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Abstract
The Partition into Plane Subgraphs Problem (PPS) asks to partition the edges of a geometric graph
with straight line segments into as few classes as possible, such that the line segments within a class
do not cross. We discuss our approach GC-SLIM : a local search method that views PPS as a graph
coloring problem and tackles it with a new and unique combination of propositional satisfiability
(SAT) and tabu search, achieving the fourth place in the 2022 CG:SHOP Challenge.
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1 Introduction

Expressing the Partition into Plane Subgraphs Problem (PPS) in terms of graph coloring
allows us to use decades of research on this important and well-researched NP-hard problem.
While recent research investigated how to color massive graphs with several million vertices [11,
12], closer analysis of the used instances show that they are large but also very sparse. In
contrast, the conflict graphs of this year’s challenge are smaller in size, with up to 73000
vertices, but have an edge density of up to 62% leading to conflict graphs with over 1.5
billion edges. Many established methods for graph coloring do not perform well on such
dense graphs, making local search methods very appealing.

We present our approach GC-SLIM, a combination of propositional satisfiability (SAT) and
tabu search based on the SAT-based local improvement (SLIM) meta-heuristic [9, 13, 14, 15,
16]. While a SAT-encoding of graph coloring can compute colorings for 26 of the 225 challenge
instances, GC-SLIM scales to the largest challenge instances, improves upon established tabu
search, and placed 4th overall and 2nd among student submission [7, 8, 10, 17].

2 Preliminaries

In this paper, we only consider PPS in terms of graph coloring, i.e., we consider the
conflict graph G′ = (V ′, E′), containing a vertex for each line segment, and two vertices
are adjacent if the corresponding line segments intersect [8]. Since GC-SLIM performs
local search, we assume a given k-coloring c : V (G′) → {1, . . . , k}. We use the shorthands
Sℓ = { v ∈ V (G′) | c(v) = ℓ }, [k] = {1, . . . , k}, and N(v) = { w | {v, w} ∈ E(G′) }.
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We compute the initial solution using DSATUR [6], one of the best greedy heuristics
for graph coloring. DSATUR colors one vertex after another, assigning each vertex the
smallest possible color that avoids monochromatic edges. DSATUR always colors the most
constrained vertex next, i.e., the vertex that has the fewest viable colors available.

GC-SLIM extends the tabu search PARTIALCOL [5]. The idea of PARTIALCOL is
to focus on eliminating a single color ℓ through a series of swaps: given a vertex v colored
with ℓ and another color ℓ′, a swap changes v’s color to ℓ′ and the color of all vertices in
N(v) ∩ Sℓ′ to ℓ. Whenever ℓ′ does not occur in v’s neighborhood, the number of vertices
colored with ℓ decreases. Otherwise, ℓ is propagated in the graph in the hope of success with
a later swap. PARTIALCOL picks ℓ′ among the least prevalent colors in the neighborhood
of v, i.e., that minimizes |N(v) ∩ Sℓ′ |, with ties broken arbitrarily. The choice of ℓ′ is further
informed by a list of tabus for each vertex. This list contains all colors a vertex had in the
last few iterations, these cannot be used for swaps to avoid getting stuck in local optima.

3 Method

We use a combination of tabu search and SAT-solving based on the SLIM method [9, 13, 14,
15, 16]. This method improves a heuristic solution through a series of local improvements,
where each local improvement is accomplished by solving a smaller local instance with a
SAT solver. Key to this method is a way to extract local instances that achieves overall
improvement. For GC-SLIM the goal is eliminating color k from a given k-coloring c, thereby
changing c to a (k − 1)-coloring. Note that colors are interchangeable. GC-SLIM is then
called again with the new coloring, until no more improvements are possible.

We use list coloring for the local instances, as it enables us to color a subgraph of G′ in a
way that remains compatible with the coloring outside the subgraph.

▶ Definition 1 (List Coloring). Given a k-annotated graph (G∗, L), where L : V (G∗) → 2[k], a
k-list coloring is a k-coloring c for G∗, such that for all v ∈ V (G∗) it holds that c(v) ∈ L(v).

Given a set X ⊆ V (G′) and a coloring c for G′, we create a list coloring instance (G∗, L):
G∗ = G′[X], the subgraph induced by X, and for each v ∈ X, we let L(v) := [k]\{ c(w) | w ∈
N(v) \ X }. Given a list coloring c′ for G∗, we combine c′ and c by changing c(v) to c′(v) for
all v ∈ X. Afterwards, c is still a coloring for G′, as the lists ensure no monochromatic edges
between X and V (G∗) \ X. If we are able to solve all local instances for vertices colored with
k, we eventually eliminate color k from c.

We can solve the list coloring problem with a simple SAT encoding. We use for each
vertex v ∈ V (G∗) and color ℓ ∈ L(v) the variable cv,ℓ which is true if and only if v can take
color ℓ. We encode that each vertex needs a color with

∧
v∈V (G∗)

∨
ℓ∈L(v) cv,ℓ. Further, we

ensure that adjacent vertices have different colors:
∧

{u,v}∈E(G∗),ℓ∈L(u)∩L(v) ¬cu,ℓ ∨ ¬cv,ℓ.
Finding good local instances is surprisingly difficult. While it was possible to find k-

colorings for many local instances, eventually we would always come upon a vertex that
could not be recolored, no matter how we created the local instance. We overcame this issue
with inspiration taken from PARTIALCOL.

GC-SLIM does not try to eliminate k from the local instance. Instead, our method is
satisfied with any k-coloring that is different and that minimizes the number of k-colored
vertices. Given a set X of vertices that defines the local instance (G∗, L), we perform the
following two changes on L: (i) for all vertices v ∈ Sk we remove k from L(v), thereby forcing
all k-colored vertices to change their color, and (ii) for all vertices v ∈ X \ Sk, we add k to
L(v). Since we eventually eliminate k, monochromatic edges using k are not an issue. Finally,
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we constrain the number of vertices colored by k using a cardinality constraint [3]. Whenever
we find a coloring for the local instance, we reduce the cardinality of the constraint. This
follows the idea of swaps, where no vertex remains colored with k if possible, and otherwise k

is propagated through the graph.
We complement this change in goal with our method for constructing local instances:

starting from a single vertex v ∈ Sk, X0 = ∅ and X1 = {v}, GC-SLIM constructs X =
⋃

Xi

iteratively such that the two invariants X ∩ Sk = {v} and |X| ≤ b hold, i.e., v is the only
vertex with color k and |X| does not exceed a budget b. The set Xi>1 is constructed by
adding specific neighbors of each vertex w ∈ Xi−1 \ Xi−2, the vertices added in the last
iteration. For each w, GC-SLIM adds the neighbors colored in the m least prevalent colors
to Xi. The process stops when no more vertices can be added without exceeding the budget.
We call m the branching limit, as the whole process resembles breadth-first search where the
breadth in each step is limited by m. The budget ensures that the local instances stay small
enough to be tackled by a SAT solver. Further, we use minℓ∈[k−1] |cℓ ∩ N(v)| as the upper
bound on the number of vertices colored with k in the local instance. This corresponds to a
normal swap and ensures that GC-SLIM does not perform worse than PARTIALCOL.

Similar to tabu search, GC-SLIM stores the last colors of a vertex and disregards them
during the construction of X, even if they are the least prevalent. We also considered
removing tabu colors from the lists of the local instances. This yielded worse results as it
restricts the possibilities for the SAT solver too much.

3.1 Hyperparameters

There are several hyperparameters that can severely impact GC-SLIM’s performance.
The timeout for the SAT solver determines the time the solver has to find a solution. A

large number allows for more improvements but may waste time without finding a solution.
Depending on the instance and the concrete timeout, 25% to 50% of the SAT calls time out.
Generally, a small timeout of 5 seconds performs well initially as it finds improvements fast,
and a higher timeout can reveal more improvements once the low timeout fails.

The iteration limit determines the number of local instances GC-SLIM generates per
color. Higher numbers increase the chance of success, but may waste time if unsuccessful.
Again, low limits are good initially and higher iteration limits perform better in later stages.

The branching limit controls the breadth versus depth of the exploration when generating
the local instance. Varying this parameter leads to different results, where smaller values of
2 and 3 find the most improvements, and values up to 15 reveal further improvements.

GC-SLIM adjusts the budget for the local instance automatically. Starting from an initial
budget of 300 vertices, after any three consecutive SAT solver calls that time out, the budget
decreases by 60 vertices. Whenever three consecutive SAT solver calls are successful, the
budget increases by 60 vertices. In practice, the budget varies between 60 vertices – the
lower limit – for very dense graphs and over 2000 vertices for sparse graphs.

3.2 Parallelisation

GC-SLIM uses multithreading as follows. Each thread tries to eliminate a color on its own
and threads only synchronize if one of them succeeds. At this point, the successful thread
shares the improved coloring and each thread starts again picking a color to eliminate.

We use multithreading in two ways: (i) to eliminate more colors in the same amount of
time, and (ii) to try different hyperparameter settings, potentially on the same colors.

SoCG 2022
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4 Experiments

We discuss both the results from the competition and experiments with a specific time limit.
GC-SLIM was implemented in C++, compiled with gcc 7.5.0, and run under Ubuntu 18.04.

The servers we used during the competition had two Xeon E5-2640v CPUs, each with 10
cores running at 2.4 GHz. The experiments ran on nodes with two AMD EPYC 7402 CPUs,
each with 24 cores running at 2.8 GHz. Each run was limited to 64 GB of memory and 24
hours runtime. We used all available cores and no other experiments ran in parallel.

GC-SLIM uses the SAT solvers Glucose 3 [2] and Cadical 1.5.0 [1, 4]. Cadical is the
default solver and when varying the hyperparameters, we also varied solvers.

4.1 Competition

During the competition, we kept the current best coloring for each instance in a repository.
This allows us to give a rough timeline of the changes, particularly on the impact of GC-SLIM.
Figure 1 shows the initial number of colors, the number of colors achieved with PARTIALCOL
right before introducing GC-SLIM, and the final number of colors.
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Figure 1 Comparison of the best colorings at different phases of the competition. The instances
are ordered by the number of colors in the best result.

In the first phase, we used PARTIALCOL with varied parameters. In each iteration, the
color for swaps was initially the least prevalent color, until PARTIALCOL failed to find
improvements. Then, we added small random values to the color counts to diversify the
exploration of the search space, until eventually, we picked random colors, which enabled
further improvements. At the end of this phase, PARTIALCOL could not eliminate any
color within 10 million swaps.

In the last phase, we used several runs of GC-SLIM per instance. Each run had up to
twelve hours to eliminate one or more colors. For each run, we varied hyperparameters and
SAT solvers. Towards the end, we used multithreading for instances with a large gap between
upper bound and a clique lower bound. As Figure 1 shows, GC-SLIM was able to improve
the colorings of most instances. On average, GC-SLIM removed over 50 additional colors
per instance. Unfortunately, developing GC-SLIM was a long process and the final version
finished too close to the deadline to achieve the best possible results.
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Figure 2 Comparison of 24 hour runs of tabu search and GC-SLIM. Our competition results are
added as a reference. The instances are ordered by the number of colors in the best coloring.

4.2 24-hour experiment

The usefulness of our method is not fully captured by the competition results, as applying
local search for several weeks is usually not an option. We therefore ran PARTIALCOL
and GC-SLIM with various configurations for 24 hours. For this purpose, we tried different
hyperparameter settings in a shorter 5-hour run on ten instances and picked the settings
that performed best as best configuration. The varied configuration uses a different set
of hyperparameters in each thread. Both configurations use five parallel threads. These
configurations run either alone, or combined with PARTIALCOL, where PARTIALCOL runs
for twelve hours and then GC-SLIM for another twelve hours.

The overall results in Figure 2 – GC-SLIM shows the best result over all configurations –
show that GC-SLIM improves upon PARTIALCOL even in this shorter timeframe. Further,
the experimental results are comparable to our competition results on many instances: the
competition results use only 3 fewer colors on average. This suggests the strong possibility
for further improvements, given more time.

In Figure 3 we show how the number of colors develops over time for the largest instances
of their respective set. We can see that the majority of improvements are achieved within a
short amount of time, and PARTIALCOL quickly struggles, while GC-SLIM is able to find
further improvements. Interestingly, the combination of both methods is sometimes able to
find more improvements than either method alone.

5 Conclusion

GC-SLIM showed good results both in the experiments and in the competition. Key to
the performance of our algorithm is the local instance selection that is closely tied to
PARTIALCOL. We hope that our method will serve as a template for combining local search
and SAT, and considering other local search methods will lead to further improvements.

SoCG 2022
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Figure 3 Color reduction (y-axis) over time (x-axis in minutes) for different configurations.
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