched into non-default different CUDA streams can be executed
concurrently assuming no dependencies amongst them. In other words, loading a chunk into
device, writing results back to host, and kernel execution can happen simultaneously. With
a reasonable choice of c, the overhead of data transfer can be greatly alleviated. Fig. 4(b)
illustrates a simplified case of overlapping transfers and kernel executions. Suppose we have
equal running time for memory copy and kernel execution. Compared to serialized execution,
overlapped execution practically hides the kernel execution time for one chunk when c = 2.

5 Experiments

We use the C++ compiler shipped with Visual Studio 2019 (v142) and language standard
of C++14 for the compilations of both CPU and GPU implementations. The following
experiments are conducted on a desktop machine with Intel Core i7-9700K CPU with 8
physical cores (and disabled hyper-threading), 16GB of RAM, Sabrent Rocket Q 2TB NVMe
PCIe M.2 2280 SSD drive, and a NVIDIA RTX 2070 graphics card with 8GB of GDDR6
memory. It is a modern commodity workstation.

Datasets. We use a mix of synthetic and real-world datasets:
Cosmic microwave background (CMB) imaging data comes from astrophysical measure-
ments. The original data is on a 2-dimensional sphere; we use a single image projection
in different resolution. Each image contains at most 256 unique values.
Virtual Imaging Clinical Trials for Regulatory Evaluation (VICTRE) [3] project provides
realistic simulation of breast phantoms. We generated 20 3D breast volumes. Each image
contains only 11 unique values.
We also use a set of 70 2D Gaussian Random Fields (GRF) with 7 sizes (10 samples for
each size) and 30 3D GRFs with 3 sizes (10 samples each). Each image contains only
1024 unique values.
For larger experiments we use data generated by sampling the uniform distribution for
each voxel. We call this data uniform noise.

SoCG 2022



64:12 GPU Computation of the Euler Characteristic Curve for Imaging Data

Table 1 This table compares the execution time of the CPU and GPU implementations. These are
end-to-end timings, include disk I/O and the GPU overhead related to initializing our computations.
The two rightmost columns are relevant in situations in which the input resides in GPU memory.

CPU GPU GPU GPU GPU
Input CPU GPU Overall disk disk over- exec. kernel

size(B) overall overall speedup read read head (kernel) Gvox/s
Uniform Noise

40963 256G 37.72m 9.10m 4.14x 7.30m 9.08m 0.67s 0.20m 5.62
20483 32G 4.86m 0.71m 6.77x 0.99m 0.71m 0.41s 0.03m 5.61
10243 4G 36.85s 5.63s 6.55x 6.85s 5.20s 0.37s 0.16s 6.57
5123 512M 4.97s 0.85s 5.86x 1.00s 0.64s 0.19s 0.02s 6.55

Gaussian Random Field
5123 512M 4.93s 0.86s 5.75x 0.90s 0.66s 0.19s 20.88ms 6.43
2563 64M 0.63s 0.24s 2.58x 0.13s 0.09s 0.15s 2.64ms 6.35
1283 8M 0.11s 0.12s 0.86x 0.02s 0.01s 0.12s 0.35ms 6.03

81923 256M 1.47s 0.53s 2.75x 0.44s 0.36s 0.16s 6.64ms 10.10
40963 64M 0.38s 0.21s 1.84x 0.12s 0.08s 0.14s 1.74ms 9.67
20483 16M 0.09s 0.18s 0.55x 0.04s 0.03s 0.12s 0.45ms 9.36

VICTRE
287 359 202 79.3M 0.59s 0.30s 1.98x 0.16s 0.13s 0.14s 3.85ms 5.41
440 518 488 424M 2.99s 0.77s 3.87x 0.98s 0.45s 0.24s 20.65ms 5.39
434 446 384 147M 1.11s 0.36s 3.02x 0.29s 0.15s 0.16s 7.13ms 5.40
434 446 384 283M 1.96s 0.53s 3.70x 0.79s 0.30s 0.18s 13.72ms 5.42

CMB
1500 750 1.07M 0.03s 0.12s 0.22x 0.01s 0.01s 0.11s 0.15ms 7.40

3000 1500 4.29M 0.09s 0.15s 0.61x 0.04s 0.02s 0.13s 0.44ms 10.16
6400 3200 19.5M 0.37s 0.25s 1.49x 0.13s 0.08s 0.14s 1.94ms 10.56

All datasets except for CMB are stored in binary format as 32 bit IEEE 754 floating
point values. CMB is stored in binary format as 8-bit unsigned integer values.

Voxel throughput. We are mostly interested in the size (counted in numbers of pixels or
voxels) of the image that can be processed in a second. We call this quantity the voxel
throughput and express it in GVox/s, namely billions (109) voxels per second. All time
measurements are given in ms (milliseconds, 10−3s).

5.1 Case study: Single image on disk
In this case we employ CHUNKYEuler by Heiss and Wagner [8] as a CPU baseline.
CHUNKYEuler is the state-of-the-art CPU parallel streaming ECC implementation. To the
best of our knowledge, no other software can handle the sizes of the data we experiment
with. We run experiments with all eight available CPU cores.

Overall execution time. In this setup, we simply measure the overall execution time
including reading the image from disk; see Table 1. For files smaller than around 16MB,
the CPU version is faster. This is due to the overhead related to initializing our GPU
computations. For files larger than 0.5GB, the GPU version is between 4 to 6 times faster –
although it is severely limited by disk I/O which takes between 75% and 99.7% of its total
execution time.

Streaming. Note that we handle files significantly larger than the available 8GB GPU
memory and 16GB RAM. This is achieved by a streaming algorithm described before. This
was a major difficulty and is described in Section 5. In particular, we handled an image of
size 40963 which takes 0.25TB.



F. Wang, H. Wagner, and C. Chen 64:13

Table 2 This table shows the timings for the pipeline involving the iterated ECC and Gaussian
smoothing computations. The key observations is that when averaged over multiple iterations the
overall time is dominated by the two kernel executions. This confirms that there are no additional
bottlenecks in this pipeline, and especially in our ECC computations. Note that the image is read
once, and so the time to load the image from disk is a one-time cost.

Overall ECC mem. ECC exec. Gaussian Disk
Overall avg. avg. avg. exec. avg. read

[ms] [ms] [ms] [ms] [ms] [ms]
Uniform Noise

(ECC+Gaussian) × 1 137.16 137.16 0.28 0.16 1.55 7.72
(ECC+Gaussian) × 10 172.80 17.28 0.06 0.15 0.20 7.38

(ECC+Gaussian) × 100 149.96 1.50 0.03 0.13 0.09 7.81
(ECC+Gaussian) × 1000 352.02 0.35 0.03 0.12 0.07 7.22
(ECC+Gaussian) × 1000 2786.64 0.28 0.03 0.17 0.07 7.57

GPU overhead. The overhead mentioned above is related to the initialization and shutdown
of the GPU device, and memory allocation specific to our implementation. This overhead
ranges between 100 and 700ms and is a one-time cost. This is why GPU is more effective for
larger datasets – but also for batches of smaller ones. We will focus on that next.

5.2 Case study: Batch processing of images on disk
In this case we read multiple files from disk. We focus on small files, because they were
problematic for the GPU implementation (due to the GPU overhead). Table 3 shows that the
overhead now amortizes when many files are processed. This means that in batch processing
the GPU implementation is always preferred over the CPU one. Still, this is not an ideal
setup for GPU, since the computations are heavily limited by disk I/O.

Prospects. The above issue opens up a new avenue – it may now be opportune to load
compressed images, which would limit the disk I/O time. We plan to investigate this in
future work.

5.3 Case study: GPU-only pipeline
In this scenario, the images are stored and processed entirely in GPU memory. This emulates
pipelines implemented entirely on GPUs, such as some implementations of CNNs [13].
As mentioned earlier, this case is our primary motivation. We are trying to determine
if our ECC kernel could be part of such a GPU pipeline without becoming a significant
performance bottleneck. We also need to verify that our computational setup does not incur
any unexpected additional bottlenecks.

Pipeline. To this aim, we consider a two-step pipeline: (1) compute the ECC; (2) apply a
Gaussian smoothing filter. Steps (1) and (2) are performed repeatedly on an image stored in
GPU memory. We iterate up to 10000 times using a 10242 GRF image. After each iteration,
the resulting VCEC is transferred to RAM and post-processed, including computing ECC.

Gaussian smoothing implementation. We implement the Gaussian smoothing filter as a
discrete Gaussian convolution. We exploit its separability and use a highly optimized GPU
kernel. We use a Gaussian kernel width of 13 pixels (see also Fig. 6).

SoCG 2022



64:14 GPU Computation of the Euler Characteristic Curve for Imaging Data

Table 3 We show timings averaged over running different numbers of files. This table confirms
that the GPU overhead, which dominates the computations for a single small file, amortizes across
many samples. It is clear that the GPU performance is heavily limited by disk I/O.

Input GPU GPU disk
size(B) overall avg. [ms] read avg. [ms]

Uniform Noise

1282× 1 64K 119.83 0.69
1282× 100 6.25M 1.77 0.46

1282× 1000 62.5M 0.66 0.45
1282× 10000 625M 0.52 0.42

Gaussian Random Field

1283× 1 8M 124.68 12.02
1283× 10 80M 28.13 13.86

1283× 100 800M 15.38 13.82
1283× 1000 8000M 11.96 11.67

Figure 6 Images at consecutive steps in the smoothing pipeline.

Potential performance bottlenecks. Since the initial image is loaded into GPU memory
once, the cost of reading from disk amortizes across many kernel runs. As we already checked,
the same applies to the GPU overhead. Column “ECC mem” in Table 2 shows the cost
of transferring the resulting VCEC from GPU memory to RAM and the cost of its CPU
post-processing; this does not incur a performance hit either. Overall, we see that the kernel
executions dominate the overall time.

Performance comparison. We can therefore directly compare the performance of the ECC
kernel and the convolution kernel. Table 2 shows that the throughput of the two kernels is
at the same order of magnitude. The Gaussian kernel is up to 2.5 times faster. However, the
impact on the overall performance of a CNN is likely to be significantly lower, since a single
convolution often contributes less than half of the total computation time performed by a
convolution layer in a CNN [13].

ECC kernel performance. We highlight the performance of the ECC kernel. The throughput
is between 5 and 10 GVox/s. To put things in perspective, it allows us to handle:
1. 3D images of size 5123 voxels at the rate of 30Hz;
2. 2D images of 8K resolution (7680× 4320 pixels) at the rate of 120Hz.

5.4 Dependence on dimension
Perhaps surprisingly, the performance does not depend on the dimension of the image –
which suggests that the caching hierarchy we devised works well – and that the neighbours



F. Wang, H. Wagner, and C. Chen 64:15

are typically retrieved from the cache. This way the dependence on the number of neighbours
(8 vs 26) largely disappears. This property would not extend to higher dimensions, since the
texture cache is only available in dimensions that are smaller or equal to 3.

6 Discussion

We proposed an efficient GPU implementation to compute the Euler characteristic curve of
imaging data. The resulting software is highly practical. Its three major advantages are:

High speed: for images present in GPU memory, it processes images at speed exceeding
5 × 109 voxels per second. This is a realistic scenario for example in the context of
convolutional networks.
Streaming: it can handle images of virtually unlimited size. This is crucial since GPU
memory is a limited resource.
ECC contains topological information which was successfully used in many application
domains.

We believe these results open up interesting avenues. Our plans are twofold. First, we
intend to integrate our ECC computations into CNNs. With the efficiency gap closed, we
hope that topological methods will start permeating mainstream machine learning. Second,
we hope that the full power of persistent homology can be used in such contexts. With the
gathered experience specific to handling cubical filtrations on GPUs, we hope to make the
first steps towards designing GPU algorithms for persistence analysis of imaging data.

References
1 Robert J. Adler and A. M. Hasofer. Level Crossings for Random Fields. The Annals of

Probability, 4(1):1–12, 1976. doi:10.1214/aop/1176996176.
2 Erik J Amezquita, Michelle Quigley, Tim Ophelders, Jacob Landis, Elizabeth Munch, Daniel

Chitwood, and Daniel Koenig. Quantifying barley morphology using the Euler characteristic
transform. In NeurIPS 2020 Workshop on Topological Data Analysis and Beyond, 2020.

3 Aldo Badano, Christian G. Graff, Andreu Badal, Diksha Sharma, Rongping Zeng, Frank W.
Samuelson, Stephen J. Glick, and Kyle J. Myers. Evaluation of Digital Breast Tomosynthesis
as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial. JAMA
Network Open, 1(7):e185474–e185474, November 2018. doi:10.1001/jamanetworkopen.2018.
5474.

4 Omer Bobrowski and Primoz Skraba. Homological percolation and the Euler characteristic.
Phys. Rev. E, 101:032304, March 2020. doi:10.1103/PhysRevE.101.032304.

5 Lorin Crawford, Anthea Monod, Andrew X Chen, Sayan Mukherjee, and Raúl Rabadán.
Predicting clinical outcomes in glioblastoma: an application of topological and functional data
analysis. Journal of the American Statistical Association, 115(531):1139–1150, 2020.

6 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st annual symposium on foundations of computer science,
pages 454–463. IEEE, 2000.

7 J Richard Gott III, Adrian L Melott, and Mark Dickinson. The sponge-like topology of
large-scale structure in the universe. The Astrophysical Journal, 306:341–357, 1986.

8 Teresa Heiss and Hubert Wagner. Streaming algorithm for Euler characteristic curves of
multidimensional images. In Michael Felsberg, Anders Heyden, and Norbert Krüger, editors,
Computer Analysis of Images and Patterns - 17th International Conference, CAIP 2017, Ystad,
Sweden, August 22-24, 2017, Proceedings, Part I, volume 10424 of Lecture Notes in Computer
Science, pages 397–409. Springer, 2017. doi:10.1007/978-3-319-64689-3_32.

9 Berthold Horn, Berthold Klaus, and Paul Horn. Robot vision. The MIT Press, 1986.

SoCG 2022

https://doi.org/10.1214/aop/1176996176
https://doi.org/10.1001/jamanetworkopen.2018.5474
https://doi.org/10.1001/jamanetworkopen.2018.5474
https://doi.org/10.1103/PhysRevE.101.032304
https://doi.org/10.1007/978-3-319-64689-3_32


64:16 GPU Computation of the Euler Characteristic Curve for Imaging Data

10 Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

11 Tomasz Kaczynski, Konstantin Mischaikow, and Marion Mrozek. Computational homology.
Bull. Amer. Math. Soc, 43:255–258, 2006.

12 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:1097–
1105, 2012.

13 Xiaqing Li, Guangyan Zhang, H Howie Huang, Zhufan Wang, and Weimin Zheng. Performance
analysis of GPU-based convolutional neural networks. In 2016 45th International conference
on parallel processing (ICPP), pages 67–76. IEEE, 2016.

14 Dmitri I. Novikov, Hume A. Feldman, and Sergei F. Shandarin. Minkowski functionals and
cluster analysis for CMB maps. International Journal of Modern Physics D, 08(03):291–306,
1999. doi:10.1142/S0218271899000225.

15 A Odgaard and HJG Gundersen. Quantification of connectivity in cancellous bone, with
special emphasis on 3-D reconstructions. Bone, 14(2):173–182, 1993.

16 Johanna Pasquet, Emmanuel Bertin, Marie Treyer, Stéphane Arnouts, and Dominique Fouchez.
Photometric redshifts from SDSS images using a convolutional neural network. Astronomy &
Astrophysics, 621:A26, 2019.

17 Shubhabrata Sengupta, Mark Harris, Michael Garland, et al. Efficient parallel scan algorithms
for GPUs. NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003, 1(1):1–17, 2008.

18 L. Snidaro and G. L. Foresti. Real-time thresholding with Euler numbers. Pattern Recogn.
Lett., 24(9–10):1533–1544, June 2003. doi:10.1016/S0167-8655(02)00392-6.

19 Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall,
Michael B Gotway, and Jianming Liang. Convolutional neural networks for medical image
analysis: Full training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312,
2016.

20 Hubert Wagner, Chao Chen, and Erald Vuçini. Efficient computation of persistent homology
for cubical data. In Topological methods in data analysis and visualization II, pages 91–106.
Springer, 2012.

21 Fan Wang, Saarthak Kapse, Steven Liu, Prateek Prasanna, and Chao Chen. TopoTxR: A
Topological Biomarker for Predicting Treatment Response in Breast Cancer. In Information
Processing in Medical Imaging - 27th International Conference, IPMI, volume 12729 of Lecture
Notes in Computer Science, pages 386–397. Springer, 2021. doi:10.1007/978-3-030-78191-0_
30.

22 Fan Wang, Huidong Liu, Dimitris Samaras, and Chao Chen. TopoGAN: A Topology-Aware
Generative Adversarial Network. In Computer Vision – ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III, pages 118–136. Springer-Verlag, 2020.
doi:10.1007/978-3-030-58580-8_8.

23 Keith J Worsley. The geometry of random images. Chance, 9(1):27–40, 1996.
24 Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dimitris

Metaxas, and Leon Axel. Optimal Topological Cycles and Their Application in Cardiac
Trabeculae Restoration. In In International Conference on Information Processing in Medical
Imaging (IPMI), 2017, pages 80–92, May 2017. doi:10.1007/978-3-319-59050-9_7.

25 Simon Zhang, Mengbai Xiao, and Hao Wang. GPU-Accelerated Computation of Vietoris-Rips
Persistence Barcodes. In 36th International Symposium on Computational Geometry (SoCG
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

26 Djemel Ziou and Madjid Allili. Generating cubical complexes from image data and computation
of the Euler number. Pattern Recognition, 35(12):2833–2839, 2002. Pattern Recognition in
Information Systems. doi:10.1016/S0031-3203(01)00238-2.

https://doi.org/10.1142/S0218271899000225
https://doi.org/10.1016/S0167-8655(02)00392-6
https://doi.org/10.1007/978-3-030-78191-0_30
https://doi.org/10.1007/978-3-030-78191-0_30
https://doi.org/10.1007/978-3-030-58580-8_8
https://doi.org/10.1007/978-3-319-59050-9_7
https://doi.org/10.1016/S0031-3203(01)00238-2

	1 Introduction
	2 Background
	2.1 Images as cubical filtrations
	2.2 The Euler characteristic curve
	2.3 ECC computation

	3 Related work on ECC: applications and computations
	4 GPU implementation
	4.1 Challenges
	4.2 Structure of the computations
	4.3 Optimizations
	4.4 Streaming

	5 Experiments
	5.1 Case study: Single image on disk
	5.2 Case study: Batch processing of images on disk
	5.3 Case study: GPU-only pipeline
	5.4 Dependence on dimension

	6 Discussion

