Shadoks Approach to Minimum Partition into
Plane Subgraphs

Loic Crombez &
LIMOS, Université Clermont Auvergne, Aubiére, France

Guilherme D. da Fonseca &
LIS, Aix-Marseille Université, France

Yan Gerard &

LIMOS, Université Clermont Auvergne, Aubiére, France

Aldo Gonzalez-Lorenzo &
LIS, Aix-Marseille Université, France

—— Abstract

We explain the heuristics used by the Shadoks team to win first place in the CG:SHOP 2022 challenge
that considers the minimum partition into plane subgraphs. The goal is to partition a set of segments

into as few subsets as possible such that segments in the same subset do not cross each other. The
challenge has given 225 instances containing between 2500 and 75000 segments. For every instance,
our solution was the best among all 32 participating teams.

2012 ACM Subject Classification Theory of computation — Computational geometry

Keywords and phrases Plane graphs, graph coloring, intersection graph, conflict optimizer, line
segments, computational geometry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.71
Category CG Challenge

Supplementary Material Software (Source Code): https://github.com/gfonsecabr/shadoks-
CGSHOP2022; archived at swh:1:dir:ec88e5b901c034d5a91aa133e824d65cf£3788a3

Funding Guilherme D. da Fonseca: This work is supported by the French ANR PRC grant ADDS
(ANR-19-CE48-0005).
Yan Gerard: This work is supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).
Aldo Gonzalez-Lorenzo: This work is supported by the French ANR PRC grant COHERENCE4D
(ANR-20-CE10-0002).

Acknowledgements We would like to thank Héléne Toussaint, Raphaél Amato, Boris Lonjon, and
William Guyot-Lénat from LIMOS, as well as the Qarma and TALEP teams and Manuel Bertrand
from LIS, who continue to make the computational resources of the LIMOS and LIS clusters available
to our research. We would also like to thank the challenge organizers and other competitors for their

time, feedback, and making this whole event possible.

1 Introduction

This paper presents our strategy to win first place in the CG:SHOP 2022 geometric opti-
mization challenge. This edition proposed a problem called minimum partition into plane
subgraphs. The goal is to partition the set of the edges of a given graph G embedded in the
plane (with line segments as edges) into a small number k of plane graphs. The problem
reduces to graph coloring a conflict graph G where the vertices of G¢ are the segments of
G and two vertices of G¢ are connected by an edge if the corresponding segments cross each
other (for details on the definition of cross, see [4]).

© Loic Crombez, Guilherme D. da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo;
37 licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022). }

Editors: Xavier Goaoc and Michael Kerber; Article No. 71; pp. 71:1-71:8 TN

\\v Leibniz International Proceedings in Informatics BN
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

]

[N

O

mailto:loic.crombez@uca.fr
https://orcid.org/0000-0002-9542-5276
mailto:guilherme.fonseca@lis-lab.fr
https://orcid.org/0000-0002-9807-028X
mailto:yan.gerard@uca.fr
https://orcid.org/0000-0002-2664-0650
mailto:aldo.gonzalez-lorenzo@univ-amu.fr
https://orcid.org/0000-0003-3226-7650
https://doi.org/10.4230/LIPIcs.SoCG.2022.71
https://github.com/gfonsecabr/shadoks-CGSHOP2022
https://github.com/gfonsecabr/shadoks-CGSHOP2022
https://archive.softwareheritage.org/swh:1:dir:ec88e5b901c034d5a91aa133e824d65cff3788a3;origin=https://github.com/rdicosmo/parmap;visit=swh:1:snp:25490d451af2414b2a08ece0df643dfdf2800084;anchor=swh:1:rev:db44dc9cf7a6af7b56d8ebda8c75be3375c89282
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2

Shadoks Approach to Minimum Partition into Plane Subgraphs

The study of graph coloring goes back to the 4-color problem (1852) and the problem has
been intensively studied since the 1970s [9]. Many heuristics have been proposed [6, 8, 13, 14],
as well as exact algorithms [3, 7, 12] (see for instance the book [11]). In this paper we present
the ideas we used in the competition. The main element is a Conflict Optimizer, that does
not use any geometry. It is based on the same approach we used to solve low-makespan
coordinated motion planning in the CG:SHOP 2021 challenge [2]. Our initial solutions,
however, make extensive use of geometry. The code is available on github.

The paper is organized as follows. Section 2 presents some heuristics that we used to
compute initial solutions. In Section 3 we describe the technique used to improve a solution.
Section 4 details our implementation of the algorithm and a parameter analysis. Section 5
describes the results we obtained.

2 Initial Solutions

The most simple method to produce a (reasonably small) coloring of a graph is the classic
greedy heuristic: for each segment e, we color e using the first color available, i.e. that is
not already used by any of the segments that cross e. If necessary, we create a new color.
The order by which we consider the segments influences the quality of the solution. We refer
to the greedy heuristic using the order by which the segments appear on the instance files
as Greedy when comparing the results. Sorting the segments in angular order (and trying
different starting angles) produces good solutions to the challenge instances. We refer to this
simple heuristic as Angle.

The squeaky wheel paradigm has been widely applied to graph coloring [10]. The idea is
to run a heuristic, detect elements that have been solved poorly, and run the same heuristic
again handling these elements earlier this time. The procedure is repeated several times and
the best solution found is returned. We use this paradigm together with Angle as follows.
Throughout the algorithm, the segments are partitioned into two lists Good, Bad, both kept
sorted by angle. Initially, all segments are in Good. At each step we apply the greedy coloring
first treating the segments in Bad and then in Good. Then, the segments that have been
assigned the last color are added to Bad and we repeat the procedure. The number of colors
used may eventually increase (since both lists are kept sorted by angle). We stop after a
certain time or number of steps and return the solution with the smallest number of colors
found. We refer to this heuristic as Bad.

A classic variation of the greedy coloring is the DSatur heuristic [1]. It does not use any
geometric information. At each step, we color the segment e that crosses the largest number
of different colors, breaking ties by the total number of segments that cross e. As in the
standard greedy heuristic, the color assigned to e is the first color that is available.

We modify the DSatur heuristic into the DSHull heuristic that uses geometric information.
We color the segments following the same order criterion as DSatur. However, instead of
assigning to e the first color available, we choose the color as follows. The segments that have
the same color are kept in a set called a color class. For each color class C, let w(C') be the
area of the convex hull of the segments in C'. When coloring a segment e, we choose, among
the color classes C' that are available for e, the one that minimizes w(C U {e}) — w(C). Ties
are broken arbitrarily and if no color class is available for e, then we create a new color class
containing only e. The intuition is that a small increase in the convex hull areas corresponds
to a compact packing of the segments, producing larger color classes.

A comparison of the heuristics on several challenge instances is presented in Table 1.

https://github.com/gfonsecabr/shadoks-CGSHOP2022

L. Crombez, G.D. da Fonseca, Y. Gerard, and A. Gonzalez-Lorenzo

Table 1 Initial solutions produced by several heuristics compared against the best solution found.

instance density | Greedy Angle Bad DSatur DSHull | Best
rsqrpecn8051 41% 342 205 203 213 201 175
vispecn13806 19% 427 308 300 289 283 218
rsqrp14364 50% 294 139 139 165 157 136
vispecn19370 13% 370 285 278 265 248 192
visp26405 ™% 154 101 97 94 92 81
visp31334 5% 152 90 88 99 98 81
visp38574 14% 287 148 146 168 168 133
sqrpecn45700 47% 952 504 500 562 522 | 462
reecn51526 24% 642 361 359 388 360 | 310
vispecn58391 12% 789 607 594 499 494 | 367
vispecn65831 12% 916 647 637 578 564 439
sqrp72075 47% 609 280 280 363 337 | 269

3 Improving Solutions

In this section we describe our optimization approach that we call Conflict Optimizer.
Section 3.1 describes the backbone of the conflict optimizer. Section 3.2 describes some
improvements that were made to the conflict optimizer in order to get better solutions.

3.1 Conflict optimizer

The goal of the conflict optimizer is to remove one color from a given solution with k colors.
Let Cy be a color class. The conflict optimizer puts all segments of C in a queue @ and
deletes Cy. We now have a partial solution with k£ — 1 colors and a queue) that contains
uncolored segments. The goal is to empty @) by coloring every segment in Q.

At each step until @) is empty, we pop a segment e from @ and color e as follows. If there
exists a color class C such that no segment in C' crosses e, then we add e to C. In most
cases, such C does not exist and we choose C' to minimize the following cost function. Let
g(e) be the number of times the segment e has been added to Q. The penalty for adding e to
Q is 1 + g(e)P. The cost of each color class C' is the product of a Gaussian random variable
of mean 1 and variance o with the sum of the penalties of the segments of C' that cross e.
The values of the parameters p, o are analysed in Section 4 (p = 1.2 and ¢ = 0.15 are good
default values).

3.2 Modifications to the conflict optimizer

In this section we describe several modifications that we made to the conflict optimizer
described in Section 3.1. In our code, we developed several options that can be toggled on or
off. The impact on the computation of solutions is discussed in Section 4.

Easy segments. Given an objective number of colors k, we call easy segments a list of
segments S such that, if the remainder of the segments of S are colored using k colors, then
we are guaranteed to be able to color all segments with k£ colors. To obtain S we iteratively
remove from the graph a segment e that has at most k — 1 crossings, appending e to .S. We

repeat until no other segment can be added to S. Notice that, once we color the remainder

71:3

SoCG 2022

71:4

Shadoks Approach to Minimum Partition into Plane Subgraphs

of the graph with at least k colors, we can use a greedy coloring for S in order from last to
first without increasing the number of colors used. Removing the easy segments reduces the
total number of segments, making the conflict optimizer more effective.

Clique segments. A clique is a set of mutually crossing segments. We used several heuristics
to produce large cliques. Let K be the largest clique we found for a given instance. Since
the segments of K must have different colors, we forbid the segments in K from entering the
queue by setting a infinite penalty.

Restarting. We implemented a strategy to restart the conflict optimizer. We set a hard
limit gax to how many times a segment can be queued. Once a segment e has been queued
Qmax times, the penalty of e becomes infinite. Once it becomes impossible to color a segment
from the queue (that is, the minimum cost in infinite), the conflict optimizer aborts and
restarts. When restarting, the coloring is shuffled by moving segments that fit multiple color
classes.

Bounded Depth-First Search. The bounded depth-first search (BDFS) algorithm tries to
improve the dequeuing process. The goal is to prevent a segment from being queued by
locally recoloring a bounded number of segments in the current partial solution. To do so,
we perform a local search into the tree of possible ways to color the segments.

The BDFS algorithm has two parameters: crossing bound cpax and depth d. In order to
recolor a segment e, BDFS gets the set C of color classes with at most ¢pax crossings with e.
If a class of C has no crossings with e, we assign e to C'. Otherwise, for each class C € C,
BDFS tries to recolor the list of segments in C' that cross e by recursively calling itself with
depth d — 1. At depth d = 0 the algorithm stops trying coloring the segments.

During the challenge we used BDFS with parameters cpax = 3 and d = 3. The depth
was increased to 5 (resp. 7) when the number of segments in the queue was 2 (resp. 1).

4 Implementation and Experiments

In this section, we describe the techniques we used to efficiently implement the conflict
optimizer. We also analyze the influence of the different parameters and options.

4.1 Implementation

We implemented our algorithm in C++4 using only the standard library. As the conflict
optimizer spends most of its time testing crossings, we precompute the crossings. To save
memory space, we stored the crossing state of each pair of segments using just one bit, which
allows us to store the largest instances of the challenge on less than 800MB.

4.2 Parameter analysis

The two parameters of the conflict optimizer are the variance o of the Gaussian noise and
the exponent p of the penalty. The two others options BDFS and multistart can be activated
to improve solutions that have already been optimized several times.

Parameters o and p. Figure 1 shows the influence of both these parameters (the initial
solutions used for the figure are computed using Greedy). In all figures, the number of colors
shown is the average of multiple executions of the code using different random numbers.

L. Crombez, G. D. da Fonseca, Y. Gerard, and A. Gonzalez-Lorenzo

240 [= 0=0.00 - 0=0.05 - 0=0.10 - 0=0.15 - 0=0.20 |
4
o
©
o)
‘S 230+
@
Q
1S
=
=z

220+

0 1 2. 3 4
Running time (CPU hours)

240+ [= p=0.5 - p=1.0 - p=15 - p=2.0 = p=3.0 ~ p=5.0/
4
o
©
|9
‘S 230+
@
Q
1S
=}
=3

220 -

0 1 4

2 3
Running time (CPU hours)

Figure 1 Number of colors over time for the instance vispecn13806 using different parameters.
In both figures the algorithm uses easy segments, gmax = 59022, but does not use the BDFS nor any
clique. The first plot shows results with different values of o for p = 1.2. The second plot shows

results with different values of p for o = 0.15.

240 = no clique, no BDFS = clique, no BDFS
- no clique, BDFS - clique, BDFS

4
o
o
19
‘S 230
—
@
Q
€
=
=z

220

0 12 60

24 36 48
Running time (CPU hours)

Figure 2 Number of colors over time with and without clique knowledge and BDFS obtained on

the instance vispecn13806. Parameters are o = 0.15, p = 1.2, and gmax = 1500000).

2407 ‘ = Omax=0.5k = dmax=5k = Gmax=50K = Qqmax=100k - Qmax=250k‘
4
5]
©
19
‘5 230+
—
()]
a
€
S
=2

220+

0 1 4

2 3
Running time (CPU hours)

Figure 3 Number of colors over time with different values of gmax obtained on the instance
vispecn13806. Parameters are 0 = 0.15, p = 1.2, no clique knowledge, and no BDFS.

71:5

SoCG 2022

71:6

Shadoks Approach to Minimum Partition into Plane Subgraphs

Options multistart and BDFS. The goal of multistart and BDFS is to further optimize very
good solutions that the conflict optimizer is not able to improve otherwise. Figure 2 shows
the influence of large clique knowledge and BDFS. While on this figure, the advantages of
BDF'S cannot be noticed, its use near the end of the challenge improved about 30 solutions.

Looking at Figure 3, the maximal number of times a segment can be queued does not
seem to have much influence as long as its value is not too small. Throughout the challenge
we almost exclusively used g¢max = 2000 - (75000/ m)g, where m is the number of segments.
This value roughly ensures a restart every few hours.

5 Challenge Results

We won first place in the challenge with the best solution among all 32 participating teams
for all 225 instances. We also showed that 23 of those solutions are optimal by identifying a
clique as large as the number of colors.

[= easy, 1.2,0.15 - 2nd place - 3rd place — 4th place

220 -

210+
g
S 200
(]

190 -

180 -

0 6 12 18 54 60 66 72

24 30 36 42 48
Running time (CPU hours)

Figure 4 Evolution of the score over time compared to the scores of second to fourth place. The
same parameters are used on all instances (p = 1.2, = 0.15, and easy segments are computed).

After generating initial solutions we ran our conflict optimizer with various parameters.
The clique knowledge and the easy segments reduction were always used. Most of the time
we used 0 = 0.15+0.05 and p = 1.2 +0.1. The BDFS strategy was used in the last couple of
weeks of the challenge. We estimate that on average, we spent two to three weeks of single
core of an Intel Xeon E5-2670 CPU per instance. However, despite the large amount of
computing power used during the challenge, and the varying parameters of our algorithms,
we note that after 25 hours of computation on each file, starting from the Greedy solution,
using only the easy segments optimization and parameters p = 1.2,0 = 0.15, our conflict
optimizer reaches a score of 217.64 on the CG:SHOP 2022 instances, which is better than
the second place score (see Figures 4, 5). We note that the second and third team [16, 5]
also use a conflict optimizer heuristic, while the forth team [15] uses instead a SAT solver
coupled with tabu search. Despite several parameters that allow for increased diversity in
order to find really good solutions, our conflict optimizer still performs well with default
parameters. Finally, as the optimizer does not make use of any geometric property, it might
be interesting in the future to test its performance on other classes of graphs.

L. Crombez, G.D. da Fonseca, Y. Gerard, and A. Gonzalez-Lorenzo

—— References

1

10

11

1200 | - sqrpecn71571 - vispecn71708 ~— sqrpecn69904 - sqrpecn73925 |

i
o
o
o

800 -

Number of colors

600 -

10 15 20 25
Running time (CPU hours)

600 | = sqrpecn10560 - sqrpecn17395 - reecn25913 - sqrpecn32073 |

400

Number of colors

200

5 10
Running time (CPU hours)

Figure 5 Challenge scores over time for several instances.

Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM,
22(4):251-256, 1979.

Loic Crombez, Guilherme D. da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafour-
cade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion planning
(CG challenge). In 37th International Symposium on Computational Geometry, SoCG 2021,
pages 63:1-63:9, 2021.

David Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph
Algorithms Appl, 7(2):131-140, 2002.

Sandor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum partition
into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.07444, 2022. arXiv:
2203.07444.

Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momeége. Local search with
weighting schemes for the CG:SHOP 2022 competition. In Symposium on Computational
Geometry (SoCG), pages 73:1-73:7, 2022.

Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of combinatorial optimization, 3(4):379-397, 1999.

Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via
constraint programming and column generation. INFORMS Journal on Computing, 24(1):81—
100, 2012.

Alain Hertz and Dominique de Werra. Using tabu search techniques for graph coloring.
Computing, 39(4):345-351, 1987.

Tommy R. Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons, 2011.
David E. Joslin and David P. Clements. Squeaky wheel optimization. Journal of Artificial
Intelligence Research, 10:353-373, 1999.

R. M. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer Publishing
Company, Incorporated, 1st edition, 2015.

71:7

SoCG 2022

http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2203.07444

71:8

Shadoks Approach to Minimum Partition into Plane Subgraphs

12

13

14

15

16

Corinne Lucet, Florence Mendes, and Aziz Moukrim. An exact method for graph coloring.
Computers € Operations Research, 33(8):2189-2207, 2006.

David W. Matula, George Marble, and Joel D. Isaacson. Graph coloring algorithms. In Graph
theory and computing, pages 109-122. Elsevier, 1972.

Isabel Méndez-Diaz and Paula Zabala. A branch-and-cut algorithm for graph coloring. Discrete
Applied Mathematics, 154(5):826-847, 2006.

André Schidler. SAT-based local search for plane subgraph partitions. In Symposium on
Computational Geometry (SoCG), pages T4:1-74:8, 2022.

Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Conflict-based local search for
minimum partition into plane subgraphs. In Symposium on Computational Geometry (SoCG),
pages 72:1-72:6, 2022.

	1 Introduction
	2 Initial Solutions
	3 Improving Solutions
	3.1 Conflict optimizer
	3.2 Modifications to the conflict optimizer

	4 Implementation and Experiments
	4.1 Implementation
	4.2 Parameter analysis

	5 Challenge Results

