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Preface

This volume collects the proceedings of the PARMA-DITAM workshop 2022. PARMA-
DITAM brings together the decade-long experience of two workshops: the workshop on
Parallel Programming and Run-Time Management Techniques for Many-core Architectures
(PARMA) and the workshop on Design Tools and Architectures for Multicore Embedded
Computing Platforms (DITAM). These events first joined in 2014 and since then, they
represent a reference point in the European community of high-performance computer
architectures, embedded systems and compiler technologies. PARMA-DITAM is co-located
with and sponsored by the HiPEAC conference, which annually gathers the most excellent
researchers on High Performance Embedded Architectures and Compilers within the European
borders and beyond.

The PARMA-DITAM 2022 workshop focuses on many-core architectures, parallel pro-
gramming models, design space exploration, tools and run-time management techniques
to exploit the features and boost the performance of such – possibly heterogeneous, (re-
)programmable and/or (re-)configurable – many-core processor architectures from embedded
to high performance computing platforms and cyber physical systems.

This edition features 5 regular papers carefully selected among 9 submissions by our
expert Technical Program Committee after a double-blind review process. The editors are
proud to present, in the early pages of this volume, 2 additional manuscripts from selected
research groups who agreed to share their latest achievements in invited talks during the
workshop event.

This edition of the PARMA-DITAM workshop focused on seven main topics:

Parallel programming models and languages, compilers and virtualization techniques
Runtime modelling, monitoring, adaptivity, and management
Runtime trade-off execution, power management, and memory management
Heterogeneous and reconfigurable many-core: architectures and design space exploration
Methodologies, design tools, and high level synthesis for many-core architectures
Parallel applications for many-core platforms
Case studies, success stories and applications applying T1-T6

The editors invite researchers to join in the discussion during the PARMA-DITAM event
on June 22, 2022 and to submit their future works for consideration in the next editions of
this workshop.

Francesca Palumbo, João Bispo, and Stefano Cherubin

13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2022).
Editors: Francesca Palumbo, João Bispo, and Stefano Cherubin

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
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Abstract
Modern data analysis applications are complex workflows composed of algorithms with diverse
behaviors. They may include digital signal processing, data filtering, reduction, compression, graph
algorithms, and machine learning. Their performance is highly dependent on the volume, the velocity,
and the structure of the data. They are used in many different domains (from small, embedded
devices, to large-scale, high-performance computing systems) but in all cases they need to provide
answers with very low latency to enable real-time decision making and autonomy. Coarse-grained
reconfigurable arrays (CGRAs), i.e., architectures composed of functional units able to perform
complex operations interconnected through a network-on-chip and configure the datapath to map
complex kernels, are a promising platform to accelerate these applications thanks to their adaptability.
They provide higher flexibility than application-specific integrated circuits (ASICs) while offering
increased energy efficiency and faster reconfiguration speed with respect to field-programmable
gate arrays (FPGAs). However, designing and specializing CGRAs requires significant efforts. The
inherent flexibility of these devices makes the application mapping process equally important to the
hardware design generation. To obtain efficient systems, approaches that simultaneously considers
software and hardware optimizations are necessary. In this paper, we discuss the Software Defined
Architectures for Data Analytics (SO(DA)2) toolchain, an end-to-end hardware/software codesign
framework to generate custom reconfigurable architectures for data analytics applications. (SO(DA)2)
is composed of a high-level compiler (SODA-OPT) and a hardware generator (OpenCGRA) and can
automatically explore and generate optimal CGRA designs starting from high-level programming
frameworks. SO(DA)2 considers partial dynamic reconfiguration as key element of the system design.
We discuss the various elements of the framework and demonstrate the flow on the case study of a
partial dynamic reconfigurable CGRA design for data streaming applications.

2012 ACM Subject Classification Computer systems organization → Reconfigurable computing
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Category Invited Talk

Supplementary Material Software (Source Code): https://gitlab.pnnl.gov/sodalite/soda-opt
Software (Source Code): https://github.com/pnnl/OpenCGRA

Acknowledgements The research described in this paper is part of the Data-Model Convergence
(DMC) Initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory
Directed Research and Development Program at PNNL, a multiprogram national laboratory operated
by Battelle for the U.S. Department of Energy.

1 Introduction

Many emerging applications for several areas employ complex workflows that include a
substantial data analysis component. For example, scientific instruments such as particle
accelerators, electron microscopes, and protein sequencers capture large amounts of experi-
mental data in bursts [2] that cannot be stored locally. The significant information needs to be
filtered, prepared, and often compressed before being sent to a large-scale high-performance
computing systems for further processing. The in-situ data analysis element should also be
able to steer and control the instruments to perform the next set of experiments. Smart
sensor networks for various environmental monitoring applications need power efficient ways
to acquire and select relevant data that is then transmitted on potentially slow or unstable
links. Autonomous systems need fast data processing to enable the low latency reasoning
required to adapt and react to changes in the environment.

In all these situations, high volumes of multi-modal, heterogeneous, data, typically
captured from a variety of sensors, are processed through a sequence of kernels that may
expose significantly different, and often contrasting, requirements. These kernels include
digital signal processing, graph algorithms, machine learning, and more. Furthermore, the
volume of data streamed from the sensors and from one kernel to the others may be highly
variable depending on the situation, leading to rapidly changing throughput of the processing
pipelines.

The current trends in computer architecture highlight that only by leveraging domain
specialization it is possible to reach the levels of hardware efficiency (power, performance,
and area) required to process exponentially growing volumes and velocity of data.

Coarse-grained reconfigurable arrays (CGRAs), loosely defined as sets of functional units
(FUs) and memories interconnected through a network-on-chip (NoC) that are dynamically
configured to accelerate different computational patterns, represent a promising platform
for these modern data analytics workflows [17–19,22]. A compiler maps application kernels
on a CGRA and determines how data will flow through the FUs and memories. Differently
from a system composed of a multitude of fixed application-specific accelerators, CGRAs
can modify their configuration to adapt to the requirements of different algorithms, still
resulting power efficient while providing significant gains in area efficiency through resource
reuse. Their refined communication networks enable efficient data transfer from one FU to
the other, allowing the definition of complex data processing pipelines with high throughput.
Additionally, they can potentially adapt to new algorithm and processing pipelines. CGRAs
are also more power efficiency and faster to reconfigure than fine-grained configurable devices
(such as field-programmable gate arrays – FPGAs).

However, designing specialized systems based on CGRA devices and mapping software onto
them are not trivial tasks. First, the entire toolchain needs to explore simultaneously hardware
and software optimizations to effectively leverage the dynamic reconfiguration capabilities
of the hardware substrate. Second, the actual process of designing and implementing the

https://gitlab.pnnl.gov/sodalite/soda-opt
https://github.com/pnnl/OpenCGRA
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hardware is complex and time consuming. A single general CGRA design may not even be
sufficient to address critical use cases (e.g., edge devices, security systems) that may have
very tight constraints and requirements, although only on a limited set of kernels. Thus,
there is a demand for automated and integrated hardware/software codesign tools able to
perform end-to-end optimization and generation of reconfigurable architectures. These tools
also need to consider partial dynamic reconfiguration as critical element of the flow, especially
with data streaming applications where multiple processing kernels and complex analysis
pipelines may be active at the same time on inputs with highly variable characteristics.

To address the aforementioned issues, we developed Software Defined Architectures
for Data Analytics – SO(DA)2 framework [4], a modular compiler-based toolchain for the
generation of custom reconfigurable architectures.

SO(DA)2 integrates two open-source tools, SODA-OPT1 and OpenCGRA2, in a design
flow that can automatically generate specialized CGRAs starting from a data analysis
application written in a high-level software framework. SODA-OPT is a high-level optimizer
that interfaces with data science programming frameworks, identifies sequences of kernels
suitable for acceleration, and prepares them for offload onto the hardware. OpenCGRA
is a framework for generating CGRAs, including automatic modeling, testing, evaluation,
mapping, and a design space exploration (DSE) engine that allows to simultaneously optimize
software and hardware parameters. This paper describes in detail the components of SO(DA)2

and some of the key results obtained by generating and optimizing architectures with
the framework itself. In particular, we demonstrate SO(DA)2 capabilities by generating
partial dynamic reconfigurable architectures for data streaming applications. The resulting
specialized CGRAs designs can dynamically rebalance a pipeline of data-dependent processing
kernels, maximizing the throughput (up to 2 times) and reducing the latency with respect to
architectures where resources are statically partitioned among the kernels.

The paper proceeds as follows. Section 2 overviews the entire framework, discussing its
key elements, including the high- and low-level compiler toolchain, the CGRA architecture
templates, the design exploration engine, and the partial dynamic reconfiguration capabilities.
Section 3 presents our case study. Section 4 discusses alternative generation frameworks for
CGRAs. Section 5 presents possible future research and development opportunities. Finally,
Section 6 concludes the paper.

2 Framework Overview

Figure 1 overviews the general concepts behind the SO(DA)2 framework. Focus of the
framework is to efficiently support data intensive applications, characterized by contrast-
ing behaviors, by leveraging reconfigurable architectures. The framework interfaces with
high-level programming frameworks through the multi-level intermediate representation
(MLIR) [15] infrastructure. Our toolchain also supports Clang as a frontend, thus enabling
mapping of conventional C applications onto a reconfigurable hardware substrate. One key
part for data dependent workloads is the need to leverage data statistics and data-oriented
optimization. A compilation flow provides opportunities to leverage dynamic information
beside static analysis to enable dynamic adaptation.

The framework implements a design space exploration and synthesis (DSES) engine to
perform mapping and generation of the configurations for the target architectures. The
objective is identifying specific parallel patterns and explore trade-offs among multiple optim-

1 https://gitlab.pnnl.gov/sodalite/soda-opt
2 https://github.com/pnnl/OpenCGRA
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Figure 1 SODA high-level overview.
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Figure 2 MLIR lowerings and dialects.

ization objectives (e.g., critical loop optimizations to exploit the spatial parallelism offered
by CGRAs). The framework also considers the generation of a specialized reconfigurable
architecture, leveraging a resource library with parametrized architectural templates that
allows meeting specific design constraints.

Our framework considers partial dynamic reconfiguration as a key dimension for the
compilation and hardware generation flow. Data dependent and data streaming applications
are typically partitioned in kernels that execute for different phases of the applications and
are mapped on a subset of resources. These can be statically partitioned or dynamically
allocated depending on runtime metrics of the application. A runtime manager, interfacing
with hardware knobs and monitoring hardware counters, allows triggering reconfiguration
exploiting online optimization algorithms.



A. Tumeo et al. 1:5

2.1 High-Level Compiler Frontend
Our infrastructure can accept input descriptions from high-level ML and domain-specific
frameworks describing data analysis workflows, translated by the frontend into a high-level
intermediate representation (IR). The frontend performs hardware/software partitioning and
architecture-independent optimizations on the high-level IR; subsequently, it generates a
low-level IR (LLVM IR) for hardware generation. SODA-OPT is the high-level compiler
frontend of the SO(DA)2 framework. Its role is to perform compiler passes to isolate and
optimize code on the input program, preparing it for hardware acceleration on several different
backends. To implement these functionalities, SODA-OPT leverages and extends the MLIR
framework.

MLIR allows building reusable, extensible, and modular compiler infrastructure by
defining dialects, i.e., self-contained IRs that respect MLIR’s meta-IR syntax. Each dialect
is designed to capture a specific abstraction, and multiple dialects can coexist in the same
MLIR IR. The process to progressively refine the IR and transition between dialects is called
lowering. Figure 2 shows the progressive lowering across several different MLIR dialects. The
following MLIR dialects are routinely used by many tools, including SODA-OPT: linalg
contains linear algebra operations on tensors or memory buffers, affine supports polyhedral
transformations, scf provides structured control flow operations such as for and while loops,
cf has lower-level control flow operations such as branches and switches, and the llvm dialect
represents LLVM IR operations in the MLIR IR. Several high-level programming frameworks
for various domains such as machine learning (TensorFlow, ONNX-MLIR, TORCH-MLIR),
scientific computing (NPCOMP), and general-purpose languages (e.g., the FLANG frontend
for Fortran) started leveraging MLIR to implement their own specific dialects, optimizations
passes, and lowering methods to translate their programs into existing MLIR dialects.

SODA-OPT introduces the soda dialect to partition input applications into an orchestrating
host program and custom hardware accelerators. SODA-OPT analysis and transformation
passes ingest MLIR inputs from high-level frameworks, identify key code regions, and outline
them into separate MLIR modules. Code regions that are selected for hardware acceleration
can undergo a high-level optimization pipeline with progressive lowerings through different
MLIR dialects (linalg → affine → scf → cf → llvm), or they can directly be translated
into an LLVM IR without high-level optimizations.

As previously highlighted, the framework also supports inputs in C through the Clang
LLVM fronted. In such a case, the code is partitioned into kernels through functions that can
be mapped in various way on the underlying reconfigurable substrate. The Clang frontend
also lowers to LLVM IR and, in such a case, optimizations obviously happen at the LLVM
level.

2.2 CGRA Architecture Template
The SO(DA)2 generic CGRA template is depicted in Fig. 3. It consists of modular tiles, a
NoC, and a set of scratchpad (SPM) data buffers. A tile contains an FU, a configuration
memory, a set of registers, and a crossbar switch; the template allows any subset of tiles
to connect to the SPM banks. All the components in the template architecture are highly
modular and parameterizable. For example, the flow can customize the size of the SPM, the
tile count, the interconnect topology (changing the number of ports of the crossbar switch),
the number of registers, and the control memory size. The type of FU is also customizable:
an FU could support multiple operations, in parallel, as a sequence or as a complex pattern
as shown in Fig. 3c. Fig. 3d-g show how the generic parameterizable architecture can be

PARMA-DITAM 2022
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Figure 3 Generic architecture template – The generic parameterizable template provides a design
space to be explored and eventually generates an optimized accelerator for the given workloads.
(d)-(g) show how the template is customized into different state-of-the-art spatial reconfigurable
accelerators.

customized into different state-of-the-art spatial reconfigurable accelerators, including a
TensorFlow-like systolic array (e), architectures (f) similar to the configurable compute
array (CCA) [6], and designs (g) like the Multiply-Accumulate Engine with Reconfigurable
Interconnect (MAERI) [14].

2.3 Loop Transformations
Figure 4 details the rest of the SO(DA)2 CGRA generation flow, which includes the compiler
optimizations, the DSE process that defines an architecture, and the actual modeling, testing
and evaluation of the resulting design.

Loop-level transformations are applied to expose appropriate parallelism that fits a specific
CGRA architecture. In SO(DA)2, we can apply affine transformations at the MLIR level
within SODA-OPT, or use LLVM loop transformations on the lowered LLVM IR when inputs
come from the Clang fronted.

Nested loops are flattened into a single loop to facilitate subsequent mapping and to
avoid the overhead of multiple invocations of the innermost loop. Loop blocking (also known
as loop tiling) constrains the size of the required data for each invocation of a kernel running
on the CGRA and facilitates overlapping computation and communication with the help of
double buffering. An appropriate loop blocking factor should be determined based on the
memory bandwidth and the data buffer size of the accelerator. Loop unrolling significantly
affects instruction-level parallelism. When the target CGRA has sufficient hardware resources
(e.g., tiles, crossbars, etc.), a larger loop unrolling factor can be used; a smaller loop unrolling
factor requires instead loop pipelining to recover parallelism between iterations.
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Figure 4 The rest of the flow from the generation of the kernels to the OpenCGRA generator.
OpenCGRA is powered by PyMTL3 [10], PyOCN [23], Mflowgen [1], and Commercial ASIC tools.

.

2.4 Design Space Exploration

The LLVM IR produced by the frontend is optimized for execution on a CGRA architecture
through a series of compiler passes performing DSE of the software (e.g., loop blocking
and unrolling factors) and the hardware (e.g., amount and type of available resources)
parameters [25]. The CGRA architecture itself is refined during DSE starting from the
pre-designed template. In this phase, the framework extracts the data flow graph (DFG) of
each kernel, fuses common arithmetic operations, and maps the resulting DFGs onto the
CGRA.

We use a simulated annealing algorithm to perform DSE along all the previously listed
dimensions/parameters, starting from the simplest design choice (a single tile supporting
all types of operations). The heuristic then searches for the design points that meet a
customizable objective (e.g., performance, area-efficiency, power-efficiency, etc.).

The DSE is supported by estimation models for the performance, power, area, and timing
of the resulting designs. The overall execution time is obtained after mapping the DFG,
while the other metrics are computed by leveraging analytical regression models. Specifically,
the models are built by synthesizing the basic components of the architecture template
and collecting the corresponding statistics (e.g., area, power, and timing). The operating
frequency of the target design is dominated by the component with the longest critical path.

As DSE is time-sensitive, a fast DFG mapping algorithm is needed. Our framework
implements a heuristic mapping algorithm inspired by [11], where the objective is to statically
schedule operations to reach the lowest possible initiation interval (II). The algorithm
incrementally increases the II value until it finds a valid mapping between the DFG and the
available hardware resources. Data dependency between operations is represented as data
communication between FUs and routed using Dijkstra’s algorithm.

2.5 CGRA Generation

SO(DA)2 generates the target CGRA design through a generator built on top of PyMTL3 [10],
following the configuration found by the DSE. The CGRA Generator [26] enables automatic
modeling, testing, and evaluation of the target optimized CGRA.
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Figure 5 Example of dynamic rebalancing – (a) A 2-layer GCN inference includes 6 kernels. (b)
Fixed partition for each stage targeting high throughput. (c) Dynamically reconfigure the CGRA
based on the execution status of each kernel, which rebalances the pipeline and improves the overall
throughput.

We support unit tests for all basic CGRA components, integration tests for the entire
CGRA design, and property-based random testing (PBRT). PBRT automatically shrinks
the design with minimal counterexamples that can trigger a bug, which helps users locate a
design issue and eases the debugging procedure.

CGRA simulation and Verilog generation are powered by the PyMTL3 infrastructure
(simulation and translation passes). The control signals generated from the mapping algorithm
can serve as the input for the simulation. Moreover, with the help of a set of logic synthesis
scripts, the generated synthesizable Verilog can be used to perform characterization in terms
of power, area, and timing.

2.6 Partial Dynamic Reconfiguration
Data analytics applications often deals with highly variable volumes of data, arriving at
variable velocities and sometimes organized in malleable data structures (e.g., graphs) with
varying degrees of sparsity. This may lead to high variability in execution time of the
application kernels. Current approaches for reconfigurable architectures either configure and
execute one kernel at a time or statically partition resources among multiple kernels. In both
cases, the latency of the application can vary from one execution of the pipeline of kernels to
the other, limiting the overall application throughput.

As previously highlighted, the SO(DA)2 approach considers reconfiguration as a key
component of the generation flow. To address these types of applications, we developed the
DynPaC [21] and the DRIPS [20] approaches. Both the designs include novel hardware and
software mechanisms that enable partial dynamic reconfiguration to rebalance the execution
of data-intensive, data-dependent kernels at runtime.

In both the designs, the compilation framework identifies the application kernels, outlines
them, and generates potential configurations with different assignments of operations to
intercommunicating tiles. These regularly shaped mappings are assigned to available tiles at
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Figure 6 The upgrade(), downgrade(), and reshape() operations form the logical placement by
enabling appropriate interconnection between neighboring tiles.

runtime. The designs leverage a king mesh interconnect topology. In this topology, each tile
is interconnected with all the neighboring ones: such a rich interconnect allows remapping the
kernel configurations generated by the compiler even in irregular shapes while maintaining
the same communication patterns.

At runtime, the reconfiguration controller enables dynamic rebalancing by keeping track
of the execution of kernels and the status of allocated resources (Figure 5). The controller
identifies the fastest and slowest kernels by checking the execution delays. As shown in
Figure 6, the slowest kernel is subject to the upgrade operation, which selects a configuration
with a higher number of resources. The fastest kernel, instead, is downgraded, selecting a
configuration with a lower number of resources. If the selected configurations do not fit in
the available tiles, the controller performs reshaping, which adjusts the resources assigned to
the kernels to fit the new layout, while respecting the communication dependencies.

3 Case Study

We evaluate the SO(DA)2 approach by generating a CGRA design supporting partial dynamic
reconfiguration. We selected two applications with data-dependent execution time: a 2-
layer graph convolutional network (GCN) and a lower-upper (LU) decomposition on sparse
matrices. GCNs are an emerging class of machine learning models that operate on graphs.
We run inference on a pre-trained model implemented in PyTorch Geometric that predicts
protein function on the ENZYMES data set (600 graphs with 2 to 126 nodes). Our streaming
GCN is composed of 5 kernels (two aggregate operators, Combine, CombRelu, and Pooling).
LU decomposition is a key part of solvers for systems of linear equations, a critical element of
scientific simulation workflows. Our benchmark implements a streaming LU decomposition
composed of 6 kernels. Table 1 describes applications, datasets, and kernels.

Table 1 Representative data-dependent applications – Each kernel of an application runs on
a CGRAs with different numbers of tiles (4x4, 4x8, 6x8) and unrolling factors (1, 2, and 4). The
optimal speedup (OpSp) is obtained in each case with a different regular shaped partition (OpPa);
#opt represents the number of LLVM instructions in the loop body.

Application Dataset Kernel 4x4 CGRA, U. F. = 1 4x8 CGRA, U. F. = 2 6x8 CGRA, U. F. = 4
#opt OpSp OpPa #opt OpSp OpPa #opt OpSp OpPa

2-layer Graph
Convolutional

Network (GCN )

ENZYME 600 graphs
450 for training
150 for inference

Aggregate (×2) 27 6.8 2×4 54 13.5 2×7 99 19.8 5×5
Combine 26 6.5 2×3 52 13 3×5 95 23.8 5×5

CombRelu 30 7.5 3×3 60 15 3×6 111 18.5 4×5
Pooling 16 4 2×2 32 8 2×4 55 13.6 3×5

Synthesized
Lower–Upper (LU )

Decomposition
kernels

150 matrices (within
the size of 100×100)

selected from the
University of Florida

sparse matrix collection

Init 7 1.8 1×2 11 4 1×3 19 4.8 2×3
Decompose 87 12.4 3×4 167 20.9 5×5 327 23.4 6×6

Solver0 31 7.8 3×3 63 12.6 4×4 121 17.3 4×5
Solver1 33 8.3 3×3 67 13.4 4×4 129 18.4 4×5
Invert 65 13 4×4 127 15.9 5×5 251 19.3 6×6

Determinant 20 3.3 2×2 39 3.9 2×2 71 3.9 2×2
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Figure 7 Normalized throughput and normalized standard deviation of different applications
running on our reconfigurable designs over the baseline – The time window has a size of 10 rounds
and the SPM memory is 32KB.

The table also shows that the optimal speedup, given a fixed unrolling factor, is achieved
by mapping the kernel on a subset of the tiles available on the CGRA design, rather than by
using the entire design. The reason is that loop-carried dependencies and the increase in
routing complexity do not provide a reduction in execution time by simply adding more tiles.
This indicates that sharing tiles among multiple kernels leads to better hardware utilization
and improved overall throughput compared with the sequential invocation of the kernels
on the CGRA, i.e., when each kernel is allocated the entire CGRA and the CGRA itself is
reconfigured as kernels are progressively executed.

3.1 Effects of Dynamic Rebalancing
Both GCN and LU are sensitive to variations in input data. Thus, the ability of the hardware
to dynamically adapt and redistribute resource during execution could provide significant
benefits. We compare a partial dynamic reconfigurable design to a statically partitioned
CGRA, keeping the number of tiles and the size of the SPM the same. We statically partition
resources among all kernels proportionally to their overall average execution times. The same
partition scheme is adopted as the initial configuration for the dynamically reconfigurable
design. Fig. 7 shows the normalized throughput and standard deviation of the two applications
running on the partial dynamic reconfigurable design. Dynamic adjustments are triggered
after the time windows has passed. We set the time-window to 10 executions of the whole
pipeline, which we found as a good intermediate point between the ability to. follow the input
trends and maintaining stable throughput. A smaller time window allows quickly adapting
to input variations, but if it becomes too small and bursts of data present similarities,
reconfiguration may be triggered by noise. In the plot, throughput and standard deviation
are calculated on the average per time window (i.e., 10 input samples) and normalized over
the baseline (i.e., the statically partitioned solution).

The overhead of the pipeline rebalancing process is also included in this evaluation.
Dynamic reconfiguration for modified kernels terminates in less than 1000 cycles and does not
stop execution. Moving the new control signals from the memory to the tiles to reconfigure
them for a new or modified kernel only takes dozen of nanoseconds with a typical direct
memory access (DMA) unit. Hence, rebalancing overhead is negligible with respect to the
execution time of the entire pipeline of kernels (e.g. 30k to 50k cycles for the GCN).

3.2 Architectural Exploration
As previously illustrated, the SO(DA)2 flow integrates an automated hardware generator
that allows to implement and evaluate designs with different hardware parameters. We
demonstrate this capability of our toolchain by exploring SPM sizes, scalability, and provide
the evaluation in terms of timing, area, and power consumption.
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(a) Throughput of different applications with vari-
ous sizes of SPM, normalized over the throughput
on a design with unlimited SPM size.

(b) Throughput of different applications running
with DRIPS partial dynamic reconfiguration with
various numbers of tiles, normalized over a statically
partitioned design with the same size (scalability
evaluation).

Figure 8 Exploration of hardware parameters: size of the SPM and number of tiles.

Figure 8a compares the throughput of the benchmark applications running on partially
reconfigurable designs with different SPM sizes. Data memory in CGRA represents a critical
resource, and its dimension are highly dependent from both the software and the hardware
optimization processes. We show the throughput of the different options normalized over the
throughput of a design with an SPM of unlimited size. We can see that if the size of the
SPM decreases by 4 times, the speedup reduces only about 2 times. This happens because
with less available memory the loop tiling and unrolling decisions taken during DSE will lead
to smaller kernels that have access to more resources than before.

Leveraging the automated generation flow, we can also evaluate the scalability of the
architecture (Figure 8b) in terms of number of tiles. We observe that the speedup decreases
on a 6×8 design: this happens because kernels do not expose enough parallelism to increase
the unrolling factor effectively, due to loop-carried dependencies, and are harder to schedule
on larger designs. Therefore, larger CGRAs fabrics are better utilized to accelerate large
applications composed of many kernels, or multiple small applications concurrently.

Finally, we evaluate the timing, area, and power consumption of a 5×5 CGRA design
using the Verilog code generated by SO(DA)2. We use Synopsys Design Compiler, Cadence
Innovus, and Synopsys PrimeTime PX with FreePDK45 to synthesize, place, route, and
estimate the power consumption of the design. We use CACTI3 to estimate the area and
power of the 32KB SPM. The entire chip area is 2.07mm2 and the operating frequency is
800MHz @ 45nm with an average power consumption of 564.8mW. The controller for partial
dynamic reconfiguration only takes 16.34% of the entire area.

4 Related Work

CGRAs have emerged as promising accelerators for data analysis thanks to their ability
to quickly adapt to different computational patterns while providing efficiency similar to
application-specific integrated circuits. Several research frameworks were designed to facilitate
the development of domain specific CGRAs.

KressArray Xplorer [9] explores the architectural design space (array size, function sets,
routing channels, etc) of the KressArray architecture, composed of reconfigurable data path
units. [5] provides more options (e.g., functional unit and topology) for DSE and is able

3 https://github.com/HewlettPackard/cacti
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to generate synthesizable Verilog. Kim et al. propose a CGRA DSE flow optimized for
digital signal processing applications [12], which efficiently rearranges processing elements
(PEs) by reducing the array size, and identifies interconnection topologies that minimize
area and power. DSAGEN [27] explores the design space of configurable spatial accelerators
starting from a generic design and trying to refine it towards an optimized version. All these
approaches only perform DSE of architectural parameters, without considering software-level
optimizations (e.g., loop tiling, loop unrolling, operation fusion, etc.).

RADISH [28] iteratively searches and evaluates opportunities for combining PEs. The
spatial [13] compiler applies several optimizations (including loop optimizations) to efficiently
map applications onto FPGAs or onto the Plasticine [19] CGRA design. However, these
works do not provide an end-to-end framework, including compilation infrastructure, CGRA
generation (modeling, testing, and evaluation), and integrated DSE. Furthermore, none of
the aforementioned works addresses the challenges of streaming data analytics applications.

5 Development and Research Opportunities

While SO(DA)2 infrastructure has reached a level of maturity to allow the release of its
modular components in open-source, there are several opportunities to extend them for new
research.

We have demonstrated that some of our designs can scale to a relatively large number of
tiles [20, 21], allowing to instantiate multiple application kernels at the same time. We have
also shown approaches to scale our designs to multiple nodes composed of a core and a tightly
coupled CGRA [24]. However, there are further aspects to explore regarding the scalability
of designs. These include the evaluation of the impact of more advanced technology nodes,
larger die areas (such as those of current leading- edge accelerators, up to wafer-scale), and
chiplet-based approaches.

Given the ability to generate relatively small and efficient designs, we also expect that
our CGRA designs could be applicable for inclusion on logic dies of 3D-stacked memory
devices, which may be only manufacturable at conservative technology nodes.

From the architectural point of view we aim at evaluating impacts and tradeoffs of adding
more dynamic aspects to our statically scheduled design, leveraging the dataflow paradigm.
The modular infrastructure provided by our toolchain also allows integration of new types of
tiles, including solutions with new numeric formats (new standards, or custom) and highly
specialized tiles generated through our state-of-the art high-level synthesis tools [7, 16].

The integration with modular, interoperable, compiler-based tools allows simultaneous
exploration of software and hardware parameters. Our DSE engine mainly exploits simulated
annealing, but as the space to explore grows, we plan to explore more effective heuristic
search algorithms, including bioinspired heuristics such as evolutionary algorithms [3] and
ant colony optimization [8], and reinforcement learning.

Finally, while our designs already support runtime partial dynamic reconfiguration, there
are opportunities for monitoring other metrics beside performance (e.g., energy and real-time
deadlines), and integrate different online adaptation approaches.

6 Conclusion

This paper discusses SO(DA)2, an end-to-end framework for the generation and customization
of reconfigurable architectures for data analytics.
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The ability to quickly perform data analysis, including data filtering, data classification,
and data reduction, are critical for many application areas (scientific computing, internet of
things, finance, security, cybersecurity, and more). Additionally, efficient ways to perform
data analysis are needed to enable low latency reasoning and autonomous decision processes.
CGRAs, which exploit coarse grained FUs interconnected with a fast NoC, provide efficiency
as well as adaptability to complex data-dependent computational patterns. SO(DA)2 is a fully
open-source toolchain composed of a compiler infrastructure that interfaces with high-level
productive data science frameworks (SODA-Opt) and a CGRA generator (OpenCGRA),
providing users with the capability to quickly go from algorithmic description to hardware
implementation. The combination of the tools allows performing DSE and building specialized
CGRAs for the applications of interests. We further show how our toolchain considers
partial dynamic reconfiguration as a key part of the hardware/software optimization process,
demonstrating its applicability to perform runtime rebalancing of complex pipelines of data
streaming kernels.
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Abstract
This paper describes a framework supporting the automatic composition of reconfigurable overlays
laid on top of an FPGA to offload computing-intensive sections of a given application, from an
embedded processor to a loosely coupled reconfigurable accelerator. Overlays provide an abstraction
layer acting as an intermediate fabric between users’ applications and the FPGA fabric. Among the
existing flavors, the overlay template proposed in this work is based on a coarse-grain reconfigurable
architecture featuring word-level operators, reducing long place-and-route times associated with
FPGA designs. The proposed overlays are composed at run-time using a tile-based approach, in
which pre-synthesized processing elements are stitched together following a 2D grid pattern and
using dynamic and partial reconfiguration. The proposed reconfigurable architecture is accompanied
by an automated toolchain that, relying on an LLVM intermediate representation, automatically
converts the source code to a data-flow graph that is afterward mapped onto the overlay. A mapping
example is provided in this paper to show the possibilities enabled by the framework, including loop
mapping and loop unrolling support, features originally described in this work.
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1 Introduction

The lack of accessibility of FPGAs to software programmers has been traditionally considered
the main barrier to bringing them to mainstream computation, reducing their use to a limited
group of hardware designers [1]. For this reason, there has been a growing interest during the
last few years in finding alternatives to Hardware Description Languages (HDLs) to program
the FPGAs. This limitation has led to the popularization of High-Level Synthesis (HLS)
tools that use software-based languages as the entry point [13].

Currently, there are successful commercial HLS tools such as Vitis High-Level Syn-
thesis [17] and Intel High-Level Synthesis Compiler [9] but also academic open-source HLS
tools, such as [3]. Despite their many advantages, HLS tools still face some challenges to be of
use by designers with little hardware design knowledge. First, to make efficient circuits, it is
necessary to apply optimizations that require knowledge of the underlying hardware platform.
Second, the integration of the generated accelerators with the rest of the system has to be
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2:2 A Tile-Based Multi-Grain Approach

done manually with many HLS tools [8]. In addition, and while HLS tools partially solve
the lack of accessibility, they do not solve the slow implementation cycles that characterize
FPGA designs [15]. In particular, FPGA designs suffer from long synthesis and Place and
Route (P&R) times, what is termed as the FPGA programmability wall [14].

This programmability wall is largely due to the fine granularity of the FPGA architectures
that are configurable at bit level. That is why novel approaches for virtualizing the FPGA
resources appear in the state-of-the-art. Among them are overlays, a pre-compiled FPGA
circuit with a programmable architecture [4]. Overlays provide a higher abstraction layer
of FPGA resources acting as an intermediate fabric between user applications and the
reconfigurable fabric. Different architectures can be implemented as overlays, including
soft processors, arrays of soft processors, and Coarse-Grained Reconfigurable Architectures
(CGRA) [11]. CGRAs provide word-level operators and special-purpose interconnections.
In CGRA-based overlays, different applications, usually represented as Data-flow Graphs
(DFGs), can be mapped. This process is represented in Figure 1. Implementing CGRAs on
top of FPGAs using overlays has several advantages over using the FPGA resources directly.
First, they can reduce the P&R times by orders of magnitude. Second, they serve as an
FPGA virtualization method to make designs portable across different devices. Lastly, they
allow rapid reconfiguration to change between different applications.

Figure 1 Overlays form an intermediate fabric between the FPGA and the applications.

An appealing option for overlay configuration is to leverage FPGAs’ Dynamic Partial
Reconfiguration (DPR) mechanism. DPR allows reconfiguring an area of the FPGA while
the rest of the system remains working and unaltered. One of the primary purposes of
DPR is to time-multiplex the reconfigurable resources, allocating only the accelerators
used at any given time, thus reducing the required area on the FPGA. As a counterpoint,
users applying DPR have to face many challenges related to low-level access to the device
configuration memory. However, changes introduced in commercial tools during the last
years changed DPR perception so that it is no longer seen as a complicated technique only
used by experts [16]. The interest in using FPGAs in data centers for cloud computing [2]
has undoubtedly contributed to making the use of Dynamic and Partial Reconfiguration
more widespread.

This paper gathers a set of research activities aiming to provide a design framework and
several architectures that leverage DPR to compose reconfigurable overlays on the fly, starting
from software descriptions using high-level languages. It is based on a custom hardware
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composition technique to generate new hardware accelerators by combining pre-implemented
logic modules while the system is being executed. This way, by stitching these modules
together, it is possible to generate new accelerators without implementing them from scratch,
reducing the implementation time. This proposal is enabled by IMPRESS [21], a design
tool to implement highly flexible reconfigurable systems combining multiple granularity
levels. Accelerators are described starting from software-based descriptions, which enables
the offloading of intensive computing tasks from the embedded processor to the FPGA. The
accompanying toolchain automatically converts the source code to a data-flow graph that
is afterward mapped onto the overlay. The proposal targets heterogeneous systems such as
the Xilinx Zynq-700 SoPCs that integrates an FPGA alongside a hard-core processor. A
mapping example has been included in the paper to show the possibilities enabled by the
framework, including loop mapping and loop unrolling support, features that are originally
described in this work.

The rest of this paper is organized as follows. In Section 2, a discussion on the composition
of hardware accelerators using a 2D arrangement of pre-synthesized reconfigurable processing
elements is provided. Section 3 describes the architecture of the multi-grain reconfigurable
overlay, while the accompanying software tools for mapping applications on the overlay are
provided in section 4. In section 5, an application example is provided, while conclusions
and future work are provided in section 6.

2 Tile-based Composition of Hardware Accelerators

DPR has been used in the state-of-the-art in combination with overlays to increase their
flexibility by changing the PEs at run-time, adapting them to any given application [12].
However, previous approaches were restricted by the limitations that impose former com-
mercial DPR flows, such as Xilinx [18] and Intel DPR flows [10]. Differently, in this work,
the advanced configuration possibilities enabled by the academic tool IMPRESS [21] have
been explored. Using these advanced features, the overlay composition described in this
work follows a tile-based approach that generates new accelerators by stitching together PEs
in a 2D grid pattern. This reconfiguration style is called medium-grain reconfiguration in
IMPRESS. The implementation of the system starts by defining a dynamically reconfigurable
region reserved for acceleration composition. The communication of the reconfigurable region
with the rest of the system (including the attached processors) is defined at design time and
remains fixed for all the reconfigurable accelerators. The implementation of individual PEs
is carried out independently from the main system. The PEs include custom interfaces to
connect to adjacent PEs or the rest of the system if the PE is allocated in the reconfigurable
region border. Accelerator composition is carried out by reconfiguring the PEs in different
subregions, forming a 2D regular architecture. Figure 2 illustrates the tile-based composition
technique. The configuration of each PE can be parameterized by instantiating individual
reconfigurable components whose behavior can be adapted reconfiguring FPGA Look-Up
Tables (LUTs) at high speed. This is referred to as fine-grain reconfiguration, according to
the IMPRESS terminology [19].

The main advantage of the proposed approach is the high flexibility that it offers. As
there is only one reconfigurable region that can allocate multiple PEs, the size of the PEs is
not fixed and can vary between accelerators. The communication interface between PEs is
defined individually in each PE, allowing different PE interconnections tailored to a given
accelerator. Moreover, the number of PEs is adapted to the accelerator requirements leaving
the rest of the reconfigurable resources free to allocate other accelerators. This means that the
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Figure 2 Tile based composition approach. At design time (left) it is necessary to implement a
library with different PEs and an empty reconfigurable region that only defines the interconnection
with the rest of the system. At run time (right) different accelerators can by composed on the fly by
stitching together PEs from the library.

overlay is dynamically scalable. Finally, the individual PEs can be configured instantiating
specific components (i.e., with fine-grain reconfiguration, see [21] for further details) that can
be reconfigured quickly without having to reconfigure the whole PE and without needing a
direct connection to the rest of the system, reducing the communication interconnections
between the PEs and the rest of the system.

The combination of medium-grain reconfiguration to compose the overlay from scratch
for each application, with the fine-grain reconfiguration to modify specific components within
the overlay, is known as multi-grain reconfiguration. This is a unique feature of the overlays
proposed in this work.

3 Reconfigurable Overlay Architecture

As explained in the introduction, the term overlay references CGRA-based overlays composed
of an array of PEs surrounded by a configurable interconnect in this work. The CGRA used
in this work is built on top of the baseline architecture described in [4].

Figure 3 shows the architecture for one PE. It is divided into different components. Blue
boxes represent different Data-Driven Pipeline Units (DDPUs) that control data-flow. Yellow
boxes are the routing elements that move the data through the PE. The synchronization
components that ensure that data can fan out to multiple destinations are marked in brown
boxes. Finally, the computing operations on the input data are performed on the FU,
represented as a green box.

Each PE input/output is connected through a DDPU that controls data-flow while
pipelining it. The DDPUs transfer data using the synchronous elastic protocol (SELF) [7].
This protocol uses a handshake distributed control with a pair of signals. The valid signal
indicates whether the DDPU has data or is empty (i.e., it has a pipeline bubble), and the
accept signal indicates whether the DDPU is stalled or can receive new data. The elastic
pipeline of the overlay allows the input data to arrive at different times to the FU inputs.
Therefore, it is necessary to include a synchronization component that ensures that data is
forwarded to the FU only when both inputs have valid data. This is the goal of the join and
fork components.

This work uses the baseline PE architecture proposed in [4] that supports the following
32-bit integer operators: add, subtract, multiplication, shift left, shift right, and bitwise logical
operators. However, it has been modified, adding three extra features to support scalability,
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Figure 3 Baseline PE architecture. The PE is divided into four different components. In blue are
the Data-Driven Pipeline Unit (DDPU), in yellow the routing elements, in brown the synchronization
components and in green the FU. Figure extracted from [4].

improve routability, and support feedback loops. The first difference is that multiplexers and
the parameters that configure the data paths are implemented with fine-grain reconfigurable
components whose behavior can be modified by reconfiguring their LUTs. Moreover, the
FU has been implemented using the fine-grain FU available in IMPRESS to implement add,
subtraction, and bitwise operations by replacing only LUT constants in the FU. Second,
constants must be mapped as inputs connected to the processor in the original PE. In
contrast, in this proposal, a fine-grain reconfigurable parameter is inserted in each PE to
map constants directly into the PE during the configuration phase. This approach facilitates
the routing phase and reduces the number of inputs. Finally, the PE has been modified to
implement feedback loops that allow routing the output of the FU to one of its inputs. This
is necessary to implement typical operations, such as accumulators that reuse data from
their previous iteration. When mapping complex nested loops, whole arrays of elements may
be reused in subsequent iterations of outer loops. A FIFO has been included to store these
feedback elements before reusing them.

To offload computation from the processor to the overlay, an infrastructure capable of
transferring data between the two devices efficiently has been provided. The overlay has
been implemented in a Xilinx Zynq-7000 SoC. Zynq-7000 SoCs provide high-performance
AXI ports that can be used to transfer bursts of data between the FPGA and the processor
memory. In particular, in the proposal described in this paper, we have used the Accelerator
Coherency Port (ACP) port that ensures cache coherency in data transfers. The overlay
wrapper includes a multiport memory that interfaces to external PEs of the overlay using
input/output nodes that compute the address to access the correct data locations. The
reader is referred to [20] for further details on the system integration.

4 Software Support for the Composition of Overlay Accelerators

The framework includes a supporting tool for mapping user applications onto the reconfigur-
able overlay. The entry language is C/C++, making it accessible to users without a hardware
background. Only loop-based code sections are supported to be offloaded since they offer the
highest ratio between the time associated with data transfers and the computation time. In
particular, the proposed framework supports: (1) single loops, (2) nested loop block (with
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up to three levels), (3) sequential loop blocks with data dependencies, where different loops
are executed one after another, and (4) sequential loop blocks surrounded by an outer loop,
as shown in Listing 1.

Listing 1 Sequential loops surrounded by outer loop.
for (i = 0; i < LOOP_IT_1 ; i++) {

for (j = 0; j < LOOP_IT_2 ; j++) {
for (k = 0; k < LOOP_IT_3 ; k++) {

// DFG A
}

}
for (l = 0; l < LOOP_IT_4 ; l++) {

// DFG B
}

}

However, there are still limitations to the loops that can be implemented in the current
version of the framework. First, loops should not include any control statements such
as if/else statements. Second, within a single loop block, each iteration must not carry
dependencies with any other to allow data pipelining. The only exception is using variables
that perform a computation using their previous iteration results, which happens, for instance,
with accumulators that sum all the elements of an array. When computing sequential loop
blocks surrounded by an outer loop, it is possible to have some variables that reuse the last
n iteration results. This feature is supported by storing all the n elements inside a feedback
FIFO available in the FU.

The next subsection provides an overview of the process followed by the tool to transform
the source code into the configuration bitstream for the overlay. Then, specific transformations
introduced in the framework to support feedback loops and loop unrolling are described.

4.1 Automatic Bitstream Generation Overview
The process starts by identifying the appropriate code sections to be accelerated, which
the user must handle manually. Afterward, two steps are automatically carried out for
each of the selected code sections. First, the source code is converted to a DFG, and then
the DFG is mapped onto the overlay. These steps have been fully automated leveraging
the CGRA-ME framework [6]. CGRA-ME is a unified framework encompassing a generic
architecture description, architecture modeling, application mapping, and physical imple-
mentation. The primary goal of CGRA-ME is to provide a platform to investigate different
CGRA architectures, algorithms, and applications. In this work, the original CGRA-ME has
been extended with new features to adapt it to the proposed scalable overlay, adding support
for transparently offloading applications from the processor and extending the support for
complex loops (CGRA-ME only supports single loops).

Unlike the original CGRA-ME framework, where the user needed to tag the loops that
were going to be mapped onto the overlay, in the proposed framework is necessary to wrap the
loops inside a new software function. This strategy allows to quickly offload the application
to the overlay by substituting the original function to another that directly composes the
overlay, configures it, and then manages the input/output data transactions.

CGRA-ME relies on the LLVM compiler infrastructure to transform a C/C++ loop into a
DFG. The LLVM infrastructure can be divided into front-end tools that transform high-level
source languages to the LLVM Intermediate Representation (IR), middle-end optimization
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passes that analyze and transform the IR, and back-end tools that compile the IR to machine
code. The LLVM infrastructure includes a collection of classes and methods that can be
used to generate custom LLVM passes to inspect and transform the IR as required by each
specific overlay. Based on this infrastructure, CGRA-ME relies on clang to compile a C/C++
application to the IR and a custom loop-based LLVM pass to analyze all the IR instructions
inside loops to generate a DFG. A new pass function has been developed in this work to
extend the original CGRA-ME functionalities.

The new features added to the LLVM pass are described next. First, the pass type has
changed from a loop pass to a function pass that allows iterating over each Basic Block (BB)
of the function. A BB is a sequence of instructions followed by one branching instruction at
the end. Therefore, when a program enters a basic block, it is executed until it reaches its
end and jumps to another BB. The first thing the proposed LLVM pass does is to identify
all the instructions of each BB to classify it in one of the following categories: (1) function
entry point, (2) loop header, (3) innermost loop, (4) loop exit, and (5) function exit. The
function entry and exit points are discarded, and the rest are stored in a BB array to analyze
each BB’s structure later.

Given the list of BBs, the LLVM pass checks the number of innermost loops to determine
the number of DFGs. If there are two or more DFGs, the LLVM pass analyzes the BBs
to catch any outer loops surrounding the inner loops. The condition for an outer loop is
that the first and last BBs are the loop header and loop exit, respectively, and the exit has
a branch instruction that can jump to the loop header BB. If there is an outer loop, the
iteration variable is analyzed to get its name and the loop iteration limits (i.e., initial value,
step, and last value). Then, all the remaining BBs are analyzed to get the number of nested
loops and their loop iteration limits for each DFG. After this process, the structure of each
BB is analyzed, and it is possible to start obtaining the DFGs of the innermost loops.

Then, the LLVM pass converts each instruction into a node of the DFG, while the
dependencies between instructions are represented as edges. Another difference concerning
the original LLVM pass is how load/store instructions are managed. Originally, a load/store
instruction was represented as a special node that received the offset from the base address
as an argument. Therefore, the DFG included the instructions necessary to compute these
offsets. The proposed overlay architecture includes specific configurable input/output nodes
that can autonomously compute the offset address to access the memory in each iteration.
This work makes it possible to map the load/store instruction into these nodes without
adding specific nodes to the DFG. It is now necessary to analyze the precedent instructions
to obtain the base address and the stride for each nested loop to configure the input/output
nodes of the architecture. The current LLVM pass can identify the instruction patterns that
are used to compute the following indices: [i], [offset], [i+offset], [arg], [arg+offset], where i
is the iteration variable of one loop and arg is another input. The current proposal supports
arrays with up to three dimensions. Once the LLVM pass has generated the DFG, it removes
all the leaf nodes that do not generate any output value.

The next step is to map it onto the overlay. This proposal uses the architecture-agnostic
Integer Linear Programming (ILP) P&R algorithm [5] provided in the CGRA-ME framework.
This algorithm takes a description of the overlay architecture and the DFG and generates
an optimal mapping. To use the mapper, it has been necessary to describe the overlay
using the C++ Application Programming Interface (API) provided in CGRA-ME. The tool
generates two output files. The first file is the overlay bitstream, a binary file that describes
the configuration of the overlay using four configuration words per PE to specify its location,
the FU used, and the value of the PE parameters and multiplexers. The second file includes
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a function that replaces the original code function with an equivalent one that offloads the
computation to the overlay. The new function performs three steps. First, it reads the
overlay bitstream to compose the overlay using medium-grain reconfiguration and configures
it using fine-grain reconfiguration. Second, it configures the overlay’s input/output nodes
obtained from the attributes of the DFG. These two steps are only necessary the first time
the application is offloaded. Finally, the function transfers the input data to the overlay,
waits until it finishes its computations, and then returns the overlay results to the processor
memory.

Next, the specific modifications introduced to deal with feedback loops and loop unrolling
are described.

4.2 Supporting Feedback Loops
The initial version of the DFG is generated directly by transforming every LLVM instruction
into nodes according to the sequential instruction pipelining typical in microprocessors. Every
iteration, the value to use is loaded, the computation is performed, and the result is stored
in memory. Therefore, this first DFG does not show feedback loops explicitly. However, we
know that a feedback loop occurs whenever the input value that is loaded has been stored in
previous iterations. The LLVM pass has been modified as described below to identify these
situations.

The identification process starts by analyzing all the output nodes to see if any nested
loop has a stride value of zero, as this would indicate that the output node is writing to the
same address every iteration. This situation suggests that another input node is probably
reusing this value. Then, for all the output nodes that have been identified as potential
feedback loops, the LLVM pass checks if there is an input node with the same attributes as
the output node. When an input and output node share the same parameters and have an
edge to the same computation node, this confirms the presence of a feedback loop in the
node. Once a feedback loop has been identified, it is necessary to find the set of attributes to
configure the corresponding FU. Feedback nodes require four attributes to be fully defined.
The first two are basic attributes that are used to indicate the presence of a feedback loop
(unitary_loop) and to indicate which of the two operands of the FU is used to route the
feedback loop. The third attribute iterations_reset indicates the number of iterations that
have to elapse to reset the accumulated value. Finally, the last attribute loop_size indicates
the number of data elements that are reused. A loop_size=0 indicates that the FU reuses
the last result to compute the new value, while a loop_size larger than one indicates that
the results of the FU need to be stored in the feedback FIFO before being reused.

4.3 Automatic loop unrolling
The CGRA-ME framework has also been modified to support loop unrolling. This feature
consists in exploiting loop parallelism by simultaneously executing several copies of the DFG
in the overlay. Loop unrolling can be effectively combined with the overlay scalability to
map the same application, with different loop unrolling factors, onto overlays with different
sizes. Therefore, allowing to trade-off the overlay performance with the number of resources
used. Currently, loop unrolling is implemented only for applications with just one DFG, and,
in case it has feedback loops, the loop_size attribute must be zero (i.e., loops that reuse
their last result in their subsequent computation). Applying unrolling makes it necessary to
modify the original DFG before calling the P&R tool. First, the DFG is replicated l times,
where l is the loop unrolling factor. Then, it is necessary to change the attributes of the
input/output nodes to distribute data accesses among all the replicated nodes equally.
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Each replicated node needs an offset that is one stride apart from each other so that they
access the first l consecutive elements. The offset of the k-th replicated node is offset_0 =
stride_0 * k. The stride attribute also has to change to stride_0 = stride_0 * l, and
it is common between all the replicated nodes. Finally, the total number of iterations has to
be updated to iterations_0 = (iterations_0 / l) + (((iterations_0 % l) < k) ?
1 : 0) where the right side of the expression uses the ternary operator ?: to indicate that
it is necessary to add one iteration to the first m replicated nodes, where m is the remainder
of the iterations_0 / l division. When the total number of iterations is not divisible by the
loop unrolling factor, it can generate problems as the different replicated nodes will generate
a different number of partial results. This circumstance has been solved by modifying the
PE architecture, asserting the valid signal in the last iteration, and changing the maximum
iterations in the output node to one.

When the DFG contains feedback loops, loop unrolling requires a few extra steps. In
these cases, the loop is replicated to l feedback nodes that generate partial results that have
to be computed with each other to obtain the final result. Then, it is necessary to remove
the output nodes of the feedback loops and add extra computing nodes until getting the final
result that is then forwarded to an output node.

5 Transformation Example

As an example of how the mapping process works, we are going to analyze the accumulate
application shown in Listing 2. Figure 4 shows a comparison between the DFG obtained
by the original CGRA-ME LLVM pass and the proposed one. Even for an application with
unidimensional arrays like this one, the total number of nodes in the DFG is reduced from
18 to 9 nodes, allowing the application to be mapped onto smaller overlays. This reduction
is due to the changes on how the input operands are read in this proposal, compared to the
original CGRA-ME. The attributes of the input/output nodes are shown in the DFG text
representation shown in Listing 3.

As an example, the attributes of the input a[i+1] are listed below (labelled as input0 in
the Listing). The [argNo=0][argType=reference] attributes alongside the [offset=1] argument
are used to obtain the base address of the input by specifying the function variable and its
offset. The [stride_0=1][iterations_0=1000] attributes indicate that there are 1000 iterations
and the address increases by one for each iteration. [inner_loops=1][DFG_position=0] are
more relevant for applications with more than one DFG to indicate the number of direct
nested loops (i.e., attribute inner_loops) and which DFG is executed first (i.e., attribute
DFG_position).

Listing 2 Accumulation Application.
# define LOOP_SIZE_1 1000
void accumulate (int *a, int *b, int *c, int *sum) {

int i;
for (i = 0; i < LOOP_SIZE_1 ; i++) {

c[i] *= a[i+1] + b[i -1];
*sum += c[i];

}
}
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Figure 4 Original accumulator DFG generated by the CGRA-ME framework versus the proposed
accumulator DFG. The proposed DFG discards all the nodes for computing the index and replaces
them for attributes (e.g., initial address and stride) to configure the inputs/outputs nodes.

Listing 3 Attributes of the accumulate basic blocks.
digraph G {
input0 [ opcode = input ][ argNo =0][ argType = reference ][ offset =1][ inner_loops =1]

[ DFG_position =0] [ stride_0 =1][ iterations_0 =1000][ stride_1 =0][ iterations_1 =0]
[ stride_2 =0][ iterations_2 =0];

input1 [ opcode = input ][ argNo =1][ argType = reference ][ offset = -1][ inner_loops =1]
[ DFG_position =0][ stride_0 =1][ iterations_0 =1000][ stride_1 =0][ iterations_1 =0]
[ stride_2 =0][ iterations_2 =0];

add2[ opcode =add ][ unitary_loop =0];
input3 [ opcode = input ][ argNo =2][ argType = reference ][ offset =0][ inner_loops =1]

[ DFG_position =0][ stride_0 =1][ iterations_0 =1000][ stride_1 =0][ iterations_1 =0]
[ stride_2 =0][ iterations_2 =0];

mul4[ opcode =mul ][ unitary_loop =0];
output5 [ opcode = output ][ argNo =2][ argType = reference ][ offset =0][ inner_loops =1]

[ DFG_position =0][ stride_0 =1] [ iterations_0 =1000][ stride_1 =0][ iterations_1 =0]
[ stride_2 =0][ iterations_2 =0];

input6 [ opcode = input ][ argNo =3][ argType = reference ][ offset =0][ inner_loops =1]
[ DFG_position =0][ stride_0 =0][ iterations_0 =1000][ stride_1 =0][ iterations_1 =0]
[ stride_2 =0][ iterations_2 =0];

add7[ opcode =add ][ unitary_loop =1][ iterations_reset =1000][ loop_size =0]
[ loop_operand_pos =0];

output8 [ opcode = output ] [ argNo =3] [ argType = reference ] [ offset =0][ inner_loops =1]
[ DFG_position =0][ stride_0 =0][ iterations_0 =1][ stride_1 =0][ iterations_1 =0]
[ stride_2 =0][ iterations_2 =0];

input0 ->add2[ operand =1];
input1 ->add2[ operand =0];
add2 ->mul4[ operand =1];
input3 ->mul4[ operand =0];
mul4 -> output5 [ operand =0];
mul4 ->add7[ operand =1];
input6 ->add7[ operand =0];
add7 -> output8 [ operand =0];
add7 ->add7[ operand =0];
}
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Figure 5 shows the mapping of the accumulate application DFG from Figure 4 onto a
2x3 overlay.

Figure 5 DFG to overlay mapping.

Finally, Regarding loop unrolling, an example can be seen in Figure 6 that replicates the
accumulate DFG two times. The replicated DFG has added a new node (e.g., add17) to add
the partial values generated by add7 and add16.

Figure 6 Accumulate DFG with a loop unrolling factor of two.

To evaluate the proposed overlay, we have used different applications that allow testing the
performance of the proposed infrastructure and the behavioral correctness of the multi-grain
reconfigurable method to build the overlay. The reader is referred to [20] for experimental
results and performance metrics carried out with benchmark applications.

6 Conclusions and Future Work

This paper describes the effort carried out at the Centro de Electrónica Industrial of the
Universidad Politécnica de Madrid related to the automatic generation of overlay accelerators.
Proposed overlays take the form of a coarse-grain reconfigurable array, allowing the offloading
of computing-intensive sections of code from the processor to the accelerator. The process
followed to map a piece of code to the overlay is described in this work with one example.
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This is an ongoing research work, which is now evolving towards integration with the
RISC-V ecosystem. The overlay is being integrated with the RISC-V processor closer to the
CPU, reducing the overhead associated with data transfers between the processor and the
overlay. Moreover, future research plans include the development of run-time strategies for
automatically deciding which parts of the code are offloaded at each time instant. Besides,
the overlay is being applied to accelerate biomedical applications in the embedded computing
domain.
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Abstract
Benchmarking is crucial in code optimization. It is required to have a set of programs that we
consider representative to validate optimization techniques or evaluate predictive performance models.
However, there is a shortage of available benchmarks for code optimization, more pronounced when
using machine learning techniques. The problem lies in the number of programs for testing because
these techniques are sensitive to the quality and quantity of data used for training.

Our work aims to address these limitations. We present a methodology to efficiently generate
benchmarks for the code optimization domain. It includes an automatic code generator, an associated
DSL handling, the high-level specification of the desired code, and a smart strategy for extending
the benchmark as needed.

The strategy is based on Active Learning techniques and helps to generate the most representative
data for our benchmark. We observed that Machine Learning models trained on our benchmark
produce better quality predictions and converge faster. The optimization based on the Active
Learning method achieved up to 15% more speed-up than the passive learning method using the
same amount of data.
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1 Introduction

Benchmarking is an essential part of testing code optimization techniques and models. Such
benchmark programs should be representative and reflect similar code characteristics that
we are targeting.

Our objective is to have benchmarks adapted to the evaluation of source-to-source code
transformations. These transformations make it possible to improve program characteristics
such as the spatial and temporal locality of the data accesses, the loop iteration order,
the potential parallelism. The execution time gain of the transformation depends on the
transformation parameters that have to be instantiated for each kernel and the target
architecture.
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There are various known benchmarks for the C programming language that address
specific aspects. For instance, BEEBS Benchmarks [18], Embench™ [2], MiBench [10] address
different aspects of performance on embedded platforms. PolyBench 4.2 [23], Livermore loops
(LFK) [17], LCALS v1.0.2, TSVC, [16], LORE [3] focus mainly on compiler optimizations
and performance analysis. However, these benchmarks contain a limited number of typical
kernels. For instance, TSVC contains 151 perfectly-nested loops, PolyBench 4.2 contains 30
computational kernels (kernel may contain several loop nests), Livermore loops (LFK) have
30 loop-nests, and LCALS v1.0.2 contains 32 loop-nests, LORE aggregates loops from other
benchmarks and contains 2499 loops in C.

This amount of data may not be enough when code optimization actively uses Machine
Learning (ML) techniques. The strength of ML techniques often comes from the use of a
large training set. For instance, MNIST [22] a benchmark for image processing contains
70,000 images, LibriSpeech [19] for speech recognition includes 1000 hours of speech, Enron
corpus [12] for natural language processing aggregates 500,000 messages.

Therefore, there are much less data in the code optimization domain than in the fields
where ML is running at its peak performance. There is not enough training data to properly
cover the feature space for complex transformations such as loop tiling, loop unrolling, loop
interchange, etc. Also note that different transformations have different feature spaces from
the ML perspective. One training set may capture better features for one transformation,
another set – for a different transformation. It becomes challenging or even impossible to
create a universal training set.

There are two main approaches to solve this problem: data mining [11, 8, 9] and synthetic
code generation [7, 6, 4]. Nevertheless, data mining approaches have drawbacks such as data
accuracy, completeness, parsing difficulties, libraries they may depend on, etc. In our study,
we investigate the approach of synthetic code generation. Existing approaches either rely on
the known predefined statistical distribution of the parameters [4] or require a huge training
set for the deep learning model to mimic the given distribution [6].

Our work proposes a solution to these problems. We introduce a methodology to generate
a representative benchmark that captures many computation patterns crucial for parallel
computations. We let the ML model decide which data to include in the training benchmark
among many potential candidates to achieve the best result. These candidates were not even
compiled. Also, we present a code generator which can automatically create synthetic data.
Our code generator uses information like array sizes, data-dependencies, loop index order,
and data access functions as a high-level specification of the generated code. We use a DSL
to easily manipulate these concepts and generate code in a very parametric and flexible way.
Active learning methods allow us to direct code generation to the target function of the ML
model. This data generation approach enables the creation of representative training sets for
program optimization in the ML context. Moreover, we are able to generate our codes for
different benchmark distribution styles, such as PolyBench.

This paper is structured as follows. Section 2 presents the context of our work and
pointing out the guidelines we used in our code generator. Section 3 introduces our automatic
code generator of C kernels. Section 4 presents the ML pipeline we use to get the predictions
of the transformation parameters in the context of code optimization. Finally, Section 5
presents the data augmentation process with active learning techniques and its promising
experimental results.
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2 Context

To apply code optimizations, some transformation parameters must be defined. For example,
to apply loop unrolling we have to predict the number of iterations to unroll, to apply
loop tiling, the block sizes have to be selected. We follow three concepts as guidelines for
building an automatic code generator of programs, used by ML techniques to predict efficient
transformation parameters.

First, ML algorithms build prediction models based on training data. The key idea is
that the model should capture meaningful patterns in training data and should be able to
generalize them for arbitrary input. We use such high-level concepts for the code generator,
which make it easy to mimic different code distributions and extend them as needed. We
describe this strategy in Sections 3.

The second important aspect is the amount of available data. From the ML perspective,
the more data available, the better, the more insights we can obtain. However, data labeling
can be a very time-consuming process. Therefore, time also constraints the size of the
training set. It is important to build a representative benchmark of a reasonable size.

We solve this problem by using active learning methods. The main idea of Active Learning
is that not all points in a training set have the same impact on the model training and its final
performance. The goal is to select only the most representative samples from the training
set in order to match the time constraints. This issue is discussed in detail in Section 5.
We compare this approach with classical passive learning techniques, where all points from
the training set are treated equally and have the same probability of being taken to the
final training set. In contrast, active learning methods assign a score to each point that
corresponds to the profit that we can gain if we take this point for training.

The third aspect concerns the code characteristics. Because loop nests are often the time-
consuming computation parts in programs, our study focuses on optimizations commonly
used by compilers (e.g. loop permutation, tiling) that could potentially exploit all the benefits
of parallel execution. To optimize their execution time, it is necessary to take into account
the spatial and temporal locality of the data accesses and data dependencies to extract the
potential parallelism and apply the transformations only when they are legal.

In this paper, we evaluate our methodology on the tiling transformation. The tiling
transformation is one of the most crucial code optimization techniques to expose data locality
and parallelism. The main idea is to split the initial iteration space into blocks and traverse
them in a special order. This transformation is parametric and very sensitive to parameter
tuning. Poor parameter tuning can lead to much lower performance than the initial code.
We consider 3-D cubic tiling, which means that we split 3-D iteration space by cubic tiles.
The goal of Machine Learning is to predict the sizes of the tiles for each code. We investigate
three feature spaces to address this problem: a) Yuki and al.[24], b) Liu and al.[15] and
c) one-hot encoding of all array accesses.

We show that our methodology can accelerate the learning process in the context of given
feature spaces by generating the most representative data.

3 Code Generator Design

In this section, we introduce the main components of our automatic generator of C code. For
each of them, we specify the type of code generated. Figure 1 highlights its main building
blocks.

PARMA-DITAM 2022
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Figure 1 Generation pipeline.

3.1 Output Code and Input Data
The objective of the generator is to automatically produce a code written in C that respects
the following hypothesis:

it is correct. The code must not produce any runtime errors such as out of bounds
memory access, etc;
it meets the code criteria specified by the user in the DSL sample;
it includes the necessary infrastructure to perform performance tests such as header files,
directives/pragmas and calls to timing reporting functions;
it can be compiled and executed. For instance, the arrays are properly initialized in the
code.

In addition to these requirements, we use high-level input criteria for code optimization
through a DSL. These are the number of arrays and their sizes (memory pressure), data
dependencies, an order of the loop indices, and array access functions (pressure on spatial and
temporal locality). These concepts allow us to explore the legality of potential transformations
and optimize the code.

We apply the workflow of Figure 1 after parsing the input. After these steps, we get
the first version of our code. Then there is the option to process the generated code to
PolyBench-like style or another benchmark distribution style. The input example is shown
in the appendix A, the corresponding output computations are shown in appendix B and the
full code infrastructure is presented in appendix C.

3.2 Array Declaration and Initialization
The code generator takes array sizes from the input file (DSL description) and dynamically
or statically (depending on the chosen option) allocates the requested arrays. The code
generator may choose array sizes automatically if the user uses the PolyBench-like style of
kernels. For instance, the EXTRALARGE_DATASET directive indicates that arrays should
not fit the L3 cache.

3.3 Computation Instructions
This component generates the computation instructions included in the loop nest. Each
instruction is composed of a reference to a write array and several (at least one) to read
arrays. The array access functions are either explicitly given by the user or defined by the
generator that respects the data dependencies which have been expressed in the DSL sample.
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3.4 Loop Bound Computation
The generated code should be correct. To avoid out-of-bounds memory accesses to array
elements, the generator computes the largest computation iteration domain according to the
array declarations and the array access functions. We use linear-programming techniques to
compute correct bounds. For constant dependencies, we generate numerical values for loop
bounds.

3.5 Code Infrastructure
This component consists of adding all the infrastructure necessary for the execution of a
stand-alone C program with time reporting functions. It includes: header files, variable
declaration, and initialization, array allocation and deallocation, calls to time reporting
functions, pragmas and directive insertion, and adjustment of array sizes according to the
requested cache size, etc. We propose a processing pass that transfers our generated kernel
to a PolyBench-like style.

4 Machine Learning modelling

Our objective is to show that our approach can accelerate the techniques of code optimization
using ML in the context of a given feature space. In this section, we describe the pipeline
that we would like to accelerate using Active Learning techniques. By accelerating, we mean
the need for less training data to achieve good performance.

4.1 Machine Learning pipeline

Figure 2 Training and prediction pipeline.

We investigate the problem of loop tiling size prediction for 3-D cubic tiles to validate
our Machine Learning model. We consider tile sizes from 2 till 512 for the experiments and
predictions. As features, we take the code characteristics proposed by a) Yuku et al. [24],
b) Liu et al. [15] and c) one-hot encoding of array references.

We consider this problem as a regression problem. The model takes the features mentioned
above as input and predicts the values of the tile sizes in the real domain. A heuristic of
rounding the tile size to the nearest divisor of the loop bound could be applied and was used
in our experiments. Then we generate the code based on predicted tile size. The training
and prediction pipelines are shown in Figure 2.

Note that once the training pipeline phase is complete, the parameters of the prediction
model are fixed. It is possible to predict with this tuned model the best parameters of the
program transformation we want to apply in one shot. This model can then be integrated
into a compiler.

PARMA-DITAM 2022
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A program Autotuner, such as LOCUS [20], typically uses several techniques to traverse
a solution space and find an optimal version of a program. But the time needed to reach
this solution for a program is not comparable to that of a single one-shot prediction of a
tuned machine learning model. For this reason, we use the result of the Autotuner only as a
reference of the optimal version to compare with our best predicted version of the program.

4.2 Machine Learning models
Non-linear machine learning models are more appropriate for our problem. To illustrate this
point, we consider the case where the loop nest to be optimized is potentially vectorizable.
There exist cases where the model must solve the following dilemma: If the loops are parallel,
then tiling the innermost loop is the best, but this may be contrary to the optimization
strategy of maximizing data locality. It can be seen as a decision tree. This is the main
prerequisite for using nonlinear models for this task.

Random Forest regressor [14] showed the best results in terms of metrics considered in
our experiments. This model was used to plot all the predictions of this paper.

4.3 Metrics
The mean squared error (MSE) loss was used as a Loss Function for regression.

MSE = 1
n

∑n
t=1(y∗

i − yi)2, where yi is the ground-truth value of the optimal tile size of
the i-th data sample, and y∗

i was predicted by our ML model. We use this metric for ML
modelling since optimal tile sizes are distributed near the same neighborhood, and we want
to penalize our model if it predicts tile sizes that are far from the global optimum.

This cost function has several drawbacks. It does not provide explicit information about
our target goal - fast code execution. The loss provides no information to the programmer
on how the generated code would perform in terms of execution time. Moreover, it does not
provide insights about architecture parallelism and the profitability that we can gain from
the transformation.

That is why we introduce the second-step metric showing how far we are from the most
efficient generated code. We use the following relative speedup metric.

RSi = speedup(ŷi)
speedup(y∗i) , where speedup(ŷi) gives the speedup obtained after tiling the code

with the predicted parameter. And speedup(y∗i) gives the speedup found by the Autotuner.
An average relative speedup can be computed with RS = 1

n

∑n
i=1 RSi.

The drawbacks of this function are that it is very sensitive to outliers. RS of a tile in the
same neighborhood could be different due to factors that are not possible to take into account
using existing feature spaces. Moreover, it does not have derivatives; it is a piecewise-defined
function. Hence, it is not applicable to be used for training of many ML models. Thus, each
metric is more appropriate for the stage where it is used. The combination of both provides
a more correct way to navigate the training process and evaluate the results.

Figure 3 MSE on validation set.
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5 Active Learning

Data labeling is the calculation of a value of the target variable for a data sample of the
training set. This step can be very time-consuming in traditional ML pipelines. It makes
sense to find a trade-off between how quickly we collect data and the accuracy of the final
model. The issue of optimal experimental design arises. How to construct our training set to
get the maximal possible gain? The techniques used in the active learning domain seem a
promising direction to answer this question.

5.1 Active Learning Overview
Active Learning is a sub-field of Machine Learning. The crucial idea is that the model itself
decides which data to use for more effective training. It finds thought in areas where data
annotation is relatively expensive or may be not feasible.

Active Learning pipelines work under several scenarios: pool-based scenario [13], stream-
based selective sampling [5] and membership query synthesis [1] The pool-based approach
seems the most suitable for code optimization because it is the richest for a relatively low-cost.
This approach assumes that we have a relatively small pool of annotated data and a much
larger pool of not annotated data. At each iteration of the pool-based approach, the algorithm
ranks all samples from the big pool according to a function. This function is chosen so that
it returns a high value to the samples that have the potential to increase the performance of
the ML model. The algorithm sends a query to the annotator to get labels for these samples.
Then these annotated samples are added to the small pool of annotated data.

Sampling Strategies. The sampling strategy generates a query to the annotator in a
pool-based scenario. In this subsection, we introduce the sampling strategies that can be
used for supervised learning. In our experiments, we studied three approaches proposed by
Wu et al.[21] for a regression problem.

Greedy Sampling on the Inputs. The main idea is to choose the initial point as the closest
to the centroid of the global pool, and then iteratively choose points farthest from the
one already chosen to increase the diversity of the data in a given feature space.
Greedy Sampling on the Outputs. The key idea is to use greedy sampling on the inputs
to build the initial model, then to choose points with the farthest distance but in the
output space according to the model prediction.
Improved Greedy Sampling on both Inputs and Output. This approach considers the
multiplication of the distances in the input and output spaces as the deciding metric.
The data sample with the highest value is chosen.

5.2 Experimental statement
The learning process goes more efficiently for data generated with active learning, especially
when we do not have expert knowledge about the given domain. We expose this statement to
demonstrate the applicability of active learning techniques for the code optimization domain.
While any handwritten strategy brings some bias to data, especially in case the expert knows
which benchmarks will be used for testing, active learning appears to be the approach to
facilitate representative data generation without introducing significant bias.

The pipeline for training the model is shown in Figure 2. The set of C programs could
be obtained using naive sampling (passive learning) or more sophisticated strategies (active
learning). The quality of the predictions and the speed of convergence of the models depends
on this set.

PARMA-DITAM 2022
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5.3 Generating strategy

Training, test, and validation sets are required to properly tune the model and evaluate its
applicability for real problems.

We train the ML model on the training set. The validation set is needed to evaluate the
model performance (MSE) and determine its parameters based on that. Test set represents
real-world data. We use our generator to sample data for the training and validations sets.
We use a simple generation strategy that does not require any expert knowledge about the
feature space for the loop tiling size prediction. The most important parameters that we
vary are: existence of data dependencies, number of statements and array involved into the
computations, loop index permutations.

Ten thousand kernels were randomly sampled to obtain a pool of not annotated data.
Then, the Active Learning phase chooses 1250 most suitable kernels (training set for Active
Learning). We do the labeling of chosen samples and train the model on them. Three
hundred kernels were sampled (from the same distribution as 10k kernels) and labeled for
validation set. There are not involved into model training but used as intermediate evaluation
of the performance.

Nine known computational kernels were taken to form our test set. We compute the
average relative speedup for them after tiling to assess the quality of the generated code.

5.4 Passive Learning Training Set

We sample the same amount (1250) of kernels with a random sampling to compare the
performance of the model trained on the training set obtained with Active Learning. These
1250 kernels were chosen randomly also from 10k samples of not labeled data.

We investigate the possibility of Active Learning to shift the distribution to meaningful
patterns in a given distribution.

5.5 Data labelling

The data labeling process begins after the choice of the kernels of the training set. This
process is very time-consuming. For each kernel, we generate about 300 code variants (tiled
codes with different tile sizes) and execute them to assign labels for the regression problem.
The time to propose a variant plus its execution time varies from 0.1s to 50s, the median
value is about 2s.

The whole process is equal to number of repetitions × number of variants × number
of kernels × (the time to generate a variant + the time to execute the variant). For us it
took around 30 days to label all the required data. This estimation illustrates that the data
labeling process time can be significant. When time is limited, data quality becomes crucial.
This is the main motivation for using the Active Learning approach.

5.6 Experimental results

The objective in this paper is not to find the best ML algorithm to perform tiling but to
propose efficient techniques to automatically generate benchmarks suitable for the evaluation
of code transformations and used as input for the ML techniques. In this section, we compare
the results obtained with the Active and Passive Learning approaches.
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The experiments were run on Intel® Core™ i7-8650U 4C/4T @1.90GHz with capacity
caches of L1: 32KB, L2: 256KB, L3: 8192KB and 32GB DDR4 DIMM RAM, Phys. cores: 4,
Compiler: GCC 5.4.0, Number of Threads: 4, Opt. level: -O3

5.6.1 Loss on the validation set
Figure 3 compares the MSE on the validation set for the Active Learning approach and the
Passive Learning approach for 3 different feature spaces. MSE was scaled by the minimal
found value for the Active Learning strategy for the corresponding feature space. At some
point, the losses for both strategies converge. But Active Learning significantly overperforms
(for Yuki et al. and One-hot encoding) Passive learning under current settings due to the
choice of the most diverse data. This fact could be used for problems where we have time
constraints for data labeling and we need a faster-converged ML model.

5.6.2 Losses on the test set
We measure the average relative speedup for the test set to evaluate the quality of the
generated code. Figure 4 shows the results for nine well-known computational kernels after
applying loop tiling and for three different feature spaces. The blue columns correspond
to the training process based on passive learning settings, the red ones - based on Active
Learning.

The other columns correspond to speedups obtained with the state-of-the-art LOCUS
auto-tuner [20] when loop tiling is applied. The autotuner’s search space is made up of the
same points as for our ML model (integer values from 2 till 512 for 3-D cubic tiling). LOCUS
was asked to execute 300 points out of the search grid to find its best solution. These last
results are used as references to know how far we are from the optimum.

Figure 5 introduces the relative average speedups for the three different feature spaces.
The average relative speedup with the Yuki et al. [24] features obtained by the Active
Learning is 71% out of the speedup found by LOCUS autotuner. The average speedup
obtained by the Passive Learning is 58%. The same result is observed for the one-hot encoded
features. The average speedup with Active Learning is 69% compared to 64 % without it.
The corresponding values for Liu et al. [15] features are 68% and 53%.

Active Learning performs better than passive learning on average and for the majority
of kernels. The average speedup along feature spaces is 1.11x higher with the use of Active
Learning. The results obtained show that the active learning approach can traverse the
learning process more efficiently and shift the distribution of chosen kernels towards important
patterns. For the results shown in this paper, we used the Greedy Sampling on both Inputs
and Outputs since it achieved the best quality.

Figure 4 Average relative speedup for the test set.
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Figure 5 Average relative speedups.

6 Conclusion

This paper presents a methodology for efficiently generating benchmarks for code optimization
using ML techniques. It includes 1) an automatic code generator enabling to imitate some
existing benchmark styles 2) a smart strategy with active learning for extending the benchmark
as needed.

We have proposed a strategy to increase the amount of data in a limited time. In this
way, we only generate the most useful inputs. This approach allows us to select the best data
for analysis and generate the most representative machine learning models if we do not have
enough expert knowledge about the domain or do not want to introduce bias in the selection.
The speedup gain for our strategy is up to 15% higher depending on the feature space and
11% higher on average.

Our future improvements targets extending the number of possible transformations and
exploring more Active Learning techniques.

Our generator can be extended to many programming languages (not only C) because
the main concepts we used are language-agnostic. It only requires a few modifications to the
syntax and code routines to achieve a successful translation into the target language.
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A Generated code examples. Input file.

Listing 1 JSON-like DSL specification.
[{" array_sizes ": {"xA": 64, "yA": 32, "zA": 128} , "type ": "int",
" init_with ": " random ", " loop_nest_level ": 3,

" arrays ": ["A[xA ,yA ,zA]", "B[256 ,256]"] ,
" instructions ": [{" array_name ": "A",

" index_permutation ": "(1 ,0 ,2)" ,
" dependencies ": {" distance ": "[(1 ,2 ,3)]"} ,
" additional_computation ": [{" array_name ": "B",

" array_access_function ": "[[0 ,2 ,0 ,8] , [1 ,1 ,1 ,8]]"}]}]}]

B Generated code examples. Output computations.

Listing 2 Generated computations.
int A [64][32][128] , B [256][256];

....
for (int i = 0; i < 30; i++)
for (int j = 0; j < 63; j++)
for (int k = max(-i-j-8, 0); k < min (248 -i-j, 125); k++)

A[j][i][k]=A[j+1][i+2][k+3]+B[2*j+8][i+j+k+8];

C Generated code examples. Full code infrastructure.

Listing 3 PolyBench style generated code.
# include <stdio.h>
# include <unistd .h>
# include <string .h>
# include <math.h>
# include <polybench .h>
# include <stdio.h>
# include <time.h>
# include <stdlib .h>
# include "1648808249866439. h"
static void init_array (int xa ,int ya ,int za ,
DATA_TYPE POLYBENCH_3D (A,xA ,yA ,zA ,xa ,ya ,za),
int xb ,int yb , DATA_TYPE POLYBENCH_2D (B,xB ,yB ,xb ,yb ))
{ srand(time(NULL ));
int i,j,k,l;
for (i = 0; i < xa; i++)

for (j = 0; j < ya; j++)
for (k = 0; k < za; k++)

A[i][j][k] = rand ()%50;

for (i = 0; i < xb; i++)
for (j = 0; j < yb; j++)

B[i][j] = rand ()%50;
}
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static void print_array (int xa ,int ya ,int za ,
DATA_TYPE POLYBENCH_3D (A,xA ,yA ,zA ,xa ,ya ,za),
int xb ,int yb , DATA_TYPE POLYBENCH_2D (B,xB ,yB ,xb ,yb))
{ int i,j,k,l;
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("A");
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("A");
for (i = 0; i < xa; i++) {
for (j = 0; j < ya; j++) {
for (k = 0; k < za; k++) {
fprintf ( POLYBENCH_DUMP_TARGET , "\n");
fprintf ( POLYBENCH_DUMP_TARGET , DATA_PRINTF_MODIFIER , A[i][j][k]);
}}}
POLYBENCH_DUMP_END ("A");
POLYBENCH_DUMP_FINISH ;
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("B");
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("B");
for (i = 0; i < xb; i++) {
for (j = 0; j < yb; j++) {
fprintf ( POLYBENCH_DUMP_TARGET , "\n");
fprintf ( POLYBENCH_DUMP_TARGET , DATA_PRINTF_MODIFIER , B[i][j]);
}}
POLYBENCH_DUMP_END ("B");
POLYBENCH_DUMP_FINISH ;
}
int main(int argc , char ** argv)
{
int xa = xA;
int ya = yA;
int za = zA;
int xb = xB;
int yb = yB;
POLYBENCH_3D_ARRAY_DECL (A, DATA_TYPE ,xA ,yA ,zA ,xa ,ya ,za);
POLYBENCH_2D_ARRAY_DECL (B, DATA_TYPE ,xB ,yB ,xb ,yb);
init_array (xa ,ya ,za , POLYBENCH_ARRAY (A),xb ,yb , POLYBENCH_ARRAY (B));
kernel_1648808249866439 (xa ,ya ,za , POLYBENCH_ARRAY (A),xb ,yb ,
POLYBENCH_ARRAY (B));
polybench_prevent_dce ( print_array (xa ,ya ,za ,
POLYBENCH_ARRAY (A),xb ,yb , POLYBENCH_ARRAY (B)));
POLYBENCH_FREE_ARRAY (A);
POLYBENCH_FREE_ARRAY (B);
return 0;
}
void kernel_1648808249866439 (int xa ,int ya ,int za ,
DATA_TYPE POLYBENCH_3D (A,xA ,yA ,zA ,xa ,ya ,za),int xb ,int yb ,
DATA_TYPE POLYBENCH_2D (B,xB ,yB ,xb ,yb )){
polybench_start_instruments ;
# pragma scop
tiling_3D : for (int i = 0; i < 30; i++)
tiling_2D : for (int j = 0; j < 63; j++)
for (int k = max(-i-j -8 ,0); k < min (248 -i-j ,125); k++)

A[j][i][k]=A[j+1][i+2][k+3]-B[2*j+8][i+j+k+8];
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clock_t stop = clock ();
double elapsed = (( double )( stop - start )) / CLOCKS_PER_SEC ;
printf ("%f", elapsed );
deallocate_3d_array (A, 64, 32, 128);
deallocate_2d_array (B, 256, 256);
return 0;
}
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Abstract
Video content is becoming increasingly omnipresent on mobile platforms thanks to advances in
mobile heterogeneous architectures. These platforms typically include limited rechargeable batteries
which do not improve as fast as video content. Most state-of-the-art studies proposed solutions
based on parallelism to exploit the GPP heterogeneity and DVFS to scale up/down the GPP
frequency based on the video workload. However, some studies assume to have information about
the workload before to start decoding. Others do not exploit the asymmetry character of recent
mobile architectures. To address these two challenges, we propose a solution based on classification
and frequency scaling. First, a model to classify frames based on their type and size is built during
design-time. Second, this model is applied for each frame to decide which GPP cores will decode it.
Third, the frequency of the chosen GPP cores is dynamically adjusted based on the output buffer
size. Experiments on real-world mobile platforms show that the proposed solution can save more
than 20% of energy (mJ/Frame) compared to the Ondemand Linux governor with less than 5% of
miss-rate. Moreover, it needs less than one second of decoding to enter the stable state and the
overhead represents less than 1% of the frame decoding time.
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1 Introduction

Mobile video content will generate nearly four-fifths of mobile data traffic by 2022, according
to Cisco [2]. Smartphones, tablets, and media players are the favored and most frequently-
used tools to consume this multimedia content. This proliferation can be explained by the
omnipresence of mobile devices which made the consumption of these data easier. Also, the
Covid-19 crisis has soared the use of video content, e.g., video-conferencing [10].

This context made the energy efficiency one of the most important factors in modern
mobile platforms design, in particular for video decoding applications. To reduce video
decoding energy consumption while delivering high performance, one proposed solution is
the use of hardware (HW) video decoding performed by a HW decoder Intellectual Property
(HDIP), such as the HEVC decoder [37, 11]. Actually, in a state-of-the-art work, dedicated
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processors outperform general purpose processors (GPPs) by around 1000× in terms of
energy efficiency [23]. As a consequence, most modern smartphones are equipped with an
HDIP [39, 28]. However, HDIPs are not flexible and are costly to implement, which generate
a long time-to-market for new video codecs [19].

Heterogeneous multi-cores GPPs embedded in mobile platforms are composed of cores
of different performances, e.g., ARM big.LITTLE architecture processors. They offer a
great opportunity to enhance both performance and energy efficiency of software (SW) video
decoding using parallelism and frequency scaling. In particular, HEVC is a parallel-friendly
video codec as it supports different parallelism schemes [36]. Furthermore, GPPs are flexible
as they allow developing and rapidly deploying new codecs. Therefore, if well exploited,
GPPs energy consumption may be as close as possible to that of the HDIP of the target
platform while satisfying the real-time decoding constraint.

To exploit the heterogeneity of modern GPPs, one should balance the video frames
workload among GPP cores carefully. However, video frames, in a same video sequence, have
different complexities. In addition, predicting the complexity of a frame is a challenging task
as the information about it are normally not known before to start the decoding process,
except at the crude level of whether a frame is of type I/P/B and its size.

Dynamic voltage and frequency scaling (DVFS) is a technique that addresses the variability
of the video workload to reduce the consumed energy. It is enabled by scaling down/up the
voltage (and frequency) based on the frame complexity. However, despite the possibility
of decoding each video frame at a different frequency, Jensen’s inequality [24] shows that
decoding several frames at the average frequency gives better energy efficiency than decoding
each frame at a different frequency.

The research questions (RQ) addressed in this paper are as follows:

1. RQ1: How to balance the video frames among the heterogeneous GPP cores, based on a
little amount of information on the video frame to decode ?

2. RQ2: Once the GPP cores are selected, how to adjust their frequency in order to reduce
the energy consumption ?

In this paper, we propose a solution composed of three phases:

1. Modeling of frame complexity: to establish a model able to classify video frames into two
groups: (i) most complex frames, and (ii) least complex frames.

2. Assignment of frames using classification: to decide to which GPP cores (high performance
or energy-efficient) a frame should be submitted to. This phase solves RQ1.

3. Frequency scaling using feedback control (PI controller) with DVFS: to monitor the
output buffer size in order to adjust the GPP frequency, here we reused the work in [27].
This phase solves RQ2.

The results show that, on the tested platforms, the proposed solution can save on average
more than 20% of energy (mJ/Frame) compared to the Ondemand Linux governor. Moreover,
the classification allows to exploit the heterogeneity of ARM big.LITTLE architecture by
limiting the miss-rate to less than 5% of decoded frames. Finally, the proposed solution is
very light as it represents on overage less than 1% of the frame decoding time.

Section 2 gives some background. Then, Section 3 reviews some related work. Our
contribution is described in Section 4 with experimental results in Section 5. Finally, we
conclude in Section 6.



M. Bey Ahmed Khernache, J. Boukhobza, Y. Benmoussa, and D. Menard 4:3

2 Background

2.1 HW video decoding
HDIPs are massively parallel. Their architectures have been optimized for such parallelism
by eliminating the power consumption related to instruction decoding and control logic
characterizing GPPs [22]. For example, they integrate extreme multi-threading HW or
specific data handling and memory access optimization HW [3]. The main advantage of such
accelerators is their energy efficiency. For that, video decoding functions, in general, exhibit
massive data parallelism thanks to some schemes proposed by video codecs.

The GPP generally communicates with the HDIP as an input/output (I/O) operation.
This inter processor communication (IPC) may generate some energy overhead [21, 26]. The
IPC also includes all other elements involved in the HW video decoding such as memory
transfers. When the HDIP is called to proceed with the decoding process, the GPP may
enter the idle state and needs to handle the HW interrupt. This also generates some energy
overhead.

2.2 SW parallel processing
To understand how architectural strategies can provide high processing performance at
low power levels, it is necessary to look at the CMOS circuit dynamic power consumption
equation. The dynamic energy of a CMOS circuit can be formulated as:

Edyn = Pdyn ∗ t (1)
Pdyn = K.Ceff.f.V 2

dd (2)

where Pdyn is the dynamic power, K is a constant, Ceff is the circuit effective capacitance, f

is the circuit clock frequency, and Vdd is the circuit voltage [16].
For instance, running a process using 2 GPP cores clocked at f

2 can save 2× of the
consumed energy compared to using 2 GPP cores clocked at f . More energy can be saved in
the case where the voltage Vdd is scaled with the frequency f . Therefore, by decreasing the
frequency to the lowest level that provides the required performance, one can significantly
reduce the consumed energy.

3 Related work

The studies conducted on video decoding energy consumption can be grouped according to
the decoding parallelism scheme: (i) tiling, (ii) wavefront parallel processing (WPP), and
(iii) frame-by-frame.

Tiling parallelism scheme

This scheme is supported by HEVC. In [41, 35, 12], the proposed solutions consist in scheduling
frame tiles among heterogeneous cores, in a mobile asymmetric multi-cores architecture, e.g.,
ARM big.LITTLE. The scheduling is based on the tile complexity and the performance ratio
between big and LITTLE cores. The tile complexity can be estimated by its resolution, the
number of PUs that it incorporates, or the number of bits encoded in each CTU1 of the tile.

1 PU (Prediction Unit) and CTU (Coding Tree Unit) are sub-parts of a tile. CTU is the basic processing
unit of HEVC decoding process (conceptually corresponding to a Macro-block in prior standards) [32].
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WPP parallelism scheme

HEVC supports also the WPP parallelism scheme. In [34], the authors developed a strategy
based on task migration between big and LITTLE cores such that all cores are busy all
the time. In [17], the authors proposed an approach called Overlapped WaveFront (OWF)
that can be implemented on top of WPP. The proposed decoder consists of three pipeline
stages: parse, issue, and output. Each of these stages is performed by a different thread.
The proposed solution (OWF) achieves higher performance and scalability than both WPP
and tiling.

Frame-by-frame parallelism scheme

Most state-of-the-art studies exploited the frame-by-frame parallelism scheme to reduce
energy consumption of SW video decoding. For instance, in [29], the authors proposed a
solution that dynamically adapts the processing frequency to the video frames characteristics.
The complexity of the (L + 1)th frame is estimated by the average decoding time of the last
L decoded frames, L being a parameter.

In [31], the authors introduced a method that determines the most energy efficient
operating point in terms of GPP frequency and number of GPP active cores in a mobile
multi-processor SoC (MPSoC) to perform HEVC decoding. The proposed method jointly
considers the DPM, DVFS, and parallelism capabilities of, on the one hand, the targeted
MPSoC and, on the other hand, the HEVC application. In [20, 18], the authors exploited the
SIMD and multi-threading to decode multiple frames in parallel, in addition to low-power
states that reduce the active and idle powers.

Approximate computing can also be used to save energy when performing video de-
coding [30]. It consists in skipping some modules or replacing them by others of lower
complexity.

In [27], the authors proposed a solution to reduce the energy consumption of video
decoding using a PI controller. The proposed solution controls the GPP frequency based
on the output buffer size, i.e., the number of decoded frames waiting for display. The GPP
frequency is scaled up or down depending on the buffer size and the display rate. This
technique were reused in our contribution.

Discussion

All the aforementioned studies suffer from at least one of the following drawbacks. First, they
do not take into account the multi-cores GPPs heterogeneity of mobile platforms. Second,
they rely on detailed information to predict the complexity of a frame, e.g., number of bits
contained in a CTU. However, these information are not available before to start decoding
except if they are collected at the encoder side and are standardized. Third, they modify the
decoding algorithm which makes it not complaint to the standard.

In this paper, a solution based on parallelism and DVFS is proposed to save energy when
performing video decoding. It is compliant to the HEVC standard. The proposed solution
is composed of three phases: (1) modeling of frame complexity, (2) classification of video
frames for an adaptive assignment, and (3) frequency scaling using feedback control with
DVFS (as introduced in [27]).
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Figure 1 The proposed solution overview.

4 Contribution

In this paper, we propose a solution to reduce the energy consumption of HEVC SW decoding
on mobile platforms. It aims at diminishing the HEVC SW decoding energy consumption to
be as close as possible to that of the HEVC HDIP of the target platform while satisfying the
real-time decoding constraint. This is achieved by two mechanisms: parallelism and DVFS.

Our proposed solution includes three different phases: (1) modeling of frame complexity,
(2) assignment of frames to appropriate GPP cores using classification, and (3) frequency
scaling using a PI controller with DVFS. Fig.1 depicts an overview of the proposed solution.
The first phase is performed offline, i.e., during design time, whereas the two other phases
are performed online, i.e., during the decoding process. Phase 2 solves RQ1 and phase 3
solves RQ2.

4.1 Phase 1: Modeling of frame complexity
The objective of the first phase is to build a model of frame complexity which is able to
balance the video frames workload between the high performance and energy-efficient GPP
cores. Indeed, this work focuses on heterogeneous processors containing high performance
cores and energy-efficient ones (such as ARM big.LITTLE processors). For that, any given
video frame is classified into two groups: (i) most complex frames to be decoded by high
performance GPP cores, and (ii) least complex frames to be decoded by energy-efficient GPP
cores. The complexity is expressed as the number of GPP clock cycles required to decode a
frame.

To build the model of frame complexity, as illustrated in Fig.1, there are two steps: (a)
training of the model, and (b) validation of the model. In the first step, data related to
frames representing multiple video sequences are collected. Then, a part of them (70%) is
injected to the model for training, i.e., the model takes those data to learn how to correlate
the input parameters to the output one which is the frame complexity. In the second step,
the model is applied on the remaining data (30%) to evaluate its accuracy.

Fig.2 depicts the inputs and output of the established model. The output is: (i) the
group of most complex frames, or (ii) the group of least complex frames. The inputs are the
independent variables (a.k.a. features): frame type and frame size. In a previous work [13],
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Figure 2 The proposed solution: phase 1 (Modeling of frame complexity).

it has been shown that these two parameters are very correlated to the frame complexity in
MPEG video codec. However, in case of HEVC, our experiments revealed a weak correlation
(R2 = 0.55). As a result, we added three configuration parameters to improve the accuracy
of the model.

The added parameters are: (i) video bitrate, (ii) video frame rate, and (iii) the performance
ratio between the high performance and energy-efficient GPP cores. First, it has been shown
that the video bitrate is correlated with the video decoding energy consumption in case
of HEVC SW decoding [14]. Second, the video frame rate is used to determine the frame
decoding deadline. Finally, the performance ratio is used as the GPP cores offer heterogeneous
performances.

Finally, the regression model used to train the video frames data is the logistic regres-
sion [25]. The reason of this choice is its simplicity of implementation and its efficiency to
take a binary decision (most complex or least complex frames) [25].

The model resulting from this phase is expressed by the following formula, using a logistic
function:

y = 1
1 + e−p(x1,x2,x3) (3)

where y is the output of the model used in phase 2. It takes values between 0 and 1.
p(x1, x2, x3) is the linear function of the input and configuration parameters described above.
It is a real number.

The linear function is formulated as follows:

p(vbitrate, ftype, fsize) = w0 + w1 ∗ vbitrate + w2 ∗ ftype + w3 ∗ fsize

ratio_performance (4)

where w0 is the intercept (a constant), vbitrate is the the video bitrate, ftype and fsize are
the type and size of the frame to decode, respectively, and ratio_performance is the ratio
of performance between the high performance and energy-efficient GPP cores of the target
platform. Finally, w1, w2, and w3 are the coefficients of the model.

4.2 Phase 2: GPP cores assignment using classification
The objective of the second phase is to decide online which GPP cores (high performance
or energy-efficient) will decode the next frame. For that, the model built in the previous
(offline) phase classifies the frames into two groups: (i) most complex frames, and (ii) least
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Figure 3 The proposed solution: phase 2 (Assignment using classification).

complex frames. The first group is submitted to the high performance GPP cores and the
latter to the energy-efficient ones. Then, the frame is decoded in parallel among the selected
GPP cores via tiling or WPP parallelism scheme (depending on the coding configurations).
This phase is performed during run-time, i.e., while performing video decoding as illustrated
in Fig.1. It is applied for each frame of the input video.

The classification is realized using Equation (4). Fig.3 depicts the algorithm of classifica-
tion in a graphical representation. For each frame, the classifier function using Equation (4)
is applied. If the result is positive, the frame is submitted to the high performance GPP
cores; otherwise, it is submitted to the energy-efficient GPP cores. Note that if two or more
consecutive frames are submitted to the same GPP cores type, they are stored in an input
buffer.

4.3 Phase 3: Frequency scaling using PI controller [27]
The objective of this phase is to select the clock frequency at which the selected GPP cores
will decode the current frame. For that, the Proportional Integral (PI) controller proposed
in [27] is adopted. This controller monitors the output buffer size in order to maintain it at
a desired value (set point) which is an input parameter of the controller. To set the desired
value, one can follow the guidelines given in the literature review, such as [27, 18]. This
phase is performed during run-time, as illustrated in Fig.1. It is applied for each frame of
the input video.

The PI controller has two inputs: (i) a set point, i.e., the desired output buffer, and (ii)
the current output buffer size. Then, according to the output buffer size, the PI controller
adjusts the GPP frequency, using DVFS, so that the current buffer size meets the set point.
Note that the controller is engaged only when the difference between the set point and the
current output buffer size is not zero.

To speed up or slow down the GPP cores, the GPP frequency, gpp_cores_freq, is calculated
by multiplying the highest supported GPP cores frequency, GPP_coresmax_freq, by a scaling
factor, r.

gpp_cores_freq = GPP_coresmax_freq ∗ r (5)

The scaling factor, r, is, in turn, decomposed into two components, as illustrated by the
following formula:

r(n) = re(n) + rc(n) (6)

where re is the scaling factor estimation based on the history of the decoded frames, rc is
the output of the PI controller which is considered as an adjustment of re to compensate the
missed deadlines in the past, and n is the number of the next frame to decode. That is, a
negative value of rc indicates that the GPP cores should be slowed down, and vice versa.

PARMA-DITAM 2022
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5 Performance evaluation

5.1 Evaluation methodology & setup
This section describes the evaluation methodology.

5.1.1 Experimentation setups
The HW and SW experimental setups as well as datasets (33 video sequences) on which
the proposed solution was applied are presented and summarized in Table 1. First, the
experiments were carried out on two different platforms (Snapdragon 810 and Odroid-xu3
for HW and SW video decoding, respectively). Then, the same experiments were performed
on a single platform (RB3) for both HW and SW video decoding.

Table 1 Experimental setups.

Snapdragon 810 Odroid-xu3 RB3
[1] [7] [8]

HW setup

HEVC HW Supported Not supported Supported
HEVC SW Not supported Supported Supported

Power
measurement N6705A DC Power Analyzer [14]

SW setup

OS
Android 6.0 Ubuntu 16.04 Linaro Linux 10.3

Linux kernel 3.10.84 Linux kernel
4.14.176+ Linux kernel 5.4.0

HEVC HW
decoder

Android application
+ Mediacodec API – Open-HEVC [5]

HEVC SW
decoder – Open-HEVC [5] Ffmpeg [4] + v4l2 library

Video sequences datasets : 33 video sequences

JCT-VC [15], Jellyfish [6], and some well-known video sequences on the web, e.g., [38].
Resolution: 1080p. Frame rate: 25, 30, and 50 fps. Mode: Random Access. Profile: Main

To build the model of phase 1 of the proposed solution, sickit-learn framework [9] was
used via Python programming language.

5.1.2 Methodology
We evaluated our solution in four steps.

First, the proposed solution is compared to 5 state-of-the-art solutions, as summarized
in Table 2. In the first one, no DVFS is applied (Performance governor), the second uses
the Ondemand governor [33]. The characterization method is not a real strategy. We have
extracted the best configuration (number of GPP cores and their frequency) by testing all
possible configurations offline (whereas the proposed solution selects it dynamically without
such an effort). We also compared to the solution based only on PI controller [27] to show
the impact of the classification we proposed. We finally compared the energy consumption
with the one of the HDIP to evaluate how far is our solution from it.

Second, the accuracy of the model built in phase 1 is evaluated.
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Table 2 The proposed video decoding energy consumption optimization summary.

Proposed solution Classification + DVFS (PI controller)

State-of-the-art work

No DVFS (Performance Linux governor) [33]

DVFS (Ondemand Linux governor) [33]

Characterization proposed in [14]

DVFS (PI controller) [27]

HW decoding (HDIP) of the target platform

Table 3 The proposed solution energy saving (%) over state-of-the-art work.

State-of-the-
art work

Open-HEVC
+ DVFS

(Performance
Linux

governor)

Open-HEVC
+ DVFS

(Ondemand
Linux

governor)

Characterization
work [14]

Open-HEVC
+ DVFS (PI

controller)
[27]

Average of
the proposed

solution
energy

saving (%)

On Snapdragon
810 and

Odroid-xu3
platforms

40 30 7 20

On RB3 platform 35 20 4 23

Third, the stability of the output buffer, which is its occupation variation, is studied. We
consider a system stable when the cores frequency does not change more than once in a
second since this period is usually used to make group of pictures (GoP), e.g., for streaming
applications.

Fourth, the overhead of the proposed solution (in percentage) is evaluated using the
following formula:

ratio_overhead = ps_time

frame_dec_time ∗ 100 (7)

where ps_time represents the time spent to run the proposed solution (phases 2 and 3), and
frame_dec_time represents the time required to decode a frame.

5.2 Results and discussion
In this section, the results of the HEVC SW decoding energy consumption optimization are
described and analyzed.

5.2.1 Comparison to the state-of-the-art work
In case of Snapdragon 810 and Odroid-xu3 platforms, the proposed solution can save on
average 40% and 30% of energy (mJ/Frame) compared to the Performance and Ondemand
Linux governors, respectively. Then, the proposed solution not only determines dynamically
the suitable GPP cluster and its clock frequency, in contrast to the characterization solu-
tion [14], but also can save up to 7% of energy (mJ/Frame). The classification technique,
phase 2, brings on average 20% of energy saving as compared to [27]. Finally, the ratio of
energy between the proposed solution and the HW video decoding is about 3×.
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To validate these results, experiments were conducted on RB3 platform which supports
both HW and SW HEVC decoding. On this platform, the proposed solution can save up
to 35%, 20%, 4%, and 23% of energy (mJ/Frame) compared to the Performance Linux
governor, the Ondemand Linux governor, the characterization work, and PI controller
solution, respectively. Concerning the HW video decoding, our solution consumes on average
4× more energy.

On all tested platforms, the miss-rate represents on average less than 5% of any given
video sequence. In addition, our solution needs less than one second of decoding to enter the
stable state of the output buffer size and thus the GPP frequency, as suggested by Jensen’s
inequality in [40].

Table 3 summarizes the energy saving percentage of the proposed solution over state-of-
the-art work.

5.2.2 Accuracy of the model
The model of frame complexity was trained with 70% of video frames dataset extracted from
33 videos sequences representing different durations and scenarios. The remaining 30% was
used for validation. In case of Odroid-xu3 platform, the accuracy of the model was 93%,
whereas 98% was achieved in case of RB3 platform. This indicates that at most 7 frames over
100 are not decoded by the right GPP cluster, e.g., they are decoded by the GPP LITTLE
cluster instead of the big one. The result is that these frames may not be decoded within the
deadline. This can be corrected by the PI controller of phase 3 (the miss rate was smaller
then this proportion).

5.2.3 Stability of the output buffer
At the beginning of the decoding process, the GPP clusters are clocked at their highest
supported frequency values. This allows to fill the output buffer as fast as possible to reach
the desired output buffer size. Then, the display process starts receiving frames, and thus
the PI controller starts monitoring the output buffer size.

The stability of this latter was reached in less than one second of decoding. The GPPs
cores frequency changes at most once in a second of decoding. The fluctuation of output
buffer size is due to the frames complexity which changes from one frame to another.

5.2.4 Overhead of the proposed solution
The overhead of the proposed solution is evaluated here. It is calculated using Equation (7).
The results show that the overhead represents on average less than 1% of the decoding time.
That is, it is negligible compared to the gain of energy that the proposed solution permits
to get.

6 Conclusions & future work

This paper presents a solution to reduce the energy consumption of HEVC decoding on a
heterogeneous mobile platform. The proposed solution is split into three phases: (1) modeling
of frame complexity, (2) assignment of frames to appropriate GPP cores using classification,
and (3) frequency scaling using a PI controller with DVFS. Phases 2 and 3 solves RQ1 and
RQ2, respectively.

The established model in phase 1 is more than 90% accurate. This accuracy permits
to exploit efficiently the heterogeneous character of mobile architectures, such as ARM
big.LITTLE. Moreover, the classification has a great role to exploit the heterogeneity of
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ARM big.LITTLE architecture and limit the miss-rate. Actually, the proposed solution
induces less than 5% of miss-rate, whereas 10% of miss-rate is observed when the Ondemand
Linux governor is set up. In terms of the overhead, the proposed solution is very slight as it
represents on average less than 1% of the frame decoding time. Finally, it should be noted
that the HW video decoding presents the best trade-off between performance and energy
consumption at the system level point of view.

In our future work, the aim is to apply our methodology to the successor of the HEVC
standard, versatile video coding (VVC).
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Abstract
Nowadays, parallel applications are used every day in high performance computing, scientific
computing and also in everyday tasks due to the pervasiveness of multi-core architectures. However,
several implementation challenges have so far stifled the integration of parallel applications and
automatic precision tuning. First of all, tuning a parallel application introduces difficulties in the
detection of the region of code that must be affected by the optimization. Moreover, additional
challenges arise in handling shared variables and accumulators. In this work we address such
challenges by introducing OpenMP parallel programming support to the TAFFO precision tuning
framework. With our approach we achieve speedups up to 750% with respect to the same parallel
application without precision tuning.
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1 Introduction

Approximate computing is a key addition to the array of techniques that can help in
improving the performance and energy efficiency of applications. As such, it has been the
subject of significant investigation by the scientific community, in particular in the fields of
computer architectures and compilers [24], resulting in a range of different techniques at the
software development, compiler, architectural, and circuit level. Within this range, precision
tuning is particularly interesting for its wide applicability and promising results [7]. This
technique aims at exploiting the trade-off between operation accuracy, performance, and
energy efficiency that is achieved by manipulating the data types used in each arithmetic
operation of a kernel. Typically, in error-tolerant applications where the range of input
values is known at compile time, the entire range of values covered by wide floating point
representations such as the 64 and 32 bit IEEE754 is unnecessary. This is exploited explicitly
by programmers using, e.g., Google’s bfloat16, but can more effectively be exploited through
an appropriate compiler. Once more, a good amount of research has been performed in
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recent years on the topic of automated management of precision tuning, as shown by a recent
survey [5], leading to compiler-based tools such as the Precimonious [23], Daisy [10], and
taffo [8].

However, in the context of parallel programming models, additional challenges arise that
are often not addressed by the abovementioned tools. This is particularly true for tools that
perform automatic detection of the region of code to be affected by the precision tuning
transformation. Indeed, to guarantee the correctness of the transformed program, precision
tuning tools need to reliably detect each parallel region and the sets of variables shared
between parallel execution threads. The analysis of the parallel behavior of the program
is particularly difficult for languages such as C, C++ and llvm-ir, which do not support
parallel programming paradigms without an auxiliary support library. At the same time, the
code transformation steps that are required to implement mixed precision in the program
must preserve the correctness of atomic instructions and locking constructs when they are
affected by the optimization process.

To address these challenges, in this work we integrate the taffo precision tuning plugins
for the llvm compiler framework with the OpenMP support for the same compiler. The
rationale for this pairing is explained by the need to produce a proof of concept for precision
tuning of parallel programming models. In particular, we focus on taffo because it does not
work as a source to source, but it is already integrated with the llvm compiler framework
(contrary e.g. to Daisy), and is up to date with recent llvm versions supporting OpenMP
(contrary to Precimonious, which requires a severely outdated version of llvm). On the side
of programming models, OpenMP is one of the simplest models, widely supported by both
compilers and benchmarking suites, making it the perfect choice for such a proof of concept.

The rest of this paper is organized as follows. In Section 2 we briefly survey the main
tools available for precision tuning during the code compilation stage and the state of parallel
language support in such tools. In Section 3 we describe the technical modifications to taffo
required for supporting OpenMP applications. In Section 4 we provide an experimental
evaluation of the system, while in Section 5 we draw some conclusions and highlight future
research directions.

2 Related Work

It has been shown that many scientific applications can benefit in terms of performance and
energy efficiency from reduced precision calculations [2, 24]. However, the problem of finding
the precision mix that satisfies the accuracy requirements while providing the maximum
performance is not trivial. As such, automated end-to-end solutions that can perform this
process are necessary. The biggest innovation in computer architecture to push performance
scaling at the end of Moore’s law is parallelization. In recent times, in literature has been
studied the question of converting the existing sequential scientific programs into parallel
ones [1]. In such cases automated parallelization libraries such as OpenMP [9], MPI [20], and
OpenACC are often used. Applying precision mix optimization on top of this parallelization
can be beneficial. However, not many of the modern precision tuning tools can work with
programs using automated parallelization. In this section, we explore the possibility of
automated precision tuning of programs that use OpenMP.

As OpenMP is an automatic parallelization library that supports C/C++ and targets
a wide variety of execution platforms, the automated precision tuning tools that can work
with C/C++ source code and that do not make assumptions about the target platform are
of especial interest for comparison.
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Precimonious [23] is a precision tuning tool that works with C/C++ source code and
outputs the suggested type changes in a json file. It uses delta-debugging [25] search algorithm
to find a precision mix that has better performance while maintaining enough accuracy.
Precimonious uses dynamic analysis to verify that the precision mix satisfies the requirements,
which depends on having a representative dataset. Precimonious only supports IEEE-754
floating-point types, which limits its use.

CRAFT [16, 15] is a source-to-source precision tuning tool that works with C/C++ code.
It uses binary search to determine the precision required at the given program level. It goes
through the modules, functions, basic blocks, and individual instructions in a breadth-first
search fashion to refine the precision mix. CRAFT uses dynamic analysis to verify that the
precision mix satisfies the requirements, which depends on having a representative dataset.
The tool can potentially work with OpenMP. CRAFT only supports IEEE-754 floating-point
types, which limits its use.

FloatSmith [17, 21] is a source-to-source precision tuning tool that is based on CRAFT [16]
and that works with C/C++ code. FloatSmith integrates ADAPT [19] to narrow the search
space for CRAFT using static analysis. It uses CRAFT to further optimize the precision mix
using different search strategies: combinational, compositional, delta-debugging, hierarchical,
hierarchical-compositional, and Genetic Search Algorithm. FloatSmith uses dynamic analysis
to verify that the precision mix satisfies the requirements, which depends on having a
representative dataset. The paper reports a successful test with OpenMP version of LULESH
benchmark [14]. FloatSmith does not support fixed-point types, which limits its use.

GeCoS + ID.Fix [6] is a source-to-source precision tuning tool that works with C/C++
code and targets generic hardware platforms. It uses static analysis technique called value
range propagation to infer the value range of dependent variables based on user-annotated
variables. However, it mostly focuses on floating point to fixed point conversion to minimise
the number of bits used during computation. Additionally, it does not consider the possibility
of a mixed precision output, with floating point and fixed point data types coexisting in the
same program.

Daisy [10] is a precision tuning tool that targets generic platforms, supports fixed-point
types, and provides formal guarantees on the result precision. It uses a combination of
mixed-precision tuning with delta-debugging algorithm and rewriting with a genetic algorithm
to reduce the roundoff error. Daisy uses a static error analysis with interval arithmetic and
SMT [11], and a static heuristic performance cost function. Unfortunately, Daisy requires
the program to be written in a Scala-based domain-specific language, and only supports
optimization of arithmetic kernels without conditionals or loops, which makes it unsuitable
for optimizing programs that use OpenMP.

taffo [8] is a precision tuning tool based on LLVM [18] for optimizing C/C++ programs.
This paper introduces in taffo support for inter-procedural precision tuning of the programs
parallelized with OpenMP [9]. taffo is a precision tuning tool with user-defined scope based
on variable annotations. It performs static code analysis using user-provided range values to
infer the algorithm properties and the affected variables and statically validates the effect of
the precision tuning step on the target values. It also provides formal guarantees about error
magnitude for programs without unbounded loops and gives an estimate when unbounded
loops are present. It controls the overhead introduced by the type casting operators [3].
taffo is built as an LLVM pass and uses LLVM-IR as its input and output, so it can
support a wide variety of programming languages, although it is mainly targeted at programs
written in C/C++. It supports optimization using IEEE-754 [13] floating-point, and dynamic
fixed-point types with a focus on general-purpose computing platforms.
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For the more detailed overview of the field we refer the reader to the recent surveys.
Cherubin and Agosta [5] surveys the software tools used at the different stages of precision
tuning. Stanley-Marbell et al. [24] introduces unified terminology for quality versus resource
usage tradeoffs. It also surveys the field categorizing both software and hardware approaches
used on the different levels of the computing stack.

3 Proposed Solution

In this section we describe the modifications we performed on taffo to allow handling of
OpenMP applications. In order to describe such modifications, we must first give a quick
outline of the internal architecture of taffo and of the OpenMP support in llvm.

taffo consists of five independent passes, which take the form of a loadable plugin for
LLVM-based compilers. The pass-based architecture allows taffo to be expandable, easy to
use and robust.

The taffo tool requires the programmer to define some contextual information related
to the value ranges of the inputs and the extent of the area of code that needs to be tuned.
This information is inserted through annotation of the source code. The first pass of taffo,
called Initializer, reads such annotations and converts them in the internal data structures
required by the rest of taffo.

From the user-provided information, taffo then analyses the program to conservatively
derive the numerical intervals each variable in the program will have at runtime. This pass
is called the Value Range Analysis or vra. The information derived by the vra is then
used to determine which reduced-precision data type to use for the variables, a procedure
called Data Type Allocation (dta). The dta can operate based on two different algorithms:
a peephole-based algorithm which always chooses the fixed-point data type with the highest
valid point position for each variable, and a new optimiser based on ILP techniques [4].
This step is able to optimally mix floating point and fixed point data types by exploiting a
mathematical model of how changes to the precision mix affect the speedup and the output
error.

Finally, the Conversion pass is responsible for applying the data type changes on the
program being tuned. The Feedback Estimator pass statically analyses the error using
state-of-the-art estimation methods [7].

While taffo operates at the intermediate representation level, therefore in the so-called
middle-end, OpenMP is mainly implemented in the compiler frontend. In fact, OpenMP is
used by adding specific pragma annotations in a C or C++ program. Depending on the
pragma, OpenMP will automatically transform what would normally be a non-parallel C
language construct into a parallel one. The most common pragmas are the parallel pragma
and the for pragma, and as a result we will focus on supporting such pragmas in our
implementation strategy. The parallel pragma executes a given code block multiple times in
parallel in multiple threads. The number of threads depends on the estimated maximum
number of independent threads that can be run on the machine. On the other hand, the for
pragma must appear before a for loop, and it executes each iteration of the loop in parallel
with respect to the other. The implementation of a typical OpenMP library uses a fixed
thread pool, a well-known implementation strategy for supporting parallel computations
while minimizing the operating-system-level overhead of creating and destroying threads
every time a new task must be instantiated. The parallel pragma starts a new task on each
available thread in the pool, all tasks running the same piece of code. The for pragma is
similar, except that each task executes its body multiple times depending on how many
threads are in the pool. Since the trip-count of the loop must be known up-front, the
induction variable of the loop shall not be modified in the body of the loop itself.
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This functionality is supported by the OpenMP runtime library provided with the clang
compiler. The creation of the thread pools and the enqueueing of the tasks is performed
by code in such library, but the code that calls the library functions is generated by the
clang frontend at compile-time of the program. The block of code that is associated to each
parallel task to be executed is outlined by the clang compiler to a separate function. A
pointer to this function is then passed to a specific runtime function alongside with the local
variables that are used within each thread context. For example, see the C language program
in Listing 1 and its corresponding llvm-ir compiled version in Listing 2. The parallel for
statement is translated to a call to a runtime function called “__kmpc_fork_call”, and
the body of the loop is outlined to the function “.omp_outlined.”. Each thread executes
the outlined function, and in that function other runtime calls are present to compute the
number of times the body of the loop must be executed.

Listing 1 Example C language OpenMP program.

int main()
{

float container[16];
#pragma omp parallel for shared(container)
for (int i = 0; i < 16; i++) {

float result = i * 0.05;
container[i] = result;

}
return 0;

}

Listing 2 Simplified llvm-ir listing corresponding to the example OpenMP program in Listing 1.

define i32 @main() {
entry:

call void @__kmpc_fork_call(%struct.ident_t* nonnull @2, i32 1,
@.omp_outlined., [16 x float]* nonnull %container)

ret i32 0
}

define internal void @.omp_outlined.(i32* %.global_tid., i32* %.bound_tid.,
[16 x float]* %container) {

entry:
...
call void @__kmpc_for_static_init_4( ... )
...

omp.loop.exit:
call void @__kmpc_for_static_fini( ... )
...
ret void

}

In order to add support for OpenMP-aware optimizations in llvm-ir, an optimization
pass must have the appropriate domain knowledge to be able to interpret the meaning of
each runtime invocation. Therefore, our implementation approach involved appropriate
modifications to the taffo passes to add this knowledge. In particular, taffo must be able
to detect OpenMP outlined functions, and it must be able to infer the trip count of loops in
such outlined functions correctly.
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To implement these abilities, we modified two passes of taffo: Initializer and Conversion.
In Initializer, the program is searched for instances of call sites of the OpenMP fork function.
At each call site, the OpenMP fork function is temporarily deleted and replaced by a local
trampoline function, whose body simply calls the OpenMP outlined function. This allows
taffo’s existing code to handle OpenMP programs without additional modifications.

Indeed, analyses and transformations in taffo are intra-procedural, and can handle
mixed-precision across functions and in function arguments. The vra and dta passes are
able to inspect each call-site independently and derive mixed-precision data types and value
ranges for each call argument. This means that call sites of the same function can have
different type annotations depending on the surrounding context. Therefore, the Conversion
pass must duplicate each function affected by the mixed-precision transformation a number
of times that depends on the number of call sites with unique type assignments. In the final
program, as a result, call sites that in the original program invoked the same function now
may invoke different functions, depending on whether the call sites now use different types
than before or not. This applies to the OpenMP trampoline functions and outlined functions
as well. To support the OpenMP runtime, an additional process has been implemented in the
Conversion pass, which converts the calls to the trampoline function back to the original call
to the OpenMP library function. This procedure effectively also replaces OpenMP outlined
functions with their mixed-precision cloned equivalent if needed.

For what concerns the handling of trip count of loops, we exploit the fact that the
OpenMP library initialization function of for loops takes as arguments the lower bound,
upper bound and stride of the loop. Therefore it is easy to analyze the outlined function,
detecting the initialization calls and computing the total trip count across all loops with the
formula:

n =
⌊

u − l + 1
s

⌋
,

where n is the trip count, s is the stride, u is the upper bound and l is the lower bound.

4 Experimental Evaluation

To evaluate our work, we used the PolyBench/C version 3.2 benchmark suite [22], in a version
modified for OpenMP support [12]. PolyBench is a collection of several small kernels written
in C, covering several computational tasks, such as data mining tasks, linear algebra kernels,
BLAS routines and more. Polybench allows to tune the amount of memory to employ for
every test in order to be able to adapt to multiple targets, even memory-constrained ones
such as microcontrollers.

We run all the benchmarks on a non-uniform memory access (NUMA) server with a 24
Six-Core AMD Opteron(tm) Processor 8435 (2,6 GHz) with 128GB RAM. The operating
system is Ubuntu 20.04 LTS. On this machine, not all benchmarks gained a speedup
from parallelization. As a result, only a subset of benchmarks were selected, specifically
those that can be parallelized without algorithmic changes with respect to the original
unmodified PolyBench/C suite, and where parallelization does indeed produce a speedup.
These benchmarks are 2mm, 3mm, doitgen, gemm, syr2k, and syrk.

We compiled the benchmarks in three different configurations, or versions. In all cases, the
compiler used was clang version 12.0, based on llvm version 12.0. In the first configuration
(denoted with the number zero) both the taffo mixed precision optimizations and OpenMP
support were disabled, producing a non-parallel benchmark. In the second configuration
(denoted with the number 1), OpenMP was enabled, but taffo was not used. In the third and
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Table 1 Execution time, speedup and average relative error (ARE) data of the non-parallel,
parallel, and mixed-precision parallel configurations of the selected subset of PolyBench/C.

Benchmark t0 [s] t1 [s] t2 [s] S1 S2 ARE

2mm 105.375 6.199 1.819 1599.9 % 240.7 % 8.85 × 10−9%
3mm 23.760 1.381 0.803 1620.8 % 71.9 % 7.45 × 10−5%
doitgen 1.028 0.111 0.080 830.1 % 38.1 % 1.47 × 10−3%
gemm 101.646 7.515 0.850 1252.6 % 783.7 % 8.85 × 10−9%
syr2k 6.692 2.595 1.027 157.9 % 152.8 % 8.85 × 10−9%
syrk 2.285 0.974 0.239 134.6 % 308.3 % 8.85 × 10−9%

final configuration (denoted with the number 2), both OpenMP and taffo were employed.
The dataset size – a configuration option provided by all PolyBench/C benchmarks – was set to
normal for every benchmarks and in every configuration. The benchmarks were instrumented
in order to measure the execution time and the error between the taffo-optimized mixed
precision configuration and the non-mixed-precision configuration.

The data from the experiments conducted as described herein are shown in Table 1. In
the table, t0 refers to the execution time of the non-parallel kernels, t1 the execution time of
the parallel kernels, and t2 the execution time of the mixed-precision parallel kernels. S1 is
the speedup of the parallel kernel with respect to the non-parallel kernel, and it measures
the execution time improvement due to OpenMP support alone. This metric is a percentage
value computed with the following formula:

S1 = 100
(

t0

t1
− 1

)
.

Similarly, S2 is the speedup of the mixed-precision parallel kernel (configuration 2) with
respect to the parallel kernel (configuration 1), and it quantifies the improvements due
to taffo’s mixed precision optimization. S2 is computed in the same way as S1, except
replacing t1 and t0 with t2 and t1 respectively.

Finally, we shown the average relative error (ARE) introduced by the mixed precision
optimization performed by taffo. To define the ARE, let us represent the output of a
benchmark as a vector X = {x1, x2, ...xn}. If X is the vector of outputs of the unmodified
benchmark, and if Y is the vector of outputs of the benchmark optimized by employing
taffo, the ARE is defined as follows:

ARE = 100
n

n∑
i=1

∣∣∣∣xi − yi

xi

∣∣∣∣ .

The outputs of the non-parallel configurations and the parallel configurations without
mixed-precision are identical, thus we only compare the last mixed-precision parallel config-
uration with the non-parallel configuration.

The results show that, on top of the already considerable speedup derived from the
usage of a parallel algorithm, taffo is able to improve the speedup considerably, up to an
additional 783% for the gemm benchmark. For some benchmarks, namely syr2k and syrk
the gains from mixed precision are comparable with the gains obtainable by this specific
parallel implementation. This may partly be due to inefficiencies in the OpenMP runtime
implementation itself. None of the benchmarks were slowed-down by the taffo mixed
precision transformation. Finally, the ARE error metric is under 0.01% for all benchmarks,
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which is in line with previous results obtained with taffo without exploiting OpenMP
support. In conclusion, we can state that the OpenMP extension to taffo is effective
at achieving mixed-precision computation in parallel applications automatically without
introducing significant errors with respect to a non-mixed-precision computational kernel.

5 Conclusions

In this work we presented a new extension to the taffo precision tuning framework that
implements support for the OpenMP parallel programming specification. This extension
does not involve modifications to the core analysis passes of taffo or the frontend, but
it is based on domain knowledge of the OpenMP runtime library. This inherently more
scalable approach allows taffo to remain target and language independent. We verified the
functionality and effectiveness of this extension by applying it on a parallel variant of the
well-known PolyBench benchmark suite, achieving speedups up to 750% with respect to the
same parallel application without precision tuning.

Further developements involve the further extension of our approach to properly support
constructs other than omp for and omp parallel, such as omp reduce and omp task. Other goals
include support for more parallel programming frameworks and GPU-based programming
models such as OpenCL or SYCL.
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Abstract
Multithreading is a well-known technique for general-purpose systems to deliver a substantial
performance gain, raising resource efficiency by exploiting underutilization periods. With the
increase of specialized hardware, resource efficiency became fundamental to master the introduced
overhead of such kind of devices. In this work, we propose a model-based approach for designing
specialized multithread hardware accelerators. This novel approach exploits dataflow models of
applications and tagged tokens to let the resulting hardware support concurrent threads without
the need to replicate the whole accelerator. Assessment is carried out over different versions of an
accelerator for a compute-intensive step of modern video coding algorithms, under several feeding
configurations. Results highlight that the proposed multithread accelerators achieve a valuable
tradeoff: saving computational resources with respect to replicated parallel single-thread accelerators,
while guaranteeing shorter waiting, response, and elaboration time than a unique single-thread
accelerator multiplexed in time.
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1 Introduction

With the end of Moore’s Law and Dennard Scaling, high-level specification and hardware
specialization have become fundamental to keep on improving performance [10]. Specialized
hardware has already demonstrated its capability of generating performance and efficiency
gains exploiting data and instructions specialization, parallelism, local memories and reduced
overhead [7]. A popular solution for matching specialized-hardware performance with
the flexibility of general-purpose computing are Heterogeneous Systems-on-chip, where
multiple processors are integrated with reconfigurable logic and other components [4]. Here
computational-intense tasks can be delegated to specialized hardware to improve performance
and/or efficiency [9].
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In particular, dealing with multiple host sources, being them local cores of a multicore
cluster or remote processes from other connected devices, a single specialized hardware
accelerator multiplexed in time (Fig. 1a) can be a bottleneck, lowering down the whole
integrated-/connected-system performance. On the other hand, replicating the accelerator
for each host (Fig. 1c) that can potentially delegate processing could easily end up in a
huge waste of resources. The proposed solution is based on a single accelerator supporting
multiple, potentially concurrent, threads (Fig. 1b). This solution can provide halfway benefits,
delivering a tradeoff between performance and resource utilization.

Tagging tokens in dataflow models is exploited to differentiate threads flowing into the
datapath: the state of the different threads is stored into multiple dedicated sequential
resources, while combinational ones are shared among them. To allow the exchange of tagged
tokens, FIFO channels supporting out-of-order access have been designed. With the defined
design approach, a hardware accelerator implementing a video coding use case has been
developed. The proposed solution has been tested on a Xilinx Artix-7 device, demonstrating
that a significant performance gain can be obtained at the cost of a limited resource overhead.
This paper is focused on presenting the approach to design the accelerator in Fig. 1b, while
the integration with the host processor will come as future development.

The rest of this paper is organized as follows. An overview of the proposed solutions
for accelerators multithreading is provided in Sect. 2, followed by our approach, which is
described in Sect. 3. Then, experimental results are shown and discussed in Sect. 4, before
concluding in Sect. 5 with some final remarks.
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Figure 1 Schematic of the three possible configurations described, and a sketch of their time
evolution when two threads have to be elaborated by the accelerator.

2 Related Work

Several solutions have been proposed for tackling the challenge of implementing multithread
hardware accelerators on reconfigurable fabric.

Dynamic reconfiguration based accelerators

Some of them [20, 21, 17] exploit the dynamic partial reconfiguration feature of modern
FPGAs. These works focus mainly on the interaction between the host processor and
the reconfigurable accelerators, and on the management of the system architecture for
loading partial bitstreams to configure the programmable logic. These approaches must be
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integrated with other design flows for single-thread hardware accelerators to generate the
partial bitstream for each function to be accelerated. The main performance limitations are
the time and energy needed to load the partial bitstream for the successive task [20], or when
a configuration miss occurs [21, 17], i.e. there is no available slot on the programmable logic
already configured with the required bitstream. In our approach the hardware overhead for
dynamic partial reconfiguration is not required, and a model-based architecture is adopted
for developing the accelerator.

Software APIs based accelerators

Also High-level Synthesis has been exploited to design multithread accelerators [16, 6, 5].
These works focus on generating the RTL description of an accelerator starting from a
C-based description integrated with widely used multithread software APIs, like CUDA [16],
OpenCL [6], Pthread and OpenMP [5]. In these solutions a dedicated hardware accelerator is
generated for each coarse-grained thread, so the number of threads must be known at compile
time. The accelerators, which may execute the same or different functions, are synchronized
to respect the original software behavior. In our work the maximum number of threads must
be known at compile-time as well, but the resource overhead is mitigated through resource
sharing.

Computing resource sharing accelerators

Another solution based on HLS is Nymble [11]. In this case a unique multithread accelerator
is generated. The architecture of a Nyble accelerator is made up of a control unit, called
Dynamic Stage Controller (DSC), and a datapath. To support multithreading, the DSC is
extended with state replicas, while queues are inserted in the datapath for buffering pipelined
results of unstoppable blocks, e.g. multicycle memory accesses.

Avoiding compute-units replication by adding the required hardware for multithreading
support makes Nymble the most related to our work. However, there are some significant
differences in the input specification and in the resulting accelerator. Nymble takes as input
a sequential description of an application, while we use a dataflow one. Nymble generates an
accelerator made up of a control unit and a datapath, while our accelerators are made up of
a network of modules that exchange data through FIFO channels.

Advantages of Dataflow models

Modularity and parallelism make dataflows a widely adopted specification for both software [1]
and hardware [15, 12] design. They turn out to be particularly suitable for describing low-
power streaming applications to be accelerated [2, 8].

Other works have made use of token labeling and tagged-dataflow already. So far, however,
the use has been limited to software-oriented solutions, e.g., for high-level parallel language
definition [14], massive data processing [3] or loop optimization [18].

3 Approach and Architecture

In this section we present a novel model-based approach that, starting from the single-thread
dataflow specification of an application and without explicit need of data synchronization,
allows to design a corresponding multithread hardware accelerator through token labeling
(Section 3.1) .
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3.1 Tagging tokens for multithreading
Dataflow models [13] are basically networks of processing elements, the actors, which ex-
change chunks of data, the tokens, through point-to-point buffered communication channels
managed in a First-In-First-Out (FIFO) manner. Execution of operations within actors, the
actions, is token mediated, meaning that it only depends on tokens/free-space availability
on incoming/outgoing FIFOs. Hardware accelerators can be derived from dataflows map-
ping each actor directly into a module, while FIFOs and tokens flow ensures the execution
correctness without the need of a centralized control.

A
B

C
D

Dataflow model of the 
application

B C

F
I
F
OF

I
F
O

Multithread hardware accelerator

A

Multhread HDL
FIFO and actors library

Tag Data

A

F
I
F
O

F
I
F
O

F
I
F
O

F
I
F
O

B

C

D

D
Thread 0 token
Thread 1 token

Figure 2 With the proposed approach, a dataflow model can be mapped into a multithread
hardware accelerator using multithread actors and FIFOs.

To support hardware multithreading we added a tag to each token. The tag indicates
which thread the token belongs to, and so it allows to differentiate tokens of different threads.
Once tokens are tagged, FIFOs and actors have to meet a set of requirements to implement
a multithread accelerator corresponding to the described application (see Fig. 2). These
requirements are necessary to ensure the correct flow of tokens:
1. A firing actor has to tag the output tokens with the same tag of the input ones (Fig. 3a).
2. The firing rules have to be adjusted so that only tokens belonging to the same thread are

able to fire the execution. Then, any actor must be enabled to fire only when matching
token(s) are available in its input channel(s) (Fig. 3b).

3. FIFOs must provide semi-out-of-order read, letting the reading actors choose among the
first token of each flow of execution. This feature is necessary to prevent deadlocks in
actors with multiple input ports, as depicted in Fig. 3c.
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Figure 3 Representation of the three requirements using the Add actor, whose token rates are
indicated on the arrows. In each image, the status of input and output buffers is depicted using
different colors for tokens belonging to different threads.

In the rest of this section it is shown how the above requirements drive the design of
multithread interfaces (Section 3.2), FIFOs (Section 3.3) and actors (Section 3.4).
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3.2 Multithread FIFO Interface
To support tagged-token exchange, the first challenge to be faced is the FIFO read/write
interface definition. In the proposed implementation, these interfaces are customizable using
two parameters:

DATA_WIDTH, the number of information bits in a token;
N_THREADS, the number of supported threads, which determines the number of bits of
the tag.

The write_interface and the read_interface are both made up of three corresponding
signals:

din and dout - They are used to transmit the content of a token (tag and data);
full and empty - They represent the status of the FIFO and are N_THREADS-bit wide,
as each bit represents the status on a specific thread (see Requirement 2);
write and read - write is 1-bit wide, because a FIFO can determine the token’s thread
from its tag. read, instead, is N_THREADS-bit wide to allow the reading actor, that
drives the signal, to choose which thread it wants to read from (see Requirement 3).

The resulting connection scheme between a FIFO and the surrounding actors is depicted in
Fig. 4.

FIFO

din

write

full

dout

read

empty

ACTOR
WRITER

ACTOR
READER

Write 
interface

Read 
interface

WIDTH WIDTH

1

N_THREADS

N_THREADS

N_THREADS

Figure 4 Schematic of the connection between a FIFO and two actors using the write_interface
and the read_interface. WIDTH is the sum of DATA_WIDTH and the tag width, which is
log2(N_T HREADS).

3.3 Multithread FIFO
To support tagged-dataflow computation, FIFOs must preserve the order of the tokens
within each thread and allow out-of-order reading among tokens of different threads (see
Requirement 3). Given these constraints, and adopting the interfaces described in Sect. 3.2,
we developed two possible implementations of a multi-thread FIFO.

3.3.1 Separated-memory FIFO
It uses a dedicated memory for each thread. As shown in Fig. 5, this FIFO is composed of a
bank of N_THREAD dual-ported RAMs, which allow simultaneous read/write operations.
These RAMs are managed by a Control Logic that drives also the empty and full signals.
Internally the Control Logic uses a set of registers, two for each thread, for storing pointers
to the next read and the next write location. To evaluate the status of the FIFO an additional
register for storing the latest performed operation is needed. Finally, there is a combinational
module, the Tag reader, which forwards the data field of the token, while the tag is used to
select the right memory to use by asserting its wr_en. When a token is read, Tag writer
selects the right memory and appends the tag to complete the output token. Indeed, the tag
is not stored but computed considering the read signal.
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Figure 5 Schematic of the Separated-memory FIFO. In this FIFO each thread has a dedicated
RAM where tokens are stored by the Control Logic.

3.3.2 Address-memory FIFO
it uses a shared Data memory for storing tokens of all the threads and an Address memory
to keep track of the order. In this way the Data memory slots are thread agnostic and can be
used without any tag restriction, but a complex Control Logic and an additional memory
are needed, as shown in Fig. 6. The Control Logic uses more registers than in the previous
implementation: one for storing the next location to be written, one for storing the last
written location of the Address memory, one for each thread for storing the next location to
read, one status register for storing which locations are currently used, and another one for
each thread to count the contained tokens. These registers are necessary to manage the two
memories and to evaluate the status of the FIFO. Note that the FIFO would become full for
all the threads simultaneously, but still, the empty signal must be driven independently for
each thread. As before, Tag reader separates tag and data field, while Tag writer picks
up the requested data and appends the tag (not stored with the data).
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Figure 6 Schematic of the Address-memory FIFO. In this FIFO all the tokens are stored in the
shared Data memory, managed by the Control Logic with the support of the Address memory.

3.4 Multithread Actor
To conclude this section, a hardware architecture for multithread dataflow actors is discussed.
Let’s start considering an actor having one input port and one output port. The proposed
structure (Fig. 7) is based on the state-action model of a dataflow actor. The set of possible
actions an actor is able to perform (Actions) and the logic to compute the next state (State
update) are mapped into combinational logic, which is used to elaborate tokens of all the
threads one at a time. Handling one token at a time, there is no need for hardware replication
as the number of supported threads increases. On the contrary, the sequential logic used for
storing the state must be replicated to keep track of the evolution of the system.
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Figure 7 Schematic of an actor supporting tagged tokens. The combinational logic Firing rule
must consider only matching tokens. Combinational logic, Actions and State updates, is shared,
while the sequential one State is replicated for each supported thread.

The approach can be extended to actors with multiple ports without significant modifica-
tions. Any dataflow actor that has to read from two input ports to fire would wait until the
empty signal is deasserted in both ports. In a tagged-token actor, a multi-bit empty signal is
used to check the availability of a matching pair of tokens. The same occurs analogously for
more than two ports.

In the given model, an actor could be able to fire for different threads. Since simultaneous
multiple firing is not supported by actors, a priority scheme is needed. In this work, we
opted for a static priority assignment, to keep the logic as simple as possible and avoid an
excessive resource overhead.

4 Experimental Results

The proposed design approach allows a flexible time multiplexing of the computational
resources of an accelerator. In fact, each actor can carry out its computation according to
token availability while supporting multiple threads. In this section experimental results
considering a video coding use case (Sect. 4.1) are presented and discussed both in terms
resource utilization (Sect. 4.2) and execution analysis (Sect. 4.3).

4.1 Use Case and Setup
A video coding use case involving fractional pixel interpolation for the luma component, used
during motion estimation and compensation phases of the HEVC codec, has been used for
the experimental validation. The interpolator takes as input one image block and produces
as output the same image block shifted by fractional pixels positions. It is implemented
through two cascaded 8-tap digital filters, one for the horizontal direction and one for the
vertical direction. Two different architectures have been developed for the interpolator:

Baseline: the filter takes 1 pixel per cycle, performs 1 8-tap horizontal filtering, buffers
8 block lines, and performs 8-tap vertical filtering, producing 1 pixel per cycle on the
output side.
Matrix: the filter takes 8 pixels per cycle, performs 8 parallel 8-tap horizontal filterings,
buffers 8 block lines, and performs 8 parallel 8-tap vertical filterings, producing 8 pixels
per cycle on the output side.

The aim of the two versions is to assess the proposed multithread accelerator architectures
with applications presenting a different degree of parallelism.
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Starting from these two versions of the interpolator, different evaluation set-ups have
been derived:

Single: a single-thread accelerator that can execute exclusively 1 thread before starting
the processing of the next one (Fig. 1a);
Tagged2, Tagged4: the proposed multithread accelerator that can support respectively
2 or 4 threads (Fig. 1b);
Parallel2, Parallel4: a multithread accelerator made replicating the Single one respec-
tively 2 or 4 times (Fig. 1c).

Resource utilization (Sect. 4.2) is gathered leveraging post-synthesis reports retrieved using
Vivado Xilinx, targeting an Artix-7 device (xc7a100t). Time performance (Sect. 4.3) are
assessed through behavioral SystemVerilog simulations using Vivado Simulator.

4.2 Resources Analysis

4.2.1 FIFOs

The two types of FIFO, introduced in Sect 3.3, are interchangeable without modifications
in the accelerator model nor in the actors. A design-space exploration varying the three
parameters of the FIFOs (N_THREADS, DEPTH and DATA_WIDTH) has been performed to evaluate
their resource utilization and, then, which of the two is preferable. Results are reported in
Fig. 8.

The Separated-memory FIFO utilizes fewer LUTs and FFs than the Address-memory
FIFO with any set of parameters, due to the simpler control logic. On the other hand,
the latter needs fewer LUTRAMs compared with the Separated-memory FIFO that has
N_THREADS · DEPTH slots, while the Address-memory FIFO has only DEPTH shared slots,
independently from the number of supported threads. Also, the FFs overhead in Address-
memory FIFO is independent of the DATA_WIDTH, but grows with DEPTH, as the size of most
control-logic registers is linearly proportional to it. In the end, to choose between the two
implementation one should consider design parameters as well as resource availability in the
target device.
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Figure 8 Resource-utilization comparison between the Separted-memory FIFO (on the left) and
the Address-memory FIFO (on the right) varying design parameters: N_THREADS={2, 4}, DEPTH={8,
64}, DATA_WIDTH={8, 32}. On top of the right-side columns the percentage variation with respect to
the corresponding left-side column is reported.
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4.2.2 Actors
In the proposed approach, what affects most actors’ resource overhead is the ratio between
combinational and sequential logic used to implement them. Three actors have been selected
to investigate this aspect:

Add: it performs the sum of two input tokens → combinational;
Mul: it performs the multiplication by a fixed stored coefficient → combinational/se-
quential;
Line-buffer: it stores and forwards one row of the input block → sequential.

From Fig. 9 it can be seen that the Add actor is purely combinational, as only LUTs are used
to synthesize it. In this case, the overhead to support multiple threads is limited. Moving to
the Mul actor, it can be noticed that the overhead to support multiple threads on FFs is, as
expected, equal to replicating the resource. However, on LUTRAMs there is no overhead at
all: the target technology plays an important role in that. Indeed, a LUTRAM of the target
board can implement a Single-Port 32x1-bit RAM and, in turn, store more data than it is
actually required. So, being the LUTRAM more efficiently utilized, the extension to support
multiple threads comes from free. On the line-buffer, which uses a larger memory for storing
a row of input, a larger overhead occurs, especially for LUTRAMs and FFs.

As a general rule, we can state that the more an actor has a combinational behavior,
the less the additional logic for supporting multithreading impacts on the overall resource
utilization.
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Figure 9 Resource utilization of Add, Mul, and Line-buffer actors supporting 1, 2, or 4 threads.
On the 1-thread columns the absolute value is reported, on the others the variation with respect to
that one.

4.2.3 Overall filters results
The architectures presented in Sect. 4.1 have been synthesized to evaluate the impact of the
proposed approach on resource utilization. Separated-memory FIFOs with minimal size have
been used. The minimal size that ensures reaching the end of the computation has been
evaluated through a SystemC simulation of the system generated with CAPH [19], which
automatically reports the maximal usage of each buffer.

As it can be seen from Fig. 10, the two versions, Baseline and Matrix, have a similar
trend in resource utilization when multithreading is supported. This trend is coherent with
what was observed on FIFOs and actors (Sect. 4.2.1 and 4.2.2). Moreover, DSP sharing can
be noticed in the Tagged accelerators, which uses the same amount of the Single one and
75% less than the Parallel4. As DSPs are merely used for computation, this is completely
consistent with the proposed approach. In any case, the Tagged accelerators proves to be
the promised tradeoff among Single and Parallel implementations of the same accelerator,
consistently with what is depicted in Fig. 1.
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Figure 10 Resource utilization of all the accelerators described in Sect. 4.1. Data are reported
on a logarithmic scale. On top of Tagged columns percentage variation referred to Single, and on
top of Parallel columns percentage variation referred to the corresponding Tagged one.

4.3 Execution Analysis
Supporting multiple threads to run concurrently on an accelerator brings many benefits in
terms of time performance. To evaluate them, the following time intervals are considered
(please notice the color coding that is then used in the dissertation below):

Waiting time: time between the request to access the accelerator and the first input
token read (yellow dotted segment);
Response time: time between the request to access the accelerator and the first output
token written (sum of yellow segment and blue vertically-stripped segment);
Elaboration time: time between the request to access the accelerator and the last
output token written (sum of the three segments).

Time performance is strictly correlated to the considered scenario. Anyhow, we tried to
select some significant cases to let the main pros and cons of the proposed solution come up.

4.3.1 Same-size
First, it is analyzed a case where the same computation, filtering a 16x16 image block,
has to be carried out for each thread under execution. What will affect most the final
results is the arrival time of requests to use the accelerator. A corner negative case for the
Tagged accelerator happens when these requests do not overlap over time, i.e. a new request
arrives when the previous thread has already ended the computation. Of course, in this
scenario a Tagged accelerator cannot have any gain on a Single one. Nevertheless, there is
not performance loss due to multithreading support, as they perform in the same way. In
addition, the Tagged accelerator is not outperformed by the Parallel one.

A corner positive case considers requests that arrive almost simultaneously (they differ by
one clock cycle). Going from Single to Tagged accelerators in Fig. 11, and observing average
values with 2 threads (line Avg 2), it can be noticed that the waiting time is almost nullified,
while the response time is reduced (up to -43% in the Matrix case).

On the Baseline accelerator with 2 threads (line Avg 2) the elaboration time grows in the
Tagged accelerator, since sharing the logic and guaranteeing quick access tend to balance
the elaboration time of each thread. But, if 4 concurrent threads are running (line Avg 4),
even the average elaboration time is reduced. On the Matrix accelerator greater advantages
both in response and elaboration time than on the Baseline filter can be noticed with 2 and
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4 threads. Indeed, the pipeline composed of two filtering stages is not always completely
fulfilled in the Matrix implementation, due to the end of line steps. This allows the Tagged
accelerator to better use the available resources among different threads than the Single
accelerator.

With requests arriving almost simultaneously, Parallel-accelerators average results are
equal to Single Thread 0 line in Fig. 11, as each thread can run independently on a dedicated
accelerator. Parallel accelerators outperform Tagged ones, as the resource replication is fully
used.

The obtained behavior shows how the proposed multithread approach can successfully
exploit the full potential of the available resources, while a Single accelerator does not. It
should be noticed that real cases lie between the corner negative and positive cases here
described.
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Figure 11 Time performance with same-size elaborations. Thread 0 and Thread 1 are the
evolution of the threads when 2 of them are elaborated. Avg 2 threads and Avg 4 threads are
the average time performance when respectively 2 or 4 threads are considered. Arrows show the
percentage variation in the Tagged accelerators compared with the corresponding Single ones.
Timescales are in us.

4.3.2 Different-size

When dealing with multiple threads, priority assignment may play a role. To investigate
this aspect, scenarios where different threads have to carry out different computations are
analyzed: elaborate 8x8 and 32x32 blocks when dealing with 2 threads; 8x8, 16x16, 32x32
and 64x64 blocks with 4 threads. The adopted scheduling policies for each configuration are
the following: in the Parallel accelerators each thread can be assigned to an accelerator, so no
scheduling is needed; in the Tagged accelerators each thread can be elaborated concurrently, a
higher priority is assigned to earlier requests; in the Single accelerators a first-come-first-served
scheduling policy is used.

In a corner negative case, with sequential requests to the accelerator, the behavior is
equivalent with what is described in Sect. 4.3.1, so the Tagged and Parallel accelerators give
no performance gain with respect to the Single ones. For the corner positive case, requests
arriving almost concurrently in increasing- or decreasing- size order are considered.
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From Fig. 12, looking at the results of the Single accelerators , it can be noticed a
significant difference depending on which thread is elaborated first. Indeed, elaborating the
heavier thread first causes the average waiting, response and elaboration time to increase, as
lighter threads spend most of the time waiting for the heavier ones to end the computation.

On the other hand, in the Tagged accelerator the arrival order does not significantly
affects time performance. Threads flow concurrently through the accelerator, letting the
lighter ones end without waiting for the heavier ones. That happens because each actor has a
throughput of one token per clock cycle and there is not token accumulation in any buffer. In
the end, we obtained an average result which is in between the advantageous decreasing-size
cases (up to -92%) and disadvantageous increasing-size cases (up to +13%) of the Single
accelerator.

As before, results on the Matrix filter show a greater gain on the Tagged accelerators
that fully exploit available computational resources during underutilization periods.

0 10 20 30 40 50 60

Tagged
Single

Tagged
Single

Tagged
Single

Tagged

Single

In
c

D
e

c
In

c
D

e
c

A
vg

 4
A

vg
 2

BA
SE

LI
N

E

Wait
Response
Elaboration

0 2 4 6 8 10 12

Tagged

Single

Tagged

Single

Tagged

Single

Tagged

Single

In
c

D
e

c
In

c
D

e
c

A
vg

 4
A

vg
 2

M
A

TR
IX

-61% -33%

+13% +10%

-80% -47%

-11% +29%

-71% -38%

-27% -4%

-92% -60%

-61% -2%

Figure 12 Time performance with different-size elaborations. Avg 2 and Avg 4 are the average
time performance when 2 or 4 threads are elaborated in incrasing-(Inc) or decrasing-(Dec) size order.
Arrows show the percentage variation in the Tagged accelerators compared with the corresponding
Single ones. Timescales are in us.

5 Conclusion

Specialized hardware is crucial in modern electronics to meet performance requirements. In
this work we proposed a novel model-based approach for designing multithread hardware
accelerators. Following the dataflow paradigm, with additional tagged tokens, we designed a
general HDL architecture for actors and two architectures for FIFOs supporting multithread-
ing. Then, using this approach, we designed two complete architectures for a video codec
use case with different degrees of parallelism.

Experimental results showed a limited resource overhead, thanks to the possibility of
sharing combinational resources. Immediate access to the accelerator by multiple threads and
more effective resource exploitation let the proposed accelerator outperform a single-thread
accelerator in terms of waiting, response and elaboration times.
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Future works will aim to investigate how other aspects of the approach, e.g. the adopted
model-of-computation (static or dynamic dataflow), and further details, e.g. the priority
management, impact on performance. As this work is mainly meant to demonstrate the
feasibility of the proposed approach, future work will also address the points that limit its
applicability. A complete host processor-accelerator environment, with proper Operating
System support is under development. Also, the design automation through the integration
within an HLS flow and a complete design methodology specification will be carried out to
make the method effective and available in practice. This will support tackling not only the
performance issues for this kind of specialized hardware, but also the design effort.
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Abstract
The ever increasing usage of simulations in order to produce digital twins of physical systems led to
the creation of specialized equation-based modeling languages such as Modelica. However, compilers
of such languages often generate code that exploits the garbage collection memory management
paradigm, which introduces significant runtime overhead. In this paper we explain how to improve
the memory management approach of the automatically generated simulation code. This is achieved
by addressing two different aspects. One regards the reduction of the heap memory usage, which
is obtained by modifying functions whose resulting arrays could instead be allocated on the stack
by the caller. The other aspect regards the possibility of avoiding garbage collection altogether
by performing all memory lifetime tracking statically. We implement our approach in a prototype
Modelica compiler, achieving an improvement of the memory management overhead of over 10
times compared to a garbage collected solution, and an improvement of 56 times compared to the
production-grade compiler OpenModelica.
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1 Introduction

The explosion of Industry 4.0 has driven a renewed interest in the topic of modeling and
simulation, due to a significant increase in complexity of systems that need to be simulated. At
the same time, simulation is nowadays used for a range of vital taks in the lifecycle of industrial
products, generally subsumed under the moniker of digital twins [16, 5, 15]. Digital twins
promise the ability to perform a wide range of experiments, assessments, and predictions on
real-world physical systems, such as cars, planes, buildings and power-distribution networks.
The phenomena to be modeled in digital twins are natively expressed in terms of Differential
and Algebraic Equations (DAE). Those equations need to be translated into an imperative
simulation program performing numerical integration by means of well-known mathematical
methods. The resulting program is then executed to obtain the evolution of the system
during a period of time.
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Equation-based modeling languages are declarative languages that directly allow to
input a system of equations, taking advantage of the always-increasing computing power by
performing automated model translation. This approach relieves the modeler from the time-
consuming and error-prone task of manually translating models of increasing complexity into
the corresponding algorithmic solution code. One of the most popular modeling languages is
Modelica [17]. Other than allowing to define DAE systems, it also encompasses the possibility
to define functions in a way similar to imperative programming languages. This capability is
useful in Cyber Physical Systems (CPS) to model the algorithmic part, such as controllers,
as well as to express numerical correlation or tabular material properties – such as the fluid
ones [8].

Just like in regular programming languages, Modelica functions can also receive and
return arrays. More in detail, arrays in Modelica always have a fixed number of dimensions –
that we will call rank – but the size of each of them can either be fixed or change during the
execution of the simulation.

For what regards memory management, Modelica does not provide explicit access to
pointers but rather consider arrays as objects without specifying how implementations should
handle array copying. This is in accordance with the Modelica objective, that is to provide a
high-level language to model complex systems.

The absence of explicit memory management is usually addressed by Modelica compilers
by leveraging garbage collectors [20], which take care of periodically analysing memory
reachability and deallocate the blocks detected as no longer in use. This technique has
been widely tested throughout the years, but even if effective it is not optimal in terms of
performance [19]. The overheads incurred from usage of garbage collection are particularly
significant in the context of embedded systems. In particular, they hamper the usability of
Modelica and similar languages for automatically producing system mock-ups as proposed
by the eFMI open standard [14], which has been growing in importance in the last few years.

Our contribution consists in the introduction of two optimization passes that operate
on the LLVM-IR produced by a prototype LLVM-based compiler, but can nonetheless be
applied to other intermediate representations. The first one enables the allocation on the
stack of all fixed-size arrays, independently from their usage as argument or result within a
function. The second pass addresses the deallocation of the dynamically-sized – and thus
heap-allocated – ones, by introducing the deallocation instructions in the right positions
within the IR and thus avoiding the need for garbage collection.

The document is organized as follows. In section 2 we describe the semantics of the
Modelica languages that are useful for this work and also briefly discuss the state of the art in
Modelica compilers, with a focus on the memory management aspect. In section 3 we describe
our code-generation strategy for memory management, in particular a transformation by
which all the fixed-size arrays can be potentially allocated on the stack, and how to correctly
place the deallocation instructions for heap-allocated arrays in order to remove the need for
garbage-collection. Then, in section 4 we examine the correctness of our approach by using
a prototype compiler based on LLVM [13]. We also make some comparisons with another
industry-grade compiler and with a customized version of our compiler that uses the Boehm
garbage collector. Finally, in section 5 we review the results and we discuss future directions
for improvements of Modelica compilers.
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2 Background

Declarative modeling languages include Modelica, gPROMS [6], Simscape [22] and Omola [4].
Of these, Modelica is one of the most popular, providing a separate language specification that
is implemented by both open source and commercial simulation environments. In the first
category we find OpenModelica [10], while in the second we find Dymola [9] and JModelica [3].
These languages allow the modelers to focus on the description of the systems and delegate the
implementation details, such as memory management, to the model translator or compiler.

In general, a Modelica program consists of a set of DAE equations describing the evolution
in time of the physical system to simulate. These equations involve a fixed set of variables,
among which we can find the system state variables, that represent the current state of the
system at a given moment in time. All these have the exact same lifetime as the simulation
itself, thus obviating the need for memory management.

However, Modelica also allows to define functions as in common imperative programming
languages. Functions receive some arguments and return others. The return values are
computed by executing the imperative code in the body of the function. In accordance with
the language specification, we will call the former input values and the latter output values.
Within the body of a function it is not allowed to modify the input values, while the output
ones can be rewritten as many times as needed. Inside the function it is also possible to
define protected values living only within the function; their modifications obey to the same
rules of output ones.

An example is shown in code listing 1. The foo function declares three input arrays, two
scalar input values, one output array and one protected array. All the arrays of this example
are characterized by a size that is potentially known only at runtime. In the body of the
function, the first assignment at line 9 consists in the sum of three input arrays: the first
sum between a and b creates a temporary array that is summed with c; the resulting array
value is assigned to the internal array d. At line 10, the values within d are doubled and
stored into e. Then, according to the expand value, the array e may be set with the values
returned by the bar function call. The body of bar is not relevant and thus omitted, but the
signature clearly shows how the dimension of the output array y is different from the size of e
as computed up to this point. According to the language specification, all the assignments to
d and e are legit, as they write into a protected and an output variable, and at the same time
they also determine their size. Finally, a loop increments all elements in e by the input value
v. From this simple example we notice several peculiarities that set Modelica aside from
many other imperative languages. Specifically, the fact that an assignment to an array may
determine or change its size at runtime, the immutability of input values and the possibility
of creating complex expression with array operands. Moreover, the assignments of arrays in
Modelica have the same semantics as an element-by-element copy – in other words, array
types are not references.

While these peculiarities are important to understand the semantics of the language,
our compiler operates on an LLVM intermediate representation (LLVM-IR) of the program
that follows its own specific rules, which are closer to assembly languages. Modelica-specific
semantics are enforced by previous stages within the compilation pipeline which generate
this intermediate representation. In order to avoid any confusion, unless otherwise specified,
in the following sections we will always refer to constructs implemented in, and with the
semantics of, LLVM-IR.

PARMA-DITAM 2022



7:4 Efficient Memory Management for Modelica Simulations

Listing 1 Modelica function example.
1 function foo
2 input Real[:] a, b, c;
3 input Boolean expand;
4 input Real v;
5 output Real[:] e;
6 protected
7 Real[:] d;
8 algorithm
9 d := a + b + c;

10 e := d * 2;
11
12 if expand then
13 e := bar(d);
14 end if;
15
16 for i in 1:size(e,1) loop
17 e[i] := e[i] + v;
18 end for;
19 end foo;
20
21 function bar
22 input Real[:] x;
23 output Real[size(x,1) * 2] y;
24 end bar;

In contrast to most imperative programming languages, the Modelica language specifica-
tion1 does not specify any particular memory management paradigm, but just the expected
lifetime of each variable and the value semantics. Therefore, complete freedom is left for the
implementor to choose a memory management approach that satisfies the semantics of the
language.

Even though functions can be defined, the semantics of Modelica are not enough for
general-purpose programming. An extension of Modelica, called MetaModelica [21], has
been devised to make the language powerful enough for programming applications. This
language extension introduces some constructs – such as lists and exceptions – which do not
belong to the standard Modelica specification but allow for the OpenModelica compiler to
be self-hosting. MetaModelica shares many design aspects with functional languages [11] –
as a result, memory management using garbage collection is a natural design choice. This
decision also permeated into the simulation programs generated by OpenModelica, which
make use of the Boehm garbage collector even for standard Modelica models not using any
MetaModelica language construct. A recent study aims to introduce the LLVM infrastructure
into the backend of OpenModelica in order to translate both MetaModelica and Modelica into
LLVM-IR instead of C code, but the garbage-collected nature of the language implementation
has been retained [23] in order to support MetaModelica.

1 https://specification.modelica.org/maint/3.5/MLS.html

https://specification.modelica.org/maint/3.5/MLS.html
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Table 1 Calling conventions used for Modelica functions within LLVM-IR after the execution of
the discussed passes.

Input Output

Scalar By value By value

Fixed array Pointer to memory allocated by
caller [Promoted to input]

Dynamic array Pointer to memory
(dynamically) allocated by caller

Pointer to memory
(dynamically) allocated by callee

3 Proposed solution

In this section we analyze the two transformation passes that we implemented in our prototype
Modelica compiler.

The initial intermediate representation given as input to the passes has the following
characteristics: all output arrays are allocated on the heap and there are no deallocation
instructions; the input arrays are either the ones of state variables (which are placed on the
heap in order to live throughout the whole simulation), the ones returned by function calls
(thus, heap-allocated) or protected ones (which are allocated on the stack if their size is fixed,
or on the heap otherwise).

We will first focus on the output arrays and describe a transformation pass by which
some of them may become stack-allocated. We will then examine the remaining dynamically
sized arrays and determine how to correctly place deallocation instructions in order to avoid
garbage collection.

3.1 Promotion of Output Arrays

Depending on how an array is used by a function, its memory allocation strategy may change.
For example, in the C programming language, an array declared within a function is allocated
on the call stack. Therefore, the array ceases to exist automatically as soon as the function
terminates. Instead, if the array must outlive the function where it is created, it must be
either dynamically allocated on the heap, or allocated on the stack beforehand by the caller
of the function. These semantics of the C language map directly to LLVM-IR and machine
code.

In the context of Modelica, arrays outliving the function where they are declared are
always denoted as output parameters – input parameters are immutable. A compiler can
avoid generating heap allocations for such arrays by creating the corresponding allocation
on the stack before each call to the function. As a result, in the implementation, fixed size
output arrays become mutable input arrays passed by reference, a construct that cannot
be directly expressed in the Modelica language. This transformation is called promotion of
output arrays.

In order to perform this transformation, we implement a pass which identifies the output
arrays that can be potentially allocated on the stack and converts them into arguments to
the function. The promotion may be applicable or not depending on multiple factors, such
as the overall size of the array (which could lead to a stack overflow) or whether the function
is a recursive one. For the sake of simplicity, we will limit our strategy to just consider the
fixed or dynamic nature of the array, as visible in table 1.

PARMA-DITAM 2022
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Algorithm 1 Output-to-input promotion pass for functions.

Function promoteFunctionResults
Input: f : F unction

L← ∅
foreach ti ∈ resultTypes(f) do

if canBePromoted(ti) then
newArgument← addArgumentWithType(f, ti)
L← L ∪ {i}
allocation← getAllocInstruction(f, i)
replaceUsages(allocation, newArgument)

end
end
removeResultsFromSignature(f, L)
returnInstruction← getReturnInstruction(f)
results← {}
foreach vi ∈ arguments(returnInstruction) do

if i /∈ L then
results← append(results, vi)

end
end
setArguments(returnInstruction, results)

end

While performing this transformation, function call sites also need to be updated so that
they reflect the updated function signatures.

The transformation pass is described by algorithms 1 and 2. The promoteFunctionResults
function modifies each function signature and definition, while the promoteCallsResults
function updates the calls to those functions. Some utility methods are used within the
pseudo-code and their implementation depends on the characteristics of the intermediate
representation being used. Some of them are self-explanatory, while the remaining ones are
defined as follows:

addArgumentWithType(f, t). Append a new argument with type t to the signature of
function f and returns the newly added argument.

alloca(t). Allocate on the stack a value with type t.

canBePromoted(t). Determine whether a value with type t can be placed on the stack.

getAllocInstruction(f, i). Get the allocation instruction that is used within the body of
function f to create the result with index i. The index consists in the position of the
result among the original ones.

removeResultsFromSignature(f, I). Remove the results with the positions given by set I
from the signature of function f.

replaceUsages(op, V). Replace all the usages of the results of instruction op with the values
of set V ; the original instruction op is also eliminated.

At the end of the transformation pass all the fixed-size output arrays have become
stack-allocated by the caller. As a consequence, the only fixed-size arrays that are left on the
heap are the ones related to the state variables, which need to live throughout the whole
simulation.
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3.2 Heap Array Deallocation
As we have just seen, fixed-size arrays can be potentially always allocated on the stack.
Dynamically-sized arrays, on the contrary, must be allocated on the heap because their size
is known only at runtime. Static analysis may simplify some cases in which their size can be
inferred at compile time to be fixed, but yet the rule holds for the most generic case.

Differently from arrays placed on the stack, heap-allocated arrays are not automatically
released and thus explicit deallocations must take place. The pass we are going to describe
aims to insert such deallocations in the correct positions, so that all the arrays are deallocated
exactly once and only when they are not used anymore.

It must be noted that, since array expressions are allowed in Modelica, intermediate
values of such expressions are also arrays. These arrays might be dynamically allocated if
the size of the array operands is unknown, but after the initial allocation their size is fixed.
On the contrary, dynamic arrays declared by the programmer may require a reallocation
due to resizing at runtime. In order to implement this behaviour, the underlying buffer that
stores its content must be replaceable during the execution of the simulation. For this reason,
this last kind of arrays is represented by means of a pointer to pointer. When a reallocation
happens the new pointer is stored in such data structure, overwriting the older pointer.

However, overwriting the previous address would lead to memory leaks, as no reference
to the previously addressed memory would exist anymore. In order to avoid this issue, the
first part of this transformation pass takes care of finding the store operations overwriting
the address, and, right before each of them, place a deallocation instruction for the address
that is going to be overwritten. The first run-time deallocation would indeed be illegal as no
previous memory would have been reserved yet, but a simple check on the pointer validity is
sufficient to avoid this failure.

For what regards the temporary dynamic arrays, we have already seen how their size is
determined at runtime but yet will never change. For this reason, they are not referenced by
a pointer to a pointer. However, the deallocation must take also aliases into consideration.
An example of aliasing is subscription, which creates a reduced-rank view over the original
array but without allocating further memory.

Algorithm 3 shows the procedure to be applied in order to retrieve the list of heap-
allocated arrays and their aliases. The arrayAndAliases procedure takes the function to be
analyzed and returns the sets L and A: the former contains the SSA values representing the
heap-allocated arrays we need to handle; the latter consists in pairs of values mapping each
alias to the aliased array. Moreover, an allocation is considered as an alias of itself. In case
of nested sub-views, A maps to the view being aliased and not to the original array. Some
utility functions have also been used within the algorithm, and reported here for clarity:

isAlias(v). check if the value v is an alias for some other value.
shouldBeDeallocated(v). check if value v is heap-allocated and does not belong to the set

of arrays created by reallocations (which are already handled, as explained earlier).

The placement of the deallocation instructions takes place accordingly to function pla-
ceDeallocations of algorithm 4, which is applied to each function within the IR. The definition
of the most important utility functions leveraged within the algorithm are the following:

createDeallocationAfter(v, op). Create the deallocation instruction for value v right after
instruction op.

findCommonPostDominator(aliases). Find the block that post-dominates all the blocks in
which the values contained in the set aliases are defined. This requires the capability to
compute the dominance information regarding the blocks of the function; being this a
well known dataflow analysis [12], we will not explore its implementation details.

PARMA-DITAM 2022
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Algorithm 2 Output-to-input promotion pass for function calls.

Function promoteCallsResults
Input: call : Instruction

args← arguments(call)
newArgs← {}
promoted← ∅
filteredResultT ypes← {}
n← numResults(call)
foreach ti ∈ resultTypes(call) do

if canBePromoted(ti) then
newArgs← append(newArgs, alloca(ti))
promoted← promoted ∪ {i}

else
filteredResultT ypes← append(resultT ypes, ti)

end
end
args← append(args, newArgs)
newCall← createCall(callee(f), args, filteredResultT ypes))
results← {}
j ← 0
k ← 0
for i = 0, . . . n do

if i ∈ promoted then
results← append(results, newArgs[j])
j ← j + 1

else
results← append(results, result(newCall, k))
k ← k + 1

end
end
replaceUsages(call, results)

end

findLastUsageInBlock(v, b). Get the last operation within the block b that has the value v
among its arguments.

isBefore(op1, op2). Check if the operation op1 is placed before the operation op2 within
the IR; the two operations are assumed to belong to the same block.

4 Experimental Evaluation

In order to prove the correctness of our approach, we use a benchmark Modelica model
describing a series of heat exchangers operating with methanol in the gaseous phase as the
working fluid. This models makes use of functions to model the methanol properties. These
functions have been written in three different forms, leading to three different models: the
first one operates only with scalar values, the second uses arrays with fixed size, and the
third covers the more generic case of dynamically-sized arrays.

All the tests have been performed on a Linux machine with the following hardware
characteristics and software setup:

OS: Ubuntu 20.04
CPU: Intel Xeon CPU E5-2650 2.30GHz
RAM: 72 GB DDR3 2133 MHz
LLVM 13.0.0
OpenModelica v1.19.0-dev.392+g2ca59e4f7e



M. Scuttari, N. Camillucci, D. Cattaneo, F. Terraneo, and G. Agosta 7:9

Algorithm 3 Array and aliases discovery.

Function arraysAndAliases
Input: f : F unction

Output: L : Set, A : Set

L← ∅
A← ∅
foreach op ∈ operations(f) do

v = result(op)
if shouldBeDeallocated(v) then

L← L ∪ {v}
A← A ∪ {(v, v)}

else if isAlias(v) then
s← aliasedValue(v)
if ∃(a, b) ∈ A : b == s then

A← A ∪ {(s, v)}
end

end
end

end

For what regards the simulation options, all the models have been simulated using the
forward Euler method with a time step of 0.01s for a total amount of 1 000 000 steps.

4.1 LLVM-based prototype compiler

The LLVM-based prototype compiler was developed starting from an already existing one
that was used to demonstrate the limitations of current solutions [1]. A profiling system was
also introduced in order to keep track of the number of heap allocations and deallocations
executed during the simulation, together with the time spent in doing such operations. This
allowed to verify that the number of allocations is equal to the deallocations one, and thus
ensuring that no memory leak or double deallocation happens. Valgrind [18] has also been
leveraged to confirm this result, and it indeed showed the absence of definitely, indirectly or
possibly lost references.

Furthermore, we also created a custom version of our compiler leveraging the Boehm
garbage collector and we compared its performance with the original implementation. Table 2
shows the measurements for what regards the total execution time and the time spent during
the heap memory management. The values have been computed on an average of 1 000
executions.

The version without garbage collection showed a speed-up of 6.5% for what regards the
total execution time. The time spent in the heap management reported an improvement
of a factor ∼ 13. One may argue that the ∼ 2 seconds difference of the total execution
should perfectly reflect within the heap management. However, the latter does not take
into consideration the overhead of the creation and destruction of the GC-related structures,
which happen at the beginning and at the end of the simulation and thus are not captured
by the profiling of the individual allocation instructions.

Finally, the Valgrind tool has again been used to measure the peak heap-allocated memory
with and without garbage collection. No significant differences were observed, in both cases
the measurement is approximately 446 KB.

PARMA-DITAM 2022
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Algorithm 4 Placement of deallocation instructions.

Function placeDeallocations
Input: f : F unction

(L, A)← arraysAndAliases(f)
foreach array ∈ L do

aliases← ∅
aliasQueue← {array}
while ¬ empty(aliasQueue) do

current = popFront(aliasQueue)
foreach (a, b) ∈ A : a == current do

aliasQueue← append(aliasQueue, b)
end

end
block ← findCommonPostDominator(aliases)
lastUsage = firstOp(block)
foreach a ∈ aliases do

u = findLastUsageInBlock(a, block)
if isBefore(lastUsage, u) then

lastUsage← u

end
end
createDeallocationAfter(array, lastUsage)

end
end

Table 2 Execution times for the model with dynamically sized arrays, compiled with OpenModelica
(OM) and the Prototype LLVM-based compiler.

OpenModelica Prototype
Garbage collection Yes Yes No

Total execution time [s] 74.19 27.36 25.58
Heap management time [s] 7.23 1.77 0.13
Heap management fraction [%] 9.75 6.47 0.51

4.2 Comparison with OpenModelica

Considering the third model – that is the most interesting one, with dynamically sized arrays –
we compared the simulation generated by our prototype compiler with the one given by
OpenModelica. As in the previous section, we measured the total execution time and the
time spent in heap memory management on an average of 1 000 executions.

OpenModelica is known to be affected by some inefficencies in handling large-scale
models [7, 1, 2]. In fact, the total simulation time shows a difference of a factor ∼ 3
with respect to our compiler without garbage collection. However, also the heap memory
management shows a difference of around 9%.

For all the models we finally measured the number of heap allocations regarding the arrays
passed as input and returned as output by the functions. The allocations of the model’s
variables are not taken into consideration, as they live throughout the whole execution and
thus are not a matter of the transformation passes described in section 3. The results are
shown in table 3.
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Table 3 Number of malloc calls performed by each model when compiled by OpenModelica (OM)
and the prototype LLVM-based compiler.

OpenModelica Prototype
Garbage collection Yes Yes No

Scalar model 0 0 0
Fixed size array model 2000006 0 0
Dynamic size array model 2000006 2000000 2000000

The scalar case is trivial in both cases since functions deal only with scalar variables, both
in input and output. The second model deals with arrays of fixed size. OpenModelica allocates
all of them on the heap, while our prototype compiler takes advantage of the optimization
described in section 3.1. All the output arrays are in fact promoted to arguments and thus
allocated on the stack by the caller, together with the input ones. Finally, the model with
dynamically sized arrays can not be optimized and thus the heap allocation persist. The
slightly different number of allocations between the two compilers is given by the fact that
OpenModelica also performs some additional simulation cycles for initialization purposes,
whose details are not a concern of this document.

5 Conclusions

We introduced two optimization passes to improve the memory management within the
Modelica simulations. The first transformation consists in analyzing the signature of each
function and promoting the output arrays with fixed-size dimensions to arguments, so that
the allocation is delegated to the caller and thus the stack can be used. The second aims
to correctly place the deallocation instructions for the dynamically sized arrays, which are
instead always placed on the heap due to their nature.

We then implemented such transformations within an LLVM-based prototype compiler and
we checked their correctness by means of both an internal profiler and the external Valgrind
tool. We also modified our prototype compiler to leverage the Boehm garbage collector
instead of our new deallocation strategy. Even though the garbage collector manifested
an efficient memory management, results showed that the time overhead is not irrelevant.
Avoiding garbage collection led to a speed-up of a factor ∼ 13 for the heap management and
an overall 6% reduction of the total execution time.

Finally, we compared the simulations generated by our prototype compiler with the ones
generated by OpenModelica. As expected, the output arrays promotion for fixed-size arrays
took place and led to zero heap allocations, while OpenModelica showed the same number
of allocations in both the fixed and dynamically sized arrays scenarios. For what regards
the performance measurement, we focused our attention on a model with dynamically sized
arrays – that is where we expected the biggest improvement. We registered a 9% reduction
in the time spent in heap memory management and a speed-up of factor ∼ 3 for the whole
simulation.

While the work presented in this paper effectively handles memory management in
Modelica compilers, there are several other key aspects for improving the performance of
both the compiler and the generated code. In particular, future directions for our work aim
primarily at extending and improving our prototype compiler, with the goal of efficiently
handling Modelica equation arrays [1].
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