
Multi-Requirement Enforcement of Non-Functional
Properties on MPSoCs Using Enforcement FSMs –
A Case Study
Khalil Esper #

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Stefan Wildermann #

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Jürgen Teich #

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract
Embedded system applications usually have to meet real-time, energy or safety requirements on
programs typically concurrently executed on a given MPSoC target platform. Enforcing such
properties, e.g., by adapting the number of processors allocated to a program or by scaling the
voltage/frequency mode of involved processors, is a difficult problem to solve, especially with a
typically large varying environmental input (workload) per execution. In a previous work [4], we
formalized the related enforcement problem using (a) finite state machines to model enforcement
strategies, (b) discrete-time Markov chains to model the uncertain environment determining the
system’s workload, and (c) the system response that defines the feedback for the reactive enforcer.
In this paper, we apply that approach to specify and verify multi-requirement enforcement strategies
and assess a case study for enforcing two independent requirements at the same time, i.e., latency and
energy consumption. We evaluate and compare different enforcement strategies using probabilistic
verification for the use case of an object detection application.

2012 ACM Subject Classification Computer systems organization → Multicore architectures; Theory
of computation → Linear logic; Theory of computation → Modal and temporal logics; Hardware
→ Finite state machines; Computer systems organization → Self-organizing autonomic computing;
Theory of computation → Verification by model checking; Mathematics of computing → Probabilistic
representations

Keywords and phrases Runtime Requirement Enforcement, Verification, Finite State Machine,
Markov Chain, Energy Consumption, Probabilistic Model Cheking, PCTL, MPSoC

Digital Object Identifier 10.4230/OASIcs.NG-RES.2022.2

Funding This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research-
Foundation) – Project Number 146371743 - TRR 89 Invasive Computing.

1 Introduction

Many, particularly embedded system applications come along with different requirements that
should be met during their execution on many-core systems. One example are temperature
constraints because of a limited power budget. Causes of variations include interference with
other applications, i.e., due to shared resources. In addition, the workload induced by the
environment input data1 can vary significantly and with high uncertainty.

1 This paper takes care of the uncertainty of input from the environment that is typically not under the
control of a system, thus the influence is exogenous. The uncertainty of execution state on an MPSoC
platform is typically caused by sharing of resources on an MPSoC platform, thus endogenous. This
problem can be treated systematically by techniques for isolating application programs dynamically at
run-time such as invasive computing [18] and is therefore not treated here.

© Khalil Esper, Stefan Wildermann, and Jürgen Teich;
licensed under Creative Commons License CC-BY 4.0

Third Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2022).
Editors: Marko Bertogna, Federico Terraneo, and Federico Reghenzani; Article No. 2; pp. 2:1–2:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:khalil.esper@fau.de
mailto:stefan.wildermann@fau.de
mailto:juergen.teich@fau.de
https://doi.org/10.4230/OASIcs.NG-RES.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Multi-Objective Enforcement Using Enforcement FSMs

As a solution, run-time requirement enforcement (RRE) techniques such as [19] have
emerged. Such techniques adjust a set of configurations like voltage/frequency setting
or the degree of parallelism in reaction to observed changes in the system state or input
workload. Different techniques have been proposed to implement run-time managers for
dynamic adaptation of program execution [5, 7, 11, 12]. Many of them have drawbacks that
either no formal guarantees can be given regarding their effectiveness of holding the specified
requirements or they make simplifying assumptions regarding the controller or the many-
core system under control. To overcome such disadvantages, we use finite state machines
(FSMs) to formally specify enforcement strategies, as they are expressive in specification and
computation, which helps in formulating complex strategies. Furthermore, they do not make
any restricting or simplifying assumptions regarding the system-under-control, and finally
they can be analyzed using formal verification techniques [4].

In this respect, we proposed a methodology [4] to verify the satisfaction of requirements
on non-functional properties of program executions on MPSoCs which are controlled by
FSM-based RREs. A requirement is often specified by a corridor of allowed or desired values
of a non-functional property of program execution, e.g., a latency or power consumption
corridor. In order to quantitatively assess a RRE strategy, we specify and formally verify
important verification goals, e.g., whether a RRE is able to either strictly or at least loosely
stay within the bounds of one or a set of requirements. Furthermore, how many subsequent
program executions could violate a given set of requirements before eventually returning into
specified requirement corridors. After introducing a discrete-time Markov chain (DTMC)
for modeling the variation of environmental input, we model the requirement response of
an MPSoC when executing an application program as a function that specifies for each
combination of environment state and enforcer output whether and which requirements are
fulfilled and which are violated.

Based on the concatenation of formal models, we can define stochastic verification
problems using Probabilistic Computation Tree Logic (PCTL) [1], a probabilistic variant of
CTL, and apply stochastic model checking, i.e., PRISM [9] to analyze and compare different
enforcer strategies quantitatively.

Unlike other approaches that enforce only one requirement at a time [16, 2, 14, 15, 13],
our method [4] can be used to enforce more than one requirement – although this was not
shown there. In this work, we therefore use the methodology in [4] to analyze enforcers for
multiple independent requirements at a time. As an example, we propose multi-requirement
enforcement strategies to satisfy more than one requirement (e.g., latency and energy
requirements) at a time. We then assess a case study to evaluate and compare between
different strategies using probabilistic formal verification based on the PRISM model checker.

The remainder of this paper is structured as follows. Section 2 introduces the formal
models for specifying the enforcement FSM and the requirement response. Section 3 describes
the evaluation of a proposed set of uni- and multi-requirement enforcement FSMs based on
an image processing case study and discusses the verification results. Finally, in Section 4,
we conclude this work.

2 Run-time Requirement Enforcement (RRE)

The enforcement of requirements should be achieved even under a variation of environmental
inputs. Such an input can be described for each discrete periodic execution k of a program
by an environment feature vector x(k) ∈ X , where X denotes the environment space. Run-
time requirement enforcement (RRE) techniques such as [19, 3] can be used to enforce the

K. Esper, S. Wildermann, and J. Teich 2:3

satisfaction of a set of requirements during each execution even in the presence of input
variation. In the following, we term such an assignment of resources and their parametrization
to execute a given program a configuration c and the set of possible system configurations to
execute a program configuration space C. We consider Feedback-based RRE techniques such
as [7] that react to a violation or satisfaction of a non-functional requirement φ based on
feedback from the system-under-control and adapting the configuration c(k + 1) for the next
execution (k + 1) accordingly [4]. Figure 1 illustrates the proposed model described in the
following.

Figure 1 Schematic illustration of feedback-based RRE [4].

2.1 Enforcement FSM F

Feedback-based RREs can be modeled by finite state machines. Following [4], a respective
enforcement FSM is defined as follows:

▶ Definition 1. An enforcement FSM (F) is a deterministic finite state machine (Moore
machine) that can be described by a 6-tuple (Z, z0, I, δ, C, γ) [4]:

Z is a finite set of states.
z0 ∈ Z is the initial state.
I is the input alphabet.
δ is the transition relation: δ ⊆ I × Z × Z with (i, z, z′) representing a transition from
state z to state z′ under input i.
C is the output alphabet, also called configuration space.
γ is the output function, which maps each state to the output alphabet: γ : Z → C.

An enforcement FSM is uni-requirement when it enforces one requirement (h = 1), and it
is called multi-requirement when it enforces more than one requirement (h > 1).

2.2 Requirement Enforcement

A MPSoC platform, or system-under-control is abstracted by a single function called system
response function r : X × C → Rh [4]. The system response at execution k is considered as a
vector of h relevant execution qualities r(x(k), c(k)) = (o1(k), . . . , oh(k)), e.g., corresponding
to observed latency, power consumption, etc., during the kth execution.

NG-RES 2022

2:4 Multi-Objective Enforcement Using Enforcement FSMs

In [17], requirements on non-functional execution qualities oj , j = 1, . . . , h are specified
using intervals, e.g., resulting in two propositions φLB

j and φUB
j

φj(oj(k)) = φLB
j (oj(k)) ∧ φUB

j (oj(k)) = (LBoj ≤ oj(k)) ∧ (oj(k) ≤ UBoj) (1)

where LBoj
and UBoj

denote a lower, respectively upper bound on the execution quality oj .
The system response r(x(k), c(k)) = (o1(k), . . . , oh(k)) is finally mapped to a requirement

response using a requirement response function

ϕ (o1(k), . . . , oh(k)) :=
(
φLB(o1(k)), φUB(o1(k)), . . . ,

φLB(oh(k)), φUB(oh(k))
)

∈ {0, 1}2h (2)

This binary vector serves as the input to the enforcement FSM F , and thus the input
alphabet is I ⊆ {0, 1}2h. Based on the requirement response, F computes as a reaction the
next configuration c(k + 1) ∈ C to enforce the desired non-functional properties for the next
execution.

2.3 Environment FSM E

In order to apply verification techniques on a proper enforcement of requirements, we need
a formal model of the environment that influences the system-under-control. Thus, the
environment is modeled using a discrete-time Markov Chain called environment FSM [4].
However, the number of possible input values can be very large, possibly leading to a state
explosion. In [4], we proposed to partition the environment space X into equivalence classes
or partitions p leading to the same requirement response ϕ as a potential solution.

▶ Definition 2. An environment finite state machine E is a discrete-time Markov chain
(DTMC) defined by a 3-tuple (S, a, ∆) [4]:

S is the finite set of states. Each s ∈ S is assigned exactly one partition p ∈ P of the
environment space X .
a : S → [0, 1] is a function that assigns each state s ∈ S its initial state probability a(s).
∆ ∈ [0, 1]|S|×|S| is a transition probability matrix.

3 Multi-Requirement Enforcement Case Study

In the following, we present a simple image processing application as shown in Figure 2.
The job of the object detection algorithm is to detect a given object in each image frame
by applying a SIFT feature matching algorithm. Subsequently, we present different RRE
variants and verify a number of PCTL verification goals related to h requirements to be
enforced using probabilistic model checking.

3.1 Object Detection Application
The object detection application, shown in Figure 2, is an image processing application that
conducts a pipelined processing of a periodic input image stream. The goal of this application
is to detect a given object in each image frame by applying a scale-invariant feature transform
(SIFT) matching algorithm [10]. The application consists of an actor chain. Each actor
processes one input image frame k at a time. The image source (IS) actor reads in the
input images periodically at a defined rate, then follows the gray-scale conversion (GS) actor,
and after that the edge detection (ED) and the corner detection (CD) actors to determine

K. Esper, S. Wildermann, and J. Teich 2:5

respectively the edges and corners in an image. After that, the SIFT orientation (SO) actor
applies invariance to image rotation. The four SIFT description actors SD1 to SD4 extract
the features in an image. They can be executed in parallel on n = 4 cores, after partitioning
the number of features x of a given image evenly into each actor.

For the following experiments, let each of the periodic executions of each SD actor have
a latency requirement φL = φLB

L ∧ φUB
L = (LBoL

≤ oL) ∧ (oL ≤ UBoL
) which is typical in

real-time systems and an energy consumption requirement φEn = φLB
En ∧ φUB

En = (LBoEn
≤

oEn) ∧ (oEn ≤ UBoEn
), for a latency lower bound LBoL

= 0 ms and an upper bound
(deadline) UBoL

= 80 ms and an energy consumption lower bound LBoEn
= 0 mJ and an

energy consumption upper bound UBoEn
= 500 mJ. Intuitively, φLB

L = (0 ms ≤ oL) and
φLB

En = (0 mJ ≤ oEn) are always satisfied.
For the enforcement of such requirements, the execution power mode m (voltage/frequency)

of the SD actors’ cores through Dynamic Voltage and Frequency Scaling (DVFS) is used,
and we assume, a maximum of n = 4 cores can be activated in each of m = 20 different
power modes. However, during the execution of an image, we assume all cores run in the
same power mode m, thus resulting in a configuration ⟨n, m⟩. Upon each execution, the
output of each SD actor is then sent to the SIFT matching (SM) actor to detect common
features between the given reference object and the features in the current input image.
Then, the RAN-SAC (RS) actor calculates the transformation between both images based
on the matched features. The image is finally delivered by an image destination (ID) actor.

Figure 2 Object detection algorithm implemented as a graph of actors for pipelined processing
of streams of images.

3.2 Specifying Enforcement FSMs
In the following, we introduce and compare five enforcement FSMs exemplarily, each having as
many states as configurations |C|, thus Z = {0, · · · , 31}, the input i ∈ I = {0, 1}2h = {0, 1}4

with i = ϕ(r′(s, c)) = ϕ(oL, oEn) = ((LBoL
≤ oL), (oL ≤ UBoL

), (LBoEn
≤ oEn),(oEn ≤

UBoEn
)), an assumed initial state z0 = 17 and the configuration space C of cardinality

|C| = 32.
1-step latency-requirement enforcement FSM F1: [3] proposes a technique called 1-step
enforcement that decreases, resp. increases the current state, respectively configuration
by exactly one step in case of a satisfaction (φL), resp. violation (φL) of a latency
requirement to be enforced. A corresponding enforcement FSM F1 = (Z, z0, I, γ, C, δ1) is
shown in Figure 3. It has the following transition relation δ1:

z(k + 1) =

0 φL ∧ (z(k) = 0)
z(k) − 1 φL ∧ (z(k) ̸= 0)
z(k) + 1 φL ∧ (z(k) ̸= 31)
31 φL ∧ (z(k) = 31)

(3)

NG-RES 2022

2:6 Multi-Objective Enforcement Using Enforcement FSMs

Figure 3 1-step latency-requirement enforcement FSM F1 that only utilizes φL. Annotated to
each state is the output configuration c = (n, m), consisting of number n of powered cores and power
mode m.

1-step energy-requirement enforcement FSM F2: Decreases, resp. increases the current
state, respectively configuration reflecting the next lower, resp. higher power by exactly
one step in case of a satisfaction (φEn), resp. violation (φEn) of a energy requirement
to be enforced. A corresponding enforcement FSM F2 = (Z, z0, I, γ, C, δ2) is shown in
Figure 4. It has the following transition relation δ2:

z(k + 1) =

0 φEn ∧ (z(k) = 0)
z(k) − 1 φEn ∧ (z(k) ̸= 0)
z(k) + 1 φEn ∧ (z(k) ̸= 31)
31 φEn ∧ (z(k) = 31)

(4)

Figure 4 1-step energy-requirement enforcement FSM F2 that only utilizes φEn. Annotated to
each state is the output configuration c = (n, m), consisting of number n of powered cores and power
mode m.

1-step multi-requirement enforcement FSM F3: Stays in the current state, respectively
configuration if both requirements are satisfied or none of the requirements are satisfied,
and decreases the current state by exactly one step if only φEn is violated and increases if
only φL is violated. A corresponding enforcement FSM F3 = (Z, z0, I, γ, C, δ3) is shown
in Figure 5. It has the following transition relation δ3:

z(k + 1) =

0 (φL ∧ φEn) ∧ (z(k) = 0)
z(k) − 1 (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) ((φL ∧ φEn) ∨ (φL ∧ φEn)) ∧ (z(k) ̸= 0)
z(k) + 1 (φL ∧ φEn) ∧ (z(k) ̸= 31)
31 (φL ∧ φEn) ∧ (z(k) = 31)

(5)

K. Esper, S. Wildermann, and J. Teich 2:7

Figure 5 1-step multi-requirement enforcement FSM F3 for enforcing two single-bound require-
ments φL and φEn. Annotated to each state is the output configuration c = (n, m), consisting of
number n of powered cores and power mode m.

Latency-oriented multi-requirement enforcement FSM F4: Decreases the current state by
one step when only φEn is violated, increases the current state by two steps when φL

is violated, and stays in the same state otherwise. A corresponding enforcement FSM
F4 = (Z, z0, I, γ, C, δ4) is shown in Figure 6. It has the transition relation δ5:

z(k + 1) =

0 (φL ∧ φEn) ∧ (z(k) = 0)
z(k) − 1 (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) + 2 φL ∧ (z(k) < 30)
31 φL ∧ (z(k) ≥ 30)

(6)

Figure 6 Latency-oriented multi-requirement enforcement FSM F4 for enforcing two single-bound
requirements φL and φEn. Annotated to each state is the output configuration c = (n, m), consisting
of number n of powered cores and power mode m.

Energy-oriented multi-requirement enforcement FSM F5: Decreases the current state by
two steps when φEn is violated, increases the current state by one step when only φL

is violated, and stays in the same state otherwise. A corresponding enforcement FSM
F5 = (Z, z0, I, γ, C, δ5) is shown in Figure 7. It has the following transition relation δ4:

z(k + 1) =

0 φEn ∧ (z(k) ≤ 1)
z(k) − 2 φEn ∧ (z(k) > 1)
z(k) (φL ∧ φEn) ∧ (z(k) ̸= 0)
z(k) + 1 (φL ∧ φEn) ∧ (z(k) ̸= 31)
31 (φL ∧ φEn) ∧ (z(k) = 31)

(7)

NG-RES 2022

2:8 Multi-Objective Enforcement Using Enforcement FSMs

Figure 7 Energy-oriented multi-requirement enforcement FSM F5 for enforcing two single-bound
requirements φL and φEn. Annotated to each state is the output configuration c = (n, m), consisting
of number n of powered cores and power mode m.

3.3 Verification Goals Specification
As we do not want to reason about or verify the satisfaction of verification goals during single
runs or single traces of input stimuli, but depending on a DTMC model of the typically
uncertain environment (i.e., E), we can use PCTL [1], a probabilistic variant of CTL, to
specify stochastic verification goals. In the following, P=?[φj] denotes the probability of
satisfying a proposition φj .

For verification, we will use PRISM [9], a probabilistic model checker, to perform verifica-
tion of a number of interesting verification goals on enforcers.

Finally, LTL formulas have a bounded variant in PCTL [6], which adds an upper bound
λ on the number of successive steps or iterations in our model. In our previous work [4], we
proposed and formulated a set of interesting verification goals using temporal logic. In this
work, we use one of them to compare between the proposed enforcement FSMs. That being:
P=?[G≤λ (¬φ)] which denotes the probability of a requirement φ to never hold in any of λ

consecutive executions. We will use this verification goal to verify the proposed enforcement
strategies for the latency requirement P=?[G≤λ (¬φL)], the energy consumption requirement
P=?[G≤λ (¬φEn)], and finally both requirements together P=?[G≤λ (¬φL ∨ ¬φEn)].

3.4 Deriving Environment FSMs E
We first partition the environment space X into a set of partitions P , by computing the
system response o = (oL, oEn) = r(x, c) for all different inputs x ∈ X for each c ∈ C, and
then deriving the partitions p of inputs x ∈ X that result in the same requirement response
ϕ(r(x, c)) for each c ∈ C.

For the above example application, the authors in [20] proposed to perform a design
space exploration (DSE) to compute the maximum number of features xmax(UBoL

, c) that
can be processed within a given deadline UBoL

in configuration c, and a single state enforcer
that proactively (rather than reactively) chooses upon arrival of the kth frame always the
configuration c ∈ C consuming the minimal amount of energy for that input. A similar
DSE is conducted for the energy consumption oEn for an energy consumption upper bound
UBoEn

.
Based on this information, we can compute the requirement response ϕ(r(x, c)) for each

input x ∈ X and configuration c ∈ C for each execution k as follows:

ϕ(r(x, c)) =

(1, 1, 1, 1) (φLB

L , φUB
L , φLB

En , φUB
En)

(1, 1, 1, 0) (φLB
L , φUB

L , φLB
En , φUB

En)
(1, 0, 1, 1) (φLB

L , φUB
L , φLB

En , φUB
En)

(1, 0, 1, 0) (φLB
L , φUB

L , φLB
En , φUB

En)

(8)

K. Esper, S. Wildermann, and J. Teich 2:9

Based on this partitioning, and using a frame sequence R with |R| = 1, 000 frames,
we follow the procedure explained in [4] to obtain the environment FSM E1, shown in
Figure 8, which is specified after computing the partitions based on a latency requirement
φL = φLB

L ∧ φUB
L = (LBoL

≤ oL) ∧ (oL ≤ UBoL
) and an energy consumption requirement

φEn = φLB
En ∧ φUB

En = (LBoEn
≤ oEn) ∧ (oEn ≤ UBoEn

), for a latency lower bound LBoL
= 0

ms and an upper bound (deadline) UBoL
= 80 ms and an energy consumption lower bound

LBoEn
= 0 mJ and an energy consumption upper bound UBoEn

= 500 mJ. Intuitively,
φLB

L = (0 ms ≤ oL) and φLB
En = (0 mJ ≤ oEn) are always satisfied.

Figure 8 Resulting environment FSM E1 and for an image processing algorithm for a latency
lower bound LBoL = 0 ms and an upper bound (deadline) UBoL = 80 ms and an energy consumption
lower bound LBoEn = 0 mJ and an energy consumption upper bound UBoEn = 500 mJ generated
from a trace R of |R| = 1000 frames. The highest encountered number of features x (workload to be
processed) per frame in the trace R is 5,513.

3.5 Verification Results
We specified the enforcement and environment FSMs for verification by the PRISM model
checker using the PRISM modeling language [8].

P=?[G≤λ (¬φL)] is the probability of φL to never hold in any of λ consecutive executions.
Figure 9 plots this probability for increasing values of λ for all five introduced enforcement
FSMs. We notice that F2 and F5 have the highest probabilities of violating the latency
requirement among all other enforcement FSMs. This is plausible, since F2 only utilizes
the energy requirement response as an input, and the multi-requirement enforcement
FSM F5 is energy-oriented.
We also notice that F4 is superior regarding satisfying the satisfaction of latency require-
ment, since it is a latency-oriented multi-requirement enforcement FSM that jumps two
steps forward when φL is violated. Finally, even F1 utilizes only the latency requirement
response to transition between states, it has a higher probability of violating the latency
requirement than F3 and F4, because it goes backwards one step when φL is satisfied,
unlike the multi-enforcement FSMs F3 and F4 which stay in the same state when φL is
satisfied.
P=?[G≤λ (¬φEn)] is the probability of φEn to never hold in any of λ consecutive executions.
Figure 10 plots this probability for increasing values of λ for all five introduced enforcement
FSMs. We notice that F5 has the lowest probability for violating the energy requirement,
because it is a multi-requirement FSM that is oriented for energy saving where it goes

NG-RES 2022

2:10 Multi-Objective Enforcement Using Enforcement FSMs

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

P
=

?[
G

≤
λ

(¬
φ

L
)]

F1
F2
F3
F4
F5

Figure 9 Probability that φL never holds in any of λ consecutive executions (P=?[G≤λ (¬φL)])
where φL = (LBoL ≤ oL) ∧ (oL ≤ UBoL) for a latency lower bound LBoL = 0 ms and an upper
bound (deadline) UBoL = 80 ms.

backward two steps when φEn is violated. Next comes F2, which only utilizes the energy
requirement response as an input. We also notice that other enforcement FSMs violate
the energy requirement with higher probabilities than F2, F5, since they either do not
consider the energy requirement response like F1 or they do not prioritize it over the
latency requirement φL like F3 and F4. Finally, we notice that the latency-oriented multi-
requirement FSM F4 has the highest probability of violating the energy requirement.
Even though F4 considers the energy requirement response, F1 still has a lower probability
in violating φEn. This shows the need for systematic methods to generate enforcement
FSMs that satisfy given requirements.
Finally, we analyze the probability of φL or φEn to never hold in any of λ consecutive
executions by computing P=?[G≤λ (¬φL ∨ ¬φEn)]. Figure 11 plots this probability for
increasing values of λ for all introduced enforcement FSMs. As can be observed, F3
exhibits the lowest probability of violating any requirement. This is because it has the
third lowest probability of violating the energy requirement φEn and the second lowest
probability of violating the latency requirement φL, see Figure 9 and Figure 10. F2 and F5
show the next best behavior after F4, because they have the lowest probability of violating
the energy requirement φEn, and at the same time showing a comparable probability
concerning the latency requirement, see Figure 9 and Figure 10. Finally, although F4 is
the best regarding the satisfaction of the latency requirement, it is the worst in satisfying
both requirements together, as it has a very low probability of satisfying the energy
requirement φEn, which outweighs the latency requirement satisfaction, see Figure 10.

4 Conclusion and Future Work

In this paper, we proposed multi-requirements enforcement strategies for enforcing multiple
non-functional requirements at a time, like latency and energy consumption. We formulated
several verification goals that ask for the probability of violating the latency, energy or both
requirements for a consecutive number of steps. Doing so allows to formally verify and

K. Esper, S. Wildermann, and J. Teich 2:11

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

P
=

?[
G

≤
λ

(¬
φ

E
n
)]

F1
F2
F3
F4
F5

Figure 10 Probability that φEn never holds in any of λ consecutive executions (P=?[G≤λ (¬φEn)])
where φEn = (LBoEn ≤ oEn) ∧ (oEn ≤ UBoEn) for an energy consumption lower bound LBoEn = 0
mJ and an energy consumption upper bound UBoEn = 500 mJ.

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

P
=

?[
G

≤
λ

(¬
φ

L
∨

¬φ
E

n
)]

F1
F2
F3
F4
F5

Figure 11 Probability that φL or φEn never holds in any of λ consecutive executions
(P=?[G≤λ (¬φL ∨ ¬φEn)]) where φL = (LBoL ≤ oL) ∧ (oL ≤ UBoL) and φEn = (LBoEn ≤
oEn) ∧ (oEn ≤ UBoEn), for a latency lower bound LBoL = 0 ms and an upper bound (deadline)
UBoL = 80 ms and an energy consumption lower bound LBoEn = 0 mJ and an energy consumption
upper bound UBoEn = 500 mJ.

quantitatively compare different FSMs for requirement enforcement. We used PRISM for
such probabilistic verification problems. Our evaluation shows that it is very difficult to
understand which FSMs are superior with respect to individual and which for combined
enforcement of multiple requirements. In the future, we would like to work on techniques for
the automatic generation of enforcement FSMs with multiple probabilistic verification goals
(a multi-objective optimization problem) for the enforcement of one or multiple requirements
at a time.

NG-RES 2022

2:12 Multi-Objective Enforcement Using Enforcement FSMs

References
1 Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. On

the Logical Characterisation of Performability Properties. In Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9–15,
2000, Proceedings, volume 1853 of Lecture Notes in Computer Science, pages 780–792. Springer,
2000.

2 Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. Shield synthesis:
Runtime Enforcement for Reactive Systems. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 9035 of Lecture Notes in Computer Science, pages 533–548.
Springer, 2015.

3 Khalil Esper, Stefan Wildermann, and Jürgen Teich. A Comparative Evaluation of Latency-
Aware Energy Optimization Approaches in Many-Core Systems. In Second Workshop on
Next Generation Real-Time Embedded Systems, NG-RES@HiPEAC 2021, January 20, 2021,
Budapest, Hungary, volume 87 of OASIcs, pages 1:1–1:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

4 Khalil Esper, Stefan Wildermann, and Jürgen Teich. Enforcement FSMs – Specification
and Verification of Non-Functional Properties of Program Executions on MPSoCs. In 19th
ACM-IEEE International Conference on Formal Methods and Models for System Design
(MEMOCODE’21), 2021.

5 Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-adaptive
software with control-theoretical formal guarantees. In Proceedings of the 36th International
Conference on Software Engineering, pages 299–310, 2014.

6 Hans Hansson and Bengt Jonsson. A Logic for Reasoning about Time and Reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

7 Connor Imes, David HK Kim, Martina Maggio, and Henry Hoffmann. POET: a portable
approach to minimizing energy under soft real-time constraints. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 75–86. IEEE Computer Society,
2015.

8 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Quantitative analysis with the
probabilistic model checker PRISM. Electron. Notes Theor. Comput. Sci., 153(2):5–31, 2006.

9 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In Computer Aided Verification – 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of
Lecture Notes in Computer Science, pages 585–591. Springer, 2011.

10 David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the
seventh IEEE international conference on computer vision, volume 2, pages 1150–1157. Ieee,
1999.

11 Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoffmann.
Automated control of multiple software goals using multiple actuators. In Eric Bodden,
Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors, Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, pages 373–384. ACM, 2017.

12 Sumit K. Mandal, Ganapati Bhat, Janardhan Rao Doppa, Partha Pratim Pande, and Ümit Y.
Ogras. An energy-aware online learning framework for resource management in heterogeneous
platforms. ACM Trans. Design Autom. Electr. Syst., 25(3):28:1–28:26, 2020.

13 Srinivas Pinisetty, Partha S. Roop, Vidula Sawant, and Gerardo Schneider. Security of
pacemakers using runtime verification. In 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design, MEMOCODE 2018, Beijing, China, October
15-18, 2018, pages 51–61. IEEE, 2018.

14 Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Nathan Allen, Stavros Tripakis, and
Reinhard von Hanxleden. Runtime enforcement of cyber-physical systems. ACM Trans.
Embed. Comput. Syst., 16(5s):178:1–178:25, 2017.

K. Esper, S. Wildermann, and J. Teich 2:13

15 Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Stavros Tripakis, and Reinhard von
Hanxleden. Runtime enforcement of reactive systems using synchronous enforcers. In Pro-
ceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of
Software, Santa Barbara, CA, USA, July 10–14, 2017, pages 80–89. ACM, 2017.

16 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, 2000.

17 Jürgen Teich, Michael Glaß, Sascha Roloff, Wolfgang Schröder-Preikschat, Gregor Snelting,
Andreas Weichslgartner, and Stefan Wildermann. Language and Compilation of Parallel
Programs for *-Predictable MPSoC Execution Using Invasive Computing. In 10th IEEE
International Symposium on Embedded Multicore/Many-core Systems-on-Chip, MCSOC 2016,
Lyon, France, September 21–23, 2016, pages 313–320. IEEE Computer Society, 2016.

18 Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang Schröder-
Preikschat, and Gregor Snelting. Invasive computing: An overview. In Michael Hübner and
Jürgen Becker, editors, Multiprocessor System-on-Chip - Hardware Design and Tool Integration,
pages 241–268. Springer, 2011.

19 Jürgen Teich, Pouya Mahmoody, Behnaz Pourmohseni, Sascha Roloff, Wolfgang Schröder-
Preikschat, and Stefan Wildermann. Run-Time Enforcement of Non-functional Program
Properties on MPSoCs. In A Journey of Embedded and Cyber-Physical Systems, pages 125–149.
Springer, 2021.

20 Jürgen Teich, Behnaz Pourmohseni, Oliver Keszöcze, Jan Spieck, and Stefan Wildermann.
Run-Time Enforcement of Non-Functional Application Requirements in Heterogeneous Many-
Core Systems. In 25th Asia and South Pacific Design Automation Conference, ASP-DAC
2020, Beijing, China, January 13–16, 2020, pages 629–636. IEEE, 2020.

NG-RES 2022

	1 Introduction
	2 Run-time Requirement Enforcement (RRE)
	2.1 Enforcement FSM F
	2.2 Requirement Enforcement
	2.3 Environment FSM E

	3 Multi-Requirement Enforcement Case Study
	3.1 Object Detection Application
	3.2 Specifying Enforcement FSMs
	3.3 Verification Goals Specification
	3.4 Deriving Environment FSMs E
	3.5 Verification Results

	4 Conclusion and Future Work

