
SO(DA)2: End-to-end Generation of Specialized
Reconfigurable Architectures
Antonino Tumeo1 #

Pacific Northwest National Laboratory,
Richland, WA, USA

Nicolas Bohm Agostini #

Pacific Northwest National Laboratory,
Atlanta, GA, USA
Northeastern University, Boston, MA, USA

Serena Curzel #

Pacific Northwest National Laboratory,
Richland, WA, USA
Politecnico di Milano, Italy

Ankur Limaye #

Pacific Northwest National Laboratory,
Richland, WA, USA

Cheng Tan2 #

Microsoft, Seattle, WA, USA
Vinay Amatya #

Pacific Northwest National Laboratory,
Richland, WA, USA

Marco Minutoli #

Pacific Northwest National Laboratory,
Richland, WA, USA

Vito Giovanni Castellana #

Pacific Northwest National Laboratory,
Richland, WA, USA

Ang Li #

Pacific Northwest National Laboratory,
Richland, WA, USA

Joseph Manzano #

Pacific Northwest National Laboratory,
Richland, WA, USA

Abstract
Modern data analysis applications are complex workflows composed of algorithms with diverse
behaviors. They may include digital signal processing, data filtering, reduction, compression, graph
algorithms, and machine learning. Their performance is highly dependent on the volume, the velocity,
and the structure of the data. They are used in many different domains (from small, embedded
devices, to large-scale, high-performance computing systems) but in all cases they need to provide
answers with very low latency to enable real-time decision making and autonomy. Coarse-grained
reconfigurable arrays (CGRAs), i.e., architectures composed of functional units able to perform
complex operations interconnected through a network-on-chip and configure the datapath to map
complex kernels, are a promising platform to accelerate these applications thanks to their adaptability.
They provide higher flexibility than application-specific integrated circuits (ASICs) while offering
increased energy efficiency and faster reconfiguration speed with respect to field-programmable
gate arrays (FPGAs). However, designing and specializing CGRAs requires significant efforts. The
inherent flexibility of these devices makes the application mapping process equally important to the
hardware design generation. To obtain efficient systems, approaches that simultaneously considers
software and hardware optimizations are necessary. In this paper, we discuss the Software Defined
Architectures for Data Analytics (SO(DA)2) toolchain, an end-to-end hardware/software codesign
framework to generate custom reconfigurable architectures for data analytics applications. (SO(DA)2)
is composed of a high-level compiler (SODA-OPT) and a hardware generator (OpenCGRA) and can
automatically explore and generate optimal CGRA designs starting from high-level programming
frameworks. SO(DA)2 considers partial dynamic reconfiguration as key element of the system design.
We discuss the various elements of the framework and demonstrate the flow on the case study of a
partial dynamic reconfigurable CGRA design for data streaming applications.

2012 ACM Subject Classification Computer systems organization → Reconfigurable computing

Keywords and phrases Reconfigurable architectures, data analytics

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2022.1

1 Corresponding Author
2 with PNNL when this work was performed

© Antonino Tumeo, Nicolas Bohm Agostini, Serena Curzel, Ankur Limaye, Cheng Tan, Vinay Amatya,
Marco Minutoli, Vito Giovanni Castellana, Ang Li, and Joseph Manzano;
licensed under Creative Commons License CC-BY 4.0

13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2022).
Editors: Francesca Palumbo, João Bispo, and Stefano Cherubin; Article No. 1; pp. 1:1–1:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonino.tumeo@pnnl.gov
https://orcid.org/0000-0001-9452-120X
mailto:nicolas.agostini@pnnl.gov
mailto:serena.curzel@pnnl.gov
mailto:ankur.limaye@pnnl.gov
mailto:tancheng1990@gmail.com
mailto:vinay.amatya@pnnl.gov
mailto:marco.minutoli@pnnl.gov
mailto:vitogiovanni.castellana@pnnl.gov
mailto:ang.li@pnnl.gov
mailto:joseph.manzano@pnnl.gov
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 SO(DA)2: End-to-end Generation of Specialized Reconfigurable Architectures

Category Invited Talk

Supplementary Material Software (Source Code): https://gitlab.pnnl.gov/sodalite/soda-opt
Software (Source Code): https://github.com/pnnl/OpenCGRA

Acknowledgements The research described in this paper is part of the Data-Model Convergence
(DMC) Initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory
Directed Research and Development Program at PNNL, a multiprogram national laboratory operated
by Battelle for the U.S. Department of Energy.

1 Introduction

Many emerging applications for several areas employ complex workflows that include a
substantial data analysis component. For example, scientific instruments such as particle
accelerators, electron microscopes, and protein sequencers capture large amounts of experi-
mental data in bursts [2] that cannot be stored locally. The significant information needs to be
filtered, prepared, and often compressed before being sent to a large-scale high-performance
computing systems for further processing. The in-situ data analysis element should also be
able to steer and control the instruments to perform the next set of experiments. Smart
sensor networks for various environmental monitoring applications need power efficient ways
to acquire and select relevant data that is then transmitted on potentially slow or unstable
links. Autonomous systems need fast data processing to enable the low latency reasoning
required to adapt and react to changes in the environment.

In all these situations, high volumes of multi-modal, heterogeneous, data, typically
captured from a variety of sensors, are processed through a sequence of kernels that may
expose significantly different, and often contrasting, requirements. These kernels include
digital signal processing, graph algorithms, machine learning, and more. Furthermore, the
volume of data streamed from the sensors and from one kernel to the others may be highly
variable depending on the situation, leading to rapidly changing throughput of the processing
pipelines.

The current trends in computer architecture highlight that only by leveraging domain
specialization it is possible to reach the levels of hardware efficiency (power, performance,
and area) required to process exponentially growing volumes and velocity of data.

Coarse-grained reconfigurable arrays (CGRAs), loosely defined as sets of functional units
(FUs) and memories interconnected through a network-on-chip (NoC) that are dynamically
configured to accelerate different computational patterns, represent a promising platform
for these modern data analytics workflows [17–19,22]. A compiler maps application kernels
on a CGRA and determines how data will flow through the FUs and memories. Differently
from a system composed of a multitude of fixed application-specific accelerators, CGRAs
can modify their configuration to adapt to the requirements of different algorithms, still
resulting power efficient while providing significant gains in area efficiency through resource
reuse. Their refined communication networks enable efficient data transfer from one FU to
the other, allowing the definition of complex data processing pipelines with high throughput.
Additionally, they can potentially adapt to new algorithm and processing pipelines. CGRAs
are also more power efficiency and faster to reconfigure than fine-grained configurable devices
(such as field-programmable gate arrays – FPGAs).

However, designing specialized systems based on CGRA devices and mapping software onto
them are not trivial tasks. First, the entire toolchain needs to explore simultaneously hardware
and software optimizations to effectively leverage the dynamic reconfiguration capabilities
of the hardware substrate. Second, the actual process of designing and implementing the

https://gitlab.pnnl.gov/sodalite/soda-opt
https://github.com/pnnl/OpenCGRA


A. Tumeo et al. 1:3

hardware is complex and time consuming. A single general CGRA design may not even be
sufficient to address critical use cases (e.g., edge devices, security systems) that may have
very tight constraints and requirements, although only on a limited set of kernels. Thus,
there is a demand for automated and integrated hardware/software codesign tools able to
perform end-to-end optimization and generation of reconfigurable architectures. These tools
also need to consider partial dynamic reconfiguration as critical element of the flow, especially
with data streaming applications where multiple processing kernels and complex analysis
pipelines may be active at the same time on inputs with highly variable characteristics.

To address the aforementioned issues, we developed Software Defined Architectures
for Data Analytics – SO(DA)2 framework [4], a modular compiler-based toolchain for the
generation of custom reconfigurable architectures.

SO(DA)2 integrates two open-source tools, SODA-OPT1 and OpenCGRA2, in a design
flow that can automatically generate specialized CGRAs starting from a data analysis
application written in a high-level software framework. SODA-OPT is a high-level optimizer
that interfaces with data science programming frameworks, identifies sequences of kernels
suitable for acceleration, and prepares them for offload onto the hardware. OpenCGRA
is a framework for generating CGRAs, including automatic modeling, testing, evaluation,
mapping, and a design space exploration (DSE) engine that allows to simultaneously optimize
software and hardware parameters. This paper describes in detail the components of SO(DA)2

and some of the key results obtained by generating and optimizing architectures with
the framework itself. In particular, we demonstrate SO(DA)2 capabilities by generating
partial dynamic reconfigurable architectures for data streaming applications. The resulting
specialized CGRAs designs can dynamically rebalance a pipeline of data-dependent processing
kernels, maximizing the throughput (up to 2 times) and reducing the latency with respect to
architectures where resources are statically partitioned among the kernels.

The paper proceeds as follows. Section 2 overviews the entire framework, discussing its
key elements, including the high- and low-level compiler toolchain, the CGRA architecture
templates, the design exploration engine, and the partial dynamic reconfiguration capabilities.
Section 3 presents our case study. Section 4 discusses alternative generation frameworks for
CGRAs. Section 5 presents possible future research and development opportunities. Finally,
Section 6 concludes the paper.

2 Framework Overview

Figure 1 overviews the general concepts behind the SO(DA)2 framework. Focus of the
framework is to efficiently support data intensive applications, characterized by contrast-
ing behaviors, by leveraging reconfigurable architectures. The framework interfaces with
high-level programming frameworks through the multi-level intermediate representation
(MLIR) [15] infrastructure. Our toolchain also supports Clang as a frontend, thus enabling
mapping of conventional C applications onto a reconfigurable hardware substrate. One key
part for data dependent workloads is the need to leverage data statistics and data-oriented
optimization. A compilation flow provides opportunities to leverage dynamic information
beside static analysis to enable dynamic adaptation.

The framework implements a design space exploration and synthesis (DSES) engine to
perform mapping and generation of the configurations for the target architectures. The
objective is identifying specific parallel patterns and explore trade-offs among multiple optim-

1 https://gitlab.pnnl.gov/sodalite/soda-opt
2 https://github.com/pnnl/OpenCGRA

PARMA-DITAM 2022

https://gitlab.pnnl.gov/sodalite/soda-opt
https://github.com/pnnl/OpenCGRA


1:4 SO(DA)2: End-to-end Generation of Specialized Reconfigurable Architectures

Figure 1 SODA high-level overview.

DNN model

Tensor Ops

Linear Algebra

Linear Algebra
on Buffers

Polyhedral

Structured
Control Flow

Control Flow
Graph

Control Flow
Graph (LLVM)

soda

To search and 
outline key 

computations in 
these dialects

Legend:

Concept

mlir dialect

Compilation flow

tf tensor

tosa tensor

linalg tensor

linalg memref
arith

affine memref
arith

scf memref
arith

llvm

cf memref
arith

Figure 2 MLIR lowerings and dialects.

ization objectives (e.g., critical loop optimizations to exploit the spatial parallelism offered
by CGRAs). The framework also considers the generation of a specialized reconfigurable
architecture, leveraging a resource library with parametrized architectural templates that
allows meeting specific design constraints.

Our framework considers partial dynamic reconfiguration as a key dimension for the
compilation and hardware generation flow. Data dependent and data streaming applications
are typically partitioned in kernels that execute for different phases of the applications and
are mapped on a subset of resources. These can be statically partitioned or dynamically
allocated depending on runtime metrics of the application. A runtime manager, interfacing
with hardware knobs and monitoring hardware counters, allows triggering reconfiguration
exploiting online optimization algorithms.



A. Tumeo et al. 1:5

2.1 High-Level Compiler Frontend
Our infrastructure can accept input descriptions from high-level ML and domain-specific
frameworks describing data analysis workflows, translated by the frontend into a high-level
intermediate representation (IR). The frontend performs hardware/software partitioning and
architecture-independent optimizations on the high-level IR; subsequently, it generates a
low-level IR (LLVM IR) for hardware generation. SODA-OPT is the high-level compiler
frontend of the SO(DA)2 framework. Its role is to perform compiler passes to isolate and
optimize code on the input program, preparing it for hardware acceleration on several different
backends. To implement these functionalities, SODA-OPT leverages and extends the MLIR
framework.

MLIR allows building reusable, extensible, and modular compiler infrastructure by
defining dialects, i.e., self-contained IRs that respect MLIR’s meta-IR syntax. Each dialect
is designed to capture a specific abstraction, and multiple dialects can coexist in the same
MLIR IR. The process to progressively refine the IR and transition between dialects is called
lowering. Figure 2 shows the progressive lowering across several different MLIR dialects. The
following MLIR dialects are routinely used by many tools, including SODA-OPT: linalg
contains linear algebra operations on tensors or memory buffers, affine supports polyhedral
transformations, scf provides structured control flow operations such as for and while loops,
cf has lower-level control flow operations such as branches and switches, and the llvm dialect
represents LLVM IR operations in the MLIR IR. Several high-level programming frameworks
for various domains such as machine learning (TensorFlow, ONNX-MLIR, TORCH-MLIR),
scientific computing (NPCOMP), and general-purpose languages (e.g., the FLANG frontend
for Fortran) started leveraging MLIR to implement their own specific dialects, optimizations
passes, and lowering methods to translate their programs into existing MLIR dialects.

SODA-OPT introduces the soda dialect to partition input applications into an orchestrating
host program and custom hardware accelerators. SODA-OPT analysis and transformation
passes ingest MLIR inputs from high-level frameworks, identify key code regions, and outline
them into separate MLIR modules. Code regions that are selected for hardware acceleration
can undergo a high-level optimization pipeline with progressive lowerings through different
MLIR dialects (linalg → affine → scf → cf → llvm), or they can directly be translated
into an LLVM IR without high-level optimizations.

As previously highlighted, the framework also supports inputs in C through the Clang
LLVM fronted. In such a case, the code is partitioned into kernels through functions that can
be mapped in various way on the underlying reconfigurable substrate. The Clang frontend
also lowers to LLVM IR and, in such a case, optimizations obviously happen at the LLVM
level.

2.2 CGRA Architecture Template
The SO(DA)2 generic CGRA template is depicted in Fig. 3. It consists of modular tiles, a
NoC, and a set of scratchpad (SPM) data buffers. A tile contains an FU, a configuration
memory, a set of registers, and a crossbar switch; the template allows any subset of tiles
to connect to the SPM banks. All the components in the template architecture are highly
modular and parameterizable. For example, the flow can customize the size of the SPM, the
tile count, the interconnect topology (changing the number of ports of the crossbar switch),
the number of registers, and the control memory size. The type of FU is also customizable:
an FU could support multiple operations, in parallel, as a sequence or as a complex pattern
as shown in Fig. 3c. Fig. 3d-g show how the generic parameterizable architecture can be

PARMA-DITAM 2022



1:6 SO(DA)2: End-to-end Generation of Specialized Reconfigurable Architectures

M x N

.

.

.

Functional Unit

. . .
Regs Regs

Config
Mem

x -

+
<

.

.

.

An example of operation pattern 
supported by complex FU

. . .

Core

T T T
T T T
T T T

T T T T

T
T
T

T
T

…
…
………… …

D
at

a

…

D
at

a

D
at

a
…

D
at

a

Memory

DMA Unit 

Control 
Signals

DMA Ctrl Data

Accelerator 
Respond

C
G

R
A

 A
cc

el
er

at
or

(a) System. (b) Generic architecture template with the design space. (c) Generic tile architecture.

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile

Tile

Tile

Tile

…

…

…

……… …

…

D
at

a 
B

uf
fe

r

…

D
at

a 
B

uf
fe

r

…

…

SP
M

 D
at

a 
B

an
k

SP
M

 D
at

a 
B

an
k

SP
M

 D
at

a 
B

an
k

SP
M

 D
at

a 
B

an
k

SP
M

 D
at

a B
an

k

D
at

a 
Bu

ff
er

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

Data Buffer

SPM Data Bank

…

…

…

……… …

…
… SP

M
 D

at
a B

an
k

D
at

a 
Bu

ff
er

SPM Data Bank

Data Buffer

SP
M

 D
at

a B
an

k

D
at

a 
Bu

ff
er

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

SPM Data Bank

Data Buffer

SP
M

 D
at

a B
an

k

D
at

a 
Bu

ff
er

SPM Data Bank

Data Buffer

(d) Traditional CGRA. (e) TensorFlow-like systolic-array. (f) CCA-like accelerator. (g) MAERI-like accelerator.

A A A

B B

A

A

B

A

SP
M

 D
at

a B
an

k

D
at

a 
Bu

ff
er

B

A

SPM Data Bank

Data Buffer

SP
M

 D
at

a B
an

k

D
at

a 
Bu

ff
er

SPM Data Bank

Data Buffer

+ x

+ x

x x

D
at

a 
Bu

ff
er

SPM Data Bank

Data Buffer

SP
M

 D
at

a B
an

k

D
at

a 
Bu

ff
er

SPM Data Bank

SP
M

 D
at

a B
an

k

Data Buffer

+

Figure 3 Generic architecture template – The generic parameterizable template provides a design
space to be explored and eventually generates an optimized accelerator for the given workloads.
(d)-(g) show how the template is customized into different state-of-the-art spatial reconfigurable
accelerators.

customized into different state-of-the-art spatial reconfigurable accelerators, including a
TensorFlow-like systolic array (e), architectures (f) similar to the configurable compute
array (CCA) [6], and designs (g) like the Multiply-Accumulate Engine with Reconfigurable
Interconnect (MAERI) [14].

2.3 Loop Transformations
Figure 4 details the rest of the SO(DA)2 CGRA generation flow, which includes the compiler
optimizations, the DSE process that defines an architecture, and the actual modeling, testing
and evaluation of the resulting design.

Loop-level transformations are applied to expose appropriate parallelism that fits a specific
CGRA architecture. In SO(DA)2, we can apply affine transformations at the MLIR level
within SODA-OPT, or use LLVM loop transformations on the lowered LLVM IR when inputs
come from the Clang fronted.

Nested loops are flattened into a single loop to facilitate subsequent mapping and to
avoid the overhead of multiple invocations of the innermost loop. Loop blocking (also known
as loop tiling) constrains the size of the required data for each invocation of a kernel running
on the CGRA and facilitates overlapping computation and communication with the help of
double buffering. An appropriate loop blocking factor should be determined based on the
memory bandwidth and the data buffer size of the accelerator. Loop unrolling significantly
affects instruction-level parallelism. When the target CGRA has sufficient hardware resources
(e.g., tiles, crossbars, etc.), a larger loop unrolling factor can be used; a smaller loop unrolling
factor requires instead loop pipelining to recover parallelism between iterations.



A. Tumeo et al. 1:7

DFGsFlattened
Loops

Vectorized
Loops

Fused
DFGs

Optimized
CGRA

Control
Signal

Blocked
Loops

DFG 
Generation

DFG
Mapping

Loop
Flattening

Loop
Unrolling

Operation 
Fusion

Loop Transformation DFG Manipulation Accelerator-related mutation

KernelsKernelsKernels
Loop

Blocking
Design

Refining
Estimation

Model

Design Relaxing

Design Pruning

Message
Lib.

Mem
Lib.

Functional
Unit Lib.

Tile
Lib.

NoC
Lib.

CGRA
Lib.

Modeling CGRA

PyMTL3
Elaborate

Generation

Characterization

Simulation

Test 
Harness

CL
Model

FL
Model

RTL
Model

Param.
System

Unit Test

Integration 
Test

PBRT
Test

Verified
Perf. SVerilog

EDA
script

EDA
Toolflow

Timing,
Area, Power

Simu
-lator

Floor
-plan

Testing CGRA Evaluating CGRA

CGRA Parameters

Est. Perf/Area/
Power/Timing

Figure 4 The rest of the flow from the generation of the kernels to the OpenCGRA generator.
OpenCGRA is powered by PyMTL3 [10], PyOCN [23], Mflowgen [1], and Commercial ASIC tools.

.

2.4 Design Space Exploration

The LLVM IR produced by the frontend is optimized for execution on a CGRA architecture
through a series of compiler passes performing DSE of the software (e.g., loop blocking
and unrolling factors) and the hardware (e.g., amount and type of available resources)
parameters [25]. The CGRA architecture itself is refined during DSE starting from the
pre-designed template. In this phase, the framework extracts the data flow graph (DFG) of
each kernel, fuses common arithmetic operations, and maps the resulting DFGs onto the
CGRA.

We use a simulated annealing algorithm to perform DSE along all the previously listed
dimensions/parameters, starting from the simplest design choice (a single tile supporting
all types of operations). The heuristic then searches for the design points that meet a
customizable objective (e.g., performance, area-efficiency, power-efficiency, etc.).

The DSE is supported by estimation models for the performance, power, area, and timing
of the resulting designs. The overall execution time is obtained after mapping the DFG,
while the other metrics are computed by leveraging analytical regression models. Specifically,
the models are built by synthesizing the basic components of the architecture template
and collecting the corresponding statistics (e.g., area, power, and timing). The operating
frequency of the target design is dominated by the component with the longest critical path.

As DSE is time-sensitive, a fast DFG mapping algorithm is needed. Our framework
implements a heuristic mapping algorithm inspired by [11], where the objective is to statically
schedule operations to reach the lowest possible initiation interval (II). The algorithm
incrementally increases the II value until it finds a valid mapping between the DFG and the
available hardware resources. Data dependency between operations is represented as data
communication between FUs and routed using Dijkstra’s algorithm.

2.5 CGRA Generation

SO(DA)2 generates the target CGRA design through a generator built on top of PyMTL3 [10],
following the configuration found by the DSE. The CGRA Generator [26] enables automatic
modeling, testing, and evaluation of the target optimized CGRA.

PARMA-DITAM 2022



1:8 SO(DA)2: End-to-end Generation of Specialized Reconfigurable Architectures

Figure 5 Example of dynamic rebalancing – (a) A 2-layer GCN inference includes 6 kernels. (b)
Fixed partition for each stage targeting high throughput. (c) Dynamically reconfigure the CGRA
based on the execution status of each kernel, which rebalances the pipeline and improves the overall
throughput.

We support unit tests for all basic CGRA components, integration tests for the entire
CGRA design, and property-based random testing (PBRT). PBRT automatically shrinks
the design with minimal counterexamples that can trigger a bug, which helps users locate a
design issue and eases the debugging procedure.

CGRA simulation and Verilog generation are powered by the PyMTL3 infrastructure
(simulation and translation passes). The control signals generated from the mapping algorithm
can serve as the input for the simulation. Moreover, with the help of a set of logic synthesis
scripts, the generated synthesizable Verilog can be used to perform characterization in terms
of power, area, and timing.

2.6 Partial Dynamic Reconfiguration
Data analytics applications often deals with highly variable volumes of data, arriving at
variable velocities and sometimes organized in malleable data structures (e.g., graphs) with
varying degrees of sparsity. This may lead to high variability in execution time of the
application kernels. Current approaches for reconfigurable architectures either configure and
execute one kernel at a time or statically partition resources among multiple kernels. In both
cases, the latency of the application can vary from one execution of the pipeline of kernels to
the other, limiting the overall application throughput.

As previously highlighted, the SO(DA)2 approach considers reconfiguration as a key
component of the generation flow. To address these types of applications, we developed the
DynPaC [21] and the DRIPS [20] approaches. Both the designs include novel hardware and
software mechanisms that enable partial dynamic reconfiguration to rebalance the execution
of data-intensive, data-dependent kernels at runtime.

In both the designs, the compilation framework identifies the application kernels, outlines
them, and generates potential configurations with different assignments of operations to
intercommunicating tiles. These regularly shaped mappings are assigned to available tiles at



A. Tumeo et al. 1:9

getMin()

getMax() upgrade()

downgrade() getOverlap()

(0,3) (1,3) (2,2)

(2,3)(1,4)(0,4)

(0,3) (0,4)

(2,3)(2,2)

(1,4)(1,3)

(0,4) (0,3) (1,2)

(2,2)(1,3)(1,4)

(0,4)

(2,2)

(1,4)(1,3)(1,2)

(0,3)

Original placement Reshaped placement

(0,0)

(4,4)(4,0)

2 x 3
logical

placement

physical
placement

reshape() ✓ success

(0,4)

(1,4)(1,3)

(0,3)

(0,3) (0,4)

(1,4)(1,3)

Sub-optimal placement

reshape() ✗ fail

Figure 6 The upgrade(), downgrade(), and reshape() operations form the logical placement by
enabling appropriate interconnection between neighboring tiles.

runtime. The designs leverage a king mesh interconnect topology. In this topology, each tile
is interconnected with all the neighboring ones: such a rich interconnect allows remapping the
kernel configurations generated by the compiler even in irregular shapes while maintaining
the same communication patterns.

At runtime, the reconfiguration controller enables dynamic rebalancing by keeping track
of the execution of kernels and the status of allocated resources (Figure 5). The controller
identifies the fastest and slowest kernels by checking the execution delays. As shown in
Figure 6, the slowest kernel is subject to the upgrade operation, which selects a configuration
with a higher number of resources. The fastest kernel, instead, is downgraded, selecting a
configuration with a lower number of resources. If the selected configurations do not fit in
the available tiles, the controller performs reshaping, which adjusts the resources assigned to
the kernels to fit the new layout, while respecting the communication dependencies.

3 Case Study

We evaluate the SO(DA)2 approach by generating a CGRA design supporting partial dynamic
reconfiguration. We selected two applications with data-dependent execution time: a 2-
layer graph convolutional network (GCN) and a lower-upper (LU) decomposition on sparse
matrices. GCNs are an emerging class of machine learning models that operate on graphs.
We run inference on a pre-trained model implemented in PyTorch Geometric that predicts
protein function on the ENZYMES data set (600 graphs with 2 to 126 nodes). Our streaming
GCN is composed of 5 kernels (two aggregate operators, Combine, CombRelu, and Pooling).
LU decomposition is a key part of solvers for systems of linear equations, a critical element of
scientific simulation workflows. Our benchmark implements a streaming LU decomposition
composed of 6 kernels. Table 1 describes applications, datasets, and kernels.

Table 1 Representative data-dependent applications – Each kernel of an application runs on
a CGRAs with different numbers of tiles (4x4, 4x8, 6x8) and unrolling factors (1, 2, and 4). The
optimal speedup (OpSp) is obtained in each case with a different regular shaped partition (OpPa);
#opt represents the number of LLVM instructions in the loop body.

Application Dataset Kernel 4x4 CGRA, U. F. = 1 4x8 CGRA, U. F. = 2 6x8 CGRA, U. F. = 4
#opt OpSp OpPa #opt OpSp OpPa #opt OpSp OpPa

2-layer Graph
Convolutional

Network (GCN )

ENZYME 600 graphs
450 for training
150 for inference

Aggregate (×2) 27 6.8 2×4 54 13.5 2×7 99 19.8 5×5
Combine 26 6.5 2×3 52 13 3×5 95 23.8 5×5

CombRelu 30 7.5 3×3 60 15 3×6 111 18.5 4×5
Pooling 16 4 2×2 32 8 2×4 55 13.6 3×5

Synthesized
Lower–Upper (LU )

Decomposition
kernels

150 matrices (within
the size of 100×100)

selected from the
University of Florida

sparse matrix collection

Init 7 1.8 1×2 11 4 1×3 19 4.8 2×3
Decompose 87 12.4 3×4 167 20.9 5×5 327 23.4 6×6

Solver0 31 7.8 3×3 63 12.6 4×4 121 17.3 4×5
Solver1 33 8.3 3×3 67 13.4 4×4 129 18.4 4×5
Invert 65 13 4×4 127 15.9 5×5 251 19.3 6×6

Determinant 20 3.3 2×2 39 3.9 2×2 71 3.9 2×2

PARMA-DITAM 2022



1:10 SO(DA)2: End-to-end Generation of Specialized Reconfigurable Architectures

Figure 7 Normalized throughput and normalized standard deviation of different applications
running on our reconfigurable designs over the baseline – The time window has a size of 10 rounds
and the SPM memory is 32KB.

The table also shows that the optimal speedup, given a fixed unrolling factor, is achieved
by mapping the kernel on a subset of the tiles available on the CGRA design, rather than by
using the entire design. The reason is that loop-carried dependencies and the increase in
routing complexity do not provide a reduction in execution time by simply adding more tiles.
This indicates that sharing tiles among multiple kernels leads to better hardware utilization
and improved overall throughput compared with the sequential invocation of the kernels
on the CGRA, i.e., when each kernel is allocated the entire CGRA and the CGRA itself is
reconfigured as kernels are progressively executed.

3.1 Effects of Dynamic Rebalancing
Both GCN and LU are sensitive to variations in input data. Thus, the ability of the hardware
to dynamically adapt and redistribute resource during execution could provide significant
benefits. We compare a partial dynamic reconfigurable design to a statically partitioned
CGRA, keeping the number of tiles and the size of the SPM the same. We statically partition
resources among all kernels proportionally to their overall average execution times. The same
partition scheme is adopted as the initial configuration for the dynamically reconfigurable
design. Fig. 7 shows the normalized throughput and standard deviation of the two applications
running on the partial dynamic reconfigurable design. Dynamic adjustments are triggered
after the time windows has passed. We set the time-window to 10 executions of the whole
pipeline, which we found as a good intermediate point between the ability to. follow the input
trends and maintaining stable throughput. A smaller time window allows quickly adapting
to input variations, but if it becomes too small and bursts of data present similarities,
reconfiguration may be triggered by noise. In the plot, throughput and standard deviation
are calculated on the average per time window (i.e., 10 input samples) and normalized over
the baseline (i.e., the statically partitioned solution).

The overhead of the pipeline rebalancing process is also included in this evaluation.
Dynamic reconfiguration for modified kernels terminates in less than 1000 cycles and does not
stop execution. Moving the new control signals from the memory to the tiles to reconfigure
them for a new or modified kernel only takes dozen of nanoseconds with a typical direct
memory access (DMA) unit. Hence, rebalancing overhead is negligible with respect to the
execution time of the entire pipeline of kernels (e.g. 30k to 50k cycles for the GCN).

3.2 Architectural Exploration
As previously illustrated, the SO(DA)2 flow integrates an automated hardware generator
that allows to implement and evaluate designs with different hardware parameters. We
demonstrate this capability of our toolchain by exploring SPM sizes, scalability, and provide
the evaluation in terms of timing, area, and power consumption.



A. Tumeo et al. 1:11

(a) Throughput of different applications with vari-
ous sizes of SPM, normalized over the throughput
on a design with unlimited SPM size.

(b) Throughput of different applications running
with DRIPS partial dynamic reconfiguration with
various numbers of tiles, normalized over a statically
partitioned design with the same size (scalability
evaluation).

Figure 8 Exploration of hardware parameters: size of the SPM and number of tiles.

Figure 8a compares the throughput of the benchmark applications running on partially
reconfigurable designs with different SPM sizes. Data memory in CGRA represents a critical
resource, and its dimension are highly dependent from both the software and the hardware
optimization processes. We show the throughput of the different options normalized over the
throughput of a design with an SPM of unlimited size. We can see that if the size of the
SPM decreases by 4 times, the speedup reduces only about 2 times. This happens because
with less available memory the loop tiling and unrolling decisions taken during DSE will lead
to smaller kernels that have access to more resources than before.

Leveraging the automated generation flow, we can also evaluate the scalability of the
architecture (Figure 8b) in terms of number of tiles. We observe that the speedup decreases
on a 6×8 design: this happens because kernels do not expose enough parallelism to increase
the unrolling factor effectively, due to loop-carried dependencies, and are harder to schedule
on larger designs. Therefore, larger CGRAs fabrics are better utilized to accelerate large
applications composed of many kernels, or multiple small applications concurrently.

Finally, we evaluate the timing, area, and power consumption of a 5×5 CGRA design
using the Verilog code generated by SO(DA)2. We use Synopsys Design Compiler, Cadence
Innovus, and Synopsys PrimeTime PX with FreePDK45 to synthesize, place, route, and
estimate the power consumption of the design. We use CACTI3 to estimate the area and
power of the 32KB SPM. The entire chip area is 2.07mm2 and the operating frequency is
800MHz @ 45nm with an average power consumption of 564.8mW. The controller for partial
dynamic reconfiguration only takes 16.34% of the entire area.

4 Related Work

CGRAs have emerged as promising accelerators for data analysis thanks to their ability
to quickly adapt to different computational patterns while providing efficiency similar to
application-specific integrated circuits. Several research frameworks were designed to facilitate
the development of domain specific CGRAs.

KressArray Xplorer [9] explores the architectural design space (array size, function sets,
routing channels, etc) of the KressArray architecture, composed of reconfigurable data path
units. [5] provides more options (e.g., functional unit and topology) for DSE and is able

3 https://github.com/HewlettPackard/cacti

PARMA-DITAM 2022

https://github.com/HewlettPackard/cacti


1:12 SO(DA)2: End-to-end Generation of Specialized Reconfigurable Architectures

to generate synthesizable Verilog. Kim et al. propose a CGRA DSE flow optimized for
digital signal processing applications [12], which efficiently rearranges processing elements
(PEs) by reducing the array size, and identifies interconnection topologies that minimize
area and power. DSAGEN [27] explores the design space of configurable spatial accelerators
starting from a generic design and trying to refine it towards an optimized version. All these
approaches only perform DSE of architectural parameters, without considering software-level
optimizations (e.g., loop tiling, loop unrolling, operation fusion, etc.).

RADISH [28] iteratively searches and evaluates opportunities for combining PEs. The
spatial [13] compiler applies several optimizations (including loop optimizations) to efficiently
map applications onto FPGAs or onto the Plasticine [19] CGRA design. However, these
works do not provide an end-to-end framework, including compilation infrastructure, CGRA
generation (modeling, testing, and evaluation), and integrated DSE. Furthermore, none of
the aforementioned works addresses the challenges of streaming data analytics applications.

5 Development and Research Opportunities

While SO(DA)2 infrastructure has reached a level of maturity to allow the release of its
modular components in open-source, there are several opportunities to extend them for new
research.

We have demonstrated that some of our designs can scale to a relatively large number of
tiles [20, 21], allowing to instantiate multiple application kernels at the same time. We have
also shown approaches to scale our designs to multiple nodes composed of a core and a tightly
coupled CGRA [24]. However, there are further aspects to explore regarding the scalability
of designs. These include the evaluation of the impact of more advanced technology nodes,
larger die areas (such as those of current leading- edge accelerators, up to wafer-scale), and
chiplet-based approaches.

Given the ability to generate relatively small and efficient designs, we also expect that
our CGRA designs could be applicable for inclusion on logic dies of 3D-stacked memory
devices, which may be only manufacturable at conservative technology nodes.

From the architectural point of view we aim at evaluating impacts and tradeoffs of adding
more dynamic aspects to our statically scheduled design, leveraging the dataflow paradigm.
The modular infrastructure provided by our toolchain also allows integration of new types of
tiles, including solutions with new numeric formats (new standards, or custom) and highly
specialized tiles generated through our state-of-the art high-level synthesis tools [7, 16].

The integration with modular, interoperable, compiler-based tools allows simultaneous
exploration of software and hardware parameters. Our DSE engine mainly exploits simulated
annealing, but as the space to explore grows, we plan to explore more effective heuristic
search algorithms, including bioinspired heuristics such as evolutionary algorithms [3] and
ant colony optimization [8], and reinforcement learning.

Finally, while our designs already support runtime partial dynamic reconfiguration, there
are opportunities for monitoring other metrics beside performance (e.g., energy and real-time
deadlines), and integrate different online adaptation approaches.

6 Conclusion

This paper discusses SO(DA)2, an end-to-end framework for the generation and customization
of reconfigurable architectures for data analytics.



A. Tumeo et al. 1:13

The ability to quickly perform data analysis, including data filtering, data classification,
and data reduction, are critical for many application areas (scientific computing, internet of
things, finance, security, cybersecurity, and more). Additionally, efficient ways to perform
data analysis are needed to enable low latency reasoning and autonomous decision processes.
CGRAs, which exploit coarse grained FUs interconnected with a fast NoC, provide efficiency
as well as adaptability to complex data-dependent computational patterns. SO(DA)2 is a fully
open-source toolchain composed of a compiler infrastructure that interfaces with high-level
productive data science frameworks (SODA-Opt) and a CGRA generator (OpenCGRA),
providing users with the capability to quickly go from algorithmic description to hardware
implementation. The combination of the tools allows performing DSE and building specialized
CGRAs for the applications of interests. We further show how our toolchain considers
partial dynamic reconfiguration as a key part of the hardware/software optimization process,
demonstrating its applicability to perform runtime rebalancing of complex pipelines of data
streaming kernels.

References

1 Mflowgen. URL: https://github.com/cornell-brg/mflowgen.
2 E. Bethel and eds. Report of the doe workshop on management, analysis, and visualization

of experimental and observational data – the convergence of data and computing. Technical
report, Lawrence Berkeley National Laboratory, 2016.

3 Marco Branca, Lorenzo Camerini, Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato,
Donatella Sciuto, and Antonino Tumeo. Evolutionary algorithms for the mapping of pipelined
applications onto heterogeneous embedded systems. In Franz Rothlauf, editor, Genetic and
Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada,
July 8-12, 2009, pages 1435–1442. ACM, 2009.

4 Vito Giovanni Castellana, Marco Minutoli, Antonino Tumeo, Marco Lattuada, Pietro Fezzardi,
and Fabrizio Ferrandi. Software defined architectures for data analytics. In Toshiyuki Shibuya,
editor, Proceedings of the 24th Asia and South Pacific Design Automation Conference, ASPDAC
2019, Tokyo, Japan, January 21-24, 2019, pages 711–718. ACM, 2019.

5 Anupam Chattopadhyay, Xiaolin Chen, Harold Ishebabi, Rainer Leupers, Gerd Ascheid,
and Heinrich Meyr. High-level modelling and exploration of coarse-grained re-configurable
architectures. In Proceedings of the conference on Design, automation and test in Europe,
pages 1334–1339, 2008.

6 Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and Krisztian Flautner.
Application-specific processing on a general-purpose core via transparent instruction set
customization. In 37th international symposium on microarchitecture (MICRO-37’04), pages
30–40. IEEE, 2004.

7 Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito,
Marco Lattuada, Marco Minutoli, Christian Pilato, and Antonino Tumeo. Invited: Bambu:
an open-source research framework for the high-level synthesis of complex applications. In
DAC’ 21: 58th ACM/IEEE Design Automation Conference, pages 1327–1330, 2021.

8 Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Donatella Sciuto, and Antonino Tumeo.
Ant colony heuristic for mapping and scheduling tasks and communications on heterogeneous
embedded systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 29(6):911–924,
2010.

9 Reiner Hartenstein, Michael Herz, Thomas Hoffmann, and Ulrich Nageldinger. KressArray
Xplorer: A new CAD environment to optimize reconfigurable datapath array architectures. In
Proceedings 2000. Design Automation Conference.(IEEE Cat. No. 00CH37106), pages 163–168.
IEEE, 2000.

PARMA-DITAM 2022

https://github.com/cornell-brg/mflowgen


1:14 SO(DA)2: End-to-end Generation of Specialized Reconfigurable Architectures

10 Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten. PyMTL3: a Python
framework for open-source hardware modeling, generation, simulation, and verification. IEEE
Micro, 40(4):58–66, 2020.

11 Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh. Hycube: A
cgra with reconfigurable single-cycle multi-hop interconnect. In Proceedings of the 54th Annual
Design Automation Conference 2017, pages 1–6, 2017.

12 Yoonjin Kim, Rabi N Mahapatra, and Kiyoung Choi. Design space exploration for efficient
resource utilization in coarse-grained reconfigurable architecture. IEEE transactions on very
large scale integration (VLSI) systems, 18(10):1471–1482, 2009.

13 David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben
Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al. Spatial: A
language and compiler for application accelerators. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 296–311, 2018.

14 Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri: Enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects. ACM SIGPLAN Notices,
53(2):461–475, 2018.

15 Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: Scaling
compiler infrastructure for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–14. IEEE, 2021.

16 Marco Minutoli, Vito Giovanni Castellana, Cheng Tan, Joseph B. Manzano, Vinay Amatya,
Antonino Tumeo, David Brooks, and Gu-Yeon Wei. SODA: a new synthesis infrastructure
for agile hardware design of machine learning accelerators. In ICCAD ’20: IEEE/ACM
International Conference On Computer Aided Design, pages 98:1–98:7, 2020.

17 Hyunchul Park, Yongjun Park, and Scott Mahlke. Polymorphic pipeline array: a flexible
multicore accelerator with virtualized execution for mobile multimedia applications. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 370–380, 2009.

18 Artur Podobas, Kentaro Sano, and Satoshi Matsuoka. A survey on coarse-grained reconfigurable
architectures from a performance perspective. IEEE Access, 8:146719–146743, 2020.

19 Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan Hadjis,
Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Plasticine: A reconfigurable
architecture for parallel patterns. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), pages 389–402. IEEE, 2017.

20 Cheng Tan, Nicolas Bohm Agostini, Tong Geng, Chenghao Xie, Jiajia Li, Ang Li, Kevin Barker,
and Antonino Tumeo. DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on
CGRAs. In 2022 IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2022.

21 Cheng Tan, Tong Geng, Chenhao Xie, Nicolas Bohm Agostini, Jiajia Li, Ang Li, Kevin J.
Barker, and Antonino Tumeo. Dynpac: Coarse-grained, dynamic, and partially reconfigurable
array for streaming applications. In 39th IEEE International Conference on Computer Design,
ICCD 2021, Storrs, CT, USA, October 24-27, 2021, pages 33–40. IEEE, 2021.

22 Cheng Tan, Manupa Karunaratne, Tulika Mitra, and Li-Shiuan Peh. Stitch: Fusible heterogen-
eous accelerators enmeshed with many-core architecture for wearables. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA), pages 575–587. IEEE,
2018.

23 Cheng Tan, Yanghui Ou, Shunning Jiang, Peitian Pan, Christopher Torng, Shady Agwa, and
Christopher Batten. Pyocn: A unified framework for modeling, testing, and evaluating on-chip
networks. In 2019 IEEE 37th International Conference on Computer Design (ICCD), pages
437–445. IEEE, 2019.



A. Tumeo et al. 1:15

24 Cheng Tan, Chenhao Xie, Tong Geng, Andres Marquez, Antonino Tumeo, Kevin J Barker, and
Ang Li. Arena: Asynchronous reconfigurable accelerator ring to enable data-centric parallel
computing. IEEE Transactions on Parallel and Distributed Systems, 2021.

25 Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, et al. AURORA: Automated Refinement
of Coarse-Grained Reconfigurable Accelerators. In The 2021 Design, Automation & Test in
Europe Conference (DATE). IEEE, 2021.

26 Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino Tumeo. OpenCGRA: An
open-source unified framework for modeling, testing, and evaluating CGRAs. In 2020 IEEE
38th International Conference on Computer Design (ICCD), pages 381–388. IEEE, 2020.

27 Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony Nowatzki.
Dsagen: Synthesizing programmable spatial accelerators. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 268–281. IEEE, 2020.

28 Max Willsey, Vincent T Lee, Alvin Cheung, Rastislav Bodík, and Luis Ceze. Iterative search
for reconfigurable accelerator blocks with a compiler in the loop. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(3):407–418, 2018.

PARMA-DITAM 2022


	1 Introduction
	2 Framework Overview
	2.1 High-Level Compiler Frontend
	2.2 CGRA Architecture Template
	2.3 Loop Transformations
	2.4 Design Space Exploration
	2.5 CGRA Generation
	2.6 Partial Dynamic Reconfiguration

	3 Case Study
	3.1 Effects of Dynamic Rebalancing
	3.2 Architectural Exploration

	4 Related Work
	5 Development and Research Opportunities
	6 Conclusion

