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Abstract
The excellent performance of deep neural networks and machine learning algorithms is pushing the
industry to adopt such a technology in several application domains, including safety-critical ones, as
self-driving vehicles, autonomous robots, and diagnosis support systems for medical applications.
However, most of the AI methodologies available today have not been designed to work in safety-
critical environments and several issues need to be solved, at different architecture levels, to make
them trustworthy. This paper presents some of the major problems existing today in AI-powered
embedded systems, highlighting possible solutions and research directions to support them, increasing
their security, safety, and time predictability.

2012 ACM Subject Classification Computer systems organization

Keywords and phrases Real-Time Systems, Heterogeneous architectures, Trustworthy AI, Hyper-
visors, Deep learning, Adversarial attacks, FPGA acceleration, Mixed criticality systems

Digital Object Identifier 10.4230/OASIcs.NG-RES.2022.1

Category Invited Paper

1 Introduction

Embedded computing platforms are becoming more complex every day to manage the
increasing computational load generated by emerging applications, as autonomous vehicles
(cars, trains, drones, aircrafts), advance robotic systems, intelligent appliances, and so on.
Such systems are equipped with a variety of sensors that produce a large amount of data,
hence demanding for real-time processing and high-performance computing. To provide the
required computational power, computer architectures are evolving towards heterogeneous
platforms that integrate on the same board, or even on the same chip, multicore processors of
different types, field programmable gate arrays (FPGAs), general purpose graphics processing
units (GPGPUs), and special co-processors optimized for executing operations on tensors, as
tensor processing units (TPUs).

Although new tools and libraries are becoming available every year, developing safety-
critical applications on top of such heterogeneous platforms, while providing the required
guarantees, is quite difficult due to a number of non-trivial problems. The following list
presents just a few of such problems, related to the use of artificial intelligence (AI) in
safety-critical applications with real-time constraints.

The interaction among the various components through the shared resources available on
the computing platform (as buses, memories, and I/O devices) generates a significant
amount of interference, introducing large and unpredictable delays on the computational
activities. Such a large variability in responding to external events makes it is very
difficult to provide timing guarantees on the application behavior. This is also a serious
problem for the certification of safety-critical software components.

Programming modern heterogeneous platforms requires a deep knowledge of low-level
details of the architecture, which prolongs the developing and testing times.
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Distributing the computational activities in an optimal way between hardware accelerators
and processors is not trivial, but it can make a huge difference in the overall system
performance, as well as in satisfying the real-time application constraints.

Deep neural networks (DNNs) are commonly developed and inferred by means of state-
of-the-art frameworks (e.g., Tensorflow, Caffe, and PyTorch), which greatly simplify the
implementation of new models. Unfortunately, however, none of the current frameworks is
specifically optimized to be used in safety-critical environments, nor capable of providing
bounded response times. This prevents their use in real-time applications like autonomous
driving, where DNNs should have a highly predictable behavior, not only in the functional
domain, but also in the time domain, responding within specific deadlines.

The use of deep learning algorithms and the related frameworks increases the software
attack surface, posing serious security issues for the overall system. This problem is
exacerbated by the fact that such frameworks usually run on top of rich operating systems,
as Linux, which are more vulnerable to cyber attacks.

In spite of their excellent capabilities in perception tasks, deep neural networks have
been shown to be prone to adversarial attacks, i.e., malicious inputs with imperceptible
perturbations that force a neural network to produce a wrong output with a high
confidence score.

Similar threats derive from inputs that significantly differ from the distribution of the
training set. Predicting the behavior of a neural network on such inputs is not easy and,
in some cases, the network could also respond with a wrong output with a high confidence
score.

Finally, since the behavior of a neural network is not explicitly programmed, but encoded
in a huge number of parameters, interpreting the output of a neural model and deciding
whether its prediction can be trusted is a challenging task.

To address the issues described above, a lot of research is being devoted to support the
development of AI-powered applications on top of heterogeneous platforms for safety-critical
real-time systems.

The remainder of the paper is organized as follows: Section 2 discusses the problems
and preliminary solutions related to architecture issues; Section 3 presents problems and
promising solutions related to security issues; Section 4 describes the major threats caused
by the use of AI algorithms and some solutions aimed at mitigating them; Section 5 proposes
an architectural approach to address all the issues discussed above; and Section 6 states the
conclusions and outlines some promising research lines.

2 Architecture issues

To be used in real time, the inference of modern DNN models requires hardware acceleration.
This can be achieved by exploiting modern heterogeneous computing platforms equipped
by GPUs or programmable hardware, as FPGA. This section discusses the main problems
related to such computing platforms and presents existing solutions to them.

2.1 General platform issues
To cope with the different computational requirements of real-time applications, modern
heterogeneous computing platforms integrate different processing elements, as multi-core
processors of different types, general purpose GPGPUs, FPGAs, and tensor processing units.
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The concurrent accesses to shared devices existing on such architectures, as buses, memory
controllers, and high-level caches, create a significant interference on the computations,
introducing long and variable delays in application tasks.

For instance, Cavicchioli et al. [12] observed significant and variable delays when using
GPU acceleration on heterogeneous embedded platforms due to the contention occurring on
shared memory, especially for memory-intensive GPU tasks. Restuccia et al. [29] identified
some anomalous situations that can arise in an AXI bus arbiter in FPGA-based SoC and
proposed a reservation mechanism to prevent this phenomenon and restore fairness during
bus transactions.

A timing analysis has also been proposed [28] to bound the execution of periodically-
invoked hardware accelerators in nominal conditions. This analysis can be used to configure
a latency-free hardware module named AXI Stall Monitor (ASM) to detect and safely solve
possible stalls during AXI bus transactions. Efforts have also been devoted to analytically
bound the delay experienced by AXI bus transactions issued by hardware accelerators on
FPGA [30].

Hardware acceleration typically involves memory-intensive computations. Therefore, an
accurate control of the memory traffic is crucial to achieve predictability in the execution of
HW-tasks.

Pagani et al. [26] proposed a bandwidth reservation mechanism for AXI-based transac-
tions on FPGAs able to control the bus traffic generated by hardware accelerators. The
mechanism, named Memory Budget and Protection Unit (MBPU), aims at “shielding” hard-
ware accelerators from excessive or unpredictable memory interference. MBPUs are installed
between AXI master ports and the interconnect, enforcing a given budget of memory transac-
tions within a periodic interval of time. Budgets are recharged in a periodic fashion and are
configurable from the CPU via memory-mapped registers. MBPUs also protect the system
from unrestricted accesses to memory by HW-tasks: this is accomplished by masking the
accesses that fall outside a set of configurable memory address spaces.

2.2 GPU-related issues
Today, the most common way for accelerating DNNs is by executing them on a GPU-based
platform. This solution has two main advantages: (i) the response time can be reduced by
two orders of magnitude and (ii) the development is supported by standard frameworks.
However, GPUs also have disadvantages. First, they are closed systems and multiple tasks
are scheduled in a non preemptive fashion. This means that, if the system includes multiple
neural networks with different complexity and periodicity requirements, those with shorter
periods will be more likely to experience longer delays and higher response time variability.
An example of non-preemptive schedule of three DNNs with different execution times and
periods is illustrated in Figure 1.

Notice that, in this example, the total GPU utilization is less than one (U = 0.95), but
DDN1 is forced to skip the second and the fifth execution instance, because it cannot preempt
the execution of DNN3.

To solve this problem, Capodieci et al. [9], in collaboration with NVIDIA, proposed to
modify the GPU internal scheduler with a preemptive scheduler based on Earliest Deadline
First (EDF) [18], also providing bandwidth isolation by means of a Constant Bandwidth
Server (CBS) [3]. Unfortunately, however, this solution is not yet available on commercial
NVIDIA GPU platforms.

Other problems with GPU acceleration are due to the high power consumption and their
significant weight and encumbrance, which prevent their usage in small embedded systems,
as unmanned aerial vehicles (UAVs).

NG-RES 2022
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Figure 1 Example of non-preemptive schedule of three DNNs with different execution times and
periods. As clear from the figure, DNN1 experiences longer and variable delays.

2.3 FPGA-related issues
An interesting alternative to GPUs for accelerating AI algorithms is provided by FPGAs.
They are integrated circuits designed to be configured after manufacturing for implementing
arbitrary logic functions in hardware. As such, they exhibit a highly predictable behavior in
terms of execution times. In addition, they consume much less power with respect to GPUs
and existing commercial platforms are characterized by lower weight, encumbrance, and
cost. Hence, they represent an ideal solution for being used on battery-operated embedded
systems with size, weight, power and cost (SWaP-C) constraints, as space robots, satellites,
and UAVs.

Nevertheless, FPGAs have other problems when used as DNNs accelerators:

No floating point unit (FPU) is available on the chip, unless it is explicitly programmed
by the user, but consuming a significant fraction of the available fabric.

Programming FPGAs is quite more difficult than programming CPUs or GPUs, and
efficient coding requires a deep knowledge of low-level architecture details.

The frameworks available today for developing AI applications on FPGA-based platforms
are less rich and flexible than those available for GPUs, and the same is true for related
libraries and tools.

The overall FPGA area available in medium size SoCs could be insufficient to host more
than one DNN, or even a single large DNN.

To overcome the problems outlined above, a lot of research has been carried out in the
recent years.

The absence of an FPU is overcome by performing a preliminary parameter quantization
to convert floating point numbers into integers with n-bit precision. Several quantization
methods have been proposed in the literature [17], including symmetrical, asymmetrical,
non-uniform, and statistical. An extreme quantization converts weights into binary numbers
using the sign function. Courbariaux, Bengio, and David [14] have shown that a binarized
DNN can achieve 98.8% accuracy in classifying the handwritten digits of the MNIST dataset.
Other optimization steps (e.g., network pruning and layer fusion) can also be performed,
both on GPUs and FPGAs, to reduce the computation time and the memory footprint of
trained DNNs while minimizing the loss in accuracy.

To overcome the limitation of the FPGA area, Biondi et al. [6] proposed a programming
framework, called FRED1, to support the design, development, and execution of predictable
software on FPGAs. FRED exploits dynamic partial reconfiguration and recurrent execution

1 See details on http://fred.santannapisa.it.

http://fred.santannapisa.it
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to virtualize the FPGA area, thus enabling the user to allocate a larger number of hardware
accelerators than those that could otherwise be fit into the physical fabric. FRED also
integrates a tool for automated floorplanning [33] and a set of runtime mechanisms to enhance
predictability by scheduling hardware resources and regulating bus/memory contentions [29].

An application targeted by FRED consists of a set of software tasks (SW-tasks) running
on the CPU cores that can periodically invoke the execution of hardware accelerators (HW-
tasks) to be dynamically programmed on the FPGA. The communication scheme adopted
between SW-tasks and HW-tasks is illustrated in Figure 2.

SW task Input data

FPGA area

HW taskshared memory

<put data>

Input data

FPGA area 
required by the 

accelerator
<request>
put data

<get data>

request for HW acceleration

Bitstream for 
the FPGA
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Output  results
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Figure 2 Communication scheme adopted between SW-tasks and HW-tasks in FRED.

The FPGA virtualization is achieved through a timesharing mechanism that replaces
inactive accelerators (i.e., those that finished their computation and are waiting for the
next activation) with active ones. In this way, the total number of HW-tasks that can run
on the FPGA can be much higher than the number of HW-tasks that would statically fit
in the physical area available on the fabric. Hence, this mechanism virtualizes the FPGA
by creating a virtual area much larger than the physical one. The resulting approach is
similar to multitasking, where tasks continuously change their context, or a virtual memory
mechanism, where memory pages are swapped between hard disk and dynamic memory.

Thanks to a set of design choices and a proper scheduling infrastructure, resource
contention delays experienced by tasks running under FRED are bounded and predictable,
and hence they can be estimated to verify the system schedulability.

A full support for FRED has been developed under both FreeRTOS and Linux [25, 24].
The Linux support comes with a user-space daemon and a set of custom kernel drivers to
handle the processor configuration port (PCAP) and the shared-memory communication
buffers between CPUs and FPGA. A preemptable reconfiguration interface has also been
developed by Rossi et al. [31] to achieve a finer control in scheduling the reconfiguration
requests and a better control on the reconfiguration delays incurred by HW-tasks.

2.4 Framework issues
DNNs are commonly developed and inferred by means of state-of-the-art frameworks, as
Tensorflow, Caffe, and PyTorch. Unfortunately, such frameworks are not optimized for being
used in real-time applications and they are not supported by commercial real-time operating
systems, as VxWorks and QNX. As a consequence, DNN tasks may be subject to a variable
interference.

Casini et al. [10] addressed this problem by modifying the internal scheduler of the
TensorFlow framework and adapting it for the SCHED_DEADLINE scheduling class of
Linux. Extensive experiments demonstrated the effectiveness of the approach, showing a
significant reduction of both average and longest-observed response times of TensorFlow
tasks.

NG-RES 2022



1:6 Can We Trust AI-Powered Real-Time Embedded Systems?

Recently, Restuccia and Biondi [27] proposed a set of techniques for accelerating DNNs
on FPGA-based platforms with a highly predictable timing behavior under the Vitis AI
frameworks by Xilinx. In Vitis AI, the execution of the DNN layers relies on the deep
learning processing unit (DPU) core, a hardware accelerator optimized for the execution
of convolutional DNNs. Based on an extensive profiling campaign conducted on the Xilinx
Zynq Ultrascale+ platform, they proposed an execution model for the DPU employed to
derive a response time analysis for guaranteeing real-time applications constraints.

3 Security issues

Safety-critical systems that make use of AI algorithms consist of several components with
different complexity and requirements.

Consider for example a self-driving car. The functions responsible for steering, throttle
modulation, braking, and engine control are highly critical and must satisfy stringent
requirements in terms of safety, security, and real-time behavior. As such, they need to be
managed by a real-time operating system, that must be certified to guarantee the required
safety integrity levels.

On the other hand, high-level functions related to sensory perception, object tracking,
and vehicle localization, which heavily rely on AI algorithms, need to be executed on a
rich operating system (e.g., Linux) to exploit all the available device drivers, libraries, and
development frameworks required for such complex computations. These components are far
from being certified and offer a large software surface for cyber attacks.

In 2015, two hackers, Charlie Miller and Chris Valasek, discovered a vulnerability in the
Jeep Cherokee, which they exploited to remotely access the vehicle and gain physical control,
including steering, braking, turning on the wipers, blasting the radio, and finally, killing the
engine to bring the vehicle to a complete stop [15]. They wrote a long paper [19] where they
explain how they accessed the CAN bus through the infotainment system, detailing the full
attack chain.

Although cyber attacks to non critical components accessible by a wireless network cannot
be avoided completely, the security of a system can greatly be enhanced by preventing such
attacks from spreading to more critical components. This can be achieved by isolating
software components with different level of criticality into different execution domains,
through the use of a hypervisor.

3.1 Hypervisor-based architecture
A hypervisor is a software layer above the hardware platform able to create and manage
multiple execution domains, each hosting a virtual machine with its own operating system.

An example of a hypervisor-based architecture for safety-critical embedded systems is the
one proposed by the SPHERE project [7], which supports the creation of multiple virtual
machines on the same computing platform, providing both time/memory isolation, security,
real-time communication channels, and I/O virtualization to allow different virtual machines
to shared the peripheral devices.

Figure 3 shows an example of a hypervisor managing two execution domains with different
levels of criticality. One domain hosts a virtual machine running all safety-critical functions on
a real-time operating system (RTOS), while the other domain hosts another virtual machine
running AI-powered software on the Linux operating system. Such an architecture has been
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Figure 3 Example of a hypervisor managing two execution domains with different criticality.

successfully implemented and tested on a number of AI-powered control applications using
CLARE [2], a novel hypervisor purposely designed to support mixed-criticality real-time
systems exploiting AI hardware acceleration in heterogeneous embedded platforms.

3.2 CLARE hypervisor
The CLARE hypervisor is a novel bare-metal (type-1) hypervisor at the core of the CLARE
software stack [2]. It integrates cutting-edge mechanisms to host safe, secure, and time-
predictable virtual machines that can execute in isolation upon the same hardware platform.
CLARE hypervisor follows a fully-static approach with off-line configurations and optimization
to allocate the onboard resources to virtual machines. It has been designed to support modern
heterogeneous platforms, such as GPGPU- and FPGA-based SoC, to better exploit and
control their computational resources. In particular, it provides a number of real-time and
security features that make it suitable for safety-critical systems, such as

Improved key management and attack detection under control flow integrity by pointer
authentication code [16].
Hardware-based isolation exploiting the ARM TrustZone technology to perform key
management and provide attack detection and recovery strategies.
Virtualization of trusted execution environments leveraging ARM TrustZone [13].
Protection mechanisms at the hypervisor level to control temporal and spatial interference
among domains, also preventing side-channel attacks [20].
I/O device virtualization and I/O related memory contention control, with related latency
analysis [11].
FPGA virtualization to allow multiple domains to exploit hardware accelerators in
isolation.

4 AI related issues

Deep neural networks have shown an impressive performance in several recognition tasks, but
their suitability for mission-critical applications has been questioned by Szegedy et al. [35]
and many other authors [34], who showed that imperceptible perturbations added to an
input sample can fool a neural network in perceiving objects that are not present in the
input. Such perturbed inputs are called adversarial examples (AEs) and represent a serious

NG-RES 2022
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Figure 4 Example in which a neural network is able to correctly classify a genuine image of a
stop sign (top). However, the same image can be modified by adding an adversarial perturbation, so
that it is classified as a parking sign with a high confidence score (bottom).

threat for the security of AI-based systems. An example of adversarial image is shown in
Figure 4, where the picture of a stop sign is perturbed in such a way that it is perceived by
the network as a parking sign with a high confidence score.

Although a significant effort has been spent to develop defense methods against adversarial
examples [5], the problem remains open and challenging, since these attacks violate the
fundamental stationarity assumption of learning algorithms, i.e., that training and testing
data are drawn from the same distribution.

The trustworthiness of DNNs is also threatened by genuine inputs characterized by a
distribution that is quite different from that of the training samples. Such inputs are referred
to as out-of-distribution (OoD) samples. Two examples of OoD images are shown in Figure 5.

8

Figure 5 Two examples of OoD images that could cause a deep neural network to produce a
wrong output.

Considering that the prediction score of a DNN can be high in the presence on both AEs
and OoD samples, the output score of the best classified class cannot be considered as an
indication of the prediction confidence of the model.

Several methods have been proposed in the literature to detect AEs and OoD samples.
Two of these methods are presented below with more details.

4.1 Detection by input transformations
One method for detecting AEs relies on the fact that DNN models are usually robust to
certain types of input transformations (e.g., translation, rotation, scaling, blurring, noise
addition, etc.). This means that, if a genuine image is correctly recognized by a DNN, the
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prediction score reduces only slightly when the same image is translated, rotated, or modified
with one the mentioned transformations. However, the same is not true for most AEs and
it has been observed that they result to be more sensitive to input transformations, which
cause a much higher degradation in the prediction score.

This property of AEs has been exploited by some authors [37] to detect whether an input
x is adversarial or genuine. If y = f(x) is the top class score produced by the DNN on input
x and yT = f(T (x)) is the score produced on the transformed input T (x), a simple detection
method is to consider x to be adversarial if the difference y − yT is higher than a given
threshold τ .

Unfortunately, it is possible to generate adversarial examples that are robust to input
transformations. To cope with this case, Nesti et al. [22] proposed a new method, called
defense perturbation, capable of detecting AEs that are robust to input transformations.
The defense perturbation is generated by a proper optimization process capable of making
robust AEs sensitive again to input transformations. Furthermore, the paper introduces
multi-network AEs that can fool multiple DNN models simultaneously, presenting a solution
for detecting them.

4.2 Detection by coverage analysis
A different approach for detecting AEs is based on a deeper analysis of the neuron activation
values in the different DNN layers. In fact, in order to force a DNN model to classify an
input with a desired wrong class, AEs usually cause an overactivation of some neurons in
different network layers. To identify such neurons, Rossolini et al. [32] presented a new
coverage analysis methodology capable of detecting both adversarial and out-of-distribution
inputs.

The approach works in two distinct phases: in a preliminary (off-line) phase, a trusted
dataset is presented to the DNN and the neuron outputs, in each layer and for each class,
are analyzed and aggregated into a set of covered states, which all together represent a sort
of signature describing how the model responds to the trusted samples for each given class.
Then, at runtime, each new input is subject to an evaluation phase, in which the activation
state produced by the input in each layer is compared with the corresponding signature for
the class predicted by the network. The higher the number of activation values outside the
range observed during the presentation of the trusted dataset, the higher the probability that
the current input is not trustworthy. The approach is schematically illustrated in Figure 6.

The nice thing about this approach is that the comparison against the signature allows
computing a confidence value c distinct from the prediction score, indicating how much the
current prediction can be trusted.

4.3 Interpretability issues
Another problem of complex machine learning models is that they are hardly interpretable
by humans. In fact, they encode their input-output function in millions of parameters
and, therefore, it is not trivial to understand why a given input produces a certain output.
Many people demand for transparency and precise mechanisms as a prerequisite for trust.
Especially for safety-critical applications, developers cannot trust a critical decision system if
it is not possible to explain the reasons that brought to that decision.

To address this issue, a new branch of research, referred to as Explainable AI (XAI) [36],
started around 2014 with the goal of reconstructing and representing in a comprehensible
fashion the features that caused an AI model to produce a given output.

NG-RES 2022
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indicating how much the current prediction can be trusted.

Thanks to these methods, it has been found that, in some cases, a DNN learned to
classify images using features that have nothing to do with the object of interest, but appear
frequently in most training samples of a specific class (e.g., water for the class ship, snow for
the class wolf, or even copyright tags present in most of the images of a given class). Such
biases in the training data limit the generalization capabilities of a neural model and can
cause wrong predictions that would be quite harmful in applications like self-driving cars or
medical diagnoses.

Identifying such biases in the training set is the main objective of XAI, which in the
last years proposed several methods and tools for making AI decisions more interpretable to
humans [21]. For instance, Pacini et al. [23] presented X-BaD, a flexible tool for detecting
biases in training sets while providing user-interpretable explanations for DNN outputs. The
tool can also be used to compare the performance of different XAI methods.

5 Towards trustworthy AI-based systems

From the considerations presented in the previous sections, it should be clear that, although
AI algorithms exhibit a great performance in several perception and control tasks, they have
intrinsic weaknesses in terms of safety, security, timing predictability, and certifiability. Does
it mean that complex cyber-physical systems cannot take advantage of such an amazing
software technology? Fortunately, there is a promising way to exploit the power of modern
deep learning algorithms in safety-critical systems.

While we cannot prevent AI algorithms from being attacked or producing unsafe results,
we can take a number of countermeasures to prevent them from harming the whole system.

For instance, the level of temporal predictability, as well as the level of security of the
whole system can be increased by using a suitable real-time hypervisor capable of isolating the
safety-critical components from the AI-powered functions in two separated virtual machines,
as described in Section 3. In this way, an attack to the AI domain cannot propagate to the
high-criticality domain, which can be protected by exploiting the hardware security features
available in modern computer architectures.
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To cope with adversarial attacks and OoD samples, the defense methods described in
Section 4 are essential to detect both malicious as well as unsafe inputs that would cause a
DNN to produce a wrong output. In these cases, the system must react by excluding the
attacked AI component from the decision pipeline and switching to a simpler, but safer,
backup control module that can bring the system into a safe state. For instance, in a
self-driving car, the backup module could take control of the vehicle to stop it at the side of
the road.

The approach described above has been undertaken by Biondi et al. [8] for exploiting
deep learning models in safety-critical systems. The architecture includes two execution
domains illustrated in Figure 7: a high-performance domain, running under Linux, and a
safety-critical domain, running under the Erika Enterprise real-time kernel [1], both managed
by the CLARE hypervisor [2].
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Figure 7 Architecture scheme proposed in [8], including a high-performance domain (running all
the AI functions) and a safety-critical domain (running all critical control functions), managed by
the CLARE hypervisor.

The high-performance domain is in charge of executing all the AI algorithms and tasks
that must run under Linux, whereas the safety-critical domain runs all the vital system
functions under the Erika Enterprise real-time kernel [1].

To increase the level of robustness against AEs and OoD inputs, each perceptual function
is replicated by three different DNN models trained on different datasets. Each DNN also
includes a coverage analyzer to provide a confidence signal (represented by the red arrow
coming out from each DNN box). The three confidence signals are then integrated into an
overall confidence signal, which is used to decide whether to switch to the safe controller. The
three redundant DNN outputs go instead to a majority voter to resolve possible disagreements
in the predictions.

An extra safety feature is represented by the presence of a Safety Monitor, which is in
charge of detecting possible DNN outputs that could have a negative consequence on the
controlled system. In fact, even in the presence of a non-malicious input, a DNN could
generate an output that is not detected as unsafe by the voter and the confidence integrator,
but could cause the controlled system to fail or misbehave. If such a condition is detected by
the Safety Monitor, the system control is switched from the high-performance AI controller
to the backup controller.

NG-RES 2022
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A first version of the architecture has been successfully implemented and tested on a
control system for an inverted pendulum. In this case, the Safety Monitor uses a Lyapunov
approach to detect when the system state exits a safe region of the state space and enters a
margin region in which the stability can still be recovered by the safe controller. When this
happens, the control is given to the backup controller. The AI controller is re-enabled when
the system state goes back to the safe zone.

Figure 8 illustrates a simplified and qualitative representation of the state space for an
inverted pendulum, where the black dot represents the current system state, the safe region
is visualized in green, the recoverable region in yellow, and the unstable region in gray.
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Figure 8 Qualitative representation of the state space for an inverted pendulum. The black dot
represents the current system state.

On the same line, Belluardo et al. [4] presented a safe and secure multi-domain software
architecture tailored for autonomous driving.

6 Conclusions

This paper presented a set of problems that today prevent the use of deep learning al-
gorithms in mission-critical systems, as self-driving vehicles, autonomous robots, and medical
applications. Among them, the most relevant issues are the low predictability of modern
heterogeneous architectures and the high vulnerability of AI software to cyber attacks.

Fortunately, the research community is readily reacting to address such problems and some
solutions to overcome such limitations have already been proposed at different architecture
levels. However, the problems are many and complex, so several issues remain unsolved and
require some joint effort from the AI and the real-time research communities.
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