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Abstract
In this article, a novel method to compute all discrete polyharmonic functions in the quarter
plane for models with small steps, zero drift and a finite group is proposed. A similar method is
then introduced for continuous polyharmonic functions, and convergence between the discrete and
continuous cases is shown.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Mathematics of computing → Markov processes; Mathematics of computing → Generating functions;
Mathematics of computing → Combinatorics

Keywords and phrases Polyharmonic functions, Functional equations, Lattice paths, Random walks,
Brownian motion, Generating functions, Laplace transforms

Digital Object Identifier 10.4230/LIPIcs.AofA.2022.15

Acknowledgements I would like to thank Kilian Raschel for introducing me to this topic as well as
for a lot of valuable input and many fruitful discussions. Also, I would like to thank the anonymous
reviewers for their valuable remarks.

1 Introduction and Motivation

Suppose we are given a weighted step set S ⊆ {−1, 0, 1}2, and we want to count the (weighted)
number q(0, x; n) of excursions in the quarter plane of length n from the origin to some point
x = (i, j). For the Simple Walk, for instance, we have S = {↑,→, ↓,←}, where each step has
weight 1

4 . In this case, the number q(0, x; n) can be computed explicitly (see e.g. [4]) via

q(0, x; n) = (i + 1)(j + 1)n!(n + 2)!
m!(m + i + 1)!(m + j + 1)!(m + i + j + 2)! , (1)

where m = n−i−j
2 . It is now fairly natural to ask about asymptotics of this expression, or

more generally about asymptotics of the number q(0, x; n) for an arbitrary step set S. In
particular, we consider (as proposed in [6]) asymptotic expansions of the form

q(0, x; n) ∼ γn
∑
p≥1

vp(x)
nαp

. (2)

In case of the Simple Walk, (1) allows us to directly compute

v1 =(i + 1)(j + 1), (3)
v2 =(i + 1)(j + 1)(15 + 4i + 2i2 + 4j + 2j2), (4)
v3 =(i + 1)(j + 1)(317 + 16i3 + 4i4 + 168j + 100j2 + 16j3

+ 4j4 + 8i(21 + 4j + 2j2) + 4i2(25 + 4j + 2j2)). (5)

It should be explicitly noted at this point that expansions of the form (2) are not proven to
exist for this type of problem. While for the Simple Walk and a few other examples (e.g. the
Diagonal Walk, Tandem Walk, see [5]) this can be shown using an explicit representation
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similar as (1), in general it is not so clear (although one-term expansions of this form have
been proven for many cases in [9], and more recently, using multivariate analytic techniques,
in [8, Thm. 1],[15, 6.1]).
It is now fairly natural to ask about the properties of the vp; whether they necessarily have
a particular structure, if there is a clear relation to our chosen step set, and how to compute
them. And indeed, at least the first two questions can be answered fairly easily by utilizing
a recursive relation between the q(0, x; n + 1) and q(0, x; n), and showing that each function
vp must be what is called a discrete polyharmonic function of order p.
In the continuous case, a function f is called polyharmonic of degree p if it is a solution of

△pf = 0, (6)

where △ is a Laplacian operator △ = 1
2

(
σ11

∂2

∂x2 + 2σ12
∂2

∂x∂y + σ22
∂2

∂y2

)
. These kinds of

functions have already been studied in the late 19th century, notably by E. Almansi, who
proved in [1] that in a star-shaped domain containing the origin, any polyharmonic function
of degree n can be written as

f(x) =
n∑

k=0
|x|2khk(x), (7)

where the hk are harmonic (polyharmonic of degree 1). In particular harmonic and biharmonic
functions have by now seen plenty of applications in physics, see e.g. [14].
The discrete setting on the other hand has gained interest comparably recently. A (discrete)
function defined on a graph is called polyharmonic if it satisfies (6) as well, but with a
discretised version of the Laplacian. For this discretisation, given transition probabilities
px,y from any point x to any point y, one lets

△f(x) =
∑

y

px,yf(y)− f(x). (8)

There have been some results on polyharmonic functions on trees recently [7, 16], and
polyharmonic functions on subdomains of Zd have become an object of interest linked in
particular to the study of discrete random walks. In our case, this subdomain will be the
quarter plane and our walk homogeneous, i.e. the transition probabilities ps := px,x+s, where
the steps s are given by the set S of allowed steps, will be independent of x. The discrete
Laplacian thus reads

△f(i, j) =
∑

(u,v)∈S

pu,vf(i + u, j + v)− f(i, j). (9)

It is not at all obvious, however, how polyharmonic functions in general can be found. In [17],
a way to construct harmonic functions for zero-drift models with small steps via a boundary
value problem is given. This is utilized in [12] to give a complete discription of harmonic
functions for symmetric step sets with small negative steps; the methods used therein can
be applied to the case considered here with only minor adjustments. Very recently in [6],
the authors propose a way to extend this method from harmonic to polyharmonic functions,
provided one can compute a so-called “decoupling function”, which was first introduced by
W. T. Tutte in [19], and is discussed further in [2]. There, this concept is utilized to give
remarkably succinct proofs of the algebraicity (or D-algebraicity) of the counting function of
some models in the quarter plane.
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Generally, instead of working directly with a polyharmonic function h(u, v), one prefers to
consider its generating function H(x, y) :=

∑
i,j xi+1yj+1h(i, j). The main reason to do so is

the functional equation

K(x, y)H(x, y) = K(x, 0)H(x, 0) + K(0, y)H(0, y) − K(0, 0)H(0, 0) − xy [△H] (x, y), (10)

which can be shown by straightforward computation to be satisfied by this generating function
(note that we have △H = 0 for harmonic H). Here, K(x, y), which will be defined in Section
2.1, is the same kernel that usually appears in the study of random walks, and even the
resulting functional equations for counting walks or the stationary distribution look strikingly
similar, see e.g. [10, 5].
This article aims to generalize and complete the notions introduced in [6], and thus give a
description of all discrete polyharmonic functions for walks with small steps, zero drift and
finite group. The main tool to do so will be the explicit computation of decoupling functions.
The structure will be roughly as follows:

In Section 2, an algorithm to construct discrete polyharmonic functions is presented
(Thm. 7). In addition, it is shown that all possible discrete polyharmonic functions can
be constructed in this manner (Thm. 8).
In Section 3.1, the same construction is done for the Laplace transforms of continuous
polyharmonic functions (Thm. 11), again using a functional equation approach presented
for biharmonic functions in [6].
In Section 4 the relation between the discrete and continuous cases is briefly discussed; it
is shown that discrete polyharmonic functions converge towards continuous ones in the
sense of generating functions/Laplace transforms (Thm. 14).
Lastly, Section 5 gives a brief overview of some open questions and ongoing research.

2 The Discrete Case

2.1 Preliminaries
The following only serves as a very brief overview; for a more thorough introduction see e.g.
[17, 10]. Consider a homogeneous random walk in Z× Z with a step set S and transition
probabilities pi,j . From now on, we will make the following assumptions:

(i) The walk consists of small steps only, i.e. S ⊆ {−1, 0, 1}2.
(ii) The walk is non-degenerate, that is, the list p1,1, p1,0, p1,−1, p0,−1, p−1,−1, p−1,0, p−1,1,

p0,1 does not contain three consecutive 0s.
(iii) The walk has zero drift, meaning that

∑
(i,j)∈S ipi,j =

∑
(i,j)∈S jpi,j = 0.

(iv) Any polyharmonic function considered is supposed to have Dirichlet boundary conditions,
i.e. it is 0 outside of the quarter plane. This is due to the probabilistic interpretation of
(2); there can be no paths which start outside but always are inside the quarter plane.

A standard object appearing in a variety of functional equations around random walks
(besides those below for example when one wants to compute a stationary distribution, or
for counting walks, see e.g. [10]) is the kernel of the walk, which is given by

K(x, y) = xy

 ∑
(i,j)∈S

pi,jx−iy−j − 1

 . (11)

In [10], this kernel is examined quite thoroughly, and we will in the following state a few of
their results.

AofA 2022
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As we consider non-degenerate walks with small steps, our kernel will necessarily be quadratic
in both x and y. Letting

K(x, y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 + b̃(y)x + c̃(y), (12)

we can use the quadratic formula to find solutions of K(·, y) = 0, which are given by

X±(y) =
−b̃(y)±

√
b̃(y)2 − 4ã(y)c̃(y)
2ã(y) . (13)

One can define Y± in the same fashion by swapping x, y. Letting D := b̃(y)2 − 4ã(y)c̃(y),
then one can show [17, 2.5], [10, 2.3.2] that D(y) = 0 has 3 solutions: the double root y = 1,
a solution y1 ∈ [−1, 1), and a solution y4 ∈ (1,∞) ∪ (−∞,−1]. Consequently, one can see
that for y ∈ [y1, 1], we have X+(y) = X−(y). This is in particular used in the computation
of harmonic functions, as in [17] or [12]. The idea is to define the domain G as the area
bounded by the curve X± ([y1, 1]), and notice that the functional equation (10) leads to the
boundary value problem

K(x, 0)H(x, 0)−K(x, 0)H(x, 0) = 0 (14)

on ∂G \ {1}, while K(x, 0)H(x, 0) is analytic in the interior of G and continuous on G \ {1}
(cf [6, 17]). One can then construct a mapping ω : C→ C̄ which is a fundamental solution of
the above BVP, in the sense that any other solution can be written as some entire function
applied to ω [17]. This ω then has the properties

ω(0) = 0, ω(X+(y)) = ω(X−(y)) ∀y ∈ [y1, 1], ∂ω

∂x
(x) ̸= 0 ∀x ∈ G◦. (15)

In particular, ω is a conformal mapping of the domain G. Furthermore, it has a pole-like
singularity of order π/θ at x = 1, where θ is the inner angle at which ∂G intersects the x-axis.
Alternatively, θ can be computed via

θ = arccos
(
−

∑
ijpi,j√∑

i2pi,j

√∑
j2pi,j

)
, (16)

see e.g. [17, 2.15]. This angle is also closely related to the group of a walk, which will be
introduced below in Section 2.4. Additionally, we can see that ω ◦X+ is a conformal mapping
of a region G′ obtained by swapping x, y (by [10, Cor. 5.3.5]), and it has the same behaviour
around 1 as ω. Finally, ω turns out to be an invariant in the sense of [2, Def. 4.3].

2.2 Discrete Polyharmonic Functions
We will start with a few elementary properties. Denote in the following by Hn the space of
real-valued discrete n-polyharmonic functions. Clearly, Hn is a R-vector space. Now, given
any Ĥn ∈ Hn, we can identify it with the sequence

(
Ĥn, Ĥn−1, . . . , Ĥ1

)
, where△Ĥk+1 = Ĥk,

and △Ĥ1 = 0. It is clear that any such sequence is uniquely defined by Ĥn. Now suppose
that we have Ĥn, Ĥ ′

n ∈ Hn, such that, with their sequence representation as above, Ĥ1 = Ĥ ′
1.

In this case, we have

△n−1
[
Ĥn − Ĥ ′

n

]
= Ĥ1 − Ĥ ′

1 = 0, (17)

thus Ĥn−Ĥ ′
n ∈ Hn−1. Therefore, provided that for each Ĥn ∈ Hn we can find a corresponding

Ĥn+1 ∈ Hn+1, which will be shown below in Thms. 7 and 14, by simple induction one can
prove the following Lemma:
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▶ Lemma 1. Let Hn be the space of real-valued, discrete n-polyharmonic functions in the
quarter plane, subject to Ĥn(0, ·) = Ĥn(·, 0) ≡ 0. Then we have an isomorphy of vector
spaces

Hn
∼= (H1)n

. (18)

In particular, if we are given any Ĥn ∈ Hn, and we want to find all corresponding Ĥn+1 ∈
Hn+1, then this means that instead it suffices to find a single Ĥn+1 with this property as well
as all harmonic functions, because any other such Ĥ ′

n+1 can be written as Ĥn+1 + Ĝ1, for
some Ĝ1 ∈ H1. This property enables us to completely classify discrete harmonic functions.
We already know (see e.g. [17],[6], using the idea of the BVP outlined above), that for any
polynomial P (x) ∈ R[x], we can construct (the GF of) a harmonic function via

H(x, y) = P (ω(x))− P (ω (X+(y)))
K(x, y) , (19)

where ω is the conformal mapping introduced in Section 2.1. We will now show what is,
in a sense, the opposite direction of the above statement. The following theorem (as well
as its proof) is an analogue to [12, Thm. 2], where a similar result is shown for the case of
symmetric walks with small negative steps.

▶ Theorem 2. For any discrete harmonic function with generating function H(x, y), there is a
unique formal power series P (x) such that (19) holds. In particular, we have an isomorphism

H1 ∼= R[[x]]. (20)

Proof. One constructs explicitly a basis
(
Hk

1
)

k∈N via

Hk
1 (x, y) := Pk (ω(x))− Pk (ω (X+))

K(x, y) , (21)

where P2k(x) = xk(x− d0)k, P2k+1 = xk+1(x− d0)k for d0 = ω (X+(0)) . See App. A. ◀

If we compare the functional equation (10) for harmonic and polyharmonic functions, then
the only difference lies in the additional term of xyHn(x, y) on the right-hand side not
vanishing for the latter. In terms of a BVP, this means that we now want to solve

K (X+, 0) Hn (X+, 0) − K (X−, 0) Hn (X−, 0) = X+yHn−1(X+, y) − X−yHn−1(X−, y). (22)

In an ideal world, the right-hand side of the latter equation would be 0 as in the harmonic
case, and this is indeed what happens for the Simple Walk. In this case, we can proceed as
before, and obtain an explicit formula for polyharmonic functions.

2.3 Example: the Simple Walk
The Simple Walk has the step set S = {↑,→, ↓,←}, each with probability 1

4 . We have

K(x, y) = xy

4
(
x + y + x−1 + y−1)− xy, ω(x) = −2x

(1− x)2 , ω (X+) = −ω(y). (23)

As it turns out that the right-hand side of (22) keeps vanishing, one can iteratively construct
polyharmonic functions via Hn+1(x, y) := xyHn(x,y)−X+yHn(X+,y)

K(x,y) . This allows us to find an
explicit expression for all resulting polyharmonic functions. It appears that this property is
directly tied to the fact that π/θ = 2, where θ is given by (16).

AofA 2022



15:6 Polyharmonic Functions in the Quarter Plane

▶ Theorem 3.
1. The functions defined by

Hk
m(x, y) = 2m−1ω(X0)m−1 ω(x)− ω (X+)

K(x, y)

k−1∑
j=0

sm(j)ω (X+)j
ω(x)k−j−1

 , (24)

where sl : N→ N is defined inductively via s1(j) = 1, sl+1(j) =
∑j+1

i=1 sl(j), are polyhar-
monic functions with △Hk

m+1 = Hk
m.

2. Given any formal power series P (x) =
∑

anxn and any m, the limit

HP
m(x, y) := lim

n→∞

n∑
j=0

ajHj
m (25)

exists, and we again have △HP
m+1 = HP

m. In particular, any discrete m-polyharmonic
function can be written as HP

m for some P .

Proof. See App. B. ◀

Using Thm. 3, we can e.g. directly compute H1
1 = − 8

(1−x)2(1−y)2 , H1
2 = − 32y

(x−1)2(y−1)4 ,
H1

3 = − 128y2

(x−1)2(y−1)6 .
Proceeding to compute the generating functions V1,2,3 of v1,2,3 as given in (3)–(5), we obtain

V1 = 64H1
1 , V2 = 3

8H1
2 − 3

8H2
1 + 60H1

1 , V3 = −24H1
3 + 24H2

2 + 72H1
2 − 30H3

1 − 72H2
1 + 5072H1

1 .

It is somewhat striking here that the only p-polyharmonic part contained in vp is H1
p , which

is in some manner the simplest possible. At this stage there is neither a proof that this is
always true nor a counter-example.

2.4 Decoupling
While the computation for the Simple Walk turned out to be fairly simple, this was mainly
due to the right-hand side of (22) consistently vanishing. This does not happen in general.
For the Tandem Walk, for instance, we arrive at

K(X+, 0)H1
1 (X+, 0)−K(X−, 0)H1

1 (X+, 0) = y3√1− 4y

(y − 1)5 . (26)

The direct approach using the BVP like in the harmonic case does not generally yield an
explicit solution as easily as before. Instead, we choose a more combinatorial approach and
utilize what is called a decoupling function in [2, Def. 4.7].

▶ Definition 4. Let M(x, y) be an expression in x, y. If we can find F (x), G(y) such that

F (x) + G(y) ≡M(x, y) mod K(x, y), (27)

then we say that F is a decoupling function of M .

These decoupling functions are closely related to the concept of invariants as in [2, Def. 4.3].
An example of a decoupling function will for instance be given in Section 2.5. Let in the
following H ′ be polyharmonic, and H be such that △H = H ′. By substitution into (22), we
directly find that for F (x) a decoupling function of xyH ′(x, y) we have

K(X+, 0)H(X+, 0)− F (X+)− [K(X−, 0)H(X−, 0)− F (X−)] = 0. (28)
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In other words, if one knows how to compute a decoupling function of xyH ′(x, y), then one
can again let K(x, 0)H(x, 0)− F (x) = P (ω); by the same arguments as for the BVP above
one will then eventually arrive at a solution for H(x, y). In [6, App. C], a decoupling function
is guessed in order to compute a biharmonic function for the Tandem Walk. It turns out,
however, that such a decoupling function can be explicitly computed for any model as long
as a certain group of the corresponding step set is finite. This group is generated by the
mappings

Φ :
{

x 7→ x−1 c̃(y)
ã(y) ,

y 7→ y,
Ψ :

{
x 7→ x,

y 7→ y−1 c(x)
a(x) .

(29)

One can easily see that Φ, Ψ are involutions, and depending on the order of Θ := Φ ◦Ψ, the
group can be either finite or infinite. This group has been of interest in the study of random
walks for some time now, see e.g. [5, 18].

▶ Theorem 5 (see [2, Thm. 4.11]). Suppose our step set has a finite group of order 2n, and
M(x, y) is such that∑

γ∈G
sgn(γ)γ (M(x, y)) = 0. (30)

Then a decoupling function of M(x, y) is given by

F (x) = − 1
n

n−1∑
i=1

θi [M(x, Y+) + M(x, Y−)] . (31)

In the following, we will show that xyHn(x, y) will turn out to have an orbit sum of 0 for
any polyharmonic Hn. This is in particular independent of whether or not the given model
has a vanishing orbit sum as in [2].

▶ Corollary 6. Suppose the group of the step set is finite and has a series representation
around (0, 0). Then any rational function M(x, y) of the form

M(x, y) = xy
u(x) + v(y)

K(x, y) (32)

allows for a decoupling function via (31).

Proof. This follows directly from the fact that the denominator 1
xy K(x, y) is invariant under

G. Alternating orbit summation over the numerator leads to a telescopic sum. ◀

If a model has a finite group, then it can be shown that π/θ ∈ Q (cf [10, 7.1]). While the
following is only stated for π/θ ∈ Z, it is possible to extend the statements for an arbitrary
finite group. This relaxation of conditions, however, adds a lot more technicalities as the
resulting functions are not rational anymore.

▶ Theorem 7. Suppose our step set has finite group and π/θ ∈ Z. Let Hk
1 (x, y) be defined

by (21). We can then define inductively

Hk
n(x, y) =

xyHk
n−1(x, y)− F k

n−1(x)−
[
X+yHk

n−1(X+, y)− F k
n−1(X+, y)

]
K(x, y) , (33)

AofA 2022



15:8 Polyharmonic Functions in the Quarter Plane

where F k
n (x) is the decoupling function of xyHk

n(x, y) defined by (31). Then, Hk
n(x, y) is a

rational function in Hn for all n, k, which satisfies △Hk
n+1 = Hk

n as well as (30). For each
n, k we can write

Hk
n(x, y) = pn,k(x, y)

(1− x)α(1− y)α
, (34)

where pn,k is a polynomial and α = k · π/θ + 2(n− 1).

Proof. See App. C. ◀

The downside of this construction is that we do not know for sure that for any k, the sum∑∞
n=1 Hk

n converges. This property would be very useful in the proof that we can indeed find
all polyharmonic functions. However, utilizing the functional equation (10) and proceeding
similarly as in the proof of Thm. 2, one can for each induction step find a harmonic function
Hk

1,n such that Ĥk
n := Hk

n +Hk
1,n has order at least

[
k
2
]

at 0. The thusly defined Ĥk
n therefore

satisfy the conditions of the following theorem.

▶ Theorem 8. Let
(
Hk

n

)
n,k∈N be a family of discrete polyharmonic functions, such that

1. Hk
1 = Hk

1 is given by (21),
2. △Hk

n+1 = Hk
n,

3. For any n and any sequence (an), the sum
∑∞

n=1 anHk
n converges.

Then, given any Hn ∈ Hn, we can find ai,j , 1 ≤ i ≤ n, j ∈ N, such that

Hn =
n∑

i=1

∞∑
j=1

ai,jHj
i . (35)

Proof. By induction. For n = 1, the statement is nothing but Thm. 2. Now as-
sume the theorem holds for n, and let Hn+1 ∈ Hn+1. By definition, we must then
have Hn := △Hn+1 ∈ Hn, so we can write Hn =

∑n
i=1
∑∞

j=1 ai,jHj
i . By construction,

Hn+1 :=
∑n

i=1
∑∞

j=1 ai,jHj
i+1 is then a n + 1-polyharmonic function with △Hn+1 = Hn.

Thus, Hn+1 −Hn+1 ∈ H1, and an application of Thm. 2 and relabeling of the coefficients
immediately yields the statement. ◀

As an immediate consequence, we can state that any discrete polyharmonic function can be
expressed as a countable sum of our Hk

n as defined by (33).

2.5 Example: the Tandem Walk
To illustrate the results from Section 2.4, consider the Tandem Walk, which has the step set
S = {→, ↓,↖}, with weights 1

3 each. We have

K(x, y) = xy

3
(
x−1 + y + xy−1)− xy, ω(x) = 27x2

4(x− 1)3 , ω (X+) = −27y

4(y − 1)3 . (36)

We directly obtain H1
1 = ω(x)−ω(X+)

K(x,y) = 81(xy−1)
4(x−1)3(y−1)3 , leading to the harmonic function

h(i, j) = (i + 1)(j + 1)(i + j + 2). Using (31), we obtain the decoupling function F1(x) =
− 81x3

4(1−x)5 . Note that this decoupling function is not the same one as is given in [6, App. C],
where instead (after scaling) F ′

1 = −81x3

4(1−x)6 is given. This goes to show that the choice of a
decoupling function is, due to the invariance property in (15), unique only up to functions of
ω; in this particular case we have (up to a multiplicative constant) F ′

1(x)− F1(x) = ω(x)2.



A. Nessmann 15:9

Using F1 in (33) directly gives us the biharmonic function H1
2 = − 243(xy−1)(x+y+xy(x+y−4))

(x−1)5(y−1)5 .
Once again using (31) gives us the next decoupling function F2(x) = 81x2(x+2)

4(x−1)7 , which we
can then use to compute H1

3 = p(x,y)
(x−1)7(y−1)7 , for p(x, y) a somewhat unwieldy polynomial of

degree 9.

3 The Continuous Case

We now consider solutions of (6) with the usual Laplacian. First, it needs to be made clear
in which way the latter corresponds to a given step set. So instead of a discrete random walk
on Z≥0 × Z≥0, we can also consider a Brownian motion on R+ × R+. Any such Brownian

motion is defined by its covariance matrix Σ =
(

σ11 σ12
σ12 σ22

)
, and its infinitesimal generator

is the Laplacian

△ = 1
2

(
σ11

∂2

∂x2 + 2σ12
∂2

∂x∂y
+ σ22

∂2

∂y2

)
, (37)

consequently any polyharmonic function with respect to this Brownian motion satisfies (6).
It can be shown that this Brownian motion is the scaling limit of any non-degenerate discrete
random walk with small steps and zero drift such that EX2 = σ11,EXY = σ12,EY 2 =
σ22 [13]. While it is possible to compute solutions of (6) explicitly, for instance using polar
coordinates as in [6, 11], one can also follow an approach of [17, App. A]. There, instead of a
generating function, the authors consider the Laplace transform and obtain the following
functional equation:

γ(x, y)L(h)(x, y) = 1
2 (σ11L1(h)(y) + σ22L2(h)(x)) + L (△(h)) (x, y), (38)

where

γ(x, y) = 1
2
(
σ11x2 + 2σ12xy + σ22y2) , L(f)(x, y) =

∫ ∞

0

∫ ∞

0
e−ux−vyf(u, v)dudv, (39)

L1(f)(y) =
∫ ∞

0

∂f

∂x
(0, v)e−vydv, L2(f)(x) =

∫ ∞

0

∂f

∂y
(u, 0)e−uxdu, (40)

see also [6, 2.2]. For any polyharmonic function hn, this yields

γ(x, y)L(hn)(x, y) = 1
2 (σ11L1(hn)(y) + σ22L2(hn)(x)) + L(hn−1)(x, y), (41)

where hn−1 = L(hn) (for n = 1 we let h0 = 0). This functional equation, which is very
similar to (10), can now be utilized in order to compute continuous polyharmonic functions.
For the harmonic and biharmonic case this has already been done in [6, 2.2], where it is
also mentioned that a similar method should work to compute higher order polyharmonic
functions. Such a method shall be presented in the following.

3.1 Continuous Polyharmonic Functions
The idea used in computing harmonic functions in [17, 6] is very much the same as in the
discrete setting. We can rewrite and obtain as in Section 2.1

γ(x, y) = 1
2
(
σ11x2 + 2σ12xy + σ22y2) , x± = c±y, ω̂(x) = 1

xπ/θ
, (42)

where c± = ce±iθ, and eventually arrive at the following result.

AofA 2022
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▶ Proposition 9 ([6, Th. 2.4]). For any polynomial P (x), the function

L(hP )(x, y) := P (ω(x))− P (ω(c+y))
γ(x, y) (43)

is the Laplace transform of a harmonic function.

The equivalent for the BVP for continuous polyharmonic functions now reads

σ22L2(hn)(c+y)− σ22L2(hn)(c−y) = L(hn−1(c+y, y))− L(hn−1(c−y, y)), (44)

where as in Section 2.4 the difference to the harmonic case is the right-hand side not necessarily
being equal to 0. Our goal will now be to construct a decoupling function fn−1(x), such that

fn−1(c+y)− fn−1(c−y) = L(hn−1)(c+y, y)− L(hn−1)(c−y, y). (45)

The computation of such a decoupling function here turns out to be a lot simpler than in
the discrete case, as can be seen in the example of the scaling limit of the Tandem Walk.

3.2 Example: the Scaling Limit of the Tandem Walk
For the scaling limit of the Tandem Walk, we have

γ(x, y) = 1
3
(
x2 − xy + y2) , c± = 1± i

√
3

2 , ω̂(x) = 1
x3 . (46)

Selecting L(h1)(x, y) = ω̂(x)−ω̂(c+y)
γ(x,y) = 3(x+y)

x3y3 , (45) takes the form f1(c+y)− f1(c−y) = 3i
√

3
y5 .

Since the right-hand side is homogeneous (which, in fact, is generally true, seeing as both ω̂
and γ are homogeneous), the ansatz f1(x) = α

x5 is very reasonable. By a quick computation,
one obtains that α must be −1. Everything works out, we obtain f1(x) = −3

x5 and a
biharmonic function

L(h2)(x, y) = L(h1)(x, y) − f1(x) − [L(h1)(c+y, y) − f1(c+y)]
γ(x, y) = 9(x + y)(x2 + y2)

x5y5 . (47)

3.3 Decoupling
In the following, we let (analogously to the discrete case)

L(hk
1)(x, y) := ω̂(x)k − ω̂(c+y)k

γ(x, y) . (48)

To compute polyharmonic functions, all we need are decoupling functions, i.e. that we can
always proceed as in the example above. Given a (homogeneous) polyharmonic function
L(h), this can be seen to directly depend on its degree. If deg L(h) is divisible by π/θ, then
our ansatz would not work, for then c

− deg L(h)
+ = c

− deg L(h)
− . However, this turns out not to

matter: were one to continue the above example of the Tandem Walk until the first case
where this could be an issue, that is, computing f3, then one would see that we already have
L(h3)(c+y, y) = L(h3)(c−y, y), meaning we can select f3 = 0. This is not a coincidence and
will always happen in those cases. Since this is essential in order to continue the procedure
but our proof relies heavily on convergence of discrete polyharmonic functions, it will be
stated here and be proven in Section 4.

▶ Lemma 10. The procedure starting from a L(hk
1) described in Section 3.2 always works,

meaning that there is a constant α such that we can find a decoupling function of the form

fn(x) = α

xdeg L(hn) . (49)



A. Nessmann 15:11

Utilizing the above Lemma, it is now easy to prove the continuous analogue of Thm. 7.

▶ Theorem 11. Let L(hk
1)(x, y) be defined by (48). We can then define inductively

L(hk
n)(x, y) = L(hn−1)(x, y)− fn−1(x)− [L(hn−1)(c+y, y)− fn−1(c+y)]

γ(x, y) , (50)

where fn(x) is a decoupling function as in Section 3.2. Then, L(hk
n)(x, y) is the Laplace

transform of an n-harmonic function, such that Lhk
n = hk

n−1. For each n, k we can write

L(hk
n)(x, y) = qn,k(x, y)

xαyα
, (51)

for α = kπ/θ + 2n and qn,k(x, y) ∈ C
[
x, y, xπ/θ, yπ/θ

]
. In particular, if π/θ ∈ Z, then

qn,k(x, y) is a polynomial. Furthermore, qn,k is homogeneous of degree kπ/θ − 2 + 4n.

Proof. For n = 1, the statement can be checked directly. The rest follows inductively using
Lemma 10. ◀

4 Convergence

Having continuous and discrete polyharmonic functions associated with a step set, it is
natural to assume there would be some kind of connection between them. And indeed, this
turns out to be the case, in a similar fashion as has been shown for harmonic functions
of symmetric walks in [12, Th. 1]. Comparing the Laplace transform and the generating
functions of some functions h and g, we have

L(h)(x, y) =
∫ ∞

0

∫ ∞

0
e−ux−vyh(u, v)dudv, G(x, y) =

∞∑
i=0

∞∑
j=0

xiyjg(i, j). (52)

It is therefore fairly natural to consider expressions of the form H (e−x, e−y). To transition
from the discrete to the continuous setting we will also need some scaling parameter, which
eventually leads to us considering limits of the form limµ→0 µαH (e−µx, e−µy) for some
constant α. That this kind of limit is reasonable is further shown by the following relations
between expressions used in the discrete and continuous cases respectively.
The following Lemma 12 can be proven by straightforward computation.

▶ Lemma 12. Let the discrete and continuous kernels K and γ belong to the same step set.
We then have

lim
µ→0

K (e−µx, e−µy)
µ2 = γ(x, y), lim

µ→0
X±

(
e−µx

)
= 1− c±µx +O(µ2). (53)

Using Lemma 12, the strategy in order to show a general convergence of polyharmonic
functions is quite simple: we use the fact that the recursive definitions (33) and (50) have the
same structure, and take the limit of each term separately. All that remains is to consider
decoupling functions. However, using once again Lemma 12, this turns out to be rather
straightforward, too.

▶ Lemma 13. Suppose we have a discrete and continuous polyharmonic function H and
L(h), and a constant α such that

lim
µ→0

µαH
(
e−µx, e−µy

)
= L(h)(x, y). (54)

AofA 2022
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Then, for any decoupling function F (x) of xyH(x, y),

f(x) := lim
µ→0

µαF
(
e−µx

)
(55)

is a decoupling function of L(h)(x, y).

Proof. By taking the corresponding limit of (28). ◀

We can now formulate and prove the following theorem, which shows convergence between
the Hk

n and the L(hk
n) defined in Sections 2.4 and 3.3 respectively. In doing so, we will also

prove Lemma 10. Since we will be using Thm. 11 to do so, which in turn utilizes the former,
it is worth taking a moment to make sure that in each induction step in the proof of Thm. 14
for some fixed n + 1, we use the statement of Thm. 11 for n, and prove Lemma 10 for n + 1.
We therefore do not enter any circular reasoning.

▶ Theorem 14. Let π/θ ∈ Z and Hk
n, L(hk

n) be defined by (33), (50) respectively. Then

lim
µ→0

µkπ/θ+2nH
(
e−µx, e−µy

)
= αn,kL

(
hk

n

)
(x, y) (56)

for some constants αn,k ̸= 0.

Proof of Thm. 14 and Lemma 10. For n = 1 the statement can be checked by direct
computation. Now let the statement be true for some n. By Lemma 13, we know that we
can define a decoupling function of L(hk

n)(x, y) via fk
n(x) = 1

αn,k
limµ→0 µkπ/θ+2nF k

n (e−µx).
From the proof of Thm. 7, we know that F k

n (x) has the form Pn,k(x)/(1 − x)2n+kπ/θ for
some polynomial Pn,k(x). Therefore, the ansatz used in Ex. 3.2 must yield a solution, so
Lemma 10 is proven. Having now completely proven Thm. 11 for n + 1, we can simply take
piecewise limits of (33), (50), and obtain the statement. ◀

5 Outlook/Open Questions

While Thm. 7 is formulated only for the case π/θ ∈ N here, the construction of polyharmonic
functions works in essentially the same manner for π/θ ∈ Q (albeit the process becomes a
bit more technical as we need to work with algebraic instead of rational functions). This will
be addressed in a future paper, together with more complete proofs of the theorems above.

Seeing as for any finite group we have π/θ ∈ Q [10, 7.1] (though the reverse does not
hold), it follows that we can construct arbitrary polyharmonic functions for any walk with
drift 0, small steps and finite group. This directly leads to the question of what to do in
the infinite group case. There are some examples where one can show by a direct ansatz
that a decoupling function of reasonably nice shape cannot exist, and it can indeed be
conjectured that a decoupling function can be computed if and only if the group of the
walk is finite. Should this hold, then of course the next question would be how discrete
polyharmonic functions could be computed in the infinite group case.
Another open question regards the positivity of harmonic functions. For drift 0 walks,
we know [3] that there is a unique (up to multiples) positive harmonic function. In all
known examples this harmonic function is given by H1

1 as in (21), and for the symmetric
case it was already conjectured in [12, Conj. 1] that this might be true in general. To the
author’s knowledge there has not yet been a general result in that direction.
While the above gives a description of all discrete polyharmonic function, it is still not
clear which ones appear in expansions of the form (2). If the conjecture about the positive
harmonic function were to be true, then the harmonic function v1 would have to be a
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multiple of H1
1 . One could then proceed to ask whether this turns out to be true in a

more general setting, i.e. if the p-harmonic part of vp as given by (2) is always a multiple
of H1

p , as is the case in example 2.3.
In all known (at least to the author) enumeration problems of lattice paths with small
steps and zero drift in the quarter plane that we can compute higher-order asymptotics
of, an expansion as in (2) exists. This leads to the question of whether there are models
for which there is no such expansions, or if there are conditions under which the existence
of the latter can be shown in general.
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A Proof of Thm. 2

▶ Theorem 2. For any discrete harmonic function with generating function H(x, y), there is a
unique formal power series P (x) such that (19) holds. In particular, we have an isomorphism

H1 ∼= R[[x]]. (20)

Proof (outline). The arguments are mostly the same as in [12, Thm. 2]. From (10), it
follows that K(x, y)H(x, y) is already uniquely defined by the (univariate) boundary terms
K(x, 0)H(x, 0) and K(0, y)H(0, y). It suffices to consider two cases:
1. K(0, 0) = 0:

In this case, we have X+(0) = 0, we can therefore substitute X+ into a power series.
Doing so in (10) gives

0 = K(X+, 0)H(X+, 0) + K(0, y)H(0, y). (57)

Utilizing this to substitute for K(0, y)H(0, y) in (10), we obtain

K(x, y)H(x, y) = K(x, 0)H(x, 0)︸ ︷︷ ︸
=:P (x)

−K(X+, 0)H(X+, 0)︸ ︷︷ ︸
=:P (X+)

. (58)

Setting

Hm
1 (x, y) = ω(x)m − ω(X+)m

K(x, y) , (59)

and utilizing that around 0 we have (after scaling and potentially switching x, y) ω(x) =
x(1+p(x))
(1−x)π/θ (see [10, 5.3]; use that our walk is not singular), we can iteratively compute
coefficients ak such that

∑
ajω(x)k = P (x). To see that at the end we indeed obtain a

power series, one can apply the Weierstraß preparation theorem.
2. K(0, 0) ̸= 0:

In this case, the previous approach does not work anymore since substitution of X+ into
an arbitrary power series fails. Instead, let now ω(x) =

∑
xncn, ω (X+) =

∑
yndn. We

know that c1, d1 ̸= 0, c0 = 0 (see [10, 5.3], and notice that p−1,−1 ̸= 0).
We can now proceed by defining

P2m(z) = zm(z − d0)m, (60)
P2m+1(z) = zm+1(z − d0)m. (61)

Letting

Hm
1 (x, y) := Pm (ω(x))− Pm (ω(X+))

K(x, y) , (62)

one can check that the monomial with non-zero coefficient with minimal degree in the series
representation of Hm

1 (x, y) around 0 occurs for k = l = m for m even, and k = l + 1 = m

otherwise. Note here that ω(x), ω(X0) have non-vanishing derivative at 0 as 0 ∈ G◦, see [6,
5.3]. From there, given arbitrary power series Q(x), R(y) with Q(0) = R(0), one can again
iteratively build coefficients an such that

∑
anPn(ω(x)) = Q(x),

∑
bnPn (ω(X+)) = R(y).

We have thus constructed a harmonic functions with boundary terms Q(x), R(y); since
these were arbitrary we are done. Note that, since K(0, 0) ̸= 0, 1/K(x, y) can be written
as a power series around 0. ◀
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B Proof of Thm. 3

▶ Theorem 3.
1. The functions defined by

Hk
m(x, y) = 2m−1ω(X0)m−1 ω(x)− ω (X+)

K(x, y)

k−1∑
j=0

sm(j)ω (X+)j
ω(x)k−j−1

 , (24)

where sl : N→ N is defined inductively via s1(j) = 1, sl+1(j) =
∑j+1

i=1 sl(j), are polyhar-
monic functions with △Hk

m+1 = Hk
m.

2. Given any formal power series P (x) =
∑

anxn and any m, the limit

HP
m(x, y) := lim

n→∞

n∑
j=0

ajHj
m (25)

exists, and we again have △HP
m+1 = HP

m. In particular, any discrete m-polyharmonic
function can be written as HP

m for some P .

Proof. For the first part, we use induction over m. For m = 1, the statement is nothing but
(19). Now, assume the statement holds for 1, . . . , m− 1, and pick an arbitrary k. Due to the
invariance property (15), and using that

xy
ω(x)− ω(X+)

K(x, y) = −8xy

(1− x)2(1− y)2 = 2ω(x)ω (X+) , (63)

we see that X+yHk
1 (X+, y) = X−yHk

1 (X−, y), since we can write X+yHk
1 (X+, y) as a

polynomial in ω, ω(X+). Using (10), we can deduce that a m-harmonic function with
△Hk

m = Hk
m−1 is given by

Hk
m(x, y) =

xyHk
m−1(x, y)−X+yHk

m−1 (X+, y)
K(x, y) . (64)

After a short computation one obtains

xyHk
m(x, y)−X+yHk

m (X+, y)

= 2mω (X+)m

ω(x)
k−1∑
j=0

sm(j)ω (X+)j
ω(x)k−1−j − ω (X+)k

k−1∑
j=0

sm(j)

 . (65)

Using the algebraic identity

a

k−1∑
j=0

cjak−j−1bj

− bn
k−1∑
j=0

cj = (a− b)
k−1∑
j=0

(
j+1∑
i=1

ci

)
ak−j−1bj (66)

for a = ω(x) and b = ω (X+) then yields the statement.
For the second part, to see the existence of the limit it suffices to notice that the minimal
degree of any non-zero coefficient is at least m (note that ω(0) = ω (X+(0)) = 0). In the
same fashion we can take the limit on both sides of (10) and see that both sides converge to
the same power series.
To see that we can in this manner indeed produce all possible polyharmonic functions we
proceed as in the proof of Thm. 8. ◀
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C Proof of Thm. 7

▶ Theorem 7. Suppose our step set has finite group and π/θ ∈ Z. Let Hk
1 (x, y) be defined

by (21). We can then define inductively

Hk
n(x, y) =

xyHk
n−1(x, y)− F k

n−1(x)−
[
X+yHk

n−1(X+, y)− F k
n−1(X+, y)

]
K(x, y) , (33)

where F k
n (x) is the decoupling function of xyHk

n(x, y) defined by (31). Then, Hk
n(x, y) is a

rational function in Hn for all n, k, which satisfies △Hk
n+1 = Hk

n as well as (30). For each
n, k we can write

Hk
n(x, y) = pn,k(x, y)

(1− x)α(1− y)α
, (34)

where pn,k is a polynomial and α = k · π/θ + 2(n− 1).

Proof (outline). Consider first the case n = 1. Hk
1 (x, y) being rational follows immediately

from π/θ ∈ Z, and thus ω being rational (see [17, (3.12)]). As by construction the numerator
Nk

1 (x, y) of xyHk
1 (x, y) as defined in (33) satisfies Nk

1 (X±) = 0, it must be a multiple of
K(x, y), thus the only poles of Hk

1 can be those coming from ω(x), ω(X+). Since X+ = 1
only if y = 1, the statement follows from (31). The existence of a decoupling function follows
immediately from Prop. 6, and since X±(1) = Y±(1) = 1, we can conclude that F k

1 (x) has
its only pole at 1. We have thus shown the theorem for n = 1, except for the computation of
α which will be done at the end.
Now let n ≥ 2 and assume the theorem holds for n− 1. We first want to show that F k

n (x)
(as defined by (31))is a decoupling function. We check the orbit sum criterion (30). Using
(33), we can utilize that by induction hypothesis we already know that (30) is satisfied for
xyHk

n−1(x, y); dividing by 1
xy K(x, y) does not change this, nor does substituting X+ for x

in the numerator. Therefore, it remains to show that xy
(
F k

n−1(x)− F k
n−1(X+)

)
/K(x, y)

admits a decoupling function, but this is an immediate consequence of Cor. 6. In the same
manner as for n = 1, we conclude that F k

n (x) has its only pole at x = 1. For the term
X+yHk

n+1(X+, y) − F k
n−1(X+, y), note that it is nothing but the G(y) in (27), for which

an explicit formula similar to (31) is given in [2, Th. 4.11]. One can easily see that the
arguments for F k

n (x) can be repeated directly for this G(y), and thus this expression too can
have its only pole at y = 1.
Hk

n(x, y) having the form given by (34) (for now with any α) again follows from the fact that
its numerator vanishes at x = X±, and thus must contain a factor K(x, y). Lastly, to check
that △Hn+1 = Hn it suffices to substitute into the functional equation (10).
It remains to show that the order of the poles at x, y = 1 is at most k · π/θ + 2(n − 1).
For n = 1 this can again be verified directly; afterwards it follows from induction: by a
computation one can see that the order of the pole of F (x) compared to the one at x = 1 of
xyH(x, y) increases at most by 2, and by a similar argument for the G(y) in (27) (see [2,
Th. 4.11] for an explicit formula) one can show the same for X+yH(X+, y)−F (X+) = G(y).
Using (33) finally yields the statement. ◀
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