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Abstract
Given a set P of n points, the sum of distances function of a point x is dP pxq :“

ř

pPP ||x ´ p||.
Using a subdivision approach with soft predicates we implement and visualize approximate solutions
for three different problems involving the sum of distances function in R2. Namely, (1) finding the
Fermat-Weber point, (2) constructing n-ellipses of a given set of points, and (3) constructing the
nearest Voronoi diagram under the sum of distances function, given a set of point clusters as sites.

2012 ACM Subject Classification Theory of computation Ñ Computational geometry

Keywords and phrases Fermat point, geometric median, Weber point, Fermat distance, sum of
distances, n-ellipse, multifocal ellipse, min-sum Voronoi diagram, cluster Voronoi diagram

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.69

Category Media Exposition

Supplementary Material Audiovisual (Video): https://youtu.be/wgG8uqLIizo

Funding Evanthia Papadopoulou: supported by the SNF project 200021E_201356.
Martin Suderland: supported by the SNF project 200021E_201356.
Chee Yap: supported by NSF Grant No. CCF-2008768.

1 Introduction

Let P denote a set of n points in R2. The sum of distances, or Fermat distance, function
of a point x P R2 to a set P is dP pxq :“

ř

pPP ||x ´ p||, where || ¨ || denotes the Euclidean
distance. We are considering the following problems involving the Fermat distance function.

The Fermat(-Weber) point of a set of points P is a point in R2 that minimizes the
Fermat distance, i.e., p˚

P :“ minxPR2dP pxq. The Fermat radius is the distance realizing
the Fermat point, i.e., d˚

P :“ dP pp˚
P q. See Figure 1 (left) for an illustration.

An n-ellipse of a set of n points P of radius r, is the level set of the Fermat distance
function d´1

P prq :“ tx P R2 | dP pxq “ ru. An n-ellipse is non-empty only if r ě d˚
P . See

Figure 1 (middle) for an illustration.
The min-sum Voronoi diagram of a family S of point sets, called clusters, is the
subdivision of R2 into maximal regions, such that the region of a cluster P P S is the locus
of points closer to P than to any other cluster in S, i.e., vregpP q :“ tx P R2 | dP pxq ă

dQpxq @ Q P SztP uu. See Figure 1 (right) for an illustration.
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69:2 Subdivision Methods for Sum-Of-Distances Problems

Figure 1 Illustration of the problems considered. (left) The Fermat point (‚) of 10 points.
(middle) An n-ellipse of 10 points of radius 10. (right) The min-sum Voronoi diagram of 4 clusters.

Contribution. In this work we present algorithms on how to find approximate solutions
to the three aforementioned problems within a starting box (axis-aligned rectangle), using
a subdivision approach augmented with soft predicates. This box is recursively split in a
quadtree fashion. Deciding whether a box should be split or not, is done with respect to some
tests, which we perform on this box. We typically derive the tests from predicates, evaluated
with interval arithmetic. In the rest of the paper, we briefly describe how our algorithms
work in each of the three problems, accompanied by illustrations from our visualization tool.
All algorithms directly generalize for weighted input points P .

2 Problem 1: Finding the Fermat point

Finding the Fermat point (or Fermat-Weber point [25]) is an old geometric problem dating
back to P. Fermat (1607–1665), which has attracted the attention of researchers of the
last centuries. Unless P is a collinear point set of even size, the Fermat point is unique.
Unfortunately, the coordinates of p˚

P are roots of polynomials of degree exponential in n,
more precisely up to 2n, see [5, 19]. For this reason there has been a profound interest in
approximating the Fermat point; see indicatively [4, 8, 9, 10, 13, 21, 12].

Algorithm overview. Our algorithm returns a point ĂpF which is an ε approximation to
the Fermat point, in the sense that ||ĂpF ´ p˚

P || ď ε; see our paper [15] for details including
improvements using Newton’s method. An illustration of the algorithm execution on two
instances is shown in Figures 2 and 3. The algorithm starts with an initial box B0 containing
P , which guarantees that p˚

P P B0. During the subdivision, we keep and split boxes B

that might contain p˚
P (green boxes in Figures 2 and 3). Boxes that are guaranteed not

to contain p˚
P are discarded (red boxes); this is determined using an exclusion test. The

algorithm stops when the set of remaining boxes (green) fit into a bounding box of radius ε;
this stopping test guarantees that the center of the bounding box is within ε distance to p˚

P .

3 Problem 2: Constructing n-ellipses

Constructing n-ellipses is also a very old geometric problem dating back to E. von Tschirnhaus
(1651–1708) [24]. When n “ 1, the curve d´1

P is a circle, and when n “ 2, it is the classic
ellipse. An n-ellipse is a convex piecewise smooth curve, with singularities occurring at
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Figure 2 Different steps during the execution of the Fermat point algorithm (“easy” instance).

Figure 3 Different steps during the execution of the Fermat point algorithm (“difficult” instance).

points of P [18, 23]. Further, analogously to the Fermat point, the polynomial equations
defining the n-ellipses have algebraic degree exponential in n [19], hence there is an interest
in designing approximation algorithms to construct n-ellipses.

Algorithm overview. Our algorithm returns a curve E which is isotopic to d´1
P and the

Hausdorff distance between the two curves is at most ε; refer to our paper [15] for details.
An illustration of different steps of the algorithm is shown in Figure 4.

In a nutshell, the algorithm can be considered as an “online” PV-construction [16, 22].
The PV-construction yields isotopic approximations to a target curve, assuming that this
curve is regular. The n-ellipse, though, is not regular when it passes through P [23]. During
the subdivision, we keep and split boxes B until the PV-construction is possible in each
of them; these boxes either definitely contain a piece of d´1

P (green boxes in Figure 4) or
might do so (orange boxes). Boxes guaranteed not to contain a piece of d´1

P are discarded
(red boxes). To ensure that E is an ε-approximation to d´1

P , we split the boxes in which we
draw edges until they have size ε. Boxes near P , which are additionally close to the n-ellipse
(gray boxes), require special treatment. For each such group of gray boxes we connect
the two incoming sides of the n-ellipse by just a single edge, if the group fits into a small
bounding box of size ε.

Elliptic contour plotting. The described algorithm can also be used to produce isotopic
ε-approximate elliptic contour plots, which are roughly equally spaced. By adapting the
algorithm, we can simultaneously construct multiple ellipses of different radii within the same
box subdivision (each ellipse corresponding to a contour line). See Figure 5 for an examples.

SoCG 2022
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Figure 4 Different steps during the execution of the n-ellipses algorithm.

Figure 5 Different steps during the execution of the elliptic contour plotting algorithm.

4 Problem 3: Constructing the min-sum Voronoi diagram

The min-sum Voronoi diagram of a set of point clusters is the nearest cluster Voronoi diagram
under the Fermat distance function; refer to Figure 6 for some instances. This diagram has
not been studied before, except a special case for input clusters of size 2 [6]. Various other
cluster Voronoi diagrams have been considered such as the (min-max) Hausdorff Voronoi
diagram [2, 11, 20], and the (max-min) farthest color Voronoi diagram [1, 14, 17].

Each cluster may have a different size, in fact, the diagram can be seen as a weighted
Voronoi diagram of point sites [3], where the weight of each point is determined by the cluster
size. Only the clusters of the smallest size may have unbounded faces, see Figure 6(left).
Further, given two clusters their bisector is smooth everywhere unless it passes through a
cluster point, see Figure 6 (left).

The diagram has Ωpn ` m2q worst-case complexity, where m is the number of clusters
and n is the total number of points. (1) Choose two clusters of n{2 points on a circle, such
that the points are equally spaced and alternate between the clusters, see Figure 6 (middle).
The diagram then consists of n cones emanating from the origin. (2) Choose m “ n{2 many
clusters of size 2, such that the line segments formed by connecting the 2 points of each
cluster form a grid structure, see Figure 6 (right). The diagram splits into Ωpm2q many faces.

Algorithm overview. Our algorithm returns a plane graph which is an approximation of
the min-sum Voronoi diagram of S with ε Hausdorff distance. It is based on a variant of the
algorithm presented in [7]; refer therein for details. In brief, the edges are drawn based on
the PV-construction, and in order to get an ε-approximation, prior to drawing the edges, the
boxes are split until they are of size ε. Refer to Figure 7 for an illustration of the algorithm.
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Figure 6 Three instances of a min-sum Voronoi diagram.

Figure 7 Different steps during the execution of the algorithm for min-sum Voronoi diagram.
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