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Preface

This volume collects the papers presented at the third edition of the Workshop on Next
Generation Real-Time Embedded Systems (NG-RES 2022). The workshop is co-located with
the 2022 edition of the HiPEAC conference and was held on June 22, 2022 in Budapest,
Hungary.

The traditional concept of embedded systems is constantly evolving to address the re-
quirements of the modern world. Cyber-physical systems, networked control systems and
Industry 4.0 are introducing an increasing need for interconnectivity. A steadily increasing
algorithmic complexity of embedded software is fueling the adoption of multicore and het-
erogeneous architectures. As a consequence, meeting real-time requirements is now more
challenging than ever. The NG-RES workshop focuses on real-time embedded systems, with
particular emphasis on the distributed and parallel aspects. The workshop is a venue for
both the networking and multicore real-time communities aiming at cross-fertilization and
multi-disciplinary approaches to the design of embedded systems. The NG-RES workshop
focuses on real-time embedded systems, with particular emphasis on the distributed and
parallel aspects. The workshop is a venue for both the networking and multicore real-time
communities aiming at cross-fertilization and multi-disciplinary approaches to the design of
embedded systems.

The scope of the NG-RES workshop include the following topics:
Programming models, paradigms and frameworks for real-time computation on parallel
and heterogeneous architectures
Networking protocols and services (e.g., clock synchronization) for distributed real-time
embedded systems
Scheduling and schedulability analysis for distributed and/or parallel real-time systems
System-level sofware and technologies (e.g. RTOSs, hypervisors, separation kernels,
virtualization) for parallel and heterogenous architectures
Application of formal methods to distributed and/or parallel real-time systems
Compiler-assisted solutions for distributed and/or parallel real-time systems
Middlewares for distributed and/or parallel real-time systems

In this third edition of the workshop three regular papers were accepted, each of which
receiving between two and three peer reviews. In addition, we are glad to have an invited
paper by Giorgio Buttazzo titled “Can We Trust AI-Powered Real-Time Embedded Systems?”.
We would like to thank the authors of the NG-RES 2022 papers, the members of our program
committee, our publisher Schloss Dagstuhl as well as the HiPEAC organizers for contributing
to the success of this workshop.

Marko Bertogna, Federico Terraneo, and Federico Reghenzani
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Can We Trust AI-Powered Real-Time Embedded
Systems?
Giorgio Buttazzo #

Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract
The excellent performance of deep neural networks and machine learning algorithms is pushing the
industry to adopt such a technology in several application domains, including safety-critical ones, as
self-driving vehicles, autonomous robots, and diagnosis support systems for medical applications.
However, most of the AI methodologies available today have not been designed to work in safety-
critical environments and several issues need to be solved, at different architecture levels, to make
them trustworthy. This paper presents some of the major problems existing today in AI-powered
embedded systems, highlighting possible solutions and research directions to support them, increasing
their security, safety, and time predictability.

2012 ACM Subject Classification Computer systems organization

Keywords and phrases Real-Time Systems, Heterogeneous architectures, Trustworthy AI, Hyper-
visors, Deep learning, Adversarial attacks, FPGA acceleration, Mixed criticality systems

Digital Object Identifier 10.4230/OASIcs.NG-RES.2022.1

Category Invited Paper

1 Introduction

Embedded computing platforms are becoming more complex every day to manage the
increasing computational load generated by emerging applications, as autonomous vehicles
(cars, trains, drones, aircrafts), advance robotic systems, intelligent appliances, and so on.
Such systems are equipped with a variety of sensors that produce a large amount of data,
hence demanding for real-time processing and high-performance computing. To provide the
required computational power, computer architectures are evolving towards heterogeneous
platforms that integrate on the same board, or even on the same chip, multicore processors of
different types, field programmable gate arrays (FPGAs), general purpose graphics processing
units (GPGPUs), and special co-processors optimized for executing operations on tensors, as
tensor processing units (TPUs).

Although new tools and libraries are becoming available every year, developing safety-
critical applications on top of such heterogeneous platforms, while providing the required
guarantees, is quite difficult due to a number of non-trivial problems. The following list
presents just a few of such problems, related to the use of artificial intelligence (AI) in
safety-critical applications with real-time constraints.

The interaction among the various components through the shared resources available on
the computing platform (as buses, memories, and I/O devices) generates a significant
amount of interference, introducing large and unpredictable delays on the computational
activities. Such a large variability in responding to external events makes it is very
difficult to provide timing guarantees on the application behavior. This is also a serious
problem for the certification of safety-critical software components.

Programming modern heterogeneous platforms requires a deep knowledge of low-level
details of the architecture, which prolongs the developing and testing times.

© Giorgio Buttazzo;
licensed under Creative Commons License CC-BY 4.0

Third Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2022).
Editors: Marko Bertogna, Federico Terraneo, and Federico Reghenzani; Article No. 1; pp. 1:1–1:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.buttazzo@santannapisa.it
https://doi.org/10.4230/OASIcs.NG-RES.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Can We Trust AI-Powered Real-Time Embedded Systems?

Distributing the computational activities in an optimal way between hardware accelerators
and processors is not trivial, but it can make a huge difference in the overall system
performance, as well as in satisfying the real-time application constraints.

Deep neural networks (DNNs) are commonly developed and inferred by means of state-
of-the-art frameworks (e.g., Tensorflow, Caffe, and PyTorch), which greatly simplify the
implementation of new models. Unfortunately, however, none of the current frameworks is
specifically optimized to be used in safety-critical environments, nor capable of providing
bounded response times. This prevents their use in real-time applications like autonomous
driving, where DNNs should have a highly predictable behavior, not only in the functional
domain, but also in the time domain, responding within specific deadlines.

The use of deep learning algorithms and the related frameworks increases the software
attack surface, posing serious security issues for the overall system. This problem is
exacerbated by the fact that such frameworks usually run on top of rich operating systems,
as Linux, which are more vulnerable to cyber attacks.

In spite of their excellent capabilities in perception tasks, deep neural networks have
been shown to be prone to adversarial attacks, i.e., malicious inputs with imperceptible
perturbations that force a neural network to produce a wrong output with a high
confidence score.

Similar threats derive from inputs that significantly differ from the distribution of the
training set. Predicting the behavior of a neural network on such inputs is not easy and,
in some cases, the network could also respond with a wrong output with a high confidence
score.

Finally, since the behavior of a neural network is not explicitly programmed, but encoded
in a huge number of parameters, interpreting the output of a neural model and deciding
whether its prediction can be trusted is a challenging task.

To address the issues described above, a lot of research is being devoted to support the
development of AI-powered applications on top of heterogeneous platforms for safety-critical
real-time systems.

The remainder of the paper is organized as follows: Section 2 discusses the problems
and preliminary solutions related to architecture issues; Section 3 presents problems and
promising solutions related to security issues; Section 4 describes the major threats caused
by the use of AI algorithms and some solutions aimed at mitigating them; Section 5 proposes
an architectural approach to address all the issues discussed above; and Section 6 states the
conclusions and outlines some promising research lines.

2 Architecture issues

To be used in real time, the inference of modern DNN models requires hardware acceleration.
This can be achieved by exploiting modern heterogeneous computing platforms equipped
by GPUs or programmable hardware, as FPGA. This section discusses the main problems
related to such computing platforms and presents existing solutions to them.

2.1 General platform issues
To cope with the different computational requirements of real-time applications, modern
heterogeneous computing platforms integrate different processing elements, as multi-core
processors of different types, general purpose GPGPUs, FPGAs, and tensor processing units.
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The concurrent accesses to shared devices existing on such architectures, as buses, memory
controllers, and high-level caches, create a significant interference on the computations,
introducing long and variable delays in application tasks.

For instance, Cavicchioli et al. [12] observed significant and variable delays when using
GPU acceleration on heterogeneous embedded platforms due to the contention occurring on
shared memory, especially for memory-intensive GPU tasks. Restuccia et al. [29] identified
some anomalous situations that can arise in an AXI bus arbiter in FPGA-based SoC and
proposed a reservation mechanism to prevent this phenomenon and restore fairness during
bus transactions.

A timing analysis has also been proposed [28] to bound the execution of periodically-
invoked hardware accelerators in nominal conditions. This analysis can be used to configure
a latency-free hardware module named AXI Stall Monitor (ASM) to detect and safely solve
possible stalls during AXI bus transactions. Efforts have also been devoted to analytically
bound the delay experienced by AXI bus transactions issued by hardware accelerators on
FPGA [30].

Hardware acceleration typically involves memory-intensive computations. Therefore, an
accurate control of the memory traffic is crucial to achieve predictability in the execution of
HW-tasks.

Pagani et al. [26] proposed a bandwidth reservation mechanism for AXI-based transac-
tions on FPGAs able to control the bus traffic generated by hardware accelerators. The
mechanism, named Memory Budget and Protection Unit (MBPU), aims at “shielding” hard-
ware accelerators from excessive or unpredictable memory interference. MBPUs are installed
between AXI master ports and the interconnect, enforcing a given budget of memory transac-
tions within a periodic interval of time. Budgets are recharged in a periodic fashion and are
configurable from the CPU via memory-mapped registers. MBPUs also protect the system
from unrestricted accesses to memory by HW-tasks: this is accomplished by masking the
accesses that fall outside a set of configurable memory address spaces.

2.2 GPU-related issues
Today, the most common way for accelerating DNNs is by executing them on a GPU-based
platform. This solution has two main advantages: (i) the response time can be reduced by
two orders of magnitude and (ii) the development is supported by standard frameworks.
However, GPUs also have disadvantages. First, they are closed systems and multiple tasks
are scheduled in a non preemptive fashion. This means that, if the system includes multiple
neural networks with different complexity and periodicity requirements, those with shorter
periods will be more likely to experience longer delays and higher response time variability.
An example of non-preemptive schedule of three DNNs with different execution times and
periods is illustrated in Figure 1.

Notice that, in this example, the total GPU utilization is less than one (U = 0.95), but
DDN1 is forced to skip the second and the fifth execution instance, because it cannot preempt
the execution of DNN3.

To solve this problem, Capodieci et al. [9], in collaboration with NVIDIA, proposed to
modify the GPU internal scheduler with a preemptive scheduler based on Earliest Deadline
First (EDF) [18], also providing bandwidth isolation by means of a Constant Bandwidth
Server (CBS) [3]. Unfortunately, however, this solution is not yet available on commercial
NVIDIA GPU platforms.

Other problems with GPU acceleration are due to the high power consumption and their
significant weight and encumbrance, which prevent their usage in small embedded systems,
as unmanned aerial vehicles (UAVs).

NG-RES 2022
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Figure 1 Example of non-preemptive schedule of three DNNs with different execution times and
periods. As clear from the figure, DNN1 experiences longer and variable delays.

2.3 FPGA-related issues
An interesting alternative to GPUs for accelerating AI algorithms is provided by FPGAs.
They are integrated circuits designed to be configured after manufacturing for implementing
arbitrary logic functions in hardware. As such, they exhibit a highly predictable behavior in
terms of execution times. In addition, they consume much less power with respect to GPUs
and existing commercial platforms are characterized by lower weight, encumbrance, and
cost. Hence, they represent an ideal solution for being used on battery-operated embedded
systems with size, weight, power and cost (SWaP-C) constraints, as space robots, satellites,
and UAVs.

Nevertheless, FPGAs have other problems when used as DNNs accelerators:

No floating point unit (FPU) is available on the chip, unless it is explicitly programmed
by the user, but consuming a significant fraction of the available fabric.

Programming FPGAs is quite more difficult than programming CPUs or GPUs, and
efficient coding requires a deep knowledge of low-level architecture details.

The frameworks available today for developing AI applications on FPGA-based platforms
are less rich and flexible than those available for GPUs, and the same is true for related
libraries and tools.

The overall FPGA area available in medium size SoCs could be insufficient to host more
than one DNN, or even a single large DNN.

To overcome the problems outlined above, a lot of research has been carried out in the
recent years.

The absence of an FPU is overcome by performing a preliminary parameter quantization
to convert floating point numbers into integers with n-bit precision. Several quantization
methods have been proposed in the literature [17], including symmetrical, asymmetrical,
non-uniform, and statistical. An extreme quantization converts weights into binary numbers
using the sign function. Courbariaux, Bengio, and David [14] have shown that a binarized
DNN can achieve 98.8% accuracy in classifying the handwritten digits of the MNIST dataset.
Other optimization steps (e.g., network pruning and layer fusion) can also be performed,
both on GPUs and FPGAs, to reduce the computation time and the memory footprint of
trained DNNs while minimizing the loss in accuracy.

To overcome the limitation of the FPGA area, Biondi et al. [6] proposed a programming
framework, called FRED1, to support the design, development, and execution of predictable
software on FPGAs. FRED exploits dynamic partial reconfiguration and recurrent execution

1 See details on http://fred.santannapisa.it.

http://fred.santannapisa.it
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to virtualize the FPGA area, thus enabling the user to allocate a larger number of hardware
accelerators than those that could otherwise be fit into the physical fabric. FRED also
integrates a tool for automated floorplanning [33] and a set of runtime mechanisms to enhance
predictability by scheduling hardware resources and regulating bus/memory contentions [29].

An application targeted by FRED consists of a set of software tasks (SW-tasks) running
on the CPU cores that can periodically invoke the execution of hardware accelerators (HW-
tasks) to be dynamically programmed on the FPGA. The communication scheme adopted
between SW-tasks and HW-tasks is illustrated in Figure 2.

SW task Input data

FPGA area

HW taskshared memory

<put data>

Input data

FPGA area 
required by the 

accelerator
<request>
put data

<get data>

request for HW acceleration

Bitstream for 
the FPGA

shared memory

Output  results

6

Figure 2 Communication scheme adopted between SW-tasks and HW-tasks in FRED.

The FPGA virtualization is achieved through a timesharing mechanism that replaces
inactive accelerators (i.e., those that finished their computation and are waiting for the
next activation) with active ones. In this way, the total number of HW-tasks that can run
on the FPGA can be much higher than the number of HW-tasks that would statically fit
in the physical area available on the fabric. Hence, this mechanism virtualizes the FPGA
by creating a virtual area much larger than the physical one. The resulting approach is
similar to multitasking, where tasks continuously change their context, or a virtual memory
mechanism, where memory pages are swapped between hard disk and dynamic memory.

Thanks to a set of design choices and a proper scheduling infrastructure, resource
contention delays experienced by tasks running under FRED are bounded and predictable,
and hence they can be estimated to verify the system schedulability.

A full support for FRED has been developed under both FreeRTOS and Linux [25, 24].
The Linux support comes with a user-space daemon and a set of custom kernel drivers to
handle the processor configuration port (PCAP) and the shared-memory communication
buffers between CPUs and FPGA. A preemptable reconfiguration interface has also been
developed by Rossi et al. [31] to achieve a finer control in scheduling the reconfiguration
requests and a better control on the reconfiguration delays incurred by HW-tasks.

2.4 Framework issues
DNNs are commonly developed and inferred by means of state-of-the-art frameworks, as
Tensorflow, Caffe, and PyTorch. Unfortunately, such frameworks are not optimized for being
used in real-time applications and they are not supported by commercial real-time operating
systems, as VxWorks and QNX. As a consequence, DNN tasks may be subject to a variable
interference.

Casini et al. [10] addressed this problem by modifying the internal scheduler of the
TensorFlow framework and adapting it for the SCHED_DEADLINE scheduling class of
Linux. Extensive experiments demonstrated the effectiveness of the approach, showing a
significant reduction of both average and longest-observed response times of TensorFlow
tasks.

NG-RES 2022
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Recently, Restuccia and Biondi [27] proposed a set of techniques for accelerating DNNs
on FPGA-based platforms with a highly predictable timing behavior under the Vitis AI
frameworks by Xilinx. In Vitis AI, the execution of the DNN layers relies on the deep
learning processing unit (DPU) core, a hardware accelerator optimized for the execution
of convolutional DNNs. Based on an extensive profiling campaign conducted on the Xilinx
Zynq Ultrascale+ platform, they proposed an execution model for the DPU employed to
derive a response time analysis for guaranteeing real-time applications constraints.

3 Security issues

Safety-critical systems that make use of AI algorithms consist of several components with
different complexity and requirements.

Consider for example a self-driving car. The functions responsible for steering, throttle
modulation, braking, and engine control are highly critical and must satisfy stringent
requirements in terms of safety, security, and real-time behavior. As such, they need to be
managed by a real-time operating system, that must be certified to guarantee the required
safety integrity levels.

On the other hand, high-level functions related to sensory perception, object tracking,
and vehicle localization, which heavily rely on AI algorithms, need to be executed on a
rich operating system (e.g., Linux) to exploit all the available device drivers, libraries, and
development frameworks required for such complex computations. These components are far
from being certified and offer a large software surface for cyber attacks.

In 2015, two hackers, Charlie Miller and Chris Valasek, discovered a vulnerability in the
Jeep Cherokee, which they exploited to remotely access the vehicle and gain physical control,
including steering, braking, turning on the wipers, blasting the radio, and finally, killing the
engine to bring the vehicle to a complete stop [15]. They wrote a long paper [19] where they
explain how they accessed the CAN bus through the infotainment system, detailing the full
attack chain.

Although cyber attacks to non critical components accessible by a wireless network cannot
be avoided completely, the security of a system can greatly be enhanced by preventing such
attacks from spreading to more critical components. This can be achieved by isolating
software components with different level of criticality into different execution domains,
through the use of a hypervisor.

3.1 Hypervisor-based architecture
A hypervisor is a software layer above the hardware platform able to create and manage
multiple execution domains, each hosting a virtual machine with its own operating system.

An example of a hypervisor-based architecture for safety-critical embedded systems is the
one proposed by the SPHERE project [7], which supports the creation of multiple virtual
machines on the same computing platform, providing both time/memory isolation, security,
real-time communication channels, and I/O virtualization to allow different virtual machines
to shared the peripheral devices.

Figure 3 shows an example of a hypervisor managing two execution domains with different
levels of criticality. One domain hosts a virtual machine running all safety-critical functions on
a real-time operating system (RTOS), while the other domain hosts another virtual machine
running AI-powered software on the Linux operating system. Such an architecture has been
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Figure 3 Example of a hypervisor managing two execution domains with different criticality.

successfully implemented and tested on a number of AI-powered control applications using
CLARE [2], a novel hypervisor purposely designed to support mixed-criticality real-time
systems exploiting AI hardware acceleration in heterogeneous embedded platforms.

3.2 CLARE hypervisor
The CLARE hypervisor is a novel bare-metal (type-1) hypervisor at the core of the CLARE
software stack [2]. It integrates cutting-edge mechanisms to host safe, secure, and time-
predictable virtual machines that can execute in isolation upon the same hardware platform.
CLARE hypervisor follows a fully-static approach with off-line configurations and optimization
to allocate the onboard resources to virtual machines. It has been designed to support modern
heterogeneous platforms, such as GPGPU- and FPGA-based SoC, to better exploit and
control their computational resources. In particular, it provides a number of real-time and
security features that make it suitable for safety-critical systems, such as

Improved key management and attack detection under control flow integrity by pointer
authentication code [16].
Hardware-based isolation exploiting the ARM TrustZone technology to perform key
management and provide attack detection and recovery strategies.
Virtualization of trusted execution environments leveraging ARM TrustZone [13].
Protection mechanisms at the hypervisor level to control temporal and spatial interference
among domains, also preventing side-channel attacks [20].
I/O device virtualization and I/O related memory contention control, with related latency
analysis [11].
FPGA virtualization to allow multiple domains to exploit hardware accelerators in
isolation.

4 AI related issues

Deep neural networks have shown an impressive performance in several recognition tasks, but
their suitability for mission-critical applications has been questioned by Szegedy et al. [35]
and many other authors [34], who showed that imperceptible perturbations added to an
input sample can fool a neural network in perceiving objects that are not present in the
input. Such perturbed inputs are called adversarial examples (AEs) and represent a serious

NG-RES 2022



1:8 Can We Trust AI-Powered Real-Time Embedded Systems?

12

0  0.5  1

Neural 
Network

Genuine sample 0  0.5  1

Adversarial 
example

Adversarial 
perturbation

=

+

Neural 
Network

Figure 4 Example in which a neural network is able to correctly classify a genuine image of a
stop sign (top). However, the same image can be modified by adding an adversarial perturbation, so
that it is classified as a parking sign with a high confidence score (bottom).

threat for the security of AI-based systems. An example of adversarial image is shown in
Figure 4, where the picture of a stop sign is perturbed in such a way that it is perceived by
the network as a parking sign with a high confidence score.

Although a significant effort has been spent to develop defense methods against adversarial
examples [5], the problem remains open and challenging, since these attacks violate the
fundamental stationarity assumption of learning algorithms, i.e., that training and testing
data are drawn from the same distribution.

The trustworthiness of DNNs is also threatened by genuine inputs characterized by a
distribution that is quite different from that of the training samples. Such inputs are referred
to as out-of-distribution (OoD) samples. Two examples of OoD images are shown in Figure 5.

8

Figure 5 Two examples of OoD images that could cause a deep neural network to produce a
wrong output.

Considering that the prediction score of a DNN can be high in the presence on both AEs
and OoD samples, the output score of the best classified class cannot be considered as an
indication of the prediction confidence of the model.

Several methods have been proposed in the literature to detect AEs and OoD samples.
Two of these methods are presented below with more details.

4.1 Detection by input transformations
One method for detecting AEs relies on the fact that DNN models are usually robust to
certain types of input transformations (e.g., translation, rotation, scaling, blurring, noise
addition, etc.). This means that, if a genuine image is correctly recognized by a DNN, the
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prediction score reduces only slightly when the same image is translated, rotated, or modified
with one the mentioned transformations. However, the same is not true for most AEs and
it has been observed that they result to be more sensitive to input transformations, which
cause a much higher degradation in the prediction score.

This property of AEs has been exploited by some authors [37] to detect whether an input
x is adversarial or genuine. If y = f(x) is the top class score produced by the DNN on input
x and yT = f(T (x)) is the score produced on the transformed input T (x), a simple detection
method is to consider x to be adversarial if the difference y − yT is higher than a given
threshold τ .

Unfortunately, it is possible to generate adversarial examples that are robust to input
transformations. To cope with this case, Nesti et al. [22] proposed a new method, called
defense perturbation, capable of detecting AEs that are robust to input transformations.
The defense perturbation is generated by a proper optimization process capable of making
robust AEs sensitive again to input transformations. Furthermore, the paper introduces
multi-network AEs that can fool multiple DNN models simultaneously, presenting a solution
for detecting them.

4.2 Detection by coverage analysis
A different approach for detecting AEs is based on a deeper analysis of the neuron activation
values in the different DNN layers. In fact, in order to force a DNN model to classify an
input with a desired wrong class, AEs usually cause an overactivation of some neurons in
different network layers. To identify such neurons, Rossolini et al. [32] presented a new
coverage analysis methodology capable of detecting both adversarial and out-of-distribution
inputs.

The approach works in two distinct phases: in a preliminary (off-line) phase, a trusted
dataset is presented to the DNN and the neuron outputs, in each layer and for each class,
are analyzed and aggregated into a set of covered states, which all together represent a sort
of signature describing how the model responds to the trusted samples for each given class.
Then, at runtime, each new input is subject to an evaluation phase, in which the activation
state produced by the input in each layer is compared with the corresponding signature for
the class predicted by the network. The higher the number of activation values outside the
range observed during the presentation of the trusted dataset, the higher the probability that
the current input is not trustworthy. The approach is schematically illustrated in Figure 6.

The nice thing about this approach is that the comparison against the signature allows
computing a confidence value c distinct from the prediction score, indicating how much the
current prediction can be trusted.

4.3 Interpretability issues
Another problem of complex machine learning models is that they are hardly interpretable
by humans. In fact, they encode their input-output function in millions of parameters
and, therefore, it is not trivial to understand why a given input produces a certain output.
Many people demand for transparency and precise mechanisms as a prerequisite for trust.
Especially for safety-critical applications, developers cannot trust a critical decision system if
it is not possible to explain the reasons that brought to that decision.

To address this issue, a new branch of research, referred to as Explainable AI (XAI) [36],
started around 2014 with the goal of reconstructing and representing in a comprehensible
fashion the features that caused an AI model to produce a given output.

NG-RES 2022



1:10 Can We Trust AI-Powered Real-Time Embedded Systems?

DNN y

Trusted 
dataset Coverage 

analysis
Aggregation 

algorithm

Signature

analysis algorithm

x
Current 

input

DNN y

Active state Confidence 
evaluation

c

Signature

12Figure 6 Overview of the coverage-based method proposed in [32]: (top) off-line phase for
producing the signature for each layer and each class; (bottom) online detection phase based on
comparing the current activation states with the stored signature. It produces a confidence value c

indicating how much the current prediction can be trusted.

Thanks to these methods, it has been found that, in some cases, a DNN learned to
classify images using features that have nothing to do with the object of interest, but appear
frequently in most training samples of a specific class (e.g., water for the class ship, snow for
the class wolf, or even copyright tags present in most of the images of a given class). Such
biases in the training data limit the generalization capabilities of a neural model and can
cause wrong predictions that would be quite harmful in applications like self-driving cars or
medical diagnoses.

Identifying such biases in the training set is the main objective of XAI, which in the
last years proposed several methods and tools for making AI decisions more interpretable to
humans [21]. For instance, Pacini et al. [23] presented X-BaD, a flexible tool for detecting
biases in training sets while providing user-interpretable explanations for DNN outputs. The
tool can also be used to compare the performance of different XAI methods.

5 Towards trustworthy AI-based systems

From the considerations presented in the previous sections, it should be clear that, although
AI algorithms exhibit a great performance in several perception and control tasks, they have
intrinsic weaknesses in terms of safety, security, timing predictability, and certifiability. Does
it mean that complex cyber-physical systems cannot take advantage of such an amazing
software technology? Fortunately, there is a promising way to exploit the power of modern
deep learning algorithms in safety-critical systems.

While we cannot prevent AI algorithms from being attacked or producing unsafe results,
we can take a number of countermeasures to prevent them from harming the whole system.

For instance, the level of temporal predictability, as well as the level of security of the
whole system can be increased by using a suitable real-time hypervisor capable of isolating the
safety-critical components from the AI-powered functions in two separated virtual machines,
as described in Section 3. In this way, an attack to the AI domain cannot propagate to the
high-criticality domain, which can be protected by exploiting the hardware security features
available in modern computer architectures.



G. Buttazzo 1:11

To cope with adversarial attacks and OoD samples, the defense methods described in
Section 4 are essential to detect both malicious as well as unsafe inputs that would cause a
DNN to produce a wrong output. In these cases, the system must react by excluding the
attacked AI component from the decision pipeline and switching to a simpler, but safer,
backup control module that can bring the system into a safe state. For instance, in a
self-driving car, the backup module could take control of the vehicle to stop it at the side of
the road.

The approach described above has been undertaken by Biondi et al. [8] for exploiting
deep learning models in safety-critical systems. The architecture includes two execution
domains illustrated in Figure 7: a high-performance domain, running under Linux, and a
safety-critical domain, running under the Erika Enterprise real-time kernel [1], both managed
by the CLARE hypervisor [2].
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Figure 7 Architecture scheme proposed in [8], including a high-performance domain (running all
the AI functions) and a safety-critical domain (running all critical control functions), managed by
the CLARE hypervisor.

The high-performance domain is in charge of executing all the AI algorithms and tasks
that must run under Linux, whereas the safety-critical domain runs all the vital system
functions under the Erika Enterprise real-time kernel [1].

To increase the level of robustness against AEs and OoD inputs, each perceptual function
is replicated by three different DNN models trained on different datasets. Each DNN also
includes a coverage analyzer to provide a confidence signal (represented by the red arrow
coming out from each DNN box). The three confidence signals are then integrated into an
overall confidence signal, which is used to decide whether to switch to the safe controller. The
three redundant DNN outputs go instead to a majority voter to resolve possible disagreements
in the predictions.

An extra safety feature is represented by the presence of a Safety Monitor, which is in
charge of detecting possible DNN outputs that could have a negative consequence on the
controlled system. In fact, even in the presence of a non-malicious input, a DNN could
generate an output that is not detected as unsafe by the voter and the confidence integrator,
but could cause the controlled system to fail or misbehave. If such a condition is detected by
the Safety Monitor, the system control is switched from the high-performance AI controller
to the backup controller.
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A first version of the architecture has been successfully implemented and tested on a
control system for an inverted pendulum. In this case, the Safety Monitor uses a Lyapunov
approach to detect when the system state exits a safe region of the state space and enters a
margin region in which the stability can still be recovered by the safe controller. When this
happens, the control is given to the backup controller. The AI controller is re-enabled when
the system state goes back to the safe zone.

Figure 8 illustrates a simplified and qualitative representation of the state space for an
inverted pendulum, where the black dot represents the current system state, the safe region
is visualized in green, the recoverable region in yellow, and the unstable region in gray.
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Figure 8 Qualitative representation of the state space for an inverted pendulum. The black dot
represents the current system state.

On the same line, Belluardo et al. [4] presented a safe and secure multi-domain software
architecture tailored for autonomous driving.

6 Conclusions

This paper presented a set of problems that today prevent the use of deep learning al-
gorithms in mission-critical systems, as self-driving vehicles, autonomous robots, and medical
applications. Among them, the most relevant issues are the low predictability of modern
heterogeneous architectures and the high vulnerability of AI software to cyber attacks.

Fortunately, the research community is readily reacting to address such problems and some
solutions to overcome such limitations have already been proposed at different architecture
levels. However, the problems are many and complex, so several issues remain unsolved and
require some joint effort from the AI and the real-time research communities.
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Abstract
Embedded system applications usually have to meet real-time, energy or safety requirements on
programs typically concurrently executed on a given MPSoC target platform. Enforcing such
properties, e.g., by adapting the number of processors allocated to a program or by scaling the
voltage/frequency mode of involved processors, is a difficult problem to solve, especially with a
typically large varying environmental input (workload) per execution. In a previous work [4], we
formalized the related enforcement problem using (a) finite state machines to model enforcement
strategies, (b) discrete-time Markov chains to model the uncertain environment determining the
system’s workload, and (c) the system response that defines the feedback for the reactive enforcer.
In this paper, we apply that approach to specify and verify multi-requirement enforcement strategies
and assess a case study for enforcing two independent requirements at the same time, i.e., latency and
energy consumption. We evaluate and compare different enforcement strategies using probabilistic
verification for the use case of an object detection application.
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1 Introduction

Many, particularly embedded system applications come along with different requirements that
should be met during their execution on many-core systems. One example are temperature
constraints because of a limited power budget. Causes of variations include interference with
other applications, i.e., due to shared resources. In addition, the workload induced by the
environment input data1 can vary significantly and with high uncertainty.

1 This paper takes care of the uncertainty of input from the environment that is typically not under the
control of a system, thus the influence is exogenous. The uncertainty of execution state on an MPSoC
platform is typically caused by sharing of resources on an MPSoC platform, thus endogenous. This
problem can be treated systematically by techniques for isolating application programs dynamically at
run-time such as invasive computing [18] and is therefore not treated here.
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As a solution, run-time requirement enforcement (RRE) techniques such as [19] have
emerged. Such techniques adjust a set of configurations like voltage/frequency setting
or the degree of parallelism in reaction to observed changes in the system state or input
workload. Different techniques have been proposed to implement run-time managers for
dynamic adaptation of program execution [5, 7, 11, 12]. Many of them have drawbacks that
either no formal guarantees can be given regarding their effectiveness of holding the specified
requirements or they make simplifying assumptions regarding the controller or the many-
core system under control. To overcome such disadvantages, we use finite state machines
(FSMs) to formally specify enforcement strategies, as they are expressive in specification and
computation, which helps in formulating complex strategies. Furthermore, they do not make
any restricting or simplifying assumptions regarding the system-under-control, and finally
they can be analyzed using formal verification techniques [4].

In this respect, we proposed a methodology [4] to verify the satisfaction of requirements
on non-functional properties of program executions on MPSoCs which are controlled by
FSM-based RREs. A requirement is often specified by a corridor of allowed or desired values
of a non-functional property of program execution, e.g., a latency or power consumption
corridor. In order to quantitatively assess a RRE strategy, we specify and formally verify
important verification goals, e.g., whether a RRE is able to either strictly or at least loosely
stay within the bounds of one or a set of requirements. Furthermore, how many subsequent
program executions could violate a given set of requirements before eventually returning into
specified requirement corridors. After introducing a discrete-time Markov chain (DTMC)
for modeling the variation of environmental input, we model the requirement response of
an MPSoC when executing an application program as a function that specifies for each
combination of environment state and enforcer output whether and which requirements are
fulfilled and which are violated.

Based on the concatenation of formal models, we can define stochastic verification
problems using Probabilistic Computation Tree Logic (PCTL) [1], a probabilistic variant of
CTL, and apply stochastic model checking, i.e., PRISM [9] to analyze and compare different
enforcer strategies quantitatively.

Unlike other approaches that enforce only one requirement at a time [16, 2, 14, 15, 13],
our method [4] can be used to enforce more than one requirement – although this was not
shown there. In this work, we therefore use the methodology in [4] to analyze enforcers for
multiple independent requirements at a time. As an example, we propose multi-requirement
enforcement strategies to satisfy more than one requirement (e.g., latency and energy
requirements) at a time. We then assess a case study to evaluate and compare between
different strategies using probabilistic formal verification based on the PRISM model checker.

The remainder of this paper is structured as follows. Section 2 introduces the formal
models for specifying the enforcement FSM and the requirement response. Section 3 describes
the evaluation of a proposed set of uni- and multi-requirement enforcement FSMs based on
an image processing case study and discusses the verification results. Finally, in Section 4,
we conclude this work.

2 Run-time Requirement Enforcement (RRE)

The enforcement of requirements should be achieved even under a variation of environmental
inputs. Such an input can be described for each discrete periodic execution k of a program
by an environment feature vector x(k) ∈ X , where X denotes the environment space. Run-
time requirement enforcement (RRE) techniques such as [19, 3] can be used to enforce the
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satisfaction of a set of requirements during each execution even in the presence of input
variation. In the following, we term such an assignment of resources and their parametrization
to execute a given program a configuration c and the set of possible system configurations to
execute a program configuration space C. We consider Feedback-based RRE techniques such
as [7] that react to a violation or satisfaction of a non-functional requirement φ based on
feedback from the system-under-control and adapting the configuration c(k + 1) for the next
execution (k + 1) accordingly [4]. Figure 1 illustrates the proposed model described in the
following.

Figure 1 Schematic illustration of feedback-based RRE [4].

2.1 Enforcement FSM F

Feedback-based RREs can be modeled by finite state machines. Following [4], a respective
enforcement FSM is defined as follows:

▶ Definition 1. An enforcement FSM (F ) is a deterministic finite state machine (Moore
machine) that can be described by a 6-tuple (Z, z0, I, δ, C, γ) [4]:

Z is a finite set of states.
z0 ∈ Z is the initial state.
I is the input alphabet.
δ is the transition relation: δ ⊆ I × Z × Z with (i, z, z′) representing a transition from
state z to state z′ under input i.
C is the output alphabet, also called configuration space.
γ is the output function, which maps each state to the output alphabet: γ : Z → C.

An enforcement FSM is uni-requirement when it enforces one requirement (h = 1), and it
is called multi-requirement when it enforces more than one requirement (h > 1).

2.2 Requirement Enforcement

A MPSoC platform, or system-under-control is abstracted by a single function called system
response function r : X × C → Rh [4]. The system response at execution k is considered as a
vector of h relevant execution qualities r(x(k), c(k)) = (o1(k), . . . , oh(k)), e.g., corresponding
to observed latency, power consumption, etc., during the kth execution.
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In [17], requirements on non-functional execution qualities oj , j = 1, . . . , h are specified
using intervals, e.g., resulting in two propositions φLB

j and φUB
j

φj(oj(k)) = φLB
j (oj(k)) ∧ φUB

j (oj(k)) = (LBoj ≤ oj(k)) ∧ (oj(k) ≤ UBoj ) (1)

where LBoj
and UBoj

denote a lower, respectively upper bound on the execution quality oj .
The system response r(x(k), c(k)) = (o1(k), . . . , oh(k)) is finally mapped to a requirement

response using a requirement response function

ϕ (o1(k), . . . , oh(k)) :=
(
φLB(o1(k)), φUB(o1(k)), . . . ,

φLB(oh(k)), φUB(oh(k))
)

∈ {0, 1}2h (2)

This binary vector serves as the input to the enforcement FSM F , and thus the input
alphabet is I ⊆ {0, 1}2h. Based on the requirement response, F computes as a reaction the
next configuration c(k + 1) ∈ C to enforce the desired non-functional properties for the next
execution.

2.3 Environment FSM E

In order to apply verification techniques on a proper enforcement of requirements, we need
a formal model of the environment that influences the system-under-control. Thus, the
environment is modeled using a discrete-time Markov Chain called environment FSM [4].
However, the number of possible input values can be very large, possibly leading to a state
explosion. In [4], we proposed to partition the environment space X into equivalence classes
or partitions p leading to the same requirement response ϕ as a potential solution.

▶ Definition 2. An environment finite state machine E is a discrete-time Markov chain
(DTMC) defined by a 3-tuple (S, a, ∆) [4]:

S is the finite set of states. Each s ∈ S is assigned exactly one partition p ∈ P of the
environment space X .
a : S → [0, 1] is a function that assigns each state s ∈ S its initial state probability a(s).
∆ ∈ [0, 1]|S|×|S| is a transition probability matrix.

3 Multi-Requirement Enforcement Case Study

In the following, we present a simple image processing application as shown in Figure 2.
The job of the object detection algorithm is to detect a given object in each image frame
by applying a SIFT feature matching algorithm. Subsequently, we present different RRE
variants and verify a number of PCTL verification goals related to h requirements to be
enforced using probabilistic model checking.

3.1 Object Detection Application
The object detection application, shown in Figure 2, is an image processing application that
conducts a pipelined processing of a periodic input image stream. The goal of this application
is to detect a given object in each image frame by applying a scale-invariant feature transform
(SIFT) matching algorithm [10]. The application consists of an actor chain. Each actor
processes one input image frame k at a time. The image source (IS) actor reads in the
input images periodically at a defined rate, then follows the gray-scale conversion (GS) actor,
and after that the edge detection (ED) and the corner detection (CD) actors to determine
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respectively the edges and corners in an image. After that, the SIFT orientation (SO) actor
applies invariance to image rotation. The four SIFT description actors SD1 to SD4 extract
the features in an image. They can be executed in parallel on n = 4 cores, after partitioning
the number of features x of a given image evenly into each actor.

For the following experiments, let each of the periodic executions of each SD actor have
a latency requirement φL = φLB

L ∧ φUB
L = (LBoL

≤ oL) ∧ (oL ≤ UBoL
) which is typical in

real-time systems and an energy consumption requirement φEn = φLB
En ∧ φUB

En = (LBoEn
≤

oEn) ∧ (oEn ≤ UBoEn
), for a latency lower bound LBoL

= 0 ms and an upper bound
(deadline) UBoL

= 80 ms and an energy consumption lower bound LBoEn
= 0 mJ and an

energy consumption upper bound UBoEn
= 500 mJ. Intuitively, φLB

L = (0 ms ≤ oL) and
φLB

En = (0 mJ ≤ oEn) are always satisfied.
For the enforcement of such requirements, the execution power mode m (voltage/frequency)

of the SD actors’ cores through Dynamic Voltage and Frequency Scaling (DVFS) is used,
and we assume, a maximum of n = 4 cores can be activated in each of m = 20 different
power modes. However, during the execution of an image, we assume all cores run in the
same power mode m, thus resulting in a configuration ⟨n, m⟩. Upon each execution, the
output of each SD actor is then sent to the SIFT matching (SM) actor to detect common
features between the given reference object and the features in the current input image.
Then, the RAN-SAC (RS) actor calculates the transformation between both images based
on the matched features. The image is finally delivered by an image destination (ID) actor.

Figure 2 Object detection algorithm implemented as a graph of actors for pipelined processing
of streams of images.

3.2 Specifying Enforcement FSMs
In the following, we introduce and compare five enforcement FSMs exemplarily, each having as
many states as configurations |C|, thus Z = {0, · · · , 31}, the input i ∈ I = {0, 1}2h = {0, 1}4

with i = ϕ(r′(s, c)) = ϕ(oL, oEn) = ((LBoL
≤ oL), (oL ≤ UBoL

), (LBoEn
≤ oEn),(oEn ≤

UBoEn
)), an assumed initial state z0 = 17 and the configuration space C of cardinality

|C| = 32.
1-step latency-requirement enforcement FSM F1: [3] proposes a technique called 1-step
enforcement that decreases, resp. increases the current state, respectively configuration
by exactly one step in case of a satisfaction (φL), resp. violation (φL) of a latency
requirement to be enforced. A corresponding enforcement FSM F1 = (Z, z0, I, γ, C, δ1) is
shown in Figure 3. It has the following transition relation δ1:

z(k + 1) =


0 φL ∧ (z(k) = 0)
z(k) − 1 φL ∧ (z(k) ̸= 0)
z(k) + 1 φL ∧ (z(k) ̸= 31)
31 φL ∧ (z(k) = 31)

(3)
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Figure 3 1-step latency-requirement enforcement FSM F1 that only utilizes φL. Annotated to
each state is the output configuration c = (n, m), consisting of number n of powered cores and power
mode m.

1-step energy-requirement enforcement FSM F2: Decreases, resp. increases the current
state, respectively configuration reflecting the next lower, resp. higher power by exactly
one step in case of a satisfaction (φEn), resp. violation (φEn) of a energy requirement
to be enforced. A corresponding enforcement FSM F2 = (Z, z0, I, γ, C, δ2) is shown in
Figure 4. It has the following transition relation δ2:

z(k + 1) =


0 φEn ∧ (z(k) = 0)
z(k) − 1 φEn ∧ (z(k) ̸= 0)
z(k) + 1 φEn ∧ (z(k) ̸= 31)
31 φEn ∧ (z(k) = 31)

(4)

Figure 4 1-step energy-requirement enforcement FSM F2 that only utilizes φEn. Annotated to
each state is the output configuration c = (n, m), consisting of number n of powered cores and power
mode m.

1-step multi-requirement enforcement FSM F3: Stays in the current state, respectively
configuration if both requirements are satisfied or none of the requirements are satisfied,
and decreases the current state by exactly one step if only φEn is violated and increases if
only φL is violated. A corresponding enforcement FSM F3 = (Z, z0, I, γ, C, δ3) is shown
in Figure 5. It has the following transition relation δ3:

z(k + 1) =



0 (φL ∧ φEn) ∧ (z(k) = 0)
z(k) − 1 (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) ((φL ∧ φEn) ∨ (φL ∧ φEn)) ∧ (z(k) ̸= 0)
z(k) + 1 (φL ∧ φEn) ∧ (z(k) ̸= 31)
31 (φL ∧ φEn) ∧ (z(k) = 31)

(5)
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Figure 5 1-step multi-requirement enforcement FSM F3 for enforcing two single-bound require-
ments φL and φEn. Annotated to each state is the output configuration c = (n, m), consisting of
number n of powered cores and power mode m.

Latency-oriented multi-requirement enforcement FSM F4: Decreases the current state by
one step when only φEn is violated, increases the current state by two steps when φL

is violated, and stays in the same state otherwise. A corresponding enforcement FSM
F4 = (Z, z0, I, γ, C, δ4) is shown in Figure 6. It has the transition relation δ5:

z(k + 1) =



0 (φL ∧ φEn) ∧ (z(k) = 0)
z(k) − 1 (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) + 2 φL ∧ (z(k) < 30)
31 φL ∧ (z(k) ≥ 30)

(6)

Figure 6 Latency-oriented multi-requirement enforcement FSM F4 for enforcing two single-bound
requirements φL and φEn. Annotated to each state is the output configuration c = (n, m), consisting
of number n of powered cores and power mode m.

Energy-oriented multi-requirement enforcement FSM F5: Decreases the current state by
two steps when φEn is violated, increases the current state by one step when only φL

is violated, and stays in the same state otherwise. A corresponding enforcement FSM
F5 = (Z, z0, I, γ, C, δ5) is shown in Figure 7. It has the following transition relation δ4:

z(k + 1) =



0 φEn ∧ (z(k) ≤ 1)
z(k) − 2 φEn ∧ (z(k) > 1)
z(k) (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) + 1 (φL ∧ φEn) ∧ (z(k) ̸= 31)
31 (φL ∧ φEn) ∧ (z(k) = 31)

(7)
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Figure 7 Energy-oriented multi-requirement enforcement FSM F5 for enforcing two single-bound
requirements φL and φEn. Annotated to each state is the output configuration c = (n, m), consisting
of number n of powered cores and power mode m.

3.3 Verification Goals Specification
As we do not want to reason about or verify the satisfaction of verification goals during single
runs or single traces of input stimuli, but depending on a DTMC model of the typically
uncertain environment (i.e., E), we can use PCTL [1], a probabilistic variant of CTL, to
specify stochastic verification goals. In the following, P=?[φj ] denotes the probability of
satisfying a proposition φj .

For verification, we will use PRISM [9], a probabilistic model checker, to perform verifica-
tion of a number of interesting verification goals on enforcers.

Finally, LTL formulas have a bounded variant in PCTL [6], which adds an upper bound
λ on the number of successive steps or iterations in our model. In our previous work [4], we
proposed and formulated a set of interesting verification goals using temporal logic. In this
work, we use one of them to compare between the proposed enforcement FSMs. That being:
P=?[G≤λ (¬φ)] which denotes the probability of a requirement φ to never hold in any of λ

consecutive executions. We will use this verification goal to verify the proposed enforcement
strategies for the latency requirement P=?[G≤λ (¬φL)], the energy consumption requirement
P=?[G≤λ (¬φEn)], and finally both requirements together P=?[G≤λ (¬φL ∨ ¬φEn)].

3.4 Deriving Environment FSMs E
We first partition the environment space X into a set of partitions P , by computing the
system response o = (oL, oEn) = r(x, c) for all different inputs x ∈ X for each c ∈ C, and
then deriving the partitions p of inputs x ∈ X that result in the same requirement response
ϕ(r(x, c)) for each c ∈ C.

For the above example application, the authors in [20] proposed to perform a design
space exploration (DSE) to compute the maximum number of features xmax(UBoL

, c) that
can be processed within a given deadline UBoL

in configuration c, and a single state enforcer
that proactively (rather than reactively) chooses upon arrival of the kth frame always the
configuration c ∈ C consuming the minimal amount of energy for that input. A similar
DSE is conducted for the energy consumption oEn for an energy consumption upper bound
UBoEn

.
Based on this information, we can compute the requirement response ϕ(r(x, c)) for each

input x ∈ X and configuration c ∈ C for each execution k as follows:

ϕ(r(x, c)) =


(1, 1, 1, 1) (φLB

L , φUB
L , φLB

En , φUB
En )

(1, 1, 1, 0) (φLB
L , φUB

L , φLB
En , φUB

En )
(1, 0, 1, 1) (φLB

L , φUB
L , φLB

En , φUB
En )

(1, 0, 1, 0) (φLB
L , φUB

L , φLB
En , φUB

En )

(8)
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Based on this partitioning, and using a frame sequence R with |R| = 1, 000 frames,
we follow the procedure explained in [4] to obtain the environment FSM E1, shown in
Figure 8, which is specified after computing the partitions based on a latency requirement
φL = φLB

L ∧ φUB
L = (LBoL

≤ oL) ∧ (oL ≤ UBoL
) and an energy consumption requirement

φEn = φLB
En ∧ φUB

En = (LBoEn
≤ oEn) ∧ (oEn ≤ UBoEn

), for a latency lower bound LBoL
= 0

ms and an upper bound (deadline) UBoL
= 80 ms and an energy consumption lower bound

LBoEn
= 0 mJ and an energy consumption upper bound UBoEn

= 500 mJ. Intuitively,
φLB

L = (0 ms ≤ oL) and φLB
En = (0 mJ ≤ oEn) are always satisfied.

Figure 8 Resulting environment FSM E1 and for an image processing algorithm for a latency
lower bound LBoL = 0 ms and an upper bound (deadline) UBoL = 80 ms and an energy consumption
lower bound LBoEn = 0 mJ and an energy consumption upper bound UBoEn = 500 mJ generated
from a trace R of |R| = 1000 frames. The highest encountered number of features x (workload to be
processed) per frame in the trace R is 5,513.

3.5 Verification Results
We specified the enforcement and environment FSMs for verification by the PRISM model
checker using the PRISM modeling language [8].

P=?[G≤λ (¬φL)] is the probability of φL to never hold in any of λ consecutive executions.
Figure 9 plots this probability for increasing values of λ for all five introduced enforcement
FSMs. We notice that F2 and F5 have the highest probabilities of violating the latency
requirement among all other enforcement FSMs. This is plausible, since F2 only utilizes
the energy requirement response as an input, and the multi-requirement enforcement
FSM F5 is energy-oriented.
We also notice that F4 is superior regarding satisfying the satisfaction of latency require-
ment, since it is a latency-oriented multi-requirement enforcement FSM that jumps two
steps forward when φL is violated. Finally, even F1 utilizes only the latency requirement
response to transition between states, it has a higher probability of violating the latency
requirement than F3 and F4, because it goes backwards one step when φL is satisfied,
unlike the multi-enforcement FSMs F3 and F4 which stay in the same state when φL is
satisfied.
P=?[G≤λ (¬φEn)] is the probability of φEn to never hold in any of λ consecutive executions.
Figure 10 plots this probability for increasing values of λ for all five introduced enforcement
FSMs. We notice that F5 has the lowest probability for violating the energy requirement,
because it is a multi-requirement FSM that is oriented for energy saving where it goes
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Figure 9 Probability that φL never holds in any of λ consecutive executions (P=?[G≤λ (¬φL)])
where φL = (LBoL ≤ oL) ∧ (oL ≤ UBoL ) for a latency lower bound LBoL = 0 ms and an upper
bound (deadline) UBoL = 80 ms.

backward two steps when φEn is violated. Next comes F2, which only utilizes the energy
requirement response as an input. We also notice that other enforcement FSMs violate
the energy requirement with higher probabilities than F2, F5, since they either do not
consider the energy requirement response like F1 or they do not prioritize it over the
latency requirement φL like F3 and F4. Finally, we notice that the latency-oriented multi-
requirement FSM F4 has the highest probability of violating the energy requirement.
Even though F4 considers the energy requirement response, F1 still has a lower probability
in violating φEn. This shows the need for systematic methods to generate enforcement
FSMs that satisfy given requirements.
Finally, we analyze the probability of φL or φEn to never hold in any of λ consecutive
executions by computing P=?[G≤λ (¬φL ∨ ¬φEn)]. Figure 11 plots this probability for
increasing values of λ for all introduced enforcement FSMs. As can be observed, F3
exhibits the lowest probability of violating any requirement. This is because it has the
third lowest probability of violating the energy requirement φEn and the second lowest
probability of violating the latency requirement φL, see Figure 9 and Figure 10. F2 and F5
show the next best behavior after F4, because they have the lowest probability of violating
the energy requirement φEn, and at the same time showing a comparable probability
concerning the latency requirement, see Figure 9 and Figure 10. Finally, although F4 is
the best regarding the satisfaction of the latency requirement, it is the worst in satisfying
both requirements together, as it has a very low probability of satisfying the energy
requirement φEn, which outweighs the latency requirement satisfaction, see Figure 10.

4 Conclusion and Future Work

In this paper, we proposed multi-requirements enforcement strategies for enforcing multiple
non-functional requirements at a time, like latency and energy consumption. We formulated
several verification goals that ask for the probability of violating the latency, energy or both
requirements for a consecutive number of steps. Doing so allows to formally verify and
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Figure 10 Probability that φEn never holds in any of λ consecutive executions (P=?[G≤λ (¬φEn)])
where φEn = (LBoEn ≤ oEn) ∧ (oEn ≤ UBoEn ) for an energy consumption lower bound LBoEn = 0
mJ and an energy consumption upper bound UBoEn = 500 mJ.
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Figure 11 Probability that φL or φEn never holds in any of λ consecutive executions
(P=?[G≤λ (¬φL ∨ ¬φEn)]) where φL = (LBoL ≤ oL) ∧ (oL ≤ UBoL ) and φEn = (LBoEn ≤
oEn) ∧ (oEn ≤ UBoEn ), for a latency lower bound LBoL = 0 ms and an upper bound (deadline)
UBoL = 80 ms and an energy consumption lower bound LBoEn = 0 mJ and an energy consumption
upper bound UBoEn = 500 mJ.

quantitatively compare different FSMs for requirement enforcement. We used PRISM for
such probabilistic verification problems. Our evaluation shows that it is very difficult to
understand which FSMs are superior with respect to individual and which for combined
enforcement of multiple requirements. In the future, we would like to work on techniques for
the automatic generation of enforcement FSMs with multiple probabilistic verification goals
(a multi-objective optimization problem) for the enforcement of one or multiple requirements
at a time.

NG-RES 2022



2:12 Multi-Objective Enforcement Using Enforcement FSMs

References
1 Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. On

the Logical Characterisation of Performability Properties. In Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9–15,
2000, Proceedings, volume 1853 of Lecture Notes in Computer Science, pages 780–792. Springer,
2000.

2 Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. Shield synthesis:
Runtime Enforcement for Reactive Systems. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 9035 of Lecture Notes in Computer Science, pages 533–548.
Springer, 2015.

3 Khalil Esper, Stefan Wildermann, and Jürgen Teich. A Comparative Evaluation of Latency-
Aware Energy Optimization Approaches in Many-Core Systems. In Second Workshop on
Next Generation Real-Time Embedded Systems, NG-RES@HiPEAC 2021, January 20, 2021,
Budapest, Hungary, volume 87 of OASIcs, pages 1:1–1:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

4 Khalil Esper, Stefan Wildermann, and Jürgen Teich. Enforcement FSMs – Specification
and Verification of Non-Functional Properties of Program Executions on MPSoCs. In 19th
ACM-IEEE International Conference on Formal Methods and Models for System Design
(MEMOCODE’21), 2021.

5 Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-adaptive
software with control-theoretical formal guarantees. In Proceedings of the 36th International
Conference on Software Engineering, pages 299–310, 2014.

6 Hans Hansson and Bengt Jonsson. A Logic for Reasoning about Time and Reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

7 Connor Imes, David HK Kim, Martina Maggio, and Henry Hoffmann. POET: a portable
approach to minimizing energy under soft real-time constraints. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 75–86. IEEE Computer Society,
2015.

8 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Quantitative analysis with the
probabilistic model checker PRISM. Electron. Notes Theor. Comput. Sci., 153(2):5–31, 2006.

9 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In Computer Aided Verification – 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of
Lecture Notes in Computer Science, pages 585–591. Springer, 2011.

10 David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the
seventh IEEE international conference on computer vision, volume 2, pages 1150–1157. Ieee,
1999.

11 Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoffmann.
Automated control of multiple software goals using multiple actuators. In Eric Bodden,
Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors, Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, pages 373–384. ACM, 2017.

12 Sumit K. Mandal, Ganapati Bhat, Janardhan Rao Doppa, Partha Pratim Pande, and Ümit Y.
Ogras. An energy-aware online learning framework for resource management in heterogeneous
platforms. ACM Trans. Design Autom. Electr. Syst., 25(3):28:1–28:26, 2020.

13 Srinivas Pinisetty, Partha S. Roop, Vidula Sawant, and Gerardo Schneider. Security of
pacemakers using runtime verification. In 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design, MEMOCODE 2018, Beijing, China, October
15-18, 2018, pages 51–61. IEEE, 2018.

14 Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Nathan Allen, Stavros Tripakis, and
Reinhard von Hanxleden. Runtime enforcement of cyber-physical systems. ACM Trans.
Embed. Comput. Syst., 16(5s):178:1–178:25, 2017.



K. Esper, S. Wildermann, and J. Teich 2:13

15 Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Stavros Tripakis, and Reinhard von
Hanxleden. Runtime enforcement of reactive systems using synchronous enforcers. In Pro-
ceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of
Software, Santa Barbara, CA, USA, July 10–14, 2017, pages 80–89. ACM, 2017.

16 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, 2000.

17 Jürgen Teich, Michael Glaß, Sascha Roloff, Wolfgang Schröder-Preikschat, Gregor Snelting,
Andreas Weichslgartner, and Stefan Wildermann. Language and Compilation of Parallel
Programs for *-Predictable MPSoC Execution Using Invasive Computing. In 10th IEEE
International Symposium on Embedded Multicore/Many-core Systems-on-Chip, MCSOC 2016,
Lyon, France, September 21–23, 2016, pages 313–320. IEEE Computer Society, 2016.

18 Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang Schröder-
Preikschat, and Gregor Snelting. Invasive computing: An overview. In Michael Hübner and
Jürgen Becker, editors, Multiprocessor System-on-Chip - Hardware Design and Tool Integration,
pages 241–268. Springer, 2011.

19 Jürgen Teich, Pouya Mahmoody, Behnaz Pourmohseni, Sascha Roloff, Wolfgang Schröder-
Preikschat, and Stefan Wildermann. Run-Time Enforcement of Non-functional Program
Properties on MPSoCs. In A Journey of Embedded and Cyber-Physical Systems, pages 125–149.
Springer, 2021.

20 Jürgen Teich, Behnaz Pourmohseni, Oliver Keszöcze, Jan Spieck, and Stefan Wildermann.
Run-Time Enforcement of Non-Functional Application Requirements in Heterogeneous Many-
Core Systems. In 25th Asia and South Pacific Design Automation Conference, ASP-DAC
2020, Beijing, China, January 13–16, 2020, pages 629–636. IEEE, 2020.

NG-RES 2022





Overlapping-Horizon MPC: A Novel Approach to
Computational Constraints in Real-Time Predictive
Control
Alberto Leva #

DEIB, Politecnico di Milano, Italy

Simone Formentin #

DEIB, Politecnico di Milano, Italy

Silvano Seva #

DEIB, Politecnico di Milano, Italy

Abstract
Model predictive control (MPC) represents the state of the art technology for multivariable systems
subject to hard signal constraints. Nonetheless, in many real-time applications MPC cannot be
employed as the minimum acceptable sampling frequency is not compatible with the computational
limits of the available hardware, i.e., the optimisation task cannot be accomplished in one sampling
period. In this paper we generalise the classical receding-horizon MPC rationale to the case where
n > 1 sampling intervals are required to compute the control trajectory. We call our scheme
Overlapping-horizon MPC – OH-MPC for short – and we numerically show its attitude at providing
a tunable trade-off between optimisation quality and real-time capabilities.
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1 Introduction and background

In modern control applications, Model Predictive Control (MPC) is the approach of election
to optimal feedback regulation of multivariable (possibly nonlinear) systems subject to input
and output constraints [1]. The key ingredient of all MPC strategies is the so-called Receding-
Horizon policy, hereinafter RH-MPC for short. According to this policy, at each control
step occurring at fixed period, the control signal trajectory is computed by considering its
(predicted) impact on the state of the system over a future time window of finite length.
Then, only the first sample of the optimal control sequence is applied to the system, whereas
the whole input trajectory is re-optimised over a moved prediction horizon at the following
sampling instant [9].

Despite the uncountable successful applications of such an approach [6], practical imple-
mentations of MPC schemes still present tough challenges for many real-world applications [5],
among which: integration with data-driven model learning procedures [11], automatic tuning
of MPC weights [8] and efficient on-line optimisation [12]. In particular, the latter represent a
strong limitation for all applications where limited computational resources are available and
a minimum sampling frequency is fixed by the dynamics at hand, in that the optimisation
task must be accomplished in one period. Indeed, the expansion of MPC toward real-time
systems on the one hand, and large-scale problems on the other, make the problem of allotting
computational resource timely far more relevant than it was in the past, see e.g. [10].
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Sample computed but not applied

Move computed and applied

Move computed but not applied

Figure 1 Role of the hold horizon NH assuming that the optimisation problem (OPT) can be
solved in one step; since in this particular example NH < NC , not all the computed control moves
are applied; solid circles denote the control sequence actually fed to the process.

In [7], a suitable MPC scheme was proposed to overcome the above issues, by allowing
the control action to be updated only “sporadically”, standing on the assumption that an
inner control layer is available to regulate the system, while the outer MPC is running
in open loop. Another approach is to embed the predictive controller within a general
event-based/asynchronous framework (see, e.g., [3] and [13]), thus limiting the number of
computations but, at the same time, making the analysis unnecessarily complicated for a
system whose signals are periodically sampled and with no network-related problems, like
event-triggering or communication delays [14]. Moreover and most important, in sporadic
and event-based strategies, when a new optimisation is required, this still must be done
within one control step.

In order to deal with the problem of limited resources, in this work we propose a
generalisation of the standard RH control scheme, for the case where n > 1 samples are
required to perform the optimisation over the selected prediction horizon NP . The proposed
generalised scheme will be named Overlapping-Horizon MPC (OH-MPC) hereafter, in that
its key idea is to start optimising the new input sequence while the previous control is applied
– along this interval the old and new sequences are thus “overlapped”, whence the name –
and switch to the updated control trajectory as soon as this is available. In particular, by
defining a hold horizon NH as the number of samples of the computed input sequence that is
actually applied to the system, we will discuss that, for 2n−1 ≤ NH ≤ NP , we can span with
continuity (of course quantised in steps) between two extrema. One is the classical RH-MPC
policy; the other (that we name herein Open-Loop MPC or OL-MPC for short) consists of
applying the entire sequence of control samples as coming from the optimisation over the
prediction window. In addition and most important, then, while spanning in between the
said extrema we can always comply with the computational constraints. Finally, we will
show that, if n = 1, our generalisation reduces to the traditional RH-MPC scheme, with
all the related properties. In a nutshell, to summarise, we can outline our proposal by the
following statements.

Taking RH-MPC and OL-MPC as extrema, we introduce and exploit an additional degree
of freedom in the form of applying only a part (NH) of the computed control horizon.
We build on this to propose a methodology for addressing the case in which the solution
of the optimisation problem necessarily spans more than one control time step as dictated
by the physics of the problem, which apparently makes RH-MPC infeasible.

The remainder of the paper is organised as follows. In Section 2, the notion of hold
horizon NH for a predictive control scheme is defined and the OH-MPC scheme is introduced
and explained. Then, Section 3 discusses the presented ideas, also in a view to providing some



A. Leva, S. Formentin, and S. Seva 3:3

OPT
n NHNC NP0

OPT
n NHNC NP0

OPT
n NHNC NP0

OPT
n NHNC0

OPT
n0

NC NH NP

NP

t

Control value from the previous optimisation, taken as fixed in the one for the current horizon

Figure 2 Horizons when the optimisation problem (OPT) cannot be solved in one step; here we
set NC < NH – hence all the computed control moves are applied – just for the sake of variety and
completeness; again, solid circles denote the control sequence actually fed to the process.

application-oriented motivation for the additional degrees of freedom introduced. Section
4 provides a benchmark numerical example, to show that OH-MPC represents the best
trade-off when limited computational resources are available. The paper is ended by some
concluding remarks.

2 Overlapping-horizon MPC

In this section, we present the OH-MPC policy in general, and outline the corresponding
algorithm. Let the system S to control be described in the discrete time domain by

x(t + 1) = f(x(t), u(t)), (1)

where x ∈ Rn represents the state vector, while f denotes a nonlinear function of the past
state and input u ∈ Rm. The standing assumption of the work is the following.

▶ Assumption 1. The sampling time Ts of the application is dictated by the physical control
problem, thus cannot be changed, and is so short that n > 1 samples are required to solve a
state-feedback optimal control problem for (1).

In such a situation, not infrequent in the applications, the standard receding horizon policy
cannot be applied. In this section, we will therefore derive our scheme as a generalisation of
traditional MPC, to deal with this specific – yet potentially critical – case.

The bove said, in its most general form the OH-MPC problem is stated as

min
u(n),...,u(Nc)

1
Np − n

Np∑
h=n

L(x(h), u(h)) (2)

subject to : x(t + 1) = f(x(t), u(t)), t = 1, . . . , Np,

u(i) = ū(Np − n + i), i = 1, . . . , n,

x(j) ∈ X , u(j) ∈ U , j = n, . . . , Np

As can be seen, the objective of the control strategy is to minimise a (possibly economic [4])
cost, expressed by the time average of a nonlinear function L(·, ·) of states and inputs over
a prediction horizon Np, so that x and u are constrained to belong to some feasibility sets,
called X ⊂ Rn and U ⊂ Rm, respectively.
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Figure 3 Horizons when the optimisation problem (OPT) cannot be solved in one step – particular
but interesting case in which the optimisation problem can use all the available computational
capability (we set here NC = NP for simplicity, as this is a quite frequent choice); here too, solid
circles denote the control sequence actually fed to the process.

The key feature of OH-MPC is that, since we assume n samples are required to return
the optimisation results, the first n − 1 samples of the input trajectory are set as the latest
n − 1 ones delivered at the previous iteration, namely, ū(Np − n + 1), . . . , ū(Np). Such a
sequence is used within the optimisation routine to estimate (through the model f) the
starting trajectory of the state x and then set the initial condition, i.e., the predicted value of
x(n), for the input sequence to be optimised, that is, u(n), . . . , ū(Nc), where Nc denotes the
control horizon. We further assume that, when Nc < Np, the sequence u(Nc + 1), . . . , u(Np)
is constant and equal to the most recent control u(Nc).

Within this framework, there arises the need to introduce an additional degree of freedom
NH , called hold horizon, as the number of the computed control samples that are actually
applied to the system. The role and meaning of the newly introduced hold horizon NH is
visually explained in Figure 1 for the traditional case of n = 1.

Even in this scenario, where the solution can be made available in one step, one might
decide to apply a subset of the computed controls. For instance, in open-loop MPC (OL-MPC,
hereafter), where the control input is applied in open-loop and updated only after the end of
the prediction horizon, one might decide to apply only NH samples of u (out of Nc) and then
rerun the optimisation earlier. However, a typical choice of the hold horizon in OL-MPC
with NC = NP is NH = NC , namely, the input is optimised over the whole horizon and all
the outcoming samples are applied to the system.

The choice of NH becomes particularly interesting when n > 1 (see Figure 2). In fact, we
can here highlight that the hold horizon must satisfy

2n − 1 ≤ NH ≤ NC . (3)

The upper bound is encountered in those situations like OL-MPC where, no matter how
large n is, the control system is run in open-loop (and, typically, NC = NP ). The lower
bound might become instead a rather restrictive constraint, in that it limits the minimum
amount of input samples that have to be injected into the system in open-loop, due to the
computational constraints. The limit case NH = 2n − 1, where the control action is updated
at the maximum possible frequency (dictated by n) is visually illustrated in Figure 3.

The overall strategy – that should now be clearly qualified as a generalisation of standard
MPC, an aspect that will be further discussed in the next section – can be summarised as
per Algorithm 1.
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Algorithm 1 The OH-MPC algorithm.

/* Problem acquisition & setup */
1 acquire the guaranteed No. n of steps to optimize;
2 acquire the horizons NP , NC , NH ;
3 acquire the model of the problem, i.e., L(·, ·), f(·, ·);
4 acquire the initial conditions x(0), ū(t), t = NP − n + 1, . . . , NP ;

/* Execution */
5 while control system is running do
6 solve (2) and collect u(n), . . . , u(Nc);
7 set u(i) = u(NC), i = NC + 1, . . . , NP ;
8 compose the sequence

u(t) =
{

ū(NP − n + t), t = 1, . . . , n,

u(t), t = n, . . . , NH

9 apply the composed sequence to the system S in (1);
10 when the sequence ends, thus the new optimisation time is reached, set x(NH) as

the new x(0) and ū(t) = u(t), t = 1, . . . , NP ;
11 end

3 Discussion and motivation

We devote this section to briefly discuss the possibilities opened by the OH-MPC policy, also
providing – compatibly with the proposal-oriented scope of this paper – some operational
motivation for its adoption.

To this end, we first observe that by suitably setting the involved horizons, OH-MPC
specialises to both known problems and new ones, of importance discussed below, to exploit
the introduced additional degrees of freedom. In particular, if n = 1 is feasible, the following
staements hold true.

With n = 1 and NH = 1, OH-MPC apparently reduces to the classical RH-MPC problem.
With n = 1 and NH = NP , the so-called “open-loop MPC” (OL-MPC) is obtained; here,
we call this “one-step-compute” OL-MPC to stress the condition on n.
In the latter case, taking NP as given, choosing NC < NP is the one degree of freedom
to reduce the size of the optimisation problem.

This said, let us briefly review alternatives to the proposed OH-MPC in its application
case of election, i.e., when n = 1 is not feasible, and for reasons too long to discuss herein,
OL-MPC is not considered reliable enough. These alternatives are substantially two. One
can either downsize the optimisation problem by reducing the prediction and/or the control
horizon, or replace the said problem with local equivalents (for example, linearising in the
vicinity of conveniently chosen operating points) that require less effort to be solved.

More interesting, and motivating for the presented research, is therefore to study the
case in which n = 1 is infeasible, but at the same time – once again for a variety of possible
reasons that we are not treating in this paper – the optimisation problem must be solved as
is. Here, OH-MPC can be fruitfully exploited to provide the needed additional degrees of
freedom.
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With reference to Figure 2, we assume for the scope of this work that optimisations
occur only when some horizon elapses, i.e., we exclude for the moment techniques involving
event-triggered optimisations like the sporadic one above.

This said, first the hold horizon NH can be made both larger and smaller than the control
one NC . This allows to use the former to dictate the (constant) cadence of optimisations,
while - for the latter - one can take the value dictated by the optimisation problem definition.

Second, when an optimisation is in progress, the control samples applied to the process
come from the previous one, which – as will be shown – is tendentiously better than e.g. just
holding the control signal till a new sequence is ready.

Third, once n is reliably obtained e.g. by profiling techniques aimed at WCET (Worst
Case Execution Time) estimation [2], NH allows to optimally use all the available resources.
In detail, setting NP = NC and NH = 2n − 1 allocates all the computation time to perform
the maximum number of optimisations – as illustrated in Figure 3 – compatibly with the
time needed to compute one.

4 A proof-of-concept example

We now show a simulation case study – deliberately minimalistic – to witness the usefulness
of OH-MPC. The system to be controlled is the linear time-invariant plant

x1(t + 1) = 0.9 · x1(t) + 0.1 · u(t)
x2(t + 1) = 0.6 · x1(t) + 0.4 · x2(t)

y(t) = x2(t),
(4)

while the control problem we wish to solve is of the form in (2), with

L(x(t), u(t)) = x(t)T Qx(t) + u(t)T Ru(t),

R = 1, and

Q =
[
10 0
0 100

]
.

In the addressed problem, we also set a constraint on the value of the control variable u, that
must lie within the [-1,1] range. No constraints on x are given, namely X ≡ R2. We consider
the achieved closed-loop properties in terms of disturbance rejection using different model
predictive controllers, via an experiment with a unitary matched load disturbance applied to
the process at t = 0 and removed at t = 30. The prediction horizon NP is set equal to 9
steps.

Case study no. 1. Let us assume that the computation time needed for the solution of the
control problem amounts to three steps, thus n = 3.

In order to fairly assess the performance of OH-MPC, we consider a comparison among
the following strategies, all with NP = NC :

1. an oracle (in fact infeasible) solution, given by an OL-MPC approach, where we assume
– contrary to the OH-MPC hypothesis – that the solution can be computed in one step,
that is n = 1, and NH = NP = NC ;
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Figure 4 Case study no. 1. Time responses of state x to a step disturbance with different
MPC strategies: OL-MPC (unfeasible), OL-MPC with final n-step holding and OH-MPC (feasible).
OH-MPC clearly provides the best feasible performance.

2. a baseline feasible solution, in which the constraint n = 3 is taken into account, named
OL-MPC w/ hold. This solution is obtained starting from the one above, but, at the
beginning of a new optimization, the control variable is held equal to the latest available
control sample for n − 1 steps, waiting for the new solution;

3. the OH-MPC approach with NH = NP = NC .

The time histories of the state trajectories are illustrated in Figure 4, where it can be
clearly seen that the OH-MPC solution remains limited as compared to the baseline one,
even if it is not able to reach the attenuation level provided by OL-MPC. It is however worth
stressing that this OL-MPC is calculating the optimal solution in one step only, which is
infeasible under the assumption that n = 3.

The fact that OH-MPC can be considered as a good trade-off solution (namely, the best
alternative if the constraint n = 3 is active) is further confirmed by comparing the value of
the optimal cost

J =
N∑

t=1
x(t)T Qx(t) + u(t)T Ru(t),

where N denotes the length of the whole experiment, in Figure 5.

Case study no. 2. Considering the same system of the previous example, we now suppose
that the designer’s desire is to use all the available computational power to run the controller
at the maximum frequency, however under the physical constraint that the computation time
needed for the solution of the control problem amounts to five steps (n = 5), which can be
considered even more challenging than the previous situation, if NP = 9. Again, we consider
a comparison with the baseline strategy OL-MPC w/hold, but now – to use all the available
time – NH = 2n − 1 = 9.
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Figure 5 Case study no. 1. Cost J for different MPC strategies: OL-MPC (unfeasible), OL-MPC
with final (n − 1)-step holding and OH-MPC (feasible). OH-MPC clearly provides the best feasible
performance.

The time histories of the state trajectories are illustrated in Figure 6, where it can be
observed that the OH-MPC solution remains better than the baseline also in such a critical
scenario. A confirmation of this fact can be found in Figure 7, where the cost J is highlighted,
thus confirming OH-MPC gets closer to the ideal situation.

Summing up, OH-MPC appears to yield intermediate results between the (infeasible)
one-step-computing solution (n = 1) and the baseline one based just on holding the last
control value.

5 Conclusions and future work

We presented an MPC scheme, named Overlapping-Horizon MPC to comply with the case in
which the optimisation problem cannot be solved in one control time step, or said otherwise,
its solution can be guaranteed to terminate only within a number n > 1 of such steps. The
addressed case is potentially critical and occurs whenever computational resource limitations
can be relevant, whence the usefulness of OH-MPC in real-time control systems.

Although the presented research is still at a preliminary stage, OH-MPC definitely exhibits
interesting properties, in particular not requiring to modify the optimisation problem with
respect to its “original” formulation, nor to alter the sampling time with respect to the value
dictated by the control system physics (another desirable propoerty in the real-time case).

Future work will be directed toward a formal analysis of the OH-MPC scheme, possibly
articulating the study per characteristics of the controlled system and/or cost function, as
well as toward an engineered realisation, suitable for implementation and testing on real
plants.
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Figure 6 Case study no. 2. Time responses of state x to a step disturbance with different MPC
strategies: OL-MPC with final n-step holding and OH-MPC.

OL MPC w/ hold OH-MPC

-

0

5

10

15

20

-

Figure 7 Case study no. 2. Cost J for different MPC strategies: OL-MPC with final (n − 1)-step
holding and OH-MPC (feasible).
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Abstract
Precision tuning is an approximate computing technique for trading precision with lower execution
time, and it has been increasingly important in embedded and high-performance computing applica-
tions. In particular, embedded applications benefit from lower precision in order to reduce or remove
the dependency on computationally-expensive data types such as floating point. Amongst such
applications, an important fraction are mission-critical tasks, such as control systems for vehicles
or medical use-cases. In this context, the usefulness of precision tuning is limited by concerns
about verificability of real-time and quality-of-service constraints. However, with the introduction of
optimisations techniques based on integer linear programming and rigorous WCET (Worst-Case
Execution Time) models, these constraints not only can be verified automatically, but it becomes
possible to use precision tuning to automatically enforce these constraints even when not previously
possible. In this work, we show how to combine precision tuning with WCET analysis to enforce a
limit on the execution time by using a constraint-based code optimisation pass with a state-of-the-art
precision tuning framework.
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1 Introduction

In critical and mixed-critical applications, at least some of the tasks that compose the system
workload need to respect strict quality-of-service constraints, particularly in terms of latency.
These constraints may be expressed in terms of deadlines, and a maximum probability of
missing them. To ensure that deadlines are respected, worst-case execution time (WCET)
analysis can be used. In tasks that heavily rely on floating point arithmetic, it is possible to
improve the execution time (and other extra-functional properties such as energy-to-solution)
by applying approximate computing techniques such as precision tuning [4]. This technique
enables trade-offs between computation precision and the aforementioned extra-functional
properties, by allowing some or all the computations to be performed using different data
types than the ones specified in the application source code. While this kind of transformation
is usually performed manually by embedded system developers, it is an error prone operation,
and it is difficult to manually gauge the right data type for each operation even for an
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experienced developer, when the operation chains are long. However, recent developments in
compiler-assisted precision tuning [5] have introduced not only tools to perform the data
type adaptation, but also to explore the vast design space opened by the ability to provide
different data types for different code fragments, via integer linear programming (ILP) [2].

Specifically, this last approach involves the construction of a mathematical model of the
program being compiled, which is then fed into a linear programming solver to produce the
final data type assignments. The mathematical model computes a parametric estimation of
the relative execution time slowdown and of the quantisation error, with respect to a fully
floating-point-based implementation. These estimates are not useful in general to gauge the
real error or execution time of the generated program, because the per-instruction coefficients
employed are ratios rather than absolute errors or instruction timings.

However, in principle, if we replace such coefficients with values corresponding to the
actual error being inserted by a computation or its actual execution time in clock cycles,
the optimiser will gain visibility to a realistic estimation of these metrics. Therefore, this
enables optimising the program for a given maximum error or execution time. Of these
two metrics, the maximum error is often an overestimate that is not fine-grained enough
to accurately predict the actual error on realistic data. This problem arises from the fact
that error estimates not only depend on the specific data type, but on the data itself [5].
On the other hand, execution time only depends on the instruction selection performed
by the compiler and the microarchitecture of the target processing unit, which are both
deterministic factors under our control. As a result, conservative estimates of the execution
time are often accurate down to an acceptable error percentage [11].

Additionally, optimising for a target execution time is useful in real-time systems, where
error-tolerant tasks that must be completed under a certain deadline are plentiful and
common. For instance, closed-loop control algorithms of vehicles or weapons often must rely
on inherently noisy data from sensors such as gyroscopes or LIDAR systems [8]. Therefore
imprecisions in the output are acceptable as long as they are not significant with respect
to the input data itself. Our approach can be combined with WCET analysis to statically
ensure that the execution time of a task stands below a given boundary at a low cost in
terms of error (under 1%) – or, conversely, to prove that precision tuning is not enough to
ensure meeting a timing constraint.

Contribution

In this work we adapt state-of-the-art optimisation-based precision tuning techniques taking
into account the real execution time of an example application and constrain it to a given
upper bound, a new methodology which we call Ahead of Real Time (ART) optimisation.
To that end, we provide a theoretical model that can be used to construct such an optimiser.

We demonstrate the practicality of our approach by applying it to a subset of the
PolyBench [15] benchmark suite. We empirically demonstrate that the execution time
estimated by our methodology matches within a reasonable margin of accuracy (under 30%)
the actual execution time on a microcontroller core representative of the hardware used in
safety-critical applications, and that our approach allows to meet a timing deadline with a
low loss of precision, below 1%.
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Organisation of the paper

The rest of this paper is organised as follows. In Section 2 we discuss related works in the
field of precision tuning and WCET analysis for meeting timing constraints. Subsequently,
in Section 3 we discuss the mathematical models underlying our solution and in Section 4 we
show experimental data that validates the methodology as a whole. Finally, we summarise
our conclusions and discuss follow-up work in Section 5.

2 Related Works

Approximate computing is a broad field that is attracting a large amount of effort from
research groups worldwide. Its increasing relevance is a consequence of the growing spread of
error-tolerant applications in different domains, as well as of the rise of energy cost of ICT
systems, which threatens to grow to over 20% the total world energy demand by 2030 [9].
As a result, a wide range of hardware and software techniques are being scrutinised. While
the full discussion of this topic goes well beyond the scope of this work, a recent survey by
Stanley-Marbell et al. provides an overview of the most relevant approaches [14]. Within
approximate computing, precision tuning is a technique that lends itself to a wide applicability,
as it can be employed whenever a computation is performed using data types that are wider
than the actual application needs, as well as to automated application, since the compiler,
appropriately instructed as to the actual precision needed for the results, can automatically
infer the minimum data type and width, and then explore the cost of switching between
different data types to obtain an optimal solution. Once more, a full discussion of the topic
would require too much space for this work, so we refer the interested reader to a recent
survey that goes into greater detail on precision tuning and the tools that support it [4].

Broadly speaking, precision tuning approaches can be classified according to [4] as static
or dynamic depending on whether dynamic compilation is used to improve the accuracy of
the precision needs by taking into account variations in the workload, or not. The dynamic
approach is not suitable for critical and mixed-critical scenarios, since by nature it alters
the execution time whenever a dynamic compilation is performed. Thus, we constrain our
discussion to static precision tuning.

Within the techniques that are more appropriate for critical and mixed-critical embedded
systems, another taxonomic division occurs between approaches that leverage custom hard-
ware and those that address microcontrollers. The main difference is that in the former case
the target output is a hardware description language, in the latter the target is embedded C
or assembly code. While hardware-oriented tools are certainly relevant, for the purpose of
this work we limit our scenario to the more common case of systems built out of off-the-shelf
microcontrollers provided by semiconductor manufacturers such as Texas Instruments, ST
Microelectronics, or Nordic Semiconductors.

To address this scenario, static precision tuning tools gather the information required
to apply their optimisations to the code without requiring extensive testing, but rather
through static analyses. Among them, the most representative of the state of the art are
Precimonious [13], Daisy [7], and taffo [6], which are all candidates for use in embedded
systems scenarios. Of these, Daisy operates as a source-to-source compiler, which can be
considered a drawback, since it may prevent information from the source from reaching the
compiler optimisation phases directly, possibly introducing overheads. Precimonious and
taffo operate as llvm plugins, thus providing a greater degree of integration. However,
Precimonious public development has not progressed since 2016, making it incompatible with
modern releases of the llvm compiler – it requires llvm 3, whereas taffo can work with
recent versions of the compiler framework, including both versions 11 and 12. Therefore, we
select taffo as the baseline tool for the work presented here.
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Regarding the WCET estimation methodologies, a large amount of work is available
from the literature. A good taxonomy can be found in [1], where the state of the art in
the field is thoroughly analysed. In particular, it is possible to distinguish static analysis
and measurement-based methodologies, as well as hybrid approaches on one hand, and
deterministic and probabilistic approaches on the other. These can be combined to form six
possible different methodologies.

In practice, though, measurement-based deterministic timing analysis (MBDTA) is most
commonly employed in the industry, followed by static deterministic timing analysis (SDTA),
which is used for simpler hardware and software systems. MBDTA still has limitations in
that it requires good input data set, and, from the point of view of our work, the need
to perform measurements makes it unfeasible in the exploration of a huge design space.
While probabilistic methods are gaining increasing momentum [3], static methods are still
comparatively less developed than measurement-based ones. Therefore the probabilistic
approach is less suitable for our purpose.

In conclusion, the need to analyse a huge number of solutions in the design space, and
the relative immaturity of static probabilistic timing analysis leads us to choose SDTA as the
basic methodology for the WCET analysis performed in this work. Yet, the considerations
and the proposed methodology would fit well with any static timing analysis, as long as the
analysis method could be used as a constraint in the integer linear programming approach
used to solve the design space exploration problem.

3 Proposed model and methdology

In this section, we show how approximate computing can be used to enable the trade-off
between numerical precision and WCET. We achieve this by applying precision tuning
through ILP model optimisation.

We demonstrate the effectiveness of our approach by implementing it within a compiler-
based precision tuning tool – taffo. First, we briefly introduce taffo and the state-of-the-art
ILP model on which our new methodology is based upon. Then, we describe how the ART-ILP
model is adjusted and modified to provide realistic execution time estimates and optimisations.
Finally, we discuss how to exploit the ART methodology to leverage the precision-WCET
trade-off.

3.1 The architecture of TAFFO
taffo is a state-of-the art precision tuning toolkit based on the LLVM compiler framework [10].
taffo is independent from the program source language due to its analyses being based on
the llvm-ir intermediate language, and it supports automatic tuning using both floating
point and fixed point data types. It consists of five independent passes, which take the form
of a loadable plugin for LLVM-based compilers. The pass-based architecture allows taffo
to be expandable, easy to use and robust.

The taffo tool requires the programmer to define some contextual information related
to the value ranges of the inputs and the extent of the area of code that needs to be tuned.
This information is inserted through annotation of the source code. The first pass of taffo,
called Initializer, reads such annotations and converts them in the internal data structures
required by the rest of taffo.

From the user-provided information, taffo then analyses the program to conservatively
derive the numerical intervals each variable in the program will have at runtime. This pass
is called the Value Range Analysis or vra. The information derived by the vra is then
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used to determine which reduced-precision data type to use for each variable, a procedure
called Data Type Allocation (dta). The dta can operate based on two different algorithms:
a peephole-based algorithm which always chooses the fixed-point data type with the highest
valid point position for each variable, and a new optimiser based on ILP techniques [2].
This step is able to optimally mix floating point and fixed point data types by exploiting a
mathematical model of how changes to the precision mix affect the speedup and the output
error. The software uses the Google OR-Tools C++ framework [12] as model solver backend.

Down in the pipeline, the Conversion pass is responsible for applying the data type
changes on the program being tuned, and finally the Feedback Estimator pass statically
analyses the error using state-of-the-art estimation methods [5].

3.2 The ART-ILP model

In the intermediate representation of a compiler, a program is described in terms of a control
flow graph, where each node is called a basic block and contains a list of instructions. This
kind of representation is not directly suitable for modelling the execution time of a program
or its error-tolerance, a different formulation is needed. In the following we focus on the
execution time, and we present the model used by the dta pass of taffo.

Let us consider a single basic block B, represented as a list of instructions. There are
various kinds of instructions, but for the purposes of precision tuning we only consider
mathematical instructions and cast or type conversion instructions. These are the only
instructions that are affected by the precision tuning optimisation. Typically, cast instructions
are inserted only when a variable in the intermediate representation needs to be converted
from one type to another. Without loss of generality, we consider all mathematical instructions
to have a single data type, which applies to all of the operands and its result value. Due
to this constraint, which casts are present in the program only depends on the data type
assignment of each mathematical instruction.

From these considerations we can begin building a mathematical model describing a
program, specifically an integer linear programming (ILP) problem. ILP problems have the
following form:

k1,1x1 + k2,1x2 + · · · + kn,1xn ∈ [l1, u1)
k1,2x1 + k2,2x2 + · · · + kn,2xn ∈ [l2, u2)
· · · · · ·
k1,mx1 + k2,mx2 + · · · + kn,mxn ∈ [lm, um)

min
∑n

i wixi.

The first set of disequalities are called the constraints, while the final expression is called
objective function, and represents the quantity that the optimiser must attempt to minimise.
Each constant ki,j and wi is called a coefficient or weight. The goal of the optimiser is to
find an assignment to each variable xi that both satisfies the constraint and minimises the
objective function. Additionally, each xi must be an integer.

Now, in order to exploit such a model for precision tuning, we introduce multiple sets of
variables that represent every possible type choice for each instruction. For each mathematical
instruction a, and for each data type t, we introduce a variable xa,t ∈ [0, 1] that represents
the choice of using the given data type for that instruction. Each type choice is mutually
exclusive, and as a result we must introduce the following constraints:∑

t xa,t = 1 ∀i ∈ B.
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In order to take into account the execution time in the optimisation, such variables must
appear in the objective function. As a minimum, we must introduce the following term:

Tm,B =
∑

i∈M(B),d

time(i, t) × xi,t

where time(i, t) is the average execution time of instruction i with data type t, and M(B)
is the set of mathematical instructions in M . Therefore, Tm is the execution time of all
mathematical instructions in a given basic block.

This partial expression of the execution time must be augmented by a second term
for the execution time devoted to cast operations. In fact, an excessive amount of casts
may counterbalance any advantage provided by lowering precision. Therefore, before each
mathematical instruction, we insert in our model additional virtual cast instructions, used to
represent the execution time of casts whenever they are needed. To take into account the
varying data types between two instructions i and i′ and the casts needed on the operands,
we introduce a constraint for each possible pair of different types t, t′ with this form:

xi,t + xi′,t′ ≤ yi,t,i′,t′ + 1.

The yi,t,i′,t′ variable will be set to 1 during the optimisation process if a cast is necessary.
Therefore, in the objective function the time required for performing casts is expressed by
the following term:

Tc,B =
∑

i,i′∈M(B)

∑
t,t′:t̸=t′

time(i, t, t′) × yi,t,i′,t′ .

An additional term in the objective function represents the error, in terms of a
representation-independent metric called the IEBW, which we won’t describe here because
it’s not involved in our improvements to the existing methodology. We denote this term
as EB . In the objective function, the three terms Tc,B , Tm,B and EB are summed together
and their balance is determined by two weights, W1 and W2, referring respectively to the
execution time component and the error component. Therefore, the objective function for
optimising a basic block B appears as follows:

min W1 (Tc,B + Tm,B) 1
N1

− W2EB
1

N2
.

Two parameters N1 and N2 are added to normalise the weights of the two terms (time
and error) to make them comparable. The values of N1 and N2 are equal to the maximum
possible estimated execution time and error respectively.

3.3 The ART approach
The model we have just described only involves simple basic blocks, which only represent
straight-line pieces of code without control structures such as loops, conditional statements
or branches. The execution time of a serial program can be modelled in a fairly simple way.
Let us denote with time(B) the time required for executing a basic block B, and with NB

the number of times the basic block is executed in a given execution trace E. Therefore, the
execution time of E is the following:

time(E) =
∑

B

NB × time(B).
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On an in-order CPU architecture such as a microcontroller architecture, the execution
time of a basic block B can be modelled with good accuracy as the sum of the individual
execution times of each instruction i in the basic block:

time(B) =
∑
i∈B

time(i).

Notice that in this work we do not consider out-of-order and multicore architectures, and
we also ignore the effect of instruction and data caches.

In the linear programming model we described in Section 3.2, we further categorised
the instructions in a basic block in three sets: mathematical instructions M , represented
by x variables in the model, cast instructions C, represented by y variables in the model,
and other instructions which do not appear in the model. Therefore, from a solution to the
ILP model – which consists of assignments to the model’s variables – we can estimate the
execution time of a basic block with the following expression:

time(B) = Tm,B + Tc,B + TB\(M∪C).

This formulation adds a constant factor TB\(M∪C) that represents the execution time
of instructions that are neither arithmetical instructions or cast instructions, and are not
affected by the optimisation process. When also accounting the execution of an entire
program, we must estimate the worst-case or upper-bound NB for each basic block in the
program, which we call max(NB). This can be done in a conservative way by well-known
control flow static analysis techniques, which are commonplace for WCET analysis [11].The
estimation for the execution time thus becomes:

time(E) =
∑

B

max(NB)(Tm,B + Tc,B + TB\(M∪C)).

Notice that this expression is indeed in the form acceptable for a linear constraint.
Therefore, we can statically impose a limit on the worst-case execution time (WCET) of a
program by introducing the following constraint in the linear programming model:

time(E) ≤ Tmax.

4 Experimental Evaluation

To experimentally evaluate the ART methodology in practice, we performed a set of experi-
ments aimed at testing the quality of the execution time estimation.

As example applications, we chose some selected benchmarks from the PolyBench/C
suite, version 4.2.1 [15]. This benchmark suite consists of several programs written in the C
programming language that encompass a large variety of computational kernels. Of the entire
set of benchmarks, we chose the ones with the highest execution time variance depending on
the optimisation parameters: 2mm, 3mm, covariance, lu and nussinov. The benchmarks are
unmodified, exception done for the addition of the required annotations for taffo.

Hardware-wise, the platform targeted for the estimation was a STM3220G-EVAL ST
Microelectronics embedded evaluation board, with a 120 MHz Cortex-M3 ARM processor,
128 KB of on-chip internal RAM, and 2 MB of external RAM.

The experiment was conducted as follows. First, the number of clock cycles required for
every instruction was profiled on the embedded board by running a specifically-designed
software. These metrics were intentionally increased by a fixed percentage (25%) to take
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Figure 1 Time and error measurements compared with the time estimates provided by the model
used in the ART methodology. On the horizontal axis is the value of the W1 optimisation parameter.
On the the two vertical axes, left to right, are clock cycles and percentage relative mean error.

into account the fact that additional instructions may be introduced by later program
transformations performed in the compiler. This data is stored in a configuration file suitable
for usage by the optimiser.

At this point, each of the benchmarks was compiled both without using taffo, and
with taffo. Both compilations were performed using LLVM clang version 12.0.0. For what
concerns the taffo compilations, each benchmark was compiled 25 times, every time with a
different setting regarding the weight of the mathematical and cast execution component
W1 and the precision component W2. We call these separate compilations versions. The
initial value of W1 was zero, and each subsequent compilation increased W1 by 40 until
reaching the value of 1000. W2 was derived from W1 via the equation W2 = 1000 − W1.
Each version of each benchmark (included the non-mixed-precision version) is then run on
the aforementioned embedded board. No supporting operating system is used except for
the lightweight hardware abstraction layer provided by the manufacturer of the board. The
execution time of each run and the output data from the computation performed by the
benchmark is logged by means of the built-in serial port.
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During the compilation of the mixed-precision versions, the taffo Data Type Allocation
pass also computes the estimated execution time of the program.

In Section 4 we show, for each benchmark, the real and estimated execution times in
clock cycles, and the percentage relative mean error in the output. The estimated execution
time is consistently overestimated with respect to the real execution time. We believe this is
due to two factors. Firstly, the 25% margin added to the cycle count of every instruction,
which however is intentional to provide a safety margin. Secondly, the maximal basic block
execution counts NB are themselves overestimated by the static analyses we perform, based
on the scalar evolution pass of LLVM.

Secondly, we observe that the execution time prediction is consistent with the measured
execution time: speedups happen exactly when they are predicted by the model. The
estimate of the amount of speedup with the increase of W1 is however underestimated. This
is primarily due to the overestimation of the NB parameters, as we mentioned, since the
ratio of overestimation is not consistent for each basic block. However, in general these
are not issues for what concerns WCET estimation, as an overestimation is better than an
underestimation in this context.

Finally, we observe that the error either remains constant or gradually increases with W1
– or more properly, with the decreasing of W1. Some momentary irregularities are observed
in the covariance and lu benchmarks. This happens when the error and execution time
terms of the objective function have similar values, due to the N1 and N2 normalisation
parameters. In general, the error is lower than 1% for all benchmarks. This is consistent
from the behaviour we expect from the integer-linear-programming-based optimiser.

From the data we can conclude that the ART methodology is effective for WCET
optimisation, as the estimated execution time is indeed reflective of real execution time, and
it is also conservative enough to provide an acceptable margin for handling perturbances
such as non-maskable interrupts or other higher-priority concurrent tasks.

5 Conclusions

In this work we introduced and described the ART methodology, a way to exploit precision
tuning to enforce worst-case execution time constraints on a given computational kernel or
program. This methodology has been implemented as part of the taffo precision tuning
framework, based on LLVM and the Google OR-Tools toolkit, and has been evaluated on
an embedded-systems board by exploiting the PolyBench benchmark suite. The results
highlighted the approach’s ability to enforce a constraint on the worst-case execution time
automatically by adjusting the precision of the data types used in the program.

Future improvements to this work encompass the usage of a similar methodology to
also enforce a given boundary on the precision loss. Additionally, follow-up development
include the development of a model that also supports out-of-order architectures, data and
instruction caches, and parallel applications and architectures.
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