
Multithread Accelerators on FPGAs:
A Dataflow-Based Approach
Francesco Ratto #

Università degli Studi di Cagliari, Italy

Stefano Esposito #

Università degli Studi di Cagliari, Italy

Carlo Sau #

Università degli Studi di Cagliari, Italy

Luigi Raffo # Ñ

Università degli Studi di Cagliari, Italy

Francesca Palumbo #Ñ

Università degli Studi di Sassari, Italy

Abstract
Multithreading is a well-known technique for general-purpose systems to deliver a substantial
performance gain, raising resource efficiency by exploiting underutilization periods. With the
increase of specialized hardware, resource efficiency became fundamental to master the introduced
overhead of such kind of devices. In this work, we propose a model-based approach for designing
specialized multithread hardware accelerators. This novel approach exploits dataflow models of
applications and tagged tokens to let the resulting hardware support concurrent threads without
the need to replicate the whole accelerator. Assessment is carried out over different versions of an
accelerator for a compute-intensive step of modern video coding algorithms, under several feeding
configurations. Results highlight that the proposed multithread accelerators achieve a valuable
tradeoff: saving computational resources with respect to replicated parallel single-thread accelerators,
while guaranteeing shorter waiting, response, and elaboration time than a unique single-thread
accelerator multiplexed in time.

2012 ACM Subject Classification Computer systems organization → Data flow architectures;
Computing methodologies → Concurrent algorithms; Hardware → Best practices for EDA

Keywords and phrases multithreading, dataflow, hardware acceleration, heterogeneous systems,
tagged dataflow

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2022.6

Funding Prof. Palumbo is grateful to the University of Sassari that supported her studies on this
topic through the “fondo di Ateneo per la ricerca 2020”.

1 Introduction

With the end of Moore’s Law and Dennard Scaling, high-level specification and hardware
specialization have become fundamental to keep on improving performance [10]. Specialized
hardware has already demonstrated its capability of generating performance and efficiency
gains exploiting data and instructions specialization, parallelism, local memories and reduced
overhead [7]. A popular solution for matching specialized-hardware performance with
the flexibility of general-purpose computing are Heterogeneous Systems-on-chip, where
multiple processors are integrated with reconfigurable logic and other components [4]. Here
computational-intense tasks can be delegated to specialized hardware to improve performance
and/or efficiency [9].

© Francesco Ratto, Stefano Esposito, Carlo Sau, Luigi Raffo, and Francesca Palumbo;
licensed under Creative Commons License CC-BY 4.0

13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2022).
Editors: Francesca Palumbo, João Bispo, and Stefano Cherubin; Article No. 6; pp. 6:1–6:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.ratto@unica.it
https://orcid.org/0000-0001-5756-5879
mailto:s.esposito1@studenti.unica.it
https://orcid.org/0000-0001-5945-7054
mailto:carlo.sau@unica.it
https://orcid.org/0000-0003-0436-2706
mailto:raffo@unica.it
https://www.unica.it/unica/it/ateneo_s07_ss01.page?contentId=SHD30764
https://orcid.org/0000-0001-9683-009X
mailto:fpalumbo@uniss.it
https://edcf.uniss.it/course/view.php?id=128
https://orcid.org/0000-0002-6155-1979
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


6:2 Multithread Accelerators on FPGAs: A Dataflow-Based Approach

In particular, dealing with multiple host sources, being them local cores of a multicore
cluster or remote processes from other connected devices, a single specialized hardware
accelerator multiplexed in time (Fig. 1a) can be a bottleneck, lowering down the whole
integrated-/connected-system performance. On the other hand, replicating the accelerator
for each host (Fig. 1c) that can potentially delegate processing could easily end up in a
huge waste of resources. The proposed solution is based on a single accelerator supporting
multiple, potentially concurrent, threads (Fig. 1b). This solution can provide halfway benefits,
delivering a tradeoff between performance and resource utilization.

Tagging tokens in dataflow models is exploited to differentiate threads flowing into the
datapath: the state of the different threads is stored into multiple dedicated sequential
resources, while combinational ones are shared among them. To allow the exchange of tagged
tokens, FIFO channels supporting out-of-order access have been designed. With the defined
design approach, a hardware accelerator implementing a video coding use case has been
developed. The proposed solution has been tested on a Xilinx Artix-7 device, demonstrating
that a significant performance gain can be obtained at the cost of a limited resource overhead.
This paper is focused on presenting the approach to design the accelerator in Fig. 1b, while
the integration with the host processor will come as future development.

The rest of this paper is organized as follows. An overview of the proposed solutions
for accelerators multithreading is provided in Sect. 2, followed by our approach, which is
described in Sect. 3. Then, experimental results are shown and discussed in Sect. 4, before
concluding in Sect. 5 with some final remarks.

CORE

CORE ACC

CORE

CORE

ACC

ACCCORE
ACC

CORE

Multi-thread acceleratorSingle-thread accelerator Replicated accelerators

Thread 1
Thread 0

Thread 1
Thread 0

Thread 1
Thread 0

b) Multi-thread acceleratora) Single-thread accelerator c) Replicated accelerators

Thread 1

Th
re

ad
 0

Th
re

ad
 0

Th
re

ad
 1

Thread 1
Th

re
ad

 0

(a) Single-thread.

CORE

CORE ACC

CORE

CORE

ACC

ACCCORE
ACC

CORE

Multi-thread acceleratorSingle-thread accelerator Replicated accelerators

Thread 1
Thread 0

Thread 1
Thread 0

Thread 1
Thread 0

b) Multi-thread acceleratora) Single-thread accelerator c) Replicated accelerators

Thread 1

Th
re

ad
 0

Th
re

ad
 0

Th
re

ad
 1

Thread 1

Th
re

ad
 0

(b) Multithread.

CORE

CORE ACC

CORE

CORE

ACC

ACCCORE
ACC

CORE

Multi-thread acceleratorSingle-thread accelerator Replicated accelerators

Thread 1
Thread 0

Thread 1
Thread 0

Thread 1
Thread 0

b) Multi-thread acceleratora) Single-thread accelerator c) Replicated accelerators

Thread 1

Th
re

ad
 0

Th
re

ad
 0

Th
re

ad
 1

Thread 1

Th
re

ad
 0

(c) Replicated.

Figure 1 Schematic of the three possible configurations described, and a sketch of their time
evolution when two threads have to be elaborated by the accelerator.

2 Related Work

Several solutions have been proposed for tackling the challenge of implementing multithread
hardware accelerators on reconfigurable fabric.

Dynamic reconfiguration based accelerators

Some of them [20, 21, 17] exploit the dynamic partial reconfiguration feature of modern
FPGAs. These works focus mainly on the interaction between the host processor and
the reconfigurable accelerators, and on the management of the system architecture for
loading partial bitstreams to configure the programmable logic. These approaches must be



F. Ratto, S. Esposito, C. Sau, L. Raffo, and F. Palumbo 6:3

integrated with other design flows for single-thread hardware accelerators to generate the
partial bitstream for each function to be accelerated. The main performance limitations are
the time and energy needed to load the partial bitstream for the successive task [20], or when
a configuration miss occurs [21, 17], i.e. there is no available slot on the programmable logic
already configured with the required bitstream. In our approach the hardware overhead for
dynamic partial reconfiguration is not required, and a model-based architecture is adopted
for developing the accelerator.

Software APIs based accelerators

Also High-level Synthesis has been exploited to design multithread accelerators [16, 6, 5].
These works focus on generating the RTL description of an accelerator starting from a
C-based description integrated with widely used multithread software APIs, like CUDA [16],
OpenCL [6], Pthread and OpenMP [5]. In these solutions a dedicated hardware accelerator is
generated for each coarse-grained thread, so the number of threads must be known at compile
time. The accelerators, which may execute the same or different functions, are synchronized
to respect the original software behavior. In our work the maximum number of threads must
be known at compile-time as well, but the resource overhead is mitigated through resource
sharing.

Computing resource sharing accelerators

Another solution based on HLS is Nymble [11]. In this case a unique multithread accelerator
is generated. The architecture of a Nyble accelerator is made up of a control unit, called
Dynamic Stage Controller (DSC), and a datapath. To support multithreading, the DSC is
extended with state replicas, while queues are inserted in the datapath for buffering pipelined
results of unstoppable blocks, e.g. multicycle memory accesses.

Avoiding compute-units replication by adding the required hardware for multithreading
support makes Nymble the most related to our work. However, there are some significant
differences in the input specification and in the resulting accelerator. Nymble takes as input
a sequential description of an application, while we use a dataflow one. Nymble generates an
accelerator made up of a control unit and a datapath, while our accelerators are made up of
a network of modules that exchange data through FIFO channels.

Advantages of Dataflow models

Modularity and parallelism make dataflows a widely adopted specification for both software [1]
and hardware [15, 12] design. They turn out to be particularly suitable for describing low-
power streaming applications to be accelerated [2, 8].

Other works have made use of token labeling and tagged-dataflow already. So far, however,
the use has been limited to software-oriented solutions, e.g., for high-level parallel language
definition [14], massive data processing [3] or loop optimization [18].

3 Approach and Architecture

In this section we present a novel model-based approach that, starting from the single-thread
dataflow specification of an application and without explicit need of data synchronization,
allows to design a corresponding multithread hardware accelerator through token labeling
(Section 3.1) .

PARMA-DITAM 2022



6:4 Multithread Accelerators on FPGAs: A Dataflow-Based Approach

3.1 Tagging tokens for multithreading
Dataflow models [13] are basically networks of processing elements, the actors, which ex-
change chunks of data, the tokens, through point-to-point buffered communication channels
managed in a First-In-First-Out (FIFO) manner. Execution of operations within actors, the
actions, is token mediated, meaning that it only depends on tokens/free-space availability
on incoming/outgoing FIFOs. Hardware accelerators can be derived from dataflows map-
ping each actor directly into a module, while FIFOs and tokens flow ensures the execution
correctness without the need of a centralized control.

A
B

C
D

Dataflow model of the 
application

B C

F
I
F
OF

I
F
O

Multithread hardware accelerator

A

Multhread HDL
FIFO and actors library

Tag Data

A

F
I
F
O

F
I
F
O

F
I
F
O

F
I
F
O

B

C

D

D
Thread 0 token
Thread 1 token

Figure 2 With the proposed approach, a dataflow model can be mapped into a multithread
hardware accelerator using multithread actors and FIFOs.

To support hardware multithreading we added a tag to each token. The tag indicates
which thread the token belongs to, and so it allows to differentiate tokens of different threads.
Once tokens are tagged, FIFOs and actors have to meet a set of requirements to implement
a multithread accelerator corresponding to the described application (see Fig. 2). These
requirements are necessary to ensure the correct flow of tokens:
1. A firing actor has to tag the output tokens with the same tag of the input ones (Fig. 3a).
2. The firing rules have to be adjusted so that only tokens belonging to the same thread are

able to fire the execution. Then, any actor must be enabled to fire only when matching
token(s) are available in its input channel(s) (Fig. 3b).

3. FIFOs must provide semi-out-of-order read, letting the reading actors choose among the
first token of each flow of execution. This feature is necessary to prevent deadlocks in
actors with multiple input ports, as depicted in Fig. 3c.

Before firing

Add

1

1
1

Add

1

1
1

Before firing

After firing

Requirement 1:
Tag output token

Add

1

1
1

Add

1

1
1

After firing

Add

1

1
1

Add

1

1
1

Cannot fire 

Can fire 

Requirement 2:
Matching tokens

Requirement 3:
Out-of-order read

(a) Requirement 1.

Before firing

Add

1

1
1

Add

1

1
1

Before firing

After firing

Requirement 1:
Tag output token

Add

1

1
1

Add

1

1
1

After firing

Add

1

1
1

Add

1

1
1

Cannot fire 

Can fire 

Requirement 2:
Matching tokens

Requirement 3:
Out-of-order read

(b) Requirement 2.

Before firing

Add

1

1
1

Add

1

1
1

Before firing

After firing

Requirement 1:
Tag output token

Add

1

1
1

Add

1

1
1

After firing

Add

1

1
1

Add

1

1
1

Cannot fire 

Can fire 

Requirement 2:
Matching tokens

Requirement 3:
Out-of-order read

(c) Requirement 3.

Figure 3 Representation of the three requirements using the Add actor, whose token rates are
indicated on the arrows. In each image, the status of input and output buffers is depicted using
different colors for tokens belonging to different threads.

In the rest of this section it is shown how the above requirements drive the design of
multithread interfaces (Section 3.2), FIFOs (Section 3.3) and actors (Section 3.4).



F. Ratto, S. Esposito, C. Sau, L. Raffo, and F. Palumbo 6:5

3.2 Multithread FIFO Interface
To support tagged-token exchange, the first challenge to be faced is the FIFO read/write
interface definition. In the proposed implementation, these interfaces are customizable using
two parameters:

DATA_WIDTH, the number of information bits in a token;
N_THREADS, the number of supported threads, which determines the number of bits of
the tag.

The write_interface and the read_interface are both made up of three corresponding
signals:

din and dout - They are used to transmit the content of a token (tag and data);
full and empty - They represent the status of the FIFO and are N_THREADS-bit wide,
as each bit represents the status on a specific thread (see Requirement 2);
write and read - write is 1-bit wide, because a FIFO can determine the token’s thread
from its tag. read, instead, is N_THREADS-bit wide to allow the reading actor, that
drives the signal, to choose which thread it wants to read from (see Requirement 3).

The resulting connection scheme between a FIFO and the surrounding actors is depicted in
Fig. 4.

FIFO

din

write

full

dout

read

empty

ACTOR
WRITER

ACTOR
READER

Write 
interface

Read 
interface

WIDTH WIDTH

1

N_THREADS

N_THREADS

N_THREADS

Figure 4 Schematic of the connection between a FIFO and two actors using the write_interface
and the read_interface. WIDTH is the sum of DATA_WIDTH and the tag width, which is
log2(N_T HREADS).

3.3 Multithread FIFO
To support tagged-dataflow computation, FIFOs must preserve the order of the tokens
within each thread and allow out-of-order reading among tokens of different threads (see
Requirement 3). Given these constraints, and adopting the interfaces described in Sect. 3.2,
we developed two possible implementations of a multi-thread FIFO.

3.3.1 Separated-memory FIFO
It uses a dedicated memory for each thread. As shown in Fig. 5, this FIFO is composed of a
bank of N_THREAD dual-ported RAMs, which allow simultaneous read/write operations.
These RAMs are managed by a Control Logic that drives also the empty and full signals.
Internally the Control Logic uses a set of registers, two for each thread, for storing pointers
to the next read and the next write location. To evaluate the status of the FIFO an additional
register for storing the latest performed operation is needed. Finally, there is a combinational
module, the Tag reader, which forwards the data field of the token, while the tag is used to
select the right memory to use by asserting its wr_en. When a token is read, Tag writer
selects the right memory and appends the tag to complete the output token. Indeed, the tag
is not stored but computed considering the read signal.

PARMA-DITAM 2022



6:6 Multithread Accelerators on FPGAs: A Dataflow-Based Approach

RAM
wr
add

r

wr
en

din

RAM
wr
add

r

din

wr
en

R
A
M

din

wr
addr

wr
en

dout

rd
addr

N_THREADS

Control
Logic

Ta
g 

re
ad

er Tag 
w

riter

Tag

din dout

full empty

write read

Figure 5 Schematic of the Separated-memory FIFO. In this FIFO each thread has a dedicated
RAM where tokens are stored by the Control Logic.

3.3.2 Address-memory FIFO
it uses a shared Data memory for storing tokens of all the threads and an Address memory
to keep track of the order. In this way the Data memory slots are thread agnostic and can be
used without any tag restriction, but a complex Control Logic and an additional memory
are needed, as shown in Fig. 6. The Control Logic uses more registers than in the previous
implementation: one for storing the next location to be written, one for storing the last
written location of the Address memory, one for each thread for storing the next location to
read, one status register for storing which locations are currently used, and another one for
each thread to count the contained tokens. These registers are necessary to manage the two
memories and to evaluate the status of the FIFO. Note that the FIFO would become full for
all the threads simultaneously, but still, the empty signal must be driven independently for
each thread. As before, Tag reader separates tag and data field, while Tag writer picks
up the requested data and appends the tag (not stored with the data).

Control
Logic

Ta
g 

re
ad

er Tag 
w

riter

Tag

din dout

full empty

write
read

DATA
MEM

din

wr
addr

wr
en

dout1

rd
addr1

dout2
dout3

rd
addr2

rd
addr3

ADDR
MEM

din
wr
addr
wr
en

dout

rd
addr2

Figure 6 Schematic of the Address-memory FIFO. In this FIFO all the tokens are stored in the
shared Data memory, managed by the Control Logic with the support of the Address memory.

3.4 Multithread Actor
To conclude this section, a hardware architecture for multithread dataflow actors is discussed.
Let’s start considering an actor having one input port and one output port. The proposed
structure (Fig. 7) is based on the state-action model of a dataflow actor. The set of possible
actions an actor is able to perform (Actions) and the logic to compute the next state (State
update) are mapped into combinational logic, which is used to elaborate tokens of all the
threads one at a time. Handling one token at a time, there is no need for hardware replication
as the number of supported threads increases. On the contrary, the sequential logic used for
storing the state must be replicated to keep track of the evolution of the system.



F. Ratto, S. Esposito, C. Sau, L. Raffo, and F. Palumbo 6:7

St
at

e 
se

le
ct State 2

State 1
State 0

Actions

State 
update

State 
select

Tag

N_THREADS

Firing 
rule

din

full

write

dout

empty

read

Figure 7 Schematic of an actor supporting tagged tokens. The combinational logic Firing rule
must consider only matching tokens. Combinational logic, Actions and State updates, is shared,
while the sequential one State is replicated for each supported thread.

The approach can be extended to actors with multiple ports without significant modifica-
tions. Any dataflow actor that has to read from two input ports to fire would wait until the
empty signal is deasserted in both ports. In a tagged-token actor, a multi-bit empty signal is
used to check the availability of a matching pair of tokens. The same occurs analogously for
more than two ports.

In the given model, an actor could be able to fire for different threads. Since simultaneous
multiple firing is not supported by actors, a priority scheme is needed. In this work, we
opted for a static priority assignment, to keep the logic as simple as possible and avoid an
excessive resource overhead.

4 Experimental Results

The proposed design approach allows a flexible time multiplexing of the computational
resources of an accelerator. In fact, each actor can carry out its computation according to
token availability while supporting multiple threads. In this section experimental results
considering a video coding use case (Sect. 4.1) are presented and discussed both in terms
resource utilization (Sect. 4.2) and execution analysis (Sect. 4.3).

4.1 Use Case and Setup
A video coding use case involving fractional pixel interpolation for the luma component, used
during motion estimation and compensation phases of the HEVC codec, has been used for
the experimental validation. The interpolator takes as input one image block and produces
as output the same image block shifted by fractional pixels positions. It is implemented
through two cascaded 8-tap digital filters, one for the horizontal direction and one for the
vertical direction. Two different architectures have been developed for the interpolator:

Baseline: the filter takes 1 pixel per cycle, performs 1 8-tap horizontal filtering, buffers
8 block lines, and performs 8-tap vertical filtering, producing 1 pixel per cycle on the
output side.
Matrix: the filter takes 8 pixels per cycle, performs 8 parallel 8-tap horizontal filterings,
buffers 8 block lines, and performs 8 parallel 8-tap vertical filterings, producing 8 pixels
per cycle on the output side.

The aim of the two versions is to assess the proposed multithread accelerator architectures
with applications presenting a different degree of parallelism.

PARMA-DITAM 2022



6:8 Multithread Accelerators on FPGAs: A Dataflow-Based Approach

Starting from these two versions of the interpolator, different evaluation set-ups have
been derived:

Single: a single-thread accelerator that can execute exclusively 1 thread before starting
the processing of the next one (Fig. 1a);
Tagged2, Tagged4: the proposed multithread accelerator that can support respectively
2 or 4 threads (Fig. 1b);
Parallel2, Parallel4: a multithread accelerator made replicating the Single one respec-
tively 2 or 4 times (Fig. 1c).

Resource utilization (Sect. 4.2) is gathered leveraging post-synthesis reports retrieved using
Vivado Xilinx, targeting an Artix-7 device (xc7a100t). Time performance (Sect. 4.3) are
assessed through behavioral SystemVerilog simulations using Vivado Simulator.

4.2 Resources Analysis

4.2.1 FIFOs

The two types of FIFO, introduced in Sect 3.3, are interchangeable without modifications
in the accelerator model nor in the actors. A design-space exploration varying the three
parameters of the FIFOs (N_THREADS, DEPTH and DATA_WIDTH) has been performed to evaluate
their resource utilization and, then, which of the two is preferable. Results are reported in
Fig. 8.

The Separated-memory FIFO utilizes fewer LUTs and FFs than the Address-memory
FIFO with any set of parameters, due to the simpler control logic. On the other hand,
the latter needs fewer LUTRAMs compared with the Separated-memory FIFO that has
N_THREADS · DEPTH slots, while the Address-memory FIFO has only DEPTH shared slots,
independently from the number of supported threads. Also, the FFs overhead in Address-
memory FIFO is independent of the DATA_WIDTH, but grows with DEPTH, as the size of most
control-logic registers is linearly proportional to it. In the end, to choose between the two
implementation one should consider design parameters as well as resource availability in the
target device.

WIDTH 8
WIDTH 32

WIDTH 8
WIDTH 32

WIDTH 8
WIDTH 32

0

100

200

300

400

500

2 
THREADS

4 
THREADS

2 
THREADS

4 
THREADS

2 
THREADS

4 
THREADS

2 
THREADS

4 
THREADS

DEPTH 8 DEPTH 64 DEPTH 8 DEPTH 64

FIFO SM FIFO AM

-33,3% -166,7% -20% -140%

-71,4% -242,9% -69,2% -238,5%
+54,8% +45,1%

+75,9%
+64,4%

+54,8% +45,1%
+75,9%

+64,4%+59,8%
+47,9%

+85,3%

+77,7%

+23,3%
-2,53%

+67,4%

+50,1%

LUT
FF
LUTRAM

Figure 8 Resource-utilization comparison between the Separted-memory FIFO (on the left) and
the Address-memory FIFO (on the right) varying design parameters: N_THREADS={2, 4}, DEPTH={8,
64}, DATA_WIDTH={8, 32}. On top of the right-side columns the percentage variation with respect to
the corresponding left-side column is reported.



F. Ratto, S. Esposito, C. Sau, L. Raffo, and F. Palumbo 6:9

4.2.2 Actors
In the proposed approach, what affects most actors’ resource overhead is the ratio between
combinational and sequential logic used to implement them. Three actors have been selected
to investigate this aspect:

Add: it performs the sum of two input tokens → combinational;
Mul: it performs the multiplication by a fixed stored coefficient → combinational/se-
quential;
Line-buffer: it stores and forwards one row of the input block → sequential.

From Fig. 9 it can be seen that the Add actor is purely combinational, as only LUTs are used
to synthesize it. In this case, the overhead to support multiple threads is limited. Moving to
the Mul actor, it can be noticed that the overhead to support multiple threads on FFs is, as
expected, equal to replicating the resource. However, on LUTRAMs there is no overhead at
all: the target technology plays an important role in that. Indeed, a LUTRAM of the target
board can implement a Single-Port 32x1-bit RAM and, in turn, store more data than it is
actually required. So, being the LUTRAM more efficiently utilized, the extension to support
multiple threads comes from free. On the line-buffer, which uses a larger memory for storing
a row of input, a larger overhead occurs, especially for LUTRAMs and FFs.

As a general rule, we can state that the more an actor has a combinational behavior,
the less the additional logic for supporting multithreading impacts on the overall resource
utilization.

27 11% 26%

160 3% 11%

100 5%
22%

0

32 0% 0%
56

43%

129%

0 1 100% 300% 1 100% 300%
0

20
40
60
80

100
120
140
160
180
200

1 t. 2 t. 4 t. 1 t. 2 t. 4 t. 1 t. 2 t. 4 t.
Add Mul Line-buffer

LUT
LUTRAM
FF

Figure 9 Resource utilization of Add, Mul, and Line-buffer actors supporting 1, 2, or 4 threads.
On the 1-thread columns the absolute value is reported, on the others the variation with respect to
that one.

4.2.3 Overall filters results
The architectures presented in Sect. 4.1 have been synthesized to evaluate the impact of the
proposed approach on resource utilization. Separated-memory FIFOs with minimal size have
been used. The minimal size that ensures reaching the end of the computation has been
evaluated through a SystemC simulation of the system generated with CAPH [19], which
automatically reports the maximal usage of each buffer.

As it can be seen from Fig. 10, the two versions, Baseline and Matrix, have a similar
trend in resource utilization when multithreading is supported. This trend is coherent with
what was observed on FIFOs and actors (Sect. 4.2.1 and 4.2.2). Moreover, DSP sharing can
be noticed in the Tagged accelerators, which uses the same amount of the Single one and
75% less than the Parallel4. As DSPs are merely used for computation, this is completely
consistent with the proposed approach. In any case, the Tagged accelerators proves to be
the promised tradeoff among Single and Parallel implementations of the same accelerator,
consistently with what is depicted in Fig. 1.

PARMA-DITAM 2022



6:10 Multithread Accelerators on FPGAs: A Dataflow-Based Approach

61 24 154 58
69 18 171

66 20 197 35
76 14 222 24

100 0
299 0

100 0
295 2

0 100 0
300

0 100 0
300

1

10

100

1000

10000

100000

Sing. Tag.2 Paral.2 Tag.4 Paral.4 Sing. Tag.2 Paral.2 Tag.4 Paral.4

BASELINE MATRIX

LUT LUTRAM FF DSP 48

Figure 10 Resource utilization of all the accelerators described in Sect. 4.1. Data are reported
on a logarithmic scale. On top of Tagged columns percentage variation referred to Single, and on
top of Parallel columns percentage variation referred to the corresponding Tagged one.

4.3 Execution Analysis
Supporting multiple threads to run concurrently on an accelerator brings many benefits in
terms of time performance. To evaluate them, the following time intervals are considered
(please notice the color coding that is then used in the dissertation below):

Waiting time: time between the request to access the accelerator and the first input
token read (yellow dotted segment);
Response time: time between the request to access the accelerator and the first output
token written (sum of yellow segment and blue vertically-stripped segment);
Elaboration time: time between the request to access the accelerator and the last
output token written (sum of the three segments).

Time performance is strictly correlated to the considered scenario. Anyhow, we tried to
select some significant cases to let the main pros and cons of the proposed solution come up.

4.3.1 Same-size
First, it is analyzed a case where the same computation, filtering a 16x16 image block,
has to be carried out for each thread under execution. What will affect most the final
results is the arrival time of requests to use the accelerator. A corner negative case for the
Tagged accelerator happens when these requests do not overlap over time, i.e. a new request
arrives when the previous thread has already ended the computation. Of course, in this
scenario a Tagged accelerator cannot have any gain on a Single one. Nevertheless, there is
not performance loss due to multithreading support, as they perform in the same way. In
addition, the Tagged accelerator is not outperformed by the Parallel one.

A corner positive case considers requests that arrive almost simultaneously (they differ by
one clock cycle). Going from Single to Tagged accelerators in Fig. 11, and observing average
values with 2 threads (line Avg 2), it can be noticed that the waiting time is almost nullified,
while the response time is reduced (up to -43% in the Matrix case).

On the Baseline accelerator with 2 threads (line Avg 2) the elaboration time grows in the
Tagged accelerator, since sharing the logic and guaranteeing quick access tend to balance
the elaboration time of each thread. But, if 4 concurrent threads are running (line Avg 4),
even the average elaboration time is reduced. On the Matrix accelerator greater advantages
both in response and elaboration time than on the Baseline filter can be noticed with 2 and



F. Ratto, S. Esposito, C. Sau, L. Raffo, and F. Palumbo 6:11

4 threads. Indeed, the pipeline composed of two filtering stages is not always completely
fulfilled in the Matrix implementation, due to the end of line steps. This allows the Tagged
accelerator to better use the available resources among different threads than the Single
accelerator.

With requests arriving almost simultaneously, Parallel-accelerators average results are
equal to Single Thread 0 line in Fig. 11, as each thread can run independently on a dedicated
accelerator. Parallel accelerators outperform Tagged ones, as the resource replication is fully
used.

The obtained behavior shows how the proposed multithread approach can successfully
exploit the full potential of the available resources, while a Single accelerator does not. It
should be noticed that real cases lie between the corner negative and positive cases here
described.

0 5 10 15 20 25

Avg 4 threads
Avg 2 threads

Thread 1
Thread 0

Avg 4 threads
Avg 2 threads

Thread 1
Thread 0

Ta
g

g
e

d
Si

n
g

le

BA
SE

Wait

Response

Elaboration

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Avg 4 threads

Avg 2 threads

Avg 4 threads
Avg 2 threads

Ta
g

.
Si

n
g

le

M
A

TR
IX -43% -1%

-57% -31%

-23% +30%

-3%-31% 

Figure 11 Time performance with same-size elaborations. Thread 0 and Thread 1 are the
evolution of the threads when 2 of them are elaborated. Avg 2 threads and Avg 4 threads are
the average time performance when respectively 2 or 4 threads are considered. Arrows show the
percentage variation in the Tagged accelerators compared with the corresponding Single ones.
Timescales are in us.

4.3.2 Different-size

When dealing with multiple threads, priority assignment may play a role. To investigate
this aspect, scenarios where different threads have to carry out different computations are
analyzed: elaborate 8x8 and 32x32 blocks when dealing with 2 threads; 8x8, 16x16, 32x32
and 64x64 blocks with 4 threads. The adopted scheduling policies for each configuration are
the following: in the Parallel accelerators each thread can be assigned to an accelerator, so no
scheduling is needed; in the Tagged accelerators each thread can be elaborated concurrently, a
higher priority is assigned to earlier requests; in the Single accelerators a first-come-first-served
scheduling policy is used.

In a corner negative case, with sequential requests to the accelerator, the behavior is
equivalent with what is described in Sect. 4.3.1, so the Tagged and Parallel accelerators give
no performance gain with respect to the Single ones. For the corner positive case, requests
arriving almost concurrently in increasing- or decreasing- size order are considered.

PARMA-DITAM 2022



6:12 Multithread Accelerators on FPGAs: A Dataflow-Based Approach

From Fig. 12, looking at the results of the Single accelerators , it can be noticed a
significant difference depending on which thread is elaborated first. Indeed, elaborating the
heavier thread first causes the average waiting, response and elaboration time to increase, as
lighter threads spend most of the time waiting for the heavier ones to end the computation.

On the other hand, in the Tagged accelerator the arrival order does not significantly
affects time performance. Threads flow concurrently through the accelerator, letting the
lighter ones end without waiting for the heavier ones. That happens because each actor has a
throughput of one token per clock cycle and there is not token accumulation in any buffer. In
the end, we obtained an average result which is in between the advantageous decreasing-size
cases (up to -92%) and disadvantageous increasing-size cases (up to +13%) of the Single
accelerator.

As before, results on the Matrix filter show a greater gain on the Tagged accelerators
that fully exploit available computational resources during underutilization periods.

0 10 20 30 40 50 60

Tagged
Single

Tagged
Single

Tagged
Single

Tagged

Single

In
c

D
e

c
In

c
D

e
c

A
vg

 4
A

vg
 2

BA
SE

LI
N

E

Wait
Response
Elaboration

0 2 4 6 8 10 12

Tagged

Single

Tagged

Single

Tagged

Single

Tagged

Single

In
c

D
e

c
In

c
D

e
c

A
vg

 4
A

vg
 2

M
A

TR
IX

-61% -33%

+13% +10%

-80% -47%

-11% +29%

-71% -38%

-27% -4%

-92% -60%

-61% -2%

Figure 12 Time performance with different-size elaborations. Avg 2 and Avg 4 are the average
time performance when 2 or 4 threads are elaborated in incrasing-(Inc) or decrasing-(Dec) size order.
Arrows show the percentage variation in the Tagged accelerators compared with the corresponding
Single ones. Timescales are in us.

5 Conclusion

Specialized hardware is crucial in modern electronics to meet performance requirements. In
this work we proposed a novel model-based approach for designing multithread hardware
accelerators. Following the dataflow paradigm, with additional tagged tokens, we designed a
general HDL architecture for actors and two architectures for FIFOs supporting multithread-
ing. Then, using this approach, we designed two complete architectures for a video codec
use case with different degrees of parallelism.

Experimental results showed a limited resource overhead, thanks to the possibility of
sharing combinational resources. Immediate access to the accelerator by multiple threads and
more effective resource exploitation let the proposed accelerator outperform a single-thread
accelerator in terms of waiting, response and elaboration times.



F. Ratto, S. Esposito, C. Sau, L. Raffo, and F. Palumbo 6:13

Future works will aim to investigate how other aspects of the approach, e.g. the adopted
model-of-computation (static or dynamic dataflow), and further details, e.g. the priority
management, impact on performance. As this work is mainly meant to demonstrate the
feasibility of the proposed approach, future work will also address the points that limit its
applicability. A complete host processor-accelerator environment, with proper Operating
System support is under development. Also, the design automation through the integration
within an HLS flow and a complete design methodology specification will be carried out to
make the method effective and available in practice. This will support tackling not only the
performance issues for this kind of specialized hardware, but also the design effort.

References
1 Shuvra S Bhattacharyya, Praveen K Murthy, and Edward A Lee. Software synthesis from

dataflow graphs, volume 360. Springer Science & Business Media, 1996.
2 Nicola Carta, Carlo Sau, Danilo Pani, Francesca Palumbo, and Luigi Raffo. A coarse-grained

reconfigurable approach for low-power spike sorting architectures. In 2013 6th International
IEEE/EMBS Conference on Neural Engineering (NER), pages 439–442. IEEE, 2013.

3 Angelos Charalambidis, Nikolaos Papaspyrou, and Panos Rondogiannis. Tagged dataflow: a
formal model for iterative map-reduce. In EDBT/ICDT Workshops, pages 29–36, 2014.

4 Yen-Kuang Chen and Sun-Yuan Kung. Trend and challenge on system-on-a-chip designs.
Journal of signal processing systems, 53(1):217–229, 2008.

5 Jongsok Choi, Stephen Brown, and Jason Anderson. From software threads to parallel hardware
in high-level synthesis for fpgas. In 2013 International Conference on Field-Programmable
Technology (FPT), pages 270–277. IEEE, 2013.

6 Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael Kinsner,
David Neto, Jason Wong, Peter Yiannacouras, and Deshanand P Singh. From opencl to
high-performance hardware on fpgas. In 22nd international conference on field programmable
logic and applications (FPL), pages 531–534. IEEE, 2012.

7 William J Dally, Yatish Turakhia, and Song Han. Domain-specific hardware accelerators.
Communications of the ACM, 63(7):48–57, 2020.

8 Tiziana Fanni, Lin Li, Timo Viitanen, Carlo Sau, Renjie Xie, Francesca Palumbo, Luigi Raffo,
Heikki Huttunen, Jarmo Takala, and Shuvra S Bhattacharyya. Hardware design methodology
using lightweight dataflow and its integration with low power techniques. Journal of Systems
Architecture, 78:15–29, 2017.

9 Rajesh K Gupta and Giovanni De Micheli. Hardware-software cosynthesis for digital systems.
IEEE Design & test of computers, 10(3):29–41, 1993.

10 John L Hennessy and David A Patterson. A new golden age for computer architecture.
Communications of the ACM, 62(2):48–60, 2019.

11 Jens Huthmann, Julian Oppermann, and Andreas Koch. Automatic high-level synthesis
of multi-threaded hardware accelerators. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–4. IEEE, 2014.

12 Jörn W Janneck, Ian D Miller, David B Parlour, Ghislain Roquier, Matthieu Wipliez, and
Mickaël Raulet. Synthesizing hardware from dataflow programs. Journal of Signal Processing
Systems, 63(2):241–249, 2011.

13 Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

14 Rishiyur S Nikhil et al. Executing a program on the mit tagged-token dataflow architecture.
IEEE Transactions on computers, 39(3):300–318, 1990.

15 Francesca Palumbo, Danilo Pani, Emanuele Manca, Luigi Raffo, Marco Mattavelli, and
Ghislain Roquier. RVC: A multi-decoder CAL composer tool. In Proceedings of the 2010
Conference on Design & Architectures for Signal & Image Processing, DASIP 2010, Edinburgh,
Scotland, UK, October 26-28, 2010, Electronic Chips & Systems design Initiative, ECSI, pages
144–151. IEEE, 2010. doi:10.1109/DASIP.2010.5706258.

PARMA-DITAM 2022

https://doi.org/10.1109/DASIP.2010.5706258


6:14 Multithread Accelerators on FPGAs: A Dataflow-Based Approach

16 Alexandros Papakonstantinou, Karthik Gururaj, John A Stratton, Deming Chen, Jason Cong,
and Wen-Mei W Hwu. Fcuda: Enabling efficient compilation of cuda kernels onto fpgas. In
2009 IEEE 7th Symposium on Application Specific Processors, pages 35–42. IEEE, 2009.

17 Alfonso Rodrıguez, Juan Valverde, and Eduardo de la Torre. Design of opencl-compatible
multithreaded hardware accelerators with dynamic support for embedded fpgas. In 2015
International Conference on ReConFigurable Computing and FPGAs (ReConFig), pages 1–7.
IEEE, 2015.

18 Leandro Santiago, Leandro AJ Marzulo, Brunno F Goldstein, Tiago AO Alves, and Felipe MG
França. Stack-tagged dataflow. In 2014 International Symposium on Computer Architecture
and High Performance Computing Workshop, pages 78–83. IEEE, 2014.

19 Jocelyn Serot, Francois Berry, and Sameer Ahmed. Implementing stream-processing appli-
cations on fpgas: A dsl-based approach. In 2011 21st International Conference on Field
Programmable Logic and Applications, pages 130–137. IEEE, 2011.

20 Harald Simmler, Lorne Levinson, and Reinhard Männer. Multitasking on fpga coprocessors.
In International Workshop on Field Programmable Logic and Applications, pages 121–130.
Springer, 2000.

21 Ying Wang, Xuegong Zhou, Lingli Wang, Jian Yan, Wayne Luk, Chenglian Peng, and Jiarong
Tong. Spread: A streaming-based partially reconfigurable architecture and programming
model. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(12):2179–2192,
2013.


	1 Introduction
	2 Related Work
	3 Approach and Architecture
	3.1 Tagging tokens for multithreading
	3.2 Multithread FIFO Interface
	3.3 Multithread FIFO
	3.3.1 Separated-memory FIFO
	3.3.2 Address-memory FIFO

	3.4 Multithread Actor

	4 Experimental Results
	4.1 Use Case and Setup
	4.2 Resources Analysis
	4.2.1 FIFOs
	4.2.2 Actors
	4.2.3 Overall filters results

	4.3 Execution Analysis
	4.3.1 Same-size
	4.3.2 Different-size


	5 Conclusion

