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—— Abstract

We propose a modification to the random destruction of graphs: Given a finite network with a
distinguished set of sources and targets, remove (cut) vertices at random, discarding components
that do not contain a source node. We investigate the number of cuts required until all targets are
removed, and the size of the remaining graph. This model interpolates between the random cutting
model going back to Meir and Moon [28] and site percolation. We prove several general results,
including that the size of the remaining graph is a tight family of random variables for compatible
sequences of expander-type graphs, and determine limiting distributions complete binary trees.
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1 Introduction and structure of the paper

Investigating the behaviour of trees when randomly removing vertices was first done by Meir
and Moon in [28]. The process starts with a rooted tree, where at every step a uniformly
chosen vertex is deleted, and all remaining components that do not include the root vertex
are discarded. Since the process naturally stops once the root node has been cut, the question
of interest is the random number of cuts needed to reach this state. In [28], the expected
value and the variance of this random variable for a random labelled tree are found.

Since this initial paper, the model has been considered for different types of random and
deterministic graphs, such as in the works of Panholzer [29, 30], Janson [20, 21] (see also [2]
for an alternative approach by Addario-Berry, Broutin and Holmgren), or Holmgren [18, 19].

The random cutting model relates to both the record problem (as was observed in [21])
and to fragmentation processes and their Cut-trees, see e.g. [4], [5], or [8]. Moreover, it
connects to Union-Find algorithms, see [31] and the further work in [13, 15, 22, 23].

In recent years, modifications of the original cutting model have been discussed: Kuba
and Panholzer regarded the case of isolating a leaf, a general node, or multiple nodes
simultaneously (instead of isolating the root) in [24, 25, 26], and Cai, Holmgren et al.
proposed and investigated the k-cut model in [6, 10, 11], where a node is only removed after
it has been cut for the k-th time.

In this paper, a different modification of the cutting model is introduced, where, addi-
tionally to one or several root vertices (which we will call sources) a second set of vertices
(targets) are given. This allows for defining a stopping time for the cutting procedure on the
graph by looking at the first moment when all of the targets have been removed (i.e. the
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sources have been separated from the targets) — see Section 2 for the detailed definitions.
We can then ask several natural questions, such as about the number of cuts necessary to
separate the two sets and about the size of the remaining graph.

Section 3 will contain several basic estimates, and we will formalise the imprecise notion
that separation interpolates between the cutting model and site percolation (Propositions 1
and 3). This requires the right definition that enables us to approximate such a graph by
finite graphs, all while respecting the choice of sources and targets, see Definition 2.

In Section 4 we obtain the probability for a fixed subgraph to be the remaining graph
at the time of separation. This leads to Theorem 9, which could be regarded as the main
result of the paper and gives sufficient conditions for the size of the graph at separation to
be a tight sequence of random variables when the graph approximates a locally finite infinite
graph in the sense of Definition 2.

For the final section, our scope will focus on rooted trees, since their recursive nature
can be used to simplify many of the arguments and calculations. The arguments here relate
to earlier work by Devroye et al., [12, 14]. We consider the separation sizes and separation
times for complete binary trees as an illustrating example, and finish by indicating potential
future research directions.

In order to comply with the requirements for this extended abstract, proofs of auxiliary
statements have been omitted, but can be found in the full version of this paper, [9]. Moreover,
the full version contains several examples that were not included here.

2  Cutting procedures

2.1 Some notation

We will always use G = (V(G), E(G)) to denote a graph, consisting of its vertex and edge
set, but will shorten the notation to V= V(G) and E = E(G) if there is no ambiguity
from the context. Since most subgraphs we will consider are induced and therefore uniquely
determined by their vertex set, we will not distinguish between an induced subgraph and its
vertex (sub-)set.

If two vertices v, w are neighbours, we also use the notation v ~ w. More generally, we
write dist(v, w) for the graph distance between vertices v, w. In the case where A, B C V(G)
are subsets, dist(A, B) is to be understood as min{dist(v,w) : v € A,w € B}.

Given any set A C V(G) and a fixed set S of source nodes, we define the closure of A to
be closg(A) := AUSU{v € V(G) : v ~ w for some w € A}. The (exterior) boundary of A is
defined as dg A := closg(A) \ A. In other words, the vertices in dgA are precisely the vertices
not in A that are in S or neighbour some vertex in A. Note that this implies e.g. dsf) := S.

2.2 Cutting and separation

Consider a finite simple connected graph G = (V, E) with a distinguished subset S C V

whose vertices are referred to as sources. Now, proceed as follows:

1. Choose a vertex v € V uniformly at random, and remove it — together with all edges
incident to v — from the graph. This will potentially split the graph into connected
components, in which case we only keep the components containing sources, regarding
them jointly as a new (potentially disconnected graph).

2. Tterate step 1, where the randomness in choosing the node is assumed to be independent
from everything that happened previously.



F. Burghart

3. The process terminates once the graph contains no more vertices. Equivalently, this
happens as soon as the last source node has been removed.
This defines a finite sequence G =: Gy 2 G1 2 ... 2 G,_1 2 G, = 0 of random induced
subgraphs, where we denoted the empty subgraph consisting of no vertices with (). We will
denote this process by Cut(G).
Introducing a second set of distinguished vertices, T', whose vertices we refer to as targets,
we can now consider the following functionals of the cutting process:
The cutting number €(G). This is merely the number of cuts until the last source node is
cut, or equivalently, until the remaining graph is empty, i.e. €(G) =inf{i > 0: G; = 0}.
Note that this does not rely on 7.
The separation number &(G), defined to be the number of cuts until the remaining graph
does not contain target nodes anymore (independently of how many sources are still
present). In other words, §(G) = inf{i > 0: V(G;) N T = (}}. We say that at this time,
separation (of S and T) occurs.
The separation subgraph Gg := Gg(g), defined to be the random subgraph of G at
separation.

L EE 4
oL

Figure 1 The cutting procedure on a graph G from top left to bottom right, with source nodes
in black and target nodes in white. The symbol * in a vertex indicates that this is the vertex about
to be cut in the next step. In this example, §(G) = 5, €(G) = 6 (after the last source node has
been cut) and Ge is a path on three vertices.

2.3 The continuous-time model

As has been observed previously by [21] and since been brought to effective use, the above
cutting model is equivalent to a model where each node is equipped with a random alarm
clock whose alarm triggers after time X,, v € V. Whenever an alarm rings, and the
corresponding node is still in the graph at this time, that node will be removed together
with any new components that do not contain source nodes. Here, to ensure equivalence
to the discrete-time cutting model above, we assume that (X,),cy is an i.i.d. family of
Exp(1)-distributed random variables — while any i.i.d. family of continuous random variables
would suffice, the memoryless property will be useful later.
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This once again yields a monotone stochastic process of subgraphs of G, but now
parametrised by continuous time, (G§)icp,00). We will denote this process by Cut®(G).
However, G; will only attain finitely many different graphs, and we will still denote those
graphs by Gg,G1,Ga, ... in order of occurrence, as before. Hence, we can denote by G-
the graph that was attained by Cut®(G) immediately before time t; so, G;- = G iff no cut
happened at time ¢.

Note that there are two ways of generalising the random variables € and & to the
continuous-time setting: By default, € and & respectively denote the quantities

C=inf{i eN:G; =0} and S=inf{i e N: V(G;)NT = 0},
exactly as before, while €, and &, denote
C.=inf{t>0: G, =0} and S, =inf{t >0:V(G)NT =0},

respectively.

3 Cutting and site percolation

The following proposition asserts that the additional freedom of choosing target nodes for
the separation number can be used to obtain the original cutting number. In other words,
S(G) can be understood as a generalisation of €(G).

» Proposition 1. Let G = (V, E) be a finite connected graph, and let S, T CV be the sets of
source and target nodes, respectively. Then, we have &(G) < €(G) deterministically, with
equality if S CT. Conversely, if 6(G) = €(G) in distribution, then S CT. Moreover, all of
those statements also hold true for S.(G) and €.(G) in the continuous-time model.

We remark that therefore, G(G) = €(G) holds in distribution if and only if it holds determ-
inistically.

Proof. At time €(G), the remaining graph is empty, so separation must have occurred
already. Thus 6(G) < €(G).

If S C T, then separation will occur as soon as the last source node has been removed,
at which time the remaining graph will be empty. Thus &(G) = €(G). Conversely, if there
exists v € S\ T then Gg contains v with some positive probability pg. If this happens,
S(G) < €(G) — 1, so E[€(GQ)] — E[6(G)] > po, and equality in distribution cannot hold.

For the continuous-time model, only the last argument requires modification: Once again,
if v € S\ T then Gg contains v with probability pg > 0. In this case, G.(G) < X, < €.(G),
and we have

E[C.(G)] — E[6.(G)] 2 poE[X, — 6.(G) | v € V(Ges)] = po
since X, ~ Exp(1) is memoryless. <

We now show that in a certain sense, the continuous-time separation model on an infinite
graph G with infinite distance dist(.S,T") contains the site percolation model on G.

More precisely, recall that for Bernoulli site percolation in an infinite graph G, every
node is independently kept with some probability p € [0, 1] and otherwise rejected, thus
giving a random subgraph of G. We denote by percg(p) the probability that the Ber(p)-site
percolation on G exhibits an infinite cluster containing at least one vertex of S.



F. Burghart

» Definition 2. Let G be a locally finite, infinite connected graph, containing two subsets
S, T CV(G). We say that the sequence (G™),>, of finite induced subgraphs of G exhausts
G if the following conditions are satisfied:

(i) The G™ are connected subgraphs satisfying

¢Wce®c..ca ad |JV (G<")) =V(G).

n>1

(ii) The set S is entirely contained in G™ for all n (and understood to be the set of
source nodes of G™ ), and each subgraph G is endowed with the target set T(") :=
(TnV(G™)) Uy (G\G™).

Observe that the target nodes T are indeed a subset of V (G(")) and will be non-empty
even if T = (). Moreover, condition (ii) necessitates that S is finite.

» Proposition 3. Let G be a locally finite, infinite graph with a finite set of source nodes, S,
and let T = (. Assume that (G™),>, evhausts G.

Then,

lim P {GC(G(")) > 1’} = percg(e™®). (1)

n—oo
Proof. Note first that if 7' = (), then (using the notation of Definition 2) dist (.5, T(")) — 00 as
n — o0o. Indeed, there would otherwise be a bound C' € N with dist (S, T(”)) < C. Consider
the neighbourhood B¢(S) := {v € V(G) : dist(v,S) < C} of S. Since Be(S) is finite, it
will eventually be contained in all G(™), contradicting the notion that T = 9, (G \ G(”))
contains vertices in Bo_1(.5).

Recall next that independently removing each vertex v of G at a random time X,, ~ Exp(1)
gives rise to the monotonous coupling of Bernoulli site percolation for all parameters p € [0, 1]
(cf. [27, p.138]). Indeed, at time x € [0, 0], the graph we observe that way is a sample
of Ber(e™*)-site percolation on G. We can couple the process obtained in this way to the
continuous-time cutting model by restricting our attention to the intersection of G with
those percolation clusters that intersect S.

To show > in (1), assume that Ber(e™*)-site percolation exhibits an infinite cluster
which intersects S, such cluster necessarily intersects T(") as well and hence, for each
n, contains a path connecting S with 7. By the coupling indicated above, this path
must then also be present in the sample of the continuous-time cutting model on G
at time z. Therefore, percg(e™®) < P [GC(G(”)) > a:], and letting n tend to oo yields
liminf, .. P [GC(G(")) > :L'] > percg(e™®).

For the other inequality, suppose now that Ber(e™*)-site percolation does not exhibit an
infinite cluster intersecting S, so that the total mass of clusters intersecting S is bounded by
some finite integer, say k. By the second assumption, we have dist(S, T(")) > k for all but
finitely many n. However, this implies that eventually, the clusters intersecting S cannot
intersect T, which, for the coupled cutting procedure, means that separation in G(™ must
have occurred before time z. So,

P [|[V(Clusters intersecting S)| < k] < P [GC(G(")) < .Z‘:| .
Taking the limit superior for n — oo yields

lim sup P [GC(G(")) > a:] < 1— P[|V(Clusters intersecting S)| < k],

n—roo

which implies the existence of the limit and < in (1) after passing to the limit for k¥ — oo as
well. |
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4 \Visiting probability of subgraphs and size of the separation graph

Consider a finite simple connected graph G with S, T C V as usual. The aim of this section
is to determine the probability that at some time ¢ > 1, the cutting procedure Cut(G) will
produce a specific subgraph G,.

» Lemma 4. Fiz an induced subgraph G, of G with every component of G, containing at
least one source node. Then, for all times t > 0 in the continuous-time cutting model, we
have

P [Gt = G*} = €_|G*|t (1 _ e_t)\asG*\ . (2)
Moreover, consider v, € 0sG.. Then
P[Gx, =G.|X,,] =e 101X (1 = g X0 )01 .

» Corollary 5. Fiz an induced subgraph G, of G with every component of G, containing at
least one source node. Let v, € 0sGy. Denote the i-th graph obtained in the cutting process
by G; and the i-th cut node by v;. Then

1 (1G] + 105G\ 7"

S Uk Sx

and therefore

-1

S s

» Definition 6. Let G be a finite connected graph equipped with sources S and targets T # ().
An induced subgraph G, is called admissible if the probability P[Ges = G.] is positive. We
denote by p,(G) the set of all admissible subgraphs G« of G of size |V(G.)| = m.

Assuming that T # 0, it can be shown (Lemma 12 in [9]) that G, C G is admissible if
and only if G, contains no target nodes and every component of G, contains at least one
source node.

Relying on the preceding results, we can establish the following connection between the
graph G at separation and the continuous-time separation number G.:

» Proposition 7. Let G, be an admissible subgraph of G. Then,

PlGs = G.] = Z /1 ul G171 (1 — ) 9sG 1P (S, (H v,]) > — Inw] du, (6)
v,€05G. 70

where H(v,] denotes the graph obtained from G in the following way: Remove all vertices in
G, and in 0sG \{v.} from G, and from what remains, let H|[v,] be the connected component
containing v.. We endow Hv,] with source node v, and target nodes T NV (H][v.]).

Proof. Fix a vertex v, € ds5G,, and assume that this is the last node to be removed for
separation to occur. We observe first that by definition of the separation number, any graphs
obtained by Cut(G) before separation must have contained a path from v, to T. In particular,
the last graph before separation occurred contained such a path, which additionally was not
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passing through any other nodes in G, or dsG, and must have therefore been contained
in H[v.]. The existence of such a path means, however, that the graph H[v.] is not yet
separated. Thus, by transitioning from the discrete to the continuous-time model, we obtain

P[Gs = G, v = vy | X, ]
=P [GXU* = G and v, connects to T in G- | XU*}
=P I:GXv* =G, | Xv*] P& (H[vi]) > X, | Xo, ], (7)

where conditional independence holds true because
{Gx,, = G.} and {S.(H[n.]) > X,.}

are events on vertex sets which only share v,. Conditioned on X,, being x, the event
{6.(H[v4]) > X,, } amounts to the existence of a path from v, to the set of target nodes
in H[v.], none of whose clocks have rung yet at time X,,. On the other hand, without the
conditioning, the same event is equivalent to the existence of a path from a neighbour of v,
to the set of target nodes in H[v.]. Hence,

X, _ o PISHp]) =]

e—l‘

P[S.(H[v.]) > Xo,

In light of (3) from Lemma 4, we can now rewrite equation (7) as

-r)os6-1-1 PSulHlue]) 2 2]

PlGs = G, vs = v, | X,, = 2] = e7I1G-I® (1- -
e x

(®)

Finally, observe that, with px denoting the distribution of X, _,

PGs=G.]= Y / PlGs = Guve = v. | Xo, = 2] dux (),
V. E€Is Gy 0

so that, after plugging in the expression from (8) and using X,, ~ Exp(1), we obtain

_ _ > —x\|G« —x\10sG«|-1 P [GC(H[IU*]) 2 (E] —x
PlGe = G.] = E%:G /0 (™) |(1—e ) o ce " dux,
Vx S G
which only differs from (6) by the substitution e™* = u. <

» Remark 8. The (unconditioned) probability P[&.(H [v.]) > X,,], has a number of equivalent
versions. Indeed, if we consider any G with S = {v.}, then we have the following equalities:

P[6.(G) > X,.] = P[6.(G) > €.(G)] = P[6(G) > €(G)] = P[Ge = 0] = P||Cs| = 0]

Moreover, in the first three formulations, the strict inequality “>” is impossible, so one could
just as well write “=" there. Additionally, since &.(H[v.]) < X,,, we have the estimate

P[G.(H[vi]) > —Inu] <P[X,, > —Inul=u  VYuel01]. (9)

Recall that a family of real-valued random variables X;,i € I, is tight if for all € > 0,
there exists a constant M such that P[|X;| > M] < ¢ for all i € I, cf. [7, p.37]. We conclude
this section by showing the following tightness result about the size of Gg:

4:7
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» Theorem 9. Let (G(n))nZI be a sequence of finite induced subgraphs exhausting the locally
finite, infinite graph G equipped with subsets S,T C V(G). Define ap, n, = ZAeg{m(GW)) |0s Al
and let ap, :=limy, o0 A n. Assume that there are constants b > 0 and L > 0 such that

(i) [0sA| > bm 41 for all A € 4, (G"™) and all m > L, and

(i) the function f(z) = Y .°_; amz™ has radius of convergence at least ﬁ and
satisfies
1
/ fx(l—2)°) de < oo (10)
0

Observe that, since ¢ := max,¢o,1] (1 — z)’ = w, condition (ii) requires that the

radius of convergence, r, of the power series f is g‘:— lleast c. In case r > ¢, this condition
is trivially satisfied as the integrand is bounded. However, in case of equality = ¢, f has
a singularity at ¢ by virtue of Pringsheim’s theorem, cf. [16, Theorem IV.6], and (10) is a
non-trivial requirement. We also remark that condition (i) above is a variant of the notion of

expander graphs, which play a crucial role in the theory of percolation, see e.g. [3].

Proof. We first show that for fixed m, the sequence a,,, , is nondecreasing and eventually
constant. Recall from Definition 2 that the sets 7(") consist of two parts, namely TNV (G("))
and vertices that are incident to edges leaving G(™. By copying the respective argument from
the proof of Proposition 3, we can show again that dist (S, T\ T) — 00 as n — oo. Hence,
for n sufficiently large, the closed neighbourhood of S of radius m will become independent
of n, and so will a,, . Moreover, since the G (") are monotonously growing, any admissible
subgraph in G will also be admissible in G("*t1) and the number of boundary vertices
will not decrease when changing from G(™ to G(®*+1). Hence Gm,n is nondecreasing in n. In
particular, the limit a,, exists, is finite, and an upper bound to a,, , for all n.

Let M > L. We now apply Proposition 7, where we set p,, (z) := P[G.(H[v.]) > —Inz]
(note that this still depends on Gg as well!) for brevity. Summing over all m > M and all
A € o, (G™) yields

pllegzu]=> > [wra-neit Y e

m=M A€dt,,(G(™) v, €95 A

<y ¥ |8SA\/ 2)0s41-1 4,

m=M A€y (G™)
where we applied the estimate (9). Using assumption (i), we get

P[l6) > M| < Z 3 |6SA\/ (1—2)")™ de

m=M A€, (G™))

Z/amn (1—2z)")™dz.

m=M

Then, by the above argument on the monotonicity of a,, ,, we obtain

P [|Gg)| > M} < i /01 am(z(1 —2)")™ dz.
m=M
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By monotone convergence, we moreover obtain for all M > L that

o0 1 1 oo
am(z(l —2)")™dx = am(z(1 —2)")™dz
mZ]W/O /0 m;vf

1 oo 1
7Ibm$: T 7:175 T
g/o m;am(xu 1y /Of( (1-2)%d

which is finite by assumption (ii). Hence the tail of the series on the left-hand side converges
to zero, and therefore P “G(Gn)| > M} — 0 uniformly in n as M — oo as well. <

» Remark 10. Tightness of the sizes of the separation graphs

G(g )‘ is a helpful property
in order to translate limit laws from the cutting times € (G(”)) to the separation times
S (G(")): Assume that there exist sequences o, and (3,, > 0 such that

(n)) — :
Q(Gﬁ)an&X as n — oo

forms a tight family of

for a random variable X with positive variance. If 8,, — oo and ‘G(Gn )

random variables, then the deterministic estimate & (G(”)) <c (G(”)) <6 (G(”)) + ‘Gg)

implies

G™) — a,
6(5)04&)( as n — oo.

5 Separating trees

In this section, let G = T be a rooted tree, where we will always interpret the root node as
the (unique) source vertex, and the leaves as targets.
To each node w € V(T), we assign a polynomial p[w] from Z[z] recursively as follows: If

w is a leaf, define p[w](x) = x. Otherwise, denote the children of w by ws, ..., w, for r > 1.

Then, define
plw](z) ==a (1 -11a —p[wi](x))> : (11)
i=1

Observe that in the case where w only has a single child wy, this simplifies to p[w](z) =
ap[wi](x). Furthermore, if T, is the fringe subtree of 7 rooted at w (i.e. the subtree
consisting of w together with all its descendants), we also write p[7.] := p[w]. In particular,

pIT] = plroot].
» Proposition 11. For the continuous-time cutting model on a rooted tree T, we have
P[&(T) =z a] = p[T)(e™™) (12)

for all x > 0. Equivalently, one can interpret p[T](q) for q € [0,1] as the probability that
Ber(q)-site percolation on T contains a path from the root to a leaf.

4:9
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o o O

Figure 2 A faithful subtree of an underlying rooted tree 7. The root is shown in black, with
vertices belonging to the subtrees being shaded grey. Dotted edges and white vertices belong to T,
but not to the subgraph.

» Corollary 12. We have

PGs = 0] = /01 P71 4, (13)

u

Moreover, we have for any subtree T, C T containing the root node but none of the leaves:

PlGe-TI= Y | LT = )0 ) du (14)

v« €0Tx

A transversal in a rooted tree T is defined to be a subset of vertices that intersect every
path from the root to a leaf. It then follows from the proof of Proposition 11 that 1—p[7](1—¢q)
yields the probability that a random set of vertices, containing each vertex independently
with probability g, is a transversal of 7. It is this expression that was investigated in [14, 12].

» Remark 13. There are some straightforward conclusions to be drawn from the previous
proposition: The polynomials p[T](z) map the interval [0, 1] to itself, with p[7](0) = 0 and
p[T](1) = 1. Furthermore, they are monotonically increasing on this interval, and by (11),
p[T](z) < z for z € [0, 1].

» Definition 14. Let T be a rooted tree. A subtree T, is called faithful if it contains the
root of T as its own root and if every leaf of T, is a leaf of T. We denote the set of all
faithful subtrees of T by F(T), and the set of all faithful subtrees on n vertices by Z,(T).
Equivalently, a faithful subtree T, C T can be seen as choosing a number of paths from the
root to the leaves of T. We hence denote the set of all faithful subtrees of T with exactly ¢
leaves by Z(T).

The following propositions gives an alternative, combinatorial characterisation of p[T]
which might be of independent interest:

» Proposition 15. Write p[T](x) = Z?:o a;jz! with a; € Z for j = 0,1,...,n. Denote by
L(T.) the set of leaves of T.. Then,

g= 3 (cyETM (15)
T.eZ;(T)
=Y (=D)*HF(T) N (T (16)

>1

In particular, deg(p[T]) = |T| and a; =0 for j < dist(root, L(T)).
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» Example 16. Denote by CBT,, the full complete rooted binary tree on 2™ — 1 vertices,
this being the rooted binary tree having 2" vertices at every height h = 0,...,n — 1. Observe
that CBT; is the tree consisting of only the root node, and that CBT,, 1 splits into two
copies of CBT,, upon removing the root node. Thus, the associated polynomials satisfy the
recurrence relation

PICBT s1](2) = 2(1 — (1 = p[CBT,)(2))*) = 2ap[CBT,](z) — 2p[CBT,](2)

with p[CBT;](z) = . It can be shown that p[CBT),] converges pointwise and monotonically
decreasing to

p(z) := max {0, 2 — i} (17)
as n — oo, for z € [0, 1].

In light of Proposition 3, this result should not be surprising: The sequence of rooted
trees CBT,, satisfies all the conditions, and the function ¢(x) indeed equals the probability
that the root node is contained in an infinite cluster of Ber(x)-site percolation, as can be
verified independently, e.g. from [17, p.256].

Continuing with our analysis, the probability of the remaining tree at separation being
empty now follows handily from Corollary 12:

n— oo

1
lim P[|CBT,.&| =0] = / @dx —In4—1~0.3863
0

In a similar fashion, we can continue to determine the limiting probability of separation
graphs of any size m > 0: Since there are C,, = #H(zg)—manyl subtrees of the infinite
rooted binary tree on m vertices, and each of those has m + 1 boundary vertices, it can be

shown using the dominated convergence theorem that

. _ _ 2m ! m—1 m
D 1= nhﬁ\rr;o P[|CBT,, g| =m] = (m) /0 21 —z)Me(x) de. (18)

Observe that, in the notation of Theorem 9, the sequence a,, = (ZnT) has generating
function \/ﬁ (cf. [1, OEIS A000984]), thus violating the integrability condition (10) for
the proper constant b = 1. However, we can check by hand that (18) defines a probability

distribution with the following computation, relying on the generating function of (2721):

S [ (S 0ear) et

m=0

1 1
1 2 —1 1
:/ 2 dx:/ —dr=1. (19)
12 V1 — 4z + 422 T 12T

Note also that a random variable X having the probability distribution defined by (18) does
not have a finite first moment: Imitating the approach of (19) leads to

E[X] = i m(QHT) /O1 2™V — 2" (x) do = /1;2 m dz

m=0

where the integral on the right-hand side diverges.

! These are, of course, the Catalan numbers, [1, OEIS A000108].
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A more detailed investigation of how p[T] depends on the tree T reveals that two trees that
only differ in a fringe tree which is rooted far away from the root node will have approximately
the same polynomial function p[-] over [0, 1], provided a technical condition holds, see [9,
Theorem 25]. Using this, it is possible to verify that the same limiting distribution as in (18)
also holds if we consider the sequence of complete binary trees on n vertices (of which the
full complete binary trees are merely a subsequence):

Denote by 7, the complete binary tree on n vertices, this being the binary tree having
2% vertices at height k for 0 < k < |lgn| =: m, with the remaining n — 2™ + 1 vertices at
height m in their left-most positions.

» Proposition 17. With ¢(z) defined by equation (17) above, we have p[T,](x) — ¢(z)
uniformly over [0,1], as n — oo.

Consequently, the limiting distribution of |Th | coincides with that of |CBT,, s| and is
given by equation (18).

Observe that by this proposition and by (19), the random variables |7, | converge in
distribution and are therefore tight. By Remark 10 this means that the limit law obtained
by Janson in [20, Theorem 1.1] for &(7,) holds also for &(7,,). More explicitly, if we denote
by {z} := x — | x| the fractional part of z € R then we obtain the following

» Corollary 18. Let n — oo such that {lgn —lglgn} — v € [0,1]. Write f(y) :=27" —1—1.
Let W, be a random wvariable with an infinitely divisible distribution with characteristic
function

E [¢#"+] = exp (if(v)t n /Ooo (e — 1 —italy,c1y) dl/ﬂ,(x)> ,

with the Lévy measure v, being supported on [0, 00) and having density dv., = ollgz+7} =2 dy,
Then

6  Further questions

We use this final section to present several, deliberately broad questions or remarks that

could lead to interesting future research.

1. Determine the asymptotic distributions of &(G™) and ‘G(G")
deterministic and random trees. The author hopes to answer this for conditioned Galton-
Watson trees in a follow-up paper.

2. What happens if the roles of S and T" are exchanged? For which graphs and which choices
of S, T are the random variables &(G; S,T) and &(G; T, S) equal in distribution?

3. How to evaluate the asymptotic distribution of & directly, without relying on previous

for other families of

knowledge of € as in Corollary 187

4. Tt is easy to see that the edge-cutting process on a graph G is exactly the vertex-cutting
process on the line graph of GG. This therefore raises the question: How is the separation
time on G related to the separation time on the line graph of G7

5. For which sequences of graphs G(™ exhausting a locally finite infinite G (with fixed

sources and targets) are the random variables

G(C:L)‘ not tight? In this case, what can be
said about the structure of the remaining graph?
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6. By definition, the separation number is the number of cuts required to separate two
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