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Abstract
How can a set of identical mobile agents coordinate their motions to transform their arrangement
from a given starting to a desired goal configuration? We consider this question in the context of
actual physical devices called Catoms, which can perform reconfiguration, but need to maintain
connectivity at all times to ensure communication and energy supply. We demonstrate and animate
algorithmic results, in particular a proof of hardness, as well as an algorithm that guarantees
constant stretch for certain classes of arrangements: If mapping the start configuration to the target
configuration requires a maximum Manhattan distance of d, then the total duration of our overall
schedule is in O(d), which is optimal up to constant factors.
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1 Introduction

Coordinating the motion of a set of objects is a fundamental problem that occurs in a
large spectrum of theoretical contexts and practical applications. A typical task arises from
relocating a large collection of agents from a given start into a desired target configuration,
while avoiding collisions between objects or with obstacles.

A crucial algorithmic aspect is efficiency: How can we reach the target configuration
in a timely or energy-efficient manner? Exploiting parallelism in a robot swarm to achieve
an efficient schedule was studied by Demaine et al. [2, 4], who showed that under certain
conditions, a labeled set of robots can be reconfigured with bounded stretch, i.e., there is a
collision-free motion plan such that the overall length of the schedule (the makespan) remains
within a constant of the lower bound that arises from the maximum distance between origin
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and destination of individual robots. Practical computation of minimum makespan schedules
for a set of benchmark instances was also the subject of the 2021 Computational Geometry
Challenge; see [6] for an overview, and [3, 8, 13] for successful contributions.

Figure 1 (Top left) A Datom. (Top right) A Datom performing a local move between neighbors.
(Bottom right) A local arrangement. (Bottom left) A large-scale arrangement of 3D Catoms.

A practical application arises from coordinating a set of Datoms (for “Deformable Atom”
as a reference to the Claytronics Atom, Catom [7]), which are small-scale electronic devices
that can change their shape and interact with their neighbors to allow communication, energy
supply, and rearrangement; see [9, 10, 12]. This requires maintaining connectivity of the
overall arrangement, which is not guaranteed by the approach of Demaine et al. [4].

In this contribution, we illustrate and animate recent algorithmic results by Fekete et al. [5],
who presented an approach that does achieve constant stretch for connected, unlabeled swarms
of robots for the class of scaled arrangements; such arrangements arise by increasing all
dimensions of a given object by the same multiplicative factor and have been considered
in previous seminal work on self-assembly, often with unbounded or logarithmic scale
factors (along the lines of what has been considered in self-assembly [11]). The method by
Fekete et al. [5] relies strongly on the exchangeability of indistinguishable robots, which
allows a high flexibility in allocating robots to target destinations.

This also adds to previous work [1] on efficient reconfiguration of large-scale arrangements.
Space Ants: Episode I – The Rise of the Machines considers recognition and reconfiguration
of lattice-based cellular structures by very simple robots with only basic functionality.
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2 Algorithmic results

We consider a given starting grid configuration Cs of unlabeled particles that needs to
be transformed into a target configuration Ct by a sequence of simultaneous, collision-
free motions in a minimum overall time, such that all intermediate configurations remain
connected. The main algorithmic results illustrated in this video are as follows.

It is NP-hard to decide whether Cs can be transformed into Ct within makespan 2.
There is a constant c∗ such that for any pair of start and target configurations with a
(generalized) scale of at least c∗, a schedule with constant stretch can be computed in
polynomial time.

The latter implies that there is a constant-factor approximation for the problem of com-
puting schedules with minimal makespan restricted to pairs of start and target configurations
with a scale of at least c∗.

The hardness proof considers an instance φ of Planar Monotone 3Sat and con-
structs an instance Iφ with start configuration Cs and target configuration Ct; see Figure 2,
with start configuration (red), target configuration (dark cyan), and positions in both
configurations (gray) indicated by colors. We consider a rectilinear planar embedding of
the variable-clause incidence graph Gφ of φ, with variable vertices placed horizontally in
a row, and clauses with unnegated and negated literals placed above and below, respectively.
Variables of φ are represented by horizontal variable gadgets (light red). Two additional
auxiliary gadgets (light blue) are positioned at the top and at the bottom boundary of the
instance, connected to the variable gadget via bridges at the right boundary, and a separation
gadget (yellow) between each adjacent and nested pair of clause gadgets (blue). All clause
gadgets are connected via bridges to separation gadgets and possibly to the auxiliary gadgets.
Further, there are bridges from a clause gadget to the respectively contained variables.

The overall approach for computing constant-stretch schedules works as follows; see Fig-
ure 3 (Top). In two preprocessing phases, we first ensure that the pair (Cs, Ct) overlaps in
at least one position. For this, we move Cs towards Ct along a bottleneck matching such
that the respective positions that realize the bottleneck distance, coincide. The overlap is
necessary to successfully construct the auxiliary structure in the third phase of our approach.
Afterwards, we use another bottleneck matching for mapping the start configuration Cs

to the target configuration Ct, minimizing the maximum distance d between a start and
a target location. Furthermore, we establish the scale in both configurations, set c to be the
minimum of both scale values, and compute a suitable tiling whose tile size is c · d, and that
contain both Cs and Ct.

In a third phase, we build a scaffolding structure around Cs and Ct, based on the
boundaries of cd-tiles of the specific tiling, see Figure 3 (Bottom). This provides connectivity
throughout the actual reconfiguration. Restricting robot motion to their current and adjacent
tiles also ensures constant stretch. Note that, as the size of the tiles is related to d, the
scaffolding structure is connected.

In a fourth phase, we perform the actual reconfiguration of the arrangement. This consists
of refilling the tiles of the scaffolding structure, achieving the proper number of robots within
each tile, based on elementary flow computations. As a subroutine, we transform the robots
inside each tile into a canonical “triangle” configuration, see Figure 3 (Top right).

In a fifth and final phase, we disassemble the scaffolding structure and move the involved
robots to their proper destinations.

SoCG 2022
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Figure 2 Symbolic overview of the NP-hardness reduction. The depicted instance is due to the
Planar Monotone 3Sat formula φ = (x1∨x2∨x4)∧(x2∨x4)∧(x1∨x4∨x5)∧(x1∨x3)∧(x3∨x4∨x5).
We use three different colors to indicate occupied positions in the start configuration (red), in the
target configuration (dark cyan), and in both configurations (gray).
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3 The video

The video starts with a description of the basic challenge, followed by real-world demon-
strations of Catoms, their abilities to perform local reconfiguration and build large-scale
structures, subject to maintaining connectivity. Then the idea and components of the hard-
ness proof are shown. Finally, we provide a detailed animated description of the algorithmic
method for achieving connected reconfiguration with bounded stretch for scaled arrange-
ments, based on scaffold construction, flow computation and shifts between neighboring tiles,
canonical triangle transformations within tiles, and scaffold removal.

cd

cd

Figure 3 (Top) The algorithmic approach for achieving constant stretch while maintaining
connectivity. (Bottom) Idea of the scaffold construction and tile size.

SoCG 2022
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