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Preface

The Annual Symposium on Combinatorial Pattern Matching (CPM) has by now over 30 years
of tradition and is considered to be the leading conference for the community working on
Stringology. The objective of the annual CPM meetings is to provide an international forum
for research in combinatorial pattern matching and related applications such as computational
biology, data compression and data mining, coding, information retrieval, natural language
processing, and pattern recognition.

This volume contains the papers presented at the 33rd Annual Symposium on Combinat-
orial Pattern Matching (CPM 2022) held on June 27–29, 2022 in Prague, Czech Republic (in
a hybrid mode due to the continuing Covid-19 pandemic). The conference program includes
26 contributed papers and three invited talks by Takehiro Ito (Tohoku University, Japan),
Jeffrey Shallit (University of Waterloo, Canada), and Sharma V. Thankachan (University
of Central Florida, USA). For the fourth time, CPM includes the “Highlights of CPM”
special session, for presenting the highlights of recent developments in combinatorial pattern
matching. In this fourth edition we invited Moses Ganardi (Max Planck Institute for Software
Systems (MPI-SWS), Germany) to present his ESA 2021 paper “Compression by Contracting
Straight-Line Programs” and Tomasz Kociumaka (University of California, Berkeley) to
present a FOCS 2021 paper by T. Kociumaka, E. Porat and T. Starikovskaya “Small space
and streaming pattern matching with k edits”.

The contributed papers were selected out of 43 submissions, corresponding to an accept-
ance ratio of about 60%. Each submission received at least three reviews. We thank the
members of the Program Committee and all the additional external subreviewers who are
listed below for their hard, invaluable, and collaborative effort that resulted in an excellent
scientific program.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since then taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario, Canada),
Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, Tel Aviv, Warsaw,
Qingdao, Pisa, Copenhagen, and Wrocław. From 1992 to the 2015 meeting, all proceedings
were published in the LNCS (Lecture Notes in Computer Science) series. Since 2016, the
CPM proceedings appear in the LIPIcs (Leibniz International Proceedings in Informatics)
series, as volume 54 (CPM 2016), 78 (CPM 2017), 105 (CPM 2018), 128 (CPM 2019), 161
(CPM 2020), and 191 (CPM 2021).

The entire submission and review process was carried out using the EasyChair conference
system. We thank the CPM Steering Committee for their support and advice.

Hideo Bannai and Jan Holub

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Programme Committee

Golnaz Badkobeh
Goldsmiths University of London, UK

Hideo Bannai (co-chair)
Tokyo Medical and Dental University, Japan

Frédérique Bassino
University Paris 13, France

Djamal Belazzougui
DTISI-CERIST, Algeria

Philip Bille
Technical University of Denmark, Denmark

Christina Boucher
University of Florida, USA

Martin Farach-Colton
Rutgers University, USA

Gabriele Fici
University of Palermo, Italy

Johannes Fischer
TU Dortmund University, Germany

Travis Gagie
Dalhousie University, Canada

Paweł Gawrychowski
University of Wrocław, Poland

Jan Holub (co-chair)
Czech Technical University in Prague, Czech
Republic

Wing-Kai Hon
National Tsing Hua University, Taiwan

Tomohiro I
Kyushu Institute of Technology, Japan

Shunsuke Inenaga
Kyushu University, Japan

Dominik Kempa
Stony Brook University, USA

Tomasz Kociumaka
University of California, Berkeley, USA

Dmitry Kosolobov
Ural Federal University, Russia

Gad M. Landau
University of Haifa, Israel

Veli Mäkinen
University of Helsinki, Finland

Florin Manea
Göttingen University, Germany

Sebastian Maneth
University of Bremen, Germany

Robert Mercas
Loughborough University, UK

Gonzalo Navarro
University of Chile, Chile

Kunsoo Park
Seoul National University, South Korea

Nadia Pisanti
University of Pisa, Italy

Solon Pissis
CWI, Netherlands

Jakub Radoszewski
University of Warsaw, Poland

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




External Subreviewers

Alexandru Popa

Bartlomiej Dudek

Bastien Cazaux

Cristian Urbina

Daniel Gabric

Daniel Gibney

Daniel Saad

Danny Hermelin

Debarati Das

Diego Diaz

Dominik Köppl

Dominik Peters

Estéban Gabory

Florian Kurpicz

Francisco Olivares

Garance Gourdel

Giulia Bernardini

Grigorios Loukides

Henning Fernau

Itai Boneh

Jeffrey Shallit

Juliusz Straszyński

Karol Pokorski

Laszlo Kozma

Luis M. S. Russo

Marcin Piątkowski

Mark Daniel Ward

Markus L. Schmid

Marvin Künnemann

Massimiliano Rossi

Massimo Equi

Michelle Sweering

Moses Ganardi

Nathan Wallheimer

Oleg Merkurev

Olivier Carton

Panagiotis Charalampopoulos

Paweł Parys

Samah Ghazawi

Sharma V. Thankachan

Shoshana Marcus

Sven Rahmann

Takuya Mieno

Thierry Lecroq

Tomasz Walen

Tuukka Norri

Veronica Guerrini

Vincent Jugé

Vít Jelínek

Wiktor Zuba

Wojciech Janczewski

Yuto Nakashima

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Authors of Selected Papers

Abhinav Nellore

Adiesha Liyanage

Alessio Conte

Avivit Levy

Ayumi Shinohara

B. Riva Shalom

Binhai Zhu

Costas Iliopoulos

Cyril Nicaud

Dana Fisman

Daniel Martin

Davaajav Jargalsaikhan

Davide Cenzato

Diego Diaz

Diptarama Hendrian

Eiji Miyano

Ely Porat

Esteban Gabory

Gera Weiss

Giulia Bernardini

Giulia Punzi

Golnaz Badkobeh

Gonzalo Navarro

Grigorios Loukides

Guillaume Fertin

Guohui Lin

Hiroki Arimura

Hirotaka Ono

Huiping Chen

Inge Li Gørtz

Jakub Radoszewski

Jesper Jansson

John Machacek

Jonas Ellert

Joshua Grogin

Juliusz Straszyński

Kouta Okabe

Kunihiko Sadakane

Laurent Bulteau

Leen Stougie

Mark Jones

Maxime Crochemore

Michelle Sweering

Nicola Rizzo

Oded Margalit

Olga Seminck

Oren Weimann

Panagiotis Charalampopoulos

Pawel Gawrychowski

Peng Zou

Philip Bille

Philippe Gambette

Przemysław Uznański

Rachel Ward

Raphael Clifford

Roberto Grossi

Rolf Niedermeier

Ryo Yoshinaka

Shay Mozes

Shunsuke Inenaga

Solon Pissis

Stéphane Vialette
33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xviii Authors of Selected Papers

Tadatoshi Utashima

Takashi Horiyama

Takeshi Kai

Takuya Mieno

Teresa Anna Steiner

Till Tantau

Tomasz Kociumaka

Tomasz Walen

Tooru Akagi

Tsubasa Oizumi

Veli Mäkinen

Vincent Jugé

Wenfeng Lai

Wiktor Zuba

Wojciech Rytter

Yuichi Asahiro

Yuma Arakawa

Yuto Nakashima

Zsuzsanna Liptak



Invitation to Combinatorial Reconfiguration
Takehiro Ito # Ñ

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Abstract
Combinatorial reconfiguration studies reachability and related questions over the solution space
formed by feasible solutions of an instance of a combinatorial search problem. For example, as the
solution space for the satisfiability problem, we may consider the subgraph of the hypercube
induced by the satisfying truth assignments of a given CNF formula. Then, the reachability problem
for satisfiability is the problem of asking whether two given satisfying truth assignments are
contained in the same connected component of the solution space. The study of reconfiguration
problems has motivation from a variety of fields such as puzzles, statistical physics, and industry. In
this decade, reconfiguration problems have been studied intensively for many central combinatorial
search problems, such as satisfiability, independent set and coloring, from the algorithmic
viewpoints. Many reconfiguration problems are PSPACE-complete in general, although several
efficiently solvable cases have been obtained. In this talk, I will give a broad introduction of
combinatorial reconfiguration.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Combinatorial reconfiguration, graph algorithm

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.1

Category Invited Talk

Funding Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP19K11814 and
JP20H05793, Japan.
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Using Automata and a Decision Procedure to
Prove Results in Pattern Matching
Jeffrey Shallit # Ñ

School of Computer Science, University of Waterloo, Canada

Abstract
The first-order theory of automatic sequences with addition is decidable, and this means that one
can often prove combinatorial properties of these sequences “automatically”, using the free software
Walnut written by Hamoon Mousavi. In this talk I will explain how this is done, using as an example
the measure of minimize size string attractor, introduced by Kempa and Prezza in 2018.

Using the logic-based approach, we can also prove more general properties of string attractors
for automatic sequences. This is joint work with Luke Schaeffer.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words; Theory of
computation → Regular languages; Theory of computation → Logic and verification

Keywords and phrases finite automata, decision procedure, automatic sequence, Thue-Morse se-
quence, Fibonacci word, string attractor

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.2

Category Invited Talk

Related Version Full Version: https://arxiv.org/abs/2012.06840

Funding Research supported by NSERC 2018-04118.

1 Introduction

Many famous sequences, such as the Thue-Morse sequence t = 01101001 · · · and the
Fibonacci infinite word f = 01001010 · · · appear as fundamental examples in combinatorial
pattern matching.

As just a few examples, I point to [5, 1, 12], where the Thue-Morse sequence makes an
appearance, and [13], where the Fibonacci infinite word is studied.

A fundamental result, essentially due to Büchi [4] and Bruyère et al. [3], tells us that
the first-order theory of such sequences, with addition, is decidable, and there is a relatively
simple decision procedure based on automata. This decision procedure has been implemented
in free software called Walnut, originally created by Hamoon Mousavi [11]. Therefore, in
many cases, we can prove properties of such sequences of interest to the CPM community
“automatically”, merely by stating the desired property in first-order logic, and invoking
Walnut.

Recently there has been interest in a certain measure of repetitivity, based on string
attractors, originally introduced by Kempa and Prezza [6], and studied further in [9, 7, 8, 10, 2].
A string attractor of a finite word w = w[0..n − 1] is a subset S ⊆ {0, 1, . . . , n − 1} such that
every nonempty factor f of w has an occurrence that touches at least one of the indices of S.
For example, {2, 3, 4} is a string attractor of minimum size for the French word entente.

In this talk I will introduce Walnut, and explain how to obtain results on string attractors
using it and the theory behind it. This is joint work with Luke Schaeffer [14].
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2:2 Using Automata and a Decision Procedure to Prove Results in Pattern Matching

2 Results

As an example of the kind of thing we can prove with Walnut, here is one theorem:

▶ Theorem 1. Let an denote the size of the smallest string attractor for the length-n prefix
of the Thue-Morse word t. Then

an =


1, if n = 1;
2, if 2 ≤ n ≤ 6;
3, if 7 ≤ n ≤ 14 or 17 ≤ n ≤ 24;
4, if n = 15, 16 or n ≥ 25.

More generally, we can prove

▶ Theorem 2. Let w be a k-automatic sequence. Either
every factor w[i..i + ℓ − 1] has a string attractor of constant size, and there exists a finite
automaton outputting the minimum size given i and ℓ, or
for all n ≥ 1, the minimum size string attractor for the length-n prefix w[0..n − 1] grows
as Θ(log n),

and we can decide which is the case for w.

For more about Walnut and its applications in combinatorics on words, see my forthcoming
book [15].
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Abstract
In the past two decades, we have witnessed the design of various compact data structures for
pattern matching over an indexed text [22]. Popular indexes like the FM-index [6], compressed suffix
arrays/trees [15, 26], the recent r-index [8, 23], etc., capture the key functionalities of classic suffix
arrays/trees [20, 28] in compact space. Mostly, they rely on the Burrows-Wheeler Transform (BWT)
and its associated operations [2]. However, compactly encoding some advanced suffix tree (ST)
variants, like parameterized ST [1, 19, 21], order-isomorphic/preserving ST [4], two-dimensional
ST [14, 16], etc. [24, 27]- collectively known as suffix trees with missing suffix links [3], has been
challenging. The previous techniques are not easily extendable because these variants do not hold
some structural properties of the standard ST that enable compression. However, some limited
progress has been made in these directions recently [11, 7, 5, 25, 10, 18, 17, 12, 13, 9]. This talk will
briefly survey them and highlight some interesting open problems.
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Abstract
Given two strings S and P , the Episode Matching problem is to find the shortest substring of S that
contains P as a subsequence. The best known upper bound for this problem is Õ(nm) by Das et al.
(1997), where n, m are the lengths of S and P , respectively. Although the problem is well studied
and has many applications in data mining, this bound has never been improved. In this paper we
show why this is the case by proving that no O((nm)1−ϵ) algorithm (even for binary strings) exists,
unless the Strong Exponential Time Hypothesis (SETH) is false.

We then consider the indexing version of the problem, where S is preprocessed into a data
structure for answering episode matching queries P . We show that for any τ , there is a data
structure using O(n +

(
n
τ

)k) space that answers episode matching queries for any P of length k in
O(k · τ · log log n) time. We complement this upper bound with an almost matching lower bound,
showing that any data structure that answers episode matching queries for patterns of length k in
time O(nδ), must use Ω(nk−kδ−o(1)) space, unless the Strong k-Set Disjointness Conjecture is false.
Finally, for the special case of k = 2, we present a faster construction of the data structure using
fast min-plus multiplication of bounded integer matrices.
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1 Introduction

A string P is a subsequence of a string S if P can be obtained by deleting characters from
S. Given two strings S and P , the Episode Matching problem [15] is to find the shortest
substring of S that contains P as a subsequence. In its indexing version, we are given S in
advance and we need to preprocess it into a data structure for answering episode matching
queries P .
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4:2 The Fine-Grained Complexity of Episode Matching

1.1 Episode matching
The Episode Matching problem was introduced by Das et al. [15] in 1997 as a simplified version
of the frequent episode discovery problem first studied by Mannila et al. [31]. Das et al. [15]
gave an upper bound of O(nm/ log n), where n is the length of S and m is the length of P .
Even though the problem and its variations have been thoroughly studied [6,11,13,14,29,30]
and have many applications in data mining [6, 7, 22, 26,31], the original O(nm/ log n) upper
bound has never been improved. In Section 3 we show why this is the case, by proving
a lower bound conditioned on the Strong Exponential Time Hypothesis (SETH) (actually,
on the Orthogonal Vectors Hypothesis (OV)). This continues a recent line of research on
quadratic lower bounds for string problems conditioned on SETH [1,3,8,9,12,16,17,19,27,33].
Our reduction is very simple and easily extends to binary alphabet and to unbalanced inputs.
Our result is summarized by the following theorem.

▶ Theorem 1. For any ϵ > 0, Episode Matching on binary strings of lengths n and m = nα

(for any fixed α ≤ 1) cannot be solved in O((mn)1−ϵ) time, unless SETH is false.

Related work. A related problem to episode matching is the Longest Common Subsequence
(LCS) problem. In that problem, the goal is to find for two strings S and P (of lengths n and
m respectively) the longest string that is a subsequence of both S and P . In 2015 Abboud
et al. [1] and Bringmann and Künnemann [12] independently proved quadratic lower bounds
for LCS conditioned on the SETH. That is, they showed that assuming SETH, there cannot
be an O(m2−ϵ) algorithm. However, there exists an Õ(n + m2) algorithm for LCS [24]. This
suggests that for unbalanced inputs where m ≪ n, episode matching is harder than LCS.

Further, the episode matching problem can be seen as a special case of the Approximate
String Matching problem. There, given strings S and P , the goal is to find the substring of S

minimizing some distance measure to P . If this distance measure is the number of deleted
characters from S, the problem is equivalent to episode matching. Another version of the
approximate string matching problem uses edit distance. Backurs and Indyk [9] implicitly
give a quadratic lower bound conditioned on SETH for that version as a stepping stone for
achieving a lower bound for edit distance, using an alphabet of size seven. This bound does
not however directly translate to our problem, and uses a more complicated construction
and a larger alphabet.

To avoid misunderstandings, we note that in the paper by Mannila et al. [31], an
episode was more generally defined as a collection of events that occur together. The string
formulation by Das et al. [15] is a simplification of this original definition, thus, the terms
episode and episode matching have been used to name different concepts in the literature,
see e.g. [4, 21,23,32,34]. We only consider the string formulation by Das et al. [15].

1.2 Episode Matching Indexing
Limited by the above lower bound for episode matching, a natural question to ask is what
bounds we can get if we allow preprocessing. Alas, in terms of time complexity, preprocessing
does not help. Namely, our reduction is such that each of the two sets in the Orthogonal
Vectors instance (see Definition 6) is encoded independently into one of the two strings in
the episode matching instance. This implies (see e.g. [18]) that episode matching cannot
be solved in O((mn)1−ϵ) time even if we are allowed polynomial time to preprocess one of
the two strings in advance. In other words, polynomial time preprocessing is not enough to
guarantee subquadratic time queries. In fact, this holds even when one of the strings is fixed
(cf. [2, Section 1.1.2]). We therefore focus on time-space tradeoffs.
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Formally, given a string S and an integer k, the episode matching indexing problem
asks to construct a compact data structure that can quickly report the episode matching
of any pattern P of length k (i.e. compute the length of the shortest substring of S that
contains P as a subsequence). Apostolico and Atallah [6] gave a linear (optimal) space data
structure whose query time may be prohibitive (depending on the number of distinct minimal
substrings containing a prefix of the pattern as a subsequence). In Section 4.1 we present a
time-space tradeoff with faster query time:

▶ Theorem 2. For any τ , there is a data structure using space O(n +
(

n
τ

)k) that answers
Episode Matching queries in time O(k · τ · log log n).

In Section 4.2 we give the following almost matching lower bound, conditioned on the
k-Set Disjointness Conjecture:

▶ Theorem 3. For any δ ∈ [0, 1/2], a data structure that answers Episode Matching queries
in time O(nδ) must use Ω(nk−kδ−o(1)) space, unless the Strong k-Set Disjointness Conjecture
is false.

Finally, in Section 4.3 we consider the decision version of the case k = 2. That is, we are
given some threshold t, and a query (a, b) need only report whether S contains a substring
of length at most t that starts with the letter a and ends with the letter b. In this setting,
there is a simple O(1)-query time O(σ2)-space data structure for episode matching (where σ

is the size of the alphabet): precompute and store the σ × σ matrix D with the answers to
every possible query. Naively, we can compute D in time min{Õ(nσ + σ2), O(nt + σ2)}. We
show that for various values of σ and t, we can compute the matrix D faster by using fast
min-plus matrix multiplication of bounded integer matrices [37]:

▶ Theorem 4. For a given threshold t, we can compute the matrix D in time
O(σ1/2+ω/2 (

n
t

)1/2 √
n) if σ < n

t , and
O(σ2 (

n
t

)ω/2−1 √
n) if σ ≥ n

t .

In particular, using the current matrix multiplication exponent ω < 2.4 [5], if σ < n
t then

we get O(σ1.7nt−1/2) (which is smaller than min(nσ, nt) for any t > σ1.4), and if σ ≥ n
t we

get O(σ2.2√
n) (which is smaller than O(nσ) for any σ < n0.416).

2 Preliminaries

In this section we will review some basic string notation and important hypotheses.
A string S of length n is a sequence S[0] · · · S[n − 1] of n characters drawn from an

alphabet Σ of size |Σ| = σ. A string S[i · · · j] = S[i] · · · S[j] for 0 ≤ i < j < n is called a
substring of S. For two strings X and Y we denote their concatenation as X · Y or XY .

The Strong Exponential Time Hypothesis is a popular conjecture about the hardness of
the k-SAT problem, postulated by Impagliazzo and Paturi [25]. The k-SAT problem is to
decide whether there exists a satisfying assignment for a Boolean formula on n variables and
clauses of width at most k.

▶ Conjecture 5 (The Strong Exponential Time Hypothesis). There is no ϵ > 0 for which
k-SAT can be solved in time O(2(1−ϵ)n) for all k ≥ 3.

Instead of reducing directly from k-SAT, we reduce from the Orthogonal Vectors problem,
and use two conjectures about the hardness of Orthogonal Vectors which are implied by
SETH for d = ω(log n).

CPM 2022



4:4 The Fine-Grained Complexity of Episode Matching

▶ Definition 6 (Orthogonal Vectors Problem (OV)). Given two sets A = {a1, . . . , an} and
B = {b1, . . . , bm} of d-dimensional binary vectors, decide whether there is an orthogonal pair
of vectors ai ∈ A and bj ∈ B.

The two conjectures consider the cases of equal set size and unbalances set size, respectively.
They roughly state that any algorithm solving OV that has a polynomial dependency on the
dimension (denoted poly(d)), cannot achieve a significantly better asymptotic running time
than the product of the two set sizes.

▶ Conjecture 7 (Orthogonal Vectors Hypothesis (OVH)). For |A| = |B| = n, there is no ϵ > 0
for which OV can be solved in time O(n2−ϵpoly(d)).

▶ Conjecture 8 (Unbalanced Orthogonal Vectors Hypothesis (UOVH)). Let 0 < α ≤ 1, |A| = n

and |B| = m. There is no ϵ > 0 for which OV restricted to m = Θ(nα) and d = no(1) can be
solved in time O((nm)1−ϵ).

It is known that SETH implies both OVH and UOVH [12, 36]. Finally, we consider the
following conjecture of Goldstein et al. [20] on the k-Set Disjointness problem:

▶ Definition 9 (k-Set Disjointness Problem). Preprocess m sets S1, S2, . . . , Sm of total size∑m
i=1 |Si| = N drawn from a universe U such that given (i1, i2, . . . , ik) we can quickly decide

whether
⋂k

j=1 Sij = ∅.

▶ Conjecture 10 (Strong k-Set Disjointness Conjecture). Any data structure for the k-Set
Disjointness Problem that answers queries in time T must use Ω̃

(
Nk/T k

)
space.

3 Episode Matching

In this section we prove Theorem 1. We first prove it for an alphabet of size four, and then
for a binary alphabet.

3.1 Alphabet of Size Four

We show how to reduce an instance of OV to Episode Matching with alphabet {0, 1, x, $}.
Let A = {a1, . . . , an} and B = {b1, . . . , bm} be two sets of vectors in {0, 1}d. Without loss of
generality, we assume m ≤ n. We show how to construct a string P of length 2dm + 1 and a
string S of length 3d(4n + 1) + 1 such that there is a pair of orthogonal vectors ai ∈ A and
bj ∈ B if and only if there is a substring of S of length at most 3d(2m − 1) + 1 that contains
P as a subsequence.

Constructing P . We construct P from the set B in the following way. For every b ∈ B, we
define p(b) as the string of length 2d − 1 obtained by inserting an x symbol between each
consecutive entries of b. That is,

p(b) = b[0] x b[1] x · · · x b[d]

Then, P is a string of length 2dm + 1 defined as the concatenation:

P = $ p(b1) $ p(b2) $ · · · $ p(bm) $
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Constructing S. We construct S from the set A. For a vector a in {0, 1}d, we define for
each entry in a a string of length 2, called a coordinate gadget:

s(a[i]) = 01 if a[i] = 0,

s(a[i]) = 00 if a[i] = 1.

Then, s(a) is a string of length 3d − 1 defined as the concatenation:

s(a) = s(a[0]) x s(a[1]) x · · · x s(a[d])

For example, the vector a = 10001 defines the string s(a) = 00x01x01x01x00. Let z be
the d−dimensional zero vector, and so s(z) = 01x01x . . . x01. Then, S consists of $ s(z) $
followed by two copies of the concatenation of s(ai) $ s(z) $ for 1 ≤ i ≤ n. That is:

S = $s(z)$s(a1)$s(z)$s(a2)$ · · · $s(z)$s(an)$s(z)$s(a1)$s(z)$s(a2)$ · · · $s(z)$s(an)$s(z)$

We call a substring of S of the form “s(a) $” or “s(z) $” a block. A block has length 3d.
The string S contains 2n blocks for the elements of A, plus 2n + 1 blocks for the separating
s(z), thus 4n + 1 blocks in total. There is an extra $ at the start of the string. Thus,
|S| = 3d(4n + 1) + 1 = Θ(dn).

Correctness. For two strings Y and X, an alignment L of Y in X is a sequence 0 ≤ j0 <

· · · < j|Y |−1 ≤ |X| − 1 such that Y [ℓ] = X[jℓ] for every 0 ≤ ℓ ≤ |Y | − 1. We say Y [ℓ] is
aligned to X[jℓ] and that L spans the substring X[j0 · · · j|Y |−1]. Clearly, Y is a subsequence
of X if and only if there exists an alignment of Y in X.

The following Lemma establishes the translation of orthogonality in our reduction.

▶ Lemma 11. For two vectors a and b of dimension d, the string p(b) is a subsequence of
s(a) if and only if b and a are orthogonal.

Proof. If a and b are orthogonal, then for every b[i] = 1 we have that a[i] = 0 and therefore
s(a[i]) = 01. Thus we can align b[i] to the 1 in s(a[i]). If b[i] = 0, we can align b[i] to the
first character in s(a[i]). We can therefore define an alignment where we align every b[i] to
one of the characters in s(a[i]), and align the ith x in p(b) to the ith x in s(a). Therefore
p(b) is a subsequence of s(a).

On the other hand, if p(b) is a subsequence of s(a), then since p(b) and s(a) both contain
exactly d − 1 x’s, any alignment of p(b) in s(a) must align the ith x in p(b) to the ith x in
s(a). Thus, each b[i] must be aligned to a character in s(a[i]). If b[i] = 1, we can align it
with a character in s(a[i]) only if a[i] = 0. Thus, if p(b) is a subsequence, then for every
b[i] = 1, we must have a[i] = 0. Therefore a and b are orthogonal. ◀

Lemma 11 implies that any p(b) is a subsequence of s(z). This immediately yields a substring
of S of length 3d(2m − 1) + 1 which contains P as a subsequence: If we align P with m

consecutive occurrences of s(z), the resulting substring contains a $ at the beginning, m

blocks of the form “s(z) $” and m − 1 blocks of the form “s(a) $”. Next, we show that if
there is no pair of orthogonal vectors, then there is no shorter substring of S that contains P

as a subsequence.

▷ Claim 12. If there exist no a ∈ A and b ∈ B which are orthogonal, then there exists no
substring of S of length < 3d(2m − 1) + 1 which contains P as a subsequence.
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· · · $ s(z) $ s(ai−1) $ s(z) $ s(ai) $ s(z) $ s(ai+1) $ s(z) $ · · ·
· · · $ p(bj−2) $ p(bj−1) $ p(bj) $ p(bj+1) $ p(bj+2) $ · · ·

Figure 1 The alignment of P and S as described in the proof of Claim 13.

Proof. Consider an alignment L of P in S. If for every b ∈ B the substring p(b) is aligned to
a string of the form s(z), then L spans a string of length at least 3d(2m − 1) + 1. Consider
now the case where there exists a b ∈ B such that p(b) is not fully aligned to a string of the
form s(z). By Lemma 11, since there is no a ∈ A such that a and b are orthogonal, there is
no s(a) such that p(b) is fully aligned within s(a). Since no s(a) or s(z) contain a $, this
means that the alignment of the string $ p(b) $ spans a string containing either a substring
of the form $ s(a) $ s(z) $ or a substring of the form $ s(z) $ s(a) $. Then the alignment L′

defined by aligning $ p(b) $ to the $ s(z) $ in that substring, and everything else as in L,
spans a substring in S no longer than the substring spanned by L. Repeating this for each
p(b) that is not aligned to s(z) gives an alignment where every p(b) is aligned to some s(z),
and which spans a substring in S no longer than the substring spanned by L. Since this
substring contains at least m copies of $ s(z) $, it has length at least 3d(2m − 1) + 1. ◁

Next, we show how to align P in S to yield a shorter substring, if there does exist an
orthogonal pair.

▷ Claim 13. If there exist a ∈ A and b ∈ B which are orthogonal, then there is a substring
of S of length < 3d(2m − 1) + 1 that contains P as a subsequence.

Proof. Assume ai and bj are orthogonal and j ≤ i. We align p(bj) to the first copy of
s(ai), and align p(bj+1) · · · p(bm) to the next m − j copies of s(z) to the right of s(ai), and
p(b1) · · · (bj−1) to the previous j − 1 copies of s(z) to the left of s(ai). See Figure 1. This is
possible since j ≤ i. Let T denote the resulting substring of S.

Case 1: j = 1 (or j = m). In this case, the substring of T spans 2m − 2 blocks: It starts
(ends) with “$ s(ai) $”, and then includes the m − 1 following (preceeding) s(z) blocks.
Between any two s(z) blocks, there is another block corresponding to some aℓ ∈ A. Thus
in total, the length of T is 3d(2m − 2) + 1 < 3d(2m − 1) + 1.
Case 2: 1 < j < m. The substring T starts and ends with $ s(z) $, and we align to m − 1
of the s(z) blocks and to s(ai) which is somewhere inbetween these. Thus, T includes
m − 1 + m − 2 = 2m − 3 blocks, and the length of T is 3d(2m − 3) + 1 < 3d(2m − 1) + 1.

If j > i, we align p(bj) to the second copy of s(ai), and again align p(bj+1) · · · p(bm) to the
next m − j copies of s(z) to the right of s(ai), and p(b1) · · · p(bj−1) to the preceding j − 1
copies of s(z) to the left of s(ai). This is possible since m − j ≤ n − i. The rest follows
analogously. ◁

Analysis. When m = Θ(n), we have that |P | = Θ(|S|) = Θ(nd), which means that an
O((|S||P |)1−ϵ) algorithm for Episode Matching implies an O(n2−2ϵd2−2ϵ) algorithm for OV,
contradicting OVH.

When m = Θ(nα) for some 0 < α < 1, and d = no(1), the length of P is 2dm+1 = mno(1),
and the length of S is 3d(4n + 1) + 1 = n1+o(1). This means that an O((|S||P |)1−ϵ) algorithm
for Episode Matching implies an (nm)1−ϵno(1) = O((nm)1−ϵ′) algorithm for OV for any
ϵ′ < ϵ, contradicting UOVH.

This proves Theorem 1 for alphabet size at least 4.
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3.2 Binary Alphabet
We now prove Theorem 1 for a binary alphabet. We will use almost the same reduction as
before, but replace x and $ with binary gadgets.

Inner separator gadget. Instead of the separating symbol x, we define an inner separator
gadget of the form 0d. The strings p(b) and s(a) are defined as before, except that each x is
substituted with the inner separator gadget 0d, and we add an extra inner separator gadget
at the beginning and end of the string. That is,

p(b) = 0d b[1] 0d b[2] 0d · · · 0d b[d] 0d

and

s(a) = 0d s(a[1]) 0d s(a[2]) 0d · · · 0d s(a[d]) 0d .

Outer separator gadget. Instead of the separating symbol $, we define an outer separator
gadget of the form 1d+1. The strings P and S are defined as before, with the new versions of
p(b), s(a) and s(z), and every $ substituted with the outer separator gadget 1d+1.

For any b ∈ B, the length of the string p(b) is (d + 2)d, since it contains d + 1 inner
separator gadgets of length d. The string P consists of m + 1 outer separator gadgets, each
of length d + 1, and m substrings p(b) each of length (d + 2)d. The length of P is therefore
(d + 2)dm + (m + 1)(d + 1) = Θ(md2).

For any a ∈ A, the length of the string s(a) is (d + 3)d. Analogously to before, we define a
block as a substring of the form s(a) 1d+1. The length of a block is (d+3)d+(d+1) = d2+4d+1.
The string S consists of 4n+1 blocks (as before), each of length d2 +4d+1 and an extra outer
separator gadget at the beginning. The length of S is therefore (d2 +4d+1)(4n+1)+d+1 =
Θ(nd2).

Now, if we align every p(b) to a copy of s(z), as in the proof in Section 3.1, we need
2m − 1 blocks. Thus, we get a substring of length w = (d2 + 4d + 1)(2m − 1) + d + 1. Our
reduction will again depend on the fact that if there are no orthogonal vectors, we cannot
do much better than that. Namely, we next prove that if there is no pair of orthogonal
vectors then there is no substring of S of length < w − 2d that contains P as a subsequence
(Claim 15), and that if there is a pair of orthogonal vectors then there is a substring of S of
length ≤ w − (d2 + 4d + 1) that contains P as a subsequence (Claim 16).

Algorithm. We run the assumed blackbox algorithm for Episode Matching on S and P . If
the algorithm outputs a substring of length at least w − 2d, we conclude that there are no
orthogonal vectors. If it outputs some string of a shorter length, then there are.

Correctness. The correctness proof follows along the same lines as in the alphabet four
case. We begin by proving an equivalent version of Lemma 11:

▶ Lemma 14. For two vectors a and b of dimension d, the string p(b) is a subsequence of
s(a) if and only if b and a are orthogonal.

Proof. If a and b are orthogonal, then by the same arguments as before, p(b) is a subsequence
of s(a). Otherwise, a and b are not orthogonal, so there exists an i such that b[i] = a[i] = 1.
Assume for the sake of contradiction that p(b) is a subsequence of s(a). Then we must align
the 1 corresponding to b[i] with some coordinate gadget s(a[j]) = 01 and j ̸= i. There are
two cases depending on whether i > j or j > i.
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Case 1: i > j. Note that to the left of the 1 corresponding to b[i], there are (i − 1) + di

characters in p(b), and to the left of the 1 in s(a[j]) = 01 there are 2(j − 1) + dj + 1
characters in s(a): namely j − 1 coordinate gadgets, j inner separator gadgets, and the 0
in s(a[j]). But this means that the prefix of p(b) up to b[i] is longer than the prefix of
s(a) up to the 1 in s(a[j]), since

(i − 1) + id ≥ j + (j + 1)d = j + d + jd > 2(j − 1) + jd + 1,

where the last inequality holds because j < d. Thus we cannot have aligned the prefix
of p(b) up to b[i] to the prefix of s(a) up to the 1 in s(a[j]), contradicting that p(b) is a
subsequence of s(a).
Case 2: j > i. Note that to the right of the 1 corresponding to b[i], there are d − i + (d −
i + 1)d = (d − i)(d + 1) + d characters in p(b), and to the right of the 1 in s(a[j]) = 01
there are 2(d − j) + (d − j + 1)d = (d − j)(d + 2) + d characters in s(a). But this means
that the suffix of p(b) to the right of b[i] is longer than the suffix of s(a) to the right of
s(a[j]), since

(d − i)(d + 1) + d ≥ (d − j + 1)(d + 1) + d = (d − j)(d + 1) + 2d + 1 > (d − j)(d + 2) + d.

This means that we cannot have aligned the suffix of p(b) to the right of b[i] to the suffix
of s(a) to the right of s(a[j]), contradicting that p(b) is a subsequence of s(a). ◀

Next we prove that if there are no vectors a ∈ A and b ∈ B which are orthogonal, then we
cannot do much better than aligning p(b1), . . . , p(bm) to m consecutive copies of s(z). Recall
that we defined the length of that alignment as w.

▷ Claim 15. If there exist no a ∈ A and b ∈ B which are orthogonal, then there exists no
substring of S of length < w − 2d that contains P as a subsequence.

Proof. Assume an alignment such that p(bi) is not aligned to s(z). Since there are no
orthogonal vectors, there is no s(a) such that p(bi) is aligned in s(a). Further, since p(bi)
starts and ends with a 0, its alignment cannot start or end within an outer separator gadget.
Thus, the alignment of p(bi) spans a string either containing
1. a non-empty suffix of some s(aj), followed by 1d+1, followed by a non-empty prefix of

s(z) or
2. a non-empty suffix of s(z), followed by 1d+1, followed by a non-empty prefix of some

s(aj).
Consider case 1. Since s(z) only contains d 1s, at least one character in the outer separator
gadget following p(bi) cannot be aligned in s(z). Thus, at least one 1 cannot be aligned
before the 1d+1 following s(z). If i < m, then the inner separator gadget at the beginning of
p(bi+1) cannot be aligned before the beginning of a new block. Thus, the alignment defined
by aligning p(bi) 1d+1 to s(z) 1d+1 spans a string no longer than the original alignment.
If i = m, the same alignment spans a string at most d longer than the original alignment.
Analogously, for case 2, we align 1d+1 p(bi) to 1d+1 s(z). The alignment spans a string of the
same length as the original alignment, or at most d longer if i = 1. Repeating this step for
any p(bi) which is not aligned to some s(z), we get an alignment where every p(bi) is aligned
to some s(z), and which spans a string at most 2d longer than the original alignment. This
concludes the proof. ◁

▷ Claim 16. If there exist a and b which are orthogonal, then there is a substring of S of
length ≤ w − (d2 + 4d + 1) (i.e. it is shorter than w by at least a block’s length) that contains
P as a subsequence.

Proof. The proof is analogous to that of Claim 13. ◁
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Analysis. The length of S is now Θ(nd2), and the length of P is Θ(md2). The contradictions
to OVH and UOVH are constructed analogously to the alphabet four case. This proves
Theorem 1 restricted to binary alphabet.

4 Episode Matching Indexing

In this section we consider the indexing version of episode matching: Given the string S and
an integer k, construct a data structure that can quickly report the episode matching of any
pattern P of length k.

4.1 Upper bound
We now prove Theorem 2. We call letters that appear more than τ times frequent letters. Note
that there are at most n

τ frequent letters. For every k-tuple of frequent letters, we precompute
and store the answer in a table. The size of this table is therefore

(
n
τ

)k. Additionally, for
each letter in the alphabet, we store a predecessor data structure containing all positions
in S where the letter appears. Using a linear-space predecessor data structure such as
y-fast-trie [35], this requires an additional O(n) space (every position in S appears in exactly
one predecessor structure) and answers predecessor/successor queries in O(log log n) time.

To answer a query, given a pattern P of length k, if every letter in P is frequent, we simply
return the precomputed answer from the table. Otherwise, suppose P [j] is a non-frequent
letter. For each position i s.t S[i] = P [j], we find the minimal substring of S that contains P

and aligns P [j] to S[i] (eventually we return the smallest substring found). To do this, we
start from location i and use successor queries to find P [j + 1], P [j + 2], . . . , P [m − 1] and
predecessor queries to find P [j − 1], P [j − 2], . . . , P [0]. Since there are at most τ positions in
S that contain P [j], this takes overall O(τ · k log log n) time.

4.2 Lower bound
We now prove Theorem 3. The proof is similar to the ones in [28] and [10].

Recall that in the k-Set Disjointness problem, given sets S1, . . . , Sm of total size N over
a universe U , we want a data structure that given (i1, . . . , ik) reports whether

⋂k
j=1 Sij

= ∅.
As in [10], we can reduce k-Set Disjointness to O(log N) instances of k-Set Disjointness (each
of size O(N)) with the property that every element in U appears in the same number of sets
(call this number f). We next show a reduction from such an instance to episode matching
indexing.

Define for each set Si a unique letter αi. For each distinct element e ∈ U define a block
consisting of the letters αi corresponding to the sets Si that contain e, sorted by i. We then
append all such blocks in an arbitrary order and separate each two blocks by an extra block
of the form $f (where $ is an extra letter not corresponding to any set). The resulting string
S is of length 2N − f = O(N). We preprocess S into a data structure for episode matching.
To answer a query (i1, . . . , ik) (we assume w.l.o.g that i1 < i2 < · · · < ik), we query the
data structure for P = αi1αi2 · · · αik

. If the output is larger than f , we answer that the
sets are disjoint, otherwise we answer that they are not. The correctness is simple: If there
is an element e that appears in all sets Si1 , . . . , Sik

, then e’s block contains αi1αi2 · · · αik

(and since we sorted the elements, they will appear in the right order). If on the other hand
the sets are disjoint, then there is no block containing all letters, so the smallest substring
containing all letters must include at least one $f block (and is thus longer than f).
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The total space for all the O(log N) instances is therefore O(log N · sepisode(N)) and the
runtime is O(log N · tepisode(N)), where sepisode(n) and tepisode(n) are the space and query
time for a data structure for episode Matching indexing. To prove Theorem 3, assume for
contradiction that tepisode(n) = O(nδ) and sepisode(n) = O(nk−kδ−ϵ). Then the space for
solving k-Set Disjointness is O(Nk−kδ−ϵ log N) = O(Nk−kδ−ϵ′), for any 0 < ϵ′ < ϵ, and the
time is O(N δ log N) = O(N δ+ϵ′′), for arbitrarily small ϵ′′ > 0. Setting ϵ′′ < ϵ′/k, we obtain
a contradiction to Conjecture 10.

4.3 The special case of k = 2
We now prove Theorem 4. Recall that, given the string S, our goal is to compute the binary
matrix D where D[a, b] = 1 if and only if S contains a substring of length at most t that
starts with the letter a and ends with the letter b. Naively, we can compute D in time
min{Õ(nσ + σ2), O(nt + σ2)}. To get Õ(nσ + σ2), we construct a predecessor data structure
for each letter, containing the occurrences of this letter in S. Then, for each position in S

we find the succeeding occurrence of each letter in the alphabet, using the corresponding
predecessor data structure. Whenever we find a pair of letters (a, b) at distance at most t,
we set D[a, b] to 1. To get O(nt + σ2), for each position in S we scan t entries forward and
update D as we go. In the remainder of this section, we will show how to compute D faster
using min-plus multiplication of bounded integer matrices:

▶ Lemma 17 ([37]). Given two n × n matrices A and B, where A has entries in
{−M, . . . , M} ∪ {∞} and B is arbitrary, we can compute their min-plus product C = A ⊙ B

(defined as C[i, j] = mink(A[i, k] + B[k, j])) in Õ(
√

Mn(3+ω)/2) time.

First, we divide the string S into blocks B1, B2, . . . , Bn/t, each of length t (except maybe
the last). Let δfirst(a, j) (resp. δlast(a, j)) be the distance from the beginning (resp. end) of
the jth block to the first (resp. last) a in that block, and ∞ if the block has no a. Note
that ab is a subsequence of a length t substring of S if and only if one of the following two
conditions holds:

Condition 1: There is a j such that δfirst(a, j) + δlast(b, j) ≤ t. To check this condition, we
check if (M1 ⊙ M2)[a, b] ≤ t where M1 is the σ × n/t matrix with M1[a, j] = δfirst(a, j),
and M2 is the n/t × σ matrix with M2[j, b] = δlast(b, j).

Condition 2: There is a j such that δlast(a, j)+δfirst(b, j +1) ≤ t. To check this condition, we
check if (M3 ⊙M4)[a, b] ≤ t where M3 is the σ×(n/t−1) matrix with M3[a, j] = δlast(a, j),
and M4 is the (n/t − 1) × σ matrix with M4[j, b] = δfirst(b, j + 1).

By the above discussion, it only remains to compute the products M1 ⊙ M2 and M3 ⊙ M4
(as then each entry of D can be found in constant time). We focus on M1 ⊙ M2 (the other is
symmetric). Observe that the entries of M1 and M2 are integers bounded by t. Therefore,
we can hope to use Lemma 17 (with M = t) to multiply them. However, in Lemma 17 the
matrices are square while our matrices are rectangular. To deal with this, we break the
matrices into rectangular submatrices according to the value of σ.

If σ < n/t. We split M1 into M1,1 . . . , M1, n
tσ

, each consisting of σ consecutive columns.
We split M2 into M2,1 . . . , M2, n

tσ
, each consisting of σ consecutive rows. Note that

(M1 ⊙ M2)[a, b] = mink=1,..., n
tσ

(M1,k ⊙ M2,k)[a, b]. We can thus compute M1 ⊙ M2 by
computing n

tσ min-plus products of σ × σ matrices, and setting each entry in M1 ⊙ M2
to be the minimum of the corresponding entries in the n

tσ output matrices. Using Lemma
17, this takes time O( n

tσ (σ2 + σ(3+ω)/2√
t)) = O(σ1/2+ω/2 (

n
t

)1/2 √
n).
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If σ ≥ n/t. We split M1 into M1,1 . . . , M1, tσ
n

, each consisting of n/t consecutive rows. We
split M2 into M2,1 . . . , M2, tσ

n
, each consisting of n/t consecutive columns. We compute

M1⊙M2 by computing
(

tσ
n

)2 min-plus products of n/t×n/t matrices M1,i⊙M2,j for every
i, j. Using Lemma 17, this takes time O(

(
tσ
n

)2 ·
(

n
t

)(3+ω)/2 √
t) = O(σ2 (

n
t

)ω/2−1 √
n).

This proves Theorem 4.
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Mechanical Proving with Walnut for Squares and
Cubes in Partial Words
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Abstract
Walnut is a software that can prove theorems in combinatorics on words about automatic sequences.
We are able to apply this software to both prove new results as well as reprove some old results on
avoiding squares and cubes in partial words. We also define the notion of an antisquare in a partial
word and begin the study of binary partial words which contain only a fixed number of distinct
squares and antisquares.
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1 Introduction

Our focus is on repetitions in partial words and the use of the software called Walnut1 [15]
to give automated proofs in situations where automatic sequences can be used. Partial words
are generalizations of usual words that make use of an additional “wildcard” character which
matches all other characters. Walnut has been used to give alternative proofs of previously
known results and has also been used to produce new theorems in combinatorics on words
(see e.g., [16]). To our knowledge this work is the first use of Walnut with partial words and
contains proofs of both new results as well as previously known ones. We will define the
notions which are most central to our work, but familiarity with some standard terms and
ideas from combinatorics on words [13] is assumed.

A square or cube is a word of the form xx or xxx, respectively, for a nonempty word x.
For example, (010)2 = 010010 is a square and (110)3 = 110110110 is a cube. We will consider
words that avoid squares as well as those which avoid cubes. This means words that do
not have a factor (i.e., contiguous substring) which is a square or cube respectively. A
squarefree word is a word which avoids squares and a cubefree word is a word which avoid
cubes. A morphism is a map ψ : Σ∗ → ∆∗ between words over two alphabets such that
ψ(xy) = ψ(x)ψ(y) for all x, y ∈ Σ∗. We will make frequent use of morphisms to find words
with a desired property.

A classic problem in combinatorics on words is constructing words avoiding squares,
cubes, and other types of repetitions. Thue [20, 2] was able to construct an infinite cubefree
binary word and an infinite squarefree ternary word each of which can be obtained as the
fixed point of a morphism. We let

tm = 01101001100101101001011001101001 · · ·

denote the Thue-Morse word which is the fixed point of the morphism 0 7→ 01 and 1 7→ 10
which begins with 0. We also let

vtm = 012021012102012021020121 · · ·

1 We have used the version of Walnut available at https://github.com/DistortedLight/Walnut.
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denote the fixed point of the morphism 0 7→ 012, 1 7→ 02, and 2 7→ 1 which is sometimes
called the ternary Thue-Morse word (see e.g., [19]) or a variant of the Thue-Morse word
(see [5]). It is the case that tm is cubefree and vtm is squarefree. We will make use of both
of these words in constructions later.

A partial word is a word which can use a special character ⋄ which is called a hole or
wildcard. For partial words a square or cube is a partial word w which is contained in a
square u = xx or a cube u = xxx respectively in the sense the w[i] = u[i] whenever w[i] ̸= ⋄.
In this case we write w ⊂ u. The order of the square or cube is the length of x, which we
denote by |x| . For example, 01101 ⋄ 011 is a partial word which is a cube of order 3 since it
is contained in (011)3 = 011011011. It is clear the presence of holes makes it more difficult
to avoid squares or cubes. All words are partial words with no holes. When we wish to
emphasize that a (partial) word has no holes we will refer to the word as a full word.

2 Squares, antisquares, cubes, and first-order logic

In this section we define what squares, antisquares, and cubes are in terms of first-order logic.
This allows for seamless use with Walnut and highlights some differences between full words
and partial words. All variables we quantify over are taken from the nonnegative integers
unless specified otherwise.

For a full word w containing a square means

∃j∃(n > 0)∀i, (i < n) =⇒ (w[j + i] = w[j + n+ i])

while for a partial word it means

∃j∃(n > 0)∀i, (i < n) =⇒ ((w[j + i] = w[j + n+ i]) ∨ (w[j + i] = ⋄) ∨ (w[j + n+ i] = ⋄))

both of which can be expressed in first-order logic. We see that the expression for partial
words contains more clauses. A value of n for which the above is made true is called the
order of the square.

A partial word w contains an antisquare provided

∃j∃(n > 0)∀i, (i < n) =⇒ ((w[j + i] ̸= w[j + n+ i]) ∧ (w[j + i] ̸= ⋄) ∧ (w[j + n+ i] ̸= ⋄))

which is consistent with what was considered for binary words in [17] and differs from
the notion of an anti-power studied in [10]. We believe this to be a natural definition of
an antisquare for a partial word given how it comes from negating the latter half of the
implication in the logical expression for a square. We see that replacing a letter with a hole
can create a square, and dually it can remove the presence of an antisquare. A factor which
is an antisquare cannot contain any holes, but since we will consider squares and antisquares
together in partial words holes will still play a crucial role.
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Table 1 Logical operators and corresponding symbols in Walnut.

∀ ∃ ∧ ∨ ¬ =⇒
A E & | ˜ =>

Lastly, we say a partial word w contains a cube if

∃j∃(n > 0)∀i, (i < n) =⇒
((

(w[j + i] = w[j + n+ i]) ∧ (w[j + n+ i] = w[j + 2n+ i])
)

∨
(
(w[j + i] = ⋄) ∧ (w[j + n+ i] = w[j + 2n+ i])

)
∨

(
(w[j + n+ i] = ⋄) ∧ (w[j + i] = w[j + 2n+ i])

)
∨

(
(w[j + 2n+ i] = ⋄) ∧ (w[j + i] = w[j + n+ i])

)
∨

(
(w[j + i] = ⋄) ∧ (w[j + n+ i] = ⋄)

)
∨

(
(w[j + i] = ⋄) ∧ (w[j + 2n+ i] = ⋄)

)
∨

(
(w[j + n+ i] = ⋄) ∧ (w[j + 2n+ i] = ⋄)

))
where we find a more drastic difference compared to what would be the first-order logic for
the case of full words. We note that in the logical expression for a cube we would only need

(w[j + i] = w[j + n+ i]) ∧ (w[j + n+ i] = w[j + 2n+ i])

in the latter half of the implication for full words. One could continue to consider higher
powers, and the number of additional clauses in the partial word version will continue to
grow. We will restrict our attention to squares and cubes.

The proofs of many results in this paper are given by short snippets of Walnut code. We
now explain a few aspects of Walnut to make these snippets more readable to a reader that
does not have prior experience with this language. A more detailed explanation can be found
in [15]. One can see in Table 1 how usual logical symbols are represented in Walnut. Our
alphabet will always be {0, 1, . . . , N} for some N , and we will use N + 1 to denote the hole
⋄. For example, the binary partial word 0 ⋄ 10 in Walnut would be 0210. The symbol @ is
use in denote a character of the alphabet as oppose of an integer which can be the index of a
position in a word. So, W[2] = @3 is used to say that the character 3 is in position 2 of the
word W . Lastly, morphisms can be defined intuitively where 0->010 encodes 0 7→ 010 the
image of 0.

3 Results

3.1 Avoiding long squares in binary
In this subsection we look at binary partial words which only contain short squares and
antisquares. It is not possible to completely avoid squares since any binary (full) word of
length at least 4 will contain some square. Let the morphism h : {0, 1, 2} → {0, 1, ⋄} be
defined by

h(0) = 1100
h(1) = 011⋄
h(2) = 1010

CPM 2022
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which is a partial word variant of a morphism from [11, Section 2] that itself is a variant of a
morphism used in [9] to produce a binary word which has no squares of order 3 or more. In
particular, if the hole in the definition of the morphism is replaced with a 1, then the image
under h of any ternary square-free word will be a binary word where all squares have order
less than 3. With the addition of the hole we no longer avoid squares of order 3, but the
resulting partial word will avoid squares of order 4 or more.

▶ Theorem 1. The partial word h(vtm) is a binary partial word with infinitely many holes
that avoids squares of order 4 or more.

Proof. The word vtm is in Walnut as VTM. So, all we need to do is define the morphism h

and apply it to vtm and check for squares of order 4 or more. In the code below Wh denotes
the image of this morphism. Recall, Walnut only uses 0, 1, . . . , as letters. So, the image of h
is a binary partial word represented over {0, 1, 2} where 2 plays the role of ⋄. Running the
following in Walnut

morphism h "0->1100, 1->0112, 2->1010";
image Wh h VTM;
eval no_sq "?msd_2 ~ Ej En Ai (n>3) & ((i<n)=>((Wh[j+i]=Wh[j+n+i])

| Wh[i+j]=@2 | Wh[i+n+j]=@2))";

returns “TRUE” which proves the result. ◀

▶ Remark 2. To our knowledge the construction in Theorem 1 is new in the context of
partial words, but the result on avoiding long squares is not optimal. In [4, Theorem 4] an
infinite binary partial word with infinitely many holes is constructed so that the only squares
compatible with factors of it are 02, 12, (01)2, and (11)2. This is based on a construction
for full words from [18]. We have been unable to automate a version of this construction in
Walnut due to the space required for the computation.

We now consider the morphism f : {0, 1, . . . , 7}∗ → {0, 1, . . . , 7}∗ given by

f(0) = 01 f(1) = 23
f(2) = 24 f(3) = 51
f(4) = 06 f(5) = 01
f(6) = 74 f(7) = 24

along with the coding g : {0, 1, . . . , 7}∗ → {0, 1, ⋄} by g(m) = m (mod 2) for m ̸= 6 and
g(6) = ⋄. Applying g to the fixed point of f will give us a word avoiding both squares and
antisquares of large length. Since f(0) = 01 we may iterate applying f to 0 to obtain the
unique fixed point of the morphism f we denote by fω(0). We will make use of the notation
fω to denote fixed points of morphisms elsewhere as well.

▶ Theorem 3. The partial word g(fω(0)) is a binary partial word with infinitely many holes
that avoids squares of order 7 or more and avoids antisquares of order 3 or more.

Proof. We establish the theorem by running the following in Walnut

morphism f "0->01, 1->23, 2->24, 3->51, 4->06, 5->01, 6->74, 7->24";
morphism g "0->0, 1->1, 2->0, 3->1, 4->0, 5->1, 6->2, 7->1";
promote Wf f;
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Table 2 The length of the longest binary partial word with a single hole that contains at most a

squares and at most b antisquares.

a

b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 3 4 5 5 5 5 5 5 5 5 5 5 5 5 · · ·
2 5 7 9 10 11 11 12 12 14 14 15 16 16 16 · · ·
3 7 11 14 19 19 19 19 22 26 30 34 52 97
4 9 15 22 27 30 45 54 103 397
5 11 19 35 40 74
6 13 23 47 50
7 15 27 59
8 17 31 147
9 19 35
10 21 39
...

...
...

image Wg g Wf;
eval no_sq "?msd_2 ~ Ej En Ai (n>6) & ((i<n)=>((Wg[j+i]=Wg[j+n+i])

| Wg[i+j]=@2 | Wg[i+n+j]=@2))";

eval no_anti "?msd_2 ~ Ej En Ai (n>2) & ((i<n)=>((Wg[j+i]!=Wg[j+n+i])
& Wg[i+j]!=@2 & Wg[i+n+j]!=@2))";

which outputs “TRUE” twice. ◀

▶ Remark 4. In was shown in [17, Theorem 9] that the full word obtained by coding the
fixing point of f with m 7→ m (mod 2) for all m ∈ {0, 1, . . . , 7} avoids both squares and
antisquares of order 3 or more. Since adding holes cannot make any antisquares the fact
about avoiding antisquares in Theorem 3 is immediate.

In [17] for any fixed a and b, the problem of finding the longest binary full word which
contains at most a distinct squares and at most b distinct antisquares was solved. One can
consider versions of the same problem for partial words. For example, we can ask for the
length of the longest binary partial word with a fixed number of holes that contains at most a
distinct squares and at most b distinct antisquares. We will focus on the case of partial words
with a single hole. Counting distinct squares has received much attention for both words
and partial words. It is known that even the addition of a single hole can fundamentally
change distinct squares [6, 7, 12, 14]. Unlike if we were simply avoiding squares, the length
of this longest binary partial word can be shorter or longer than that of the corresponding
full word. This is since replacing a letter in a binary full word can possibly create a square
while it also has the potential to remove an antisquare.

Consider the following example for a = 4 and b = 5. The length 32 partial word

⋄0111010000011010000110000010000

contains only the squares 02, 12, (00)2, and (10)2. It also contains only the antisquares 01, 10,
0011, 0110, and 1100. For full words the optimal length is 31 which was originally computed
in [17, Figure 1]. One binary full word giving witness to this length is

0111010000011010000110000010000

CPM 2022
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which is obtained from the partial word above by removing the hole. Notice prepending 0
to this full word creates the new antisquare 001110 while prepending 1 creates 1011101000.
Prepending ⋄ allows us to avoid new antisquares. Moreover, we can create even longer partial
words with one hole and only 4 distinct squares and 5 distinct antisquares. The optimal
length is 45. The partial word

000010000011000010110000011 ⋄ 00101100000101110

has length 45 and only contains the squares 02, 12, (00)2, and (01)2 as well as only the
antisquares 01, 10, 0011, 0110, and 1100. In Table 2 we list the optimal lengths for many
values of a and b.

▶ Theorem 5. The values in Table 2 are correct.

Proof. The first three rows and first two columns are each infinite sequences of finite values
and must be proven. Outside of these rows and columns there are only finitely many entries
which can be computed. The first three rows follow from the fact that a binary partial
word with one hole that contains at most 0, 1, or 2 squares has length at most 1, 5, or 16
respectively. This can be seen by direct verification of this fact, then computing the values
until we reach 1, 5 or 16. Note it is clear the entries weakly increase along row and column.

For the first column, up to complementation, we consider words of the form 0m ⋄ 0n or
0m ⋄ 1n which are the only binary partial words with a single hole that do not contain an
antisquare. Let ℓ = m+ n+ 1 be the length of such a word. The number of squares such a
word contains is⌊

m+ 1
2

⌋
+

⌊
n+ 1

2

⌋
=

⌊
ℓ

2

⌋
and so ℓ = 2a+1 is the longest length containing at most a distinct squares and 0 antisquares.

Now for the second column we consider partial words with a single hole and only 1
antisquare. Let us assume a > 1. We will look at partial words which start with 0 and
contain only the antisquare 01. So, we have 0m1n ⋄ 0p1q with m > 0. Note if m > 1, then
n ≤ 1 or else we have both the antisquares 01 and 0011. Similarly if p > 1, then q ≤ 1.
So, let us assume our partial word is 0m1 ⋄ 0p1. This partial word has

⌊
N
2

⌋
+ 1 distinct

squares where N = max(m, p+ 1) unless m = p+ 1 and the whole partial word then gives
an additional square. The squares contained are 12 and 02k for 2k < N along with possibly
(0m1)2. So, we may take 02a−21 ⋄ 02a−21 which has length 4a− 1 and contains a squares and
1 antisquare. This gives us one such word realizing the maximum agrees with what is found
in Table 2. We also have the partial word 02a−11 ⋄ 02a−2 of length 4a − 1 which contains
a squares and 1 antisquare. It turns out that all other such partial words can be obtained
from the two we have given by complement and reversal. This can be checked by considering
the remaining cases of the possible forms of the partial word in a similar manner. ◀

▶ Remark 6. Table 2 is incomplete, and we do not know if the missing entries are finite or
infinite. From [17] it is known that for full binary words the entry corresponding to a = 5
and b = 5 is finite while the remaining missing entries are infinite.

3.2 Avoiding non-trivial squares and cube with many holes
In this subsection we demonstrate how some known constructions [8] of partial words “dense”
with holes avoiding powers can be obtained and verified through Walnut. The hole sparsity
of a partial word is smallest s such that every factor of length s contains at least one hole. A
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square of the form a⋄ or ⋄a for some letter a is called a trivial square. Indeed every partial
word of length at least 2 which contains at least one hole as well as at least one letter will
contain a trivial square. Thus for avoidance purposes we must allow trivial squares and avoid
non-trivial squares. Since the presence of holes makes squares or cubes more likely, it is an
interesting problem to find partial words with small hole sparsity (and hence many holes)
which avoid non-trivial squares or cubes (or more generally higher powers).

Let us consider the morphism ρ : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗ defined by

ρ(0) = 03
ρ(1) = 12
ρ(2) = 01
ρ(3) = 10

which appears in [1, Exercise 33(c)]. Next we consider the morphism σ : {0, 1, 2, 3}∗ →
{0, 1, 2, 3, ⋄}∗ defined by

σ(0) = 320⋄
σ(1) = 120⋄
σ(2) = 310⋄
σ(3) = 130⋄

whose image is a partial word over an alphabet with size 4. We are now ready to give on
automated proof of the following which is in the proof of [8, Lemma 2].

▶ Theorem 7. The partial word σ(ρω(0)) is a partial word with hole sparsity 4 over an
alphabet of size 4 which avoids non-trivial squares.

Proof. It is easy to see that the squares ⋄2, 02, 12, 22, and 32 do not occur in σ(ρω(0)). Recall,
since we avoiding non-trivial squares a⋄ and ⋄a are allowed to we present for a ∈ {0, 1, 2, 3}.
Thus, we only need to worry about squares of order n for n > 1. Running the following
commands in Walnut

morphism rho "0->03, 1->12, 2->01, 3->10";
morphism sigma "0->3204, 1->1204, 2->3104, 3->1304";
promote Wrho rho;
image W sigma Wrho;
eval no_sq "?msd_2 ~ Ej En Ai (n>1) & ((i<n)=>((W[j+i]=W[j+n+i])

| W[i+j]=@4 | W[i+n+j]=@4))";

results in an output of “TRUE” and the theorem is proven. ◀

We let τ denote the morphism defined by τ(0) = 01⋄ and τ(1) = 02⋄. We can now give
an automated proof of the following which was first proven in [8, Lemma 7].

▶ Theorem 8. The partial word τ(tm) is partial word with hole sparsity 3 over an alphabet
of size 3 which avoids cubes.

Proof. The word tm is contained in Walnut at T. We run the following in Walnut

morphism tau "0->013, 1->023";
image W tau T;
eval no_cube "?msd_2 ~Ej En Ai (n>1)&((i<n)=>(
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W[j+i]=W[j+n+i] & W[j+n+i]=W[j+2*n+i])
|(W[j+i]=@3 & W[j+n+i]=W[j+2*n+i])|(W[j+n+i]=@3 & W[j+i]=W[j+2*n+i])
|(W[j+2*n+i]=@3 & W[j+i]=W[j+n+i])|(W[j+i]=@3 & W[j+n+i]=@3)
|(W[j+i]=@3 & W[j+2*n+i]=@3) | (W[j+n+i]=@3 & W[j+2*n+i]=@3))";

and it outputs “TRUE” proving the theorem. ◀

▶ Remark 9. Both Theorem 7 and Theorem 8 are optimal in establishing smallest hole
sparsity avoiding non-trivial squares and cubes respectively for a given alphabet size [3]. For
example, there does not exists an infinite partial word with hole sparsity 3 over a 4 letter
alphabet which avoids non-trivial squares.

4 Conclusion

We have initiated a study of partial words paired with the theorem prover Walnut. Addi-
tionally, we have extended the definition of antisquares to partial words. We believe both
directions could be a source of new problems in combinatorics on words. Furthermore,
we have given alternative proofs of some results on partial words which provide machine
verification. We have discussed how the logical statements expressing a square are longer
for partial words than full words. So this adds some complexity to the Walnut calculations.
Additionally, in Walnut partial words work with an alphabet with an extra letter which
represents the hole. Let us close with an example comparing partial words with full words in
Walnut.

Let us consider the morphisms g and h defined by

g(0) = 1100 h(0) = 1100
g(1) = 0111 h(1) = 011⋄
g(2) = 1010 h(2) = 1010

where h was the morphism used in Theorem 1. To get an idea of what happens going from
full words to partial words we have the deterministic finite automata with output (DFAO)
for g(vtm) and h(vtm) shown in Figure 1 and Figure 2 respectively. Walnut works with
automatic sequences using their DFAOs. We find in this case only a modest increase in the
size of the DFAO, and we were indeed able to use Walnut to automate a proof in the more
complex but still tractable partial word situation.

To show there are no squares of length greater than 3 in neither g(vtm) nor h(vtm) we
may run

morphism h "0->1100, 1->0112, 2->1010";
image Wh h VTM;
eval no_sq "?msd_2 ~ Ej En Ai (n>3) & ((i<n)=>((Wh[j+i]=Wh[j+n+i])

| Wh[i+j]=@2 | Wh[i+n+j]=@2))";

morphism g "0->1100, 1->0111, 2->1010";
image Wg g VTM;
eval no_sq_full "?msd_2 ~ Ej En Ai (n>3) & ((i<n)=>(Wg[j+i]=Wg[j+n+i]))";

in Walnut. In the log files produced we will find the following two lines

(i<n=>((Wh[(j+i)]=Wh[((j+n)+i)]|Wh[(i+j)]=@2)|Wh[((i+n)+j)]=@2)):229 states - 24ms

and

(i<n=>Wg[(j+i)]=Wg[((j+n)+i)]):217 states - 10ms
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Figure 1 The DFAO for g(vtm).

Figure 2 The DFAO for h(vtm).
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5:10 Walnut for Partial Words

showing the sizes of the automata Walnut needs to determine the exists of a square in either
g(vtm) or h(vtm) respectively. We see the partial word version requires 229 states more
states and takes to build 24ms compared 217 states and to 10ms for the full word version.
The issue one encounters in Walnut computations is typically in issue of space due to building
some automaton. This example, and the others we have given, suggest that partial word
versions of theorems may take slightly more space in Walnut but may often tractable with
Walnut when their full word counterparts are.
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6:2 LCS is FPT wrt Maximum Number of Deletions

1 Introduction

With its numerous applications including bioinformatics, data compression, and computa-
tional linguistics, the NP-hard Longest Common Subsequence (LCS) problem is among
the best studied algorithmic string problems. Suiting our subsequent parameterized analysis
purposes, we formally define the problem as follows.

Longest Common Subsequence
Input: A set of k strings S = {S1, . . . , Sk} on some alphabet Σ, each of length at most n,
an integer ℓ.
Parameter: ∆ = n − ℓ.
Question: Is there a string S of length at least ℓ that is a (not necessarily contiguous)
subsequence of each Si?

For example, for k = 3 strings abcabac, acbabc, ababcba (thus, n = 7), with ℓ = 5 we have
a yes-instance (with solution string ababc), while for ℓ = 6 this would be a no-instance.

With straightforward dynamic programming, using the number k of strings as a parameter,
LCS can be solved in O(nk) time. The problem has been shown to be W[1]-hard [16], and
even W[2]-hard for parameter k, and it has no O(nk−ϵ) algorithm assuming the Strong
Exponential Time Hypothesis (SETH) [1]. Indeed, LCS is the string problem having received
most attention in the early years of parameterized complexity analysis [10]. Unfortunately,
so far parameterized complexity analysis beyond trivial algorithmic observations mainly
contributed computational hardness results. We refer to some surveys [2, 7, 8] for an overview
on research results and open questions for LCS.

We remark that the special case of two input strings (that is, k = 2) recently attrac-
ted much attention, particularly motivated by the theoretical challenge of breaking the
straightforward time bound of O(n2) [4, 6, 11]. Notably, Bringmann and Künnemann [6]
(the corresponding arXiv paper has around 60 pages) also discuss the “maximum number
of deletions” parameter we focus on here. We note however that in the context of k = 2,
the parameter is used to improve over the classical O(n2) dynamic programming algorithm
while maintaining a polynomial running time, while our approach requires an exponential
dependency on ∆ even for k = 2. Indirectly, this parameter already appears in the work
of Irving and Fraser [13], who provided two algorithms for LCS with three or more input
strings.

Irving and Fraser [13] in their 1992 paper provided an algorithm for LCS running in
time O(kn(n − ℓ)k−1), implying fixed-parameter tractability with respect to the combined
parameter k and n − ℓ, where the latter coincides with our parameter ∆. We are not aware of
any improvement since then and this is also reflected by a corresponding challenge featured
in a 2014 survey [7, Challenge 9]. Answering positively the research challenge posed there,
we improve Irving and Fraser’s result to fixed-parameter tractability with respect to only ∆.
More specifically, our algorithm runs in time O((∆ + 1)∆+1kn), which means linear time
when ∆ is a constant. In addition, we can enumerate all longest common subsequences
within this time. Given that it seems natural to assume that in many applications the sought
common subsequence is fairly close to every input string (which would imply small values
of ∆), this promises to be of also practical relevance. The focus of our work, however, is
purely theoretical. Regarding the alphabet size, we focus on the general case where the
alphabet is unbounded (in particular, the alphabet size is not hidden in the O of the running
time). The question of whether our approach can be improved for constant-size alphabets
(typically {0, 1} or {A, T, C, G}) is left open.
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Figure 1 Our approach towards computing the LCS of three strings abcabac, acbabc, ababcba.
Left: compute maximal common subsequences of the first two strings (all three subsequences and
their alignment with input strings are depicted). Right: compute maximal common subsequences
of all three strings by comparing those obtained at the first step with the third input string (only
two strings remain after filtering non-maximal common subsequences). The longest result, ababc is
the LCS of the input strings. Filtering out strings that are shorter than a threshold prevents the
number of intermediate strings from growing too fast, yielding our FPT-algorithm.

Figure 1, at a very high level, presents an example for LCS for three input strings together
with the main idea behind our recursive approach towards achieving our result, the FPT-
algorithm for parameter ∆. More specifically, our algorithm builds and refines an exhaustive
list of maximal common subsequences after reading each input string. Maximal common
subsequences have been used before in LCS-related questions, see e. g. recent advances by
Sakai [17] and Conte et al. [9], but not, to the best of our knowledge, towards exactly solving
LCS on multiple input strings.

2 An LCS Algorithm Using Maximal Common Subsequences

In this section, we present a linear-time algorithm for LCS when the number of deletions is a
constant. Note that this does not contradict the quadratic lower bound for this problem,
since this lower bound only applies to the general case where the number of deletions is
unbounded. In particular, the O(δn) algorithm by Nakatsu et al. [14] (with δ = min{|Si|}−ℓ)
remains better than our algorithm for the two-string case. Furthermore, it is not clear if a
smaller (typically constant) alphabet could be exploited in our algorithm or its analysis in
order to obtain a better running time.

2.1 Definitions

Strings. The set of strings on an alphabet Σ is denoted Σ∗. The empty string is denoted ϵ,
the length of a string S ∈ Σ∗ is denoted |S|. We write · for the concatenation and u · T := S

as a short-hand for “let u ∈ Σ be the first character of S and T be the suffix of S starting
from the second character (or u = T = ϵ if S is empty)”. We write S[i, . . . , j] for the substring
of S of all symbols between positions i and j inclusively.

Given two strings S1, S2, we write S1 ⪯ S2 (resp. S1 ≺ S2) if S1 is a (strict) subsequence
of S2. Formally, ϵ ⪯ S for any S and, if S ⪯ S′, then for any u we have S ⪯ u · S ⪯ u · S′.
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6:4 LCS is FPT wrt Maximum Number of Deletions

Longest and Maximal Common Subsequences. Given a set S of strings and a nonnegative
integer ℓ, let CSℓ(S) denote the set of all common subsequences of S that have length at
least ℓ. Let L be the largest integer such that CSL(S) is not empty, and let LCS(S) denote
an arbitrary string in CSL(S), i. e. a longest common subsequence of S.

Let MCSℓ(S) denote the set of all maximal common subsequences of S with length at
least ℓ; that is, S ∈ MCSℓ(S) iff S ∈ CSℓ(S) and there is no S′ ∈ CSℓ(S) such that S ≺ S′.
Note that, if ℓ is small enough (ℓ ≤ L), then LCS(S) ∈ MCSℓ(S), otherwise MCSℓ(S) is
empty. A set of strings M is an extended MCS of (S, ℓ) if MCSℓ(S) ⊆ M ⊆ CSℓ(S).

String Parameters. Let S = {S1, . . . , Sk} be a set of strings. We write n(S) := maxS∈S |S|,
m(S) := minS∈S |S|. Given an integer ℓ, we write ∆(S, ℓ) = n(S)− ℓ and δ(S, ℓ) := m(S)− ℓ.
We omit dependencies on S and ℓ when the context is clear (e. g., they are given in the
lemma statement). Note that δ ≤ ∆.

2.2 Main Results
▶ Theorem 1. Let S = {S1, . . . , Sk} be a set of strings and ℓ be an integer. Then an extended
MCS of (S, ℓ) with size at most (∆ + 1)δ can be computed in time O(2δ+∆(∆ + 1)δkn).

Theorem 1 directly yields an algorithm for LCS, since it suffices to test if an extended
MCS of (S, ℓ) is non-empty. Note that the algorithm can be adapted for the optimization
formulation of LCS, i. e., when ℓ is not part of the input, with a constant factor in the time
complexity (taking δ and ∆ with respect to ℓ = |LCS(S)|). Indeed, apply Theorem 1 for
decreasing values of ℓ starting with ℓ = m, until a non-empty set is obtained. Then, the
resulting set contains the common subsequences of S of size LCS(S) (indeed, MCSℓ(S) =
CSℓ(S) for this value of ℓ), so it contains all longest common subsequences of S. The time
complexity of the i-th call, 1 ≤ i ≤ δ, is upper-bounded by O(2i+∆(∆ + 1)δkn). Using∑δ

i=1 2i = O(2δ), we get the following corollary.

▶ Corollary 2. All longest common subsequcences of S (and a fortiori the value LCS(S))
can be computed in time O(2δ+∆(∆ + 1)δkn).

The remainder of the section is dedicated to proving Theorem 1. We first compute the
number of strings and their size distribution in the MCS of two strings, then build up on
this result to bound the size of the MCS of k strings.

2.3 Extended MCS for Two Strings
Algorithm 1 allows us to compute an extended MCS of two strings. Its correctness is proven
using the main recursive relation for MCS given in Lemma 3, while its time complexity is
analyzed in Lemmas 6 and 8.

▶ Lemma 3. For any two non-empty strings S, S′ ∈ Σ∗ and any ℓ, let u · T := S and
u′ · T ′ := S′ for u, u′ ∈ Σ.

If u = u′, then MCSℓ({S, S′}) ⊆ {u · X | X ∈ MCSℓ−1({T, T ′})}.

If u ̸= u′, then MCSℓ({S, S′}) ⊆ MCSℓ({S, T ′}) ∪ MCSℓ({T, S′}).

Proof. Let R ∈ MCSℓ({S, S′}), and r · X := R.
For the first case (u = u′), we show that r = u and X is a maximal common subsequence

of {T, T ′} of length at least ℓ − 1. Indeed, r = u, as otherwise the concatenation u · r · X

would also be a common subsequence of {S, S′}, with R ≺ u · r · X (contradicting the
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Algorithm 1 Compute a bounded-size extended MCS of two strings.

1 algorithm xMCS2(ℓ, S, S′)
2 if ℓ > |S| or ℓ > |S′| then return ∅
3 if S ⪯ S′ then return {S}
4 if S′ ⪯ S then return {S′}
5 u · T := S

6 u′ · T ′ := S′

7 if u = u′ then
8 return {u ·X | X ∈ xMCS2(ℓ− 1, T, T ′)}
9 else

10 return xMCS2(ℓ, S, T ′) ∪ xMCS2(ℓ, T, S′)

maximality of R). Note that X is a subsequence both of T and T ′. Moreover X is maximal,
as otherwise, if X ≺ X ′ with X ′ a common subsequence of T , T ′, then u · X ′ would be a
common subsequence of S, S′ with R ≺ u · X ′ (again, contradicting the maximality of R).

For the second case (u ̸= u′), we show that R is either in MCSℓ({T, S′}), or in
MCSℓ({S, T ′}) (or both). Indeed, if r ̸= u, then R ≺ S implies R ≺ T , and R is a
common subsequence of {T, S′}. Otherwise, r = u ̸= u′, and R is a common subsequence of
{S, T ′}. In both cases, R is maximal, since for any R′, if R′ is a common subsequence of (say)
{T, S′} with R ≺ R′, then R′ is also a common subsequence of {S, S′} which contradicts the
maximality of R for {S, S′}. ◀

Algorithm 1 follows the recursive relation of Lemma 3, along with trivial base cases
(ℓ > min{|S|, |S′|} or one of S or S′ being a subsequence of the other). It also clearly returns
only common subsequences of S and S′ of length at least ℓ, so it is correct.

▶ Corollary 4. Let S, S′ ∈ Σ∗ and ℓ be an integer. Then xMCS2(ℓ, S, S′) from Algorithm 1
returns an extended MCS of ({S, S′}, ℓ).

▶ Remark 5. The first inclusion in Lemma 3 (case u = u′) is actually an equality, but we
only need this direction for the algorithm to be correct. The second inclusion, however, may
be strict: for example with S = abcd and S′ = dabc, the string R = bc is a maximal common
subsequence of T = bcd and S′, but not of S and S′ since R ≺ abc. Such “extra” strings are
actually returned by our algorithm, motivating the naming of extended MCS (although they
could be filtered out, see Remark 7).

We now focus on the time complexity of Algorithm 1.

▶ Lemma 6. Let S, S′ ∈ Σ∗ have lengths ℓ+δ and ℓ+∆ = n, respectively. Then xMCS2(ℓ, S, S′)
terminates in time O(2δ+∆n).

Proof. To achieve the claimed time complexity, we first need to perform the subsequence
tests in lines 3 and 4 quickly. For this, we use a precomputed subsequence table: For every
pair (i, i′) with 1 ∈ {1, . . . , |S|} and i′ ∈ {1, . . . , |S′|} and |i − i′| ≤ ∆, let sub[i, i′] contain
True if S[i, . . . , |S|] is a subsequence of S′[i′, . . . , |S′|]. In other words, sub[i, i′] is True iff
the ith suffix of S is a subsequence of the i′th suffix of S′. The entries of this table can
be computed in time O(n∆) by straightforward dynamic programming using the following
relations:

sub[i, i′] = sub[i + 1, i′ + 1] if S[i] = S[i′],
sub[i, i′] = sub[i + 1, i′] ∨ sub[i, i′ + 1] otherwise.
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Note that during recursive calls, the values of ∆ and δ are non-increasing, and ∆ + δ

decreases by 1 in the case where two recursive calls are performed. In particular, if ℓ ≤
min{|S|, |S′|} in a recursive call, then

∣∣|S|−|S′|
∣∣ ≤ ∆, which enables us to use the precomputed

table for the subsequence test. So the total number of leaves in the tree of recursive calls
is at most 2δ+∆, each call taking constant time, and the height of this tree is at most
ℓ + δ + ∆ ≤ 2n. Thus the algorithm takes overall time O(2δ+∆n). ◀

▶ Remark 7. Algorithm 1 can be adapted to output only the set of maximal common
subsequences, rather than an extended version of it, by simply removing non-maximal strings
(which can be done in quadratic time in the size of the output set). However, this does not
improve the theoretical size of the returned set since in the worst case it does not filter out
any string, but adds a quadratic running time to the complexity. It should be an important
step in an implementation of the algorithm, though, since an additive quadratic computation
time would probably be quickly compensated by pruning a possibly exponential search tree.

The proof of Lemma 6 gives a first bound on the number of strings returned by xMCS2
(namely, at most 2δ+∆). We know that all strings have lengths between ℓ and m. However,
we will need an additional ingredient for a more precise analysis of our algorithm for k rather
then just two strings: There cannot be many strings of length almost m. Intuitively, a long
string in the returned set corresponds to a leaf in the search tree with few branching nodes
among its ancestors, which actually helps reducing the size of the search tree. On the other
hand, a short string in the returned set will cause less branchings in our next algorithm.
Thus, the following lemma describes the repartition of the number of maximal common
subsequences of two strings based on their lengths. Note that we would obtain the same
bound if we used the filtering step from Remark 7 (i. e., the same formula applies to the set
MCSℓ({S, S′})).

▶ Lemma 8. Let ℓ, d, and d′ be integers. Let S, S′ ∈ Σ∗ be strings of lengths ℓ + d and
ℓ + d′, respectively, so {δ, ∆} = {d, d′}. Let Ni be the number of strings in xMCS2(ℓ, S, S′) of
length exactly ℓ + d′ − i. Then

d′∑
i=0

Ni

(d + 1)i
≤ 1.

Proof. We prove this property by induction on |S| + |S′|.
If ℓ > min{|S|, |S′|}, then xMCS2(ℓ, {S, S′}) is empty, and the inequality is valid. If S or

S′ is a subsequence of the other, then |xMCS2(ℓ, S, S′)| = 1, so we have Ni = 1 for some i and
Nj = 0 for j ̸= i. The above inequality is true in this case as well. Note that this includes
the cases where S or S′ are empty. In the remaining cases, S and S′ are not subsequences of
each other, so in particular they are not empty. Let u · T := S and u′ · T ′ := S′.

If u = u′, then Ni is upper-bounded by the number of strings of length (ℓ − 1) + d′ − i in
xMCS2(ℓ−1, T, T ′), so we can directly apply the property by induction to get

∑d′

i=0
Ni

(d+1)i ≤ 1.
Otherwise (u ̸= u′), let Na

i (resp. N b
i ) be the number of strings of length ℓ + d′ − i in

xMCS2(ℓ, S, T ′) (resp. xMCS2(ℓ, T, S′)). We have Ni ≤ Na
i + N b

i ≤ 2Ni (accounting for the
fact that a string counted in Ni must be counted once in one of Na

i , N b
i , and at most twice

in total). Note that N0 = 0 (otherwise, S and S′ have a common subsequence of length
ℓ + d′ = |S′|, which implies that S′ is a subsequence of S). Thus Na

0 = N b
0 = 0.
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a b c d e
b a c b d c e d

a b c d
a b c e
a b d e
a c d e
b c d e

a b c a’ b’ c
b a c b’ a’ c

a c a’ c

a c b’ c

b c a’ c

b c b’ c

Figure 2 Examples of pairs of strings {S, S′} with large |MCSℓ(S, S′)|. Left: A pair with δ = 1,
∆ = 4, and |MCSℓ(S, S′)| = 5 = 1 + ∆

δ
, showing that a dependency on ∆ is unavoidable. Right: A

pair with 2δ maximal common subsequences, with δ = ∆ = 2. Proposition 9 is a generalization of
both examples that yields strings with |MCSℓ(S, S′)| = ( ∆

δ
+ 1)δ.

We apply the induction hypothesis first on the pair {S, T ′}. Note that d′ decreases by 1
and indices of Ni are shifted by 1, which gives

∑d′−1
i=0 Na

i+1/(d + 1)i ≤ 1, so

d′∑
i=0

Na
i

(d + 1)i
= Na

0 + 1
d + 1

d′∑
i=1

Na
i

(d + 1)i−1 ≤ 1
d + 1 .

Then the induction hypothesis on {T, S′} (where d decreases by 1) gives
∑d′

i=0 N b
i /di ≤ 1,

so

d′∑
i=0

N b
i

(d + 1)i
= N b

0 +
d′∑

i=1

N b
i

(d + 1)i

= d

d + 1

d′∑
i=1

di−1

(d + 1)i−1
N b

i

di

≤ d

d + 1

d′∑
i=1

N b
i

di
≤ d

d + 1 .

Combining both inequalities yields:

d′∑
i=0

Ni

(d + 1)i
≤

d′∑
i=0

Na
i

(d + 1)i
+

d′∑
i=0

N b
i

(d + 1)i

≤ d

d + 1 + 1
d + 1 = 1. ◀

Lemma 8 yields an upper bound of (∆ + 1)δ on the size of MCSℓ(S, S′) (indeed, using
d = ∆ and d′ = δ, we have |MCSℓ(S,S′)|

(∆+1)δ ≤
∑δ

i=0
Ni

(∆+1)δ ≤ 1). Examples (see Figure 2 and
Proposition 9) indicate that this bound is close to being tight, since there exist instances
where |MCSℓ(S, S′)| = ( ∆

δ + 1)δ.

▶ Proposition 9. For any integers u and v, there exist an ℓ, an alphabet Σ, and strings
S, S′ ∈ Σ∗ of lengths ℓ + v and ℓ + uv, respectively, such that |MCSℓ(S, S′)| ≥ (u + 1)v =
( ∆

δ + 1)δ.
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6:8 LCS is FPT wrt Maximum Number of Deletions

Proof. Let ℓ = uv, and Σ =
{

xi,j

∣∣ i ∈ {1, . . . , v}, j ∈ {1, . . . , u + 1}
}

be an alphabet of size
(u + 1)v. Using

∏
as the concatenation operator, let S =

∏v
i=1 Si and S′ =

∏v
i=1 S′

i with

Si =
u+1∏
j=1

xi,j and

S′
i =

u∏
j=1

xi,j+1 xi,j .

Note that the length of S is indeed |Σ| = ℓ + v = uv + v = (u + 1)v and the length of
S′ is 2uv = ℓ + uv. Since Si and S′

i′ only have common characters for i = i′, a common
subsequence T of S and S′ is of the form T =

∏v
i=1 Ti, where Ti is a common subsequence of

Si and S′
i. Each Ti has length at most u (since Si is not a subsequence of S′

i, any common
subsequence has length at most |Si| − 1 = u). If T has length at least ℓ = uv, then each
Ti has length exactly u. There are precisely u + 1 such common subsequences for each i

(all proper subsequences of Si are also subsequences of S′
i). Counting all combinations of

strings Ti, there are a total of (u + 1)v common subsequences of S and S′ of length ℓ, and
they are all maximal. So |MCSℓ(S, S′)| = (u + 1)v. ◀

2.4 Extended MCS of k Strings
We now present our algorithm computing an extended MCS for any number k of strings,
using xMCS2 as a subroutine, see Algorithm 2. We first give the recurrence relation on MCS
on which the algorithm is based.

▶ Lemma 10. Let S = {S1, . . . , Sk} be a set of at least two strings and let ℓ be an integer.
Let M ′ = MCSℓ({S1, . . . , Sk−1}), then

MCSℓ(S) ⊆
⋃

S′∈M ′

MCSℓ({S′, Sk}).

Proof. Consider some string S ∈ MCSℓ(S). Then S is, in particular, a common subsequence
of {S1, . . . , Sk−1} of length at least ℓ, and so S ∈ CSℓ({S1, . . . , Sk−1}). By definition of MCS,
there exists a string S′ in MCSℓ({S1, . . . , Sk−1}) such that S ⪯ S′

Since S is a subsequence of both S′ and Sk, we have that S ∈ CSℓ({S′, Sk}). To see that
S is also in MCSℓ({S′, Sk}), assume that S′′ ∈ CSℓ({S′, Sk}) and S ⪯ S′′. Then S′′ is in
CSℓ(S) as S′ ∈ CSℓ({S1, . . . , Sk−1}); and since S is maximal in CSℓ(S), we have S = S′′.

Thus, S is in MCSℓ({S′, Sk}) for some S′ ∈ MCSℓ({S1, . . . , Sk−1}), which gives the
desired inclusion. ◀

▶ Remark 11. We note that the containment in Lemma 10 may sometimes be strict, as
can be seen in the following example with ℓ = 1. Take S1 = abc and S2 = acb. Then
MCSℓ({S1, S2}) = {ab, ac}. Combining strings ab and ac with S3 = aab yields respectively
MCSℓ({S3, ab}) = {ab} and MCSℓ({S3, ac}) = {a}. However, only ab (and not a) is part
of MCSℓ({S1, S2, S3}). As for xMCS2, xMCSk outputs these extra strings to avoid a costly
filtering step without any gain in the worst case.

▶ Corollary 12. Given S and ℓ, Algorithm 2 correctly computes an extended MCS of (S, ℓ).

We now upper-bound the number of strings at any point in the set M of the algorithm.
The key point here is that this bound does not depend on k or n. This may seem counter-
intuitive, compared to the following upper bound: the algorithm starts with a single string,
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Algorithm 2 Compute a bounded-size extended MCS of k strings.

1 algorithm xMCSk(ℓ, S1, . . . , Sk)
2 assert ∀i : |Si| ≥ |S1|
3 if k = 1 then
4 if |S1| ≥ ℓ then return {S1} else return ∅
5 else
6 M ′ ← xMCSk(ℓ, S1, . . . , Sk−1)
7 M ← ∅
8 for S′ in M ′ do
9 M ←M ∪ xMCS2(ℓ, Sk, S′)

10 return M

and each recursive call may replace any string by up to 2δ+∆ strings (cf. the complexity of
xMCS2). There are k recursive calls, so this would give a bound of 2k(δ+∆) strings in total.
The key argument here is that whenever a string is replaced, new strings are strictly shorter
than the former. Since we only allow for at most δ deletions (starting from a minimal length
input string), this gives a bound depending on δ and ∆ only. Our more precise analysis in
Lemma 13 allows us to shrink this quantity from 2O(∆δ) to 2O(log(∆)δ).

▶ Lemma 13. Let S = {S1, . . . , Sk} be a set of strings with S1 of minimal length (i. e.
|S1| = m), and ℓ be an integer. Then

|xMCSk(ℓ, S)| ≤ (∆ + 1)δ.

Proof. We prove the following claim by induction on k: Let d ≥ ∆ and let Ni be the number
of length-(ℓ + δ − i) strings in xMCSk(ℓ, S). Then

δ∑
i=0

Ni

(d + 1)i
≤ 1.

The lemma’s statement follows easily from this claim for d = ∆:

|xMCSk(ℓ, S)|
(∆ + 1)δ

=
δ∑

i=0

Ni

(∆ + 1)δ
≤

δ∑
i=0

Ni

(∆ + 1)i
≤ 1

For the inductive proof of the claim, we start with k = 1. Then we have a single string
in xMCSk(ℓ, S), namely, S1, so Ni = 1 for exactly one value of i and 0 otherwise, and the
formula is satisfied.

For k ≥ 2, we have M ′ = xMCSk(ℓ, {S1, . . . , Sk−1}). Consider the for-loop in lines 8–9.
We assume that when we iterate with S′ ∈ M ′, the string S′ is immediately removed
from M ′. At any point of the loop, we write σ for the quantity

∑δ
i=0

Ni

(d+1)i where Ni

denotes the number of strings of length ℓ + δ − i in M ′ ∪ M . Note that by induction, before
the first iteration of the loop, σ ≤ 1 as δ({S1, . . . , Sk−1}, ℓ) = δ since |S1| is minimal, and
d ≥ ∆ ≥ ∆({S1, . . . , Sk−1}, ℓ).

We show that σ may only decrease after each iteration. Consider the iteration for string S′,
let d′ = |S′| − ℓ and j = δ − d′ (since S′ is a subsequence of S1, it has length at most ℓ + δ,
so d′ ≤ δ and j ≥ 0).

First, removing S′ from M ′ makes Nj decrease by one, so σ decreases by 1
(d+1)j . Then,

we add strings from xMCS2({Sk, S′}) to M . Write Di for the number of such strings of
length ℓ + d′ − i. Note that for each pair (i, j) with j ≤ i ≤ δ, Ni increases by Di−j . By
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Lemma 8,
∑d′

i=0
Di

(|Sk|−ℓ+1)i ≤ 1. Since d ≥ ∆ ≥ |Sk| − ℓ,
∑d′

i=0
Di

(d+1)i ≤ 1. Then σ increases
by

∑d′

i=0
Di

(d+1)j+i = 1
(d+1)j

∑δ
i=j

Di−j

(d+1)i ≤ 1
(d+1)j . Overall, σ may not increase between two

steps, so at the end of the for-loop,
∑δ

i=0
Ni

(d+1)i ≤ 1. ◀

We can now conlude with the proof of Theorem 1.

Proof of Theorem 1. Given S and ℓ, Algorithm 2 computes an extended MCS of (S, ℓ)
(Corollary 12) of size at most (∆ + 1)δ (Lemma 13). Its running time is bounded by k times
the complexity of the for-loop, which requires at most (∆ + 1)δ calls to xMCS2, each taking
time O(2δ+∆n) (Lemma 6). This gives the overall complexity of O(2δ+∆(∆ + 1)δkn). ◀

3 Conclusion

Regarding LCS, we have proposed an FPT algorithm for the parameter ∆, i. e., the maximum
number of deletions per input string. We leave open whether the complexity can be improved,
e. g. using only parameter δ, i. e., the smallest number of deletions per input strings. In other
words, the goal is to find an LCS of size ℓ in a set of strings where one input string has size at
most ℓ + δ (and other strings might be arbitrarily long). Such an algorithm may not compute
and store explicitly each MCS, since the number of maximal common subsequences, even
with only two input strings, can grow in (1 + ∆

δ )δ. Also, it is open whether any improvement
can be obtained when the alphabet size is bounded, or when each character has a bounded
number of occurrences in each string.

A longest common subsequence can be interpreted as a string that can be obtained
with a minimal number of edits (deletions only) from all input strings. Generalizing this
notion to other edits (insertions and substitutions) yields the NP-hard Center String
problem2 [15, 12], which is highly related to the problem of Multiple Sequence Alignment
in bioinformatics. In future work, one may try to extend our approach in order to design an
FPT algorithm for Center String, parameterized by the maximum distance to the input
strings. Allowing for a small number of outliers (input strings that are discarded in order to
obtain a better solution [5]) would also yield a useful extension of our algorithm.

Finally, a more practical objective towards algorithm engineering would be to design an
efficient data structure to store all maximal common subsequences of any number of strings,
thus reducing the memory footprint of our algorithm.
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Abstract
Motivated by computing duplication patterns in sequences, a new fundamental problem called
the longest letter-duplicated subsequence (LLDS) is proposed. Given a sequence S of length n,
a letter-duplicated subsequence is a subsequence of S in the form of xd1

1 xd2
2 · · · x

dk
k with xi ∈ Σ,

xj ̸= xj+1 and di ≥ 2 for all i in [k] and j in [k − 1]. A linear time algorithm for computing the
longest letter-duplicated subsequence (LLDS) of S can be easily obtained. In this paper, we focus
on two variants of this problem. We first consider the constrained version when Σ is unbounded,
each letter appears in S at least 6 times and all the letters in Σ must appear in the solution. We
show that the problem is NP-hard (a further twist indicates that the problem does not admit any
polynomial time approximation). The reduction is from possibly the simplest version of SAT that is
NP-complete, (≤ 2, 1, ≤ 3)-SAT, where each variable appears at most twice positively and exact
once negatively, and each clause contains at most three literals and some clauses must contain
exactly two literals. (We hope that this technique will serve as a general tool to help us proving the
NP-hardness for some more tricky sequence problems involving only one sequence – much harder
than with at least two input sequences, which we apply successfully at the end of the paper on
some extra variations of the LLDS problem.) We then show that when each letter appears in S at
most 3 times, then the problem admits a factor 1.5 − O( 1

n
) approximation. Finally, we consider

the weighted version, where the weight of a block xdi
i (di ≥ 2) could be any positive function which

might not grow with di. We give a non-trivial O(n2) time dynamic programming algorithm for this
version, i.e., computing an LD-subsequence of S whose weight is maximized.
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1 Introduction

In biology, duplication is an important part of evolution. There are two kinds of duplications:
arbitrary segmental duplications (i.e., select a segment and paste it somewhere else) and
tandem duplications (which is in the form of X → XX, where X is any segment of
the input sequence). It is known that the former duplications occur frequently in cancer
genomes [16, 12, 3]. On the other hand, the latter are common under different scenarios, for
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7:2 The Longest Letter-Duplicated Subsequence Problem

example, it is known that the tandem duplication of 3 nucleotides CAG is closely related to
the Huntington disease [11]. In addition, tandem duplications can occur at the genome level
(acrossing different genes) for certain types of cancer [13]. In fact, as early as in 1980, Szostak
and Wu provided evidence that gene duplication is the main driving force behind evolution,
and the majority of duplications are tandem [17]. Consequently, it was not a surprise that
in the first sequenced human genome around 3% of the genetic contents are in the form of
tandem repeats [9].

Independently, tandem duplications were also studied in copying systems [5]; as well
as in formal languages [1, 4, 19]. In 2004, Leupold et al. posed a fundamental question
regarding tandem duplications: what is the complexity to compute the minimum tandem
duplication distance between two sequences A and B (i.e., the minimum number of tandem
duplications to convert A to B). In 2020, Lafond et al. answered this open question by
proving that this problem is NP-hard for an unbounded alphabet [7]. In fact, Lafond et
al. proved later that the problem is NP-hard even if |Σ| ≥ 4 by encoding each letter in the
unbounded alphabet proof with a square-free string over a new alphabet of size 4 (modified
from Leech’s construction [10]), which covers the case most relevant with biology, i.e., when
Σ = {A, C, G, T} [8]. Independently, Cicalese and Pilati showed that the problem is NP-hard
for |Σ| = 5 using a different encoding method [2].

Motivated by the above applications (especially when some mutations occur after the
duplications), some new problems related to duplications are proposed and studied in this
paper. Given a sequence S of length n, a letter-duplicated subsequence (LDS) of S is a
subsequence of S in the form xd1

1 xd2
2 · · ·x

dk

k with xi ∈ Σ, where xj ̸= xj+1 and di ≥ 2 for all i

in [k] and j in [k− 1]. (Each xdi
i is called an LD-block.) Naturally, the problem of computing

the longest letter-duplicated subsequence (LLDS) of S can be defined, and a simple linear
time algorithm can be obtained. (We remark that recently a similar problem called longest
run subsequence was studied [15], it differs from our problem in that each letter appears
consecutively at most once in the solution and does not have to be repeated, and the goal is
the same, i.e., the length of the subsequece is to be maximized.)

In this paper, we focus on some important variants around the LLDS problem, focusing
on the constrained and weighted cases. The constraint is to demand that all letters in Σ
appear in a resulting LDS, which simulates that in a genome with duplicated genes, how to
compute the maximum duplicated pattern while including all the genes. Then we have two
problems: feasibility testing (FT for short, which decides whether an LDS of S containing all
letters in Σ exists) and the problem of maximizing the length of a resulting LDS where all
letters in the alphabet appear, which we call LLDS+. It turns out that the status of these
two problems change quite a bit when d, the maximum number a letter can appear in S,
varies. We denote the corresponding problems as FT (d) and LLDS+(d) respectively. Let
|S| = n, we summarize our main results in this paper as follows:
1. We show that when d ≥ 6, both FT (d) and (the decision version of) LLDS+(d) are NP-

complete, which implies that LLDS+(d) does not have a polynomial-time approximation
algorithm when d ≥ 6.

2. We show that when d = 3, FT (d) is decidable in O(n2) time, which implies that LLDS+(3)
admits a factor-1.5 approximation. With an increasing running time, we could improve
the factor to 1.5−O( 1

n ).
3. When a weight of an LD-block is any positive function (i.e., it does not even have to grow

with its length), we present a non-trivial O(n2) time dynamic programming solution for
this Weighted-LDS problem.
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Note that the parameter d, i.e., the maximum duplication number, is of practical interest
in bioinformatics, since in many genomes duplication is a rare event and the number of
duplicates is usually a small constant. For example, it is known that plants have undergone
up to three rounds of whole genome duplications, resulting in a number of duplicates bounded
by 8 [20].

At the end of paper, we will briefly mention two extra variations of the LLDS problem,
where in the solution, i.e., a subsequence of S in the form of xd1

1 xd2
2 · · ·x

dk

k , each xi is
either a substring or a subsequence of S. The latter is remotely related to computing the
longest square subsequence of an input sequence S, for which Kosowski gave an O(n2) time
algorithm [6]. Then, what Kosowski considered is the more restricted version of the latter,
i.e., xd1

1 xd1
2 , with x1 = x2 and d1 = d2 = 1.

This paper is organized as follows. In Section 2 we give necessary definitions. In Section 3
we focus on showing that the LLDS+ and FT problems are NP-complete when d ≥ 6 and
some positive results when d = 3. In Section 4 we give polynomial-time algorithms for
Weighted-LDS. We conclude the paper in Section 5.

2 Preliminaries

Let N be the set of natural numbers. For q ∈ N, we use [q] to represent the set {1, 2, ..., q}.
Throughout this paper, a sequence S is over a finite alphabet Σ. We use S[i] to denote the
i-th letter in S and S[i..j] to denote the substring of S starting and ending with indices i and
j respectively. (Sometimes we also use (S[i], S[j]) as an interval representing the substring
S[i..j].) With the standard run-length representation, S can be represented as ya1

1 ya2
2 · · · y

aq
q ,

with yi ∈ Σ, yj ̸= yj+1 and aj ≥ 1, for i ∈ [q], j ∈ [q − 1]. If a letter x appears multiple times
in S, we could use x(i) to denote the i-th copy of it (reading from left to right). Finally, a
subsequence of S is a string obtained by deleting some letters in S.

2.1 The LLDS Problem
A subsequence S′ of S is a letter-duplicated subsequence (LDS) of S if it is in the form
of xd1

1 xd2
2 · · ·x

dk

k , with xi ∈ Σ, xj ̸= xj+1 and di ≥ 2, for i ∈ [k], j ∈ [k − 1]. We call each
xdi

i in S′ a letter-duplicated block (LD-block, for short). For instance, let S = abcacabcb,
then S1 = aaabb, S2 = ccbb and S3 = ccc are all letter-duplicated subsequences of S, where
aaa and bb in S1, cc and bb in S2, and ccc in S3 all form the corresponding LD-blocks.
Certainly, we are interested in the longest ones – which gives us the longest letter-duplicated
subsequence (LLDS) problem.

As a warm-up, we solve this problem by dynamic programming. We first have the
following observation.

▶ Observation 1. Suppose that there is an optimal LLDS solution for a given sequence S of
length n, in the form of xd1

1 xd2
2 . . . xdk

k . Then it is possible to decompose it into a generalized
LD-subsequence ye1

1 ye2
2 . . . y

ep
p , where

2 ≤ ei ≤ 3, for i ∈ [p],
p ≥ k,
yj does not have to be different from yj+1, for j ∈ [p− 1].

The proof is straightforward: For any natural number ℓ ≥ 2, we can decompose it as
ℓ = ℓ1 + ℓ2 + . . . + ℓz ≥ 3, such that 2 ≤ ℓj ≤ 3 for 1 ≤ j ≤ z. Consequently, for every
di > 3, we could decompose it into a sum of 2’s and 3’s. Then, clearly, given a generalized
LD-subsequence, we could easily obtain the corresponding LD-subsequence by combining
yei

i y
ei+1
i+1 when yi = yi+1.
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7:4 The Longest Letter-Duplicated Subsequence Problem

We now design a dynamic programming algorithm for LLDS. Let L(i) be the length of
the optimal LLDS solution for S[1..i]. The recurrence for L(i) is as follows.

L(0) = 0,

L(1) = 0,

L(i) = max


L(i− x− 1) + 2 x = min{x|S[i− x] = S[i]}, x ∈ (0, i− 1]
L(i− x) + 1 x = min{x|S[i− x] = S[i]}, x ∈ (0, i− 1]
L(i− 1) otherwise.

Note that the step involving L(i − x) + 1 is essentially a way to handle a generalized
LD-subsequence of length 3 (by keeping S[i− x] for the next level computation) and cannot
be omitted following the above observation. For instance, if S = dabcdd then without that
step we would miss the optimal solution ddd.

The value of the optimal LLDS solution for S can be found in L(n). For the running
time, for each S[x] we just need to scan S to find the closest S[i] such that S[x] = S[i]. With
this information, the table L can be filled in linear time. With a simple augmentation, the
actual sequence corresponding to L(n) can also be found in linear time. Hence LLDS can be
solved in O(n) time.

2.2 The Variants of LLDS

In this paper, we focus on the following variations of the LLDS problem.

▶ Definition 2 (Constrained Longest Letter-Duplicated Subsequence (LLDS+ for short)).
Input: A sequence S with length n over an alphabet Σ and an integer ℓ.
Question: Does S contain a letter-duplicated subsequence S′ with length at least ℓ such that

all letters in Σ appear in S′?

▶ Definition 3 (Feasibility Testing (FT for short)).
Input: A sequence S with length n over an alphabet Σ.
Question: Does S contain a letter-duplicated subsequence S′′ such that all letters in Σ appear

in S′′?

For LLDS+ we are really interested in the optimization version, i.e., to maximize ℓ. Note
that, though looking similar, FT and the decision version of LLDS+ are different: if there is
no feasible solution for FT, certainly there is no solution for LLDS+; but even if there is a
feasible solution for FT, computing an optimal solution for LLDS+ could still be non-trivial.

Finally, let d be the maximum number of times a letter in Σ appears in S. Then, we
can represent the corresponding versions for LLDS+ and FT as LLDS+(d) and FT (d)
respectively.

It turns out that (the decision version of) LLDS+(d) and FT (d) are both NP-complete
when d ≥ 6, while when d = 3 the status varies: FT (3) can be decided in O(n2) time,
which immediately implies that LLDS+(3) has a factor-1.5 approximation. (If we are willing
to increase the running time – still polynomial but higher than O(n2), with some simple
twist we could improve the approximation factor for LLDS+(3) to 1.5−O( 1

n ).) We present
the details in the next section. In Section 4, we will consider an extra version of LLDS,
Weighted-LDS, where the weight of an LD-block is an arbitrary positive function.
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3 Hardness with the full-appearance constraint

3.1 Hardness for LLDS+(d) and FT(d) when d ≥ 6
We first try to prove the NP-completeness of the (decision version of) LLDS+(d), when d ≥ 6.
In fact, we need a very special version of SAT, which is possibly the simplest version of SAT
remaining NP-complete.

Given a 3SAT formula ϕ, which is a conjunction of m disjunctive clauses (over n variable
xi’s), each clause Fj containing exactly 3 literals (i.e., in the form of xi or x̄i), the problem
is to find whether there is a satisfiable truth assignment for ϕ.

▶ Definition 4. (≤ 2, 1,≤ 3)-SAT: this is a special case of SAT where each variable xi

appears at most twice and x̄i appears exactly once in ϕ; moreover, each clause contains either
two or three literals (which will be called 2-clause and 3-clause henceforth).

▶ Lemma 5. (≤ 2, 1,≤ 3)-SAT is NP-complete.

Proof. We modify the proof by Tovey [18]. Given a 3SAT formula ϕ, without loss of
generality, assume that each variable xi and its complement x̄i appears in (different clauses
of) ϕ. We convert ϕ to ϕ′ in the form of (≤ 2, 1 ≤ 3)-SAT as follows.

if both xi and x̄i appears once in ϕ, do nothing.
if xi appears twice and x̄i appears once in ϕ, do nothing.
if x̄i appears twice and xi appears once in ϕ, replace x̄i with a new variable z and replace
xi by z̄.
Otherwise, if the total number of literals of xi (i.e., xi and x̄i) is k ≥ 4 then introduce k

variables yi,1, yi,2, · · · , yi,k replacing the k literals of xi respectively. Moreover, let zi,j be
yi,j if the j-th literal of xi is xi and let zi,j be ȳi,j if the j-th literal of xi is x̄i. Finally,
add k 2-clauses as (zi,j ∨ z̄i,j+1) for j = 1..k − 1 and (zi,k ∨ z̄i,1). (Note that it always
holds that z̄ = z.)

Following [18], when k ≥ 4, the 2-clauses added will force all zi,j ’s to have all True values or
all False values. (The only difference between our construction and Tovey’s is that all literals
appearing at least 4 times in the original clauses in ϕ are replaced by positive variables in the
form of yi,j ’s; the negated literal ȳi,j could only occur in the newly created 2-clauses – exactly
once for each yi,j . On the other hand, each yi,j occur twice – once in the original 3-clauses
of ϕ and once in the newly created 2-clauses.) It is obvious to see that ϕ is satisfiable if and
only if ϕ′ is satisfiable. The transformation obviously takes O(|ϕ|) time. Hence the lemma is
proven. ◀

We remark that (≤ 2, 1 ≤ 3)-SAT, while seemingly similar to SAT3W (each clause has at
most 3 literals and each clause has at most one negated variable [14]), is in fact different
from it. (Following the Dichotomy Theorem for SAT by Schaefer [14], SAT3W is in P.) The
difference is that in ϕ′ we could even have a clause containing 3 negated variables.

Now let ϕ be an instance of (≤ 2, 1,≤ 3)-SAT where either both xi and x̄i appear once in
ϕ (we call such an xi a (1,1)-variable), or xi appears twice and x̄i appears once in ϕ (we call
such an xi a (2,1)-variable), for i = 1..n. (Note that the case when xi appears once and x̄i

does not appear in ϕ at all, or vice versa, can be easily handled. Hence we can assume that
we do not have these kind of “single-appearance” literals in ϕ.) Without loss of generality,
we assume ϕ = F1 ∧ F2 ∧ · · · ∧ Fm and there are n variables x1, x2, · · · , xn; moreover, we
assume that Fj cannot contain xi and x̄i at the same time. Given Fj we say FjFj forms a
2-duplicated clause-string.
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7:6 The Longest Letter-Duplicated Subsequence Problem

Given a (1,1)-sequence T = ACCA over {A, C}, where A and C both appear twice, it
is easy to see that the maximal (longest) LD-subsequences of T are AA or CC. Similarly,
given a (2,1)-sequence T = ACABCB over {A, B, C}, where A, B and C all appear twice,
it is easy to verify that the maximal LD-subsequences of T are AABB or CC.

For each (1,1)-variable xi, i.e., both xi and x̄i appear once in ϕ, say xi in Fj and x̄i in Fk,
we define Li as a (1,1)-sequence: FjFkFkFj . For each (2,1)-variable xi, i.e., xi appears twice
and x̄i appears once in ϕ, say xi in Fj and Fk, and x̄i in Fℓ, we define Li as a (2,1)-sequence:
FjFℓFjFkFℓFk.

Now we proceed to construct the sequence S from an (≤ 2, 1,≤ 3)-SAT instance ϕ.

S = g1g1L1g2g2 · · · gigiLi · · · gn−1gn−1Ln−1gngnLngn+1gn+1.

We claim the following: ϕ is satisfiable if and only if LLDS+ has a solution of length at
least 2(n + 1) + 4K1 + 2K2 + 2J , where K1, K2 are the number of (2,1)-variables in ϕ which
are assigned True and False respectively and J is the number of (1,1)-variables in ϕ.

Proof.
“Only-if part”. Suppose that ϕ is satisfiable. If a (1,1)-variable xi is assigned True, to have
a solution for LLDS+, in Li we select the 2-duplicated clause-string FjFj ; likewise, if xi

is assigned False we select FkFk instead. Similarly, if a (2,1)-variable xi is assigned True,
to have a solution for LLDS+, in Li we select two 2-duplicated clause-strings FjFjFkFk;
likewise, if xi is assigned False we select FℓFℓ. Since gigi only occurs once in S and T ,
we must include them in the solution. Clearly we have a solution for LLDS+ with length
2(n + 1) + 4K1 + 2K2 + 2J .

“If part”. If LLDS+ has a solution of length at least 2(n+1)+4K1 +2K2 +2J , by definition,
it must contain all gigi’s. To find the truth assignment, we look at the contents between gigi

and gi+1gi+1 in the solution as well as in S (i.e., Li). If xi is a (1,1)-variable, Li = FjFkFkFj

and in the solution FjFj is kept then we assign xi ← True; otherwise, we assign xi ← False.
If xi is a (2,1)-variable, Li = FjFℓFjFkFℓFk and in the solution either FjFjFkFk, FjFj or
FkFk is kept then we assign xi ← True. (When FjFj or FkFk is kept, then the LLDS+
solution could be longer by augmenting this sub-solution to FjFjFkFk.) If in the solution
FℓFℓ is kept instead then we assign xi ← False. Since all clauses must appear in a solution
of LLDS+, clearly ϕ is satisfied. ◀

We comment that 2(n + 1) + 4K1 + 2K2 + 2J = 2(n + 1) + 2K1 + 2n = 4n + 2 + 2K1,
as K1 + K2 + J = n. (Note that K1 only represents a part of the truth assignment for ϕ

and it could be general, i.e., K1 could be Ω(n).) But the former makes our arguments more
clear. This reduction obviously takes O(m + n) time. Note that each 3-clause Fj appears 6
times in S and each 2-clause Fℓ appears 4 times in S respectively, while each gk, k ∈ [n + 1],
appears twice in S. Since we could arbitrarily add an LD-block uj , with u ̸∈ Σ and j ≥ 6, at
the end of S, we have the following theorem.

▶ Theorem 6. The decision version of LLDS+(d) is NP-complete for d ≥ 6.

We next present an example for this proof.

▶ Example. Let ϕ = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨
x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x̄4 ∨ x̄5). Then

S =g1g1F1F2F1F4F2F4 · g2g2F1F2F1F3F2F3 · g3g3F1F3F1F2F3F2

· g4g4F3F5F3F4F5F4 · g5g5F4F5F5F4 · g6g6,
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Corresponding to the truth assignment, x1, x4 = True and x2, x3, x5 = False, we have

S′ = g1g1F1F1F4F4 · g2g2F2F2 · g3g3F3F3 · g4g4F3F3F4F4 · g5g5F5F5 · g6g6,

which is of length 2(5 + 1) + 4×K1 + 2×K2 + 2× 1 = 12 + 4× 2 + 2× 2 + 2 = 26.

The above theorem implies the following corollary.

▶ Corollary 7. FT(d) is NP-complete for d ≥ 6.

Proof. The reduction remains the same. We just need to augment the proof in the reverse
direction. Suppose there is a feasible solution S′′ for S for the feasibility testing problem.
Again, all gigi’s must be in S′′. We now look at the contents between gigi and gi+1gi+1 in
S (i.e., Li) and S′′. Corresponding to Li, if in S′′ we have an empty string between gigi

and gi+1gi+1, then we can assign xi either as True or False. If Li = FjFkFkFj , i.e., xi is
a (1,1)-variable, and FjFj is kept in S′′ then we assign xi ← True; otherwise, we assign
xi ← False. If Li = FjFℓFjFkFℓFk, i.e., xi is a (2,1)-variable, and either FjFjFkFk, FjFj

or FkFk is kept in S′′ then we assign xi ← True. If in the solution FℓFℓ is kept instead
then we assign xi ← False. By definition, all clauses must appear in S′′ (solution of FT),
clearly ϕ is satisfied. It is clear that FT belongs to NP as a solution can be easily checked in
polynomial time. ◀

The above corollary essentially implies that the optimization version of LLDS+(d),
d ≥ 6, does not admit any polynomial-time approximation algorithm (regardless of the
approximation factor), since any such approximation would have to return a feasible solution.
A natural direction to approach LLDS+ is to design a bicriteria approximation for LLDS+,
where a factor-(α, β) bicriteria approximation algorithm is a polynomial-time algorithm
which returns a solution of length at least OPT/α and includes at least N/β letters, where
N = |Σ| and OPT is the optimal solution value of LLDS+. We show that obtaining a
bicriteria approximation algorithm for LLDS+ is no easier than approximating LLDS+ itself.

▶ Corollary 8. If LLDS+(d), d ≥ 6, admitted a factor-(α, N1−ϵ) bicriteria approximation
for any ϵ < 1, then LLDS+(d), d ≥ 6, would also admit a factor-α approximation, where N

is the alphabet size.

Proof. Suppose that a factor-(α, N1−ϵ) bicriteria approximation algorithm A exists. We
construct an instance S∗ for LLDS+(6) as follows. (Recall that S is the sequence we
constructed from an (≤ 2, 1 ≤ 3)-SAT instance ϕ in the proof of Theorem 1.) In addition to
{Fi|i = 1..m} ∪ {gj |j = 1..n + 1} in the alphabet, we use a set of integers {1, 2, ..., (m + n +
1)x − (m + n + 1)}, where x is some integer to be determined. Hence,

Σ = {Fi|i = 1..m} ∪ {gj |j = 1..n + 1} ∪ {1, 2, ..., (m + n + 1)x − (m + n + 1)}.

We now construct S∗ as

S∗ =1 · 2 · · · ((m + n + 1)x − (m + n + 1)) · S · ((m + n + 1)x − (m + n + 1))
· ((m + n + 1)x − (m + n + 1)− 1) · · · 2 · 1.

Clearly, any bicriteria approximation for S∗ would return an approximate solution for S as
including any number in {1, 2, ..., (m + n + 1)x − (m + n + 1)} would result in a solution of
size only 2.
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7:8 The Longest Letter-Duplicated Subsequence Problem

Notice that we have N = m + (n + 1) + (m + n + 1)x− (m + n + 1) = (m + n + 1)x. In this
case, the fraction of letters in Σ that is used to form such an approximate solution satisfies

m + (n + 1)
(m + n + 1)x

≤ 1
N1−ϵ

,

which means it suffices to choose x ≥ ⌈2− ϵ⌉ = 2. ◀

3.2 Solving the Feasiblility Testing Version for d = 3
For the Feasibility Testing Version, as mentioned earlier, Corollary 1 implies that the problem
is NP-complete when d ≥ 6. We next show that if d = 3, then the problem can be decided in
polynomial time.

▶ Lemma 9. Given a string S over Σ such that each letter in S appears at most 3 times, if
a feasible solution for FT (3) contains a 3-block then there is a feasible solution for FT (3)
which only uses 2-blocks.

Proof. Suppose that S = · · · a(1) · · · a(2) · · · a(3) · · · , and a(1)a(2)a(3) is a 3-block in a feasible
solution for FT (3). (Recall that the superscript only indicates the appearance order of letter
a.) Then we could replace a(1)a(2)a(3) by either a(1)a(2) or a(2)a(3). The resulting solution is
still a feasible solution for FT (3). ◀

Lemma 2 implies that the FT (3) problem can be solved using 2-SAT. For each letter a,
we denote the interval (a(1), a(2)) as a variable va, and we denote (a(2), a(3)) as v̄a. (Clearly
one cannot select a(1)a(2) and a(2)a(3) as 2-blocks at the same time.) Then, if another interval
(b(1), b(2)) overlaps the interval (a(1), a(2)), we have a 2-SAT clause va ∧ vb = (v̄a ∨ v̄b).
Forming a 2-SAT instance ϕ′′ for all such overlapping intervals and it is clear that we can
decide whether ϕ” is satisfiable in O(n2) time (as we could have O(n2) pairs of overlapping
intervals).

▶ Theorem 10. Let S be a string of length n. Whether FT (3) has a solution can be decided
in O(n2) time.

The theorem immediately implies that LLDS+(3) has a factor-1.5 approximation as
any feasible solution for FT (3) would be a factor-1.5 approximation for LLDS+(3). In the
following, we extend this trivial observation to have a factor-(1.5−O( 1

n )) approximation for
LLDS+(3).

▶ Corollary 11. Let S be a string of length n such that each letter appears at most 3 times
in S. Then LLDS+(3) admits a polynomial-time approximation algorithm with a factor of
1.5−O( 1

n ) if a feasible solution exists.

Proof. First fix some constant (positive integer) D (D < |Σ|). Then for t = 1 to D, we
enumerate all the sets which contains letters appearing exactly 3 times in S. For a fixed t, let
such a set be Ft = {a1, a2, ..., at}. We put the 3-blocks a

(1)
i a

(2)
i a

(3)
i , i = 1..t, in the solution.

(If two such 3-blocks overlap, then we immediately stop to try a different set F ′
t ; and if all

valid sets of size t have been tried, we increment t to t + 1.) The substrings of S, between
a

(1)
i and a

(2)
i , and a

(2)
i and a

(3)
i , will then be deleted. Finally, for the remaining letters we

use 2-SAT to test whether all together, with the 3-blocks, they form a feasible solution (note
that a

(1)
i a

(2)
i a

(3)
i will serve as an obstacle and no valid interval for 2-SAT should contain it),

this can be checked in O(n2) time following Theorem 2. Clearly, with this algorithm, either
we compute the optimal solution with at most D 3-blocks, or we obtain an approximate
solution of value 2|Σ|+ D. Since OPT is at most 3|Σ|, the approximation factor is



W. Lai, A. Liyanage, B. Zhu, and P. Zou 7:9

3|Σ|
2|Σ|+ D

= 1.5−O( 1
|Σ| ),

which is 1.5 − O( 1
n ), because |Σ| is at least ⌈n/3⌉. The running time of the algorithm is

O(
(|Sigma|

D

)
·O(n2)) = O(nD+2), which is polynomial as long as D is a constant. ◀

In the next section, we show that if the LD-blocks are arbitrarily positively weighted,
then the problem can be solved in O(n2) time. Note that the O(n) time algorithm in
Section 2.1 assumes that the weight of any LD-block is its length, which has the property
that ℓ(s) = ℓ(s1) + ℓ(s2), where s = s1s2, s1 and s2 are LD-blocks on the same letter x, and
ℓ(s) is the length of s (or the total number of letters of x in s1 and s2).

4 A Dynamic Programming Algorithm for Weighted-LDS

Given the input string S = S[1...n], let wx(ℓ) be the weight of LD-block xℓ, x ∈ Σ, 2 ≤ ℓ ≤ d,
where d is the maximum number of times a letter appears in S. Here, the weight can be
thought of as a positive function of x and ℓ and it does not even have to be increasing
on ℓ. For example, it could be that w(aaa) = wa(3) = 8, w(aaaa) = wa(4) = 5. Given
wx(ℓ) for all x ∈ Σ and ℓ, we aim to compute the maximum weight letter-duplicated string
(Weighted-LDS) using dynamic programming.

Define T (n) as the value of the optimal solution of S[1...n] which contains the character
S[n]. Define w[i, j] as the maximum weight LD-block S[j]ℓ (ℓ ≥ 2) starting at position i and
ending at position j; if such an LD-block does not exist, then w[i, j] = 0. Notice that S[j]ℓ
does not necessarily have to contain S[i] but it must contain S[j]. We have the following
recurrence relation.

T (0) = 0,

T (i) = max
S[y]̸=S[i]

{
T (y) + w[y + 1, i] if w[y + 1, i] > 0,

0 otherwise.

The final solution value is max
n

T (n). This algorithm clearly takes O(n2) time, assuming
w[i, j] is given. We compute the table w[−,−] next.
1. For each pair of ℓ (bounded by d, the maximum number of times a letter appears in S)

and letter x, compute

w′
x(ℓ) = max

{
w′

x(ℓ− 1)
wx(ℓ)

,

with w′
x(1) = wx(1). This can be done in O(d|Σ|) = O(n2) time.

2. Compute the number of occurrence of S[j] in the range of [i, j], N [i, j]. Notice that i ≤ j

and for the base case we have S[0] = ∅.

N(0, 0) = 0,

N(0, j) = N(0, k) + 1, k = max
{
{y|s[y] = s[j], 1 ≤ y < j}
0
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Table 1 Input table for wx(ℓ), with S = ababbaca and d = 4.

x\ℓ 1 2 3 4
a 5 10 20 15
b 4 16 8 3
c 1 3 5 7

Table 2 Table w′
x(ℓ), with S = ababbaca and d = 4.

x\ℓ 1 2 3 4
a 5 10 20 20
b 4 16 16 16
c 1 3 5 7

And,

N(i, j) =
{

N(i− 1, j), if s[i− 1] ̸= s[j]
N(i− 1, j)− 1, if s[i− 1] = [j]

This step takes O(n2) time.

3. Finally, we compute

w[i, j] =
{

w′
s[j](N(i, j)), if N(i, j) ≥ 2

0, else

This step also takes O(n2) time. We thus have the following theorem.

▶ Theorem 12. Let S be a string of length n over an alphabet Σ and d be the maximum
number of times a letter appears in S. Given the weight function wx(ℓ) for x ∈ Σ and ℓ ≤ d,
the maximum weight letter-duplicated subsequence (Weighted-LDS) of S can be computed in
O(n2) time.

We can run a simple example as follows. Let S = ababbaca. Suppose the table wx(ℓ) is
given as Table 1. At the first step, w′

x(ℓ) is the maximum weight of a LD-block made with x

and of length at most ℓ. The corresponding table w′
x(ℓ) can be computed as Table 2. At the

end of the second step, we have Table 3 computed. From Table 3, the table w[−,−] can be
easily computed and we omit the details. For instance, w[1,−] = [0, 0, 10, 16, 16, 20, 0, 20].
With that, the optimal solution value can be computed as T (8) = 36, which corresponds to
the optimal solution aabbaa.

Table 3 Part of the table N [i, j], with S = ababbaca and d = 4.

i\j 1 2 3 4 5 6 7 8
8 0 0 0 0 0 0 0 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
3 0 0 1 1 2 2 1 3
2 0 1 1 2 3 2 1 3
1 1 1 2 2 3 3 1 4
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Table 4 Summary of results on LLDS+ and FT, the ? indicates that the problem is still open.

d LLDS+(d) F T (d) Approximability of LLDS+(d)
d ≥ 6 NP-hard NP-complete No approximation
d = 3 ? P 1.5-O( 1

n
)

d = 4, 5 ? ? ?

5 Concluding Remarks

We consider the constrained longest letter-duplicated subsequence (LLDS+) and the cor-
responding feasibility testing (FT) problems in this paper, where all letters in the alphabet
must occur in the solutions. We parameterize the problems with d, which is the maximum
number of times a letter appears in the input sequence. For convenience, we summarize the
results one more time in the following table. Obviously, we have many open problems.

We also consider the weighted version (without the “full-appearance” constraint), for
which we give a non-trivial O(n2) time dynamic programming solution.

If we stick with the “full-appearance” constraint, one direction is to consider two additional
variants of the problem where the solutions must be a subsequence of S, in the form of
xd1

1 xd2
2 · · ·x

dk

k with xi being a substring (resp. subsequence) of S with length at least 2,
xj ̸= xj+1 and di ≥ 2 for all i in [k] and j in [k−1]. Intuitively, for many cases these variants
could better capture the duplicated patterns in S. At this point, the NP-completeness
results (similar to Theorem 1 and Corollary 1) would still hold with minor modifications
to the proofs. (This reduction is still from (≤ 2, 1,≤ 3)-SAT and is additionally based
on the following fact: given a (2,1)-sequence T = ABCCAB over {A, B, C}, where A, B

and C all appear twice, the corresponding maximal “substring-duplicated-subsequences” or
“subsequence-duplicated-subsequences” of T are ABAB = (AB)2 or CC.) But whether these
extensions allow us to design good approximation algorithms needs further study. Note that,
without the “full-appearance” constraint, when xi is a subsequence of S, the problem is a
generalization of Kosowski’s longest square subsequence problem [6] and can certainly be
solved in polynomial time.
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Abstract
We study the IS-algorithm, a well-known linear-time algorithm for computing the suffix array of a
word. This algorithm relies on transforming the input word w into another word, called the reduced
word of w, that will be at least twice shorter; then, the algorithm recursively computes the suffix
array of the reduced word. In this article, we study the reduction ratio of the IS-algorithm, i.e., the
ratio between the lengths of the input word and the word obtained after reducing k times the input
word. We investigate both worst cases, in which we find precise results, and random cases, where we
prove some strong convergence phenomena. Finally, we prove that, if the input word is a randomly
chosen word of length n, we should not expect much more than log(log(n)) recursive function calls.
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1 Introduction

The suffix array of a word is the permutation of its suffixes that orders them for the
lexicographic order. Suffix arrays were introduced in 1990 by Manber and Meyers [9] as a
space-efficient alternative to suffix trees. Like suffix trees, they have been used since then in
many applications [1, 3, 10]: data compression, pattern matching, plagiarism detection, . . .

Suffix arrays were first constructed via the construction of suffix trees. Then, various
algorithms were proposed to construct suffix arrays directly [4, 5, 6, 7]. A more comprehensive
list of approaches towards constructing suffix trees can be found in [14]. In 2010, a new
algorithm, called the IS-algorithm, was proposed for constructing suffix arrays [12]. This
algorithm, which is extremely efficient in practice, is recursive: except if the letters of its
input word w are pairwise distinct, in which case the suffix array of w is easy to compute
directly, the algorithm transforms w into a shorter word w′ and deduces the suffix array of w
from the suffix array of w′.

Thus, the question of knowing the reduction ratio |w′|/|w| between the lengths of the
words w′ and w, as well as the number of recursive calls, is critical to evaluating the efficiency
of the algorithm. More generally, denoting by isk(w) the word obtained after k recursive calls
(with is0(w) = w), we wish to evaluate the ratio |isk(w)|/|w| for all k, as well as computing
the number of recursive calls that the algorithm will make, i.e., the maximal value of k.

In this article, we focus on these two questions in two different contexts. In Section 3,
we consider worst cases, and prove that there exist arbitrarily long words w such that
|isk(w)| ≈ 2−k|w| for all k ⩽ log2(|w|) − 3, thereby extending results from [2].

Then, in Section 4, we refine the work of [11] and consider words whose letters are
generated by a Markov chain of order 1. In this context, and under mild conditions about the
Markov chain, we prove, for each integer k ⩾ 0, that the ratio |isk(w)|/|w| almost surely tends
to a given constant γk when |w| → +∞. Finally, in Section 5, we study the constant γ1 (and,
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in some cases, γ2) when the letters of w are identically and independently generated and, in
Section 6, we propose upper bounds on the number of recursive steps on the IS-algorithm
when the letters of w are given by a finite Markov chain.

2 Preliminaries

2.1 Definitions and notations
Let A be a non-empty alphabet, endowed with a linear order ⩽. For every integer n ⩾ 0, we
denote by An the set of words of length n over A, i.e., the set of sequences of n letters in A.
We also denote by A∗ the set of all finite words over A, i.e., the union

⋃
n⩾0 An, and by ε

the empty word.
Let w be a finite word over A. We denote by |w| the length of w, and by w0, w1, . . . , w|w|−1

the letters of w. We may abusively denote by w−k the letter w|w|−k, i.e., the kth rightmost
letter of w. For all integers i and j such that 0 ⩽ i ⩽ j ⩽ |w| − 1, we also denote by wi···j
the word wiwi+1 · · ·wj . Every such word is called a factor of w. If j = |w| − 1, this word is
a suffix of w, and we also denote it by wi···. Finally, given two words u and v, we denote
by u · v their concatenation, i.e., the word u0u1 · · ·u|u|−1v0v1 · · · v|v|−1.

The suffix array [9] of a word w ∈ A∗ is the unique permutation σ of {0, 1, . . . , |w| − 1}
such that wσ(0)··· <lex wσ(1)··· <lex . . . <lex wσ(|w|−1)···, where <lex denotes the lexicographic
ordering. The IS-algorithm [12] aims at computing the suffix array of its input word w in time
linear in |w|, when the alphabet A is either a given finite set or a subset of {0, 1, . . . , |w| − 1}.

2.2 Unimodal factors and one-step reduction
Let w be a finite word over A, and let $ be a fictitious letter, called the sentinel, that is
defined to be smaller than all letters in A. Below, we simply denote by A$ the set A ∪ {$}.

An integer i ⩽ |w| − 1 is said to be w-non-decreasing if there exists an integer j such that
i+ 1 ⩽ j ⩽ |w| − 1 and wi = wi+1 = . . . = wj−1 < wj . If, in addition, i ⩾ 1 and wi−1 > wi,
we say that i is w-locally minimal.

Then, let i0 < i1 < . . . < ik−1 be the w-locally minimal integers (with k ⩾ 0). We also
set ik = |w|, and we abusively set w|w| = $. This amounts to replacing w by the word w · $,
whose suffix array is the same as the one of w, except that we appended the letter $ to every
suffix and that $ is now the least non-empty suffix of w · $.

We define the unimodal factors of w, also called LMS factors [11, 12], as the k words
wi0···i1 , wi1···i2 , . . . , wik−1···ik

, which belong to A+ · (ε+ $). We call these factors unimodal
because each sequence wiℓ

, wiℓ+1, . . . , wiℓ+1 consists of a non-decreasing prefix followed by a
non-increasing suffix, and we denote by eis(w) – for expanded IS-reduction of w – the word
over the infinite alphabet A+ · (ε+ $) whose letters are the unimodal factors of w.

For instance, if w is the word COMBINATORIAL over the latin alphabet A, its unimodal
factors are BINA, ATO, ORIA and AL$, and thus eis(w) is the four-letter word BINA·ATO·ORIA·AL$
over the alphabet A+ · (ε+ $).

In subsequent sections, we may extend to infinite words w (to which we append the letter
$ if w is left-infinite, but not if w is right-infinite) the notions of w-locally minimal integer,
of unimodal factor, and of expanded IS-reduction.

The IS-algorithm roughly works as follows:
1. compute w-locally minimal integers and the associated unimodal factors, which form the

letters of eis(w);
2. sort these factors;
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3. if w has ℓ distinct unimodal factors, identify each factor with an integer i ∈ {0, 1, . . . , ℓ−1}:
factors f and f ′ such that f <lex f

′ are identified with integers i and i′ such that i < i′;
4. identify the word eis(w) with a word is(w) over the alphabet {0, 1, . . . , ℓ− 1};
5. compute the suffix array of is(w), either directly (if the letters of is(w) are pairwise

distinct) or recursively (if at least two letters of is(w) coincide with each other);
6. based on that array, sort all suffixes of w.

As mentioned by its authors [12], steps 1, 3 and 4 of the algorithm can clearly be performed
in time O(|w|). If A is a given finite set, or a subset of {0, 1, . . . , |w| − 1}, bucket sorts allow
sorting in linear time unimodal words whose rightmost letters are already sorted, thereby
performing steps 2 and 6 in time O(|w|). Finally, no two consecutive integers i ⩽ |w| − 1
are w-locally minimal, and therefore |is(w)| ⩽ |w|/2, thereby proving that the IS-algorithm
works in time O(|w|).

Thus, a natural question would be that of evaluating the constant hidden in this O(|w|)
running time. To that end, we could focus closely on how each of the steps 1 to 4 and 6 is
performed. However, several variants might be considered for performing each of these steps.
Consequently, we focus on the step 5 and study the behaviour of the ratio |is(w)|/|w| or,
more generally, |isk(w)|/|w|.

2.3 Markov chains and ergodicity
In Sections 4 to 6, we consider random words, whose letters result from a probabilistic
process, and are random variables that form a (homogeneous) Markov chain. Below, we
focus exclusively on such Markov chains, and thus abandon the epithet “homogeneous”.

Let S be a countable set, let µ : S 7→ R be a probability distribution, and let M : S×S 7→ R
be a function such that

∑
t∈S M(s, t) = 1 for all s ∈ S. A homogeneous Markov chain

with set of states S, initial distribution µ and transition matrix M is a sequence of random
variables (Xn)n⩾0 with values in S such that P(X0 = x) = µ(x) for all x ∈ S and such that,
for every integer n ⩾ 1 and every tuple (x0, x1, . . . , xn) ∈ Sn+1, we have

P(Xn = xn | X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = M(xn−1, xn)

whenever P(X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) > 0. Below, we identify the Markov
chain with the pair (M,µ), or with the transition matrix M in contexts where the initial
distribution is irrelevant and might need to be changed. We also abusively say that (Xn)n⩾0
is a trajectory of the Markov chain (M,µ) or, alternatively, is generated by (M,µ).

The underlying graph of (M,µ) is the weighted graph G = (V,E, π) with vertex set V = S,
edge set E = {(s, t) ∈ S × S : M(s, t) > 0}, and whose weight function π : E 7→ R is defined
by π(s, t) = M(s, t). We say that (M,µ) is irreducible if G is strongly connected, and
aperiodic when the lengths of its cycles have no common divisor d ⩾ 2.

These notions are connected to the ergodicity of a Markov chain, which can be defined as
follows. Given a probability distribution ν on S, we denote by Mν the probability distribution
defined by (Mν)(x) =

∑
y∈S M(y, x)ν(y). Then, the L1 distance between two distributions ν

and θ is defined as the real number ∥ν − θ∥1 =
∑

x∈S |ν(x) − θ(x)|. The Markov chain M is
said to be ergodic if there exists a positive probability distribution ν on S (i.e., a probability
distribution such that ν(x) > 0 for all x ∈ S) such that limk→+∞ ∥ν − Mkθ∥1 = 0 for all
probability distributions θ on S.

Such a distribution ν must be the unique stationary distribution of the Markov chain M ,
i.e., the unique probability distribution such that ν = Mν. Conversely, when M is irreducible
and has a stationary distribution that is positive on S, we say that M is irreducible and
positive recurrent. This latter assumption relieves us from the need of aperiodicity, and yet
retains some desirable properties of ergodic Markov chains.
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A typical example of an ergodic Markov chain arises if P(Xn = t |Xn−1 = s) = ν(t) for
all s and t in S, i.e., if Mθ = ν for all probability distributions θ on S. In that case, the
random variables (Xn)n⩾0 are said to be independent and identically distributed.

We refer the reader to [8, 13] for a comprehensive review about Markov chains and their
properties, from which we present three crucial results below.

▶ Proposition 1 (Corollary 1.18 and Theorem 21.14 of [8]). Every ergodic Markov chain
is irreducible and aperiodic. Conversely, every irreducible and aperiodic Markov chain is
ergodic, provided that its state set is finite or that it has a positive stationary distribution.

We are particularly interested in Theorem 4.16 of [8], on which we will base Section 4.
However, we will not necessarily handle ergodic Markov chains, and therefore we shall relax
the notion of ergodicity to a less stringent, ad hoc notion that we call almost surely eventually
positive recurrent and irreducible (or EPRI) Markov chains.

A Markov chain M with underlying graph G = (S, E, π), is said to be EPRI if there
exists a set X ⊆ S of states, called the terminal component of M , such that (i) X is a
strongly connected component of G; (ii) M has stationary distribution ν, i.e., a probability
distribution ν such that Mν = ν, that is positive on X and zero on S \ X ; and (iii) for every
initial distribution µ, the sequence generated by (M,µ) almost surely contains a vertex x ∈ X .

Note that, since ν is positive on X and zero elsewhere, no edge of G can leave X , i.e., the
set E contains no edge (x, y) such that x ∈ X and y /∈ X .

In this notion, we completely abandon any requirement to be acyclic, which prevents
the L1 convergence that characterises ergodicity. However, when focusing on average, long-
term behaviours of a Markov chain, such as the frequency of occurrence of a given vertex of
sequence of consecutive vertices, whether the Markov chain is cyclic or acyclic is irrelevant.
Thus, we may just focus on irreducible, positive recurrent Markov chains. Moreover, in EPRI
Markov chains, the path followed before entering the terminal component quickly vanishes.
Consequently, the following result, which is usually stated for irreducible, positive recurrent
Markov chains only, can be generalised to all EPRI Markov chains whose state space is either
finite or countably infinite.

▶ Theorem 2 (Theorem 4.16 of [8], Theorem 2.1.1 of [13]). Let (M,µ) = (Xn)n⩾0 be an
EPRI Markov chain with set of states S and stationary distribution ν. Let ℓ be a positive
integer, let f : Sℓ 7→ R be a bounded function, and let

Eν [f ] =
∑

x1,x2,...,xℓ∈S
ν(x1)M(x1, x2)M(x2, x3) · · ·M(xℓ−1, xℓ)f(x1, x2, . . . , xℓ).

We have

P

[
1
n

n−1∑
k=0

f(Xk, Xk+1, . . . , Xk+ℓ−1) n→+∞−−−−−→ Eν [f ]
]

= 1.

Proof. It is well-known [13] that Theorem 2 holds when M is irreducible and positive
recurrent, i.e., when its state space S coincides with its terminal component X .

In the general case, trajectories of the Markov chain almost surely meet X after a finite
number of steps, say p, that depends of the trajectory. Once it meets X , the trajectory starts
behaving like an irreducible, positive recurrent Markov chain with state space X . Thus,

1
n− p

n−1∑
k=p

f(Xk, Xk+1, . . . , Xk+ℓ−1)

converges almost surely (as n → +∞) to Eν [f ]. Theorem 2 follows. ◀
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Finally, a crucial well-known property of irreducible, positive recurrent Markov chains
whose initial distribution coincides with their stationary distribution is that they can be
reversed.

▶ Theorem 3 (Proposition 1.22 of [8]). Let (Xn)n⩾0 be an irreducible, positive recurrent
Markov chain with set of states S, transition matrix M , and whose initial distribution
coincides with the stationary distribution ν of M . For all integers ℓ ⩾ 0, the sequence
(Xℓ−n)0⩽n⩽ℓ contains the first ℓ+ 1 elements of an irreducible, positive recurrent Markov
chain, called the reverse Markov chain of (M,ν), with initial distribution ν and whose
transition matrix M̂ is defined by

M̂(x, y) = ν(y)
ν(x)M(y, x).

More generally, if M is EPRI, and provided that its initial distribution is ν, it already
starts inside of its terminal component X , which it cannot leave. Thus, up to deleting those
states of M that do not belong to X , the Markov chain M becomes irreducible and positive
recurrent, and Theorem 3 applies, with the following caveat: the state space of its reverse
Markov chain is restricted to X , and needs not be extended to states outside of X .

3 Deterministic worst case

By construction, no two consecutive integers i ⩽ |w| − 1 are w-locally minimal, and all
w-locally minimal integers belong to the set {1, 2, . . . , |w| − 2}. Hence, at most (|w| − 1)/2
integers are w-locally minimal. This means that |is(w)| + 1 ⩽ (|w| + 1)/2 and, more generally,
that |isk(w)| + 1 ⩽ 2−k(|w| + 1) for every integer k ⩾ 0 and every word w ∈ A∗ such
that isk(w) exists. A genuine question is then: can we do better? The answer, which was
known to be negative [2] when we allow alphabets A with size log2(|w|), remains negative
for every fixed size |A| ⩾ 2.

▶ Theorem 4. Let A be an alphabet of cardinality at least 4. For every integer n ⩾ 3,
there exists a word w ∈ A2n−1 on which the IS-algorithm performs n− 2 recursive calls, and
|isk(w)| + 1 = 2−k(|w| + 1) for all k ∈ {0, 1, . . . , n− 2}.

Proof. Without loss of generality, we assume that A = {0, 1, 2, 4}. Let also B = {0, 1, 2, 3, 4}.
Then, let φ : B∗ 7→ B∗ and ψ : B∗ 7→ A∗ be morphisms of monoids, uniquely defined by their
values on B: φ(0) = 02, φ(1) = 04, φ(2) = 12, φ(3) = 13 and φ(4) = 14; ψ(a) = a for
all a ∈ A, and ψ(3) = 4. We prove below that the word ψ(φn(3)1···) satisfies the requirements
of Theorem 4.

We say that a word w = w0w1 · · ·wk ∈ B∗ is balanced if (1) its length |w| = k + 1 is even,
(2) its rightmost letter wk = 3, (3) its suffix w1··· contains each of the letters 0, 1, 2, 3, 4, and
(4) for all i ⩽ k−1, we have wi ∈ {0, 1} if i is even and wi ∈ {2, 4} if i is odd. The eight-letter
word φ3(3) = 02140413 is balanced, and φ maps each balanced word to a balanced word.

Provided that w is balanced, the φ(w)1···-minimal integers are 1, 3, 5, . . . , 2k − 1, and the
associated unimodal factors are φ(w1)·φ(w2)0, φ(w2)·φ(w3)0, . . . , φ(wk−1)·φ(wk)0, φ(wk) · $.
Since φ(0)1 = φ(1)1 = 0 and φ(2)1 = φ(3)1 = φ(4)1 = 1, this means that the unimodal
factors of φ(w) are θ(w1), θ(w2), . . . , θ(wk), where we set θ(0) = 021, θ(1) = 041, θ(2) = 120,
θ(3) = 13$ and θ(4) = 140. The function θ is increasing, and thus, is(φ(w)1···) = w1···.

Moreover, if w is balanced, and since the rightmost letter of φ(w) is its only occurrence of
the letter 3, the words φ(w)1··· and ψ(φ(w)1···) have the same unimodal factors, except that
their last factors are 13$ and 14$, respectively. Hence, is(ψ(φ(w)1···)) = is(φ(w)1···) = w1···.
Thus, the map is successively sends ψ(φn(3)1···) to φn−1(3)1···, φ

n−2(3)1···, . . . , φ
3(3)1···, and

observing that is(φ3(3)1···) = 201 completes the proof. ◀
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Although the conclusions of Theorem 4 are not valid for alphabets of cardinality 2 or 3,
it is still possible to find variants of this worst case. In these variants, the first step of the
IS-algorithm is more efficient, with respective reduction ratios of 3 and 5/2, but every word
considered after that first step belongs to an alphabet of cardinality 4, which explains why
the reduction ratios we compute have similar orders of magnitude.

▶ Corollary 5. Let A be an alphabet of cardinality 2. For every integer n ⩾ 3, there
exists a word w ∈ A3×2n−2 on which the IS-algorithm performs n − 1 recursive calls, and
|isk(w)| + 1 = 21−k(|w| + 2)/3 for all k ∈ {1, 2, . . . , n− 1}.

Proof. Let us assume that A = {0, 1}, and let B and φ be the alphabet and the morphism
defined in the proof of Theorem 4. An immediate induction on ℓ shows that, for all ℓ ⩾ 3,
the word φℓ(3) starts with the letter 0, ends with the letter 3, and contains 2ℓ−2 letters 0,
2ℓ−2 letters 1, 2ℓ−2 − 1 letters 2, one letter 3 (the rightmost one) and 2ℓ−2 letters 4.

Then, we consider a new morphism ψ2 : B∗ 7→ A∗, such that ψ2(0) = 0001, ψ2(1) = 001,
ψ2(2) = 01, and ψ2(3) = ψ2(4) = 011. Like in the proof of Theorem 4, we prove that
is(1 · ψ2(w1···)) = is(φ(w)1···) = w1··· when w is balanced, and having counted occurrences
of each letter in φn(3) allows us to conclude that the word 1 · ψ2(φn(3)1···) satisfies the
requirements of Corollary 5. ◀

▶ Corollary 6. Let A be an alphabet of cardinality 3. For every integer n ⩾ 3, there
exists a word w ∈ A5×2n−3 on which the IS-algorithm performs n recursive calls, and
|isk(w)| + 1 = 22−k(|w| + 3)/5 for all k ∈ {1, 2, . . . , n}.

Proof. The proof is the same as that of Corollary 5, except that we have now A = {0, 1, 2}
and that, instead of the morphism ψ2, we use a new morphism ψ3 : B∗ 7→ A∗, such that
ψ3(0) = 001, ψ3(1) = 01, ψ3(2) = 012, ψ3(3) = ψ3(4) = 02. Indeed, we also have
is(1 · ψ3(w1···)) = is(φ(w)1···) = w1··· when w is balanced, from which we conclude that the
word 1 · ψ3(φn(3)1···) satisfies the requirements of Corollary 6. ◀

4 Words generated by an ergodic Markov chain

Let A be a finite or countably infinite set. Below, we study the typical behaviour of the
IS-algorithm on a word w ∈ An whose letters are the first n elements of an EPRI Markov
chain (M,µ) with set of states A. We prove below the following result, which is the main
(and technically most demanding) result presented in this paper.

▶ Theorem 7. Provided that w is generated by an EPRI Markov chain, and for all integers
k ⩾ 0, there exist a constant γk and a sequence (εn)n⩾0 that tends to 0 such that

P
[∣∣∣∣ |isk(w)|

|w|
− γk

∣∣∣∣ ⩾ ε|w|

]
⩽ ε|w|.

A particular case of interest arises when w is a word over a finite alphabet generated by
an ergodic Markov chain. However, even in that restricted case, studying the words isk(w)
for k ⩾ 1 will require us to consider words over infinite alphabets, which might be generated
by Markov chains no longer ergodic, but only EPRI. That is why, facing the need to treat
such a generalised setting, we chose to include it from the start in our study.

In addition, all finite-state Markov chains can be decomposed as a “sum” of EPRI Markov
chains. Indeed, if the underlying graph of such a Markov chain (M,µ) has k terminal
strongly connected components, the Markov chain will almost surely reach one of these
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components. Thus, in order to study the Markov chain (M,µ), we may consider, one by
one, its k terminal components; for each such component K, compute the probability that
(M,µ) eventually reaches K; finally, simulate the behaviour of (M,µ) by first selecting at
random which terminal component K it will reach, and then assuming that (M,µ) must
reach that component, thereby transforming (M,µ) into an EPRI Markov chain. This allows
us to obtain the following variant of Theorem 7.

▶ Theorem 8. Let w be a word whose letters are generated by a finite-state Markov chain.
There exist a constant κ and a probability law X over the set {1, 2, . . . , κ} with the following
property: For all integers k ⩾ 0, there exist constants γ1,k, γ2,k, . . . , γκ,k and a sequence
(εn)n⩾0 that tends to 0 such that, for all i ⩽ κ,∣∣∣∣P [∣∣∣∣ |isk(w)|

|w|
− γi,k

∣∣∣∣ ⩽ ε|w|

]
− P[X = i]

∣∣∣∣ ⩽ ε|w|.

4.1 Generating letters from right to left
In [11], the letters of w are generated from right to left, i.e., the letter wn−k is the kth

element of the Markov chain. Here, we mainly focus on this case too. Generating the letters
of w from right to left makes things easier because, although being w-non-decreasing is
not a local property, it enjoys the following local, recursive characterization: an integer i is
w-non-decreasing if and only if i ⩽ |w| − 2 and either (a) wi < wi+1, or (b) wi = wi+1 and
i+ 1 is w-non-decreasing.

Below, we wish to study the sequence w, is(w), is2(w), . . . and in particular the lengths
of these words. In fact, it will be easier to study the sequence w, eis(w), eis2(w), . . . These
two sequences differ from each other because they do not use the same alphabets. Yet, for
all k ⩾ 0, the words isk(w) and eisk(w) are “isomorphic” to each other: they have the same
length, and there exists an increasing mapping φ from the letters of eisk(w) to those of isk(w),
such that φ(eisk(w)i) = isk(w)i for all i < |eisk(w)|.

Following [11, 12], we transform the Markov chain (M,µ) into another Markov chain
(M,µ) that starts with the letter $ and, in addition to telling which letter we produce,
also tells whether the corresponding index is w-non-decreasing: instead of producing letters
a ∈ A$, this new Markov chain shall produce pairs (a, ↑) or (a, ↓), depending on whether the
current position is w-non-decreasing or not: we produce a pair (a, ↑) if the former case, and
(a, ↓) in the latter case. Formally, the Markov chain (M,µ) is defined as follows. Its states
form the set S = A$ × {↑, ↓}. Its initial distribution is defined by µ($, ↑) = 1, and µ(s) = 0
whenever s ̸= ($, ↑). Its transition matrix is then defined by

M
(
($, ↕), (y, ↓)

)
= µ(y) if y ∈ A;

M
(
(x, ↕), (y, ↓)

)
= M(x, y) if (x, y) ∈ A2 and x < y;

M
(
(x, ↕), (y, ↑)

)
= M(x, y) if (x, y) ∈ A2 and x > y;

M
(
(x, ↕), (y,⇕)

)
= M(x, y) if (x, y) ∈ A2, x = y and ↕=⇕;

M
(
(x, ↕), (y,⇕)) = 0 otherwise.

▶ Proposition 9. Let (M,µ) be an EPRI Markov chain whose terminal component has size
at least two. The Markov chain (M,µ) defined above is EPRI.

Proof. Let G = (A, E, π) be the underlying graph of the Markov chain (M,µ), let X be its
terminal component, and let ν be its stationary distribution. In addition, for all x ∈ A, let
x↑ = {y ∈ X : x < y and (y, x) ∈ E} and x↓ = {y ∈ X : x > y and (y, x) ∈ E}.

CPM 2022



8:8 Reduction Ratio of the IS-Algorithm

Since M(x, x) < 1 for all x ∈ A, the distribution ν on S defined by ν($, ↕) = 0 and by

ν(x, ↕) = 1
1 −M(x, x)

∑
y∈x↕

M(y, x)ν(y)

for all (x, ↕) ∈ A × {↑, ↓} is a probability distribution, because

ν(x, ↑) + ν(x, ↓) = 1
1 −M(x, x)

∑
y : x̸=y

M(y, x)ν(y) = Mν(x) −M(x, x)ν(x)
1 −M(x, x) = ν(x) (1)

for all x ∈ A. We further deduce from (1) that
Mν(x, ↕) −M(x, x)ν(x, ↕) =

∑
y∈x↕

M(y, x)
(
ν(y, ↑) + ν(y, ↓)

)
=

∑
y∈x↕

M(y, x)ν(y)

Mν(x, ↑) −M(x, x)ν(x, ↑) =
∑

y∈x↕

M(y, x)
(
ν(y, ↑) + ν(y, ↓)

)
= (1 −M(x, x))ν(x, ↕),

i.e., that Mν(x, ↕) = ν(x, ↕), for all (x, ↕) ∈ A × {↑, ↓}. This means that ν is a stationary
distribution of (M,µ).

This probability distribution is positive on the set

X def== {(x, ↑) : x ∈ X , x↑ ̸= ∅} ∪ {(x, ↓) : x ∈ X , x↓ ̸= ∅}

and is zero outside of X . Since ν is non-zero, it follows that X is non-empty.
Then, let G be the underlying graph of (M,µ). We shall prove that X satisfies the

requirements (i) and (iii) of EPRI Markov chains. Hence, consider some state (x, ↑) in X ,
and let y be a state in x↑. For every state (z, ↕) in X , the graph G contains a finite path
from z to x whose second-to-last vertex is y, and thus G contains a finite path from (z, ↕)
to (x, ↑). Similarly, every state (x, ↓) in X is accessible from every state (z, ↕) in X , and
thus X satisfies the requirement (i).

Finally, consider some trajectory (Xn)n⩾0 of (M,µ). Deleting its first vertex and removing
the second component of each vertex transforms (Xn)n⩾0 into a trajectory (Xn)n⩾1 of the
Markov chain M , which almost surely contains a vertex x ∈ X and then almost surely meets
a vertex distinct from x; let y be the first such vertex. The trajectory (Xn)n⩾0 contains the
vertex (y, ↑) if y < x, or (y, ↓) if y > x, and in both cases that vertex belongs to X . This
shows that X satisfies the requirement (iii). ◀

Using Theorem 2 for the function f : S × S 7→ R defined by{
f

(
(x, ↑), (y, ↓)

)
= 1 for all x, y ∈ A;

f(u, v) = 0 in all other cases

already allows us to prove a special case of Theorem 7 for k = 1, which was already proven
in [11] in the case A is finite and (M,µ) is ergodic.

However, if the terminal component of M contains only one state z, the Markov
chain (M,µ) is no longer EPRI, since its graph contains two self-loops around (z, ↑) and (z, ↓),
each one with weight 1. We overcome this difficulty by merging the two states (z, ↑) and (z, ↓)
into one single state z, thereby recovering an EPRI Markov chain, and we modify the
function f , redefining it by

f
(
(x, ↑), (y, ↓)

)
= 1 for all x, y ∈ A \ {z};

f
(
(x, ↑), z

)
= 1 for all x ∈ z↓;

f(u, v) = 0 in all other cases.
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Tackling this special case allows us to derive the following result, whose validity does not
depend on the size of the terminal component of M .

▶ Corollary 10. If the letters of w are generated from right to left by an EPRI Markov chain,
there exists a constant γ1 such that P[|eis(w)|/|w| → γ1] = 1.

Moreover, since |isk+1(w)| ⩽ |isk(w)| for all words w and all integers k ⩾ 0, we already
know that Theorem 7 holds, with γk = 0, when the terminal component of M has size one.
Henceforth, we assume that this terminal component has size at least two.

Under this assumption, let us show that the letters of the word eis(w) are also generated
by a Markov chain. In order to do so, we introduce the function M+ : A → R defined by

M+(x) =
∑

y : x<y

M(x, y)

for every letter x ∈ A, and the function m : A+ · (ε+ $) → R defined by

m(w0w1 · · ·wk) = M(w1, w0)M(w2, w1) · · ·M(wk, wk−1)

and m(w · $) = m(w)µ(w−1) for every word w = w0w1 · · ·wk in A+. We also define the set{
U∧ def== {w0w1 · · ·wℓ ∈ A+ · (ε+ $): M+(w0) > 0 and
U∧ def== {w0w1 · · ·wℓ ∈ A+ · (ε+ $): ∃k ⩽ ℓ, w0 ⩽ . . . ⩽ wk−1 < wk ⩾ . . . ⩾ wℓ−1 > wℓ}.

▶ Lemma 11. The letters of the word eis(w) are generated from right to left by the Markov
chain (M̊, µ̊) with set of states U∧, whose initial distribution is defined by

µ̊(w) = M+(w0)m(w)1w−1=$

for every word w ∈ U∧, and whose transition matrix is defined by

M̊(w,w′) = M+(w′
0)

M+(w0)1w0=w′
−1
m(w′).

Proof. Let u(1), u(2), . . . , u(k) be unimodal words such that u(i)
−1 = u

(i+1)
0 for all i ⩽ k − 1.

These are the k rightmost letters of the word eis(w) if and only if there exists a letter x ∈ A
such that x > u

(1)
0 and w · $ ends with the suffix x · u(1) · u(2)

1··· · u(3)
1··· · · ·u(k)

1···, which happens
with probability

Px
def==M

(
u

(1)
0 , x

)
m

(
u(1))m(

u(2)) · · ·m
(
u(k−1))m(

u(k))1
u

(k)
−1 =$.

Summing these probabilities Px for all x > u1
0, we observe that u(1), u(2), . . . , u(k) are the

rightmost letters of eis(w) with probabilityP = M+(
u

(1)
0

)
m

(
u(1))m(

u(2)) · · ·m
(
u(k−1))m(

u(k))1
u

(k)
−1 =$

P = M̊
(
u(2), u(1))M̊(

u(3), u(2)) · · · M̊
(
u(k), u(k−1))µ̊(

u(k)).
Finally, Corollary 10 proves that, if w is a left-infinite word whose letters are generated

by (M,µ) from right to left, the word eis(w) is almost surely infinite. It follows that µ̊ is
indeed a probability distribution and that M is indeed a transition matrix, i.e., that∑

w′∈U∧

µ̊(w′) = 1 and
∑

w′∈U∧

M̊(w,w′) = 1

for all words w ∈ U∧. ◀
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Our next move consists in proving that the Markov chain (M̊, µ̊) is EPRI, by exhibiting
its stationary distribution. To that end, we first require the following result, which roughly
states that “almost surely, every letter of a left-infinite word w generated by (M,µ) belongs
to a unimodal factor of w”, and whose formal proof can be found in Appendix A.1.

▶ Lemma 12. For all letters x ∈ A such that M+(x) ̸= 0, we have

ν(x, ↑) =
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑).

With this result in hand, we can now prove Proposition 13, following the same lines of
the proofs used for Proposition 9.

▶ Proposition 13. Let (M,µ) be an EPRI Markov chain whose terminal component has size
at least two. The Markov chain (M̊, µ̊) is EPRI.

Proof. First, let γ1 be the constant of Corollary 10. Theorem 2 proves that

γ1 =
∑

(x,↑)∈X

 ∑
y∈X : x<y

M(x, y)ν(x, ↑)

 =
∑

(x,↑)∈X

M+(x)ν(x, ↑).

Then, consider the distribution ν̊ defined by

ν̊(w) = 1
γ1
M+(w0)m(w)ν(w−1, ↑)

Lemma 12 proves that∑
w∈U∧

ν̊(w) = 1
γ1

∑
x∈A

M+(x)
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑) = 1
γ1

∑
x∈A

ν(x, ↑)M+(x) = 1,

i.e., that ν̊ is a probability distribution.
Moreover, for every word w ∈ U∧, Lemma 12 also proves that
M̊ν̊(w) = 1

γ1

∑
w′∈U∧

1w−1=w′
0
M+(w0)m(w)m(w′)ν(w′

−1, ↑)

M̊ν̊(w) = 1
γ1
M+(w0)m(w)ν(w−1, ↑) = ν̊(w).

This means that ν̊ is a stationary probability distribution of (M̊, µ̊).
This probability distribution is positive on the set X̊ def== U∧ ∩ X ∗ and is zero outside of

that set. Since ν̊ is a probability distribution, it follows that X̊ ̸= ∅.
Then, let G and G̊ be the respective underlying graphs of (M,µ) and (M̊, µ̊). We shall

prove that X̊ satisfies the requirements (i) and (iii) of EPRI Markov chains.
Hence, consider two words w and w′ in X̊ , and let us choose letters x, y, z, t ∈ X such

that x ∈ (w′
−1)↑, w′

0 ∈ y↓, z ∈ w↑
−1 and w0 ∈ t↓. The graph G contains a finite path that

starts with the letter x, then the letters of w′ (listed from right to left) and then the letter y,
and finishes with the letter z, the letters of w (listed from right to left), and then the letter t.
Writing these letters from right to left, we obtain a word u whose leftmost unimodal factor
is w and whose second rightmost unimodal factor is w′. This proves that G̊ contains a path
from w′ to w, i.e., that X̊ satisfies the requirement (i).

Finally, consider some trajectory (X̊n)n⩾0 of the Markov chain (M̊, µ̊). Up to removing
the first letter of every word (i.e., vertex) w ∈ U∧ encountered on this trajectory, reversing
these shortened words, and then concatenating the resulting words, we obtain a trajectory
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(Xn)n⩾0 of (M,µ). That trajectory almost surely contains a vertex x ∈ X , and will then
keep visiting vertices in X . Thus, our initial trajectory almost surely contains a word X̊n

that is a word with a letter x ∈ X , and all states X̊m such that m ⩾ n+ 1 will then belong
to the set U∧ ∩ X ∗ = X̊, thereby showing that X̊ satisfies the requirement (iii). ◀

▶ Proposition 14. The conclusion of Theorem 7 holds, provided that the letters of w are
generated by an EPRI Markov chain from right to left.

Proof. Let ℓ be the smallest integer, if any, such that the letters of the word eisℓ(w) are not
generated, from right to left, by an EPRI Markov chain whose terminal component has size
at least two.

If ℓ ⩾ k, or if ℓ does not exist, applying Corollary 10 to the words w, eis(w), . . . , eisk−1(w)
proves that, for all i ⩽ k − 1, there exists a positive constant θi such that

P[|eisi+1(w)|/|eisi(w)| → θi] = 1

when |eisi(w)| → +∞. In that case, the constant γk = θ0θ1 · · · θk−1 satisfies the requirements
of Theorem 7.

However, if ℓ ⩽ k− 1, then eisℓ(w) is generated by an EPRI Markov chain whose terminal
component has size one, i.e., consists in an absorbing state. In that case, Corollary 10
proves that |eisℓ+1(w)|/|eisℓ(w)| → 0 almost surely, and thus the constant γk = 0 satisfies
the requirements of Theorem 7. ◀

4.2 Generating letters from left to right
We focus now on the case where the letters of w are generated from left to right, i.e., the
letter wk is the (k + 1)th element of a Markov chain (M ,µ) – we use a bold-face version of
those notations used in Section 4.1.

The two following phenomena make generating the letters of w from left to right harder.
First, whether an integer k is w-non-decreasing depends on the letters wℓ for ℓ ⩾ k, and not
on the letters wℓ for ℓ ⩽ k. Second, we defined w as the prefix of length n of a right-infinite
word w. However, whether a given integer k ⩽ n− 1 is w-non-decreasing may depend on n

since, for instance, n − 1 is never w-non-decreasing. We overcome this second issue by
generalising the notion of non-decreasing integer and of expanded IS-reduction to infinite
words, which allows us to use the following result.

▶ Lemma 15. Let w be a right-infinite word, let n ⩾ 4 be an integer, and let w be a word
such that n − 4 ⩽ |w| ⩽ n + 6 and w0···n−5 = w0···n−5. Finally, let λ be the number of
w-locally minimal integers that are smaller than n. We have λ− 4 ⩽ |eis(w)| ⩽ λ+ 6, and
eis(w)0···λ−5 = eis(w)0···λ−5 if λ ⩾ 4.

Proof. Let i0 < i1 < . . . < iλ−1 the w-locally minimal integers smaller than n. By
construction, we know that ij + 2 ⩽ ij+1 for all j ⩽ λ− 2. This means that iλ−3 ⩽ n− 5,
and therefore an integer j < iλ−3 is w-locally minimal if and only if it is also w-locally
minimal. Thus, the λ−4 first unimodal factors of both w and w are the words wij ...ij+1 , where
0 ⩽ j ⩽ λ−5. This already proves that |eis(w)| ⩾ λ−4 and that eis(w)0···λ−5 = eis(w)0···λ−5.

Finally, if an integer j ⩽ n− 5 is locally w-minimal but not locally w-minimal, we know
that wj−1 = wj−1 > wj = wj , and therefore j is w-non-decreasing but not w-non-decreasing.
This means that wj−1 > wj = wj+1 = . . . = wn−5, and therefore there may be at most
one such integer j. Furthermore, since no two consecutive integers may be w-minimal, the
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interval {n−4, n−3, . . . , n+5} contains at most five w-locally minimal integers. Hence, there
exist at most six w-locally minimal integers that do not belong to the set {i0, i1, . . . , iλ−1}.
This means that |eis(w)| ⩽ λ+ 6. ◀

Lemma 15 allows us to approximate eis(w) with a prefix of length λ of the word eis(w),
and proves that this approximation is of excellent quality. Indeed, if we set λ0 = n, and
inductively define λi+1 as the number of eisi(w)-minimal integers smaller than λi, Lemma 15
ensures that λi − 4 ⩽ |eisi(w)| ⩽ λi + 6. Thus, evaluating |eisi(w)| amounts to evaluating λi:
this is the task on which we focus below, which allows us to identify w with an right-infinite
word, thereby saving us from many technicalities.

The first hurdle we mentioned, which requires being able to “guess” whether a given integer
will be w-non-increasing, is easy to overcome by proceeding as follows. When generating
a new letter a, the corresponding position in the word has a given probability of being
w-non-decreasing, which depends only on a. Thus, we can “guess” whether this position
should be w-non-decreasing with the correct probability, and then stick to our guess. Hence,
once again, we transform our Markov chain (M ,µ) into another Markov chain (M ,µ) that
will generate pairs of the form (wi, ↕i), where wi is the (i+ 1)th letter of our word w, whereas
↕i =↑ if i is w-non-decreasing, and ↕i =↓ otherwise. Note that, unlike its variant (M,µ), this
Markov chain never generates pairs of the form ($, ↕), which means that its state space is
simply a subset of A × {↑, ↓}.

Using this technique allows us to follow the same lines of proof as in Section 4.1. Therefore,
we will just mention some milestone constructions and results towards proving Theorem 7,
and omit their proofs, which can be found in Appendix A.2.

Assume here that the terminal component of the EPRI Markov chain (M ,µ) has size
at least two. Before defining the new Markov chain (M ,µ), we first define functions M↑

and M↓ by

M↑(x) = 1
1 − M(x, x)

∑
y : x<y

M(x, y) and M↓(x) = 1
1 − M(x, x)

∑
y : x>y

M(x, y)

for all x ∈ A. Then, the Markov chain (M ,µ) uses the set of states

S def== {(x, ↕) ∈ A × {↑, ↓} : M↕(x) ̸= 0},

the initial distribution defined by µ(x, ↕) = µ(x)M↕(x) for all (x, ↕) ∈ S, and the transition
matrix defined by

M
(
(x, ↑), (y,⇕)

)
= M⇕(y)

M↑(x) M(x, y) if x < y;

M
(
(x, ↓), (y,⇕)

)
= M⇕(y)

M↓(x) M(x, y) if x > y;

M
(
(x, ↕), (y,⇕)

)
= M(x, x) if x = y and ↕=⇕;

M
(
(x, ↕), (y,⇕)) = 0 otherwise.

As expected, when projecting every pair generated by (M ,µ) onto its first coordinate,
we recover a realisation of the Markov chain (M ,µ). Furthermore, since the word w is now
assumed to be infinite, the kth pair generated by (M ,µ) is of the form (a, ↑) if k − 1 is
w-non-decreasing, or (a, ↓) otherwise, except if the Markov chain keeps looping around a
state (a, ↑), which happens with probability 0 since the terminal component has size at least
two. In addition, this new Markov chain is, unsurprisingly, EPRI.
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If the terminal component of our Markov chain contains only one state, say z, we need
to adapt our construction. For all x ∈ A \ {z}, we have M(x, x) < 1, and thus the above
construction is well-defined on such states. Then, we just merge the two states (z, ↑) and
(z, ↓) into a single sink state, say (z, ↓), and we set M

(
(z, ↓), (z, ↓)

)
= 1.

Fortunately, the following result does not depend on the size of the terminal component
of the Markov chain.

▶ Proposition 9b. Let (M ,µ) be an EPRI Markov chain. The Markov chain (M ,µ) defined
above is EPRI.

Hence, let us consider the function g : S × S 7→ R defined by{
g
(
(x, ↓), (y, ↑)

)
= 1 for all x, y ∈ A;

g(u, v) = 0 in all other cases.

Given a realisation (w0, ↕0), (w1, ↕1), . . . of the Markov chain (M ,µ), and denoting by
w = w0w1 . . . the word obtained by projecting these pairs onto their first coordinate, an integer
i ⩾ 1 is w-locally minimal if and only if ↕i−1 =↓ and ↕i =↑, i.e., if g

(
(wi−1, ↕i−1), (wi, ↕i)

)
= 1.

Thus, using Theorem 2 for the function g and Lemma 15 allows us to prove a special case of
Theorem 7 for k = 1, which consists in the following variant of Corollary 10.

▶ Corollary 10b. If the letters of w are generated from left to right by an EPRI Markov
chain, there exists a constant γ1 such that P[λ1/λ0 → γ1] = 1 when λ0 → +∞.

We focus below on the case where the Markov chain has a terminal component of size at
least two. In that case, we show that the letters of eis(w) are also generated from left to right
by an EPRI Markov chain. Mimicking Section 4.1, we introduce the function m defined by

m(w0w1 · · ·wk) = M(w0, w1)M(w1, w2) · · · M(wk−1, wk)

for every word w0w1 · · ·wk in A∗. We also define the sets
U∧ def== {w0w1 · · · wℓ ∈ A∗ : M↑(wℓ) > 0 and
U∧ def== {w0w1 · · · wℓ ∈ A∗ : ∃k ⩽ ℓ − 1, w0 ⩽ . . . ⩽ wk−1 < wk ⩾ wk+1 ⩾ . . . ⩾ wℓ−1 > wℓ}
V∧ def== {w0w1 · · · wℓ ∈ A∗ : ∃k ⩽ ℓ − 1, w0 ⩽ . . . ⩽ wk−1 ⩽ wk ⩾ wk+1 ⩾ . . . ⩾ wℓ−1 > wℓ}.

▶ Lemma 11b. The letters of the word eis(w) are generated from left to right by the Markov
chain (M̊ , µ̊) with set of states U∧, whose initial distribution is defined by

µ̊(w) =
∑

w′∈V∧

1w′
−1=w0µ(w′

0)m(w′)m(w)M↑(w−1),

and whose transition matrix is defined by

M̊(w,w′) =
M↑(w′

−1)
M↑(w−1)m(w′)1w−1=w′

0
.

▶ Proposition 13b. Let (M ,µ) be an EPRI Markov chain whose terminal component has
size at least two. The Markov chain (M̊ , µ̊) is EPRI.

The above properties allow us to prove the following result.

▶ Proposition 14b. The conclusion of Theorem 7 holds, provided that the letters of w are
generated by an EPRI Markov chain from left to right.
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Proof. Let w be the right-infinite word whose letters are generated, from left to right, by
our Markov chain. Then, let ℓ be the smallest integer, if any, such that the letters of the
word eisℓ(w) are not generated, from left to right, by an EPRI Markov chain whose terminal
component has size at least two.

If ℓ ⩾ k, or if ℓ does not exist, applying Corollary 10b to the words w, eis(w), . . . , eisk−1(w)
proves that, for all i ⩽ k−1, there exists a positive constant θi such that P[λi+1/λi → θi] = 1
when λi → +∞. In that case, the constant γk = θ0θ1 · · · θk−1 satisfies the requirements of
Theorem 7.

However, if ℓ ⩽ k− 1, then eisℓ(w) is generated by an EPRI Markov chain whose terminal
component has size one. In that case, λℓ+1/λℓ → 0 when λℓ → +∞, and therefore the
constant γk = 0 satisfies the requirements of Theorem 7. ◀

5 Words with independent and identically distributed letters

Theorem 7 roughly states that, if the letters of a word w are generated (either from left
to right or from right to left) by an EPRI Markov chain (M,µ), and provided that |w| is
large enough, the ratio |isk(w)|/|w| should be approximately equal to a given constant γk

depending only on k and on the Markov chain.
If we are out of luck, the Markov chain (M,µ) might generate one unique infinite word

of the form w · w · w · · · , where w is one of the worst-case words provided in Theorem 4.
Consequently, and given an integer k ⩾ 0, it is possible to choose the Markov chain (M,µ)
in order to have the equality γk = 2−k. This is indeed a worst case, given that γℓ+1 ⩽ γℓ/2
for every Markov chain and every integer ℓ ⩾ 0.

A specific context that will shield us from such bad cases, while being natural, is that of
words whose letters w0, w1, . . . , wn−1 are independent and identically distributed random
variables with values in the alphabet A. Let X be their common probability law. We first
recall a result that concerns cases where A is finite and X is the uniform law over A.

▶ Proposition 16 (Lemma 3 of [11]). Let w be a word over a finite alphabet A, whose letters
are sampled independently and uniformly over A, i.e., P[wi = a] = 1/|A| for all integers
i ⩽ |w| − 1 and all letters a ∈ A. The constant γ1 of Theorem 7 satisfies the equality

γ1 = 1
3 − 1

6|A|
.

This shows that, in the most simple cases, the constant γ is bounded from above by 1/3,
although γ can be arbitrarily close to 1/3 when the cardinality of A increases. We prove
below that this upper bound is universal.

▶ Proposition 17. Let n ⩾ 1 be an integer, and let A be a finite or countably infinite alphabet.
Let X be a probability law on A, let

Ω def== {t ∈ [0, 1] : ∃a ∈ A such that P[X < a] < t < P[X ⩽ a]}

be a subset of [0, 1] of Lebesgue measure 1, and let f : Ω 7→ A be the function such that f(t)
is the letter a ∈ A for which P[X < a] < t < P[X ⩽ a]. We extend f to a partial function
[0, 1]n 7→ An by setting f(u0u1 · · ·un−1) = f(u0)f(u1) · · · f(un−1) if each letter ui belongs
to Ω, and not defining f over [0, 1]n \ Ωn.

For every word u ∈ Ωn, we have |is(u)| ⩾ |is(f(u))|. Furthermore, if the letters u0, u1, . . . ,

un−1 are independent and distributed according to the uniform law U over [0, 1], they almost
surely belong to Ω, and then the letters f(u0), f(u1), . . . , f(un−1) are also independent and
distributed according to the law X.
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Proof. First, Ω is a disjoint union of countably many intervals whose lengths P[X = a] sum
up to 1, and thus it has Lebesgue measure 1. The last sentence of Proposition 17 is then
immediate. Hence, we focus on proving that |is(u)| ⩾ |is(f(u))| when u ∈ Ωn.

Given a word w, we say that a sequence of integers a1 < b1 ⩽ a2 < b2 ⩽ . . . ⩽ a2k < b2k

is w-alternating of size k if b2k < |w|, wai > wbi for all odd indices i, and wai < wbi for all
even indices i. One checks easily that |is(w)| is the largest size of a w-alternating sequence.
Since every f(u)-alternating sequence is also u-alternating, Proposition 17 follows. ◀

Unfortunately, in general, the letters of the word is(u) are not independent, and both
inequalities |is2(u)| < |is2(f(u))| and |is2(u)| > |is2(f(u))| may hold, which prevents us from
designing simple bijection-flavoured variants of Proposition 17 for investigating the length
of isk(f(u)). Yet, Proposition 17 still leads to the following result.

▶ Theorem 18. For every alphabet A and every probability law X on A, we have γ1 ⩽ 1/3.

Proof. Let u and w be n-letter words whose letters are independent random variables
following the laws U and X, as described in the statement of Proposition 17. Each integer
i ∈ {1, 2, . . . , n− 2} is u-minimal if and only if ui = min{ui−1, ui, ui+1}, which happens with
probability 1/3, while 0 and n− 1 cannot be u-minimal. It follows that

E[|is(w)|] ⩽ E[|is(u)|] = (n− 2)/3 ⩽ n/3

and, thanks to Theorem 7, that γ1 ⩽ 1/3. ◀

In view of Proposition 16 and Theorem 18, proving that γ1 ⩽ 1/3 − 1/(6|A|) even if X is
not uniform might be tempting. Unfortunately, the inequality is invalid when |A| = 3 and
(p1, p2, p3) = (3/8, 1/4, 3/8), because in that case γ1 = 9/32 > 5/18 = 1/3 − 1/(6|A|).

However, the case |A| = 2 is still promising. Indeed, in that case, γ1 = p1(1 − p1) ⩽ 1/4,
and the letters of the word eis(w) are independent and identically distributed, since the only
constraints they are subject to is that they should begin with the letter 0 and end with the
suffix 10. Thus, we can still use Theorem 18 to evaluate the ratio |is2(w)|/|is(w)|, thereby
deriving the following result, which suggests excellent performances of the IS-algorithm.

▶ Proposition 19. If |A| = 2, we have γ1 ⩽ 1/4 and γ2 ⩽ 1/12.

6 Bounding the number of function calls

In this last section, we provide a short argument for proving that, if A is finite and if the
letters of the word w are generated, either from left to right or from right to left, by a
(non necessarily EPRI) Markov chain (M,µ), we should expect O(log(log(|w|))) recursive
function calls. This is the object of the following result, whose formal proof can be found in
Appendix A.3.

▶ Theorem 20. Let w ∈ An be a word whose letters are generated by a Markov chain (M,µ).
For all integers ℓ ⩾ 0, and provided that n is large enough, the IS-algorithm has a probability
P ⩽ n−2ℓ of performing more than 2 log2(log2(n)) + ℓ recursive function calls.

Proof idea. The probability that two independent trajectories of M (whose initial distri-
butions may differ) coincide with each other on their k first steps decreases exponentially
fast with k, unless they get trapped into a cycle from which they cannot escape. However,
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every letter of the word eisℓ(w) represents at least 2ℓ letters from w. Thus, if two such
letters coincide, the word w must contain two identical subwords of length 2ℓ, an event whose
probability decreases severely once 2ℓ exceeds log(|w|).

It remains to treat the case where w gets trapped into a cycle from which it cannot
escape. Again, the probability that it would take more than k steps to reach that cycle
decreases exponentially fast with k, and, when ℓ ⩾ log2(k), these n steps (i.e., letters) will all
be subsumed in the same letter of the word eisℓ(w). However, all the other letters of eisℓ(w)
will coincide with each other, and thus eisℓ+1(w) will contain at most one letter, thereby
preventing subsequent recursive calls to the IS-algorithm. ◀

This result illustrates the fact that detecting as soon as possible special cases in which
suffix arrays are easy to compute (here, observing that the letters of w are pairwise distinct)
can result in dramatically decreasing the size of the recursive call stack. However, the notion
of being a large enough integer n heavily depends on the Markov chain (M,µ), as illustrated
by the worst cases studied in Section 3, which can be arbitrarily well approximated by
Markov chains.
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A Appendix

A.1 Proving Lemma 12

We focus here on formally proving Lemma 12, whose intuitive meaning was already given in
Section 4.1. To that end, we first introduce new variants of the set U∧. These are the sets{

U def== {w0w1 · · ·wℓ ∈ A∗ · (ε+ $): w0 ⩾ . . . ⩾ wℓ−1 > wℓ}
U def== {w0w1 · · ·wℓ ∈ A∗ : w0 ⩽ . . . ⩽ wℓ−1 < wℓ}

of non-increasing (respectively, non-decreasing) words in A∗ · (ε+ $) whose last two letters
differ from each other. We can now prove the following auxiliary result, from which we will
then deduce Lemma 12.

▶ Lemma 11-1. For all letters x ∈ A, we have

ν(x, ↓) =
∑

w∈U : x=w0

m(w)ν(w−1, ↑) and ν(x, ↑) =
∑

w∈U : x=w0

m(w)ν(w−1, ↓).

Proof. Up to reversing the order ⩽ on A$, both equalities are equivalent to each other.
Hence, we focus on proving the left one. Let x be some element of X , let M̂ the reverse
transition matrix of M , such as described in Theorem 3, and let (Yn)n⩾0 be the Markov
chain with first element Y0 = x and with transition matrix M̂ . Then, let T be the stopping
time defined as the smallest integer n ⩾ 1 such that Yn belongs to the set {(y, ↑) : y ∈ X }.
Since M̂ is EPRI, the stopping time T is almost surely finite.

For each word w ∈ U such that x = w0 and w↑
−1 ̸= ∅, i.e., ν(w−1, ↑) ̸= 0, the Markov

chain (Yn)n⩾0 has a probability

Pw
def== M̂

(
(w0, ↓), (w1, ↓)

)
M̂

(
(w1, ↓), (w2, ↓)

)
· · · M̂

(
(w−2, ↓), (w−1, ↑)

)
of starting with the letters (w0, ↓), (w1, ↓), . . . , (w−2, ↓), (w−1, ↑), in which case T = |w| − 1.
Using Theorem 3 and the construction of M , we have

Pw = ν(w−1, ↑)
ν(x, ↓) M(w1, w0)M(w2, w1) · · ·M(w−1, w−2) = m(w)ν(w−1, ↑)

ν(x, ↓) .

Conversely, whenever T < +∞, the Markov chain (Yn)n⩾0 starts with such a sequence of
letters. Consequently, the probabilities Pw sum up to 1, which completes the proof. ◀

▶ Lemma 12. For all letters x ∈ A such that M+(x) ̸= 0, we have

ν(x, ↑) =
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑).

Proof. Let us associate every pair (u, v) ∈ U × U such that u−1 = v0 with the word
w

def==u · v1··· ∈ U∧. Lemma 11-1 then proves that

ν(x, ↑) =
∑

u∈U : x=u0

 ∑
v∈U : u−1=v0

m(u)m(v)ν(v−1, ↑)

 =
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑). ◀
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A.2 Proving Proposition 14b
We focus here on formally proving Proposition 14b, by providing complete proofs of the
results mentioned in Section 4.2. This proofs had first been omitted because of their similarity
to those of Section 4.1. Consequently, we list below results that were mentioned explicitly in
Section 4.2 (sometimes adapting their wording) or were left implicit in Section 4.2 but whose
variants had appeared in Section 4.1.

▶ Proposition 9b. Let (M ,µ) be an EPRI Markov chain whose terminal component has size
at least two. The Markov chain (M ,µ) defined in Section 4.2 is EPRI.

Proof. Let G = (A,E,π) be the underlying graph of the Markov chain (M ,µ), let X be
its terminal component, and let ν be its stationary distribution. In addition, for all x ∈ A,
let x↑ = {y ∈ X : x < y and (x, y) ∈ E} and x↓ = {y ∈ X : x > y and (x, y) ∈ E}.

The distribution ν on S defined by ν(x, ↕) = ν(x)M↕(x) is a probability distribution,
because

ν(x, ↑) + ν(x, ↓) = 1
1 − M(x, x)

∑
y : x̸=y

M(x, y)ν(x) = ν(x) (2)

for all x ∈ A. We also deduce from (2) that
Mν(x, ↕) − M(x, x)ν(x, ↕) =

∑
y : x<y

M↕(x)
M↓(y) M(y, x)ν(y, ↓) +

∑
y : x>y

M↕(x)
M↑(y) M(y, x)ν(y, ↑)

Mν(x, ↕) − M(x, x)ν(x, ↕) = M↕(x)
∑

y : x̸=y

M(y, x)ν(y)

Mν(x, ↕) − M(x, x)ν(x, ↕) = M↕(x) (Mν(x) − M(x, x)ν(x)) = (1 − M(x, x))ν(x, ↕),

i.e., that Mν(x, ↕) = ν(x, ↕), for all (x, ↕) ∈ A × {↑, ↓}. This means that ν is a stationary
distribution of (M ,µ).

This probability distribution is positive on the set X def== {(x, ↕) ∈ S : x ∈ X }, and zero
outside of X . Since ν is non-zero, it follows that X is non-empty.

Now, let G be the underlying graph of (M ,µ). We shall prove that X satisfies the
requirements (i) and (iii) of EPRI Markov chains.

Consider two states (x, ↕) in X and (z,⇕) in S. Let y and t be letters in x↕ and z⇕,
respectively. The graph G contains a finite path from z to y whose second vertex is t and
whose second last vertex is x. Therefore, G contains a finite path from (z,⇕) to (x, ↕), which
shows that X satisfies the requirement (i).

Finally, consider a trajectory (Yn)n⩾0 of M . Its projection onto the first component is a
trajectory in G, and almost surely contains a vertex x ∈ X , followed by another vertex y.
Thus, (Yn)n⩾0 contains the vertex (x, ↑) if x < y, or (x, ↓) if x > y, and in both cases that
vertex belongs to X . This shows that X satisfies the requirement (iii). ◀

▶ Lemma 11b. The letters of the word eis(w) are generated from left to right by the Markov
chain (M̊ , µ̊) with set of states U∧, whose initial distribution is defined by

µ̊(w) =
∑

w′∈V∧

1w′
−1=w0µ(w′

0)m(w′)m(w)M↑(w−1),

and whose transition matrix is defined by

M̊(w,w′) =
M↑(w′

−1)
M↑(w−1)m(w′)1w−1=w′

0
.
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Proof. Let u(1), u(2), . . . , u(k) be unimodal words such that u(i)
−1 = u

(i+1)
0 for all i ⩽ k − 1.

These are the k leftmost letters of the word eis(w) if and only if there exists a word v ∈ V∧,
two letters x, y ∈ A and an integer ℓ ⩾ 0 such that v−1 = u

(1)
0 , u(k)

−1 = x < y, and w begins
with the prefix v · u(1)

1··· · u(2)
1··· · · ·u(k)

1··· · xℓ · y. This happens with probability

Pv,xℓ−1·y
def== µ(v0)m(v)m(u(1))m(u(2)) · · · m(u(k))M(x, x)ℓM(x, y).

Summing these probabilities for all v, y and ℓ, we observe that u(1), u(2), . . . , u(k) are the left
letters of eis(w) with probability

P =
∑

v∈V∧

1v−1=w0µ(v0)m(v)m
(
u(1))m

(
u(2)) · · · m

(
u(k))M↑(

u
(k)
−1

)
P = µ̊

(
u(1))M̊

(
u(1), u(2))M̊

(
u(2), u(3)) · · · M̊

(
u(k−1), u(k)).

Finally, Corollary 10b proves that, if w is a right-infinite word whose letters are generated
by (M ,µ) from left to right, the word eis(w) is almost surely infinite. It follows that µ̊ is
indeed a probability distribution that M̊ is indeed a transition matrix, i.e., that∑

w′∈U∧

µ̊(w′) = 1 and
∑

w′∈U∧

M̊(w,w′) = 1

for all words w ∈ U∧. ◀

Then, we adapt Lemma 11-1, which requires introducing variants of the sets U and U
of Section 4.1. These variants are the sets{

U def== {w0w1 · · ·wℓ ∈ A∗ : w0 < w1 ⩾ w2 ⩾ . . . ⩾ wℓ−1}
U def== {w0w1 · · ·wℓ ∈ A∗ : w0 > w1 ⩽ w2 ⩽ . . . ⩽ wℓ−1}.

▶ Lemma 11-1b. For all letters x ∈ A, we have

ν(x) =
∑

w∈U : x=w−1

ν(w0)m(w) and ν(x) =
∑

w∈U : x=w−1

ν(w0)m(w).

Proof. Up to reversing the order ⩽ on A, both equalities are equivalent to each other. Hence,
we focus on proving the left one. Let x be some element of X , let M̂ be the reverse transition
matrix of M , such as described in Theorem 3, and let (Yn)n⩾0 be the Markov chain with
first element Y0 = x and with transition matrix M̂ . Finally, let T be the stopping time
defined as the smallest integer n ⩾ 1 such that Yn < Yn−1. Since M̂ is EPRI, T is almost
surely finite.

For each word w ∈ U such that x = w−1, the Markov chain (Yn)n⩾0 has a probability

Pw
def== M̂(w−1, w−2) · · · M̂(w2, w1)M̂(w1, w0)

of starting with the letters w−1, . . . , w2, w1, w0, in which case T = |w| − 1. Theorem 3 thus
proves that

Pw = ν(w0)
ν(w−1)M(w0, w1)M(w1, w2) · · · M(w−2, w−1) = m(w)ν(w0)

ν(x) .

Conversely, whenever T < 0, the Markov chain (Yn)n⩾0 starts with such a sequence of letters.
Consequently, the probabilities Pw sum up to 1, which completes the proof. ◀
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Let us now introduce the function ν+ : A → R defined by

ν+(x) =
∑

y : x<y

ν(y)M(y, x)

for every letter x ∈ A.

▶ Lemma 12b. For all letters x ∈ A, we have

ν+(x) =
∑

w∈U∧ : x=w−1

ν+(w0)m(w).

Proof. We associate every pair (u, v) ∈ U × U such that u−1 = v0 and v−1 > x with the
pair (y, w) def== (u0, u1··· · v1··· · x) ∈ A × U∧, which is such that y > w0. This association is
bijective, and thus Lemma 11-1b proves that

ν+(x) =
∑

y : x<y

ν(y)M(y, x) =
∑

y : x<y

 ∑
v∈U : v−1=y

 ∑
u∈U : u−1=v0

ν(u0)m(u)m(v)


=

∑
w∈U∧ : x=w−1

ν+(w0)m(w). ◀

▶ Proposition 13b. Let (M ,µ) be an EPRI Markov chain whose terminal component has
size at least two. The Markov chain (M̊ , µ̊) is EPRI.

Proof. First, let γ1 be the constant of Corollary 10b. Theorem 2 proves that

γ1 =
∑
x∈A

ν+(x)M↑(x).

Then, consider the distribution ν̊ defined by

ν̊(w) = 1
γ1

ν+(w0)m(w)M↑(w−1).

Lemma 12b proves that

∑
w∈U∧

ν̊(w) =
∑
y∈A

 ∑
w∈U∧ : y=w−1

ν̊(w)

 = 1
γ1

∑
y∈A

ν+(y)M↑(y) = 1,

i.e., that ν̊ is a probability distribution.
Moreover, for every word w ∈ U∧, Lemma 12b proves that

M̊ν̊(w) = 1
γ1

∑
w′∈U∧ : w′

−1=w0

ν+(w′
0)m(w′ · w)M↑(w−1) = 1

γ1
ν+(w0)m(w)M↑(w−1) = ν̊(w).

This means that ν̊ is a stationary probability distribution of (M̊ , µ̊).
This probability distribution is positive on the set

X̊ def== {w ∈ U∧ ∩ X ∗ : ∃x ∈ X , x > w0 and m(x · w) ̸= 0}

and zero outside of that set. Since ν̊ is a probability distribution, it follows that X̊ ̸= ∅.
Then, let G and G̊ be the respective underlying graphs of (M ,µ) and (M̊ , µ̊). We shall

prove that X̊ satisfies the requirements (i) and (iii) of EPRI Markov chains.
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Hence, consider two words w and w′ in X̊ , and let us choose letters x, y, z, t ∈ X such
that x ∈ (w′

−1)↑, w′
0 ∈ y↓, z ∈ w↑

−1 and w0 ∈ t↓. The graph G contains a finite path that
starts with the letter t, then the letters of w (listed from left to right) and then the letter z,
and finishes with the letter y, the letters of w′ (listed from left to right), and then the letter x.
This path forms a word u whose leftmost unimodal factor is w and whose second rightmost
unimodal factor is w′. This proves that G̊ contains a path from w to w′, i.e., that X̊ satisfies
the requirement (i).

Finally, consider some trajectory (Y̊n)n⩾0 of the Markov chain (M̊ , µ̊). Up to removing
the first letter of every word (i.e., vertex) w ∈ U∧ encountered on this trajectory, and then
concatenating the resulting words, we obtain a trajectory (Yn)n⩾0 of M (for an initial
distribution that may differ from µ). That trajectory almost surely contains a vertex x ∈ X ,
and will then keep visiting vertices in X . Thus, our initial trajectory almost surely contains a
word Y̊n that is a word with a letter x ∈ X , and all states Y̊m such that m ⩾ n+ 1 will then
belong to the set U∧ ∩ X ∗ = X̊ , thereby showing that X̊ satisfies the requirement (iii). ◀

A.3 Proving Theorem 20
▶ Theorem 20. Let w ∈ An be a word whose letters are generated by a Markov chain (M,µ).
For all integers ℓ ⩾ 0, and provided that n is large enough, the IS-algorithm has a probability
P ⩽ n−2ℓ of performing more than 2 log2(log2(n)) + ℓ recursive function calls.

Proof. Given a finite word v with v-locally minimal integers i0 < i1 < . . . < ik−1, we
abusively set ik+1 = |v| and v|v| = $, so that eis(v)ℓ = viℓ···iℓ+1 for all ℓ ⩽ k − 1. Then, let
the source of a word v′ = eis(v)a···b be the word via···ib+1−1, which we also denote by src(v′),
and which is a factor of v1···. If two factors of eis(v) coincide with each other, so do their
sources, and if they do not overlap with each other, neither do their sources. Moreover, the
word src(v′) is at least twice longer than v′.

More generally, the ℓth source of a factor v′ of eisℓ(v), which we denote by srcℓ(v′), is
just v′ itself if ℓ = 0, or the (ℓ− 1)th source of src(v′) if ℓ ⩾ 1. Thus, if two letters of eisℓ(v)
coincide with each other, so do their ℓth sources, which are non-overlapping factors of v2ℓ−1···
of length at least 2ℓ. Moreover, since the last letter of eisℓ(v) is the only one that ends with
the character $, it cannot coincide with any other letter of eisℓ(v). Therefore, the ℓth sources
of our two equal letters are in fact factors of the word v2ℓ−1···|v|−2ℓ .

In addition, we say that the word v is k-periodic except at borders of length b if vj = vj+k

whenever b ⩽ j < j + k ⩽ |v| − b. If the factor vb···|v|−b has exactly one letter, none of the
integers b+ 1, . . . , |v| − b is locally v-minimal, and thus |eis(v)| ⩽ b, thereby proving that the
word eisℓ(v) cannot exist whenever ℓ ⩾ log2(b) +1. This case occurs in particular when k = 1.

Similarly, if |v| ⩽ 2b+ 3k, the word eisℓ(v) cannot exist whenever ℓ ⩾ log2(max{b, k}) + 3.
If, on the contrary, the factor vb···|v|−b has at least two letters and is of length at least 3k,

there exists a factor f of eis(v) whose source is a word of the form vj...j+k−1 for some j such
that b ⩽ j < j + k ⩽ |v| − b. Let us then write v as a concatenation of the form u · src(f )t ·u′

where u and u′ have length at most b+ k, and t is a positive integer. We can also write
eis(v) as a word of the form a · f t · a′ such that src(a) is a suffix of u and src(b) = u′. By
construction, we have

|a| ⩽ |u|/2 ⩽ (b+ k)/2, |f | ⩽ |src(f)|/2 = k/2 and |a′| ⩽ |u′|/2 ⩽ (b+ k)/2,

which means that eis(v) is k′-periodic except at borders of length b′ for some integers
k′ ⩽ k/2 and b′ ⩽ (b+ k)/2 ⩽ max{b, k}. Thus, an immediate induction on k proves that
the word eisℓ(v) cannot exist whenever ℓ ⩾ log2(max{b, k}) + log2(k) + 3.
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Now, let G = (S, E) be the underlying graph of the Markov chain (M,µ), and let s = |S|
be the number of states of the Markov chain. Let X (respectively, Y) be the set of states x ∈ E

that belong to a cyclic (respectively, non-cyclic) terminal connected component of G. Finally,
let ε be the smallest non-zero edge weight in G, i.e., ε = min{M(x, y) : M(x, y) > 0}, and
let η = − log2(1 − εs)/s > 0.

From each state x ∈ E, there is a path starting at x and ending in X ∪ Y . Furthermore,
the shortest such path is of length at most s. It follows, for all k ⩾ 0, that

P[Xk+s ∈ X ∪ Y | Xk = x] ⩾ εs

and, more generally, that

P[Xm /∈ X ∪ Y ] ⩽ (1 − εs)m/s−1 = 2−(m−s)η

for all m ⩾ 0.
Similarly, assume that Y ̸= ∅. Consider some state x ∈ Y, and let y ∈ Y be a state

accessible from x and with at least two outgoing edges (y, z) and (y, z′). Then, let p be a
path from x to y. The shortest such path has length at most s − 1. Therefore, provided
that Xk = x for some integer k ⩾ 0, the trajectory (Xi)i⩾k has a probability at least εs of
starting with the path p and then going to z, and a probability at least εs of starting with
the path p and then going to z′. In particular, for each finite sequence q consisting of s+ 1
states in Y, we have

P[(Xi)k⩽i⩽k+s = q | Xk] ⩽ 1 − εs

and, more generally, if q is a sequence consisting of m+ 1 states in Y, we have

P[(Xi)k⩽i⩽k+m = q | Xk] ⩽ (1 − εs)m/s−1 = 2−(m−s)η.

Finally, assume that w is a word of length n ⩾ 216s2(s+1)+64s2/η, and set u = log2(n)/(4s),
t = 2⌊log2(u)⌋ + ℓ and m = 2t − 1. Since m ⩾ 2ℓ−2u2 − 1 and 2ℓu ⩾ 1, we have

2−(m−s)η ⩽ 2−(2ℓ−2u2−s−1)η ⩽ 2−(2ℓus(s+1)+2ℓ+2us/η−(s+1))η ⩽ 2−2ℓ+2us = n−2ℓ+2
.

In conclusion, let us consider several (non mutually exclusive) events:
the event E1, which occurs if Xm /∈ X ∪ Y ;
the event E2, which occurs if Xm ∈ X ;
for all integers u and v such that m ⩽ u, u+m < v and v +m < n−m, the event Fu,v,
which occurs if Xm ∈ Y and Xu+i = Xv+i whenever 0 ⩽ i ⩽ m.

If E2 happens, the word w is k-periodic except at borders of length m, where k ⩽ s is the
length of the cycle of G to which Xm belongs. Thus, in that case, the IS-algorithm cannot
make more than{

log2(max{s,m}) + log2(s) + 2 = log2(m) + log2(4s)
log2(max{s,m}) + log2(s) + 2 ⩽ 2 log2(u) + log2(4s) + ℓ ⩽ 2 log2(log2(n)) + ℓ

recursive function calls.
Then, if the IS-algorithm makes more than 2 log2(log2(n)) + ℓ ⩾ t recursive function calls,

two letters of the word eist(w) must coincide with each other. This means that two non-
overlapping length-m factors of the word wm···|w|−m−1 must coincide with each other, and
therefore that either Xm /∈ Y or that one of the events Fu,v must have occurred. If Xm /∈ Y ,
and since E2 may not have occurred, this means that E1 occurred.
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Moreover, the events E1 and Fu,v are rare: our above study proves that P[E1] ⩽ n−2ℓ+2 ;
then, for all u and v, the sequence (Xi)u⩽i⩽u+m being fixed, the event Fu,v also occurs with
probability Pu,v ⩽ n−2ℓ+2 .

In conclusion, the IS-algorithm makes more than 2 log2(n) + ℓ recursive function calls
with a probability P ⩽ P[E1] +

∑
u,v P[Fu,v] ⩽ n2 × n−2ℓ+2

⩽ n−2ℓ . ◀
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1 Introduction

1.1 Preliminaries
This paper is concerned with necklaces, otherwise known as circular strings or circular words.
A necklace is a cyclic sequence of characters; each character has a direct predecessor and
a direct successor, but no character begins or ends the sequence. So if 101 is said to be a
necklace, 011 and 110 refer to the same necklace. In the remainder of this paper, the term
string exclusively refers to a sequence of characters with a first character and a last character.
A substring of a necklace is a string of contiguous characters whose length does not exceed
the necklace’s length. So the set of length-2 substrings of the necklace 101 is {10, 01, 11}. A
rotation of a necklace is a substring whose length is precisely the necklace’s length. A prefix
of a string is any substring starting at the string’s first character. So 011 can be called a
rotation of the necklace 101, and 10 is a prefix of that rotation.

A de Bruijn sequence of order N on a size-K alphabet A is a length-KN necklace that
includes every possible length-N string on A as a substring [69, 17, 19, 18]. There are
(K!)KN−1

/KN distinct de Bruijn sequences of order N on A [19]. (See the appendix for a
brief summary of the curious history of de Bruijn sequences.) An example for A = {0, 1}
and N = 4 is the length-16 necklace

0000110101111001 .
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9:2 Arbitrary-Length Analogs to de Bruijn Sequences

A de Bruijn sequence of order N on A is optimally short in the sense that its length is KN ,
and there are KN possible length-N strings on A. But more is true: because any length-m
string on A is a prefix of each of KN−m strings on A when m ≤ N , the sequence has precisely
KN−m occurrences of that length-m string as a substring. So in the example above, there
are 8 occurrences of 0, 4 occurrences of 00, 2 occurrences of 000, and 1 occurrence of 0000.
Note by symmetry, KN−m is also the expected number of occurrences of any length-m string
on A as a substring of a necklace of length KN formed by drawing each of its characters
uniformly at random from A. More generally, by symmetry, L/Km is the expected number
of occurrences of any length-m string on A for m ≤ L as a substring of a necklace of arbitrary
length L formed by drawing each of its characters uniformly at random from A.

1.2 P
(K)
L -sequences

Consider a necklace defined as follows.

▶ Definition 1 (P (K)
L -sequence). A P

(K)
L -sequence is a length-L necklace on a size-K alphabet

A such that for every positive integer m ≤ L, the number of occurrences of any length-m
string on A as a substring of the necklace is ⌊L/Km⌋ or ⌈L/Km⌉.

This paper proves by construction that a P
(K)
L -sequence exists for any combination of K ≥ 2

and L ≥ 1, giving an algorithm for sequence generation that runs in O(L) time using
O(L log K) space.

When L = KN for any positive integer N , ⌊L/Km⌋ = ⌈L/Km⌉ = KN−m for m ≤ N ,
and a P

(K)
L -sequence collapses to a de Bruijn sequence of order N . When L ̸= KN , a

P
(K)
L -sequence is a natural interpolative generalization of a de Bruijn sequence: it is a

necklace for which the number of occurrences of any length-m string on A for m ≤ L as a
substring differs by less than one from its expected value for a length-L necklace formed by
drawing each of its characters uniformly at random from A. When this expected value is an
integer, ⌊L/Km⌋ = ⌈L/Km⌉, and the number of occurrences of any length-m string on A
as a substring of a given P

(K)
L -sequence is equal to the number of occurrences of any other

length-m string on A as a substring of that sequence. When this expected value is not an
integer, a P

(K)
L -sequence comes as close as it can to achieving the same end, as formalized in

the proposition below.

▶ Proposition 2. Consider a P
(K)
L -sequence α̃. Load across length-m strings on A for m ≤ L

is balanced in α̃ as follows.
1. When L/Km is an integer, each length-m string on A occurs precisely L/Km times as a

substring of α̃.
2. When L/Km is not an integer, each of L − Km⌊L/Km⌋ length-m strings on A occurs

precisely ⌈L/Km⌉ times as a substring of α̃, and each of Km⌈L/Km⌉−L length-m strings
on A occurs precisely ⌊L/Km⌋ times as a substring of α̃.

Proof. Item 1 is manifestly true from ⌊L/Km⌋ = ⌈L/Km⌉. To see why item 2 is true,
consider the system of Diophantine equations

a⌊L/Km⌋ + b⌈L/Km⌉ = L

a + b = Km
. (1)

Above, a represents the number of length-m strings on A for which there are ⌊L/Km⌋
occurrences each as a substring of α̃, and b represents the number of length-m strings on A
for which there are ⌈L/Km⌉ occurrences each as a substring of α̃. The first equation says the
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total number of occurrences of strings as substrings of α̃ is L, and the second says there is a
total of Km length-m strings on A. Note the equations hold only when L/Km is nonintegral
– that is, ⌊L/Km⌋ + 1 = ⌈L/Km⌉. In this case, it is easily verified the unique solution to the
system is a = Km⌈L/Km⌉ − L and b = L − Km⌊L/Km⌋. ◀

An example for A = {0, 1} and L = 12 is the sequence

000110111001 . (2)

To see why, note L/Km for L = 12 and K = 2 is 6 for m = 1, 3 for m = 2, between 1 and
2 for m = 3, and between 0 and 1 for any m ≥ 4. Further, the sequence (2) contains, as a
substring, precisely
1. 6 occurrences of each string in the set {0, 1};
2. 3 occurrences of each string in the set {00, 01, 10, 11};
3. 2 occurrences of each string in the set {001, 011, 100, 110}, which is of size L −

Km⌊L/Km⌋ = 12 − 23⌊12/23⌋ = 4, and 1 occurrence of each string in the set
{000, 010, 101, 111}, which is of size Km⌈L/Km⌉ − L = 23⌈12/23⌉ − 12 = 4;

4. 1 occurrence of each string in the set

M := {0001, 0011, 0110, 1101, 1011, 0111, 1110, 1100, 1001, 0010, 0100, 1000} ,

which is of size L−Km⌊L/Km⌋ = 12−24⌊12/24⌋ = 12, and 0 occurrences of each of the set
of length-4 strings on A not in M , which is of size Km⌈L/Km⌉ − L = 24⌈12/24⌉ − 12 = 4;
and

5. 0 or 1 occurrences of any length-m string for 4 < m ≤ L due to item 4 above.

In distinct lines of work from the 1960s and 1970s, both Korobov [51, 52] and Stoneham
[80, 77, 78, 79] explored the extent to which the repetends of base-K “decimal” forms of
reduced proper fractions, when treated as necklaces, differed from expectation for digit
content drawn uniformly at random from [K]. While the perspective differed from ours in
that it did not a demand a particular necklace length L from the outset, the efforts did
uncover that certain fractions in base-K decimal form yielded what we call P

(K)
L -sequences

for particular combinations of K and L. Notably, in [80], Stoneham found that for L + 1
an odd prime and K a primitive root modulo (L + 1)2, the repetend of the base-K decimal
form of 1/(L + 1) is a P

(K)
L -sequence.

1.3 P
(K)
L -sequences vs. other de Bruijn-like sequences

Two other arbitrary-length generalizations of de Bruijn sequences have appeared in the
literature:
1. What we call a Lempel-Radchenko sequence is a length-L necklace on a size-K alphabet A

such that every length-⌈logK L⌉ string on A has at most one occurrence as a substring of
the necklace. As recounted by Yoeli in [87], according to Radchenko and Filippov in [66],
the existence of binary Lempel-Radchenko sequences of any length was first proved by
Radchenko in his unpublished 1958 University of Leningrad PhD dissertation [65]. Other
binary-case existence proofs were furnished by (1) Yoeli himself in [85] and [86]; (2) Bryant,
Heath, and Killik in [8] based on the work [42] of Heath and Gribble; and (3) Golomb,
Welch, and Goldstein in [40]. Explicit constructions of arbitrary-length binary Lempel-
Radchenko sequences were given by Etzion in 1986 [25]. In brief, Etzion’s approach is to
join necklaces derived from the pure cycling register, potentially overshooting the target
length L, and subsequently remove substrings as necessary in the resulting sequence
according to specific rules to achieve the target length. This takes o(log L) time per bit
generated and uses O(log2 L) space.
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The existence of Lempel-Radchenko sequences of any length for any alphabet size was
proved in 1971 by Lempel in [56]. In the special case where the alphabet size is a power of
a prime number, one of two approaches for sequence construction effective at any length
L may be used: either (1) pursue the algebraic construction described by Hemmati and
Costello in their 1978 paper [43], or (2) cut out a length-L stretch of contiguous sequence
generated by a linear feedback function, as described in Chapter 7, Section 5 of Golomb’s
text [39]. In his 2000 paper [54], Landsberg built on Golomb’s technique, explaining in
the appendix how to use it to construct a Lempel-Radchenko sequence on an alphabet
of arbitrary size. The idea is to decompose the desired alphabet size into a product of
powers of pairwise-distinct primes, construct length-L sequences on alphabets of sizes
equal to factors in this product with Golomb’s technique, and finally write a particular
linear superposition of the sequences. The time and space requirements of Hemmati and
Costello’s construction, when optimized, have gone unstudied in the literature. In general,
Golomb’s technique gives a length-L Lempel-Radchenko sequence in O(L log L) time
using O(log L) space, and Landsberg’s generalization multiplies these complexities by the
number of factors in the prime power decomposition of the alphabet size. Etzion suggested
in his 1986 paper [25] that, using results from [24], his algorithm generating a binary
Lempel-Radchenko sequence could be extended to generate a Lempel-Radchenko sequence
for any alphabet size, but he did not do so explicitly. It is reported on Joe Sawada’s
website [20] that in their recent unpublished manuscript [41], Gündoǧan, Sawada, and
Cameron extend Etzion’s construction to arbitrary alphabet sizes, streamlining it so it
generates each character in O(log L) time using O(log L) space. Sawada’s website further
includes an implementation in C.

2. A generalized de Bruijn sequence is a length-L Lempel-Radchenko sequence on a size-K
alphabet A such that every length-⌊logK L⌋ string on A is a substring of the sequence.
Generalized de Bruijn sequences were recently introduced by Gabric, Holub, and Shallit in
[32, 37]. These papers also prove generalized de Bruijn sequences exist for any combination
of L ≥ 1 and K ≥ 2. No work to date has given explicit constructions of arbitrary-length
generalized de Bruijn sequences.

We prove the following.

▶ Theorem 3. A P
(K)
L -sequence is a generalized de Bruijn sequence and therefore also a

Lempel-Radchenko sequence.

Proof. Let α̃ be a P
(K)
L -sequence. The proposition is true if and only if

1. every length-⌈logK L⌉ substring of α̃ occurs precisely once in the sequence, and
2. every length-⌊logK L⌋ string on A is a substring of α̃.
Item 1 is true because from Definition 1, α̃ has

⌊L/K⌈logK L⌉⌋ =
{

1 when logK L is an integer
0 otherwise

or ⌈L/K⌈logK L⌉⌉ = 1 occurrences of any length-⌈logK L⌉ string on A as a substring. Item 2
is true because from Definition 1, α̃ has

⌈L/K⌊logK L⌋⌉ =
{

1 when logK L is an integer
k otherwise for k ∈ {2, . . . , K}

or ⌊L/K⌊logK L⌋⌋ ∈ {1, . . . , K − 1} occurrences of any length-⌊logK L⌋ string on A as a
substring. ◀
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P
(K)
L -sequences are more tightly constrained than generalized de Bruijn sequences and Lempel-

Radchenko sequences. A length-L Lempel-Radchenko sequence imposes no requirements
regarding presence or absence of particular strings as substrings; it simply requires that the
number of distinct length-⌈logK L⌉ substrings is L. A length-L generalized de Bruijn sequence
on A goes a step further, requiring not only this distinctness, but also the presence of every
string on A smaller than ⌈logK L⌉ as a substring. A P

(K)
L -sequence goes yet another step

further, requiring not only this presence, but also specific incidences of strings as substrings
that, as best as they can, try not to bias the sequence toward inclusion of any one length-m
string over another. This requirement makes P

(K)
L -sequences, in general, more de Bruijn-like

than Lempel-Radchenko sequences and generalized de Bruijn sequences.
An example (borrowed from [37]) of a Lempel-Radchenko sequence that is not a generalized

de Bruijn sequence and therefore also not a P
(K)
L -sequence for A = {0, 1} and L = 11 is

10011110000 . (3)

In this case, ⌈logK L⌉ = ⌈log2 11⌉ = 4, and indeed, there is precisely one occurrence in (3) of
every length-4 substring of (3). But ⌊logK L⌋ = ⌊log2 11⌋ = 3, and in (3) just 7 of 8 length-3
strings on A occur as substrings; the sequence is missing 101. An example of a generalized
de Bruijn sequence that is not a P

(K)
L -sequence for A = {0, 1, 2} and L = 12 is

000111101011 . (4)

Again, ⌈logK L⌉ = ⌈log2 12⌉ = 4 and ⌊logK L⌋ = ⌊log2 12⌋ = 3. Now, not only is there
precisely one occurrence in (4) of every length-4 substring of (4), but also all 8 length-3
strings on A occur as substrings. However, (4) should have ⌈L/K⌉ = ⌊L/K⌋ = 12/2 = 6
occurrences of each of 1 and 0 as substrings to be a P

(K)
L -sequence, and it has 5 occurrences of

0 and 7 occurrences of 1. This imbalance of 0s and 1s leads to further violations of constraints
on P

(K)
L -sequences at other substring lengths. Another example of a generalized de Bruijn

sequence that is not a P
(K)
L -sequence, this time on the nonbinary alphabet A = {0, 1, 2} and

for L = 20, is

02220010121120111002 . (5)

(This sequence was constructed by Landsberg in [54] using Golomb’s technique from [39] as an
example of a Lempel-Radchenko sequence.) Note ⌈logK L⌉ = ⌈log3 20⌉ = 3 and ⌊logK L⌋ =
⌊log3 20⌋ = 2, every length-3 substring occurs exactly once, and every length-2 string on A is
present as a substring. But (5) should have, for m = 2, precisely ⌈L/Km⌉ = 20/32 = 3 or
⌊L/Km⌋ = 20/32 = 2 occurrences of every length-2 string on A as a substring, and there is
only 1 occurrence of 21 as a substring of (5).

1.4 de Bruijn sequence constructions vs. de Bruijn-like sequence
constructions

Unlike the current situation with de Bruijn-like sequences of arbitrary length, there is a
veritable cornucopia of elegant constructions of de Bruijn sequences. Excellent summaries of
many of these are provided on Sawada’s website [20]. They include
1. greedy constructions. Prominent examples are the prefer-largest/prefer-smallest [58],

prefer-same [23, 29, 3], and prefer-opposite [4] algorithms;
2. shift rules. A shift rule maps a length-N substring of a de Bruijn sequence of order N to

the next length-N substring of the sequence. Shift rules are often simple, economical,
and efficient; examples generating each character of a de Bruijn sequence in amortized
constant time using O(N) space are [73, 45, 26, 28] in the binary case and [74] in the
K-ary case. See [5, 47, 35, 36, 84, 13, 88] for other specific rules;
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3. concatenation rules. The best-known example, obtained by Fredricksen and Maiorana
in 1978 [31], joins all Lyndon words on an ordered alphabet of size K whose lengths
divide the desired order N in lexicographic order to form the lexicographically smallest
(i.e., “granddaddy”) de Bruijn sequence of that order on that alphabet. (Also see [27]
for Ford’s independent work generating this sequence.) The sequence is obtained in
amortized constant time per character using O(N) space with the efficient Lyndon word
generation approach of Ruskey, Savage, and Wang [68], which builds on Fredricksen,
Kessler, and Maiorana’s papers [31, 30]. Dragon, Hernandez, Sawada, Williams, and
Wong recently discovered that joining the Lyndon words in colexicographic order instead
also outputs a particular de Bruijn sequence, the “grandmama” sequence [22, 21]. A
generic concatenation approach using colexicographic order is developed in [33, 34];

4. recursive constructions. Broadly, these approaches are based on transforming a de Bruijn
sequence into a de Bruijn sequence of higher order, where the transformation can be
implemented recursively. They fall into two principal classes:
a. the constructions of Mitchell, Etzion, and Paterson in [59], which interleave punctured

and padded variants of a binary de Bruijn sequence of order N and modify the result
slightly to obtain a binary de Bruijn sequence of order 2N . If starting with a known
binary de Bruijn sequence, this process takes amortized O(1) time per output bit
while using O(1) additional space. The constructions are notable for being efficiently
decodable – that is, the position of any given string on A occurring exactly once in
the sequence as a substring can be retrieved in time polynomial in N ;

b. constructions based on Lempel’s D-morphism (otherwise known as Lempel’s homo-
morphism) [55], whose inverse lifts any length-L necklace β̃ on a size-K alphabet A to
up to K necklaces on A. When β̃ is a de Bruijn sequence of order N , the necklaces
to which it is lifted may be joined to form a de Bruijn sequence of order N + 1.
Efficient implementations constructing binary de Bruijn sequences of arbitrary order
by repeated application of Lempel’s D-morphism are given by Annexstein [6] as well
as Chang, Park, Kim, and Song [12]; in general, a length-L binary de Bruijn sequence
is generated in O(L) time using O(L) space. Lempel confined attention to the binary
case in [55]. An extension to alphabets of arbitrary size was first written by Ronse in
[67] and also developed by Tuliani in [81]; it was further generalized by Alhakim and
Akinwande in [1]. See [38, 2] for other generalizations as well as [81] for a decodable de
Bruijn sequence construction exploiting both interleaving and Lempel’s D-morphism.

It is possible construction techniques for de Bruijn sequences have been more easily
uncovered than for their arbitrary-length cousins as traditionally defined precisely because de
Bruijn sequences are more tightly constrained. But P

(K)
L -sequences are similarly constrained.

1.5 Our contribution

This paper defines P
(K)
L -sequences. Further, it extends recursive de Bruijn sequence con-

structions based on Lempel’s D-morphism [55, 67, 81, 1], giving an algorithm that outputs a
P

(K)
L -sequence on the alphabet {0, . . . , K − 1} for any combination of L ≥ 1 and K ≥ 2 in

O(L) time using O(L log K) space. The essence of our approach is to lengthen each of di

longest runs of the same nonzero character by a single character at the ith step before lifting,
where the {di} are the digits of the desired length L of the P

(K)
L -sequence when expressed

in base K – that is, for L =
∑⌊logK L⌋

i=0 diK
⌊logK L⌋−i. Finally, this paper is accompanied by

Python code at https://github.com/nelloreward/pkl implementing our algorithm.

https://github.com/nelloreward/pkl
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We were motivated to study arbitrary-length generalizations of de Bruijn sequences
by [62], which introduces nength, an analog to the Burrows-Wheeler transform [10] for offline
string matching in labeled digraphs. In a step preceding the transform, a digraph with edges
labeled on one alphabet is augmented with a directed cycle that (1) includes every vertex of
the graph and (2) matches a de Bruijn-like sequence on a different alphabet. This vests each
vertex with a unique tag along the cycle. But if the de Bruijn-like sequence is an arbitrary
Lempel-Radchenko or generalized de Bruijn sequence, some vertices may be significantly
more identifiable than others when locating matches to query strings in the graph using its
nength, biasing performance. So in general, it is reasonable to arrange that the directed
cycle matches a P

(K)
L -sequence, which distributes identifiability across vertices as evenly as

possible.
The remainder of this paper is organized as follows. The next section develops our

algorithm for generating P
(K)
L -sequences, proving space and performance guarantees. The

third and final section lists some open questions.

2 Generating P
(K)
L -sequences

2.1 Additional notation and conventions
In the development that follows, necklaces are represented by lowercase Greek letters adorned
with tildes such as β̃ and γ̃, and strings are represented by unadorned lowercase Greek letters
such as ω and ξ. A necklace or string’s length or a set’s size is denoted using | · |. So |β̃| is
the length of the necklace β̃, and |V | is the size of the set V . Necklaces and strings may be in
indexed families, where for example in β̃i, i specifies the family member. Further, a necklace
or string may be written as a function of another necklace or string. So ω(β̃) denotes that
the string ω is a function of the necklace β̃. When any function’s argument is clear from
context, that argument may be dropped with prior warning. So ω(β̃) may be written as,
simply, ω.

The operation of joining two necklaces β̃ and γ̃ at a string ω to form a new necklace λ̃ refers
to cycle joining, described in Chapter 6 of Golomb’s text [39]. λ̃ is obtained by concatenating
rotations of β̃ and γ̃ that share the prefix ω. So if β̃ = 00101101 and γ̃ = 0110001, joining
β̃ and γ̃ at 110 gives λ̃ = 110100101100010. There may be more than one occurrence of ω

as a substring of at least one of β̃ and γ̃, so there may be more than one way to join them
at ω. Any way is permitted in such a case. Note joining β̃ and γ̃ at ω preserves length-m
substring occurrence frequencies for m ≤ |ω| + 1.

For any positive integer j,

[j] := {0, 1, . . . , j − 1} .

While results are obtained for sequences on the alphabet [K] here, they may be translated to
any size-K alphabet A by appropriate substitution of characters. When a string or necklace
is initially declared to be on the alphabet [K], but an expression y for one of its characters
is written such that y /∈ [K], that character should be interpreted as y − K⌊y/K⌋. This
is simply the remainder of floored division of y by K. Put another way, expressions for
characters of strings on [K] respect arithmetic modulo K. For example, if the first character
of a string on the alphabet [2] = {0, 1} is specified as an expression that equals 9, that
character is 1.

Individual characters comprising strings are often expressed in terms of variables, so
a necklace or string may be written as a comma-separated list of characters enclosed by
parentheses, where in the necklace case, ⟳ is included as a subscript. For example, for i = 3,
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9:8 Arbitrary-Length Analogs to de Bruijn Sequences

if (i, i + 1, 0, 1) is said to be on the alphabet [4], it is the string 3001, while if (i, i + 1, 0, 1)⟳
is said to be on [4], it is the necklace 3001. Bracket notation is used to refer to a specific
character of a string or necklace. So ω[i] refers to the character at index i of ω. Further,
characters of a string are indexed in order, so ω[i+1] appears directly after ω[i] in ω. ω[0] and
ω[|ω| − 1] refer, respectively, to the first and last characters of the string ω. For a necklace,
the choice of the character at index 0 is arbitrary, but in a parenthetical representation of
that necklace, the character at index 0 always comes first. So an arbitrary length-L necklace
β̃ always equals

β̃ = (β̃[0], β̃[1], . . . , β̃[L − 1])⟳

but not necessarily

β̃ = (β̃[1], β̃[2], . . . , β̃[L − 1], β̃[0])⟳ .

A valid character index of a string ω is confined to [|ω|], but a valid character index of a
length-L necklace β̃ is any integer j, with the stipulation

β̃[j] = β̃[j + L] .

A string or necklace on [K] can be summed with any integer by adding that integer to each
of its characters modulo K. So for an integer j and a length-L necklace β̃,

β̃ + j = j + (β̃[0], β̃[1], . . . , β̃[L − 1])⟳ = (β̃[0] + j, β̃[1] + j, . . . , β̃[L − 1] + j)⟳ .

Finally, im is used as a shorthand for the length-m string (i, i, . . . , i), i++
m is used as a

shorthand for the length-m string (i, i + 1, . . . , i + m − 1), and ĩ++
m is used as a shorthand

for the length-m necklace (i, i + 1, . . . , i + m − 1)⟳. In a slight abuse of notation, a variable
representing a string such as ω, im, or i++

m can take the place of a character in a parenthetical
representation of a string or necklace. So if (2++

6 , 3) is said to be a substring of a string on
the alphabet [4], that substring is 2301233.

2.2 Lempel’s lift
Lempel’s lift, defined below, realizes the simplest K-ary version of Lempel’s D-morphism
[55, 67, 81, 1] in inverse form.

▶ Definition 4 (Lempel’s lift). Consider a length-L necklace β̃ on the alphabet [K]. Lempel’s
lift of β̃, denoted by {λ̃i(β̃)}, is the indexed family of necklaces on [K] specified by

λ̃i(β̃) = i +

β̃[0], β̃[0] + β̃[1], . . . ,

d(β̃)·L−1∑
j=0

β̃[j]


⟳

i ∈ [p(β̃)] . (6)

Above, d(β̃) is the smallest positive integer such that
(∑L−1

j=0 β̃[j]
)

· d(β̃) is divisible by K,

and p(β̃) = K/d(β̃).

The remainder of this subsection (i.e., Section 2.2) abbreviates functions of β̃ given above by
dropping it as an argument. For example, p is written rather than p(β̃).

Observe that λ̃i is a discrete integral of β̃, with i ∈ [p] the constant of integration. The
number d specified in Definition 4 is the smallest positive integer q ∈ {1, 2, . . . , K} such
that integrating a cycle of β̃ a total of q times gives a cycle of λ̃i. Conversely, β̃ is uniquely
determined by a discrete derivative of λ̃i, which eliminates the constant of integration:

β̃d = (λi[1] − λi[0], λi[2] − λi[1], . . . , λi[d · L − 1] − λi[d · L − 2], λi[0] − λi[d · L − 1])⟳ i ∈ [p] .

Above, the power d on the LHS denotes β̃ is concatenated with itself d times.
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In the case K = 2, Lempel’s lift of β̃ is composed of one necklace if β̃ has an odd number of
1s and two necklaces otherwise. For example, Lempel’s lift of 01011 comprises only 0110110010,
while Lempel’s lift of 01010 comprises 01100 and 10011; further, the derivative of 0110110010 is
0101101011 = (01011)2, while the derivative of each of 01100 and 10011 is 01011. As a nonbinary
example for K = 5, observe that Lempel’s lift of the length-8 necklace 02134012 comprises the single
length-40 necklace

0231001330143341134211244120440224032230 ,

whose derivative is (02134012)5.
Note the sum of the lengths of the necklaces comprising Lempel’s lift of β̃ is K · L. Other

properties of the lift pertinent to constructing P
(K)
L -sequences are as follows.

▶ Lemma 5. Suppose β̃ is a length-L necklace on the alphabet [K], and m is an integer satisfying
0 ≤ m < L. Suppose ω is a length-m string on [K], and ξℓ is the length-(m + 1) string on [K] given
by

ξℓ = ℓ +

(
0, ω[0], ω[0] + ω[1], . . . ,

m−1∑
j=0

ω[j]

)
ℓ ∈ [K] . (7)

Then ω occurs t times as a substring of β̃ if and only if ξℓ occurs t times as a substring of the
necklaces comprising Lempel’s lift of β̃. When m = 0, ω is the length-0 string occurring as a substring
at every character of β̃.

Proof. Start constructing a given λ̃i by integrating β̃ from its character index 0 up to character
index w < L. If ω occurs as a substring of β̃ at index w, it follows from (6) and (7) that ξy occurs as
a substring of λ̃i at its character index w − 1 for some y ∈ [K], and vice versa. For d > 1, continue
integrating β̃ past its character index w for another L characters to encounter ω again. This time,
how p is defined in terms of the sum of β̃’s characters implies ω’s presence as a substring of β̃ at
index w is a necessary and sufficient condition for ξy+p’s presence as a substring of λ̃i at its character
index w − 1 + L. More generally, ω occurs as a substring of β̃ at its character index w if and only if
ξy+qp occurs as a substring of λ̃i at its character index w − 1 + qL for q ∈ [d], and all occurrences
of ξℓ in Lempel’s lift of β̃ for which the difference between ℓ and y is divisible by p are in λ̃i. An
occurrence of ξℓ at any other value of ℓ is easily seen from (6) to be at a corresponding character
index w − 1 + qL of λ̃j for particular j ∈ [p] \ {i} and q ∈ [d]. So there is an invertible map from
the set of distinct occurrences of ω as a substring of β̃ into the set of distinct occurrences of ξℓ as a
substring of Lempel’s lift of β̃ for ℓ ∈ [K], giving the lemma. ◀

▶ Lemma 6. The number of occurrences of a given length-m string on the alphabet [K] for 0 < m ≤ L

as a substring in the family of necklaces comprising Lempel’s lift of a P
(K)
L -sequence on [K] is

⌊L/Km−1⌋ or ⌈L/Km−1⌉.

Proof. From (7), choosing ξℓ uniquely determines ω. So by Lemma 5, any length-m string on
[K] occurs ⌊L/Km−1⌋ or ⌈L/Km−1⌉ times as a substring in the family of necklaces comprising
Lempel’s lift of some length-L necklace β̃ if and only if a certain length-(m − 1) string on [K] occurs
⌊L/Km−1⌋ or ⌈L/Km−1⌉ times as a substring of β̃ for 0 < m ≤ L. This holds by definition when
β̃ is a P

(K)
L sequence, for which every possible length-(m − 1) string on [K] occurs ⌊L/Km−1⌋ or

⌈L/Km−1⌉ times for 0 < m ≤ L, giving the lemma. ◀

2.3 Algorithm and analysis
In this subsection (Section 2.3), α̃ is reserved to denote a P

(K)
L -sequence. Moreover, when a function

from Definition 4 is invoked, and it has α̃ as an argument, that function is abbreviated by dropping
the α̃. For example, p now refers to p(α̃).
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Lemma 6 suggests a way to obtain a P
(K)
K·L-sequence from a P

(K)
L -sequence α̃: join the necklaces

in Lempel’s lift of α̃ strategically to ensure the numbers of occurrences of specific strings as substrings
do not violate the parameters of Definition 1. Below, the procedure LiftAndJoin includes an
explicit prescription, and Theorem 8 proves it works. They are preceded by a requisite lemma
extending the discussion of cycle joining from Section 2.1.

Algorithm 1 Procedure LiftAndJoin referenced in the text.

// Returns the P
(K)
K·L

-sequence formed by joining the necklaces

// comprising Lempel’s lift of an input P
(K)
L

-sequence α̃ on the
// alphabet [K], with K a clarifying input. Here, N := ⌈logK L⌉.

1: procedure LiftAndJoin(α̃, K)
2: Construct Lempel’s lift {λ̃i : i ∈ [p]} of α̃.
3: if p = 1 then // Case 1
4: return λ̃0
5: end if
6: if 1N is a substring of α̃ then // Case 2
7: Find k ∈ [K] such that k++

N
is a substring of each of λ̃0 and λ̃1.

8: Initialize σ̃ to λ̃0.
9: for j := 1 to p − 1 do

10: Set σ̃ to the result of joining σ̃ and λ̃j at s++
N

for s = k + j − 1.
11: end for
12: return σ̃
13: end if
14: Construct the join graph G = (V, E) defined in Theorem 8. // Case 3
15: Initialize σ̃ to the necklace represented by an arbitrary vertex v ∈ V .
16: Starting at v, perform a depth-first traversal of the connected component

GC = (VC , EC) of G for which v ∈ VC , where at each vertex in VC

reached by walking across a given edge in EC , the necklace represented
by that vertex is joined with σ̃ at the string labeling that edge, and the
result is assigned to σ̃.

17: if GC = G then // Case 3a
18: return σ̃
19: end if
20: Find k ∈ [K] such that k++

N−1 is a substring of each of σ̃ and σ̃ + 1. // Case 3b

21: Initialize ζ̃ to σ̃.
22: for j := 1 to p/|VC | − 1 do
23: Set ζ̃ to the result of joining ζ̃ and σ̃ + j at s++

N−1 for s = k + j − 1.
24: end for
25: return ζ̃
26: end procedure

▶ Lemma 7. Consider two necklaces β̃ and γ̃ on the alphabet [K], and suppose the length-(m − 1)
string ω is a substring of each of them. For every k ∈ [K], suppose further that no length-m string
(ω, k) is a substring of each of β̃ and γ̃, and no length-m string (k, ω) is a substring of each of β̃

and γ̃. Finally, suppose every length-(m + 1) string on [K] occurs either zero times or one time as a
substring of the family {β̃, γ̃}. Then
1. every length-(m + 1) string on [K] occurs either zero times or one time as a substring of the

necklace σ̃ formed by joining β̃ and γ̃ at ω, and

2. every length-w string for w ≤ m occurs the same number of times as a substring of {β̃, γ̃} as it
does as a substring of σ̃.

Proof. For u, v, x, y ∈ [K], suppose the length-(m − 1) string ω occurs (1) in β̃ as a substring
of the length-(m + 1) string (u, ω, v), and (2) in γ̃ as a substring of the length-(m + 1) string
(x, ω, y). Join β̃ and γ̃ at these occurrences of ω to obtain the necklace σ̃. The operation replaces
(u, ω, v) and (w, ω, x) with (u, ω, y) and (x, ω, v) while affecting the occurrence frequencies of no
other length-(m + 1) strings as substrings and no length-w strings as substrings for w ≤ m. But
(u, ω, y) cannot occur elsewhere as a substring of σ̃ because if it does, then either (u, ω) or (ω, y)
is a substring of each of β̃ and γ̃, a contradiction. By a parallel argument, (x, ω, v) cannot occur
elsewhere in σ̃. The lemma follows. ◀
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▶ Theorem 8. Given a P
(K)
L -sequence α̃ on the alphabet [K], suppose N = ⌈logK L⌉. Consider

Lempel’s lift {λ̃i : i ∈ [p]} of α̃, and define the join graph G = (V, E) as an undirected graph with p

vertices such that
1. the vertex vi ∈ V represents λ̃i for i ∈ [p], and

2. an edge in E labeled by a length-N string of the form (j++
N−1, k) or (k, j++

N−1) for j, k ∈ [K] extends
between vertex vℓ and vertex vr if and only if that string occurs as a substring of each of λ̃ℓ and
λ̃r for ℓ, r ∈ [p].

Then the length-KL necklace output by LiftAndJoin with α̃ and K as inputs is a P
(K)
K·L-sequence.

Proof. Follow the logic of the LiftAndJoin pseudocode to prove it returns a P
(K)
K·L-sequence. To

start, line 2 constructs Lempel’s lift of α̃, which is composed of p necklaces that together have
precisely the same number of occurrences of any length-m string on [K] as a substring that a
P

(K)
K·L-sequence does, according to Lemma 8. To join the necklaces, various cases are handled in

order of increasing difficulty:
Case 1: (Lines 3-5) This is the most straightforward case, where Lempel’s lift has precisely one

necklace. By Lemma 6 and by definition of a P
(K)
L -sequence, the sole necklace is a P

(K)
K·L-sequence,

and it is returned (Line 4).

Case 2: (Line 6-13) In this case, p > 1 and 1N is a substring of α̃ so that by Lemma 5, k++
N+1 is a

substring of λ̃1 for at least one k ∈ [K]. Consequently, s++
N is a substring of each of λ̃j and λ̃j−1

for j ∈ [p] \ {0} and s = k + j − 1. Progressively joining a necklace under construction with the
jth member λ̃j of Lempel’s lift of α̃ at s++

N for s = k + j − 1 (Lines 8-11) and j running from 1
to p − 1 preserves occurrence frequencies of all strings on [K] whose lengths do not exceed N + 1.
Since by Lemma 6 a length-(N + 1) string occurs either once or never as a substring of Lempel’s
lift of α̃, a string whose length exceeds N + 1 occurs either once or never as a substring of the
joined necklace. So that joined necklace is a P

(K)
K·L-sequence, and it is returned (Line 12). When

α̃ is a de Bruijn sequence (i.e., for L = KN ), Case 2 is the K-ary extension [67, 81, 1] of the
original join prescription of the paper [55] by Lempel introducing his D-morphism.

Case 3: (Lines 14-25) Because a length-N string on [K] need not occur as a substring of α̃, 1N may
not be a substring of α̃. This bars the availability of Lempel’s join of Case 2. LiftAndJoin
then looks for the closest alternative. By definition of a P

(K)
L -sequence, 1N−1 is necessarily a

substring of α̃, and so by Lemma 5, j++
N−1 is a substring of each necklace in Lempel’s lift of α̃ for

some j ∈ [K]. So Line 14 assembles the graph G encoding all possible joins at strings of the
form (j++

N−1, k) or (k, j++
N−1) for j, k ∈ [K]. Consider any connected component GC = (VC , EC) of

G. A depth-first traversal of GC prescribes a sequence of joins, which are performed to obtain a
single necklace σ̃ (Line 16). Two cases are then considered.
Case 3a: (Lines 17-19) In this case, there is just one connected component of G. Since each

join was performed at a length-N string, by an argument parallel to that of Case 2, σ̃ is a
P

(K)
K·L-sequence, and it is returned (Line 18).

Case 3b: (Lines 20-25) If there are multiple connected components of G, by symmetry, GC

is related to any other connected component by translation modulo K. More precisely,
applying vk → vk+j to each vertex vk ∈ VC , ekℓ → ek+j,ℓ+j to each edge ekℓ ∈ EC extending
between vk ∈ VC and vℓ ∈ VC , and ϵkℓ → ϵk+j,ℓ+j + j to each edge label ϵkℓ corresponding to
ekℓ ∈ EC gives a different connected component, where j ∈ [p/|VC |] and addition operations
are performed modulo K. It follows that for every j ∈ [p/|VC |], σ̃ + j gives the result of a
sequence of joins prescribed by a different connected component of G. Because each join
was performed at a length-N string, the necklaces {σ̃ + j : j ∈ [p/|VC |]} together have the
same occurrence frequency of any length-m string on [K] as does Lempel’s lift of α̃ for
m ≤ N + 1. That occurrence frequency is 0 or 1 for m = N + 1, as it therefore also is for
m > N + 1. Because possible joins at strings of the form (s++

N−1, k) or (k, s++
N−1) for s, k ∈ [K]

were exhausted by prior joins, Lemma 7 guarantees that joins of the {σ̃ + j : j ∈ [p/|VC |]} at
strings of the form s++

N−1 for s ∈ [K] preserve the occurrence frequency of any length-m string
on [K] for m ≤ N while ensuring that when m > N , the occurrence frequency of a length-m
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string remains either 0 or 1. So when all necklaces in {σ̃ + j : j ∈ [p/|VC |]} are joined as on
Lines 21-24, the result is a P

(K)
K·L-sequence, and it is returned (Line 25). Note the joins are

performed in exact analogy to those of Case 2.
The output of LiftAndJoin is thus a P

(K)
K·L-sequence. ◀

Repeated application of LiftAndJoin on a P
(K)
L -sequence α̃ outputs a P

(K)
L -sequence whose

length multiplies the length of α̃ by a power of K. But this operation alone does not afford the
expressive capacity to build up a P

(K)
L -sequence of arbitrary length starting from an α̃ of length

less than K, in the same way that an arbitrary positive integer cannot be written as a power of K

times a positive integer less than K. A mechanism for extending the length of α̃ by up to K − 1
between applications of LiftAndJoin is required, where the length of the extension is determined
by an appropriate digit from the base-K representation of L. The mechanism used in the iterative
procedure GeneratePKL below, which outputs a P

(K)
L -sequence for any combination of K ≥ 2 and

L ≥ 1, extends a given longest run of a nonzero character by a single character. Theorem 9 proves
this approach works.

Algorithm 2 Procedure GeneratePKL referenced in the text.

// Returns a P
(K)
L

-sequence on the alphabet [K] given K ≥ 2 and
// L ≥ 1 as inputs. Here, N := ⌈logK L⌉.

1: procedure GeneratePKL(K, L)
2: Compute the digits {di} of L in its base-K representation as specified by

L =
∑N−1

i=0
diKN−i−1.

3: Initialize the necklace α̃ to 1̃++
d0

.
4: for j := 1 to N − 1 do
5: Set α̃ to LiftAndJoin(α̃, K).
6: if dj > 0 then
7: Set α̃ to the extension of α̃ by dj characters obtained by replacing a substring

kj−1 with kj for every k ∈ {1, . . . , dj}.
8: end if
9: end for

10: return α̃
11: end procedure

▶ Theorem 9. GeneratePKL(K, L) outputs a P
(K)
L -sequence for any combination of K ≥ 2 and

L ≥ 1.

Proof. Use the notation α̃0 to denote the value of α̃ after Line 3 of GeneratePKL is executed
and the notation α̃j to denote the value of α̃ after step j of the for loop of GeneratePKL. Prove
the theorem by induction, showing that if α̃j−1 is a P

(K)
Lj−1

-sequence of length Lj−1, and 0m occurs
⌊Lj−1/Km⌋ times as a substring of α̃j−1 for all m ≤ Lj−1, then α̃j is a P

(K)
Lj

-sequence of length
Lj = K · Lj−1 + dj , and 0n occurs ⌊Lj/Kn⌋ times as a substring of α̃j for all n ≤ Lj . The base
case for the induction holds: α̃0, as initialized on Line 3, is the P

(K)
L0

-sequence 1̃++
d0

of length
L0 = d0, in which 0m occurs as a substring ⌊d0/Km⌋ = 0 times for 1 ≤ m ≤ d0 and ⌊d0/Km⌋ = d0

times for m = 0. Now suppose that α̃j−1 is a P
(K)
Lj−1

-sequence of length Lj−1, and 0m occurs
⌊Lj−1/Km⌋ times as a substring of α̃j−1 for all m ≤ Lj−1. Then for every k ∈ [K], km+1 occurs
⌊Lj−1/Km⌋ = ⌊(K · Lj−1)/Km+1⌋ times as a substring of LiftAndJoin(α̃j−1, K), obtained on
Line 5. This follows from
1. Lemma 5, which says there are t occurrences of 0m as a substring of a necklace if and only if

there are t occurrences of km+1 as a substring in Lempel’s lift of that necklace, and

2. how all joins of necklaces in Lempel’s lift prescribed by LiftAndJoin, including those permitted
by Lemma 7, do not affect occurrences of substrings of the form km+1.

The extension performed on Line 7 increases the number of occurrences of km, for k = 1, 2, . . . , dj ,

from ⌊(K · Lj−1)/Km+1⌋ to ⌈(K · Lj−1)/Km+1⌉ without affecting the numbers of occurrences of any
other length-m strings as substrings for m ≤ j. The longest string of 0s is never extended, and the
number of occurrences of 0n remains ⌊(K · Lj−1)/Kn+1⌋ for all n ≤ Lj . So the resulting necklace
α̃j is a P

(K)
Lj

-sequence of length Lj = K · Lj−1 + dj , and 0n occurs ⌊Lj/Kn⌋ times as a substring of
α̃j for all n ≤ Lj .
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The for loop thus encodes the recursion

Lj = K · Lj−1 + dj j ∈ [N − 1] \ {0} (8)

with initial condition L0 = d0. The formula L = LN−1 =
∑N−1

i=0 diK
N−i−1 follows, concluding the

proof. ◀

In the binary case, GeneratePKL and the joins it requires of its subroutine LiftAndJoin
collapse to a particularly simple algorithm, which is given in the procedure GenerateP2L below.

Algorithm 3 Procedure GenerateP2L referenced in the text.

// Returns a P
(2)
L

-sequence on the alphabet {0, 1} given L ≥ 1 as
// an input. Here, N := ⌈log2 L⌉.

1: procedure GenerateP2L(L)
2: Compute the digits {di} of L in its binary representation as specified by L =∑N−1

i=0
di2N−i−1.

3: Initialize the necklace α̃ to the single character 1.
4: for j := 1 to N − 1 do
5: Construct Lempel’s lift {λ̃i : i ∈ [p]} of α̃.
6: if p = 1 then

// α̃ has an odd number of 1s.
7: Set α̃ to λ̃0.
8: else if 1j−1 is a substring of α̃ then
9: Set α̃ to the result of joining λ̃0 and λ̃1 at 0++

j−1.

10: else if λ̃0 and λ̃1 can be joined at (0++
j−2, k) or (k, 0++

j−2) for k ∈ [2] then

11: Set α̃ to the result of joining λ̃0 and λ̃1 at (0++
j−2, k) or (k, 0++

j−2) for k ∈ [2].

12: else
13: Set α̃ to the result of joining λ̃0 and λ̃1 at 0++

j−2.
14: end if
15: if dj = 1 then
16: Set α̃ to the extension of α̃ by a single character obtained by replacing 1j−1

with 1j .
17: end if
18: end for
19: return α̃
20: end procedure

Below is the final theorem of this paper, which proves complexity results.

▶ Theorem 10. GeneratePKL outputs a P
(K)
L -sequence in O(L) time using O(L log K) space.

Proof. The space required by GeneratePKL is dominated by storage of the final P
(K)
L -sequence

itself, which is O(L log K).
To see why the algorithm takes O(L) time, consider first the case L < K. GeneratePKL then

initializes α̃ to the positive integers in order up to and including L (Line 3), which scales as L. It
subsequently skips the for loop and returns α̃.

Now consider the opposite case L ≥ K. Expressing L in base K (Line 2) scales as logK L, and
initializing α̃ (Line 3) scales as K. Focus on Line 5’s call of LiftAndJoin at step j of the for loop,
where the length-Lj−1 necklace α̃j−1 is passed to LiftAndJoin in the notation of Theorem 9’s
proof. Constructing Lempel’s lift of α̃j−1 (Line 2 of LiftAndJoin) scales as K · Lj−1, the total
length of the necklaces constructed. Addressing Case 1 (Lines 3-5) takes constant time. Addressing
Case 2 (Lines 6-13) involves searching α̃j−1 for 1N , which scales as Lj−1, and successively joining
the necklaces comprising Lempel’s lift, which scales as K · Lj−1 if implemented as, e.g., a sequence
of rotations and concatenations in which indexes of join substrings are tracked. Addressing Case 3
in its entirety (Lines 14-24) involves (1) constructing the join graph G, which is dominated by the
K · Lj−1 scaling of searching Lempel’s lift for strings of the form s++

N−1 for s ∈ [K], (2) performing a
depth-first traversal of a connected component of the join graph, which takes time linear in a number
of at most K vertices, and (3) joining necklaces, which also scales as K · Lj−1. So LiftAndJoin
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is dominated by a K · Lj−1 scaling at step j of the for loop of GeneratePKL. Refocusing on
GeneratePKL, extending LiftAndJoin(α̃j−1, K) (Line 7) involves searching for longest runs of
the same character and inserting characters as necessary, scaling as K · Lj−1 if performed in one pass
through the necklace. Therefore, step j of the for loop scales as K · Lj−1, and from the recursion (8),
executing all iterations of the for loop scales as L. The time taken by the for loop dominates that of
Lines 2 and 3. So the overall scaling is L for the two cases L ≥ K and L < K, and GeneratePKL
takes O(L) time. ◀

3 Discussion

In this paper, we have introduced P
(K)
L -sequences as arbitrary-length analogs to de Bruijn sequences.

We have shown by explicit construction that a P
(K)
L -sequence exists for any combination of K ≥ 2 and

L ≥ 1, giving an O(L)-time, O(L log K)-space algorithm extending Lempel’s recursive construction
of a binary de Bruijn sequence. An implementation of the algorithm in Python is available at
https://github.com/nelloreward/pkl.

We conclude with several open questions suggested by our work:
1. What is the number of distinct P

(K)
L -sequences on A for every possible combination of K and

L? As Gabric, Holub, and Shallit did in [32, 37] for generalized de Bruijn sequences, we have
counted P

(2)
L -sequences for L up to 32 by exhaustive search. Table 1 displays our results, which

can be reproduced using code at https://github.com/nelloreward/pkl. Note the counts do
not increase monotonically with L.

2. Can the algorithm for P
(K)
L -sequence generation presented here or a variant be encoded in a

shift rule? This would reduce the space it requires, perhaps at the expense of performance.
An obstacle to deriving a shift rule from the algorithm that works for all values of L at a
given alphabet size K is that it would have to account for cases like those of LiftAndJoin.
See [61, 76, 2] for work along the lines of mathematically unrolling Lempel’s recursion and
generalizations.

3. Are there elegant constructions of P
(K)
L -sequences for any possible combination of K and L that

extend constructions of de Bruijn sequences besides Lempel’s recursive construction? There is a
considerable body of literature on constructing universal cycles. (See, e.g., [46, 48, 71, 72, 83,
36, 75]). Introduced by Chung, Diaconis, and Graham in [14], a universal cycle is a length-L
necklace in which every string in a size-L set S of length-m strings occurs as a substring. It
is possible a set S curated to ensure the universal cycle is a P

(K)
L -sequence is compatible with

existing universal cycle constructions or extensions.
4. Can an efficiently decodable P

(K)
L -sequence be constructed for any possible combination of K

and L? Toward answering this question, it may be worth further investigating the efficient
decoding of Lempel’s recursive construction of a de Bruijn sequence. (See [64] for the binary case
and [81] for the K-ary case.) Other efficiently decodable constructions of de Bruijn sequences
are given in [50, 70].

5. What other properties that can be exhibited by a necklace are preserved under Lempel’s D-
morphism, and how can they be exploited to recursively construct other useful sequences? While
this work was being prepared, Mitchell and Wild posted [60] to arXiv, which shows binary
orientable sequences can be constructed recursively using Lempel’s D-morphism. An orientable
sequence is a necklace ν̃ for which each length-n substring has precisely one occurrence in precisely
one of ν̃ and the reverse of ν̃ [9, 15]. It is perhaps unsurprising that Lempel’s D-morphism, a
kind of derivative, is so versatile and that orientability, P

(K)
L -sequence composition, and efficient

decodability can be preserved by its inverse.

https://github.com/nelloreward/pkl
https://github.com/nelloreward/pkl
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Table 1 Numbers of distinct P
(2)
L sequences on A for various values of L.

L Number of distinct P
(2)
L -sequences L Number of distinct P

(2)
L -sequences

1 2 17 32
2 1 18 36
3 2 19 68
4 1 20 57
5 2 21 138
6 3 22 123
7 4 23 252
8 2 24 378
9 4 25 504
10 3 26 420
11 6 27 1296
12 9 28 1520
13 12 29 2176
14 20 30 2816
15 32 31 4096
16 16 32 2048
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A Appendix: A brief history of de Bruijn sequences
The earliest known recorded de Bruijn sequence is the Sanskrit sutra yamātārājabhānasalagām, a
mnemonic encoding all possible length-3 combinations of short and long vowels [49]. Historians
have had some trouble placing when it was first conceived, but it may be over 2,500 years old [7],
having appeared in work by the ancient Indian scholar Pā

˙
nini (dates of birth and death unavailable).

Little is known of Pā
˙
nini beyond his foundational work A

˙
s
˙
tādhyā̄ı codifying Sanskrit grammatical

structure [82].
The question of whether and how many binary de Bruijn sequences of every order exist was first

posed by A. de Rivière (dates of birth and death unavailable) as problem 48 of [53] in 1894. That
same year, in response to the problem, the number of binary de Bruijn sequences of every order was
counted in [69] by Camille Flye Sainte-Marie (1834–1926), a member of the Mathematical Society of
France who was affiliated with the French military throughout his career [11]. His work was quickly
forgotten.

Monroe Harnish Martin (1907–2007) was first to prove the existence of de Bruijn sequences of
any order for any alphabet size in his 1934 paper [58] by explicit construction, shortly before arriving
at the University of Maryland, where he spent the rest of his eminent career. Without knowing of
Sainte-Marie’s work, Nicolaas Govert de Bruijn (1918–2012) [63] also counted the number of binary
de Bruijn sequences of every order in his 1946 work [17]. Tatyana van Aardenne-Ehrenfest and de
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Bruijn were first to prove the formula for the number of de Bruijn sequences of any order for any
alphabet size in their 1951 paper [19]. It is notable that after receiving her PhD from the University
of Leiden in 1931, van Ardenne-Ehrenfest (1905–1984) made this and further significant contributions
to the mathematics of sequences despite never holding paid employment as a mathematician and
working as a homemaker [16].

Sainte-Marie’s work was ultimately rediscovered by the well-known MIT combinatorialist Richard
Peter Stanley (1944–) [44], who brought it to the attention of de Bruijn, and in 1975, de Bruijn
issued an acknowledgement [18] of the work. In this acknowledgement, de Bruijn noted that as early
as 1897, Willem Mantel (dates of birth and death unavailable) showed how to construct de Bruijn
sequences of any order for any alphabet size that is prime [57], also in response to A. de Rivière’s
problem.
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Abstract
This paper focuses on the concept of partial permutations and their use in algorithmic tasks. A partial
permutation over Σ is a bijection πpar : Σ1 7→ Σ2 mapping a subset Σ1 ⊂ Σ to a subset Σ2 ⊂ Σ,
where |Σ1| = |Σ2| (|Σ| denotes the size of a set Σ). Intuitively, two partial permutations agree if their
mapping pairs do not form conflicts. This notion, which is formally defined in this paper, enables
a consistent as well as informatively rich comparison between partial permutations. We formalize
the Partial Permutations Agreement problem (PPA), as follows. Given two sets A1, A2 of partial
permutations over alphabet Σ, each of size n, output all pairs (πi, πj), where πi ∈ A1, πj ∈ A2 and
πi agrees with πj . The possibility of having a data structure for efficiently maintaining a dynamic set
of partial permutations enabling to retrieve agreement of partial permutations is then studied, giving
both negative and positive results. Applying our study enables to point out fruitful versus futile
methods for efficient genes sequences comparison in database or automatic color transformation
data augmentation technique for image processing through neural networks. It also shows that an
efficient solution of strict Parameterized Dictionary Matching with One Gap (PDMOG) over general
dictionary alphabets is not likely, unless the Strong Exponential Time Hypothesis (SETH) fails,
thus negatively answering an open question posed lately.
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1 Introduction

Permutations are a classical mathematical concept widely used in computer science: playing
a role in analyzing sorting algorithms [29], being a basic building block in randomization
[19], and appearing in various fields, such as Computational Biology (e.g. [8, 24]), Pattern
Matching (e.g. [4, 32]), Cryptography ( e.g. [21]), and more. A permutation over an alphabet
Σ = {σ1, . . . , σ|Σ|} is a bijection π : Σ 7→ Σ mapping every symbol σi ∈ Σ to a distinct
symbol σj ∈ Σ (where it may be that i = j). In this paper, we focus on the concept of partial
permutations and their use in algorithmic tasks.

A partial permutation over Σ is a bijection πpar : Σ1 7→ Σ2 mapping a subset Σ1 ⊂ Σ to
a subset Σ2 ⊂ Σ, where the sizes of the sets Σ1, Σ2 are equal, i.e., |Σ1| = |Σ2|.1 Partial
permutations are closely related to partial words, defined as follows. A partial word over Σ

1 The subscript par is only used in this paragraph to distinguish a partial permutation from a permutation,
however, throughout the paper we omit it for convenience and denote a partial permutation by π.
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is a word (string) over the alphabet Σ ∪ {♢}, where the symbol ♢ is treated as a hole2. In
the study of partial words, the holes are usually treated as gaps that may be filled by an
arbitrary letter of Σ. Note that, a partial permutation is a partial word π such that each
symbol of Σ appears in π exactly once, and all the remaining symbols of π are holes [17].

The study of partial words was initiated by [11, 34] for comparing genes, where alignment
can be viewed as a construction of two partial words that are compatible in the sense defined
in [11]. However, for the task of comparing genes sequences, partial permutations were
suggested as an appropriate model due to diversity of genes and the incompleteness nature of
such sequences [45]. Partial permutations play a role also in computational tasks other than
computational biology. For example, it can be used for representing color transformations
as a data augmentation technique in image processing through neural networks [26, 37]. In
addition, in pattern matching algorithms strings may be mapped to other strings, as in the
well-known parameterized matching and related problems [9, 35, 40].

Combinatorial aspects of partial words that have been studied include periods in partial
words [11, 41], avoidability/unavoidability of sets of partial words [12, 13], squares in partial
words [22], and overlap-freeness [23]. Combinatorial questions regarding partial permutations
were also studied, e.g., pattern avoidance [17], enumeration [42, 31] or restricted forms [17, 14].

In this paper, we study algorithmic aspects of maintaining partial permutations. To
this end, we next discuss the basic operation of comparing partial permutations, formally
define the concept of their agreement and describe a condition on partial permutations
representations that naturally perceive the agreement between two partial permutations.

1.1 Partial Permutations Comparison
Let R be any representation of a permutation π over an alphabet Σ = {σ1, . . . , σ|Σ|}. Since
R represents the bijection where the domain and codomain of π are identical, it should only
specify the mapped pairs of symbols. Then, it holds that R(π1) = R(π2) if and only if the
permutations π1 and π2 are equal. We refer to this property as the comparison axiom.

Assume any representation R of a partial permutation. Since R represents a bijection
having non-obvious domain and codomain, it should specify the domain and codomain sets
of π (denoted by DR and CR, respectively) as well as the set of symbols pairs mapped
by the bijection (denoted by MR). A comparison of partial permutations based on such a
representation R is more complicated. We may wish to know if two partial permutations are
identical and enforce their representations to be equal, but then we put a rigid limitation on
our notion of comparison. Considering the nature of partial permutations, we may rather
prefer a way to compare the “agreement” between two given partial permutations. Formally,

▶ Definition 1 (Conflict and Agreement of Partial Permutations). Two partial permutations
π1, π2 are conflicting (alternatively, contain a conflict) if either:
1. There exist σi, σj ∈ Σ2, σi ̸= σj, such that there exists σk ∈ Σ1 where π1(σk) = σi and

π2(σk) = σj, or
2. There exist σi, σj ∈ Σ1, σi ̸= σj, such that there exists σk ∈ Σ2 where π1(σi) = π2(σj) =

σk.
We say that π1, π2 agree if they do not contain any conflict.

2 The hole symbol ♢ is not treated as a don’t care symbol as is common in pattern matching, but rather
as a don’t know symbol.
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Definition 1 enables to establish a comparison between two given partial permutations
aimed at revealing wether they agree or not. Since the representation is the key to the
comparison process, we have to take it into account. Note, however, that Definition 1 is inde-
pendent of the chosen representation. We may, therefore, derive from it a universal condition
on any representation enabling comparison of agreement between partial permutations.

▶ Lemma 2 (A Universal Condition of Partial Permutations Agreement). Let R be any
representation of partial permutation bijections, and let π1, π2 be two partial permuta-
tions. Then, π1, π2 agree if and only if the following conditions hold on R(π1) =
⟨DR(π1), CR(π1), MR(π1)⟩, R(π2) = ⟨DR(π2), CR(π2), MR(π2)⟩:
1. For every σk ∈ DR(π1)∩DR(π2) and σi ∈ CR(π1), if (σk, σi) ∈ MR(π1) then σi ∈ CR(π2)

and (σk, σi) ∈ MR(π2).
2. For every σk ∈ CR(π1)∩CR(π2) and σi ∈ DR(π1), if (σi, σk) ∈ MR(π1) then σi ∈ DR(π2)

and(σi, σk) ∈ MR(π2).

Proof. Obviously, the first condition of the lemma avoids a conflict of the first type of
Definition 1, and the second condition avoids a conflict of the second type in Definition 1. ◀

▶ Example. Let Σ = {0, 1, 2, 3}, DR(π1) = {1, 2}, CR(π1) = {0, 3}, MR(π1) = {(1, 3), (2, 0)},
DR(π2) = {0, 1}, CR(π2) = {1, 3}, MR(π2) = {(0, 1), (1, 3)}, then πi agrees with πj.

The following classification of partial permutations representations will be useful for the
discussion of algorithms complexity.

▶ Definition 3 (Good Representation). A representation R for partial permutations is called
a good representation if, assuming word-RAM model, for every πi,
1. the size of R(πi) is O(|Σ|), and
2. for every πj, determining whether the universal agreement condition between R(πi) and

R(πj) holds can be done in O(|Σ|) time.

In the paper, we discuss the existence of a data structure for maintaining a dynamic set
of partial permutations supporting the operations of insert, delete and search agreement with
the query over the set. A static partial permutations set situation is first investigated and
then supporting a dynamic set is referred to. We employ a fine-grained complexity analysis,
which have recently become an important tool (e.g., in [28, 20, 25]).

1.2 Fine-Grained Complexity Analysis
In traditional computer science theory, the typical problems considered “hard” are N P-
Hard and maybe even require exponential time to solve. Problems having polynomial time
algorithms are considered “easy”. The best known algorithms for many such “easy” problems
have high run-times, thus, are impractical, and their improvement has been a longstanding
open problem with little to no progress. It may be that these algorithms are optimal, however,
deriving unconditional lower bounds seems beyond current techniques.

A new, conditional theory of hardness has recently been developed, based around several
plausible conjectures. The theory develops reductions between seemingly very different
problems, showing that the reason why the known algorithms have been difficult to improve
is likely the same, even though the known run-times of the problems might be very different.
This direction of study has been termed “fine-grained complexity” theory (see e.g. [44]).

Much of fine-grained complexity is based on hypotheses of the time complexity of infamous
problems, e.g., CNF-SAT, All-Pairs Shortest Paths (APSP) and 3-SUM. The hypotheses are
about the word-RAM model with O(log n) bit words, where n is the input size. [27] introduced
the Strong Exponential Time Hypothesis (SETH) to address CNF-SAT complexity.
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The Strong Exponential Time Hypothesis (SETH) [27]. For every ϵ > 0 there exists an
integer k ≥ 3 such that CNF-SAT on formulas with clause size at most k (called k-SAT) and
n variables cannot be solved in O(2(1−ϵ)n) time even by a randomized algorithm.

Orthogonal Vectors. The Orthogonal Vectors (OV) problem is a core problem in the basis
of many fine-grained hardness results for problems in P . The problem is formally defined as
follows.

▶ Definition 4 (The OV Problem). Let d = ω(log n); given two sets S1, S2 ∈ {0, 1}d with
|S1| = |S2| = n, determine whether there exist a ∈ S1, b ∈ S2 so that a · b = 0, where
a · b =

∑d
i=1 a[i] · b[i].

It is not hard to solve OV in O(n2d) time by exhaustive search. The fastest known algorithms
for the problem run in time n2−1/Θ(log(d/ log n)) [1, 15]. It seems that n2−o(1) is necessary.
This motivates the now widely used OV Hypothesis.

OV Hypothesis. No randomized algorithm can solve OV on instances of size n in n2−ϵpoly(d)
time for constant ϵ > 0.

We describe the connection between OV and Partial Permutation Agreement (PPA)
(formally defined in Definition 7, Section 3) problems. In fact, we show that they are
equivalent, leading to both negative and positive results for PPA, derived also for the
dynamic setting . Algorithmic applications to problems in computational biology, image
processing and pattern matching are further described in Section 4.

This Paper Contributions. The main contributions of this paper are:
Giving the first formal discussion from algorithmic point of view of efficient partial
permutations maintenance enabling consistent as well as informatively rich comparison.
Showing that a data structure for efficiently maintaining a dynamic set of partial per-
mutations is not likely to exist, unless the SETH hypothesis fails.
Describing positive results on maintaining a dynamic set of partial permutations: (1) an
improvement in the general case derived via online matrix-factor multiplication, and (2)
an efficient solution in a special case termed almost full partial permutations.
Applying the study to reason about fruitful versus futile methods for efficient gene
sequences comparison, enabling a formal understanding of this challenge, hinted in [45].
Applying the study to form an automatic process of redundant augmented-data removal
to avoid over-fitting of a neural network training set for image processing tasks and
increasing its capability to generalize to unseen invariant data [43].
Applying the study of partial permutation maintenance to answer negatively (unless
the SETH hypothesis is false) for an open question regarding a solution over a general
alphabet dictionary for the online strict PDMOG problem presented by [35] (see formal
definition in Sect. 4.2), while supplying new tools for efficient solution in a special case
termed a k-saturated dictionary (see formal definition in Sect. 4.2).

Paper Organization. The paper is organized as follows. Section 2 gives the needed pre-
liminary discussion on a good representation of partial permutations. Section 3 studies the
possibility of having a data structure for efficiently maintaining a dynamic set of partial
permutations as follows. Subsection 3.1 describes the reduction from the OV problem.
Subsection 3.2 shows the equivalence to the OV problem via a connection to the Partial



A. Levy, E. Porat, and B. R. Shalom 10:5

Match problem (PM) (formally defined there), which also enables to exploit some positive
results for the PM problem to our purposes. Subsection 3.3 describes how to achieve an
efficient solution in the special case of almost full partial permutations. Section 4 describes
the applications to genes sequences comparison (Subsection 4.1), to color transformation data
augmentation and to online strict PDMOG problems (Subsection 4.2). Section 5 concludes
the paper with some open questions.

2 Preliminaries: A Good Representation of Partial Permutations

A permutation π over an alphabet Σ = {σ1, . . . , σ|Σ|} can be represented as the string
sπ = π(σ1)π(σ2) . . . π(σ|Σ|) of length |Σ|. For example, let Σ = {a, b, c} and π = {a 7→
b, b 7→ c, c 7→ a}, then sπ = bca. It trivially holds that sπ1 matches sπ2 if and only if
the permutations π1 and π2 are equal. A straightforward approach to achieve a good
representation for partial permutations is to adjust the above by enabling the use of a
don’t care symbol ⋆ whenever an alphabet symbol of Σ does not belong to the partial
permutation domain. For example, let Σ = {a, b, c, d, e, f} and MR(π) = {(a, e), (b, c), (c, d)},
where DR(π) = {a, b, c} and CR(π) = {c, d, e}, then this approach suggests using the string
sπ = ecd ⋆ ⋆⋆ as a representation for π. Note, that an exact string comparison of the strings
representing two given partial permutations according to this suggestion still allows two
partial permutations to be exactly the same. The use of a don’t care symbol in order to
broaden the equality scope to partial permutations that agree requires using approximate
string matching with don’t care, where this special symbol indeed matches any symbol.

Nonetheless, even when string matching with don’t care is applied, the comparison axiom
does not hold for this representation. To see this, consider the partial permutation π1 where,
MR(π1) = {(a, e), (b, c), (e, d)}, DR(π1) = {a, b, e} and CR(π1) = {c, d, e}. By the above
suggestion the representation of π1 would be sπ1 = ec⋆⋆d⋆. Let π2 be the partial permutation
from the above example, thus sπ2 = ecd ⋆ ⋆⋆. It holds that sπ2 matches sπ1 , because the
don’t care symbol ⋆ matches any symbol. However, the two partial permutations π1 and π2
contain a conflict. Note that, though the requirement of approximately matching the strings
sπ1 and sπ2 exclude the possibility of a conflict of the first type in Definition 1, it does not
exclude a conflict of the second type. Thus, it does not satisfy the universal condition for
partial permutations agreement.

Correcting this flaw involves the use of the inverse permutation, defined as follows.

▶ Definition 5 (Inverse of Partial Permutation). Given a partial permutation π over Σ,
mapping the subset Σ1 ⊂ Σ to the subset Σ2 ⊂ Σ, where |Σ1| = |Σ2|, the inverse partial
permutation π−1 of π is a bijection π−1 : Σ2 7→ Σ1 such that for every σi ∈ Σ2, π−1(σi) = σj

if and only if π(σj) = σi.

For example, let Σ = {a, b, c, d, e, f} and π = {a 7→ e, b 7→ c, c 7→ d} be a partial permutation,
where Σ1 = {a, b, c} and Σ2 = {c, d, e}, then the inverse partial permutation of π is π−1 =
{c 7→ b, d 7→ c, e 7→ a}.

Now, a partial permutations representation enabling a distinction between two different
partial permutations that agree and two partial permutation that disagree is simply the string
sπ · sπ−1 , where · denotes strings concatenation. Note that the size of this representation is
Θ(|Σ|). Lemma 6 below ensures that this representation satisfies the comparison axiom.

▶ Lemma 6. Given two partial permutations π1, π2, then sπ1 · sπ−1
1

matches sπ2 · sπ−1
2

if and
only if the partial permutations π1 and π2 do not contain any conflict.
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The Don’t Care Representation of Partial Permutations. Based on Lemma 6, given a
partial permutation π we may call the string sπ · sπ−1 the don’t care representation of π.
We make the distinction between the don’t care representation of π, which is a specific
representation described in this section, and the universal condition on any representation
described in Subsection 1.1, in order to enable the discussion in the next section to be
independent of the representation, when necessary.

3 Maintaining a Dynamic Set of Partial Permutations

In this section we study the possibility of having a data structure for keeping a set of partial
permutations enabling the operations: search, insert and delete on the set.

Following the discussion on Subsection 1.1, though there is exactly one partial permutation
having the same representation as a given partial permutation π, there can be many partial
permutations with a representation that satisfy the universal condition for agreement with the
representation of π. All such partial permutations agree with the given partial permutation,
though they are not identical, and may not agree with each other.

Therefore, we make a distinction between these two kinds of search operations: searching
the same permutation or searching agreeing permutations. Specifically, given a partial
permutation representation, we would like to support a query that returns all the partial
permutations in the data structure that have a representation satisfying the universal
condition for agreement, i.e., permutations that agree with the query permutation.

We will also refer to an offline batch version of this problem, formally defined as follows.

▶ Definition 7 (The Partial Permutations Agreement Problem (PPA)).
Input: Sets A1, A2 of partial permutations over alphabet Σ, each of size n.
Output: All pairs (πi, πj), πi ∈ A1, πj ∈ A2 and πi agrees with πj.
In the non-batch version of the problem the size of the two sets is different: A1 has size n,
where A2, the query, has size 1. We call this problem the single query PPA problem, denoted
as SPPA. The following observation immediately follows.

▶ Observation 8. If SPPA can be solved in query time O(q) and O(S) space for a set of n

partial permutations, then PPA can be solved in O(nq) time and O(S) space.

Note, that by Definition 3, for any good representation R, SPPA can be naively solved
in q = O(n · |Σ|) time and S = O(n · |Σ|) space. Therefore, by Observation 8, PPA can
be naively solved in O(n2 · |Σ|) time and O(S) space for any good representation of partial
permutations.

3.1 Orthogonal Vectors and Partial Permutations Agreement
In this subsection, we show that PPA is not likely to be solved in O(n2−ϵ · |Σ|) time.
We describe a reduction from the orthogonal vectors problem (OV). Theorem 10 follows.
Corollary 12 then follows from Observation 8. The proofs are postponed to the full version.

The Reduction. Let S1, S2, n, d be an instance of the Orthogonal Vectors problem, we reduce
it to an instance A1, A2, Σ of the Partial Permutations Agreement problem, where there are
vi ∈ S1, vj ∈ S2 such that vi, vj are orthogonal if and only if there are πi ∈ A1, πj ∈ A2, such
that πi agrees with πj .

We construct a permutation gadget for every binary vector vi as follows. Let vi =
(bi

1, bi
2, . . . , bi

d). We define a partial permutation πi over alphabet Σ = {σ1, . . . , σd+1} (|Σ| =
d + 1), where πi includes the mapping of σℓ ∈ Σ to a symbol from Σ if and only if bi

ℓ = 1,
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∀1 ≤ ℓ ≤ d. However, ∀1 ≤ ℓ ≤ d, where bi
ℓ = 0, σℓ does not participate in any pair defining

the permutation gadget. Hence, for any representation R of the partial permutation π, we
have that σℓ ∈ DR(π) if and only if bℓ = 1.

The specific transformation to permutations is asymmetric, i.e., the transformation of S1
vectors differs from that of S2 vectors, as follows.

For πi associated with vi ∈ S1, a symbol that participates in the mapping pairs is mapped
to itself. This means that for any representation R of the partial permutation πi, we
have that σℓ ∈ DR(πi), σℓ ∈ CR(πi) and (σℓ, σℓ) ∈ MR(πi) if and only if bℓ = 1. The
additional symbol σd+1 does not participate in any mapping pair. We regard it as if vi has
an additional bit bi

d+1 = 0. Therefore, for any representation R we get σd+1 /∈ DR(πi),
σd+1 /∈ CR(πi).
For πj associated with vj ∈ S2, a symbol that participates in the mapping pairs is mapped
to the symbol cyclicly to its right in the sorting of Σ1 – the symbols that participate in
the mapping pairs. This means that for any representation R of the partial permutation
πj , we have that σℓ ∈ DR(πj), σℓ′ ∈ CR(πj) and (σℓ, σℓ′) ∈ MR(πj), where σℓ′ is the
symbol that is cyclically to the right of σℓ in the sorting of Σ1, if and only if bℓ = 1.
The additional symbol σd+1 is included in the mapping pairs of πj . Thus, σd+1 ∈ Σ1
and assumed to be ordered last. We regard it as if vj has an additional bit bj

d+1 = 1.
Therefore, for any representation R we get σd+1 ∈ DR(πj), σd+1 ∈ CR(πj).

See Figure 1 for example.

▶ Lemma 9. OV is reducible to PPA in O(n · d) time and space.

v1 = (1, 0, 1, 1, 0, 0) ∈ S1   

πv1 =
a  b c  d  e f g
a  - c  d  - - -

v2 = (0, 1, 0, 0, 1, 0) ∈ S2   

πv2 =
a b c  d e f g
- e  - - g  - b

v2 = (0, 1, 0, 0, 1, 0) ∈ S2   

πv2 =
a b c  d e f g
- e  - - g  - b

v1 = (1, 1, 1, 1, 0, 0) ∈ S1   

πv1 =
a  b c  d  e f g
a  b c  d   - - -

(a)

(b)

Figure 1 An example of the asymmetric transformation of vectors from S1 and S2 into permuta-
tions in A1 and A2, respectively. (a) The transformation for a pair of orthogonal vectors gives a
pair of permutations that agree. (b) The transformation for a pair of non-orthogonal vectors gives a
pair of permutations that do not agree.

Theorem 10 follows.

▶ Theorem 10. Let R be any good representation of partial permutations. If there exists
ϵ > 0 such that for any c > 0, PPA is solvable in O(n2−ϵ) time and R is used to represent
the partial permutations in the sets A1, A2, then the Strong Exponential Time Hypothesis
(SETH) is false.
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Observation 11 below states a weaker version of Theorem 10, which refers explicitly also
to the space complexity and includes the |Σ|-parameter of the PPA problem. This will be
useful for the applications, especially in Section 4.

▶ Observation 11. Let R be any good representation of partial permutations. If there exists
ϵ > 0 such that for any c > 0, PPA is solvable in O(n2−ϵ · |Σ|) time and O(n · |Σ|) space,
where |Σ| = c log n and R is used to represent the partial permutations in the sets A1, A2,
then the Strong Exponential Time Hypothesis (SETH) is false.

▶ Remark. We include the dependence on |Σ| in the time complexity in order to make explicit
the role of this parameter. In the low-dimensional setting, where |Σ| is slightly larger than
logarithmic, it could be dropped (since sub-polynomial), where for moderate dimension even
O(n2−ϵpoly(Σ)) algorithms can be ruled out under the OV Hypothesis.

Corollary 12 then follows from Theorem 10 and Observation 8.

▶ Corollary 12. Let R be any good representation of partial permutations. If there exists
ϵ > 0 such that for any c > 0, SPPA query q can be answered in O(n1−ϵ) time and R is
used to represent the partial permutations in the set A1 and the query q, then the Strong
Exponential Time Hypothesis (SETH) is false.

3.2 The Partial Match Problem and Partial Permutations Agreement
In this subsection we discuss the connection between the Partial Permutations Agreement
problem and another important problem – the Partial Match, formally defined as follows.

▶ Definition 13 (The Partial Match Problem (PM)).
Preprocess: A set D of n binary vectors of dimension d.
Query: A vector q of dimension d over the set {0, 1, ⋆}, where ⋆ is a “don’t care” symbol.
Output: All vectors v ∈ D, such that v matches the query vector q.

In the batch version of the Partial Match problem, denoted by BPM, we have instead of a
single query vector, a set Q of n vectors over the set {0, 1, ⋆}, and the requested output is all
pairs of vectors (v, q), where v ∈ D and q ∈ Q, such that v matches q.

The PM problem has been thoroughly studied for decades (e.g. Rivest’s PhD thesis [39]).
However, there has been only minor algorithmic progress beyond the two obvious solutions
of storing 2Ω(d) space for all possible queries, or taking Ω(n) time to try all points in the
database. It was generally believed that PM is intractable for sufficiently large dimension
d – this is one version of the “curse of dimensionality” hypothesis. The best known data
structures for answering partial match queries are due to [16] for the general case, and [18] for
queries with a bounded number of don’t care symbols. Finally, [1] point out some evidence
that batch partial match (BPM) is not solvable in sub-quadratic time due to its equivalence
to the OV problem. Consequently, it gives some evidence to the difficulty of the PM problem:
it is not likely to be solved in O(n1−ϵ · d) time and space due to an observation similar to
Observation 8.

The Two-Sided BPM and PPA Problems. Note that, in the definitions of the PM and BPM
problems don’t care symbols are only allowed in the query vectors, but the database vectors
are over {0, 1}. The good representation for partial permutations described in Section 2 gives
a version of the PPA problem for the don’t care representation which can be viewed as a
generalization of the BPM problem, where both database and query vectors are over the
set {0, 1, ⋆}. We call this problem the two-sided Batch Partial Match problem (two-sided
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BPM). The result presented in Theorem 10 is strong in the sense that it is independent
of the representation, and means that the difficulty of PPA is not due to a choice of a too
rich representation. Theorem 10, specifically, applies also for the don’t care representation
of partial permutations, for which the PPA problem becomes exactly the two-sided BPM
problem. We, thus, get from Theorem 10 the following corollary.

▶ Corollary 14. If there exists ϵ > 0 such that for any c > 0, two-sided BPM is solvable in
O(n2−ϵ) time, then the Strong Exponential Time Hypothesis (SETH) is false.

Equivalence of PM, Two-Sided PM and SPPA Problems. In fact, we now show that
these three problems: the partial match (PM), two-sided partial match (two-sided PM) and
single-query partial permutations agreement (SPPA), are actually equivalent. As mentioned
above, the good representation for partial permutations described in Section 2 gives a version
of the PPA problem for the don’t care representation which is exactly the two-sided BPM
problem, where both database and query vectors are over the set {0, 1, ⋆}. Moving to
the non-batch versions of these problems, we therefore get, that SPPA and two-sided PM
are equivalent. It is, thus, enough to show that the PM and two-sided PM problems are
equivalent. Since PM is a special case of two-sided PM, where no don’t care symbol appears
in the database vectors set D, and may appear only in the query vector q, we need only show
how to convert an input of the two-sided PM to an input of PM. Such a transformation can
be achieved by a special coding of the symbols of the two-sided PM problem input. Symbols
of the dictionary D vectors are coded in the following way:“0” is coded by “01”,“1” is coded
by “10” and “⋆ is coded by “00”. Symbols of the query vector are coded in the following way:
“0” is coded by “0 ⋆ ”, “1” is coded by “ ⋆ 0” and “ ⋆ ” is coded by “ ⋆ ⋆”. This is concluded in
Lemma 15.

▶ Lemma 15. There exists a linear time and space transformation from the two-sided PM
problem d-dimensional input vectors v ∈ D to PM problem 2d-dimensional input vectors
td(v) ∈ td(D), such that a d-dimensional input vector v ∈ D matches a given d-dimensional
query vector q of the two-sided PM problem if and only if the 2d-dimensional input vector
td(v) ∈ td(D) matches a given 2d-dimensional query vector tq(q) of the PM problem.

We have, therefore, proven Corollary 16.

▶ Corollary 16. Any algorithm Alg that solves PM in query time O(q) and O(S) space can
be used to solve the two-sided PM and SPPA problems in O(q) query time and O(S) space.

Remark on a Computational Difference of PM and Two-Sided PM. Note that the
transformation from two-sided PM to PM has a blow-up in the number of don’t care symbols,
which is linear in the size of the vectors. Thus, despite Corollary 16, algorithms solving
PM efficiently assuming a bounded number of don’t cares (such as [18]) cannot be used to
efficiently solve the two-sided PM or SPPA problems.

Corollary 16 enables to apply positive results on PM (e.g. [16], which is independent of
the number of don’t care symbols) on both the two-sided PM and SPPA problems. We are
specifically interested in the following result of [33]3.

3 [33] refer to their result as a solution to PM, however, they actually solve two-sided PM.
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▶ Theorem 17 (Theorem 1.2 of [33]). Let Σ = {σ1, . . . , σk} and let ⋆ be an element such
that ⋆ /∈ Σ. For any set of strings x1, . . . , xn ∈ (Σ ∪ ⋆)d with d ≤ n, after Õ(nd)-time
preprocessing, there is an O(nd) space data structure such that, for every query string
q ∈ (Σ ∪ ⋆)d, it is possible to answer online whether q matches xi, for every i = 1, . . . n, in
O(nd log k/2Ω(

√
log d)) amortized time over 2ω(log d) queries.

Moreover, we observe that the same bounds of Theorem 17 can be achieved for a dynamic
set of strings, supporting updates (insertion and deletions) in Õ(d) time. We give a brief
description of the [33] solution and explain our observation next.

A Dynamic Two-Sided PM Solution. First, for simplicity assume that n = d. The case
d ≤ n is handled using n/d-splitting technique. Build an n × n matrix A over (Σ ∪ {⋆})n×n

such that A[i, j] = xi[j]. The matrix A is then transformed to a boolean matrix, as follows.
Let S1, T1, . . . , Sk, Tk ∈ [2 log k] be a collection of subsets such that for all i, |Si ∩ Ti| = ϕ, yet
for all i ̸= j, |Si ∩ Tj | ̸= ϕ. Such a collection exists, by simply taking (for example) Si to be
the ith subset of [2 log k] having exactly log k elements (in some ordering on sets), and taking
Ti to be the complement of Si. Extend the matrix A to an n × (2n log k) boolean matrix B,
by replacing every occurrence of σi with the (2 log k)-dimensional row vector corresponding
to Si, and every occurrence of ⋆ with the (2 log k)-dimensional row vector which is all-zeroes.

When a query vector q ∈ (Σ ∪ {⋆})n is received, convert q into a boolean (column)
vector v by replacing each occurrence of σi with the (2 log k)-dimensional (column) vector
corresponding to Ti, and every occurrence of ⋆ by the (2 log k)-dimensional (column) vector
which is all-zeroes. Compute Av using the Online Matrix Vector multiplication algorithm
of [33]. For all i = 1, . . . , n, q matches xi if and only if the ith row of B is orthogonal to v.
The two vectors are orthogonal if and only if for all j = 1, . . . , n, either the ith row of B

contains the all-zero vector in entries (j − 1)(2 log k) + 1, . . . , j(2 log k), or in those entries B

contains the indicator vector for a set Sℓ and correspondingly v contains either ⋆ or a set Tℓ′

such that Sℓ ∩ Tℓ′ ̸= ϕ, i.e., xi and q match in the jth symbol. That is, the two vectors are
orthogonal if and only if q matches xi. Therefore, Av reports for all i = 1, . . . , n whether q

matches xi or not.
The important observation is that the transformation of each string to a matrix row

is independent. Therefore, strings/vectors can be added/deleted from the set in time
proportional to the transformation time, which is Õ(d). The above solution can be still used
for the dynamic set as long as we have enough (at least d) strings/vectors in the set. When
the set of strings is less than d, we may use a naive solution instead.

This leads to Corollary 18.

▶ Corollary 18 (Dynamic SPPA Online Computation). Let A be a set of n partial permutations.
After Õ(n|Σ|)-time preprocessing, there is an O(n|Σ|) space dynamic data structure supporting
update operation (insertion or deletion to A) in Õ(|Σ|) time, such that, for every query
partial permutation π, it possible to answer online whether π agrees with πi ∈ A, for every
i = 1, . . . n, in O(n|Σ| log |Σ|/2Ω(

√
log |Σ|)) amortized time over 2ω(log |Σ|) queries.

3.3 Almost Full Permutations
In this subsection we consider the PPA and SPPA problems in a special case, where there
are only a few symbols in Σ that don’t participate in the bijection pairs set. Formally,
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▶ Definition 19 (Almost Full Partial Permutation). Let π be a partial permutation over Σ,
i.e., a bijection mapping a subset Σ1 ⊂ Σ to a subset Σ2 ⊂ Σ, where |Σ1| = |Σ2|. We call π

an almost full partial permutation if |Σ| − |Σ1| = k, where k! = O(poly(|Σ|)) and poly(|Σ|)
is some polynomial in the size of Σ.

We first describe an efficient solution for the problems over permutations. Formally,

▶ Definition 20 (The Equal Permutations Problem (EP)).
Input: Sets B1, B2 of size n, of permutations over alphabet Σ.
Output: All pairs (πi, πj), where πi ∈ B1, πj ∈ B2 and πi = πj.

As above, in the non-batch version of the problem the size of the two sets is different: B1
has size n, where B2, the query, has size 1. We refer to it as the single query EP problem,
denoted as SEP.

Efficient Solution for the SEP and EP Problems. The SEP problem can be easily solved
by using a dimension reduction in the representation of the permutation from |Σ| dimensions
to a single dimension, assigning each permutation a unique number in O(|Σ|) time, assuming
RAM model with O(log |Σ|) word size (as done in [35]). The unique numbers representing
the permutations πi ∈ B1 are saved in a hash table, in which we look for the unique number
assigned to the query permutation. The assignment of a unique number to a permutation,
num(π), is forming a |Σ|-radix number representing π. It can be done in several ways, each
with complexity O(|Σ|), as follows.
1. Assuming, without loss of generality, that Σ = {σ0, σ1, . . . , σ|Σ|−1}, and define |σi| = i.

Let π = σi1σi2 . . . σi|Σ| then: num(π) = |σi1 | · |Σ||Σ|−1 + |σi2 | · |Σ||Σ|−2 + . . . + |σi|Σ| |.
2. By using the technique suggested by [38], where permutations are ranked according to

the indices that are swapped in the process of converting the current permutation to the
identity permutation.

Consequently, the EP problem can be solved in q = O(n · |Σ|) time, and S = O(n) space due
to an observation similar to Observation 8.

Now, an efficient solution for SPPA and PPA in the almost-full partial permutations
special case can be achieved via reduction of SPPA to the SEP problem. This is done by
creating for each almost full partial permutation π in A1, the k! possible permutations derived
from π by specifying all the choices to add the symbols that do not already appear in π.
This is also done for the single query almost full partial permutation.

For example, let Σ = {a, b, c, d}, k = 2, S1 = {π1 = (a 7→ b, b 7→ a), π2 = (a 7→ c, c 7→ a)}
and q = (a 7→ c, b 7→ b). Denote the set of full permutations derived from a partial
permutation π by full(π). Hence, full(π1) = {bacd, badc}, full(π2) = {cbad, cdab}. Thus,
full(S1) = {bacd, badc, cbad, cdab} and full(q) = {cbad, cbda}. Therefore, full(q) and full(S1)
have a matching pair due to cbad.

The SPPA is then solved using the above SEP solution with O(k! · |Σ| · n) preprocessing
time, q = O(k! · |Σ|) query time and S = O(k! · n) space, where a hash table is used for
the numbers of the O(k! · n) permutations derived from the n partial permutations of A1.
Consequently, PPA can be solved in preprocessing O(k! · |Σ| · n) time, q = O(k! · |Σ| · n) query
time and S = O(k! · n) space due to an observation similar to Observation 8. Moreover, the
solution described above supports maintenance of the database set A1 dynamically, as each
partial permutation can be deleted from or inserted to A1 in O(k! · |Σ|) time. This gives
Theorem 21.
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▶ Theorem 21. SPPA for almost full partial permutations can be solved in preprocessing
O(k! · |Σ| · n) = O(poly(|Σ|) · n) time, insertion and deletion in O(k! · |Σ|) = O(poly(|Σ|))
time, q = O(k! · |Σ|) = O(poly(|Σ|)) query time and S = O(k! · n) = O(poly(|Σ|) · n) space.

4 Algorithmic Applications of Partial Permutations

In this section we describe specific computational tasks stemming from computational biology,
image processing and pattern matching, for which our study of partial permutations applies.
Due to space limitations, we give here only the applications to genes sequences comparison
and solving string PDMOG. The description of the application to color transformation data
augmentation is postponed to the full version.

4.1 Application to Genes Sequences Comparison
In this subsection, we describe the application of the results in Section 3 to genes sequences
comparison.

Genes Sequences Comparison. A family of genomes is often modeled as a set of permuta-
tions on genes that are common to all organisms of the family, as in [10]. A limitation in
this type of models, comes from the difficulty to identify a large number of genes that are
common even to a relatively small set of organisms. This is due, in part, to incompleteness
in functional annotations of genes in public websites, and also to the difficulty of determining
orthology relationships among genes in different genomes, since this relationship is known to
be many-to-many. On the contrary, ubiquitous genes, such as ribosomal genes are often the
ones best preserved in different species both in sequence and order and thus provide little
valuable information in a gene-order based analysis [45].

Therefore, classifying species based on genes order in case of missing genes and, thus,
incomplete permutations, is suggested as a better approach [45]. Furthermore, [45] point
out that the occurrence of incomplete permutations with missing elements renders the
classification problem more computationally challenging and has received limited attention.
The study of partial permutations in this paper, enables to address this computational
problem formalization as well as better understand its algorithmic computational challenge.

Incompleteness is formalized as partial words and studied in comparing genes, where the
“alphabet” is small and, therefore, repetitiveness is expected. The domain D(w) of a partial
word w is the set of all positions i such that w[i] is defined, i.e., is not a hole. An alignment
of two sequences can be viewed as a construction of two partial words that are compatible in
the following sense [11]. Given two partial words x and y of the same length, we say that x

is contained in y or that y contains x, and we write x ⊂ y, if D(x) ⊂ D(y) and x[k] = y[k]
for all k ∈ D(x). Two words x and y are compatible if there exists a word z that contains
both x and y. In this case, the smallest word containing x and y is defined by D(x) ∪ D(y).

Note that, two equal length partial words x and y that are compatible must agree
on the positions in D(x) ∩ D(y), however, there is no requirement on the positions in
D(x)∪D(y)\(D(x)∩D(y)). In particular, it may have repeating symbols. Thus, applying the
notion of compatibility in order to compare words in the special case of partial permutations
suffers from the following inconsistency: given two partial permutations x and y, we have
that the smallest word that contains both x and y, D(x) ∪ D(y), is not necessarily also a
partial permutation. It also has the undesirable side-effect of generating artificial sequences.

The definition of agreement between partial permutations gives a consistent comparison
for genes sequences as well as preserves the original input sequences. Thus, our study enables
to point out possibly fruitful versus futile methods for efficient genes sequences comparison.
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Our Results Applied to Genes Sequences Comparison. Note, that the basic building
block for classification tasks is the comparison operation between a pair of genes sequences.
Given a set of n gene sequences over a set of d identified family of genes. Considering
the formalization of gene sequences as partial permutations explained above, our definition
of agreement between partial permutations not only suggests such a building block, but
also enables to differentiate situations where the problem can be efficiently computed from
situations it probably cannot.

Specifically, the application of the results in Section 3 to genes sequences comparison
gives the following. For a family of d identified genes, and a set of n partial permutations
representing genes sequences over d, we have that:

For any ϵ > 0, there exists c > 0 such that, if d = c log n, then finding the genes sequences
that agree with a query genes sequence is not likely to be answered in O(n1−ϵ · d) time
using O(n · d) (linear) space (unless the Strong Exponential Time Hypothesis (SETH) is
false). This follows from Corollary 12 and Observation 11 in Subsection 3.1.
If d = Θ(log n), after Õ(n · d)-time preprocessing, there is an O(n · d) space dynamic data
structure supporting updates (insertion and deletion) in Õ(d) time, such that, finding genes
sequences that agree with a query gene sequence can be done in O(n · d log d/2Ω(

√
log d))

amortized time over 2ω(log d) queries. This follows from Corollary 18 in Subsection 3.2.
If the gene sequences of both the database and query are almost full, then there is an
O(k! · n) = O(poly(d) · n) space dynamic data structure supporting updates (insertion
and deletion) in O(k! · d) = O(poly(d)) time, such that finding genes sequences that agree
with a query genes sequence can be done in O(k! · d) = O(poly(d)) time. This follows
from Theorem 21 in Subsection 3.3.

4.2 Application to Solving Strict PDMOG

In this subsection, we describe the application of the results in Section 3 to solving the strict
PDMOG problem.

Strict PDMOG. Two equal-length strings are a parameterized match, denoted by p-match,
if there exists a bijection on their alphabet symbols under which one string matches the
other. The PDMOG problem is motivated by the critical modern concern of cyber security.
Network intrusion detection systems (NIDS) perform protocol analysis, content searching and
content matching, in order to detect harmful software that may appear on several packets
requiring gapped matching [30]. A gapped pattern P is one of the form lp {α, β} rp, where
each sub-pattern lp, rp is a string over alphabet Σ, and {α, β} matches any substring of
length at least α and at most β . Several versions of gapped dictionary matching problems
were studied recently (see [5, 6, 3, 2, 35, 7, 36]). The Parameterized Dictionary Matching
with One Gap problem (PDMOG) is defined as follows [40]. Preprocess a dictionary D of d

single-gap gapped patterns P1, . . . , Pd over alphabet Σ′ ∪ Σ, such that Σ′ ∩ Σ = ∅, so that
given a query text T of length n over alphabet Σ′ ∪ Σ, Σ′ ∩ Σ = ∅, output all locations ℓ in
T , where there exist bijections f1, f2 : Σ → Σ and the following hold for any Pi ∈ D, and a
gap length g ∈ [αi, βi], where αi, βi are the gap boundaries of Pi :
1. ∀lpi[j] ∈ Σ′, lpi[j] = T [ℓ − |lpi| − g − |rpi| + j].
2. ∀lpi[j] ∈ Σ, f1(lpi[j]) = T [ℓ − |lpi| − g − |rpi| + j].
3. ∀rpi[j] ∈ Σ′, rpi[j] = T [ℓ − |rpi| + j].
4. ∀rpi[j] ∈ Σ, f2(rpi[j]) = T [ℓ − |rpi| + j].
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The strict PDMOG problem enforces both left and right sub-patterns to have the same
parameterized matching (p-match) function, i.e., that f1 = f2, which is more reasonable if
the encodings of both sub-patterns of a dictionary pattern are done simultaneously [35].

Online strict PDMOG was studied by [35] obtaining algorithms that are fast for some
practical inputs called alphabet saturated dictionary, where dictionary sub-patterns contain
the same alphabet symbols enabling to represent mapping functions of dictionary sub-patterns
as permutations. While this assumption is reasonable if the alphabet size is relatively small
and the dictionary sub-patterns are not very short, it is still a rigid restriction. Dealing with
general alphabet dictionary requires a tool for efficient partial permutations representation
and manipulation, which its existence is excluded in this paper (unless the SETH hypothesis
is false), showing that an efficient solution for the strict PDMOG problem over a general
dictionary alphabet is not likely. Thus, we answer negatively to an open question posed
by [35].

Our Results Applied to strict PDMOG. The core issue of the strict PDMOG solution is
that while scanning the text, the algorithm locates p-matches of the left sub-patterns of the
dictionary D and maintains the partial permutations via which they were p-matched to the
text. The algorithm also locates a set of right sub-patterns of the dictionary patterns in D

which p-match the current text location. The algorithm needs to verify which of the right
sub-patterns are p-matched via a partial permutation that agrees with any of the (dynamically
changing) set of partial permutations that were used to p-match left sub-patterns that were
located within an active window of locations determined by the relevant gap bounds of the
dictionary D.

The online strict PDMOG was studied by [35] obtaining algorithms that are fast for some
practical inputs called alphabet saturated dictionary, where dictionary sub-patterns contain
the same alphabet symbols. Therefore, the algorithms of [35] represent mapping functions
of dictionary sub-patterns as permutations and can efficiently maintain the dynamically
changing set of permutations that were used in order to p-match the left sub-patterns of the
dictionary D basically using the dimension reduction idea described in Subsection 3.3 for the
representation of permutations4.

While this assumption is reasonable if the alphabet size is relatively small and the
dictionary sub-patterns are not very short, it is still a rigid restriction. Dealing with general
alphabet dictionary requires a tool for efficient maintenance of partial permutations. The
discussion and results of Subsections 3.1, 3.2, 3.3 can be, therefore, applied to conclude
regarding the possibility to efficiently solve the online strict PDMOG problem. In order to
simplify the discussion and avoid getting into unnecessary details ([35] use various techniques
and several parameters to specify complexity), we summarize the application of the discussion
above using the following parameters: sL - the size of the set SL of p-matched left sub-
patterns of dictionary gapped patterns within the current active window of the text, |Σ| -
the dictionary D and text T alphabet size. We also need the following definition.

▶ Definition 22 (A k-Saturated Dictionary). Let D be a gapped patterns dictionary over
alphabet Σ. We call D a k-saturated dictionary if every sub-pattern in D is over Σ1, such
that Σ1 ⊆ Σ and k = |Σ| − |Σ1|, where k! = O(poly(|Σ|)) and poly(|Σ|) is some polynomial
in the size of Σ.

4 The application of this idea in [35] is slightly more involved, since it is combined with the use of range
reporting data structures and other details of their algorithms.
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The applications to the solution of strict PDMOG that we have shown can, therefore, be
summarized as follows:

For any ϵ > 0, there exists c > 0 such that, for a general alphabet Σ with size |Σ| = c log sL,
finding partial permutations, via which the sub-patterns in SL were p-matched to the text,
that agree with a partial permutation p-matching of a currently located right sub-pattern
is not likely to be answered in O(s1−ϵ

L · |Σ|) time using O(sL · |Σ|) (linear) space (unless
the Strong Exponential Time Hypothesis (SETH) is false). This follows from Corollary 12
and Observation 11 in Subsection 3.1.
For a general alphabet Σ with size |Σ| = Θ(log sL), after Õ(sL · |Σ|)-time preprocessing,
there is an O(sL · |Σ|) space dynamic data structure supporting updates (insertion and de-
letion) in Õ(|Σ|) time, such that, finding partial permutations, via which the sub-patterns
in SL were p-matched to the text, that agree with a partial permutation p-matching of a
currently located right sub-pattern can be done in O(sL|Σ| log |Σ|/2Ω(

√
log |Σ|)) amortized

time over 2ω(log |Σ|) queries. This follows from Corollary 18 in Subsection 3.2.
For a k-saturated dictionary D, there is an O(k! · sL) = O(poly(|Σ|) · sL) space dynamic
data structure supporting updates (insertion and deletion) in O(k! · |Σ|) = O(poly(|Σ|))
time, such that finding partial permutations, via which the sub-patterns in SL were
p-matched to the text, that agree with a partial permutation p-matching of a currently
located right sub-pattern can be done in O(k! · |Σ|) = O(poly(|Σ|)) time. This follows
from Theorem 21 in Subsection 3.3.

Note that, that if |Σ| = Θ(log sL) and k! = O(|Σ|) (i.e., poly(|Σ|) is actually linear in |Σ|),
then the third result gives a linear (up to a logarithmic factor) space dynamic data structure
for maintaining partial permutations with update and query time logarithmic in sL.

5 Conclusion

This paper examined the use of partial permutations in algorithmic tasks. Some interesting
related open questions are:

Can an efficient solution for PPA/SPPA be achieved for other (practically interesting)
special cases?
What other applications require (possibly hidden) maintenance of partial permutations?

It is our belief that being a relatively basic mathematical concept, partial permutations
play a hidden role in more applications. We, therefore, expect more research on the topic in
order to explore their algorithmic use.
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Indexing highly repetitive texts is important in fields such as bioinformatics and versioned repositories.
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fast locating of occurrences of a pattern within O(r) words of space, where r is the number of
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1 Introduction

A text index is a data structure equipped with search operations on a text string. The suffix
tree [23], which is the compacted trie whose paths to the leaves spell out the suffixes of the
text, enables various complex operations useful in bioinformatics [8]. The suffix array [14]
is a simplified variant of the suffix tree with less space usage but also less functionality. It
still supports the most basic searches, counting and locating the occurrences of a pattern
in the text, among more sophisticated ones [11]. Compressed suffix arrays are suffix array
representations that retain its functionality within further compressed space. One of those,
the FM-index [3], is based on the Burrows-Wheeler transform (BWT) [2], which searches
for the pattern by starting from its last character and extends the match leftwards. The
bi-directional BWT [10] also supports rightward extension by constructing FM-indexes on
both the text and the reversed text, thus using roughly twice the space of the FM-index.
This extended functionality allows retrieving some of the lost suffix tree functionality.

Classical compressed suffix arrays are based on statistical compression. This cannot
capture repetitions of long text substrings when indexing highly repetitive texts, so the
index sizes grow proportionally to the input sizes. Large highly repetitive texts are arising
in bioinformatic applications and versioned document and software stores. For those texts,
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Table 1 Comparison of space and time with the existing compressed bi-directional indexes. H is
the length of the longest maximal repeat in the text. right-extension(contraction) is symmetric to
left-extension(contraction). Here w is the number of bits in the computer word.

index space left-extension
bi-directional BWT [10] O(nHk(T )) + o(n log σ) bits O( log σ

log log n
)

Belazzougui and Cunial [1] O(r + rR) words O(H2 log log n)
br-index (Theorem 1) O(r + rR) words O(σ + log logw(n/r))
br-index (Theorem 2) O(r + rR) words O( 1

ϵ
log2+ϵ r)

index left-contraction locate
bi-directional BWT [10] not supported O(occ · log1+ϵ n)

Belazzougui and Cunial [1] O(H2 log log n) not supported
br-index (Theorem 1) not supported O(occ)
br-index (Theorem 2) not supported O(occ)

indexes based on compression methods such as Lempel-Ziv and grammar compression have
been proposed [17]. While those indexes can locate, and in some cases count, the pattern
occurrences, they are not based on suffix arrays and therefore lack the potential to enable
other more sophisticated suffix array functionalities. The r-index [5, 6] is the first compressed
suffix array suitable for highly repetitive texts. It is based on the run-length compression
of the BWT and uses O(r) space, where r, the number of equal-letter runs in the BWT,
stays low on repetitive texts. The r-index enables efficient count and locate queries within
that space, but more complex operations that are supported on classical suffix arrays are
yet to be studied. In particular, an index supporting bi-directional extensions based on this
compression method has been proposed [1], but it does not support the key locate operation.

Our contribution. We introduce the br-index, an r-index extension that supports bi-
directional extensions along the pattern search process, within O(r + rR) words of space,
where rR is the number of equal-letter runs in the BWT of the reversed text. The simpler
version of Theorem 1 is easily built on top of the r-index of both of the text and its reverse.
The refined version of Theorem 2 reduces the σ term in the computation time of left-extension
and right-extension (where σ is the alphabet size), and is more advantageous when σ is large.
Compared to the bi-directional BWT [10], the br-index captures long repetitions in the text
and thus compresses highly repetitive text collections. Compared to the index proposed
by Belazzougui and Cunial [1], the br-index enables locate in efficient time and is easier to
implement, though it does not support contractions (i.e., the inverses of expansions). See
Table 1 for a detailed comparison. We also implemented the version of Theorem 1 and
compared its practical performance with the bi-directional BWT and the r-index.

This paper is organized as follows. In Section 2 we describe the needed concepts to present
our results. In Section 3 we introduce the algorithmic details of the br-index. Section 4
shows the experimental results. We conclude in Section 5.

2 Preliminaries

2.1 Basic notions
In this paper, we call a sequence of characters T = T [1]T [2] · · ·T [n] a string of length n.
Each character T [i] (i = 1, . . . , n) is an element of an ordered alphabet Σ = {1, 2, . . . , σ}.
Here we assume Σ is the effective alphabet, which means that each character in Σ appears at
least once in T . For convenience, we assume T [n] = 1 and T [i] ̸= 1 (i = 1, . . . , n− 1), that is,
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the last character is a unique endmarker with the minimum lexicographic rank. In addition,
we call the sequence of characters T R = T [n− 1]T [n− 2] · · ·T [1].1 the reversed string. In
other words, we obtain T R by reversing the meaningful content of the string and attaching
the character 1 at the end.

We define two queries on T , where P is a sequence of m characters:

count(P ) returns the number of the occurrences of the pattern P in T .
locate(P ) returns the starting positions of the occurrences of the pattern P in T .

We write [l, r] for the set of integers {l, l + 1, . . . , r} (∅ if l > r). This notation is used
to describe substrings and subsequences as well; T [l, r] is the substring T [l]T [l + 1] · · ·T [r],
which is the empty string ε if l > r.

A bitvector B is an array whose elements are 0 or 1. We define two queries on a bitvector,
rank1(B, j) returns the number of 1-bits in B[1, j] and select1(B, i) returns the position of
the i-th 1-bit in B.

A predecessor data structure on the totally ordered set S supports the query pred(S, i),
which returns the maximum element that is smaller than or equal to i, max{s ∈ S | s ≤ i}.

2.2 Suffix array, Burrows-Wheeler transform, and LCP array
The suffix array [14] of T is an array of integers SA[1, n], where SA[i] is the starting position
in T of the i-th lexicographically smallest suffix of T , that is, the lexicographic rank of
the suffix T [SA[i], n] is i. We also denote the inverse of the suffix array by ISA, that is,
SA[ISA[i]] = i (i = 1, . . . , n).

The Burrows-Wheeler transform (BWT) [2] of T is a sequence L[1, n] of characters that
satisfies

L[i] =
{

T [SA[i]− 1] (SA[i] ̸= 1)
1 (SA[i] = 1)

Note that L[i] is the character preceding the i-th suffix in lexicographic order. Exceptionally
L[i] = 1 when the i-th suffix is the whole string T . We also define a function rank on L:
rankc(L, i) is the number occurrences of the character c in L[1, i]. It is 0 if i = 0.

The longest common prefix array (LCP) of T is an array LCP[1, n] of integers satisfying

LCP[i] =
{

lcp(T [SA[i− 1], n], T [SA[i], n]) (i ̸= 1)
0 (i = 1)

where lcp(P, P ′) is the length of the longest common prefix between strings P and P ′.

2.3 Backward search
The suffix array SA and the BWT L are useful for computing count and locate of a pattern
P [1, m] [3]. Given P , there exists a unique range [s, e] on SA corresponding to the occurrences
of P (the range is empty when P does not occur in T ). In this case, SA[s, e] is the list of
the starting positions of P in T . We can then represent (the occurrences of) P by the range
[s, e]. With rank on L we can extend the current pattern leftwards. Specifically, we can
compute the range [s′, e′] corresponding to the pattern cP , from the character c and [s, e]
corresponding to P , with the following formula. We call this a left-extension.

CPM 2022
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{
s′ = C[c] + rankc(L, s− 1) + 1
e′ = C[c] + rankc(L, e)

Here, C[1, σ] is the array of integers where C[c] is the number of occurrences of the characters
c′ satisfying c′ < c in T . When cP does not occur in T , the formula yields e′ > s′.

The FM-index [3] is a statistically compressed suffix array. When it computes count(P )
and locate(P ), it starts from the end of P and extends leftwards with the formula above. It
starts with the empty string ε, whose SA range is [1, n]. Then, from the range [si+1, ei+1]
corresponding to P [i + 1, m] (1 ≤ i ≤ m), it obtains [si, ei] with{

si = C[P [i]] + rankP [i](L, si+1 − 1) + 1
ei = C[P [i]] + rankP [i](L, ei+1)

ending if si > ei or i = 1 holds. In the first case, count(P ) is zero, otherwise it is e1 − s1 + 1,
and the results of locate(P ) are in SA[s1, e1]. This searching algorithm is called the backward
search. We denote the time to compute left-extension by tLF , whose name comes from
LF-mapping LF (i) = C[L[i]] + rankL[i](L, i). Similarly, the time to access an element of SA
is denoted by tSA.

With the backward search algorithm, count takes O(m · tLF ) time and locate takes
O(m · tLF + occ · tSA) time, where occ is the number of the occurrences of P in T . On an
alphabet of size σ, the FM-index achieved tLF = O( log σ

log log n ) and tSA = O(log1+ϵ n) with
nHk(T ) + o(n log σ) bits of space for any constant 0 < ϵ < 1, where Hk(T ) is the k-th
empirical entropy of T [4].

2.4 Run-length compression of BWT and r-index
The size of the representation of L grows linearly with the input size n even if we use
statistical compression as in the FM-index. To handle large repetitive text collections we
need to capture the repetitions in T and compress them.

Mäkinen and Navarro [12] focused on equal-letter runs in L to capture the repetitiveness.
A run of the BWT is a maximal substring of L whose characters are equal. Since the suffixes
are ordered lexicographically, the sequence of their preceding characters, L, is expected to
have long runs if T is highly repetitive. They showed that the number r of such runs is
sensitive to the statistical entropy of T , r ≤ nHk(T ) + σk for any k ≥ 0. In particular,
r ≤ nHk(T )+o(n) for any k ≤ α logσ n, for any constant 0 < α < 1. It was later realized that
r was sensitive to the repetitiveness of T , and the run-length-based FM-index (RLFM-index),
which compressed the BWT by run-length encoding, was designed [13]. The RLFM-index
achieved tLF = O( log σ

log log r +(log log n)2) in O(r) words of space by emulating access and rank

on L. From this, we can compute count within O(r) words with the RLFM-index, but locate

is not supported in the same space. To do that, additional O(n/s) words of space, where s is
a sampling parameter, is required to store samples of SA at regularly spaced intervals. Since
this method yields tSA = O(s · tLF ), saving spaces with larger s in turn worsens the time
complexity.

The r-index [5, 6] made it possible to compute locate in O(m · (tLF + log logw(n/r)) +
occ · tϕ) time within O(r) words of space, without the SA samplings at regular intervals.
To compute rank on L, it uses an updated version of the RLFM-index, which achieves
tLF = O(log logw(σ + n/r)). The removal of SA samplings is achieved by maintaining one
SA sample during the backward search and designing inverse functions ϕ and ϕ−1, whose
computation time is denoted by tϕ:
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ϕ(i) =
{

SA[ISA[i]− 1] (ISA[i] ̸= 1)
SA[n] (ISA[i] = 1)

ϕ−1(i) =
{

SA[ISA[i] + 1] (ISA[i] ̸= n)
SA[1] (ISA[i] = n)

These functions enable us to compute neighboring SA values from an SA sample. From
a sample SA[i], we obtain SA[i − 1] by applying ϕ and SA[i + 1] by applying ϕ−1. They
compute those functions in time tϕ = O(log logw(n/r)). To explain our results later, we
describe next the algorithm to maintain an SA sample during the backward search.

We say character T [i] is sampled if and only if i = 1 or T [i] is the first or last character of
a BWT run. The number of the sampled characters is O(r). In addition to the RLFM-index,
we store a predecessor data structure Rc for each c, with the BWT positions of all the
sampled characters equal to c. We associate each BWT position q ∈ Rc with the pair
⟨q, SA[q]− 1⟩. During the backward search, we know an SA sample (p, SA[p]) in the current
SA range [s, e] and update it using Rc. Assume we are extending P [i+1, m] to P [i, m] during
the backward search. We want to compute the SA range [si, ei] corresponding to P [i, m]
and the new sample p′, SA[p′] (si ≤ p′ ≤ ei), from the range [si+1, ei+1] corresponding to
P [i + 1, m] and the current sample (p, SA[p]) (si+1 ≤ p ≤ ei+1). [si, ei] is computed using
the RLFM-index. If L[p] = P [i], LF (p) ∈ [si, ei] holds, so the sample can be updated to
(p′ = LF (p), SA[p′] = SA[p]− 1). In the other case, where L[p] ̸= P [i] but P [i] still occurs
somewhere else, we obtain a predecessor ⟨q, SA[q]− 1⟩ by querying pred(RP [i], ei+1). Since
L[q] = P [i] holds, the sample is updated to (p′ = LF (q), SA[p′] = SA[q]− 1).

Nishimoto and Tabei [19] recently managed to improve the times of the operations to
tLF = O(1) and tϕ = O(1), still within O(r) words, by avoiding predecessor queries.

3 Bi-directional r-index

With the r-index, we can compute left-extension and locate all the occurrences of the current
pattern at any step of the extensions. However, the extension is unidirectional; right-extension
cannot be carried out. The text index we propose, br-index, enables us to extend in both
directions and compute locate at an arbitrary step, as shown in the following theorem.

▶ Theorem 1. We can store O(r) + O(rR) words such that, at an arbitrary step of the search,
we can execute left-extension in O(σtLF + log logw(n/r)) time, right-extension in O(σtLF R +
log logw(n/rR)) time, compute count of the current pattern in O(1) time, and compute locate
of the current pattern in O(occ) time, where occ is the number of the occurrences of the
current pattern in the string, w is the number of bits in the computer word, and rR is the
number of runs in the BWT LR of the reversed string T R.

▶ Remark. The best known upper bound of rR by r is rR = O(r log r max(1, log n
r log r )) [9].

In practice, their values are very close; see Section 4.

In Sections 3.1 and 3.2 we prove Theorem 1. In Section 3.3, we propose a variant
using the wavelet tree [7], which achieves the improved time bounds of left-extension and
right-extension, as seen in Theorem 2.

▶ Theorem 2. For any ϵ > 0, we can store O(r) + O(rR) words such that, at any arbitrary
step of the search, we can execute left-extension in O( 1

ϵ log2+ϵ r) time, right-extension in
O( 1

ϵ log2+ϵ rR) time, compute count of the current pattern in O(1) time, and compute locate
of the current pattern in O(occ) time, where occ is the number of the occurrences of the
current pattern in the string.
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The key idea of the br-index is to compute locate efficiently by maintaining one SA sample
and one SAR sample at the same time. These samples are not necessarily starting or ending
positions of the current pattern. Instead, we also maintain their offsets towards both ends,
and the length of the current pattern.

3.1 Left-extension and right-extension
Updating the ranges on SA and SAR

Let [s, e] be the range on SA corresponding to the current pattern P . Similarly, let [sR, eR]
be the range on SAR corresponding to P R.

When we compute left-extension P → cP , we update [s, e] by s← C[c] + rankc(L, s−
1) + 1, e← C[c] + rankc(L, e). To update [sR, eR], we use another idea [10]. We count the
total number acc of occurrences of patterns aP for all a < c, by applying LF iteratively for
each such a. Since the size of the range of any pattern is equal on SA and SAR, we can
update [sR, eR] by sR ← sR + acc, eR ← sR + acc + e− s. right-extension is symmetric. In
this case, we apply LF R, which is LF-mapping on the BWT of T R, instead of LF .

The required structures to update the ranges are just the RLFM-indexes on T and T R.
The space used is O(r + rR) words, the time complexity is O(σtLF ) when we extend leftward,
and O(σtLF R) when we extend rightward, where tLF R is the time to compute LF R.

Updating the sample

In addition to the SA range [s, e] and the SAR range [sR, eR], we maintain seven variables
during the search: p, j, d, pR, jR, dR, len. We call the tuple of these variables the sample: p

is the position of the sample in SA, j is the value of SA[p], and d is the offset of j to the
starting position of the current pattern. That is, it holds j = SA[p] and T [j − d, j − d +
|P | − 1] = P . The corresponding values for the reversed direction are jR = SAR[pR] and
T R[jR − dR, jR − dR + |P | − 1] = P R. Finally, len is the length of the pattern.

We note, however, that we will not be able to maintain p and pR in all cases; we will
manage without them. We still speak of those variables for reasoning about correctness.

Assume we are computing left-extension P → cP . If the size of the range [s, e] on SA
corresponding to the pattern does not change, only the character c precedes P in T . In this
case, we simply increment d and len. Otherwise, we compute the predecessor pred(Rc, e),
to obtain ⟨q, SA[q]− 1⟩. We then update j ← SA[q]− 1 and jR ← n− j. Also, offsets are
updated to d← 0, dR ← len, and len ← len + 1. The case of right-extension is symmetric.

The details are shown in Algorithms 1 and 2. In the following lemma, we prove the
invariant conditions that hold during the extensions. These conditions are important for the
correctness of the locate algorithm presented in the next section.

▶ Lemma 3. Assume we are computing left-extension and right-extension, and the current
pattern is P . Then the following conditions are invariant, except when P is empty.
(1) len = |P |
(2) d + dR + 1 = len
(3) Let j = SA[p] and jR = SAR[pR], then s ≤ LF d(p) ≤ e and sR ≤ (LF R)dR(pR) ≤ eR

Proof. When we start with an empty pattern P = ε, we initialize the ranges and the sample
with s = sR = 1, e = eR = n, len = d = dR = 0. We then obtain an arbitrary predecessor
⟨q, SA[q]−1⟩ and set j = y and jR = n−y. We now prove that the invariants are maintained
by left-extension; right-extension is symmetric.



Y. Arakawa, G. Navarro, and K. Sadakane 11:7

Algorithm 1 Left-extension P → cP .

Input: A character c and values corresponding to P : [s, e], [sR, eR], j, d, len
Output: Values corresponding to cP : [s′, e′], [s′

R, e′
R], j′, j′

R, d′, d′
R, len′

1: s′ ← C[c] + rankc(L, s− 1) + 1
2: e′ ← C[c] + rankc(L, e)
3: if s′ > e′ then
4: cP does not occur.
5: else
6: acc ← 0
7: for a = 1 to c− 1 do
8: acc ← acc + ranka(L, e)− ranka(L, s− 1)
9: end for

10: [s′
R, e′

R]← [sR + acc, sR + acc + e′ − s′]
11: if e′ − s′ ̸= e− s (cP and c′P occur for some c′ ̸= c) then
12: (q, j′)← pred(Rc, e), d′ ← 0
13: else
14: j′ ← j, d′ ← d + 1
15: end if
16: j′

R ← n− j′, d′
R ← len − d′

17: len′ ← len + 1
18: end if

First, consider the case where e′ − s′ ≠ e − s in line 11 of Algorithm 1. (1) Since len′

is incremented from len, len′ = |cP | holds. (2) d′ + d′
R + 1 = 0 + len + 1 = len′ holds.

(3) From the definition of Rc, j′ = SA[q] − 1, so the new value for p is p′ = LF (q). Also,
since j′

R = n − j′ = n − (SA[q] − 1) = SAR[ISAR[n − SA[q] + 1]], it holds that the new
value for pR is p′

R = ISAR[n − SA[q] + 1]. Now, cP and c′P (c′ ̸= c) occur in this case,
which means an end of a BWT run of the character c exists in [s, e]. Thus, s ≤ q ≤ e

and L[q] = c holds, which in turn implies s′ ≤ LF (q) = p′ ≤ e′. On the other hand,
SAR[(LF R)d′

R(p′
R)] = SAR[p′

R]− d′
R = j′

R − d′
R = (n− j′)− d′

R = n− (j′ + d′
R) holds. This

position in T R corresponds to the position j′ +d′
R = j′ + len′−d′−1 = SA[LF d′(p′)]+ len′−1

in T . This is the ending position of the pattern cP in T , and the starting position of P Rc in
T R. Therefore s′

R ≤ (LF R)d′
R(p′

R) ≤ e′
R holds.

Second, consider the other case, where e′ − s′ = e − s in line 13 of Algorithm 1. This
case does not happen when P is empty since T contains at least two distinct characters.
Thus, the inductive assumption can be used. That is, we assume that the three conditions
hold before the execution of left-extension. (1) Same as the former case. (2) d′ + d′

R + 1 =
d + 1 + dR + 1 = len + 1 = len′ holds from the inductive assumption. (3) Note that j

and jR do not change, so p′ = p and p′
R = pR. In this case c precedes all the occurrences

of P . Thus, s′
R = sR and e′

R = eR, and since we also maintain d′
R = dR, the relation

sR = s′
R ≤ (LF R)d′

R(p′
R) = (LF R)dR(pR) ≤ e′

R = eR stays true by induction. On the
other hand, s′ = C[c] + rankc(L, s − 1) + 1 = C[c] + rankc(L, s), e′ = C[c] + rankc(L, e),
and LF d′(p′) = LF (LF d(p)) = C[c] + rankc(L, LF d(p)) holds since L[s] = L[LF d(p)] = c.
Therefore, s′ ≤ LF d′(p′) ≤ e′ holds from the inductive assumption. ◀
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Algorithm 2 Right-extension P → P c.

Input: A character c and values corresponding to P : [s, e], [sR, eR], jR, dR, len
Output: Values corresponding to Pc : [s′, e′], [s′

R, e′
R], j′, j′

R, d′, d′
R, len′

1: s′
R ← C[c] + rankc(LR, sR − 1) + 1

2: e′
R ← C[c] + rankc(LR, eR)

3: if s′
R > e′

R then
4: Pc does not occur.
5: else
6: acc ← 0
7: for a = 1 to c− 1 do
8: acc ← acc + ranka(LR, eR)− ranka(LR, sR − 1)
9: end for

10: [s′, e′]← [s + acc, s + acc + e′
R − s′

R]
11: if e′

R − s′
R ̸= eR − sR (Pc and Pc′ occur for some c′ ̸= c) then

12: (qR, j′
R)← pred(RR

c , eR), d′
R ← 0

13: else
14: j′

R ← jR, d′
R ← dR + 1

15: end if
16: j′ ← n− j′

R, d′ ← len − d′
R

17: len′ ← len + 1
18: end if

3.2 Determining the end of locate with run-length compressed PLCP
We now present the algorithm for locate. We can obtain the values SA[i− 1], SA[i + 1] from
SA[i], using just the functions ϕ and ϕ−1 of the r-index. Therefore, neighboring SA values
are obtained sequentially from component j, d of the sample. However, because we do not
know p′ = LF d(p), we cannot determine how many values i < p′ and i > p′ are within the
range [s, e] corresponding to the current pattern P .

In order to determine the ends of the iterative computations of ϕ and ϕ−1, we make use of
the permuted LCP array PLCP[1, n], which satisfies PLCP[i] = LCP[ISA[i]] (i = 1, . . . , n).
Let the current position in SA be p′ ∈ [s, e]. When we are computing the value of SA[p′ − 1]
from SA[p′], we compare PLCP[SA[p′]] with |P |. If PLCP[SA[p′]] is smaller than |P |,
SA[p′ − 1] does not correspond to an occurrence of the whole pattern P . Thus, p′ = s holds
in this case. Otherwise we go on and compute ϕ. Similarly, when we compute SA[p′ + 1]
from SA[p′], we compare PLCP[SA[p′ + 1]] with |P |.

The details are shown in Algorithm 3. In the following lemma, we prove that Algorithm 3
runs properly if the invariant conditions hold. Combining Lemmas 3 and 4, we obtain the
correctness of locate.

▶ Lemma 4. Let [s, e] be the range on SA that corresponds to the current pattern P . Assume
the input of Algorithm 3 satisfies j = SA[p], s ≤ LF d(p) ≤ e, len = |P |. Then Algorithm 3
correctly outputs all the positions of the occurrences of P .

Proof. The correctness of ϕ, ϕ−1 is proved in [6, Lem. 3.5]. Since j = SA[p], j′ = j − d is
equal to SA[p′] (p′ = LF d(p)). Provided s ≤ p′ ≤ e, we have to prove

PLCP[SA[p′]] ≥ |P | ⇒ p′ > s

PLCP[SA[p′]] < |P | ⇒ p′ = s

In the case where PLCP[SA[p′]] ≥ |P |, PLCP[SA[p′]] = LCP[ISA[SA[p′]]] = LCP[p′] =
lcp(T [SA[p′], n], T [SA[p′ − 1], n]) ≥ |P | holds. Since the first |P | characters of T [SA[p′], n]
are identical to P from the assumption, the first |P | characters of T [SA[p′ − 1], n] are also
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Algorithm 3 Locate the current pattern P .

Input: p, j(= SA[p]), d, len(= |P |)
Output: All the starting positions of the occurrences of P in T

1: j′ ← j − d (= SA[LF d(p)])
2: pos ← j′

3: output pos
4: while PLCP[pos] ≥ len do
5: pos ← ϕ(pos)
6: output pos
7: end while
8: pos ← j′

9: while true do
10: if pos = SA[n] then return
11: pos ← ϕ−1(pos)
12: if PLCP[pos] < len then return
13: output pos
14: end while

the same as P . Thus, p′ − 1 is also within the range [s, e], which means p′ > s. On the
other hand, when PLCP[SA[p′]] < |P |, lcp(T [SA[p′], n], T [SA[p′ − 1], n]) < |P | holds. In this
case, at least one character among the first |P | characters of T [SA[p′], n] and T [SA[p′− 1], n]
differ. Since the first |P | characters of T [SA[p′], n] are identical to P , the first |P | characters
of T [SA[p′ − 1], n] are not the same as P . Thus, p′ − 1 is out of the range [s, e], which means
p′ = s. Similarly,

PLCP[SA[p′ + 1]] ≥ |P | ⇒ p′ < e

PLCP[SA[p′ + 1]] < |P | ⇒ p′ = e

holds when p′ ≤ n− 1, so we can correctly decide whether s ≤ p′ ≤ e holds.
From the above arguments, we can locate all the occurrences of P using Algorithm 3. ◀

If we use a predecessor data structure to store PLCP in O(r) words of space, we can
access one value of PLCP in O(log logw(n/r)) time [6, Lem. 3.8.]. As a more sophisticated
solution, ϕ, ϕ−1 and PLCP can be computed simultaneously in O(1) time within O(r) words
of space, with a move data structure [19]. The algorithm to compute ϕ−1 is explained in
[19]. ϕ is symmetric. We integrate a procedure to compute PLCP into the algorithm. In
addition to the values of ϕ and ϕ−1 stored in the structure, we store the values of PLCP
at the same sampled positions. We compute the predecessor by a move query, obtain its
PLCP value, and subtract the offset between the current position and the predecessor from
the value. Therefore we obtain Theorem 1.

3.3 Improving the extend time with wavelet tree

In lines 7-9 of Algorithm 1, rank on L is computed for O(σ) times in order to calculate the
accumulated number of occurrences of c′P (c′ < c). These computations are costly when σ is
large. We could easily compute the accumulated number in O(log σ) time on the wavelet tree
of the BWT, since it is a range-counting problem [15]. This is not that simple, however, on
the run-length BWT representation. We now show that polylogarithmic time is still possible,
however.

CPM 2022



11:10 Bi-Directional r-Indexes

Consider the sequence L′[1, r] of the run heads in the BWT, that is, the first characters
of the BWT runs. Regard L′ as the 2-dimensional grid G of size r × σ which has r points,
whose x-coordinates are the positions in L′ and y-coordinates are the characters. That is, if
L′[i] = c, there is a grid point at (i, c). Give to that point a weight, equal to the length of
the corresponding run in L. We can apply the following theorem on that grid (simplified for
our purpose).

▶ Theorem 5 ([16]). Let a grid of size r × r store r points with associated non-negative
integers whose values are at most n. For any ϵ > 0, a structure of O( 1

ϵ r log n) bits can
compute the sum of the integers in any rectangular range in time O( 1

ϵ log2+ϵ r).

Since the shape of the grid is required to be r × r in Theorem 5, we extend the r × σ grid
with an empty area. We also need a way to determine, given a position L[i], the run it
belongs to, and the start/end positions of that run in L. This is already supported by the
r-index structures, in time O(log logw(n/r)).

With these structures, we count the number of symbols < c in L[l, r] as follows. (1)
Compute the runs x1 and x2 where l and r belong, respectively, the ending position l′ of the
x1-th run and the starting position r′ of the x2-th run. (2) Compute, using Theorem 5, the
sum of the weights of the points falling in [x1 + 1, x2 − 1]× [1, c− 1]. (3) Add l′ − l + 1 if
L[l] < c, and r − r′ + 1 if L[r] < c.

We thus construct the structure of Theorem 5 on L and on LR. We obtain Theorem 2 by
noting that all the times of the form O(log logw(n/r)) come from predecessor queries, which
can also be done in time O(log r) by resorting to binary search.

4 Experiments

4.1 Experimental setup
In order to test the practical performance of the index, we experimented on repetitive
datasets taken from the Pizza&Chili Repetitive Corpus.1 Their characteristics are shown
in Table 2. We compared the br-index with the r-index and the bi-directional FM-index
(2BWT) built on the same datasets. For the br-index, we implemented the differentially
encoded PLCP with a sparse bitmap [22, 20]. For the 2BWT, we tested s = 16, 32, 64, 128 as
the sampling parameter of SA. Also, as the components of the 2BWT, we used the wavelet
trees implemented with RRR bitvectors [21].

We evaluated all the experiments in a machine with Intel Xeon CPU E5-2650 v2 clocked
at 2.60GHz and the 128GB memory. The compiler was gcc 4.8.5 and the compiler options
were -std=c++11 -Ofast -march=native.

In addition to comparing the spaces used by the indexes, we demonstrate the power of the
extended primitives on a simplified variant of a popular bioinformatics query, the so-called
seed-and-extend approach used in BLAST. In the query, we consider a pattern divided into
three parts, P = P1P2P3. We locate all the occurrences of P allowing up to k mismatches
in P1 and P3, while P2 is matched exactly. Note that we do not locate the occurrences of
P with mismatches in P2, even if the total number of mismatches in P is within k. On
the 2BWT and the br-index, we execute the query by first searching for P2 in exact form.

1 http://pizzachili.dcc.uchile.cl/repcorpus.html

http://pizzachili.dcc.uchile.cl/repcorpus.html
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Table 2 The statistics for the datasets. The lexicographically minimum character attached to
the end is included.

datasets n σ r rR r/n

cere 461,286,644 6 11,574,641 11,575,583 0.0251
coreutils 205,281,778 237 4,684,460 4,732,795 0.0228

einstein.de 92,758,441 118 101,370 99,834 0.0011
einstein.en 467,626,544 140 290,239 286,698 0.0006
escherichia 112,689,515 16 15,044,487 15,045,278 0.1335
influenza 154,808,555 16 3,022,822 3,018,825 0.0195

kernel 258,961,616 161 2,791,368 2,780,096 0.0108
para 429,265,758 6 15,636,740 15,635,178 0.0364

world-leaders 46,968,181 90 573,487 583,397 0.0122

Table 3 The sizes (bits/symbol) of the indexes on the repetitive datasets. s is the sampling
parameter for SA.

2BWT r-index br-index
s = 16 s = 32 s = 64 s = 128

cere 8.44 6.33 5.27 4.73 1.93 5.63
coreutils 12.80 10.68 9.61 9.07 1.87 4.92

einstein.de 11.08 8.96 7.90 7.36 0.099 0.276
einstein.en 11.97 9.86 8.79 8.24 0.057 0.162
escherichia 10.18 8.07 7.00 6.46 9.20 26.89
influenza 8.80 6.69 5.62 5.09 1.49 4.32

kernel 12.32 10.20 9.14 8.60 0.90 2.54
para 8.61 6.50 5.43 4.90 2.76 8.07

world-leaders 11.38 9.26 8.20 7.66 0.96 2.74

Then we extend the match leftwards to any P ′
1P2, where P ′

1 has 0 ≤ k′ ≤ k mismatches with
respect to P1. This is done with the usual backtracking mechanism starting from the range
of P2, using left-extension on every possible symbol as long as the error threshold permits.
Finally, we extend each resulting range rightwards using right-extension, finding P3 with at
most k − k′ mismatches, and report all the occurrences found.

This strategy cannot be used on the r-index, because it cannot extend rightwards. In
this case, we tested two different algorithms. The first algorithm, which we call match-first,
searches for the pattern from the end to the beginning using left-extension, allowing up to k

mismatches when matching P3 and P1. This is likely to be considerably slower because it does
not restrict the matches to P2 before starting to allow errors. The second algorithm, which
we call locate-first, finds all the occurrences of P2 with just the r-index, and extracts the text
around each occurrence to check if the number of mismatches in P ′

1 and P ′
3 is within k. This

algorithm is similar to the approach of BLAST, although we extract the characters around
P2 using LF and FL (the inverse function of LF ) because we were not storing the plain
text. This approach can work well if P2 is long enough, although it scales linearly with the
text size.

We extracted 100 random substrings of length 16, 32, 64 as the target patterns from
influenza, and computed seed-and-extend for each pattern. P2 is set at the middle of P , with
length ⌈|P |/3⌉. The number of allowed mismatches was between 0 and 10.
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Figure 1 The total computation times of seed-and-extend query for all the target patterns
on influenza with the number of allowed mismatches between 0 and 10. The 2BWT sometimes
mistakenly locates positions for unknown reasons, but the number of reported patterns is very close
to that of other indexes.

4.2 Experimental results
The index sizes are shown in Table 3. The br-index is smaller than the 2BWT in many cases.
Exceptionally, the br-index is larger when built on escherichia, where r/n is relatively large.
The br-index is about 3 times larger than the r-index in all cases. This is expected because
we store L, LR, PLCP , and the structures to compute ϕ−1 (in practice the r-index works
with only ϕ).

Figure 1 shows the computation times of seed-and-extend. As it can be seen, the br-index
and the 2BWT yield curves with similar shape, though the br-index is an order of magnitude
faster. The match-first algorithm we use on the r-index, instead, is sharply outperformed as
soon as we allow a few mismatches, as expected. When the pattern is short, the approach
manages to outperform the 2BWT, but still the br-index is considerably faster. The br-index
is also faster than the locate-first algorithm on the r-index in all cases, and is robust to the
increase of allowed mismatches when the pattern is long. The locate-first approach, instead,
worsens significantly on short patterns, because in that case P2 has too many occurrences to
verify.

5 Conclusions

We introduced the br-index, which supports the bi-directional extension of the currently
searched pattern while efficiently locating all of its occurrences within O(r + rR) words, by
maintaining an SA sample and its offset to the current pattern, and determining the end of
the locate area using the run-length compressed PLCP. In practice, the size of the br-index
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was observed to be around 3 times as large as that of the r-index [6], and comparable to that
of the 2BWT [1], on repetitive datasets. Also, as an application of interleaving left-extension
and right-extension, we tested the seed-and-extend query, which finds a pattern allowing
some mismatches except in an internal part. The br-index is shown to sharply outperform
the r-index on this query, and the gap is likely to grow when allowing more mismatches.

Our work can be seen as a first step towards a fully-functional compressed suffix tree
whose size is as close to O(r + rR) words as possible. The br-index can serve as a component
of such a suffix tree, since we can compute child and weiner-link with it: these operations
correspond to right-extension and left-extension, respectively. On the other hand, suffix-link
and parent are not supported because they need bi-directional pattern contraction. These
operations can be carried out with the representation of the suffix tree topology or the
random access to LCP, both of which require some queries on it. From the perspective
of the computation time, the former is more promising in practice [18], while the latter is
guaranteed to use O(r log n

r ) words [6]. We wonder if the functionality can be supported
in O(r + rR) words, or if another reasonable repetitiveness measure can be defined within
which we can represent, for example, the compressed suffix tree topology.
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Abstract
A directed multigraph is called Eulerian if it has a circuit which uses each edge exactly once. Euler’s
theorem tells us that a weakly connected directed multigraph is Eulerian if and only if every node is
balanced. Given a collection S of strings over an alphabet Σ, the de Bruijn graph (dBG) of order
k of S is a directed multigraph GS,k(V, E), where V is the set of length-(k − 1) substrings of the
strings in S, and GS,k contains an edge (u, v) with multiplicity mu,v, if and only if the string u[0] · v

is equal to the string u · v[k − 2] and this string occurs exactly mu,v times in total in strings in
S. Let GΣ,k(VΣ,k, EΣ,k) be the complete dBG of Σk. The Eulerian Extension (EE) problem on
GS,k asks to extend GS,k with a set B of nodes from VΣ,k and a smallest multiset A of edges from
EΣ,k to make it Eulerian. Note that extending dBGs is algorithmically much more challenging than
extending general directed multigraphs because some edges in dBGs are by definition forbidden.
Extending dBGs lies at the heart of sequence assembly [Medvedev et al., WABI 2007], one of the
most important tasks in bioinformatics. The novelty of our work with respect to existing works is
that we allow not only to duplicate existing edges of GS,k but to also add novel edges and nodes, in
an effort to (i) connect multiple components and (ii) reduce the total EE cost. It is easy to show
that EE on GS,k is NP-hard via a reduction from shortest common superstring. We further show
that EE remains NP-hard, even when we are not allowed to add new nodes, via a highly non-trivial
reduction from 3-SAT. We thus investigate the following two problems underlying EE in dBGs:
1. When GS,k is not weakly connected, we are asked to connect its d > 1 components using a

minimum-weight spanning tree, whose edges are paths on the underlying GΣ,k and weights are
the corresponding path lengths. This way of connecting guarantees that no new unbalanced
node is added. We show that this problem can be solved in O(|V |k log d + |E|) time, which is
nearly optimal, since the size of GS,k is Θ(|V |k + |E|).

2. When GS,k is not balanced, we are asked to extend GS,k to HS,k(V ∪ B, E ∪ A) such that every
node of HS,k is balanced and the total number |A| of added edges is minimized. We show that
this problem can be solved in the optimal O(k|V | + |E| + |A|) time.

Let us stress that, although our main contributions are theoretical, the algorithms we design for the
above two problems are practical. We combine the two algorithms in one method that makes any
dBG Eulerian; and show experimentally that the cost of the obtained feasible solutions on real-world
dBGs is substantially smaller than the corresponding cost obtained by existing greedy approaches.
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1 Introduction

We start with some basic definitions and notation on strings from [6]. Let x = x[0] · · ·x[n−1]
be a string of length n = |x| over an integer alphabet Σ = [0, σ) of σ letters. By Σk we
denote the set of all strings of length k > 0. For any two positions i and j ≥ i of x, x[i . . j]
is the fragment of x starting at position i and ending at position j; it is represented in
O(1) space by i and j. The fragment x[i . . j] is an occurrence of the underlying substring
p = x[i] · · ·x[j]; we say that p occurs at position i in x. A prefix of x is a fragment of the
form x[0 . . j] and a suffix of x is a fragment of the form x[i . . n− 1]. By xy or x · y we denote
the concatenation of strings x and y: xy = x[0] · · ·x[|x| − 1]y[0] · · · y[|y| − 1]. Given strings x

and y, a suffix/prefix overlap of x and y is a suffix of x that is a prefix of y.
The order-k de Bruijn graph (dBG) of a collection S of strings is a directed multigraph

GS,k(V, E) such that V is the set of length-(k − 1) substrings of the strings in S and GS,k

contains an edge (u, v) with multiplicity mu,v, if and only if the string u[0] · v is equal to the
string u · v[k − 2] and this string occurs exactly mu,v times in total in strings in S. When S

is generated by a sequencing experiment from a genome, any Eulerian circuit of GS,k(V, E)
corresponds to a single genome reconstruction [24, 20]. It goes without saying that genome
assembly is one of the most important bioinformatics tasks [25, 29, 11, 22, 21, 26, 27, 18].

However, GS,k is almost surely not Eulerian in practice due to sequencing errors [21].
One could thus try to make it Eulerian by duplicating some of its existing edges [19]. In
this case, one would naturally like to minimize the total cost of this extension. Even worse,
GS,k would likely not be weakly connected, and thus edge duplication is not sufficient to
make GS,k Eulerian. In this paper, we introduce the problem of making any arbitrary GS,k

Eulerian by allowing not only to duplicate existing edges but to also add novel edges and
nodes. The motivation for this is twofold. First, such a process would connect multiple
components, which are often unconnected for the values of k used in practice. Second, as
this is a generalization of the edge duplication problem [19], it would only reduce the total
extension cost, even if the input graph is already weakly connected.

Let us now more formally lay the foundations of our work by first considering a general
directed multigraph G(V, E). A directed multigraph is called Eulerian if it has a circuit
which uses each edge exactly once. Euler’s theorem tells us that a weakly connected directed
multigraph is Eulerian if and only if every node is balanced: for any node v ∈ V the in- and
out-degree of v are equal. The Eulerian Extension (EE) problem on G(V, E) asks for an
Eulerian extension minimizing the total cost of the multiset A of added edges according to
some cost function. A smallest multiset A over V × V such that H(V, E ∪A) is Eulerian can
be computed in the optimal O(|V |+ |E|) time [5, 9]. We prove that the EE problem becomes
significantly more challenging when a subset F of V × V is forbidden (i.e., not feasible):

https://doi.org/10.4230/LIPIcs.CPM.2022.12
https://bitbucket.org/eulerian-ext/cpm2022/
https://archive.softwareheritage.org/swh:1:dir:d7c2ca6a257600d6d7176b876370c456496af5a2;origin=https://bitbucket.org/eulerian-ext/cpm2022/;visit=swh:1:snp:2e825771f7a787fb8b347f3205119f38732b947e;anchor=swh:1:rev:d7eb1ac39fc78b1266f9ffddf7707c0d474c44c8
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(a) H(V ′, E′).

(u, 0)

(u, 1) (v, 0) (v, 1)

(w, 0)(w, 1)

(x, 0)

(x, 1)

(b) G(V ′ × {0, 1}, {((v, 0), (v, 1))|v ∈ V ′}).

Figure 1 (a) An instance of the directed Hamiltonian circuit with a solution in red and (b) the
instance of Problem 1 to which it reduces. An Eulerian circuit in graph (b), with required bold
edges and non-forbidden dashed edges, corresponds to finding a directed Hamiltonian circuit in
graph (a). The corresponding solution is in red in graph (b).

▶ Problem 1. Given a directed multigraph G(V, E) and a set F ⊂ V × V , with F ∩ E = ∅,
find a multiset A of edges over (V × V ) \ F such that H(V, E ∪ A) is Eulerian and |A| is
minimized; or report FAIL if not possible.

It should be clear that Problem 1 is equivalent to the EE problem when F = ∅. Note
that Problem 1 is directly applicable on arbitrary dBGs, where the set F of forbidden edges
is directly implied by the dBG definition: (u, v) ∈ F if and only if u[0] · v ≠ u · v[k − 2]. We
observe that adding nodes may shorten the length of the Eulerian circuit with respect to
Problem 1. This observation leads naturally to the following generalization of Problem 1:

▶ Problem 2. Given a directed multigraph G(V, E), a set V ⊇ V , and a set F ⊂ V ×V, with
F ∩ E = ∅, find a multiset A of edges over (V × V) \ F and a set of nodes B ⊆ V such that
H(V ∪ B, E ∪ A) is Eulerian and |A| is minimized; or report FAIL if not possible.

We will now prove that both Problems 1 and 2 are NP-hard by reducing from the directed
Hamiltonian circuit [13] problem: Given a directed graph, decide whether there exists a
directed circuit that visits every node of the graph exactly once.

▶ Theorem 1. Both Problems 1 and 2 are NP-hard.

Proof. We will first prove that Problem 1 is NP-hard. Consider an instance H(V ′, E′) of
the directed Hamiltonian circuit problem (inspect Figure 1a). We replace each node v ∈ V ′

by two nodes (v, 0), (v, 1) and an edge ((v, 0), (v, 1)) with all the incoming edges incident to
the tail (v, 0) and all the outgoing edges incident to the head (v, 1) (inspect Figure 1b).

Note that any sequence of adjacent edges on this modified graph alternates between new
edges (corresponding to nodes in H, the bold edges in Figure 1b) and old edges (corresponding
to the edges in H connecting those nodes, dashed in Figure 1b). Finding a Hamiltonian
circuit in H is equivalent to finding a circuit passing through all new edges in the modified
graph exactly once. It follows that solving the directed Hamiltonian circuit problem on H is
equivalent to deciding whether the following instance of Problem 1 has a solution of size |V ′|
(smaller solutions are not possible, larger solutions imply that H is not Hamiltonian):

G(V, E) = G (V ′ × {0, 1}, {((v, 0), (v, 1)) | v ∈ V ′})
F = (V × V ) \ (E ∪ {((u, 1), (v, 0))|(u, v) ∈ E′}) .

Since the directed Hamiltonian circuit problem is NP-complete [13], it is NP-hard to decide
whether a solution to Problem 1 has size at most |V |/2. Thus solving Problem 1 is NP-hard.

Note that Problem 2 is equivalent to the EE problem when F = ∅ and V = V , and that
Problem 2 is at least as hard as Problem 1: every instance of Problem 1 can be reduced to
some instance of Problem 2 with V = V . Therefore Problem 2 is NP-hard as well. ◀
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Related Work. Both Problems 1 and 2 on general graphs are closely-related to the Directed
Rural Postman problem (DRP) [23]: Given a directed (multi-)graph G(V ′, E′) and a (multi-)
set R ⊆ E′ of required edges, we are asked to compute a minimum-cost circuit in G including
all edges in R. It is easy to see that any instance of Problem 2 reduces to an instance of
DRP with V ′ = V, E′ = (V × V) \ F and R = E; a similar reduction works for Problem 1.

Problems 1 and 2 on arbitrary dBGs are different versions of the classic Shortest Common
Superstring (SCS) problem [12]. In particular, Problem 2 is closely-related to the Multi-SCS
problem [5]: Given a set S of strings and a multiplicity f(si) of each si ∈ S, Multi-SCS asks
for a shortest string containing at least f(si) occurrences of each si ∈ S. When all strings in
S are of length k, Multi-SCS is essentially Problem 2 on dBGs of order k.1 Crochemore et
al. showed that Multi-SCS can be solved in linear time when all input strings in S are of
length 2. Cazaux and Rivals [4] presented a 1

2 -approximation algorithm for Multi-SCS that
maximizes the compression offered by the output string; and a 4-approximation algorithm for
Multi-SCS that minimizes the length of the output string. In the Multi-SCCS problem [4],
given a set S of strings and a multiplicity f(si) of each si ∈ S, we are asked to construct a
multiset C of cyclic strings of minimum total length such that every string in S occurs f(si)
times in the strings of C. Cazaux and Rivals [4] showed a linear-time implementation of a
greedy algorithm that solves Multi-SCCS exactly (see also [3] for the SCCS problem).

Contributions. Let us now summarize our main contributions on arbitrary dBGs:
1. The reduction leading to Theorem 1 does not apply to the case in which the input to

Problems 1 or 2 is an arbitrary dBG GS,k, as not all edges implied by the reduction
may be feasible in GS,k. In Section 3 we prove that both problems are NP-hard even
on arbitrary dBGs. It is easy to show that Problem 2 is NP-hard via a reduction from
SCS. For Problem 1, we make a highly non-trivial reduction from 3-SAT; this is the most
involved part of the paper. Since our ultimate goal is to make dBGs Eulerian, we next
investigate the following two problems underlying EE in dBGs: connect and balance.

2. In Section 4, we show an exact greedy algorithm to make any GS,k, consisting of d > 1
weakly connected components, weakly connected, by extending GS,k with a minimum-
weight spanning tree, whose edges are paths on the underlying GΣ,k and weights are the
corresponding path lengths. While there are many optimization criteria for connecting
GS,k, this way guarantees that no new unbalanced node is added. Our algorithm runs in
O(|V |k log d + |E|) time, which is nearly optimal, since the size of GS,k is Θ(|V |k + |E|).
To achieve this time complexity, we simulate Kruskal’s classic algorithm for computing
minimum spanning trees [17] using an efficient method to compute shortest paths on
the implicit GΣ,k. This method employs an augmented and modified version of the Aho-
Corasick machine [1], which we dynamically update every time we unite two components.

3. Balancing any GS,k with the smallest number of newly added edges can be reduced
to Multi-SCCS. By employing the linear-time algorithm of Cazaux and Rivals [4] for
Multi-SCCS, we obtain an O(k|E|)-time algorithm for balancing. In Section 5, we show
an exact greedy algorithm for this problem that runs in the optimal O(k|V |+ |E|+ |A|)
time, where |A| is the total number of added edges. To achieve this time complexity,
similar to Section 4, we simulate Cazaux and Rivals algorithm using another augmented
and modified version of the Aho-Corasick machine.

1 We say “essentially” because Multi-SCS asks for a shortest linear string, whereas Problem 2 asks for an
Eulerian circuit, which on a dBG corresponds to a shortest cyclic string.
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4. Although our main contributions here are theoretical, the algorithms we design are
practical. In Section 6, we combine the algorithms of Sections 4 and 5 in one method
that makes any GS,k Eulerian; and show experimentally that the cost of the feasible
solutions obtained by this method on real-world dBGs constructed over sequencing data
is substantially smaller than the cost of solutions obtained by existing string-based greedy
approaches. This justifies the need for an approach specifically designed to extend dBGs.

2 Preliminaries

We fix an integer k > 1 and an integer alphabet Σ. Given a collection S of strings over Σ,
we denote by GS,k(V, E) the de Bruijn graph (dBG) of order k of S (defined in Section 1).
The cardinality of E (i.e., the sum of edge multiplicities) is |E| = ||S|| − (k − 1)|S|, where
||S|| is the total length of the strings in S. Let d−(u) and d+(u) be, respectively, the in-
and out-degree of node u of GS,k. An undirected graph is said to be connected if for every
pair u and v of nodes in the graph there exists a path from u to v. A directed graph is
called weakly connected if by replacing all of its directed edges with undirected edges we
obtain a connected (undirected) graph. A spanning tree of a weakly connected graph is
a weakly connected subgraph which covers all the nodes of the graph with the minimum
possible number of edges. A weakly connected graph GS,k is called Eulerian if every node u

in GS,k is balanced, i.e., d+(u) = d−(u). The dBG of order k of Σk is called the complete de
Bruijn graph of order k over Σ; we denote it by GΣ,k(VΣ,k, EΣ,k), where VΣ,k = Σk−1 and
EΣ,k = {(s[0 . . k − 2], s[1 . . k − 1]) | s ∈ Σk}.

Throughout, we assume that we are given the graph GS,k of an arbitrary string collection
S, which we denote by G(V, E).

3 Eulerian Extension of de Bruijn Graphs is NP-hard

In this section, we investigate the hardness of Problems 1 and 2 on arbitrary dBGs.

Eulerian Extension of de Bruijn Graphs (Extend-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ.
Output: An Eulerian graph H(V ∪B, E∪A) with B ⊆ VΣ,k, A over EΣ,k and minimized
|A|.

Extend-DBG can be solved in linear time when k = 2 [5]. When k > 2, Extend-DBG
can be shown to be NP-hard via a simple reduction from the Length-k Shortest Common
Superstring problem (k-SCS), a special case of the SCS problem in which all input strings
are of length k. k-SCS is NP-hard, for any k > 2 [12]. Any instance of k-SCS on some
alphabet Σ can be reduced to an instance of Extend-DBG on a dBG of order k over
Σ ∪ {#}, with # /∈ Σ. The nodes of such dBG are the length-(k − 1) prefixes and suffixes of
each input string of k-SCS plus a special node #k−1. All the edges naturally correspond to
the input strings of k-SCS, except for a special edge encoding #k. An Eulerian circuit of
a minimum-size Eulerian extension of such graph then corresponds to a shortest common
cyclic superstring s̃, which can be trivially transformed into a solution s to k-SCS (a shortest
common linear superstring) by removing substring #k, so that the first letter of s is the first
letter of s̃ after the last #, and the last letter of s is the last letter of s̃ before the first #.

Since a common superstring always exists (any concatenation of the strings is a cyclic
superstring), the reduction implicitly assumes that it is always possible to connect a dBG to
make it Eulerian. While this is true for Extend-DBG, as a path of length at most k − 1
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12:6 Making de Bruijn Graphs Eulerian

exists between any two nodes if new nodes can be added to the graph, the assumption is
wrong if we are only allowed to connect pairs of nodes of the input graph. If we tried to
solve k-SCS via Extend-DBG with this restriction, we would only consider suffix/prefix
overlaps of length (k − 1) (corresponding to two consecutive edges of the dBG given by the
reduction) or (k− 2) (corresponding to edges added between two existing nodes when solving
Extend-DBG), which is clearly wrong. It is therefore interesting to see if Extend-DBG
remains NP-hard even with this restriction.

We start by formally defining this restricted version of the EE problem on dBGs.

Restricted Eulerian Extension of de Bruijn Graphs (R-Extend-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ.
Output: An Eulerian graph H(V, E ∪ A) with A over (V × V ) ∩ EΣ,k and minimized
|A|; or report FAIL if not possible.

R-Extend-DBG can also be solved in linear time when k = 2 [5]. However, proving that
R-Extend-DBG is NP-hard for k > 2 turns out to be significantly more challenging. We
prove this via a reduction from 3-SAT, a well-known NP-hard problem [15]. Let {x1, . . . , xℓ}
be a set of variables. A literal is a variable xi or a negated variable ¬xi. A clause is a
disjunction of literals. A formula F = C1 ∧ C2 ∧ · · · ∧ Cn is in conjunctive normal form
(CNF), if it is a conjunction of n clauses. The k-SAT problem is deciding whether a formula
F in CNF form with every clause in F consisting of at most k literals is satisfiable.

▶ Theorem 2. R-Extend-DBG is NP-hard if G(V, E) is of order k = 3.

Proof. Consider a 3-SAT instance with a set {x1, . . . xℓ} of ℓ variables and a formula
F = C1 ∧C2 ∧ · · · ∧Cn of n clauses, where each clause contains three literals. We construct a
dBG with k = 3 for which solving R-Extend-DBG problem tells us whether F is satisfiable
or not. The dBG is constructed over the alphabet:

Σ = {xi,¬xi, yi, zi}i∈[1,ℓ] ∪ {aj , bj}j∈[1,n] ∪ {xij ,¬xij}j∈[1,n]
i∈[1,ℓ] ∪ {c1, c2},

where the letters within each set are pairwise distinct and all sets are pairwise disjoint. The
dBG will consist of the union of some gadget subgraphs, as described next. For each variable
xi, we define a variable-gadget Gv(xi)(V i

v , Ei
v), conceptually corresponding to xi ∨ ¬xi, with

five nodes and four edges:

V i
v = {zixi, xiyi, yizi, zi¬xi,¬xiyi}, Ei

v = {xiyizi, yizixi,¬xiyizi, yizi¬xi}.

For every clause Cj = lj
1 ∨ lj

2 ∨ lj
3, with lj

1, lj
2, lj

3 ∈ {xi,¬xi}i∈[1,ℓ], we define a corresponding
clause-gadget Gc(Cj)(V j

c , Ej
c ), with seven nodes and six edges:

V j
c = {ajbj , bj lj

1j , lj
1jaj , bj lj

2j , lj
2jaj , bj lj

3j , lj
3jaj},

Ej
c = {ajbj lj

1j , ajbj lj
2j , ajbj lj

3j , lj
1jajbj , lj

2jajbj , lj
3jajbj}.

In this definition, lj
tj for each t ∈ {1, 2, 3} are just placeholders, such that lj

tj = xij if lj
t = xi

and lj
tj = ¬xij if lj

t = ¬xi: for example, in Figure 2, l1
11 = x11, l1

21 = x21, and l1
31 = ¬x31

because C1 = (x1 ∨ x2 ∨ ¬x3).
Finally, the main component-gadget Gm(Vm, Em) is daisy-shaped: it has a central node

and 2ℓ petals, one for each variable xi and negated variable ¬xi, each consisting of a simple
cycle of length n + 3 beginning and ending at the central node. In the following definition
we use lj for each j ∈ [1, n] again as placeholders, to be replaced with xij in the petal of xi,
and with ¬xij in the petal of ¬xi, for all i ∈ [1, ℓ]:
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Figure 2 An instance of R-Extend-DBG that is equivalent to the 3-SAT problem (x1 ∨ x2 ∨
¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3). The first half of the Gm component is shown on the left. The edges of
the gadgets are shown in black. Other feasible edges within components are shown in blue, while
feasible edges between components are shown in green.

Vm = {c1c2} ∪
{

c2l, ll1, l1l2, . . . , ln−1ln, lnc1 | l ∈ {xi,¬xi}i∈[1,ℓ]
}

Em =
{

c1c2l, c2ll1, ll1l2, l1l2l3, . . . , ln−1lnc1, lnc1c2 | l ∈ {xi,¬xi}i∈[1,ℓ]
}

.

Note that each of these gadgets is connected and they are all mutually disjoint. An example
is shown in Figure 2. To balance the nodes, we need to add at least 2 edges for each variable-
gadget and at least 3 edges for each clause-gadget. For example, adding the blue edges in
Figure 2 would balance the graph. However, to additionally make the graph connected, we
would need to add other additional edges.

We want to minimize the number of added edges to make the graph balanced and
connected. That is equivalent to minimizing the number of nodes visited with multiplicity.
We will prove that we need at least 3ℓ(n + 3) + 6ℓ + 9n edges and that this is sufficient if
and only if the formula F is satisfiable. Consider the cut separating all gadgets Gv from
the other components. A gadget Gv(xi) can only be reached from nodes c2xi and c2¬xi of
Gm (see the green edges in Figure 2). Therefore, there must be at least ℓ additional edges
leaving nodes of the form c2l of Gm, one for each Gv(xi), with l ∈ {xi,¬xi}. Such nodes
are then visited at least 3ℓ times in total, as all the 2ℓ of them must be visited at least once
by following the solid edges of Gm, and ℓ of them (one for each Gv(xi)) must be visited at
least once more. Since the graph must be balanced, the number of edges traversing the cut
reaching the Gv gadgets equals the number of edges leaving them. Thus, the nodes of Gm of
the form llj , which are the only ones reachable from the Gv gadgets, are also visited at least
3ℓ times. Moreover, in order for Gm to remain balanced, the nodes of the form lj−1lj and
lj lj+1 (with l0 = l, ln+1 = c1) on the petals on which nodes of the form c2l or llj are visited
twice must be visited at least twice too. It follows that there are at least 3ℓ(n + 3) visits of
the nodes in Gm (each of the n + 3 nodes on each of the 2ℓ petals are visited at least once;
and the nodes of at least ℓ petals must be visited twice), while the number of visits in the
Gv components is at least 6ℓ and the number of visits in the Gc components is at least 9n

(in order for them to be balanced), yielding the desired lower bound.
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For this bound to be tight, there cannot be any extra visits to nodes in Gv and Gc gadgets.
Hence, for the graph to be balanced, we need the number of visits to c2l, ll1, l1l2, . . . , lnc1 to
be equal for each fixed literal l. It follows that, in order to remain within 3ℓ(n + 3) visits to
nodes of Gm, for exactly one of the literals xi and ¬xi these nodes are visited twice, while
for the other literal these nodes are visited only once. Note that we can only connect to
Gc(Cj) if for one of its literals l node lj−1lj of Gm is visited twice. Therefore we can only
connect the graph with the lower bound number of nodes if F is satisfiable.

We will now show that if F is satisfiable then this number is enough. We balance each
Gv gadget with 2 edges and each Gc with 3 edges (blue edges in Figure 2). We also add
the length-(n + 3) cycles in Gm corresponding to the ℓ true literals. We will show that we
can connect each of the Gv and each of the Gc gadgets to Gm. That we can do so without
increasing the number of edges results from the following claim.

▷ Claim. Let X and Y be two distinct balanced connected components with non-required
(i.e., appearing with a higher multiplicity than in the original graph) edges azb and czd in X

and Y , respectively. Then there exists a connected balanced graph on the nodes of X and Y

with the same number of edges.

Proof. Since azb and czd are non-required, we can remove them. Note that both X and Y

are still connected: since az and zb (resp. cz and zd) are the only unbalanced nodes in X

(resp. Y ), they must lie in the same component. Now add azd and czb. These edges are
feasible because all endpoints are already present in the graph. This rebalances the graph
and connects the two components. ◁

Since either xi or ¬xi is true, one of them is the mid symbol of a non-required edge in
Gm, thus we can link all Gv gadgets to Gm using the interchange of edges described in the
proof of the claim (in Figure 2, we trade the blue edge in Gv(xi) and one copy of (c2xi, xixi1)
for the green edges, or do it for ¬x1). Moreover, since we assumed that F is satisfiable, at
least one literal l of each Cj is true. The edges in Gc(Cj) and Gm with l in the middle are
non-required, thus we can link all Gc gadgets to Gm, making the graph connected. ◀

4 Connecting de Bruijn Graphs with Paths in Near-Optimal Time

We present an exact O(|V |k log d + |E|)-time algorithm for connecting any dBG G(V, E) of
order k by arranging its d > 1 weakly connected components in a tree. The tree nodes are
the components themselves and the tree edges are paths of minimum total length between
such components. Since our ultimate goal is to both connect and balance G, by connecting
G in this way, we make sure that the new nodes we add are already balanced.2 To formally
define the connecting problem we consider, we first need the following definition.

▶ Definition 3 (Condensed Graph). Given a dBG G(V, E) of order k over an alphabet Σ
with a set C of weakly connected components, its condensed graph Ĝ(V̂ , Ê) is a weighted
directed multigraph whose nodes V̂ are in a bijection with C. The edges have integer weights in
[1, k− 1]: there is an edge (i, j) ∈ Ê for each pair of nodes ui ∈ Ci, uj ∈ Cj , with Ci, Cj ∈ C,
and its weight is the length of a shortest path from ui to uj in the complete dBG GΣ,k.

We now formally define the problem we consider in this section.

2 Note that the graph resulting from this algorithm would, in general, not be balanced.
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Algorithm 1 Connecting a de Bruijn Graph with Paths.

1: Find the d connected components of G, construct, and preprocess the AC machine of
the nodes of G

2: for i ∈ [1, d− 1] do
3: Select a backward edge (s, u) encoding a longest suffix/prefix overlap
4: (sα, sβ)← components(s, u)
5: Add to P the path from sα to sβ , which connects components α and β

6: Update the labels of the states and the backward edges
7: Prune the backward edges connecting two single-color states of the same color

Connecting de Bruijn Graphs with Paths (Connect-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A minimum-weight spanning tree T of the condensed graph Ĝ of G.

A solution T to Connect-DBG naturally corresponds to a set P of paths on GΣ,k that
make G weakly connected: an edge (i, j) of T corresponds to a shortest path from some
node ui ∈ Ci to some node uj ∈ Cj , and in turn, by the definition of dBG, such path is
determined by the longest suffix/prefix overlap of ui and uj . Our algorithm essentially mimics
the Kruskal algorithm [17] on the condensed graph Ĝ. However let us stress that we do
not construct Ĝ explicitly, as it would take Θ(k|V |2) time, and moreover using the Kruskal
algorithm as-is would require O(|V |2 log |V |) time (because Ĝ has Θ(|V |2) edges). We rather
exploit the properties of dBGs and compute T by searching for longest suffix/prefix overlaps
of the nodes of G. Our algorithm greedily selects, at each iteration, a longest suffix/prefix
overlap (encoding a shortest path) of any two nodes that belong to different components. To
do so, we define an augmented and modified version of the Aho-Corasick (AC) machine [1] of
all the nodes of G, which we dynamically update every time we unite two components. The
AC machine generalizes the Knuth-Morris-Pratt [16] algorithm for a set of strings. Informally,
it is a finite-state machine that resembles a trie with additional backward edges (also called
failure transitions) between the various states. There is exactly one failure transition f(u) = v

from each state u. Suffix/prefix overlaps can then be found using the following lemma.

▶ Lemma 4 (Aho-Corasick lemma [1]). Let u and v be two strings representing two distinct
states of the AC machine, and identify the states with such strings. Then, f(u) = v if and
only if v is the longest proper suffix of u that is also a prefix of some string in the machine.

We first assign each connected component of G a distinct color, and modify the AC
machine of the nodes of G so that we maintain the three following invariants, in any iteration
i of the algorithm:
I1. Each state has up to d− i colors. Each terminal state is colored by its current connected

component; each non-terminal state has the union of colors of the descending subtree.
I2. There are no backward edges connecting two single-color states of the same color.
I3. There are up to k − 1 backward edges outgoing from each terminal state s, each labeled

by the color of s. There are no backward edges connecting non-terminal states.
Intuitively, we prune each backward edge connecting two single-color states colored α, because
in this case all the nodes of G with the corresponding suffix/prefix overlap are in the same
component α, and thus this edge cannot be used to unite unconnected components of G.

Algorithm 1 consists of four main phases: (i) preprocessing (Line 1); (ii) greedily selecting
backward edges (Line 3); (iii) recoloring (Line 6); and (iv) pruning (Line 7).
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12:10 Making de Bruijn Graphs Eulerian

(i) Preprocessing. We first identify the connected components of G, build the AC machine
of its nodes and color its states according to invariant I1. We maintain the colors of a state u

using a list LCu and a dynamic hashtable HCu. A key c of HCu is a color of u, and its value
is a pair of pointers: one to the position of c in LCu, the second to any terminal state colored
c below u. We also keep a counter colors-cnt(u) of the number of distinct colors of u.

From each terminal state s, we then follow the unique path of backward edges to the
root and, for each state u on this path, we add a backward edge (s, u) of the same color as s,
according to invariant I3. We maintain the backward edges outgoing from s with a list LBs

of their heads and a dynamic hashtable HBs. A key u of HBs is a state in LBs (the head of
an outgoing backward edge); its value is a pointer to the position of u in LBs.

We keep the backward edges incoming to u with a list LEu of their tails, and we maintain
their colors with a dynamic hashtable HEu. A key c of HEu is the color of one such edges; its
value is the list HEu[c] of the positions in LEu of the edges colored c. To add an incoming
backward edge (s, u) of color α to u, we first append s to LEu; we then look up the value of
α in HEu. If we find it, we append to HEu[α] the position of s in LEu; otherwise, we create
key α and initialize HEu[α] with the position of s in LEu. Finally, we prune all the backward
edges connecting two non-terminal states and, for each non-terminal state u colored c with
colors-cnt(u) = 1, we query HEu and prune from the machine all the backward edges
(s, u) represented in the list HEu[c] (using HBs). For each color c, we also maintain a global
counter global-cnt(c) of the total number of states and backward edges colored c.

(ii) Selecting backward edges. We select the backward edges in an order given by a reverse
BFS, starting from the deepest states and proceeding level by level towards the root. At each
visited state u of string depth (level) ℓ, we search for incoming backward edges, encoding
a suffix/prefix overlap of length ℓ (Lemma 4), in the list LEu. We select an edge of LEu

at each subsequent iteration, and only when LEu is empty we move on to the next state.
Note that the same backward edge (s, u) can be selected in multiple iterations, as it can be
used to unite the component α of s with all the components coloring u, thus it will only be
pruned when all such components are united with α.

To unite two components using a suffix/prefix overlap implied by a backward edge (s, u),
we select two appropriate nodes of G by components(s, u), which takes as input a terminal
state s of color α and a non-terminal state u, and outputs sα = s and a terminal state sβ

descending from u of some color β ̸= α; or returns FAIL if no such sβ exists (i.e., only when
s and u both have the same single color α). We also add the path from sα to sβ into P.

(iii) Updating the colors. When we unite two components α and β, we change all labels α

into β if global-cnt(α) ≤ global-cnt(β); and change β into α otherwise. At each iteration
one color is removed from the machine, and thus after iteration i there are d− i distinct colors
(I1). We update the colors of the states starting from the terminals and proceeding towards
the root. To change color α to β in a non-terminal state u, we look up α in the hashtable
HCu, delete it from the list LCu by following the first pointer of HCu[α] and remove the entry
of α from HCu. We then look up β in HCu: if it is not there, we insert key β in HCu with
second pointer equal to the second pointer of HCu[α] and append β to LCu. We also update
the counter colors-cnt(u) of the number of colors of u and the counter global-cnt(β) of
the total number of states and edges colored β accordingly: if β was already in HCu, we
decrease colors-cnt(u) by one (because of deleting α) and leave global-cnt(β) unchanged;
otherwise we leave colors-cnt(u) unchanged and increase global-cnt(β) by one.
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When we change the color α of a terminal state s into β, we must also change to β the
color of the backward edges from s. To do so, for each edge (s, u) we look up α in HEu.
If we do not find it, then the color of all the edges with head u has already been updated.
Otherwise, we access the list pointed by HEu[α] (which contains s and possibly other terminal
states colored α). We insert β in HEu and copy HEu[α] in HEu[β], if β was not already
there; or we append HEu[α] to the list HEu[β], if HEu[β] already existed. In both cases, we
set global-cnt(β) to global-cnt(β) + len(HEv[α]) and remove the entry of α from HEu.

(iv) Pruning. If, after updating the colors in the machine, the only remaining color of a
non-terminal state u is β (i.e., colors-cnt(u) = 1), we query HEu with key β. If we find
β, we prune all edges (s, u) with s in the list pointed by HEu[β], and also delete the entry
for β from HEu. To prune an edge (s, u), we look up u in HBs, delete u from LBs following
the pointer HBs[u] and finally delete the entry of u from HBs. This ensures invariant I2,
because the backward edges in HEu[β] are all and only those of color β with head u.

▶ Theorem 5. Connect-DBG can be solved in O(|V |k log d+ |E|) time using O(k|V |+ |E|)
working space.

Proof. For the correctness of Algorithm 1 we first show that, at any iteration, the backward
edges in our machine represent all suffix/prefix overlaps of nodes in two currently distinct
components of G. By Lemma 4, for each state u on the path of backward edges from a
terminal state s to the root in the AC machine of V , the partial path ending at u encodes a
suffix/prefix overlap between s and any terminal state below u; and each possible suffix/prefix
overlap between s and any other node in V corresponds to one such partial path. During
preprocessing, we replace each such partial path with a single backward edge (s, u); and by
invariants I1-I3, we only keep the backward edges (s, u) encoding an overlap between s and
some node of V in a different component (some other nodes in the same component may
have the same overlap, but function components makes the algorithm ignore them).

The correctness of Algorithm 1 then directly follows from the above and from the
correctness of the Kruskal algorithm [17] for computing a minimum-weight spanning tree.

For the complexity analysis, we bound the time for each of the four main phases as
follows: (i) preprocessing by O(k|V |+ |E|); (ii) selecting backward edges by O(k|V |); (iii)
recoloring by O(|V |k log d); and (iv) pruning by O(k|V |). The working space is bounded by
O(k|V |+ |E|), the size of G.

(i) Preprocessing. Computing the connected components of G and giving each one a color
c ∈ [1, d] requires O(|V |+ |E|) time, with |E| the number of distinct edges of G [14]. Building
the AC machine of V takes O(k|V |) time because each string is of length k − 1 [1, 8]. To
implement HE, HC and HB we use perfect hashing, supporting insertions and deletions of
key-value pairs, and to retrieve any entry with a given key. The running time per operation
is O(1) with high probability [7, Theorem 1.1]. Colors are assigned to the states of the AC
machine in O(k|V |) time, starting from the terminal states and proceeding up to the root.

For each of the |V | terminal states, we follow a path of backward edges of length up
to k − 1 (as the string depth of the machine is k − 1 and backward edges connect states
with strictly decreasing string depth) and add up to k − 2 backward edges in O(1) time per
edge (s, u) by using the hashtables HEu, HCu and HBs. This takes O(k|V |) time in total.
Finally, the initial pruning of backward edges requires O(k|V |) total time, as we visit each
non-terminal state u, look up at most one key in HEu, and possibly delete the edges (s, u)
represented by the list stored at HEu by using the hashtable HBs.
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(ii) Selecting backward edges. Each step of the reverse BFS takes O(1) time, and we abort
it when we have selected d− 1 backward edges. A state can be visited multiple times only if
there are still incoming backward edges that can be selected, and in this case we select one
of them at each visit. Since d ≤ |V |, the whole visit requires O(k|V |+ d) = O(k|V |) time in
total. Moreover, for each selected edge (s, u), we compute components(s, u) in O(1) time by
visiting up to two elements in the color list of u LCu.3

(iii) Updating the colors. Changing color α to β in a non-terminal state u takes O(1) time
by using HCu. Changing from α to β the color of all the backward edges (s, u) outgoing
from a terminal state s requires accessing the list at HEu[α] and appending the whole list
HEu[α] to the (possibly empty) list HEu[β]. This procedure amortizes to O(1) time for each
recolored backward edge.

We next show that the algorithm does O(|V |k log d) recolorings of states and edges
over all iterations via an auxiliary data structure: a rooted binary tree with the d colors
(components) as leaves. Each leaf c is weighted with global-cnt(c), which is the total
number of occurrences of color c the machine. Internal nodes in the tree represent the
component unions done by the algorithm, each weighted with the number of states and
backward edges that are recolored in the corresponding step, i.e., the lightest weight of its
two children. We remark that this tree is not part of the algorithm, but rather it is just a
conceptual aid to count the number of color updates in the worst case. The total number of
recolorings done by Algorithm 1 is given by the sum of all the weights on the internal nodes.
Let f(w, d) be the maximum such sum on a tree with d leaves with a total weight of w. We
will prove the following claim by induction on d.

▷ Claim. f(w, d) ≤ w log2(d).

Proof.
Induction basis: If d = 1, then the tree consists of the root and one leaf, so f(w, d) = 0 =

w log2(d).
Induction hypothesis: For all d′ < d, we have f(w, d′) ≤ w log2(d′).
Induction step: Consider a situation with d colors. The root of the tree corresponds to the

final recoloring, when the last two components are merged. The two subtrees starting
from its children have weight w1 and w2 and d1 and d2 leaves, respectively. Without loss
of generality w1 ≤ w2. We now bound f(w, d):

f(w, d) ≤ f(w1, d1) + f(w2, d2) + min(w1, w2) ≤ w1 log2(d1) + w2 log2(d2) + w1

≤ w1 log2(min(d1, d2)) + w2 log2(max(d1, d2)) + w1

= w1 log2(2 min(d1, d2)) + w2 log2(max(d1, d2))
≤ (w1 + w2) log2(d1 + d2) = w log2(d). ◁

We conclude that f(w, d) ≤ w log2(d) for all d ∈ N. Observe that w = O(k|V |), because
the color of each of the |V | terminal states propagates to at most k − 2 non-terminal states
(the depth of the machine is k − 1), and there are up to k − 2 backward edges from each
terminal state; and therefore w log2(d) = O(|V |k log d).

(iv) Pruning. Pruning a backward edge (s, u) requires O(1) time using the hashtables HEu

and HBs. Since there are up to k|V | backward edges, deletions take O(k|V |) time overall. ◀

3 To compute components(s, u) with s colored α in O(1) time, we maintain a pointer in the header of
the color list of each state. We either select the color β of the header of LCu or, if it is equal to α, we
advance the pointer, which guarantees finding β ≠ α, as the lists do not contain duplicates. In both
cases we follow the pointer at HCu[β] to find sβ in O(1) time.
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5 Balancing de Bruijn Graphs in Optimal Time

We present an exact O(k|V |+ |E|+ |A|)-time algorithm for balancing any dBG G(V, E) of
order k so that the number |A| of newly added edges is minimized. As a consequence of
the Euler’s theorem, when the input graph G is weakly connected, our algorithm makes it
Eulerian with the smallest possible cost. Let us first formally define the problem.

Balancing de Bruijn Graphs (Balance-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A balanced graph H = (V ∪ B, E ∪ A) with B ⊆ VΣ,k, A over EΣ,k and
minimized |A|.

It is easy to see that Balance-DBG can be reduced to the Multi-SCCS problem (defined
in Section 1). In particular, Balance-DBG reduces to an instance of Multi-SCCS with
S = E. A greedy algorithm, which keeps merging the suffix and prefix with the longest
overlap until we are left with only cyclic strings, is known to solve Multi-SCCS exactly [4].
Cazaux and Rivals showed a linear-time implementation of this algorithm [4, Theorem 10],
which implies an O(k|E|)-time algorithm for Balance-DBG. In a dBG, this algorithm
corresponds to finding a minimum-weight matching between the heads and the tails of the
edges, where the weight is given by the length of a shortest directed path from the head
to the tail. The greedy algorithm constructs a matching by repeatedly adding a feasible
edge of minimum weight. Although such greedy algorithm is not exact on general weighted
bipartite graphs [10], it turns out to be optimal in the special case of dBGs following from
the optimality of the greedy algorithm for Multi-SCCS [4]. In balanced nodes, all heads
and tails can be matched for a cost of zero. The greedy algorithm will match those first, so
it thus suffices to only match up the excess heads and tails at unbalanced nodes. In what
follows, we describe a different implementation of the greedy strategy which gives optimal
time complexity for the special instances arising from Balance-DBG. Similar to Section 4,
we employ an augmented and modified version of the AC machine.

Let Z+ ⊂ V be the nodes with higher out-degree d+ than in-degree d−, and Z− ⊂ V the
nodes with d− > d+. We construct the AC machine of Z+ ∪Z− and preprocess it as follows.
We label by − each terminal state s ∈ Z− and initialize a counter ms = d−

s − d+
s ; we also

label by + each state encoding a prefix of s ∈ Z+ and initialize a counter ms = d+
s − d−

s for
s. In addition, for every non-terminal state u, we compute a set D(u) of all its descendant
terminal states s ∈ Z+. From each terminal state s labelled −, we follow the unique path of
backward edges to the root: for each non-terminal state u labelled + on this path, we add a
backward edge (s, u). We finally prune all backward edges that do not link a − state with a
+ state: we maintain the backward edges of the machine similar to Section 4. Our algorithm
first sets A = ∅ and B = ∅ and then iteratively adds edges to A and nodes to B as follows.

We traverse the machine in reverse BFS order starting at the terminal states (this traversal
was proposed by Ukkonen in [28]). When we encounter the head of a backward edge at a
state u, we find the terminal state s− ∈ Z− at the tail of the edge and any terminal state
s+ ∈ D(u) ⊆ Z+. Let s be the shortest string with prefix s+ and suffix s− (as an application
of Lemma 4). We add min{ms+ , ms−} copies of s[i . . i + k − 1], for all i ∈ [0, |s| − k], to A;
we add s[i . . i + k − 2] to B if it is not in V ∪ B; and we decrease both ms+ and ms− by
min{ms+ , ms−}. When ms− = 0, we delete all backward edges starting from the terminal
state s− and update the edge lists of their heads accordingly. When ms+ = 0, we delete s+

from the D sets of its ancestors. If any D(u) becomes empty, we delete all incoming edges at
state u. The algorithm terminates when there are no more backward edges in the machine.

CPM 2022



12:14 Making de Bruijn Graphs Eulerian

▶ Theorem 6. Balance-DBG can be solved in the optimal O(k|V |+ |E|+ |A|) time using
O(k|V |+ |E|) working space.

Proof. The correctness of the algorithm follows from the observation that in order to solve
Balance-DBG via Multi-SCCS it suffices to consider the nodes in Z+ ∪ Z−, and from the
fact that a greedy strategy solves Multi-SCCS exactly [4, Theorem 10] (see the discussion
above). We thus conclude that the presented algorithm is correct.

Constructing Z+ and Z− and computing the initial values of m counters takes O(|E|)
time via a traversal of G. Constructing, traversing and updating the AC machine takes
O(k|V |) time because |Z+ ∪ Z−| ≤ |V | and each node in V is a string of length k − 1. Note
that any edge added in A and any node added in B can be represented in O(1) time and O(1)
space using two nodes in V . Thus, the total time required to output graph H = (V ∪B, E∪A)
is O(k|V |+ |E|+ |A|). The working space is bounded by O(k|V |+ |E|), the size of G. ◀

6 Experiments

Methods and Setup. We designed a method for Extend-DBG based on our theoretical
findings. The method first connects the input dBG based on our exact algorithm underlying
Theorem 5 and then balances it by our exact algorithm underlying Theorem 6. We remark
that both these algorithms are exact but their combination is generally not, which is consistent
with Extend-DBG being NP-hard. To further help balancing, our method connects the
graph using only unbalanced nodes. Our method is called CAB (for connect and balance).

We compared CAB to the 1
2 -approximation algorithm for Multi-SCS that maximizes the

compression offered by the output string [4]. We refer to this algorithm as MGR (for Multi-
SCS Greedy). To specifically examine the impact of our connect framework on extension
cost, we also designed a “hybrid” method, referred to as SAB (for SCS and balance). SAB
first connects the graph based on the greedy algorithm [2] for SCS and then balances it by
the algorithm of Theorem 6, as CAB does. The intuition is that any (shortest) common
superstring s of set V corresponds to a connected extended dBG. To connect G, we consider
all the potential additional edges implied by s and greedily add to G a smallest subset of them
that makes G connected. The pseudocode of SAB is provided in Algorithm 2 of Appendix A.

We implemented the above methods in C++ and ran them on a single core of an AMD
Opteron 6386 SE 2.8GHz CPU with 252GB RAM running GNU/Linux. Our source code
is available at https://bitbucket.org/eulerian-ext/cpm2022/. We used two whole-
genome shotgun benchmark datasets that are available from http://gage.cbcb.umd.edu/
data/index.html: (i) Rhodobacter sphaeroides (RHO); and (ii) Staphylococcus aureus (STA).
The number of reads in RHO and STA is 2, 050, 868 (Library 1) and 1, 294, 104 (Library 1),
respectively. In both datasets, the average read length is 101bp and the insert length is 180bp.
Tables 1a and 1b in Appendix A show the characteristics of the two datasets. Although MGR
works in polynomial time [4], no efficient (e.g., linear-time or near-linear-time) implementation
of MGR is known. This is in contrast to SAB, which uses a linear-time implementation of the
greedy algorithm for SCS [2] to connect the graph. Since our implementation of MGR works
in quadratic time in the input size, we used randomly selected samples for each dataset and
every k in the comparison against MGR. The samples were constructed by selecting 650 reads
from each dataset uniformly at random and had roughly 40K to 55K nodes and 60K edges.

https://bitbucket.org/eulerian-ext/cpm2022/
http://gage.cbcb.umd.edu/data/index.html
http://gage.cbcb.umd.edu/data/index.html
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Figure 3 (a) Average Eulerian Extension (EE) cost vs. k over five random samples of RHO. (b)
EE cost vs. k on the whole RHO dataset. The difference between the EE costs of SAB and CAB is
shown on the top of each pair of bars (K stands for thousands).
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Figure 4 Runtime and peak memory consumption vs. reads of CAB on RHO and STA for k = 30.
The solid lines are the results for CAB; the dashed lines are the results that would be produced by a
linear scaling of the algorithm.

Eulerian Extension (EE) Cost. Figure 3a shows the average EE cost of all methods on five
random samples of the RHO dataset, for varying k. Our CAB method outperformed both
MGR and SAB in all tested cases. MGR performed poorly for small k values, as the edge
multiplicities are larger and the extension cost is heavily determined by balancing, whereas
SAB performed poorly for larger k values, as the edge multiplicities are smaller and the EE
cost is heavily determined by connecting. Our results are very promising because MGR was
also orders of magnitude slower than CAB (as expected).

Figure 3b shows the EE cost on the whole RHO dataset, for varying k. We show the
result only for the SAB and CAB methods, since MGR could not terminate in reasonable
time. Note that there is no difference between the two methods for k = 10, as in this case
the input graph is connected and thus both SAB and CAB balance it in the same optimal
way. However, for k > 10, CAB outperforms SAB consistently, and the difference generally
increases with k. This shows that, unlike SAB, our method is able to connect the graph with
a small cost, even when the graph has a large number of components.

Analogous results to those of Figure 3 for the STA dataset are in Figure 5 of Appendix A.
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Runtime and Peak Memory Consumption. Figures 4a and 4b show that the runtime
and peak memory consumption of CAB scale (even better than) linearly with the input size,
which confirms our complexity analysis (see Theorems 5 and 6). The results for SAB are
omitted to avoid cluttering the figures; SAB was several times slower but consumed slightly
less memory, mainly due to the space-efficient SCS algorithm [2] it employs.
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A Omitted Details from Section 6

Algorithm 2 SAB.

1: Compute the connected components of G(V, E)
2: s← SCS(V ) ▷ A (shortest) common superstring of V using the algorithm of [2]
3: Let Q1 = u1, . . . , u|V | be the sequence of all nodes in V as they occur in s

4: Let Q2 = (u1, u2), . . . , (u|V |−1, u|V |) be the sequence of edges as they occur in Q1
5: Sort Q2 in decreasing order w.r.t. the length of the longest suffix/prefix overlap of (ui, uj)
6: i← 0
7: while G′(V, E) is not weakly connected do ▷ Connects the graph
8: (u, v)← Q2[i] ▷ Gets the ith longest suffix/prefix overlap
9: if the components where u and v lie are not currently connected then

10: Let q be the shortest string with u as prefix and v as suffix
11: Extend E with all edges (q[p . . p + k − 2], q[p + 1 . . p + k − 1]) occurring in q

12: Extend V with all new nodes q[p . . p + k − 1] /∈ V occurring in q

13: i← i + 1
14: Algorithm of Theorem 6 on graph G′(V, E) to find multiset A ▷ Balances the graph

CPM 2022

https://doi.org/10.1093/bib/bby003
https://doi.org/10.1007/978-3-540-74126-8_27
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1002/net.3230040105
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1101/gr.101360.109
https://doi.org/10.1101/gr.101360.109
https://doi.org/10.1093/bib/bbw096
https://doi.org/10.1007/BF01840391
https://doi.org/doi.org/10.1016/j.gpb.2012.05.006


12:18 Making de Bruijn Graphs Eulerian

Table 1 Datasets characteristics.

(a) Rhodobacter sphaeroides (RHO).

k # nodes # edges # distinct edges # components

10 1,013,904 185,506,278 3,338,995 1
15 37,858,157 175,579,617 46,337,190 528
20 61,265,275 165,433,984 62,546,892 44,386
25 64,861,977 155,232,772 65,087,335 131,266
30 65,383,451 145,014,018 65,356,249 199,627

(b) Staphylococcus aureus (STA).

k # nodes # edges # distinct edges # components

10 1,047,172 117,107,289 3,974,601 1
15 40,262,854 110,650,401 42,924,890 1,637
20 45,318,307 104,188,673 45,512,480 152,945
25 45,833,210 97,727,029 45,825,958 211,943
30 45,498,694 91,266,009 45,354,736 259,333
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Figure 5 (a) Average Eulerian Extension (EE) cost vs. k over five random samples of STA. (b)
EE cost vs. k on the whole STA dataset. The difference between the EE costs of SAB and CAB is
shown on the top of each pair of bars (K stands for thousands).
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1 Lyndon words

A Lyndon word is a word that is lexicographically smaller than all of its non-trivial rotations
(e.g. ananas is a Lyndon word; banana is not a Lyndon word due to its smaller rotation
abanan). The Lyndon table or equivalently the right Lyndon forest of a word (generalised
from the right Lyndon tree of a Lyndon word) identifies the longest Lyndon prefix of each
suffix of the word (a precise definition follows later). The article explores the complexity of
algorithms for building the Lyndon table or forest of a word over a general ordered alphabet.
The only elementary operations on letters of the alphabet are comparisons of the form
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less-equal-greater. The presented algorithms process the input word y[0 . . n− 1] in a reverse
online manner. When accessing position y[i] for the first time, they have already computed
the Lyndon table of y[i + 1 . . n− 1].

Background and applications. Introduced in the field of combinatorics on words by Lyndon
(see [26, 24]) and used in algebra, Lyndon words introduce structural elements in plain
sequences of symbols, provided there is an ordering on the set of symbols. They have shown
their usefulness for designing efficient algorithms on words. For example, they underpinned
the notion of critical positions in words [24], the two-way string matching [14] and rotations
of periodic words [8].

The right Lyndon tree of a Lyndon word y (based on the factorisation y = uv, where v is
the lexicographically smallest proper suffix, or equivalently the longest proper Lyndon suffix
of y) is by definition related to the sorted list of suffixes of y. Hohlweg and Reutenauer [21]
showed that the right Lyndon tree is the Cartesian tree (see [30]) built from ranks of suffixes
in their lexicographically sorted list (see also [15]). The list corresponds to the standard
permutation of suffixes of the word and is the main component of its suffix array (see [27]),
one of the major data structures for text indexing. The relation between suffix arrays and
properties of Lyndon words is used by Mantaci et al. [28], by Baier [2] and by Bertram et al.
[6] to compute the suffix array, as well as by Louza et al. [25] to induce the Lyndon table.

If the suffix array is given, the Lyndon table can be constructed in linear time (e.g.
[19, Algorithm NSVISA]). In fact, the method is similar to the standard algorithms that
build a Cartesian tree from the ranks of suffixes in their lexicographical order. However,
computing the suffix array on general ordered alphabets requires Ω(n lg n) time due to the
well-known information-theoretic lower bound on comparison sorting. A linear-time algorithm
that directly computes the Lyndon table (on general ordered alphabets, without requiring
the suffix array) was designed by Bille et al. [7]. While it processes the word from left to
right, it is not an online algorithm because it may need to look ahead arbitrarily far in the
word in order to determine an entry of the Lyndon table.

The Lyndon forest is closely related to runs (maximal periodicities) in words, and is
not only essential for showing theoretical properties of runs, but also for their efficient
computation. Bannai et al. [3] used the Lyndon table to solve the conjecture of Kolpakov and
Kucherov [22] stating that there are less than n runs in a length-n word, following a result in
[12]. The key result in [3] is that every run in a word y contains as a factor a Lyndon root,
according either to the alphabet ordering or its inverse, that corresponds to a node of the
associated Lyndon forest. Since the Lyndon forest has a linear number of nodes according to
the length of y, browsing all its nodes leads to a linear-time algorithm to report all the runs
occurring in y. However, the time complexity of this technique also depends on the time
required to build the forest and to extend a potential run root to an actual run. This is
feasible on a linearly-sortable alphabet using an efficient longest common extension (LCE)
technique (e.g. [18]). Kosolobov [23] conjectured a linear-time algorithm computing all runs
for a word over a general ordered alphabet. An almost linear-time solution was given in [11],
but the final positive answer is by Ellert and Fischer [17] who combined the Lyndon table
algorithm by Bille et al. [7] with a new linear-time computation technique for the LCEs.

Our contributions. We present algorithms that compute the Lyndon table or Lyndon forest
of a word over a general ordered alphabet. They scan the input word y[0 . . n− 1] in a reverse
online manner, i.e. from the end to the beginning. When accessing y[i] for the first time, they
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have already computed the Lyndon forest or table of the word y[i + 1 . . n− 1]. Processing
the word in a reverse manner is rather natural (see Franek and Liut [20]), but it requires
intricate algorithmic techniques to obtain an efficient algorithm.

In Section 2, we present a naive algorithm for computing the Lyndon table that takes
quadratic time in the worst case. We also provide a simple linear time algorithm that
computes the Lyndon forest from the Lyndon table. As shown in Section 3, the naive
algorithm runs in expected linear time if we fix an alphabet and a length, and then choose
a random word of the chosen length over the chosen alphabet. Finally, in Section 4, we
introduce a more sophisticated algorithm for constructing the Lyndon table. It takes optimal
linear time in the worst case, and uses the following techniques. First, the use of both next
and previous smaller suffix tables, and skipping symbol comparisons when computing longest
common extensions (LCEs) associated with these tables (similarly to what has been done
in [7]). Second, the additional acceleration of the LCE computation by exploiting and reusing
previously computed values. Third, additional steps to ensure that we reuse each computed
value at most once, which ultimately results in the linear running time.

We envision that our algorithm will be useful as a tool for the online computation of runs.
For example, it could lead to an online version of the runs algorithm presented in [17].

▶ Remark. The design of the right Lyndon tree construction contrasts with the dual question
of left Lyndon tree construction (see [1] and references therein). The latter is done by a far
simpler algorithm than the algorithm in Section 4. But its use to build a right Lyndon tree,
as done in the Lyndon bracketing by Sawada and Ryskey [29] and in [19] by Franek et al.,
does not seem to lead to a linear right Lyndon tree construction.

Basic definitions
Let A be an alphabet with an ordering < and A+ be the set of non-empty words with
the lexicographical ordering induced by <. The length of a word y is denoted by |y|. The
empty word of length 0 is denoted by ϵ. The concatenation of two words u and v is denoted
by uv. The e times concatenation of a word u is written as ue (e.g. u3 = uuu). If for
non-empty words u, v, y it holds y = uv, then we say that uv (formally (u, v)) is a non-trivial
factorisation of y; the word vu is a non-trivial rotation (or conjugate) of y; the word u is a
proper non-empty prefix of y; and word v is a proper non-empty suffix of y. A word y is
primitive if it has |y| − 1 distinct non-trivial rotations, or equivalently if it cannot be written
as y = ue for some word u and integer e ≥ 2. If there are non-empty u and v such that
y = uv = vu, then y is non-primitive. A word u is strongly less than a word v, denoted by
u << v, if there are words r, s and t, and letters a and b satisfying u = ras, v = rbt and
a < b. The word u is smaller than a word v, denoted by u < v, if either u << v or u is a
proper prefix of v, i.e. v = ur for some non-empty word r. A Lyndon word is a non-empty
word defined as follows:

▶ Proposition 1 ([16, Proposition 1.2]). Both of the following equivalent conditions define a
Lyndon word y: (i) y < vu, for every non-trivial factorisation uv of y, (ii) y < v, for every
proper non-empty suffix v of y.

Note that the conditions in the definition trivially hold if |y| = 1, i.e. a single symbol is
always a Lyndon word. The main feature of Lyndon words stands in the theorem by Chen,
Fox and Lyndon (see [24]), which states that every word in A+ can be uniquely factorised
into a sequence of lexicographically non-increasing Lyndon words.

CPM 2022
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▶ Theorem 2 (Lyndon factorisation). Any non-empty word y may be written uniquely as a
lexicographically weakly decreasing product of Lyndon words, i.e. y = x1x2 · · ·xm, where each
xk is a Lyndon word and x1 ≥ x2 ≥ · · · ≥ xm.

A fundamental property of the Lyndon factorisation is the fact that the suffix xm is the
lexicographically smallest suffix, or equivalently the longest proper Lyndon suffix, of y.

2 Lyndon tree and Lyndon table construction

The structure of the Lyndon tree of a Lyndon word derives from the next property (see [24]).

▶ Property 3. Let y be a Lyndon word and y = uv, where v is the smallest or equivalently
the longest proper Lyndon suffix of y. Then u is a Lyndon word.

The (right) standard factorisation of a Lyndon word y of length n > 1 is the pair (u, v)
of Lyndon words, simply denoted by u · v, where u and v are as in Property 3.

The (right) Lyndon tree R(y) of a Lyndon word y represents recursively its complete
(right) standard factorisation. It is a binary tree with 2 |y| − 1 nodes: its leaves are positions
on the word and internal nodes correspond to concatenations of two consecutive Lyndon
factors of the word, which as such can be viewed as inter-positions. More precisely, R(y) = ⟨0⟩
if |y| = 1, and otherwise R(y) = ⟨R(u),R(v)⟩, where u · v is the standard factorisation of y.
The next algorithm gives a straightforward construction of the right Lyndon tree.

LyndonTree(y Lyndon word of length n)

1 F ← stack containing only the empty word ϵ

2 for i← n− 1 downto 0 do
3 (u,R(u), v)← (y[i], ⟨i⟩ ,F .peek())
4 while u < v do
5 R(uv)← ⟨R(u),R(v)⟩
6 (u, v)← (uv,F .pop-and-then-peek())
7 F .push(u)
8 return R(y)

Algorithm LyndonTree scans the word from right to left. Just after executing an
iteration of the for loop, the suffix y[i . . n−1] of y is decomposed into its Lyndon factorisation
z1 · z2 · · · zm. In this moment, the stack contains exactly the elements z1, z2, . . . , zm (z1 being
the topmost element), and variable u stands for the first factor z1 of the decomposition.

With an appropriate implementation of the tree, the algorithm runs in linear time if the
test u < v at line 4 is done in constant time. However, in the worst case, the algorithm
runs in quadratic time; this is when the test is performed by mere letter comparisons. For
example, if y = akcak+1b then each factor aℓc is compared with the prefix aℓ+1 of ak+1b.

Lyndon forest and Lyndon table
If x1x2 · · ·xm is the Lyndon factorisation of the non-empty word y, then its (right) Lyndon
forest is defined by the list R(x1), R(x2), . . . , R(xm), i.e. the list of Lyndon trees of the
Lyndon factors (the Lyndon forest is a single tree if and only if y is a Lyndon word). One
could compute the Lyndon forest by simply first computing the Lyndon factorisation, and
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then building the tree for each factor. A more elegant method computes the forest from the
Lyndon table (sometimes called Lyndon array) of the word. It is denoted by Lyn (l in [3], L
in [20] and λ in [19, 7]) and is defined, for each position i on y, by

Lyn[i] = max{|w| | w is a Lyndon prefix of y[i . . n− 1]}.

An example is provided in Figure 1 (we will explain the labelling of forest nodes and the table
root in a moment; for now, we focus on Lyn). The Lyndon factorisation of y deduces easily
from Lyn. Indeed, if i is the starting position of a factor of the decomposition, the next factor
starts at position i + Lyn[i], which is the first position of the next smaller suffix of y[i . . n− 1]
(see Lemma 8). For the example above, we get positions 0, (1 = 0 + Lyn[0]), (4 = 1 + Lyn[1])
and (9 = 4 + Lyn[4]), corresponding to the Lyndon factorisation b · abb · ababb · aabb of y.

Algorithm LyndonTable shown below computes Lyn using the same scheme as Al-
gorithm LyndonTree. It scans the input word from right to left and implicitly concatenates
two adjacent Lyndon factors u and v to form a Lyndon factor uv when u < v.

LyndonTable(y non-empty word of length n)

1 for i← n− 1 downto 0 do
2 (Lyn[i], j)← (1, i + 1)
3 while j < n and y[i . . j − 1] < y[j . . j + Lyn[j]− 1] do
4 (Lyn[i], j)← (Lyn[i] + Lyn[j], j + Lyn[j])
5 return Lyn

More details (including a proof of correctness) regarding this algorithm can be found in
[13, Problem 87]). The worst-case running time is O(|y|2) in the letter-comparison model.
Note, however, that the comparison of Lyndon words y[i . . j − 1] < y[j . . j + Lyn[j]− 1] in
line 3 can be replaced by a suffix comparison y[i . . n− 1] < y[j . . n− 1] (see [3, 15] and also
[13, Problem 87]). Then, if the suffixes of y are previously sorted and their ranks are stored
in a table, Algorithm LyndonTable runs in linear time. The precomputation takes linear
time if y is drawn from a linearly-sortable alphabet (see suffix arrays in [10, Chapter 4]).

Obtaining the Lyndon forest from the table. A possible data structure that implements the
Lyndon forest uses tables root, left and right. Implicitly, the leaves are positions 0, . . . , n− 1
on y. For each position i, root[i] is the root of the largest subtree whose leftmost leaf is i.
Thus, if xk is a factor of the Lyndon factorisation of y that starts at position i, then root[i]
is the root of the Lyndon tree of xk. Internal nodes are integers larger than n− 1. The left
and right child of an internal node m are respectively left[m] and right[m]. An example of
this representation is provided in Figure 1.

As demonstrated by the example, Lyn[i] is exactly the size of the subtree that is rooted
in root[i]. This makes it easy to translate the Lyndon forest to the Lyndon table and vice
versa. Algorithm LyndonForest below shows the conversion from Lyndon table to forest.
Note that the time required by the algorithm, apart from the time needed to compute Lyn,
is linear in n. This is due to the fact that each iteration of the inner loop creates a new
internal node, and there are at most n− 1 such nodes.
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0 1 2 3 4 5 6 7 8 9 10 11 12
b a b b a b a b b a a b b

0 21 2 3 19 5 17 7 8 15 14 11 12

1 3 1 1 5 1 3 1 1 4 3 1 1

i

y[i]

root[i]

Lyn[i]

13
14

15

16
17

18

19

20
21

R(b) R(abb) R(ababb) R(aabb)

Figure 1 Lyndon forest and Lyndon table of the word y = babbababbaabb. It holds Lyn[4] = 5
because ababb is the longest Lyndon factor starting at position 4.

LyndonForest(y non-empty word of length n)

1 Lyn ← LyndonTable(y)
2 m← n ▷ next available integer for a new internal node
3 for i← n− 1 downto 0 do
4 (root[i], j)← (i, i + 1)
5 while j < i + Lyn[i] do
6 (left[m], right[m])← (root[i], root[j])
7 (root[i], m)← (m, m + 1)
8 j ← j + Lyn[j]
9 return (root, left, right)

3 Average running time for building a Lyndon table

In this section, we prove that the average running time of Algorithm LyndonTable is linear,
for the uniform distribution on size-n words, on any alphabet. The result also applies to
Algorithm NaiveLyn of the next section and implies that the construction of a Lyndon
forest can also be done in average linear time. We assume the alphabet A = {a0, a1, . . . aσ−1}
of size σ ≥ 2, equipped with the order a0 < a1 < . . . < aσ−1. (Note that LyndonTable
takes worst-case linear time for σ = 1, because then it holds Lyn[i] = 1 for all i, which means
that the comparison in line 3 takes constant time).

For any positive n, let Pn be the uniform probability on An, where every word u has
probability Pn(u) = σ−n. Formally, we are considering a sequence of uniform distributions,
one for each size n; as we seek to obtain a result for every σ, we therefore have to consider
that σ = σn also depends on n (even if it can be the constant sequence and want a result for a
fixed alphabet). In the following, we just require that σn ≥ 2 for every n and write σ instead
of σn for readability. Observe that allowing an alphabet of unbounded size is a completely
different framework than in the series of articles [5, 9] dealing with the expected properties
of uniform random Lyndon words, where the alphabet has a fixed size. In particular, for
large σn, a uniform random word resembles a uniform random permutation, whose typical
statistics are greatly different from the ones of a uniform random word on, say, four letters.

Let i, j be two integers with 0 ≤ i < j < n. The random variable Cij is defined as the
number of comparisons performed between y[i . . j − 1] and y[j . . j + Lyn[j]− 1] at line 3 of
Algorithm LyndonTable, for a random word y: if the algorithm does not compare these
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two factors, then Cij = 0, otherwise it is the number of letter comparisons performed by the
naive algorithm that scans both words from left to right until it can decide. Since this is the
only step of Algorithm LyndonTable where letter comparisons are performed, the total
number of such comparisons performed by the algorithm is the random variable C =

∑
j Cj ,

where Cj =
∑

i<j Cij . In this section, we are interested in estimating the expectation En[C]
of C for uniform random words of length n.

By linearity of the expectation, we have En[C] =
∑

j En[Cj ]. Our proof consists in
bounding from above the contribution of each En[Cj ], using En[Cj ] =

∑
i<j En[Cij ]. Let

us first consider the cases where the position j is near the end of the word, as it has to be
considered separately in our analysis and since it illustrates well the kind of techniques used
for the main part of the proof.

▶ Lemma 4. If j ≥ n− 3 log2 n then En[Cj ] = O(log2 n).

Proof. We make the following observations: (i) the factors starting at indices i and j can
only be compared once by the algorithm, (ii) the factors compared at line 3 are always
Lyndon words, and (iii) the number of letter comparisons performed for given i and j, if any,
is at most 3 log2 n since j ≥ n− 3 log2 n. So for every word y, the number of comparisons
Cij(y) is bounded from above by Dij(y), where Dij(y) is 0 if y[i . . j − 1] is not Lyndon and
3 log2 n otherwise. Therefore En[Cij ] ≤ En[Dij ].

Let ℓ = j − i be the length of the factor y[i . . j − 1]. Since a non-primitive word cannot
be a Lyndon word, if L and P respectively denote the set of Lyndon words and of primitive
words, we have

Pn(y[i . . j − 1] ∈ L) = Pℓ(L) = Pℓ(L ∩ P) = Pℓ(L | P)Pℓ(P) ≤ Pℓ(L | P).

But Pℓ(L | P) = 1
ℓ as all rotations of a primitive word are equally likely, and only one of

them is a Lyndon word. Hence y[i . . j − 1] ∈ L with probability at most 1
ℓ . This yields that

En[Cij ] ≤ En[Dij ] ≤ 3 log2 n
ℓ , and if we sum the contributions of all possible i, we have the

announced result as En[Cj ] ≤
∑j−1

i=0
3 log2 n

j−i ≤ 3 log2 n · (log j + 1) = O(log2 n). ◀

So when we sum the contributions of the En[Cj ] for j ≥ n− 3 log2 n, the expected total
number of comparisons is O(log3 n), hence sublinear. Thus we can focus on estimating
En[Cj ] for j sufficiently far away from the end of the word. We need the following lemma.
The proof is given in Appendix A.1.

▶ Lemma 5. Let Λ be an ordered alphabet with |Λ| ≥ 2 letters, # /∈ Λ be a new letter that is
greater than every letter of Λ, and y be a word selected from Λt uniformly at random. Then
there exists a constant c ≥ 1 such that the probability that y# is a Lyndon word is at most c

t .

Our main technical result is stated in the following proposition.

▶ Proposition 6. There exists a constant γ such that En[Cj ] ≤ γ, for all j < n− 3 log2 n.

Proof. Recall that if E ⊆ An, the indicator function of E is the random variable 1E that
values 1 for elements of E and 0 otherwise. The first step of the proof is to look at the
factor of a random word whose positions range from j to j + ⌊3 log2 n⌋ − 1. Let A ⊆ An

denote the set of words y such that y[j . . j + ⌊3 log2 n⌋ − 1] = a
⌊3 log2 n⌋
0 , i.e. it consists of

the repetition of the smallest letter. Let A denote the complement of A in An. We have
Cj = 1A · Cj + 1A · Cj , hence En[Cj ] = En[1A · Cj ] + En[1A · Cj ].

Since for all word y ∈ An we have Cj(y) ≤ C(y) ≤ n2, it holds that 1A(y) · Cj(y) ≤
1A(y) n2 and therefore En[1A · Cj ] ≤ n2 En[1A] = n2 Pn(A) = n2

σ⌊3 log2 n⌋ . As σ ≥ 2, this
yields that En[1A · Cj ] ≤ 2

n .
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We now focus on A. For any positive integer k ≤ ⌊3 log2 n⌋ and any letter as ̸= a0, let
B(n)

k,s denote the set of words y in An for which ak−1
0 as is a prefix of y[j . . n− 1]. Any word of

A has a factor of the form ak−1
0 as starting at position j, so we have the following partition:

A =
⌊3 log2 n⌋⊔

k=1

σ−1⊔
s=1
B(n)

k,s ,

and therefore En[1ACj ] =
∑⌊3 log2 n⌋

k=1
∑σ−1

s=1 En[1B(n)
k,s

Cj ].

Fix k and s. We want to bound from above the contribution of B(n)
k,s to En[Cj ] by summing

the En[1B(n)
k,s

Cij ] for i < j.
For a given index i < j − k (the cases j − k ≤ i < j will be studied separately), when the

algorithm works on an input y ∈ B(n)
k,s , if it compares y[i . . j − 1] and y[j . . j + Lyn[j]− 1]

then necessarily:

(i) The factor y[i . . j − 1] is a Lyndon word.
(ii) There is no occurrence of ak−1

0 at with t < s in y[i + 1 . . j − 1], otherwise the Lyndon
factor starting at position j would have already merged, before reaching index i.

In our proof, we ask for weaker conditions, which is not an issue as we are looking for
an upper bound for En[Cj ]. For this, we split the factor y[i . . j − 1] of length ℓ = j − i into
λ = ⌊ℓ/k⌋ blocks y0, . . . , yλ−1 of k letters, and one remaining block z of length ℓ mod k if ℓ

is not a multiple of k:

∀m ∈ {0, . . . , λ−1} : ym = y[i+mk . . i+m(k +1)−1], so that y[i . . j−1] = y0 · · · yλ−1 ·z.

The number λ of blocks is at least 1, as we only consider the indices i smaller than j − k for
now. Observe that, as y is a uniform random word, the ym’s are uniform and independent
random words of length k. Condition (ii) implies that none of the ym is smaller than ak−1

0 as

for m ≥ 1. We distinguish two cases, depending on whether y0 is smaller than ak−1
0 as or not,

and define, for i < j − k, the following sets

B<
k,s,i = {y ∈ B(n)

k,s | y0 < ak−1
0 as and ∀m ∈ {1, . . . , λ− 1}, ym ≥ ak−1

0 as},

B≥
k,s,i = {y ∈ B(n)

k,s | ∀m ∈ {0, . . . , λ− 1}, ym ≥ ak−1
0 as and y[i . . j − 1] ∈ L}.

As a consequence of Condition (i) and Condition (ii), if y ∈ B(n)
k,s and Cij(y) ̸= 0 (the

algorithm compares the factors at positions i and j), then necessarily y ∈ B<
k,s,i or y ∈ B≥

k,s,i.
Therefore Pn(Cij ̸= 0 and B(n)

k,s ) ≤ Pn(B<
k,s,i) + Pn(B≥

k,s,i).

The probability of B<
k,s,i is Pn(B<

k,s,i) = 1
σk

s
σk

(
σk−s

σk

)λ−1
, as the probability to be in B(n)

k,s

is σ−k and as there are s words of length k smaller than ak−1
0 as.

To compute the probability of B≥
k,s,i observe the ym’s are uniform independent elements

of Λk,s = {w ∈ Ak : w ≥ ak−1
0 as} and z is an independent and uniform word of length

ℓ mod k on A. Moreover, if y[i . . i + j − 1] is a Lyndon word, then ymym+1 · · · yλ−1z is
greater than y[i . . i + j − 1] for every 1 ≤ m < λ. Now consider y0 · · · yλ−1 as a size-λ
word on the alphabet Λk,s; the latter property implies that y0 . . . yλ−1# is smaller than
ymym+1 · · · yλ−1#, where # is a new letter greater than all the letters of Λk,s. This
weakens the condition that y[i . . j − 1] is a Lyndon word, but still provides a useful upper
bound: by Lemma 5 a proportion of at most c

λ of the possibilities satisfy the property
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(in fact we cannot apply Lemma 5 if k = 1 and s = σ − 1, but the inequality trivially
holds as Condition (i) forces i = j − 1 and c ≥ 1). Putting all together, the probability of

B≥
k,s,i is bounded from above by 1

σk

(
σk−s

σk

)λ
c
λ .

So we established that, for i < j − k, Pn(Cij ̸= 0 and B(n)
k,s ) ≤ q(k, s, λ) where

q(k, s, λ) = s

σ2k

(
σk − s

σk

)λ−1

+ c

λσk

(
σk − s

σk

)λ

. (1)

Observe that we only used conditions on the letters of indices smaller than j + k to estimate
the probability Pn(Cij ̸= 0 and B(n)

k,s ). Hence, conditioned by Cij ̸= 0 and B(n)
k,s , the suffix

y[j + k . . n − 1] of y is a uniform random word of An−j−k. For any z ∈ Aj+k, consider a
random word y ∈ An that admits z as a prefix, which is the same as saying that y = zz′ where
z′ is a uniform random word of length n− j − k. The number of comparisons Cij performed
by the algorithm between y[i . . j − 1] and y[j . . j + Lyn[j]− 1] can be bounded from above
by k + 1 + Di+k,j+k(y), where Di+k,j+k is the length of the longest common prefix between
y[i + k . . n− 1] and y[j + k . . n− 1]: we get the upper bound by considering that the k first
comparisons are successful and by discarding the conditions on the lengths of the factors. If
we fix z, the law of 1 + Di+k,j+k is a truncated geometric law of parameter 1− 1

σ (we count
the number of Bernoulli trials of parameter 1− 1

σ until we get a success, i.e. a mismatch, or
reach the end of the word). This can be in turn bounded from above by a geometric law of
parameter 1− 1

σ . Hence 1 + Di+k,j+k ≤ Geom(1− 1
σ ), so E[1 + Di+k,j+k] ≤ σ

σ−1 ≤ 2. Let
prefm be the random variable that associates to a word its prefix of length m. For i < j − k,
this yields

En[1B(n)
k,s

· Cij ] ≤
∑

z∈B(j+k)
k,s

En[1prefj+k=z · Cij ] ≤
∑

z∈B(j+k)
k,s

Cij(z)̸=0

k + 2
σj+k

= (k + 2) · Pn(Cij ̸= 0 and B(n)
k,s ) ≤ (k + 2) · q(k, s, λ).

Now we have to sum the contributions for all i < j−k, all 1 ≤ s < σ−1 and all k ≤ ⌊3 log2 n⌋.
After tedious but elementary computations of sums (the details are given in Appendix A.2),
we obtain that there exists some positive constant γ1 such that

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

j−k−1∑
i=0

En[1B(n)
k,s

· Cij ] ≤ γ1. (2)

We still have to estimate the contribution of the indices i such that j − k ≤ i < j. For
this, we just use Condition (i): y[i . . j − 1] must be a Lyndon word for Cij to be positive,
which happens with probability at most 1

ℓ . The comparisons performed by the algorithm are
evaluated as previously, by bounding them by an independent geometric law of parameter
1− 1

σ plus k, yielding, as the probability that y[j . . j + k − 1] = ak−1
0 as is σ−k:

En[1B(n)
k,s

· Cij ] ≤ k + 2
ℓσk

.

Using the same kind of elementary techniques as for Eq. (2), we get that there exists a
constant γ2 such that

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

j−1∑
i=j−k

En[1B(n)
k,s

· Cij ] ≤ γ2. (3)

The details are given in Appendix A.3. As a consequence, for all j ≤ n− 3 log2 n we have
En[Cj ] ≤ γ1 + γ2, concluding the proof. ◀
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Eventually we can state the main result of this section whose proof directly follows from
Proposition 6 and Lemma 4, by summing for all j.

▶ Theorem 7. For any n ≥ 1 let An be an alphabet having σn ≥ 2 letters. For the uniform
distribution on words of length n over An, the expected number of comparisons performed by
Algorithm LyndonTable (and by its variant NaiveLyn below) is linear.

4 Linear computation of the Lyndon table

To describe the algorithm that computes the Lyndon table Lyn in linear time, we proceed
in four steps. First, we consider the next smaller suffix table, which contains the same
information as the table Lyn, and its dual version, the previous smaller suffix table. They
form an important element in the left-to-right solution introduced by Bille et al. [7]. Second,
we adapt another component of the left-to-right solution, namely skipping some letter
comparisons when lexicographically comparing suffixes. We achieve this by efficiently
computing the longest common extension (LCE) of the relevant suffixes, which is the length
of their longest common prefix (see e.g. [10, Chapter 4]). In the third step, we show how
to compute the LCEs even faster by reusing previously computed values. The fourth step
completes the algorithm with small adjustments that lead to an overall linear running time.

4.1 Next and previous smaller suffix tables
From now on, we prepend and append an infinitely small sentinel symbol y[−1] = y[n] = $
to the input word y[0 . . n− 1]. This simplifies the description of algorithms, e.g. by ensuring
that for any two positions it holds y[i . . n] < y[j . . n] ⇐⇒ y[i . . n] << y[j . . n]. Note that
this does not affect the lexicographical order of suffixes (i.e. y[i . . n− 1] < y[j . . n− 1] ⇐⇒
y[i . . n] < y[j . . n]). As mentioned earlier, our algorithm uses the previous and next smaller
suffix tables pss and nss, which are closely related to the Lyndon table. For each position i,
where 0 ≤ i < n, these tables store the (starting) positions of the closest lexicographically
smaller suffixes, formally defined by

pss[i] = max{j | j < i and y[j . . n] < y[i . . n]}, and
nss[i] = min{j | j > i and y[j . . n] < y[i . . n]}.

The tables Lyn and nss are equivalent; indeed, the longest Lyndon prefix of y[i . . n− 1]
is exactly y[i . . nss[i]− 1]. Additionally, y[pss[i] . . i− 1] is a Lyndon word.

▶ Lemma 8 ([19, Lemma 15]). For any position i of a word y, it holds Lyn[i] = nss[i]− i.

▶ Corollary 9 ([7, Lemma 4] and Lemma 8 above). For any position i of a word y, both
y[pss[i] . . i− 1] and y[i . . nss[i]− 1] are Lyndon words.

An important property of nearest smaller suffixes is that they do not intersect. If we
draw directed edges underneath the word such that for each position i there are two outgoing
edges, one to position pss[i] and one to position nss[i], then the resulting drawing is a planar
embedding. Formally, this is expressed by the following lemma.

▶ Lemma 10. If i < j < nss[i], then pss[j] ≥ i and nss[j] ≤ nss[i].

Proof. Because of i < j < nss[i], and by the definition of nss, it holds y[nss[i] . . n] <

y[i . . n] < y[j . . n]. This implies pss[j] ≥ i and nss[j] ≤ nss[i]. ◀
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y = r

i
↓

r

j
↓

s

nss[j]
↓

x
s z s z

|s||r|

|s|

(a) If |r| > |s| then lce(i, nss[j]) = |s| and
y[nss[j] . . n] < y[i . . n], and thus nss[i] = nss[j].

y = r

i
↓

x r

j
↓

z r

nss[j]
↓

z
s s

|s||r|
|r|

(b) If |r| < |s| then lce(i, nss[j]) = |r| and
y[nss[j] . . n] > y[i . . n], and thus pss[nss[j]] = i.

Figure 2 Skipping symbols comparisons when y[i . . n] < y[j . . n]. (Best viewed in colour.)

In the remainder of the section, we show how to simultaneously compute the tables pss
and nss in right-to-left order. The core of our solution is a simple folklore algorithm for
the linear time computation of next and previous smaller values, where we substitute value
comparisons for lexicographical suffix comparisons. The process is similar to the linear-time
construction of the Cartesian tree [30] or the LRM-tree [4].

NaiveLyn(y non-empty word y[0 . . n− 1] with sentinels y[−1] = y[n] = $)

1 for i← n− 1 downto 0 do
2 j ← i + 1
3 while y[i . . n] < y[j . . n] do
4 (pss[j], j)← (i, nss[j]) ▷ j ← j + Lyn[j]
5 (nss[i], pss[i])← (j,−1) ▷ Lyn[i]← j − i

6 return (pss, nss)

The algorithm merely adapts Algorithm LyndonTable to the computation of nss, up
to the use of sentinels, and adds the computation of pss. In fact, if we omit the assignment
of pss entries and apply Lemma 8 (i.e. if we replace lines 4–5 with their comments), then
we essentially obtain Algorithm LongestLyndon described in [15, Algorithm 5] and in
[13, Problem 87]. As shown in [15], the algorithm correctly computes the table Lyn (or
respectively nss), and performs no more than 2n− 2 lexicographical suffix comparisons in
line 3. Note that the loop in line 3 maintains the invariant that all suffixes y[k . . n] with
i < k < j are lexicographically larger than both y[i . . n] and y[j . . n]. This means that the
computation of pss is correct.

If we could lexicographically compare suffixes in constant time, then NaiveLyn would
take O(n) time (as already mentioned in Section 2 for Algorithm LyndonTable). However,
for each suffix comparison, we first have to determine the length lce(i, j) = min{ℓ | ℓ ≥
0 and y[i + ℓ] ̸= y[j + ℓ]} of the longest common prefix of two suffixes. By the definition of
the lexicographical order, y[i . . n] < y[j . . n] is equivalent to y[i + lce(i, j)] < y[j + lce(i, j)].
If we compute lce(i, j) by naive scanning, then a single suffix comparison might require
Ω(n) individual symbol comparisons, and for some inputs the algorithm will take Ω(n2) time
(e.g. for the pathological word y = an).

4.2 Skipping symbol comparisons

Now we will accelerate the algorithm by exploiting previously computed LCEs. First, we
show how to save comparisons for a single fixed value of i, i.e. for a single iteration of the
outer loop of NaiveLyn. During that iteration, we may have to compute the LCE between i

and multiple different values of j. Assume that we have just computed lce(i, j) = |r| (with
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y[j . . n] = ru for some u ∈ A∗), and we discovered that y[i . . n] < y[j . . n]. Then during the
next iteration of the inner loop we have to evaluate whether y[i . . n] < y[nss[j] . . n], thus
we have to compute lce(i, nss[j]). Since we previously computed nss[j], we must have also
computed the value lce(j, nss[j]) = |s| (with y[j . . n] = sv for some v ∈ A∗). We observe
that exactly one of the following cases holds.

It holds |r| > |s| (as depicted in Figure 2a), such that r = szw for some z ∈ A and w ∈ A∗.
Let x = y[nss[j] + |s|], then from y[j . . n] > y[nss[j] . . n] follows x < z and thus sx << sz.
Since y[i . . n] has prefix r = szw, we have lce(i, nss[j]) = |s| and y[nss[j] . . n] < y[i . . n].
Note that this implies nss[i] = nss[j], such that this is the last iteration of the inner loop.
It holds |r| < |s| (as depicted in Figure 2b), such that s = rzw for some z ∈ A and w ∈ A∗.
Let x = y[i + |r|], then from y[i . . n] < y[j . . n] follows x < z and thus rx << rz. Since
y[nss[j] . . n] has prefix s = rzw, we have lce(i, nss[j]) = |r| and y[nss[j] . . n] > y[i . . n].
Note that this implies pss[nss[j]] = i.
It holds r = s and thus lce(i, nss[j]) ≥ |s|.

LceLyn(y non-empty word y[0 . . n− 1] with sentinels y[−1] = y[n] = $)

1 for i← n− 1 downto 0 do
2 j ← i + 1
3 if y[i] ̸= y[j] then ℓ← 0
4 elseif nss[j] = j + 1 then ℓ← 1 + nlce[j]
5 elseif pss[j + 1] = j then ℓ← 1 + plce[j + 1]
6 while y[i + ℓ] < y[j + ℓ] do
7 (pss[j], plce[j])← (i, ℓ)
8 if ℓ > nlce[j] then
9 ℓ← nlce[j]

10 j ← nss[j]
11 elseif ℓ < nlce[j] then
12 j ← nss[j]
13 elseif ℓ = nlce[j] then
14 j ← nss[j]
15 ℓ← ℓ + scan-lce(i + ℓ, j + ℓ) ▷ ℓ← extend(i, j, ℓ)
16 (nss[i], nlce[i], pss[i])← (j, ℓ,−1)
17 return (pss, nss)

The algorithm LceLyn shown above is a modification of NaiveLyn and exploits the new
insights. It uses two auxiliary arrays plce and nlce, in which we store plce[i] = lce(pss[i], i)
and nlce[i] = lce(i, nss[i]) (we update the values whenever we assign nss[i] and pss[i]
respectively). In iteration i of the outer loop, we compute the first LCE value ℓ = lce(i, j)
with j = i + 1 in constant time by exploiting the fact that for any index j it holds
either nss[j] = j + 1 or pss[j + 1] = j. Thus, if y[i . . n] starts with a run of a single
symbol, then we have previously computed the length of this run, and we can simply assign
lce(i, j)← 1 + lce(j, j + 1) (lines 3–5). Whenever we reach the head of the inner loop, we
have already computed the value ℓ = lce(i, j). Thus, we can determine the lexicographical
order of y[i . . n] and y[j . . n] by comparing their first mismatching symbol (line 6). If
y[i . . n] < y[j . . n], then we enter the inner loop and assign pss[j]← i and plce[j]← ℓ. For
the next iteration of the inner loop, we have to compute lce(i, nss[j]). Here we exploit
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our previous observations. If ℓ > nlce[j] (i.e. |r| > |s| in terms of Figure 2a), then it holds
lce(i, nss[j]) = nlce[j] and we continue with the next (and final) iteration of the inner
loop with ℓ ← nlce[j] and j ← nss[j] (lines 8–10). If ℓ < nlce[j] (i.e. |r| < |s| in terms of
Figure 2b), then it already holds ℓ = lce(i, nss[j]) and we continue with the next iteration of
the inner loop with j ← nss[j] (lines 11–12). Only if ℓ = nlce[j] we may need additional steps
to compute lce(i, nss[j]). However, in this case lce(i, nss[j]) ≥ ℓ, and we can skip the first
ℓ symbol comparisons when computing lce(i, nss[j]). We compute the remaining part of
the LCE by naive scanning, thus taking additional lce(i, nss[j])− ℓ + 1 symbol comparisons
(lines 13–15).

Apart from the time needed for executing line 15, algorithm LceLyn takes O(n) time.

4.3 Extending common prefixes with already computed LCEs
In this section, we accelerate the instruction at line 15 by replacing the naive computation of
ℓ + scan-lce(i + ℓ, j + ℓ) with a more sophisticated extension technique extend(i, j, ℓ), for
which we once more exploit previously computed LCEs. The technique requires ℓ > 0. If
ℓ = 0, then we simply perform one additional symbol comparison to test y[i] = y[j], which
either establishes ℓ = 1, or terminates the LCE computation in constant time.

Assume that we just reached line 15, i.e. we have to compute lce(i, j), and we have
already established lce(i, j) ≥ ℓ. If y[qi] ̸= y[qj ] with qi = i + ℓ and qj = j + ℓ, then
lce(i, j) = ℓ, i.e. no further computation is necessary. Otherwise, let pj ∈ {j, . . ., qj − 1}
be some index with either nss[pj ] = qj or pss[qj ] = pj . Such index always exists because it
trivially holds either nss[qj − 1] = qj or pss[qj ] = qj − 1; we will explain how to choose pj

later. Let pi = pj − (j − i). We compute lce(i, j) with exactly one of three methods.

1. If pi = i and qi = j, then pi = pj − (j − i) implies pj = pi + j − i = j = qi (as depicted
in Figure 3a). From lce(i, j) ≥ ℓ follows lce(i, j) = ℓ + lce(i + ℓ, j + ℓ). Note that
lce(i+ℓ, j+ℓ) = lce(qi, qj) = lce(pj , qj). Since we chose pj such that either nss[pj ] = qj

or pss[qj ] = pj , we have already computed lce(pj , qj) and stored it either in nlce[pj ] or
in plce[qj ]. Thus we can compute lce(i, j) = ℓ + lce(pj , qj) in constant time.

2. If the first case does not apply, then we check whether either nss[pi] = qi or pss[qi] = pi.
If one of the two holds (as depicted in Figure 3b), then we have already computed
ℓi = lce(pi, qi) and stored it in nlce[pi] or in plce[qi]. Analogously, we have already
computed ℓj = lce(pj , qj) and stored it in nlce[pj ] or in plce[qj ].
a. If ℓi = ℓj , we have established that lce(i, j) ≥ ℓ + max(1, ℓj). In this case, we say

that we use lce(pj , qj) to extend lce(i, j). If ℓj is large, then we saved many symbol
comparisons. We continue by recursively repeating the extension technique with
ℓ← ℓ + max(1, ℓj). (We can always increase ℓ by at least 1 because we only reach this
point if we initially ensured y[qi] = y[qj ].)

b. If ℓi ̸= ℓj , then lce(i, j) = ℓ + min(ℓi, ℓj), and no further computation is necessary.
3. If none of the other cases apply, let p′

i = pss[qi] and p′
j = p′

i +(j− i). We proceed similarly
to case 2, but this time we use ℓi = lce(p′

i, qi) and ℓj = lce(p′
j , qj) (see Figure 3c). As

we will show next, we have already computed ℓi and ℓj . Thus they can be used for the
extension, which means that the list of cases is indeed exhaustive.
We begin the proof by showing that p′

i > pi. Note that pss[qj ] = pj or nss[pj ] = qj

and Corollary 9 imply that y[pj . . qj − 1] = y[pi . . qi − 1] is a Lyndon word. Therefore,
Lemma 8 implies nss[pi] ≥ qi. We cannot have nss[pi] = qi because then we would
have used case 2 instead of case 3. Thus nss[pi] > qi, and due to Lemma 10 it holds
p′

i = pss[qi] ≥ pi. Again, we cannot have p′
i = pi because then we would have used

CPM 2022
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(d) Relation between skip-lce and max-lce.

Figure 3 Extending common prefixes between y[i . . n] and y[j . . n] using a known lower bound
ℓ = |r| ≤ lce(i, j) (a-c), and visualisation of skip-lce (d). (Best viewed in colour.)

case 2 instead of case 3, i.e. it holds p′
i > pi and consequently p′

j > pj . Finally, from
p′

i = pss[qi] and Corollary 9 follows that y[p′
i . . qi − 1] = y[p′

j . . qj − 1] is a Lyndon
word, such that Lemma 8 implies nss[p′

j ] ≥ qj . Since pj < p′
j < qj and Lemma 10

imply nss[p′
j ] ≤ qj , we must have nss[p′

j ] = qj . Therefore, we have already computed
ℓi = lce(p′

i, qi) = plce[qi] and ℓj = lce(p′
j , qj) = nlce[p′

j ], which means that we can
compute lce(i, j) = ℓ + min(ℓi, ℓj) in constant time.
Note that even if ℓi = ℓj , it cannot be that lce(i, j) > ℓ + ℓj . Since ℓi is associated
with a previous smaller value and ℓj is associated with a next smaller value, it holds
y[qi + ℓj ] > y[p′

i + ℓj ] = y[p′
j + ℓj ] > y[qj + ℓj ].

In cases 1, 2b and 3, we take constant time to finish the computation of lce(i, j). Since we
compute less than 2n LCEs, the total time spent for these cases is O(n). In case 2a, we take
constant time to increase the known lower bound of lce(i, j) by lce(pj , qj) (however, when
computing lce(i, j) we may run into this case repeatedly). Thus we should choose pj such
that we maximise lce(pj , qj). For this purpose, we maintain two auxiliary arrays max-left
and max-lce (initialised with −1). Whenever we compute an LCE value lce(i, j) (where
by design of the algorithm it always holds i < j), we check whether lce(i, j) > max-lce[j].
If this condition holds, then we assign max-left[j]← i and max-lce[j]← lce(i, j). For the
extension technique, we always choose pj = max-left[qj ].

(Note that in general, j ≤ max-left[qj ]. Due to the way in which we assign max-left[qj ], it
always holds either max-left[qj ] = pss[qj ] or nss[max-left[qj ]] = qj . Since also either nss[i] = j

or i = pss[j], Lemma 10 implies max-left[qj ] /∈ {i + 1, . . . , j − 1}. The iteration order of the
algorithm implies i < max-left[qj ].)

Apart from the invocations of case 2a, the algorithm already achieves linear time. There
are O(n) different pairs pj , qj that might be used in case 2a (because for each pair it holds
either nss[pj ] = qj or pj = pss[qj ]). However, we may use some pairs more than once,
resulting in a super-linear computation time. In the next section, we make a small change
to how we update ℓ when recursing in case 2a. Perhaps counter-intuitively, we will recurse
using (possibly) smaller values of ℓ. This allows us to use additional properties of next and
previous smaller suffixes, such that each distinct pair pj , qj gets used in case 2a at most once.
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4.4 Linear time extension of common prefixes
In this section, we ensure that we use each lce(pj , qj) to extend at most one LCE. This
imposes a linear upper bound on the number of recursive calls to extend, because each
recursive call is preceded by an extension. For this, we need the following dynamic array.

▶ Definition 11. skip-lce[j] = min{k | k > j and (k + max-lce[k]) > (j + max-lce[j])}.

A schematic drawing of skip-lce is provided in Figure 3d. We maintain these values in
linear time using relatively simple techniques. Whenever we have to update some value
max-lce[j], due to lce(i, j) for some i, we inherently discover the new value of skip-lce[j].
We may have to additionally assign skip-lce[x]← j for some values x ∈ {i + 1, . . . , j− 1}, but
the total number of such updates is linear. The technical details can be found in Appendix B
and in our well-documented implementation.1,2 Using skip-lce, the only two changes needed
to achieve linear time are:

In line 15 of LceLyn, we call extend(i, j, 0) if and only if ℓ = 0, and otherwise we call
extend(i, j, skip-lce[j]− j). We can replace ℓ with skip-lce[j]− j because in this moment
it holds skip-lce[j]− j ≤ max-lce[j] = ℓ. The special handling of ℓ = 0 ensures that we
compare the symbols y[i] and y[j].
In case 2a of the extension technique, we replace ℓ← ℓ + max(1, ℓj) with ℓ ← ℓ +
skip-lce[qj ]−qj . This is possible due to skip-lce[qj ]−qj ≤ max(1, max-lce[qj ]) = max(1, ℓj).

It may seem counter-intuitive that this improves the execution time, since we no longer
extend by ℓj = max-lce[qj ] but by the possibly shorter length skip-lce[qj ]− qj . However, this
guarantees that we use each LCE in at most one extension step. A crucial observation for
showing this is that qj only assumes values that can be obtained by repeatedly applying
skip-lce to j. For any j, we define the repeated application of the skip function as skip-lce1[j] =
skip-lce[j] and for integer e > 1 as skip-lcee[j] = skip-lcee−1[skip-lce[j]]. We then write
qj = skip-lce∗[j] if and only if ∃e : qj = skip-lcee[j]. The following observation is a direct
consequence of Definition 11 and readily extends to the helpful intermediate Lemma 13.

▶ Observation 12. If qj = skip-lce[j], then for every k with j ≤ k < qj it holds k +
max-lce[k] < qj + max-lce[qj ].

▶ Lemma 13. If qj = skip-lce∗[j], then for every k with j ≤ k < qj it holds k + max-lce[k] <

qj + max-lce[qj ].

▶ Lemma 14. When running LceLyn with the modified extension technique using skip-lce,
if we use lce(pj , qj) for an extension, then we will never use it for an extension again.

Proof. For the sake of contradiction, assume that we use lce(pj , qj) more than once: first to
compute lce(i′, j′), and then again to compute lce(i, j) for some i, j with i ̸= i′ or j ̸= j′.
We have two cases to consider according to the position of j with respect to j′:

1 see https://archive.softwareheritage.org/
swh:1:cnt:19a5c3e295db7241d03c1aafa396ba31057bbe60;
origin=https://github.com/jonas-ellert/right-lyndon;
visit=swh:1:snp:551e86cb1c7ff9452669f838323fad1aea23a6f2;
anchor=swh:1:rev:f292fd218d0edb546530aaf517923eccb79b2736;
path=/right-lyndon-extension-linear.hpp;lines=88-135

2 see same link as given in previous footnote, lines 52–71
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Figure 4 Supplementary drawing for the proof of Lemma 14. (Best viewed in colour.)

Case j < j′: Since we use lce(pj , qj) to extend lce(i, j), it holds qj = skip-lce∗[j].
However, Lemma 13 implies that j′ + max-lce[j′] < qj + max-lce[qj ]. This contradicts the
assumption that we used lce(pj , qj) to extend lce(i′, j′). (Note that max-lce[qj ] has not
changed. If it had changed, then we would have also updated max-left[qj ]. Thus a different
pj would have been used for the extension of lce(i, j) and lce(i′, j′).)

Case j ≥ j′: This case is accompanied by a schematic drawing in Figure 4. If we are
comparing i and j then either nss[i] = j or pss[j] = i, which implies y[k . . n] > y[j . . n]
for all k with i < k < j. Let y[k′ . . n] be the lexicographically smallest suffix amongst the
suffixes starting between positions i and j, then it holds nss[k′] = j. Thus, at the time we
compute lce(i, j), we have computed lce(k′, j) already, and it holds max-lce[j] ≥ lce(k′, j).
Let j′′ = i′ + j − j′, then due to our choice of k′ it holds y[j′′ . . n] ≥ y[k′ . . n] > y[j . . n]
and thus lce(j′′, j) ≤ lce(k′, j). Therefore, we have j + max-lce[j] ≥ j + lce(k′, j) ≥
j + lce(j′′, j) = j′ + lce(i′, j′) ≥ qj + lce(pj , qj). However, according to Lemma 13,
j + max-lce[j] ≥ qj + lce(pj , qj) contradicts qj = skip-lce∗[j], which means that we do not
use lce(pj , qj) to extend lce(i, j). ◀

We now state the main results, which are direct consequences of Lemma 14 and Lemma 8.

▶ Theorem 15. Algorithm LceLyn using the modified extension technique computes the
previous and next smaller suffix tables of a word over a general ordered alphabet. It does so
in a back-to-front online manner, and in linear time with respect to the length of the word.

▶ Corollary 16. Theorem 15 also holds when computing the Lyndon table and forest.

Proof. For the Lyndon table we output Lyn alongside nss, using Lemma 8. For the Lyndon
forest, we additionally interleave the computation with Algorithm LyndonForest. ◀
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A Supplementary material for Section 3

The following inequalities (obtained by comparing sums and integrals) will be needed.

▶ Lemma 17. Let Hn =
∑n

i=1
1
i and Ln =

∑n
i=1 log i. For all n ≥ 1, Hn ≤ log n + 1 and

Ln ≥ n log n− n.

Proof. The mapping x 7→ log x is increasing, so for any i ≥ 1 and any x ∈ [i, i + 1], we have
log x ≤ log(i+1). We integrate on the length-1 interval [i, i+1] to get

∫ i+1
i

log x dx ≤ log(i+1).
Summing for i ranging from 1 to n− 1 gives
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∫ n

1
log x dx ≤

n∑
i=2

log i = Ln,

which concludes the proof since
∫ n

1 log x dx = n log n− n + 1. The proof is similar for Hn by
considering the decreasing map x 7→ 1

x . ◀

A.1 Proof of Lemma 5
▶ Lemma 5. Let Λ be an ordered alphabet with |Λ| ≥ 2 letters, # /∈ Λ be a new letter that is
greater than every letter of Λ, and y be a word selected from Λt uniformly at random. Then
there exists a constant c ≥ 1 such that the probability that y# is a Lyndon word is at most c

t .

Proof. Any Lyndon word w of length at least 2 can uniquely be written [16] as w = uevb

where u is a Lyndon word, e is a positive integer, va is a prefix of u, and a and b are letters
such that a < b. Thus, if y# is a Lyndon word, then y can be uniquely written y = ux where
x is the longest border of y (or the empty word if y is a Lyndon word). As y is entirely
defined by its associated u and its length t, this yields a bijection between the words y such
that y# ∈ L and the union of the Lyndon words of length i, for i ranging from 1 to t. Let
κ = |Λ|. As we already established that

∣∣L ∩ Λi
∣∣ ≤ κi

i , we have

Pt(y# ∈ L) ≤ 1
κt

t∑
i=1

κi

i
=

t−1∑
i=0

κ−i

t− i
= 1

t

t−1∑
i=0

κ−i

1− i/t
.

Observe that for any x ∈ [0, t−1
t ], we have 1

1−x ≤ 1 + tx, and therefore

1
t

t−1∑
i=0

κ−i

1− i/t
≤ 1

t

t−1∑
i=0

(1 + i)κ−i ≤ c

t
,

if we set c =
∑∞

i=0(1 + i)κ−i. This concludes the proof. ◀

A.2 Proof of Equation (2)
Recall that λ = ⌊ j−i

k ⌋, so that there are k values of i for each λ. Hence

j−k−1∑
i=0

(k + 2) q

(
k, s,

⌊
j − i

k

⌋)
≤ k(k + 2)

⌈j/k⌉∑
λ=1

q (k, s, λ) .

We consider separately the two terms coming from Eq. (1):

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

k(k + 2)
⌈j/k⌉∑
λ=1

s

σ2k

(
σk − s

σk

)λ−1

≤
∞∑

k=1

σ−1∑
s=1

k(k + 2)s
σ2k

∞∑
λ=1

(
1− s

σk

)λ−1

=
∞∑

k=1

σ−1∑
s=1

k(k + 2)s
σ2k

1
1− (1− s/σk)

=
∞∑

k=1

σ−1∑
s=1

k(k + 2)
σk

≤
∞∑

k=1

k(k + 2)
2k−1 =: ∇2.
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For the second part of Eq. (1), we have:

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

k(k + 2)
⌊j/k⌋∑
λ=1

c

λσk

(
σk − s

σk

)λ

≤
∞∑

k=1

σ−1∑
s=1

ck(k + 2)
σk

∞∑
λ=1

1
λ

(
1− s

σk

)λ

=
∞∑

k=1

σ−1∑
s=1

ck(k + 2)
σk

log
(

1
1− (1− s/σk)

)

≤
∞∑

k=1

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
.

We have

∞∑
k=1

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
=

σ−1∑
s=1

3c

σ
log

(σ

s

)
+

∞∑
k=2

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
.

We use Lemma 17 for the first sum:

σ−1∑
s=1

log
(σ

s

)
= (σ − 1) log σ −

σ−1∑
s=1

log s ≤ (σ − 1) log σ − (σ − 1) log(σ − 1) + σ − 1

= (σ − 1)
(

log
(

σ

σ − 1

)
+ 1

)
≤ (1 + log 2)σ.

Thus

σ−1∑
s=1

3c

σ
log

(σ

s

)
≤ 3c(1 + log 2) =: ∇2.

Finally

∞∑
k=2

σ−1∑
s=1

ck(k + 2)
σk

log
(

σk

s

)
≤

∞∑
k=2

σ−1∑
s=1

ck2(k + 2) log σ

σk

≤ log σ

σ

∞∑
k=2

ck2(k + 2)
σk−2 ≤

∞∑
k=2

ck2(k + 2)
2k−2 =: ∇3.

This concludes the proof by setting γ1 = ∇1 +∇2 +∇3.

A.3 Proof of Equation (3)

Using Lemma 17 we have

⌊3 log2 n⌋∑
k=1

σ−1∑
s=1

k−1∑
ℓ=1

k + 2
ℓσk

≤ σ − 1
σ

⌊3 log2 n⌋∑
k=1

(k + 2)(log k + 1)
σk−1

≤
∞∑

k=0

(k + 3)(log(k + 1) + 1)
σk

≤
∞∑

k=0

(k + 3)(log(k + 1) + 1)
2k

=: γ2.
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B Supplementary material for Section 4

In this section, we outline how to maintain skip-lce for all positions. Definition 11 depends
solely on the values of max-lce, and thus updates to skip-lce are always accompanied by
updates to max-lce and max-left. Assume that we just computed some lce(i, j), causing the
updates max-lce[j]← lce(i, j) and max-left[j]← i. Consequently, we may have to update
skip-lce[j], and also assign skip-lce[k]← j for possibly multiple indices k < j.

B.1 Updating skip-lce[j]
We inherently discover the new value of skip-lce[j] while computing lce(i, j). If we find that
lce(i, j) = 0 due to line 3 in Algorithm LceLyn, then we have to assign skip-lce[j]← j + 1.
If we obtain lce(i, j) from lines 4 or 5, we have to assign skip-lce[j] ← j + lce(i, j) (the
correctness of this is relatively easy to see, since there is a run y[j . . j + lce(i, j) − 1] =
y[j]lce(i,j) of a single symbol). The only remaining situation in which an update to max-left[j]
may occur is after using the extension technique. Here, the new value of skip-lce[j] depends
on which case of Section 4.3 we terminate in (we use the same notation as in Section 4.3):

We assign skip-lce[j]← skip-lce[qj ]
if we terminate in case 1, or
if we terminate in case 2b with ℓi > ℓj , or
if we terminate in case 3 with ℓi ≥ ℓj .

In all three cases, at termination time we have j + lce(i, j) = qj + max-lce[qj ]. This,
together with qj = skip-lce∗[j] and Lemma 13, implies the correctness of assigning
skip-lce[j]← skip-lce[qj ].
We assign skip-lce[j]← qj , otherwise. Explicitly, this happens

if we terminate in case 2b with ℓi < ℓj , or
if we terminate in case 3 with ℓi < ℓj .

In both cases, at termination time we have j + lce(i, j) < qj + max-lce[qj ]. This, together
with qj = skip-lce∗[j] and Lemma 13, implies the correctness of assigning skip-lce[j]← qj .

B.2 Updating skip-lce[k]← j for all matching k

The algorithm below describes the full process of maintaining the arrays skip-lce, max-left,
and max-lce.3 We invoke this update procedure after every LCE computation. We will show
the correctness of this approach in a moment. Before, we explain the total time needed
for all invocations of the algorithm. Apart from the while-loop, each line takes constant
time. The while-loop serves the purpose of finding the indices k for which we have to assign
skip-lce[k] ← j. It does so by repeatedly applying max-left to j. This can be interpreted
as following some right-to-left path of PSS and (reversed) NSS edges from j to i. Since we
assign max-left[j]← i immediately afterwards, and due to Lemma 10, we will not follow any
of these edges again during future invocations of the algorithm. Therefore, the total number
of iterations of the while-loop and thus the total time spent for maintaining skip-lce is O(n).

3 The algorithm corresponds directly to the following part of our implementation:
https://archive.softwareheritage.org/
swh:1:cnt:19a5c3e295db7241d03c1aafa396ba31057bbe60;
origin=https://github.com/jonas-ellert/right-lyndon;
visit=swh:1:snp:551e86cb1c7ff9452669f838323fad1aea23a6f2;
anchor=swh:1:rev:f292fd218d0edb546530aaf517923eccb79b2736;
path=/right-lyndon-extension-linear.hpp;lines=52-71
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A
i

↓
max-left[k]

↓
k

↓
k+max-lce[k]
↓

j′

↓
k′

↓

skip-lce[k]∣∣
↓

j

↓

ℓ′

Figure 5 Supplementary drawing for Property 18.

Update skip values (after computing lce(i, j))

1 if lce(i, j) > max-lce[j] then
2 k ← max-left[j]
3 while k > i do
4 skip-lce[k]← min(skip-lce[k], j)
5 k ← max-left[k]
6 max-left[j]← i

7 max-lce[j]← lce(i, j)
8 update skip-lce[j] (depending on how we computed lce(i, j), as described above)

It remains to be shown that the algorithm maintains the arrays correctly. This is obvious
for the arrays max-lce and max-left. We already discussed how to correctly assign skip-lce[j]
in line 8 earlier. Thus it remains to be shown that we assign skip-lce[k]← j correctly and
completely. We inductively assume that at the time we invoke the update algorithm for
lce(i, j), all previous updates worked as intended, such that the arrays skip-lce, max-lce,
and max-left contain the correct values describing the current state of the main algorithm
execution. We start the proof by showing the following auxiliary property:

▶ Property 18. At a fixed point in time, let k be an arbitrary index with skip value skip-lce[k],
and let j be an arbitrary index from {k + 1, . . . , skip-lce[k]− 1}. If there is some index i < k

such that either nss[i] = j or i = pss[j], then there is some index k′ ∈ {k, . . . , j − 1} with
nss[k′] = j and lce(k′, j) ≥ k + max-lce[k]− j.

Proof. The property is illustrated in Figure 5.
Due to the assumptions about i, k, j, as well as Lemma 10 and Definition 11, it holds

i < max-left[k] < k < j < skip-lce[k] ≤ k + max-lce[k]

Let ℓ′ = k + max-lce[k]− j. The suffix y[j′ . . n] with j′ = j − (k −max-left[k]) has prefix
y[j′ . . j′ + ℓ′ − 1] = y[j . . j + ℓ′ − 1] (due to the LCE between max-left[k] and k).
Due to either nss[i] = j or i = pss[j], no suffix y[k′′ . . n] with i < k′′ < j can have a prefix
y[k′′ . . k′′ + ℓ′ − 1] < y[j . . j + ℓ′ − 1] (since otherwise y[k′′ . . n] < y[j . . n]).
Due to the previous two points, the lexicographically smallest suffix y[k′ . . n] that satisfies
max-left[k] < k′ < j also has prefix y[j . . j + ℓ′ − 1]. Because of our choice of k′, all
suffixes starting between k′ and j are lexicographically larger than y[k′ . . n], and it holds
nss[k′] = j (nss[k′] > j would contradict Lemma 10). Due to nss[k′] = j and Lemma 10,
it holds k′ ≥ k. ◀
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B.2.1 Correctness of the assignments
Now we show that the updates performed by the algorithm are correct.

If the algorithm performs some update skip-lce[k] ← j after computing lce(i, j), then
clearly i < k < j < skip-lce[k] (this follows readily from the pseudocode).
Since either nss[i] = j or i = pss[j], Property 18 applies and there is some k′ ∈ {k, . . . , j−
1} with nss[k′] = j and lce(k′, j) ≥ k+max-lce[k]−j. Due to the order in which we process
the indices, we have already computed lce(k′, j), and max-lce[j] ≥ k + max-lce[k] − j

already holds.
We only run the update algorithm if lce(i, j) > max-lce[j], thus
lce(i, j) > k + max-lce[k]− j.
Equivalently, j + lce(i, j) > k + max-lce[k]. Thus it is correct to assign skip-lce[k]← j.

B.2.2 Completeness of the assignments
From now on, analogously to skip-lce∗ in Section 4.4, we use the notation k = max-left∗[j] to
denote that k can be obtained from j by repeatedly applying max-left. The update algorithm
considers exactly the indices k > i with k = max-left∗[j]. Now we show that the updates
performed by the algorithm are complete, i.e. there is no index k for which we should assign
skip-lce[k]← j, but that does not satisfy k = max-left∗[j].

Consider an index k for which we have to assign skip-lce[k] ← j. If k ̸= max-left∗[j],
then there must be indices j′′ = max-left∗[j] (possibly j′′ = j) and i′′ = max-left[j′′] with
i′′ < k < j′′.
Since we have to assign skip-lce[k]← j, it currently holds k < j′′ ≤ j < skip-lce[k]. There-
fore, j′′ +max-lce[j′′] ≤ k+max-lce[k] (otherwise, we would have assigned skip-lce[k]← j′′

earlier).
Since either nss[i′′] = j′′ or i′′ = pss[j′′], Property 18 applies and there is some k′ ∈
{k, . . . , j′′ − 1} with nss[k′] = j′′ and lce(k′, j′′) ≥ k + max-lce[k]− j′′.
Combining the previous two points, we have j′′ + max-lce[j′′] = lce(k′, j′′) = k +
max-lce[k]. This, however, means that max-left[j′′] ≥ k′, which contradicts the definition
of i′′.
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1 Introduction

A time series is a sequence of events which can be represented by symbols or numbers in many
cases. An episode is a collection of events which occur in a short time period. The episode
matching problem asks to find every minimal substring S = T [i..j] of a text T such that a
pattern P is a (non-consecutive) subsequence of S. Let n and m be the lengths of the text T

and the pattern P , respectively. There exists a naïve O(mn)-time O(1)-space algorithm for
episode matching, which scans the text back and forth. In 1997, Das et al. [7] presented a
weakly subquadratic O(mn/ log m)-time O(m)-space algorithm for episode matching. Very
recently, Bille et al. [3] showed that even a simpler version of episode matching, which
computes the shortest substring containing P as a subsequence, cannot be solved in strongly
subquadratic O((mn)1−ϵ) time for any constant ϵ > 0, unless the Strong Exponential Time
Hypothesis (SETH) fails.

In some applications, such as analysis of time series data of stock prices, one is often
more interested in finding patterns of price fluctuations rather than the exact prices. The
order preserving matching (OPM ) model [16] is motivated for such purposes, where the task
is to find consecutive substring S of a numeric text string T such that the relative orders of
values in S are the same as that of a query numeric pattern string P . The order preserving
substring matching problem (OPMStr) can be solved in Õ(n + m) time [16, 17, 5, 6]. On
the other hand, the order preserving subsequence matching problem (OPMSeq) is known to
be NP-hard [4]. Another known model of pattern matching, called parameterized matching
(PM ), is able to capture structures of strings, namely, two strings are said to parameterized
match if one string can be obtained by applying a character bijection to the other string [1].
Again, the parameterized substring matching problem (PMStr) can be solved in Õ(n + m)
time (see [1, 2, 14, 8, 19] and references therein), but the parameterized subsequence matching
(PMSeq) is NP-hard [15]. We remark that both order preserving matching and parameterized
matching belong to a general framework of pattern matching called the substring-consistent
equivalence relation (SCER) [18]. Let ≈ denote a string equivalence relation, and suppose
that X ≈ Y holds for two strings X and Y of equal length n. We say that ≈ is an SCER if
X[i..j] ≈ Y [i..j] hold for any 1 ≤ i ≤ j ≤ n.

Cartesian tree matching (CTM ), proposed by Park et al. [20], is a new class of SCER
that is also motivated for numeric string processing. The Cartesian tree CT (T ) of a string T

is a binary tree such that the root of CT (T ) is i if i is the leftmost occurrence of the smallest
value in T , the left child of the root T [i] is CT (T [1..i− 1]), and the right child of the root
T [i] is CT (T [i + 1..n]). We say that two strings Cartesian-tree match if the Cartesian trees
of the two strings are isomorphic as ordered trees [13], i.e., preserving both the parent and
sibling orders. Observe that CTM is similar to OPM. For instance, strings (7, 2, 3, 1, 5) and
(9, 2, 4, 1, 6) both Cartesian-tree match and order-preserving match. It is easy to observe
that if two strings order-preserving match, then they also Cartesian-tree match, but the
opposite is not true in general. Thus CTM allows for more relaxed pattern matching than
OPM. Indeed, the constraints for OPM that impose the relative order of all positions in the
pattern can be too strict for some applications [20]. For example, two strings (7, 2, 3, 1, 5) and
(6, 2, 4, 1, 9) both having a w-like shape do not order-preserving match. On the other hand,
their similarity can be captured with CTM, since (7, 2, 3, 1, 5) and (6, 2, 4, 1, 9) Cartesian-tree
match. This lead to the study of the Cartesian tree substring matching (CTMStr) problem,
which asks to find every substring S of T such that S and P Cartesian-tree match. The
CTMStr problem can be solved efficiently, in Õ(n + m) time [20, 21].
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On the other hand, since real-world numeric sequences contain errors and indeterminate
values, patterns of interest may not always appear consecutively in the target data. Therefore
numeric sequence pattern matching scheme, which allows for skipping some data and
matching to non-consecutive subsequences, is desirable. However, such pattern matching
is not supported by the CTMStr algorithms. Given the aforementioned background, this
paper introduces Cartesian tree subsequence matching (CTMSeq), and further shows that
this problem can be solved efficiently. Namely, we can find, in time polynomial in n and m,
every minimal substring S = T [i..j] of a text T such that there exists a subsequence S′ of
S where CT (S′) and CT (P ) are isomorphic. We remark that this is the CTM version of
episode matching, which is also the first polynomial-time subsequence matching under SCER
(except for exact matching, which is episode matching).

The contribution of this paper is the following:
We first present a simple algorithm for solving CTMSeq in O(mn2) time and O(mn)
space based on dynamic programming (Section 3, Algorithm 1).
We present a faster O(mn log log n)-time O(mn)-space algorithm for solving CTMSeq
(Section 4, Algorithm 2). To achieve this speed-up, we exploit useful properties of
our method that permits us to improve the O(n2)-time part of Algorithm 1 with O(n)
predecessor queries.
We present space-efficient versions of the above algorithms that require only O(n log m)
space, which are based on the idea from the heavy-path decomposition (Section 5).

Technically speaking, our algorithms are related to the work by Gawrychowski et al. [10],
who considered the problem of deciding whether two indeterminate strings of equal length n

match under SCER. They showed that the CTM version of the problem can be solved in
O(n log2 n) time with O(n log n) space when the number r of uncertain characters in the
strings is constant, using predecessor queries. They also proved that the OPM and PM
versions of the problem are NP-hard for r = 2. NP-hardness for the OPM version in the case
of r = 3 was previously shown in [12]. Our results on CTMSeq can be seen as yet another
example that differentiates between CTM and OPM in terms of the time complexity class.

2 Preliminaries

2.1 Basic Notations and Assumptions
For any positive integers i, j with 1 ≤ i ≤ j, we define a set [i] = {1, . . . , i} of integers and a
discrete interval [i, j] = {i, i + 1, . . . , j}. Let Σ = {1, . . . , σ} be an integer alphabet of size
σ. An element of Σ is called a character. A sequence of characters is called a string. The
length of string S is denoted by |S|. The empty string ε is the string of length 0. For a string
S = (S[1], S[2], . . . , S[|S|]), S[i] denotes the i-th character of S for each i with 1 ≤ i ≤ |S|.
For each i, j with 1 ≤ i ≤ j ≤ |S|, S[i..j] denotes the substring of S starting from i and ending
at j. For convenience, let S[i..j] = ε for i > j. We write min(S) := min{S[i] | i ∈ [n]} for the
minimum value contained in the string S. In this paper, all characters in the string S assume
to be different from each other without loss of generality [16] 3. Under the assumption, we
denote by minidx(S) := i the unique index satisfying the condition S[i] = min(S). For any
0 ≤ m ≤ n, let In

m be the set consisting of all subscript sequence I = (i1, . . . , im) ∈ [n]m in
ascending order satisfying 1 ≤ i1 < · · · < im ≤ n. Clearly, |In

m| =
(

n
m

)
holds. For a subscript

3 If the same character occurs more than once in S, the pair ci = (c, i) of the original character c and
index i can be extended as a new character to satisfy the assumption.

CPM 2022
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 𝟻

 CT(S)

 1  2  3  4  5  6  7  8
 𝟿  𝟷𝟿 𝟹  𝟷𝟸 𝟷𝟻 𝟸𝟹  𝟼 S

 9
 𝟸𝟷

 5
 2  7

 1  6  8 4

 3  9

Figure 1 Illustration for Cartesian tree CT(S) of S = (23, 6, 15, 9, 3, 12, 5, 19, 21). Since the
minimum value among S is S[5], node v = 5 is the root of CT(S), CT(S[1..4]) is the left subtree of v,
and CT(S[6..9]) is the right subtree of v. Then, v.L = 2, v.R = 7, Sv = S[1..9] = S, Sv.L = S[1..4],
and Sv.R = S[6..9].

sequence I = (i1, . . . , im) ∈ In
m, we denote by SI := (S[i1], . . . , S[im]) the subsequence of S

corresponding to I. Intuitively, a subsequence of S is a string obtained by removing zero
or more characters from S and concatenating the remaining characters without changing
the order. For a subscript sequence I = (i1, . . . , im) ∈ In

m and its elements is, it ∈ I with
is ≤ it, I[is : it] denotes the substring of I that starts with is and ends with it. In this paper,
we assume the standard word RAM model of word size w = Ω(log n). Also we assume that
σ ≤ 2w, i.e., any character in Σ fits within a single word.

2.2 Cartesian Tree

The Cartesian tree of string S, denoted by CT (S), is the ordered binary tree recursively
defined as follows: If S = ε, then CT (S) is empty, and otherwise, CT (S) is the tree
rooted at v such that the left subtree of v is CT (S[1..v − 1]), and the right subtree of v is
CT (S[v + 1..|S|]), where v = minidx(S). For a node v, we denote by v.L the left child of v if
such a child exists and let v.L = nil otherwise. Similarly, we use the notation v.R for the right
child of v. CT (S)v denotes the subtree of CT (S) rooted at v. We say that two Cartesian
trees CT (S) and CT (S′) are isomorphic as ordered trees [13], denoted CT (S) = CT (S′).

There is an interplay between a sequence and its Cartesian tree as follows: We note that
the indices of S identify the nodes of CT (S), and vice versa. For any node v of CT (S), we
define the substring Sv of S recursively as follows:

(i) If v is the root of CT (S), then Sv = S = S[1..|S|].
(ii) If v is a node with substring Sv = S[ℓ..r], then S[v] is the minimum value in S[ℓ..r],

Sv.L = S[ℓ..v − 1], and Sv.R = S[v + 1..r].
An example of a Cartesian tree is shown in Figure 1.

2.3 Cartesian Tree Subsequence Matching

Let T be a text string of length n and P be a pattern string of length m ≤ n. We say
that a pattern P matches text T , denoted by P ⊑ T , if there exists a subscript sequence
I = (i1, . . . , im) ∈ In

m of T such that CT (TI) = CT (P ) holds. Then, we refer to the subscript
sequence I as a trace.
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A possible choice of the notion of occurrences of a pattern P in T is to employ the traces
of P as occurrences. However, it is not adequate since there can be exactly

(
n
m

)
traces 4 for

a text and a pattern of lengths n and m. Instead, we employ minimal occurrence intervals
as occurrences defined as follows.

▶ Definition 1 (minimal occurrence interval). For a text T [1..n] and P [1..m], an interval
[ℓ, r] ⊆ [n] is said to be an occurrence interval for pattern P over text T if P ⊑ T [ℓ..r] holds.
It is said to be minimal if there is no occurrence interval [ℓ′, r′] for P over T such that
[ℓ′, r′] ⊊ [ℓ, r].

▶ Example 2. Let text T = (11, 3, 8, 6, 16, 19, 5, 15, 21, 24) and pattern P = (9, 2, 17, 4, 13).
The occurrence interval [3, 9] for P over T is minimal since I = (3, 4, 6, 8, 9) is a trace with
CT (TI) = CT (P ), and there is no other occurrence interval [ℓ, r] ⊊ [3, 9] for P over T . The
interval [1, 8] is an occurrence interval, however, it is not minimal since there is another
(minimal) occurrence interval [1, 5] ⊊ [1, 8] for P over T . Overall, all minimal occurrence
intervals for P over T are [1, 5] and [3, 9].

From the definition, there are O(n2) occurrence intervals for P over T , while there are O(n)
minimal occurrence intervals. If we have the set of all minimal occurrence intervals, we can
easily enumerate all occurrence intervals in constant time per occurrence interval. Thus,
we focus on minimal occurrences in this paper. Now, the main problem of this paper is
formalized as follows:

▶ Definition 3 (Cartesian Tree Subsequence Matching (CTMSeq)). Given two strings T [1..n]
and P [1..m], find all minimal occurrence intervals for P over T .

We can easily see that CTMSeq can be solved in O(m
(

n
m

)
) time by simply enumerating

all possible subscript sequences. However, its time complexities are too large to apply
to real-world data sets. Hence, our goal here is to devise efficient algorithms running in
polynomial time.

In the rest of this paper, we fix text T of arbitrary length n and pattern P of arbitrary
length m with 0 < m ≤ n.

3 O(mn2)-time Dynamic Programming Algorithm

This section describes an algorithm based on dynamic programming which runs in time
O(mn2). We later improve the running time to O(mn log log n) in Section 4.

3.1 A Simple Algorithm

By dynamic programming approach, we can obtain a simple algorithm for CTMSeq with
O(mn3) time and O(mn2) space complexities as follows. It recursively decides if the substring
Pv matches in T [ℓ..r] for all indices v of P and all intervals [ℓ..r] in T from shorter to larger.
These complexities mainly come from that it iterates the loop for O(n2) possible intervals in
T . In the following section, we devise more efficient algorithms in time and space complexities
by introducing the notion of minimal fixed-intervals.

4 which can be achieved by monotone sequences for P and T .
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Figure 2 Illustration for fixed-intervals for the pivot (v, i), where T = (11, 3, 8, 6, 16, 19, 5, 15,
21, 24), P = (9, 2, 17, 4, 13), and (v, i) = (2, 4). In the left figure, for the trace I = (1, 4, 5, 8, 9)
indicated by dotted lines, the interval [1, 9] is a fixed-interval with the pivot (v, i). In the right figure,
[3, 9] is a minimal fixed-interval with the pivot (v, i) since there is no fixed-interval [ℓ, r] ⊊ [3, 9] with
the pivot (v, i).

3.2 Minimal Fixed-interval
To solve CTMSeq without iterating for all possible intervals, we focus on fixing the corres-
ponding locations between node v of CT (P ) and index i of T . For a node v ∈ [m] and index
i ∈ [n], we refer to a pair (v, i) as a pivot. Then, we define the minimal interval fixed with
pivot (v, i), called the minimal fixed-interval.

▶ Definition 4 ((minimal) fixed-interval). For pivot (v, i) ∈ [m]× [n], interval [ℓ, r] ⊆ [n] is
called a fixed-interval with the pivot (v, i) if there exists a trace I = (i1, . . . , i|Pv|) ∈ In

|Pv|
satisfying the following conditions (i)–(iv): (i) i is an element of I, (ii) [i1, i|Pv|] ⊆ [ℓ, r] (iii)
CT (TI) = CT (Pv) holds, and (iv) T [i] = min(TI) holds. Furthermore, a fixed-interval [ℓ, r]
with the pivot (v, i) is said to be minimal if there is no fixed-interval [ℓ′, r′] ⊊ [ℓ, r] with the
pivot (v, i)

We show examples of (minimal) fixed-intervals on Figure 2. Here, we give an essential lemma
concerning minimal fixed-intervals.

▶ Lemma 5. For any pivot (v, i) ∈ [m]× [n], there exists at most one minimal fixed-interval
with (v, i).

Proof. Assume that there are two minimal fixed-intervals with the pivot (v, i). Let [ℓ, r] and
[ℓ′, r′] be two such distinct intervals. Without loss of generality, assume ℓ ≤ ℓ′. Then, by
the minimalities of [ℓ, r] and [ℓ′, r′], ℓ < ℓ′ and r < r′ must hold. From Definition 4, there
exist I = (ℓ, . . . , i, . . . , r) and I ′ = (ℓ′, . . . , i, . . . , r′) such that CT (TI) = CT (TI′) = CT (Pv)
and T [i] = min(TI) = min(TI′). Since CT (TI) = CT (TI′) and T [i] = min(TI) = min(TI′),
the right subtree of i in CT (TI) is the same as that of CT (TI′). Namely, CT (TI[i+1:r]) =
CT (TI′[i+1:r′]) holds. Thus, we have CT (TI′′) = CT (Pv) where I ′′ is the subscript sequence of
length |I| that is the concatenation of I[ℓ′ : i] and I ′[i+1 : r]. Also, i ∈ I ′′ and T [i] = min(TI′′)
hold, and hence, [ℓ′, r] is a fixed-interval with the pivot (v, i). This contradicts that [ℓ′, r′] is
a minimal fixed-interval. ◀

For convenience, we define the minimal fixed-interval with the pivot (v, i) as [−∞,∞] if there
is no fixed-interval with the pivot (v, i). We denote by mfi(v, i) the minimal fixed-interval
with the pivot (v, i). Let M = {mfi(minidx(P ), i) | i ∈ [n]} be the set of all the minimal
fixed-intervals for the root of CT (P ). By the definitions of minimal occurrence intervals and
minimal fixed-intervals, the next corollary holds:
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Figure 3 Illustration for two minimal fixed-intervals, where T and P are the same as in Figure 2.
From the figure, mfi(2, 3) = [1, 9] and mfi(2, 4) = [3, 9] hold. Note that mfi(2, 3) = [1, 9] is not a
solution of CTMSeq since mfi(2, 4) ⊊ mfi(2, 3) holds.

▶ Corollary 6. For any minimal occurrence interval [ℓ, r] for P over T , [ℓ, r] ∈ M holds.
Contrary, for any interval [ℓ, r] ∈M, if there is no interval [ℓ′, r′] ⊊ [ℓ, r] such that [ℓ′, r′] ∈
M, [ℓ, r] is a minimal occurrence interval for P over T .

Note that not every intervals [ℓ, r] ∈M is a minimal occurrence interval for P over T . We
show an example of a interval [ℓ, r] ∈ M such that [ℓ, r] is not a solution of CTMSeq in
Figure 3.

3.3 The Algorithm
From Corollary 6, once we compute the set M of intervals, we can obtain the solution of
CTMSeq by removing non-minimal intervals from M. Since every interval in M except
[−∞,∞] is a sub-interval of [1, n], we can sort them in O(n) time by using bucket sort, and
thus, can also remove non-minimal intervals.

Thus, in what follows, we discuss how to efficiently compute M, i.e., mfi(minidx(P ), i) for
all i ∈ [n]. Now, we define two functions L(v, i) = ℓ and R(v, i) = r for each node v ∈ [m]
in CT (P ) and each index i ∈ [n], where [ℓ, r] = mfi(v, i). Then, our task is, to compute
L(minidx(P ), i) and R(minidx(P ), i) for all i ∈ [n]. Regarding the two functions, we show the
following lemma (see also Figure 4 for illustration):

▶ Lemma 7. For any pivot (v, i) ∈ [m]× [n], the following recurrence relations hold:

L(v, i) =


−∞ if mfi(v, i) = [−∞,∞],
i if mfi(v, i) ̸= [−∞,∞]

and v.L = nil,
max

1≤j≤i−1
{L(v.L, j) | T [i] < T [j], R(v.L, j) < i} otherwise.

R(v, i) =


∞ if mfi(v, i) = [−∞,∞],
i if mfi(v, i) ̸= [−∞,∞]

and v.R = nil,
min

i+1≤j≤n
{R(v.R, j) | T [i] < T [j], i < L(v.R, j)} otherwise.

Proof. We prove the validity of the first equation for L(v, i). The second one can be proven
by symmetric arguments. The first two cases are clearly correct by the definition of minimal
fixed-intervals. We focus on the third case, when mfi(v, i) ̸= [−∞,∞] and v.L ̸= nil.

CPM 2022
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 v

 v . L  v . R

 r
 j⋆  i

 T[ j⋆]  T[i]

 ℓ⋆  r⋆

 ℓ
 T

 CT(P)

Figure 4 Illustration for intuitive understanding of recurrence relations in Lemma 7. The minimal
fixed-interval [ℓ, r] with the pivot (v, i) can be obtained from mfi(v.L, j) and mfi(v.R, k) by choosing
j and k appropriately. As for the left subtree of v, the candidates for such j must satisfy the
conditions that the right-end of mfi(v.L, j) does not exceed i − 1 and T [j] > T [i]. To minimize the
width of fixed-intervals with (v, i), we choose j⋆ that maximizes the left-end of mfi(v.L, j⋆) while
satisfying the above conditions. Also, symmetric arguments can be applied to the right subtree of v.

Let [ℓ, r] = mfi(v, i). By Definition 4, there exists I = (ℓ, . . . , i, . . . , r) such that CT (TI) =
CT (Pv) and T [i] = min(TI). We notice that CT (Pv.L) = CT (TI[ℓ:prei]) holds where prei

is the subscript preceding i in I. Thus, there exists k such that ℓ ≤ k ≤ i − 1, T [i] <

T [k], R(v.L, k) < i, and L(v.L, k) ≥ ℓ. Now, let j⋆ := arg max1≤j≤i−1{L(v.L, j) | T [i] <

T [j], R(v.L, j) < i} and [ℓ⋆, r⋆] := mfi(v.L, j⋆). Then, ℓ⋆ = L(v.L, j⋆) ≥ L(v.L, k) ≥ ℓ holds.
For the sake of contradiction, we assume ℓ < ℓ⋆. By Definition 4, there exists I⋆ =

(ℓ⋆, . . . , j⋆, . . . , r⋆) such that CT (TI⋆) = CT (Pv.L) and T [j⋆] = min(TI⋆). Also, by the
definition of j⋆, T [i] < T [j⋆] and r⋆ < i hold. Let I ′ be the concatenation of I⋆ and I[i : r].
Note that I ′ ∈ In

m since r⋆ < i. From the above discussions, CT (TI′) = CT (Pv) holds
since CT (TI⋆) = CT (Pv.L) and min(TI⋆) = T [j⋆] > T [i]. Also, i ∈ I ′ and T [i] = min(TI′)
clearly hold. Then, by Definition 4, [ℓ⋆, r] ⊊ [ℓ, r] is a fixed-interval with (v, i), however,
this contradicts the minimality of [ℓ, r] = mfi(v, i). Therefore, ℓ = ℓ⋆ holds. Namely,
L(v, i) = L(v.L, j⋆) = max1≤j≤i−1{L(v.L, j) | T [i] < T [j], R(v.L, j) < i} holds. ◀

Algorithm 1 is a pseudo code of our algorithm to solve CTMSeq using dynamic programming
based on Lemma 7.

Correctness of Algorithm 1
Algorithm 1 computes tables L[v][i] = L(v, i) and R[v][i] = R(v, i) for all pivot (v, i) ∈ [m]×[n]
in a bottom-up manner in CT (P ) (see Line 5). Since the recursion formulae of Lemma 7 hold
for every node, Algorithm 1 correctly computes all the minimal fixed-intervals, and thus, all
the minimal occurrence intervals for pattern P over text T .

Time and Space Complexities of Algorithm 1
At Line 4, we build the Cartesian tree C of a given pattern P . There is a linear-time
algorithm to build a Cartesian tree [9], which takes O(m) time here. In Lines 5–7, we call
functions UPDATE-LEFT-MAX and UPDATE-RIGHT-MIN m times since C has m nodes.
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Algorithm 1 Algorithm for solving CTMSeq using dynamic programming.

1: procedure cartesian-tree-subsequence-match(T [1..n], P [1..m])
2: L[v][i]← −∞ for all v ∈ [m] and i ∈ [n]
3: R[v][i]←∞ for all v ∈ [m] and i ∈ [n]
4: C ← CT (P )
5: for each v ∈ [m] in a bottom-up manner in C do
6: call UPDATE-LEFT-MAX(v, T, L, R)
7: call UPDATE-RIGHT-MIN(v, T, L, R)
8: enumerate all minimal occurrence intervals for P over T by using L and R.
9: function update-left-max(v, T, L, R)

10: if v.L = nil then
11: L[v][i]← i for all i ∈ [n]
12: return
13: for i← 1 to n do
14: for j ← 1 to i− 1 do
15: if T [i] < T [j] and R[v.L][j] < i then
16: L[v][i]← max(L[v][i], L[v.L][j])
17: function update-right-min(v, T, L, R)
18: if v.R = nil then
19: R[v][i]← i for all i ∈ [n]
20: return
21: for i← 1 to n do
22: for j ← i + 1 to n do
23: if T [i] < T [j] and i < L[v.R][j] then
24: R[v][i]← min(R[v][i], R[v.R][j])

It is clear that the functions UPDATE-LEFT-MAX and UPDATE-RIGHT-MIN run in O(n2)
time for each call. Thus, the total running time of Algorithm 1 is O(mn2). Also, the space
complexity of Algorithm 1 is O(mn), which is dominated by the size of tables L and R.

To summarize, we obtain the following theorem:

▶ Theorem 8. The CTMSeq problem can be solved in O(mn2) time using O(mn) space.

With a few modifications, we can reconstruct a trace I = (ℓ, . . . , r) ∈ In
m satisfying

CT (TI) = CT (P ) for each minimal occurrence interval [ℓ, r]. Precisely, when we compute
the minimal fixed-interval with each pivot (v, i), we simultaneously compute and store which
index will correspond to the root of the left subtree of v fixed at i. We do the same for
the right subtree. Using the additional information, we can reconstruct a desired subscript
sequence by tracing back from the root of CT (P ). The next corollary follows from the above
discussion:

▶ Corollary 9. Once we compute L(v, i) and R(v, i) extended with the information of
tracing back for all pivots (v, i) ∈ [m] × [n], we can find a trace I = (ℓ, . . . , r) satisfying
CT (TI) = CT (P ) for each minimal occurrence interval [ℓ, r] for P over T in O(m) time
using O(mn) space.
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 i

ℓ2 r2

ℓ1 r1

Figure 5 Illustration for the third observation for LFI (v, i). The double-headed arrows represent
the intervals in LFI (v, i). The two intervals [ℓ1, r1] and [ℓ2, r2] are in LFI (v, i) and [ℓ1, r1] ⊊ [ℓ2, r2]
holds. It is clear that ℓ2 is never chosen as L(v, i) for any i ∈ [n].

4 Reducing Time to O(mn log log n) with Predecessor Dictionaries

This section describes how to improve the time complexity of Algorithm 1 to O(mn log log n).
In Algorithm 1, functions UPDATE-LEFT-MAX and UPDATE-RIGHT-MIN require O(n2)
time for each call, which is a bottle-neck of Algorithm 1. By devising the update order of
tables L(v, i) and R(v, i) and using a predecessor dictionary, we improve the running time of
the above two functions to O(n log log n).

4.1 Main Idea for Reducing Time
For any pivot (v, i) ∈ [m]× [n], let LFI (v, i) = {[L(v.L, j), R(v.L, j)] | 1 ≤ j ≤ n, T [i] < T [j]}
be a set of intervals which are candidates for a component of the minimal fixed-interval with
(v, i). By Lemma 7, L(v, i) = max({ℓ | [ℓ, r] ∈ LFI (v, i), r < i} ∪ {−∞}) holds if v.L ̸= nil.
Then, the next observations follow by the definitions:

LFI (v, i1) ⊆ LFI (v, i2) holds for any i1, i2 with T [i1] > T [i2].
If there are intervals [ℓ1, r1], [ℓ2, r2] ∈ LFI (v, i) such that ℓ2 = ℓ1 ≤ r1 < r2, then we can
always choose ℓ1 as L(v, i).
If there are intervals [ℓ1, r1], [ℓ2, r2] ∈ LFI (v, i) such that ℓ2 < ℓ1 ≤ r1 ≤ r2, then ℓ2 is
never chosen as L(v, i).

The intuitive explanation of the third observation is shown in Figure 5. From the third
observation, we define a subset LFI ′(v, i) of LFI (v, i), whose conditions are sufficient to
our purpose: Let LFI ′(v, i) be the set of all intervals that are minimal within LFI (v, i).
Namely, LFI ′(v, i) = {[ℓ, r] ∈ LFI (v, i) | there is no other interval [ℓ′, r′] ∈ LFI (v, i) such
that [ℓ′, r′] ⊊ [ℓ, r]}. By the third observation,

L(v, i) = max({ℓ | [ℓ, r] ∈ LFI ′(v, i), r < i} ∪ {−∞}) (1)

holds if v.L ̸= nil.
The main idea of our algorithm is to maintain a set Sv of intervals so that it satisfies

the invariant Sv = LFI ′(v, i). To maintain Sv efficiently, we utilize a data structure called
predecessor dictionary for Sv supporting the following operations:

insert(Sv, ℓ, r): insert interval [ℓ, r] into Sv,
delete(Sv, ℓ, r): delete interval [ℓ, r] from Sv,
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Algorithm 2 Faster algorithm for UPDATE-LEFT-MAX using van Emde Boas tree.

1: function UPDATE-LEFT-MAX(v, T, L, R)
2: if v.L = nil then
3: L[v][i]← i for all i ∈ [n]
4: return
5: Sv ← ∅.
6: for each i ∈ [n] in the descending order of its value T [i] do
7: [ℓ, r]← pred(Sv, i)
8: if [ℓ, r] = nil then
9: L[v][i]← −∞

10: continue
11: L[v][i]← ℓ

12: ℓnew ← L[v.L][i], rnew ← R[v.L][i]
13: loop ▷ delete all intervals that become non-minimal
14: [ℓs, rs]← succ(Sv, rnew − 1)
15: if [ℓs, rs] = nil or [ℓnew, rnew] ̸⊆ [ℓs, rs] then
16: break
17: delete(Sv, ℓs, rs)
18: [ℓp, rp]← pred(Sv, rnew + 1)
19: if [ℓp, rp] = nil or [ℓp, rp] ̸⊆ [ℓnew, rnew] then ▷ insert new interval if it is minimal
20: insert(Sv, ℓnew, rnew)

pred(Sv, x): return the interval [ℓ, r] ∈ Sv on which r is the largest among those satisfying
r < x (if it does not exist return nil), and
succ(Sv, x): return the interval [ℓ, r] ∈ Sv on which r is the smallest among those
satisfying x < r (if it does not exist return nil).

To implement a predecessor dictionary for Sv, we use a famous data structure called van
Emde Boas tree [22] that performs the operations as mentioned above in O(log log n) time
each5. In general, the space usage of van Emde Boas tree is O(U), where U is the maximum
of the integers to store. However, U = n holds in our problem setting, and hence, the space
complexity is O(n).

4.2 Faster Algorithm
Algorithm 2 shows a function UPDATE-LEFT-MAX that computes L(v, i) for all i ∈ [n]
based on the above idea. This function can be used to replace the function of the same name
in Algorithm 1. The implementation of function UPDATE-RIGHT-MIN is symmetric.

Correctness of Algorithm 2
Remark that v is fixed in Algorithm 2. Let (i1, . . . , in) be the permutation of [n] that is
sorted in the order in which they are picked up by the for-loop at Line 6. We assume that the
invariant Sv = LFI ′(v, ij) holds at the beginning of the j-th step of the for-loop. The value
of L[v][ij ] is determined at either Line 3, 9, or 11. By Lemma 7, L[v][ij ] = L(v, ij) holds

5 The van Emde Boas tree is a data structure for the set of integers, however, it can be easily applied to
the set of pairs of integers by associating the first element with the second element.

CPM 2022



14:12 Cartesian Tree Subsequence Matching

if the value determined at Line 3 or 9. By the invariant Sv = LFI ′(v, ij) and Equation 1,
L[v][ij ] = L(v, ij) also holds if the value determined at Line 11. Thus, L(v, ij) is computed
correctly.

Next, let us consider the invariant for Sv. At Line 12, we set [ℓnew, rnew] the minimal
fixed-interval with (v.L, ij). In the internal loop at Lines 13–17, we delete all intervals
[ℓs, rs] from Sv such that [ℓs, rs] becomes non-minimal within Sv ∪ {[ℓnew, rnew]}. To do so,
we repeatedly query succ(Sv, rnew − 1) and check whether the obtained interval includes
[ℓnew, rnew]. Finally, at the last two lines, we insert the new interval [ℓnew, rnew] if it does
not include any other interval in Sv. Then, any intervals in Sv are not nested each other,
and thus, the invariant Sv = LFI ′(v, ij+1) holds at the end of the j-th step.

Time and Space Complexities of Algorithm 2
We analyze the number of calls for each operation on a predecessor dictionary. Firstly,
since insert is called only at Line 20, it is called at most n times throughout Algorithm 2.
Similarly, pred at Line 7 and Line 18 is also called O(n) times. From Line 13 to Line 17, succ
and delete are called in the internal loop. The number of calls for delete is at most that
of insert, and hence, delete is called at most n times, and succ as well. Thus, throughout
Algorithm 2, the total number of calls for all queries is O(n). Therefore, the running time of
Algorithm 2 is O(n log log n). Also, the space complexity of Algorithm 2 is O(n).

To summarize this section, we obtain the following lemma:

▶ Lemma 10. Algorithm 2 computes function UPDATE-LEFT-MAX in O(n log log n) time
using O(n) space.

5 Reducing Space to O(n log m)

This section describes how to reduce the space complexity of our algorithm to O(n log m).
Having the tables L[v][i] and R[v][i] for all pivot (v, i) ∈ [m]× [n] requires Θ(mn) space. By
Lemma 7, to compute the table values for node v ∈ CT (P ), we only need the table values
for v.L and v.R. Thus, we can discard the remaining values no longer referenced. However,
even if we discard such unnecessary ones, the space complexity will not be improved in the
worst case if we fix the order in which subtree is visited first: Let us assume that the left
subtree is always visited first, and consider pattern

P = (k + 1, 1, . . . , k + i, i, . . . , 2k, k, 2k + 1) (2)

of length m = 2k + 1. It can be seen that every non-leaf node in CT (P ) has exactly two
children, and the left child is a leaf (see also Figure 6 for a concrete example). Thus, when we
process the node v numbered with 2k, we need to store at least k + 1 tables since all tables
for k + 1 leaves have been created and not been discarded yet, and it yields Θ(mn) space.

To avoid such a case, we add a new rule for which subtree is visited first; when we perform
a depth-first traversal, we visit the larger subtree first if the current node v has two children.
Specifically, we visit the left subtree first if |CT (P )v.L| > |CT (P )v.R|, and visit the right
subtree first otherwise, where the cardinality of a tree means the number of nodes in the tree.
Clearly, the correctness of the modified algorithm relies on the original one (i.e., Algorithm 1)
since the only difference is the rule that decides the order to visit.

In the following, we show that the rule makes the space complexity O(n log m). We utilize
a technique called heavy-path decomposition [11] (a.k.a. heavy-light decomposition). For
each internal node v ∈ [m] in CT (P ), we choose one of v’s children with the larger subtree
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Figure 6 Illustration for a worst case example of CT (P ) which causes the space complexity to
be Θ(mn), where P = (5, 1, 6, 2, 7, 3, 8, 4, 9). To compute the values of L(v, i) and R(v, i) for v = 8,
we only need the values of L(u, i) and R(u, i) for node u ∈ {7, 9}. However, we have not finished
computing L(u, i) and R(u, i) for node u ∈ {2, 4, 6} yet, so we have to remember all of the values of
L(u, i) and R(u, i) for node u ∈ {1, 3, 5, 7, 9} simultaneously.

size and mark it as heavy, and we mark the other one as light if it exists. Exceptionally, we
mark the root of CT (P ) as heavy. Then, it is known that the number of light nodes on any
root-to-leaf path is O(log m) [11].

Now, we prove that the algorithm requires O(n log m) space at any step. Suppose we are
now on node u ∈ [m]. Let pu be the path from the root to u in CT (P ). Note that each
node v on pu is marked as either heavy or light. For each light node vℓ on pu, we have not
discarded arrays L and R of size O(n) associated with the sibling of vℓ to process the parent
of vℓ in a later step. For each heavy node vh on pu, we do not have to remember any array
since we recurse on vh first, and hence we require only O(1) space for vh. Since there are at
most O(log m) light nodes on pu, the algorithm requires O(n log m) space at any step.

By combining these discussion with Theorem 8 and Lemma 10, we obtain our main
theorem:

▶ Theorem 11. The CTMSeq problem can be solved in O(mn log log n) time using O(n log m)
space.

Note that the same method as for Corollary 9 can not be applied to the algorithm in this
section since most tables are discarded to save space.

6 Preliminary Experiments

This section aims to investigate the behavior of each algorithm using artificial data. In the
first experiment we use randomly generated strings to see how the algorithms would behave
on average (Table 1). In the second experiment, we use the worst-case instance presented in
Section 5 to check the worst-case behavior of the proposed algorithms (Table 2).

We conducted experiments on mac OS Mojava 10.14.6 with Intel(R) Core(TM) i5-7360U
CPU @ 2.30GHz. For each test, we use a single thread and limit the maximum run time by
60 minutes. All programs are implemented using C++ language compiled with Apple LLVM
version 10.0.1 (clang-1001.0.46.4) with -O3 optimization option. We compared the running
time and memory usage of our four proposed algorithms below by varying the length n of
text and the length m of pattern:
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Table 1 Comparison of four algorithms for solving CTMSeq with randomly generated texts and
patterns. The unit of time is second, and the unit of space is KB.

basic basic-HL vEB vEB-HL

n m time space time space time space time space
5000 50 2.03 1980 0.09 3148 0.03 2496 0.03 2124
5000 500 19.20 2788 19.86 2168 0.37 3272 0.37 2596
5000 1000 40.62 2932 40.34 2236 0.73 3520 0.73 2604
5000 2500 96.27 3124 96.23 2368 1.84 3532 1.84 2816

10000 50 7.77 2128 7.74 1804 0.07 2504 0.07 2188
10000 1000 159.82 2740 159.70 1960 1.38 3128 1.38 2352
10000 2000 321.07 2920 323.09 2068 3.08 3312 3.09 2452
10000 5000 841.85 3252 835.29 2212 7.22 3644 7.23 2592
50000 50 206.49 4976 211.24 3836 0.39 6076 0.40 4920
50000 5000 NA NA NA NA 39.98 13040 39.70 6576
50000 10000 NA NA NA NA 79.42 12684 80.20 7044
50000 25000 NA NA NA NA 199.14 13900 197.71 7340

basic: O(mn2)-time and O(mn)-space algorithm (Algorithm 1) explained in Section 3,
basic-HL: O(mn2)-time and O(n log m)-space algorithm obtained by applying the idea
of memory reduction in Section 5 to basic.
vEB6: O(mn log log n)-time and O(mn)-space algorithm obtained by combining Al-
gorithm 1 in Section 3 with Algorithm 2 in Section 4, and
vEB-HL: O(mn log log n)-time and O(n log m)-space algorithm obtained by applying the
idea of memory reduction in Section 5 to vEB.

Tables 1 and 2 show the comparison of the performance among four algorithms above. NA
indicates that the measurement was terminated when the execution time exceeded 60 minutes.
Common to both Table 1 and Table 2, we use a text T of length n that is a randomly chosen
permutation of (1, 2, . . . , n), and thus, T is a length-n string over the alphabet {1, 2, . . . , n}.
In Table 1, we use a pattern P that is a randomly chosen subsequnce of T , and thus, P

is also a length-m string over the alphabet {1, 2, . . . , n}. In Table 2, we use the pattern
P = (k +1, 1, . . . , k + i, i, . . . , 2k, k) of length m = 2k in Equation 2 (see also Figure 6), which
requires Θ(mn) space when the idea of memory reduction in Section 5 is not applied.

Table 1 shows that the running time of vEB is faster than that of basic for all test cases,
and the same result can be seen for vEB-HL and basic-HL. Comparing the memory usage of
vEB with that of basic, it can be seen that the vEB uses more memory than basic, since
the memory usage of the van Emde Boas tree is constant times larger than that of a basic
array. The same is true for vEB-HL and basic-HL. The only difference between basic (vEB)
and basic-HL (vEB-HL) is the search order of the tree traversal, so they have little difference
in the running time for all test cases. Comparing these algorithms in terms of memory usage,
it can be seen that the basic-HL (vEB-HL) uses less memory than basic (vEB), but the
difference is not as pronounced as the theoretical difference in the space complexity. This is
because P is generated at random, so there is not much bias in the size of the subtrees.

6 For the implementation of van Emde Boas trees, we used the following library: https://kopricky.
github.io/code/Academic/van_emde_boas_tree.html

https://kopricky.github.io/code/Academic/van_emde_boas_tree.html
https://kopricky.github.io/code/Academic/van_emde_boas_tree.html
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Table 2 Comparison of four algorithms for solving CTMSeq with randomly generated texts and
intentionally generated patterns of form P = (k + 1, 1, . . . , k + i, i, . . . , 2k, k) in Equation 2. The
unit of time is second, and the unit of space is KB.

basic basic-HL vEB vEB-HL

n m time space time space time space time space
5000 50 1.85 2572 1.86 1940 0.03 2920 0.03 2208
5000 500 18.01 11712 18.03 1912 0.23 12064 0.23 2372
5000 1000 37.65 21804 37.94 2028 0.41 22236 0.40 2516
5000 2500 92.58 52036 89.04 2220 0.96 52720 0.94 2960

10000 50 7.39 3444 7.45 1644 0.07 3748 0.07 2032
10000 1000 150.70 41632 153.18 1732 0.80 42192 0.79 2304
10000 2000 301.57 81856 303.77 1852 1.49 82584 1.46 2600
10000 5000 754.85 202408 759.71 2244 3.58 203656 3.49 3512
50000 50 186.05 12024 186.63 3048 0.37 13116 0.37 4140
50000 5000 NA NA NA NA 18.36 650768 17.82 5616
50000 10000 NA NA NA NA 35.42 963068 34.25 7112
50000 25000 NA NA NA NA 87.28 998056 83.94 11600

On the other hand, the results in Table 2 show that basic-HL and vEB-HL are significantly
more memory efficient than basic and vEB in the case where m is large. This is consistent
with the theoretical difference in the amount of the space complexity.

We also conducted the additional experiments with other algorithms:
BST: O(mn log n)-time and O(mn)-space algorithm using the binary search tree7 instead
of van Emde Boas tree in Section 4, and
BST-HL: O(mn log n)-time and O(mn)-space algorithm obtained by applying the idea of
memory reduction in Section 5 to BST.

vEB outperformed BST in both time and space for all test cases, and so do vEB-HL and BST-HL,
which we feel is of independent interest. The details of the results are shown in Appendix A.

7 Conclusions

This paper introduced the Cartesian tree subsequence matching (CTMSeq) problem: Given
a text T of length n and a pattern P of length m, find every minimal substring S of T such
that S contains a subsequence S′ which Cartesian-tree matches P . This is the Cartesian-
tree version of the episode matching [7]. We first presented a basic dynamic programming
algorithm running in O(mn2) time, and then proposed a faster O(mn log log n)-time solution
to the problem. We showed how these algorithms can be performed with O(n log m) space.
Our experiments showed that our O(mn log log n)-time solution can be fast in practice.

An intriguing open problem is to show a non-trivial (conditional) lower bound for
the CTMSeq problem. The episode matching (under the exact matching criterion) has
O((mn)1−ϵ)-time conditional lower bound under SETH [3]. Although a solution to the
CTMSeq problem that is significantly faster than O(mn) seems unlikely, we have not found
such a (conditional) lower bound yet. We remark that the episode matching problem is not
readily reducible to the CTMSeq problem, since CTMSeq allows for more relaxed pattern
matching and the reported intervals can be shorter than those found by episode matching.

7 For the implementation of binary search trees, we used std::set in C++.
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A Additional Table

Table 3 Comparison of six algorithms with additional two algorithms for solving CTMSeq with
randomly generated texts and patterns. The unit of time is second, and the unit of space is KB.
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Abstract
The problem of computing the longest common subsequence of two sequences (LCS for short) is
a classical and fundamental problem in computer science. In this paper, we study four variants
of LCS: the Repetition-Bounded Longest Common Subsequence problem (RBLCS) [2], the
Multiset-Restricted Common Subsequence problem (MRCS) [11], the Two-Side-Filled
Longest Common Subsequence problem (2FLCS), and the One-Side-Filled Longest Common
Subsequence problem (1FLCS) [5, 6]. Although the original LCS can be solved in polynomial
time, all these four variants are known to be NP-hard. Recently, an exact, O(1.44225n)-time,
dynamic programming (DP)-based algorithm for RBLCS was proposed [2], where the two input
sequences have lengths n and poly(n). We first establish that each of MRCS, 1FLCS, and 2FLCS
is polynomially equivalent to RBLCS. Then, we design a refined DP-based algorithm for RBLCS
that runs in O(1.41422n) time, which implies that MRCS, 1FLCS, and 2FLCS can also be solved in
O(1.41422n) time. Finally, we give a polynomial-time 2-approximation algorithm for 2FLCS.
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1 Introduction

1.1 Longest common subsequence problems with occurrence constraints
The problem of computing the longest common subsequence of two sequences (LCS for
short) is a classical and fundamental problem in computer science [3, 4, 9, 16]. Indeed,
many polynomial-time algorithms have been published for LCS [8, 9, 14, 15, 16]. A natural
extension of LCS is to impose constraints on the occurrences of the symbols in the solution.
It has been shown that even very simple constraints may make the problem computationally
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much harder. As an example, the Repetition-Free Longest Common Subsequence
problem (RFLCS), introduced by Adi et al. [1] is: Given two sequences X and Y over an
alphabet Σ, the goal of RFLCS is to find a “repetition-free” longest common subsequence
of X and Y , where each symbol appears at most once in the obtained subsequence. Adi et
al. [1] proved that RFLCS is APX-hard even if each symbol appears at most twice in each of
the given sequences. On the positive side, they showed that RFLCS admits a polynomial-time
occmax-approximation algorithm, where occmax is defined as follows: Let occ(W,σ) be the
number of occurrences of a symbol σ in a sequence W . Then occmax is the maximum of
min{occ(X,σ), occ(Y, σ)} taken over all σ’s in two sequences X and Y .

Mincu and Popa [11] introduced a general form of RFLCS, called the Multiset Re-
stricted Common Subsequence problem (MRCS): Given two sequences X and Y , and
a multiset M over the alphabet Σ, the goal of MRCS is to find a common subsequence
ZM of X and Y , that contains the maximum number of symbols from M. If M = Σ,
then MRCS is essentially equivalent to RFLCS. Therefore, MRCS is also APX-hard. In [11],
the authors showed that there exists an exact algorithm solving MRCS with running time
O(|X||Y |(t + 1)|Σ|), where t is the maximum multiplicity of symbols in M. Also, they
provided a polynomial-time 2

√
min{|X|, |Y |}-approximation algorithm for MRCS [11].

Recently, Asahiro et al. [2] introduced a slightly different generalization of RFLCS, called
the Repetition-Bounded Longest Common Subsequence problem (RBLCS for short):
Let Σ = {σ1, σ2, . . . , σk} be an alphabet of k symbols and Cocc be an occurrence constraint
Cocc : Σ → N, assigning an upper bound on the number of occurrences of each symbol in
Σ. Given two sequences X and Y over the alphabet Σ and an occurrence constraint Cocc,
the goal of RBLCS is to find a “repetition-bounded” longest common subsequence of X and
Y , where each symbol σi appears at most Cocc(σi)-times in the obtained subsequence for
i = 1, 2, . . . , k. In [2], Asahiro et al. provided a dynamic programming (DP) based algorithm
for RBLCS and proved that its running time is O(1.44225|X|) for any occurrence constraint
Cocc, assuming |X| ≤ |Y | and |Y | = O(poly(|X|)), and even less in certain special cases. In
particular, for RFLCS, their DP-based algorithm runs in O(1.41422|X|) time. NP-hardness
and APX-hardness results for RBLCS on restricted instances were also shown in [2].

1.2 Longest common subsequence problems on incomplete sequences
The comparison of biological sequences is a widely investigated field of bioinformatics, in
which the genomic features including DNA sequences and genes of different organisms are
compared in order to identify biological differences and similarities. In genomic analyses,
however, the considered genomes are usually not complete and thus there are cases where we
have to reconstruct complete genomes from incomplete genomes (so-called scaffolds) by filling
in missing genes. For this purpose, Muñoz et al. [13] formulated the following combinatorial
optimization problem, called the One-Sided Scaffold Filling problem (1SF): Given an
incomplete genome Y , a multiset M of missing genes, and a reference genome X, the goal of
1SF is to insert the missing genes into Y so that the number of common adjacencies between
the resulting Y ∗ and X is maximized. Subsequently, Jiang et al. [10] proposed the Two-Sided
Scaffold Filling problem (2SF): Given two scaffolds (incomplete genomes), the goal of 2SF is
to fill the missing genes into those two scaffolds respectively to result in such two genomes
that the number of common adjacencies between them is maximized.

Inspired by methods for genome comparison based on LCS and by 1SF/2SF, Castelli et
al. [5] introduced a new variant of LCS, called the One-Side-Filled Longest Common
Subsequence problem (1FLCS), which aims to compare a complete sequence with an
incomplete one, i.e., with some missing elements: Given a complete sequence X, an incomplete
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sequence Y , and a multiset MY of symbols missing in Y , 1FLCS asks for a sequence Y +

obtained by inserting a subset of the symbols of MY into Y so that Y + induces a common
subsequence with X of maximum length. The authors proved the APX-hardness of 1FLCS
and designed a polynomial-time 5

3 -approximation algorithm for 1FLCS. They also presented
an exponential-time exact algorithm for 1FLCS. (However, they did not analyze its time
complexity in detail.) In [6], Castelli et al. showed that if the alphabet size |Σ| is a constant,
then there is a polynomial-time algorithm for 1FLCS, and concluded by introducing the
Two-Side-Filled Longest Common Subsequence problem (2FLCS), i.e., LCS on two
incomplete sequences and two multisets of missing symbols: Given two incomplete sequences
X and Y , and two multisets MX and MY , 2FLCS asks for two sequences X+ and Y +

obtained by inserting subsets of the symbols of MX and MY into X and Y , respectively,
so that X+ and Y + induce a common subsequence of maximum length. They conjectured
that 2FLCS can be approximated within a constant factor in polynomial time, and that
the following simple method gives a 2-approximation: (1) First find a longest common
subsequence Z1 of input two sequences X and Y . Then, (2) obtain a sequence Z2 that
maximizes the number of symbols matched by inserting symbols of MX and MY . Finally,
(3) output the longest of Z1 and Z2. Moreover, they conjectured that 2FLCS can be solved
in polynomial time if the alphabet size is a constant.

1.3 Our contributions
Suppose that there exist an O(TA)-time algorithm for an optimization problem PA and an
O(TB)-time algorithm for another optimization problem PB. In this paper, we say that
two problems PA and PB are polynomially equivalent, or that polynomial-time equivalence
between PA and PB holds, if an optimal solution for an instance IA of PA can be obtained
in O(TB) + O(poly(|IA|)) time and an optimal solution for an instance IB of PB can be
obtained in O(TA) +O(poly(|IB |)) time. Our contributions are:
1. We establish that MRCS is polynomially equivalent to RBLCS by showing the following:

(i) From an input (X,Y,M) of MRCS, we construct an input (X,Y,Cocc) of RBLCS in
O(poly(|(X,Y,M)|)) time. Then, from an optimal solution ZR of RBLCS on (X,Y,Cocc),
we construct an optimal solution ZM of MRCS on (X,Y,M) in O(poly(|(X,Y,M)|)) time.
Conversely, (ii) from an input (X,Y,Cocc) of RBLCS, we construct an input (X,Y,M)
of MRCS in O(poly(|(X,Y,Cocc)|)) time. Then, from an optimal solution ZM of MRCS
on (X,Y,M), we construct an optimal solution ZR in O(poly(|(X,Y,Cocc)|)) time. It
is important to note that our constructions between two inputs are “input-sequences
preserving reductions”, i.e., X and Y in (X,Y,M) and (X,Y,Cocc) are identical.

2. Similarly to the above, we show the polynomial-time equivalence between 1FLCS and
RBLCS: (i) From an input (X,Y,MY ) of 1FLCS, we construct an input (X,Y,Cocc) of
RBLCS in O(poly(|(X,Y,MY )|)) time. Then, from an optimal solution ZR of RBLCS
on (X,Y,Cocc), we construct an optimal solution Z1F of 1FLCS on (X,Y,MY ) in
O(poly(|(X,Y,MY )|)) time. Conversely, (ii) from an input (X,Y,Cocc) of RBLCS, we
construct an input (X,Y,MY ) of 1FLCS in O(poly(|(X,Y,Cocc)|)) time. Then, from an
optimal solution Z1F of 1FLCS on (X,Y,MY ), we construct an optimal solution ZR of
RBLCS on (X,Y,Cocc) in O(poly(|(X,Y,Cocc)|)) time.

3. We prove the polynomial-time equivalence between 2FLCS and RBLCS. Due to the second
contribution and 1FLCS being a special case of 2FLCS, we only need to show one direction:
(i) From an input (X,Y,MX ,MY ) of 2FLCS, we construct an input (X,Y,Cocc) of RBLCS
in O(poly(|(X,Y,MX ,MY )|)) time. Then, from an optimal solution ZR of RBLCS on
(X,Y,Cocc), we construct an optimal solution Z2F of 2FLCS on (X,Y,MX ,MY ) in
O(poly(|ZR|)) time.

CPM 2022
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4. We design a refined DP-based algorithm that runs in O(1.41422n) time for RBLCS on two
sequences X of length n and Y of length m (assuming that n ≤ m and m = O(poly(n))),
while the previously known running time was O(1.44225n) in [2].

5. We give a simple polynomial-time 2-approximation algorithm for 2FLCS, thus resolving
one of the conjectures in [6].

▶ Remark 1. One sees that 1FLCS on (X,Y,MY ) is equivalent to 2FLCS on
(X,Y, ∅,MY ); 1FLCS can be solved by using an algorithm for 2FLCS. From (ii) in the
second contribution, RBLCS can also be solved by using the algorithm for 2FLCS with
some extra polynomial-time calculations. Therefore, the one-way equivalence in the third
contribution demonstrates the “two-way” polynomial-time equivalence between 2FLCS and
RBLCS. Furthermore, interestingly, an algorithm for 1FLCS can solve 2FLCS within an extra
polynomial-time factor.

▶ Remark 2. None of the constructions between inputs described above change the sequences
X and Y . In particular, |X| and |Y | remain the same, so the above polynomial-time
equivalences imply that MRCS, 1FLCS, and 2FLCS can also be solved in O(1.41422n) time.

▶ Remark 3. We also remark that the polynomial-time equivalence between 1FLCS and
2FLCS gives an affirmative answer to the conjecture on the polynomial-time solvability of
2FLCS for a constant size alphabet in [6] since we do not change Σ.

2 Preliminaries

2.1 Notation
An alphabet Σ = {σ1, σ2, . . . , σk} is a set of k symbols. Let X be a sequence over the alphabet
Σ and |X| be the length of the sequence X. Throughout the paper, a sequence X is often
regarded as a multiset of the same symbols. For example, X = ⟨x1, x2, . . . , xn⟩ is a sequence
of length n, where xi ∈ Σ for 1 ≤ i ≤ n, i.e., |X| = n. A subsequence of X is obtained
by deleting zero or more symbols from X. Then, we say that a sequence Z is a common
subsequence of X and Y if Z is a subsequence of both X and Y . Given two sequences X
and Y as input, the goal of the Longest Common Subsequence problem (LCS) is to find
a longest common subsequence of X and Y , which is denoted by LCS(X,Y ). Let L(X,Y )
denote the length of LCS(X,Y ).

For the sequence X, the consecutive subsequence, i.e., substring ⟨xi, xi+1, . . . , xj⟩ is de-
noted by Xi..j . Then, we define the ith prefix of X, for i = 1, . . . , n, as X1..i = ⟨x1, x2, . . . , xi⟩.
Also, we define the ith suffix of X, for i = 1, . . . , n, as Xi..n = ⟨xi, xi+1, . . . , xn⟩. X1..n is X.

Let X = ⟨x1, x2, . . . , xn⟩ and Y = ⟨y1, y2, . . . , ym⟩ be the given two sequences of length n
and length m, respectively. Assume that n ≤ m and m = O(poly(n)) throughout the paper.
Suppose that Z = ⟨z1, z2, . . . , zp⟩ is a common subsequence with length p of X and Y . Then,
we can consider two strictly increasing sequences IX = ⟨i1, i2, . . . , ip⟩ of indices of X and
IY = ⟨j1, i2, . . . , jp⟩ of indices of Y such that zℓ = xiℓ = yjℓ

holds for each ℓ = 1, 2, . . . , p.
We call the pair (IX , IY ) of such sequences an index-expression of the common sequence Z
of X and Y . A pair (xiℓ , yjℓ

) is called the ℓth match. Also, we say that the ℓth match is zℓ,
xiℓ , or yiℓ .

For two sequences A = ⟨a1, . . . , ai⟩ of length i and B = ⟨b1, . . . , bj⟩ of length j, let A⊕B

be the concatenation of A and B, i.e., the sequence A⊕B = ⟨a1, . . . , ai, b1, . . . , bj⟩ of length
i+j. For X = ⟨x1, x2, . . . , xn⟩ of length n, let X\⟨i⟩ denote the sequence obtained by deleting
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the ith symbol xi from X, i.e., X \ ⟨i⟩ = X1..i−1 ⊕Xi+1..n = ⟨x1, x2, . . . , xi−1, xi+1, . . . , xn⟩.
Similarly, for 1 ≤ i1 < i2 < · · · < ip ≤ n, let X \ ⟨i1, i2, . . . , ip⟩ be the sequence obtained by
deleting p symbols xi1 , xi2 , . . . , xip from X.

Let M be a multiset of symbols in Σ and let |M| be the cardinality of M. Let occ(M, σ)
denote the occurrences (i.e., the multiplicity) of a symbol σ ∈ Σ in a multiset M. Let
M \ {σℓ} be the multiset obtained by removing ℓ σ’s from a multiset M. Let M \ {σ∗} be
the multiset obtained by removing all σ’s from a multiset M.

Consider a multiset M of cardinality ℓ and obtain an arbitrarily fixed sequence M =
⟨µ1, µ2, . . . , µℓ⟩ of ℓ symbols in M, called a sequence-expression of the multiset M. In the
following, the multiset M is often regarded as its sequence-expression M ; M and M are used
interchangeably. Similarly to the above, for 1 ≤ i1 < i2 < · · · < ip ≤ ℓ, let M \ ⟨i1, i2, . . . , ip⟩
be the sequence obtained by deleting p symbols µi1 , µi2 , . . . , µip from M .

An algorithm ALG is called an α-approximation algorithm and ALG’s approximation ratio
is α if OPT (x)/ALG(x) ≤ α holds for every input x of an LCS-type problem, where ALG(x)
and OPT (x) are the length of solutions obtained by ALG and an optimal algorithm in
polynomial-time.

2.2 Repetition-bounded longest common subsequence
Recall that occ(W,σ) is the number of occurrences of σ ∈ Σ in a sequence W . Without loss
of generality, we assume that two input sequences X and Y have all k symbols in Σ, and thus
occ(X,σi) ≥ 1 and occ(Y, σi) ≥ 1 for every symbol σi. Let Cocc be an occurrence constraint,
i.e., a function Cocc : Σ → N assigning an upper bound on the number of occurrences of
each symbol in Σ. The Repetition-Bounded Longest Common Subsequence problem
(RBLCS) can be formally defined as follows [2]:

Repetition-Bounded Longest Common Subsequence problem (RBLCS)
Input: A pair of sequences X and Y , and an occurrence constraint Cocc.
Goal: Find a longest common subsequence Z of X and Y such that occ(Z, σ) ≤ Cocc(σ)

is satisfied for every σ ∈ Σ.

We call Z a repetition-bounded longest common subsequence. Let LCS(X,Y,Cocc) denote
the repetition-bounded longest common subsequence for the input triple (X,Y,Cocc). Also,
L(X,Y,Cocc) denotes the length of LCS(X,Y,Cocc).

▶ Example 4. Let (X,Y,Cocc) be an instance of RBLCS defined by:

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩, Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩; and
Cocc(a) = 1, Cocc(c) = 1, Cocc(g) = 2, Cocc(t) = 1.

Z = ⟨g, c, t, g, a⟩ of length five is an optimal solution of RBLCS since occ(Z, a) = 1, occ(Z, c) =
1, occ(Z, g) = 2, occ(Z, t) = 1, and

∑
σ∈{a,c,g,t} Cocc(σ) = 5, i.e., L(X,Y,Cocc) = 5. As a

side note, ⟨t, g, c, a, t, g, a, a, g⟩ of length nine is an optimal solution of the original LCS.

Consider an input triple (X,Y,Cocc) of RBLCS and a feasible solution ZR for (X,Y,Cocc).
Then, for every σ ∈ Σ, the number of occurrences occ(ZR, σ) of σ must be bounded above
by Cocc(σ). If Cocc(σ′) > min{occ(X,σ′), occ(Y, σ′)} for some σ′, then the constraint Cocc
is somewhere redundant. Therefore, if the input (X,Y,Cocc) of RBLCS satisfies Cocc(σ) ≤
min{occ(X,σ), occ(Y, σ)} for every σ ∈ Σ, then we call (X,Y,Cocc) the standard input.
Without loss of generality, we assume that every input of RBLCS is standard in the following.
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2.3 Multiset restricted common subsequence
The formal definition of the Multiset Restricted Common Subsequence problem
(MRCS) is as follows [11]:

Multiset Restricted Common Subsequence problem (MRCS)
Input: A pair of sequences X and Y , and a multiset M.
Goal: Find a common subsequence Z of X and Y such that Z contains the maximum

number of symbols from M.

That is, the goal of MRCS is to maximize |M ∩ Z| as a multiset intersection or, equivalently,
to minimize |M \ Z| as a multiset difference (if Z is regarded as the corresponding multiset).
The optimal solution Z is denoted by LCS(X,Y,M) in the following. The length of
LCS(X,Y,M) is denoted by L(X,Y,M).

▶ Example 5. Consider the following input triple (X,Y,M) of MRCS:

X = ⟨t, g, t, c, a, c, g, t, g, a, a, g⟩, Y = ⟨a, t, g, c, a, t, g, g, a, c, a, g, c⟩, M = {a, c, g, g, t}

One sees that a common subsequence ⟨g, c, t, g, a⟩ of X and Y is an optimal solution of MRCS
since |M| = 5 and solutions of length five with all the symbols in M are equally as good as
longer solutions. For example, the objective function value of a longer common subsequence
Z = ⟨g, c, t, g, a, a, g⟩ is also five since |M ∩ Z| = 5.

2.4 Filled longest common subsequence
Let MX (MY , resp.) be a multiset of symbols in Σ. Then, we denote the cardinal-
ity of the multiset MX (MY , resp.) by |MX | (|MY |, resp.), i.e.,

∑
σ∈MX

occ(MX , σ)
(
∑
σ∈MY

occ(MY , σ), resp.). A filling X+ (Y +, resp.) of the sequence X (Y , resp.) is defined
as a sequence obtained from X (Y , resp.) by inserting a subset of the symbols from MX (MY ,
resp.) into X (Y , resp.). That is, for some 0 ≤ p ≤ |MX | and M′

X = {χ1, . . . , χp} ⊆ MX ,
the filling X+ obtained by inserting M′

X into X is the following concatenation of 2p + 1
subsequences (some might be a null sequence):

X+ = X1..j1 ⊕ ⟨χi1⟩ ⊕Xj1+1..j2 ⊕ ⟨χi2⟩ ⊕ · · · ⊕ ⟨χip⟩ ⊕Xjp+1..n
,

where X = X1..j1 ⊕ Xj1+1..j2 ⊕ · · · ⊕ Xjp+1..n and {i1, . . . , ip} = {1, . . . , p}. For some
0 ≤ q ≤ |MY | and M′

Y = {ψ1, . . . , ψq} ⊆ MY , the filling Y + obtained by inserting M′
Y

into Y is similarly defined. Let X∗ and Y ∗ be fillings such that the length of LCS(X∗, Y ∗)
is the longest among the length of LCS(X+, Y +) over all pairs of X+ and Y +. The Two-
Side-Filled Longest Common Subsequence problem (2FLCS) is defined as follows [6]:

Two-Side-Filled Longest Common Subsequence problem (2FLCS)
Input: A pair of sequences X and Y , and a pair of multisets MX and MY .
Goal: Find two fillings X∗ and Y ∗ such that the length of LCS(X∗, Y ∗) is the longest

among the lengths of LCS(X+, Y +) over all pairs of X+ and Y +.

In the following, the longest common subsequence LCS(X∗, Y ∗) of two fillings X∗ and
Y ∗ is written as LCS(X,Y,MX ,MY ). The length of LCS(X,Y,MX ,MY ) is denoted
by L(X,Y,MX ,MY ). As a special case, if MX = ∅, then the problem is called the
One-Side-Filled Longest Common Subsequence problem (1FLCS) [6]:
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One-Side-Filled Longest Common Subsequence problem (1FLCS)
Input: A pair of sequences X and Y , and a multiset MY .
Goal: Find a filling Y ∗ such that the length of LCS(X,Y ∗) is the longest among the

length of LCS(X,Y +) over all fillings Y +.

Let LCS(X,Y,MY ) and L(X,Y,MY ) be the longest common subsequence LCS(X,Y ∗)
and its length, respectively.

▶ Example 6. Now we consider the following example, two sequences X and Y , and two
multisets MX and MY , as input to 2FLCS:

X = ⟨g, t, c, a, c, t, g, a⟩, Y = ⟨g, a, t, c, c, g, t, g⟩, MX = {g, t}, and MY = {c, t, t}

Here, for example, occ(X, c) = 2 and occ(MY , c) = 1. One sees that for the input quadruple
(X,Y,MX ,MY ), an optimal pair of fillings is as follows:

X∗ = ⟨t, g, t, c, a, c, g, t, g, a⟩ and Y ∗ = ⟨t, g, t, c, a, t, c, c, g, t, g⟩.

That is, the leftmost t and the seventh g in X∗ are inserted into the original X from MX .
For Y ∗, the first, third, and fourth symbols (t, t, and c, respectively) are inserted into Y from
MY . Then, the longest common subsequence LCS(X∗, Y ∗) of those fillings X∗ and Y ∗ is
⟨t, g, t, c, a, c, g, t, g⟩. Note that IX∗ = ⟨1, 2, 3, 4, 5, 6, 7, 8, 9⟩ and IY ∗ = ⟨1, 2, 3, 4, 5, 7, 9, 10, 11⟩.
One can verify that, for example, the first symbol t in LCS(X∗, Y ∗) originally comes from
MX and MY , but the second symbol g comes from X and Y .

Now let X+ = ⟨x1, x2, . . . , xn⟩ and Y + = ⟨y1, y2, . . . , ym⟩ be two fillings of X and Y ,
respectively. Let (IX+ , IY +) be an index-expression of a common subsequence of two fillings
X+ and Y +. Then, the ℓth match (xiℓ , yjℓ

) is one of the following four types of matches:
MXMY -match: xiℓ and yiℓ are inserted from MX and MY , respectively.
MXY -match: xiℓ is inserted from MX but yiℓ is originally in Y .
XMY -match: xiℓ is originally in X but yjℓ

is inserted from MY .
XY -match: xiℓ and yiℓ are originally in X and Y , respectively.

Let X∗ and Y ∗ denote optimal fillings for the quadruple (X,Y,MX ,MY ) of 2FLCS. If
there exists at least one symbol, say, σ, in MY that does not appear in an optimal filling
Y ∗, then the length of LCS(X∗, Y ∗ ⊕ ⟨σ⟩) is equal to one of LCS(X∗, Y ∗), which implies
that Y ∗ ⊕ ⟨σ⟩ is another optimal filling. Similarly, if σ′ ∈ MX does not appear in X∗, then
X∗ ⊕ ⟨σ′⟩ is another optimal filling. Therefore, without loss of generality, we assume that all
the symbols in MX and MY are inserted to the optimal fillings.

2.5 Known results on exact/approximation algorithms
Here, we summarize the previously known results on exact and approximation algorithms.
For RBLCS, the following exact exponential-time algorithm is known:

▶ Proposition 7 ([2]). There is an O(1.44225n)-time algorithm for RBLCS on two sequences
X and Y , where |X| = n, |Y | = m, and n ≤ m, assuming that m = O(poly(n)).

If Cocc(σ) = 1 for every symbol σ ∈ Σ, then we can design a faster exact algorithm:

▶ Proposition 8 ([2]). There is an O(1.41422n)-time algorithm for RFLCS on two sequences
X and Y , where |X| = n, |Y | = m, and n ≤ m, assuming that m = O(poly(n)).
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Furthermore, the following approximation algorithm is known for RFLCS:

▶ Proposition 9 ([1]). There is a polynomial-time occmax-approximation algorithm for RFLCS
on two sequences X and Y , where occmax = maxσ∈Σ{min{occ(X,σ), occ(Y, σ)}}.

For MRCS, the following exact exponential-time algorithm and the polynomial-time
approximation algorithm are proposed in [11]:

▶ Proposition 10 ([11]). There is an O(nm(t + 1)k)-time algorithm for MRCS on two
sequences X and Y , and a multiset M, where t and k are the maximum multiplicity of M
and the alphabet size |Σ|, respectively 1.

▶ Proposition 11 ([11]). There is a polynomial-time 2
√

min{n,m}-approximation algorithm
for MRCS on two sequences X and Y , and a multiset M, where |X| = n and |Y | = m.

For 1FLCS, an FPT-algorithm parameterized by the number k of XMY -matches in the
optimal subsequence is known [6]. Note that k may be as large as the length of X, i.e., n.

▶ Proposition 12 ([6]). There is an O(2O(k)poly(n+m+ |MY |))-time algorithm for 1FLCS
on an input triple (X,Y,MY ) if the number of XMY -matches in LCS(X,Y ∗) is k.

The following algorithm for 1FLCS runs in polynomial time if |Σ| is a constant [6]:

▶ Proposition 13 ([6]). There is an O(n|Σ|+2m)-time algorithm for 1FLCS on (X,Y,MY ).

The following approximability result is also known for 1FLCS:

▶ Proposition 14 ([6]). There is a polynomial-time 5
3 -approximation algorithm for 1FLCS.

3 Polynomial-time equivalence of RBLCS and MRCS

In this section we show the polynomial-time equivalence between RBLCS and MRCS. First
consider any optimal solution ZM for an input (X,Y,M) of MRCS. Recall that the objective
function value of MRCS is |M∩ZM|. Hence, |M∩ZM| can be regarded as the summation of
occurrences of all the symbols in the solution. Furthermore, intuitively, the number occ(M, σ)
of occurrences of every symbol σ ∈ M can be regarded as the occurrence constraint Cocc(σ)
of the solution for RBLCS, and vice versa. One sees that we can transform from/to a
multiset M of symbols in Σ to/from an occurrence constraint Cocc of symbols in Σ such
that Cocc(σ) = occ(M, σ) for every σ ∈ Σ clearly in polynomial time; all we have to do is
count the multiplicity/occurrences of every symbol in M. Then, we can obtain the following
theorem (see the journal version of this paper for its proof):

▶ Theorem 15. Consider a pair of a multiset M in an input for MRCS and an occurrence
constraint Cocc of symbols in Σ in an input for RBLCS such that Cocc(σ) = occ(M, σ) for
every σ ∈ Σ. Then, the followings hold: (1) Given an optimal solution ZR for an input
(X,Y,Cocc) of RBLCS, we can obtain an optimal solution for an input (X,Y,M) of MRCS
in polynomial time. (2) Given an optimal solution ZM for an input (X,Y,M) of MRCS, we
can obtain an optimal solution for an input (X,Y,Cocc) of RBLCS in polynomial time.

1 We remark that the time complexity shown in Theorem 3 of [11] is O(nmtk), but the correct one must
be O(nm(t + 1)k) because the algorithm has to store t + 1 values from 0 through t for the maximum
multiplicity. As described before, if M = Σ, i.e., t = 1, then MRCS is essentially equivalent to RFLCS
and thus MRCS is NP-hard. If we can solve MRCS with t = 1 in O(nmtk) = O(nm) time, then we can
obtain P = NP.
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4 Polynomial-time equivalence of RBLCS, 1FLCS, and 2FLCS

4.1 Proof tools
In this subsection we give some proof tools. The first tool reduces the numbers of XY -matches
and MXMY -matches in an output subsequence (see the journal version of this paper for its
proof):

▶ Lemma 16. Suppose that (X,Y,MX ,MY ) is an input for 2FLCS, and X∗ and Y ∗

are optimal fillings of (X,Y,MX ,MY ). Also, suppose that the numbers of XY -matches,
MXMY -matches, XMY -matches, and MXY -matches of some σ in the index-expression
(IX∗ , IY ∗) of X∗ and Y ∗ are α > 0, β > 0, ζ ≥ 0, and η ≥ 0, respectively. Then, we can
obtain in polynomial time another pair of optimal fillings X∗∗ and Y ∗∗ such that (i) the
numbers of XY -matches, MXMY -matches, XMY -matches, and MXY -matches of σ in the
index-expression (IX∗∗ , IY ∗∗) of X∗∗ and Y ∗∗ are α− 1, β − 1, ζ + 1, and η+ 1, respectively,
and (ii) all the matches of any different symbol σ′ ̸= σ do not change.

If we use the above tool iteratively α-times for α ≤ β (β-times for β ≤ α, resp.), then we
can obtain so-called an “XY -match-free” (“MXMY -match-free”, resp.) output subsequence.

▶ Lemma 17. Suppose that an input quadruple (X,Y,MX ,MY ) satisfies occ(X,σ) > 0 and
occ(MY , σ) > 0 for some σ ∈ Σ. Let X = ⟨x1, . . . , xn⟩ and MY = ⟨ψ1, . . . , ψℓ⟩. Then,

L(X,Y,MX ,MY ) = max
σ=xi=ψj

L(X \ ⟨i⟩, Y,MX ,MY \ ⟨j⟩) + 1.

We can apply very similar arguments to the pair Y and MX , which gives:

▶ Corollary 18. Suppose that an input quadruple (X,Y,MX ,MY ) satisfies occ(Y, σ) > 0
and occ(MX , σ) > 0 for some σ ∈ Σ. Let Y = ⟨y1, . . . , ym⟩ and MX = ⟨χ1, . . . , χℓ⟩. Then,

L(X,Y,MX ,MY ) = max
σ=yi=χj

L(X,Y \ ⟨i⟩,MX \ ⟨j⟩,MY ) + 1.

The following lemma and corollary deal with the symbol additions to multisets:

▶ Lemma 19. Let X+ be a filling of X and MX , and let Y + be a filling of Y and MY .
Suppose that a common subsequence Z of X+ and Y + satisfies occ(Z, σ) < occ(Y +, σ) for
some symbol σ ∈ Σ. Then, we can find in polynomial time a new filling X++ of X and
MX ∪{σ} and a common subsequence Z ′ of X++ and Y + satisfying the following conditions:
(1) occ(Z, σ) + 1 = occ(Z ′, σ), and (2) for every σ′ except for σ occ(Z, σ′) = occ(Z ′, σ′).

▶ Corollary 20. Let X+ be a filling of X and MX , and let Y + be a filling of Y and MY .
Suppose that a common subsequence Z of X+ and Y + satisfies occ(Z, σ) < occ(X+, σ) for
some symbol σ ∈ Σ. Then, we can find in polynomial time a new filling Y ++ of Y and
MY ∪{σ} and a common subsequence Z ′ of Y ++ and X+ satisfying the following conditions:
(1) occ(Z, σ) + 1 = occ(Z ′, σ), and (2) for every σ′ except for σ, occ(Z, σ′) = occ(Z ′, σ′).

4.2 RBLCS and 1FLCS
In this subsection we show that 1FLCS is polynomially equivalent to RBLCS. Consider an
input triple (X,Y,MY ) of 1FLCS. In [12], Mincu and Popa observed that a filling-procedure
of a symbol σ ∈ MY into Y to match some σ in X can be seen as a deleting-procedure of
the matched σ from X [12]. Our basic ideas are based on their observation: Every symbol

CPM 2022



15:10 Polynomial-Time Equivalences Among LCS Variants

σ ∈ MY can be matched to σ at any position in X without restrictions. After all σ’s in MY

are matched, the number of remaining unmatched σ’s in X is occ(X,σ) − occ(MY , σ), which
can be seen as the occurrence constraint Cocc(σ) of the input (X,Y,Cocc) for RBLCS. In
the following, we show that (i) from the input (X,Y,MY ) for 1FLCS, we can construct the
input (X,Y,Cocc) for RBLCS such that Cocc(σ) = occ(X,σ) − occ(MY , σ) for every σ ∈ Σ
in polynomial time, and vice versa; (ii) from an optimal solution of the former problem, we
can construct an optimal solution of the latter problem in polynomial time, and vice versa.

Consider an input triple (X,Y,MY ) of 1FLCS and a feasible solution Z1F . Then, for every
symbol σ, occ(Z1F , σ) ≤ occ(X,σ) holds. If occ(X,σ) < occ(MY , σ), then occ(MY , σ) −
occ(X,σ) σ’s are clearly redundant. If the input (X,Y,MY ) of 1FLCS satisfies occ(X,σ) ≥
occ(MY , σ) for every σ ∈ Σ, then we call (X,Y,MY ) the standard input. Without loss of
generality, we assume that every input of 1FLCS is standard.

▶ Lemma 21. Suppose that a triple (X,Y,MY ) is a standard input for 1FLCS, Y ∗ is an
optimal filling, and Z is the longest common subsequence of X and Y ∗. Then, for every σ in
Σ, occ(Z, σ) ≥ occ(MY , σ) is satisfied.

Proof. Let X = ⟨x1, . . . , xn⟩, Y ∗ = ⟨y∗
1 , . . . , y

∗
m⟩, and Z = ⟨z1, . . . , zℓ⟩ = ⟨xi1 , . . . , xiℓ⟩ =

⟨y∗
j1
, . . . , y∗

jℓ
⟩ (i.e., ip < ip+1 and jp < jp+1 hold for every 1 ≤ p ≤ ℓ− 1). Since the input is

standard, for every σ, occ(MY , σ) ≤ occ(X,σ) holds.
Now suppose for the purpose of obtaining a contradiction that there exists at least one

symbol, say, σ′, occ(Z, σ′) < occ(MY , σ
′) ≤ occ(X,σ′) holds. Since occ(Z, σ′) < occ(X,σ′)

holds, we can find an index q such that the qth symbol xq in X is σ′ but q is not in
IX = ⟨i1, i2, . . . , iℓ⟩. First, we assume that ip < q < ip+1 holds for some p where 1 ≤
p ≤ ℓ − 1. Then, we construct a new sequence Z ′ = ⟨xi1 , . . . , xip⟩ ⊕ ⟨σ′⟩ ⊕ ⟨xip+1 . . . , xiℓ⟩
of length ℓ + 1. If q < i1 (iℓ < q, resp.), then we insert σ′ to the head position, i.e.,
Z ′ = ⟨σ′⟩⊕⟨xi1 , . . . , xiℓ⟩ (to the tail position, i.e., Z ′ = ⟨xi1 , . . . , xiℓ⟩⊕⟨σ′⟩, resp.). Moreover,
since occ(Z, σ′) < occ(MY , σ

′), we can find an index q′ such that the q′th symbol yq′ inserted
into Y ∗ is σ′ but q′ is not in IY ∗ = ⟨j1, j2, . . . , jℓ⟩. Then we construct a new filling Y ∗∗ as
follows: (1) First remove the q′th symbol yq′ (= σ′) from Y ∗, and then (2) insert yq′ right
after yjp

of Y ∗. Note that the (p+ 1)st symbol in the new sequence Z ′ is σ′. It follows that
LCS(X,Y ∗∗) = Z ′ and thus we can obtain the sequence of length ℓ+ 1 from (X,Y,MY ),
which is a contradiction. Therefore, for all σ in Σ, occ(Z, σ) ≥ occ(MY , σ) holds. ◀

Consider an input triple (X,Y,MY ) of 1FLCS and its optimal solution Z1F . Suppose
that there is a symbol σ such that occ(X,σ) > occ(Y, σ) + occ(MY , σ). Let ℓ = occ(X,σ) −
(occ(Y, σ) + occ(MY , σ)) ≥ 0. Then, at least ℓ σ’s in X do not appear in Z1F . Let Sσ be
a multiset of ℓ σ’s. Now, suppose that for a new triple (X,Y,MY ∪ Sσ), we can obtain an
optimal solution Z. Then, the length of Z must be equal to |Z1F |+ ℓ. Moreover, by removing
ℓ σ’s in Sσ from Z, we can easily find the original optimal solution Z1F for (X,Y,MY ). For
every symbol σ′ in Σ satisfying occ(X,σ′) > occ(Y, σ′) + occ(MY , σ

′), the similar discussion
as the above can be applied. Let S =

⋃
σ′:occ(X,σ′)>occ(Y,σ′)+occ(MY ,σ′) Sσ′ . If we are given

the triple (X,Y,MY ∪ S), then by finding its optimal solution Z ′ first, and then removing all
the symbols in S from Z ′, we obtain Z1F . In the following we call the triple (X,Y,MY ∪ S)
by merging S to MY an extended triple. If the triple (X,Y,MY ) of 1FLCS is extended and
satisfies occ(X,σ) ≥ occ(MY , σ) for every σ ∈ Σ then it is called ex-standard. To simplify
the discussion, we assume that every input triple (X,Y,MY ) of 1FLCS is always ex-standard.

The following lemma is quite trivial but plays an important role:



Y. Asahiro, J. Jansson, G. Lin, E. Miyano, H. Ono, and T. Utashima 15:11

▶ Lemma 22. (1) Suppose that an input triple (X,Y,MY ) for 1FLCS is ex-standard.
Then, we can construct a standard input triple (X,Y,Cocc) for RBLCS satisfying Cocc(σ) =
occ(X,σ) − occ(MY , σ) for every σ ∈ Σ in polynomial time. (2) Suppose that an input
triple (X,Y,Cocc) for RBLCS is standard. Then, we can construct an ex-standard input
triple (X,Y,MY ) for 1FLCS satisfying occ(MY , σ) = occ(X,σ) − Cocc(σ) for every σ ∈ Σ
in polynomial time.

Proof. (1) Since the triple (X,Y,MY ) is ex-standard, occ(X,σ) − occ(MY , σ) ≥ 0 for every
σ. Therefore, we can always obtain the valid occurrence constraint such that Cocc(σ) =
occ(X,σ)−occ(MY , σ) for every σ. Furthermore, since (X,Y,MY ) is ex-standard, Cocc(σ) =
occ(X,σ) − occ(MY , σ) ≤ occ(Y, σ). It follows that Cocc(σ) ≤ min{occ(X,σ), occ(Y, σ)}.
Hence, the triple (X,Y,Cocc) must be standard for RBLCS. (2) Since the triple (X,Y,Cocc)
is standard, Cocc(σ) ≤ min{occ(X,σ), occ(Y, σ)}. Therefore, we can always obtain the valid
multiset MY such that occ(MY , σ) = occ(X,σ) − Cocc(σ) ≥ 0 for every σ. ◀

▶ Lemma 23. Consider an ex-standard input (X,Y,MY ) for 1FLCS and a standard input
(X,Y,Cocc) for RBLCS such that Cocc(σ) = occ(X,σ) − occ(MY , σ) holds for every σ ∈
Σ. Let ZF = LCS(X,Y,MY ) and Y ∗ be an optimal filling for 1FLCS. Also, let ZR =
LCS(X,Y,Cocc) be an optimal solution for RBLCS. Then, |ZR| + |MY | = |ZF | holds.

Proof. First, from Lemma 22, we always find a pair of triples (X,Y,MY ) and (X,Y,Cocc)
such that the former and the latter are the ex-standard input for 1FLCS and the standard
input for RBLCS satisfying Cocc(σ) = occ(X,σ) − occ(MY , σ) for every σ ∈ Σ, respectively.

(1) We first show that |ZF | ≤ |ZR|+ |MY | holds. Let X = ⟨x1, . . . , xn⟩, Y = ⟨y1, . . . , ym⟩,
and MY = ⟨ψ1, . . . , ψℓ⟩, where MY is the sequence-expression of MY . By the assumption that
(X,Y,MY ) is ex-standard, there exists a sequence ⟨i1, i2, . . . , iℓ⟩ of indices of X satisfying
L(X,Y,MY ) = L (X \ ⟨i1, . . . , iℓ⟩, Y, ∅) + ℓ, by regarding L(X,Y, ∅,MY ) as L(X,Y,MY ),
and by using the formula in Lemma 17 recursively. Since MY = ∅, L(X \ ⟨i1, . . . , iℓ⟩, Y, ∅) is
clearly equal to the length of the longest common subsequence Z ′ of X \ ⟨i1, . . . , iℓ⟩ and Y .
Therefore, |ZF | = |Z ′| + |MY |. Note that Z ′ is a common subsequence of the original X
and Y and satisfies the following for every σ:

Cocc(σ) = occ(X,σ) − occ(MY , σ) = occ(X \ ⟨i1, . . . , iℓ⟩, σ) ≥ occ(Z ′, σ).

That is, every symbol in Z ′ satisfies the occurrence constraint Cocc of RBLCS, which implies
that |Z ′| ≤ |ZR|. As a result, |ZF | = |Z ′| + |MY | ≤ |ZR| + |MY | holds.

(2) Next, we show that |ZR| + |MY | ≤ |ZF |. Recall that for every σ, occ(ZR, σ) ≤
Cocc(σ) = occ(X,σ) − occ(MY , σ) is satisfied. Here, from the viewpoint of 1FLCS, we can
obtain a longer sequence than ZR by filling symbols of MY into Y . Suppose that ZR
is a common subsequence for RBLCS on (X,Y,Cocc) and (X,Y, ∅) is an input triple for
1FLCS. From Lemma 19, by setting a multiset M′

Y = {σ} and filling σ into Y as matched
with some σ in X, we can obtain a common subsequence Z1 such that |Z1| = |ZR| + 1,
occ(Z1, σ) = occ(ZR, σ) + 1, and occ(Z1, σ

′) = occ(ZR, σ′) for every σ′ except for σ. By
repeating the merge M′

Y ∪ {σ} and the filling of σ occ(MY , σ)-times for every σ ∈ Σ, we
can eventually obtain MY , the filling of Y and MY , and a common subsequence Z satisfying
|Z| = |ZR| +

∑
σ∈Σ occ(MY , σ) = |ZR| + |MY |. Since ZF is the longest, |Z| ≤ |ZF |. Hence,

|ZR| + |MY | = |Z| ≤ |ZF | holds.
From (1) and (2), |ZR| + |MY | = |ZF |. This completes the proof. ◀
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▶ Theorem 24. Consider an ex-standard input (X,Y,MY ) for 1FLCS and a standard
input (X,Y,Cocc) for RBLCS such that Cocc(σ) = occ(X,σ) − occ(MY , σ) holds for every
σ ∈ Σ. Let ZF = LCS(X,Y,MY ) and Y ∗ be an optimal filling for 1FLCS. Also, let ZR =
LCS(X,Y,Cocc) be an optimal solution for RBLCS. Then, the followings hold: (1) Given an
optimal solution ZR for RBLCS, we can obtain an optimal solution for 1FLCS in polynomial
time. (2) Given an optimal filling Y ∗ for 1FLCS, we can obtain an optimal solution for
RBLCS in polynomial time.

Proof. Consider two sequences X and Y , a multiset MY , and an occurrence constraint Cocc
such that Cocc(σ) = occ(X,σ) − occ(MY , σ) holds for every σ ∈ Σ.

(1) Suppose that the optimal solution ZR for RBLCS is now given. From Lemma 23, every
optimal solution for 1FLCS is of length |ZR|+ |MY |. Hence, it is enough to prove that we can
obtain an optimal filling Y ∗ of Y and MY from ZR and a common subsequence ZF of X and
Y ∗ such that |ZR| + |MY | = |ZF | in polynomial time. As seen in the proof of Lemma 23, by
repeating the merge M′

Y = M′
Y ∪{σ} and the filling of σ occ(MY , σ)-times for every σ ∈ Σ,

we eventually obtain Y ∗ and ZF satisfying |ZF | = |ZR| +
∑
σ∈Σ occ(MY , σ) = |ZR| + |MY |.

The total number of iterations is |MY |. Since each iteration works in polynomial time as
shown in Lemma 23, Y ∗ and ZF of 1FLCS can be obtained in polynomial time.

(2) Suppose that the optimal filling Y ∗ is now given. The longest common subsequence
ZF of X and Y ∗, and its index-expression (IX , IY ∗) can be obtained in polynomial time.
From Lemma 21, occ(ZF , σ) ≥ occ(MY , σ) holds for every σ ∈ Σ. Therefore, we can find
|ZF | − |MY | XY -matches in (IX , IY ∗). Letting zℓ be the symbol of the ℓth XY -match
(1 ≤ ℓ ≤ |ZF | − |MY |), we construct the sequence Z−

F = ⟨z1, z2, . . . , z|ZF |−|MY |⟩ of length
|ZF | − |MY |. Note that Z−

F must be a common subsequence of X and Y . Moreover,
Z−
F satisfies the occurrence constraint Cocc(σ) = occ(X,σ) − occ(MY , σ) ≥ occ(ZF , σ) −

occ(MY , σ) for every σ ∈ Σ. Since |Z−
F | = |ZF | − |MY |, Z−

F is an optimal solution for
RBLCS from Lemma 23. The construction of Z−

F can be easily executed by scanning the
index-expression (IX , IY ∗) and thus it can be done in polynomial time. ◀

4.3 RBLCS and 2FLCS

In this subsection we consider the polynomial-time equivalence between 2FLCS and RBLCS.
Since 1FLCS on (X,Y,MY ) is equivalent to 2FLCS on (X,Y, ∅,MY ), 1FLCS can be solved
by using any algorithm for 2FLCS. From the polynomial-time equivalence between 1FLCS
and RBLCS in the previous subsection, RBLCS can also be solved by the same algorithm with
some extra polynomial-time calculations. Therefore, to establish the equivalence between
RBLCS and 2FLCS, only one direction remains to be proved. To do so, we first give a pair
of two inputs (X,Y,MX ,MY ) for 2FLCS and (X,Y,Cocc) for RBLCS. Then, we show that
given an optimal solution ZR of RBLCS on (X,Y,Cocc), we can obtain optimal fillings X∗

and Y ∗ of 2FLCS on (X,Y,MXMY ) in polynomial time.

▶ Lemma 25. Suppose that an input (X,Y,MX ,MY ) of 2FLCS satisfies occ(X,σ) = p <

occ(MY , σ) = q and min {occ(MX , σ), occ(Y, σ) + q − p)} = λ ≥ 0 for some positive integers
p and q. Then the following holds:

L(X,Y,MX ,MY ) ≤ L(X,Y,MX \ {σ∗},MY \ {σq−p}) + λ
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Proof. Suppose that an input quadruple (X,Y,MX ,MY ) of 2FLCS satisfies occ(X,σ) =
p < occ(MY , σ) = q. If we set X = ⟨x1, . . . , xn⟩ and MY = ⟨ψ1, . . . , ψℓ⟩, and apply the
recursive formula in Lemma 17 recursively, then there exist two sequences of ⟨i1, . . . , ip⟩ and
⟨j1, . . . , jp⟩ of indices such that σ = xir = ψjr for every 1 ≤ r ≤ p. Therefore, we obtain

L(X,Y,MX ,MY ) = L(X \ ⟨i1, . . . , ip⟩, Y,MX ,MY \ ⟨j1, . . . , jp⟩) + p.

Suppose that X+ and Y + are optimal fillings of (X\⟨i1, . . . , ip⟩, Y,MX ,MY \⟨j1, . . . , jp⟩).
Then, occ(X+, σ) ≤ occ(MX , σ) since σ ̸∈ X \ ⟨i1, . . . , ip⟩ and occ(Y +, σ) ≤ occ(Y, σ) +
q − p. Therefore, we obtain occ(Z, σ) ≤ min {occ(MX , σ), occ(Y, σ) + q − p} for Z =
LCS(X+, Y +). Now, we set min {occ(MX , σ), occ(Y, σ) + q − p} = λ. Then, we have:

L(X \ ⟨i1, . . . , ip⟩, Y,MX \ {σ∗},MY \ {σ∗}) + λ ≥
L(X \ ⟨i1, . . . , ip⟩, Y,MX ,MY \ ⟨j1, . . . , jp⟩).

Suppose that a sequence J+ = ⟨j1, . . . , jq⟩ of indices satisfies that ψjr′ = σ for every
1 ≤ r′ ≤ q. Then, we obtain:

L(X,Y,MX ,MY ) =L(X \ ⟨i1, . . . , ip⟩, Y,MX ,MY \ ⟨j1, . . . , jp⟩) + p

≤L(X \ ⟨i1, . . . , ip⟩, Y,MX \ {σ∗},MY \ {σ∗}) + λ+ p

=L(X,Y,MX \ {σ∗},MY \ ⟨jp+1, . . . , jq⟩) + λ.

This completes the proof. ◀

▶ Theorem 26. Suppose that an input quadruple (X,Y,MX ,MY ) of 2FLCS satisfies
occ(X,σ) = p < occ(MY , σ) = q for some positive integers p and q, and optimal fillings X+

1
and Y +

1 of (X,Y,MX \ {σ∗},MY \ {σq−p}) are given. Then, optimal fillings X+
2 and Y +

2
of an input quadruple (X,Y,MX ,MY ) can be obtained in polynomial time.

Proof. Suppose that Z1 is the longest common subsequence of X+
1 and Y +

1 such that the
index-expression of Z1 is (I, J), where I = ⟨i1, . . . , ik⟩ and J = ⟨j1, . . . , jk⟩. Also suppose
that Z2 is the longest common subsequence of X+

2 and Y +
2 . From Lemma 25, |Z1| +λ ≥ |Z2|

holds, where min {occ(MX , σ), occ(Y, σ) + q − p} = λ.
Now suppose that X+

1 = ⟨x1, . . . , xn⟩ and Y +
1 = ⟨y1, . . . , ym⟩. Also suppose that Y +

2 =

Y +
1 ⊕⟨

q−p︷ ︸︸ ︷
σ, . . . , σ⟩. One can see that occ(Y +

2 , σ) = occ(Y, σ)+q, occ(Z1, σ) ≤ p < occ(MY , σ) =
q, and Z1 is a common subsequence of X+

1 and Y +
2 . Therefore, by applying the formula in (1)

of Lemma 19 min {occ(MX , σ), occ(Y, σ) + q − p}-times, we can get the target sequence X+
2

in polynomial time. ◀

It is important to note that (X,Y,MX \ {σ∗},MY \ {σq−p}) does not satisfy both
occ(X,σ) < occ(MY , σ) and occ(Y, σ) < occ(MX , σ). For Y and MX , we have:

▶ Corollary 27. Suppose that an input quadruple (X,Y,MX ,MY ) of 2FLCS satisfies
occ(Y, σ) = p < occ(MX , σ) = q for some positive integers p and q, and optimal fillings X+

1
and Y +

1 of (X,Y,MX \ {σq−p},MY \ {σ∗}) are given. Then, optimal fillings X+
2 and Y +

2
of an input quadruple (X,Y,MX ,MY ) can be obtained in polynomial time.

From Theorem 26 and Corollary 27, any input can be reduced to the quadruple
(X,Y,MX ,MY ) such that for every σ, both occ(X,σ) ≥ occ(MY , σ) and occ(Y, σ) ≥
occ(MX , σ) are satisfied. Therefore, if the input (X,Y,MX ,MY ) of 2FLCS satisfies
both occ(X,σ) ≥ occ(MY , σ) and occ(Y, σ) ≥ occ(MX , σ) for every σ ∈ Σ, then we call
(X,Y,MX ,MY ) the standard input.
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▶ Theorem 28. For a standard input quadruple (X,Y,MX ,MY ), consider an occurrence
constraint Cocc such that Cocc(σ) = min {occ(X,σ) − occ(MY , σ), occ(Y, σ) − occ(MX , σ)}
holds for every σ ∈ Σ. Then, the triple (X,Y,Cocc) must be standard for RBLCS. If an
optimal solution ZR of RBLCS on (X,Y,Cocc) is given, then we can obtain optimal fillings
X∗ and Y ∗ of 2FLCS on a standard input quadruple (X,Y,MX ,MY ) in polynomial time.

Proof. Suppose that the input (X,Y,MX ,MY ) of 2FLCS is standard, |MX | = p, and
|MY | = q. Let X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩. Then, by applying the arguments
of Lemma 17 and Corollary 18 to all the symbols recursively, we can obtain the sequences
⟨i1, . . . , iq⟩ and ⟨j1, . . . , jp⟩ of different indices that satisfy the following:

L(X,Y,MX ,MY ) = L(X \ ⟨i1, . . . , iq⟩, Y \ ⟨j1, . . . , jp⟩, ∅, ∅) + p+ q.

One can verify that for the input (X \ ⟨i1, . . . , iq⟩, Y \ ⟨j1, . . . , jp⟩, ∅, ∅) of 2FLCS, the longest
common subsequence of X \ ⟨i1, . . . , iq⟩ and Y \ ⟨j1, . . . , jp⟩ is clearly an optimal solution of
the classical LCS. Let Z ′ be such a sequence. Here, note that for every σ ∈ Σ, we can obtain:

occ(X \ ⟨i1, . . . , iq⟩, σ) = occ(X,σ) − occ(MY , σ), and
occ(Y \ ⟨j1, . . . , jp⟩, σ) = occ(Y, σ) − occ(MX , σ).

Therefore, we have:

occ(Z ′, σ) ≤ min {occ(X,σ) − occ(MY , σ), occ(Y, σ) − occ(MX , σ)} .

Since Z ′ is a common subsequence of X and Y , Z ′ is a feasible solution of RBLCS on
(X,Y,Cocc). Therefore, |ZR| ≥ |Z ′| holds. It follows that |ZR| + |MX | + |MY | ≥ |Z ′| +
|MX | + |MY | = L(X,Y,MX ,MY ).

As for ZR, occ(ZR, σ) ≤ Cocc(σ) = min {occ(X,σ)−occ(MY , σ), occ(Y, σ)−occ(MX , σ)}
holds for every σ. Therefore, by applying Lemma 19 occ(MX , σ)-times for every symbol
σ ∈ Σ, we can construct in polynomial time the filling X+ of X and MX , and a common
subsequence Z1 of X+ and Y such that |Z1| = |ZR|+ |MX | and occ(Z1, σ) ≤ Cocc(σ)+ |MX |.

Note that for every σ, occ(X+, σ) = occ(X,σ)+occ(MX , σ) and occ(Z1, σ) ≤ occ(X,σ)−
occ(MY , σ) + occ(MX , σ) hold. Hence, by applying Corollary 20 occ(MY , σ)-times for every
symbol σ, we can construct in polynomial time the filling Y + of Y and MY , and a common
subsequence Z2 of X+ and Y + such that |Z2| = |Z1| + |MY | = |ZR| + |MX | + |MY |. Recall
that |ZR| + |MX | + |MY | ≥ L(X,Y,MX ,MY ). Therefore, |Z2| ≥ L(X,Y,MX ,MY ) holds.

As a result, X+ and Y + are optimal fillings of 2FLCS on (X,Y,MX ,MY ) and those can
be obtained in polynomial time if ZR is given. This completes the proof. ◀

5 O(1.41422n)-time exact algorithm for RBLCS

In [2], a dynamic programming (DP) based algorithm for RBLCS was provided and it was
explicitly proved that its running time is O(1.44255n). In this section we improve the running
time from O(1.44255n) to O(1.41422n), but give only the basic ideas here. Further details
can be found in the journal version of this paper.

Now, let us consider the original LCS and its typical DP-based algorithm. Let L(i, j)
denote the length of a longest common subsequence of the ith prefix X1..i of X and the jth
prefix Y1..j of Y . In the process of execution, each value of L(i, j) is computed and is stored
into a two-dimensional DP-table L0 of size (n+ 1) × (m+ 1). For more details, e.g., see [7].

For RBLCS, the previous DP-based algorithm proposed in [2] has to store not only the
length of the subsequence Z, but also the occurrence occ(Z, σ) of every σ in Z not to break
the occurrence constraint Cocc(σ). To store the occurrences, the algorithm introduces an
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occurrence vector v. Let L(i, j, v) be the length of a repetition-bounded longest common
subsequence of X1..i and Y1..j satisfying the occurrence vector v, i.e., the length of the longest
subsequence which does not break the occurrence constraint. Then, each value of L(i, j, v) is
stored into a three-dimensional DP-table L1 of size (n + 1) × (m + 1) ×

∏
σ (Cocc(σ) + 1).

In [2], the authors showed that the table size of L1 is bounded above by O(1.44255n).
Our new DP-based algorithm prepares a smaller DP-table of size (n+ 1) × (m+ 1) ×∏

σ (min{Cocc(σ), occ(X,σ) − Cocc(σ)} + 1). One can show that the DP-table size is reduced
to O(1.41422n):

▶ Theorem 29. There is an O(1.41422n)-time DP-based algorithm to solve RBLCS for two
input sequences X and Y , where |X| = n, |Y | = m = O(poly(n)), and |X| ≤ |Y |.

Recall that all reductions in the previous sections preserve X and Y . By our polynomial-
time equivalences, we obtain the following corollary:

▶ Corollary 30. MRCS, 1FLCS, and 2FLCS can be solved in O(1.41422n) time.

6 A polynomial-time 2-approximation algorithm for 2FLCS

In this section, we give a polynomial-time algorithm for 2FLCS and show that its approxima-
tion ratio is bounded above by two by using the proof tools introduced in Section 4.1.

Algorithm. Suppose that a standard input quadruple (X,Y,MX ,MY ) is given, i.e.,
occ(X,σ) ≥ occ(MY , σ) and occ(Y, σ) ≥ occ(MX , σ) are satisfied. Let X = {x1, . . . , xn}
and Y = {y1, . . . , ym}. Here is an outline of our algorithm ALG: (Step 1) Let Xb = ε and
Yf = ε be two empty sequences. (1-1) While scanning from x1 to xn of X, if the ith symbol
xi in X matches a symbol, say, σy, in MY , then xi (= σy) is concatenated to Yf , i.e.,
Yf = Yf ⊕ ⟨σy⟩ and removed from MY . Then, obtain a filling Y2 = Yf ⊕ Y of Y and MY .
Similarly, (1-2) while scanning from y1 to ym of Y , if the ith symbol yi in Y matches a
symbol, say, σx, in MX , then yi (= σx) is concatenated to Xb, i.e., Xb = Xb ⊕ ⟨σx⟩ and
removed from MX . Then, obtain a filling X2 = X ⊕Xb of X and MX (n.b., not Xb ⊕X).
(Step 2) Obtain a longest common subsequence Z of two fillings X+ and Y +. (Step 3) Output
a solution triple (X+, Y +, Z). See Algorithm 1 for the detailed description of ALG.

▶ Theorem 31. Algorithm ALG is a polynomial-time 2-approximation algorithm for 2FLCS
on a standard input quadruple (X,Y,MX ,MY ).

Proof. Suppose that the input (X,Y,MX ,MY ) of 2FLCS is standard. Let X = ⟨x1, . . . , xn⟩
and Y = ⟨y1, . . . , ym⟩. Then, by applying the arguments of Lemma 17 and Corollary 18 to
all the symbols recursively, we can obtain the sequences ⟨i1, . . . , i|MY |⟩ and ⟨j1, . . . , j|MX |⟩
of different indices that satisfy the following:

L(X,Y,MX ,MY ) = L(X \ ⟨i1, . . . , i|MY |⟩, Y \ ⟨j1, . . . , j|MX |⟩, ∅, ∅) + |MY | + |MX |.

Clearly, the first term L(X \ ⟨i1, . . . , i|MY |⟩, Y \ ⟨j1, . . . , j|MX |⟩, ∅, ∅) of the right-hand side is
at most L(X,Y ) since X\⟨i1, . . . , i|MY |⟩ and Y \⟨j1, . . . , j|MX |⟩ are subsequences of X and Y ,
respectively. Therefore, the longest length OPT of 2FLCS is at most L(X,Y )+ |MX |+ |MY |.
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Algorithm 1 ALG.

Input: Two sequences X = ⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩; and two multisets
MX and MY

Output: Two fillings X+ of X and MX and Y + of Y and MY ; and a common
subsequence Z of X+ and Y +

1 Xb := ε, Yf := ε;
2 for i = 1 to n do
3 if xi = σy for σy ∈ MY then
4 Yf := Yf ⊕ ⟨σy⟩, MY := MY \ {σy};
5 Y + := Yf ⊕ Y ;
6 for i = 1 to m do
7 if yi = σx for σx ∈ MX then
8 Xb := Xb ⊕ ⟨σx⟩, MX := MX \ {σx};
9 X+ := X ⊕Xb;

10 Find a longest common subsequence Z of the two sequences X+ and Y +;
11 return (X+, Y +, Z);

Let ALG = |Z| be the length obtained by our algorithm ALG for the input
(X,Y,MX ,MY ), i.e., ALG = L(X+, Y +). Since a longest common subsequence of X
and Y is a common subsequence of X+ and Y +, ALG ≥ L(X,Y ) holds. Further-
more, since LCS(X,Yf ) ⊕ LCS(Xb, Y ) is another common subsequence of X+ and Y +,
ALG ≥ L(X,Yf ) + L(Xb, Y ) = |MY | + |MX | holds. As a result, the approximation ratio of
ALG is bounded as follows:

OPT

ALG
≤ L(X,Y ) + |MX | + |MY |

max{L(X,Y ), |MX | + |MY |}

= 2(L(X,Y ) + |MX | + |MY |)
2(max{L(X,Y ), |MX | + |MY |})

≤ 2(L(X,Y ) + |MX | + |MY |)
L(X,Y ) + |MX | + |MY |

= 2.

Clearly, ALG runs in polynomial time. This completes the proof. ◀

For non-standard inputs, we can also obtain a 2-approximation algorithm by slightly
modifying ALG. All we have to do is to add MXMY -matches of redundant symbols. If the
sequence of length ℓ is concatenated, then we get OPT+ℓ

ALG+ℓ ≤ 2. Further details can be found
in the journal version of this paper.
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Abstract
Let Substrk(X) denote the set of length-k substrings of a given string X for a given integer k > 0.
We study the following basic string problem, called z-Shortest Sk-Equivalent Strings: Given
a set Sk of n length-k strings and an integer z > 0, list z shortest distinct strings T1, . . . , Tz such
that Substrk(Ti) = Sk, for all i ∈ [1, z]. The z-Shortest Sk-Equivalent Strings problem arises
naturally as an encoding problem in many real-world applications; e.g., in data privacy, in data
compression, and in bioinformatics. The 1-Shortest Sk-Equivalent Strings, referred to as
Shortest Sk-Equivalent String, asks for a shortest string X such that Substrk(X) = Sk.

Our main contributions are summarized below:

Given a directed graph G(V, E), the Directed Chinese Postman (DCP) problem asks for a
shortest closed walk that visits every edge of G at least once. DCP can be solved in Õ(|E||V |)
time using an algorithm for min-cost flow. We show, via a non-trivial reduction, that if Shortest
Sk-Equivalent String over a binary alphabet has a near-linear-time solution then so does DCP.

We show that the length of a shortest string output by Shortest Sk-Equivalent String is in
O(k + n2). We generalize this bound by showing that the total length of z shortest strings is in
O(zk + zn2 + z2n). We derive these upper bounds by showing (asymptotically tight) bounds on
the total length of z shortest Eulerian walks in general directed graphs.

We present an algorithm for solving z-Shortest Sk-Equivalent Strings in O(nk + n2 log2 n +
zn2 log n + |output|) time. If z = 1, the time becomes O(nk + n2 log2 n) by the fact that the size
of the input is Θ(nk) and the size of the output is O(k + n2).
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16:2 On Strings Having the Same Length-k Substrings

1 Introduction

We start with some basic definitions and notation on strings from [6]. Let X = X[0] · · ·X[n−1]
be a string of length |X| = n over an alphabet Σ whose elements are called letters. For
any two positions i and j ≥ i of X, X[i . . j] is the fragment of X starting at position i and
ending at position j. The fragment X[i . . j] is an occurrence of the underlying substring
P = X[i] · · ·X[j]; we say that P occurs at position i in X. A prefix of X is a fragment of the
form X[0 . . j] and a suffix of X is a fragment of the form X[i . . n−1]. By XY or X·Y we denote
the concatenation of two strings X and Y , i.e., XY = X[0] · · ·X[|X| − 1]Y [0] · · ·Y [|Y | − 1].

Let Substrk(X) denote the set of length-k substrings of a finite string X. We consider
the following basic problem on strings.

z-Shortest Sk-Equivalent Strings
Input: A set Sk of n length-k strings over an integer alphabet Σ = [0, nk) and an integer
z > 0.
Output: A list Tz = T1, . . . , Tz of z distinct strings over Σ, such that for all i ∈ [1, z],
Substrk(Ti) = Sk and for every string T ′ not in Tz with Substrk(T ′) = Sk, |T ′| ≥ |Ti|, for
all i ∈ [1, z]; or FAIL if that is not possible.

In particular, if z = 1 the problem consists in finding a shortest string X such that
Substrk(X) = Sk. In this case, we call the problem Shortest Sk-Equivalent String. We
solve z-Shortest Sk-Equivalent Strings by considering the de Bruijn graph of order k

of Sk and reducing this problem to the problem of listing Eulerian walks on directed graphs.
Let us first recall a few basic definitions before formally defining the problem in scope. Given
Sk, the de Bruijn graph (dBG) of order k of Sk is a directed multigraph GSk

= (V, E), where
V is the set of length-(k − 1) substrings of the strings in Sk, and GSk

contains an edge (u, v)
if and only if the string S = u[0] · v is equal to the string u · v[k− 2] and S ∈ Sk. A walk in a
directed graph G(V, E) is a sequence of edges from E which joins a sequence of nodes from
V . An Eulerian walk in G is a walk which visits all edges in E at least once. Any string X

such that Substrk(X) = Sk corresponds to an Eulerian walk W in the dBG of order k of Sk

and vice-versa. We formally define the problem of listing Eulerian walks in directed graphs.

z-Shortest Eulerian Walks
Input: A directed graph G(V, E) and an integer z > 0.
Output: A list Wz = W1, . . . , Wz of z distinct Eulerian walks of G, such that for every
Eulerian walk W ′ of G not in Wz, |W ′| ≥ |Wi|, for all i ∈ [1, z]; or FAIL if that is not
possible.

If z = 1, we call the problem Shortest Eulerian Walk. Let us denote the total size
of Wz (that is, the total length of the walks) by ||Wz||. We show the following result1.

▶ Theorem 1. The z-Shortest Eulerian Walks problem can be solved in:
O(|E||V | log2 |V |+ z|V |3 + ||Wz||) time;
or O(|E||V | log2 |V |+ z(|E||V |+ |V |2 log |V |) + ||Wz||) time.

We also investigate the combinatorial bounds on the total length of z shortest Eulerian
walks in directed graphs. We show the following result.

▶ Theorem 2. ||W1|| ≤ |V | |E| and this bound is asymptotically tight. Moreover, ||Wz|| ≤
z|V | |E|+ z2|V | and this bound is asymptotically tight.

1 We assume that basic arithmetic operations take constant time, which is the case when z = poly(|E|).
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By employing Theorem 2 we show the following result, where ||Tz|| denotes the total
length of the strings output for z-Shortest Sk-Equivalent Strings.

▶ Theorem 3. ||T1|| = O(k + n2). Moreover, ||Tz|| = O(zk + zn2 + z2n).

By employing Theorem 1 and Theorem 3 we show the following result (recalling that the
size of the input in z-Shortest Sk-Equivalent Strings is Θ(nk)).

▶ Theorem 4. The z-Shortest Sk-Equivalent Strings problem can be solved in O(nk +
n2 log2 n + zn2 log n + ||Tz||) time. If z = 1 this becomes O(nk + n2 log2 n).

We complement these results with the following reduction of independent interest. Given
a directed graph G(V, E), the Directed Chinese Postman (DCP) problem (also known
as the Route Inspection problem) asks for a shortest closed walk that visits every edge of
G at least once. DCP can be solved using an algorithm for computing a min-cost flow [8]. To
this end, we can use the network simplex algorithm to solve DCP in Õ(|E||V |) time [28, 32].
We show here, via a non-trivial reduction, that if the Shortest Sk-Equivalent String
problem over a binary alphabet has a near-linear-time solution then so does DCP.

Motivation and Related Work. The main theoretical motivation for this work comes from
the following “gap” in the literature. Let Mk be a multiset (rather than a set) of length-k
strings. Counting (resp. listing) all distinct strings whose multiset of length-k strings is Mk

corresponds to counting (resp. listing) all node-distinct Eulerian trails (i.e., walks that do not
repeat any edges) in the de Bruijn multigraph of order k of Mk [16, 17, 22, 3]. Counting all
node-distinct Eulerian trails can be done in polynomial time by employing the well-known
BEST theorem [34] (see also [21] for the analogous result on strings). Efficient algorithms
for listing z node-distinct Eulerian trails are also known [5, 24]. However, the analogous,
perhaps more basic, results for counting or listing all strings whose set of length-k strings is
Sk are, to the best of our knowledge, unknown. Here we focus on listing by observing that
strings whose set of length-k strings is Sk correspond to Eulerian walks in the dBG of order k

of Sk. Counting remains wide open, as an analogous to BEST theorem for Eulerian walks is
unknown. Indeed, a fundamental difference is that Mk, by definition, gives the exact length
of all strings whose multiset of length-k substrings is Mk, while Sk gives only a lower bound.

The practical motivation for this work comes from the fact that the z-Shortest Sk-
Equivalent Strings problem arises naturally as an encoding problem in many real-world
applications. In data privacy, the output strings can be used to construct reverse-safe
data structures for pattern matching when Sk comes from a private string [2, 3]. In data
compression, the output strings can be used to represent compactly a set Sk of length-k
strings [26]. In bioinformatics, the output strings correspond to different possible genome
reconstructions [29] when Sk is a set of sequences generated by a sequencing experiment.

Our work is in some sense related to Simon’s congruence [31]. Two strings are ∼k-
congruent if they have the same set of subsequences of length at most k. For details on the
combinatorial properties of the congruence see [31, 25, 19, 18, 20, 1] and for some algorithmic
works see [15, 11, 33, 7, 10, 1, 12]. A long-standing open problem was to design an algorithm
which, given two strings S and T , computes the largest k for which S ∼k T . Gawrychowski
et al. [12] have recently settled the problem optimally by showing a linear-time algorithm.

Paper Organization. In Section 2 we provide some basic definitions and notation. In
Section 3 we present the reduction from DCP to the Shortest Sk-Equivalent String
problem. In Section 4 we show the combinatorial bounds on the length of a shortest Eulerian
walk and on the total length of z shortest Eulerian walks. From these bounds, we infer the
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16:4 On Strings Having the Same Length-k Substrings

bounds on the length of the strings output for z-Shortest Sk-Equivalent Strings. In
Section 5 we present our algorithm for solving the z-Shortest Eulerian Walks problem.
From this algorithm, we infer our solution to z-Shortest Sk-Equivalent Strings.

2 Preliminaries

We consider directed graphs G(V, E) such that there is at most one directed edge (u, v) for
any u, v ∈ V (that is, all edges in E have multiplicity 1). For a graph G(V, E), we call
multiplicity function on G a mapping E → N. We denote by Gµ(V, E) the multigraph with
underlying graph G and multiplicity function µ: Gµ is a version of G having µ(e) copies of
each edge e ∈ E. We call Gµ an extension of G if µ > 0. We call v the head of an edge (u, v),
and we call u the edge tail.

A walk in G is any sequence W = e1e2 . . . e|W | of edges in E such that the head of ei

is equal to the tail of ei+1, for all i ∈ [1, |W | − 1]; |W | is the length of W . A walk may
traverse any edge multiple times. We denote by I(W ) the tail of e1, by L(W ) the head of
e|W | and by multe(W ) the number of times W visits e, for any e ∈ E. A walk W is closed
(and in this case we call it a cycle) if I(W ) = L(W ), that is, if it starts and ends at the same
node. A walk W is Eulerian if it traverses all the edges of G at least once, that is, if the set
{ei}i∈[1,|W |] = E. A walk that does not traverse any edge twice is a trail.

Given a multigraph Gµ, a walk W is Eulerian on Gµ if multe(W ) ≥ µ(e) for every e ∈ E

and it is an Eulerian trail on Gµ if multe(W ) = µ(e) for every e ∈ E. A (multi-)graph
G(V, E) is semi-Eulerian if it admits an Eulerian trail, Eulerian if it admits an Eulerian cycle,
and strictly semi-Eulerian if it is semi-Eulerian but not Eulerian. We denote by EW (G) and
ET (G) the set of Eulerian walks and the set of Eulerian trails on G, respectively.

A graph G(V, E) is strongly connected if, for any two nodes u, v ∈ V with u ̸= v, there
exist both a walk from u to v and from v to u. The strongly connected components (SCCs
in short) of G are its inclusion-maximal strongly connected subgraphs. A graph is weakly
connected if replacing all of its directed edges with undirected edges yields a connected graph.

▶ Definition 5 (Flow). Let G = (V, E) be a directed graph and δ : V → Z be a function called
the supply. Let m (resp. M) be a function E → N ∪ {+∞} called minimal (resp. maximal)
capacity. A flow on G with supply δ, minimal capacity m and maximal capacity M is a
function f : E → N such that:

∀e ∈ E, m(e) ≤ f(e) ≤M(e)

∀v ∈ V,
∑

e=(v,w)∈E

f(e)−
∑

e=(w,v)∈E

f(e) = δ(v)

We denote this set of flows by F(G, δ, m, M).

3 Reducing Directed Chinese Postman to Shortest Equivalent String

Directed Chinese Postman (DCP)
Input: A directed graph G(V, E).
Output: A shortest closed Eulerian walk, or FAIL if that is not possible.

The main goal of this section is to reduce DCP to Shortest Sk-Equivalent String.
We first show a simple linear-time reduction that uses an alphabet of size O(|V |). We then
show a more involved near-linear-time reduction that uses a binary alphabet. The latter
reduction has the following important implication: if Shortest Sk-Equivalent String
over a binary alphabet has a near-linear-time solution, then so does DCP.
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3.1 Large Alphabet
▶ Lemma 6. Given a directed graph G(V, E), we define G̃(Ṽ , Ẽ) such that Ṽ = V ∪ {a, b},
where a, b are two bogus nodes, and Ẽ = E ∪ {(a, u), (u, b)} for an arbitrary node u ∈ V .

Then from any shortest Eulerian walk on G̃, we can compute a shortest Eulerian closed
walk on G in constant time.

Proof. Let W̃ be a shortest Eulerian walk on G̃. By definition, the bogus node a does not
have any ingoing edge, and then since W̃ must traverse edge (a, u), it has to start with a. By
a symmetrical argument, it must end with b. The rest of the walk is on G, and since a and b

are connected only to u, the latter is the second and second-to-last node crossed by W̃ . The
edges traversed by W̃ between these two visits of u form a closed Eulerian walk W on G.

If a shorter Eulerian cycle on G would exist, we could, by a rotation, make it start
and end at u. Then, we could add edges (a, u) and (u, b) at the beginning and at the end,
obtaining an Eulerian walk on G̃ shorter than W̃ , a contradiction. Thus W is a shortest
closed Eulerian walk on G, and we can compute it from W̃ in constant time by removing the
first and last edge traversed by W̃ . ◀

▶ Theorem 7. Any instance of DCP can be reduced to an instance of the Shortest Sk-
Equivalent String problem in linear time.

Proof. Let IDCP = G(V, E) be an instance of DCP. We define G̃(Ṽ , Ẽ) as in Lemma 6.
A walk W in G̃ can be expressed as a sequence v0, . . . , v|W | of nodes from Ṽ such that
(vi, vi+1) ∈ Ẽ for every i = 0, . . . , |W | − 1. Equivalently, such a walk W can be seen as a
string v0 . . . v|W | over Ṽ such that its set of length-2 substrings S2(W ) is included in Ẽ. By
definition, W is Eulerian if and only if S2(W ) is exactly Ẽ, so finding a shortest Eulerian
walk W in G̃ corresponds to finding a shortest string over Ṽ such that S2(W ) = Ẽ, which is
an instance of the Shortest S2-Equivalent String problem. Finally, by Lemma 6, a
solution to DCP on G can be obtained from an Eulerian walk W on G̃ in constant time. ◀

3.2 Binary Alphabet
We reduce any instance G(V, E) of the Directed Chinese Postman problem to an instance
of Shortest k-Equivalent Strings over a binary alphabet Σ = {0, 1}; we assume that G

is weakly connected, otherwise the problem has a trivial solution FAIL.
For a given integer ℓ, we denote by 0ℓ the constant string consisting of ℓ zeros. We assign

to every v ∈ V two binary strings vA, vB over {0, 1} such that:
For every v ∈ V , vA and vB are different from each other and from any wA and wB for
w ̸= v in V , so that one can identify v by knowing only vA or vB .
All strings vA and vB start and end with a 1, and they all have the same length ℓ.

▶ Observation 8. The length ℓ can be chosen to be in O(log |V |).

Proof. We need two unique binary strings vA, vB for every v ∈ V . Since there exist 2α

distinct binary strings of length α, we seek the minimum length ℓ such that 2ℓ−2 ≥ 2|V |,
because we restrict to strings starting and ending with 1. The observation follows. ◀

Let k = 3ℓ. Our reduction models both nodes and edges of G with appropriate string
gadgets. The node gadgets are defined as length-k strings s(v) := vA · 0ℓ · vB, for every
node v ∈ V . Let S0 := {s(v) | v ∈ V } be the set of such gadgets. We model each edge
(u, v) ∈ E as a length-(7ℓ) string gadget s(u) · 0ℓ · s(v). We define the set S of length-k
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16:6 On Strings Having the Same Length-k Substrings

Figure 1 The configuration described in the proof of Lemma 10.

strings input to Shortest Sk-Equivalent String as the set of length-k substrings of
all the edge gadgets: S := ∪(u,v)∈ESubstrk(s(u) · 0ℓ · s(v)). Note that S0 ⊆ S. Since
ℓ = O(log |V |), each edge gadget has length 7ℓ = O(log |V |) so it has O(log |V |) substrings of
length k = 3ℓ = O(log |V |). Therefore S contains O(|E| log |V |) strings of length O(log |V |).

▶ Observation 9. Every occurrence of 0ℓ in an edge gadget starts at position ℓ, 3ℓ, or 5ℓ

of the edge gadget (i.e., it is one of the occurrences explicitly used for the construction). It
follows that there are no spurious (i.e., not coming from one of the described occurrences in
the edge gadgets) occurrences of 0ℓ in the strings in S.

Proof. Every string vA or vB starts and ends with a 1, so they cannot overlap an occurrence
of 0ℓ. Since we never concatenate two copies of 0ℓ, the result follows. ◀

We now want to prove the correspondence between walks on G and strings having their
length-k substrings in S. The following lemma is a first step in that direction: we show that,
given a string T with Substrk(T ) ⊆ S, the node gadgets never overlap in T , and that their
succession precisely corresponds to adjacency relations between nodes in G.

▶ Lemma 10. Let G(V, E) be a directed graph and let S be the set of length-k strings defined
above. Let T be a string with Substrk(T ) ⊆ S. If, for some u, v ∈ V , T has a substring tu,v

such that (i) tu,v has s(u) as a prefix, (ii) tu,v has s(v) as a suffix, and (iii) tu,v has no other
substrings of the form s(w) for w ∈ V , then tu,v = s(u) · 0ℓ · s(v) and (u, v) ∈ E.

Proof. Let tu,v be a substring of T satisfying conditions (i)-(iii), so that tu,v[0 . . k − 1] =
s(u) = uA · 0ℓ · uB for some u ∈ V . Note that the length-k substring α starting at position ℓ

of tu,v has 0ℓ as a prefix. By the definition of S and Observation 9, every length-k string in S

with 0ℓ as a prefix has it also as a suffix, thus 0ℓ is also a suffix of α (inspect Figure 1). Let α′

be the length-k substring starting at position 2ℓ of tu,v. String α′ has uB as a prefix, and it
has an occurrence of 0ℓ at position ℓ (the suffix of α). Since α′ ∈ S, and since it has a 0ℓ in a
central position, we know that α′ is equal to uB ·0ℓ ·wA for some w ∈ V such that (u, w) ∈ E.
Let now β be the length-k substring of tu,v starting at position 3ℓ. We know that, since 0ℓ is
a prefix of β, it is also its length-ℓ suffix. Thus, the length-k substring β′ starting at position
4ℓ of tu,v, has wA · 0ℓ as a prefix; by looking at S we find that β′ = s(w). Now, by definition
of tu,v, the string β′ has to be s(v). Thus, w = v, (u, v) ∈ E, and tu,v = s(u) · 0ℓ · s(v). ◀

▶ Proposition 11. Let G(V, E) be a directed graph, let S and S0 be the sets of strings defined
above, and let T be the set of strings of length at least k + 1, having prefix and suffix in S0
and such that Substrk(T ) ⊆ S for all T ∈ T . The mapping

φ : W = ((v0, v1), (v1, v2), . . . , (vR−1, vR)) 7→ T = s(v0) · 0ℓ · s(v1) · . . . · 0ℓ · s(vR)

defines a bijection between the set of walks on G and T . From any T ∈ T , φ−1(T ) can be
computed in O(|T |) time. Moreover, given a walk W , the set of edges traversed by W is
exactly the set of (u, v) ∈ E such that uB · 0ℓ · vA are substrings of φ(W ).
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Proof. The mapping is well defined between the given sets and it is injective by the definition
of the string gadgets. Consider an arbitrary string T ∈ T . Let u, v ∈ V be nodes such that
s(u) ∈ S0 is a prefix of T and s(v) ∈ S0 is a suffix of T . Let t be the second leftmost occurrence
of any string from S0 in T (the prefix and suffix of T are in S0, and since the length of T is
at least k + 1, they do not coincide, thus there are at least two occurrences of strings from
S0). We have t = s(w) for some w ∈ V , and then T has a prefix tu,w satisfying conditions
(i)-(iii) of Lemma 10. Then (u, w) ∈ E, and tu,w = s(u) · 0ℓ · s(w). By induction, we can find
a sequence of nodes u0 = u, u1 = w, . . . , uR = v such that T = s(u0) · 0ℓ · . . . · 0ℓ · s(uR), and
such that (ui, ui+1) ∈ E for every i = 0, . . . , R − 1. This gives us a walk W = u0, u1, . . . , uR

on G with φ(W ) = T . The mapping φ is therefore surjective, hence it is a bijection. Its
inverse map can be computed in O(|T |) time, by storing the encodings s(v) for v ∈ V in a
dictionary, and linearly constructing the list of v from the occurrences of s(v) in T . ◀

We are now ready to prove the main result of this section.

▶ Theorem 12. Any instance G(V, E) of Directed Chinese Postman with output W

can be reduced in O(|E| log |V | + |W |) time to an instance of Shortest Sk-Equivalent
String with n = |Sk| = O(|E| log |V |) strings over the binary alphabet and k = O(log |V |).

Proof. Let G(V, E) be a directed graph. We construct a graph G̃ from G with bogus nodes
a and b as in Lemma 6 and we construct sets S0 and S on G̃ as described at the beginning
of this section. S contains O(|E| log |V |) strings, each of them having length O(log |V |) bits,
and it can be constructed in O(|E| log |V |) time by listing the binary encoding of the integers
we assign to the nodes. We now prove that we can compute a shortest Eulerian walk in G̃

from the output of Shortest Sk-Equivalent String, and Lemma 6 concludes the proof.
Indeed, from the bijection in Proposition 11, every string in T gives rise to a unique walk

in G̃. Let T be a solution to Shortest Sk-Equivalent String with Sk = S. Since node a

does not have any ingoing edge in G̃, by the definition of S, the length-(k − 1) prefix of s(a)
cannot be a suffix of any string in S. Since T contains every string in S, the string s(a) must
be a prefix of T . By symmetry, the string s(b) is a suffix of T . Finally, since s(a) ̸= s(b) by
definition of the node gadgets, T has length at least k + 1 and therefore T ∈ T .

Now, by Proposition 11 we can get in O(|T |) time a unique walk W = v0, . . . , vR such
that T = s(v0) · 0ℓ · s(v1) · . . . · s(vR). The edges traversed by W are exactly edges (u, v) ∈ Ẽ

such that uB · 0ℓ · vA is a substring of T . But since T contains every string from S, and
since uB · 0ℓ · vA ∈ S for every (u, v) ∈ Ẽ, the walk W traverses every edge in G̃ and it is
therefore Eulerian. Furthermore, it is minimal, as otherwise some shorter Eulerian walk W ′

would give rise to T ′ = φ(W ′) shorter than T . But then T ′ would be a shorter string with
Substrk(T ′) = S. It follows that W = φ−1(T ) is a shortest Eulerian walk of G̃. By looking
at the bijection of Proposition 11, we get |T | = O(|W |k) = O(|W | log |V |) bits, so the total
reduction time is O(|E| log |V |+ |W |). ◀

4 Combinatorial Bounds

The main goal of this section is to prove Theorem 2; in particular, to provide bounds on
the quantities ||W1|| and ||Wz|| for a directed graph G(V, E). In Section 4.1, we prove the
upper bound ||W1|| ≤ |V | · |E|, and show that it is asymptotically tight. In Section 4.2, we
prove the bound ||Wz|| ≤ z|V | · |E|+ z2|V |, and show that it is asymptotically tight as well.
Finally, in Section 4.3, we employ Theorem 2 to prove Theorem 3.

Firstly, let us observe that there are three types of graphs to consider.
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x ...
...

y

u1

u2· · ·

un−2

A B

P

Figure 2 A directed graph where the shortest Eulerian walk has length Ω(|V ||E|) = Ω(|V |3).

▶ Observation 13. Every directed graph has either 0, 1, or infinitely many distinct Eulerian
walks.

Proof. Any directed path has exactly 1 Eulerian walk. It is easily seen that any other
directed acyclic graph has none, and that any directed graph with 2 or more Eulerian walks
must have a directed cycle:2 This cycle may be repeated any number of times, yielding
infinitely many distinct Eulerian walks. ◀

As the first two types of graphs are trivial with respect to this analysis, in the rest of the
section we focus on graphs having infinitely many distinct Eulerian walks.

4.1 Length of a Shortest Eulerian Walk
▶ Lemma 14. For any directed graph G(V, E), we have ||W1|| ≤ |V | · |E|.

Proof. Let us first assume that G is strongly connected. Letting e1, . . . , e|E| be the edges
of E, we inductively build a walk which traverses all of these edges in the given order, and
which has length at most |V | · |E|. The walk starts as the single edge e1. Inductively, given a
walk W ′ that crosses e1, . . . , eh−1 and traverses at most |V | · (h− 1) edges for any h ∈ [2, |E|],
there is a walk W connecting the head of eh−1 to the tail of eh, since G is strongly connected.
Moreover, W traverses at most |V | − 1 edges: indeed, if W goes through the same node
twice, we can remove the cycle that it forms doing so. As a result, W ′Weh is a walk that
crosses e1, . . . , eh and traverses at most |V | ·h edges. The claim follows when h = |E|, noting
that a shortest walk cannot be longer than the one that we have just described inductively.

Consider the general case of G and W1 = {W}. Walk W induces a topological order on
the SCCs of G, as otherwise the walk cannot traverse all the edges, and these SCCs form a
chain graph of the form G1 → G2 → · · · → Gk (see [5]). Since each Gi(Vi, Ei) is strongly
connected, we can apply the above argument, so that W traverses at most |Vi| · |Ei| edges
there. Overall, since |E| = k − 1 +

∑k
i=1 |Ei|, W traverses at most k − 1 +

∑k
i=1 |Vi||Ei| ≤

k − 1 + |V | ·
∑k

i=1 |Ei| ≤ |V | · |E| edges. ◀

We now show in Lemma 15 that the bound in Lemma 14 is asymptotically tight by
providing an example of a graph G with ||W1|| = Ω(|V | · |E|) = Ω(|V |3).

▶ Lemma 15. There is an infinite family of directed graphs, such that each graph G(V, E)
satisfies ||W1|| = Ω(|V | · |E|).

2 Note that some directed graphs with cycles may still allow 0 Eulerian walks.
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Proof. We construct G as follows for any given n ≥ 3 (inspect Figure 2): we start from
two sets A, B of n nodes each, and the set of n2 edges F = {(a, b) | a ∈ A, b ∈ B} (i.e.,
A, B induce a complete directed bipartite graph with edges directed from A to B). We
then add two more nodes x, y and add edges (x, a) for all a ∈ A, and edges (b, y) for all
b ∈ B. We further connect y to x by adding n− 2 new nodes u1, . . . , un−2 and all edges of
P = {(y, u1)}∪{(un−2, x)}∪{(ui, ui+1) | i = 1, . . . , n− 3}. In total, this graph has |V | = 3n

nodes and |E| = n2 + 3n− 1 = Θ(|V |2) edges.
Let us now see why the length of a shortest Eulerian walk W of G is Ω(|V | · |E|). By

definition, W1 must traverse all the n2 edges in the set of edges F . Without loss of generality,
let (a1, b1), . . . , (an2 , bn2) denote the order in which W traverses the edges in F . Let i < n2,
and let us consider the point when W has just traversed (ai, bi) for the first time: to be
able to reach the next (ai+1, bi+1), the walk necessarily needs to traverse the whole of P .
This means that W needs to traverse all n − 1 edges of P once for each i = 1, . . . , n2 − 1.
Furthermore, it must also traverse at least one time all the remaining 2n edges of the
form (x, a) for all a ∈ A, and (y, b) for all b ∈ B. This leads to a total length of at least
(n− 1)(n2 − 1) + 2n = n3 − n2 + n + 1 = Ω(|V | · |E|), proving the claim. ◀

4.2 Total Length of z Shortest Eulerian Walks
▶ Lemma 16. For any directed graph G(V, E), if c1 ≤ . . . ≤ cz are the lengths of the walks
in Wz, then ci ≤ |V |(i− 1 + |E|), for all i ∈ [1, z], and we have ||Wz|| ≤ z|V | · |E|+ z2|V |.

Proof. First observe that if G is acyclic, then it has at most one Eulerian walk, and by
Lemma 14 its length is at most |V | · |E|, so the claim holds for z = 1.

We can then assume that G has a cycle, let C be the shortest one. Given an Eulerian
walk W , the length of the next shortest walk is always bounded by |W |+ |C|. In fact, let us
consider a walk W ′ defined starting from W , to which we add a tour of cycle C when W

traverses for the first time a node of C. Walk W ′ is Eulerian as it contains W , and it has
length exactly |W |+ |C|. The next shortest walk with respect to W cannot be longer than
W ′, and so its length must be bounded by |W |+ |C| ≤ |W |+ |V |.

Now we can prove by a simple induction that the i-th shortest length for an Eulerian
walk is at most ||W1||+ (i− 1) |V | ≤ |V |(i− 1 + |E|), where the base case i = 1 is trivial (and
bounded by Lemma 14) and the inductive step holds as the length of the shortest longer walk
increases by at most |V |. Hence, ||Wz|| ≤

∑z
i=1(||W1||+ (i− 1) |V |) ≤ z|V ||E|+ z2|V |. ◀

We now show in Lemma 17 that the bound in Lemma 16 is asymptotically tight.

▶ Lemma 17. There are infinite families of directed graphs, such that each graph G(V, E)
satisfies either ||Wz|| = Ω(z|V | · |E|) or ||Wz|| = Ω(z2|V |), respectively.

Proof. As clearly the i-th shortest Eulerian walk, for any i, is not shorter than the shortest
one, we have ||Wz|| ≥ z · ||W1||, so the first family follows from Lemma 15 (shown in
Figure 2). As for the second, simply consider a directed cycle with an incoming pendant edge
and an outgoing one: more formally, the directed cycle (v1, v2), . . . , (v|V |−2, v1) of length
|V | − 2, plus two nodes x, y and the edges (x, v1) and (v1, y). Any Eulerian walk must
start from the source node x, traverse the whole cycle at least once (say, i > 0 times),
and then follow the edge (v1, y). As different walks must traverse the cycle a different
number of times, it follows that the i-th shortest Eulerian walk has length 2 + i(|V | − 2), so
||Wz|| =

∑
i={1,...,z}(2 + i(|V | − 2)) = Ω(z2|V |). ◀

We can conclude from Lemma 17 that a better worst-case bound than Ω(z|V | · |E|+z2|V |)
is not possible, so Lemmas 14, 15, 16, 17 yield directly Theorem 2.
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4.3 Total Length of z Shortest Equivalent Strings
Let us now prove Theorem 3, which infers upper bounds on the total length of a solution to
z-Shortest Sk-Equivalent Strings. We use the following observation:

▶ Observation 18. Let Sk be a set of n strings each of length k, such that there exists a
string T with Substrk(T ) = Sk. Let G(V, E) be the dBG of order k of Sk. It holds (i) |E| = n;
and (ii) |V | ≤ n + 1.

Proof. (i) It follows from the definition of dBG: each edge corresponds to a string from Sk

and reciprocally, if S ∈ Sk there is an edge between S[0 . . k − 2] and S[1 . . k − 1], which
corresponds to S. Therefore |E| = |Sk| = n.

(ii) Since there exists T with Substrk(T ) = Sk, we know that there is a walk W traversing
every edge in G. It follows that all e ∈ E (except possibly for the first and last edges traversed
by W ) are such that the head of e coincides with the tail of some e′ ∈ E, and symmetrically,
the tail of e coincides with the head of some e′′ ∈ E. We conclude that there cannot be more
than |E|+ 1 distinct nodes, thus |V | ≤ |E|+ 1 = n + 1. ◀

Let Sk be a set of n strings each of length k; we know that if G(V, E) is the dBG of
order k of Sk, a (shortest) string T such that Substrk(T ) = Sk has length k − 1 + |W |,
where W is a (shortest) Eulerian walk on G. From Theorem 2 and Observation 18 we
get that ||W1|| ≤ |V | · |E| ≤ n2 + n and so ||T1|| ≤ k − 1 + n2 + n = O(k + n2). Using
again Theorem 2 and Observation 18, we get that ||Wz|| ≤ z|V | · |E| + z2|V | and so
||Tz|| ≤ z(k − 1 + n2 + n) + z2(n + 1) = O(zk + zn2 + z2n). We have arrived at Theorem 3.

5 Listing z Shortest Eulerian Walks

The main goal of this section is to prove Theorem 1; in particular, to provide an efficient
algorithm for solving z-Shortest Eulerian Walks. In Section 5.1, we start by providing
the state-of-the-art results for listing z best flows in a directed graph; the underlying
algorithms form the main computational routine of our algorithm, which is provided in detail
next. Finally, in Section 5.2, we employ Theorem 1 and Theorem 3 to prove Theorem 4;
namely, to provide an efficient algorithm for solving z-Shortest Sk-Equivalent Strings.

5.1 Main Algorithm
In general, we can equip a graph G(V, E) with a cost function C : E → N. Given a flow
f ∈ F(G, δ, m, M) for some supply function δ, and minimal (resp. maximal) capacities
function m (resp. M), the cost of f is C(f) =

∑
e∈E C(e)f(e). Let us now formally define

the problem of listing z best flows (i.e., flows of minimal cost) from the set F(G, δ, m, M) of
all feasible flows (with respect to the given conditions) in a directed graph.

z-Best Flows
Input: A directed graph G = (V, E), a supply function δ, a minimal capacity function m,
a maximal capacity function M , a cost function C (all taking finite values), a min-cost
flow f , and an integer z > 0.
Output: A list F of z flows in F(G, δ, m, M), such that for every flow f ′ not in F ,
C(f ′) ≥ C(F [i]), for all i ∈ [0, z− 1], and ordered such that C(F [0]) ≤ · · · ≤ C(F [z− 1]);
or FAIL if that is not possible.

A min-cost flow f can be computed for any G using one of the following results.
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▶ Lemma 19 ([13, 27, 28, 32]). Given any directed graph G(V, E), computing a min-cost
flow takes O((|E| log |V |)(|E|+ |V | log |V |)) time or O(|E||V | log |V | log K|V |) time, where
K is the maximum cost of any edge of G.

The following recent result for the z-Best Flows problem is known [23]; see also [14, 30].

▶ Lemma 20 ([23]). The z-Best Flows problem can be solved in O(z|V |3) time or in
O(z(|E||V |+ |V |2 log |V |)) time.

Main Idea. We list Eulerian walks as follows: we construct semi-Eulerian multigraphs Gµ,
which are extensions of G obtained by duplicating some edges. Recall that each Eulerian
walk in G can be seen as a trail in the semi-Eulerian extension Gµ for some multiplicity
function µ such that, for every edge e, µ(e) = multe(W ). We will therefore treat Eulerian
walks on G and Eulerian trails on Gµ as if they were the same objects, and use the fact
that these semi-Eulerian extensions of G form a partition of the sets of Eulerian walks on G.
Our algorithm has two steps: first, listing the extensions, and then, listing the trails in each
extension, using the algorithm given in [5]. For the first part, we need the following:

▶ Proposition 21. Let G = (V, E) be a directed graph and let M = NE be the set of all
possible multiplicity functions on G. We have the following set equality:3

EW (G) =
⊔

µ∈M

ET (Gµ) (1)

Proof. An Eulerian walk W on G is an Eulerian trail on the semi-Eulerian multigraph
obtained by taking as many copies of each edge as the number of times W traverses it. ◀

To list semi-Eulerian extensions, we will use flows. For Eulerian extensions, the balancing
conditions are precisely a flow problem, as specified in the following proposition.

▶ Proposition 22. Let G be a directed weakly connected graph, and µ be a multiplicity
function on G. The multigraph Gµ is Eulerian if and only if the balancing conditions hold:∑

(u,w)∈E

µ(u, w)−
∑

(w,u)∈E

µ(w, u) = 0 for any fixed u ∈ V

and is semi-Eulerian if the equality above holds or if it exists (a, b) ∈ V such that:∑
(u,w)∈E

µ(u, w)−
∑

(w,u)∈E

µ(w, u) = 0 for any fixed u ∈ V \ {a, b}

∑
(a,w)∈E

µ(a, w)−
∑

(w,a)∈E

µ(w, a) = 1
∑

(b,w)∈E

µ(b, w)−
∑

(w,b)∈E

µ(w, b) = −1

Proof. This is a reformulation of the well-known Euler’s theorem [9] in the directed case
with multiplicities. ◀

For any directed graph G(V, E) and for v ∈ V , we write 1v for the indicator function on
V of v; namely, for every u ∈ V , 1v(u) = 1 ⇐⇒ u = v. We define:

For every v, w ∈ V , a supply function δv,w : u 7→ 1v(u)− 1w(u). If v = w, this is the null
function, and if v ̸= w, the function has value 1 on v, −1 on w, and 0 on any other node.
For every n ∈ N ∪ {∞}, a function cn on E constantly equal to n.

3 We use squared cup to underline that the sets ET (Gµ) are pairwise disjoint.
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▶ Observation 23. An extension Gµ of a directed weakly connected graph G with multiplicities
µ is semi-Eulerian if and only if

µ ∈
⋃

(v,w)∈V 2

F(G, δv,w, c1, c∞)

Proof. This is a reformulation of the balancing conditions (Proposition 22). ◀

The semi-Eulerian extensions of G exactly correspond to flows on G with supply function
of the form δv,w, with (v, w) ∈ V 2. However, we would like to treat all cases by solving a
single flow problem in order to avoid solving O(|V |2) of them separately.

Let G = (V, E) be a directed graph, and Gs,t = (Vs,t, Es,t) be an extension of G with
Vs,t = V ∪ {s, t} for some s, t ̸∈ V and Es,t = E ∪ (

⋃
v∈V (s, v)) ∪ (

⋃
v∈V (v, t)). We will

compute flows on Gs,t by defining a maximal capacity function equal to c∞ on every edge, a
minimal capacity function m with m|E = c1 and m|(Es,t\E) = c0, and a supply function δs,t.

Because we set the minimal capacity to be 1 on every edge in E, and since the flow can
enter and exit G from any node via the edges from s to every v ∈ V , there is almost an
equivalence between flows in F(Gs,t, δs,t, m, c∞) and semi-Eulerian extensions of G, except
for the following detail: a flow also contains information about the starting and ending
point of some trail in the extension, as it specifies which nodes are connected to the bogus
nodes. So multiple flows that differ only in the edges they use to connect to the bogus nodes
correspond to the same extension of G: this happens when the extension is in fact Eulerian.

▶ Proposition 24. Let G = (V, E) be a directed graph and let f ∈ F(Gs,t, δs,t, m, c∞). There
is a unique i ∈ V such that f(s, i) = 1, and a unique o ∈ V such that f(o, t) = 1. The flow f

takes value 0 on every other edge with tail s or head t.

Proof. The node s has supply 1. Since there are no ingoing edges for s, the outgoing flow
has to be 1, so only one node i has f(s, i) = 1. The node t has supply −1. Since there are
no outgoing edges for t, the ingoing flow has to be 1, so only one node o has f(o, t) = 1. ◀

We call i = en(f) the entrance of f and o = ex(f) its exit. Note that en(f) and ex(f) are
not necessarily distinct. We can now formally describe the relation between the flows in
F(Gs,t, δs,t, m, c∞) and the walks in G. We will make use of a function WalkToFlow that
takes a walk on G and returns a specific flow on Gs,t, as defined in the following proposition.

▶ Proposition 25. Let G = (V, E) be a directed weakly connected graph and Gs,t the
graph extended with the additional nodes s, t, as defined above. For each Eulerian
walk W on G with multiplicity function µ, there is a unique flow WalkToFlow(W ) ∈
F(Gs,t, δs,t, m, c∞) such that (i) WalkToFlow(W )|E = µ, (ii) en(WalkToFlow(W )) = I(W )
and (iii) ex(WalkToFlow(W )) = L(W ). For every multiplicity function µ, we then have the
following partition:

ET (Gµ) =
⊔

f∈F(Gs,t,δs,t,m,c∞)
f |E=µ

WalkToFlow−1(f)

In particular, the sets WalkToFlow−1(f) for f ∈ F(Gs,t, δs,t, m, c∞) are nonempty and
pairwise disjoint.
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Proof. Let µ be a multiplicity function such that an Eulerian walk W with multiplicity µ

exists on G, or in other terms, that Gµ is semi-Eulerian. From Observation 23 we know that
µ is a flow in F(G, δv,w, c1, c∞) for some nodes v, w ∈ V , namely v = I(W ), w = L(W ). It
is easy to verify that conditions (i)-(iii) uniquely define the following flow:

WalkToFlow(W ) : e 7→


µ(e) if e ∈ E

1 if e = (s, I(W )) or e = (L(W ), t)
0 otherwise

Now, for every flow f0 ∈ F(Gs,t, δs,t, m, c∞), the set WalkToFlow−1(f0) is the set of
Eulerian trails in G(f0)|E

starting at en(f0) and ending at ex(f0). To get all the Eulerian
trails having a given multiplicity µ, we need to consider all the flows agreeing with µ on G,
regardless of their entrance or exit. Hence we have:

ET (Gµ) =
⊔

f∈F(Gs,t,δs,t,m,c∞)
f |E=µ

WalkToFlow−1(f)

The sets WalkToFlow−1(f) for f ∈ F(Gs,t, δs,t, m, c∞) are pairwise disjoint because they
are defined as reciprocal sets for the mapping WalkToFlow, and are nonempty. Indeed, for a
flow f ∈ F(Gs,t, δs,t, m, c∞), the balancing conditions hold in Gf |E

(Observation 23). One
can then choose an Eulerian trail W in Gf |E

starting at en(f) and ending at ex(f). We
then obtain a partition of ET (Gµ). ◀

To compute shortest walks, we need to assign costs to the flows, which are equal to the
lengths of the corresponding walks. This is achieved by defining a cost function Cwalks on
Gs,t such that Cwalks|E = c1 (the function constantly equal to 1), and Cwalks|Es,t\E = c0 (the
function constantly equal to 0). Note that this definition coincides with the definition of the
minimal capacity function m that we use, but we distinguish the two functions for clarity.

▶ Observation 26. Let us equip graph Gs,t with the cost function Cwalks. For any Eulerian
walk W on G, the total cost of the flow WalkToFlow(W ) on Gs,t is the length of W .

Proof. By the definition of WalkToFlow (Proposition 25), for a walk W of length ℓ we have∑
e∈Es,t

WalkToFlow(W )(e)C(e) =
∑
e∈E

WalkToFlow(W )(e) = ℓ ◀

▶ Proposition 27. Let G(V, E) be a directed weakly connected graph. It holds

EW (G) =
⊔

f∈F(Gs,t,δs,t,m,c∞)

WalkToFlow−1(f)

Proof. It follows directly from Proposition 21 and Proposition 25. ◀

Let G(V, E) be a directed graph, z ≥ 1 be an integer, and A ∈ N ∪ {∞}. By Fz,A we
denote the min(z, |F(Gs,t, δs,t, m, cA)|) minimal cost flows (with cost function Cwalks and an
arbitrary but fixed order on flows having the same total cost) in F(Gs,t, δs,t, m, cA).

We now prove that we can list z shortest Eulerian walks in a directed graph G by
computing only Fz,∞.
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▶ Proposition 28. Let G = (V, E) be a directed weakly connected graph and z > 0 be an
integer. We equip the extension Gs,t with the cost function Cwalks. Consider the set of flows
Fz,∞ and a subset Fs of Fz,∞ containing exactly one representative of each class in Fz,∞
under the relation f ∼ f ′ ⇐⇒ f |E = f ′|E.

Then, each of the min(z, |EW (G)|) shortest Eulerian walks on G has multiplicities f |E
for some f ∈ Fs, i.e., each of them is an Eulerian trail in some extension Gf |E

with f ∈ Fs.

Proof. We prove that each of the min(z, |EW (G)|) shortest Eulerian walks on G corresponds
to trails in the following set:

B =
⊔

f∈Fs

ET (Gf |E
)

From the definition of F and Observation 26, the walks in B are minimal, in the sense
that any walk in EW (G) \B is at least as long as any walk in B. This implies the result if
|B| ≥ min(z, |EW (G)|). To prove that |B| ≥ min(z, |EW (G)|), we will show that if |B| < z,
then B = EW (G), and this will complete the proof. If |B| < z, we have:

B =
⊔

f∈Fs

ET (Gf |E
) =

⊔
f∈Fs

⊔
f ′∼f

WalkToFlow−1(f ′) (by Proposition 27)

⊇
⊔

f∈Fs

⊔
f ′∈Fz,∞

f ′∼f

WalkToFlow−1(f ′) =
⊔

f∈Fz,∞

WalkToFlow−1(f), so

|B| ≥
∑

f∈Fz,∞

|WalkToFlow−1(f)| ≥ |Fz,∞|

where the last inequality follows from the fact that we are considering the disjoint union
of nonempty sets (Proposition 25). Recall that |Fz,∞| = min(z, |F(Gs,t, δs,t, m, c∞)|), so if
|B| < z, then |Fz,∞| < z and Fz,∞ = F(Gs,t, δs,t, m, c∞). By Proposition 27, it follows that

|EW (G)| =

∣∣∣∣∣∣
⊔

f∈F(Gs,t,δs,t,m,c∞)

WalkToFlow−1(f)

∣∣∣∣∣∣ ≤ |B|,
so |B| ≥ |EW (G)|, and in fact B = EW (G) from the trivial inclusion. ◀

In order to compute flows in F(Gs,t, δs,t, m, c∞) by means of existing algorithms, we need
to define an equivalent problem having finite maximal capacity on each edge, as the known
algorithms are not constructed for infinite maximal capacities.

▶ Lemma 29. Let G(V, E) be a directed graph and z ≥ 1 be an integer. We have that
Fz,∞ = Fz,|V |(z−1+|E|).

Proof. Let F = f0, . . . (resp. F ′ = f ′
0, . . . , f ′

N ) be the list of feasible flows for the maximal
capacity function c∞ (resp. c|V |(z−1+|E|)), ordered by increasing cost and such that the order
on flows having the same total cost is arbitrary but fixed. Note that the list F may be infinite.
Each flow in the list F ′ is trivially in the list F . If F = F ′ the lemma holds. Otherwise,
let fi be the minimal cost flow in F which is not in F ′, so that fj = f ′

j for every j < i. If
i ≤ z, then by Proposition 27 there is at least one Eulerian walk W in WalkToFlow−1(fi),
and this walk has length Cwalks(fi). But from Lemma 16, the length of W is also at most
|V |(z − 1 + |E|), so fi ∈ F ′ (since the flows which appear strictly before in the list F ′ are
less than z), which gives a contradiction. Therefore the first mismatch (if any) between F

and F ′ has to be after the z first elements, and Fz,∞ = Fz,|V |(z−1+|E|). ◀
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Algorithm 1 EW-List(G(V, E), z).
1: if G is not weakly connected then
2: return FAIL
3: s← |V |+ 1; t← |V |+ 2; Vs,t ← V ∪ {s, t} ▷ Add two bogus nodes
4: Es,t ← E ∪ {(s, v), (v, t) | v ∈ V } ▷ Add 2|V | bogus edges
5: Construct Gs,t, δs,t, m, c|V |(z−1+|E|), and Cwalks accordingly
6: f ← Best-Flow(Gs,t, δs,t, m, c|V |(z−1+|E|), Cwalks) ▷ Lemma 19
7: F ← z-Best-Flows(Gs,t, δs,t, m, c|V |(z−1+|E|), Cwalks, f, z) ▷ Lemma 20
8: Fs ← list(f |E for f ∈ F ) ▷ We keep only the values flows take on the initial graph
9: Remove duplicates in Fs if any ▷ Duplicates might arise from the loss of information

10: EW← ∅; i← 0;
11: while |EW| < z do
12: EW← EW ∪ {ET-List(GFs[i], z − |EW|)} ▷ List Eulerian trails on extended G [5, 24]
13: i← i + 1; ▷ Retrieve the next best flow
14: if i = |Fs| then ▷ We have consumed all best flows
15: break;
16: if |EW| ≥ z then
17: return EW
18: else
19: return FAIL

▶ Lemma 30. Given a directed graph G = (V, E) and an integer z, Algorithm 1 terminates
and solves the z-Shortest Eulerian Walks problem on G.

Proof. Algorithm 1 computes z flows with minimal cost in F(Gs,t, δs,t, m, c∞) (for the
cost function Cwalks) as defined in Proposition 28, or all of them if there are less than z

(Line 7), from Lemma 29. The set Fs is defined in Lines 8 and 9 as in Proposition 28; and in
Line 12, the function ET-List computes, if they exist, the z − |EW | shortest elements from
EW(Gf |E

) for every f ∈ Fs (where |EW | is, at each step, the number of Eulerian walks
already computed), so we know that no more than z Eulerian walks are computed in the end.
The function is implemented by means of the algorithm provided in [5] or the one in [24].
The correctness then directly follows from the equivalence proved in Proposition 28. ◀

▶ Lemma 31. Given a directed graph G = (V, E) and an integer z, Algorithm 1 requires:
O(|E||V | log2 |V |+ z|V |3 + ||Wz||) time;
or O(|E||V | log2 |V |+ z(|E||V |+ |V |2 log |V |) + ||Wz||) time.

Proof. Computing a min-cost flow takes O(|E||V | log2 |V |) time by Lemma 19 because the
maximum cost of any edge is 1. Finding z flows with minimal cost (or all of them if there
are less) takes O(z|V |3) time or O(z(|E||V | + |V |2 log |V |)) time by Lemma 20. Listing z

Eulerian trails takes O(||Wz||) time by applying the algorithm of [5] or the one of [24]. ◀

Lemmas 30 and 31 imply Theorem 1.

5.2 Listing z Shortest Equivalent Strings
Any instance of the z-Shortest Sk-Equivalent Strings problem can be reduced to some
instance of the z-Shortest Eulerian Walks problem in linear time. In particular, this
reduction consists in constructing the dBG of order k of Sk in O(nk) time [4]. The resultant
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dBG is the directed graph G(V, E) given as input to z-Shortest Eulerian Walks. By
Observation 18, the total number of nodes in V is O(n) and the total number of edges in E

is also O(n). Any Eulerian walk W in G corresponds to a string of length k− 1 + |W |: k− 1
is the length of the first node of the walk to which we concatenate one letter for each of the
|W | edges of the walk. Thus by employing Theorem 1 and Theorem 3 we obtain Theorem 4.
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Abstract
We prove that the normalized edit distance proposed in [Marzal and Vidal 1993] is a metric when
the cost of all the edit operations are the same. This closes a long standing gap in the literature
where several authors noted that this distance does not satisfy the triangle inequality in the general
case, and that it was not known whether it is satisfied in the uniform case – where all the edit
costs are equal. We compare this metric to two normalized metrics proposed as alternatives in the
literature, when people thought that Marzal’s and Vidal’s distance is not a metric, and identify key
properties that explain why the original distance, now known to also be a metric, is better for some
applications. Our examination is from a point of view of formal verification, but the properties and
their significance are stated in an application agnostic way.
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1 Introduction

The edit distance [5], also called Levenshtein distance, is the minimal number of insertions,
deletions or substitutions of characters needed to edit one word into another. This is a
commonly used measure of the distance between strings. It is used in error correction, pattern
recognition, computational biology, and other fields where the data is represented by strings.

One limitation of the edit distance is that it does not contain a normalization with respect
to the lengths of the compared strings. This limits its use because, in many applications,
having many edit operations when comparing short strings is more significant than having
the same number of edit operations in a comparison of longer strings, i.e., some applications
require a measure that captures the “average” number of operations per letter, in some sort.

There are several approaches in the literature to add a normalization factor to the edit
distance, as follows. The simplest idea that comes to mind is, of course, to divide the edit
distance by the sum of lengths of the strings. However, Vidal and Marzal [8] showed that this
function, termed post-normalized edit distance in [8], does not satisfy the triangle inequality,
and thus is not a metric. Dividing by the length of the minimal or maximal among the
strings also breaks the triangle inequality [2]. The fact that a distance measure is (or is not)
a metric allows (resp. prevents) optimizations in many applications. For example, many
efficient algorithms for searching shortest paths in graphs, such as Dijkstra’s algorithm, make
use of the fact that the underlying distance is a metric.

© Dana Fisman, Joshua Grogin, Oded Margalit, and Gera Weiss;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dana@cs.bgu.ac.il
mailto:joshuag@post.bgu.ac.il
mailto:odedm@post.bgu.ac.il
mailto:geraw@cs.bgu.ac.il
https://doi.org/10.4230/LIPIcs.CPM.2022.17
https://arxiv.org/abs/2201.06115
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 The Normalized Edit Distance with Uniform Operation Costs Is a Metric

Vidal and Marzal propose thus another function, that we will focus on in this paper, that
they term the normalized edit distance (ned) and say that this function, “seems more likely
to fulfill the triangle inequality”. They however, show that when the sum of the costs of
deleting and inserting a particular symbol is much smaller than any other elemental edit cost
the function that they suggest is also non-triangular. The question of whether this distance
is triangular in less contrived situations is given only an empirical answer – “triangular
behavior has actually been observed in practice for the normalized edit distance” . This state
of affairs opened the way for attempts to define edit distance functions that are normalized
and satisfy the triangle inequality, as discussed in the following two paragraphs.1

Li and Liu [6] proposed an alternative normalization method. They open their paper
by saying that “Although a number of normalized edit distances presented so far may offer
good performance in some applications, none of them can be regarded as a genuine metric
between strings because they do not satisfy the triangle inequality” . They, then, define a
new distance, the generalized edit distance (ged), that is a simple function of the lengths of
the compared strings and the edit distance between them and show that it is a metric.

De la Higuera and Mic̀o [2] propose the contextual normalised edit distance (ced). Their
normalization goes by dividing each edit operation locally by the length of the string on
which it is applied. Specifically, instead of dividing the total edit costs by the length of the
edit path, they propose to divide the cost of each edit operation by the length of the string
at the time of edit. They prove that this is a metric, provide an efficient approximation
procedure for it, and demonstrate its performance in several application domains.

In this paper we prove that ned, the original edit normalization approach proposed
by Vidal and Marzal [8] does satisfy the triangle inequality when the cost of all the edit
operations are the same. Since this setup is very common in many applications of the
edit distance, our result gives a simple normalization technique that satisfies the triangle
inequality. While there are other normalized edit distance functions that are a metric, in
particular the two mentioned above (ged and ced), their definition is more complicated and
they capture a different notion of distance than that of ned.

The motivation that led us to engage in distances between words came from the field
of formal methods; specifically, for software verification. In this field, it is customary to
represent runs of a system using words and analyze the relationship between the set of words
that satisfy a given specification and the set of words that the system under examination
produces. Naturally, the main question asked is whether there is a word that the system
produces that does not satisfy the requirement, but an appropriate concept of distance
opens up the possibility of asking further questions. For example, for systems that meet the
specifications, the robustness question would be, “is there a run that is closer than a given
threshold to not meeting the requirements?”. In this context, we would like the distance to
measure how much “disturbance” in a word we can afford without risking non-compliance.
Naturally, since editing model symmetric disturbances, we use uniform weights. As we will
explain in Subsection 3.2 below, the ned distance satisfies certain properties required for
use in formal the field of formal methods that other metrics do not. Another advantage
of ned in the context of formal methods is that its definition allows direct use of a Ptime
algorithm proposed by Filliot et al. [3] for computing the distance between regular sets of

1 The complexity of computing ned was first shown to be O(mn2) with experimental data that suggested
that it is actually O(mn) [9]. It was later proven to be O(mn log n) in the uniform case [1]. Here, n ≥ m
are the lengths of the compared words.
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words represented using finite automata. This is useful since verification tools work with
automata to represent the specification and the program runs, and verification questions are
usually reduced to questions on automata.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ the set of all finite strings over Σ. The length of string
w = σ1σ2 . . . σn, denoted |w|, is n. We use w[i] for the i-th letter of w, and w[i..] for the
suffix of w starting at i, namely w[i..] = σiσi+1 . . . σn.

Basic and extended edit letters. The literature on defining distance between words over Σ
uses the notion of edit paths, which are strings over edit letters defining how to transform a
given string s1 to another string s2. The standard operations are deleting a letter, inserting
a letter, or swapping one letter with another letter. Formally, the basic edit letters alphabet Γ
is defined as Γ = {n, c, v, x} where:

c stands for change: the relevant letter in
the source string is replaced with another
letter.
v stands for insert: a new letter is added
to the destination string.

x stands for delete: the current letter
from the source string is deleted and not
copied to the destination string.
n stands for no-change: the current letter
is copied as is from the source string to
the destination string.

The edit letters in Γ do not carry enough information to transform a string w over Σ to an
unknown string over Σ, since for instance the letter v does not provide information on which
letter σ ∈ Σ should be inserted. To this aim we define the alphabet ΓΣ that provides all
the information required. Formally, ΓΣ = {lσ| σ ∈ Σ, l ∈ {n, v, x}} ∪ {c(σ1,σ2)| σ1, σ2 ∈ Σ}.
We call strings over ΓΣ edit paths. Throughout this document we use w, w1, w2, w′, . . . and
s, s1, s2, s′, . . . for strings over Σ and p, p1, p2, p′, . . . for edit paths.

Weights and length of edit paths. Given a function wgt : ΓΣ → N, that defines a weight
to each edit letter, we define the weight of an edit path wgt : Γ∗

Σ → N as the sum of
weights of the letter it is composed from, namely for an edit path p = γ1γ2 . . . γm ∈ Γ∗

Σ,
wgt(γ1 . . . γm) =

∑m
i=1 wgt(γi).

In our case we are interested in uniform costs where the weight of n is 0 and the weight
of all other operations is the same. For simplicity we can assume that the weight of all other
operations is 1. Thus, we can define the weight over Γ instead of ΓΣ simply as wgt : Γ → N
where wgt(γ) = 0 if γ = n and wgt(γ) = 1 otherwise, namely if γ ∈ {c, v, x}. We also define
the function len : ΓΣ → N as len(γ) = 1 and len : Γ∗

Σ → N as len(γ1 . . . γm) =
∑m

i=1 len(γi).
Clearly here we have len(p) = |p|. Later on we will introduce new edit letters whose length
is different from 1, thus the need for a definition of len that is not just the count of letters.

▶ Example 1. Let w1 = abcd and w2 = badee. Then p = xa · nb · cc,a · nd · ve · ve is an edit
path transforming w1 to w2. We have that wgt(p) = wgt(xncnvv) = 4 and len(p) = 6.

Applying an edit path to a string. Given a string w over Σ, and an edit path p over ΓΣ
we can now define the result of applying p to w.
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▶ Definition 2. We define a function apply : Σ∗ × Γ∗
Σ → (Σ ∪ {⊥})∗ that given a string w

over Σ, and an edit path p over ΓΣ returns a new string w′ over Σ ∪ {⊥}. If p is a valid edit
path for w it returns a string over Σ, otherwise a string that contains ⊥.

apply(p, w) =



ε if p = w = ε

σ′ · apply(p[2..], w) if p[1]=vσ′

σ′ · apply(p[2..], w[2..]) if p[1]=c(σ,σ′) and w[1]=σ

σ · apply(p[2..], w[2..]) if p[1]=nσ and w[1]=σ

apply(p[2..], w[2..]) if p[1]=xσ and w[1]=σ

⊥ otherwise

We say that a string pij over ΓΣ is an edit path from string si to string sj over Σ if
apply(pij , si) = sj . With a bit of overriding, we say that a string pij over Γ is an edit path
from strings si to sj over Σ if there exists an extension of pij with subscripts from Σ that
results in an edit path from si to sj .

▶ Example 3. Following on Ex. 1, we have that apply(xanbcc,andveve, abcd) = badee, and
that xncnvv is an edit path from abcd to badee.

The normalized edit distance. Let p be an edit path. The cost of p, denoted cost(p) is
defined to be the weight of p divided by the length of p, if the length is not zero, and zero
otherwise. That is, cost(p) = 0 if |p| = 0 and cost(p) = wgt(p)

len(p) otherwise.
Using the definition of cost we can define the notion we study in this paper, namely the

normalized edit distance, ned, of Marzal and Vidal [8].

▶ Definition 4 (The normalized edit distance, ned [8]). The normalized edit distance between
si and sj, denoted ned(si, sj) is the minimal cost of an edit path pij from si to sj. That is,

ned(si, sj) = min {cost(pij) | pij ∈ Γ∗
Σ and apply(pij , si) = sj}

Note that while, in general, wgt may assign arbitrary weights to edit letters, in this paper
we assume the uniform weights as defined above.

▶ Example 5. Let Σ = {a, b, c}, s1 = acbb and s2 = cc. Then the string xnxc denotes an
edit path taking s1, deleting the first letter (a), copying the second letter (c), deleting the
third letter (b), and replacing the fourth letter (b) by c. This edit path indeed transforms s1
to s2. Its cost is 1+0+1+1

4 = 3
4 . It is not hard to verify that this cost is minimal, therefore

ned(s1, s2) = 3
4 .

The alignment view. Recall that distance functions defined by dividing the weight by the
sum, max or min of the given strings does not yield a metric [2,8]. The main contribution of
the paper is to show that the choice to use the length of the edit path in the denominator,
makes the resulting definition, ned, a metric. To understand the motivation behind dividing
by the length of the edit path, note that an edit path can be thought of as defining an
alignment between the given words s1 and s2 by padding the first string with some blank
symbol, denote it _, whenever an insert operation is conducted, and padding the second
string with _ symbols whenever a delete operation is conducted. The resulting words s′

1 and
s′

2 would thus be of the same length, and the weight of the edit path would correspond to
the Hamming distance between the words. (The Hamming distance applies only to words
of same length and counts the number of positions i in which the two words differ.) When
dealing with words of the same length it makes sense to normalize them by dividing by their
length, and the length of the padded words equals the length of the edit paths.
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▶ Example 6. In Ex. 5 we used s1 = acbb, s2 = cc. The edit path xnxc corresponds to the
alignment s′

1 = acbb and s′
2 = _c_c, and since the length of s′

1 and s′
2 is 4 and they differ in

all positions but one the corresponding cost is 3/4.
In Ex. 1, we used w1 = abcd and w2 = badee and considered the edit path xncnvv. This

path correspond to the alignment w′
1 = abcd__ and w′

2 = _badee. Since w′
1 and w′

2 differ in
four out of the six positions, we have that the cost of this path is 4/6.

A metric space. A metric space is an ordered pair (M, d) where M is a set and d : M×M → R
is a metric, i.e., it satisfies the following for all m1, m2, m3 ∈ M:

1. d(m1, m2) = 0 iff m1 = m2;
2. d(m1, m2) = d(m2, m1);

3. d(m1, m3) ≤ d(m1, m2) + d(m2, m3).

The first condition is referred to as identity of indiscernibles, the second as symmetry, the
third as the triangle inequality.

Basic properties of NED. It is not hard to see that ned satisfies the first and second
condition of being a metric. The following proposition establishes that the distance of a string
to itself, according to ned, is zero, and that the distance between two strings is symmetric.

▶ Proposition 7. Let s, s1, s2 ∈ Σ∗. Then
1. ned(s, s) = 0
2. if s1 ̸= s2 then ned(s1, s2) > 0

3. ned(s1, s2) = ned(s2, s1)

Its straight forward proof can be found in the archived version [4].
The challenge is proving that ned satisfies the third condition, the triangle inequality.

We do this in Section 4. Before that we investigate some properties of ned and other edit
distance functions.

3 Properties of the various normalized edit distance functions

3.1 Other edit distance functions
In the introduction we mentioned several edit distance functions known to be a metric. We
use the term edit distance for functions between words to values that are based on delete,
insert and swaps. In general these definition may allow arbitrary weight assignment to edit
letters, but we consider the case of uniform weights. We start by introducing the edit distance
functions, ed, ged, and ced, and then turn to compare their properties, with those of ned.

We start with the commonly used edit distance, introduced by Levenstein [5].

▶ Definition 8 (The edit (Levenstein) distance, ed). The edit distance between si and sj,
denoted ed(si, sj), is the minimal weight of a path pij from si to sj. That is,

ed(si, sj) = min {wgt(pij) | pij ∈ Γ∗
Σ and apply(pij , si) = sj}

This function is a metric, but it completely ignores the lengths of the words, thus it is not
normalized.

We turn to introduce the generalized normalized edit distance proposed and proven to be
a metric by Li and Liu [6].

▶ Definition 9 (The generalized edit distance). ged(si, sj) = 2·ed(si,sj)
|si|+|sj |+ed(si,sj) .
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Last, we define of the contextual edit distance, proposed and proven to be a metric by de
la Higuera and Micó [2]. It starts with a definition of distance between two strings whose
Levenstein distance is 1, from which it builds the distance for an arbitrary set of words, by
looking at a sequence of intermediate transformations.

▶ Definition 10 (The contextual edit distance). Let s, s′ be such that ed(s, s′) = 1 their
contextual edit distance is defined by ced(s, s′) = 1

max(|s|,|s′|) . Note that given ed(s, s′) = 1 the
difference between the lengths of s and s′ is at most one, thus max(|s|, |s′|) ≤ min(|s|, |s′|)+1.

Given a sequence of strings α = (s0, s1, . . . , sk) such that ed(si, si+1) = 1 for all 0 ≤ i < k,
one can define ced(α) =

∑k
i=1 ced(si−1, si). To define the contextual edit distance between

arbitrary strings sx and sy one considers the minimum of ced(α) among all sequence of
strings α = s0, s1, . . . , sk as above such that s0 = sx, sk = sy. That is, ced(sx, sy) =
min

{
ced(α)

∣∣ α = (s0, s1, . . . , sk), s0 = sx, sk = sy, ed(si, si+1) = 1
}

.

3.2 Comparison to other edit distance functions
Comparing ned and ed is easy. The ned distance (like ced and ged) measures the average
number edits, not just the total count. To see why this is needed, consider two short words
x1, x2 that differ in k letters and two long word y1, y2 that also differ in k letters. In the
context of software verification, for example, the latter represent runs that are more similar
to one another than the former. We thus, expect the distance between the ys to be less than
the distances between the xs but this is not the case in ed, as can be observed by inspecting
the following words.

ed(aabcde, abpcg) = 4 ned(aabcde, abpcg) = 4/7
ed(a96b4, a100) = 4 ned(a96b4, a100) = 4/100

We turn to a comparisons of ned with the other normalized edit distances, ged and
ced. Usually, being normalized means that the values of the distance functions are bounded
within a given range, but this is not always the case. The lower bound is clearly 0 for ned,
ged, and ced, since they are metric. The upper value of ned and ged is 1 but the values
for ced are not bounded:

▶ Claim 11. The values of ned and ged cannot exceed 1 and may reach 1, the values of
ced are unbounded.

Proof. For ned the numerator is the weight of an edit path, which is always smaller than the
denominator which is the length of the edit path, thus ned(w1, w2) ≤ 1 for all w1, w2 ∈ Σ∗.
Since ned(ε, a) = 1 the upper bound is 1.

For ged the numerator is twice the weight of the edit path, and the denominator is once
the weight of the edit path, plus the sum of length of the strings which is at least the size
of the edit path, thus clearly at least the weight of the edit path. This shows ged cannot
exceed 1. The fact that ged(ε, a) = 1 shows that 1 is the upper bound.

To see why ced is not bounded consider the sequence of words {ai}i∈N. That is, the
sequence ε, a, aa, aaa, . . .. We have that ced(ε, ai) = 1 + 1

2 + 1
3 + . . . + 1

i . Thus ced(ε, ai) is
the sum of the Harmonic sequence up to the ith element, and since the Harmonic sequence
diverges, ced is unbounded. ◀

Towards the second property of metrics that we consider, recall that the first requirements
of a metric, identity of indiscernibles, is that d(s1, s2) = 0 if and only if s1 = s2. That is, the
distance between two strings (in our case) is zero if and only if it is the exact same string. In
the case of strings, when working with a normalized distance with an upper bound 1, we
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expect the distance to be 1, the maximal possible, if the strings are completely different,
namely they do not have any letter in common, that is, for all σ ∈ Σ if σ appears in s1 it
does not appear in s2 and vice versa. In software verification, for example, this means that
the system produced a run that is completely unrelated to the specification, thus we expect
the distance to be 1, indicating it is as far away as possible from the specification.

Since ced is unbounded, we consider for the purpose of the next property, a slightly
different version, that we call ced’, defined as ced’(s1, s2) = min(1, ced(s1, s2)).2

▶ Property 12 (max variance of antitheticals). Let d : Σ∗ × Σ∗ → [0, 1] be an edit distance
function. We say that d has the property of max variance of antitheticals if d(s1, s2) = 1 if
and only if s1 and s2 have no letter in common.

We show that ned has this property while ged and ced’ do not.3

▶ Claim 13. The property of max variance of antitheticals holds for ned, but does not hold
for ged and ced’.

Proof. Consider aa and bb. Since they have no common letter, we expect their distance to
be 1. The fact that ged(aa, bb) = 2/3 shows that ged violates the property of max variance
of antitheticals.4 Consider a and aaaa. Since they do have a common letter, we expect their
distance to be strictly less than 1. The fact that ced′(a, aaaa) = 1 shows that ced’ violates
the property of max variance of antitheticals.

To see that ned has this property, note that it results in a value of 1 iff the numerator
equals the denominator, i.e., the weight of the edit path is the same as its length; which
holds iff there are no edit letters with weight zero. Since the only zero weight edit letter is
no-change, n, the value of ned is 1 if and only if the words have no common letter. ◀

For the third metric comparison property, consider two words u and v and suppose
d(u, v) = c for the concerned edit distance function d. When considering normalized edit
distance, we expect that d(ui, vi) will not exceed c since by repeating i times the edit
operations for transforming u into v we should be able to transform ui into vi and the
“average” number of edits will not change. It could be that when considering the longer
words ui and vi there is a better sequence of edits, thus we do not expect equality. As before,
our motivation for requiring this property comes from software verification. Specifically,
when considering periodic runs, generated, e.g., by code with loops, one would expect that
the distance between the periodic runs is not larger than the distance between the periods
because an error that repeats regularly should only be counted once in a normalized measure
that models average error rate.

▶ Property 14 (Non escalation of repetitions). Let d be an edit distance function. Let
u, v ∈ Σ∗. If d(uk, vk) ≤ d(u, v) for any k > 1 we say that d does not escalate repetitions.

▶ Claim 15. The ned and ged distances satisfy the property of non escalation of repetitions.
The ced and ced’ distances do not.

2 This is inspired by [7] that explains this choice as follows: “This measure is not normalized to a particular
range. Indeed, for a string of infinite length and a string of 0 length, the contextual normalized edit
distance would be infinity. But so long as the relative difference in string lengths is not too great, the
distance will generally remain below 1.0”.

3 Note that extending this property to require that d(s1, s2) equals the maximal value (be it 1 or more)
only for antitheticals, so that it can be applied to the original ced, would not make ced satisfy it since
ced(ε, a) = 1 < ∞.

4 We note that, moreover, ged(aab, b) is also 2/3 though we expect ged(aab, b) < ged(aa, bb) since the
average number of edits is smaller in the first case.
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Proof. Consider u = aab and v = aaab. The following shows that ced and ced’ escalate
repetitions.

ced((aab)1, (aaab)1) = 1
4 = 0.25

ced((aab)2, (aaab)2) = 1
7 + 1

8 = 15
56 = 0.2678

ced((aab)3, (aaab)3) = 1
10 + 1

11 + 1
12 = 181

660 = 0.2742

To see that ned does not escalate repetitions, assume puv is an optimal edit path
transforming u to v. Since (puv)k, the edit path obtained by repeating k times puv, is an
edit path transforming uk to vk:

ned(uk, vk) ≤ k·wgt(puv)
k·len(puv) = wgt(puv)

len(puv) = ned(u, v).

The same reasoning shows that ged does not escalate repetitions.

ged(uk, vk) ≤ 2k·ed(u,v)
k(|u|+|v|)+k·ed(u,v) = 2·ed(u,v)

|u|+|v|+ed(u,v) = ged(u, v). ◀

The last property we consider is referred to as pure uniformity of operations. While we
assume the weights of delete, insert and substitution are uniform, the resulting edit distance
function may not be purely uniform, in the following sense. Consider two strings s1 and s2
such that s1 is shorter than s2. Then to transform s1 to s2 we would need some insertion
operations. Consider now a word s′

1 that is longer than s1 but not longer than s2 and is
obtained by padding s1 with some new letter σnew in some arbitrary set of positions. Since
insert and substitution weigh the same, we expect d(s1, s2) to be equal to d(s′

1, s2).
To define this formally we use the following notations. Let Σ′ ⊆ Σ and s ∈ Σ∗ we

use πΣ′(s) for the string obtained from s by leaving only letters in Σ′. For instance, if
Σ = {a, b, c} and s = abcbacc then π{a,b} = abba.

▶ Property 16 (pure uniformity). Let Σ, Σ1, Σ2 be disjoints alphabets, and let s1, s2 ∈ Σ∗.
We call d purely uniform if d(s1, s2) = min{d(s′

1, s′
2) | s′

i ∈ (Σ ⊎ Σi)∗ and πΣ(s′
i)=si for i ∈

{1, 2}}.

We can now show that ned satisfies this property while ged and ced do not.

▶ Claim 17. The ned distance is purely uniform. The ged and ced distances are not.

Proof. To see why ged and ced are not purely uniform consider the words s1 = a50,
s2 = a100 and s′

1 = a50c50 and note that π{a,b}(s′
1) = s1. We have that ged(a50, a100) = 2 ·

50/(150+50) = 1/2 whereas ged(a50c50, a100) = 100/(200+100) = 1/3. Considering ced, we
have that ced(a50, a100) =

∑100
i=51

1
i ≈ 0.68817 whereas ced(a50c50, a100) =

∑100
i=51

1
100 = 0.5.

Since all values are below 1, the same is true for ced’.
To show that ned is purely uniform we first note that s1, s2 ∈ Σ∗ implies s1, s2 are in

(Σ ⊎ Σ1)∗ and (Σ ⊎ Σ2)∗, respectively, thus the ≥ direction of the equality in Property 16
clearly holds. For the ≤ direction, we turn to Claim 18 below, which essentially formalized the
intuition provided regarding the alignment view of ned. Thus, given s′

1 and s′
2 establishing

the min in the RHS of Property 16, and p′ ∈ Γ∗ an edit path transforming s′
1 into s′

2, we
can build an edit path p ∈ Γ∗ transforming πΣ(s′

1) into πΣ(s′
2) such that cost(p) ≤ cost(p′).

This shows that ned(s1, s2) ≤ ned(s′
1, s′

2) for every such s′
1, s′

2. Thus ned satisfies the pure
uniformity property. ◀

▶ Claim 18. Let Σ, Σ1, Σ2 be disjoints nonempty alphabets. Let s′
1 ∈ Σ ⊎ Σ1 and s′

2 ∈ Σ ⊎ Σ2
and p′ an edit path transforming s′

1 to s′
2. There exists an edit path p transforming πΣ(s′

1) to
πΣ(s′

2) such that cost(p) ≤ cost(p′).
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4 A Proof of the Triangle Inequality

This section is the main contribution of the paper – showing that ned with uniform costs
satisfies the triangle inequality.

Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) = s2,
apply(p23, s2) = s3. We would like to define a method cmps : Γ∗

Σ × Γ∗
Σ → Γ∗

Σ that given
the two edit paths p12, p23 returns an edit path p13 from s1 to s3. In addition, using the
notations d∗ = wgt(p∗) and l∗ = len(p∗) for ∗ ∈ {12, 23, 13}, we would like to show that
both of the following hold:

d13 ≤ d12 + d23 (1) l13 ≥ max{l12, l23} (2)

From these two equations we can deduce that the cost of the resulting path p13 is at
most the sum of costs of the given paths p12 and p23 proving that ned satisfies the triangle
inequality.

Introducing a new edit letter. To do this we need, for technical reasons, to introduce a
new edit letter, which we denote b (for blank). This is actually an abbreviation of vx, that
is, it signifies that a new letter is added and immediately deleted. We enhance the weight
and length definition from Γ to Γ ∪ {b} as follows.

wgt(γ) =


0 if γ = n

1 if γ ∈ {c, v, x}
2 if γ = b

len(γ) =
{

1 if γ ∈ {n, c, v, x}
2 if γ = b

As before we use the natural extensions of wgt and len from letters to strings and define
cost(p) to be wgt(p)/ len(p).

The compose method. We define a helper function cmpsh that produces a string over
(ΓΣ ∪ {b})∗ (rather than over Γ∗

Σ). Given such a sequence we can convert it into a sequence
over ΓΣ by deleting all b symbols. The method cmpsh : Γ∗

Σ × Γ∗
Σ → (ΓΣ ∪ {b})∗ ∪ {⊥} is

defined inductively, in Def. 19, by scanning the letters of the given edit paths p12, p23. We
say that cmpsh is well defined if it does not return ⊥. We show that, when applied on edit
paths p12 and p23 transforming some s1 into s2 and s2 into s3, respectively, cmpsh is well
defined.

▶ Definition 19. Let p12, p23 be edit paths over ΓΣ. We define cmpsh(p12, p23) inductively
as follows.

cmpsh(p12, p23) =



ε if p12 = p23 = ε (0)
xσ · cmpsh(p12[2..], p23) if p12[1] = xσ (1)
vσ · cmpsh(p12, p23[2..]) if p23[1] = vσ (2)
nσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ, nσ) (3)
c(σ′,σ) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ′ , c(σ′,σ)) (4)
xσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (nσ, xσ) (5)
c(σ1,σ3) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ1,σ2), c(σ2,σ3)) (6)
xσ1 · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ1,σ2), xσ2) (7)
c(σ′,σ) · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (c(σ′,σ), nσ) (8)
vσ · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ, nσ) (9)
vσ2 · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ1 , c(σ1,σ2)) (10)
b · cmpsh(p12[2..], p23[2..]) if (p12[1], p23[1]) = (vσ, xσ) (11)
⊥ otherwise (12)
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(c) An optimal edit path p23 for w2, w3.

p12 = cvnvnn
p23 = vncnxnn
cmpsh(p12, p23) =
= cmpsh(cvnvnn, vncnxnn)
=1 v · cmpsh(cvnvnn, ncnxnn) case (2) ε va

=2 vc · cmpsh(vnvnn, cnxnn) case (8) cb,a nb

=3 vcv · cmpsh(nvnn, nxnn) case (10) vc cc,a

=4 vcvn · cmpsh(vnn, xnn) case (3) nb nb

=− vcvnb · cmpsh(nn, nn) case (11) vb xb

=5 vcvnbn · cmpsh(n, n) case (3) na na

=6 vcvnbnn case (3) nb nb

p13 = h(cmpsh(p12, p23)) = h(vcvnbnn) = vcvnnn

Figure 1 Let w1 = abab, w2 = bcbbbab, w3 = ababab. Figure 1a shows an optimal edit path p12 between w1
to w2, Figure 1c shows an optimal edit path p23 between w2 to w3. Figure 1b shows the edit path p13 composed
from p12 and p23 using Def. 19. The edit operations in Figure 1b are marked with numbers 1 to 6. A number n in
between 1 and 6 in Figure 1a and Figure 1c signifies that the corresponding edge contributed to the construction of
the edge marked n in Figure 1b (thus for the operations corresponding to cases (1) and (2) of Def. 19, there is one
corresponding marking in Figure 1a and Figure 1c and for the others there are two). The labels − in Figure 1a and
Figure 1c correspond to case (11) dealing with adding a letter when going from s1 to s2 and deleting it when going
from s2 to s3, which yields the edit symbol b . Note that p13 is not optimal; still its cost is better than the sum of
the costs of p12 and p23.

We further show that if the resulting string is p13 then applying the function apply to
s1 and the edit path obtained from p13 by deleting all b results in the string s3. Figure 1
shows an example of the application of cmpsh on two given edit paths. In the sequel we will
further show that the desired equations (Equation 1) and (Equation 2) hold.

Note that if we reach case (12) then we cannot claim that the result is an edit path. We
thus first show that if cmpsh is applied to two edit paths p12, p23 such that apply(p12, s1) = s2,
and apply(p23, s2) = s3, then the recursive application of cmpsh(p12, p23) will never reach
the (12) case. That is, cmpsh(p12, p23) is well defined.

▶ Lemma 20. Let s1, s2, s3 ∈ Σ∗ and p12, p23 ∈ Γ∗
Σ be edit paths, such that apply(p12, s1) = s2

and apply(p23, s2) = s3. Then p13 = cmpsh(p12, p23) is well-defined.

Proof. The proof is by structural induction on cmpsh. For the base case, we have that
p12 = p23 = ε. Then p13 = ε. Thus cmpsh reaches case (0) and is well defined.

For the induction step we have p12 ̸= ε or p23 ≠ ε. If p12 = ε then it follows from
the definition of apply that s1 = s2 = ε. Given that apply(p23, ε) is defined we get that
p23[1] = vσ. From the definition of apply we have s3 = σ · apply(p23[2..], s2). Hence
s3[2..] = apply(p23[2..], s2). Therefore, cmpsh reaches case (2) and will never reach case (12)
since from the induction hypothesis it follows that cmpsh(p12, p23[2..]) is well defined.

If p23 = ε we get s2 = s3 = ε and p12[1] = xσ. Hence cmpsh reaches case (1) and similar
reasoning shows that the induction hypothesis holds for the recursive application, and thus
the result is well defined.

Otherwise the first character of p12 is not x and the first character of p23 is not v. We
consider the remaining cases, by examining first the first letter of p12.
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1. Case p12[1] = vσ1 .
From the definition of apply we get that s2 = σ1 · s2[2..] and s2[2..] = apply(p12[2..], s1).

a. Subcase p23[1] = c(σ2,σ3).
From the definition of apply it follows that σ1 = σ2, s3 = σ3 · s3[2..] and s3[2..] =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (10) and the induction hypothesis
holds for the recursive application.

b. Subcase p23[1] = nσ2 .
Similarly, from the definition of apply we get that σ1 = σ2, s3 = σ2 · s3[2..] and
furthermore s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (9) and the
induction hypothesis holds for the recursive application.

c. Subcase p23[1] = xσ2 .
Similarly, from the definition of apply we get that σ1 = σ2 and s3 =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (11) and the induction hypothesis
holds for the recursive application.

2. Case p12[1] = c(σ1,σ2).
From the definition of apply we get that s1 = σ1 · s1[2..], s2 = σ2 · s2[2..] and furthermore
s2[2..] = apply(p12[2..], s1[2..]).

a. Subcase p23[1] = c(σ3,σ4).
From the definition of apply we get that σ2 = σ3, s3 = σ4 · s3[2..] and s3[2..] =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (6) and the induction hypothesis holds
for the recursive application.

b. Subcase p23[1] = nσ3 .
Similarly, from the definition of apply it follows that σ2 = σ3, s3 = σ3 · s3[2..] and
s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (8) and the induction hypo-
thesis holds for the recursive application.

c. Subcase p23[1] = xσ3 .
Similarly, from the definition of apply we get that σ2 = σ3 and s3 =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (7) and the induction hypothesis
holds for the recursive application.

3. Case p12[1] = nσ

From the definition of apply we get that s1 = σ · s1[2..], s2 = σ · s2[2..] and s2[2..] =
apply(p12[2..], s1[2..]).

a. Subcase p23[1] = c(σ1,σ2).
From the definition of apply it follows that σ = σ1, s3 = σ2 · s3[2..] and s3[2..] =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (4) and the induction hypothesis holds
for the recursive application.

b. Subcase p23[1] = nσ2 .
Similarly, from the definition of apply it follows that σ = σ2, s3 = σ2 · s3[2..] and
furthermore s3[2..] = apply(p23[2..], s2[2..]). Thus cmpsh reaches case (3) and the
induction hypothesis holds for the recursive application.

c. Subcase p23[1] = xσ2 .
Similarly, from the definition of apply we get that σ = σ2 and s3 =
apply(p23[2..], s2[2..]). Thus cmpsh reaches case (5) and the induction hypothesis
holds for the recursive application. ◀
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Recall that the cmpsh returns a string over ΓΣ ∪ {b} while apply first argument is
expected to be a string over ΓΣ. We can convert the string returned by cmpsh to a string
over ΓΣ by simply removing the b symbols. To make this precise we introduce the function
h : ΓΣ ∪ {b} → ΓΣ defined as follows h(γ) = ε if γ = b and h(γ) = γ otherwise; and its
natural extension h : (ΓΣ ∪ {b})∗ → Γ∗

Σ defined as h(γ1γ2 · · · γn) = h(γ1)h(γ2) · · · h(γn).
We are now ready to state that cmpsh fulfills its task, namely if it returns p13 then h(p13)

is an edit path from s1 to s3 and its weight and length satisfy Equation 1 and Equation 2.
Note that even if p12 and p23 are optimal, h(p13) is not necessarily an optimal path from
s1 to s3. Since the optimal path is no worse than h(p13), it is enough for our purpose that
h(p13) is better than going through s2.

▶ Proposition 21. Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) = s2,
apply(p23, s2) = s3. Let p13 = cmpsh(p12, p23). Let d∗ = wgt(p∗) and l∗ = len(p∗) for
∗ ∈ {12, 23, 12}. Then the following holds
1. apply(h(p13), s1) = s3 2. d13 ≤ d12 + d23 3. l13 ≥ max{l12, l23}

Proof. The proof is by structural induction on cmpsh. For the base case, we have that
p12 = p23 = ε. Then p13 = ε, by definition of apply we get that s1 = s2 = s3 = ε. Thus
1. apply(h(p13), s1) = apply(ε, ε) = ε = s1 = s3
2. and 3. we have that d13 = 0 ≤ d12 + d23 = 0 and l13 = 0 ≥ max{l12, l23} = 0

For the induction steps, we have p12 ̸= ε or p23 ̸= ε. Recall that p13 = cmpsh(p12, p23).
Thus, from Lem. 20 we can conclude p13 is a string over ΓΣ ∪{b}. Let s′

∗ = s∗[2..], p′
∗ = p∗[2..],

d′
∗ = wgt(p′

∗), l′
∗ = len(p′

∗) for ∗ ∈ {12, 23, 13}. The proof proceeds with the case analysis of
cmpsh, going over cases (1)-(11) of Def. 19.

(1) Here p12[1] = xσ.
Then from apply we have s1 = σ · s′

1, from definition of cmpsh we have p13 = xσ · p′
13

Since s2 = apply(p12, s1) = apply(xσ ·p′
12, σ ·s′

1) = apply(p′
12, s′

1) and apply(p23, s2) = s3,
by applying the induction hypotheses on s′

1, s2, s3 we get
1. apply(h(p′

13), s′
1) = s3 2. d′

13 ≤ d′
12 + d23 3. l′

13 ≥ max{l′
12, l23}

Therefore
1. apply(h(p13), s1) = apply(xσ · h(p′

13), σ · s′
1) = apply(h(p′

13), s′
1) = s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l23} ≥ max{1 + l′

12, l23} = max{l12, l23}.

(2) Here p23[1] = vσ.
Then from apply we have s3 = σ · s′

3, from definition of cmpsh we have p13 = vσ · p′
13.

Since apply(p23, s2) = apply(vσ · p′
23, s2) = σ · apply(p′

23, s2) = s3 = σ · s′
3 we get

apply(p′
23, s2) = s′

3 and apply(p12, s1) = s2, by applying the induction hypotheses on
s1, s2, s′

3 we get
1. apply(h(p′

13), s1) = s′
3 2. d′

13 ≤ d12 + d′
23 3. l′

13 ≥ max{l12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(vσ · h(p′

13), s1) = σ · apply(h(p′
13), s1) = σ · s′

3 = s3
2. d13 = 1 + d′

13 ≤ d12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l12, l′

23} ≥ max{l12, 1 + l′
23} = max{l12, l23}.

(3) Here (p12[1], p23[1]) = (nσ, nσ).
From the definition of cmpsh we have p13 = nσ · p′

13 and from apply we have
apply(p12, s1) = apply(nσ · p′

12, σ · s′
1) = σ · apply(p′

12, s′
1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(nσ · p′

23, σ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.
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Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3 , by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(nσ · h(p′

13), σ · s′
1) = σ · apply(h(p′

13), s′
1) = σ · s′

3 = s3
2. d13 = d′

13 ≤ d′
12 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(4) Here (p12[1], p23[1]) = (nσ′ , c(σ′,σ)).
By definition of compose we get p13 = c(σ′,σ) · p′

13. From apply we have
apply(p12, s1) = apply(nσ′ · p′

12, σ′ · s′
1) = σ′ · apply(p′

12, s′
1) = σ′ · s′

2 = s2 and
apply(p23, s2) = apply(c(σ′,σ) · p′

23, σ′ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3, by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(c(σ′,σ) ·h(p′

13), σ′ ·s′
1) = σ ·apply(h(p′

13), s′
1) = σ ·s′

3 = s3
2. d13 = 1 + d′

13 ≤ d′
12 + 1 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(5) Here (p12[1], p23[1]) = (nσ, xσ).
By definition of compose we get that p13 = xσ · p′

13. From apply we have
apply(p12, s1) = apply(nσ · p′

12, σ · s′
1) = σ · apply(p′

12, s′
1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(xσ · p′

23, σ · s′
2) = apply(p′

23, s′
2) = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s3 , by applying the induction hypotheses

on s′
1, s′

2, s3 we get
1. apply(h(p′

13), s′
1) = s3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(xσ · h(p′

13), σ · s′
1) = apply(h(p′

13), s′
1) = s3

2. d13 = 1 + d′
13 ≤ d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(6) Here (p12[1], p23[1]) = (c(σ1,σ2), c(σ2,σ3)).
By definition of compose we get that p13 = c(σ1,σ3) · p′

13. From apply we have
apply(p12, s1) = apply(c(σ1,σ2) · p′

12, σ1 · s′
1) = σ2 · apply(p′

12, s′
1) = σ2 · s′

2 = s2 and
apply(p23, s2) = apply(c(σ2,σ3) · p′

23, σ2 · s′
2) = σ3 · apply(p′

23, s′
2) = σ3 · s′

3 = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3 , by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(c(σ1,σ3) ·h(p′

13), σ1 ·s′
1) = σ3 ·apply(h(p′

13), s′
1) = σ3s′

3 =
s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d′
23 < 1 + d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(7) Here (p12[1], p23[1]) = (c(σ1,σ2), xσ2).
By definition of compose we get that p13 = xσ1 · p′

13. From apply we have
apply(p12, s1) = apply(c(σ1,σ2) · p′

12, σ1 · s′
1) = σ2 · apply(p′

12, s′
1) = σ2 · s′

2 = s2 and
apply(p23, s2) = apply(xσ2 · p′

23, σ2 · s′
2) = apply(p′

23, s′
2) = s3.
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Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s3 , by applying the induction hypotheses

on s′
1, s′

2, s3 we get
1. apply(h(p′

13), s′
1) = s3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(xσ1 · h(p′

13), σ1 · s′
1) = apply(h(p′

13), s′
1) = s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d′
23 < 1 + d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(8) Here (p12[1], p23[1]) = (c(σ′,σ), nσ).
By definition of compose we get that p13 = c(σ′,σ) · p′

13. From apply we have
apply(p12, s1) = apply(c(σ′,σ) · p′

12, σ′ · s′
1) = σ · apply(p′

12, s′
1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(nσ · p′

23, σ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.

Since apply(p′
12, s′

1) = s′
2 and apply(p′

23, s′
2) = s′

3, by applying the induction hypotheses
on s′

1, s′
2, s′

3 we get
1. apply(h(p′

13), s′
1) = s′

3 2. d′
13 ≤ d′

12 + d′
23 3. l′

13 ≥ max{l′
12, l′

23}.

Therefore
1. apply(h(p13), s1) = apply(c(σ′,σ) ·h(p′

13), σ′ ·s′
1) = σ ·apply(h(p′

13), s′
1) = σ ·s′

3 = s3
2. d13 = 1 + d′

13 ≤ 1 + d′
12 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(9) Here (p12[1], p23[1]) = (vσ, nσ).
By definition of compose we get that p13 = vσ · p′

13. From apply we have
apply(p12, s1) = apply(vσ · p′

12, s1) = σ · apply(p′
12, s1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(nσ · p′

23, σ · s′
2) = σ · apply(p′

23, s′
2) = σ · s′

3 = s3.

Since apply(p′
12, s1) = s′

2 and apply(p′
23, s′

2) = s′
3, by applying the induction hypotheses

on s1, s′
2, s′

3 we get
1. apply(h(p′

13), s1) = s′
3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

1. apply(h(p13), s1) = apply(vσ · h(p′
13), s1) = σ · apply(h(p′

13), s1) = σ · s′
3 = s3

2. d13 = 1 + d′
13 ≤ 1 + d′

12 + d′
23 = d12 + d23

3. l13 = 1 + l′
13 ≥ 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}.

(10) Here (p12[1], p23[1]) = (vσ1 , c(σ1,σ2)).
By definition of compose we get that p13 = vσ2 · p′

13. From apply we have
apply(p12, s1) = apply(vσ1 · p′

12, s1) = σ1 · apply(p′
12, s1) = σ1 · s′

2 = s2 and
apply(p23, s2) = apply(c(σ1,σ2) · p′

23, σ1 · s′
2) = σ2 · apply(p′

23, s′
2) = σ2 · s′

3 = s3.

Since apply(p′
12, s1) = s′

2 and apply(p′
23, s′

2) = s′
3, by applying the induction hypotheses

on s1, s′
2, s′

3 we get
1. apply(h(p′

13), s1) = s′
3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(vσ2 · h(p′

13), s1) = σ2 · apply(h(p′
13), s1) = σ2 · s′

3 = s3
2. d13 = 1 + d′

13 ≤ 1 + d′
12 + d′

23 < 1 + d′
12 + 1 + d′

23 = d12 + d23
3. l13 = 1 + l′

13 ≥ 1 + max{l′
12, l′

23} = max{1 + l′
12, 1 + l′

23} = max{l12, l23}.

(11) Here (p12[1], p23[1]) = (vσ, xσ).
By definition of compose we get that p13 = b · p′

13. From apply we have
apply(p12, s1) = apply(vσ · p′

12, s1) = σ · apply(p′
12, s1) = σ · s′

2 = s2 and
apply(p23, s2) = apply(xσ · p′

23, σ · s′
2) = apply(p′

23, s′
2) = s3.

Since apply(p′
12, s1) = s′

2 and apply(p′
23, s′

2) = s3, by applying the induction hypotheses
on s1, s′

2, s3 we get
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1. apply(h(p′
13), s1) = s3 2. d′

13 ≤ d′
12 + d′

23 3. l′
13 ≥ max{l′

12, l′
23}.

Therefore
1. apply(h(p13), s1) = apply(h(p′

13), s1) = s3

2. d13 = 2 + d′
13 ≤ 1 + d′

12 + 1 + d′
23 = d12 + d23

3. l13 = 2 + l′
13 > 1 + max{l′

12, l′
23} = max{1 + l′

12, 1 + l′
23} = max{l12, l23}. ◀

The sequel makes use of the following lemmas regarding non-negative integers d and l.

▶ Lemma 22. If d ≤ l then d+1
l+1 ≥ d

l

Proof. d+1
l+1 = l(d+1)

l(l+1) ≥ d(l+1)
l(l+1) = d

l . ◀

▶ Lemma 23. If d13 ≤ d12 + d23 and l13 ≥ max{l12, l23} then d12
l12

+ d23
l23

≥ d13
l13

.

Proof. d13
l13

≤ d12+d23
l13

= d12
l13

+ d23
l13

≤ d12
l12

+ d23
l23

. ◀

Recall that cost is defined as wgt divided by len. Let p13 be the string obtained by
compose in Prop. 21. Then by items 2 and 3 we know that

wgt(p13) ≤ wgt(p12) + wgt(p23) (3) len(p13) ≥ max{len(p12), len(p23)} (4)

We can thus conclude from Lem. 23 that the cost of the path obtained by cmpsh is at most
the sum of the costs of the edit paths from which it was obtained, as stated in the following
corollary.

▶ Corollary 24. Let s1, s2, s3 ∈ Σ∗ and p12, p23 be edit paths, such that apply(p12, s1) = s2,
apply(p23, s2) = s3. Let p13 = cmpsh(p12, p23). Then cost(p13) ≤ cost(p12) + cost(p23).

We are not done yet, since p13 contains b symbols, and thus it is not really an edit
path. Let k be the number of b’s in p13. Then wgt(p13) = 2k + wgt(h(p13)) and len(p13) =
2k + len(h(p13)), applying 2k times Lem. 22, we conclude that wgt(p13)

len(p13) ≥ wgt(h(p13))
len(h(p13)) .

▶ Corollary 25. cost(p) ≥ cost(h(p))

▶ Proposition 26. The normalized edit distance obeys the triangle inequality.

Proof. Let s1, s2, s3 ∈ Σ∗ and p12, p23 be optimal edit paths. That is, apply(p12, s1) = s2
and apply(p23, s2) = s3 and ned(s1, s2) = cost(p12) and ned(s2, s3) = cost(p23). Let
p13 = cmpsh(p12, p23). From Cor. 24 we get that cost(p13) ≤ cost(p12) + cost(p23). From
Prop. 21 it holds that h(p13) is a valid edit path over ΓΣ. From Cor. 25 we get that
cost(h(p13)) ≤ cost(p13). By definition of ned as it chooses the minimal cost of an edit path,
ned(s1, s3) ≤ cost(h(p13)). To conclude, we get ned(s1, s3) ≤ ned(s1, s2) + ned(s2, s3). ◀

▶ Theorem 27. The Normalized Levenshtein Distance ned (provided in Def. 4) with uniform
costs (i.e., where the cost of all inserts, deletes and swaps are some constant c) is a metric
on the space Σ∗.

Proof. The first two conditions of being a metric follow from Prop. 7. The third condition,
namely triangle inequality, follows from Prop. 26. ◀
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5 Conclusions

We closed a gap regarding the normalized version of the editing distance proposed by Marzal
and Vidal, denoted here as ned. Marzal and Vidal noted that ned is not a metric in
general and left open the question of whether it is a metric in case all weights are equal.
This open point, spawned two versions of a normalized editing distance that have been
proven to be metrics – ged and ced. We proved that, with uniform weights, ned is also a
metric. To pinpoint the benefits of ned over the other distances we have defined a number of
properties that ned maintains and ced and/or ged do not. The motivation for formulating
the properties as we did comes from formal verification, so is our interest in uniform weights.
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A Appendix

We provide here two proofs that we could not fit in the body of the paper.

▶ Proposition 7 (restated). Let s, s1, s2 ∈ Σ∗. Then
1. ned(s, s) = 0
2. if s1 ̸= s2 then ned(s1, s2) > 0

3. ned(s1, s2) = ned(s2, s1)

Proof. First clearly, if s ̸= ε then n|s| is an edit path from s to s, and thus ned(s, s) = 0
|s| = 0.

Second, if s1 ̸= s2 then any edit path from s1 to s2 must contain at least one non-n character.
Thus, its cost is d

l for some d > 0, implying ned(s1, s2) > 0. Third, assume p12 = γ1γ2 . . . γk

is an edit path from s1 to s2. Define p12 = γ1 γ2 . . . γk where

γ =


nσ if γ = nσ

c(σ2,σ1) if γ = c(σ1,σ2)
xσ if γ = vσ

vσ if γ = xσ
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Then p12 is an edit path from s2 to s1 and the cost they induce is the same. Hence, if p12 is
a minimal edit path from s1 to s2 then p12 is a minimal edit path from s2 to s1 implying
ned(s1, s2) = ned(s2, s1). ◀

▶ Claim 18 (restated). Let Σ, Σ1, Σ2 be disjoints nonempty alphabets. Let s′
1 ∈ Σ ⊎ Σ1

and s′
2 ∈ Σ ⊎ Σ2 and p′ an edit path transforming s′

1 to s′
2. There exists an edit path p

transforming πΣ(s′
1) to πΣ(s′

2) such that cost(p) ≤ cost(p′).

Proof. Let γ ∈ Γ, p′ ∈ Γ∗
Σ∪⊎Σ1⊎Σ2

. We define f : ΓΣ⊎Σ1⊎Σ2 → ΓΣ as follows

f(γ) =


lσ if γ = lσ for some l ∈ {v, x, n} and σ ∈ Σ
cσ,σ′ if γ = cσ,σ′ and σ, σ′ ∈ Σ
vσ if γ = cσ1,σ and σ1 ∈ Σ1, σ ∈ Σ
xσ if γ = cσ,σ2 and σ ∈ Σ, σ2 ∈ Σ2
ε otherwise

Let p = f(p′) where f : Γ∗
Σ⊎Σ1⊎Σ2

→ Γ∗
Σ is the natural extension of f defined by f(γ1 . . . γm) =

f(γ1) . . . f(γn).
It is not hard to see that p is an edit path from πΣ(s′

1) to πΣ(s′
2). Since all removed edit

operations have cost 1 we get from Lem. 22 that cost(p) ≤ cost(p′) ◀
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Abstract

The text-to-pattern Hamming distances problem asks to compute the Hamming distances between a
given pattern of length m and all length-m substrings of a given text of length n ≥ m. We focus on
the well-studied k-mismatch version of the problem, where a distance needs to be returned only if it
does not exceed a threshold k. Moreover, we assume n ≤ 2m (in general, one can partition the text
into overlapping blocks). In this work, we develop data structures for the dynamic version of the
k-mismatch problem supporting two operations: An update performs a single-letter substitution in
the pattern or the text, whereas a query, given an index i, returns the Hamming distance between
the pattern and the text substring starting at position i, or reports that the distance exceeds k.

First, we describe a simple data structure with Õ(1) update time and Õ(k) query time. Through
considerably more sophisticated techniques, we show that Õ(k) update time and Õ(1) query time is
also achievable. These two solutions likely provide an essentially optimal trade-off for the dynamic
k-mismatch problem with mΩ(1) ≤ k ≤

√
m: we prove that, in that case, conditioned on the 3SUM

conjecture, one cannot simultaneously achieve k1−Ω(1) time for all operations (updates and queries)
after nO(1)-time initialization. For k ≥

√
m, the same lower bound excludes achieving m1/2−Ω(1)

time per operation. This is known to be essentially tight for constant-sized alphabets: already
Clifford et al. (STACS 2018) achieved Õ(

√
m) time per operation in that case, but their solution

for large alphabets costs Õ(m3/4) time per operation. We improve and extend the latter result
by developing a trade-off algorithm that, given a parameter 1 ≤ x ≤ k, achieves update time
Õ

(
m
k

+
√

mk
x

)
and query time Õ(x). In particular, for k ≥

√
m, an appropriate choice of x yields

Õ( 3√
mk) time per operation, which is Õ(m2/3) when only the trivial threshold k = m is provided.
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18:2 The Dynamic k-Mismatch Problem

1 Introduction

The development of dynamic data structures for string problems has become a topic of
renewed interest in recent years (see, for example, [2, 3, 4, 5, 10, 11, 13, 15, 20] and references
therein). Our focus will be on approximate pattern matching, where the general problem is
as follows: Given a pattern of length m and a longer text of length n, return the value of a
distance function between the pattern and substrings of the text.

We develop new dynamic data structures for a thresholded version of the Hamming
distance function, known as the k-mismatch function. In this setting, we only need to report
the Hamming distance if does not exceed k. The k-mismatch problem is well studied in the
offline setting, where all alignments of the pattern with the text substring that meet this
threshold must be found. In 1980s, an O(nk)-time algorithm was given [21], and this stood as
the record for a over a decade. However, in the last twenty years, significant progress has been
made. In a breakthrough result, Amir et al. [6] gave O(n

√
k log k)-time and O

(
n + k3 log k

m

)
-

time algorithms, which were subsequently improved to O(n logO(1) m + nk2 log k
m ) time [12],

O
(
n log2 m log σ + nk

√
log m√
m

)
time [16], and finally to O

(
n + min

( nk
√

log m√
m

, nk2

m

))
time [9].

In the dynamic k-mismatch problem, there are two input strings: a pattern P of length
m and a text T of length n ≥ m. For a query at index i, the data structure must return
the Hamming distance between P and T [i . . . i + m) if the Hamming distance is less than k,
and ∞ otherwise. The queries can be interspersed with updates of the form Update(S, i, x),
which assign S[i] := x, where S can be either the pattern or the text. There are two naive
approaches for solving the dynamic problem. The first is to rerun a static offline algorithm
after each update, and then have constant-time queries. The second is to simply modify the
input at each update and compute the Hamming distance naively for each query. Our goal
is to perform better than these naive solutions.

We primarily focus on the case when n = Θ(m) (in general, one can partition the text
into Θ( n

m ) overlapping blocks of length Θ(m)). When k = m and σ = no(1), known upper
bounds and conditional lower bounds match up to a subpolynomial factor: There exists a
dynamic data structure with an O(

√
n log n · σ) upper bound for both updates and queries

and an almost matching n1/2−Ω(1) lower bound [13] conditioned on the hardness of the
online matrix-vector multiplication problem. Although there is no existing work directly on
the dynamic k-mismatch problem we consider, it was shown very recently that a compact
representation of all k-mismatch occurrences can be reported in Õ(k2) time1 after each
O(log n)-time update [11].

We give three data structures for the dynamic k-mismatch problem. The first has update
time of Õ(1) and a query time of Õ(k). The main tool we use is the dynamic strings data
structure [15] which allows enumerating mismatches in O(log n) time each. The second has
update time Õ(k) and a query time of Õ(1). Here, we build on the newly developed generic
solution for the static k-mismatch problem from [11]. The third data structure, optimized
for k ≥

√
n, gives a trade-off between update and query times. The overall approach is a

lazy rebuilding scheme using the state-of-the-art offline k-mismatch algorithm. In order to
achieve a fast solution, we handle instances with many and few 2k-mismatch occurrences
differently. Basing on combinatorial insights developed in the sequence of papers on the
offline and streaming versions of the k-mismatch problem [9, 12, 14, 16, 17], we are able
to achieve update time Õ

(
n
k +

√
nk
x

)
and query time Õ(x) for any trade-off parameter

1 The Õ(·) notation suppresses logO(1) n factors.
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x ∈ [1 . . k] provided at initialization.2 To put the trade-off complexity in context, we note
that, e.g., when k = m, this allows achieving U(n, k) = Q(n, k) = Õ(n2/3), which improves
upon an Õ(n3/4) bound presented in [13] (where only the case of k = m is considered).

We also show conditional lower bounds which are in most cases within subpolynomial
factors of our upper bounds. For the case where the text length is linear in the length of the
pattern, we do this by reducing from the 3SUM conjecture [23]. However, in the case that
the text is much longer than the pattern, our reduction requires the Online Matrix vector
conjecture [18]. Interestingly the lower bound for the superlinear case is asymmetric between
the query and update time.

2 Preliminaries

In this section, we provide the required basic definitions. We begin with the string distance
metric which will be used throughout.

▶ Definition 1 (Hamming Distance). The Hamming distance between two strings S, R of the
same length is defined as HD(S, R) = |{i : S[i] ̸= R[i]}|.

From this point forward, for simplicity of exposition, we will assume that the pattern is
half the length of the text. All our upper bounds are straightforward to generalise to a text
whose length is linear in the length of the pattern. In Theorem 27, we show higher lower
bounds for the case where the text is much longer than the pattern.

We can now define the central dynamic data structure problem we consider in this paper.

▶ Definition 2 (Dynamic k-Mismatch Problem). Let P be a pattern of length m and T be a
text of length n ≤ 2m. For i ∈ [0 . . n−m], a query Query(i) must return HD(T [i . . . i+m), P )
if HD(T [i . . . i + m), P ) ≤ k, and ∞ otherwise. The queries can be interspersed with updates
of the form Update(S, i, x) which assign S[i] := x, where S can be the pattern or the text.

For the remainder of the paper, we use Q(n, k) and U(n, k) to be the time complexity of
Query and Update, respectively. If n > 2m, then a standard reduction yields O(Q(m, k))-time
queries, O(U(m, k))-time updates in T , and O( n

m Q(m, k))-time updates in P .

3 Upper Bounds

In this section, we provide three solutions of the dynamic k-mismatch problem. We start with
a simple application of dynamic strings resulting in Õ(k) query time and Õ(1) update time.

The data structure of Gawrychowski et al. [15] maintains a dynamic family X of strings
of total length N supporting the following updates:3

Insert to X a given string S (in time O(|S| + log N)).
Insert to X the concatenation of two strings already in X (in time O(log N)).
Insert to X an arbitrary prefix or suffix of a string already in X (in time O(log N)).

Queries include O(1)-time computation of the longest common prefix of two strings in X .

2 Throughout this paper, we denote [a . . b] = {i ∈ Z : a ≤ i ≤ b} and [a . . b) = {i ∈ Z : a ≤ i < b}.
3 This data structure is Las-Vegas randomized, and the running times are valid with high probability

with respect to N . A deterministic version, using [1] and deterministic dynamic dictionaries, has an
O(log N)-factor overhead in the running times, which translates to an O(log n)-factor overhead in the
query and update times of all our randomized algorithms for the dynamic k-mismatch problem.
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▶ Theorem 3. There exists a Las-Vegas randomized algorithm for the dynamic k-mismatch
problem satisfying U(n, k) = O(log n) and Q(n, k) = O(k log n) with high probability.

Proof. We maintain a dynamic string collection X of [15] containing P and T . Given that a
string S′ resulting from setting S[i] := x in a string S ∈ X is the concatenation of a prefix
S[0 . . i), the new character x, and a suffix S[i + 1 . . |S|), it is straightforward to construct S′

with O(1) auxiliary strings added to X . Hence, we implement an update in O(log n) time.
Armed with this tool, we perform dynamic k-mismatch queries by so-called “kangaroo

jumps” [21]. That, is we align the pattern with T [i . . i + m), where i is the query position in
the text T , and we repeatedly extend the match we have found so far until we reach a fresh
mismatch. Each longest common extension query can be implemented in O(log n) time. For
this, we extract the relevant suffixes of P and T (we insert them to X in O(log n) time each)
and ask for their longest common prefix (which costs O(1) time). As we stop once k + 1
mismatches have been found or once we have reached the end of the text or pattern, the
total query time is O(k log n). ◀

3.1 Faster Queries, Slower Updates
Given the result above, a natural question is whether there exists an approach with an
efficient query algorithm, in return for a slower update algorithm. We answer affirmatively
in this section based on a recent work of Charalampopoulos et al. [11].

3.1.1 The PILLAR model
Charalampopoulos et al. [11] developed a generic static algorithm for the k-mismatch problem.
They formalized their solution using an abstract interface, called the PILLAR model, which
captures certain primitive operations that can be implemented efficiently in all settings
considered in [11]. Thus, we bound the running times in terms of PILLAR operations – if the
algorithm uses more time than PILLAR operations, we also specify the extra running time.

In the PILLAR model, we are given a family of strings X for preprocessing. The elementary
objects are fragments X[ℓ . . r) of strings X ∈ X . Initially, the model provides access to each
X ∈ X interpreted as X[0 . . |X|). Other fragments can be obtained through an Extract
operation.

Extract(S, ℓ, r): Given a fragment S and positions 0 ≤ ℓ ≤ r ≤ |S|, extract the
(sub)fragment S[ℓ . . r), which is defined as X[ℓ′ + ℓ . . ℓ′ + r) if S = X[ℓ′ . . r′) for X ∈ X .

Furthermore, the following primitive operations are supported in the PILLAR model:
LCP(S, T ): Compute the length of the longest common prefix of S and T .
LCPR(S, T ): Compute the length of the longest common suffix of S and T .
IPM(P, T ): Assuming that |T | ≤ 2|P |, compute the occurrences of P in T , i.e., Occ(P, T ) =
{i ∈ [0 . . |T | − |P |] : P = T [i . . i + |P |)} represented as an arithmetic progression.
Access(S, i): Retrieve the character S[i].
Length(S): Compute the length |S| of the string S.

Among several instantiations of the model, Charalampopoulos et al. [11, Section 7.3]
showed that the primitive PILLAR operations can be implemented in O(log2 N) time on top
of the data structure for dynamic strings [15], which we recalled above. Consequently, we are
able to maintain two dynamic strings P and T subject to character substitutions, achieving
O(log2 n)-time elementary PILLAR operations and O(log n)-time updates.
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▶ Corollary 4. Let T be a dynamic string of length n and P be a dynamic string of length
m ≤ n, both of which can be updated via substitutions of single characters. There exists a
Las-Vegas randomized data structure supporting the PILLAR operations on X = {T, P } in
O(log2 n) time w.h.p. and updates in O(log n) time w.h.p.

3.1.2 The Static k-Mismatch Problem
The (static) k-mismatch problem consists in computing Occk(P, T ) = {i ∈ [0 . . n − m] :
HD(P, T [i . . i + m)) ≤ k}, with each position i ∈ Occk(P, T ) reported along with the
corresponding Hamming distance di := HD(P, T [i . . i + m)). Charalampopoulos et al. [11,
Theorem 3.1 and Corollary 3.5] proved that Occk(P, T ) admits a compact representation:
this set can be decomposed into O

(
n
m ·k2)

disjoint arithmetic progressions so that occurrences
in a single progression share the same Hamming distance di. Moreover, all the non-trivial
progressions (i.e., progressions with two or more terms) share the same difference. The
following algorithm gives this compact representation on the output.

▶ Theorem 5 ([11, Main Theorem 8]). There exists a PILLAR-model algorithm that, given a
pattern P of length m, a text T of length n ≥ m, and a positive integer k ≤ m, solves the
k-mismatches problem in O( n

m · k2 log log k) time using O( n
m · k2) PILLAR operations.

3.1.3 Warm-Up Algorithm
Intuitively, the algorithm of Theorem 5 precomputes the answers to all queries Query(i)
with i ∈ [0 . . n − m]. Hence, a straightforward solution to the dynamic k-mismatch problem
would be to maintain the data structure of Corollary 4, use the algorithm of Theorem 5 after
each update, and then retrieve the precomputed answers for each query asked. The data
structure described below follows this strategy, making sure that the compact representation
of Occk(P, T ) is augmented with infrastructure for efficient random access.

▶ Proposition 6. There exists a Las-Vegas algorithm for the dynamic k-mismatch problem
satisfying U(n, k) = O(k2 log2 n) and Q(n, k) = O(log log n) with high probability.

Proof. We maintain a PILLAR-model implementation of X = {P, T } using Corollary 4; this
costs O(log n) time per update and provides O(log2 n)-time primitive PILLAR operations.

Following each update, we use Theorem 5 so that a space-efficient representation of
Occk(P, T ) is computed in O(k2 log2 n) time (recall that m = Θ(n)). This output is then
post-processed as described below. Let q be the common difference of non-trivial arithmetic
progression forming Occk(P, T ); we set q = 1 if all progressions are trivial. Consider the
indices i ∈ [0 . . n − m] ordered by (i mod q, i), that is, first by the remainder modulo q and
then by the index itself. In this ordering, each arithmetic progression contained in the output
Occk(P, T ) yields a contiguous block of indices i with a common finite answer to queries
Query(i). The goal of post-processing is to store the sequence of answers using run-length
encoding (with run boundaries kept in a predecessor data structure). This way, for each of
the O(k2) arithmetic progressions in Occk(P, T ), the corresponding answers Query(i) can
be set in O(log log n) time to the common value di reported along with the progression. In
total, the post-processing time is therefore O(k2 log log n).

At query time, any requested value Query(i) can be retrieved in O(log log n) time. ◀

3.1.4 Structural Insight
In order to improve the update time, we bring some of the combinatorial insight from [11].
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A string is primitive if it is not a string power with an integer exponent strictly
greater than 1. For a non-empty string Q, we denote by Q∞ an infinite string obtained
by concatenating infinitely many copies of Q. For an arbitrary string S, we further set
HD(S, Q∗) = HD(S, Q∞[0 . . |S|)). In other words, the HD(·, ·∗) function generalizes HD(·, ·)
in that the second string is cyclically extended to match the length of the first one. We use
the same convention to define M(S, Q∗) = {i : S[i] ̸= Q∞[i]} = {i : S[i] ̸= Q[i mod |Q|]}.

▶ Proposition 7 ([11, Theorems 3.1 and 3.2]). Let P be a pattern of length m, let T be a text
of length n ≤ 3

2 m, and let k ≤ m be a positive integer. At least one of the following holds:
1. The number of k-mismatch occurrences of P in T is | Occk(P, T )| ≤ 864k.
2. There is a primitive string Q of length |Q| ≤ m

128k such that HD(P, Q∗) < 2k.
Moreover, if Occk(P, T ) ̸= ∅ and (2) holds, then a fragment T ′ = T [min Occk(P, T ) . . m +
max Occk(P, T )] satisfies HD(T ′, Q∗) < 6k and every position in Occk(P, T ′) is a mul-
tiple of |Q|.

We also need a characterization of the values HD(P, T ′[j|Q| . . m + j|Q|)).

▶ Proposition 8 ([11, Lemma 3.3 and Claim 3.4]). Let P be a pattern of length m, let T be
a text of length n, and let k ≤ m be a positive integer. For any non-empty string Q and
non-negative integer j ≤ n−m

|Q| , we have

HD(P, T [j|Q| . . m + j|Q|)) = |M(P, Q∗)| + |M(T, Q∗) ∩ [j|Q| . . m + j|Q|)| − µj ,

where

µj =
∑

ρ∈M(P,Q∗),τ∈M(T,Q∗) : τ=j|Q|+ρ

2 − HD(T [τ ], P [ρ]).

3.1.5 Improved Solution
The idea behind achieving O(k log2 n) update time is to run Theorem 5 once every k updates,
but with a doubled threshold 2k instead of k. The motivation behind this choice of parameters
is that if the current instance P, T is obtained by up to k substitutions from a past instance
P̄ , T̄ , then HD(P, P̄ ) + HD(T, T̄ ) ≤ k yields Occk(P, T ) ⊆ Occ2k(P̄ , T̄ ). Consequently, the
algorithm may safely return ∞ while answering Query(i) for any position i /∈ Occ2k(P̄ , T̄ ).

If the application of Theorem 5 identifies few 2k-mismatch occurrences, then we maintain
the Hamming distances di at these positions throughout the k subsequent updates. Otherwise,
we identify Q and T ′, as defined in Proposition 7, as well as the sets M(P, Q∗), M(T ′, Q∗),
and the values µj of Proposition 8 so that the distances HD(P, T ′[j|Q| . . m + j|Q|)) can be
retrieved efficiently.

The latter task requires extending Theorem 5 so that the string Q and the sets M(P, Q∗),
M(T ′, Q∗) can be constructed whenever there are many k-mismatch occurrences.

▶ Lemma 9. There exists a PILLAR-model algorithm that, given a pattern P of length m,
a text T of length n ≤ 3

2 m, and a positive integer k ≤ m, returns Occk(P, T ) along with
the corresponding Hamming distances provided that | Occk(P, T )| ≤ 864k, or, otherwise,
returns the fragment T ′ = T [min Occk(P, T ) . . m + max Occk(P, T )], a string Q such that
HD(P, Q∗) < 2k, HD(T ′, Q∗) < 6k, and Occk(P, T ′) consists of multiples of |Q|, and
sets M(P, Q∗), M(T ′, Q∗). The algorithm takes O(k2 log log k) time plus O(k2) PILLAR
operations.
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Proof. First, we use Theorem 5 in order to construct Occk(P, T ) in a compact representation
as O(k2) arithmetic progressions. Based on this representation, both | Occk(P, T )| and T ′

can be computed in O(k2) time. If | Occk(P, T )| ≤ 864k, then Occk(P, T ) is converted to a
plain representation (with each position reported explicitly along with the corresponding
Hamming distance). Otherwise, we use the Analyze(P, k) procedure of [11, Lemma 4.4].
This procedure costs O(k) time in the PILLAR model, and it detects a structure within the
pattern P that can be of one of three types. A possible outcome includes a primitive string
Q such that |Q| ≤ m

128k and HD(P, Q∗) < 8k. Moreover, the existence of a structure of
either of the other two types contradicts | Occk(P, T )| ≤ 864k (due to [11, Lemmas 3.8 and
3.11]), and so does 2k ≤ HD(P, Q∗) < 8k (due to [11, Lemma 3.14]). Consequently, we are
guaranteed to obtain a primitive string Q such that |Q| ≤ m

128k and HD(P, Q∗) < 2k, which
are precisely the conditions in the second case of Proposition 7. Thus, we conclude that
HD(T ′, Q∗) < 6k and that Occk(P, T ′) consists of multiples of |Q|. It remains to report
M(P, Q∗) and M(T ′, Q∗). For this task, we employ [11, Corollary 4.2], whose time cost in
the PILLAR model is proportional to the output size, i.e., O(k) for both instances. ◀

We are now ready to describe the dynamic algorithm based on the intuition above.
Initially, we only improve the amortized query time from O(k2 log2 n) to O(k log2 n).

▶ Proposition 10. There exists a Las-Vegas randomized algorithm for the dynamic k-
mismatch problem satisfying Q(n, k) = O(log log n) and U(n, k) = O(k + log n) with high
probability, except that every kth update costs O(k2 log2 n) time w.h.p.

Proof. The algorithm logically partitions its runtime into epochs, with k updates in each
epoch. The first update in every epoch costs O(k2 log2 n) time, and the remaining updates
cost O(k + log n) time. A representation of X = {P, T } supporting the PILLAR operations
(Corollary 4) is maintained throughout the execution of the algorithm, while the remaining
data is destroyed after each epoch.

Once the arrival of an update marks the beginning of a new epoch, we run the algorithm
of Lemma 9 with a doubled threshold 2k. This procedure costs O(k2 log2 n) time, and it
may have one of two types of outcome.

The first possibility is that it returns a set O := Occ2k(P, T ) of up to 1728k positions,
with the Hamming distance di := HD(P, T [i . . i + m)) reported along with each position
i ∈ O. Since di > 2k for i /∈ O and any update may decrease di by at most one, we are
guaranteed that Query(i) = ∞ can be returned for i /∈ O for the duration of the epoch.
Consequently, the algorithm only maintains di for i ∈ O. For each of the subsequent updates,
the algorithm iterates over i ∈ O and checks if di needs to be changed: If the update involves
P [j], then both the old and the new value of P [j] are compared against T [i + j]. Similarly, if
the update involves T [j] and j ∈ [i . . i + m), then both the old and the new value of T [j] are
compared against P [i − j]. Thus, the update time is O(k) and the query time is O(1).

The second possibility is that the algorithm of Lemma 9 results in a fragment T ′ = T [ℓ . . r),
a string Q, and the mismatching positions M(P, Q∗) and M(T ′, Q∗). We are then guaranteed
that each 2k-mismatch occurrence of P in T starts at a position i ∈ [ℓ . . r − m] congruent
to ℓ modulo |Q|. We call these positions relevant. As in the previous case, Query(i) = ∞
can be returned for irrelevant i for the duration of the epoch. The Hamming distances di

at relevant positions are computed using Proposition 8. For this, we maintain M(P, Q∗),
M(T ′, Q∗), and all non-zero values µj for j ∈ [0 . . ⌊ r−ℓ−m

|Q| ⌋]. Moreover, M(T ′, Q∗) is stored
in a predecessor data structure, and each element of M(T ′, Q∗) maintains its rank in this set.
Every subsequent update affects at most one element of M(P, Q∗) or M(T ′, Q∗), so these
sets can be updated in O(1) time. Maintaining the predecessor data structure costs further
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O(log log n) time, and maintaining the ranks costs up to O(HD(T ′, Q∗)) time. In order to
update the values µj , we proceed as follows. If the update involves a character P [ρ], we iterate
over τ ∈ M(T ′, Q∗). If j = τ − ρ|Q| is an integer between 0 and r−ℓ−m

|Q| , we may need to
update the entry µj (which costs constant time). An update involving T [ℓ+ τ ] is processed in
a similar way. Overall, the update time is O(log n + HD(T ′, Q∗) + HD(P, Q∗)) = O(log n + k)
because HD(P, Q∗) + HD(T ′, Q∗) < 2k + 6k + k = 9k holds for the duration of the epoch.

As for the query Query(i), we return ∞ if i is irrelevant, i.e., i < ℓ, i > r − m, or
i ̸≡ ℓ (mod |Q|). Otherwise, we set j = i−ℓ

|Q| and, according to Proposition 8, return
|M(P, Q∗)| + |M(T ′, Q∗) ∩ [j|Q| . . j|Q| + m)| − µj . The second term is determined in
O(log log n) time using the predecessor data structure on top of M(T ′, Q∗) as well as the
rank stored for each element of this set. ◀

Finally, we show how to achieve worst-case O(k log2 n) update time.

▶ Theorem 11. There exists a Las-Vegas randomized algorithm for the dynamic k-mismatch
problem satisfying Q(n, k) = O(log log n) and U(n, k) = O(k log2 n) with high probability.

Proof. We maintain two instances of the algorithm of Proposition 10, with updates forwarded
to both instances, but queries forwarded to a single instance that is currently active.

The algorithm logically partitions its runtime into epochs, with 1
2 k updates in each epoch.

For the two instances, the time-consuming updates are chosen to be the first updates of every
even and odd epoch, respectively. Once an instance has to perform a time-consuming update,
it becomes inactive (it buffers the subsequent updates and cannot be used for answering
queries) and stays inactive for the duration of the epoch. The work needed to perform the
time-consuming update is spread across the time allowance for the first half of the epoch, with
the time allowance for the second half of the epoch used in order to clear the accumulated
backlog of updates (by processing updates at a doubled rate). During this epoch, the other
(active) instance processes updates and queries as they arrive in O(k log2 n) and O(log log n)
worst-case time, respectively. ◀

3.2 Trade-off between Update Time and Query Time
The next natural question is the existence of a trade-off between the run-times of The-
orems 3 and 11. Due to Theorem 23 (in Section 4), the answer is likely negative for
k ≪

√
n. Nevertheless, for k ≫

√
n, the trade-off presented below simultaneously achieves

Q(n, k), U(n, k) = k1−Ω(1).
We first recall some combinatorial properties originating from previous work on the

k-mismatch problem [9, 12, 14, 17]. The description below mostly follows [17, Section 3].

▶ Definition 12 ([12]). Let X be a string and let d be a non-negative integer. A positive
integer ρ ≤ |X| is a d-period of X if HD(X[ρ . . |X|), X[0 . . |X| − ρ)) ≤ d.

Recall that Occk(P, T ) = {i : HD(P, T [i . . i + m)) ≤ k} for a pattern P and text T .

▶ Lemma 13 ([12]). If i, i′ ∈ Occk(P, T ) are distinct, then ρ := |i′ − i| is a 2k-period of P .
Moreover, if n ≤ 2m, then ρ is a (8k + ρ)-period of T [min Occk(P ) . . m + max Occk(P )].

Recall that the L0-norm of a function f : Z → Z defined as ∥f∥0 = |{x : f(x) ̸= 0}|. The
convolution of two functions f, g : Z → Z with finite L0-norms is a function f ∗ g : Z → Z
such that

[f ∗ g](i) =
∑
j∈Z

f(j) · g(i − j).



R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 18:9

For a string X over Σ and a symbol c ∈ Σ, the characteristic function of X and c is
Xc : Z → {0, 1} such that Xc(i) = 1 if and only if X[i] = c. For a string X, let XR denote
X reversed. The cross-correlation of strings X and Y over Σ is a function X ⊗ Y : Z → Z
such that

X ⊗ Y =
∑
c∈Σ

Xc ∗ Y R
c .

▶ Fact 14 ([14, Fact 7.1]). For i ∈ [m−1 . . n), we have [T ⊗P ](i) = |P |−HD(P, T (i−m . . i]).
For i < 0 and for i ≥ m + n, we have [T ⊗ P ](i) = 0.

By Fact 14, [T ⊗ P ](i + m − 1) suffices to compute HD(P, T [i . . i + m)) for i ∈ [0 . . n − m].
The backward difference of a function f : Z → Z due to ρ ∈ Z+ is ∆ρ[f ](i) = f(i) − f(i − p).

▶ Observation 15 ([14, Observation 7.2]). If a string X has a d-period ρ, then∑
c∈Σ

∥∆ρ[Xc]∥0 ≤ 2(d + ρ).

Our computation of T ⊗ P is based on the following lemma:

▶ Lemma 16 (See [17, Lemma 6]). For every pattern P , text T , and positive integer ρ, we
have ∆ρ[∆ρ[T ⊗ P ]] =

∑
c∈Σ ∆ρ[Tc] ∗ ∆ρ[P R

c ]. Consequently, for every i ∈ Z,

[T ⊗ P ](i) =
∞∑

j=0
(j + 1) ·

[∑
c∈Σ

∆ρ[Tc] ∗ ∆ρ[P R
c ]

]
(i − jρ).

▶ Theorem 17. There exists a deterministic algorithm for the dynamic k-mismatch problem
with U(n, k) = O

(√
nk
x + n

k

)
and Q(n, k) = Õ(x), where x is a trade-off parameter that can

be set in [1 . . k].

Proof. We solve the problem using a lazy rebuilding scheme similar to that in the proof
of Theorem 11. Hence, we can afford update time Õ

(
n + k

√
n

)
every k updates. Thus, if

an incoming update marks the beginning of a new epoch (lasting for k updates), we run
a (static) 2k-mismatch algorithm [9, 16], resulting in O := Occ2k(P, T ) and the Hamming
distances di = HD(P, T [i . . i + m)) for each i ∈ O. This takes Õ(n + k

√
n) time. As in the

proof of Proposition 10, since Occk(P, Q) ⊆ O holds for the duration of the epoch, we can
safely return ∞ for Query(i) with i /∈ O. We distinguish two cases.
|O| ≤ n

k
: We maintain the distances di for i ∈ O. As noted above, Occk(P, T ) ⊆ O even

after k updates. We now observe that any update requires only updating the mismatches
for every element of O, with O(1) cost per element and O( n

k ) total; the queries are
handled by finding the answer stored for i ∈ O, at Õ(1) cost.

|O| > n
k

: We set ρ to be the distance between two closest elements of O; we have ρ ≤ k

due to |O| > n
k . By Lemma 13, ρ is a 4k-period of P and a 17k-period of T ′ :=

T [min O . . m + max O). Moreover, Occk(P, T ) ⊆ O ⊆ [min O . . max O] holds for the
duration of the epoch, so all k-mismatch occurrences of P in T remain contained in T ′.

We have thus reduced our problem to answering queries and performing updates for P

and T ′. Moreover, we have a positive integer ρ ≤ k which is initially a 4k-period of P and
a 17k-period of T ′, and, after k updates, it remains a 6k-period of P and 19k-period of T ′.
Let us define the weight of c ∈ Σ as ∥∆ρ[P R

c ]∥0 + ∥∆ρ[T ′
c]∥0; by Observation 15, the total

weight across c ∈ Σ remains O(k).
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We proceed as follows. We maintain ∆ρ(P R
c ) ∗ ∆ρ(T ′

c) for each letter c ∈ Σ separately,
and the sum ∆ρ[∆ρ[T ⊗ P ]] =

∑
c∈Σ ∆ρ(P R

c ) ∗ ∆ρ(T ′
c). For each remainder i mod ρ, the

values ∆ρ[∆ρ[T ⊗ P ]](i) are stored in a data structure that allows queries for prefix sums
(both unweighted and weighted by ⌊i/ρ⌋) so that [T ⊗ P ](i) can be retrieved efficiently
using Lemma 16. Every update to P or T incurs updates to ∆ρ(P R

c ) or ∆ρ(T ′
c), in O(1)

places in total (two for each letter involved in the substitution). We buffer the updates to
those convolutions of (potentially) sparse functions during subepochs of x updates, and then
we recompute values of ∆ρ(P R

c ) ∗ ∆ρ(T ′
c) amortized during the next x updates. We fix a

threshold value t (specified later), and iterate through letters c ∈ Σ.
If a letter c had weight at least t or accumulated at least t updates, we recompute the
corresponding convolution from scratch, at the cost of Õ(n) time per each such heavy
letter.
Otherwise, updates are processed one by one, at the cost of Õ(t) time per update.

There are O( k+x
t ) heavy letters, which is Õ( k

t ) since x ≤ k. Thus, the total cost Õ( nk
t + xt)

is minimized when t =
√

nk
x and gives Õ(

√
nkx) time per subepoch, or Õ

(√
nk
x

)
time per

update.
To perform queries, we retrieve [T ⊗ P ](i + m − 1) using Lemma 16 and the data

structure maintaining ∆ρ[∆ρ[T ⊗ P ]] to recover the number of matches last time we stored
the convolutions. Next, we scan through the list of at most 2x updates to potentially update
the answer. ◀

To put the trade-off complexity in context, we note that e.g., when k = m, it is possible
to achieve U(n, k), Q(n, k) = Õ(n2/3). This improves over Õ(n3/4) presented in [13].

4 Lower Bounds

In this section, we give conditional lower bounds for the dynamic k-mismatch problem based
on the 3SUM conjecture [23]. For the 3SUM problem, we use the following definition.

▶ Definition 18 (3SUM Problem). Given three sets A, B, C ⊆ [−N . . N) of total size
|A| + |B| + |C| = n, decide whether there exist a ∈ A, b ∈ B, c ∈ C such that a + b + c = 0.

Henceforth, we consider algorithms for the word RAM model with w-bit machine
words, where w = Ω(log N). In this model, there is a simple O(n2)-time solution for
the 3SUM problem. This can be improved by log factors [7], with the current record being
O((n2/ log2 n)(log log n)O(1)) time [8].

▶ Conjecture 19 (3SUM Conjecture). For every constant ε > 0, there is no Las-Vegas
randomized algorithm solving the 3SUM problem in O(n2−ε) expected time.

As a first step, we note that the 3SUM problem remains hard even if we allow for
polynomial-time preprocessing of A. The following reduction is based on [22, Theorem 13].

▶ Lemma 20. Suppose that, for some constants d ≥ 2 and ε > 0, there exists an algorithm
that, after preprocessing integers n, N ∈ Z+ and a set A ⊆ [−N . . N) in O(nd) expected time,
given sets B, C ⊆ [−N . . N) of total size |A| + |B| + |C| ≤ n, solves the underlying instance
of the 3SUM problem in expected O(n2−ε) time. Then, the 3SUM conjecture fails.

Proof. We shall demonstrate an algorithm solving the 3SUM problem in O(n2−ε̂) time, where
ε̂ = min( 1

2 , ε
2(d−1) ) > 0. Let g =

⌊
n

d−1.5
d−1

⌋
. We construct a decomposition A =

⋃g
i=1 Ai into

disjoint subsets such that |Ai| ≤
⌈

1
g |A|

⌉
and max Ai < min Ai′ hold for i, i′ ∈ [1 . . g] with

i < i′. Similarly, we also decompose B =
⋃g

j=1 Bj and C =
⋃g

k=1 Ck.
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Next, we construct T = {(i, j, k) ∈ [1 . . g]3 : min Ai + min Bj + min Ck ≤ 0 ≤ max Ai +
max Bj + max Ck}. Observe that if a + b + c = 0 for (a, b, c) ∈ A × B × C, then the triple
(i, j, k) ∈ [1 . . g]3 satisfying (a, b, c) ∈ Ai × Bj × Ck clearly belongs to T . Moreover, T can
be constructed in O(g2 log g + |T |) time by performing a binary search over k ∈ [1 . . g]
for all (i, j) ∈ [1 . . g]2. To provide a worst-case bound on this running time, we shall
prove that |T | = O(g2). For this, let us define the domination order ≺ on [1 . . g]3 so that
(i, j, k) ≺ (i′, j′, k′) if and only if i < i′, j < j′, and k < k′. Observe that T is an ≺-antichain
and that [1 . . g]3 can be covered with O(g2) ≺-chains. Hence, |T | = O(g2) holds as claimed.

Let n̂ :=
⌈

1
g |A|

⌉
+

⌈
1
g |B|

⌉
+

⌈
1
g |C|

⌉
= O( n

g ). We preprocess (n̂, N, Ai) for each i ∈

[1 . . g], at the cost of O(gn̂d) = O( nd

gd−1 ) = O( nd

nd−1.5 ) = O(n1.5) time. Then, for each
triple (i, j, k) ∈ T , we solve the underlying instance of the 3SUM problem, at the cost of
O(g2n̂2−ε) = O(g2 n2−ε

g2−ε ) = O(n2−εgε) = O(n2−ε+ε d−1.5
d−1 ) = O(n2− ε

2(d−1) ) expected time in
total. As noted above, it suffices to return YES if and only if at least one of these calls
returns YES. ◀

Our lower bounds also rely on the following variant of the 3SUM problem.

▶ Definition 21 (3SUM+ Problem). Given three sets A, B, C ⊆ [−N . . N) of total size
|A| + |B| + |C| = n, report all c ∈ C such that a + b + c = 0 for some a ∈ A and b ∈ B.

The benefit of using 3SUM+ is that it remains hard for N ≥ n2+Ω(1) (as shown in [19]); in
comparison, regular 3SUM is known to be hard only for N ≥ n3. The following proposition
generalizes the results of [19] (allowing for preprocessing of A); its proof relies on the
techniques of [7].

▶ Proposition 22. Suppose that, for some constants d ≥ 2 and ε, δ > 0, there exists an
algorithm that, after O(nd)-time preprocessing of integers n, N ∈ Z+, with N ≤ n2+δ, and a
set A ⊆ [−N . . N), given sets B, C ⊆ [−N . . N) of total size |A| + |B| + |C| ≤ n, solves the
underlying 3SUM+ instance in expected O(n2−ε) time. Then, the 3SUM conjecture fails.

Proof. We shall demonstrate an algorithm violating the 3SUM conjecture via Lemma 20. If
the input instance already satisfies N ≤ n2+δ, there is nothing to do. Thus, we henceforth
assume N > n2+δ. Let v = ⌈log 3N⌉ and u =

⌊
log n2+δ

⌋
. In the preprocessing, we draw

a uniformly random odd integer α ∈ [0 . . 2v), which defines a hash function h : Z →
[0 . . 2u) with h(x) =

⌊
αx mod 2v

2v−u

⌋
for x ∈ Z. The key property of this function is that

(h(a) + h(b) + h(c) − h(a + b + c)) mod 2u ∈ {0, −1, −2} holds for all a, b, c ∈ Z. At the
preprocessing stage, we also preprocess (n, 2u, h(A)) for the hypothetical 3SUM+ algorithm
(note that 2u ≤ n2+δ). Overall, the preprocessing stage costs O(nd) time.

In the main phase, we solve the following 3SUM+ instances, each of size at most n and
over universe [−2u . . 2u), denoting X + y := {x + y : x ∈ X}:

(h(A), h(B), h(C)),
(h(A), h(B), h(C) − 2u + 2),
(h(A), h(B), h(C) − 2u + 1),
(h(A), h(B), h(C) − 2u),
(h(A), h(B) − 2u, h(C) − 2u + 2),
(h(A), h(B) − 2u, h(C) − 2u + 1),
(h(A), h(B) − 2u, h(C) − 2u);

this step costs O(n2−ε) time. Combining the results of these calls, in O(n) time we derive

S := {c ∈ C : h(a) + h(b) + h(c) ∈ {0, 2u − 2, 2u − 1, 2u, 2 · 2u − 2, 2 · 2u − 1, 2 · 2u}}.

CPM 2022



18:12 The Dynamic k-Mismatch Problem

Finally, for each c ∈ S, we check in O(n) time whether a + b + c = 0 holds for some a ∈ A

and b ∈ B. Upon encountering the first witness c ∈ S, we return YES. If no witness is found,
we return NO.

Let us analyze the correctness of this reduction. If we return YES, then clearly a+b+c = 0
holds for some a ∈ A, b ∈ B, and c ∈ C. For the converse implication, suppose that a+b+c = 0
holds for some a ∈ A, b ∈ B, and c ∈ C. Then, (h(a) + h(b) + h(c) − h(a + b + c)) mod 2u =
(h(a) + h(b) + h(c)) mod 2u ∈ {0, −1, −2}. Given that h(a), h(b), h(c) ∈ [0 . . 2u), this means
that h(a) + h(b) + h(c) ∈ {0, 2u − 2, 2u − 1, 2u, 2 · 2u − 2, 2 · 2u − 1, 2 · 2u}, i.e., c ∈ S.
Consequently, we are guaranteed to return YES while processing c ∈ S at the latest.

It remains to bound the expected running time. For this, it suffices to prove that there
are, in expectation, O(n1−δ) triples (a, b, c) ∈ A × B × C such that a + b + c ̸= 0 yet
h(a) + h(b) + h(c) ∈ {0, 2u − 2, 2u − 1, 2u, 2 · 2u − 2, 2 · 2u − 1, 2 · 2u} (in particular, this means
that, in expectation, S contains at most O(n1−δ) non-witnesses; verifying all of them costs
O(n2−δ) expected time in total). Specifically, we shall prove that each triple satisfies the
aforementioned condition with probability O(n−2−δ).

Due to the fact that (h(a) + h(b) + h(c) − h(a + b + c)) mod 2u ∈ {0, −1, −2}, the bad
event holds only if a + b + c ̸= 0 yet h(a + b + c) ∈ {0, 1, 2, 2u − 2, 2u − 1}. Let a + b + c = 2tβ

for an integer t ∈ Z≥0 and odd integer β ∈ Z. Due to |a + b + c| ≤ 3N ≤ 2v, we must have
t ∈ [0 . . v).

If t > v − u + 1, then h(a + b + c) is uniformly random odd multiple of 2t−v+u within
[0 . . 2u). Hence, Pr[h(a + b + c) ∈ {0, 1, 2, 2u − 2, 2u − 1}] = 0.
If t = v − u + 1, then h(a + b + c) is a uniformly random odd multiple of 2 within [0 . . 2u).
Hence, Pr[h(a + b + c) ∈ {0, 1, 2, 2u − 2, 2u − 1}] ≤ 2

2v−2 = 8
2v .

If t = v − u, then h(a + b + c) is a uniformly random odd multiple of 1 within [0 . . 2u).
Hence, Pr[h(a + b + c) ∈ {0, 1, 2, 2u − 2, 2u − 1}] ≤ 2

2v−1 = 4
2v .

If t < v − u, then h(a + b + c) is a uniformly random element of [0 . . 2u). Hence,
Pr[h(a + b + c) ∈ {0, 1, 2, 2u − 2, 2u − 1}] ≤ 5

2v .
Overall, the probability is bounded by 8

2v = O(n−2−δ). ◀

We are now in a position to give the lower bound for the dynamic k-mismatch problem.

▶ Theorem 23. Suppose that, for some constants p > 0, ε > 0, and 0 < c < 1
2 , there exists a

dynamic k-mismatch algorithm that solves instances satisfying k = ⌈mc⌉ using initialization
in O(np) expected time, updates in O(k1−ε) expected time, and queries in O(k1−ε) expected
time. Then, the 3SUM conjecture fails. This statement remains true when updates are
allowed in either the pattern or the text (but not both).

Proof. We shall provide an algorithm contradicting Proposition 22 for δ = 1−2c
2c and d = p

c .
Suppose that the task is to solve a size-n̂ instance of the 3SUM+ problem with A, B, C ⊆
[−N . . N). We set m =

⌈
n̂1/c

⌉
(so that k = ⌈m⌉c ≥ n̂), and n = 2m, and we initialize

a pattern to P = 0m and a text to T = 0n. Observe that m ≥ n̂1/c ≥ N
1

c(2+δ) = N
2

1+2c .
If N

2
1+2c < 2N , then N = O(1), and we can afford to solve the 3SUM+ instance naively.

Otherwise, we are guaranteed that m ≥ 2N , and we proceed as follows:
we set P [a + N ] := 1 for each a ∈ A;
we set T [2N − b] := 1 for each b ∈ B.

Finally, for each element c ∈ C, we perform a query at position c + N , and report c if and
only if HD(P, T [c + N . . c + N + m)) < HD(P, 0m) + HD(T [c + N . . c + N + m), 0m). Due
to the fact that HD(P, 0m) + HD(T [c + N . . c + N + m), 0m) ≤ |A| + |B| ≤ n̂ = k, this can
be decided based on the answer to the query. Equivalently, we report c ∈ C if and only if
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P [i] = T [c + N + i] = 1 holds for some i ∈ [0 . . N), i.e., T [a + c + 2N ] = 1 for some a ∈ A,
or, equivalently, −a − c ∈ B, i.e., a + b + c = 0 for some b ∈ B. This proves the correctness
of the algorithm.

As for the running time, note that the preprocessing phase costs O(np) = O(mp) =
O(n̂

p
c ) = O(n̂d) expected time. The main phase, on the other hand, involves O(n̂) updates

and queries, which cost O(n̂ · k1−ε) = O(n̂2−ε) expected time in total. By Proposition 22,
this algorithm for 3SUM+ would violate the 3SUM conjecture.

If the updates are allowed in the text only, we set up the pattern during the preprocessing
phase based on the fact that the target value of P depends on A only. If the updates are
allowed in the pattern only, we exchange the roles of A and B and set up the text during the
preprocessing phase. ◀

Next, we note that the lower bound can be naturally extended to c ≥ 1
2 .

▶ Corollary 24. Suppose that, for some constants p > 0, ε > 0, and 0 < c ≤ 1, there
exists a dynamic k-mismatch algorithm that solves instances satisfying k = ⌈mc⌉ using
initialization in O(np) expected time, updates in O(min(

√
m, k)1−ε) expected time, and

queries in O(min(
√

m, k)1−ε) expected time. Then, the 3SUM conjecture fails. This statement
remains true when updates are allowed in either the pattern or the text (but not both).

Proof. When c < 1
2 , the result holds directly due to Theorem 23. When c ≥ 1

2 , we prove that
the 3SUM conjecture would be violated through Theorem 23 with ĉ = 1−ε

2−ε and ε̂ = ε
2 . Since

the k̂-mismatch problem with k̂ = ⌈m⌉ĉ can be simulated using an instance of the k-mismatch
problem with k = ⌈m⌉c, we note that, in the former setting, the queries and updates can
be hypothetically implemented in O((

√
m)1−ε) = O(k̂ 1−ε

2ĉ ) = O(k̂ 2−ε
2 ) = O(k̂1−ε̂) expected

time, violating the 3SUM conjecture via Theorem 23. ◀

4.1 Lower Bound for m ≪ n

While most of the work in this paper focuses on the case where the length of the pattern is
linear in the length of the text, for completeness, we provide a lower bound that is only of
interest when the pattern is considerably shorter. Our lower bound is conditioned on the
Online Matrix-Vector Multiplication conjecture [18], which is often used in the context of
dynamic algorithms.

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, we are given as
input a Boolean matrix M ∈ {0, 1}n×n. Then, a sequence of n vectors v1, . . . , vn ∈ {0, 1}n

arrives in an online fashion. For each such vector vi, we are required to output Mvi before
receiving vi+1.

▶ Conjecture 25 (OMv Conjecture [18]). For any constant ϵ > 0, there is no O(n3−ϵ)-time
algorithm that solves OMv correctly with probability at least 2

3 .

We use the following simplified version of [18, Theorem 2.2].

▶ Theorem 26 ([18]). Suppose that, for some constants γ, ε > 0, there is an algorithm that,
given as input a matrix M ∈ {0, 1}p×q, with q = ⌊pγ⌋, preprocesses M in time polynomial in
p · q, and then, presented with a vector v ∈ {0, 1}q, computes Mv in time O(p1+γ−ε) correctly
with probability at least 2

3 . Then, the OMv conjecture fails.

Theorem 26 lets us derive our lower bound for the dynamic k-mismatch problem.
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▶ Theorem 27. Suppose that, for some constants γ, ε > 0, there is a dynamic k-mismatch
algorithm that solves instances satisfying k = 2

⌊
( n

m )γ
⌋
, with preprocessing in O(nO(1)) time,

updates of the pattern in O(( n
m )1−ε) time, and queries in O(k1−ε) time, providing correct

answers with high probability. Then, the OMv conjecture fails.

Proof. Given a matrix M ∈ {0, 1}p×q, we set m = 3q, n = 3pq, and k = 2q (so that
k = 2q = 2 ⌊pγ⌋ = 2

⌊
( n

m )γ
⌋

holds). At the preprocessing phase, we initially set P = 0m and
T = 0n. As for the text, for each i ∈ [0 . . p) and j ∈ [0 . . q), we set T [3iq + 3j . . 3iq + 3j + 3)
to 100 if M [i, j] = 0 and to 111 if M [i, j] = 1.

When a vector v arrives, the pattern is set as follows: for each j ∈ [0 . . q), we set
P [3j . . 3j + 3) to 001 if v[j] = 0 and to 111 if v[j] = 1. This requires O(q) update calls
to our dynamic data structure. Queries are then made at position im for all i ∈ [0 . . p).
By definition of the Hamming distance, HD(100, 001) = HD(100, 111) = HD(111, 001) = 2,
whereas HD(111, 111) = 0; therefore, the only time that the returned Hamming distance
will be less than k = 2q is when M [i, j] = v[j] = 1 for some j ∈ [1 . . q], i.e., (Mv)[i] = 1.
Therefore, the OMv product can be computed by making O(p) queries and O(q) updates
to the dynamic k-mismatch data structure as before. The total cost of these operations
is O(pq1−ε + qp1−ε) = O(p1+γ(1−ε) + p1+γ−ε) = O(p1+γ−min(1,γ)ε). By Theorem 26 with
ε̂ = min(1, γ)ε, this would violate the OMv conjecture. ◀

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic texts.

In SODA, pages 819–828, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338645.
2 Amihood Amir and Itai Boneh. Update query time trade-off for dynamic suffix arrays. In

Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on
Algorithms and Computation, ISAAC 2020, volume 181 of LIPIcs, pages 63:1–63:16. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ISAAC.2020.63.

3 Amihood Amir and Itai Boneh. Dynamic suffix array with sub-linear update time and
poly-logarithmic lookup time. CoRR, 2021. arXiv:2112.12678.

4 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition
detection in a dynamic string. In ESA, volume 144 of LIPIcs, pages 5:1–5:18, 2019. doi:
10.4230/LIPIcs.ESA.2019.5.

5 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Longest common substring made fully dynamic. In ESA, volume 144 of LIPIcs, pages 6:1–6:17,
2019. doi:10.4230/LIPIcs.ESA.2019.6.

6 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with
k mismatches. Journal of Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)
00097-X.

7 Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3sum.
Algorithmica, 50(4):584–596, 2008. doi:10.1007/s00453-007-9036-3.

8 Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)-convolution, and
some geometric 3SUM-hard problems. ACM Transactions on Algorithms, 16(1):7:1–7:23, 2020.
doi:10.1145/3363541.

9 Timothy M. Chan, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. Ap-
proximating text-to-pattern Hamming distances. In STOC, pages 643–656. ACM, 2020.
doi:10.1145/3357713.3384266.

10 Panagiotis Charalampopoulos, Paweł Gawrychowski, and Karol Pokorski. Dynamic longest
common substring in polylogarithmic time. In ICALP, volume 168 of LIPIcs, pages 27:1–27:19,
2020. doi:10.4230/LIPIcs.ICALP.2020.27.

http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.4230/LIPIcs.ISAAC.2020.63
http://arxiv.org/abs/2112.12678
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.4230/LIPIcs.ESA.2019.6
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1145/3363541
https://doi.org/10.1145/3357713.3384266
https://doi.org/10.4230/LIPIcs.ICALP.2020.27


R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 18:15

11 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In FOCS, pages 978–989, 2020. doi:10.1109/
FOCS46700.2020.00095.
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Abstract
Indexable elastic founder graphs have been recently proposed as a data structure for genomics
applications supporting fast pattern matching queries. Consider segmenting a multiple sequence
alignment MSA[1..m, 1..n] into b blocks MSA[1..m, 1..j1], MSA[1..m, j1 + 1..j2], . . . , MSA[1..m, jb−1 +
1..n]. The resulting elastic founder graph (EFG) is obtained by merging in each block the strings
that are equivalent after the removal of gap symbols, taking the strings as the nodes of the block
and the original MSA connections as edges. We call an elastic founder graph indexable if a node
label occurs as a prefix of only those paths that start from a node of the same block. Equi et al.
(ISAAC 2021) showed that such EFGs support fast pattern matching and studied their construction
maximizing the number of blocks and minimizing the maximum length of a block, but left open the
case of minimizing the maximum number of distinct strings in a block that we call graph height. For
the simplified gapless setting, we give an O(mn) time algorithm to find a segmentation of an MSA
minimizing the height of the resulting indexable founder graph, by combining previous results in
segmentation algorithms and founder graphs. For the general setting, the known techniques yield a
linear-time parameterized solution on constant alphabet Σ, taking time O(mn2 log|Σ|) in the worst
case, so we study the refined measure of prefix-aware height, that omits counting strings that are
prefixes of another considered string. The indexable EFG minimizing the maximum prefix-aware
height provides a lower bound for the original height: by exploiting exploiting suffix trees built
from the MSA rows and the data structure answering weighted ancestor queries in constant time of
Belazzougui et al. (CPM 2021), we give an O(mn)-time algorithm for the optimal EFG under this
alternative height.
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1 Introduction

String matching in a text and its variants are classic problems in computer science, with
a myriad of applications such as biological sequence analysis. The generalization of the
string matching problem concerned with searching strings in a labeled graph has gained
more and more importance in computational biology, and for a good reason: the rapidly
increasing number of sequenced data makes it possible to capture the variation of many
species, populations, and cancer genomes, for example forming the so-called pangenome
of a species [5]. A central challenge of pangenomics is then to provide the computational
tools to swap a single reference genome with a pangenomic representation of hundreds –
if not thousands – of genomes in the established analysis tasks [19, 24, 25, 13, 17, 7, 20].
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Figure 1 An elastic founder graph (middle) induced from a MSA segmentation (left). This EFG
is semi-repeat-free, meaning that each node label appears only as prefix of paths starting from the
same block. Thus, we say it is indexable since it supports fast pattern matching. On the right, the
modification of the EFG suggested by the prefix-aware height, compacting labels that are prefixes of
others in the same block: we reserve its study as future work.

The most popular representation for a pangenome is a graph whose paths spell the input
genomes, and the basic primitive required on such pangenome graphs is to be able to search
occurrences of query strings (short reads) as subpaths of the graph. On this front, research
efforts have been met with theoretical roadblocks: string matching in labeled graphs cannot
be solved in sub-quadratic time even for simple graph classes, unless the Orthogonal Vectors
Hypothesis (OVH) is false [8]; under OVH, no polynomial-time indexing scheme of a graph
can support sub-quadratic time queries [9]; identifying if a graph belongs to the class of
Wheeler graphs, that are easy to index, is NP-complete [14]. Therefore, practical tools deploy
various heuristics or use other pangenome representations as a basis.

The pangenomic representation at the heart of the elastic founder graph (EFG), proposed
by Mäkinen et al. [18] and Equi et al. [10], is then to assume as input a multiple sequence
alignment, a matrix MSA[1..m, 1..n] composed of m rows that are strings of length n, drawn
from an alphabet Σ plus a special “gap” symbol where each column represents an aligned
position of the characters of the rows. As seen in Figure 1, the EFG is then created by choosing
a segmentation of the MSA, that is, a partition of the columns in consecutive blocks: the
strings in each block become the nodes of the block, and the edges are defined by the original
row connections. If the node labels do not appear as prefix of any other path than those
starting at the same block, then the so-called semi-repeat-free property holds and the graph
supports an index structure for fast pattern matching [18, 10]. Equi et al. [10] also show that
an indexability property like this one is required to have pattern matching in sub-quadratic
time, since the OVH-based lower bound holds even when restricted to EFGs induced by MSA
segmentations. Mäkinen et al. [18] gave an O(mn) time algorithm constructing an indexable
EFG minimizing the maximum block length, given a gapless MSA[1..m, 1..n]. Equi et al. [10]
extended the result to general MSAs, obtaining O(mn log m) time algorithms for the same
optimization and for maximizing the number of blocks, and we recently improved these
two results to O(mn) time [22]. We refer the reader to the aforementioned papers for the
connections of the approach to Elastic Degenerate Strings and Wheeler graphs.

In this paper, we continue the study of indexable EFGs and focus on optimizing the height
of the resulting graph. This measure is defined as the maximum number of distinct strings
(i.e. nodes) in a block, and in the example of Figure 1 (middle) this measure is equal to 3,
as the second and last blocks have 3 nodes. In Section 2, we provide the basic definitions
around EFGs. In Section 3, we introduce the algorithms to find an MSA segmentation
minimizing the height of the resulting indexable EFG: for the gapless case, we show how
the left-to-right segmentation algorithm by Norri et al. exploiting left extensions [21] can be
combined with the computation of the minimal left extensions by Equi et al. [18] to obtain
an O(mn) algorithm in the case where |Σ| ∈ O(m); since left extensions cannot be used in
the general case, we develop an equivalent left-to-right solution exploiting meaningful right
extensions that is also correct in the case with gaps. In the general case, the number of these
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extensions is O(mn2) and computing them takes O(mnα log|Σ|) time, where α is the length
of the longest run in the MSA where a row spells a prefix of the string spelled by another
row and, unfortunately, α ∈ Θ(n) in the worst case. Hence, we continue with a different
generalization of the gapless height that we call prefix-aware height, equal to the maximum
number of distinct strings in a block but omitting strings that are prefixes of others in such
block. In the example of Figure 1, this measure is equal to 2. The number of meaningful
right extensions is O(mn) for this refined height, so in Section 4 we obtain an O(mn) time
solution on general MSAs: the segmentation minimizing the maximum prefix-aware height
provides a useful lower bound on the optimal segmentation under the original height. The
linear time is achieved thanks to the computation of the generalized suffix tree built from
the MSA rows, its symmetrical prefix tree counterpart, and the constant-time navigation
between the two offered by the suffix tree data structure of Belazzougui et al. answering
weighted ancestor queries [2]. We leave it for future work to study whether the modified
EFG suggested by our refined height, as seen in Figure 1, supports an adapted version of the
index for fast pattern matching queries.

2 Definitions

We follow the notation of Equi et al. [10].

Strings. We denote integer intervals by [x..y]. Let Σ = [1..σ] be an alphabet of size |Σ| = σ.
A string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn, where Σn denotes the set of
strings of length n over Σ. In this paper, we assume that σ is always smaller or equal to the
length of the strings we are working with. The reverse of T , denoted with T −1, is the string
T read from right to left. A suffix (prefix) of string T [1..n] is T [x..n] (T [1..y]) for 1 ≤ x ≤ n

(1 ≤ y ≤ n). A substring of string T [1..n] is T [x..y] for 1 ≤ x ≤ y ≤ n. The length of a string
T is denoted |T | and the empty string ε is the string of length 0. In particular, substring
T [x..y] where y < x is the empty string. For convenience, we denote with Σ∗ and Σ+ the set
of finite strings and finite nonempty strings over Σ, respectively. We say that a substring
T [x..y] is proper if it is non-empty and different from T . String Q occurs in T if Q = T [x..y];
we say that x is the starting position (occurrence) of Q in T , and y is the ending position
(ending occurrence). The lexicographic order of two strings A and B is naturally defined
by the order of the alphabet: A < B iff A[1..y] = B[1..y] and A[y + 1] < B[y + 1] for some
y ≥ 0. If y + 1 > min(|A|, |B|), then the shorter one is regarded as smaller. However, we
usually avoid this implicit comparison by adding an end marker $ /∈ Σ to the strings and we
consider $ to be the lexicographically smallest character. The concatenation of strings A and
B is denoted A ·B, or just AB.

Elastic founder graphs. MSAs can be compactly represented by elastic founder graphs, the
vertex-labeled graphs that we formalize in this section.

A multiple sequence alignment MSA[1..m, 1..n] is a matrix with m strings drawn from
Σ ∪ {−}, each of length n, as its rows. Here, − /∈ Σ is the gap symbol. For a string
X ∈ (Σ ∪ {−})∗, we denote spell(X) the string resulting from removing the gap symbols
from X. If an MSA does not contain gaps then we say it is gapless, otherwise we say that
it is a general MSA. Given I ⊆ [1..m], we denote with MSA[I, 1..n] the MSA obtained by
considering only rows MSA[i, 1..n] with i ∈ I.

Let P be a partitioning of [1..n], that is, a sequence of subintervals P = [x1..y1],
[x2..y2], . . . , [xb..yb] where x1 = 1, yb = n, and xj = yj−1 + 1 for all j > 2. A seg-
mentation S of MSA[1..m, 1..n] based on partitioning P is the sequence of b sets Sk =

CPM 2022
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{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} for 1 ≤ k ≤ b; in addition, we require for a (proper)
segmentation that spell(MSA[i, xk..yk]) is not an empty string for any i and k. We call set
Sk a block, while MSA[1..m, xk..yk] or just [xk..yk] is called a segment. The length of block
Sk is L(Sk) = yk − xk + 1 and its height is H(Sk) = |Sk|. Since each block is derived
from a segment [x..y], we denote segment length and height with L(MSA[1..m, x..y]) and
H(MSA[1..m, x..y]) or just L([x..y]) and H([x..y]), respectively.

Segmentation naturally leads to the definition of a founder graph through the block graph
concept.

▶ Definition 1 (Block Graph). A block graph is a graph G = (V, E, ℓ) where ℓ : V → Σ+ is a
function that assigns a string label to every node and for which the following properties hold:
1. set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b, that is, V = V 1 ∪

V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i ̸= j;
2. if (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1; and
3. if v, w ∈ V i then |ℓ(v)| = |ℓ(w)|, and if v, w ∈ V i and v ̸= w then ℓ(v) ̸= ℓ(w).
For gapless MSAs, block Sk equals segment MSA[1..m, xk..yk], and in that case the founder
graph is a block graph induced by segmentation S [18]. The idea is to have a graph in which
the nodes represent the strings in S while the edges retain the information of how such
strings can be recombined to spell any sequence in the original MSA.

For general MSAs with gaps, we consider the following extension.

▶ Definition 2 (Elastic block and founder graphs). We call a block graph elastic if its
third condition is relaxed in the sense that each V i can contain non-empty variable-length
strings. An elastic founder graph (EFG) is an elastic block graph G(S) = (V, E, ℓ) induced
by a segmentation S of MSA[1..m, 1..n] as follows: for each 1 ≤ k ≤ b we have Sk =
{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} = {ℓ(v) : v ∈ V k}. It holds that (v, w) ∈ E if and only if
there exist k ∈ [1..b−1], i ∈ [1..m] such that v ∈ V k, w ∈ V k+1, and spell(MSA[i, xk..yk+1]) =
ℓ(v)ℓ(w).

For example, in the general MSA[1..4, 1..13] of Figure 1, the segmentation based on parti-
tioning [1..4], [5..9], [10..14] induces an EFG G(S) = (V 1 ∪ V 2 ∪ V 3, E, ℓ) where the nodes in
V 1, V 2, and V 3 have labels of variable length. As noted by Equi et al. [10], block graphs are
connected to Generalized Degenerate Strings [1] and elastic founder graphs are connected to
Elastic Degenerate Strings [3].

By definition, (elastic) founder and block graphs are acyclic. For convention, we interpret
the direction of the edges as going from left to right. Consider a path P in G(S) between
any two nodes. The label ℓ(P ) of P is the concatenation of the labels of the nodes in the
path. Let Q be a query string. We say that Q occurs in G(S) if Q is a substring of ℓ(P ) for
any path P of G(S).

▶ Definition 3 ([18]). EFG G(S) is repeat-free if each ℓ(v) for v ∈ V occurs in G(S) only
as a prefix of paths starting with v.

▶ Definition 4 ([18]). EFG G(S) is semi-repeat-free if each ℓ(v) for v ∈ V occurs in G(S)
only as a prefix of paths starting with w ∈ V , where w is from the same block as v.

For example, the EFG of Figure 1 is not repeat-free, since AGC occurs as a prefix of two
distinct labels of nodes in the same block, but it is semi-repeat-free since all node labels
ℓ(v) with v ∈ V k occur in G(S) only starting from block V k, or they do not occur at all
elsewhere in the graph. These definitions also apply to general elastic block graphs and to
elastic degenerate strings as their special case.
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Basic tools. A trie or keyword tree [6] of a set of strings is a rooted directed tree with
outgoing edges of each node labeled by distinct symbols such that there is a root-to-leaf
path spelling each string in the set; the shared part of the root-to-leaf paths of two different
leaves spell the common prefix of the corresponding strings. In a compact trie, the maximal
non-branching paths of a trie become edges labeled with the concatenation of labels on the
path. The suffix tree of T ∈ Σ∗ is the compact trie of all suffixes of string T$. Such tree
takes linear space and can be constructed in linear time so that when reading the leaves from
left to right, the suffixes are listed in their lexicographic order [12]. A generalized suffix tree
is one built on a set of m strings [15]. In this case, string T above is the concatenation of
the strings after appending a unique end marker $i to each string1, with 1 ≤ i ≤ m.

Let Q[1..m] be a query string. If Q occurs in T , then the locus or implicit node of Q

in the suffix tree of T is (v, k) such that Q = XY , where X is the string spelled from the
root to the parent of v and Y is the prefix of length k of the edge from the parent of v to
v. The leaves of the subtree rooted at v, or the leaves covered by v, are then all the suffixes
sharing the common prefix Q. Let aX and X be paths spelled from the root of a suffix tree
to nodes v and w, respectively; then, one can store a suffix link from v to w. For suffix
trees, a weighted ancestor query asks for the computation of the implicit or explicit node
corresponding to substring T [x..y] of the text, given x and y.

String B[1..n] from a binary alphabet is called a bitvector. Operation rank(B, i) returns
the number of 1s in B[1..i]. Operation select(B, j) returns the index i containing the j-th 1
in B. Both queries can be answered in constant time using an index constructible in linear
time and requiring o(n) bits of space in addition to the bitvector itself [16].

3 Construction of EFGs of minimum height

Recall that in the absence of gaps the semi-repeat-free and repeat-free notions (Definitions 3
and 4) are equivalent, and the strings in a block induced by a segment cannot have variable
length. In this section, we study the construction of EFGs under the goal of minimizing
the maximum block height. Indeed, after showing that semi-repeat-free EFGs are easy to
index for fast pattern matching, Equi et al. [10] extended the previous results for the gapless
setting showing that semi-repeat-free EFGs are equivalent to specific segmentations of the
MSA: the semi-repeat-free property has to be checked only against the MSA, and not the
final EFG. We recall these arguments in Section 3.1, along with the resulting recurrence to
compute an optimal segmentation under three score functions: i. maximizing the number of
blocks; ii. minimizing the maximum length of a block; and iii. minimizing the maximum
height of a block.

In the gapless repeat-free setting, scores i. and ii. admit the construction of indexable
founder graphs in O(mn) time, thanks to previous research on founder graphs and MSA
segmentations [18, 21, 4]. In Section 3.2 we combine these works to obtain an O(mn) time
solution for score iii. as well: the optimal segmentation is found mainly by computing
the meaningful left extensions, that is, the positions x1 > · · · > xk where the height of
repeat-free segment [xi..y] increases, with y ∈ [1..n]. In the general and semi-repeat-free
setting, extending a segment to the left can violate the semi-repeat-free property and the
height can decrease. Thus, Equi et al. in [10] gave O(n)- and O(n log log n)-time algorithms
for scores i. and ii., respectively, exploiting the semi-repeat-free right extensions after a

1 For our purposes, the suffix tree of the concatenated strings is functionally equivalent to the “trimmed”
generalized suffix tree seen in Figure 3.
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common O(mn log m)-time preprocessing of the MSA. We recently improved the second
algorithm to O(n) time and the preprocessing to O(mn), reaching global linear time [22].
In Section 3.3, we develop a similar algorithm for the construction of a semi-repeat-free
segmentation processing the meaningful right extensions. Although the number of these
extensions is O(n2) in total, we manage to provide a parameterized linear-time solution
providing an upper bound based on the length of the longest run where any two rows
spell strings that are one prefix of the other. Instead, an alternative notion of height, the
prefix-aware height, generates O(mn) meaningful prefix-aware right extensions: they can be
processed in the same fashion as the original height to obtain an optimal segmentation, and
we will show how to compute them efficiently in Section 4.

3.1 Optimal EFGs correspond to optimal segmentations

Consider a segmentation S = S1, S2, . . . , Sb inducing a semi-repeat-free EFG G(S) = (V, E, ℓ),
as per Definition 2. It is easy to see that the strings occurring in G(S) are a superset of the
substrings of the MSA rows: for example, string CACTAGA occurs in the EFG of Figure 1 but
it does not occur in any row of the original MSA. These new strings, as it was proven by
Mäkinen et al. [18] and Equi et al. [10], do not affect the semi-repeat-free property. Intuitively,
this is because they involve three or more vertices of G(S).

▶ Lemma 5 (Characterization, gapless setting [18]). We say that a segment [x..y] of a gapless
MSA[1..m, 1..n] is repeat-free if string MSA[i, x..y] occurs in the MSA only at position x of
any row. Then G(S) is repeat-free if and only if all segments of S are repeat-free.

▶ Lemma 6 (Characterization [10]). We say that segment [x..y] of a general MSA[1..m, 1..n]
is semi-repeat-free if for any i, i′ ∈ [1..m] string spell(MSA[i, x..y]) occurs in gaps-removed
row spell(MSA[i′, 1..n]) only at position g(i′, x), where g(i′, x) is equal to x minus the number
of gaps in MSA[i′, 1..x − 1]. Similarly, [x..y] is repeat-free if the possible occurrence of
spell(MSA[i, 1..n]) in row i′ at position g(i′, x) also ends at position g(i′, y). Then G(S) is
semi-repeat-free if and only if all segments of S are semi-repeat-free.

Thanks to Lemmas 5 and 6, we can compute recursively the score s(j) of an optimal
segmentation of prefix MSA[1..m, 1..j] under our three scoring schemes, using semi-repeat-free
segments, that is, respecting the global semi-repeat-free property on the whole MSA:

s(j) =
⊕

j′ : 0≤j′<j s.t.
MSA[1..m,j′+1..j] is

semi-repeat-free

E
(
s(j′), j′, j

)
(1)

where operator
⊕

and function E extend the optimal partial solutions, and they depend
on the desired scoring scheme. Indeed, for s(j) to be equal to the optimal score of a
segmentation: i. maximizing the number of blocks, set

⊕
= max and g(s(j′), j′, j) =

s(j′) + 1; for a correct initialization set s(0) = 0 and where there is no semi-repeat-free
segmentation set s(j) = −∞; ii. minimizing the maximum block length, set

⊕
= min and

g(s(j′), j′, j) = max(s(j′), L([j′ + 1..j])) = max(s(j′), j − j′); set s(0) = 0 and if there is no
semi-repeat-free segmentation set s(j) = +∞. iii. minimizing the maximum block height,
set

⊕
= min and g(s(j′), j′, j) = max(s(j′), H([j′ + 1..j])); set s(0) = 0 and if there is no

semi-repeat-free segmentation set s(j) = +∞.
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3.2 The linear time solution for the gapless setting

For gapless MSAs, an O(mn) solution for the construction of segmentations minimizing the
maximum block height has been found by Norri et al. [21] for the case where the length of a
block is limited by a given lower bound L, rather than with the repeat-free property. This
result holds under the assumption that Σ is an integer alphabet of size O(m). In this section,
we combine the algorithm by Norri et al. with the computation of values v(j) – that we call
the minimal left extensions – by Mäkinen et al. [18], obtaining a linear-time solution to the
construction of repeat-free founder graphs minimizing the maximum block height.

▶ Observation 7 (Monotonicity of left extensions [21, 8]). Given a gapless MSA[1..m, 1..n],
for any 1 ≤ x ≤ y ≤ n we say that [x..y] is a left extension of suffix MSA[1..m, y + 1..n].
Then:

if [x..y] is repeat-free then [x′..y] is repeat-free for all x′ < x;
m ≥ H([x′..y]) ≥ H([x..y]) for all x′ < x.

Thus, for each j ∈ [1..n] we define value v(j) as the greatest column index smaller or equal
to j such that [v(j)..j] is repeat-free, and we say that v(j) or [v(j)..j] is the minimal left
extension of MSA[1..m, j + 1..n]. If there is no valid left extensions then v(j) = −∞.

▶ Definition 8 (Meaningful left extensions [21, 8]). Given a gapless MSA[1..m, 1..n], for any
j ∈ [1..n] we denote with Lj = ℓj,1, . . . , ℓj,cj

the meaningful (repeat-free) left extensions of
MSA[1..m, j + 1..n], meaning the strictly decreasing sequence of all positions smaller than or
equal to j such that:

ℓj,cj
< · · · < ℓj,2 < ℓj,1 = v(j), so that Lj captures all repeat-free left extensions of

MSA[1..m, j + 1..n];
H([ℓj,k..j]) > H([ℓj,k + 1..j]) for 2 ≤ k ≤ cj , so that each ℓj,k marks a column where the
height of the left extension increases; it follows from Observation 7 that |Lj | = cj ≤ m.

If MSA[1..m, j + 1..n] has no repeat-free left extension, we define Lj = () and cj = 0.
Otherwise, for completeness we define ℓj,cj+1 = −1.

Under score iii. Equation (1) can be rewritten using Lj = ℓj,1, . . . , ℓj,cj
as follows:

s(j) = min
k∈[1..cj ]

max
(

min
j′∈[ℓj,k+1+1..ℓj,k]

s(j′), H
(
[ℓj,k..j]

))
(2)

and s(j) = +∞ if cj = 0, so knowing values Lj , H([ℓj,k..j]), and minj′∈[ℓj,k+1+1..ℓj,k] s(j′)
for k ∈ [1..cj ] makes it possible to compute s(j) in O(m) time. On one hand, given a fixed
length L, Norri et al. [21] developed an algorithm to compute these values under the variant
of Definition 8 considering segments of length at least L – instead of repeat-free segments
– in O(mn) total time. On the other hand, Mäkinen et al. [18] developed a linear-time
algorithm to compute values v(j) of a gapless MSA. The two solutions can be combined by
finding values v(j) with the latter, and by using the values as a dynamic lower bound on the
minimum accepted segment length. Since the algorithm we develop in Section 3.3 for the
general setting also solves this problem, using the symmetrically defined right extensions, we
will not describe such modification in this paper.

▶ Theorem 9. Given a gapless MSA[1..m, 1..n] from an integer alphabet Σ of size O(m), an
optimal repeat-free segmentation of MSA[1..m, 1..n] minimizing the maximum block height
can be computed in time O(mn).
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3.3 Revisiting the linear time solution for right extensions
For MSAs with gaps and under the semi-repeat-free notion, the monotonicity of left extensions
(Observation 7) fails [11, Table 1]: fixing j ∈ [1..n], left-extensions MSA[1..m, x..y] are not
always semi-repeat-free, or valid, from x = v(j) backwards, and their height could decrease
when extending a valid segment. For example, in the MSA of Figure 1, segment [5..9] is
semi-repeat-free but segment [4..9] is not, and H([5..9]) < H([6..9]). In this section, we
resolve the former of the two issues, developing an algorithm exploiting right extensions and
computing the optimal MSA segmentation from left to right, in the same fashion as [10,
Algorithms 1 and 2] and [23, Algorithm 2]. We will discuss the complexity of computing
these right extensions in Section 3.4.

▶ Observation 10 (Semi-repeat-free right extensions [10]). Given general MSA[1..m, 1..n], for
any 0 ≤ x < y ≤ n we say that [x + 1..y] is an extension of prefix MSA[1..m, 1..x]. If segment
[x + 1..y] is semi-repeat-free, then segment [x + 1..y′] is semi-repeat-free for all y′ > y. Thus,
for each x ∈ [0..n− 1] we define value f(x) as the smallest column index greater than x such
that [x + 1..f(x)] is semi-repeat-free, and we say that f(x) or [x + 1..f(x)] is the minimal
right extension of MSA[1..m, 1..x]. If there is no valid right extension, then f(x) =∞.

▶ Definition 11 (Meaningful right extensions). Given general MSA[1..m, 1..n], for any x ∈
[0..n−1] we denote with Rx = rx,1, . . . rx,dx

the meaningful (semi-repeat-free) right extensions
of MSA[1..m, 1..x], meaning the strictly increasing sequence of all positions greater than x

such that:
f(x) = rx,1 < rx,2 < · · · < rx,dx , so that Rx captures all semi-repeat-free right extensions
of MSA[1..m, 1..x];
H([x + 1..rx,k]) ̸= H([x + 1..rx,k − 1]) for 2 ≤ k ≤ dx, so that each rx,k marks a column
where the height of the right extensions changes.

If MSA[1..m, 1..x] has no semi-repeat-free right extension, then Rx = () and dx = 0. Other-
wise, for completeness we define value rx,dx+1 = n + 1.

Since we will treat all R0, . . . , Rn−1 together, we complement each value rx,k with column x

and the height of the corresponding MSA segment, obtaining triple (x, rx,k, H([x + 1..rx,k])).
Thus, under score iii. Equation (1) can be rewritten as follows:

s(j) = min
x∈[0..j−1], k∈[1..dx] :

rx,k≤j<rx,k+1

max
(

s(x), H
(
[x + 1..rx,k]

))
. (3)

Since each Rx defines non-overlapping ranges [rx,k, rx,k+1 − 1] over [1, n], at most one
range [rx,k..rx,k+1 − 1] per Rx with x < j is involved in the computation of s(j), and the
corresponding score depends on which range contains j. Also, note that Equation (3) is
simpler than Equation (2). Finally, the algorithm computing the score of an optimal semi-
repeat-free segmentation minimizing the maximum block height is described in Algorithm 1,
and it works by processing all meaningful right extensions in R0, . . . , Rn−1 expressed as
triples (x, r, h) and sorted from smallest to largest order by second component. The main
strategy is to keep at each iteration j the best scores of the semi-repeat-free segmentations
of MSA[1..m, 1..j] ending with a right extension [1, j], [2, j], . . . , or [j, j] described by ranges
in R0, R1, . . . , or Rj−1. Checking each currently valid range individually would result in a
quadratic-time solution, so we need to represent these ranges in some other form. Indeed, by
counting these scores with an array C[1..m] such that C[i] is equal to the number of available
solutions having score i, score s(j) can be computed by finding the smallest i such that C[i] is
greater than zero. Array C needs to be updated only when j reaches some rx,k; in other words,
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Algorithm 1 Main algorithm to find the optimal score of a semi-repeat-free segmentation
minimizing the maximum block height.

Input: Meaningful right extensions (x1, r1, h1), . . . , (xk, rk, hk) sorted from smallest
to largest order by second component.

Output: Score of an optimal semi-repeat-free segmentation minimizing the
maximum block height.

1 Initialize array R[0..n− 1] with values in [0..m] ∪ {⊥} and set all values to ⊥;
2 Initialize array C[1..m] with values in [0..m] and set all values to 0;
3 y ← 1;
4 minmaxheight[0]← 0;
5 for j ← 1 to n do
6 while j = ry do
7 if R[xy] ̸= ⊥ then
8 C[R[xy]]← C[R[xy]]− 1; ▷ Remove last solution of Rxy

9 s← max(minmaxheight[xy], hy);
10 R[xy]← s; ▷ Save score corresponding to (xy, ry, hy)
11 C[s]← C[s] + 1; ▷ Add solution corresponding to (xy, ry, hy)
12 y ← y + 1;
13 minmaxheight[j]← minm

i=1{i : C[i] > 0};
14 return minmaxheight[n];

when j = r for some (x, r, h), the score max(s(x), h) of an optimal segmentation ending with
[x + 1..j] must be added to C, and the old score relative to the previous range of Rx must be
removed. We can keep track of the scores in an array R[0..n− 1] such that R[x] is equal to the
score associated with the currently valid extension of Rx. A possible implementation of the
solution is described in Algorithm 1. To compute the actual segmentation, instead of just its
score, we can use two backtracking arrays B and Cbt: Cbt[i] = x where [rx,k..rx,k+1 − 1] is a
currently valid range of minimum score finishing last, that is, with maximum value of rx,k+1;
values in Cbt can be used to compute B[j], equal to x where [x + 1..j] is the last segment
of an optimal solution for MSA[1..m, 1..j]. Then, B reconstructs an optimal segmentation.
Algorithm 1 can be easily modified to update these arrays, if each meaningful right extension
(x, rx,k, H([x + 1..rx,k])) is augmented with value rx,k+1 − 1.

▶ Lemma 12. Given the meaningful right extensions R0, R1, . . . , Rn−1 of MSA[1..m, 1..n],
we can compute the optimal semi-repeat-free segmentation minimizing the maximum block
height in time O(mn + R), with R :=

∑n−1
x=0 |Rx|.

Proof. The correctness follows from Equation (3) and from the arguments above. Sorting
the meaningful right extensions (x, r, h) by their second component can be done in time
O(n + R), as the meaningful right extensions take value in [1..n]. Moreover, the management
of arrays R and C takes constant time per meaningful right extensions, and the computation
of each s(j) takes O(m) time, reaching the time complexity of O(mn + R). ◀

For the gapless case, this is an alternative solution to that of Section 3.2, since R ∈ O(mn)
and the algorithms by Norri et al. and Equi et al. can be used to compute the meaningful
right extensions.
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3.4 The complexity of minimizing the maximum block height
As Lemma 12 states, we can process the meaningful right extensions of Definition 11 to
compute the score of an optimal segmentation minimizing the maximum block height.
Unfortunately, in the general setting with gaps, the total number of meaningful right
extensions is O(n2): as it can be seen in Figure 2, if any two row suffixes starting from the
same column x spell the same string but the spelling is interleaved by gaps, then the height
of segment [x..y] can change at any column y; this pattern could involve any two rows in any
segment of a general MSA[1..m, 1..n].

T − A − A − A − A − C
T − − A − A − A − A C

. . .

1 2 3 4 5 6 7 8 n − 2 n
1
2

1 1 2 1 2 1 2 1 2 1 1. . .H ([1..y])

Figure 2 Example of MSA[1..2, 1..n] such that |R0| ∈ O(n).

▶ Observation 13. Given MSA[1..m, 1..n] over alphabet Σ ∪ {−}, we have that H([x..y]) >

H([x..y+1]) only if there exist rows i, i′ ∈ [1..m] such that MSA[i, y+1] = −, MSA[i′, y+1] = c,
and spell(MSA[i, x..y]) = spell(MSA[i′, x..y + 1]) = S · c, with c ∈ Σ and S ∈ Σ+.

The example of Figure 2 and the context described by Observation 13 seem intuitively
artificial, as a high-scoring MSA would try to align the rows to avoid such a situation.
Nonetheless, without further assumptions about gaps in the MSA portions reading the same
strings, we are left to compute all meaningful right extensions. Indeed, let Kx,y be the keyword
tree of the set of strings Sx..y := {spell(MSA[i, x..y]) : 1 ≤ i ≤ m}; since |Sx..y| = H([x..y]),
the height of [x..y] is equal to the number of distinct nodes of Kx..y corresponding to the
strings in Sx..y. We can obtain a parameterized solution by noting that if Kx..y has m leaves
then no two strings in Sx..y are one prefix of the other and H([x..y′]) = m for all y′ > y.

▶ Lemma 14. Given general MSA[1..m, 1..n] over integer alphabet Σ ∪ {−} of size σ ∈
O(mn), we denote with α the maximum length y − x + 1 of any segment [x..y] such that
spell(MSA[i, x..y]) is a prefix of spell(MSA[i′, x..y]) for some i, i′ ∈ [1..m]. Then, we can
compute all meaningful right extensions in time O(mnα log σ).

Proof. For each x ∈ [0..n− 1], we can find Rx by incrementally computing trees Kx+1..x+1,
Kx+1..x+2, . . . , Kx+1..n using a dynamic keyword tree T supporting the traversal from the
root to the leaves and the insertion of a c-child to an arbitrary node v, with c ∈ Σ. A possible
implementation of the procedure is described by Algorithm 3 in Appendix A. During the
computation, array V[1..m] keeps track of the nodes corresponding to strings spell(MSA[i, x +
1..r]), each variable v.count counts the number of rows reading the corresponding string, and
a variable h counts the number of distinct nodes v such that v.count is greater than zero:
if h changes then the corresponding meaningful right extension of [x + 1..r] is (x, r, h). For
each Rx, the algorithm stops if the number of leaves of T is m, that is it computes at most
α keyword trees; no meaningful right extension is missed, thanks to Observation 13 and the
above arguments. We can compute R0, . . . , Rn−1 in time O(mnα log σ), since the traversal
and insertion operations of T can be implemented in time O(log σ),2 the other operations
can be supported in constant time. ◀

2 Since only insertion is needed and alphabet Σ is fixed, the addition of a children to each node v can be
implemented with a dynamic binary tree with height at most ⌈log2 σ⌉ leaves, growing downwards as the
number of children grows.
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Since the total number of meaningful right extensions is O(mnα), Lemma 14 and
Lemma 12 give the following solution to our segmentation problem.

▶ Theorem 15. Given general MSA[1..m, 1..n] over an integer alphabet Σ of size O(mn),
we can compute the score of an optimal segmentation minimizing the maximum block height
in time O(mnα log σ), where α is the length of the longest MSA segment where any two rows
spell strings S, S′ such that S is a prefix of S′.

In the worst case, the number of meaningful right extension is O(mn2), α ∈ Θ(n), and the
time complexity of Lemma 14 is Θ(mn2 log σ): thus, we introduce a different generalization
of block height from the gapless setting to the general one.

▶ Definition 16 (Prefix-aware height). Given MSA[1..m, 1..n], we define the prefix-aware
height of a segment [x..y], denoted as H(MSA[1..m, x..y]) or just H([x..y]), as the number
of distinct strings S in {spell(MSA[i, x..y]) : 1 ≤ i ≤ m} such that S is not a prefix of some
other string of the set.

Since H([x..y]) is equal to H([x..y]) minus the number of strings spelled in [x..y] that are
proper prefixes of other strings of the segment, this refined height is always smaller or
equal to the original height: the relative optimal segmentation provides a lower bound for
the maximum height in the original setting. Moreover, the necessary condition for the
decrease in height stated in Observation 13 is no longer valid, and it is easy to see that the
monotonicity of prefix-aware right extensions holds (see Observation 7). Indeed, if we define
the meaningful prefix-aware right extensions R0, . . . , Rn−1 as in Definition 11, it is easy to
see that |Rx| ≤ m + 1 for all x ∈ [0..n− 1], so the number of these extensions is O(mn) in
total. Finally, given R0, . . . , Rn−1 as input, Algorithm 1 correctly computes the score of an
optimal segmentation under our refined height, since Equation (3) still holds. In Section 4,
we will provide an algorithm based on the generalized suffix tree of the gaps-removed MSA
rows computing the prefix-aware extensions in time linear in the MSA size, obtaining the
following result.

▶ Theorem 17. Given MSA[1..m, 1..n] over integer alphabet Σ ∪ {−} of size σ ≤ mn,
computing a semi-repeat-free segmentation minimizing the maximum prefix-aware block height
takes O(mn) time.

4 Preprocessing the MSA for the prefix-aware height

As stated in Section 3.4, the meaningful prefix-aware right extensions are O(mn) in total,
so the goal of this section is to compute them in time linear in the MSA size. First, in
Section 4.1 we provide an overview of the O(mn) time computation of the minimal right
extensions f(x) (Observation 10), that we recently obtained in [22]. The solution consists in
solving multiple instances of the exclusive ancestor problem – a novel ancestor problem on
trees asking for the shallowest nodes covering all and only the given set of leaves – on the
following structure, built from the gaps-removed rows of the MSA.

▶ Definition 18 ([10, 22]). Given a general MSA[1..m, 1..n] from alphabet Σ, we define
GSTMSA as the generalized suffix tree of the set of strings {spell(MSA[i, 1..n]) ·$i : 1 ≤ i ≤ m},
with $1, . . . , $m m new distinct terminator symbols not in Σ.

An example of GSTMSA is given in Figure 3. Then, in Section 4.2, we extend these techniques
to show that the forests inside GSTMSA identified by the exclusive ancestors can describe the
meaningful prefix-aware right extensions: by computing for each node of these forests the
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position indicating where the first occurrence of the related string ends, and by sorting these
positions, we can compute the meaningful right extension in O(m2n) global time. Finally,
in Section 4.3 we describe how these positions can be computed efficiently, thanks to the
generalized prefix tree of the gap-removed rows and the data structure for weighted ancestor
queries of Belazzougui et al. [2]. This structure, after its linear-time construction, makes it
possible to navigate from the suffix tree to the prefix tree in constant time, reaching global
O(mn) time.

AG

C
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C G

A

C AG

A C G

C G

C
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T

$1 $2 $3 $4 $5 $6

$3

$5 $6
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C$2 G$4 $5 $6 $3

A$3 G$4 $5 $6
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$1 $4 $5 $6 CAAG$6

AG$5
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A C G

C G
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T C − C − − C G − $1
T − A C − − C − − $2
T − A C − A C − A $3
T − A C − A C G − $4
T − A C A A − G − $5
G C A − − A − G − $6

1 2 3 4 5 6 7 8 9 10

Figure 3 Example of an MSA[1..6, 1..9] and its GSTMSA, where the label to each leaf has been
moved inside the leaf itself. Leaves are colored according to the corresponding row. We have also
highlighted, with a black outline, the leaves L0 corresponding to suffixes spell(MSA[i, 1..n]); their
exclusive ancestors W0, the nodes corresponding to G · CAAG$6 and T, are marked with arrows.

4.1 Computing the minimal right extensions
Consider the generalized suffix tree GSTMSA (Definition 18) built from the gaps-removed
rows Si := spell(MSA[i, 1..n])$i, for i ∈ [1..m]. Each suffix Si[x..|Si|] corresponds to a unique
leaf ℓi,x of GSTMSA and vice versa, for 1 ≤ x ≤ |Si|. Moreover, each substring Si[x..y]
corresponds to an explicit or implicit node of GSTMSA in the root-to-ℓi,x path, and each
explicit or implicit node v of GSTMSA corresponds to one or more such substrings, described
by the leaves of GSTMSA(v), the subtree rooted at v. Note that in GSTMSA we stripped away
essential gap information: we will implicitly add it back by considering a certain set of leaves
and of nodes, corresponding to the strings occurring at a certain MSA column x.

But first, the notion of semi-repeat-free segment can be broken down into each single row.

▶ Definition 19 (Semi-repeat-free substring [22]). Given a substring MSA[i, x..y] such that
spell(MSA[i, x..y]) ∈ Σ+, we say that MSA[i, x..y] is semi-repeat-free if, for all 1 ≤ i′ ≤ m,
string spell(MSA[i, x..y]) occurs in gaps-removed row spell(MSA[i′, 1..n]) only at position
g(i′, x) (defined as in Lemma 6), or it does not occur at all.

Indeed, Observation 10 holds also for single rows and we can split the computation of f(x),
the smallest integer making segment [x + 1, f(x)] semi-repeat-free: if substring MSA[i, x..y] is
semi-repeat-free, then MSA[i, x..y′] is semi-repeat-free for all y′ > y. For each x ∈ [0..n− 1]
we can define f i(x) as the smallest column index greater than x such that MSA[i, x+1..f i(x)]
is a semi-repeat-free substring. Then, it is easy to see that f(x) = maxm

i=1 f i(x).
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Let Lx be the set of leaves of GSTMSA corresponding to suffixes spell(MSA[i, x + 1..n]) · $i,
for i ∈ [1..m]. In [22] we proved that the exclusive ancestors of these leaves, defined as
the shallowest of their ancestors covering only leaves in Lx, correspond to the shortest
semi-repeat-free strings starting from column x + 1. For example, in the MSA of Figure 3
there are two exclusive ancestors for L0, corresponding to strings G · CAAG$6 and T; for L2
they are four and correspond to strings AAG · $6, AC · A, AC · C$2, and CC · G$1. Let Wx be
the set of exclusive ancestors of Lx: for each leaf ℓi,x+1 covered by some w ∈Wx, the first
character of the label from w’s parent to w in GSTMSA– the relative node is implicit or is w

itself – corresponds to the smallest semi-repeat-free prefix of MSA[i, x + 1..n].
Thus, we have that f i(x) corresponds to the k-th non-gap symbol of row i, with k =

rank(MSA[i, 1..n], x) + stringdepth(parent(w)) +1, where rank(MSA[i, 1..n], x) is the number
of non-gap symbols in MSA[i, 1..x] and stringdepth(u) = |string(u)|. For example, in the
MSA of Figure 3 we have that values f i(0) for i ∈ [1..6] are equal to 1, 1, 1, 1, 1, and 2,
and values f i(2) are equal to 8, 7, 6, 6, 5, and 10; in particular, f1(2) = 8 because CCG is
the shortest semi-repeat-free substring of MSA[1, 3..10], and the last G of CCG corresponds
to column position 8 in MSA[1, 1..10]. Each Lx can be transformed into Lx+1 by following
the suffix links of rows i ∈ [1..m] such that MSA[i, x + 1] ̸= −, and the exclusive ancestor
set problem on each Lx can be solved in time O(m): the minimal right extensions can be
computed in time O(mn), provided Σ is an integer alphabet of size σ ≤ mn [22].

4.2 Computing the meaningful prefix-aware right extensions
Given GSTMSA and its leaves Lx corresponding to the suffixes starting at column x + 1, the
forest with m leaves identified by the exclusive ancestors Wx of Lx can also be used to study
the meaningful prefix-aware right extensions Rx (Definitions 11 and 16).

▶ Definition 20 (First ending occurrence). Given GSTMSA, let Fx be the set of all explicit nodes
of GSTMSA belonging to the subtree rooted at some exclusive ancestor w ∈Wx. Then, for each
v ∈ Fx we define value pos(v) as the first ending occurrence of string string(parent(v))·char(v)
in the MSA, where char(v) is the first character of the label from v’s parent to v. In other
words, if S = string(parent(v)) ∈ Σ+ and c = char(v) ∈ Σ, then pos(v) is the minimum
column index y ∈ [1..n] such that Sc = spell(MSA[i, x + 1..y]) for some 1 ≤ i ≤ m.

An example of set Fx and of values pos(v) is shown in Figure 4. After plotting these values
in a horizontal line, it is easy to notice that all increases in H correspond to some pos(v),
but not the other way around: the pos values that do not affect H, because they do not
correspond to two or more rows reading strings that are not one prefix of the other, are the
first-born children – with respect to the value of pos – of branching nodes.

▶ Definition 21 (First-born nodes). Given GSTMSA and its forest Fx corresponding to all
semi-repeat-free strings starting from column x + 1, with 0 ≤ x < n, for each internal node
v ∈ Fx we arbitrarily choose one of its children with minimum value of pos to be a first-born
node of Fx. Then, let F̂x be the subset of non-first-born nodes of Fx, obtained by removing
these nodes from Fx.

▶ Lemma 22. Given GSTMSA and the set of non-first-born nodes F̂x associated with column
x, for any y ∈ [f(x)..n] the prefix-aware height of segment [x + 1..y] is equal to the number
of nodes in F̂x having pos value equal or smaller than y, in symbols H([x + 1..y]) =

∣∣{v̂ ∈
F̂x : pos(v̂) ≤ y}

∣∣.
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Figure 4 On the left, the forest F0 of the example MSA of Figure 3, annotated with values pos(v).
On the right, the same forest plotted against the MSA columns, with only the non-first-born nodes
of F̂0 highlighted. Note that f(0) = f6(0) = 2.

Proof. For any v ∈ Fx, let Iv be the set of indexes of the rows whose suffix is covered by v.
From the properties of GSTMSA it follows that if any v1, v2 ∈ Fx are not one ancestor of the
other, then the corresponding strings string(parent(v1)) · char(v1) and string(parent(v2)) ·
char(v2) are not one prefix of the other: if y ≥ pos(v1) and y ≥ pos(v2), then H(MSA[Iv1 ∪
Iv2 , x + 1..y]) = H(MSA[Iv1 , x + 1..y]) + H(MSA[Iv2 , x + 1..y]). We call this key property the
independence of collateral relatives.3 In particular, the property holds for any subset U of
children of some node v ∈ Fx, provided y ≥ maxu∈U pos(u), and it holds for the exclusive
ancestors of Wx ⊆ Fx, because y ≥ f(x) ≥ maxw∈Wx pos(w):

H
(
MSA[1..m, x + 1..y]

)
=
∑

w∈Wx

H
(
MSA[Iw, x + 1..y]

)
. (4)

We can now prove the modification of the thesis restricted to the rows Iv of any node v ∈ Fx.
To do so, we introduce one final notation: we denote with F̂ v

x the set (F̂x∩GSTMSA(v))∪{v},
that also deals with the case when v is a first-born node. Then, for any v ∈ Fx and
y ∈ [maxi∈Iv

f i(x)..n] we have that

H
(
MSA[Iv, x + 1..y]

)
=
{

1 if y < pos(v),∣∣{v̂ ∈ F̂ v
x : pos(v̂) ≤ y

}∣∣ otherwise.
(5)

The proof of Equation (5) proceeds by induction on the height of the subtree rooted at v.
Base case: If v is a leaf then F̂ v

j = {v}, Iv = {i} for some i ∈ [1..m], and H(MSA[{i}, x +
1..y]) = 1, so Equation (5) is easily verified.

Inductive hypothesis: Equation (5) holds for all nodes v such that the subtree rooted at v

has height less than or equal to h ≥ 0.
Inductive step: Let the height of the subtree rooted at v be equal to h+1, and let u1, . . . , up

be the p ≥ 2 children of v, with u1 the first-born. If y < pos(v) then all occurrences of Sc =
string(parent(v)) · char(v) in the MSA end after column y, so all strings spell(MSA[i, x +
1..y]) with i ∈ Iv are prefixes of Sc and H

(
MSA[Iv, x + 1..y]

)
= 1. Using the same

argument, Equation (5) is also verified if y < pos(u1), so we can assume y ≥ pos(u1) >

3 In genealogical terms, the ancestor relationship is described as a direct line, opposed to a collateral line
for relatives that are not in a direct line.
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pos(v). Consider the children uk of v such that y < pos(uk), for 2 ≤ k ≤ p; the strings
spelled in the corresponding rows Iuk

are prefixes of string(parent(u1)), so they are
ignored in the prefix-aware height. If U≤ := {uk : 1 ≤ k ≤ p ∧ pos(uk) ≤ y} then

H
(
MSA[Iv, x + 1..y]

)
= H

(
MSA

[ ⋃
u∈U≤

Iu

][
x + 1..y

])

=
∑

u∈U≤

H
(
MSA[Iu, x + 1..y]

)
indep. collateral relatives

=
∑

u∈U≤

∣∣{û ∈ F̂ u
x : pos(û) ≤ y

}∣∣ inductive hypothesis

=
∣∣{v̂ ∈ F̂ v

x : pos(v̂) ≤ y
}∣∣.

Note that the last equality holds because pos(u1) of F̂ u1
x is replaced by pos(v) of F̂ v

x .
The thesis follows from Equations (4) and (5), because the exclusive ancestors partition the
rows [1..m] into |Wx| sets. Also, note that |F̂x| = m. ◀

An example of sets Fx and F̂x can be seen in Figure 4. Unfortunately, their naive compu-
tation takes time O(m2) if done locally, because GSTMSA does not contain the information
on the ending occurrences of MSA substrings – and it cannot be easily augmented to do so.

▶ Lemma 23. Given a general MSA[1..m, 1..n], GSTMSA, and the exclusive ancestors Wx,
we can compute the meaningful prefix-aware right extensions Rx in time O(m2).

Proof. For each v ∈ Fx, we can compute pos(v) by finding for each row i ∈ Iv the ending
position yi of the occurrence of Sc = string(parent(v)) · char(v) in MSA[i, 1..n] (Sc is a semi-
repeat-free substring so there is at most one occurrence per row). In other words, position
yi correponds to the k-th non-gap character of row i, where k = rank(MSA[i, 1..n], x) +
stringdepth(parent(v))+1. Then, pos(v) = mini∈Iv

yi. The first-born child of v can be found
by choosing one of its children with minimum pos values, and the removal of first-born nodes
results in the pos values of F̂x. Given f(x) and the ordered pos values, a simple algorithm
like Algorithm 2 in Appendix A considers all columns containing pos values and outputs the
relative prefix-aware right extension as a triple (x, y, H([x + 1..y])).

Since we can preprocess in linear time the MSA rows to answer rank and select queries in
constant time, the computation of each pos(v) takes O(|Iv|) time. Forest Fx is composed
of compacted trees with m total leaves, so it contains O(m) nodes: the subtrees of Fx can
be unbalanced, hence the total time is O(m2). Then, these values can be sorted in time
O(m log m) and then processed in O(m) time. ◀

4.3 Speedup using weighted ancestor queries
Thanks to Lemma 23, we can compute the meaningful prefix-aware right extensions in O(m2n)
time, the bottleneck being the computation of values pos(v) (Definition 20). The other tasks
can be executed in time O(mn) by generalizing the solution to a global computation: the
pos values of all F̂0, . . . , F̂n−1 are O(mn) in total; together they can be sorted in O(mn)
time since they take values in [1..n], and they can be separately processed again in total
linear time. GSTMSA does not contain the information about the ending occurrences of MSA
strings, but it does contain the information on the (starting) occurrences: indeed, the sets
of leaves L0, . . . , Ln−1 consider each and every suffix starting from a certain MSA column.
This gives us the key idea of symmetry to compute values pos(v) efficiently.
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▶ Definition 24. Given a general MSA[1..m, 1..n] from alphabet Σ∪ {−}, we define GPTMSA
as the generalized prefix tree of the set of strings {$i · spell(MSA[i, 1..n]) : 1 ≤ i ≤ m},
with $1, . . . , $m m new distinct terminator symbols not in Σ. Alternatively, GPTMSA can be
constructed as the generalized suffix tree of {spell(MSA[i, 1..n])−1 · $i : 1 ≤ i ≤ m}.
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Figure 5 Example of the GPTMSA built from the MSA of Figure 3, annotated with the pos−1

values relevant for the computation of R0 (Figure 4), the meaningful right extensions starting from
column 1.

▶ Observation 25. Note that in GPTMSA strings are read from right to left. For each node u

of GPTMSA, let pos−1(u) be the first ending occurrence of string(u) in some MSA row:
for any leaf ℓ of GPTMSA corresponding to row i ∈ [1..m], we have that pos−1(ℓ) is equal
to the k-th non-gap character of MSA[i, 1..n], with k = |string(ℓ)|;
for any internal node u of GPTMSA, let v1, . . . , vp be its children; then pos−1(u) =
minp

k=1 pos−1(vk);
given a node v of GSTMSA, let v−1 be the node of GPTMSA corresponding to string
string(parent(v)) · char(v) read from right to left; if this is an implicit node, then we
define v−1 as the first explicit ancestor in GPTMSA; then pos(v) = pos−1(v−1).

For example, if v is the GSTMSA node of Figures 3 and 4 corresponding to string TAC · A, v−1

corresponds to ACAT in the GPTMSA of Figure 5 and pos−1(v−1) = 5.

▶ Lemma 26. Given a general MSA[1..m, 1..n], GSTMSA, and GPTMSA, values pos(v) for
any node v of GSTMSA can be computed in O(mn) time.

Proof. As shown in Observation 25, the tree structure of GPTMSA makes it possible to
compute pos−1(v) recursively: similar to the computation of L0, . . . , Ln−1 this can be done
in O(mn) time. It remains to show that given v ∈ GSTMSA we can find v−1 ∈ GPTMSA in
O(1) time: it is straightforward to locate one occurrence of string(parent(v)) · char(v) in
the MSA, so we can find v−1 by answering the corresponding weighted ancestor query in
GPTMSA. Belazzougui et al. recently proved that we can preprocess suffix trees in linear time
to be able to answer weighted ancestor queries in constant time [2]. ◀

This concludes the proof of Theorem 17: as we have already shown in Section 3.4, the
meaningful prefix-aware right extensions are a drop-in replacement of the original meaningful
extensions, so Lemma 26 implies that the optimal segmentation minimizing the maximum
prefix-aware height can be computed in linear time.
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A Pseudocode implementations of the algorithms

Algorithm 2 Algorithm computing the meaningful prefix-aware right extensions, given
the sorted pos values of F̂x. Set F̂x is obtained by removing the first-born nodes from Fx.

Input: Value f(x), values pos(w1), . . . , pos(wm) of nodes in F̂x, sorted from smallest to
largest order.

Output: Meaningful prefix-aware right extensions Rx.
1 h← 1;
2 while pos(wh) < f(x) do
3 h← h + 1;
4 while h ≤ m do
5 if h = m ∨ pos(wh+1) ̸= pos(wh) then
6 output (x, pos(wh), h);
7 h← h + 1;

Algorithm 3 Algorithm computing all meaningful right extensions R0, . . . , Rn−1. To
efficiently compute keyword trees Kx+1..r for y ∈ [x + 1..n], we need a dynamic tree data
structure T supporting navigation and insertions in time O(log σ).

Input: MSA[1..m, 1..n] from an integer alphabet Σ ∪ {−} of size σ ∈ O(mn), minimal right
extensions f(x) for x ∈ [0..n− 1].

Output: Meaningful prefix-aware right extensions R0, . . . , Rn−1 represented as triples(
x, rx,k, H([x + 1..rx,k])

)
.

1 for x← 0 to n− 1 do
2 Initialize empty keyword tree T , containing only node root;
3 Initialize array V[1..m] with values pointers to nodes of T and set all values to node root;
4 h← 0;
5 r ← x;
6 while T .leaves < m ∧ r ≤ m do
7 h′ ← h;
8 for i← 1 to m do
9 if MSA[i, r] ̸= − then

10 V[i].count← V[i].count− 1;
11 if V[i].count = 0 then
12 h← h− 1;
13 if V[i] has an (MSA[i, r])-child v then
14 V[i]← v;
15 else
16 Add new (MSA[i, r])-child v to V[i];
17 V[i]← v;
18 if V[i].count = 0 then
19 h← h + 1;
20 V[i].count← V[i].count + 1;

21 if r = f(x) then
22 output (x, r, h);
23 else if r ≥ f(x) ∧ h ̸= h′ then
24 output (x, r, h);
25 r ← r + 1;
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Abstract
We revisit the classic algorithmic problem of computing a longest palidromic substring. This problem
is solvable by a celebrated O(n)-time algorithm [Manacher, J. ACM 1975], where n is the length of
the input string. For small alphabets, O(n) is not necessarily optimal in the word RAM model of
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1 Introduction

We start with some basic definitions and notation. Let S = S[0] · · · S[n − 1] be a string of
length n = |S| over an alphabet Σ of σ letters. We consider throughout an integer alphabet
Σ = [0, σ) ⊆ [0, n). The empty string is the unique string of length 0. For any two positions
i and j ≥ i of S, S[i . . j] is the fragment of S starting at position i and ending at position
j; it is represented in O(1) space by i and j. The fragment S[i . . j] is an occurrence of the
underlying substring P = S[i] · · · S[j]; we say that P occurs at position i in S. A fragment
S[i . . j] can be equivalently written as S[i . . j + 1), S(i − 1 . . j], or S(i − 1 . . j + 1). A prefix
of S is a fragment of the form S[0 . . j] and a suffix of S is a fragment of the form S[i . . n). A
substring of S is proper when it does not equal S. By ST we denote the concatenation of
two strings S and T . We denote the reverse string of S by SR, i.e., SR = S[n − 1] · · · S[0]. A
palindrome is a symmetric word that reads the same backward and forward. Formally, a
string S is said to be a palindrome if and only if S = SR.

In this work, we consider the classic algorithmic problem of computing a longest palin-
dromic substring.
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Longest Palindromic Substring
Input: A string S of length n over an integer alphabet [0, σ) with σ ≤ n.
Output: Positions i, j ∈ [0, n) such that S[i . . j] is a longest palindromic substring of S.

Longest Palindromic Substring can be solved in O(n) time by Manacher’s celebrated
algorithm [34, 3], by Jeuring’s algorithm [31] or by Gusfield’s simple algorithm, which uses
longest common extension queries [28]. Other settings in which the problem has been studied
include the compressed setting, where the input string is given as a straight-line program [36],
the streaming setting [26], the dynamic setting, where the string undergoes updates [1, 2], and
a semi-dynamic setting [23]. Le Gall and Seddighin [24] have recently presented a strongly
sublinear-time quantum algorithm for the problem and a quantum lower bound.

The detection of palindromes is a well-studied problem with a lot of variants [29, 30, 19, 25,
5, 22, 12, 41, 40, 39] arising out of different practical scenarios. For instance, in computational
biology, palindromes are found in both prokaryotic and eukaryotic genomes and they have
been linked with countless possible functions. They play an important role in the regulation
of gene activity and other cell processes because these are often observed near promoters,
introns, and specific untranslated regions; for more details see [38, 13, 18, 42, 43, 35].

Our Model and Result

The main contribution of our work is to improve on the existing linear-time solutions to
Longest Palindromic Substring in the word RAM model of computation when the input
string is given in a packed representation. Let us now describe this model in more detail.

We assume the unit-cost word RAM model with word size w = Θ(log n) and a standard
instruction set including arithmetic operations, bitwise Boolean operations, and shifts. We
count the space complexity of our algorithms in machine words used by the algorithm. The
packed representation of a string S over an integer alphabet [0, σ) is a list obtained by storing
Θ(logσ n) letters per machine word thus representing S in O(|S|/ logσ n) machine words. If
S is given in the packed representation we simply say that S is a packed string.

We prove the following result.

▶ Theorem 1. Longest Palindromic Substring can be solved in O(n/ logσ n) time, if
the input is given in a packed representation.

In Section 2 we provide the necessary background. In Section 3 we recall the linear-time
algorithm for solving Longest Palindromic Substring by Gusfield [28]. We provide our
sublinear-time algorithm in Section 4 and conclude in Section 5.

Other Related Work

A large body of work exploits bit-level parallelism in the word RAM model to speed-up string
matching algorithms; see [4, 37, 21, 9, 6, 10, 7, 14, 27, 8, 11, 15] and references therein.

2 Preliminaries

Palindromes. Let S be a string of length n. If S[i . . j], 0 ≤ i ≤ j < n, is a palindrome,
the number i+j

2 is called the center of S[i . . j] and the number j−i+1
2 is called the radius of

S[i . . j]. A palindromic fragment S[i . . j] of S is said to be a maximal palindrome if there is
no longer palindrome in S with center i+j

2 . Note that a maximal palindrome of S can be a
fragment of another palindrome of S and that the longest palindrome in S must be maximal.
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Periodicity. A positive integer p is called a period of a string S if S[i] = S[i + p] for all
i ∈ [0, |S| − p). We refer to the smallest period as the period of the string, and denote it by
per(S). A string S is called periodic if 2 · per(S) ≤ |S|. A border of a nonempty string S is
a proper substring of S that occurs both as a prefix and as a suffix of S. A string S has a
period p if and only if it has a border of length |S| − p.

▶ Lemma 2 (Periodicity Lemma (weak version) [20]). If a string S has periods p and q such
that p + q ≤ |S|, then gcd(p, q) is also a period of S.

Let B(S) denote the set of lengths of borders of S. The following characterization of long
borders of a string is generally known; cf. [17]. We give a proof of the lemma for completeness.

▶ Lemma 3. Assume that a string S of length n is periodic with smallest period p. Then
B(S) ∩ [p, n] = {n − kp : k ∈ Z+} ∩ [p, n].

Proof. (⊆) If b ∈ B(S), then q = n − b is a period of S. As p is a period of S as well, if b ≥ p,
then by the Periodicity Lemma gcd(p, q) is also a period of S. This means that p divides q,
as otherwise gcd(p, q) would have been a period of S smaller than p, which is impossible.

(⊇) For each integer k ∈ [0, n/p), the string S has a period kp and hence a border of
length n − kp. ◀

Longest Common Extension. An important building block of our technique is a so-called
longest common extension data structure, first used by Landau and Vishkin in their textbook
solution for approximate pattern matching with at most k mismatches [33]. Let us denote
the lengths of the longest common prefix and the longest common suffix of two strings
U and V by LCP(U, V ) and LCS(U, V ) = LCP(UR, V R) respectively. Given a string S, it
is often useful to have a data structure that can efficiently return LCP(S[i . . n), S[j . . n))
or LCS(S[0 . . i], S[0 . . j]); we collectively call such queries longest common extension (LCE)
queries. Kempa and Kociumaka presented an optimal LCE data structure for packed strings.

▶ Theorem 4 ([32, Theorem 5.4]). Given a packed representation of a string S ∈ [0, σ)n,
LCE queries on S can be answered in O(1) time after O(n/ logσ n)-time preprocessing.

3 LCE-based Linear-Time Algorithm

We describe the linear-time algorithm given by Gusfield for Longest Palindromic Sub-
string [28]. Gusfield’s algorithm is based on the following simple fact – its proof follows by
the definition of palindromes and by the definition of LCP(U, V ) for two strings U, V .

▶ Fact 5. Let S be a string of length n. S[i . . j] is a palindrome of odd length with center
c = j+i

2 if and only if LCP(S[c + 1 . . n), (S[0 . . c − 1])R) ≥ j−i
2 . S[i . . j] is a palindrome of

even length with center c = i+j
2 if and only if LCP(S[⌈c⌉ . . n), (S[0 . . ⌊c⌋])R) ≥ j−i+1

2 .

Thus, after constructing an LCE data structure for string T = SSR, it suffices to perform
O(n) LCP queries: one for each integer or half-integer possible center in [0, n). By using any
LCE data structure, which is constructible in O(n) time and answers LCP queries in O(1) time,
such as the one by Landau and Vishkin [33], we obtain a linear-time solution to Longest
Palindromic Substring; in fact this algorithm computes all maximal palindromes.

CPM 2022
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4 Computing a Longest Palindromic Substring in Sublinear Time

The main goal of this section is to prove Theorem 1; namely, to design an algorithm for
Longest Palindromic Substring that works in O(n/ logσ n) time. Recall that our input
is a string S of length n over alphabet [0, σ). Let us set ℓ′ = max(1,

⌊ 1
8 logσ n

⌋
) and ℓ = 4ℓ′.

Intuitively, ℓ′ and ℓ correspond to lengths of chunks and extended chunks of S, respectively.
Our algorithm proceeds with processing every chunk separately. We assume that n ≥ 8.

Preprocessing. We compute the radii of maximal palindromes with each possible center for
every distinct length-ℓ string over [0, σ). The number of such length-ℓ strings is σℓ = σ4ℓ′ =
O(

√
n) and each of them can be stored in one machine word. All the radii can be computed

using Manacher’s algorithm [34] in O(ℓ) time per string, which takes O(ℓ
√

n) = o(n/ logσ n)
time overall. In the end of the preprocessing step, we store, in an O(

√
n)-sized array, for

each length-ℓ string X, a constant amount of data:
(a) a longest palindrome in X;
(b) a longest palindrome in X that has its center in [ℓ/2 − ℓ′, ℓ/2 − 1

2 ]; and
(c) the two longest prefix palindromes of X, if they exist.

Algorithm. The precomputed data allows us to compute the longest palindrome in the
length-ℓ prefix and in the length-ℓ suffix of S. This will account for the longest palindrome
with the center in the first and last ℓ/2 positions of S. Let us partition S[ℓ/2 . . n − ℓ/2)
into chunks of length ℓ′; if the final chunk has length smaller than ℓ′, we complete it to a
length-ℓ′ string by taking letters of S preceding it. Our goal is to compute, for each chunk
C, the longest palindrome in the whole string S with a center in C; let us note that this
palindrome may be much longer than chunk C, as its length may even be Θ(n). We assume
that a chunk S[i . . i + ℓ′) includes all centers in [i, i + ℓ′ − 1

2 ], consistently with Item b above.
For each chunk C, we consider the length-ℓ fragment X (extended chunk) of S such

that C is the second quarter of X, i.e., C is a suffix of X[0 . . ℓ/2). Let PX denote the set
of maximal palindromes in S with centers in C that either exceed X or are prefixes of X

(inspect Figure 1 for an illustration). We will show that the longest palindrome in PX can
be computed in the time required to answer O(1) LCP queries on substrings of SSR.

X C

0 `
2 − 1 `− 1

. . .
Figure 1 Two of the possible palindromes from the set PX .

Using the packed representation of S, we can recover the string X packed into one machine
word in constant time with word RAM operations. Using the precomputed data for X, we
know the at most two longest prefix palindromes P1, P2 of X; we assume that |P1| > |P2|. If
any Pi, i ∈ {1, 2}, satisfies |Pi| ≤ ℓ − 2ℓ′, we discard it, as the center of the occurrence of
this palindrome as a prefix of X does not lie in C. Let QX be the set of palindromes which
are prefixes of X of length greater than ℓ − 2ℓ′. Let us note that each of P1 and P2 that was
not discarded belongs to QX . Each palindrome P ∈ PX has a subpalindrome (palindromic
substring) P ′ ∈ QX with the same center. If P1 does not exist, then PX = ∅. If P1 exists
but P2 does not, then |PX | = 1. In this case, we can apply Fact 5 to compute the only
palindrome in PX from P1 using one LCP query on suffixes of SSR.
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Finally, we consider the case where both P1 and P2 exist. Here we use the following
well-known property of palindromes.

▶ Lemma 6 (cf. [19, Lemma 3]). Let U be a proper prefix of a palindrome V . Then |V | − |U |
is a period of V if and only if U is a palindrome. In particular, per(V ) = |V | − |U | if and
only if U is the longest palindromic proper prefix of V .

Let p := |P1| − |P2|. By Lemma 6, p = per(P1). We can check how far this periodicity
extends on both sides by using two LCE queries. Namely, if X = S[i . . i + ℓ), the maximal
fragment with period p that contains P1 is S[i−a . . i+b), where a := LCS(S[0 . . i), S[0 . . i+p))
and b := p + LCP(S[i . . n), S[i + p . . n)). We next provide a characterization of the lengths of
the palindromes in QX .

▶ Lemma 7. Let P1 be the longest prefix palindrome in QX . Further, let p = per(P1). The
set of lengths of prefix palindromes in QX is L := {|P1| − kp : k ≥ 0} ∩ (ℓ − 2ℓ′, ℓ].

Proof. (⊆) Let Q ∈ QX . We have p < ℓ − (ℓ − 2ℓ′) = 2ℓ′ and |Q| > ℓ − 2ℓ′, so |Q| − p >

ℓ − 4ℓ′ = 0. By Lemma 6, Q is a border of P1, so by Lemma 3, |Q| ∈ L.
(⊇) For each k such that |P1| − kp ∈ L, the string P1 has a period kp, hence a border of

length |P1| − kp. This border is a palindrome by Lemma 6. ◀

cdeaabaabaabaabaabaabaabaabaabaabaabaabaabaabaaedg

CX

Figure 2 Configuration in Lemmas 7 and 8 for ℓ′ = 8 and ℓ = 4ℓ′ = |X|. The prefix palindromes
in QX are denoted by red arrows; the maximal palindromes in PX are denoted by black arrows.
The fragment S[i − a . . i + b) is shaded in blue.

The periodicity of the elements of QX enables an efficient computation of the longest
palindrome in PX . For intuition, consider answering LCP(S[⌈c⌉ . . n), (S[0 . . ⌊c⌋])R) (see
Fact 5), for some half-integer c ∈ [i − a . . i + b) \ Z, by comparing pairs of letters: either we
reach i − a and i + b − 1 at the same time, which can happen for at most a single value of c,
namely for (i − a + i + b − 1)/2 = (2i − a + b − 1)/2, or we reach one of the two endpoints
first, in which case we get a mismatch (inspect Figure 2).

▶ Lemma 8. Let P1 be the longest prefix palindrome in QX . Further let P1 = S[i . . i + |P1|),
p = per(P1), a = LCS(S[0 . . i), S[0 . . i + p)) and b = p + LCP(S[i . . n), S[i + p . . n)). For
palindromes P ∈ PX and Q ∈ QX with the same center c, either |Q| = b − a or |P | =
min(|Q| + 2a, 2b − |Q|).

Proof. Let us first consider the case where Q and P are even-length palindromes. Note that
⌈c⌉ = i + |Q|/2 and recall that |Q| ≥ 2p. Let F := S[⌈c⌉ . . ⌈c⌉ + p). We have

λ := LCP((S[0 . . ⌈c⌉))R, F n) = |S[i − a . . ⌈c⌉)| = ⌈c⌉ − i + a = |Q|/2 + a, and

ρ := LCP(S[⌈c⌉ . . n), F n) = |S[⌈c⌉ . . i + b)| = i + b − ⌈c⌉ = b − |Q|/2.
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Then, if λ ̸= ρ, we have

|P | = 2 · LCP((S[0 . . ⌈c⌉))R, S[⌈c⌉ . . n)) = 2 · min{λ, ρ} = min{|Q| + 2a, 2b − |Q|}.

Else, we have λ = ρ ⇔ |Q|/2 + a = b − |Q|/2 ⇔ |Q| = b − a.
The proof for the case where Q and P are odd-length palindromes is similar, but we

include it for completeness. In this case, c = i + (|Q| − 1)/2. Let F := S[c . . c + p). We have

λ := LCP((S[0 . . c])R, F n) = |S[i − a . . c]| = c − i + a + 1 = |Q|/2 + 1/2 + a, and

ρ := LCP(S[c . . n), F n) = |S[c . . i + b)| = i + b − c = b − |Q|/2 + 1/2.

Then, if λ ̸= ρ, we have

|P | = 2 ·LCP((S[0 . . c])R, S[c . . n))−1 = 2 ·min{λ−1/2, ρ−1/2} = min{|Q|+2a, 2b−|Q|}.

Else, we have λ = ρ ⇔ |Q| = b − a as before. ◀

We use Lemma 8 to compute the longest palindrome in PX as follows. For two palindromes
Q ∈ QX and P ∈ PX with the same center such that |Q| ̸= b − a, either |Q| < b − a ⇔
|Q|+2a < 2b−|Q| and hence |P | = |Q|+2a due to Lemma 8 or |Q| > b−a ⇔ |Q|+2a > 2b−|Q|
and hence |P | = 2b−|Q| due to Lemma 8. Thus, it suffices to consider only three palindromes
in QX . Specifically, with the characterization of Lemma 7 we compute in O(1) time: the
longest palindrome Q1 in QX of length smaller than b − a; the shortest palindrome Q2 in
QX of length greater than b − a; and check if there is a palindrome Q3 in QX of length b − a.
Finally we pick the longest of the following palindromes from PX :

The palindrome PI corresponding to Q1 if Q1 exists; the length of PI is |Q1| + 2a due to
the formula from Lemma 8.
The palindrome PII corresponding to Q2 if Q2 exists; the length of PII is 2b − |Q2| due
to the formula from Lemma 8.
The palindrome PIII corresponding to Q3 if Q3 exists; the center of PIII is i+(|Q3|−1)/2
and hence the length of PIII can be computed using one LCP query on suffixes of SSR

due to Fact 5.
Thus we have proved the following lemma.

▶ Lemma 9. The longest palindrome in PX can be computed in the time required to answer
O(1) LCP queries on suffixes of SSR.

For each chunk C (we have O(n/ℓ) of them), we take the longer palindrome of the one
computed by an application of Lemma 9 and the longest palindrome stored in Item b for the
corresponding substring X. Over all chunks, using Theorem 4 to answer LCE queries in O(1)
time, the algorithm requires time O(n/ logσ n), and we thus obtain Theorem 1.

5 Final Remarks

We have shown an O(n/ logσ n)-time algorithm for computing a longest palindromic substring
of a string of length n over alphabet [0, σ). Our algorithm can be easily modified to compute
the number of all palindromic fragments of the string within the same time complexity.

We anticipate that our technique will be applicable in many other problems on strings,
which currently admit only linear-time solutions. For instance, our approach applied to the
prefix array of a string [16] can be used to compute the longest repeating prefix of a string of
length n over alphabet [0, σ), still in O(n/ logσ n) time.
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Abstract
We study in this paper the Doubly Partially Ordered Pattern Matching (or DPOP
Matching) problem, a natural extension of the Permutation Pattern Matching problem.
Permutation Pattern Matching takes as input two permutations σ and π, and asks whether
there exists an occurrence of σ in π; whereas DPOP Matching takes two partial orders Pv and Pp
defined on the same set X and a permutation π, and asks whether there exist |X| elements in π whose
values (resp., positions) are in accordance with Pv (resp., Pp). Posets Pv and Pp aim at relaxing
the conditions formerly imposed by the permutation σ, since σ yields a total order on both positions
and values. Our problem being NP-hard in general (as Permutation Pattern Matching is), we
consider restrictions on several parameters/properties of the input, e.g., bounding the size of the
pattern, assuming symmetry of the posets (i.e., Pv and Pp are identical), assuming that one partial
order is a total (resp., weak) order, bounding the length of the longest chain/anti-chain in the posets,
or forbidding specific patterns in π. For each such restriction, we provide results which together give
a(n almost) complete landscape for the algorithmic complexity of the problem.
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1 Preamble

Let us play the following little puzzle game. Among the selection of fifteen cities of the Czech
Republic depicted in Figure 1 together with their geographic coordinates, find (if they exist)
five cities, say A, B, C, D and E, such that:

A and C are west of D and north of B,
E is east of B and south of A,
D is west of B and north of A and C.

It is assumed that no two cities have the same longitude or latitude. Notice that the game
does not provide complete information as, for example, no information is provided about the
relative positioning of A and C (and silence is tantamount to consent). We may assume that
the information is minimal: requiring C is west of B is unnecessary since C is west of D
and D is west of B. One solution is A = Praha, B = Brno, C = Plzeň, D = Liberec and
E = Olomouc. Note that the solution is not unique, as A = Plzeň, B = Jindřichův Hradec,
C = Cheb, D = Ústí nad Labem and E = Brno is another solution.
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A
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D

E

Cheb

Plzeň

Úst́ı nad
Labem

Praha

České
Budějovice

Jindřich̊uv
Hradec

Liberec

Pardubice

Hradec
Králové

Brno

Olomouc

Zĺın

Opava

Ostrava
Karviná

Figure 1 A Czech Republic map showing 15 of its cities. Their names and GPS coordinates, in
increasing order of their longitudes, are: Cheb (50◦4′N 12◦22′E), Plzeň (49◦44′N 13◦22′E), Ústí nad
Labem (50◦39′N 14◦1′E), Praha (50◦5′N 14◦25′E), České Budějovice (48◦58′N 14◦28′E), Jindřichův
Hradec (49◦9′N 15◦0′E), Liberec (50◦46′N 15◦3′E), Pardubice (50◦2′N 15◦46′E), Hradec Králové
(50◦12′N 15◦49′E), Brno (49◦11′N 16◦36′E), Olomouc (49◦35′N 17◦15′E), Zlín (49◦13′N 17◦40′),
Opava (49◦56′N 17◦54′E), Ostrava (49◦50′N 18◦17′E) and Karviná (49◦51′N 18◦32′E).
© Creative Commons CC0 1.0 Universal Public Domain Dedication.

We show that this puzzle game can be modeled as a permutation pattern matching
problem for doubly partially ordered patterns. Let us first associate a permutation π ∈ S(15)
with the problem (see Figure 2). We sort the fifteen cities of the Czech Republic depicted in
Figure 1 both by increasing longitude (E) and by increasing latitude (N), so that π(i) = j if
the i-th city going west to east is also the j-th city going south to north. In our example,
the “Czech Republic permutation” is π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8. For example,
π(2) = 6 since Plzeň is the second city going west to east, and the sixth city going south to
north. What is left is to define our pattern P : P is composed of two partially ordered sets on
the variables {A, B, C, D, E} (see Figure 3): one partially ordered set (denoted Pv for value
poset in the sequel) describes the south-to-north constraints and another partially ordered
set (denoted Pp for position poset in the sequel) describes the west-to-east constraints.

2 Introduction

We say that a permutation σ occurs in another permutation π (or that π contains σ) if there
exists a subsequence of elements of π that has the same relative order as σ. Otherwise, we
say that π avoids σ. For example, π contains the permutation σ = 123 (resp., σ = 321) if
it has an increasing (resp., a decreasing) subsequence of size 3. Similarly, σ = 4312 occurs
in π = 6152347, as shown in 6 1 5 2 3 4 7, but the same π = 6152347 avoids σ′ = 2341.

Deciding whether a permutation σ ∈ S(k) occurs in some permutation π ∈ S(n) is
NP-complete [7], but is fixed-parameter tractable for the parameter k [15, 17]. Several
exponential-time algorithms have been recently proposed [5, 16], improving upon [1, 10]. A
vast literature is devoted to the case where both the pattern σ and the target π are restricted
to a proper permutation class, e.g., 321-avoiding permutations [18, 2, 21], (213, 231)-avoiding
permutations [26], (2413, 3142)-avoiding (a.k.a. separable) permutations [19, 25], and (k . . . 1)-
avoiding permutations [11]. For more background on permutation patterns and pattern
avoidance, we refer to [6] and [24].
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Figure 2 Permutation π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8 corresponding to the map from
Figure 1. The solution of our puzzle, depicted Figure 1, is also represented.
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π = 11 6 14 12 1 2 15 10 13 3 5 4 9 7 8

. C . A . . D . . B E . . . .

A C D . . B . . . E . . . . .

C . . A . . . . D . B E . . .

Figure 3 A dpop P = (Pv, Pp) representing the pattern for our puzzle, together with three
distinct occurrences. Note that partial orders are represented by Hasse diagrams, i.e., a bottom-up
path in Pv (resp., Pp) implies a bottom-up (resp., left-right) relation in the occurrence of P in π.

In the last years, the notion of pattern has been generalized in several ways. A vincular
pattern is a permutation in which some entries must occur consecutively [4]. Consecutive
patterns are a special case of vincular patterns in which all entries need to be adjacent [13].
Bivincular patterns generalize classical patterns even further than vincular patterns by
requiring that not only positions but also values of elements involved in a matching may
be forced to be adjacent [8]. Mesh patterns (a further generalization of bivincular patterns)

CPM 2022
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impose further restrictions on the relative positions of the entries in an occurrence of a
pattern [9] and boxed mesh patterns are special cases of mesh patterns [3]. Strongly related
to our approach are partially ordered patterns that are vincular patterns in which the relative
order of some elements is not fixed [23]. The best general reference is [24].

In this paper, we consider a new generalization of classical patterns in which both the
relative order and the relative positioning of some elements are not fixed. The idea is to
allow the possibility for some elements to be incomparable in value (i.e., their relative order
is unknown) and to go one step further by allowing the possibility for some elements to be
incomparable in position (i.e., their relative positioning in the occurrence is unknown). Since
the problem is clearly NP-hard (as it contains Permutation Pattern Matching as a
sub-problem), our goal is to identify tractable cases when restrictions apply to the pattern
and/or to the permutation.

The restrictions we consider here apply to the following parameters of the problem: size
of the pattern; symmetry (i.e., same partial order in positions and values); one partial order
is a total (resp., weak) order; size of the longest chain (resp., anti-chain) in the partial orders
(height and width); forbidden patterns in π. On the positive side, we show that the FPT
algorithm for Permutation Pattern Matching can be generalized to our setting (with
the pattern size as parameter). We further give polynomial-time algorithms when the pattern
is a symmetric disjoint union of a constant number of weak orders. Finally, we also provide
polynomial-time algorithms when the pattern is symmetric and the permutation belongs
to some restricted classes, such as (123, 132)-avoiding permutations. We complement these
positive results with NP- or W[1]-hardness proofs in most of the remaining cases.

3 Definitions

Permutations and Patterns

A permutation σ is said to be contained in (or is a sub-permutation of) another permutation π,
which we denote by σ ⪯ π, if π has a (not necessarily contiguous) subsequence whose terms
are order-isomorphic to σ. We also say that π admits an occurrence of the pattern σ. If no
such subsequence exists, we say that π avoids σ (or is σ-avoiding). A permutation is separable
if it avoids both 2413 and 3142. Permutation Pattern Matching is the problem of
deciding whether a permutation is contained into another permutation.

For any non-negative integer n, we denote by [n] the set {1, 2, . . . , n}. When n ⩾ 1, we also
note ip(n) = 1 2 . . . n the increasing permutation of length n and dp(n) = n (n − 1) . . . 1 the
decreasing permutation of length n. Let π ∈ S(n). The reverse (resp., complement) of π is the
permutation πr = π(n)π(n−1) . . . π(1) (resp., πc = (n−π(1)+1)(n−π(2)+1) . . . (n−π(n)+1)).
The inverse of π is the permutation π-1 ∈ S(n) defined by π-1(j) = i if and only if π(i) = j.
Given a permutation π of size m and a permutation σ of size n, the skew sum of π and σ is
the permutation of size m + n defined by

(π ⊖ σ)(i) =
{

π(i) + n for 1 ⩽ i ⩽ m,

σ(i − m) for m + 1 ⩽ i ⩽ m + n,

and the direct sum of π and σ is the permutation of size m + n defined by

(π ⊕ σ)(i) =
{

π(i) for 1 ⩽ i ⩽ m,

σ(i − m) + m for m + 1 ⩽ i ⩽ m + n.
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Orders

A relation ⩽ is a partial order on a set X if it has:
reflexivity: for all x ∈ X, x ⩽ x (i.e., every element is related to itself);
transitivity: for all x, x′, x′′ ∈ X, if x ⩽ x′ and x′ ⩽ x′′, then x ⩽ x′′;
antisymmetry: for all x, x′ ∈ X, if x ⩽ x′ and x′ ⩽ x, then x = x′ (i.e., no two distinct
elements precede each other).

If ⩽ has the following additional property, we say that it is a weak order on X:
transitivity of incomparability: for all pairwise distinct x, x′, x′′ ∈ X, if x is incomparable
with x′ (i.e., neither x ⩽ x′ nor x′ ⩽ x is true) and if x′ is incomparable with x′′, then x

is incomparable with x′′.
Two subsets X1, X2 are independent if there is no x1 ∈ X1, x2 ∈ X2 such that x1 ⩽ x2
or x2 ⩽ x1. We say that a partial order is k-weak if there exists a partition of X into k

pairwise independent sets X1, . . . , Xk such that, for each i, the restriction of ⩽ to Xi is a
weak order (in other words, ⩽ is the disjoint union of k weak partial orders).

Let P = (X,⩽) be a finite partially ordered set. A chain in P is a set of pairwise
comparable elements (i.e., a totally ordered subset) and an antichain in P is a set of pairwise
incomparable elements. The partial order height of P, denoted by height(P), is defined as
the maximum cardinality of a chain in P, and the partial order width of P, denoted by
width(P), is defined as the maximum cardinality of an antichain in P . By Dilworth Theorem,
width(P) is also the minimum number of chains in any partition of P into chains. The dual
of P is the partial order P∂ = (X,⩽∂) defined by letting ⩽∂ be the converse relation of ⩽,
i.e., x ⩽∂ x′ if and only if x′ ⩽ x. The dual of a partial order is a partial order and the dual
of the dual of a relation is the original relation. A total order is a partial order in which any
two elements are comparable, and a set equipped with a total order is a totally ordered set.
A linear extension of a partial order is a total order that is compatible with the partial order.
It will be convenient to represent a linear extension of a poset P = (X,⩽) as the mapping
τP : X → [ |X| ] such that τP(i) < τP(j) if i < j in the linear extension.

A doubly partially ordered pattern (dpop) P is a pair, denoted by P = (Pv, Pp), of posets
Pv = (X,⩽v) and Pp = (X,⩽p) defined over the same set X. We call Pv and Pp the value
poset and the position poset, respectively. A dpop P = (Pv, Pp) is symmetric if Pv = Pp,
dual if Pv = Pp∂ , and semi-total if one of Pp or Pv is a total order. We let height(P ) and
width(P ) stand for max{height(Pv), height(Pp)} and max{width(Pv), width(Pp)}, respect-
ively. Finally, the size of P is defined as the cardinality |X| and is denoted by |P |.

▶ Definition 1 (DPOP Matching). Given a permutation π ∈ S(n) and a dpop P = (Pv, Pp),
an occurrence (or mapping) of P in π is an injective function φ : X → [n] such that:

π ◦ φ is ⩽v-non-decreasing, i.e., for all x, y ∈ X, if x ⩽v y then π(φ(x)) ⩽ π(φ(y)), and
φ is ⩽p-non-decreasing, i.e., for all x, y ∈ X, if x ⩽p y then φ(x) ⩽ φ(y).

The DPOP Matching problem consists in deciding whether P occurs in π.

First Observations

▶ Observation 2. Permutation Pattern Matching is the special case of DPOP Match-
ing where both ⩽v and ⩽p are total orders.

We note that applying a vertical and/or horizontal symmetry on both pattern and
permutation does not alter the existence of an occurrence.
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▶ Observation 3. Let P = (Pv, Pp) be a dpop and π be a permutation. The following
statements are equivalent:

1. (Pv, Pp) occurs in π;
2. (Pv, (Pp)∂) occurs in πr;
3. ((Pv)∂ , Pp) occurs in πc;

4. ((Pv)∂ , (Pp)∂) occurs in πc r;
5. (Pp, Pv) occurs in π-1.

The following reformulation will prove useful.

▶ Observation 4. Let P = (Pv, Pp) be a dpop with Pv = (X,⩽v), Pp = (X,⩽p) and k = |X|,
and let π ∈ S(n) be a permutation. The following statements are equivalent:

P occurs in π.
There exists a linear extension τv : X → [k] of Pv and a linear extension τp : X → [k]
of Pp such that the permutation σ ∈ S(k) defined by σ(i) = τv(τ−1

p (i)) for 1 ⩽ i ⩽ k is
contained in π.

The rationale for the reformulation introduced in Observation 4 stems from the following
corollary that sets the general context.

▶ Corollary 5 ([17]). DPOP Matching is FPT for the parameter |P |.

Indeed, it is enough to guess two linear extensions τv : X → [k] of Pv and τp : X → [k]
of Pp, and to check if the permutation σ ∈ S(k) defined by σ(i) = τv(τ−1

p (i)) for 1 ⩽ i ⩽ k

is contained in π. There are O(k!2) pairs of such extensions and, for each of them, one can
check whether σ occurs in π in n 2O(k2 log k) time [17].

4 Semi-Total Patterns

In this section we focus on semi-total patterns, i.e., without loss of generality, on the case
where Pp is a total order (up to symmetry by Observation 3). This case still contains
Permutation Pattern Matching as a special case, and is thus NP-hard. We focus on
small-height value partial orders, i.e., on dpops with constant height(Pv), and give an XP
algorithm for weak orders (Proposition 6) and paraNP-hardness in general (Proposition 7).

▶ Proposition 6. DPOP Matching is solvable in O
(
nheight(Pv)) time if Pv is a weak order

and Pp is a total order.

Proof. Let π ∈ S(n) be a permutation and P = (Pv, Pp) be a dpop on some ground set X,
where Pv is a weak order and Pp is a total order. Without loss of generality, we assume
that X is the set [k] and that Pp is the usual order on integers. For every x ∈ X, we abusively
denote by height(x) the maximum cardinality of a chain with maximum element x in Pv.
Finally, set ℓ = height(Pv).

For any two distinct variables x, y ∈ X, we have x <v y if and only if height(x) < height(y).
Thus, P occurs in π if and only there exists a sequence 0 = a0 < a1 < a2 < . . . < aℓ = n such
that wσ is a subsequence of wπ, where wπ ∈ [ℓ]n and wσ ∈ [ℓ]k are the two words defined
by wπ[i] = min{j : aj−1 < π(i) ⩽ aj} and wσ[i] = height(i).

As for the running time, there exist
(

n−1
ℓ−1

)
distinct sequences (ai)0⩽i⩽ℓ and deciding

whether wσ occurs in wπ as a subsequence is a linear-time procedure. ◀

▶ Proposition 7. DPOP Matching is NP-complete even if height(Pv) = 2, Pp is a total
order and π avoids 1234.
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Figure 4 Top left: vertex cover (in red) in a 5-vertex graph G. Bottom left: partially ordered
set Pv constructed from G. Right: an occurrence of P in π obtained from our size-3 vertex cover.

Proof. We perform a reduction from Vertex Cover, which is known to be NP-complete [22].
Let G = (V, E) be a graph and let k be a positive integer. We identify V with the set [n].

We construct a dpop P = (Pv, Pp), where Pv = (X,⩽v) is a height-2 partial order and
Pp = (X,⩽p) a total order, as follows. We set X = {a1, b1, c1, a2, b2, c2, . . . , an, bn, cn}, so
that |X| = 3n. Then, we set a1 ⩽p b1 ⩽p c1 ⩽p a2 ⩽p b2 ⩽p c2 ⩽p . . . ⩽p an ⩽p bn ⩽p cn,
which defines the total order ⩽p. Finally, for each edge {i, j} in E with i < j, we set ai ⩽v bj ;
all other elements of X are pairwise incomparable by ⩽v. This defines a partial order ⩽v
such that height(⩽v) = 2.

Write now N = 3n + 3 and m = (k + 1)N − 2, and define a permutation π ∈ S(m) as
follows:

π(iN + j) = (m + 1) − (iN + j + k) whenever 0 ⩽ i ⩽ k and 1 ⩽ j ⩽ N − 2;
π(iN − 1) = (k + 1) − i and π(iN) = (m + 1) − i whenever 1 ⩽ i ⩽ k.

It is straightforward to check that π is 1234-avoiding. It is also easy to see how the
construction, illustrated in Figure 4, can be accomplished in polynomial-time.

Let us see under which conditions an injective ⩽p-non-decreasing function φ : X → [m]
maps P into π. We say that a vertex i belongs to the j-th gadget if one of the integers φ(ai)
or φ(bi) is equal to jN − 1 or to jN , i.e., if {φ(ai), φ(bi)} ∩ {jN − 1, jN} ≠ ∅. When two
elements in the range of φ are consecutive, either they are integers φ(ai) and φ(bi) for a
given i, or one of them is an integer φ(ci) for some i. Therefore, no two distinct vertices i

and i′ can belong to the same j-th gadget. Consequently, and since there are k gadgets, the
set V ′ of vertices i that belong to some gadget is of size at most k.

Then, we define a notion of height as follows: for each element x of X, we set height(x) = 0
if N divides φ(x) + 1, height(x) = 2 if N divides φ(x), and height(x) = 1 otherwise. By
construction, for all x, y ∈ X such that x ⩽p y, we have π(φ(x)) ⩽ π(φ(y)) if and only if x
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21:8 Permutation Pattern Matching for Doubly Partially Ordered Patterns

is of smaller height than y. Therefore, if φ maps P into π, and for each relation ai ⩽v bj ,
either ai has height 0 or bj has height 2. In particular, either i or j must belong to V ′, and
therefore V ′ is a vertex cover of size at most k.

Conversely, provided that there exist vertices v(1) < v(2) < . . . < v(k) that form a vertex
cover V ′, we construct an occurrence of P in π as follows. First, we abusively set v(0) = 0.
Then, for all i ∈ [k], we set f(i) = jN + 3(i − v(j)), where j is the largest integer such
that v(j) ⩽ i. We set φ(aj) = f(j) − 1, φ(bj) = f(j) and φ(cj) = f(j) + 1.

By construction, we have f(i) + 3 ⩽ f(i + 1) for all i, and therefore φ is an injective
⩽p-non-decreasing function. Moreover, for every i ∈ [n], the elements ai and bi have heights 0
and 2 if i ∈ V ′, and they have height 1 if i /∈ V ′. It follows that π(φ(ai)) ⩽ π(φ(bj)) whenever
ai ⩽v bj , i.e., that φ is an occurrence of P in π. ◀

5 Symmetric Patterns

This section is devoted to studying complexity issues of pattern matching for symmetric
dpop (i.e., those dpops P = (P, P), whose value and position posets coincide). We further
focus on two special cases, first when P has a bounded width, then when π is restricted to
constrained pattern-avoiding classes of permutations.

5.1 Symmetric Pattern with Bounded Width
We first observe that the problem is polynomial for width 1 (Observation 8). We further prove
W[1]-hardness for the parameter k when P is a disjoint union of k chains (Proposition 10).
We complement this result with an XP algorithm for the slightly more general case where P is
a disjoint union of weak orders (Proposition 11). Note that the existence of an XP algorithm
for the width parameter remains open, and we conjecture that the problem is NP-hard even
for constant width.

▶ Observation 8. DPOP Matching is solvable in O(n log log |P |) time for a symmetric
dpop P of width 1 (i.e., a total symmetric dpop P ).

Proof. If P has width 1, then P = (P, P) for some total order P = (X,≼). In particular,
we can write X = {x1, . . . , x|X|} with xi ≺ xj for i < j, and in any mapping ϕ : X → [n],
the elements πϕ(x1), . . . , πϕ(x|X|) must form an increasing subsequence of π. Conversely, any
size-|X| increasing subsequence of π can be used as an image for ϕ, so in this setting DPOP
Matching corresponds to the longest increasing subsequence problem, which can be solved
in O(n log log |X|) time [12]. ◀

To simplify the exposition of our next result, we introduce a new problem that may be of
independent interest. Given a positive integer k and a permutation π ∈ S(kn), Balanced
k-Increasing Coloring is the problem of deciding whether there exists a balanced k-
coloring of π (i.e., a partition of [kn] into k subsets of size exactly n) such that each color
induces an increasing subsequence of π.

▶ Proposition 9. Balanced k-Increasing Coloring for 312-avoiding permutations is
W[1]-hard for the parameter k.

Proof. We perform a reduction from Unary Bin Packing parameterized by the number of
bins, which is known to be W[1]-hard [20]. In this version of Bin Packing, we are given
a list of integers s1, s2, . . . , sn encoded in unary, and two integers B and k. These integers
are interpreted as item sizes, and the task is to decide whether the items can be partitioned
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s2 + 1
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k − 1

s3 + 1
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k − 1

π (avoids 312)

n+B

P

Figure 5 Reduction from Unary Bin Packing to Balanced k-Increasing Coloring for
the list 6, 4, 3, 3, 3, 2, 2, 1, which admits the partition ({6}, {4, 2}, {3, 3}, {3, 2, 1}), and the integers
B = 6, k = 4. Left: dpop P that consists of k chains, each of length n + B. Right: 312-avoiding
permutation π that consists of n blocks. Each color/shape induces an increasing subsequence of π.

into k susbets, each of total size B. We show that there is a reduction from Unary Bin
Packing, parameterized by the number of bins, to Balanced k-Increasing Coloring,
parameterized by the number of colors.

Consider an arbitrary instance of Unary Bin Packing containing n items with item
sizes S = {s1, s2, . . . , sn}, and two integers B and k. Define π ∈ S(kB + kn) by

π =
n⊕

i=1
(ip(si + 1) ⊖ dp(k − 1)) .

Each pattern ip(si +1)⊖dp(k −1) is called the i-th block of π. See Figure 5 for an illustration.
It is straightforward to check that π is 312-avoiding.

We claim that the n items s1, s2, . . . , sn can be partitioned into k susbets, each of total
size B, if and only if there exists a k-coloring of π such that each color induces an increasing
pattern of length B + n.

Suppose first that the n items s1, s2, . . . , sn can be partitioned into k susbets, each of
total size B. Write S = S1 ∪ S2 ∪ · · · ∪ Sk such a partition. Define a k-coloring of π as follows.
Consider the i-th block ip(si + 1) ⊖ dp(k − 1) of π, and suppose that si ∈ Sj . Color the
whole ascending pattern ip(si + 1) with color cj and arbitrarily color the elements of the
descending pattern dp(k − 1) with the remaining k − 1 colors (each element of dp(k − 1) is
assigned to a distinct color). We claim that every color cj induces an increasing pattern of
length B + n in π. First, it is clear that the above k-coloring induces increasing patterns only.
As for the length of each induced increasing pattern, focus on any color cj . We note that,
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21:10 Permutation Pattern Matching for Doubly Partially Ordered Patterns

in every block ip(si + 1) ⊖ dp(k − 1) of π, either the whole subpattern ip(si + 1) is colored
with color cj (if si ∈ Sj) or exactly one element of the subpattern dp(k − 1) is colored with
color cj (if si /∈ Sj). It follows that the increasing pattern induced by color cj in π has length∑

si∈Sj
(si + 1) + n − |Si| =

∑
si∈Sj

si + |Si| + n − |Si| = B + n.
For the reverse direction, suppose now that there exists a k-coloring of π such that each

color induces an increasing pattern of length B + n. Every block ip(si + 1) ⊖ dp(k − 1)
requires at least k colors, as it contains a decreasing subpattern of length k. Therefore, the
whole subpattern ip(si + 1) is colored with the same color. For every j ⩽ k, let Sj be the set
of all si such that, in the i-th block ip(si + 1) ⊖ dp(k − 1), the subpattern ip(si + 1) is colored
with color cj . We have B + n =

∑
si∈Sj

(si + 1) + n − |Sj | =
∑

si∈Sj
si + |Sj | + n − |Sj |, and

hence
∑

si∈Sj
si = B. Therefore, the n items s1, s2, . . . , sn can be packed into k bins, each

of capacity B. ◀

Most of the interest in Proposition 9 stems from the following proposition.

▶ Proposition 10. DPOP Matching for symmetric dpop and 312-avoiding permutations is
W[1]-hard for the parameter width(P ).

Proof. We perform a reduction from Balanced k-Increasing Coloring, which is W[1]-
hard for the parameter k. Let π ∈ S(kn) for some positive integers k and n. We construct a
symmetric dpop P = (P, P), where P = (X,≼), as follows: X = [k] × [n] and (i, j) ≼ (i′, j′)
if and only if i = i′ and j ⩽ j′. We claim that P occurs in π if and only π admits a k-coloring
for which every color induces an increasing pattern of length n.

If π admits such a k-coloring into colors c1, c2, . . . , ck, the function φ : X → [kn] that
maps each pair (i, j) to the j-th smallest position with color ci is an occurrence of P in π.

Conversely, suppose that some injective function φ : X → [kn] is an occurrence of P in π.
For each i ⩽ k, the set {i}× [n] forms a chain of ≼, and therefore it is mapped to an increasing
pattern of size n. Coloring this pattern in color ci produces the desired k-coloring. ◀

We show now that the problem where P consists of k independent chains is XP for the
parameter k. In fact, we generalize this result to k-weak partial orders (i.e., if P consists
of k independent weak orders).

▶ Proposition 11. DPOP Matching for k-weak symmetric dpop is XP with parameter k.

Proof. Let P be a disjoint union of k weak symmetric dpops P1, P2, . . . , Pk. For each dpop Pi,
let ≼i be a linear extension of Pi, and let Pi,1, Pi,2, . . . , Pi,pi

be the maximal antichains of Pi,
ordered by ≼i. Finally, for each k-tuple a = (a1, a2, . . . , ak) of integers such that ai ⩽ |Pi|,
we denote by Pa the dpop obtained from P by removing the ai ≼i-least elements of each
dpop Pi, and by P min

i,a the set of ≼i-minimal elements of Pa.¨
Then, given a permutation π ∈ S(n), a k-tuple I = (I1, . . . , Ik) of intervals of [n], a

k-tuple a and an integer ℓ, a function φ : Pa → {ℓ, ℓ + 1, . . . , n} is called a partial matching
for (π, I, a, ℓ) if:

φ and π ◦ φ are ≼i-non-decreasing for each i, and
for each i, and each element x of Pa, π(x) ∈ Ii if and only if x ∈ P min

i,a .

Before going further, we denote by 1i the k-tuple with one element 1 (in position i) and
k − 1 elements 0. We also denote by <i the partial order on tuples I of intervals, where
I <i I′ if Ij = I ′

j whenever j ̸= i and x < x′ whenever x ∈ Ii and x′ ∈ I ′
i.
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When ai = |Pi| for all i, such a partial matching exists for all permutations π, tuples
of intervals I and integers ℓ. When ai = 0 for all i and ℓ = 1, and once π is fixed, such
partial matchings coincide with (standard) matchings, and thus we are interested in checking
whether a partial matching exists. Finally, for all tuples I and a and for all ℓ ⩽ n, a partial
matching φ for (π, I, a, ℓ) exists precisely when one of the following cases occur:
1. φ is a partial matching for (π, I, a, ℓ + 1), i.e., ℓ /∈ φ(Pa);
2. there exists an integer i ⩽ k for which the ≼i-least element of P min

i,a , say x, is such that
φ(x) = ℓ and π(ℓ) ∈ Ii, and either

x is not the only element of P min
i,a , and φ is a partial matching for (π, I, a + 1i, ℓ + 1), or

x is the only element of P min
i,a and there exists a tuple I′ >i I such that φ is a partial

matching for (π, I′, a + 1i, ℓ + 1).

Consequently, we can compute by dynamic programming the list of triples (I, a, ℓ) such
that there exists a partial matching for (π, I, a, ℓ): deciding whether adding a triple (I, a, ℓ) to
the list simply requires to check which triples of the form (I′, a′, ℓ + 1) already belong to the
list. Since there are less than n3k+1 triples, this provides us with a Õ(n6k+2) algorithm. ◀

5.2 Symmetric Pattern and Pattern-Avoiding π

In this final section, we consider restrictions on the shape of π, via pattern-avoiding restrictions.
Our goal here is to identify tractable cases among classes of permutations avoiding one or
more size-3 patterns. We give an almost complete dichotomy of polynomial/NP-hard cases,
as shown in Table 1. Hardness results are proven in Proposition 12, and also apply to height-2
dpops. Polynomial cases are proven in Proposition 13 and apply to dpops of any height.

▶ Proposition 12. DPOP Matching for height-2 symmetric dpop P and permutation π is
NP-hard even if π is separable (it avoids 2413 and 3142) and one of the following restrictions
occurs:
1. π is 123-avoiding;
2. π is (132, 213)-avoiding;
3. π is (132, 321)-avoiding;

4. π is (231, 312)-avoiding;
5. π is (132, 312)-avoiding;
6. π is (213, 321)-avoiding;

7. π is (213, 312)-avoiding;
8. π is (132, 231)-avoiding;
9. π is (213, 231)-avoiding.

Proof. In each of the cases presented below, we define a symmetric dpop P = (P, P) for
some partially ordered set P = (X,≼). Each time, we identify P with the partial order ≼.

Table 1 Polynomial (green/light) and NP-hard (red/dark) cases for DPOP Matching with
symmetric dpop and pattern-avoiding permutation π, for combinations of size-3 avoided patterns.
For each case, see the referenced proposition and case for more details. Diagonal cases follow from
any other hard case in the same row or column. For hard cases, the problem used for reduction is
indicated as follows: bic: Biclique, 3P: 3-Partition, bin: Unary Bin Packing, bis: Bisection.
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Figure 6 Reductions from 3-Partition and Unary Bin Packing to DPOP Matching on 123-
avoiding and (132, 213)-avoiding permutations. Left: the height-2 dpop P used in both reductions.
Right: the 123-avoiding and (132, 213)-avoiding permutations used in each reduction. The mapping
of three subsets of P corresponding to a first bin gadget is highlighted in each figure.

Case 1: π is 123-avoiding and separable. We use a reduction from 3-Partition, as illustrated
in Figure 6 with permutation π1. Let (A, B) be an instance of 3-Partition, where A is a
list of integers a1, a2, . . . , a3n with sum nB, all being larger than 1.

For all p ⩽ n, we define a bin gadget bp as the permutation dp(3) ⊕ dp(B − 3): we see
this gadget as consisting of two parts. Our permutation π is now defined by π = ⊖n

p=1bp.
Then, our partial order ≼ is defined on a set X of nB elements, noted xi, yi,2, . . . , yi,ai

for
each i ⩽ 3n, so that xi ≼ yi,j for all i and j.

If P has an occurrence φ : X → [nB] in π, this occurrence is bijective. Moreover, each
element xi is sent to the bottom-left of yi,2, and thus it must is mapped to the left part of
some gadget, say bf(i). Each element yi,j must then be mapped to the right part of the same
gadget. Now, for each p ⩽ n, the set Sp = {i : f(i) = p} is of size 3, and exactly B elements
of X are mapped to the gadget bp, which means that

∑
i∈Sp

ai = B. Moreover, S1 ∪ . . . ∪ Sp

forms a partition of [3n], hence it yields a 3-partition of A.
Conversely, given a partition S1 ∪ . . . ∪ Sn of [3n] such that |Sp| = 3 and

∑
i∈Sp

ai = B

for each p, we build an occurrence of P in π by mapping the three elements xi (for i ∈ Sp)
to the left part of bp, and the B − 3 elements yi,j (for i ∈ Xp) to the right part of bp.
Case 2: π is (132, 213)-avoiding. We use a reduction from Unary Bin Packing, as
illustrated in Figure 6 with permutation π2. Given an instance (A, B, k) of Unary Bin
Packing, where A is a list of integers a1, a2, . . . , an larger than 1, we use the same dpop as
in Case 1: our partial order ≼ is defined on a set X of nB elements, noted xi, yi,2, . . . , yi,ai

for each i ⩽ n, so that xi ≼ yi,j for all i and j. However, this time, our gadget bp is the
permutation ip(B), and our permutation π is again defined by π = ⊖n

p=1bp.
If P has an occurrence φ : X → [nB] in π, this occurrence is bijective. Each element xi

is sent to some gadget, say bf(i), and the elements yi,j must then be mapped to the same
gadget. Now, for each p ⩽ k, let Sp = {i : f(i) = p}. Exactly B elements of X are mapped
to the gadget bp, which means that

∑
i∈Sp

ai = B. This means that (S, B, k) is a positive
instance of the Unary Bin Packing problem.

Conversely, given a partition S1 ∪ . . . ∪ Sk of [n] such that
∑

i∈Sp
ai = B for each i, we

build an occurrence of P in π by mapping the B elements xi and yi,j (for i ∈ Sp) to bp.
Case 3: π is (132, 321)-avoiding. We use a reduction from Bisection, as illustrated in
Figure 7. Given a graph G = (V, E) and an integer k, the Bisection problem consists in
deciding whether V admits a partition V1 ∪ V2 such that |V1| = |V2| and that splits at most
k edges (i.e., at most k edges have one endpoint in V1 and one endpoint in V2).
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Figure 7 Simplified version (for W = 1 and L = 7) of the reduction from Bisection to
DPOP Matching on (132, 321)-avoiding permutations. Top left: a size-6 graph with a bisection
({a, b, c}, {d, e, f}) that splits k = 2 edges. Bottom left: height-2 dpop P (note that, in general, each
element from the bottom line should appear W times and not just once). Right: permutation π;
elements of P are mapped to A, B or C depending on whether they are colored in red, green or blue.

Our reduction is as follows. Let n = |V |/2, m = |E|, W = m + k + 1, and L = nW + m.
Our permutation is defined by π = (ip(L)⊖ ip(L))⊕ ip(k). These three parts of π are noted A,
B and C, from left to right. Then, our partial order ≼ is defined on a set X of 2nW + m

elements: 2nW elements, noted xv,i for each v ∈ V and i ⩽ W , and m elements, noted ye

for each e ∈ E. This order contains the relations xv,i ≼ ye for which v is an endpoint of e.
Assume that there exists a mapping of P into π. For each v ∈ V , and since C has

size k < W , at least one of the elements xv,i is mapped to A, in which case we say that v

has type A, or to B, in which case v has type B. Then, each vertex has at least one type,
and possibly both. We partition V into three sets VA, VB , VAB containing the vertices of
type A, B and both A and B, respectively. Moreover, for each v ∈ VA, each element xv,i

must be mapped either to A or to C: these two parts together contain L + k elements,
so |VA| ⩽ (L + k)/W = n + 1 − 1/W , and |VA| ⩽ n. Similarly, |VB | ⩽ n.

We build a set V1 as the union of VA with n − |VA| vertices of VAB , and V2 as V \ V1, so
that |V1| = |V2| = n. Moreover, for every v ∈ V1 (resp., v ∈ V2), some element xv,i, say xv,1,
is mapped to A (resp., to B). Then, each edge e = (u, v) that is split by (V1, V2) must be
mapped to a point above some point of A and to the right of some point of B. This means
that ye is mapped to C, and that (V1, V2) splits at most k edges, i.e., is a valid bisection.

Conversely, given a bisection (V1, V2) splitting at most k edges, we map P into π as
follows: map elements xv,i for v ∈ V1 (resp., V2) to the first nW elements of A (resp., B),
map elements ye for which e is induced by V1 (resp., V2) to the following elements of A

(resp. B), and finally map all elements ye such that e is split by (V1, V2) into C. This mapping
is an occurrence of P in π.

Case 4: π is (231, 312)-avoiding. We use a reduction from Biclique, as illustrated in
Figure 8 with permutation π1. Given a bipartite graph G = (V, E) and an integer k, the
Biclique problem consists in deciding whether V admits a complete bipartite subgraph Kk,k.
If V = A ∪ B is a partition of V into two independent sets, adding independent vertices if
needed allows us to assume that A and B have the same size n, and that no vertex in either
side is fully connected to the other side.

Our permutation π is defined by π = dp(n − k) ⊕ dp(2k) ⊕ dp(n − k). These three parts
of π are noted b1, b2 and b3. Our partial order ≼ is the order on V such that x ≼ y whenever
x ∈ A, y ∈ B and {x, y} /∈ E.
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Figure 8 Reduction from Biclique to DPOP Matching on (231, 312)-avoiding and (213, 231)-
avoiding permutations. Left: a bipartite graph G with a (2, 2) biclique and the corresponding
height-2 dpop P , built from the complement of G. Right: permutations π1 and π2 with a mapping
of the vertices 1 to 8, including the biclique vertices mapped into the central 2k positions.

Consider a mapping of P into π. For each element x ∈ A, there exists y ∈ B such
that x ≼ y, and therefore x cannot be mapped into b3. Symmetrically, no element y ∈ B

may be mapped into b1. Overall, since |π| = |V | = 2n, b1 contains n − k elements from A, b3
contains n − k elements from B, and b2 contains a size-k subset A′ of A and a size-k subset
B′ of B. No two elements x ∈ A′ and y ∈ B′ that are mapped into b2 are comparable for ≼,
which means that {x, y} ∈ E for each such pair, i.e., that (A′, B′) is a biclique.

Conversely, if G has a biclique (A′, B′), we map all elements of A \ A′ into b1, all elements
of A′ ∪ B′ into b2, and all elements of B \ B′ into b3. This mapping satisfies all relations
x ≼ y with x ∈ A and y ∈ B, except for x ∈ A′ and y ∈ B′, but indeed there is no such
relation since (A′, B′) is a biclique.
Case 5: π is (132, 312)-avoiding. We also use a reduction from Biclique, as illustrated
in Figure 6 with permutation π2. Our partial order ≼ is the same as in Case 4, and our
permutation π is defined by π = ((dp(n − k) ⊕ ip(k)) ⊖ dp(k))⊕ ip(n−k). These three parts
of π are noted b1, b2, b3 and b4.

Consider a mapping of P into π. For each element y ∈ B, there exists x ∈ A such
that x ≼ y, and therefore y cannot be mapped into b1 or b3. Thus, and since |B| = n,
the elements of B are mapped to b2 or b4, and the elements of A are mapped to b1 or b3.
Hence, b2 contains a size-k subset B′ of B and b3 contains a size-k subset A′ of A. No
element of b2 is comparable to any element of b3, and therefore (A′, B′) is a biclique.

Conversely, if G has a biclique (A′, B′), we map all elements of A \ A′ into b1, all elements
of A′ into b3, all elements of B′ into b2 and all elements of B \ B′ into b4. This mapping
satisfies all relations x ≼ y with x ∈ A and y ∈ B, except for x ∈ A′ and y ∈ B′, but indeed
there is no such relation since (A′, B′) is a biclique.
Cases 6–9: These cases are symmetric to Cases 3, 5, 5 and 7, respectively. Indeed, if (P, π) is
an instance of DPOP Matching with P a height-2 symmetric dpop, (P ∂ , πc r) and (P, π-1)
are equivalent instances of DPOP Matching with height-2 symmetric dpops, and
Case 6: if π avoids 132 and 321 (Case 3), πc r avoids 132c r = 213 and 321c r = 321;
Case 7: if π avoids 132 and 312 (Case 5), πc r avoids 132c r = 213 and 312c r = 312;
Case 8: if π avoids 132 and 312 (Case 5), π-1 avoids 132-1 = 132 and 312-1 = 231;
Case 9: if π avoids 213 and 312 (Case 7), π-1 avoids 213-1 = 213 and 312-1 = 231. ◀
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▶ Proposition 13. DPOP Matching is in P for symmetric dpop P if one of the following
restrictions on π occurs:
1. π is (123, 231)-avoiding;
2. π is (123, 132)-avoiding;

3. π is (123, 321)-avoiding;
4. π is (123, 312)-avoiding; 5. π is (123, 213)-avoiding.

Proof. In each of the cases presented below, we are given a permutation π and a symmetric
dpop P = (P, P) for some partially ordered set P = (X,≼). Each time, we identify P with
the partial order ≼.
Case 1: π is (123, 231)-avoiding. There exist integers k, ℓ and m, with sum n, such that
π = dp(k) ⊖ (dp(ℓ) ⊕ dp(m)). These three parts of π are noted b1, b2 and b3. Then, for every
pair (u, v) such that u ≺ v, we must map u into b2 and v into b3. Such values can be mapped
greedily, since elements in b2 are pairwise incompatible, as well as those in b3. Thus, P can
be mapped into π if and only if it has height at most 2, there are at most a elements that
are lower bounds, and at most b elements that are upper bounds.

Note that, if P is not symmetric, the problem becomes NP-hard, since reversing the
horizontal order of Pp and π transforms π into the (132, 321)-avoiding permutation of the
NP-hard Case 3 in Proposition 12.
Case 2: π is (123, 132)-avoiding. The permutation π is a skew sum π = ⊖k

p=1dp of patterns of
the form dp = dp(ap) ⊕ dp(1) for some integer ap ⩾ 0. Then, no two elements in X can share
a strict lower bound, i.e., if u ≺ v and u ≺ w then v = w. Thus, P is of height at most 2,
and there exists a partition S1 ∪ . . . ∪ Sℓ of X in which each set Si contains a distinguished
element si, such that x ≼ si if and only if x ∈ Si. Up to reordering the patterns dp and
the sets Si, which are pairwise incomparable, we assume that a1 ⩾ a2 ⩾ . . . ⩾ ak and that
|S1| ⩾ |S2| ⩾ . . . ⩾ |Sℓ|. Let also m be the number of sets Si with size at least 2.

Each set Si must be mapped into a single pattern, say dp(i), and if i ⩽ m, i.e., if |Si| ⩾ 2,
the element si must be mapped to the unique top-right element of dp(i). Such a mapping
exists if and only if k ⩾ m and ai ⩾ |Si| − 1 for all i ⩽ m: we shall choose p(i) = i and
map greedily the elements of Si \ {si} to the bottom-left part of di. Finally, the elements of
singleton sets Si can be mapped to the remaining places in π.
Case 3: π is (123, 321)-avoiding. Erdős-Szekeres theorem [14] proves that n ⩽ 4.
Cases 4–5: These cases are symmetric to Cases 1 and 2, respectively. Indeed, if (P, π) is an
instance of DPOP Matching with P a height-2 symmetric dpop, (P ∂ , πc r) and (P, π-1)
are equivalent instances of DPOP Matching with height-2 symmetric dpops, and
Case 4: if π avoids 123 and 231 (Case 1), π-1 avoids 123-1 = 123 and 231-1 = 312;
Case 5: if π avoids 123 and 132 (Case 2), πc r avoids 123c r = 123 and 132c r = 213. ◀

6 Concluding Remarks

Some open complexity questions remain among the parameters we identified for DPOP
Matching. For semi-total dpops, the complexity is open for constant width, and for most
classes of pattern-avoiding permutations (although, according to Propositions 7 and 10, the
problem is NP-hard when π avoids 1234 or 312, respectively). For symmetric dpops, it
would be interesting to settle the complexity status of deciding whether a dpop occurs in
a (231, 321)-avoiding or (312, 321)-avoiding permutation. In particular, for these cases, we
conjecture that the problem becomes polynomial when height(P ) is constant.

Regarding the original puzzle formulation of the problem, an interesting question is to
generate instances that yield a unique solution, i.e., given a permutation π, find a dpop
with a unique occurrence in π. This can be done by using a semi-total dpop (e.g., take X
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with |X| = |π|, let Pp be a total order and Pv be an empty order), but one could try to
minimize |X| or the number of pairs of comparable elements in P (i.e., the number of clues)
in order to have a unique solution.
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1 Introduction

A string C is a cover of a string S if each position in S is inside at least one occurrence of C

in S. We say that a string Y is a rotation of a string X if X = AB and Y = BA for some
strings A and B; in this case we write Y = rot|A|(X), where |A| is the length of string A.

Let us denote by CC[i] the length of the shortest cover of roti(S), where S is an input
string. We consider the following problem.

Covers of all rotations
Input: A length-n string S.
Output: The array CC[0 . . n − 1].
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Let Fibn denote the n-th Fibonacci string (Fib0 = b, Fib1 = a, Fibn = Fibn−1Fibn−2).

▶ Example 1. For the Fibonacci string S = Fib6 we have

CC = [ 5, 5, 13, 3, 13, 5, 5, 13, 3, 8, 8, 3, 13 ]

The following table gives shortest covers for consecutive rotations rot0(S), . . . , rot12(S).

i rotation roti(S) shortest cover length CC[i]
0 abaababaabaab abaab 5
1 baababaabaaba baaba 5
2 aababaabaabab aababaabaabab 13
3 ababaabaababa aba 3
4 babaabaababaa babaabaababaa 13
5 abaabaababaab abaab 5
6 baabaababaaba baaba 5
7 aabaababaabab aabaababaabab 13
8 abaababaababa aba 3
9 baababaababaa baababaa 8
10 aababaababaab aababaab 8
11 ababaababaaba aba 3
12 babaababaabaa babaababaabaa 13

Covers in strings are an extensively studied notion in stringology; algorithms computing
covers in a string were proposed in [1, 4, 19, 18], not to mention approximate and generalized
variants of covers (for a recent survey, see [10]). In [8] the authors showed an O(n log n)-time
(and O(n) space) algorithm that computes the lengths of shortest covers of all rotations of a
length-n string. Later in [7] the authors developed a data structure over a length-n string that
allows to answer queries about lengths of shortest covers of factors of the string. If combined
with a data structure answering Weighted Ancestor Queries in the suffix tree in constant
time after linear-time preprocessing, proposed in a very recent result [3] or in an off-line
setting in [15], the data structure of [7] requires O(n log n)-time and space preprocessing
and allows to answer shortest cover queries for factors in O(log n) time (amortized in the
case that off-line Weighted Ancestor Queries are used). Hence, this result also yields an
O(n log n)-time algorithm for shortest covers of all rotations of a length-n string S if applied
for all length-n factors of S2, despite being far more general. This suggests that perhaps
shortest covers of all rotations can be computed in o(n log n) time. In comparison, shortest
covers of all prefixes of a string can be computed in linear time using the on-line algorithm
for computing shortest covers by Breslauer [4] (regardless of the alphabet size).

We show that this supposition is right by developing a linear-time algorithm computing
shortest covers of all rotations of a given string.

Our algorithm works on a word-RAM model with word size w = Ω(log n). We assume
that the input string is over a so-called integer alphabet [0 . . nO(1)], where n is the length of
the string, which is a common assumption in the field (see, e.g., [11]).

Our approach. We use an approach based on runs and on packed representations of sets.
We say that a string C is a seed of a string S if C is a cover of a superstring of S. In [8]
it is shown that a string C is a cover of a rotation of a string S, |C| ≤ |S|, if and only if
C2 is a factor of S3 and C is a seed of S3. Each run in S3 represents in a natural way the
set of occurrences of primitively-rooted squares and we need to extract from these sets the
occurrences of squares which are also seeds.
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2 Preliminaries and algorithmic toolbox

We consider strings over an integer alphabet. Letters of a string S are numbered 0 through
|S| − 1, with S[i] being the ith letter. A factor of S is a string S[i] . . . S[j], for any 0 ≤ i ≤
j < |S|; it is denoted as S[i . . j] or S[i . . j + 1). If i > j, we assume that S[i . . j] is the empty
string. Throughout the paper, factors of S are represented in O(1) space by specifying the
indices i, j of any of their occurrences S[i . . j]. By Occ(U, S) we denote the set of starting
positions of occurrences of U in S. If U = roti(V ), we say that U and V are cyclically
equivalent.

A string S has a period p > 0 if S[i] = S[i + p] for all i ∈ [0 . . |S| − p − 1]. The smallest
period of S is denoted as per(S). A string S is called periodic if 2 ·per(S) ≤ |S|, and aperiodic
otherwise. A string S is called primitive if S = V k for a positive integer k implies that k = 1.

2.1 Suffix tree
Let ST (S) denote the suffix tree of string S. It can be constructed in linear time for a string
over an integer alphabet [11].

The locus of a factor U of S is an (explicit or implicit) node of ST (S) such that the path
from the root to this node has string label U . An implicit node is represented by its nearest
explicit descendant and its distance to the descendant. The string depth of an (explicit or
implicit) node v is the length of the string label of v.

We use Weighted Ancestor Queries on a suffix tree. Such queries, given an explicit node v

and an integer value ℓ that does not exceed the string depth of v, ask for the highest explicit
ancestor u of v with string depth at least ℓ. We use the following very recent result.

▶ Lemma 2 ([3]). Let ST (S) be the suffix tree of S. Weighted Ancestor Queries on ST (S)
can be answered in O(1) time after linear-time preprocessing.

▶ Corollary 3. After O(n) time preprocessing, the locus of any factor of a length-n string S

can be computed in O(1) time.

A simpler off-line version of Weighted Ancestor Queries, that would be sufficient for
our purposes, with the same time guarantees was proposed earlier in [15]. We also use the
following application of the queries.

▶ Lemma 4. Any O(n) factors of a length-n string S can be ordered lexicographically in
O(n) time.

Proof. Assume that the explicit nodes of ST (S) are numbered in pre-order. Let the locus
of a factor be a pair (v, d) where v is the number of the explicit descendant and d is the
distance; d = 0 for an explicit locus. Then it suffices to use Radix Sort to order the loci of
the factors by non-decreasing first components, and by non-increasing second components in
case of a tie. ◀

2.2 Runs, trimmed runs and p-squares
A string of the form U2 = UU is called a square. A square U2 is called a p-square if U is
primitive. We denote by 1

2 PSquares(S) (p-square halves) the set of primitive factors Z of
S such that the square Z2 is also a factor of S.

The maximum number of occurrences of p-squares in a string of length n is Θ(n log n) [9],
whereas the total number of distinct square factors (hence, of distinct p-square factors) in a
string is O(n) [13].
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22:4 Linear-Time Computation of Shortest Covers of All Rotations of a String

A run (also known as a maximal repetition) in S is a periodic fragment R = S[i . . j] which
can be extended neither to the left nor to the right without increasing the period p = per(R),
i.e. if i > 0 then S[i − 1] ̸= S[i + p − 1] and if j < |S| − 1 then S[j + 1] ̸= S[j − p + 1]. The
exponent of a run R, denoted as exp(R), is defined as (j − i + 1)/p. Let R(S) denote the set
of all runs of string S. For a length-n string S it holds that |R(S)| = O(n); moreover, the
sum of exponents of runs in S is O(n) [17].

The center of an occurrence S[a . . a + 2ℓ) of a square U2 is defined as the position a + ℓ.
A square occurrence S[a . . b] is said to be induced by a run R = S[i . . j] if i ≤ a, b ≤ j and
per(R) = per(U). Every square is induced by exactly one run [6]. A run R = S[i . . j] with
period p induces p-squares with centers at positions in [i + p . . j − p + 1]; the length of this
interval is |R| − 2 · per(R) + 1.
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Figure 1 Four runs (presented at the top) generate all p-squares (bottom). The total length of
trimmed runs is the same as the number of occurrences of p-square factors of S.

For a run R = S[i . . j] with period p, we define a trimmed run as S[i + p . . j − p + 1]. We
assume that the trimmed run stores the period of the original run. We denote by R′(S) the
set of trimmed runs of S. The following lemma was already shown in [5]; here we give a
more direct proof in terms of p-squares.

▶ Lemma 5. For any string S of length n we have that
∑

R∈R′(S) |R| = O(n log n).

Proof. The run with period p corresponding to a trimmed run R induces |R| occurrences
of p-squares with half length p, whose centers are positions of R, and vice versa. Now the
thesis follows directly from the fact that the number of occurrences of primitively rooted
squares is O(n log n). ◀

The Lyndon root of a run R is the lexicographically smallest rotation of its length-per(R)
prefix. If L is the Lyndon root of a run R, then R can be uniquely represented as (L, y, a, b)
for 0 ≤ a, b < |L| such that R = L[|L| − a . . |L| − 1]LyL[0 . . b); we call this the Lyndon
representation of R. One can group all runs in S by Lyndon roots and compute the Lyndon
representations of all runs in O(n) time; see [6].

The Lyndon type of a primitive string U , denoted as LynType(U), is the lexicographically
smallest rotation of U .

2.3 Relation to seeds
A factor C of a string S is called a seed of S if there exists a string S′ having S as a factor
such that C is a cover of S′. In other words, C is a seed of S if S is covered by occurrences
and left and right overhangs of C; see Figure 2.
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a b a b a aa a ab a a a b

Figure 2 A string with a seed aabaa.

▶ Lemma 6 ([15]). All the seeds of a string of length n can be represented in O(n) space
as a collection of a linear number of disjoint paths in the suffix tree of the string. This
representation can be computed in O(n) time.

Weighted Ancestor Queries together with a representation of all the seeds of a string
from Lemma 6 can be used to show the following lemma.

▶ Lemma 7 ([8, see Lemma 8]). Let S be a string of length n. Given a family U of O(n)
factors of S, all strings in U that are seeds of S can be reported in O(n) time.

By PrimCov[i] we denote the set of lengths of covers of roti(S) that are primitive strings.
Let us observe that each of these sets is non-empty.

▶ Observation 8. CC[i] = min PrimCov[i].

Proof. Every string U has a cover, possibly equal to U . The shortest cover C of every string
U is primitive. Otherwise, if we had C = Dk for integer k > 1, then D would be a shorter
cover of U . ◀

We further denote by Seeds(S) the set of factors which are seeds of S. The following
lemma uses these sets for the string X := S3 in order to characterize covers of all rotations
of S. Denote by Centers(C2, X) the centers of all occurrences of C2 in X.

▶ Lemma 9 ([8, Lemma 3]). [Covers = Seeds+Squares]
Let S be a string of length n, X = S3, and C be a string of length up to n. Then |C| ∈
PrimCov[i] if and only if C ∈ Seeds(X) ∩ 1

2 PSquares(X) and n + i ∈ Centers(C2, X).

We denote ξ(S) =
∑n−1

i=0 |PrimCov[i]|.

3 A version of the algorithm in [8]

The algorithm from [8] computes the array CC in O(n log n) time and is based on the
characterization of Lemma 9. For each p-square Z2 in X such that |Z| ≤ n, if Z is a seed of
X, then for every j ∈ Occ(Z2, X), we set CC[(j + |Z|) mod n] to the minimum of its current
value (starting from n) and |Z|; see Algorithm 1.

Algorithm 1 Computing CC array as in [8].

1 X := S3; CC[0 . . n) = (n, . . . , n)
2 foreach Z ∈ 1

2 PSquares(X) ∩ Seeds(X) do
3 foreach j ∈ Occ(Z2, X) do
4 i := (j + |Z|) mod n

5 CC[i] := min(CC[i], |Z|)

Lemma 9 directly implies the following observation.

▶ Observation 10. For each execution of line 5 in Algorithm 1, we have |Z| ∈ PrimCov[i].
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22:6 Linear-Time Computation of Shortest Covers of All Rotations of a String

In the following lemma we improve the worst case complexity analysis of Algorithm 1.
The proof of the lemma generally follows the details of the algorithm from [8].

▶ Lemma 11. The time complexity of Algorithm 1 is Θ(ξ(S)).

Proof. All distinct p-squares in X can be computed in O(n) time using the algorithm from [6].
Lemma 7 can be used to check which of the p-square halves are seeds of X. For each p-square
Z2 whose half satisfies this condition, we find its locus v in ST (X) using Corollary 3. Up to
this point, all the steps work in O(n) time. Finally, all j ∈ Occ(Z2, X) can be listed in time
proportional to the number of these elements by inspecting all leaves in the subtree of v in
ST (X). For each j we perform the instruction in line 5; by Observation 10, it corresponds to
a (distinct) element from PrimCov[i]. Overall the time complexity is Θ(n + ξ(S)); however,
ξ(S) ≥ n by Observation 8. ◀

A proof of the following theorem is deferred until Section 6. The theorem implies that,
even with the improved complexity analysis, the algorithm from [8] works in Ω(n log n) time
in the worst case.

▶ Theorem 12. There exist infinitely many strings S such that ξ(S) = Ω(|S| log |S|).

▶ Remark 13. The algorithm from Section 3 can be easily modified with the aid of internal
Two-Period Queries of [16, 2] (such a query computes the smallest period of a factor of the
text in case that the factor is periodic) to output only aperiodic covers of rotations of a string
in time proportional to their total number. Still, the construction of Theorem 12 actually
provides Ω(|S| log |S|) aperiodic covers of rotations of a string.

In our approach we heavily use runs. Hence the next version of the algorithm is based on
runs and is more suitable for further improvements. We also substitute the formula with the
modulo operation by a formula that closely follows Lemma 9.

Algorithm 2 A version of Algorithm 1 employing runs.

1 X := S3; CC[0 . . n) = (n, . . . , n)
2 foreach trimmed run X[a . . b] in X with period p do
3 for i := a to b do
4 if i ∈ [n . . 2n) and X[i . . i + p) ∈ Seeds(X) then
5 CC[i − n] := min(CC[i − n], p)

4 Two useful representations of p-squares: occurrences and values

Our problem reduces to finding for each position i the length of the shortest p-square centered
at i, whose half is a seed of the string.

The trimmed runs, accompanied by additional useful data, can be treated as package
representations of p-squares. Each occurrence of a p-square can be identified with a pair
(i, p), where i is the center and p is the period of the square.

▶ Definition 14. An occurrence package γ = (I, p) of occurrences of p-squares (occ-package,
in short) corresponds to an interval I of consecutive centers of cyclically equivalent p-squares
with period p such that |I| ≤ p.

With each occ-package γ we keep the following data
L = LynType(γ): the (common) Lyndon type of all the corresponding half-squares;
first(γ) = j1 and last(γ) = j2, where rotj1(L) and rotj2(L) are the halves of the first and
last p-square in γ.



M. Crochemore et al. 22:7

An occ-package γ is called canonical if first(γ) ≤ last(γ). In this case the p-squares
generated by γ are rotj(L)2 for first(γ) ≤ j ≤ last(γ) and L = LynType(γ). Our algorithms
will only use canonical occ-packages.

p p p p

L L L

Figure 3 A trimmed run with period p (colored rectangles) represents the set of occurrences of
p-squares with half length p that are induced by the corresponding run (top). In this example this
set of occurrences is split into three (canonical) occ-packages. L is the Lyndon root of the run. A
single run R generates at most exp(R) occ-packages.

An occurrence-representation of occurrences of p-squares in X consists of a set of occ-
packages for X containing all p-squares of X (together with all parameters defined above).

The lemma below follows from the fact that all runs can be computed in linear time,
together with their Lyndon roots; see Figure 3.

▶ Lemma 15. For any string X we can compute in linear time, using the runs of X, an
occurrence-representation Γ(X) of occurrences of all p-square factors of X.

Proof. We compute the Lyndon representations of all runs in X [6]. For a run R = X[i . . j]
with period p and Lyndon representation (L, y, a, b), we form y occ-packages with intervals
[i + p . . i + p + a), [i + p + a . . i + 2p + a), . . . , [i + (y − 2)p + a . . i + (y − 1)p + a),
[i + (y − 1)p + a . . i + (y − 1)p + a + b] if y ≥ 2, and a single package [i + p . . i + a + b] if
y = 1. ◀

Let us note that the size of Γ(X) is O(n) if |X| = O(n), even though the total length of
intervals in occ-packages can be Ω(n log n).

Γ(X) is an interval representation of all occurrences of p-squares. We also need an
interval-type representation of all distinct p-squares in X; this time the sum of lengths will
have linear total length.

Let a p-square U2 be formally identified with (L, s), where U = rots(L) and L is the
Lyndon root of U . Let us assume that all p-square factors of length up to 2n in X are
ordered with respect to their (L, s) pairs. Let HalfSquares[i] be the i-th p-square half U in
this order. The length of the table HalfSquares is O(n) [13].

▶ Example 16. For the string S = aabbabbaabbaab and X = S3, the table HalfSquares
looks as follows; see also Figure 4.

i HalfSquares[i] L s

1 a a 0
2 aab aab 0
3 baa aab 2
4 aabaabbabbaabb aabaabbabbaabb 0

. . . . . . . . . . . .
17 baabaabbabbaab aabaabbabbaabb 13

i HalfSquares[i] L s

18 abba aabb 1
19 bbaa aabb 2
20 baab aabb 3
21 abb abb 0
22 bba abb 1
23 b b 0
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a a b b a b b a a b b a a b a a b b a b b a a b b a a b a a b b a b b a a b b a a b

Figure 4 All distinct p-squares of half length smaller than |S| in X = S3 for S = aabbabbaabbaab.
For each of them, an example occurrence with the center in the middle S in X is shown.

We denote by SeedMask the Boolean vector such that

SeedMask[i] = 1 ⇔ HalfSquares[i] ∈ Seeds(X).

In other words SeedMask is the characteristic vector of the set Seeds(X) as a subset of the
set 1

2 PSquares(X).
Let us assume that an occ-package γ = ([a . . b], p) represents consecutive p-squares with

halves U1, U2, . . . , Uk. We introduce a Boolean vector SeedMaskγ such that SeedMaskγ [i] = 1
if and only if Ui is a seed of X.

▶ Lemma 17. (a) The table SeedMask can be computed in O(n) time.
(b) We can compute in O(n) time for all γ = ([a . . b], p) ∈ Γ(X) the values Φ(γ) := (a′, b′)

such that SeedMaskγ [a . . b] = SeedMask[a′ . . b′].

Proof. (a) The main part is to compute the table HalfSquares. This is done as shown below
in Algorithm 3.

Algorithm 3 Compute HalfSquares.

1 L := list of all occ-packages γ ∈ Γ(X) ordered by (LynType(γ), first(γ), −last(γ))
2 foreach occ-package γ in L but the first one do
3 γ′ := previous occ-package in L
4 if LynType(γ′) = LynType(γ) and [first(γ′) . . last(γ′)] ⊇ [first(γ) . . last(γ)] then
5 Remove γ from L
6 foreach occ-package γ in L do
7 if there is a next occ-package γ′ in L and LynType(γ′) = LynType(γ) then
8 end := min(first(γ′) − 1, last(γ))
9 else

10 end := last(γ)
11 Let γ = ([a . . b], p)
12 for i := a to a + end − first(γ) do
13 Append X[i . . i + p) to HalfSquares

In the algorithm we use Lemma 15 to compute in O(n) time an occurrence representation
Γ(X) of occurrences of p-squares in X. We can sort all occ-packages γ ∈ Γ(X) with respect
to (LynType(γ), first(γ), −last(γ)) using Lemma 4 and then Radix Sort. Intuitively, the
intervals [first(γ) . . last(γ)] for packages with equal Lyndon type are sorted from left to right,
and intervals with equal start point are ordered by non-increasing end points. Then we
scan the sorted list from left to right, removing redundant intervals [first(γ) . . last(γ)], that
is, intervals that are contained in another such interval corresponding to the same Lyndon
type. Finally, each of the non-redundant occ-packages generates some number of consecutive
elements of HalfSquares list that were not generated by any previous occ-package in L.
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Let us recall that SeedMask[i] = 1 if and only if HalfSquares[i] is a seed of X. Consequently
the whole table SeedMask can be computed in O(n) time due to Lemma 7.

(b) The function Φ can be inferred from the construction of the table HalfSquares. For
each occ-package γ that remained on the list L until the end, we set the first component of
Φ(γ) to the position in HalfSquares of the first half p-square that was introduced due to γ in
line 13. For each remaining package γ, if γ′ is the package that was used to remove γ from
L in line 4 and Φ(γ′) = (a′, b′), then the first component of Φ(γ) is a + first(γ) − first(γ′).
In either case the second component of Φ(γ) can be calculated from the first component and
the length of the interval I in γ = (I, p). ◀

Thus the bit-mask of each occ-package is a copy of a fragment of a single Boolean vector
of length O(n); see also Figure 5.

Intuition. We need to know, in the representation Γ(X), for each interval, a Boolean vector
which says which half p-square is a seed. If we do it directly, this needs Ω(n log n) space.
However, these Boolean vectors are parts of the representation SeedMask(X). Hence we can
have a reference to a part of SeedMask(X). The total number of references is asymptotically
the same as the sum of exponents of runs, which is known to be linear. However, we need to
pack O(log n)-sized chunks of Boolean vectors into machine words. With further bit-level
optimizations this eventually results in a linear-time algorithm. The exact implementation is
given in Section 5, but first we provide an O(n log n)-time implementation to illustrate the
main ideas of our approach.

We introduce bitmasks Tp[n . . 2n) for p ∈ [1 . . n] such that Tp[n + i] = 1 if and only if
roti(S) has a cover of length at most p. We have

CC[i] = min { p : Tp[n + i] = 1 }.

For two equal-length bitmasks F1[a . . a + ℓ), F2[a′ . . a′ + ℓ) we define

∆(F1, F2) = { j ∈ [0 . . ℓ) : F1[a + j] < F2[a′ + j] }.

Using the bitmask tables T and SeedMask we can write the next version of the algorithm.
The variable New is the set of centers of new p-squares, whose halves are seeds of X (which
is stored in the fragment of SeedMask as a Boolean vector). In the actual implementation
the bitmask T is extended to the range [0 . . 3n); this will be more convenient in the next
version of the algorithm.

Algorithm 4 Extraction of shortest covers of rotations.

1 Compute Γ(X), SeedMask and Φ function for X = S3

2 T [0 . . 3n) := (0, . . . , 0)
3 for p := 1 to n do ▷ Invariant: T = Tp−1
4 foreach occ-package γ = ([a . . b], p) in Γ(X) do
5 New := ∆( T [a . . b], SeedMask[a′ . . b′] )
6 foreach i ∈ New do
7 if a + i ∈ [n . . 2n) then CC[a + i − n] := p

8 T [a + i] := 1

Algorithm 4 still has O(n log n) time complexity since the total size of all processed
fragments can be Ω(n log n). However we process only a linear number of fragments. If
we implement the assignment T [i] := 1 in constant time, and the operation ∆ in time
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proportional to the size of its output (plus a constant), then the whole complexity will be
linear. We achieve that in the next section by packing log n-sized chunks of Boolean vectors
into single machine words.

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a
0 0 0 0 0

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a
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00 00

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a
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1001 1
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1100011

a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a

111100001111
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Figure 5 All runs of period at most |S| in X = S3 for S = Fib7 are shown, grouped by their
periods. For each run, the corresponding trimmed run generates one or more occ-packages γ (cf.
Lemma 15). Each occ-package corresponds to a fragment of SeedMask (see Lemma 17); these
fragments are shown limited to the positions in the middle occurrence of S (red lines are the
delimiters between occ-packages and correspond to Lyndon types). For each position i ∈ [n . . 2n),
the ones in bitmask at position i correspond to primitive covers of roti(S) (cf. Figure 6). The length
of SeedMask is equal to the number of distinct p-square factors of half length at most n of X, i.e.
1+2+3+5+8+7+21 = 47. For Fibonacci strings the total length of all trimmed runs is superlinear
(as the number of occurrences of p-squares), while the length of SeedMask is always O(n) (as the
number of distinct values of p-squares). This property is crucial to achieve a linear time algorithm.

5 Speeding up Algorithm 4

Instead of the original version of SeedMask and T we use now their packed versions. First we
describe several operations on a log n-sized chunk of a Boolean vector packed into a single
integer.

Bit-wise operations. Let w = Ω(log n) denote the length of the machine word. We use the
bitwise operations and, not from the word-RAM model as well as ffs (find first (bit) set;
also known under the name ctz – count trailing zeroes), which computes the index of the
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least significant set bit in a machine word. If ffs is not supported by the model, we can set
the chunk length to 1

2 log n and preprocess the ffs values for each possible machine word in
O(

√
n log n) time.

We redefine the operation ∆ to work on two machine words representing Boolean vectors
in time proportional to the size of output plus O(1). To this end we apply the operation ffs
as shown in following function (Algorithm 5).

Algorithm 5 Bitmask realisation of ∆(F1, F2).

1 F := and(not(F1), F2)
2 R := ∅
3 while F ̸= 0 do
4 i := ffs(F )
5 Set ith bit of F to 0
6 R := R ∪ {i}
7 return R

We also use an operation Extract(B, a, b, s) that, given a packed bitmask B, indices
0 ≤ a ≤ b < |B| and shift value 0 ≤ s < w, returns the fragment consisting of bits
B[a], . . . , B[b] also represented as a packed bitmask but shifted by s bits, i.e. the packed
representation of the bitmask 0s B[a . . b] 0t, where t = w − (b − a + 1 + s) mod w. It can be
implemented in O((b − a + 1)/ log n + 1) time on the word-RAM.

In the algorithm PackedT and PackedSeed are packed representations, using O(n/ log n)
machine words, of T and SeedMask.

Algorithm 6 Packed bitmask realisation of Algorithm 4.

▷ w = Ω(log n) is the length of machine word
1 Compute Γ(X), SeedMask and Φ function for X = S3

2 PackedT [0 . . ⌈3n/w⌉ − 1] := (0, . . . , 0)
3 for p := 1 to n do
4 foreach occ-package γ = ([a . . b], p) do
5 (a′, b′) := Φ(γ)
6 F := Extract(PackedSeed, a′, b′, a mod w) ▷ |F | = O((b − a)/ log n + 1)
7 d := a div w

8 for j := 0 to |F | − 1 do
9 New := ∆(F [j], PackedT [j + d])

10 foreach k ∈ New do
11 i := (j + d) · w + k

12 if i ∈ [n . . 2n) then CC[i − n] := p

13 Set k-th bit in PackedT [j + d] to 1

Thus we obtain the main result of this paper.

▶ Theorem 18. The lengths of shortest covers of all rotations of a string can be computed
in O(n) time.

Proof. We apply Algorithm 6. The initial computations in line 1 are performed in O(n)
time by Lemma 15 (computation of the occurrence-representation Γ(X)) and Lemma 17
(computation of the global SeedMask and the Φ function on occ-packages).
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By Lemma 5, the total size of SeedMaskγ over all occ-packages γ is O(n log n), and by
Lemma 15, the number of occ-packages is O(n). The for-loop in line 8 iterates over the
packed representations of seed masks, hence performs O(n) iterations in the course of the
algorithm. The complexity of all calls to Extract is the same.

The total number of iterations of the foreach-loop in line 10, equal to the total size of
the sets New, is O(n), as each of them sets one new bit of PackedT to 1. The set New is
computed in O(|New| + 1) time as shown in Algorithm 5. The complexity follows. ◀

6 Proof of Theorem 12

Let Fm = |Fibm| denote the m-th Fibonacci number. We start with a simple fact that is
probably folklore.

▶ Fact 19. rotk(Fibm) is aperiodic for 0 ≤ k < Fm−1.

Proof. A proof by induction. It is easy to check that the longest common prefix of strings
Fib2

m and Fib3
m−1 has length Fm+1 − 2, hence Fm−1 is a period of any such rotation (not

small enough to make the string periodic). If such a rotation was periodic with a period
p ≤ Fm

2 , then there would exist a square with half length p in this rotation, hence p would be
a Fibonacci number [14] and p ≤ Fm−2. Then by Fine and Wilf’s periodicity lemma [12] the
rotation would also have a period not exceeding gcd(Fm−1, p) ≤ Fm−1

2 . However, rotk(Fibm)
for 0 ≤ k < Fm−2 contains as a prefix rotk(Fibm−1) and for Fm−2 ≤ k < Fm−1 −1 it contains
a factor Fibm−1 (as Fib2

m−2 = Fibm−1Fibm−4); by the inductive hypothesis those rotations
are aperiodic. ◀

We also use the following fact that was already presented in [8].

▶ Fact 20 (see [14, 8]). If m ≥ 3, only strings of length Fk, for 3 ≤ k ≤ m, can be covers of
rotations of Fibm.

a b a a b a b a a b a a b a b a a b a b a
3 3 3 3 3

5 5 5 5 5 5
8 8 8 8 8 8 8 8

13 13 13 13 13 13 13
21 21 21 21 21 21 21 21 21 21 21 21 21 2121 21 21 21 21 21 21

Figure 6 The figure shows the lists of lengths of primitive covers of rotations of Fib7. The
numbers below the position correspond to the rotation beginning in that position. Apart from
Fm, the numbers Fk form Fm−k blocks of Fk−1 − 1 elements each. Numbers in blue correspond to
primitive covers that are not aperiodic.

▶ Lemma 21. For S = Fibm, we have ξ(S) = Θ(mFm). The same bound holds if we count
the aperiodic covers or all the covers of rotations of S.

Proof. We prove the lemma using a slight generalisation of the technique used in [8] to show
a representation of lengths of shortest covers of all rotations of Fibm.

Fact 20 shows that lengths of covers of any rotation belong to {F3, . . . , Fm}, hence also
that ξ(S) = O(mFm) (the bound holds also for all covers of all rotations), thus we focus only
on strings of those lengths when proving the lower bound.
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In [8] it was shown that the lengths of shortest covers of rotations of Fibm can be expressed
in a concise way in relation to the shortest covers of rotations of Fibk for k < m. More
precisely, if Sm is the prefix of CC(Fibm) of length Fm−1 − 1, then [8, Theorem 2(b)] shows
that for m ≥ 4,

CC(Fibm) = Sm−2, Fm, Sm−3, Fm, Sm−2, Fm, Sm−1, Fm.

The proof of the theorem, however, never used the property that the covers were shortest,
but only a division into covers of length Fm−1 and the shorter ones.

Let Am be a table of length Fm−1 − 1 of lists such that Am[i] consists of all lengths of
aperiodic covers of roti(Fibm). Since we only care about asymptotics, we will limit the proof
to the first Fm−1 − 1 rotations of Fibm. We claim that Am = A′

m−2{Fm}A′
m−3{Fm}A′

m−2,
where A′

k equals Ak with every list appended with the value Fm.
Thanks to this limitation we do not need to care about covers of lengths Fm−1 (they

are not present for those rotations), which can behave differently than Fk for k < m − 1 in
the recurrence. The values Fk for k < m − 1 behave according to the described recursive
formula as shown in the proof of [8, Theorem 2(b)], while values Fm occur in each list since
the whole rotations are their own covers and are aperiodic due to Fact 19.

Let Cm be the number of elements in all the lists in Am. Then the definition of Am

provides a recursive formula Cm = 2 · Cm−2 + Cm−3 + Fm−1 − 1. From here it can be checked
by simple induction that Cm ≥ cmFm for any c < 1

2+ϕ (where ϕ is the golden ratio) and
sufficiently large m:

2c(m − 2)Fm−2 + c(m − 3)Fm−3 + Fm−1 − 1 ≥ cmFm ⇔
c(mFm − (2m − 4)Fm−2 − (m − 3)Fm−3) ≤ Fm−1 − 1 ⇔

c(mFm−1 − (m − 4)Fm−2 − (m − 3)Fm−3) ≤ Fm−1 − 1 ⇔
c(4Fm−2 + 3Fm−3) ≤ Fm−1 − 1 ⇔

c(Fm + 2Fm−1) ≤ Fm−1 − 1 ⇔

c ≤ Fm−1 − 1
Fm + 2Fm−1

∼ 1
2 + ϕ

This concludes the proof. ◀

Proof of Theorem 12. By Lemma 21 for the family of Fibonacci strings we have ξ(Fibm) =
Ω(Fm · m) = Ω(|Fibm| log |Fibm|). ◀

7 Final Remarks

In our algorithm we extract fragments consisting of O(n log n) bits in total of a packed
bitmask consisting of O(n) bits. The fact that all these fragments can be represented in O(n)
machine words allows us to obtain linear time complexity. Each of these bitmask fragments
carries the information about which subsequent occurrences of p-squares of the same half
length are seeds of the string S3. Based on combinatorial properties of squares and seeds,
it can be the case that the total size of RLE representations of these bitmask fragments is
O(n). This would simplify the algorithm.
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Abstract
We consider tile covers of 2D-strings which are a generalization of periodicity of 1D-strings. We
say that a 2D-string A is a tile cover of a 2D-string S if S can be decomposed into non-overlapping
2D-strings, each of them equal to A or to AT , where AT is the transpose of A. We show that all tile
covers of a 2D-string of size N can be computed in O(N1+ε) time for any ε > 0. We also show a
linear-time algorithm for computing all 1D-strings being tile covers of a 2D-string.
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1 Introduction

A 1D-string (or simply a string) is a finite sequence of letters. A 2D-string S is a rectangular
2D-matrix consisting of n rows being strings of equal length m. The dimensions of the
2D-string are n × m and its size is |S| = N = n · m. We say that a 1D-string S has period p

if S[i] = S[i + p] for all i = 1, . . . , |S| − p. We say that a 2D-string S has horizontal (vertical)
period p if each row (column, respectively) of S has period p.

Periodicity in 2D-strings has different properties than in 1D-strings. Let us consider an
example based on the following known notions of periodicity. A run in a 1D-string (2D-string,
respectively) S is a maximal periodic factor of S (maximal submatrix that is periodic in
both dimensions). Two natural 2D-generalizations of squares in a 1D-string are known; a
quartic is a configuration that is composed of 2 × 2 occurrences of an array W and a tandem
is a configuration consisting of two occurrences of an array W that share one side. A string
of length n has O(n) distinct square factors [8, 7, 14] and O(n) runs [11, 3]. However, it was
recently shown that a 2D-string of size N can have Ω(N3/2) distinct tandems, Ω(N log N)
distinct quartics and Ω(N log N) runs [9].
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Motivated by these differences, we introduce a natural generalization of periodicity to
2D-strings which we call tile covers. A 1D-string S has a full period P if S = P k for some
positive integer k. We say that a 2D-string A is a 2D-tile cover or simply tile cover of an
n × m 2D-string S if S can be decomposed into (non-overlapping) 2D-strings each of them
equal to A or to AT , where AT is the transpose of A (the i-th row of A becomes in AT the
i-th column); see Figure 1. In this paper we consider the following problem.

Tile covers problem. Compute efficiently all tile covers A of a given 2D-string S.
We consider this problem in full generality as well as a special case in which A is a

1D-string (a rectangle consisting of a single row) which we call the 1D-tile covers problem.
Note that for a 2D-string of size N , there are at most N tile covers; each of them corresponds
to a submatrix of S starting in its top left corner. In particular, each tile cover of S can be
represented in O(1) space.

▶ Observation 1. In case when S is a 1D-string, the tile cover problem is trivial: a 1D-string
A is a tile cover of a 1D-string S if and only if S is a string power of A. However in case of
2D-strings the problem becomes complicated, even for 1D-tile covers.

a b c a b c a b c
b c a b c a b c a
a b a b a b c a b
b c b c b c a b c
c a c a a b c c a
a b a b b c a a b
b c b c a b c b c
c a c a b c a c a

a b a b a a b a b
a a a a b a b a b
b b b b a a a a a
a a a a b b b b b
b b b b a a a a a
a b a b b b b b b
a b a b a a b a b
a b a b b a b a b

Figure 1 Two examples of tile coverings of 2D-strings; the first one is by a 2 × 3 2D-tile cover
and the second one is by a 1D-tile cover of length 4. Let us notice that in the case of 1D-tile covers
both abab and its primitive root ab are 1D-tile covers of the 2D-string.

A known generalization of periodicity in 1D-strings is quasiperiodicity. A string C is
a cover of a 1D-string S if S can be created by possibly overlapping occurrences of C; see
e.g. [2, 4]. Versions of covers of 2D-strings were studied before; the main difference between
these notions and tile covers is that tile covers do not allow covering the text with overlapping
occurrences of the cover. In [5] two notions of covers of 2D-strings, called 1D-covers and
2D-covers, were considered. A 2D-string C is a 2D-cover of a 2D-string T if each position of
T is inside an occurrence of C in T . Various algorithms computing 2D-covers were presented
in [5, 6, 13]. A (1D) string C is a 1D-cover of a 2D-string T if each position of T is inside
an occurrence of C or CT . A linear-time algorithm computing all 1D-covers of a string was
proposed in [5].

Our Results. Let S be a 2D-string of size N . We show that:
all 1D-tile covers of S can be computed in O(N) time;
all tile covers of S can be computed in O(N1+ε) time for any ε > 0.

Let us recall that each tile cover can be represented in O(1) space as a submatrix of S.
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2 1D-Tile covers of 2D-strings

In this section we show how to compute 1D-tile covers of an n × m 2D-string S of size N .
Henceforth by ℓ we denote the length of the 1D-tile cover.

Let us recall some notation and properties of periodicity of 1D-strings. A string B that
is both a prefix and a suffix of a string U is called a border of U . A factor F of a string U is
called proper if |F | < |U |. By root(U), called the primitive root of U , we denote the shortest
string Z such that U is a power of Z. We say that U is primitive if root(U) = U . The string
root(U) is primitive. Let us also recall the solution to the following classical word equation;
cf. [12].

▶ Lemma 2. If strings X, Y satisfy XY = Y X, then there exists a string Z such that
X = Zx and Y = Zy for some positive integers x, y.

2.1 Unary 1D-tile covers
The unary case is simpler, but not completely trivial.
▶ Remark 3. The number of distinct unary 1D-tile coverings is potentially exponential, even
if ℓ = 2. For example, there are 12,988,816 ways to tile a standard 8 × 8 chessboard with
dominoes (to tile the 8×8 unary 2D-text by a linear unary tile of length ℓ = 2). The numbers
of distinct domino tilings of a 2 × n text are Fibonacci numbers.

We define the following auxiliary n × m table Dℓ: the first row is a prefix of (1, 2, . . . , ℓ)∞,
and each subsequent row results by adding 1 to the elements of the previous row, substituting
each ℓ + 1 with 1; see Figure 2.

1 2 3 4 5 6 1 2 3
2 3 4 5 6 1 2 3 4
3 4 5 6 1 2 3 4 5
4 5 6 1 2 3 4 5 6
5 6 1 2 3 4 5 6 1
6 1 2 3 4 5 6 1 2
1 2 3 4 5 6 1 2 3
2 3 4 5 6 1 2 3 4

Figure 2 Illustration of the proof of Lemma 5 for n = 8, m = 9, ℓ = 6. The two framed rectangles
are balanced; however the remaining 2 × 3 rectangle A is not, hence a unary 8 × 9 matrix does not
have a 1D-tile cover of length 6 (even though 6 divides 72 = 8 · 9).

We say that a submatrix of Dℓ is balanced if each integer in {1, . . . , ℓ} occurs the same
number of times in this submatrix.

▶ Observation 4. For 0 < k, r < ℓ, each k × r submatrix A of Dℓ is not balanced.

Proof. The proof is by contradiction. Assume each of the numbers 1, . . . , ℓ occurs in A the
same number of times. The integer at position min(k, r) in the first row of A occurs in the
first min(k, r) rows of A. Hence each integer in A should occur at least min(k, r) times,
altogether we have at least min(k, r) · ℓ occurrences in A. However, it is impossible since A

has only k · r positions and k · r < min(k, r) · ℓ due to the inequality k, r < ℓ. ◀

▶ Lemma 5. A unary 2D-string of size n × m has a (unary) 1D-tile cover of length ℓ if and
only if ℓ divides n or m.

CPM 2022
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Proof. If ℓ divides m, then the text can be covered trivially with the use of horizontal
occurrences; symmetrically with the use of vertical ones if ℓ divides n. Let us consider the
other implication.

Each occurrence of a 1D-tile cover of length ℓ is balanced in the array Dℓ, hence the whole
2D-string can be covered only if Dℓ is balanced. Since every submatrix of Dℓ of dimensions
k × ℓ and ℓ × k is balanced, the problem reduces to the case of a matrix of dimensions
m mod ℓ and n mod ℓ, both smaller than ℓ, which is covered by Observation 4. ◀

▶ Remark 6. Let us note that it is not sufficient in the lemma for ℓ to divide n · m; see
Figure 2.

2.2 Combinatorics of non-unary 1D-tile covers
In this section we consider only non-unary texts S and non-unary tile covers (it is impossible
for a non-unary text to have a unary tile cover or for a unary text to have a non-unary tile
cover). Assume that the first row of S starts with the letter a. Consequently each 1D-tile
cover starts with an occurrence of the letter a.

▶ Definition 7. For a nonempty 2D-string U we define

ratio(U) = #a(U)
|U |

where #c(U) is the number of occurrences of the letter c in U .

We say that two 2D-strings are similar, written U1 ∼ U2, if ratio(U1) = ratio(U2).
Obviously if U is a tile cover of S, then U ∼ S.

Notice that since the top left position of S has to be covered, any 1D-tile cover U has to
be a prefix of the first row or the first column of S, and by symmetry also the suffix of the
last row or the last column of S. Henceforth we consider the case in which U is a prefix of
the first row of S and a suffix of the last row of S; the remaining cases can be handled in a
symmetric way.

▶ Definition 8. In this section we say that a 1D-string U of length at most min(n, m) is a
candidate if it satisfies the following conditions:

U is a prefix of the first row of S and a suffix of the last row of S;
U ∼ S;
The first row of S belongs to (U ∪ a)∗, that is, it can be factorized into factors equal to U

and a.

▶ Observation 9. If U is a 1D-tile cover of S, then U is a candidate.

▶ Observation 10. If U is a 1D-tile cover of S, then so is root(U).

The following auxiliary lemma plays an important role in a proof of Lemma 12 that gives
a key characterization of candidates.

▶ Lemma 11. Assume U = L ak R = R ak L, U is primitive and non-unary, and L, R ≠ ε.
Then ratio(ak R) > ratio(U).

Proof. We have that k > 0, as otherwise U = LR = RL, which implies that U is not
primitive (see Lemma 2). The word equation from the statement of the lemma is equivalent
to ak U = (ak L)(ak R) = (ak R)(ak L), hence, again by Lemma 2, strings ak U and ak R

have a common primitive root, which concludes that ratio(ak U) = ratio(ak R). However,
since U is non-unary, we have that ratio(ak R) = ratio(ak U) > ratio(U). ◀
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▶ Lemma 12. Take two candidates U, V , such that U is primitive and |U | < |V |. Then V is
a power of U .

Proof. Both U and V are candidates, which implies that U is a border of V . At the same
time, since U is a candidate, the occurrence of V that covers the top left corner of S can be
factorized into occurrences of U , letters a and a (possibly empty) string R – a proper prefix of
U – at its end; see Figure 3. Let F denote this factorization. We will show that R = ε, which
will conclude that V is a power of U . Indeed, otherwise we would have ratio(V ) > ratio(U),
contradicting the definition of a candidate.

U U U U U

U

L R

V

Figure 3 The series of grey boxes in the main line represents a factorization of the first row of
2D-string S into (non-unary) U ’s separated by a∗’s (white spaces, possibly zero a’s). The upper
brown box corresponds to the suffix of V equal to U . We focus on the first occurrence of V in the
text. If additionally we assume that ratio(U) = ratio(V ), and that U is primitive, then V must be a
power of U (that is, there are no white spaces, and the last U ends at the same point as V ).

The length-|U | suffix of V , by the factorization F , has a form LakR for some (possibly
empty) suffix L of U and k ≥ 0. However, this suffix is equal to U , so U = LakR. At the
same time, since R is a prefix of U , we also have that U = RWL for some string W . From
these two decompositions of U we see that ratio(ak) = ratio(W ), i.e. W = ak.

This will allow us to apply Lemma 11. First, if any of the strings L, R is empty and
k > 0, by Lemma 2, we obtain that U is unary, and so is V , which concludes the proof. If
any of L, R is empty and k = 0, then R = ε (since R was chosen as a proper prefix of U)
and we obtain the conclusion as shown before. Otherwise we can indeed apply Lemma 11
and obtain that ratio(ak R) > ratio(U). From the aforementioned factorization F of V we
obtain ratio(V ) > ratio(U), which contradicts the definition of a candidate. ◀

▶ Corollary 13. Assume a non-unary text S has a 1D-tile cover. Then the shortest 1D-tile
cover of S is the shortest candidate U . It is a primitive string. All other 1D-tile covers are
powers of U , though not all powers of U are necessarily 1D-tile covers of S.

The corollary suggests the following algorithm for finding the shortest 1D-tile cover:
1. Find the shortest primitive candidate U .
2. Then check if it is a 1D-tile cover.

The first step is easy because it involves only 1D-strings: first row/column and the last
row/column. The second step can be done using a greedy approach.

However, testing which powers of U are 1D-tile covers requires a slightly different number-
theoretic approach.

2.3 Computing non-unary candidates
All 1D-tile covers U satisfying |U | > min(n, m) can be trivially computed, hence we later
assume that the length of the cover is at most min(n, m).

We use the following algorithm to compute all candidates.
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Algorithm 1 ALL-CAND(S).

Compute ratio(S)
Cand is initially the set of all proper borders of S1$S2 of length ≤ n, where S1 and

S2 are respectively the first and the last row of S and $ is a special symbol
using prefix-sums computation we compute ratio(Z) for each prefix of S1
remove from Cand all U such that ratio(U) ̸= ratio(S)
foreach U ∈ Cand do

if S1 /∈ (U ∪ a)∗ then remove U from Cand
// It is checked in O(m) time per each U

return Cand

▶ Corollary 14. ALL-CAND(S) computes in O(N) time all candidates.

Proof. Borders of a string of length m can be computed in O(m) time [10]. We have
|Cand| ≤ min(m, n) and each U ∈ Cand is checked in O(m) time using linear-time pattern
matching [10]. ◀

2.4 Testing a single non-unary candidate
Assume # does not occur in S. In the course of the next algorithm certain entries will be
marked, i.e., changed to #. For a 2D-string U we define two operations:

Match(i, j, U): return true if and only if there is a full occurrence of U starting in position
(i, j) in S,
Mark(i, j, U): changes each symbol in S in the occurrence of U starting in (i, j) to #.

▶ Remark 15. The following algorithm GREEDY is also well defined for a 2D-string U , but
it does not work correctly for all tile cover candidates which are not 1D-strings. We reuse it
later in Section 3.2.1.

Algorithm 2 GREEDY(S, U).

Output: True if a non-unary 2D-string U is a 1D-tile cover of S

for i := 1 to n do
for j := 1 to m do

if S[i, j] ̸= # then
if Match(i, j, U) then

▷ choosing occurrence of U

Mark(i, j, U)
else if Match(i, j, UT ) then

▷ choosing occurrence of UT

Mark(i, j, UT )
else

return false
▷ All positions are now marked

return true

▶ Theorem 16. Assume U is a 1D-string. Then GREEDY(S, U) checks if U is a 1D-tile
cover of S in O(N) time. Covering of S with U is unique (occurrences of U forming the tile
cover can be chosen only in a single, unique way).
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Proof.
Correctness. When we are processing the i-th row then the preceding rows are already
completely marked. Hence each non-marked position in this row should be marked now by
an occurrence of U or UT starting in this row. If Match(i, j, U), then U must be used instead
of UT .

Indeed, U is non-unary. Let k be its first position containing letter different from a.
Match(i, j, U) determines an existence of an uncovered letter different from a at position
(i, j + k − 1). This position cannot be covered with an occurrence of U beginning further
(k is the first such position), nor with a UT , which determines that U must be used at
position (i, j).

Complexity. Each operation Match can be done in O(|U |) time. It is amortized by marking
|U | positions which were not marked previously. Consequently, the total time is O(N). ◀

2.5 Finding all 1D-tile covers in non-unary texts
Denote by gcd(M) the greatest common divisor of integers in a set M . We use the following
algorithm (see also Figure 4).

Algorithm 3 ALL-TILES(S).

Output: All lengths of 1D-tile covers
U := shortest element of Cand(S)
if GREEDY(S, U)=false then return ∅
now GREEDY(S, U) can partition S into horizontal occurrences of U and vertical
occurrences of UT

we merge consecutive horizontal occurrences and consecutive vertical occurrences in
possibly larger disjoint horizontal and vertical strips

M := set of lengths of obtained strips
d := gcd(M)
return all powers of U whose lengths divide d

a a b a b a b a b a
b a b a b a a a a b
a a b a b b b b b a
b a a a a a a a a b
a b b b b b b b b a
b a a a a a b a b b
a b b b b a b a b a
b a b a b a b a b b

merge

Figure 4 Merging of occurrences of the smallest 1D-tile cover in the covering to compute the
larger ones. Here rectangles of length 4 and 8 appear, their greatest common divisor is 4, hence
1D-tile covers have lengths 2 and 4 (multiples of 2 and divisors of 4).

▶ Theorem 17. All 1D-tile covers of a 2D-string of size N can be computed in O(N) time.

CPM 2022



23:8 Rectangular Tile Covers of 2D-Strings

Proof.
Correctness. Let U be the shortest 1D-tile cover. By Corollary 13 only the powers of U can
be 1D-tile covers. The merged rectangles partition the 2D-string into 1D-parts. If the length
of a given power of U divides the length of each rectangle, then each part of the division is
trivially covered, hence the power is a 1D-tile cover. On the other hand if a given power of
U is a 1D-tile cover, then by applying Algorithm 3 with it as the candidate we would obtain
a different set of rectangles. This however would contradict the uniqueness of covering of S

with U given by Theorem 16.

Complexity. We find the shortest 1D-tile cover with the use of Algorithms 1 and 2 both
running in O(N) time. Algorithm 2 as a byproduct returns the set of N/|U | rectangles,
which can be merged in O(N/|U |) time. The greatest common divisor of their lengths is
computed in exactly the same time. ◀

3 2D-Tile covers in 2D-strings

In this section we consider tile covers of shape d × ℓ, where d ≤ ℓ (we find the other ones as
tile covers of ST ).

3.1 Unary 2D-tile covers
▶ Lemma 18. Unary d × ℓ 2D-string is a tile cover of a unary n × m 2D-string if either
case applies:
(a) d is a divisor of one dimension, and ℓ is a divisor of the other dimension of S,
(b) both d and ℓ divide the same dimension of S and the length of the other dimension is of

the form a · d + b · ℓ, for integers a, b ≥ 0.

Proof. From Lemma 5 we know that both d and ℓ have to divide one of the dimensions n or
m (unary tiling with d × ℓ rectangle easily divides into a one with 1 × d or 1 × ℓ rectangles).
If each dimension of U divides a different dimension of S (case (a)), then we can tile cover
S with U trivially with only occurrences of U or occurrences of UT . For the other case we
assume, that both d and ℓ divide m.

If n = a · d + b · ℓ for integers a, b ≥ 0 we can divide S into two parts of size (a · d) × m

and (b · ℓ) × m, and cover the first one with only U ’s and the second one with only UT ’s.
On the other hand if U is a tile cover of S, then the tiling divides the first column into

segments of lengths d or ℓ, hence n must be of a form a ·d+b · ℓ for some integers a, b ≥ 0. ◀

3.2 Non-unary 2D-tile covers – testing a candidate
We make use of 2-dimensional properties of 2D-tiles related to symmetry and horizontal
periodicity. We assume later in this section that all considered 2D-tiles are of shape d × ℓ,
where d ≤ ℓ.

▶ Definition 19. A square matrix A is called symmetric if A = AT . A matrix is called
horizontally periodic (H-periodic, in short) if its i-th column equals its (i + d)-th column, for
i ≤ ℓ − d.

Denote by Pref(U)/Suf(U) the square matrix consisting of the first/last d columns of U .

▶ Definition 20. Define
γ(U) ≡ Pref(U), Suf(U) are symmetric and U is H-periodic.
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3.2.1 Case: not γ(U)

Observe that the algorithm GREEDY(S, U) can be applied also to 2D-tiles. The main
deterministic choices of this algorithm are whether to use U or UT . In this algorithm the
priority is given to U . It works correctly for 1D-tiles, unfortunately such simple solution is
incorrect for 2D-tile covers U , see Figure 5.

a b a a b a a b a

b a b b a b b a b

a b a b a a b a b

b a b a b b a b a

a b a b a a b a b

a b b a b a b a b

b a a b a b a b a

a b b a b a b a b

Figure 5 The algorithm GREEDY(S, U) from Section 2 does not work in this case: we start in
the top-left corner and take as U the prefix of S of shape 2 × 3 (2 rows, 3 columns) and fill the first
two rows this way. However when we do the same thing when we start covering the third row we
cannot continue later and GREEDY returns false. It is incorrect because U covers S in a different
non-greedy way.

▶ Lemma 21. If Pref(U) is not symmetric, or U is not H-periodic then GREEDY(S, U)
works correctly.

Proof. The only way, the algorithm GREEDY can give a bad answer is the case, where both
Match(i, j, U) and Match(i, j, UT ) return true in a given position (such that all of the previous
positions are covered), and choose to use Mark(i, j, U) even though, the right occurrence to
choose is UT .

In the case, where Pref(U) is not symmetric U and UT cannot both match in any
position (U [1..d, 1..d] ̸= UT [1..d, 1..d]).

If U is not H-periodic, then if Match(i, j, U) return true, then one of the d×d submatrices
of S with its top-left corner at position (i, k), where j < k < j + l, k mod d = j mod d is
different from Pref(U).

If Mark(i, j, UT ) was used, then position (i, k) cannot be covered neither with Mark(i, p, U)
for j < p ≤ k, p mod d = j mod d nor with Mark(i, k, UT ), and only such occurrences are
available to use. ◀

Denote by Û the matrix resulting from U by reversing each row, and then reversing each
column.

▶ Lemma 22. If Suf(U) is not symmetric then GREEDY(Ŝ, Û) returns true iff U is a tile
cover of S since it is never possible to match both U and UT in the same position.

The last two lemmas give simple linear time tile test for the case when Pref(U) or
Suf(U) is not symmetric or U is not H-periodic.
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i,j

s(j),is(j),s-1(i)

s-1(i),s(j)

i,s(j)

F

G

Figure 6 Migration of an element in the matrix F via the matrix G.

3.2.2 Reduction to case gcd(d, ℓ) = 1
It may be the case, that both S and U are in fact composed of smaller, symmetric z × z

matrices. If all of those submatrices are equal, then the tile covering of S may not be unique
even though it is not unary. In this section we show, that it is only possible for z = gcd(d, ℓ),
and that the problem can be reduced to the case, where gcd(d, ℓ) = 1. This also simplifies
the algorithm in the next section.

Assume operations ⊕, ⊖ are addition and subtraction modulo k, respectively.

▶ Fact 23. Assume gcd(r, k) = 1. If Z ⊆ {0, 1, 2, . . . , k −1} is non-empty and has a property,
that if x ∈ Z implies x ⊕ r ∈ Z, then Z = {0, 1, 2, . . . , k − 1}.

In the lemma below we count rows and columns starting from zero.

▶ Lemma 24. Assume 0 < r < k and gcd(k, r) = 1. Let matrices A, B be of shapes
k × r, k × (k − r), respectively, and F = A · B, G = B · A (where · denotes horizontal
concatenation of matrices).

If F, G are symmetric, then all elements F [i ⊕ x, j ⊖ x] are equal, for given i, j and all
x ∈ {0, 1, 2, . . . , k − 1}.

Proof. Let s(x) = x ⊖ r. Then F [i, j] = G[i, s(j)]; see Figure 6.
Due to symmetry of G we have G[i, s(j)] = G[s(j), i]. Then G[s(j), i] = F [s(j), s−1(i)],

and using symmetry of F we have

F [s(j), s−1(i)] = F [s−1(i), s(j)] = F [i ⊕ r, j ⊖ r]

Consequently F [i, j] = F [i ⊕ r, j ⊖ r]. The thesis follows now from Fact 23, by iterating the
last equality. ◀

Denote z = gcd(d, ℓ) and k = d/z.

▶ Lemma 25. Assume γ(U). Let us decompose U into disjoint submatrices z × z. Then
each of these submatrices is symmetric.

Proof. Let us treat each of these z × z submatrices as single elements. Then we obtain
the k × (ℓ/z) matrix U ′. We can apply Lemma 24 to F = Pref(U ′), G = Suf(U ′). Then
Lemma 24 implies that each of our z × z sub-matrices equals a z × z sub-matrix on the main
diagonal of Pref(U) (or Suf(U)), consequently it is symmetric due to symmetry of diagonal
z × z submatrices (see Figure 7). ◀
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a b d e g h a b d e
b c e f h i b c e f
d e g h a b d e g h
e f h i b c e f h i
g h a b d e g h a b
h i b c e f h i b c

Figure 7 The figure illustrate the most general example of U of size 6 × 10 such that γ(U). Notice
that it is composed of symmetric submatrices 2 × 2 (z = 2 = gcd(6, 10)) of only k = 3 = 6/2 types.

▶ Corollary 26. If γ(U) and gcd(d, ℓ) > 1 then we can reduce in linear time our problem to
the case of d′ × ℓ′ candidate U ′, where γ(U ′) and gcd(d′, ℓ′) = 1.

Proof. We decompose U and S into disjoint z × z submatrices. By Lemma 25 we know that
the submatrices composing U are symmetric. If a decomposition of S contains a non-symetric
matrix, then U cannot be a tile cover of S. Otherwise we replace each z × z submatrix with
1 × 1 submatrix, with symbol identifying the corresponding submatrix. Then the resulting
2D-texts U ′, S′ prove the thesis. ◀

3.2.3 Case: γ(U) and gcd(d, ℓ) = 1

The following fact can be shown using Fact 23 and similar arguments as in the proof of
Lemma 24.

▶ Fact 27. Assume γ(U) and gcd(d, ℓ) = 1. Then if two distinct columns of Pref(U) are
equal, then U is unary.

Denote by first(U) the first column of U , by first(Suf(U)) the first column of Suf(U)
and by Col(i, j, S) the fragment of size d of the j-th column of S starting in row i. We use
the following algorithm.

Algorithm 4 GREEDY’(S, U).

Output: True if U is a 2D-tile cover
▷ Assume U is non-unary

for i := 1 to n do
for j := 1 to m do

if S[i, j] ̸= # then
if Match(i, j, U) and First(Suf(U)) ̸= Col(i, j + ℓ, S) then

▷ choose occurrence of U

Mark(i, j, U)
else if Match(i, j, UT ) then

▷ choose occurrence of UT

Mark(i, j, UT )
else

return false
▷ All positions are now marked

return true
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▶ Example 28. Figure 8 shows how our algorithm is working. The figure illustrates the case
when First(Suf(U)) = Col(i, j + ℓ, S) for i = j = 1, (the first column of Suf(U) starts in
the 4-th column of S). Hence instead of using Mark(1, 1, U) we execute Mark(1, 1, UT ).

The next (i, j) with S[i, j] ̸= # is (1, 3). For j = 3 we have j+ℓ = 6 and First(Suf(U)) ̸=
Col(1, 6, S), hence we perform here Mark(1, 3, U).

After using Mark(5, 1, UT ) the next (i, j) with S[i, j] ̸= # is (3, 3). Here S[i, j + 3] = #,
hence we perform Mark(3, 3, U).

a b a b a a b

b a b a b b a

a b a b a a b

a b b a b a b

b a a b a b a

a b b a b a b

Figure 8 U is here the 2 × 3 prefix of S, d = 2, ℓ = 3. The algorithm GREEDY’ starts with UT

(due to additional comparison of two columns), while a naive greedy would start with U (and later
fail).

▶ Theorem 29. We can test if a given 2D-tile candidate is a 2D-tile cover in O(N) time.

Proof. If not γ(U), then we use Algorithm 2. This case was already covered by Lemmas 21
and 22. Otherwise we use Algorithm 4. Assume, that γ(U) and gcd(d, ℓ) = 1.

If Match(i, j, U), then First(Suf(U)) ̸= Col(i, j+ℓ, S) represents a break in H-periodicity
(possibly due to an occurrence of # or the end of the text). In this case if the algorithm decides
to use UT instead of U at the next not covered positions (i, j + d), (i, j + 2d), . . . , (i, j + kd)
for ℓ − d < kd < ℓ, the use of U will not be possible, and hence it will have to use UT .

However then, when trying to cover position (i, j + kd) for ℓ − d < kd < ℓ it will be
also unable to use UT due to the same break of the period. If however First(Suf(U)) =
Col(i, j + ℓ, S), then by Fact 27 Col(i, j + ℓ, S) ̸= First(U), hence after using U at position
(i, j) we will not be able to cover position (i, j + ℓ), and we know that j + ℓ ≤ m and the
position is not covered yet. ◀

3.3 Computing all non-unary 2D-tile covers
Let D(n) denote the number of natural divisors of a natural number n.

▶ Fact 30 ([1]). D(n) = o(nε) for every constant ε > 0.

▶ Corollary 31. There are only O(nε) possible shapes of 2D-tile covers of S, for m ≤ n and
any ε > 0.

▶ Theorem 32. We can compute all 2D-tile covers in time O(N1+ϵ).

Proof. For a given candidate U we can in O(|U |) time check if property γ(U) holds, and
then use Algorithm 2 or Algorithm 4, each working in O(N) time. Due to Corollary 31 there
are only O(Nε) candidates for a tile cover, which we can check in O(N1+ε) total time. ◀

▶ Observation 33. Just like in case of 1D-tile covers (see Theorem 16) covering of a
non-unary 2D-string S with its 2D-tile cover U is unique.
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4 Final remarks

We showed that 2D-tile cover problem can be solved in O(N1+ϵ) time. Our O(N) time
algorithm for 1D-tiles was based on Lemma 12, which says that all 1D-tiles are powers of the
smallest primitive one. However it does not work for 2D-tiles, see Figure 9.

We say that d × ℓ 2D-tile cover is primitive iff it is not a horizontal or vertical power of a
smaller 2D-tile.

a a b a a b

b a b b a b

a b a b a b

a a a a a a

b b b b b b

Figure 9 S has three primitive 2D-tile covers of shapes 2 × 1, 2 × 3 and 5 × 6 (S itself). None of
them is a horizontal or vertical power of another one (but a smaller one is a 2D-cover of a larger
one).

We pose the following conjectures.

▶ Conjecture 34. If a 2D-string has two distinct primitive 2D-tile covers, then one of them
is a 2D-tile cover of the other one.

▶ Conjecture 35. There is a linear time algorithm for computing all 2D-tile covers.
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Abstract
In this article, we study two problems consisting in reordering a tree to fit with an order on its leaves
provided as input, which were earlier introduced in the context of phylogenetic tree comparison for
bioinformatics, OTCM and OTDE. The first problem consists in finding an order which minimizes
the number of inversions with an input order on the leaves, while the second one consists in removing
the minimum number of leaves from the tree to make it consistent with the input order on the
remaining leaves. We show that both problems are NP-complete when the maximum degree is
not bounded, as well as a problem on tree alignment, answering two questions opened in 2010 by
Henning Fernau, Michael Kaufmann and Mathias Poths. We provide a polynomial-time algorithm
for OTDE in the case where the maximum degree is bounded by a constant and an FPT algorithm
in a parameter lower than the number of leaves to delete. Our results have practical interest not
only for bioinformatics but also for digital humanities to evaluate, for example, the consistency of
the dendrogram obtained from a hierarchical clustering algorithm with a chronological ordering
of its leaves. We explore the possibilities of practical use of our results both on trees obtained by
clustering the literary works of French authors and on simulated data, using implementations of our
algorithms in Python.
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1 Introduction

The problem of optimizing the consistency between a tree and a given order on its leaves
was first introduced in bioinformatics in the context of visualization of multiple phylogenetic
trees in order to highlight common patterns in their subtree structure [6], under the name
“one-layer STOP (stratified tree ordering problem)”. The authors provided an O(n2) time
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algorithm to minimize, by exchanging the left and right children of internal nodes, the number
of inversions between the left-to-right order of the leaves of a binary tree and an input order
on its leaves. The problem was renamed OTCM (One-Tree Crossing Minimization)
in [9], where an O(n log2 n) time algorithm is provided, as well as a reduction to 3-Hitting
Set of a variant of the problem where the goal is to minimize the number of leaves to delete
from the tree in order to be able to perfectly match the input order on the remaining leaves,
called OTDE (One-Tree Drawing by Deleting Edges). An O(n log2 n/ log log n) time
algorithm is later provided for OTCM by [1], improved independently in 2010 by [10] and [22]
to obtain an O(n log n) time complexity. About OTDE, the authors of [10] note that “the
efficient dynamic-programming algorithm derived for the related problem OTCM [. . . ] cannot
be transferred to this problem. However, we have no proof for NP-hardness for OTDE nor
TTDE, either”. TTDE (Two-Tree Drawing by Deleting Edges) is a variant of OTDE
where two leaf-labeled trees are provided as input and the goal is to delete the minimum
number of leaves such that the remaining leaves of both trees can be ordered with the
same order. We give below an answer to both sentences, providing a dynamic-programming
algorithm solving OTDE for trees with fixed maximum degree as well as an NP-hardness
proof in the general case for OTDE and for TTDE.

Although this problem was initially introduced in the context of comparing tree embed-
dings, one tree having its embedding (that is the left-to-right order of all children) fixed,
we can note that only the order on the leaves of the tree with fixed embedding is useful
to define both problems OTCM and OTDE. Both problems therefore consist not really in
comparing trees but rather in reordering the internal nodes of one tree in order to optimize
its consistency with an order on its leaves provided as input. A popular problem consisting
in finding an optimal order on the leaves of a tree is “seriation”, often used for visualization
purposes [7], where the optimized criterion is computed on data used to build the tree. For
example, a classical criterion, called “optimal leaf ordering”, is to maximize the similarity
between consecutive elements in the optimal order [2, 3, 4]. Another possibility is to minimize
a distance criterion, the “bilateral symmetric distance”, computed on pairs of elements in
consecutive clusters [5]. Seriation algorithms have been implemented for example in the
R-packages seriation [12] and dendsort [19].

With the OTCM and OTDE problems, our goal is not to reorder a tree using only the
original data from which it has been built, but using external data about some expected order
on its leaves. In the context where the leaves of the tree can be ordered chronologically, for
example, this would help providing an answer to the question: how much is this tree consistent
with the chronological order? This issue is relevant for several fields of digital humanities,
when objects associated with a publication date are classified with a hierarchical clustering
algorithm, for example literature analysis [14], political discourse analysis [15] or language
evolution [17], as noticed in [11]. In these articles, the comments about the chronological
signal which can be observed in the tree obtained from the clustering algorithm are often
unclear or imprecise. For example, in [17], the author observes about Figure 15 on page 17
that “the cluster tree gives a visual representation consistent with what is independently
known of the chronological structure of the corpus”. However, the structure of the tree
does not perfectly reflect the chronology2. The algorithms solving the OTCM and OTDE
problems can also prevent researchers from claiming having obtained perfect chronological
trees with clustering, whereas there are still small inconsistencies that are not easy to spot

2 For example 1380Gawain.txt cannot be ordered between 1375AllitMorteArthur.txt and
1400YorksPlays.txt.
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with the naked eye. For example, although “Chez Jacques Chirac, l’examen des parentés
[dans ses discours de vœux] ne suppose aucune rupture, la chronologie étant parfaitement
représentée”3 is claimed about Figure 2.4 in [15], the 1999 speech cannot be ordered between
1998 and 2000.

In this article, we first give useful definitions in Section 1.1. We answer two open problems
from [10], proving that OTDE and TTDE are NP-complete, as well as OTCM, in Section 2.
We then provide a dynamic programming algorithm solving OTDE in polynomial time for
trees with fixed maximum degree in Section 3. This algorithm also works in the more general
case where the order on the leaves is not strict. We then provide an FPT algorithm for the
OTDE problem parameterized by the deletion-degree of the solution, which is lower than
the number of leaves to delete, in Section 4. We also give an example of a tree and an order
built to have a distinct solution for the OTCM and OTDE problems in Section 5. Finally,
we illustrate the relevance of this problem, and of our implementations of algorithms solving
them, for applications in digital humanities, with experiments on trees built from literary
works, as well as simulated trees, in Section 6.

1.1 Definitions
Given a set X of elements, we define an X-tree T as a rooted tree whose leaves are bijectively
labeled by the elements of X. The set of leaves of T is denoted by L(T ) and the set of leaves
below some vertex v of T is denoted by L(T, v) (or simply L(v) if T is clear from the context).
A set of vertices of T is independent if no vertex of T is an ancestor of another vertex of T .

We say that σ is a strict order on X if it is a bijection from X to [1..n] and that it
is a weak order on X if it is a surjection from X to [1..m], where |X| ≥ m. Given any
(strict or weak) order σ, we denote by a ≤σ b the fact that σ(a) ≤ σ(b) and by a <σ b

the fact that σ(a) < σ(b). Considering the elements x1, . . . , xn of X such that for each
i ∈ [1..n − 1], σ(xi) ≤ σ(xi+1), we denote by (x1x2 . . . xn) the (weak or strict) order σ.

Given an X-tree T and a (weak or strict) order σ on X, we say that an independent
pair {u, v} of vertices of T is a conflict wrt. σ if there exist leaves a, c ∈ L(u) and b ∈ L(v)
such that a <σ b <σ c. Conversely, if {u, v} is not a conflict, then either a ≤σ b for all
a ∈ L(u), b ∈ L(v), or b ≤σ a; we then write u ⪯σ v or v ⪯σ u, respectively. We say that σ

is suitable on T if T has no conflict with respect to σ.
Given two (strict or weak) orders σ1 and σ2 on X and two elements a ̸= b of X, we say

that {a, b} is an inversion for σ1 and σ2 if a ≤σ1 b and b <σ2 a, or b ≤σ1 a and a <σ2 b.
Given an X-tree T , a subset X ′ of X and an order σ on X, we denote by σ[X ′] the order

σ restricted to X ′, and by T [X ′] the tree T restricted to X ′, that is the X ′-tree obtained from
T by removing leaves labeled by X \ X ′ and contracting any arc to a non-labeled leaf, any
arc from an out-degree-1 vertex. We define the deletion-degree of X ′ as the maximum degree
of the tree induced by the deleted leaves, i.e., T [X \ X ′]. Intuitively, the deletion-degree
measures how deletions in different branches converge on a few nodes or if they merge
progressively. Note that by definition, the deletion-degree of X ′ is upper-bounded both by
the maximum degree of T and by the size of X \ X ′.

We now define the two main problems addressed in this paper (see Figure 1 for an
illustration). As explained in the introduction, we differ from previous definitions which
considered two trees, one with a fixed order on the leaves, as input, as only the leaf order of
the second tree is useful to define the problem and not the tree itself.

3 “For Jacques Chirac, the examination of the genealogy [of his new year addresses] shows no discontinuity,
the chronology being perfectly represented”

CPM 2022
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Figure 1 Example for the OTDE and OTCM problem. Left: a tree T on leaves {A, . . . , F}, the
reference permutation is σ = (A, B, C, D, E, F) (more precisely, σ(A) = 1, . . . , σ(F) = 6). Middle: a
solution for OTDE with cost 2. The subtree T [X ′] for X ′ = {A, D, E, F} is ordered to show the absence
of conflicts with σ[X ′]. Right: a solution for OTCM with cost 3. The order σ′ = (A, D, B, E, C, F) is
suitable for T and yields three inversions with σ.

We therefore define the OTCM (One-Tree Crossing Minimization) problem as
follows:

Input: An X-tree T , an order σ on X and an integer k.
Output: Yes if there exists an order σ′ on X suitable on T such that the number of
inversions for σ′ and σ is at most k, no otherwise.

We also define the OTDE (One-Tree Drawing by Deleting Edges) problem as
follows:

Input: An X-tree T , an order σ on X and an integer k.
Output: Yes if there exists a subset X ′ of X of size at least |X| − k such that σ[X ′] is
suitable on T [X ′], no otherwise.

We finally define the TTDE (Two-Tree Drawing by Deleting Edges) problem in
the following way:

Input: Two X-trees T1 and T2 and an integer k.
Output: Yes if there exists a subset X ′ of X of size at least |X| − k and an order σ′ on
X ′ that is suitable on T1[X ′] and on T2[X ′], no otherwise.

2 NP-hardness

2.1 OTDE and TTDE are NP-complete for trees with unbounded
degree

▶ Theorem 1. The OTDE problem is NP-complete for strict orders and therefore for weak
orders.

Proof. First note that OTDE is in NP, since, given an X-tree T , an order σ and a set L

of leaves to remove, we can check in linear time, by a recursive search of the tree, saving
on each node the minimum and the maximum leaf in σ[X − L] appearing below, whether
σ[X − L] is suitable on T [X − L]. Regarding NP-hardness, we now give a reduction from
Independent Set, which is NP-hard on cubic graphs [16], to OTDE when the input trees
have unbounded degree.

We consider an instance of the Independent Set problem, that is a cubic graph
G = (V = {v1, . . . , vn}, E) such that |E| = m = 3n/2 and an integer k. For each vertex vi,
we write e1

i , e2
i and e3

i for the three edges incident with vi (ordered arbitrarily).
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We now define an instance of the OTDE problem. The set of leaf labels consists of vertex
labels denoted vi and v′

i for each i ∈ [1..n], one edge label for each edge (also denoted ej
i for

the jth edge incident on vertex vi), and a set of n2 separating labels Bi = {b1
i , b2

i , . . . bn2

i } for
each i ∈ [1..n − 1].

First, we define the strict order σ(G) = (v1e1
1e2

1e3
1v′

1b1
1b2

1 . . . bn2

1 v2e1
2e2

2e3
2v′

2b2
1b2

2 . . . bn2

n−1vne1
n

e2
ne3

nv′
n). Then, let Tvi be the tree with leaves vi and v′

i attached below the root, Te be the tree
with leaves ei′

i and ej′

j attached below the root for each edge e = {vi, vj} of G (with i′, j′ ∈
[1..3]), and TBi be the tree with leaves b1

i , . . . , bn2

i attached below the root for each i ∈ [1..n−1].
We finally define T (G) as the tree such that Tv1 , Tv2 , . . . , Tvn

, Te1 , Te2 , . . . Tem
, TB1 , TB2 , . . .

and TBn−1 are attached below the root.
We claim that G has an independent set of size at least k ⇔ the instance (T (G), σ(G))

of the OTDE problem has a solution with a set L of at most m + n − k leaves to remove.
⇒: Suppose that there exists a size-k independent set S = {s1, . . . , sk} of G. We then

remove the following leaves (also contracting along the way the edge from their parent to the
root of T (G)) in order to get a new tree T ′:

for each edge e = {vi, vj} = ei′

i = ej′

j with i < j, we remove ei′

i and call T
ej′

j

= Te if

vi ∈ S or if neither vi nor vj belong to S; and we remove ej′

j and call Tei′
i

= Te if vj ∈ S

(as S is an independent set we cannot have both vi and vj in S);
for each vertex vi not in S we remove v′

i.
By ordering the children of the root of T (G) such as in Figure 2(1), that is by putting, for each
vi with i ∈ [1..n], Tvi

, then Te1
i
, Te2

i
and Te3

i
for each of the ei′

i which were not removed and
then TBi (except for i = n), the order σ(G) restricted to the remaining m + n + k + n2(n − 1)
leaves is suitable on T ′.

⇐: Suppose that there exists a set L of at most m + n − k leaves such that σ(G)[X − L]
is suitable on T (G)[X − L]. For each parent pBi of the leaves of Bi and any other vertex v of
T such that {pBi

, v} is a conflict wrt. σ(G), we can delete this conflict either by deleting no
leaf of Bi or all leaves of Bi. As each Bi has size n2 > m + n − k, its leaves cannot belong to
the set L of leaves to be deleted.

We now consider the trees Tei for each i ∈ [1..m]: by construction of σ(G), as both leaves
of each such tree are separated by some Bi′ , therefore by n2 > m + n − k leaves, one of these
two leaves has to be removed, so it has to belong to L. We call L′ the set of such leaves of L,
therefore there exists a set L − L′ of at most n − k other leaves to delete. So there exists a
subset SL of [1..n] of size at least k such that for any element i ∈ SL, neither vi, nor v′

i, nor
any of the leaves ej

i for j ∈ {1, 2, 3} belong to L − L′. Note that for such i ∈ SL, all vertices
vi and v′

i are not in L and all ej
i are in L′. We claim that the vertices of G corresponding

to SL are an independent set of G. Suppose for contradiction that it is not the case, then
there exists an edge e = ei′

i = ej′

j between two vertices vi and vj of G. By construction of
L′, exactly one of the leaves labeled by ei′

i and ej′

j is in L′ so the second one is in L − L′:
contradiction. ◀

▶ Corollary 2. The TTDE problem is NP-complete.

Proof. TTDE is clearly in NP. We prove hardness by reduction from OTDE (see Figure 2(2)
for an illustration). Consider an instance (T, σ) of OTDE with σ a strict order on n labels
X. Introduce a set Y of n new labels. Build T1 as a caterpillar with n + 1 internal nodes
forming a path r1, . . . , rn+1 (with root r1) and 2n leaves where each ri with i ≤ n has one
leaf attached with label σ−1(i) ∈ X (in the same order), and rn+1 has n leaves attached
labelled with Y . Build T2 as a tree, where the root has two children y, t, where y has n

children which are leaves labelled with Y , and t is the root of a subtree equal to T .

CPM 2022
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(1) (2)

Figure 2 Illustration of the reductions of Independent Set to OTDE and of OTDE to TTDE. (1,
left) A graph G with independent set S = {v1, v4} of size 2. (1, right) The corresponding tree T (G)
as well as the order σ(G). By removing all leaves connected with dotted lines to the corresponding
element in σ(G), the resulting subtree of T (G) is suitable for the order (since the remaining arcs
are non-crossing). (2) Reduction from an OTDE instance (T, σ) (top) to a TTDE instance (T1, T2)
(bottom). A large set of leaves labelled Y can be seen as a fixed-point, around which T1 must be
ordered according to σ, and T2 according to the input tree T .

We now show our main claim: given 0 ≤ k < n, OTDE(T, σ) admits a solution with at
most k deletions ⇔ TTDE(T1, T2) admits a solution with at most k deletions.

⇒ Let X ′ be a size-(n − k) subset of X such that σ[X ′] is suitable on T [X]. Then let γ

be any order on Y : the concatenation σ[X ′]γ is suitable both on T1[X ′ ∪ Y ] and T2[X ′ ∪ Y ],
so it is a valid solution for TTDE(T1, T2) of size 2n − k, i.e., with k deletions.

⇐ Let X ′, Y ′ be subsets of X, Y , respectively, and σ′ be an order on X ′ ∪ Y ′ such that
σ′ is suitable on both T1[X ′ ∪ Y ′] and T2[X ′ ∪ Y ′], and such that |X ′ ∪ Y ′| ≥ 2n − k > n

(in particular, Y ′ contains at least one element denoted y, and |X ′| ≥ n − k). From T2, it
follows that σ′ is the concatenation (in any order) of an order σx of X ′ suitable for T [X ′]
and an order σy of Y ′. Assume first that σx appears before σy. Then consider each internal
node ri of the caterpillar T1 with i ≤ n and a child c labelled with an element X ′. Then this
child must be ordered before all leaves below ri+1 since the corresponding subtree contains
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all leaves labelled with Y . Thus, the nodes in X ′ are ordered according to σ[X ′], hence
σx = σ[X ′], and T [X ′] is suitable with σ[X ′]. For the other case, where σy is ordered before
σx, then for each ri with a child in X ′, this child must be after the subtree with root ri+1
(containing Y ), and the nodes in X ′ are ordered according to the reverse of σ[X ′] (i.e.,
σx = σ[X ′]). Thus, the reverse of σ[X ′] is suitable for T [X ′], and σ[X ′] as well (this is
obtained by reversing the permutation of all children of internal nodes of T ). In both cases,
X ′ is a solution for OTDE(T, σ) with |X ′| ≥ n − k. ◀

2.2 OTCM is NP-complete for trees with unbounded degree
▶ Theorem 3. The OTCM problem is NP-complete for strict orders and therefore for weak
orders.

Proof. First note that OTCM is in NP, since, given an X-tree T with its leaves ordered
according to an order σ′ on X suitable on T , an order σ and a set L of leaves, the number of
inversions between σ′ and σ can be counted in O(|L|2). Regarding NP-hardness, we now
give a reduction from Feedback Arc Set, which is NP-hard [13], to OTCM.

We consider an instance of the Feedback Arc Set problem, that is a directed graph
G = (V = {v1, . . . , vn}, A) such that |A| = m and an integer f .

We now define an instance of the OTCM problem, illustrated in Figure 3. The set X

of leaf labels is {vj
i | i ∈ [1..n], j ∈ [1..2m]}. We define the order σ(G) in the following way.

For each arc (vi, vj) of G, whose rank in the lexicographic order is k, we add to σ(G) a kth

supplementary ordered sequence (which we will later call a “block” corresponding to this arc)
v2k−1

i v2k−1
j X2k−1

i,j X
2k

i,jv2k
i v2k

j , where Xk′

i,j is the ordered sequence of vk′

i′ where i′ ranges from

1 to n, excluding i and j, and X
k′

i,j is the reverse of Xk′

i,j (i.e., the ordered sequence of vk′

i′

where i′ ranges from n down to 1, excluding i and j). The tree T (G) is made of a root with
n children v1 to vn, each vi having 2m children, the leaves labeled by vk′

i for k′ ∈ [1..2m].

Figure 3 Illustration of the reduction of Feedback Arc Set to OTCM: a graph G with feedback
arc set S = {(v4, v1)} of size 1 and the corresponding tree T (G) as well as the order σ(G).

Given an ordering σ′ suitable for T , and an inversion (vk
i , vk′

i′ ) forming an inversion
between σ(G) and σ′, we say that this pair is short-ranged if k = k′, and long-ranged
otherwise. Furthermore, we say that σ′ is vertex-consistent if, for every i and k < k′, we have
σ′(vk

i ) < σ(vk′

i ). Finally, given σ′, we write σ′′ for the permutation of the [1..n] corresponding
to the children of the root.

We first claim that for any σ′ suitable for T , there are at least 2
(

n
2
)(2m

2
)

long-range
inversions between σ′ and σ(G), and this bound is reached if σ′ is vertex-consistent. Indeed,
pick any pair (vk

i , vk′

i′ ) with i ̸= i′ and k ̸= k′. Then vk
i <σ(G) vk′

i′ iff k < k′ (since they are in
blocks k and k′ of σ(G)), respectively, and vk

i <σ′ vk′

i′ iff σ′′(i) < σ′′(i′) (since they are in
L(T, vi) and L(T, vi′), respectively). Overall, among 4

(
n
2
)(2m

2
)

such pairs of elements, there

CPM 2022
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are 2
(

n
2
)(2m

2
)

pairs creating an inversion (which is long-range by definition). For the case
i = i′, note that pairs (vk

i , vk′

i ) do not create any inversion iff σ′ is vertex-consistent, which
completes the proof of the claim.

Towards counting the number of short-ranged inversions, we say that an arc (vi, vj) of
G is satisfied by σ′′ if σ′′(i) < σ′′(j). Let i, j ∈ [1..n] and k ∈ [1..m], and consider the two
pairs (v2k−1

i , v2k−1
j ) and (v2k

i , v2k
j ). Then these two pairs are, by construction of T , in the

same order in σ′ (as defined by σ′′). If the kth arc of G is (vi, vj), then these two pairs
are also in the same order in σ, i.e., together they account for either 0 or 2 (short-ranged)
inversions. More precisely they yield 0 short-ranged inversions if (vi, vj) is satisfied by
σ′′, and 2 inversions otherwise. If the kth arc of G is any other arc, then exactly one of
(v2k−1

i , v2k−1
j ), (v2k

i , v2k
j ) forms a short-ranged inversion. Overall a pair {i, j} such that one

of (vi, vj), (vj , vi) is a satisfied arc yields m−1 short-ranged inversions, a pair {i, j} such that
one of (vi, vj), (vj , vi) is an unsatisfied arc yields m + 1 short-range inversions, and any other
pair {i, j} with i ̸= j yields m short-ranged inversions. Overall, if there are f unsatisfied
arcs, σ′ yields

(
n
2
)
m − m + 2f inversions.

We can now complete the proof with our main claim: G has a feedback arc set of size
at most f ⇔ the OTCM problem has a solution with at most 2

(
n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f

inversions.
⇒: If G has a feedback arc set F of size f , as G[A−F ] is acyclic, we consider an order σ′′

over n such that for all arcs (vi, vj) in A − F , σ′′(i) < σ′′(j) (i.e., σ′′ is the topological order
of the vertices in G[A − F ]). We now order the children vi of the root of T (G) according to
this order σ′′ and call σ′ the induced order on the leaves of T (G) (also sorting all leaves vj

i

below each vi by increasing values of j). Note that σ′ is vertex-consistent, and that an arc
(vi, vj) is satisfied by σ′′ iff (vi, vj) /∈ F . Thus, σ′ yields 2

(
n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f inversions.

⇐: Consider an order σ′ suitable for T with at most 2
(

n
2
)(2m

2
)

+
(

n
2
)
m−m+2f inversions.

Let σ′′ be the corresponding order on the leaves of the root, and let F be the set of arcs
unsatisfied by σ′′. Since σ′ has at least 2

(
n
2
)(2m

2
)

long-range inversions, it has at most(
n
2
)
m − m + 2f short-range inversions, and |F | ≤ f . Finally, since all arcs in A − F are

satisfied by σ′′, G[A − F ] is acyclic and F is a feedback arc set. ◀

3 A polynomial-time algorithm for fixed-degree trees

We start by presenting a dynamic programming algorithm for fixed-degree trees, which is
easy to implement and leads to an algorithm in O(n4) time for binary trees. The FPT
algorithm presented in the next section has a better complexity but is more complex and
reuses the dynamic programming machinery presented in this section, which explains why
we start with this simpler algorithm.

▶ Theorem 4. The OTDE problem can be solved in time O(d!nd+2) for trees with fixed
maximum degree d and for strict or weak orders.

Proof. Given a vertex v of a rooted tree T , a (strict or weak) order σ : L(T ) → [1..m] and
two integers l ≤ r ∈ [1..m]. We denote by X (v, l, r) a subset of L(T, v) of maximum size
such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and ∀ℓ ∈ X (v, l, r), σ(ℓ) ∈ [l, r]. Note that
X (v, l, r) also depends on T and σ but we simplify the notation by not mentioning them as
they can clearly be identified from the context.

Denoting by c1, . . . , ck the children of v in T , we claim that the following formula allows
to recursively compute X (v, l, r) in polynomial time:

|X (v, l, r)| = max
permutation π of [1..k]

x1=l≤x2≤...≤xk≤xk+1=r

k∑
i=1

∣∣X (cπ(i), xi, xi+1)
∣∣ if v is an internal node of T ;

for any leaf ℓ of T , |X (ℓ, l, r)| = 1 if σ(ℓ) ∈ [l, r], 0 otherwise.
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Correctness. We prove by induction on the size of L(v) that X (v, l, r) is indeed a subset
of L(T, v) of maximum size such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and ∀ℓ ∈
X (v, l, r), σ(ℓ) ∈ [l, r].

This is obvious for any leaf, so let us consider a vertex v of T with a set {c1, . . . ck} of
children. Suppose for contradiction that there exists a set of integers l ≤ r and a subset
X ′ of L(v) of size strictly greater than X (v, l, r) such that σ[X ′] is suitable with T [X ′] and
∀ℓ ∈ X ′, σ(ℓ) ∈ [l, r]. We then denote by X ′

1, . . . and X ′
k the sets of leaves L(c1) ∩ X ′, . . .

and L(ck) ∩ X ′, respectively. Without loss of generality we consider that the children ci

of v are labeled such that maxℓ∈X′
i
{σ(ℓ)} ≤ minℓ∈X′

i+1
{σ(ℓ)}. For all i ∈ [2..k], we define

mi = minℓ∈X′
i
{σ(ℓ)}, m1 = l and mk+1 = r. Using the induction hypothesis we know that

for each i ∈ [1..k], |X ′
i| ≤

∣∣∣X (v, minℓ∈X′
i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)})

∣∣∣, so |X ′
i| ≤ |X (v, mi, mi+1)|

because
[
minℓ∈X′

i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)}

]
⊆ [mi, mi+1]. Therefore, |X ′| =

∑k
i=1 |X ′

i| ≤∑k
i=1 |X (v, mi, mi+1)| so by definition of σ[X (v, l, r)], |X ′| ≤ σ[X (v, l, r)]: contradiction!
We therefore obtain a correct solution of OTDE(T, σ) by computing X (root(T ), 0, m).

Running-time. For each v, we compute the table of the O(n2) values of X (v, l, r) for all
intervals [l, r]. Each of these values can be computed by generating the k! permutations of
children of v to consider any possible order among the children and splitting the interval [l, r]
into any possible configurations of d consecutive intervals with integer bounds partitioning
[l, r], which can be done in time O(nd−1). So the computation of each X (v, l, r) is done in time
O(d!nd−1), therefore the total computation of all X (v, l, r) is done in time O(n×n2 ×d!nd−1),
that is in O(d!nd+2). ◀

4 An FPT algorithm for the deletion-degree parameter for OTDE

We recall that with a reduction of OTDE to 3-Hitting Set [10], using the best algorithm
known so far to solve this problem4, we can obtain an algorithm to solve OTDE O∗(2.08k) [23],
where k is the number of leaves to delete and the O∗ notation ignores the polynomial factor.
In this section we obtain an FPT algorithm in time O(n4d∂2∂), where d is the maximum
degree of the tree and ∂ is the deletion-degree of the solution.

▶ Theorem 5. The OTDE problem parameterized by the deletion-degree ∂ of the solution is
FPT and can be solved in time O(n4d∂2∂) for strict or weak orders.

We adapt the dynamic programming algorithm from Theorem 4, using a vertex cover
subroutine to have a good estimation of the permutation of the children of each node.

We first introduce some definitions (see Figure 4 for a illustration of these definitions
and the algorithm in general). Given any vertex v of T , let Cv be the (independent) set of
children of v, and let Gv be the conflict graph with vertex set Cv and with one edge per
conflict. Let K be a vertex cover of Gv. Then the vertices of Cv \ K have a canonical order
(w1, . . . , wk′), with k′ = |Cv \ K| and wi ⪯σ wj for all i ≤ j (ties may happen when two
children contain a single leaf each which are equal, such ties are broken arbitrarily). We say
that P ⊆ Cv is a prefix of Cv wrt. K if P \ K is a prefix of this order (i.e., for some i ≤ k′,
P \ K = {w1, . . . , wi}). In other words, ignoring all subtrees below vertices of K, all leaves
below vertices of a prefix P are necessarily ordered before leaves below vertices outside of P .

4 http://fpt.wikidot.com/fpt-races
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Figure 4 An instance (T, σ) of OTDE (top-left), with a vertex v having children set Cv =
{a, b, c, d, e}. The conflict graph of Cv (right) has a size-2 vertex cover K = {b, d}. Based on the
span of each vertex (bottom-right), the dynamic programming algorithm tests permutations of Cv

such that (a, c, e) appear in this order, interleaved in any possible way with b and d. In particular,
the final solution corresponds to the permutation (a c d b e) of Cv. Note that since σ may be a weak
order (two leaves are labelled 3 in the example), the conflict graph does not correspond exactly to
the intersection graph of the span intervals, e.g. vertices a and c are not in conflict, even though
their spans overlap.

▶ Lemma 6. If X ′ is a solution of OTDE with deletion-degree ∂, then for any vertex v of T ,
the conflict graph Gv admits a vertex cover of size at most ∂.

Proof. Given a subset X ′ of X, we say that a node v of T has a deletion if some L(v) ̸⊆ X ′,
i.e., if v has a leaf in X \ X ′. Let {u, v} be any conflict (edge) of the conflict graph Gv, then
at least one of u, v has a deletion for X ′ (indeed, the conflict involves three leaves a, b, c, of
which at least one must be deleted). Thus, the vertices with a deletion in Gv form a vertex
cover of this graph. The lemma follows from the fact that at most ∂ vertices have a deletion
in each conflict graph. ◀

The first step of our algorithm consists in computing, for each node v of the graph, the
set C of children of v, its conflict graph Gv, and a minimum vertex cover Kv of GC . Since
each Kv has size at most ∂ (by Lemma 6), Kv can be computed in time O(1.3∂ + ∂n) [5],
and overall this first step takes O(1.3∂n + ∂n2).

We proceed with the dynamic programming part of our algorithm. To this end, we
generalize the table X to sets of nodes (instead of only v) as follows: X (P, l, r) corresponds
to the largest set X of leaves in

⋃
u∈P L(u) such that σX is suitable for T [X]. Note that for

a node v with children set C, X (v, l, r) = X ({v}, l, r) = X (C, l, r).
We first compute X ({v}, l, r) for each leaf v: clearly X ({v}, l, r) = {u} if l ≤ σ(v) ≤ r,

and X ({v}, l, r) = ∅ otherwise. For each internal vertex v (visiting the tree bottom-up), we
obtain X ({v}, l, r) by first computing X (P, l, r) for each prefix P of Cv by increasing order
of size, using the following formulas:

|X (P, l, r)| = ∅ if P = ∅
= max

x∈[l..r], u∈P
P \{u} prefix of Cv

|X (P \ {u}, l, x)| + |X ({u}, x, r)|

|X ({v}, l, r)| = |X (Cv, l, r)|.
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Each vertex v has at most d2∂ prefixes, so the dynamic programming table X has at
most n3d2∂ cells to fill. For each prefix P , there exist at most ∂ + 1 vertices u ∈ P such that
P \ {u} is a prefix (u can be any vertex in P ∩ Kv, or the maximum vertex for ⪯σ in P \ Kv).
Overall, the max is taken over O(n∂) elements, and X can be filled in time O(n4d∂2∂).

Before proving the correctness of the above formula, we need a final definition: given
a set of leaves X ′ ⊆ X and a vertex v of T , we write spanX′(v) for the smallest interval
containing σ(u) for each leaf u ∈ L(u) ∩ X ′ (note that spanX′(v) may be empty, if all its
leaves are deleted in X ′).

▶ Lemma 7. Let X ′ be a solution of OTDE(T, σ), v ∈ T and 1 ≤ l ≤ r ≤ m such that
spanX′(v) ⊆ [l, r]. Then there exists a permutation (c1 . . . ck) of the children of v and
integers x0 = l ≤ x1 ≤ . . . ≤ xk = r such that, for each i ≤ k,
(a) spanX′(ci) ⊆ [xi−1, xi], and
(b) Pi = {c1, . . . , ci} is a prefix of the children of v wrt. σ.

Proof. Recall that we write Cv and Kv, respectively, for the set of chidren of v and the
vertex cover in the conflict graph induced by these children. For each element c of Cv with a
non-empty span, let x(c) = max(span(c)). For each element wi of Cv \ Kv with an empty
span (taking i for the rank according to the canonical order), let x(wi) = x(wi−1) (and
x(w1) = l for i = 1). For the remaining vertices (in Kv with an empty span), set x(c) = l.
Finally, order vertices c1, . . . , ck by increasing values of x(ci) (breaking ties according to the
canonical order when applicable, or arbitrarily otherwise), and set xi = x(ci).

Condition (a) follows from the fact that X ′ is a solution for OTDE(T, σ), so that the
span covered by the leaves under siblings do not overlap. For condition (b) we refer to the
definition of prefix: each Pi \ Kc is indeed a prefix in the canonical ordering of Cv \ Kv. ◀

The dynamic programming formula follows from the above remark: one can build the
solution by incrementing prefixes one vertex at a time (rather than trying all possible
permutations of children, as in Theorem 4).

5 Optimizing OTCM and OTDE are two different things

In order to ensure that finding the smallest k such that OTCM or OTDE outputs a positive
answer actually consists in optimizing different criteria, we provide in Figure 5 an example of
X-tree and an order of its leaves where the order reaching the best k for a positive answer of
the OTCM problem does not provide the optimal value for the number of leaves to delete in
a positive answer of OTDE and where the best k for a positive answer of the OTDE problem
does not provide an optimal value for the number of inversions for a positive answer of the
OTCM problem.

We checked the optimality for both criteria by implementing the “naive” dynamic
programming O(n2) algorithm described in Section 2.1 of [10] to solve the OTCM problem
and the O(n4) algorithm described in Section 3 to solve the OTDE problem on binary trees.
Both implementations are available in Python, under the GPLv3 licence, at https://github.
com/oseminck/tree_order_evaluation, as well as the file inputCounterExample1b.txt
containing the Newick encoding for the tree of Figure 5.

6 Experiments and discussion

In this section, we investigate the potential for use of OTCM and OTDE in applications
where the tree of elements is obtained from a clustering algorithm taking as input distances
between those elements, and where we want to test whether this clustering reflects some
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T σ1 σ σ σ2 T

Figure 5 Two planar embeddings of a rooted tree T : the one on the left is optimal for the OTDE
problem (deleting the 3 gray leaves makes the order σ suitable on T restricted to the remaining
leaves, but the order σ1 suitable on T has 11 inversions, shown with empty circles, with σ); the
other one is optimal for the OTCM problem with the order σ2 suitable on T having 10 inversions
with σ but not for the OTDE problem (4 leaves, for example the 4 gray ones, need to be deleted to
make the order σ suitable on T restricted to the remaining leaves).

intrinsic order on the elements, for example the chronological order. We both test the running
time of OTCM and OTDE on real data, and the performance of OTDE on simulated data
to detect possibly misplaced leaves in the order.

The first experiment deals with text data: the CIDRE corpus [20] that contains the works
of 11 French 19th century fiction writers dated by year (every file contains a book that is
annotated with its year of writing). We apply apply hierarchical clustering on the different
corpora using the AgglomerativeClustering class from the package sklearn [18]. Distance
matrices on which the clustering is based are obtained by using the relative frequencies
of the 500 most frequent tokens5 in each corpus. Distance matrices were generated using
the R package stylo [8], with the canberra distance metric. We obtain the results given in
Table 1, which provides the running time in milliseconds of the algorithms we implemented
to solve OTCM and OTDE. They show that both algorithms on binary trees are quick
enough to handle typical instances of the OTCM and the OTDE problems relevant for digital
humanities, a few milliseconds for the first one and a few seconds for the second one, for
instances of about 50 elements in the tree and in the order.

Investigating precisely whether the numbers of inversions or deleted leaves shown in
Table 1 are sufficiently small to reflect consistency with a chronological signal is beyond the
scope of this paper. However, we also provide pOT CM and pOT DE , the percentage of cases
when the best order on the leaves of the tree has the same number of inversions, or less
than the chronological order, among 10000 randomly generated orders for OTCM and 100
randomly generated orders for OTDE, respectively6. These numbers illustrate that in all
cases, it is unlikely that the observed optimal numbers of inversions or deleted leaves are due

5 A token is (a part of) a word form or a punctuation marker. The last sentence would yield the following
tokens: [“A”, “token”, “is”, “(”, “a”, “part”, “of”, “)”, “a”, “word”, “form”, “or”, “a”, “punctuation”,
“marker”, “.”] Deliberately, we do not use the term “word”, because the word can be seen as a linguistic
unit of form and meaning, and henceforward “punctuation marker” would be one word and the period
in the end of the sentence would not be one.

6 We chose to generate less random orders for OTDE in our simulations, as our algorithm is slower to
solve this problem than OTCM.
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Table 1 Results of our implementations for problems OTCM and OTDE on binary trees generated
from corpora of French novels of the 19th century. Time durations are given in milliseconds.

tree # leaves OTCM
time # inversions pOT CM

OTDE
time

# deleted
leaves pOT DE

Ségur 22 1 40 0.24 200 9 1
Féval 23 2 47 0.38 268 8 0

Aimard 24 1 35 0 401 8 0
Lesueur 31 1 48 0 676 13 0
Zévaco 29 1 42 0 727 11 0
Zola 35 2 60 0 1203 9 0

Gréville 36 2 105 0 2211 18 1
Ponson 42 3 167 2.23 3447 18 0
Balzac 59 4 248 0 8292 34 0
Verne 58 3 183 0 13446 27 0
Sand 62 4 283 0 17557 39 1

to chance, as we get equal or smaller values of inversions or deleted leaves on less than 3% of
random orders (for Ponson du Terrail the number of inversions is 167 or less for 2.23% of
random orders; for one of the 10 000 simulated random orders, it reached as little as 124
inversions). These preliminary results obtained thanks to reasonably small running times
open new perspectives in investigating further the practical use of these algorithms, and
comparing their results with other methods to search for signals of chronological evolution in
textual data [21].

Our second experiment involves simulated data, to check whether, in the case the tree is
built to be consistent with the input order, our algorithm finding the minimum of leaves in
the tree to remove inconsistencies with the order is able to detect errors that we intentionally
add to the order. We produced 100 instances of the OTDE problem, for each chosen value of
n, the number of leaves, and e < n, the number of errors, in the following manner:
1. we randomly pick n distinct integers from the interval [0, 999], which will be our set X of

leaves;
2. we build a distance matrix in which the distance between two elements from X is simply

the absolute difference between both; we add some noise to this matrix by adding or
subtracting in each cell a random quantity equal to at most 10% of the cell value, obtaining
a noisy matrix, from which we build an X-tree T using the AgglomerativeClustering
class from the package sklearn;

3. we randomly pick a set Le of e leaves in X and replace their value by another integer,
randomly chosen from the interval [0, 999], distinct from other leaf labels; σ is the set of
leaves ordered by increasing value taking into account these new values;

4. by solving the OTDE problem on T and σ, we compute the minimum set L of leaves to
remove to make σ[X − L] suitable on T [X − L], and check whether L = Le.

This experiment simulates the situation where we would have dating errors on the elements
we clustered in a tree. Note that like in the case of dating errors, the error in our simulation
may not change the overall order on the leaves. Table 2 provides, for each chosen values of
n and e, the proportion of simulated instances of OTDE where L = Le, that is when our
algorithm removed exactly the e leaves whose label had been randomly modified. We can
observe that this happens in a majority of cases only when the number of modified leaves is
small compared with the total number of leaves (up to 2 for 20 leaves, up to 4 for 50 leaves).
Solving OTDE still allows to identify e − 1 among the e modified leaves in a majority of
cases in all our experiments.
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Table 2 Results of the attempts to perfectly detect the set Le of randomly relabeled leaves in
simulated trees (when L = Le); the situation when |L − Le| = 1 corresponds to finding only e − 1
leaves among the e randomly relabeled leaves).

n = # leaves e = # errors proportion of cases when L = Le when |L − Le| = 1
20 1 0.79 1
20 2 0.62 0.96
20 3 0.39 0.88
20 4 0.33 0.77
20 5 0.27 0.67
50 1 0.93 1
50 2 0.83 0.99
50 3 0.70 0.98
50 4 0.59 0.91
50 5 0.56 0.90

7 Conclusion and perspectives

In this article, we addressed two problems initially introduced with motivations from bioin-
formatics, OTCM and OTDE. We stated them in a more simple framework with a tree
and an order as input, instead of two trees as was the case when they were introduced,
opening perspectives for new practical uses in digital humanities and proving that they are
not equivalent. We proved that both problems, as well as a problem on two trees, TTDE,
are NP-complete in the general case. We gave a polynomial-time algorithm for OTDE on
trees with fixed maximum degree and an FPT algorithm in a parameter possibly smaller
than the size of the solution for arbitrary trees.

We also investigated their potential for practical use, checking that the algorithms we
implemented with open source code in Python to solve them are well suited for applications
in digital humanities in terms of running time. We also observed on simulated data that it
is possible to identify a small number of leaves for which there would be an ordering error
if the tree is built from distance data derived from an order on its leaves. Future research
includes the search for FPT algorithms, with relevant parameters, for OTCM and TTDE.
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Abstract
The extended Burrows-Wheeler-Transform (eBWT), introduced by Mantaci et al. [Theor. Comput.
Sci., 2007], is a generalization of the Burrows-Wheeler-Transform (BWT) to multisets of strings.
While the original BWT is based on the lexicographic order, the eBWT uses the omega-order, which
differs from the lexicographic order in important ways. A number of tools are available that compute
the BWT of string collections; however, the data structures they generate in most cases differ from
the one originally defined, as well as from each other. In this paper, we review the differences
between these BWT variants, both from a theoretical and from a practical point of view, comparing
them on several real-life datasets with different characteristics. We find that the differences can be
extensive, depending on the dataset characteristics, and are largest on collections of many highly
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Table 1 The different BWT variants on the multiset M = {ATATG, TGA, ACG, ATCA, GGA}. For
detailed explanations, see Section 3.

variant result on example tools

eBWT CGGGATGTACGTTAAAAA pfpebwt [6]
dolEBWT GGAAACGG$$$TTACTGT$AAA$ G2BWT [14], pfpebwt [6], msbwt [28]
mdolBWT GAGAAGCG$$$TTATCTG$AAA$ BCR [3], ropebwt2 [35], nvSetBWT [48],

Merge-BWT [50], eGSA [38], eGAP [16],
bwt-lcp-parallel [5], gsufsort [37]

concBWT $AAGAGGGC$#$TTACTGT$AAA$ BigBWT [8], tools for single-string BWT
colexBWT AAAGGCGG$$$TTACTGT$AAA$ ropebwt2 [35]

data structures. Moreover, much recent research effort has concentrated on the construction
of data structures which can not only store but query, process, and mine strings in space
and time proportional to r [22, 2, 47, 12].

The parameter r is also being increasingly seen as a measure of repetitiveness of the
string, with several recent works theoretically exploring its suitability as such a measure, as
well as its relationship to other such measures [43, 24, 1].

Several tools exist that compute variants of the BWT for string collections, among these
BCR [3], ropebwt2 [35], nvSetBWT [48], msbwt [28], Merge-BWT [50], eGSA [38], BigBWT [8],
bwt-lcp-parallel [5], eGAP [16], gsufsort [37], G2BWT [14], and pfpebwt [6]. It should be
noted though that, when the input is a collection of strings, it is not completely straightforward
how to compute the BWT – since the BWT was originally designed for individual strings.
In fact, there exists more than one way to compute a Burrows-Wheeler-type transform for a
collection of strings, and it turns out that different tools not only use different algorithms,
but they output different data structures. As a first example, in Table 1, we give the BWT
variants as computed by 12 tools on a toy example of 5 DNA-strings.

The classical way of computing text indexes of string collections is to concatenate the
strings, adding a different end-of-string-symbol at the end of each string, and then computing
the index for the concatenated string. This is the method traditionally used for generating
classical data structures such as suffix trees and suffix arrays for more than one string, and
results in the so-called generalized suffix tree resp. generalized suffix array (see e.g. [27, 45]).
The drawback of this method is an increase in the size of the alphabet, from σ, often a
small constant in applications, to σ + k, where k is the number of elements in the collection,
typically in the thousands or even tens or hundreds of thousands. One way to avoid this
is to use only conceptually different end-of-string-symbols, i.e. to have only one dollar-sign
and apply string input order to break ties. This is the method used e.g. by ropebwt2 [35]
and by BCR [3]. Another method to avoid increasing the alphabet is to separate the input
strings using the same end-of-string-symbol; in this case, a different end-of-string-symbol
has to be added to the end of the concatenated string, to ensure correctness, as e.g. in
BigBWT [8]. An equivalent solution is to concatenate the input strings without removing
the end-of-line or end-of-file characters, since these act as separators; or to concatenate
them without separators and use a bitvector to mark the end of each string. Many studies
nowadays use string collections in experiments (e.g. [49, 2, 32]); often the input strings are
turned into one single sequence using one of the methods described above, and then the
single-string BWT is computed; it is, however, not always stated explicitly which was the
method used to obtain one sequence. Underlying this is the implicit assumption that all
methods are equivalent.
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In 2007, Mantaci et al. [40] introduced the extended Burrows-Wheeler-Transform (eBWT),
which generalizes the BWT to a multiset of strings. The eBWT, like the BWT, is reversible;
moreover, it is independent of the order in which the strings in the collection are presented.
This is not true of any of the other methods mentioned above. Note that the eBWT differs
from the BWT in several ways, most importantly in the order relation for sorting conjugates:
while the BWT uses lexicographic order, the eBWT uses the so-called omega-order. (For
precise definitions, see Section 2.)

The only tool up to date that computes the eBWT according to the original definition
is pfpebwt [6]; all other tools append an end-of-string character to the input strings, explicitly
or implicitly, and as a consequence, the resulting data structures differ from the one defined
in [40]. Moreover, the output in most cases depends on the input order of the sequences
(except for [14], [28], and, using a specific option, [35]). As a further complication, the exact
nature of this dependence differs from one data structure to another.

The result is that the BWT variants computed by different tools on the same dataset, or
by the same tool on the same dataset but given in a different order, may vary considerably.
This variability extends to the parameter r, the number of runs of the BWT. This is all the
more important given the fact that r (and the related parameter n/r, the average length of
a run) is increasingly being used as a parameter characterizing the dataset itself, namely as
a measure of its repetitiveness (see e.g. [12, 2, 7]).

1.1 Our contribution
To the best of our knowledge, this is the first systematic treatment of the different BWT
variants in use for collections of strings. Our contributions are:

1. We define five distinct BWT variants which are computed by 12 current tools specific-
ally designed for string collections and formally describe the differences between these,
identifying specific intervals to which differences are restricted.

2. We show the influence of the input order on the output, in dependence of the BWT
variant.

3. We describe the consequences on the number r of runs of the BWT and give an upper
bound on the amount by which the colexicographic order (sometimes referred to as
“reverse lexicographic order”) can differ from the optimal order of Bentley et al. [4].

4. We complement our theoretical analysis with extensive experiments, comparing the five
BWT variants on eight real-life datasets with different characteristics.

1.2 Related work
This paper deals with tools for string collections, so we did not include any tool that
computes the BWT of a single string, such as libdivsufsort [42], sais-lite-lcp [20], libsais [26],
bwtdisk [17]. Even though, in many cases, these are the tools used for collections of strings,
the data structure they compute depends on the method used for turning the string collection
into a single string, as explained above. Nor did we include other BWT variants for single
strings such as the bijective BWT [23, 30], since, again, these were not designed for string
collections.

The Big-xBWT [21] is a tool for compressing and indexing read collections, using the
xBWT of Ferragina et al. [18, 19]. In addition to the string collection, it requires a reference
sequence as input, in contrast to the other tools. Moreover, the output is not comparable
either, since its length can vary – as opposed to all other BWT variants we review, the xBWT
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is not a permutation of the input characters but can be shorter, due to the fact that it first
maps the input to a tree and then applies the xBWT to it, a BWT-like index for labeled
trees, rather than for strings. Likewise, the tool [46] for reference-free xBWT is not included
in this review: even though it does not require a reference sequence, it, too, computes the
xBWT, which is a data structure that does not fall within the category we focus on. Further,
we did not include SPRING [11], a reference-free compressor for FASTQ and FASTA files:
even though it employs a BWT-based compressor (BSC) during computation, it does not
output the BWT.

There has been considerable interest recently in the parameter r, the number of runs of
the BWT: it was put in relation with other measures of repetitiveness in [29], while both [10]
and [4] studied the question which permutation of the input strings of the collection results
in the lowest value for r. Since the method for concatenating the input strings used in [10]
(using the same separator symbol but without an additional end-of-string character) differs
from all BWT variants that have been implemented by some tool, we do not include it in
this study. The result by Bentley et al. [4], on the other hand, is more general, and we will
employ it as a benchmark in our experimental comparisons (see Section 5).

1.3 Overview

We give the necessary definitions in Section 2; note that we assume familiarity of the reader
with the Burrows-Wheeler-Transform. In Section 3, we present the BWT variants and
analyse their differences. In Section 4 we discuss the effects on the repetitiveness measure r,
while our experimental results are presented in Section 5. We draw some conclusions from
our study in Section 6. Due to space restrictions, most proofs have been omitted and can be
found in the full version, along with the full tables with detailed results on all eight datasets.

2 Preliminaries

Let Σ be a finite ordered alphabet of size σ. We use the notation T = T [1..n] for a string T

of length n over Σ, T [i] for the ith character, and T [i..j] for the substring T [i] · · · T [j] of T ,
where i ≤ j; |T | denotes the length of T , and ε the empty string. For a string T over Σ and
an integer m > 0, T m denotes the m-fold concatenation of T . A string T is called primitive
if T = Um implies T = U and m = 1. Every string T can be written uniquely as T = Um,
where U is primitive. We refer to U as root(T ) and to m as exp(T ), i.e., T = root(T )exp(T ).
A run in string T is a maximal substring consisting of the same character; we denote by
runs(T ) the number of runs of T . Often, an end-of-string character (usually denoted $) is
appended to the end of T ; this character is not element of Σ and is assumed to be smaller
than all characters from Σ. Note that appending a $ makes any string primitive.

For two strings S, T , the (unit-cost) edit distance distedit(S, T ) is defined as the minimum
number of operations necessary to transform S into T , where an operation can be deletion
or insertion of a character, or substitution of a character by another. The Hamming distance
distH(S, T ), defined only if |S| = |T |, is the number of positions i such that S[i] ̸= T [i].

The lexicographic order on Σ∗ is defined by S <lex T if S is a proper prefix of T , or if
there exists an index j s.t. S[j] < T [j] and for all i < j, S[i] = T [i]. The colexicographic
order, or colex-order (referred to as reverse lexicographic order in [35, 13]) is defined by
S <colex T if Srev <lex T rev, where Xrev = X[n]X[n − 1] · · · X[1] denotes the reverse of the
string X = X[1..n]. String S is a conjugate of string T if S = T [i..n]T [1..i − 1] for some
i ∈ {1, . . . , n} (also called the ith rotation of T ).
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Given a string T = T [1..n] over Σ, the Burrows-Wheeler-Transform [9], BWT(T ), is
a permutation of the characters of T , given by concatenating the last characters of the
lexicographically sorted conjugates of T . The number of runs of the BWT of string T is
denoted r(T ), i.e. r(T ) = runs(BWT(T )). To make the BWT uniquely reversible, one can
add an index to it marking the lexicographic rank of the conjugate in input. For example,
BWT(banana) = nnbaaa, hence r(banana) = 3, and the index 4 specifies that the input was
the 4th conjugate in lexicographic order. Alternatively, one adds a $ to the end of T , which
makes the input unique: BWT(banana$) = annb$aa. Note that BWT with and without
end-of-string symbol can be quite different.

Next we define the omega-order [40] on Σ∗: S ≺ω T if root(S) = root(T ) and exp(S) <

exp(T ), or if Sω <lex T ω (implying root(S) ̸= root(T )), where T ω denotes the infinite string
obtained by concatenating T infinitely many times. The omega-order relation coincides with
the lexicographic order if neither of the two strings is a proper prefix of the other. The two
orders can differ otherwise, e.g. GT <lex GTC but GTC ≺ω GT.

Given a multiset of strings M = {T1, . . . , Tk}, the extended Burrows-Wheeler-Transform,
eBWT(M) [40], is a permutation of the characters of the strings in M, given by concatenating
the last characters of the conjugates of each Ti, for i = 1, . . . , k, listed in omega-order. For
example, the omega-sorted conjugates of M = {GTC, GT} are: CGT, GTC, GT, TCG, TG, hence,
eBWT(M) = TCTGG. Again, adding the indices of the input conjugates, in this case 2, 3,
makes the eBWT uniquely reversible.

3 BWT variants for string collections

We identified five distinct transforms, which we list below, that were computed by the
programs listed above. Let M = {T1, . . . , Tk} be a multiset of strings, with total length
NM =

∑k
i=1 |Ti|. Since several of the data structures depend on the order in which the

strings are listed, we implicitly regard M as a list [T1, . . . , Tk], and write (M, π) explicitly
for a specific permutation π in which the strings are presented.

1. eBWT(M): the extended BWT of M of Mantaci et al. [40]
2. dolEBWT(M) = eBWT({Ti$ | Ti ∈ M}) (“dollar-eBWT”)
3. mdolBWT(M) = BWT(T1$1T2$2 · · · Tk$k), where dollars are assumed to be smaller than

characters from Σ and $1 < $2 < . . . < $k (“multidollar BWT”)
4. concBWT(M) = BWT(T1$T2$ · · · Tk$#), where # < $ (“concatenated BWT”)
5. colexBWT(M) = mdolBWT(M, γ), where γ is the permutation corresponding to the

colexicographic (’reverse lexicographic’) order of the strings in M.

Because all BWT variants except the eBWT use additional end-of-string symbols as string
separators, we refer to these four by the collective term separator-based BWT variants. In
Table 2 we show the five data structures on our running example of 5 DNA-strings, and give
first properties. For ease of exposition and comparison, we replaced all separator-symbols
by the same dollar-sign $ for all string separator symbols, even where, conceptually or
concretely, different dollar-signs are assumed to terminate the individual strings, as is the
case for mdolBWT. Moreover, the concBWT contains one additional character, the final
end-of-string symbol, here denoted by #, which is smaller than all other characters; thus, the
additional rotation starting with # is the smallest and results in an additional dollar in the
first position of the transform. For ease of comparison, we remove this first symbol from
concBWT and replace the # by $.
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Table 2 Overview of properties of the five BWT variants considered in this paper. The colors in
the example BWTs correspond to interesting intervals in separator-based variants, see Section 3.2.

BWT variant example order of shared suffixes independent
of input order?

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA omega-order of strings yes
separator-based
dolEBWT(M) GGAAACGG$$$TTACTGT$AAA$ lexicographic order of strings yes
mdolBWT(M) GAGAAGCG$$$TTATCTG$AAA$ input order of strings no
concBWT(M) AAGAGGGC$$$TTACTGT$AAA$ lexicographic order of no

subsequent strings in input
colexBWT(M) AAAGGCGG$$$TTACTGT$AAA$ colexicographic order yes

It is important to point out that the programs listed in Table 1 do not necessarily use
the definitions given here; however, in each case, the resulting transform is the one claimed,
up to renaming or removing separator characters, see Section 3.1 and 3.2.

3.1 The effect of adding separator symbols
The first obvious difference between the eBWT and the separator-based variants is their
length: eBWT(M) has length NM, while all other variants have length NM + k, since they
contain an additional character (the separator) for each input string.

In all four separator-based transforms, the k-length prefix consists of a permutation of
the last characters of the input strings. This is because the rotations starting with the dollars
are the first k lexicographically; in the eBWT, these k characters occur interspersed with
the rest of the transform; namely, in the positions corresponding to the omega-ranks of the
input strings Ti (see Table 2).

The next point is that adding a $ to the end of the strings introduces a distinction, not
present in the eBWT, between suffixes and other substrings: since the separators are smaller
than all other characters, occurrences of a substring as suffix will be listed en bloc before all
other occurrences of the same substring. On the other hand, in the eBWT, these occurrences
will be listed interspersed with the other occurrences of the same substring.

▶ Example 1. Let M = {AACGAC, TCAC} and U = AC. U occurs both as a suffix and as an
internal factor; the characters preceding it are A (internal substring) and C,G (suffix), and
we have eBWT(M) = CGACATAACC, dolEBWT(M) = CC$GCAAATAC$.

Finally, it should be noted that adding end-of-string symbols to the input strings changes
the definition of the order applied. As observed above, the omega-order coincides with the
lexicographic order on all pairs of strings S, T where neither is a proper prefix of the other;
but with end-of-strings characters, no input string can be a proper prefix of another. Thus,
on rotations of the Ti$’s, the omega-order equals the lexicographic order. As an example,
consider the multiset M = {GTC$, GT$} from Section 2: we have the following omega-order
among the rotations: $GT, $GTC, C$GT, GT$, GTC$, T$G, TC$G, which coincides with the
lexicographic order. Similarly, adding different dollars $1, $2, . . . , $k and applying the
omega-order results again in the lexicographic order between the rotations, with different
dollar symbols considered as distinct characters. Indeed, if we append a different dollar-sign
to each input string, then the omega-order, the lexicographic order, and the order of the
suffixes of the concatenated string (i.e. our mdolBWT) are all equivalent.
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Regarding the differences among the four separator-based BWT variants, we will show
that all differences occur in certain well-defined intervals of the BWT, and that the differences
themselves depend only on a specific permutation of {1, . . . , k}, given by the combination of
the input order, the lexicographic order of the input strings, and the BWT variant applied.
In Tables 3 and 4 we give the full BWT matrices for all five BWT variants, along with the
optimal one minimizing the number of runs, see Section 4.

Table 3 From left to right we show the mdolBWT, the dolEBWT, and the concBWT of the
string collection M = {ATATG, TGA, ACG, ATCA, GGA}.

index mdol rotation
(1,6) G $1ATATG
(2,4) A $2TGA
(3,4) G $3ACG
(4,5) A $4ATCA
(5,4) A $5GGA
(2,3) G A$2TG
(4,4) C A$4ATC
(5,3) G A$5GG
(3,1) $3 ACG$3

(1,1) $1 ATATG$1

(4,1) $4 ATCA$4

(1,3) T ATG$1AT
(4,3) T CA$4AT
(3,2) A CG$3A
(1,5) T G$1ATAT
(3,3) C G$3AC
(2,2) T GA$2T
(5,2) G GA$5G
(5,1) $5 GGA$5

(1,2) A TATG$1A
(4,2) A TCA$4A
(1,4) A TG$1ATA
(2,1) $2 TGA$2

index dolE rotation
(3,4) G $ACG
(1,6) G $ATATG
(4,5) A $ATCA
(5,4) A $GGA
(2,4) A $TGA
(4,4) C A$ATC
(5,3) G A$GG
(2,3) G A$TG
(3,1) $ ACG$
(1,1) $ ATATG$
(4,1) $ ATCA$
(1,3) T ATG$AT
(4,3) T CA$AT
(3,2) A CG$A
(3,3) C G$AC
(1,5) T G$ATAT
(5,2) G GA$G
(2,2) T GA$T
(5,1) $ GGA$
(1,2) A TATG$A
(4,2) A TCA$A
(1,4) A TG$ATA
(2,1) $ TGA$

index conc rotation
23 A $#ATATG$TGA$ACG$ATCA$GGA
10 A $ACG$ATCA$GGA$#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A $GGA$#ATATG$TGA$ACG$ATCA
6 G $TGA$ACG$ATCA$GGA$#ATATG

22 G A$#ATATG$TGA$ACG$ATCA$GG
9 G A$ACG$ATCA$GGA$#ATATG$TG

18 C A$GGA$#ATATG$TGA$ACG$ATC
11 $ ACG$ATCA$GGA$#ATATG$TGA$
1 $ ATATG$TGA$ACG$ATCA$GGA$#

15 $ ATCA$GGA$#ATATG$TGA$ACG$
3 T ATG$TGA$ACG$ATCA$GGA$#AT

17 T CA$GGA$#ATATG$TGA$ACG$AT
12 A CG$ATCA$GGA$#ATATG$TGA$A
13 C G$ATCA$GGA$#ATATG$TGA$AC
5 T G$TGA$ACG$ATCA$GGA$#ATAT

21 G GA$#ATATG$TGA$ACG$ATCA$G
8 T GA$ACG$ATCA$GGA$#ATATG$T

20 $ GGA$#ATATG$TGA$ACG$ATCA$
2 A TATG$TGA$ACG$ATCA$GGA$#A

16 A TCA$GGA$#ATATG$TGA$ACG$A
4 A TG$TGA$ACG$ATCA$GGA$#ATA
7 $ TGA$ACG$ATCA$GGA$#ATATG$

3.2 Interesting intervals
Let us call a string U a shared suffix w.r.t. multiset M if it is the suffix of at least two strings
in M. Let b be the lexicographic rank of the smallest rotation beginning with U$ and e

the lexicographic rank of the largest rotation beginning with U$, among all rotations of
strings T$, where T ∈ M. (One can think of [b, e] as the suffix-array interval of U$.) We
call [b, e] an interesting interval if there exist i ≠ j s.t. U is a suffix of both Ti and Tj , and
the preceding characters in Ti and Tj are different, i.e., the two occurrences of U as suffix
of Ti and Tj constitute a left-maximal repeat. (Interesting intervals correspond to internal
nodes in the suffix tree of the reverse string, within the subtree of $.) Clearly, [1, k] is an
interesting interval unless all strings end with the same character. Note that interesting
intervals differ both from the SAP-intervals of [13] and from the tuples of [4] (called maximal
row ranges in [41]): the former are the intervals corresponding to all shared suffixes U , even
if not left-maximal, while the latter include also suffixes U that are not shared. The next
lemma follows from the fact that no two substrings ending in $ can be one prefix of the other.
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Table 4 From left to right we show the eBWT, the colexBWT, and the optimal BWT of the
string collection M = {ATATG, TGA, ACG, ATCA, GGA}, see Section 4.

index eBWT rotation
(4,4) C AATC
(3,1) G ACG
(5,3) G AGG
(1,1) G ATATG
(4,1) A ATCA
(1,3) T ATGAT
(2,3) G ATG
(4,3) T CAAT
(3,2) A CGA
(3,3) C GAC
(5,2) G GAG
(1,5) T GATAT
(2,2) T GAT
(5,1) A GGA
(1,2) A TATGA
(4,2) A TCAA
(1,4) A TGATA
(2,1) A TGA

index colexBWT rotation
(1,5) A $1ATCA
(2,4) A $2GGA
(3,4) A $3TGA
(4,4) G $4ACG
(5,6) G $5ATATG
(1,4) C A$1ATC
(2,3) G A$2GG
(3,3) G A$3TG
(4,1) $ ACG$4

(5,1) $ ATATG$5

(1,1) $ ATCA$1

(5,3) T ATG$5AT
(1,3) T CA$1AT
(4,2) A CG$4A
(4,3) C G$4AC
(5,5) T G$5ATAT
(2,2) G GA$2G
(3,2) T GA$3T
(2,1) $ GGA$2

(5,2) A TATG$5A
(1,2) A TCA$1A
(5,4) A TG$5ATA
(3,1) $ TGA$3

index optimum rotation
(1,4) A $1TGA
(2,4) A $2GGA
(3,5) A $3ATCA
(4,4) G $4ACG
(5,6) G $5ATATG
(1,3) G A$1TG
(2,3) G A$2GG
(3,4) C A$3ATC
(4,1) $ ACG$4

(5,1) $ ATATG$5

(3,1) $ ATCA$3

(5,3) T ATG$5AT
(3,3) T CA$3AT
(4,2) A CG$4A
(4,3) C G$4AC
(5,5) T G$5ATAT
(1,2) T GA$1T
(2,2) G GA$2G
(2,1) $ GGA$2

(5,2) A TATG$5A
(3,2) A TCA$3A
(5,4) A TG$5ATA
(1,1) $ TGA$1

▶ Lemma 2. Any two distinct interesting intervals are disjoint.

We can now narrow down the differences between any two separator-based BWTs of the
same multiset to interesting intervals. This implies that the dollar-symbols appear in the
same positions in all separator-based variants except for one very specific case. Moreover, we
get an upper bound on the Hamming distance between two separator-based BWTs:

▶ Proposition 3. Let L1 and L2 be two separator-based BWTs of the same multiset M.

1. If L1[i] ̸= L2[i] then i ∈ [b, e] for some interesting interval [b, e].
2. Let I1 resp. I2 be the positions of the dollars in L1 resp. L2. If I1 ̸= I2 then there exist

i ̸= j such that Ti is a proper suffix of Tj.
3. distH(L1, L2) ≤

∑
[b,e] interesting interval

(e − b + 1).

Proof. 1. Let L1[i] = x and L2[i] = y. Since all separator-based BWT variants use the
lexicographical order of the rotations, this means that there exists a substring U which is
preceded by x in one string Tj and by y in another Tj′ , the first occurrence has rank i in
one BWT and the other has rank i in the other BWT variant. This implies that the two
occurrences are followed by two dollars, and either the two dollars are different, or they
are the same dollar, and the subsequent substrings are different. Therefore, U defines an
interesting interval. Parts 2. and 3. follow from 1. ◀
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Proposition 3 implies that the variation of the different transforms can be explained
based solely on what rule is used to break ties for shared suffixes. We will see next how the
different BWT variants determine this tie-breaking rule.

3.3 Permutations induced by separator-based BWT variants
Let us now restrict ourselves to M being a set, i.e., no string occurs more than once. (This
is just for convenience since now the input order uniquely defines a permutation w.r.t.
lexicographic order; the results of this section apply equally to multisets M.) As we showed
in the previous subsection, the only differences between the different separator-based BWT
variants are given by the order in which shared suffixes are listed. It is also clear that
the same order applies in each interesting interval, as well as to the k-length prefix of the
transform, whether or not it is an interesting interval.

Since the strings are all distinct, they each have a unique lexicographic rank within
the set M. Thus the input order can be seen as a permutation ρ of the lexicographic
ranks1; if the strings are input in lexicographic order, then ρ = id. For our toy example
M = [ATATG, TGA, ACG, ATCA, GGA], we have ρ = 25134.

Let us now define as output permutation π the permutation of the last characters of
the input strings, as found in the k-length prefix of the BWT variant in question. We will
denote the output permutations of the dolEBWT, mdolBWT, concBWT, and colexBWT
by πde, πmd, πconc, and πcolex, respectively. Again, we give these permutations w.r.t. the
lexicographic ranks of the strings. In our running example, we have πde = 12345, πmd = 25134,
πconc = 45132, and πcolex = 34512.

It is easy to see that the permutation πmd is equal to ρ, since the dollar-symbols are
ordered according to ρ. For the dolEBWT, the rank of $Ti equals the lexicographic rank of
Ti among all input strings, i.e., πde = id. Further, πcolex = γ by definition, where γ denotes
the colexicographic order of the input strings. The situation is more complex in the case of
concBWT. Since the # is the smallest character, the last string of the input will be the first,
while for the others, the lexicographic rank of the following string decides the order. In our
running example, πconc = 45132. We next formalize this.

Let Φρ be the linking permutation [31] of ρ, defined by Φρ(i) = ρ(ρ−1(i) + 1), for i ̸= ρ(k),
and Φρ(ρ(k)) = ρ(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j ∈ {1, . . . , k} and i ̸= j,
fj(i) by fj(i) = i if i < j and i − 1 otherwise. The next lemma gives the precise relationship
between ρ and πconc. It says2, essentially, that πconc is the BWT of ρ.

▶ Lemma 4. Let ρ be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank ρ(i). Then πconc = πconc(ρ) is given by:

πconc(1) = ρ(k), and for i ̸= ρ(k) : π−1
conc(i) = fρ(1)(Φρ(i)) + 1. (1)

▶ Example 5. The mapping ρ 7→ πconc for k = 3 is as follows: 123 7→ 312, 132 7→ 231,
312 7→ 231, 213 7→ 321, 231 7→ 132, and 321 7→ 123. Note that no ρ maps to 213.

As can be seen already for k = 3, not all permutations π are reached by this mapping.
We will call a permutation π feasible if there exists an input order ρ such that πconc(ρ) = π.
For k = 4, there are 18 feasible permutations (out of 24), for k = 5, 82 (out of 120). In

1 For those used to thinking about suffix arrays, ρ can be seen as the inverse suffix array of the input if
the strings are thought of as meta-characters.

2 We thank Massimiliano Rossi for this observation.
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Table 5, we give the percentage of feasible permutations π, for k up to 11. The lexicographic
order is always feasible, namely with ρ = k, k − 1, . . . , 2, 1; however, the colex order is not
always feasible, as the following example shows.

▶ Example 6. Let M = {GAA, ACA, TGA}, thus γ = 213, but as we have seen, no per-
mutation of the strings in M will yield this order for concBWT. In addition, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all feasible ones have at least 8:
AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

Table 5 Percentage of feasible permutations w.r.t. concBWT.

no. of seq’s k 3 4 5 6 7 8 9 10 11

83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

An important consequence is that the permutations induced by mdolBWT and concBWT
are always different: πmd ̸= πconc holds always, since πconc(1) = ρ(k). This means that,
in whatever order the strings are given w.r.t. lexicographic order, on most string sets the
resulting transforms mdolBWT and concBWT will differ.

4 Effects on the parameter r

What is the effect of the different permutations π of the strings in M, induced by these
BWT variants, on the number of runs of the BWT? As the following example shows, the
number of runs can differ significantly between different variants.

▶ Example 7. Let M = {AAAA, AGCA, GCAA, GTCA, CAAA, CGCA, TCAA, TTCA}. Then
mdolBWT(M) = AAAAAAAAACACACACACACAC$$GTGTGT$$AC$$GT$$ has 28 runs, while
colexBWT(M) = AAAAAAAAAAAACCCCAACCAC$$GGTTGT$$AC$$GT$$ has 18 runs.

▶ Lemma 8. Let [b, e] be an interesting interval, and (n1, . . . , nσ) the Parikh vector of L[b..e],
i.e. ni is the number of occurrences of the ith character. Let a be such that na = maxi ni,
and Na = (e − b + 1) − na, the sum of the other character multiplicities. Then the maximum
number of runs in interval [b, e] is e − b + 1 if na − 1 ≤ Na, and 2Na + 1 otherwise.

We will use this lemma to measure the variability of a dataset:

▶ Definition 9. Let M be a multiset. For an interesting interval [b, e], let var([b, e]) be the
upper bound on the number of runs in [b, e] from Lemma 8. Then the variability of M is

var(M) =
∑

[b,e] interesting interval var([b, e])∑
[b,e] interesting interval(e − b + 1) .

Which of the BWT variants produces the fewest runs? As we have shown, this depends on
the input order with most BWT variants, and the only possible variation is within interesting
intervals. The colexBWT has been shown experimentally to yield a low number of runs of
the BWT [35, 13]. Even though it does not always minimize r (one can easily create small
examples where other permutations yield a lower number of runs), we can bound its distance
from the optimum.

▶ Proposition 10. Let L be the colexBWT of multiset M, and let rOPT denote the minimum
number of runs of any separator-based BWT of M. Then runs(L) ≤ rOPT + 2 · cM, where
cM is the number of interesting intervals.
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Bentley, Gibney, and Thankachan recently gave a linear-time algorithm for computing
the order of the dollars which minimizes the number of runs [4], i.e. the optimal order for
mdolBWT. The idea is, in effect, to start from the colex-order and then adjust, where
possible, the order of the runs within interesting intervals in order to minimize character
changes at the borders, i.e. such that the first and the last run of each interesting interval is
identical to the run preceding and following that interesting interval. This is equivalent to
sorting groups of sequences sharing the same left-maximal suffix. This sorting can be done
on each interesting interval independently without affecting the other interesting intervals.
In Table 4, we show the result on our toy example, where it reduces the number of runs by
2 w.r.t. colex order. We implemented an algorithm that computes the number of optimal
runs according to the method of [4] and applied it to our datasets. In the next section, we
compare the number of runs of each of the five BWT variants to the optimum.

5 Experimental results

We computed the five BWT variants for eight different genomic datasets, with different
characteristics. Four of the datasets contain short reads: SARS-CoV-2 short [51], Simons
Diversity reads [39], 16S rRNA short [57], Influenza A reads [56], and four contain long
sequences: SARS-CoV-2 long [25], 16S rRNA long [15], Candida auris reads [58], one of
which, SARS-CoV-2 genomes, whole viral genomes [6]. The main features of the datasets,
including the number of sequences, sequence length, and the mean runlength of the optimal
BWT are reported in Table 6. Details of the experiment setup are included in the full version.

On each of the datasets, we computed the pairwise Hamming distance between separator-
based BWTs. To compare them to the eBWT, we computed the pairwise edit distance on
a small subset of the sequences (for obvious computational reasons), computing also the
Hamming distance on the small set, for comparison. We generated some statistics on each of
the data sets: the number of interesting intervals, the fraction of positions within interesting
intervals (total length of interesting intervals divided by total length of the dataset), and the
dataset’s variability (Def. 9). To study the variation of the r-parameter, we implemented
the algorithm by Bentley et al. [4] for the optimal input order and computed rOP T for each
data set, comparing it to the number of runs of all five BWT variants. In Table 8 and 9,
we include a compact version of these results for the two datasets with the highest and
the lowest variation between the BWT variants, the SARS-CoV-2 short sequences and the
SARS-CoV-2 genomes, respectively. The full experimental results for all eight datasets are
contained in the full version.

In Table 7 we give a brief summary of the results, reporting, for each dataset, the fraction
of positions in interesting intervals, the dataset’s variability, the average pairwise Hamming
distance between separator-based BWT variants, and the maximum and minimum value,
among the five BWT variants, of the average runlength of the BWT.

The experiments showed a high variation in the number of runs in particular on datasets
of short sequences. The highest difference was between colexBWT and concBWT, by a
multiplicative factor of over 4.2, on the SARS-CoV-2 short dataset. In Figure 1 we plot
the average runlength n/r for the four short sequence datasets, and the percentage increase
of the number of runs w.r.t. rOP T . The variation is less pronounced on the one dataset
which is less repetitive, namely Simons Diversity reads. Recall that the mdolBWT and
concBWT vary depending on the input permutation. On most long sequence datasets, on
the other hand, the differences were quite small (see full version). To better understand how
far the colexBWT is from the optimum, we plot in Figure 2 the number of runs of colexBWT

CPM 2022



25:12 An Analysis of BWT Variants of String Collections

w.r.t. to rOP T , on all eight datasets. The strongest increase is on short sequences, where
the variation among all BWT variants is high, as well; on the long sequence datasets, with
the exception of SARS-CoV-2 long sequences, the colexBWT is very close to the optimum;
however, note that on those datasets, all BWTs are close to the optimum.

The average number of runs and the average pairwise Hamming distance strongly depend
on the length of the sequences in the input collection. If the collection has a lot of short
sequences which are very similar, then the differences between the BWTs both w.r.t. the
number of runs, and as measured by the Hamming distance, can be large. This is because
there are a lot of maximal shared suffixes and so many positions are in interesting intervals.
To better understand this relationship, we plotted, in Figure 3, the average Hamming distance
against the two parameters variability and fraction of positions in interesting intervals. We
see that the two datasets with highest average Hamming distance, SARS-CoV-2 short dataset
and the Simons Diversity reads, have at least one of the two values very close to 1, while for
those datasets where both values are very low, the BWT variants do not differ very much.

Table 6 Table summarizing the main parameters of the eight datasets. From left to right we
report the dataset name, the number of sequences, the total length, the average, minimum and
maximum sequence length and the optimum average runlength (n/r), according to [4].

dataset no. seq total length avg min max n/r (opt)

SARS-CoV-2 short 500,000 25,000,000 50 50 50 35.125
Simons Diversity reads 500,000 50,000,000 100 100 100 8.133
16S rRNA short 500,000 75,929,833 152 69 301 44.873
Influenza A reads 500,000 115,692,842 231 60 251 50.275
SARS-CoV-2 long 50,000 53,726,351 1,075 265 3,355 74.498
16S rRNA long 16,741 25,142,323 1,502 1,430 1,549 47.140
Candida auris reads 50,000 124,150,880 2,483 214 8,791 1.732
SARS-CoV-2 genomes 2,000 59,610,692 29,805 22,871 29,920 523.240

Table 7 Table summarizing the results on the eight datasets. From left to right we report dataset
names followed by the ratio of positions in interesting intervals, the variability of the dataset (see
Def. 9), the average normalized Hamming distance between any two separator-based BWT variants.
In the last two columns we report the maximum and minimum average runlength (n/r) taken over
all five BWT variants.

dataset ratio pos.s varia- avg. Hamming d. max n/r min n/r

in intr.int.s bility betw. $-sep. BWTs (avg. runlength) (avg. runlength)

SARS-CoV-2 short 0.792 0.210 0.11754 31.524 7.494
Simons Diversity reads 0.107 0.976 0.07195 7.873 5.299
16S rRNA short 0.741 0.058 0.02982 44.253 18.836
Influenza A reads 0.103 0.363 0.02609 49.172 23.100
SARS-CoV-2 long 0.175 0.037 0.00464 73.204 57.568
16S rRNA long 0.047 0.104 0.00289 46.879 45.015
Candida auris reads 0.007 0.497 0.00246 1.732 1.726
SARS-CoV-2 genomes 0.001 0.148 0.00012 521.610 499.549
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Table 8 Results for the SARS-CoV-2 short dataset. Top left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants. Top right: summary of the dataset
properties. Bottom left: absolute and normalized pairwise edit distance between all BWT variants
on a subset of the input collection. Bottom right: number of runs and average runlength (n/r) taken
over all BWT variants.
SARS-CoV-2 short (500,000 short sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 3,014,183 2,926,602 2,912,860

mdolBWT 0.11820 0 3,013,908 3,102,887

concBWT 0.11477 0.11819 0 3,013,634

colexBWT 0.11423 0.12168 0.11818 0

dataset properties

no. sequences 500,000

average length 50

total length 25,000,000

no. of interesting intervals 116,598

total length intr.int.s 20,187,840

fraction pos.s in intr.int.s 0.792

variability 0.210

norm. edit d.

edit d. edit distance on a subset of 5,000 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 28,702 43,903 43,828 46,936

dolEBWT 0.11256 0 17,000 16,921 20,104

mdolBWT 0.17217 0.06667 0 16,130 20,812

concBWT 0.17187 0.06636 0.06325 0 20,830

colexBWT 0.18406 0.07884 0.08162 0.08169 0

no. runs big dataset

r n/r

eBWT 1,902,148 13.143

dolEBWT 1,868,581 13.647

mdolBWT 3,113,818 8.189

concBWT 3,402,513 7.494

colexBWT 808,906 31.524

optimum 725,979 35.125

Figure 1 Results regarding r on short sequence datasets, of all BWT variants. Left: average
runlength (n/r). Right: number of runs (percentage increase with respect to optimal BWT).
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Figure 2 Number of runs of the colexBWT with respect to optimal BWT (percentage increase)
on all eight datasets.

Figure 3 Average normalized Hamming distance variations with respect to variability and fraction
of positions in interesting intervals on all datasets.
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Table 9 Results for the SARS-CoV-2 genomes dataset. Top left: absolute and normalized
pairwise Hamming distance between separator-based BWT variants. Top right: summary of the
dataset properties. Bottom left: absolute and normalized pairwise edit distance between all BWT
variants on a subset of the input collection. Bottom right: number of runs and average runlength
(n/r) taken over all BWT variants.
SARS-CoV-2 genomes (2,000 long sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 7,958 7,900 7,263

mdolBWT 0.00013 0 7,958 7,957

concBWT 0.00013 0.00013 0 7,990

colexBWT 0.00012 0.00013 0.00013 0

dataset properties

no. sequences 2,000

total length 59,612,692

average length 29,085

no. interesting intervals 1863

total length intr.int.s 80,486

fraction pos.s in intr.int.s 0.001

variability 0.148

norm. edit d.

edit d. edit distance on a subset of 50 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 786 795 801 791

dolEBWT 0.00053 0 98 107 86

mdolBWT 0.00053 0.00007 0 105 112

concBWT 0.00054 0.00007 0.00007 0 114

colexBWT 0.00053 0.00006 0.00008 0.00008 0

no. runs big dataset

r n/r

eBWT 117,628 506.773

dolEBWT 117,410 507.731

mdolBWT 118,870 501.495

concBWT 119,334 499.549

colexBWT 114,287 521.605

optimum 113,930 523.240

6 Conclusion

We presented the first study of the different variants of the Burrows-Wheeler-Transform for
string collections. We found that the data structures computed by different tools differ not
insignificantly, as measured by the pairwise Hamming distance: up to 12% between different
BWT variants on the same dataset in our experiments. We showed that most BWT variants
in use are input order dependent, so the same tool can produce different variants if the input
set is permuted. These differences extend also to the number of runs r, a parameter that is
central in the analysis of BWT-based data structures, and which is increasingly being used
as a measure of the repetitiveness of the dataset itself.

With string collections replacing individual sequences as the prime object of research
and analysis, and thus becoming the standard input for text indexing algorithms, we believe
that it is all the more important for users and researchers to be aware that not all methods
are equivalent, and to understand the precise nature of the BWT variant produced by a
particular tool. We suggest further to standardize the definition of the parameter r for string
collections, using either the colexicographic order or the optimal order of Bentley et al. [4].
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Abstract
Grammar-based compression is a loss-less data compression scheme that represents a given string w

by a context-free grammar that generates only w. While computing the smallest grammar which
generates a given string w is NP-hard in general, a number of polynomial-time grammar-based
compressors which work well in practice have been proposed. RePair, proposed by Larsson and
Moffat in 1999, is a grammar-based compressor which recursively replaces all possible occurrences of
a most frequently occurring bigrams in the string. Since there can be multiple choices of the most
frequent bigrams to replace, different implementations of RePair can result in different grammars. In
this paper, we show that the smallest grammars generating the Fibonacci words Fk can be completely
characterized by RePair, where Fk denotes the k-th Fibonacci word. Namely, all grammars for
Fk generated by any implementation of RePair are the smallest grammars for Fk, and no other
grammars can be the smallest for Fk. To the best of our knowledge, Fibonacci words are the first
non-trivial infinite family of strings for which RePair is optimal.
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1 Introduction

A context-free grammar in the Chomsky normal form that produces only a single string w
is called a straight-line program (SLP) for w. Highly repetitive strings that contain many
long repeats can be compactly represented by SLPs since occurrences of equal substrings
can be replaced by a common non-terminal symbol. Grammar-based compression is a loss-
less data compression scheme that represents a string w by an SLP for w. We are aware
of more powerful compression schemes such as run-length SLPs [24, 37, 6], composition
systems [19], collage systems [26], NU-systems [36], the Lempel-Ziv 77 family [42, 39, 12, 13],
and bidirectional schemes [39]. Nevertheless, since SLPs exhibit simpler structures than
those, a number of efficient algorithms that can work directly on SLPs have been proposed,
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including pattern matching [25, 24], convolutions [40], random access [8], detection of repeats
and palindromes [22], Lyndon factorizations [23], longest common extension queries [21],
longest common substrings [34], finger searches [5], and balancing the grammar [17]. More
examples of algorithms directly working on SLPs can be found in references therein and the
survey [31]. Since these algorithms do not decompress the SLPs, they can be more efficient
than solutions on uncompressed strings.

Since the complexities of the algorithms mentioned above depend on the size of the
SLP, it is important to compute a small grammar for a given string. The smallest grammar
problem is to find a grammar that derives a given string w, where the total length of the
right-hand sides of the productions is the smallest possible. The smallest grammar problem is
known to be NP-hard in general [39, 10]. Namely, there is no polynomial-time algorithm that
finds the smallest grammar for arbitrary strings, unless P = NP. Notably, the NP-hardness
holds even when the alphabet size is bounded by some constant at least 17 [9], on the other
hand, it is open whether the NP-hardness holds for strings over a smaller constant alphabet,
particularly on binary alphabets.

We consider a slightly restricted version of the smallest grammar problem where the
considered grammars are SLPs, i.e., only those in the Chomsky normal form. We follow
a widely accepted definition for the size of an SLP, which is the number of productions
in it. Thus, in the rest of our paper, grammars mean SLPs unless otherwise stated, and
our smallest grammar problem seeks the smallest SLP, which generates the input string
with the fewest productions3. There are some trivial examples of strings whose smallest
grammar sizes can be easily determined, e.g., a unary string (a)2i of length power of two4,
and non-compressible strings in which all the symbols are distinct. It is interesting to identify
classes of strings whose smallest grammars can be determined in polynomial-time since it
may lead to more and deeper insights to the smallest grammar problem. To the best of our
knowledge, however, no previous work shows non-trivial strings whose smallest grammar
sizes are computable in polynomial-time.

In this paper, we study the smallest grammars of the Fibonacci words {F1, F2, . . . , Fn, . . .}
defined recursively as follows: F1 = b, F2 = a, and Fi = Fi−1Fi−2 for i ≥ 3. We show
that the smallest grammars of the Fibonacci words can be completely characterized by
the famous RePair [30] algorithm, which is the best known practical grammar compressor
that recursively replaces the most frequently occurring bigram with a new non-terminal
symbol in linear total time. We first prove that the size of the smallest grammar of the
n-th Fibonacci word Fn is n. We then prove that applying any implementation of RePair
to Fn always provides a smallest grammar of Fn, and conversely, only such grammars can
be the smallest for Fibonacci words. This was partially observed earlier in the experiments
by Furuya et al. [15], where five different implementations of RePair produced grammars
of the same size for the fib41 string from the Repetitive Corpus of the Pizza&Chili Corpus
(http://pizzachili.dcc.uchile.cl/repcorpus.html). However, to our knowledge, this
paper is the first that gives theoretical evidence.

3 There is an alternative definition of the size of a grammar, that is, the total sum of the lengths of the
right side of its rules. This definition is usually used for non-SLP grammars.

4 Grammars for unary words are closely related to addition chains [28], and the smallest (not necessarily
SLP) grammar for (a)k is non-trivial for general k that is not a power of two. Also, in such a case,
RePair does not provide the smallest grammar for (a)k [20].

http://pizzachili.dcc.uchile.cl/repcorpus.html
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Related Work

Although the smallest grammar problem is NP-hard, there exist polynomial-time approxima-
tions to the problem: Rytter’s AVL-grammar [38] produces an SLP of size O(s∗ log(N/s∗)),
where s∗ denote the size of the smallest SLP for the input string and N is the length of
the input string. The α-balanced grammar of Charikar et al. [10] produces a (non-SLP)
grammar of size O(g∗ log(N/g∗)), where g∗ denotes the size of the smallest (non-SLP)
grammar. Upper bounds and lower bounds for the approximation ratios of other practical
grammar compressors including LZ78 [43], BISECTION [27], RePair [30], SEQUENTIAL [41],
LONGEST MATCH [27], and GREEDY [1], are also known [10, 2]. Charikar et al. [10]
showed that the approximation ratio of RePair to the smallest (non-SLP) grammar is at
most O((N/ logN)2/3) and is at least Ω(

√
logN). The lower bound was later improved by

Bannai et al. [2] to Ω(logN/ log logN). Furthermore, it is known that RePair has a lower
bound on the approximation ratio log2(3) to the smallest (non-SLP) grammar for unary
strings [20]. On the other hand, RePair is known to achieve the best compression ratio on
many real-world datasets and enjoy applications in web graph compression [11] and XML
compression [32]. Some variants of RePair have also been proposed [33, 7, 18, 16, 15, 29].

2 Preliminaries

2.1 Strings
Let Σ be an alphabet. An element in Σ is called a symbol. An element in Σ∗ is called a
string. The length of string w is denoted by |w|. The empty string ε is the string of length
0. For each i with 1 ≤ i ≤ |w|, w[i] denotes the i-th symbol of w. For each i and j with
1 ≤ i ≤ j ≤ |w|, w[i..j] denotes the substring of w which begins at position i and ends at
position j. For convenience, let w[i..j] = ε if i > j. When i = 1 (resp. j = |w|), w[i..j] is
called a prefix (resp. a suffix) of w. For non-empty strings w and b with |b| < |w|, b is called a
border of w if b is both a prefix and a suffix of w. If there are no borders of w, then w is said
to be borderless. For any non-empty string w, we call w[|w|]w[1..|w| − 1] the right-rotation
of w. For a string w, σw denotes the number of distinct symbols appearing in w. For a
non-empty string w, we denote by wR the reversed string of w, namely wR = w[|w|] · · ·w[1].

2.2 Fibonacci Words and Related Words
For a binary alphabet {a, b}, Fibonacci words F (a,b)

i (starting with a for i > 1) are defined
as follows: F (a,b)

1 = b, F (a,b)
2 = a, and F

(a,b)
i = F

(a,b)
i−1 F

(a,b)
i−2 for i ≥ 3. We call F (a,b)

i the
i-th Fibonacci word (starting with a for i > 1). By the above definition of Fibonacci words,
|F (a,b)

i | = fi holds for each i, where fi denotes the i-th Fibonacci number defined as follows:
f1 = 1, f2 = 1, fi = fi−1 + fi−2 for i ≥ 3. There is an alternative definition (e.g. [3]) of
Fibonacci words using the string morphism ϕ(a,b): The i-th Fibonacci word F

(a,b)
i (starting

with a for i > 1) is (ϕ(a,b))i−1(b), where ϕ(a,b) is a morphism over {a, b} such that ϕ(a,b)(a) =
ab and ϕ(a,b)(b) = a. We strictly distinguish the morphism ϕ(b,a) from ϕ(a,b) over the same
binary alphabet {a, b}, namely, ϕ(b,a) generates the Fibonacci words F (b,a)

i where a and b

are flipped in F
(a,b)
i . We will omit the superscript (a, b) if it is clear from contexts or it is

not essential for the discussion.
Next, we define other words, which will be utilized to analyze the smallest grammar

of Fibonacci words. Let π(a,b) be the morphism over {a, b} such that π(a,b)(a) = ab and
π(a,b)(b) = abb. Further, let θ(a,b) be the morphism over {a, b} such that θ(a,b)(a) = aab and

CPM 2022
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Table 1 Lists of F
(a,b)
i for i = 1, . . . , 10, and P

(a,b)
i and Q

(a,b)
i for i = 1, . . . , 5.

i F
(a,b)
i length

1 b 1
2 a 1
3 ab 2
4 aba 3
5 abaab 5
6 abaababa 8
7 abaababaabaab 13
8 abaababaabaababaababa 21
9 abaababaabaababaababaabaababaabaab 34
10 abaababaabaababaababaabaababaabaababaababaabaababaababa 55

i P
(a,b)
i length

1 a 1
2 ab 2
3 ababb 5
4 ababbababbabb 13
5 ababbababbabbababbababbabbababbabb 34

i Q
(a,b)
i length

1 a 1
2 aab 3
3 aabaabab 8
4 aabaababaabaababaabab 21
5 aabaababaabaababaababaabaababaabaababaababaabaababaabab 55

θ(a,b)(b) = ab. For each positive integer i, we define P (a,b)
i and Q(a,b)

i over {a, b} by P (a,b)
i =

(π(a,b))i−1(a) and Q(a,b)
i = (θ(a,b))i−1(a), respectively. We treat their superscripts as for that

of Fibonacci words. We will later show that |Pi| = |F2i−1| = f2i−1 and |Qi| = |F2i| = f2i for
any i ≥ 1. We show examples for these three words in Table 1. We remark that strings Pi

and Qi can be obtained at some point while RePair is being applied to the Fibonacci words.
We will prove this in Section 4.

For a symbol X and a string y, let ξX→y be the morphism such that ξX→y(X) = y and
ξX→y(c) = c for any symbol c ̸= X. Namely, when applied to a string w, ξX→y(w) replaces
all occurrences of X in w with y but any other symbols than X remain unchanged. For any
morphism λ and any sequence S = (s1, . . . , sm) of strings, let λ(S) = (λ(s1), . . . , λ(sm)).

2.3 Grammar Compression and RePair
A context-free grammar in the Chomsky normal form that produces a single string w is
called a straight-line program (SLP in short) for w. Namely, any production in a grammar
is of form either Xi → α or Xi → XjXk, where α is a terminal symbol and Xi, Xj , and
Xk are non-terminal symbols such that i > j and i > k, that is, there are no cycles in the
productions. In what follows, we refer to an SLP that produces w simply as a grammar of w.
Let T (G) denote the derivation tree of a grammar G, where each internal node in T (G) is
labeled by the corresponding non-terminal symbol of G. As in [38], we conceptually identify
terminal symbols with their parents so that T (G) is a full binary tree (i.e. every internal node
has exactly two children). Let G1 and G2 be grammars both deriving the same string w, and
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w  =  a b a b a a b a a b a

a b a b a a b a a b a

A AB A B A A B A A B

X1 X2

X3 X4

X5 X6

X7

X1 X2

X4

a b a b a a b a a b a

A AB A B A A B A A B

Y1 Y1

Y2 Y2

Y3 Y4

Y5

Y1 Y1

Y2

Figure 1 Illustration for the derivation trees of two distinct grammars of string w = ababaabaaba.
The size of the grammar on the left is 9 since there are nine productions; {A → a, B → b, X1 →
AB, X2 → AA, X3 → X1X1, X4 → X2B, X5 → X3X4, X6 → X4A, X7 → X5X6, }. On the other
hand, the size of the grammar on the right is 7. Note that the right one is a RePair grammar of w.
In the rest of the paper, we sometimes identify the terminal symbols (leaves) with their parents so
the derivation trees are (conceptually) full binary trees.

let Π1 and Π2 be the sets of non-terminal symbols of G1 and G2, respectively. We say that G1
and G2 are equivalent if there exists a renaming bijection f : Π1 → Π2 that transforms T (G1)
to T (G2). We say that G1 and G2 are distinct if they are not equivalent. For example, two
grammars {A → a,B → b, C → AB,D → CA} and {X → a, Y → b, Z → XY,W → ZX}
are equivalent grammars both deriving string aba.

Equivalent grammars form an equivalence class of grammars, and we pick an arbitrary
one as the representative of each equivalence class. A set S of grammars that derive the same
string w is a set which consists of (some) representative grammars, which means that any
two grammars in S are mutually distinct. See Figure 1 for examples of distinct grammars for
the same string.

The size of a grammar G, denoted by |G|, is the number of productions in G. We denote
by g∗(w) the size of the smallest grammar of string w. Further, we denote by Opt(w) the
set of all the smallest grammars of string w. While computing g∗(w) for a given string w is
NP-hard in general [10], a number of practical algorithms which run in polynomial-time and
construct small grammars of w have been proposed.

In this paper, we focus on RePair [30], which is the best known grammar-based compressor
that produce small grammars in practice. We briefly describe the RePair algorithm, which
consists of the three stages:
1. Initial stage: All terminal symbols in the input string are replaced with non-terminal

symbols. This creates unary productions.
2. Replacement stage: The algorithm picks an arbitrary bigram which has the most non-

overlapping occurrences in the string, and then replaces all possible occurrences of
the bigram with a new non-terminal symbol. The algorithm repeats the same process
recursively for the string obtained after the replacement of the bigrams, until no bigrams
have two or more non-overlapping occurrences in the string. It is clear that the productions
created in the replacement stage are all binary.
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Figure 2 Illustration for the changes of strings and productions to be added when RePair is applied
to string w = abaababa. At the second level, the most frequent bigrams in string ABAABABA

are AB and BA. If AB is chosen and replaced with non-terminal symbol X1, the string changes
to X1AX1X1A and production X1 → AB is added. Otherwise (if BA is chosen and replaced with
non-terminal symbol Y1), the string changes to AY1AY1Y1 and production Y1 → BA is added. In
this example, the size of RePair(w) is four.

3. Final stage: Trivial binary productions are created from the sequence of non-terminal
symbols which are obtained after the last replacement. This ensures that the resulting
grammar is in the Chomsky normal form. We remark that when distinct bigrams have
the most non-overlapping occurrences in the string, then the choice of the bigrams to
replace depends on each implementation of RePair.

A grammar of w obtained by some implementation of RePair is called a RePair grammar
of w. We denote by RePair(w) the set of all possible RePair grammars of w. We show an
example of RePair grammars in Figure 2.

2.4 LZ-factorization
A sequence S = (s1, . . . , sm) of non-empty strings is called a factorization of string w if
w = s1 · · · sm. Each si (1 ≤ i ≤ m) is called a phrase of S. The size of the factorization S,
denoted |S|, is the number m of phrases in S.

For a factorization S = (s1, . . . , sm) of a string w, we say that the i-th phrase si is
greedy if either si is a fresh symbol that occurs for the first time in s1 · · · si, or si is the
longest prefix of si · · · sm which occurs in s1 · · · si−1. A factorization of a string w is called
the LZ-factorization of w if all the phrases are greedy. Note that this definition of the
LZ-factorization is equivalent to the one in [38]. The LZ-factorization of string w is denoted
by LZ (w), and the size of LZ (w) is denoted by z(w). We sometimes represent a factorization
(s1, s2, . . . , sm) of w by s1|s2| . . . |sm, where each | denotes the boundary of the phrases. For
example, The LZ-factorization of w = ababaabaaba is a|b|ab|a|aba|aba.

3 Basic Properties of Fibonacci and Related Words

In this section, we show some properties of the aforementioned words. We fix the alphabet
Σ = {a, b} in this section. First, for the summation of Fibonacci sequences, the next equations
hold:
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▶ Fact 1.
∑i

k=1 f2k−1 = f2i and
∑i

k=1 f2k = f2i+2 − 1.

By the definitions of Fn, Pn, and Qn, we have the following observation:

▶ Lemma 2. For each k ≥ 2, the most frequent bigrams of F2k are ab and ba, and the most
frequent bigram of F2k−1 is ab. Also, for each i ≥ 2 and each j ≥ 3, the most frequent bigram
of Pi and Qj is ab.

Proof. From the fact that bigram bb and trigram aaa do not occur in any Fibonacci word
(e.g., see [3]), we can see that any occurrence of aa is followed by b in Fibonacci words.
Thus, aa cannot occur more frequently than ab in any Fibonacci word. Also, since the third
and subsequent Fibonacci words start with ab, bigram ab occurs more frequently than aa.
Additionally, since all the Fibonacci words F2k of even order end with b and all the Fibonacci
words F2k−1 of odd order end with a, the statements for the Fibonacci words hold.

Similarly, as for string Pi, it follows from the definition of morphism π that aa does not
occur in Pi. Also, bb always succeeds a, and thus, bb cannot occur more frequently than ab.
Furthermore, by the definition of morphism π, string Pi starts with aba and ends with b for
i ≥ 3. Thus, the most frequent bigram of Pi is ab for i ≥ 3 (note that P2 is trivial).

Finally, as for string Qj , it follows from the definition of morphism θ that bb does not
occur in Qj . Also, aa always precedes b, and thus, aa cannot occur more frequently than ab.
Furthermore, by the definition of morphism θ, string Qj ends with ab for j ≥ 3. Thus, the
most frequent bigram of Qj is ab for j ≥ 3. ◀

A factorization C = (c1, . . . , cm) of a string w is called the C-factorization of w if either
ci is a fresh symbol or ci is the longest prefix of ci · · · cm which occurs twice in c1 · · · ci.
We can obtain the full characterization of the LZ-factorization of Fn immediately from the
C-factorization of Fn, as follows:

▶ Lemma 3. The LZ-factorization of Fn is (a, b, a, FR
4 , . . . , F

R
n−2, s), where s = ab if n is

odd, and s = ba otherwise.

Proof. It is shown in [4] that the C-factorization of the infinite Fibonacci word F is
(a, b, a, FR

4 , F
R
5 , . . .). Also, for each i ≥ 4, the (only) reference source of each factor FR

i is the
substring of Fn of length fi ending at just before the factor, i.e., the source does not overlap
with the factor. From these facts, it can be seen that the LZ-factorization of F is the same
as the C-factorization of F. Then, the last phrase of the C-factorization of a finite Fibonacci
word is of length two since fn =

∑n−2
i=1 fi + 1 = (1 + 1 + 2 +

∑n−2
i=4 fi) + 1 = 3 +

∑n−2
i=4 fi + 2.

Also, since the Fibonacci words of odd order (resp. even order) end with ab (resp. ba), the
last phrase is ab (resp. ba). ◀

The next lemma states that Pi and Qi are the right-rotations of Fibonacci words.

▶ Lemma 4. For each i ≥ 1, P (a,b)
i is the right-rotation of F (b,a)

2i−1, and Q
(a,b)
i is the right-

rotation of F (a,b)
2i .

Proof. The next claim can be proven by induction:

▷ Claim 5. For any non-empty string x ∈ {a, b}, (ϕ(b,a))2(x)b = bπ(a,b)(x) and
(ϕ(a,b))2(x)ab = abθ(a,b)(x) hold.

We prove the lemma by using Claim 5. Assume that the lemma holds for i. Since the last
symbol of F (b,a)

2i−1 is a, we can write F (b,a)
2i−1 = xa with some string x. From the induction

hypothesis, P (a,b)
i = ax holds. Then, P (a,b)

i+1 = π(a,b)(ax) = abπ(a,b)(x). Also, F (b,a)
2i+1 =
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Pi =

F(𝚋,𝚊)
2i−1 =

a b a b b a b a b b a b b a b a b b a b   b b⋯ (F(𝚋,𝚊)
k )R ⋯

 b a b b a b a b b a b b a b a b b a b   b b a⋯ (F(𝚋,𝚊)
k )R ⋯

Figure 3 Illustration for the LZ-factorizations of Pi and F
(b,a)
2i−1. F

(b,a)
2i−1 is aligned so that the first

position of F
(b,a)
2i−1 is the second of Pi. In both of two factorizations, the k-th phrase is (F (b,a)

k )R for
each k ≥ 4.

(ϕ(b,a))2(xa) = (ϕ(b,a))2(x)ba = bπ(a,b)(x)a by Claim 5, and thus, P (a,b)
i+1 is the right-rotation of

F
(b,a)
2i+1 . Similarly, since the last symbol of F (a,b)

2i is a, we can write F (a,b)
2i = ya with some string

y. From the induction hypothesis, Q(a,b)
i = ay holds. Then, Q(a,b)

i+1 = θ(a,b)(ay) = aabθ(a,b)(y).
Also, F (a,b)

2i+2 = (ϕ(a,b))2(ya) = (ϕ(a,b))2(y)aba = abθ(a,b)(y)a by Claim 5, and thus, Q(a,b)
i+1 is

the right-rotation of F (a,b)
2i+2 . ◀

The LZ-factorizations of Pn is as follows:

▶ Lemma 6. Let i ≥ 2. The j-th phrase of LZ (P (a,b)
i ) is (F (b,a)

j )R for each j with 1 ≤ j ≤
2i− 3. The last phrase is the (2i− 2)-th phrase, and that is b.

Proof. The first three phrases of LZ (Pi) are (a, a, ab) = ((F (b,a)
1 )R, (F (b,a)

2 )R, (F (b,a)
3 )R).

By Lemma 4, Pi[2..|Pi|]a = F
(b,a)
2i−1 . Namely, LZ(Pi[2..|Pi|]a) = LZ(F (b,a)

2i−1). By Lemma 3,
for each phrase of length at least four of LZ(F (b,a)

2i−1), the length-3 prefix of the phrase is
either abb or bab. Since Pi starts with aba, for each k ≥ 4, the k-th phrase of LZ(Pia)
equals that of LZ (Pi[2..|Pi|]a) = LZ (F (b,a)

2i−1), that is, (F (b,a)
k )R (see also Figure 3). Also,

|LZ (Pi)| = |LZ (F (b,a)
2i−1)| = 2i− 2 holds, and the last phrase of LZ (Pi) is b. ◀

4 RePair Grammars of Fibonacci Words

In this section, we first show a lower bound of the size of the smallest grammar of any string,
which is slightly tighter than the well-known result shown by Rytter [38]. Second, we show
that the size of RePair grammars of Fibonacci words are always the smallest.

4.1 Tighter Lower Bound of Smallest Grammar Size
The partial derivation tree PT (G) of a grammar G is the maximal subgraph of the derivation
tree of G such that for each non-leaf node v in PT (G), there is no node whose label is the
same as v to its left. For a grammar G of a string w, the g-factorization of w w.r.t. G,
denoted by gfact(G), is the factorization of w where the phrases correspond to the leaves of
PT (G). See also Figure 4 for an example of PT (w) and gfact(G). It was shown in [38] that
|gfact(G)| ≤ |G| holds for any grammar G. We show a slightly tighter lower bound of |G| by
considering the number of distinct symbols in w.

▶ Lemma 7. For any grammar G of a string w, |gfact(G)| − 1 + σw ≤ |G|.

Proof. A grammar G in the Chomsky normal form consists of two types of productions:
Type 1 A → BC where A,B, and C are non-terminal symbols.
Type 2 A → α where A is a non-terminal symbol and α is a terminal symbol.
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a b a b a a b a a b a

A AB A B A A B A A B

X1 X2

X3 X4

X5 X6

X7

X1 X2

X4

Figure 4 Illustration for PT (G) of grammar G for string w = ababaabaaba. The circled nodes
are leaves of PT (G). For this grammar G of w, gfact(G) = a|b|ab|a|a|b|aab|a. Since |G| = 9,
|gfact(G)| = 8, and σw = 2, we can see that Lemma 7 holds for this example.

Let g1 and g2 be the numbers of productions of Type 1 and Type 2, respectively. By the
definition of PT (G), the labels of all non-leaf nodes are distinct, and they correspond to the
productions of Type 1. Thus, the number m of non-leaf nodes is at most g1. Also, σw ≤ g2
always holds. Hence, m+ σw ≤ g1 + g2 = |G|. On the other hand, m = |gfact(G)| − 1 holds
since PT (G) is a full binary tree and the number of leaves of PT (G) is |gfact(G)|. Therefore,
|gfact(G)| − 1 + σw ≤ |G| holds. ◀

We obtain the following tighter lower bound for the size of the smallest grammar(s):

▶ Theorem 8. For any string w, z(w) − 1 + σw ≤ g∗(w) holds.

Proof. It was shown in [38] that z(w) ≤ |gfact(G)| for any grammar G of w. Thus, combining
it with Lemma 7, we obtain the theorem. ◀

By regarding the recursive definition of Fn as a grammar, we can construct a size-n grammar
of Fn. Also, g⋆(Fn) is at least n by Theorem 8 since z(Fn) = n− 1 and σFn

= 2. Thus, we
obtain the following corollary:

▶ Corollary 9. The smallest grammar size of Fn is n.

4.2 RePair Grammars are Smallest for Fibonacci Words
By considering the inverse of morphism ϕ, we have the next observation:

▶ Observation 10. By replacing all occurrences of ab in F
(a,b)
i with X, we obtain F

(X,a)
i−1 .

The next lemma shows how F , P , and Q can be obtained from one of the others:

▶ Lemma 11. ξb→ba(Pi) = F2i, ξb→ab(Pi) = Qi, and ξa→ab(Qi) = Pi+1 hold.

Proof. Let ψ1 = ξb→ba, ψ2 = ξb→ab, and ψ3 = ξa→ab. First, we consider compositions of these
morphisms. Since ϕ2(ψ1(a)) = ϕ2(a) = ϕ(ab) = aba, ϕ2(ψ1(b)) = ϕ2(ba) = ϕ(aab) = ababa,
ψ1(π(a)) = ψ1(ab) = aba, and ψ1(π(b)) = ψ1(abb) = ababa, we have ϕ2 ◦ ψ1 = ψ1 ◦ π. Also,
since ψ2(π(a)) = ψ2(ab) = aab, ψ2(π(b)) = ψ2(abb) = aabab, θ(ψ2(a)) = θ(a) = aab, and
θ(ψ2(b)) = θ(ab) = aabab, we have ψ2 ◦ π = θ ◦ψ2. Also, since ψ3(θ(a)) = ψ3(aab) = ababb,
ψ3(θ(b)) = ψ3(ab) = aab, π(ψ3(a)) = π(ab) = ababb, and π(ψ3(b)) = π(b) = abb, we have
ψ3 ◦ θ = π ◦ ψ3.
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a b a a b a b a a b a a b

A AB A A B A B A A B

X1

X2

X3

X4

X5

A B

X1 X1 X1 X1

X2 X2

X3

a b a a b a b a a b a a b

A AB A A B A B A A B

Y1

Y2

Y3

Y4

Y5

A B

Y1 Y1 Y1 Y1

Y2 Y2

Y3

Figure 5 Two RePair grammars of the 7-th Fibonacci word abaababaabaab over {a, b}.

When i = 1, the lemma clearly holds. We assume that the lemma holds for i − 1
with i ≥ 2. Then, ψ1(Pi) = ψ1(π(Pi−1)) = ϕ2(ψ1(Pi−1)) = ϕ2(F2i−2) = F2i, ψ2(Pi) =
ψ2(π(Pi−1)) = θ(ψ2(Pi−1)) = θ(Qi−1) = Qi, and ψ3(Qi) = ψ3(θ(Qi−1)) = π(ψ3(Qi−1)) =
π(Pi) = Pi+1. ◀

By considering the inverses of the three morphisms in Lemma 11, we have the next corollary:

▶ Corollary 12. Let X denote a fresh non-terminal symbol. By replacing all occurrences of
ba in F

(a,b)
2i with X, we obtain P

(a,X)
i . By replacing all occurrences of ab in Q

(a,b)
i with X,

we obtain P
(a,X)
i . By replacing all occurrences of ab in P

(a,b)
i+1 with X, we obtain Q

(X,b)
i .

We show examples of two RePair grammars of F (a,b)
7 in Figure 5.

We are ready to clarify the shape of all the RePair grammars of Fibonacci words.

▶ Lemma 13. The size of every RePair grammar of Fn is n, i.e., RePair(Fn) ⊆ Opt(Fn).
Also, |RePair(Fn)| = 2⌊n/2⌋ − 2.

Proof. By Lemma 2, Observation 10 and Corollary 12, each string, that appears while
(an implementation of) the RePair algorithm is running, is one of F , P , and Q over some
binary alphabet. The change of the strings can be represented by a directed graph (V,E)
such that V = {Fi | 4 ≤ i ≤ n} ∪ {Pi | 3 ≤ i ≤ ⌊n/2⌋} ∪ {Qi | 2 ≤ i ≤ ⌊n/2⌋ − 1} and
E = {(Fi, Fi−1) | 5 ≤ i ≤ n} ∪ {(F2k, Pk) | 3 ≤ k ≤ ⌊n/2⌋} ∪ {(Pi, Qi−1) | 3 ≤ i ≤ ⌊n/2⌋}.
See Figure 6 for an illustration of the graph. Each edge represents a replacement of all
occurrences of a most frequent bigram, and thus each path from source (Fn) to sinks (F4
and Q2) corresponds to a RePair grammar of Fn. The size of a RePair grammar is the
number of edges in its corresponding path plus four, since the size of a minimal5 grammar
of length-3-binary string, such as F4 and Q2, is four. Since the number of edges in any
source-to-sinks paths is n− 4, the size of each RePair grammar of the n-th Fibonacci word is
n. Also, the number of the RePair grammars is twice the number of distinct source-to-sinks
paths since there are exactly two possible minimal grammars of any length-3 string.

Next, let us count the number of source-to-sinks paths in the graph. There is only one
path from Fn to F4, and there are ⌊n/2⌋ − 2 edges from F2k on the upper part to Pk on the
lower part for all k with 3 ≤ k ≤ ⌊n/2⌋. Thus, the number of distinct source-to-sinks paths
is ⌊n/2⌋ − 1. Therefore, the number of distinct RePair grammars is 2⌊n/2⌋ − 2. ◀

5 This means that there are no redundant productions.
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Figure 6 An example of the graph for n = 11 described in Lemma 13.

5 Optimality of RePair for Fibonacci Words

In this section, we prove our main theorem:

▶ Theorem 14. Opt(Fn) = RePair(Fn).

The derivation tree of any grammar (i.e., SLP) G is a full binary tree. Thus, there
exists a bottom-up algorithm which constructs the grammar G by replacing bigrams with a
non-terminal symbol one by one. Thus, it suffices to consider all such algorithms in order to
show the optimality of RePair for Fn. We show that any bigram-replacement that does not
satisfy the condition of RePair always produces a larger grammar than the RePair grammars.
For Fn, Pn, and Qn, there are 16 strategies that do not satisfy the condition of RePair:

Bigram to replace aa ab ba bb
(all/not all of them) all not all all not all all not all all not all

F2k 2 3 RePair 1 RePair 4 - -
F2k+1 RePair 5 6 - -

Pn - - RePair 7 8 9 10 11
Qn 15 16 RePair 12 13 14 - -

The case numbers (1–16) are written inside their corresponding cells in the table. Each
hyphen shows the case where the bigram does not occur in the string, which therefore does
not need to be considered.

In order to show the non-optimality of each of the above strategies, we utilize the
sizes of LZ-factorizations which are lower bounds of the sizes of grammars. Let R be the
string obtained by replacing occurrences of a bigram in Fn with a non-terminal symbol
X by one of the above 16 strategies. We will show that z(R) ≥ n − 1 holds for each
case. Then, by Theorem 8, the size of the corresponding grammar of Fn becomes at least
(z(R) + |{X}| − 1) + σFn

≥ (n− 1) + 2 = n+ 1, i.e., that is not the smallest by Corollary 9.
To compare the LZ-factorizations between two strings transformed from the same string

Fn, we treat the boundaries as if they are on Fn.

5.1 Non-optimality of Strategies for Fn

We first define a semi-greedy factorization SG(w) of string w which will be used in the proof for
the first three cases. Let SG(w) be the factorization of w obtained by shifting each boundary
of LZ(w) except the ones whose left phase is of length 1 to the left by one. For example,
SG(F7) = a|b|a|ab|abaab|aab since LZ (F7) = a|b|a|aba|baaba|ab. Clearly, |SG(Fn)| =
|LZ (Fn)| = n− 1. By the definition of SG(Fn) and properties of LZ(Fn) (cf. [4, 14]), the
following claim holds:
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Figure 7 Illustration for contradiction of LZ(F (X,a)
n−1 ) = (p1, . . . , pn−2) and LZ(R(X,a,b)

1 ) =
(q1, . . . , qz′ ) for Case (1). Note that the scale of this figure is based on the length of Fn ∈ {a, b}⋆,
not the lengths of phrases.

▷ Claim 15. Let SG(Fn) = (p1, . . . , pn−1) for n ≥ 5. The following statements hold:
The first four phrases are (p1, p2, p3, p4) = (a, b, a, ab).
For each i with 5 ≤ i ≤ n− 2, pi is the right-rotation of FR

i and it is a greedy phrase.
The last phase is pn−1 = aba if n is even, and pn−1 = aab otherwise.
Each boundary of SG(Fn), except the first and third ones, divides an occurrence of ba.

Case (1): Replacing some but not all the occurrences of ab in Fn

Recall that F (X,a)
n−1 is obtained by replacing all the occurrences of ab in F

(a,b)
n with X. Let

R
(X,a,b)
1 be any string obtained by replacing some but not all the occurrences of ab in

F
(a,b)
n with X. Let LZ(F (X,a)

n−1 ) = (p1, . . . , pn−2) and LZ (R(X,a,b)
1 ) = (q1, . . . , qz′) where

z′ = |LZ (R(X,a,b)
1 )|. See Figure 7 for illustration. The first mismatch of boundaries between

two factorizations is the position of the first occurrence of b in R
(X,a,b)
1 . Since the b is a

fresh symbol, it is a length-1 phrase. Suppose that this length-1 phrase is the m-th phrase
(m ≥ 2) in LZ (R(X,a,b)

1 ). Then, ξX→ab(pm−1 · · · pn−2) = ξX→ab(qm−1 · · · qz′) holds. The next
corollary follows from Claim 15:

▶ Corollary 16. The factorization ξX→ab(LZ (F (X,a)
n−1 )) of F (a,b)

n is the same as SG(F (a,b)
n )

except the first phrase. In other words, for each i with 2 ≤ i ≤ n − 2, ξX→ab(pi) is the
(i+ 1)-th phrase of SG(F (a,b)

n ).

From the greediness of ξX→ab(pm−1) in SG(F (a,b)
n ), pm−1 is not shorter than qm−1. Thus,

ξX→ab(pm · · · pn−2) is not longer than ξX→ab(qm+1 · · · qz′). For the sake of contradiction, we
assume that z′ < n−1. Then, z′ − (m+1)+1 < (n−2)−m+1 holds, and hence, there must
exist a phrase qi of LZ (R(X,a,b)

1 ) and a phrase pj of LZ (F (a,b)
n−1 ) such that ξX→ab(qi) contains

ξX→ab(pj) and their ending positions in F
(a,b)
n are different. This contradicts the greediness

of the phrase ξX→ab(pj) of SG(F (a,b)
n ) on F

(a,b)
n . Therefore, |LZ (R(X,a,b)

1 )| = z′ ≥ n− 1.
Basically, most of the remaining cases can be proven by similar argumentations, however,

we will write down the details because there are a few differences.

Case (2): Replacing all the occurrences of aa in Fn

Let R(X,a,b)
2 be the string obtained by replacing all the occurrences of aa in F

(a,b)
n with X.

The next corollary holds from Claim 15 (see also Figure 8 for a concrete example):

▶ Corollary 17. The factorization ξX→aa(LZ (R(X,a,b)
2 )) of F (a,b)

n is the same as SG(F (a,b)
n )

except the first four phrases. In other words, for each i with 5 ≤ i ≤ n− 1, ξX→aa(pi) is the
i-th phrase of SG(F (a,b)

n ), where pi is the i-th phrase of LZ (R(X,a,b)
2 ).

Thus, |LZ (R(X,a,b)
2 )| = |SG(F (a,b)

n )| = n− 1.
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SG(F9) = a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b

a b  X  b a b  X  b  X  b a b  X  b a b  X  b  X  b a b  X  b  X  bLZ(R2) =

Figure 8 Two factorizations SG(F9) and LZ(R2).

LZ(F8) = a b a a b a b a a b a a b a b a a b a b a

a  X  a  X   X  a  X  a  X   X  a  X   X  LZ(P4) =

Figure 9 Two factorizations LZ(F8) and LZ(P4).

Case (3): Replacing some but not all the occurrences of aa in Fn

Let R(X,a,b)
3 be any string obtained by replacing some but not all the occurrences of aa

in F
(a,b)
n with X. Let LZ (R(X,a,b)

2 ) = (p1, . . . , pn−1) and LZ(R(X,a,b)
3 ) = (q1, . . . , qz′) where

z′ = |LZ (R(X,a,b)
3 )|. We omit the superscripts in the following. The first mismatch of

boundaries between LZ(R2) and LZ(R3) is the position of the first occurrence of aa in
R3. Since this is the first occurrence of aa, there has to be a boundary between the two
a’s. Suppose that the phrase that starts with the second a is the m-th phrase (m ≥ 4) in
LZ (R3). By Corollary 17, pm−1 is not shorter than qm−1. Thus, ξX→aa(qm · · · qz′) is longer
than ξX→aa(pm · · · pn−1). For the sake of contradiction, we assume that z′ < n− 1. Then,
z′ − m + 1 < (n − 1) − m + 1 holds, and hence, there exist phrases qi of LZ(R3) and pj

of LZ(R2) such that ξX→aa(qi) contains ξX→aa(pj) and their ending positions in Fn are
different. This contradicts the greediness of the phrase ξX→aa(pj) of SG(Fn). Therefore,
|LZ (R3)| = z′ ≥ n− 1.

Case (4): Replacing some but not all the occurrences of ba in F2k

Recall that P (a,X)
k is obtained by replacing all the occurrences of ba in F

(a,b)
2k with X. Let

R
(X,a,b)
4 be any string obtained by replacing some but not all the occurrences of ba in

F
(a,b)
2k with X. Let LZ (P (a,X)

k ) = (p1, . . . , p2k−2) and LZ(R(X,a,b)
4 ) = (q1, . . . , qz′) where

z′ = |LZ (R(X,a,b)
4 )|. Since the only boundary in LZ (F (a,b)

2k ) that divides an occurrence of ba
is the second one, the next holds for the LZ-factorization of P (a,X)

k (see also Figure 9 for a
concrete example):

▶ Corollary 18. The factorization ξX→ba(LZ (P (a,X)
k )) of F (a,b)

n is the same as LZ (F (a,b)
2k )

except the first three phrases. In other words, for each i with 4 ≤ i ≤ 2k − 2, ξX→ba(pi) is
the (i+ 1)-th phrase of LZ (F (a,b)

2k ).

We omit the superscripts in the following. The first mismatch of boundaries between two
factorizations is the position of the first occurrence of b in R4. Since the b is a fresh
symbol, it is a length-1 phrase. Let the length-1 phrase be the m-th phrase in LZ(R4).
Then, ξX→ba(qm · · · qz′) is longer than ξX→ba(pm · · · p2k−2) by Corollary 18. For the sake of
contradiction, we assume that z′ ≤ 2k − 2. Then z′ −m+ 1 ≤ (2k − 2) −m+ 1, and hence,
there exist phrases qi of LZ (R4) and pj of LZ (Pk) such that ξX→ba(qi) contains ξX→ba(pj)
and their ending positions in F2k are different. This contradicts that the greediness of phrase
ξX→ba(pj) of LZ (F2k), Therefore, |LZ (R4)| = z′ > 2k − 2.
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Case (5): Replacing all the occurrences of ba in F2k+1

Let R(X,a,b)
5 be the string obtained by replacing all the occurrences of ba in F

(a,b)
2k+1 with X.

Since F (a,b)
2k+1 ends with b, the last symbol of R(X,a,b)

5 is b and it is unique in R
(X,a,b)
5 . We

omit the superscripts in the following. Since F2k+1 = F2kF2k−2F2k−3, PkPk−1 is a prefix of
R5. By Lemma 6, the first 2k − 2 phrases of LZ (R5) is the same as that of LZ (Pk+1). Also,
the (2k − 1)-th phrase ends at before b and the 2k-th phrase is b. Thus, |LZ (R5)| = 2k.

Case (6): Replacing some but not all the occurrences of ba in F2k+1

Let R(X,a,b)
6 be any string obtained by replacing some but not all the occurrences of ba

in F
(a,b)
2k+1 with X. Let LZ (R(X,a,b)

5 ) = (p1, . . . , p2k) and LZ (R(X,a,b)
6 ) = (q1, . . . , qz′) where

z′ = |LZ (R(X,a,b)
6 )|. We omit the superscripts in the following. The first mismatch of

boundaries between two factorizations is the position of the first occurrence of b in R6.
Since the b is a fresh symbol, it is a length-1 phrase. Let the length-1 phrase be the m-th
phrase in LZ (R6). Then, ξX→ba(pm · · · p2k) is not longer than ξX→ba(qm · · · qz′) by the
greediness of ξX→ba(pm−1). For the sake of contradiction, we assume that z′ < 2k. Then
z′ −m+ 1 < 2k−m+ 1, and hence, there exist phrases qi of LZ (R6) and pj of LZ (R5) such
that ξX→ba(qi) contains ξX→ba(pj) and their ending positions in F2k+1 are different. This
contradicts the greediness of phrase ξX→ba(pj) of LZ (F2k+1). Therefore, |LZ (R6)| = z′ ≥ 2k.

The proofs for the remaining ten cases can be found in a full version of this paper [35].
We remark that the remaining ten cases can also be proven by similar argumentations.

6 Conclusions

In this paper, we analyzed the smallest grammars of Fibonacci words and completely
characterized them by the RePair grammar-compressor. Namely, the set of all smallest
grammars that produce only the n-th Fibonacci word Fn equals the set of all grammars
obtained by applying (different implementations of) the RePair algorithm to Fn. Further,
we showed that the size of the smallest grammars of Fn is n and that the number of such
grammars is 2⌊n/2⌋ − 2.

To show the smallest grammar size of Fn, we revisited the result on the lower bound of
the sizes of grammars shown by Rytter [38]. Here, we gave a slightly tighter lower bound
of the grammar size z(w) − 1 + σw for any string w. Independent of the above results on
Fibonacci words, this result on a lower bound is interesting since the result will help show
the exact values of the smallest grammar size of other strings.

It is left as our future work to investigate whether it is possible to characterize the smallest
grammars of other binary words, such as Thue-Morse words and Period-doubling words, by
similar methods to Fibonacci words.
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Abstract
A string w is called a minimal absent word for another string T if w does not occur (as a substring)
in T and all proper substrings of w occur in T . State-of-the-art data structures for reporting the set
MAW(T ) of MAWs from a given string T of length n require O(n) space, can be built in O(n) time,
and can report all MAWs in O(|MAW(T )|) time upon a query. This paper initiates the problem
of computing MAWs from a compressed representation of a string. In particular, we focus on the
most basic compressed representation of a string, run-length encoding (RLE), which represents each
maximal run of the same characters a by ap where p is the length of the run. Let m be the RLE-size
of string T . After categorizing the MAWs into five disjoint sets M1, M2, M3, M4, M5 using RLE,
we present matching upper and lower bounds for the number of MAWs in Mi for i = 1, 2, 4, 5 in
terms of RLE-size m, except for M3 whose size is unbounded by m. We then present a compact
O(m)-space data structure that can report all MAWs in optimal O(|MAW(T )|) time.
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1 Introduction

An absent word (a.k.a. a forbidden word) for a string T is a non-empty string that is not a
substring of T . An absent word X for T is said to be a minimal absent word (MAW ) for
T if all proper substrings of X occur in T . MAWs are combinatorial string objects, and
their interesting mathematical properties have extensively been studied in the literature
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(see [5, 14, 16, 13, 23, 1] and references therein). MAWs also enjoy several applications
including phylogeny [8], data compression [12, 15, 3], musical information retrieval [11], and
bioinformatics [2, 9, 24, 21].

Thus, given a string T of length n over an alphabet of size σ, computing the set MAW(T )
of all MAWs for T is an interesting and important problem: Crochemore et al. [14] presented
the first efficient data structure of O(n) space which outputs all MAWs in MAW(T ) in O(σn)
time and O(n) working space. Since the number |MAW(T )| of MAWs for T can be as large
as O(σn) and there exist strings S for which |MAW(S)| ∈ Ω(σ|S|) [14], Crochemore et al.’s
algorithm [14] runs in optimal time in the worst case. Later, Fujishige et al. [19] presented
an improved data structure of O(n) space, which can report all MAWs in O(n + |MAW(T )|)
time and O(n) working space. Fujishige et al.’s algorithm [19] can easily be modified so
it uses O(|MAW(T )|) time for reporting all MAWs, by explicitly storing all MAWs when
|MAW(T )| ∈ O(n). The key tool used in these two algorithms is an O(n)-size automaton
called the DAWG [7], which accepts all substrings of T . The DAWG for string T can be built
in O(n log σ) time for general ordered alphabets [7], or in O(n) time for integer alphabets of
size polynomial in n [19]. There also exist other efficient algorithms for computing MAWs
with other string data structures such as suffix arrays and Burrows-Wheeler transforms [6, 4].
MAWs in other settings have also been studied in the literature, including length specified
versions [10], the sliding window versions [13, 23, 1], circular string versions [18], and labeled
tree versions [17].

In this paper, we initiate the study of computing MAWs for compressed strings. As the
first step of this line of research, we consider strings which are compactly represented by
run-length encoding (RLE). Let m be the size of the RLE of an input string T . We first
categorize the elements of MAW(T ) into five disjoint subsets M1, M2, M3, M4, and M5,
by considering how the MAWs can be related to the boundaries of maximal character runs
in T (Section 2). In Section 3 and Section 4, we present matching upper bounds and lower
bounds for their sizes |Mi| (i = 1, 2, 4, 5) in terms of the RLE size m or the number σ′

T of
distinct characters occurring in T . Notice that σ′

T ≤ m always holds. The exception is M3,
which can contain Ω(n) MAWs regardless of the RLE size m. Still, in Section 5 we propose
our RLE-compressed O(m)-space data structure that can enumerate all MAWs for T in
output-sensitive O(|MAW(T )|) time. Since m ≤ n always holds, our result is an improvement
over Crochemore et al.’s and Fujishige et al.’s results both of which require O(n) space to
store representations of all MAWs. Charalampopoulos et al. [10] showed how one can use
extended bispecial factors of T to represent all MAWs for T in O(n) space, and to output
all MAWs in optimal O(|MAW(T )|) time upon a query. While the way how we characterize
the MAWs may be seen as the RLE version of their method based on the extended bispecial
factors, our O(m)-space data structure cannot be obtained by a straightforward extension
from [10], since there exists a family of strings over a constant-size alphabet for which the
RLE-size is m ∈ O(1) but |MAW(T )| ∈ Ω(n). We note that, by the use of truncated RLE
suffix arrays [25], our O(m)-space data structure can be built in O(m log m) time with O(m)
working space (the details of the construction will be presented in the full version of this
paper).

2 Preliminaries

2.1 Strings
Let Σ be an ordered alphabet. An element of Σ is called a character. An element of Σ∗

is called a string. The length of a string T is denoted by |T |. The empty string ε is the
string of length 0. If T = xyz, then x, y, and z are called a prefix, substring, and suffix of T ,
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respectively. They are called a proper prefix, proper substring, and proper suffix of T if x ̸= T ,
y ̸= T , and z ≠ T , respectively. For any 1 ≤ i ≤ |T |, the i-th character of T is denoted by
T [i]. For any 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T starting at i and ending at
j. For any i ≤ |T | and 1 ≤ j, let T [..i] = T [1..i] and T [j..] = T [j..|T |]. We say that a string
w occurs in a string T if w is a substring of T . Note that by definition, the empty string ε is
a substring of any string T and hence ε always occurs in T .

Let #T w denote the number of occurrences of a string w in a string T . We will abbreviate
it to #w when no confusion occurs.

2.2 Run length encoding (RLE) and bridges
The run-length encoding rle(T ) of string T is a compact representation of T such that
each maximal run of the same characters in T is represented by a pair of the character
and the length of the maximal run. More formally, rle(T ) = ap1

1 · · · apm
m encodes each

substring T [i..i + p− 1] by ap if T [j] = a ∈ Σ for every i ≤ j ≤ i + p− 1, T [i− 1] ̸= T [i], and
T [i+p−1] ̸= T [i+p]. Each ap in rle(T ) is called a (character) run, and p is called the exponent
of this run. The j-th maximal run in rle(T ) is denoted by rj , namely rle(T ) = r1 · · · rm. The
size of rle(T ), denoted R(T ), is the number of maximal character runs in rle(T ). E.g., for a
string T = aacccccccbbabbbb of length 18, rle(T ) = a2c7b2a1b4 and R(T ) = 5.

Our model of computation is a standard word RAM with machine word size Ω(log |T |),
and the space requirements of our data structures will be measured by the number of words
(not bits). Thus, rle(T ) of size m can be stored in O(m) space.

2.3 Bridges
A string w ∈ Σ∗ of length |w| ≥ 2 is said to be a bridge if w[1] ̸= w[2] and w[|w|− 1] ̸= w[|w|].
In other words, both of the first run and the last run in rle(w) are of length 1. A substring
of T that is a bridge is called a bridge substring of T . Let Bℓ denote the set of bridge
substrings w of T with R(w) = ℓ. Further let B =

⋃
ℓ Bℓ be the set of all bridge substrings of

T . For example, for the same string T = aacccccccbbabbbb as the above one, the substring
ac7b2a of T is a bridge, and B4 = {ac7b2a, cb2a1b}. For a string w with R(w) ≥ 3, we
can obtain a bridge substring of w by removing the first and the last runs of w and then
shrinking the runs at both ends so that their exponents are 1. We denote by shk(w) such
shrunk bridge. For convenience, let shk(w) = ε if R(w) ≤ 2. Also, for every k ≥ 2, we
denote shkk(w) = shk(shkk−1(w)). For example, consider the same T as the above again,
shk(T ) = acccccccbbab, shk2(w) = cbba, shk3(w) = b, and shkk(w) = ε for any k ≥ 4.

2.4 Minimal absent words (MAWs)
A string w ∈ Σ∗ is called an absent word for a string T if w does not occur in T , namely
if #w = 0. An absent word w for T is called a minimal absent word or MAW for T if all
proper substrings of w occur in T . We denote by MAW(T ) the set of all MAWs for T . An
alternative definition of MAWs is such that a string aub of length at least two with a, b ∈ Σ
and u ∈ Σ∗ is a MAW of T if #(aub) = 0, #(au) ≥ 1 and #(ub) ≥ 1. For a MAW of length 1
(namely a character not occurring in T ), we use a convention that u = ε and a and b are
united into a single character.

The MAWs in MAW(T ) are partitioned into the following five disjoint subsets Mi (1 ≤
i ≤ 5) based on their RLE sizes R(aub):
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M1 = {aub ∈ MAW(T ) | R(aub) = 1};
M2 = {aub ∈ MAW(T ) | R(aub) = 2, u = ε};
M3 = {aub ∈ MAW(T ) | R(aub) = 3, a ̸= u[1] and b ̸= u[|u|]};
M4 = {aub ∈ MAW(T ) | R(aub) ≥ 4, a ̸= u[1] and b ̸= u[|u|]};
M5 = {aub ∈ MAW(T ) | R(aub) ≥ 2, a = u[1] or b = u[|u|]}.

For 1 ≤ i ≤ 5, a MAW aub in Mi is called of type i.
In the rest of this paper, we will consider an arbitrarily fixed string T of length n. For

convenience, we assume that n ≥ 3 and that there are special terminal symbols T [1] = T [n] =
$ ̸∈ Σ not occurring inside T . Since $ /∈ Σ, we do not consider any MAW containing $ for
T in our arguments to follow (recall that a MAW must be an element of Σ∗). In addition,
since $ does not occur elsewhere in T , MAW(T ) = MAW(T [2..n− 1]) holds.

▶ Example 1. Consider T = $b2ac3ba2$ = $bbacccbaa$. All MAWs in MAW(T ) are divided
into the following five types: M1 = {aaa, bbb, cccc}; M2 = {ca, bc}; M3 = {acb, accb};
M4 = {cbac}; M5 = {bbaa}.

Let Σ′ denote the set of characters occurring in T except for $. Let σ′ = |Σ′| be the
number of distinct characters occurring in T [2..n− 1].

3 Upper bounds on the number of MAWs for RLE strings

In this section, we present upper bounds for the number of MAWs in a string T that is
represented by its RLE rle(T ) of size R(T ) = m.

3.1 Upper bounds for the number of MAWs of type 1, 2, 3, 5
We first consider the number of MAWs except for those of type 4.

▶ Lemma 2. |M1| = σ.

Proof. By the definition ofM1, any MAW inM1 is of the form ak. For any character α ∈ Σ′

that occurs in T , let aub = αp+1 such that αp is the longest maximal run of α in T . Clearly
αp = au = ub occurs in T and αp+1 does not occur in T . Since R(aub) = R(αp+1) = 1,
αp+1 ∈M1 and it is the unique MAW of type 1 consisting of α’s. For any character β ∈ Σ\Σ′

that does not occur in T , clearly β is a MAW of T and β ∈M1 since R(β) = 1. In total, we
obtain |M1| = σ. ◀

Note that this upper bound for |M1| is tight for any string T and alphabet Σ of size σ.

▶ Lemma 3. |M2| ∈ O((σ′)2).

Proof. Any MAW in M2 is of the form ab with a, b ∈ Σ and a ̸= b. By the definition of
MAWs, ab can be a MAW for T only if both a and b occur in T , which implies that a, b ∈ Σ′.
The number of such combinations of a and b is σ′(σ′ − 1). ◀

Since σ′ ≤ m always holds, we have that |M2| ∈ O(m2). Later we will show that this upper
bound for |M2| is asymptotically tight.

▶ Lemma 4. |M3| is unbounded by m.

Proof. Consider a string T = acn−2b, where a ̸= c and c ̸= b. Then ackb for each 1 ≤ k ≤ n−3
is a MAW of T and R(ackb) = 3. Since they are the only type 3 MAWs of T , we have that
|M3| = n− 3. Clearly, the original length n of T cannot be bounded by m = R(T ) = 3. ◀
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Although the number of MAWs of type 3 is unbounded by m, later we will present an
O(m)-space data structure that can enumerate all elements in M3 in output-sensitive time.

▶ Lemma 5. |M5| ∈ O(m).

Proof. Any MAW aub ∈M5 can be represented by ai+1vb or avbi+1 with maximal integer
i ≥ 1, where aiv = u in the former and vbi = u in the latter. Let us consider the case of
ai+1vb as the case of avbi+1 is symmetric. Then caivb with some character c ̸= a must occur
in T . Let k be the beginning position of an occurrence of caivb in T . Then, T [k+1..k+i] = ai

is a maximal run of a.
Now consider any distinct MAW ai+1v′b′ ∈M5 \ {ai+1vb} with v′b′ ̸= vb. Again, c′aiv′b′

with some character c′ ≠ a must occur in T . Suppose on the contrary that c′aiv′b′ has an
occurrence beginning at the same position k as caivb. This implies that c′ = c, and both
aivb and aiv′b′ are prefixes of T [k + 1..|T |].

If |aivb| < |aiv′b′|, then aiv′ contains aivb as a substring. Since ai+1v′ occurs in T , ai+1vb

must also occur in T . Hence ai+1vb is not a MAW for T , a contradiction.
If |aivb| > |aiv′b′|, then aiv contains aiv′b′ as a substring. Thus ai+1vb is an absent word
for T but it is not minimal. Hence ai+1vb is not a MAW for T , a contradiction.
If |aivb| = |aiv′b′|, then this contradicts that aiub ̸= aiu′b′.

Hence, at most two element of M5 can be associated with a position k in T such that
T [k] ̸= T [k + 1]. The number of such positions does not exceed 2m. ◀

3.2 Upper bound for the number of MAWs of type 4
In the rest of this section, we show an upper bound of the number of MAWs of type 4.
Namely, we prove the following lemma.

▶ Lemma 6. |M4| ∈ O(m2).

Firstly, we explain a way to characterize MAWs of type 4. For any string w ∈ Σ∗ and
integer t > 0, let Expt(w) be the set of bridges such that Expt(w) = {w′ ∈ B | shkt(w′) = w}.
Namely, Expt(w) is the inverse image of shkt(w′) = w for bridge substrings w′ of T . We use
Exp(w) to denote Exp1(w). Figure 1 gives an example for Expt(w) (Expt

+(w) in the figure
will be defined later). Any MAW z in M4 is of the form aαiuβjb with a, b, α, β ∈ Σ, u ∈ Σ∗,
and positive integers i, j where a, αi, βj , b are the first, the second, the second last, and the
last run of z, respectively. By the definition of MAWs, both the suffix αiuβjb and the prefix
aαiuβj of z occur in T . From this fact, we can obtain the following observations.

▶ Observation 7. Each MAW z ∈M4 corresponds to a pair of distinct bridges (w1, w2) ∈
Exp(shk(z)) × Exp(shk(z)). Formally, for each MAW z = aαiuβjb ∈ M4, there exist
characters a1, b1 ∈ Σ ∪ {$} and integers i1 ≥ i, j1 ≥ j such that w1 = a1αi1uβjb, w2 =
aαiuβj1b1 ∈ Exp(shk(z)) and w1 ̸= w2 (since these two occur in T but z does not occur in T ).

This observation gives a main idea of our characterization which is stated in the following
lemma.

▶ Lemma 8. For any bridge w, |{z | shk(z) = w, z ∈M4}| ≤ |Exp(w)|(|Exp(w)| − 1).

Proof. Let M4(w) = {z | shk(z) = w, z ∈ M4}. By Observation 7, each z ∈ M4(w)
corresponds to a pair (w1, w2) ∈ Exp(shk(z)) × Exp(shk(z)) where w1 ̸= w2. Let z1 =
a1αi1uβj1b1, z2 = a2αi2uβj2b2 be distinct MAWs in M4(w) where shk(z1) = shk(z2) = w.
Assume towards a contradiction that z1 and z2 correspond to (a′αi′

uβjb, aαiuβj′
b′) ∈
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$b4c7ab3c3ab2c5ab2c5ab6c2$

$b4c7a
ab3c3a
ab2c5a
ab6c2$

𝐸𝑥𝑝(bc)

c5ab2c5ab6
c3ab2c5ab2

𝐸𝑥𝑝(ab2c5a)
ab2c5a

𝐸𝑥𝑝!(bc)

𝐸𝑥𝑝(ab3c3a)
cab3c3ab

Figure 1 The bridge w1 = ab2c5a ∈ Exp(bc) is an element of Exp+(bc) since |Exp(w1)| ≥ 2. On
the other hand, the bridge w2 = ab3c3a ∈ Exp(bc) is not an element of Exp+(bc) since |Exp(w2)| < 2.

Exp(w) × Exp(w). This implies that, by Observation 7, i = i1 = i2, j = j1 = j2, a = a1 =
a2, b = b1 = b2. Thus z1 = z2 holds, a contradiction. Hence, for any distinct MAWs
z1, z2 ∈ M4(w), z1 and z2 correspond to distinct elements of Exp(shk(z)) × Exp(shk(z)).
Since the number of elements (w1, w2) in Exp(shk(z)) × Exp(shk(z)) such that w1 ̸= w2 is
|Exp(w)|(|Exp(w)| − 1), this lemma holds. ◀

Since each MAW z corresponds to an element (w1, w2) ∈ Exp(shk(z))×Exp(shk(z)) such that
w1 ̸= w2, it is enough for the bound to sum up all |Exp(w)|2 such that |Exp(w)| ≥ 2 holds. Let
W be the set of bridges w such that |Exp(w)| ≥ 2 or w ∈ B2 ∪B3. Let X =

∑
w∈W |Exp(w)|.

For considering such Exp(w), we also define a subset Expt
+(w) of Expt(w) as follows: For any

string (bridge) w and integer t > 0,

Expt
+(w) = {w′ | w′ ∈ Expt(w), |Exp(w′)| ≥ 2}.

We also use Exp+(w) to denote Exp1
+(w). Figure 2 shows an illustration for

Expi(w), Expi
+(w),W, and X . We give the following lemma that explains relations between

Expi(w), Expi
+(w), and X .

▶ Lemma 9.

X =
∑

w∈B2∪B3

|Exp(w)|+
⌊m/2⌋−1∑

i=1

∑
z∈Expi

+(w)

|Exp(z)|

 .

Proof. Let zeven be a bridge where R(zeven) = 2i + 2 for some i ≥ 1. Notice that shk(zeven) =
c1c2 ∈ B2 for some distinct characters c1, c2. By the definition of Expi

+(·), if |Exp(zeven)| ≥ 2,
then zeven ∈ Expi

+(c1c2). Let zodd be a bridge where R(zodd) = 2i + 3 for some i ≥ 1. Notice
that shk(zodd) = c1ck

2c3 ∈ B3 for some characters c1, c2, c3 and an integer k ≥ 1. By the
definition of Expi

+(·), if |Exp(zodd)| ≥ 2, then zodd ∈ Expi
+(c1ck

2c3). Therefore the statement
holds. ◀

This implies that |M4| ≤
∑

w∈W |Exp(w)|2 ≤ X 2. Thus, if X ∈ O(m), |M4| ∈ O(m2).
We can also observe that

∑⌊m/2⌋−1
i=1

∑
z∈Expi

+(w) |Exp(z)| is the sum of the number of
children of black nodes (which have more than a single child) in the tree for w. The number
of leaves of the tree is an upper bound for the sum. It is also clear that |Exp(w)| can be
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𝐵! ∪ 𝐵"∋

𝑤

𝐸𝑥𝑝(𝑤)

𝐸𝑥𝑝#(𝑤)

𝐸𝑥𝑝(!)(𝑤)

𝑤&

𝐸𝑥𝑝(𝑤&)

Figure 2 This tree shows an illustration for Expi(w), Expi
+(w), W, and X . The root node represents

a bridge w ∈ B2 ∪ B3. The set of children of the root corresponds to Exp(w), namely, each child
x represents a bridge such that shk(x) = w. Each black node represents a bridge x such that
|Exp(x)| ≥ 2 (i.e., each black node has at least two children) or the root. Let W (w) be the set of
nodes consisting of all the black nodes in the tree rooted at a bridge w ∈ B2 ∪ B3. Then W is the
union of W (w) for all w ∈ B2 ∪ B3, and X is the total number of children of black nodes in W.

bounded by the number of leaves of the tree (In Appendix we give a more mathematical
description for the above discussion as Observation 23 and Proposition 24). Consequently,
we obtain |X | ∈ O(m) as in Lemma 10.

▶ Lemma 10. |X | ∈ O(m).

Proof. By Lemma 9 and the above discussion, we have

X =
∑

w∈B2∪B3

|Exp(w)|+
⌊m/2⌋−1∑

i=1

∑
z∈Expi

+(w)

|Exp(z)|


≤

∑
w∈B2∪B3

2#w

≤ 2 ((m− 1) + (m− 2)) ∈ O(m). ◀

We are ready to prove Lemma 6:

Proof of Lemma 6. |M4| ≤
∑

w∈W |Exp(w)|2 ≤ |X |2 ≤ (2(2m− 3))2 ∈ O(m2). ◀

4 Lower bounds on the number of MAWs for RLE strings

In the previous section, we showed a tight bound |M1| = σ, and showed that |M3| is
unbounded by the RLE size m. In this section, we give tight lower bounds for the sizes
of M2, M3, and M5 which asymptotically match the upper bounds given in the previous
section. Throughout this section, we omit the terminal $ at either end of T , since our lower
bound instances do not need them.

▶ Lemma 11. There exists a string T such that |M2| = σ′(σ′ − 2) + 1.
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Proof. Let T = 123 · · ·σ′, where all characters in T are mutually distinct. Any bigram
occurring in T is of the form i(i + 1) with 1 ≤ i < σ′. Thus, for each 1 ≤ i < σ′, bigram i · j
with any j ∈ {1, . . . , i− 1, i + 2, . . . , σ′} is a type-2 MAW for T , and bigram σ′ · j is a type-2
MAW for T . Namely, the set M2 of type-2 MAWs for T is:

M2 =



13, . . . , 1σ′,

21, 24, . . . , 2σ′,

31, 32, 35, . . . , 3σ′,

. . . ,

(σ′ − 1)1, . . . , (σ′ − 1)(σ′ − 2),
σ′1, . . . , σ′(σ′ − 1)


.

Thus we have |M2| = σ′(σ′ − 2) + 1 for this string T . ◀

Since σ′ = m for the string T of Lemma 11, we obtain a tight lower bound |M2| ∈ Ω(m2)
in terms of m. The string T = 123 · · ·σ′ can easily be generalized so that m < n, where
n = |T |. For instance, consider T ′ = 1p12p23p3 · · ·σ′pσ′ with pi > 1 for each i. The set of
type-2 MAWs for T ′ is equal to that for T .

▶ Lemma 12. There exists a string T with R(T ) = m such that |M4| ∈ Ω(m2).

Proof. Consider string T = abcp · ab2cp−1 · ab3cp−2 · ab4cp−3 · · · abp−1c2 · abpc · a, where a,
b, and c are mutually distinct characters. Then the set of type-4 MAWs for T is a superset
of the following set:

abca, abc2a, . . . , abcp−1a,

ab2ca, ab2c2a, . . . , ab2cp−2a,

ab3ca, ab3c2a, . . . , ab3cp−3a,

. . . ,

abp−2ca, abp−2c2a,

abp−1ca


.

Since m = 3p + 1, we have |M4| > p(p− 1)/2 ∈ Ω(p2) = Ω(m2). ◀

▶ Lemma 13. There exists a string T with R(T ) = m such that |M5| ∈ Ω(m).

Proof. Consider string T = abc · ab2c2 · ab3c3 · · · abpcp · a, where a, b, and c are mutually
distinct characters. Then the set of type-5 MAWs for T is a superset of the set

{bi+1cia | 1 ≤ i ≤ p− 1}.

Since m = 3p + 1, |M5| > p− 1 ∈ Ω(p) = Ω(m). ◀

5 Efficient representations of MAWs for RLE strings

Consider a string T that contains σ′ distinct characters. In this section, we present compact
data structures that can output every MAW for T upon query, using a total of O(m) space,
where m = R(T ) is the size of rle(T ). We will prove the following theorem:

▶ Theorem 14. There exists a data structure D of size O(m) which can output all MAWs
for string T in O(|MAW(T )|) time, where m is the RLE-size of T .

In our representation of MAWs that follows, we store rle(T ) explicitly with O(m) space.
The following is a general lemma that we can use when we output a MAW from our data
structures.
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▶ Lemma 15. For each MAW w ∈ MAW(T ), rle(w) of size R(w) can be retrieved in O(R(w))
time from a tuple (a, i, s, t, b, j) and rle(T ), where a, b ∈ Σ, 0 ≤ i, j ≤ |T |, and 0 ≤ s, t ≤ m.

Proof. When R(w) = 1 (i.e. w ∈ M1), then since w is of the form ai with i ≥ 1, we can
simply represent it by (a, i, 0, 0, 0, 0).

When R(w) ≥ 2, then let w = aub. When aub ∈ M2, then w = ab and thus it can be
simply represented by (a, 1, 0, 0, b, 1). When aub ∈M3 ∪M4, then a ̸= u[1] and b ̸= u[|u|].
Hence it can be represented by (a, 1, s, t, b, 1) where rs · · · rt = rle(u). When aub ∈M5, then
a = u[1] or u[|u|] = b. Let i, j be the maximal integers such that aiu′bj = aub. We can
represent it by (a, i, s, t, b, j) with rs · · · rt = rle(u′). ◀

For ease of discussion, in what follows, we will identify each MAW w with its corresponding
tuple (a, i, s, t, b, j) which takes O(1) space.

5.1 Representation for M1

We have shown that |M1| = σ (Lemma 2), however, σ can be larger than σ′ and m. However,
a simple representation for M1 exists, as follows:

▶ Lemma 16. There exists a data structure D1 of O(σ′) ⊆ O(m) space that can output each
MAW in M1 in O(1) time.

Proof. For ease of explanation, assume that the string T is over the integer alphabet
Σ = {1, . . . , σ} and let Σ′ = {c1, . . . , cσ′} ⊆ {1, . . . , σ}. Let M = ⟨cp1

1 , . . . , c
pσ′
σ′ ⟩ be the list

of type-1 MAWs in M1 that are runs of characters in Σ′, sorted in the lexicographical
order of the characters, i.e. 1 ≤ c1 < · · · < cσ′ ≤ σ. We store M explicitly in O(σ′) space.
When we output each MAW in M1, we test the numbers (i.e. characters) in Σ = {1, . . . , σ}
incrementally, and scan M in parallel: For each c = 1, . . . , σ in increasing order, if cp ∈M

with some p > 1 then we output cp, and otherwise we output c. ◀

5.2 Representation for M2

Recall that |M2| ∈ O(σ′2) ⊆ O(m2) and this bound is tight in the worst case. Therefore we
cannot store all elements of M2 explicitly, as our goal is an O(m)-space representation of
MAWs. Nevertheless, the following lemma holds:

▶ Lemma 17. There exists a data structure D2 of O(m) space that can output each MAW
in M2 in O(1) amortized time.

Proof. If |M2| ∈ O(m), then we explicitly store all elements of M2.
If |M2| ∈ Ω(m), then let D2 be the trie that represents all bigrams that occur in T .

See Figure 3 for a concrete example of D2. Note that for any pair a, b ∈ Σ′ of distinct
characters both occurring in T , ab is either in D2 or in M2. Since the number of such pairs
a, b is σ′(σ′ − 1), we have that σ′2 = Θ(|D2| + |M2|), where |D2| denotes the size of the
trie D2. Since |D2| < m, we have σ′2 = O(|M2|+ m). Suppose that the character labels of
the out-going edges of each node in D2 are lexicographically sorted. When we output each
element in M2, we test every bigram ab such that a ̸= b and a, b ∈ Σ′ in the lexicographical
order, and traverse D2 in parallel in a depth-first manner. We output ab if it is not in the
trie D2. This takes O(σ′2 + |D2|) ⊆ O(|M2|+ m) = O(|M2|) time, since |M2| ∈ Ω(m). ◀
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𝑟𝑇 = $ab3cda9cde$

a b c d e

b c a c d a e $

$

a

Figure 3 The trie D2 for string T = $ab3cda9cde$. A bigram ab with a ̸= b, a, b ∈ Σ′ is in M2

iff ab is not in this trie D2. For instance, ae and db are MAWs of T .

5.3 Representation for M3

Recall that the number of MAWs of type 3 inM3 is unbounded by the RLE size m (Lemma 4).
Nevertheless, we show that there exists a compact O(m)-space data structure that can report
each MAW in M3 in O(1) time.

Notice that, by definition, a MAW aub of type 3 is a bridge and therefore, it is of the
form ackb with c ∈ Σ′

T \ {a, b} and k ≥ 1.
We begin with some observations. For a triple (a, c, b) of characters with a ̸= c and b ̸= c,

let us consider the ordered set BSacb(T ) of bridge substrings of T which are of the form
acℓb (ℓ ≥ 1), where the elements in BSacb(T ) are sorted in increasing order of ℓ. Let ℓmax =
max{ℓ | acℓb ∈ BSacb(T )}. Then, for any 1 ≤ k < ℓmax, ackb ∈M3 iff ackb /∈ BSacb(T ). For
instance, consider string T = ac3bac9bac5bc4e for which BSacb(T ) = {ac3b, ac5b, ac9b}.
Then, {ac1b, ac2b, ac4b, ac6b, ac7b, ac8b} is the subset of type-3 MAWs of T of the form
ackb. We remark that the above strategy that is based on bridge substrings of the string
is not enough to enumerate all elements of M3, since e.g. ac3e and bc2b are also type-3
MAWs in this running example. This leads us to define the notion of combined bridges: A
bridge acℓb is a combined bridge of T if (1) acℓb is not a bridge substring of T , (2) acib′ and
a′cjb are bridge substrings of T with b′ ̸= b and a′ ̸= a, and (3) ℓ = min{i, j}. Let CBc(T )
denote the set of combined bridges of T with middle character c.

▶ Observation 18. A bridge ackb is in M3 iff ackb /∈ BSacb(T ) and either (i) ack′
b ∈

BSacb(T ) with k′ > k or (ii) ack′
b ∈ CBc(T ) with k′ ≥ k.

The type-3 MAWs ac3e and bc2b in the running example belong to Case (ii), since ac3e
is in CBc(T ) and bc3b is in CBc(T ), respectively.

Observation 18 leads us to the following idea: For each character c ∈ Σ′
T , let BSc(T ) =⋃

a,b∈Σ′ BSacb(T ) be the ordered set of bridge substrings z of T with R(z) = 3 whose middle
characters are all c. We suppose that the elements of BSc(T ) are sorted in increasing order
of the exponents ℓ of the middle character c. See Figure 4 for a concrete example for BSc(T ).

Given BSc(T ), we can enumerate all type-3 MAWs in M2 by incrementally constructing
a trie Tc of bigrams. Initially, Tc is a trie only with the root. The algorithm has two stages:
First Stage: The first stage deals with Case (i) of Observation 18. We perform a linear scan

over BSc(T ). When we encounter a bridge substring acℓb from BSc(T ), we traverse the
trie Tc with the corresponding bigram ab.
1. If ab is not in the current trie, then ackb for all 1 ≤ k < ℓ are MAWs in M3. After

reporting all these MAWs, we create a node v representing ab and store ℓ.
2. If ab is already in the current trie, then the value ℓ̂ stored in the node v which represents

ab is less than ℓ. Then, ackb for all ℓ̂ < k < ℓ are MAWs in M3. After reporting all
these MAWs, we update the value in v with ℓ.
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𝑇 = $b7ab9cb5db3cb3a4b3cbcb5eab7ab$

cb c
ab $
db3c
cb3a
ab3c
cb5d
cb5e
$b7a
ab9c

ab9
cb5
db3

b7a
b9c
b5d
b5e

ℛbℒbℬ𝒮b 𝑇

Figure 4 BSb, Lb, and Rb for string T = ab7ab9cb5db3cb3a4b3cbcb5eab7abc and character b.

The final trie Tc after the first stage will be unchanged in the following second stage.
Second Stage: The second stage deals with Case (ii) of Observation 18. For each character

a ∈ Σ′
T \ {c}, we store the left component aci of a bridge substring such that i is the

largest exponent of the bridge substrings beginning with ac. Let Lc be the set of aci’s
for all characters a ∈ Σ′

T \ {c}. Similarly, let Rc be the set of the right components cjb

for all characters b ∈ Σ′
T \ {c}, where j is the largest exponent of the bridge substrings

ending with cb. See Figure 4 for a concrete example for Lc and Rc.
For each pair of aci ∈ Lc and cjb ∈ Rc, let acℓb be the combined bridge with ℓ = min{i, j}.
1. If ab is not in the trie Tc, then ackb for all 1 ≤ k ≤ ℓ are MAWs in M3.
2. If ab is in the trie Tc, then let ℓ̂ be the value stored in the node that represents ab.

a. If ℓ̂ < ℓ, then ackb for all ℓ̂ < k ≤ ℓ are MAWs in M3.
b. If ℓ̂ ≥ ℓ, then we do nothing.

We have the following lemma:

▶ Lemma 19. There exists a data structure D3 of O(m) space that can output each MAW
in M3 in amortized O(1) time.

Proof. Analogously to the case of M2, if |M2| ∈ O(m), then we can explicitly store all
type-3 MAWs in O(m) space.

In what follows, we consider the case where |M2| ∈ Ω(m). For each character c ∈ Σ′
T ,

we perform the above algorithm on BSc(T ). The correctness of the algorithm follows from
Observation 18. Since

∑
c∈Σ′

T
|BSc(T )| ∈ O(m), the total space requirement of the data

structure for all characters in Σ′
T is O(m). Let us consider the time complexity. The first

stage takes O(m + f) ⊆ O(|M3|) time, where f is the number of MAWs reported in the first
stage for all characters in Σ′

T . The second stage takes O(|Lc| · |Rc|) time for each c ∈ Σ′
T .

For each combined bridge acℓb created from Lc and Rc, when it falls into Case 1 or Case 2-a,
then at least one MAW is reported. When it falls into Case 2-b, then no MAW is reported.
However, in Case 2-b, there has to be a MAW ackb that was reported in the first stage.
Since we test at most one combined bridge for each pair of characters a, b, a MAW ackb

reported in the first stage is charged at most once. Therefore, the second stage takes a total
of O(

∑
c∈Σ′

T
|Lc| · |Rc|) ⊆ O(|M3|) time. ◀
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5.4 Representation for M4

Recall that |M4| ∈ O(m2) and this bound is tight in the worst case. Therefore we cannot
store all elements of M4 explicitly, as our goal is an O(m)-space representation of MAWs.
Nevertheless, the following lemma holds:

▶ Lemma 20. There exists a data structure D4 of O(m) space that can output each MAW
in M4 in O(1) amortized time.

Our data structure D4 is based on the discussion in Section 3.2. We consider the following
bipartite graph Gw = (VL ∪ VR, E) for any bridge w ∈ W. We can identify each bridge
aαiuβjb ∈ Exp(w) by representing the bridge as a 4-tuple (a, i, j, b). Let Fw be the set of
4-tuples which represents all elements in Exp(w). Two disjoint sets VL, VR of vertices and set
E of edges are defined as follows:

VL = {(a, i) | ∃(a, i, j, b) ∈ Fw},
VR = {(j, b) | ∃(a, i, j, b) ∈ Fw},
E = {((a, i), (j, b)) | ∃(a, i, j, b) ∈ Fw}.

VL (resp. VR) represents the set of the left (resp. right) parts of bridges in W. For each
edge in E represents a bridge in W. This implies that |E| = |Exp(w)|. Assume that all
vertices in VL (resp. VR) are sorted in non-decreasing order w.r.t. the value i (resp. j)
which represents the exponent of corresponding run. For any k ∈ [1, |VL|] and k′ ∈ [1, |VR|],
vL(k) = (cL(k), eL(k)) denotes the k-th vertex in VL, and vR(k′) = (cR(k′), eR(k′)) denotes
the k′-th vertex in VR. For any vertex vL(k) ∈ VL and vR(k′) ∈ VR, we also define

ELR
max(k) = max{eR(i) | ∃(vL(k), vR(i)) ∈ E},

ERL
max(k′) = max{eL(i) | ∃(vR(i), vR(k)) ∈ E}.

Figure 5 gives an illustration for this graph. Due to Observation 7, each MAW z of type
4 corresponds to an element of Exp(w) × Exp(w) where z(1) = w. By this idea, we detect
each MAW as a pair of vertices in VL × VR which is not an edge in E. The following lemma
explains all MAWs which can be represented by the graph.

▶ Lemma 21. For any vertices vL(k) ∈ VL and vR(k′) ∈ VR of Gαuβ, the string
cL(k)αeL(k)uβeR(k′)cR(k′) is a MAW iff the following three conditions hold (see also Figure 6
for an illustration):

(vL(k), vR(k′)) /∈ E,
ELR

max(k) ≥ eR(k′), and
ERL

max(k′) ≥ eL(k).

Proof. If (vL(k), vR(k′)) /∈ E, cL(k)αeL(k)uβeR(k′)cR(k′) is an absent word. ELR
max(k) ≥

eR(k′) and ERL
max(k′) ≥ eL(k) implies that cL(k)αeL(k)uβeR(k′) and αeL(k)uβeR(k′)cR(k′)

occur in the string. Thus cL(k)αeL(k)uβeR(k′)cR(k′) is a MAW.
On the other hand, if (vL(k), vR(k′)) ∈ E, cL(k)αeL(k)uβeR(k′)cR(k′) occurs in the

text. ELR
max(k) < eR(k′) implies that cL(k)αeL(k)uβeR(k′) does not occur in the string.

ERL
max(k′) < eL(k) implies that αeL(k)uβeR(k′)cR(k′)) does not occur in the string. Thus all

three conditions hold if cL(k)αeL(k)uβeR(k′)cR(k′) is a MAW. ◀
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𝑇 = $ab2c2ab2cb4c5eb4c5a4bc5ab2c6d5ab2cb2$

ab2c2a
ab2c b
cb4c5e
eb4c5a
ab c5a
ab2c6d

𝐺bc

a
a
c
e

1
2
5
5
6

5
6
5
5

2
2
4
4
2

𝐹bc

𝐸!"#$% 𝐸!"#%$
𝑉$ 𝑉%
c$ e$

e% c%
1
2
4
4

b
a
e
a
d

(a,2,2,a)
(a,2,1,b)
(c,4,5,e) 
(e,4,5,a)
(a,1,5,a)
(a,2,6,d)

=
=
=
=
=
=

𝐸𝑥𝑝(bc)

Figure 5 This figure shows Gbc for T = $ab2c2ab2cb4c5eb4c5a4bc5ab2c6d5ab2cb2$. For a bridge
bc, Exp(bc) has 6 bridges. Fbc contains 6 tuples which represents all bridges in Exp(bc). For instance,
a bridge ab2cb = (a, 2, 1, b) where the first character is a, the exponent of the second run is 2, the
exponent of the second last run is 1, and the last character is b. VL is the set of pairs by the left-half
of elements in Fbc. In this example, VL has 4 vertices {(a, 1), (a, 2), (c, 4), (e, 4)} which are sorted in
non-decreasing order of the second key (representing its exponent). VR is the symmetric set for the
right parts. Each bridge corresponds to an edge. For example, the second bridge ab2cb in the figure
corresponds to the edge from the second vertex (a, 2) in VL to the first vertex (1, b) in VR. Since the
number of bridges in Exp(bc)(Fbc) is 6, the graph has 6 edges.

𝑉! 𝑉"

𝐸#$%!" 𝑘
𝐸#$%"! 𝑘′

𝑒!(|𝑉&|) 𝑒"(|𝑉'|)

𝑒!(1) 𝑒"(1)

𝑒!(𝑘)
𝑒"(𝑘′)no edge

...
...

... ...
...

...

Figure 6 This is an illustration for Lemma 21. For the k-th vertex vL(k) ∈ VL and k′-th vertex
vR(k′) ∈ VR, this graph satisfies the three conditions of the lemma.

Proof of Lemma 20. Let x be the number of outputs. If x < m, we can just store all the
MAWs themselves. Assume that x ∈ Ω(m).

For all bridge w = αuβ ∈ W , Gw represents all MAWs which correspond to elements in
Exp(w)× Exp(w). Our data structure D4 consists of Gw for any w ∈ W . It is clear that Gw

can be stored in O(|Exp(w)|) space. This implies that the size of D4 is linear in X , namely,
D4 can be stored in O(m) space (Lemma 10).

We can output all MAWs which are represented by Gw based on Lemma 21 (see Al-
gorithm 1). For the k-th vertex vL(k), C represents all vertices vR(k′) in VB such that
(vL(k), vR(k′)) /∈ E and ERL

max(k′) ≥ eL(k) (the first and third condition in Lemma 21). For
each vertex in C, if ELR

max(k) ≥ eR(k′) (the second condition in Lemma 21), the algorithm
outputs a MAW cL(k)αeL(k)uβeR(k′)cR(k′). Then the running time of our algorithm is
O(x +

∑
w∈W |Gw|) ⊆ O(x + m) = O(x), since x ∈ Ω(m). ◀
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Algorithm 1 Compute all MAWs in M4.

Input: bipartite graph Gαuβ = (VL, VR, E)
Output: all MAWs in M4 that are associated by αuβ, aαk1uβk2b for a, b ∈ Σ, k1, k2 ∈ N

1: CR ← VR

2: for each vL(k) ∈ VL do
3: C = {vR(k′) ∈ CR | eR(k′) ≤ ELR

max(k)} \ {v | (vL(k), v) ∈ E}
4: for each vR(k′) ∈ C do
5: if ERL

max(k′) ≥ eL(vL(k)) then
6: output cL(k)αeL(k)uβeR(k′)cR(k′)
7: else
8: CR ← CR \ {vR(k′)}
9: end if

10: end for
11: end for

5.5 Representation for M5

▶ Lemma 22. There exists a data structure of size O(m) that outputs each element of M5
in O(1) time.

Proof. By Lemma 5, |M5| ∈ O(m). Recall that an element of M5 can be as long as O(n).
However, using Lemma 15 we can represent and store all elements in M5 in a total of O(m)
space. It is trivial that each stored element can be output in O(1) time. ◀

6 Conclusions and open questions

Minimal absent words (MAWs) are combinatorial string objects that can be used in applic-
ations such as data compression (anti-dictionaries) and bioinformatics. In this paper, we
considered MAWs for a string T that is described by its run-length encoding (RLE) rle(T ) of
size m. We first analyzed the number of MAWs for a string T in terms of its RLE size m, by
dividing the set MAW(T ) of all MAWs for T into five disjoint types. Albeit the number of
MAWs of some types is superlinear in m, we devised a compact O(m)-space representation
for MAW(T ) that can output all MAWs in output-sensitive O(|MAW(T )|) time.

We would like to remark that our O(m)-space representation can be built in O(m log m)
time with O(m) space, with the help of the truncated RLE suffix array (tRLESA) data
structure [25]. A suffix s of T is called a tRLE suffix of T if s = ari · · · rm where the first a

is the last character in the previous run ri−1. tRLESA(T ) for rle(T ) = r1 · · · rm is an integer
array of length m such that tRLESA(T )[i] = k iff ari · · · rm is the k-th lexicographically
smallest tRLE suffix for T . tRLESA occupies O(m) space, and can be built in O(m log m)
time with O(m) working space [25]. The details for our tRLESA-based construction algorithm
for our O(m)-space MAW representation will appear in the full version of this paper.

An interesting open question is whether there exist other compressed representations of
MAWs, based on e.g. grammar-based compression [20], Lempel-Ziv 77 [26], and run-length
Burrows-Wheeler transform [22].



T. Akagi, K. Okabe, T. Mieno, Y. Nakashima, and S. Inenaga 27:15

References
1 Tooru Akagi, Yuki Kuhara, Takuya Mieno, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai,

and Masayuki Takeda. Combinatorics of minimal absent words for a sliding window. CoRR,
abs/2105.08496, 2021. arXiv:2105.08496.

2 Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos, Manal
Mohamed, Solon P. Pissis, and Dimitris Polychronopoulos. On avoided words, absent words,
and their application to biological sequence analysis. Algorithms for Molecular Biology, 12(1):5,
2017.

3 Lorraine A. K. Ayad, Golnaz Badkobeh, Gabriele Fici, Alice Héliou, and Solon P. Pissis.
Constructing antidictionaries of long texts in output-sensitive space. Theory Comput. Syst.,
65(5):777–797, 2021.

4 Carl Barton, Alice Heliou, Laurent Mouchard, and Solon P. Pissis. Linear-time computation
of minimal absent words using suffix array. BMC Bioinformatics, 15(1):388, 2014.

5 Marie Pierre Béal, Filippo Mignosi, and Antonio Restivo. Minimal forbidden words and
symbolic dynamics. In STACS 1996, pages 555–566, 1996.

6 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Versatile succinct
representations of the bidirectional Burrows-Wheeler transform. In ESA 2013, pages 133–144,
2013.

7 Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and Joel I.
Seiferas. The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.,
40:31–55, 1985.

8 Supaporn Chairungsee and Maxime Crochemore. Using minimal absent words to build
phylogeny. Theor. Comput. Sci., 450:109–116, 2012.

9 Panagiotis Charalampopoulos, Maxime Crochemore, Gabriele Fici, Robert Mercas, and Solon P.
Pissis. Alignment-free sequence comparison using absent words. Inf. Comput., 262:57–68,
2018.

10 Panagiotis Charalampopoulos, Maxime Crochemore, and Solon P Pissis. On extended special
factors of a word. In SPIRE 2018, pages 131–138. Springer, 2018.

11 Tim Crawford, Golnaz Badkobeh, and David Lewis. Searching page-images of early music
scanned with OMR: A scalable solution using minimal absent words. In ISMIR 2018, pages
233–239, 2018.

12 M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Data compression using antidictionaries.
Proc. IEEE, 88(11):1756–1768, 2000.

13 Maxime Crochemore, Alice Héliou, Gregory Kucherov, Laurent Mouchard, Solon P. Pissis,
and Yann Ramusat. Absent words in a sliding window with applications. Information and
Computation, 270:104461, 2020.

14 Maxime Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words. Information
Processing Letters, 67(3):111–117, 1998.

15 Maxime Crochemore and Gonzalo Navarro. Improved antidictionary based compression. In
12th International Conference of the Chilean Computer Science Society, 2002. Proceedings.,
pages 7–13. IEEE, 2002.

16 Gabriele Fici. Minimal forbidden words and applications. PhD thesis, Università di Palermo
and Université Paris-Est Marne-la-Vallée, 2006.

17 Gabriele Fici and Pawel Gawrychowski. Minimal absent words in rooted and unrooted trees.
In SPIRE 2019, pages 152–161, 2019.

18 Gabriele Fici, Antonio Restivo, and Laura Rizzo. Minimal forbidden factors of circular words.
Theor. Comput. Sci., 792:144–153, 2019.

19 Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing DAWGs and minimal absent words in linear time for integer alphabets. In MFCS
2016, volume 58, pages 38:1–38:14, 2016.

CPM 2022

http://arxiv.org/abs/2105.08496


27:16 Minimal Absent Words on Run-Length Encoded Strings

20 John C. Kieffer and En-Hui Yang. Grammar-based codes: A new class of universal lossless
source codes. IEEE Trans. Inf. Theory, 46(3):737–754, 2000. doi:10.1109/18.841160.

21 Grigorios Koulouras and Martin C Frith. Significant non-existence of sequences in genomes
and proteomes. Nucleic acids research, 49(6):3139–3155, 2021.

22 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. Nord.
J. Comput., 12(1):40–66, 2005.

23 Takuya Mieno, Yuki Kuhara, Tooru Akagi, Yuta Fujishige, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda. Minimal unique substrings and minimal absent words
in a sliding window. In SOFSEM 2020, volume 12011 of Lecture Notes in Computer Science,
pages 148–160. Springer, 2020.

24 Diogo Pratas and Jorge M Silva. Persistent minimal sequences of SARS-CoV-2. Bioinformatics,
36(21):5129–5132, 2020.

25 Yuya Tamakoshi, Keisuke Goto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. An
opportunistic text indexing structure based on run length encoding. In CIAC 2015, volume
9079 of Lecture Notes in Computer Science, pages 390–402. Springer, 2015.

26 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory, IT-23(3):337–349, 1977.

A Appendix

We give a supplemental proposition that can be useful for analyzing the upper bound on the
number of MAWs of type 4.

We begin with the following observation:

▶ Observation 23. For any bridge substring w ∈ Σ∗ of T ,

|Exp(w)| = #w −
∑

z∈Exp(w)

(#z − 1) ≤ #w + |Exp+(w)| −
∑

z∈Exp+(w)

#z.

Note that
∑

z∈Exp+(w) (#z − 1) ≤
∑

z∈Exp(w) (#z − 1) since #z−1 = 0 when z ∈ Exp(w)\
Exp+(w). Below we present Proposition 24 which gives an upper bound for X .

▶ Proposition 24. For any bridge w and t ≥ 1 such that |Exp(w)| ≥ 2,

|Exp(w)|+
t∑

i=1

∑
z∈Expi

+(w)

|Exp(z)| ≤ #w +
t∑

i=1
|Expi

+(w)|. (1)

Proof. We prove this lemma by induction on t. By Observation 23 and |Exp(w)| ≤ #w for
any w, we have

|Exp(w)| +
∑

z∈Exp+(w)

|Exp(z)| ≤ (#w + |Exp+(w)| −
∑

z∈Exp+(w)

#z) +
∑

z∈Exp+(w)

#z = #w + |Exp+(w)|.

https://doi.org/10.1109/18.841160


T. Akagi, K. Okabe, T. Mieno, Y. Nakashima, and S. Inenaga 27:17

Thus, the statement holds for t = 1. Suppose that the statement holds for some t′ ≥ 1.

|Exp(w)|+
t′+1∑
i=1

∑
z∈Expi

+(w)

|Exp(z)|

= |Exp(w)|+
∑

w′∈Exp+(w)

|Exp(w′)|+
t′∑

i=1

∑
z∈Expi

+(w′)

|Exp(z)|


≤ |Exp(w)|+

∑
w′∈Exp+(w)

#w′ +
t′∑

i=1
|Expi

+(w′)|

 (by induction hypothesis)

≤

#w + |Exp+(w)| −
∑

w′∈Exp+(w)

#w′

 +
∑

w′∈Exp+(w)

#w′ +
∑

w′∈Exp+(w)

t′∑
i=1
|Expi

+(w′)|

(by Observation 23)

= #w + |Exp+(w)|+
∑

w′∈Exp+(w)

t′∑
i=1
|Expi

+(w′)|

≤ #w + |Exp+(w)|+
t′+1∑
i=2
|Expi

+(w)|

= #w +
t′+1∑
i=1
|Expi

+(w)|

Thus, the statement holds for t′ + 1. Therefore, the statement holds for any t ≥ 1. ◀
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Abstract
Given a text and a pattern over an alphabet, the pattern matching problem searches for all
occurrences of the pattern in the text. An equivalence relation ≈ is a substring consistent equivalence
relation (SCER), if for two strings X and Y , X ≈ Y implies |X| = |Y | and X[i : j] ≈ Y [i : j] for all
1 ≤ i ≤ j ≤ |X|. In this paper, we propose an efficient parallel algorithm for pattern matching under
any SCER using the “duel-and-sweep” paradigm. For a pattern of length m and a text of length n,
our algorithm runs in O(ξt

m log3 m) time and O(ξw
m · n log2 m) work, with O(τ t

n + ξt
m log2 m) time

and O(τw
n + ξw

m · m log2 m) work preprocessing on the Priority Concurrent Read Concurrent Write
Parallel Random-Access Machines (P-CRCW PRAM), where τ t

n, τw
n , ξt

m, and ξw
m are parameters

dependent on SCERs, which are often linear in n and m, respectively.
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1 Introduction

The string matching problem is fundamental and widely studied in computer science. Given
a text and a pattern, the string matching problem searches for all substrings of the text that
match the pattern. Many matching functions that are used in different string matching prob-
lems, including exact [15], parameterized [4], order-preserving [14, 16] and cartesian-tree [18]
matchings, fall under the class of substring consistent equivalence relations (SCERs) [17].
An equivalence relation on strings is an SCER, if two strings X and Y match under the
equivalence relation, then they have equal length and X[i : j] matches Y [i : j], for all
1 ≤ i ≤ j < |X|. Matsuoka et al. [17] generalized the KMP algorithm [15] for pattern
matching problems under SCERs. They also investigated periodicity properties of strings
under SCERs. Kikuchi et al. [13] proposed algorithms to compute the shortest and longest
cover arrays for a given string under any SCER. Hendrian [9] generalized Aho-Corasick
algorithm for the dictionary matching under SCERs.
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Table 1 Summary of the encoding complexities for some SCER on P-CRCW PRAM.

τ t
n τw

n ξt
m ξw

m

Exact O(1) O(1) O(1) O(1)
Parametererized O(log n) O(n log n) O(1) O(1)
Cartesian-tree O(log n) O(n log n) O(log m) O(m log m)

Vishkin proposed two algorithms for exact pattern matching, pattern matching by
dueling [19] and pattern matching by sampling [20]. Both algorithms match the pattern to
a substring of the text from some positions which are determined by the property of the
pattern, instead of its prefix or suffix as in, for instance, the KMP algorithm [15]. These
algorithms are developed for parallel processing.

The dueling technique by Vishkin [19] has been proved to be useful for various kinds of
pattern matching. Amir et al. [2] proposed a duel-and-sweep algorithm for two-dimensional
exact matching, which is named “consistency and verification”. Cole et al. [8] extended it to
two-dimensional parameterized matching. In addition, Jargalsaikhan et al. [11, 12] proposed
serial and parallel duel-and-sweep algorithms for order-preserving matching.

In this paper, we propose an efficient parallel algorithm based on the dueling technique for
the pattern matching problem under SCERs. Our parallel algorithm is the first to solve the
problem under an arbitrary SCER in parallel. While Vishkin’s dueling algorithm for exact
matching depends on the preferable properties of periods of strings, many of those do not hold
with SCERs. Therefore, our algorithm involves new ideas and appears quite different from
the original for exact pattern matching. For a pattern of length m and a text of length n, our
algorithm runs in O(ξt

m log3 m) time and O(ξw
m ·n log2 m) work, with O(τ t

n + ξt
m log2 m) time

and O(τw
n + ξw

m ·m log2 m) work preprocessing on the Priority Concurrent Read Concurrent
Write Parallel Random-Access Machines (P-CRCW PRAM) [10]. Here, τ t

n and τw
n are time

and work respectively, needed on P-CRCW PRAM to encode in parallel a string X of length
n under the SCER in concern. Given the encoding of X, ξt

m and ξw
m are time and work

respectively to re-encode an element w.r.t. some suffix of X. Table 1 shows the encoding
time and work complexities for some SCERs.

Due to the space restrictions, proofs of lemmas are relegated to Appendix B.

2 Preliminaries

We use Σ to denote an alphabet of symbols and Σ∗ denotes the set of strings over the
alphabet Σ. For a string X ∈ Σ∗, the length of X is denoted by |X|. The empty string,
denoted by ε, is the string of length 0. For a string X ∈ Σ∗ of length n, X[i] denotes the i-th
symbol of X, X[i : j] = X[i]X[i + 1] . . . X[j] denotes a substring of X that begins at position
i and ends at position j for 1 ≤ i ≤ j ≤ n. For i > j, X[i : j] denotes the empty string.

▶ Definition 1 (Substring consistent equivalence relation (SCER) [17]). An equivalence relation
≈ ⊆ Σ∗ × Σ∗ is a substring consistent equivalence relation (SCER) if for two strings X and
Y , X ≈ Y implies |X| = |Y | and X[i : j] ≈ Y [i : j] for all 1 ≤ i ≤ j ≤ |X|.

For instance, while the parameterized matching [4] and order-preserving matching [16, 14]
are SCERs, the permutation matching [6, 7] and function matching [1] are not.

Hereafter we fix an arbitrary SCER ≈. We say that a position i is the tight mismatch
position if X[1 : i − 1] ≈ Y [1 : i − 1] and X[1 : i] ̸≈ Y [1 : i]. For two strings X and Y , let
LCP(X, Y ) be the length l of the longest prefixes of X and Y match. That is, l is the



D. Jargalsaikhan, D. Hendrian, R. Yoshinaka, and A. Shinohara 28:3

greatest integer such that X[1 : l] ≈ Y [1 : l]. Obviously, if i is the tight mismatch position
for X ̸≈ Y , then LCP(X, Y ) = i− 1. The converse holds if i ≤ min{|X|, |Y |}. Similarly, for
a string X and an integer 0 ≤ a < |X|, we define LCPX(a) = LCP(X, X[a + 1 : |X|]). In
other words, LCPX(a) is the length of the longest common prefix, when X is superimposed
on itself with offset a. We say X ≈-matches Y iff X ≈ Y . Given a text T of length n and a
pattern P of length m, a position i in T , 1 ≤ i ≤ n−m + 1, is an ≈-occurrence of P in T iff
P ≈ T [i : i + m− 1].

▶ Definition 2 (≈-pattern matching).
Input: A text T ∈ Σ∗ of length n and a pattern P ∈ Σ∗ of length m ≤ n.
Output: All ≈-occurrences of P inside T .

In the remainder of this paper, we fix text T to be of length n and pattern P to be of
length m. We also assume that n = 2m−1. Larger texts can be cut into overlapping pieces of
length that are less than or equal to (2m−1) and processed independently. That is, we search
for pattern occurrences in each substring T [1:2m−1], T [m+1:3m−1], . . . , T [⌊n−1

m ⌋·m+1:n],
independently. For an integer x with 1 ≤ x ≤ n−m + 1, a candidate Tx is the substring of
T starting from x of length m, i.e., Tx = T [x : x + m− 1].

For SCER matchings often it is convenient to encode the strings where ≈-equivalence
is reduced to the identity. Amir and Kondratovsky [3] showed that every SCER admits an
encoding satisfying the following property.1

▶ Definition 3 (≈-encoding). Let Σ and ∆ be alphabets. We say a function f : Σ∗ → ∆∗ is
an ≈-encoding if (1) for any string X ∈ Σ∗, |X| = |f(X)|, (2) f(X[1 : i]) = f(X)[1 : i], (3)
for two strings X and Y of equal length k, f(X)[i] = f(Y )[i] implies f(X[j + 1 : k])[i− j] =
f(Y [j + 1 : k])[i− j] for any j < i ≤ k, and (4) f(X) = f(Y ) iff X ≈ Y .

▶ Proposition 4. An equivalence relation ≈ is an SCER if and only if it admits an ≈-encoding.

Standard encodings of SCERs often satisfy the above definition, such as the prev-encoding [4]
for parameterized matching and parent-distance encoding [18] for cartesian-tree matching.
However, the nearest neighbor encoding [14] for order-preserving matching violates the
third condition. Our algorithm for ≈-pattern matching proposed in this paper relies on the
property of Definition 3 and does not work with the nearest neighbor encoding. Nonetheless,
duel-and-sweep algorithms for order-preserving matching based on the encoding are possible
by further elaboration [11, 12], but we will not discuss it in this paper.

Fixing an ≈-encoding f , we denote f(X) by X̃ for simplicity. In addition, we denote
the encoding of X[x : |X|] as X̃x = f(X[x : |X|]). Thus X̃1 = X̃. For a string X, we
suppose that X̃ can be computed in τ t

|X| time and τw
|X| work in parallel on P-CRCW PRAM.

Moreover, we assume that given X̃, x, and i such that x + i− 1 ≤ |X|, to compute X̃x[i], i.e.
re-encoding the element at position i with respect to suffix X[x : |X|], takes ξt

|X| time and
ξw

|X| work on P-CRCW PRAM. Note that, to compute X̃x[i] does not necessarily require
computing the whole of X̃x. Those parameters are often reasonably small. See Table 1
and Appendix A for the prev-encoding for parameterized matching and the parent-distance
encoding for cartesian-tree matching.

Vishkin’s dueling technique essentially depends on the preferable properties of periods
of strings. Matsuoka et al. [17] have discussed in detail how the classical notion of periods
and their properties can be generalized when considering SCER matching. Unfortunately,

1 Lemma 12 in [3] does not explicitly mention the third property, but their proof entails it.
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28:4 Parallel Algorithm for Pattern Matching Problems Under SCERs

none of the generalizations yield a straightforward adaptation of Vishkin’s algorithm for
SCER matching. Among those, the kind of periods involved in the duel-and-sweep algorithm
discussed in this paper is border-based period.

▶ Definition 5 (Border-based period). Given a string X of length n, positive integer p < n is
called a border-based period of X if X[1 : n− p] ≈ X[p + 1 : n].

Throughout the rest of the paper, we will refer to a border-based period as a period.
The family of models of computation used in this work is the priority concurrent-read

concurrent-write (P-CRCW) PRAM [10]. This model allows simultaneous reading from the
same memory location as well as simultaneous writing. In case of multiple writes to the same
memory cell, the P-CRCW PRAM grants access to the memory cell to the processor with
the smallest index.

3 Parallel algorithm for pattern matching under SCERs

We give an overview of the duel-and-sweep algorithm [2, 19]. The pattern is first preprocessed
to obtain a witness table, which is later used to prune candidates during the pattern searching.
As the name suggests, in the duel-and-sweep algorithm, the pattern searching is divided into
two stages: the dueling stage and the sweeping stage. The pattern searching algorithm prunes
candidates that cannot be pattern occurrences, first by performing “duels” between them,
and then by “sweeping” through the remaining candidates to obtain pattern occurrences.

First, we explain the idea of dueling. Suppose P is superimposed on itself with an offset
a < m and the two overlapped regions of P do not match under ≈. Then it is impossible for
two candidates Tx and Tx+a with offset a to match P simultaneously (see Figure 1). The
dueling stage lets each pair of candidates with such offset a “duel” and eliminates one based
on this observation, so that if candidate Tx gets eliminated during the dueling stage, then
Tx ̸≈ P . However, the opposite does not necessarily hold true: Tx surviving the dueling stage
does not mean that Tx ≈ P . On the other hand, it is guaranteed that if distinct candidates
Tx and Tx+a that survive the dueling stage overlap, then the suffixes of Tx and P of length
m−a match if and only if so do the prefixes of Tx+a and P of the same length. The sweeping
stage takes advantage of this property when checking whether surviving candidates and the
pattern match, so that this stage can also be done quickly.

Prior to the dueling stage, the pattern is preprocessed to construct a witness table based
on which the dueling stage decides which pair of overlapping candidates should duel and
how they should duel. For each offset 0 ≤ a < m, when the overlapped regions obtained by
superimposing P on itself with offset a do not match, we need only one position i to say
that the overlapping regions do not match. We say that w is a witness for the offset a if
P̃a+1[w] ̸= P̃ [w]. We denote by WP (a) the set of all witnesses for offset a. We say a witness
w for offset a is tight if w = minWP (a). Obviously, WP (a) = ∅ if and only if a = 0 or a is a
period of P . A witness table W [0 : m− 1] is an array such that W [a] ∈ WP (a) if WP (a) ̸= ∅.
When the overlap regions match for offset a, which implies that no witness exists for a, we
express it as W [a] = 0.

More formally, in the dueling stage, we “duel” positions x and x + a such that WP (a) ̸= ∅
based on the following observation (see Figure 1).

▶ Lemma 6. Suppose w ∈ WP (a). Then,
if T̃x+a[w] = P̃ [w], then Tx ̸≈ P ,
if T̃x+a[w] ̸= P̃ [w], then Tx+a ̸≈ P .
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Algorithm 1 Dueling with respect to S. There is one survivor assuming x is not consistent
with y.

1 Function Dueling(S̃, x, y)
2 w ←W [y − x];
3 if S̃y[w] = P̃ [w] then return y;
4 return x;

T
x x + a w + x + a

P

w + a

P
w

a

Figure 1 If Tx ≈ P ≈ Tx+a, then the overlapped regions of P superimposed on itself with offset
a should match, i.e., Pa+1[1 : m − a] ≈ P [1 : m − a]. If the overlapped region does not match, there
must be a witness w such that P̃a+1[w] ̸= P̃ [w]. Candidate positions x and x + a perform a duel
using the witness w based on Lemma 6.

Based on this lemma, we can safely eliminate either candidate Tx or Tx+a without looking
into other positions. This process is called dueling (Algorithm 1). On the other hand, if the
offset a has no witness, i.e. P [1 : m− a] ≈ P [a + 1 : m], no dueling is performed on them. We
say that a position x is consistent with x + a if WP (a) = ∅.

▶ Lemma 7. For any a, b, c such that 0 < a ≤ b ≤ c < m, if a is consistent with b and b is
consistent with c, then a is consistent with c.

After the dueling stage, all surviving candidate positions are pairwise consistent. The
dueling stage algorithm makes sure that no occurrence gets eliminated during the dueling
stage. Taking advantage of the fact that surviving candidates from the dueling stage are
pairwise consistent, the sweeping stage prunes them until all remaining candidates match the
pattern. By ensuring pairwise consistency of the surviving candidates, the pattern searching
algorithm reduces the number of comparisons at a position in the text during the sweeping
stage.

Hereinafter, in our pseudo-codes we will use “←” to note assignment operation into a
local variable of a processor or assignment operation into a global variable which is accessed
by a single processor at a time. We will use “⇐” to note assignment operation into a global
variable which is accessible from multiple processors simultaneously. In case of a write
conflict, the processor with the smallest index succeeds in writing into the memory.

3.1 Pattern preprocessing
The goal of the preprocessing stage is to compute a witness table W [0:m−1], where W [a] = 0
if WP (a) = ∅, and W [a] ∈ WP (a) otherwise. Algorithm 2 computes the tight mismatch
position for X and Y , given X̃ and Ỹ .

▶ Lemma 8. For strings X and Y of equal length, given X̃ and Ỹ , Algorithm 2 computes
the tight mismatch position in O(1) time and O(|X|) work on the P-CRCW PRAM.
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28:6 Parallel Algorithm for Pattern Matching Problems Under SCERs

Algorithm 2 Check in parallel whether X and Y match, given X̃ and Ỹ . If they do not
match, it returns the tight witness.

1 Function GetTightMismatchPos(X̃, Ỹ )
2 w ← 0;
3 for each i ∈ {1, . . . , |X|} do in parallel
4 if X̃[i] ̸= Ỹ [i] then w ⇐ i;
5 return w;

Algorithm 3 Parallel algorithm for the pattern preprocessing.

1 Function PreprocessingParallel()
2 tail ← m, k ← 0; /* tail is the starting position of Tailk */
3 while 2k ≤ tail do
4 p← GetZeros(2k, 2k+1 − 1, k)[0];
5 W [p]← GetTightMismatchPos(P̃ [1 : m− p], P̃p+1[1 : m− p]);
6 if W [p] = 0 then lcp ← m− p;
7 else lcp ←W [p]− 1;
8 old_tail ← tail;
9 tail ← min(old_tail − 2k, m− lcp);

10 SatisfySparsity(tail − 1, k);
11 FinalizeTail(tail, old_tail, p, k);
12 k ← k + 1;

One can compute a witness table naively inputting P̃ [1 : m− a] and P̃a+1[1 : m− a] for
all the offsets a < m to Algorithm 2. However, this naive method costs as much as Ω(ξw

m ·m2)
work. We will present a more efficient algorithm in this subsection.

Our pattern preprocessing algorithm is described in Algorithm 3 and its outline is
illustrated in Figure 2. Initially, all entries of the witness table are set to zero. Throughout
preprocessing, each element of W is updated at most once. Therefore, at any point of the
execution of the preprocessing algorithm, if W [i] ̸= 0, then it must hold W [i] ∈ WP (i).
We say that position i is finalized if W [i] = 0 implies WP (i) = ∅ and W [i] ̸= 0 implies
W [i] ∈ WP (i). During the execution of Algorithm 3, the table is divided into two parts. The
head is a prefix of a certain length and the tail is the rest suffix. Let us write the head and
the tail at the round k of the while loop by Headk and Tailk, respectively. The variable tail
in Algorithm 3 represents the starting position of the tail, or equivalently, the length of the
head. Throughout the algorithm execution, the tail part is always finalized. On the other
hand, though the zero entries of the head are not necessarily reliable, such zero positions
become fewer and fewer. Consider partitioning the head into blocks of size 2k. We will call
each block a 2k-block, with the last 2k-block possibly being shorter than 2k. That is, the
2k-blocks are W [i · 2k : (i + 1) · 2k − 1] for i = 0, . . . , ⌊h/2k⌋ − 1 and W [⌊h/2k⌋ · 2k : h− 1]
where h = |Headk| is the size of the head. We say that W [0 : x] is 2k-sparse if every 2k-block
of W [0 : x] contains exactly one zero entry possibly except that the last 2k-block has no zero
entry. We will guarantee that Headk is 2k-sparse. Note that when the head is 2k-sparse, the
unique zero position of the first 2k-block W [0 : 2k−1] is always 0 (W [0] = 0) and W [1 : 2k−1]
contains no zeros.
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W

W

pk

0 0 0 0 0 0 0 0

2k

0 0 0 0

2k+1
update duel duel duel

update update
updatewin win win

Tailk

Tailk+1

Headk

Headk+1

≥ 2k

before round k

after round k

unique zero in each 2k-block

Figure 2 Illustration of the preprocessing invariant. W is partitioned into head and tail. The
head is 2k-sparse and the tail is finalized. The 2k-sparsity is achieved by duels. The tail grows by at
least 2k at each round.

Algorithm 4 Assuming that W [0 : r] is 2k-sparse, returns positions of zeros in W [l : r].

1 Function GetZeros(l, r, k)
2 create array A[0 : ⌊r/2k⌋ − ⌊l/2k⌋] and initialize elements to −1;
3 for each i ∈ {l, . . . , r} do in parallel
4 if W [i] = 0 then A[⌊i/2k⌋ − ⌊l/2k⌋]⇐ i;
5 return A;

Initially, the entire table is the head and the size of the tail is zero: Head0 = W and
Tail0 = ε. The head is shrunk and the tail is extended by the following rule. Let the suspected
period pk at round k be the first zero position after the index 0, i.e., pk is the unique position
in the second 2k-block such that W [pk] = 0. Then, we let Headk+1 = W [0 : m − x − 1]
and Tailk+1 = W [m− x : m− 1] for x = |Tailk+1| = max(|Tailk|+ 2k, LCPP (pk)). When
|Headk| < 2k, the 2k-sparsity means that all the positions in the witness table are finalized.
So, Algorithm 3 exits the while loop and halts. The goal of this subsection is to show the
following theorem.

▶ Theorem 9. Given P̃ , the pattern preprocessing Algorithm 3 computes a witness table in
O(ξt

m · log2 m) time and O(ξw
m ·m log2 m) work on the P-CRCW PRAM.

Proof. By Lemmas 13 and 15. ◀

In the remainder of this subsection, we explain how to maintain the 2k-sparsity of the
head and finalize the tail. Before going into the detail, we prepare a technical function
GetZeros(l, r, k) in Algorithm 4, which returns positions i ∈ {l, . . . , r} such that W [i] = 0
in an array, assuming that W [0 : r] satisfies the 2k-sparsity. Algorithm 4 runs in O(1) time
and O(r) work on the P-CRCW PRAM.

Comparison with Vishkin’s algorithm

The preprocessing algorithm for exact matching by Vishkin [19] also constructs a witness
table so that it satisfies the 2k-sparsity, incrementing k, where it has no head/tail separation.
Maintaining the 2k-sparsity for the whole table is possible due to the periodicity property
which holds for the exact identity but not for general SCERs. Let p ≤ ⌊i/2⌋ be the shortest
period of P [: i] for some i. In exact matching if P [i] ̸= P [i + j − 1], P [i− p] ̸= P [i + j − 1]
holds. Thus, we can update W [j + p] by using W [j] i.e., we may let W [j + p] = W [j]− p.
However, this property does not hold on SCERs generally. Still, Vishkin’s technique for
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Algorithm 5 Satisfy 2k+1-sparsity of Headk+1 = W [0 : x].

1 Function SatisfySparsity(x, k)
2 A← GetZeros(2k+1, x, k);
3 for each i ∈ {0, 1, . . . , ⌊|A|/2− 1⌋} do in parallel
4 j1 ← A[2i], j2 ← A[2i + 1];
5 if j1 ̸= −1 and j2 ̸= −1 then
6 surv ← Dueling(P̃ , j1, j2);
7 a← j2 − j1;
8 if surv = j1 then W [j2]⇐W [a];
9 if surv = j2 then W [j1]⇐W [a] + a;

keeping the 2k-sparsity can partially be applied to SCER cases under a certain condition
(Lemma 10), which requires us to control the length of the head part carefully. Concerning
the tail part, where Vishkin’s technique does not work, we design a new efficient algorithm
for computing witnesses.

Head invariant
First we discuss how the algorithm makes Headk 2k-sparse. We maintain the head so that at
the beginning of round k of Algorithm 3, it satisfies the following invariant properties.

Headk is 2k-sparse.
For all positions i of Headk,

W [i] ̸= 0 implies W [i] ∈ WP (i),
W [i] ≤ |Tailk|+ 2k.

The head maintenance procedure SatisfySparsity is described in Algorithm 5. Before
calling the function SatisfySparsity, Algorithm 3 finalizes the suspected period pk, the first
position after 0 such that W [pk] = 0. Due to the 2k-sparcity, 2k ≤ pk < 2k+1. Algorithm 3
finds the suspected period pk at Line 4 and then finalizes the position pk at Line 5.

Let us explain how Algorithm 5 works. The task of SatisfySparsity(x, k) is to make
W [0 : x] satisfy the 2k+1-sparsity. In the case where the suspected period pk is the smallest
period of P , i.e., WP (pk) = ∅, we have tail = m−LCPP (pk) = pk < 2k+1 when Algorithm 3
calls SatisfySparsity(tail − 1, k). Then the array A obtained at Line 2 is empty and
SatisfySparsity(tail−1, k) does nothing. After finalizing Tailk+1, which will be explained
later, the algorithm will halt without going into the next loop, since |Headk+1| ≤ m −
LCPP (pk) = pk < 2k+1. At that moment all positions of W are finalized.

Hereafter we suppose that pk is not a period of P . When SatisfySparsity(tail−1, k) is
called, the value of W [pk] is the tight witness and the first 2k+1-block contains no zeros except
W [0]. At that moment, the other part of the head is 2k-sparse. To make it 2k+1-sparse, we
perform duels between two zero positions i and j (i < j) within each of the 2k+1-blocks of
the head except for the first one. The witness used for the duel between i and j is W [a] for
a = j − i, which is in the first 2k+1-block. The following two lemmas ensure that indeed
such duels are possible. Suppose that the pattern is superimposed on itself with offsets i

and j. Lemma 10 below claims that if we already know w ∈ WP (a) and j + w ≤ m, in other
words, if the witness lies within the overlap region, then we can obtain a witness for one of
the offsets i and j by dueling them using w, without looking into other positions. Lemma 11
ensures that indeed we have a witness w = W [a] in our table such that j + w ≤ m holds.
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▶ Lemma 10. For two offsets i and j = i+a with a > 0, suppose w ∈ WP (a) and j +w ≤ m.
Then,
1. if the offset j survives the duel, i.e., P̃j+1[w] = P̃ [w], then w + a ∈ WP (i);
2. if the offset i survives the duel, i.e., P̃j+1[w] ̸= P̃ [w], then w ∈ WP (j).

▶ Lemma 11. For round k, suppose the preprocessing invariant holds true and WP (pk) ̸= ∅.
Then, when SatisfySparsity is about to be called at Line 10 of Algorithm 3, for any two
positions i and j of Headk+1 such that 0 < j − i < 2k+1, it holds that j + W [j − i] ≤ m.

Algorithm 5 updates the witness table in accordance with Lemma 10. In this way, the
2k-sparsity of the head and the correctness of (non-zero) witnesses in the head are maintained.
The invariants W [i] ≤ |Tailk|+ 2k and |Headk|+ LCPP (pk) ≥ m are used in the proof of
Lemma 11, which can be found in Appendix B.

▶ Lemma 12. At the beginning of round k, for all i ∈ {0, . . . , 2k−1}, it holds W [i] ≤ |Tailk|+1
and for all i ∈ {2k, . . . , |Headk| − 1}, it holds W [i] ≤ |Tailk|+ 2k.

▶ Lemma 13. In the round k of the while loop, Algorithm 5 updates the witness table so
that Headk+1 is 2k+1-sparse in O(ξt

m) time and O(ξw
m ·m/2k) work on P-CRCW PRAM.

Tail invariant
Next, we discuss how the algorithm finalizes Tailk+1 in the round k. This procedure is
described in Algorithm 6. For the sake of convenience, we denote by Tk the set of positions
of Tailk. Since Tailk has already been finalized, it is enough to update W [i] for i ∈ Tk+1 \ Tk.
We have two cases depending on how much the tail is extended.

The first case where |Tailk+1| = |Tailk|+ 2k is handled naively. Since Headk satisfies the
2k-sparsity by the invariant, there are at most two zero positions in Tk+1 \ Tk. Algorithm 6
naively uses Algorithm 2 to finalize those positions.

Now, we consider the case |Tailk+1| = LCPP (pk) > |Tailk|+ 2k. The following lemma is
a key to handle this case.

▶ Lemma 14. Suppose m− LCPP (p) ≤ b < m. If w ∈ WP (b), then (w + b− a) ∈ WP (a)
for any offset a such that 0 ≤ a ≤ b and a ≡ b (mod p).

Let us partition Tk+1 \ Tk into pk subsets S0, . . . ,Spk−1 where Ss = { i ∈ Tk+1 \ Tk | i ≡ s
(mod pk) }, some of which can be empty. Lemma 14 implies that for each s ∈ {0, . . . , pk − 1},
there exists a boundary offset bs such that, for every i ∈ Ss,WP (i) = ∅ iff i > bs. Fortunately,
for many s, one can find the boundary bs very easily, unless Ss = ∅. Let qs = max Ss for
non-empty Ss. Due to the 2k-sparsity and the fact pk < 2k+1, it holds W [qs] ̸= 0 for all but at
most three s. If W [qs] ̸= 0, then qs is the boundary. By Lemma 14, W [W [qs]+qs−i] ∈ WP (i)
for all i ∈ Ss. Accordingly, Algorithm 6 updates those values W [i] in parallel in Lines 9–11.

On the other hand, for s such that W [qs] = 0, Algorithm 7 uses binary search to find
bs and a witness w ∈ WP (bs) if it exists. Then, following Lemma 14, Algorithm 7 sets in
parallel W [i] to w + (bs − i) where w ∈ WP (bs) for i ∈ Ss such that i ≤ bs (Line 10). If there
is no boundary bs in Ss, then WP (i) = ∅ for all i ∈ Ss. We do nothing in that case.

In Algorithm 7, the invariant is as follows. For i ∈ Ss, WP (i) ̸= ∅ if i ≤ l · pk + s, and
WP (i) = ∅ if i ≥ r · pk + s. Each condition check of the binary search (Line 5) takes O(ξt

m)
time and O(ξw

m ·m) work. Thus, the overall complexity of Algorithm 7 is O(ξt
m log m) time

and O(ξw
m ·m log m) work.

▶ Lemma 15. In round k, Algorithm 6 finalizes Tailk+1 in O(ξt
m log m) time and O(ξw

m ·
m log m) work on P-CRCW PRAM.
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Algorithm 6 Finalize Tailk+1.

1 Function FinalizeTail(tail, old_tail, p, k)
2 if old_tail − tail = 2k then
3 Z ← GetZeros(tail, old_tail − 1, k); /* |Z| ≤ 2 */
4 for i = 0 to |Z| − 1 do
5 z ← Z[i];
6 if z ̸= −1 then
7 W [z]← GetTightMismatchPos(P̃ [1 : m− z], P̃z+1[1 : m− z])

8 else
9 for each i ∈ {tail, . . . , old_tail − 1} do in parallel

10 q ← j where j ∈ {old_tail − p, . . . , old_tail − 1} and j ≡ i (mod p);
11 if W [i] = 0 and W [q] ̸= 0 then W [i]⇐W [q] + q − i;
12 Z ← GetZeros(old_tail − p, old_tail − 1, k); /* |Z| ≤ 3 */
13 for i = 0 to |Z| − 1 do
14 z ← Z[i];
15 if z ̸= −1 then Finalize(tail, old_tail, p, z mod p);

Algorithm 7 Finalize i ∈ Tk+1\Tk s.t. i ≡ s (mod pk).

1 Function Finalize(tail, old_tail, p, s)
2 l← ⌈(tail − s)/p⌉ − 1, r ← ⌊(old_tail − 1− s)/p⌋+ 1;
3 while r − l > 1 do
4 i← ⌊(l + r)/2⌋, j ← i · p + s;
5 if GetTightMismatchPos(P̃ [1 : m− j], P̃j+1[1 : m− j]) = 0 then r ← i ;
6 else l← i;
7 bs ← l · p + s;
8 w ← GetTightMismatchPos(P̃ [1 : m− bs], P̃bs+1[1 : m− bs]);
9 for each i ∈ {tail, . . . , bs} do in parallel

10 if W [i] = 0 and i ≡ bs (mod p) then W [i]⇐ w + bs − i;

3.2 Pattern searching
Our pattern searching algorithm prunes candidates in two stages: dueling and sweeping
stages. During the dueling stage, candidate positions duel with each other, until the surviving
candidate positions are pairwise consistent. During the sweeping stage, the surviving
candidates from the dueling stage are further pruned so that only pattern occurrences survive.
To keep track of the surviving candidates, we introduce a Boolean array C[1 :m] and initialize
every entry of C to True. If a candidate Ti gets eliminated, we set C[i] = False. The pattern
searching algorithm updates C in such a way that C[i] = True iff i is a pattern occurrence.
Entries of C are updated at most once during the dueling and sweeping stages.

Comparison with Vishkin’s algorithm

When considering exact matching, Vishkin [19] found that if the pattern is periodic, i.e.,
P = QjQ′ for some aperiodic string Q, a proper prefix Q′ of Q, and j ≥ 2, the problem can
be reduced to finding occurrences of Q and Q′ in the text. Then a position i is an occurrence
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Algorithm 8 Parallel algorithm for the dueling stage.

1 Function DuelingStageParallel()
2 for each j ∈ {1, . . . , m} do in parallel
3 C0,j [1]⇐ j;
4 k ← 1;
5 while k ≤ ⌈log m⌉ do
6 for each j ∈ {1, . . . , ⌈m/2k⌉} do in parallel
7 A ← Ck−1,2j−1, B ← Ck−1,2j ;
8 ⟨a, b⟩ ← Merge(A,B);
9 Let Ck,j be array of length (a + |B| − b + 1);

10 for each i ∈ {1, . . . , a} do in parallel
11 Ck,j [i]⇐ A[i];
12 for each i ∈ {b, . . . , |B|} do in parallel
13 Ck,j [a + i− b + 1]⇐ B[i];

14 k ← k + 1;
15 Initialize all elements of C to False;
16 for each i ∈ {1, . . . , |C⌈log m⌉,1|} do in parallel
17 C[C⌈log m⌉,1[i]]⇐ True;

of P if and only if i is a starting position of j consecutive occurrences of Q followed by
an occurrence of Q′. His dueling stage keeps the table C to be 2k-sparse in the sense that
C[i] = True for at most one position i in every 2k-block, incrementing k up to ⌊log |Q|/2⌋.
This can be done without violating the invariant since the occurrences of an aperiodic string
Q are guaranteed to be sparse in the sense that the distance of two consecutive occurrences
is bigger than |Q|/2. Then the sweeping stage naively checks whether those sparse surviving
positions i with C[i] = True are real occurrences. Apparently, this idea does not work at
all in SCER matching. If P has a period p under an SCER, it does not mean that P is a
repetition of Q = P [1 : p] or that consecutive occurrences of Q form an occurrence of P . Our
dueling and sweeping algorithms presented here are quite different from Vishkin’s.

Dueling stage

The dueling stage is described in Algorithm 8. A set of positions is consistent if all elements
in the set are pairwise consistent. During the round k, the algorithm partitions the candidate
positions into blocks of size 2k. Let Ck,j ⊆ {(j − 1)2k + 1, . . . , j · 2k} be the set of candidate
positions in the j-th 2k-block which have survived after the round k. The invariant of
Algorithm 8 is as follows.

At any point of execution of Algorithm 8, all pattern occurrences survive.
For round k, each Ck,j is consistent.

Set Ck,j is obtained by “merging” Ck−1,2j−1 and Ck−1,2j . That is, Ck,j shall be a consistent
subset of Ck−1,2j−1∪Ck−1,2j which contains all the occurrence positions in Ck−1,2j−1∪Ck−1,2j .
After the dueling stage, C⌈log m⌉,1 is a consistent set including all the occurrence positions.
We then let C[i] = True iff i ∈ C⌈log m⌉,1. In our algorithm, each set Ck,j is represented as an
integer array, where elements are sorted in increasing order.
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Figure 3 Padded grid G given two consistent sets A and B. All the occurrence positions are
inside the yellow area, where the brown dot indicates ı̂ and ȷ̂. The red- and blue-shaded areas consist
of −1 and 1 only, respectively (Lemma 17). Any point (i, j) in the green-shaded area, where i ≥ ı̂,
j ≤ ȷ̂, and G[i][j] = 0, is satisfactory to output. Among those, our algorithm finds a point (i, j) such
that G[i][j] = 0, G[i][j − 1] = −1 and G[i + 1][j′] = 1 for some j′ (Lemma 18). For example, the
coordinates marked with green circles may be output.

Let us consider merging two respectively consistent sets A(= Ck−1,2j−1) and B(= Ck−1,2j)
where A precedes B, i.e., maxA < minB. Sets A and B should be merged in such a way
that the resulting set is consistent and contains all occurrences in A and B. That is, we
must find a consistent set C such that Â ∪ B̂ ⊆ C ⊆ A ∪ B, where Â = { a ∈ A | Ta ≈ P }
and B̂ = { b ∈ B | Tb ≈ P } are the sets of occurrences in A and B, respectively. By the
consistency property in Lemma 7, we can easily confirm that the following lemma holds.

▶ Lemma 16. Suppose that we are given two respectively consistent position sets A and B
such that A precedes B. If a ∈ A and b ∈ B are consistent, then A≤a ∪B≥b is also consistent,
where A≤a = {i ∈ A | i ≤ a} and B≥b = {j ∈ B | j ≥ b}.

Therefore, it suffices to find (a, b) ∈ A× B such that a and b are consistent and a ≥ max Â
and b ≤ min B̂. Then, A≤a ∪ B≥b has the desired property.

To find such a pair (a, b), let us consider a grid G of size (|A| + 2) × (|B| + 2). For
1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, G[i][j] represents the result of the duel between A[i] and
B[j], which are the i-th and j-th smallest elements of A and B, respectively. We define
G[i][j] = 0 if W [d] = 0 for d = B[j] − A[i]. If W [d] ̸= 0 and A[i] wins the duel, then
G[i][j] = −1. Otherwise, B[j] wins the duel and G[i][j] = 1. For the sake of technical
convenience, we pad grid G with −1s along the leftmost column, with 1s along the bottom
row, and with 0s along the upper row and rightmost column. Specifically, G[i][0] = −1 for
i ∈ {0, . . . , |A|}, G[|A|+1][j] = 1 for j ∈ {0, . . . , |B|}, G[i][|B|+1] = 0 for i ∈ {1, . . . , |A|+1},
and G[0][j] = 0 for j ∈ {1, . . . , |B|+ 1}. We will not compute the whole G, but this concept
helps understanding the behavior of our algorithm. Figure 3 illustrates the grid, where
elements of A and B are presented along the directions of rows and columns, respectively.

Lemma 16 implies that if G[i][j] = 0 then G[i′][j′] = 0 for any i′ ≤ i and j′ ≥ j. Therefore,
grid G can be divided into two regions: the upper-right region that consists of only 0 and
the rest that consists of a mixture of −1 and 1. The separation line looks like a step
function (Figure 3). In terms of the grid representation, our goal is to find a coordinate
(i, j) in the zero region which is to the lower left of (̂ı, ȷ̂) (brown dot in Figure 3) where
ı̂ = max({ i′ | A[i′] ∈ Â } ∪ {0}) and ȷ̂ = min({ j′ | B[j′] ∈ B̂ } ∪ {|B|+ 1}). Those points are
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Algorithm 9 Merge two consistent sets A and B.

1 Function Merge(A,B)
2 lA ← 0, rA ← |A|+ 1, j ← 1;
3 while rA − lA > 1 do
4 mA ← ⌊(lA + rA)/2⌋, observedOne← False;
5 lB ← 0, rB ← |B|+ 1;
6 while rB − lB > 1 do
7 mB ← ⌊(lB + rB)/2⌋;
8 if W [B[mB ]−A[mA]] = 0 then rB ← mB ;
9 else

10 if Dueling(T̃ ,A[mA],B[mB ]) = A[mA] then lB ← mB ;
11 else
12 observedOne← True;
13 break;

14 if observedOne then rA ← mA;
15 else lA ← mA, j ← rB ;
16 return ⟨lA, j⟩;

shown as the green-shaded area in Figure 3. Then, A≤A[i] ∪ B≥B[j] has the desired property.
The region { (i′, j′) | i′ ≤ ı̂ and j′ ≥ ȷ̂ } is shaded with yellow, which consists of only zeros by
Lemma 16.

The following lemma helps us to find a desired point.

▶ Lemma 17. If i ≤ ı̂, then row i consists only of non-positive elements. Similarly, if j ≥ ȷ̂,
then column j consists only of non-negative elements.

Our algorithm seeks for a coordinate (i, j) in the following lemma.

▶ Lemma 18. There always exists a pair (i, j) such that i ≤ |A|, j ≥ 1, G[i][j] = 0,
G[i][j − 1] = −1 and G[i + 1][j′] = 1 for some j′. For such (i, j), it holds that Â ∪ B̂ ⊆
A≤A[i] ∪ B≥B[j], assuming A≤A[0] = B≥B[|B|+1] = ∅.

Let us call a row i low if G[i][j] = 0 and G[i][j−1] = −1 for some j, and high if G[i][j′] = 1
for some j′. Note that, by Lemma 16 and the padding, each row is either low, high, or
simultaneously low and high. At any point of Algorithm 9 execution, rA is high and lA is
low, particularly G[lA][j] = 0 and G[lA][j − 1] = −1. When rA = lA + 1, we are done by
Lemma 18. In the inner while loop, we try to see whether the row mA = ⌊(lA + rA)/2⌋ is
high or low. As soon as we learn that mA is high, we update rA to be mA. If mA is revealed
to be low, lA is updated to be mA.

▶ Lemma 19. At any point of Algorithm 9 execution, (1) G[lA][j− 1] = −1 and G[lA][j] = 0,
(2) G[rA][j′] = 1 for some j′, and (3) G[mA][lB ] = −1 and G[mA][rB ] = 0.

▶ Lemma 20. Given a witness table, P̃ , and T̃ , the dueling stage runs in O(ξt
m log3 m) time

and O(ξw
mm log2 m) work on P-CRCW-PRAM.
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Algorithm 10 Parallel algorithm for the sweeping stage.

1 Function SweepingStageParallel()
2 create R[1 : m] and initialize elements of R to 0;
3 k ← ⌈log m⌉;
4 while k ≥ 0 do
5 create Piv[0 : ⌊m/2k⌋] and initialize its elements to −1;
6 for each i ∈ {1, . . . , m} do in parallel
7 if C[i] = True and (i mod 2k) > 2k−1 then Piv[⌊i/2k⌋]⇐ i;
8 for each b ∈ {0, . . . , ⌊m/2k⌋} do in parallel
9 x← Piv[b];

10 if x ̸= −1 then
11 w ← GetTightMismatchPos(P̃ [R[x] + 1 : m], T̃x[R[x] + 1 : m]);
12 if w = 0 then R[x]⇐ m;
13 else R[x]⇐ R[x] + w − 1;

14 for each i ∈ {1, . . . , m} do in parallel
15 x← Piv[⌊i/2k⌋];
16 if i ≤ x and R[x] ≤ m− (x− i)− 1 then C[i]⇐ False;
17 if i > x and C[i] = True then R[i]⇐ R[x]− (i− x) ;
18 k ← k − 1;

Sweeping stage
The sweeping stage is described in Algorithm 10. The sweeping stage updates C until
C[i] = True iff i is a pattern occurrence. All entries in C are updated at most once. Recall
that all candidates that survived from the dueling stage are pairwise consistent. In addition
to C, we will create a new integer array R[1 : m]. Throughout the sweeping stage, we have
the following invariant properties:

if C[x] = False, then Tx ̸≈ P ,
if C[x] = True, then LCP(Tx, P ) ≥ R[x].

The purpose of bookkeeping this information in R is to ensure that the sweeping stage
algorithm uses O(n) processors in each round. We do not want to access the same position
of the text for each candidate covering the position. For two consistent candidate positions
x and x + a with a > 0, once we have calculated the value r = LCP(Tx, P ), we know that
LCP(Tx+a, P ) ≥ r − a for free, i.e., T̃x+a[1 : r − a] = P̃ [1 : r − a]. Then it suffices to check
T̃x+a[r − a + 1 : m] = P̃ [r − a + 1 : m]. We keep the value r − a in R[x + a] for this trick, if
r − a ≥ 0. Throughout this section, we assume that a processor is attached to each position
of C and T .

For each stage k, C is divided into 2k-blocks. Unlike the preprocessing algorithm, k

starts from ⌈log m⌉ and decreases with each round until k = 0. Let us look at each round in
more detail. For the b-th 2k-block of C, we pick as the “pivot” the smallest index xk,b in the
second half of the 2k-block such that C[xk,b] = True. In Algorithm 10, we introduce array
Piv[0 : ⌊m/2k⌋] where Piv[b] = xk,b. For each xk,b, the algorithm computes LCP(Txk,b

, P )
exactly and store the value in R[xk,b] on Lines 11–13. Suppose that LCP(Txk,b

, P ) < m, i.e.,
Txk,b

̸≈ P and w = LCP(Txk,b
, P ) + 1 is the tight mismatch position. Since all surviving

candidate positions are pairwise consistent, if Txk,b
̸≈ P , then, any candidate Txk,b−a that

“covers” w cannot match the pattern. Generally, we have the following.
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Figure 4 Illustrating the sweeping stage. The shaded regions of the text T are referenced during
round k. Those referenced regions do not overlap.

▶ Lemma 21. If two candidate positions x and (x − a) with a > 0 are consistent and
LCP (Tx, P ) ≤ m− a− 1, then (x− a) is not an occurrence.

Based on Lemma 21, Algorithm 10 updates C[i] for indices i in the first half of each
2k-block at Line 16. On the other hand, at Line 17, the algorithm updates the values of R[i]
for indices i in the second half of the block if C[i] = True. Since the surviving candidates are
pairwise consistent, for candidate positions (xk,b +a) such that a > 0, Txk,b+a[1 : r] ≈ P [1 : r]
for r = R[xk,b] − a. In this way, the algorithm maintains the invariant properties. When
k = 0, all the 2k-blocks contain just one position x and R[x] is set to be exactly LCP(Tx, P )
by Lines 11–13, unless C[x] = False at that time. Then, if R[x] < m, then C[x] will be False
on Line 16. That is, when the algorithm halts, C[x] = True iff Tx ≈ P .

It remains to show the efficiency of the algorithm. We can prove the following lemmas.

▶ Lemma 22. Each round of the while loop of Algorithm 10 can be performed in O(ξt
m) time

with O(n) processors.

▶ Lemma 23. Given P̃ and T̃ , the sweeping stage algorithm finds all pattern occurrences in
O(ξt

m log m) time and O(ξw
m ·m log m) work on the P-CRCW PRAM.

By Theorem 9 and Lemmas 20 and 23, we obtain the main theorem. Recall that when
n ≥ 2m, T is cut into overlapping pieces of length (2m − 1) and each piece is processed
independently.

▶ Theorem 24. Given a witness table, P̃ , and T̃ , the pattern searching solves the pattern
searching problem under SCER in O(ξt

m · log3 m) time and O(ξw
m · n log2 m) work on the

P-CRCW PRAM.

4 Conclusion

Dueling [19] is a powerful technique, which enables us to perform pattern matching efficiently.
In this paper, we have generalized the dueling technique for SCERs and have proposed a
duel-and-sweep algorithm that solves the pattern matching problem for any SCER. Our
algorithm is the first algorithm to solve any SCER pattern matching problem in parallel.
Given a witness table, P̃ , and T̃ , we have shown that pattern searching under any SCER
can be performed in O(ξt

m log3 m) time and O(ξw
mn log2 m) work on P-CRCW PRAM. Given
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P̃ , a witness table can be constructed in O(ξt
m log2 m) time and O(ξw

m ·m log2 m) work on
P-CRCW PRAM. The third condition of ≈-encoding in Definition 3 ensures the generality
of our duel-and-sweep algorithm for SCERs. However, some standard encoding method of an
SCER, namely the nearest neighbor encoding for order-preserving matching, does not fulfill
the third condition. We do not know if there is an alternative encoding for order-preserving
matching that fulfills the condition and is computationally as cheap as the nearest neighbor
encoding. Nevertheless, Jargalsaikhan et al. [11, 12] succeeded in designing a parallel duel-
and-sweep algorithm for order-preserving matching using the nearest neighbor encoding,
which appears quite similar to the SCER algorithm proposed in this paper. In our future
work, we would like to investigate the relation between the encoding function and the dueling
technique and further generalize the definition of encoding so that it becomes more inclusive.
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A Examples of encoding

Prev-encoding for parameterized matching

For a string X of length n over Σ∪Π, where Π is an alphabet of parameter symbols and Σ is
an alphabet of constant symbols, the prev-encoding [4] for X, denoted by prevX , is defined
to be a string over Σ ∪ N of length n such that for each 1 ≤ i ≤ n,

prevX [i] =


X[i] if X[i] ∈ Σ,

0 if X[i] ∈ Π and X[i] ̸= X[j] for 1 ≤ j < i,

i− k if X[i] ∈ Π and k = max{j | X[j] = X[i] and 1 ≤ j < i}.

▶ Theorem 25. Given a string X of length n, prevX can be computed in O(log n) time and
O(n log n) work on P-CRCW PRAM. Moreover, given prevX , prevX[x:n][i] can be computed
in O(1) time and O(1) work.

Proof. Without loss of generality, we assume that Π forms a totally ordered domain. We
will construct the following string X ′ from X. We define a new symbol, say ∞, such that,
for any element π ∈ Π, π is less than ∞. For 1 ≤ i ≤ |X|, X ′[i] = X[i] if X[i] ∈ Π and
X ′[i] = ∞ if X[i] ∈ Σ. For X ′, we construct LmaxX′ , which is defined as LmaxX′ [i] = j

if X ′[j] = maxk<i{X ′[k] | X ′[k] ≤ X ′[i]}. We use the rightmost (largest) j if there exist
more than one such j < i. If there is no such j, then we define LmaxX′ [i] = 0. Suppose
that X[i] ∈ Π for 1 ≤ i ≤ |X|. After computing LmaxX′ , prevX [i] = i − LmaxX′ [i] if
X[i] = X[LmaxX′ [i]]. If LmaxX′ [i] = 0 or X[i] ̸= X[LmaxX′ [i]], then X[i] is the first
occurrence of this letter. Thus, prevX can be computed from LmaxX′ in O(1) time and O(n)
work. Since LmaxX′ can be computed in O(log n) time and O(n log n) work [12], overall
complexities are O(log n) time and O(n log n) work.

Given prevX , prevX[x:n][i] can be computed in the following manner in O(1) time and
O(1) work.

prevX[x:n][i] =
{

0 if X[x + i− 1] ∈ Π and prevX [x + i− 1] ≥ i,

prevX [x + i− 1] otherwise.
◀
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Parent-distance encoding for cartesian-tree matching

For a string X over a totally ordered alphabet, its parent-distance encoding [18] for cartesian-
tree matching PDX is defined as follows.

PDX [i] =
{

i−max1≤j<i{j | X[j] ≤ X[i]} if such j exists,
0 otherwise.

▶ Theorem 26. Given a string X of length n, PDX can be computed in O(log n) time and
O(n log n) work on P-CRCW PRAM. Moreover, given PDX , PDX[x:n][i] can be computed in
O(1) time and O(1) work.

Proof. For 1 ≤ i ≤ n, PDX [i] is the nearest smaller value to the left of X[i]. Since the
all-smaller-nearest-value problem can be solved in O(log n) time and O(n log n) work on P-
CRCW PRAM by Berkman et al. [5], PDX can be computed in O(log n) time and O(n log n)
work on P-CRCW PRAM.

Given PDX , PDX[x:n][i] can be computed in the following manner in O(1) time and O(1)
work.

PDX[x:n][i] =
{

0 if PDX [x + i− 1] ≥ i,

PDX [x + i− 1] otherwise.
◀

B Proofs

▶ Proposition 4. An equivalence relation ≈ is an SCER if and only if it admits an ≈-encoding.

Proof. It suffices to show the “if” direction. Suppose we have an ≈-encoding f . If X ≈ Y ,
then f(X) = f(Y ) by (4) of Definition 3. In this case, we have f(X[j : k])[i] = f(Y [j : k])[i]
for any 1 ≤ j ≤ k ≤ |X| and 1 ≤ i ≤ k − j + 1 by f(X)[i + j − 1] = f(Y )[i + j − 1], (3), and
(2). Hence, X[j : k] ≈ Y [j : k] by (4). ◀

▶ Lemma 6. Suppose w ∈ WP (a). Then,
if T̃x+a[w] = P̃ [w], then Tx ̸≈ P ,
if T̃x+a[w] ̸= P̃ [w], then Tx+a ̸≈ P .

Proof. If T̃x+a[w] ̸= P̃ [w], then by the fourth property of the ≈-encoding (Definition 3),
Tx+a ̸≈ P . If T̃x+a[w] = P̃ [w] ̸= P̃a+1[w], then by the third property of the ≈-encoding,
T̃x[w + a] ̸= P̃ [w + a], so Tx ̸≈ P . ◀

▶ Lemma 27. Suppose that a and b are periods of X. If a + b < |X|, then (b + a) is a period
of X. If a < b, then (b− a) is a period of X[1 : |X| − a].

This lemma implies that if p is a period of X, then so is qp for every positive integer
q ≤ ⌊(|X| − 1)/p⌋.

Proof. Let n = |X|. Since a is a period of X, by the definition X[1 : n− a] ≈ X[1 + a : n].
Thus, X[1 + b : n − a] ≈ X[a + b + 1 : n]. Similarly, since b is a period of X, by the
definition X[1 : n − b] ≈ X[1 + b : n]. Thus, X[1 : n − b − a] ≈ X[1 + b : n − a]. Thus,
X[1 + b : n− a] ≈ X[a + b + 1 : n] ≈ X[1 : n− b− a], which means that (b + a) is a period of
X.

Since a and b are period of X, X[1+b−a :n−a] ≈ X[1+b :n] and X[1:n−b] ≈ X[1+b :n].
Thus, by the transitivity property, (b− a) is a period of X[1 : n− a]. ◀
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Figure 5 Suppose that a and b are periods of X. If a + b < |X|, then (b + a) is a period of X. If
a < b, then (b − a) is a period of X[1 : |X| − a].
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Figure 6 For candidate positions a < b < c, if a is consistent with b and b is consistent with c,
then a is consistent with c.

▶ Lemma 7. For any a, b, c such that 0 < a ≤ b ≤ c < m, if a is consistent with b and b is
consistent with c, then a is consistent with c.

Proof. By Lemma 27. ◀

▶ Lemma 11. For round k, suppose the preprocessing invariant holds true and WP (pk) ̸= ∅.
Then, when SatisfySparsity is about to be called at Line 10 of Algorithm 3, for any two
positions i and j of Headk+1 such that 0 < j − i < 2k+1, it holds that j + W [j − i] ≤ m.

Proof. Let a = j − i and w = W [a]. Recall that a belongs to the first 2k+1-block and
W [a] is updated only if a = pk. Suppose a ̸= pk. At the beginning of round k, by the
invariant property, we have w ≤ |Tailk| + 2k. Since j < |Headk+1| = m − |Tailk+1|,
j + w ≤ j + |Tailk| + 2k < m − |Tailk+1| + |Tailk| + 2k. Since |Tailk+1| − |Tailk| ≥ 2k,
m− |Tailk+1|+ |Tailk|+ 2k < m. Thus, j + w ≤ m.

If a = pk, w = W [pk] is the tight witness for offset pk, i.e., w = LCPP (pk) + 1. Since
|Tailk+1| ≥ LCPP (pk), j + w ≤ j + |Tailk+1|+ 1. Since j < |Headk+1|, j + |Tailk+1|+ 1 ≤
|Headk+1|+ |Tailk+1| ≤ m. We have proved that j + w ≤ m. ◀

▶ Lemma 12. At the beginning of round k, for all i ∈ {0, . . . , 2k−1}, it holds W [i] ≤ |Tailk|+1
and for all i ∈ {2k, . . . , |Headk| − 1}, it holds W [i] ≤ |Tailk|+ 2k.

Proof. We show the lemma by induction on k. At the beginning of round 0, every element
of W is zero and |Tail0| = 0, thus, the claim holds. We will show that the lemma holds for
k + 1 assuming that it is the case for k.

Suppose i < 2k+1 and i ̸= pk. Then W [i] is not updated. By induction hypothesis,
W [i] ≤ |Tailk|+ 2k ≤ |Tailk+1| holds. Suppose i = pk. If WP (pk) = ∅, the algorithm sets
W [pk] = 0 and thus the claim holds. If WP (pk) ̸= ∅, the algorithm sets W [pk] to the tight
witness LCPP (pk) + 1. Thus, W [pk] = LCPP (pk) + 1 ≤ |Tailk+1|+ 1.
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1 w m− b

b− a + 1 w + b− a m− a

LCPP (p)

a

b

Figure 7 For offsets a, b such that m − LCPP (p) ≤ b < m and a ≡ b (mod p), if w ∈ WP (b),
then (w + b − a) ∈ WP (a).

Suppose 2k+1 ≤ i < |Headk+1|. If Algorithm 5 does not update W [i], by the induction
hypothesis, W [i] ≤ |Tailk|+ 2k < |Tailk+1|+ 2k+1 holds. Suppose Algorithm 5 updates W [i]
or W [j] by a duel between i and j, where 2k+1 ≤ i < j < |Headk+1| and a = j − i < 2k+1.
We have shown above that W [a] ≤ |Tailk+1|+ 1. If i wins the duel, then W [j] = W [a] ≤
|Tailk+1|+1 ≤ |Tailk+1|+2k+1. If j wins the duel, then W [i] = W [a]+a ≤ |Tailk+1|+1+a ≤
|Tailk+1|+ 2k+1. ◀

▶ Lemma 14. Suppose m− LCPP (p) ≤ b < m. If w ∈ WP (b), then (w + b− a) ∈ WP (a)
for any offset a such that 0 ≤ a ≤ b and a ≡ b (mod p).

Proof. Figure 7 may help understanding the proof. Suppose w ∈ WP (b), i.e., P̃b+1[w] ̸= P̃ [w].
Since p is a period of P [1 : LCPP (p)] and a ≡ b (mod p), by Lemma 27, (b − a) is also
a period of P [1 : LCPP (p)], i.e., P [1 + b − a : LCPP (p)] ≈ P [1 : LCPP (p) − (b − a)].
Particularly for the position w ≤ m − b ≤ m − a, we have P̃b−a+1[w] = P̃ [w]. Then,
P̃b−a+1[w] ̸= P̃b+1[w] by the assumption (Figure 7). By Property (3) of the ≈-encoding
(Definition 3), P̃1[b− a + w] ̸= P̃a+1[b− a + w]. That is, (w + b− a) ∈ WP (a). ◀

▶ Theorem 9. Given P̃ , the pattern preprocessing Algorithm 3 computes a witness table in
O(ξt

m · log2 m) time and O(ξw
m ·m log2 m) work on the P-CRCW PRAM.

Proof. When the algorithm halts, by 2k ≤ tail, the head size is at most 2k. Therefore, the
head is zero-free except for W [0] = 0 by the 2k-sparsity. By the invariant, W [i] ∈ WP (i) for
all the positions of the head. On the other hand, every position of the tail is finalized and
has a correct value in the witness table.

In Algorithm 3, the while loop runs O(log m) times, and each loop takes O(ξt
m log m)

time and O(ξt
m · m log m) work, by Lemmas 13 and 15. Thus, the overall complexity of

Algorithm 3 is O(ξt
m · log2 m) time and O(ξt

m ·m log2 m) work. ◀

▶ Lemma 17. If i ≤ ı̂, then row i consists only of non-positive elements. Similarly, if j ≥ ȷ̂,
then column j consists only of non-negative elements.

Proof. We prove the first half of the lemma. The second claim can be proven in the same
way. Let us consider i = ı̂. Since ı̂ is a pattern occurrence, for any j that ı̂ is not consistent
with, ı̂ always wins the duel. Thus, if G[̂ı][j] ̸= 0, then G[̂ı][j] = −1. Now, let us consider
i < ı̂. For any j ∈ B, i < ı̂ < j. Since A is a consistent set and ı̂ is a pattern occurrence,
if i is not consistent with j, i always wins any duel against j. Thus, if G[i][j] ̸= 0, then
G[i][j] = −1. ◀

▶ Lemma 18. There always exists a pair (i, j) such that i ≤ |A|, j ≥ 1, G[i][j] = 0,
G[i][j − 1] = −1 and G[i + 1][j′] = 1 for some j′. For such (i, j), it holds that Â ∪ B̂ ⊆
A≤A[i] ∪ B≥B[j], assuming A≤A[0] = B≥B[|B|+1] = ∅.
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Figure 8 Before round k, for two surviving candidates Ti and Tj such that j − i ≥ 2k, i + m − 1 <

j + Rk[j].

Proof. Let i = max{ i′ | G[i′][j′] ≤ 0 for all j′ } and j = min{ j′ | G[i][j′] = 0 }. It is easy to
see that those are well-defined and satisfy the desired condition.

Suppose (i, j) satisfies the condition. Since G[i′][j′] ≤ 0 for all i ≤ ı̂ and j′ by Lemma 17,
G[i + 1][j′] = 1 means that i + 1 > ı̂, i.e., i ≥ ı̂. Similarly, G[i][j − 1] = −1 means j ≤ ȷ̂. ◀

▶ Lemma 21. If two candidate positions x and (x − a) with a > 0 are consistent and
LCP (Tx, P ) ≤ m− a− 1, then (x− a) is not an occurrence.

Proof. Let w = LCP (Tx, P ) + 1. Then w ≤ m− a and Tx[1 : m− a] ̸≈ P [1 : m− a]. Since
x is consistent with (x− a), P [a + 1 : m] ≈ P [1 : m− a] ̸≈ Tx[1 : m− a] ≈ Tx−a[a + 1 : m],
which means that (x− a) is not a pattern occurrence. ◀

Lemma 22 follows from Lemma 28.

▶ Lemma 28. After the round k, for two surviving candidate positions i and j with i < j

that do not belong to the same 2k−1-block of C, i + m ≤ j + R[j].

Proof. Before round ⌈log m⌉, which can be seen as after round ⌈log m⌉+1, since all candidate
positions belong to the same 2⌈log m⌉-block, the statement holds (base case). Assuming that
the statement holds after the round (k + 1), we prove that it also holds after the round k.
Let Rk+1 and Rk be the states of the array R after the rounds (k + 1) and k, respectively.
First, let us consider the case when surviving candidate positions i and j do not belong to
the same 2k-block of C. Obviously, i and j cannot belong to the same 2k−1-block. By the
induction hypothesis, i + m ≤ j + Rk+1[j]. Since Rk[j] ≥ Rk+1[j], i + m ≤ j + Rk[j].

Now, let us consider the case when candidate positions i and j belong to the same
2k-block of C. During round k, for each 2k-block of C, Algorithm 10 chooses as surviving
candidate position xk,b which is the smallest index in the second half of the 2k-block.
Thus, two surviving candidates positions i and j of the b-th 2k-block belong to different
2k−1-blocks iff i < xk,b ≤ j. For Ti to be a surviving candidate after round k, it must
be the case that m + i ≤ LCP(Txk,b

, P ) + xk,b. For Tj , Algorithm 10 updates Rk[j] to
LCP(Txk,b

, P ) − (j − xk,b). Substituting it into the previous inequality, we get m + i ≤
Rk[j] + (j − xk,b) + xk,b = Rk[j] + j. ◀

▶ Lemma 22. Each round of the while loop of Algorithm 10 can be performed in O(ξt
m) time

with O(n) processors.

Proof. Obviously it runs in constant time except for the computation at Line 11, where
each processor attached to position i is used for re-encoding T̃ [i] into T̃x[i − x + 1] and
comparing the value with P̃ [i− x + 1] for some x. Indeed, there is at most one b such that
xk,b + R[xk,b] ≤ i < xk,b + m, since xk,b−1 + m ≤ xk,b + R[xk,b] for all b ∈ {1, . . . , ⌈m/2k⌉}
by Lemma 28. ◀
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Abstract
We present a new semi-external algorithm that builds the Burrows–Wheeler transform variant of
Bauer et al. (a.k.a., BCR BWT) in linear expected time. Our method uses compression techniques
to reduce the computational costs when the input is massive and repetitive. Concretely, we build
on induced suffix sorting (ISS) and resort to run-length and grammar compression to maintain our
intermediate results in compact form. Our compression format not only saves space, but it also
speeds up the required computations. Our experiments show important savings in both space and
computation time when the text is repetitive. On average, we are 3.7x faster than the baseline
compressed approach, while maintaining a similar memory consumption. These results make our
method stand out as the only one (to our knowledge) that can build the BCR BWT of a collection
of 25 human genomes (75 GB) in about 7.3 hours, and using only 27 GB of working memory.
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1 Introduction

The Burrows–Wheeler transform (BWT) [6] is a reversible string transformation that reorders
the symbols of a text T according the lexicographical ranks of its suffixes. The features of
this transform have turned it into a key component for text compression and indexing [32, 25].
In addition to being reversible, the reordering produced by the BWT reduces the number
of equal-symbol runs in T , thus improving the compresibility. On the other hand, its
combinatorial properties [10] enable the creation of self-indexes [9, 28] that support pattern
matching in time proportional to the pattern length. Popular bionformatic tools [18, 21]
rely on the BWT to process data, as collections in this discipline are typically massive and
repetitive, and the patterns to search for are short.

There are several algorithms in literature that produce the BWT in linear time [34, 1,
23, 8, 3]. Nevertheless, the computational resources their implementations require when the
input is large are still too high for practical purposes. This problem is particularly evident
in Genomics applications, where the amount of data is growing at an astronomical rate [35].

Although genomic collections are becoming more and more massive, the effective inform-
ation they contain remains low compared to their sizes [27]. A promising solution to deal
with this kind of data is then to design BWT algorithms that scale with the amount of
information in the collection, not with its size.
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29:2 Efficient Construction of the BWT Using String Compression

Motivated by these ideas, some authors have developed new BWT algorithms that exploit
text repetitions to reduce the computational requirements [14, 5, 13, 15, 4]. Their approach
consists of extracting a set of representative strings from the text, perform calculations
on them, and then extrapolate the results to the copies of those strings. For instance,
the methods of Boucher et al. [5, 4] based on prefix-free parsing (PFP) use Karp–Rabin
fingerprints [12] to create a dictionary of prefix-free phrases from T . Then, they create a
parse by replacing the phrases in T with metasymbols, and finally construct the BWT using
the dictionary and the parse. Similarly, Kempa et al. [14] consider a subset of positions in T

that they call a string synchronizing set, from which they compute a partial BWT they then
extrapolate to the whole text.

Although these repetition-aware techniques are promising, some of them are at a theoret-
ical stage [14, 13, 15], while the rest [5, 4] have been empirically tested only under controlled
settings, and their results depend on parameters that are not simple to tune. Thus, it is
difficult to assess their performance under real circumstances.

Recently, Nunes et al. [31] proposed a method called GCIS that adapts the concept of
induced suffix sorting (ISS) for compression. Their ideas are closely related to the linear-time
BWT algorithm of Okanohara et al. [34]. Briefly, Okanohara et al. cut the text into phrases
using ISS, assign symbols to the phrases, and then replace the phrases with their symbols.
They apply this procedure recursively until all the symbols in the text are different. Then,
when they go back from the recursions, they induce an intermediate BWT i for the text of
every recursion i using the previous BWT i+1. On the other hand, GCIS stores the dictionaries
that ISS generates in the recursions in a context-free grammar. The connection between
these two methods is that GCIS captures in the grammar precisely the information that
Okanohara et al. use to compute the BWT. Additionally, Díaz-Domínguez et al. [7] recently
demonstrated that ISS-based compressors such as GCIS require much less computational
resources than state-of-the-art methods like RePair [19] to encode the data, while maintaining
high compression ratios. The simple construction of ISS makes it an attractive alternative to
process high volumes of text. In particular, combining the ideas of Okanohara et al. with
ISS-based compression is a promising alternative for computing big BWTs.

Our contribution. Induced suffix sorting (ISS) [17] has proved useful for compression [31, 7]
and for constructing the BWT [34]. In this work, we show that compression can be
incorporated in the internal stages of the BWT computation in a way that saves both
working space and time. Okanohara et al. [34] use ISS to construct the BWT in recursive
stages of parsing (which cuts the text into metasymbols) and partial construction of the
BWT of the metasymbols; the final BWT is obtained when returning from the recursion. We
use a technique similar to grammar compression to store the dictionaries of metasymbols, and
run-length compression for the partial BWTs. This approach is shown not only to save the
space required for those intermediate results, but importantly, the format we choose actually
speeds up the computation of the final BWT as we return from the recursion, because the
factorizations that help save space also save redundant computations. Unlike Okanohara
et al., we receive as input a string collection and output its BCR BWT [1], a variant for
string collections. The reason is that massive datasets usually contain multiple strings, in
which case the BCR BWT variant is simpler to construct. Our experiments show that,
when the input is a collection of human genomes (a repetitive dataset), our implementation
requires 3.7x less computation time than ropeBWT2 [21], an efficient implementation of the
BCR BWT algorithm. Additionally, we use 7.6x less working memory than pfp-ebwt [4], a
recent method that uses an strategy similar to ours. Under not so repetitive scenarios, our
performance is competitive with BCR_LCP_GSA [1] or gsufsort [8].
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2 Related Concepts

2.1 The Burrows–Wheeler Transform
Consider a string T [1, n − 1] over alphabet Σ[2, σ], and the sentinel symbol Σ[1] = $, which
we insert at T [n]. The suffix array [26] of T is a permutation SA[1, n] that enumerates
the suffixes T [i, n] of T in increasing lexicographic order, T [SA[i], n] < T [SA[i + 1], n], for
i ∈ [1, n − 1].

The Burrows–Wheeler transform (BWT) [6] is a reversible string transformation that
stores in BWT [i] the symbol that precedes the ith suffix of T in lexicographical order, i.e.,
BWT [i] = T [SA[i] − 1] (assuming T [0] = T [n] = $).

The mechanism to revert the transformation is the so-called LF mapping. Given an
input position BWT [j] that maps a symbol T [i], LF(j) = j′ returns the index j′ such
that BWT [j′] = T [i − 1] maps the preceding symbol of T [i]. Thus, spelling T reduces to
continuously applying LF from BWT [1], the symbol to the left of T [n] = $, until reaching
BWT [j] = $.

The BCR BWT [1] is a variant of the original BWT that encodes a string collection
T = {T1, T2, . . . , Tk} instead of a single string T . Briefly, if two (or more) symbols a =
Tx[k] and b = Ty[k′], from different strings Tx, Ty ∈ T , are preceded by identical suffixes
Tx[k + 1..] = Ty[k′ + 1..], the order of a and b in BWT is the same as the relative order of Tx

and Ty in T . The BCR BWT also appends sentinel symbols $ to the strings of T to detect
their boundaries in the BWT. A position BWT [j] = $ represents the start of a string Tu,
and BWT [LF(j)] maps the end of a string Tu′ ∈ T that is not necessarily Tu.

2.2 Grammar and Run-length Compression
Grammar compression [16] consists of encoding a text T as a small context-free grammar
G that only produces T . Formally, a grammar is a tuple (V, Σ, R, S), where V is the set of
nonterminals, Σ is the set of terminals, R is the set of replacement rules and S ∈ V is the
start symbol. The right-hand side of S → C ∈ R is referred to as the compressed form of T .
The size of G is usually measured in terms of the number of rules, the sum of the lengths of
the right-hand sides of R, and the length of the compressed string.

Run-length compression encodes the equal-symbol runs of maximal length in T as pairs.
More specifically, T becomes a sequence (a1, l1), (a2, l2), . . . , (an′ , ln′) of n′ ≤ n pairs, where
every (ai, li), with i ∈ [1, n′], stores the symbol ai ∈ Σ of the ith run and its length li ≥ 1.
For instance, let T [i, j] = aaaa be a substring with four consecutive copies of a, where
T [i − 1] ̸= a and T [j + 1] ̸= a. Then T [i, j] compresses to (a, 4).

2.3 Induced Suffix Sorting
Induced suffix sorting (ISS) [17] computes the lexicographical ranks of a subset of suffixes in
T and then uses the result to induce the order of the rest. This method is the underlying
procedure in several algorithms that build the suffix array [30, 29, 22] and the BWT [34, 5]
in linear time. The ISS idea introduced by the suffix array algorithm SA-IS of Nong et al. [30]
is of interest to this work. The authors give the following definitions:

▶ Definition 1. A symbol T [i] is called L-type if T [i] > T [i + 1] or if T [i] = T [i + 1] and
T [i + 1] also L-type. On the other hand, T [i] is said to be S-type if T [i] < T [i + 1] or if
T [i] = T [i + 1] and T [i + 1] is also S-type. By definition, symbol T [n], the one with the
sentinel, is S-type.
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▶ Definition 2. A symbol T [i], with i ∈ [1, n], is called leftmost S-type, or LMS-type, if T [i]
is S-type and T [i − 1] is L-type.

▶ Definition 3. An LMS substring is (i) a substring T [i, j] with both T [i] and T [j] being LMS
symbols, and there is no other LMS symbol in the substring, for i ̸= j; or (ii) the sentinel
itself.

SA-IS is a recursive method. In every recursion i, it initializes an empty suffix array Ai

for the input text T i (i=1). Then, it scans T i from right to left to classify the symbols as
L-type, S-type or LMS-type. As it moves through the text, the algorithm records the text
positions of the LMS substrings in Ai. More specifically, if T i[j] = a is the first symbol of an
LMS substring, it inserts j in the right-most empty position in the bucket a of Ai. After
scanning T i, SA-IS sorts the LMS substrings in Ai using ISS. This procedure only requires
two linear scans of Ai (we refer the reader to Nong et al. [30] for further detail).

ISS sorts the LMS substrings in a way that is slightly different from lexicographic ordering,
we refer to it as ≺LMS ordering. In particular, if an LMS substring T i[a, b] is a prefix of
another LMS substring T i[a′, b′], then T i[a, b] gets higher order. However, the higher rank of
T i[a, b] implies that the suffix T i[a..] is lexicographically greater than the suffix T i[a′..]. The
cause of this property is explained in Section 2 of Ko and Aluru [17].

The idea now is to use the sorted LMS substrings to induce the order of the suffixes in T i

that are not prefixed by LMS substrings. Still, LMS substring with the same sequence are
still unsorted in Ai. Nong et al. solve this problem by creating a new string T i+1 in which
they replace the distinct LMS substrings with their orders in Ai, and use T i+1 as input for
another recursive call i + 1. The base case for the recursion is when all the suffixes in Ai are
prefixed by different symbols, in which case they return Ai without further processing.

When the (i + 1)th recursive call ends, the suffixes of T i prefixed by the same LMS
substrings are completely sorted in Ai+1, so SA-IS proceeds to complete Ai. For doing so, it
resets Ai, inserts the LMS substrings arranged as they respective symbols appear in Ai+1,
and performs ISS again to reorder the unsorted suffixes of T i. Once it finishes, it passes Ai

to the previous recursion i − 1. The final array A1 is the suffix array for T .

3 Methods

3.1 Definitions
We consider a collection T = {T1, T2, . . . , Tk} of k strings over the alphabet Σ[2, σ]. The
input for our algorithm is thus the sequence T = T1$T2 . . . Tk$ of total length n = |T | that
represents the concatenation of T . The symbol $ is a sentinel that we use as a boundary
between consecutive strings in T . We map $ = Σ[1] to the smallest symbol in the alphabet.

Let D = {D1, D2, . . . , Dy} be a string set that is not suffix-free. A suffix Dj [u..], with
Dj ∈ D, is proper if 1 < u ≤ |Dj |. Additionally, we consider a suffix Dj [u..], with Dj ∈ D,
to be left-maximal if there is at least one other suffix Dj′ [u′..], with Dj′ ∈ D, such that (i)
j ≠ j′, (ii) Dj′ [u′..] = Dj [u..], and (iii) both Dj′ [u′..] and Dj [u..] are proper suffixes with
Dj′ [u′ − 1] ̸= Dj [u − 1] or one of them is not a proper suffix.

3.2 Overview of Our Algorithm
We call our algorithm for computing the BCR BWT of T grlBWT. This method relies on the
ideas developed by Nong et al. in the SA-IS algorithm (Section 2.3), but includes elements of
grammar and run-length compression (Section 2.2). These new features reduce the space
usage of the temporal data that grlBWT maintains in memory, thus decreasing both working
memory and computing time. We now give a brief overview of our approach.
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Our method works in two phases: the parsing phase and the induction phase. The parsing
phase is similar to the recursive steps of SA-IS. In every iteration i (or parsing round), we
first scan the input string T i (T 1 = T ) to build a dictionary Di with the phrases that occur
as LMS substrings. We also record the frequency of every phrase, i.e., the number of times
it occurs as an LMS substring in T i. Subsequently, we use the phrases in Di and their
frequencies to construct a preliminary BWT for T i (pBWT i), which we complete in the
induction phase. We say pBWT i is partial because it has empty spaces we can not fill just
with the information in Di. To make the completion more efficient during the induction
phase, we encode pBWT i using run-length compression and Di using a technique similar to
grammar compression. Finally, we store pBWT i and Di on disk, and create a new text T i+1

for the next parsing round i + 1. We construct T i+1 by replacing the LMS substrings of T i

with their associated symbols in Di. The parsing phase finishes when no new dictionary
phrases can be extracted from the input text T i (see Section 3.3).

Let h be the number of iterations the parsing phase of grlBWT incurred with T . The
induction phase starts by building the BWT for T h. After obtaining BWT h, we start a new
iterative process in which we revisit the data we dumped to disk during the parsing phase in
reverse order (i.e., from round h − 1 to round 1). In every iteration i, the BWT i+1 of T i+1

is already computed, and we use it along with compressed version of Di to induce the order
of the symbols in the empty entries of pBWT i. Once we finish the induction, we compact
pBWT i using run-length encoding to create BWT i. The final BCR BWT for T is thus in
BWT 1.

3.3 The Parsing Phase

In this section, we explain the steps we perform during the ith iteration of the parsing phase
of grlBWT. Assume we receive as input a text T i over the alphabet Σi = [1, σi]. We first
initialize a hash table Hi that we will use to construct the dictionary Di. The keys in Hi

will be the phrases that occur as LMS substrings in T i while the values of Hi will be the
frequencies of the keys, i.e., the number of times the keys occur as LMS substrings in T i.

The basic idea to fill Hi consists of scanning T i from right to left to classify its symbols
according the definitions of Section 2.3, and hash an LMS subtring every time we reach an
LMS-type symbol. This mechanism is almost the same as the one described by Nong et
al. [30] to detect the LMS substrings (except for the hashing). However, we add an extra
consideration. The detection of LMS substrings is oblivious of the fact that T 1 encodes a
string collection rather than a single string. More precisely, in any parsing round i > 1, we
could have an LMS substring of T i whose expansion1 produces a substring of T 1 that covers
two or more strings of T . These border phrases make the computation of the BCR BWT a
bit more difficult as we need to treat them differently. We avoid this problem by maintaining
a bit vector Bi[1, σi] that marks which symbols in T i expand to suffixes of strings in T .
Thus, during the right-to-left scan of T i, each time we reach a position T i[j], such that
Bi[T i[j]] = 1, we truncate the active LMS substring. We record the phrase F = T i[j + 1, j′]
in Hi, where T [j′] is the last LMS-type symbol we accessed, and start a new phrase from
position T i[j]. Notice that the truncated strings are not LMS substrings by definition, but

1 Let T i[j, j′] be a substring of T i. We define the expansion of T i[j, j′] as the string in Σ1 we obtain
by recursively replacing every symbol T i[j] ∈ Σi, for j ∈ [j, j′], with its corresponding phrases in the
dictionaries Di−1, Di−2, . . . , D1.
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they do not affect our algorithm (the reasons are explained in Definition 4 and Lemma 3 of
Díaz-Domínguez et al. [7]). We receive Bi as input along with T i at the beginning of the
parsing round i, and we compute the next Bi+1[1, σi+1] when we finish the round.

For practical reasons, we change the representation of Di, encoded in Hi for the moment,
to a more convenient data structure. First, we concatenate all the keys of Di in one single
vector Ri. We mark the boundaries of consecutive phrases in Ri with a bit vector Li in
which we set Li[j] = 1 if Ri[j] is the first symbol of a phrase, and set Li[j] = 0 otherwise. We
also augment Li with a data structure that supports rank1 queries [33] to map each symbol
Di[j] to its corresponding phrase. We store the values of Di in another vector N i[1, |Di|].
We maintain the relative order so that the value N i[o] maps the oth phrase we inserted into
Ri. For simplicity, we will refer to the representation (Ri, Li, N i) just like Di. We still need
Hi to construct the parse T i+1, so we do not discard it but store it into disk.

The next step is to build pBWT i from Di. For that purpose, we use the following
observations:

▶ Lemma 4. Let X[1, x] and Y [1, y] be two different strings over the alphabet Σi, with lengths
x > 1 and y > 1 (respectively). Assume both occur as suffixes in one or more phrases of Di.
Let X be the list of positions in T i where X occurs as a suffix of an LMS substring. More
specifically, each j ∈ X is a position such that T i[j, j + x − 1] is an occurrence of X and
T i[j − j′, j + x − 1], with j′ ≥ 0, is an LMS substring. Let us define a list Y equivalent to X ,
but for Y . If X ≺LMS Y (see Section 2.3), then all the suffixes of T i starting at positions in
X are lexicographically greater than the suffixes starting at positions in Y.

Proof. Assume first that X is not a prefix of Y (and vice versa). We compare the sequences
of these strings from left to right until we find a mismatching position u (i.e., X[u] ̸= Y [u]).
We know that symbols X[u] and Y [u] define the lexicographical order of the suffixes in X
relative to the suffixes in Y. In the other scenario, when one string is a prefix of the other,
we can not use this mechanism as we will not find a mismatching position X[u] ̸= Y [u]. For
this case, we resort to the symbol types of Section 2.3. We assume for this proof that X is
a prefix of Y , but the other way is equivalent. We know that X[x] and Y [x] have different
types. X[x] is LMS type because X is a suffix of an LMS substring. On the other hand, Y [x]
is L type because if it were S type, then it would also be LMS type, and thus Y [1, x] would
be an occurrence for X. This observation is due to Y [x − 1] = X[x − 1] is L type. Given
the types of X[x] and Y [x], the occurrences of X in X are always followed in T i by symbols
that are greater than Y [x + 1], meaning that the suffixes of T i starting at positions in X are
lexicographically greater than the suffixes starting at positions in Y. This observation does
not hold when X or Y have length one: X[x] equals Y [1] and both are LMS type, so there is
no enough information to decide the lexicographical order of the suffixes in X and Y. ◀

The consequence of Lemma 4 is that the suffixes of length > 1 in Di induce a partition
over SAi (the suffix array of T i):

▶ Lemma 5. Let S = {S1, S2, . . . , Sk} be the set of strings of length > 1 that occur as suffixes
in the phrases of Di. Additionally, let O = {O1, O2, . . . , Ok} be the set of occurrences in T i

for the strings in S. For every Su ∈ S, its associated list Ou ∈ O stores each position j such
that T i[j, j + |Sj | − 1] is an occurrence of Su and T i[j − j′, j + |Sj | − 1], with j′ ≥ 0, is an
LMS substring. It holds that O induces a partition over the suffix array of T i (SAi) as the
lexicographical sorting places the elements of each Ou ∈ O in a consecutive range of SAi.



D. Díaz-Domínguez and G. Navarro 29:7

Proof. We demonstrate the lemma by showing that the lexicographical sorting does not
interleave suffixes of T i in SAi that belong to different lists of O. Assume a string Su ∈ S,
associated with the list Ou ∈ O, is a prefix in another string Su′ ∈ S, which in turn is
associated with the list Ou′ ∈ O. Even though we do not know the symbols that occur to the
right of Su in its occurrences of Ou, we do know that both Su and Su′ are suffixes of LMS
substrings, and by Lemma 4, we know that all the suffixes of T i in Ou are lexicographically
greater than the suffixes in Ou′ . Hence, the interleaving of suffixes in SAi from different lists
of O is not possible, even if S is not a prefix-free set. ◀

Lemma 5 gives us a simple way to construct the preliminary BWT for T i (pBWT i). We
consider for the moment pBWT i to be a vector of lists to simplify the explanations. We first
sort the strings of S in ≺LMS order. Then, for every oth string S ∈ S in ≺LMS order, we
insert in the list pBWT i[o] the symbols that occur to the left of S in Di. There are three
cases to consider for this task:

▶ Lemma 6. Let S ∈ S be the string with ≺LMS order o among the other strings in S. If S

is left-maximal in Di, then the list pBWT i[o] contains more than one distinct symbol, and it
is not possible to decide the relative order of those symbols with the information of Di.

Proof. Let X and Y be two phrases of Di where S occurs as a suffix. Assume the left symbol
of S in X is x ∈ Σi and the left symbol in Y is y ∈ Σi. In this scenario, the relative order of
x and y is not decided by S, but for the sequences that occur to the right of X and Y in T i.
However, those sequences are not accessible directly from Di. Hence, it is not possible to
decide the order of x and y in pBWT i[o]. ◀

▶ Lemma 7. Consider the string S ∈ S of Lemma 6. When S occurs as a non-proper suffix
in a phrase F ∈ Di, it is not possible to complete the sequence of symbols for pBWT i[o].

Proof. The symbols that occur to the left of S in T i are stored in the LMS substrings that
precede F in T i. However, it is not possible to know from Di which are those substrings. ◀

We now describe the information of pBWT i that we can extract from Di:

▶ Lemma 8. Let S ∈ S be the string of Lemma 6. Additionally, let O ∈ O be the list of
occurrences of S in T i as described in Lemma 5. If all the suffixes of T i in O are preceded
by the same symbol s ∈ Σi (i.e., S is not left-maximal), then pBWT i[o] = (s, l) is an
equal-symbol run of length l = |O|, where o is the ≺LMS order of S in S.

Proof. By Lemma 5, we know that the suffixes of T i in O are prefixed by S, and that they
form a consecutive range SAi[j, j′]. Additionally, the symbols that occur to the left of the
suffixes in SAi[j, j′] are those for the list of pBWT i[o]. However, we still have not resolved
the relative order of the suffixes in SAi[j, j′], so (in theory) we do not know how rearrange
the symbols in pBWT i[o]. The suffixes of T i in O are preceded by the same symbol s, so it
is no necessary to further sort SAi[j, j′] because the outcome for pBWT i[o] will be always
an equal-symbol run for s of length l = |O|. ◀

The problem is that we do not store O, so we do not know value for l in (s, l). Nevertheless,
we do have the frequencies of the phrases in Di, in the vector N i. In this way, we can
compute l by summing the frequencies in N i for the phrases of Di where S occurs as a suffix.

Now that we have covered all the theoretical aspects of the parsing phrase, we proceed to
describe our procedure to build pBWT i.
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3.3.1 Constructing the Preliminary BWT for the Parsing Round
The computation of pBWT i starts with the construction of a generalized suffix array SADi

for Di. We say SADi is generalized because it only considers the suffixes of the dictionary
phrases. If a string S ∈ S appears as a suffix in two or more phrases, those occurrences
maintain in SADi the relative order in which their enclosing phrases appear in Di. In practice,
the values we store in SADi are the positions in Ri, the vector storing the concatenated
phrases of Di (see the encoding of Di in Subsection 3.3).

We compute SADi using a modified version of the ISS method mentioned in Subsection 2.3.
The first difference is that, in step one, we insert in SADi the position in Ri of the last
symbol of each phrase. Put it another way, suppose Ri[j], with Li[j + 1] = 1, is the last
symbol of a phrase F , then we insert j in the right-most available cell in the bucket Ri[j] of
SADi . The step one in the original ISS puts LMS-type symbols at the end of the buckets. In
our case, the last symbol of a phrase is, by definition, LMS type in T i, so the operation is
homologous. The second difference of our ISS variation is that, during step two and three,
we skip each position SADi [u] representing the start of a phrase (Li[SADi [u]] = 1) as they
do not induce suffixes.

The next step is to scan SADi from left to right to compute pBWT i. From now on, we
consider pBWT i to be a run-length compressed vector instead of a vector of lists. As we
move throughout the suffix array, we search for every range SADi [j, j′], with j′ − j + 1 ≥ 1,
that encode suffixes with the same sequence2. Nevertheless, we consider only the ranges that
either represent suffixes of length > 1 or suffixes of length 1 that expand to suffixes of T .
Recall that the left-most symbol of an LMS substring is the same as the right-most symbol
of the LMS substring that precedes it. Hence, considering all the suffixes in Di will produce
a redundant (and incorrect) BWT. The only exception to this rule are the LMS substrings
at the beginning of the strings of T as they do not share a symbol with the LMS substring
to their left. This kind of substrings only appear when we cross from Tu+1 to Tu in T i, with
Tu, Tu+1 ∈ T . We can detect this situation using Bi, the bit vector marking the symbols in
Σi that expand to suffixes of strings in T (see Section 3.3).

We define the length of SADi [j, j′] as l =
∑j′

u=j N i[rank(Li, SADi [u])]. This value is the
sum of the frequencies of the phrases where the suffixes in SADi [j, j′] occur.

If all the suffixes of SADi [j, j′] are followed by the same symbol s ∈ Σi, we append (s, l)
to pBWT i (see Lemma 8). Otherwise we append (*, l). The symbol * represents an empty
entry and it is out of Σi. We will resolve (*, l) in the next phase of grlBWT (see Lemmas 6
and 7). After scanning SADi , we store pBWT i into disk and discard SADi .

3.3.2 Grammar Compression and Next Parsing Round
Once we finish constructing pBWT i, the next step in the parsing round i is to store Di in a
compact form to use it later during the induction phase of grlBWT. We first explain why we
need Di during the induction phase and then describe the format we choose to encode it.

Broadly speaking, the induction process consists of scanning BWT i+1 from left to right,
mapping every symbol BWT i+1[j] ∈ Σi+1 back to the phrase F ∈ Di from which it originated,
and then checking which of the proper suffixes of F produced empty entries in pBWT i (see
Lemmas 6 and 7). Assume the suffix F [u..] = S ∈ S produced an empty entry, then we
append F [u − 1] in the BWT range associated with S (see Lemma 5).

2 In practice, we compute every distinct range SADi [j, j′] during the construction of the suffix array.
We reserve the least significant bit in the cells of SADi to mark every position SADi [j]. We flag these
positions during the execution of our modified version of ISS (Section 2.3).
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The process described above requires Di and a mechanism to map the left-maximal
suffixes in Di back to the empty entries they produce in pBWT i. We solve the problem by
encoding Di with a representation that is similar to grammar compression (Section 2.2).

We start by discarding N i and the rank1 data structure, as they are no longer necessary
(see the current encoding of Di in Section 3.3). For our method to work, we also need each
string S ∈ S associated with an empty entry (*, l) of pBWT i to be a member of Di. This
property might not hold when the string S that produced an empty entry meets Lemma 6.
The problem arises if S always appears as a proper suffix in Di, not as a full phrase. If that
is the case, we create3 a new independent entry for S in Di.

After expanding Di, we create a hash table M i in which we insert each phrase F ∈ Di

occurring as a left-maximal suffix. If F has ≺LMS rank b in Di, then we insert the pair (F, b)
into M i, where F is the key and b is the value. Once we construct M i, we reorder the way
in which the phrases of Di are concatenated in Ri according to their ≺LMS ranks.

The next step consists of compressing Di. We scan Ri from left to right, and for
every F = Ri[j, j′] ∈ Di, with Li[j] = 1 and Li[j′ + 1] = 1, we search for the longest
proper suffix F [u..] that exists in M i as a key. If such key exists, then we replace F with
R[j, j + 1] = F [u − 1]·b′, where b′ is the value associated with F [u..] in M i. If no proper
suffix of F exists in M i, then we replace F as R[j, j + 1] = *·F [|F | − 1], where * is a dummy
symbol. After updating the sequence of F , we mark the symbols in R[j + 2, j′] as discarded
if j′ − j + 1 = |F | ≥ 2. When we finish the scan of the dictionary, we left-contract Ri by
removing the discarded symbols. This process reduces the phrases in Di to strings of length
two, so the vector Li is no longer necessary.

Now we explain the rationale of our encoding. We develop our argument as a chain of
implications. Consider again the phrase F , which we replaced with the sequence F [u − 1]·b′.
We obtained b′ ∈ Σi+1 when we performed a lookup operation of S = F [u..] in M i during
the compression of Di. The value b′ that the lookup returned is the ≺LMS order of S in Di.
The membership of S to the keys of M i implies that S appears as a left-maximal suffix in
Di, which in turn implies that S is a full phrase in Di too (we enforced this property when
we expanded the dictionary). Additionally, the left-maximal condition of S implies that
there were at least two suffix occurrences of S preceded by different symbols. This is why S

produces an empty entry in pBWT i. Now, recall that we sorted the phrases of Di in ≺LMS

order in Ri. Therefore, if we want to access S, we have to go to the substring Ri[2b′ − 1, 2b′].
This substring does not encode the full sequence of S, but its longest left-maximal suffix
Ri[2b] ∈ Σi+1 (which is also a left-maximal suffix of F ) along with the left-context symbol
for that suffix (Ri[2b − 1] ∈ Σi). Recursively, the longest left-maximal symbol of S is not a
sequence either, but a pointer to another position of Ri. We access this nested left-maximal
suffix by setting b′ = Ri[2b′] and updating the values Ri[2b′ − 1, 2b′]. We continue applying
this idea until we reach a range Ri[2b′ − 1, 2b′] where Ri[2b′] ∈ Σi, which implies that we
reached the last suffix of F . This last range will store the sequence *·F [|F | − 1]. Notice that
the right symbol in this case is not the last symbol of F but its left context F [|F | − 1]. This
is because the LMS substrings overlap by one character in T i, so F [|F |] is redundant as it
also appears as a prefix in another phrase. However, we need F [|F | − 1], as we will append it
to one of the empty entries of pBWT i in the next phase of grlBWT. The only exception to
this rule is when F expands to a suffix of a string in T . In that case, we store F [|F |] instead
of F [|F | − 1] in R[2b′ − 1, 2b′] as F [|F |] = Ri[2b′] is not a prefix in any other phrase. On the

3 It means we append the sequence of F at the end of Ri and expand Li accordingly.
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Figure 1 Parsing round i = 1 of grlBWT for the collection T = {gtacc, gtaatagtacc}, with
T = gtacc$gtaatagtacc$. (A) Construction of the dictionary D1 = {R1, L1, N1} from T 1 = T .
The sequence in gray below T 1 stores the symbol types: L-type is L, S-type is S and LMS-type is S∗.
The dashed vertical lines in R1 mark the boundaries between dictionary phrases. (B) Constructing
pBW T 1 from the suffix array SADi of Di. The ranges of SAD1 enclosed by dashed boxes produce
empty entries in pBW T i. Notice we do not use the entries SADi [5, 7] = 3, 7, 11 for computing
pBW T 1 as their corresponding symbols are redundant. For instance, consider R1[3] = a, which is a
suffix in R1[1, 3] = gta. The last symbol in the occurrences of gta in T 1 overlaps the first symbol
of acc$ or aata. Therefore, the symbol R1[3] = a of gta is covered by acc$ or aata in pBW T 1.
We represent pBW T 1 as a sequence of equal-symbol runs. The upper row depicts the run symbols
while the lower row show the run lengths. (C) Compressing D1. The strings at the top are the
dictionary phrases sorted in ≺LMS order. We add the string ta to the dictionary as it appears as a
left-maximal suffix in Di, and hence, produces an empty entry in pBW T 1. The sequences in gray
are the longest left-maximal suffixes of the phrases. The underlined symbols are the left contexts of
those suffixes. Notice we compress F = acc$ directly to *$ as F does not have a left-maximal suffix.
Besides, as F does not overlap other phrases in T 1 (because of $), we store F [|F |] = $ instead of
F [|F | − 1] = c. A different situation occurs with S = ta. This phrase does not have left-maximal
suffixes of length > 1. However, in this case, we store S[|S| − 1] = t instead of S[|S|] = a as S

overlaps other phrases in T 1. (D) The parse T 2 we obtain by replacing the phrases of T 1 with their
≺LMS orders in Di. The gray symbols expand to suffixes of strings in T .

other hand, we need the dummy symbol * to maintain the invariant that all the phrases
encoded in Ri have length two. Once we finish the compression, we store Ri on disk. From
now on, we use Di to refer to Ri.

The final step for the parsing round i is to create the new text T i+1. We first reload
from disk the hash table Hi we produced at the beginning of the iteration, and replace its
values with the keys’ ≺LMS orders. More specifically, if a key F ∈ Di of Hi has ≺LMS order
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b among the other strings that produced empty entries in pBWT i, then we update the value
of F in Hi to b. Notice that the strings we stored as keys in Hi are not the same as those
we have now in Di because we compress them. Therefore, we can not lookup the phrases of
Di in the keys of Hi to update the hash table values. Still, we can overcome this problem if
we modify Hi after sorting Di in ≺LMS order but before we compress it.

Once we update Hi, we construct T i+1 by scanning T i again and replacing the LMS
substrings with their associated values in Hi. If T i+1 has length k (the number of strings in
T ), then we stop the parsing phase as all the strings in T are now compressed to one symbol.
An example of the parsing step is depicted in Figure 1.

3.4 The Induction Phase
The induction phase starts with the computation of BWT h, the BCR BWT for the text
T h of the last parsing round h. This step is trivial as each symbol in T h encodes a full
string of T (see the ending condition of the parsing phase). Hence, the left context of every
symbol is the symbol itself. BCR BWT maintains the relative order of the strings in T (see
Section 2.1), so BWT h is T h itself.

We now describe the steps we perform during every induction step i < h. In this case,
assume we receive as input (i) BWT i+1 from the previous phase, (ii) Di, and (iii) pBWT i.
Before explaining our procedure, we describe some important properties of BWT i+1.

▶ Lemma 9. Let BWT i+1[j] and BWT i+1[j′] be two symbols at different positions j and
j′, with j < j′, whose mapping phrases in Di are F and F ′, respectively. Also, let the proper
suffixes F [u..] = F ′[u′..] = S ∈ S (see Lemma 5 for the description of S) be two occurrences
in T i of a string S that appears as a left-maximal suffix in Di. The suffix of T i prefixed by
F [u..] precedes in SAi (the suffix array of T i) the suffix of T i prefixed by F [u′..].

Proof. As F [u..] and F ′[u′..] are equal, their relative orders are decided by the right contexts
in T i of the occurrences BWT i+1[j] and BWT i+1[j′] of F and F ′ (respectively). By induction,
we know that BWT i+1 is complete, and as BWT i+1[j] precedes BWT i+1[j′] in the BWT,
the right context of F [u..] has a smaller order in SAi than the right context of F ′[u′..]. ◀

If we generalize Lemma 9 to x ≥ 1 occurrences of S, then we can use the following lemma
to compute the sequence for the empty entry of pBWT i generated by S:

▶ Lemma 10. Let S be a string of S. Additionally, let J = {j1, j2, . . . , jx} be a list of strictly
increasing positions of BWT i+1. Every BWT i+1[jo], with jo ∈ J , is a symbol b ∈ Σi+1

generated from a phrase F ∈ Di where S = F [u..] occurs as a proper suffix. The symbols of
Bi+1 referenced by J are not necessarily equal, and hence, their associated phrases in Di are
not necessarily the same. However, these phrases of Di are all suffixed by S. Assume we
scan J from left to right, and for every jo, we extract the symbol F [u − 1] ∈ Σi that precedes
S and append it to a list LS. The resulting list LS ∈ Σi∗ has the same sequence of symbols
as the BWT i range that maps the block for S in the partition of S.

Proof. Because of Lemma 9, the suffix of T i prefixed by the occurrence BWT i+1[jo] of S

precedes the suffix of T i prefixed by the occurrence BWT i+1[jo+1]. This property holds for
every jo, with o ∈ [1, x − 1]. Hence, the suffixes of T i prefixed by S are already sorted J . ◀

Our compressed representation for Di (see Section 3.3.2) has precisely the information we
need to construct LS as described in the procedure of Lemma 10. Still, the idea only works
when S always appears as a proper suffix in the phrases of Di. When S matches a full phrase
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(see Lemma 7), there is no left-context symbol for S we can extract from Di. Nevertheless,
there is only one phrase F ∈ Di where S can be a non-proper suffix, and because S comes
from BWT i+1, F has to be an LMS substring in T i. This observation implies that F maps
to a symbol b ∈ Σi+1 in T i+1. Hence, we can extract the left-context symbols of S from the
range in BWT i+1 that corresponds to the bth bucket of SAi+1. We explain how to carry out
this process in the next subsection.

3.5 The Induction Algorithm
Let p be the sum of the lengths in the empty entries of pBWT i. These lengths correspond
to the second field in the run-length representation of pBWT i. We start the induction
by creating a vector P i[1, p], which we logically divide into σi+1 buckets (recall that σi+1

matches the number of empty entries in pBWT i). Every bucket b of P i will be of size lb,
the length of the bth empty entry (from left to right) of pBWT i. Subsequently, we perform
a scan over BWT i+1 from left to right. For each symbol BWT i+1[j] = b ∈ σi+1, we first
check if its associated LMS substring F ∈ Di (the string from which we obtain the symbol
b during the parsing round i) exists as a suffix in other phrases of Di. This information is
already encoded in a bit vector V i[1, σi+1] we constructed during the parsing round i. When
F occurs as an LMS substring and as a proper suffix in other dictionary phrases (V i[b] = 1),
we append a dummy symbol in the bucket b of P . This is the situation we described at the
end of the previous subsection. After processing b, we decompress the left-maximal suffixes
of its phrase F from the compressed representation of Di.

The decompression of F begins by accessing the range Di[2b − 1, 2b] (see Section 3.3.2). If
o = Di[2b] belongs to Σi+1, then the symbol o encodes a string F [u..] = S, with u > 1, whose
sequence is a left-maximal suffix in Di. During the parsing phase of grlBWT, we inserted
S to Di as an independent string as it yields an empty entry for pBWT i (see Lemma 6).
The order of S in Di is precisely o, its ≺LMS rank among the other phrases of Di. On the
other hand, the left-context symbol of S is Di[2b − 1] ∈ Σi. With this information, we apply
Lemma 10 by appending the symbol Di[2b − 1] to the bucket o of P . Then, we move to the
next left-maximal suffix of F by setting b = o and updating the range Di[2b − 1, 2b].

The decompression of F stops when Di[2s] belongs to Σi, which means we reach the
last symbol of F . For the moment, we do not know for which phrase of Di Di[2s] is its left
context. Hence, we set BWT i+1[j] = Di[2s] and leave this position on hold to process it
later. After finishing the scan of BWT i+1, its symbols are now over the alphabet Σi. These
values are the ones we have to insert in the dummy positions of P i. Notice that the entries
in P i and BWT i+1 are already sorted by their right contexts in T i. Hence, the completion
of the dummy positions reduces to a merge of two sorted lists.

The last step in the induction round i consists of merging pBWT i, BWT i+1 and P i in
BWT i. We scan pBWT i and we append its entries to BWT i as long as they are not empty.
Then, when we reach an empty entry (*, l), we proceed as follows: assume the current pair
(*, l) is the bth empty entry of pBWT i. Then, we check if the phrase F ∈ Di that produced
this entry (the one with ≺LMS order b) only occurs as a full LMS substring in T i (V i[b] = 0).
If that is the case, we append the next l symbols of BWT i+1 into BWT i. On the other
hand, when F occurs as an LMS substring, but also as a proper suffix in other phrases of
Di (V i[b] = 1), the next l symbols of BWT i are a mix of entries from the bucket b of P i

and BWT i+1. We append symbols from the bucket b of P i as long as they are not dummy.
When we reach a dummy symbol in P i, we change the list, and append the next x symbols
of BWT i+1 into BWT i, where x is the number of consecutive dummy symbols we saw in P i.
Once we process the x entries of BWT i+1, we go back to P and continue back and forth
between P and BWT i until we process all the symbols in the bucket b of P .



D. Díaz-Domínguez and G. Navarro 29:13

The last case we have to cover for the merge is when F always occurs as a proper suffix
in Di (i.e., it is not an LMS substring of T i). This situation is simple as we marked F in V i

(V i[b] = 1). Hence, we just copy the content of the bucket b of P into BWT i. Notice this
bucket will not have dummy entries as b does not appear in Bi+1 as a symbol. We obtain
occurrences of b while decompressing other phrases of Di whose ≺LMS ranks do appear as
symbols in Bi+1, and where F is a proper left-maximal suffix. Once we complete all the
induction rounds, the final BCR BWT is in BWT i.

3.5.1 Speeding up the Induction with Compression

If we run-length encode BWT i+1, the induction becomes more efficient. Every position
BWT i+1[j] is not a symbol b, but a pair (l, b) that represents l consecutive copies of b. Thus,
instead of decompressing l times the left-maximal suffixes of the phrase associated with b,
we decompress them only once, and copy the result l times to the different buckets of P i.

Maintaining P i as a run-length encoded sequence also improves efficiency. A compact
representation of P i reduces the working memory, which in turn reduces the number of
cache misses. The only problem with this idea is that we do not know before the induction
how many equal-symbols runs P i will have. There are two solutions to this problem. First,
we could represent P i as a dynamic vector [2]. Its initial size would be σi+1, and then we
expand the buckets as we insert new equal-symbol runs into them. The second option is to
perform a preliminary scan of BWT i+1 to compute the size of the run-length compressed
version of P i, then we scan BWT i+1 again to perform the induction.

3.6 Complexity of our Method

We show that the construction of the BWT remains linear, even though we perform com-
pression during the intermediate steps.

▶ Theorem 11. Let T = {T1, T2, . . . , Tk} be a collection with k strings and n symbols. The
algorithm grlBWT constructs the BCR BWT of T in expected O(n) time and requires O(n)
bits of working space.

Proof. The complexities in the theorem were already proved for the linear-time algorithms
that construct the suffix array [30] and the BWT [34] using ISS. We show that these
complexities are not altered by our compression scheme. Let ni = |T i| be the length of the
input text we receive at parsing round i. Hashing the dictionary phrases from T i runs in
O(ni) expected time and requires O(ni) bits of space. The construction of SADi runs in
O(ni) time and space as we use ISS to build it, and the number of symbols in Di is never
greater than ni. The extra steps of the parsing round only require a constant number of
linear scans over SADi . During the induction phase, we only perform linear scans over BWT i

and pBWT i. We still have the cost of accessing the left-maximal suffixes of Di when we
scan BWT i+1 during the induction phase. However, our simple compressed representation
for Di (Section 3.3.2) supports random access in O(1) time to the symbols, and the number
of left-maximal suffixes we visit during the scan of BWT i+1 is no more than ni. In every
parsing round, the size of T i+1 is at most half the size of T i, so the sum of the text lengths
n1, n2, . . . , nh is O(n) (see Nong et al. [30]). This property also implies that grlBWT never
visits more than O(n) left-maximal suffixes during its induction phase. ◀
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Table 1 Datasets. The upper rows are the Illumina reads while the lower rows are the human
genomes. Columns four and five are the minimum and average string length (respectively) in the
collection. The value for r is the number of equal-symbol runs in the BCR BWT of the collection.

Dataset σ Number of strings Max. length Avg. length n n/r

ILL1 5 84,006,956 151 151 12,769,057,312 3.18
ILL2 5 160,285,798 151 151 24,363,441,296 4.07
ILL3 5 235,805,550 151 151 35,842,443,600 4.67
ILL4 5 305,931,740 151 151 46,501,624,480 5.03
ILL5 5 377,453,488 151 151 57,372,930,176 5.33

HGA05 16 334,065 248,956,422 42,715 14,269,998,434 4.82
HGA10 16 759,341 250,522,664 39,025 29,634,170,092 8.76
HGA15 16 835,485 250,522,664 53,918 45,048,695,199 12.02
HGA20 16 874,235 250,522,664 68,650 60,017,146,889 15.67
HGA25 16 899,424 250,522,664 83,447 75,055,723,570 19.42

4 Experiments

We implemented grlBWT as a C++ tool, also called grlBWT. This software uses the SDSL-lite
library [11] to operate with bit vectors and rank data structures. Our source code is
available at https://github.com/ddiazdom/grlBWT. We compared the performance of
grlBWT against other tools that compute BWTs for string collections:

ropebwt24 : a variation of the original BCR algorithm of Bauer et al. [1] that uses rope
data structures [2]. This method is described in Heng Lee [20].
pfp-eBWT5 : the eBWT algorithm of Boucher et al. [4] that builds on PFP and ISS.
BCR_LCP_GSA6 : the current implementation of the semi-external BCR algorithm [1].
egap7: a semi-external algorithm of Edigi et al. [8] that builds the BCR BWT.
gsufsort8: an in-memory method proposed by Louza et al. [23] that computes the BCR
BWT and (optionally) other data structures.

We also considered the tool bwt-lcp-em [3] for the experiments. Still, by default it builds
both the BWT and the LCP array, and there is no option to turn off the LCP array, so we
discarded it. We compiled all the tools according to their authors’ description. For grlBWT,
we used the compiler flags -O3 -msse4.2 -funroll-loops.

We considered two common types of genomic data for the experiments: short reads
and assembled genomes. We downloaded five collections of Illumina reads produced from
different human genomes 9. We concatenated the strings so that our dataset 1 had one
read collection, dataset 2 had two collections, and so on. We named the files ILLX, where
X is the number of read collections concatenated. We also downloaded from NCBI10 25
collections of fully-assembled human genomes. Like with the reads, we created the inputs

4 https://github.com/lh3/ropebwt2
5 https://github.com/davidecenzato/PFP-eBWT
6 https://github.com/giovannarosone/BCR_LCP_GSA
7 https://github.com/felipelouza/egap
8 https://github.com/felipelouza/gsufsort
9 https://www.internationalgenome.org/data-portal/data-collection/hgdp
10 https://www.ncbi.nlm.nih.gov/assembly

https://github.com/ddiazdom/grlBWT
https://github.com/lh3/ropebwt2
https://github.com/davidecenzato/PFP-eBWT
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/felipelouza/egap
https://github.com/felipelouza/gsufsort
https://www.internationalgenome.org/data-portal/data-collection/hgdp
https://www.ncbi.nlm.nih.gov/assembly
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Figure 2 Memory peak usage (GBs) and elapsed time (in hours) for the Illumina reads.

for our experiments so that every dataset has five more genomes than the previous one.
This setup aims to increase the repetitiveness as the collection size increases. We named
each file using the prefix HGA concatenated with the number of genomes it had. The only
prepossessing step we performed on the genomes was to put every chromosome in one line
and set all the characters to upper case. All our inputs are described in Table 1.

We also investigated the effect of page cache [24, Ch. 16] in grlBWT. In every parsing
round i, we keep T i on disk, and linearly scan its file by loading from disk to RAM one data
chunk of 8 MB at the time. Similarly, we keep a buffer of 8 MB in RAM for T i+1, which
we dump into disk every time it gets full. We manipulate BWT i (respectively, BWT i+1)
in the same way. We used the function posix_fadvise to turn off the page cache for T i,
T i+1, BWT i, and BWT i+1. Then we assessed the performance of grlBWT on the assembled
genomes using posix_advice and not using it. We did not evaluate the effect of the page
cache in the other tools.

We limited the RAM usage of egap to three times the input size. For BCR_LCP_GSA,
we turned off the construction of the data structures other than the BCR BWT and left
the memory parameters by default. In the case of gsufsort, we used the flag –bwt to
build only the BWT. For ropebwt2, we set the flag -L to indicate that the data was in
one-sequence-per-line format, and the flag -R to avoid considering the DNA reverse strands
in the BWT. We ran the experiments on the Illumina reads using one thread in all programs
as not all support multi-threading. For this purpose, we set the extra flag -P to ropebwt2 to
indicate single-thread execution. We tested the human genomes only on ropebwt2, grlBWT
and pfp-ebwt. By default, ropebwt2 uses four working threads, so we set the same number
of threads for grlBWT and pfp-ebwt. We did not report results for pfp-ebwt with dataset
ILL25 as the execution crashed. We carried out the experiments on a machine with Debian
4.9, 736 GB of RAM, and processor Intel(R) Xeon(R) Silver @ 2.10GHz, with 32 cores.

5 Results and Discussion

We summarize our experiments in Figures 2 and 3. The results we report for grlBWT do
not consider the use of posix_advice to turn off the page cache. In Illumina reads, the
fastest method was ropeBWT2, with a mean elapsed time of 4.14 hours. It is then followed by
BCR_LCP_GSA, gsufsort, grlBWT, pfp-bwt, and egap, with mean elapsed times of 9.58, 9.43,
10.05, 13.08, and 27.30 hours, respectively (Figure 2B). We notice that grlBWT is competitive
with BCR_LCP_GSA and gsufsort. However, it gets slightly faster than them from input ILL4
onward. We expected this behaviour since the largest datasets are more repetitive.
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Figure 3 Memory peak usage (GBs) and elapsed time (in hours) for the assembled genomes.

Regarding the working space, the most efficient was BCR_LCP_GSA, with an average
memory peak of 5.73 GB. It is then followed by ropebwt2, with an average memory peak
of 26.64 GB. In both cases, the memory consumption increases slowly with the input size.
In the case of grlBWT, the memory peak is more considerable; 42.20 GB on average, with a
memory consumption that grows faster than the previous methods (see Figure 2A). However,
egap, gsufsort, and pfp-ebwt are far more expensive, and their memory consumption grow
even faster. The tool egap uses 110.94 GBs on average. On the other hand, pfp-ebwt and
gsufsort have similar average memory peaks: 331.98 and 372.68 GBs, respectively.

In the repetitive datasets (human genomes), the results changed drastically (see Figure 3).
Our tool grlBWT outperformed ropebwt2 and pfp-ebwt in elapsed time, with an average of
4.89 hours versus 20.95 and 9.55 hours of ropebwt2 and pfp-ebwt, respectively. As expected,
the time for grlBWT grows smoothly with the input size, while the time for ropeBWT grows
fast. The time function for pfp-ebwt also grows smoothly, but the results are still slower than
those of grlBWT (see Figure 3B). Regarding memory peak, ropebwt2 is the most efficient
tool, with a mean of 18.05 GB. Still, grlBWT obtained competitive results, with an average
peak of 20.38 GB. In this case, the memory consumption growth in grlBWT is slightly steeper
than in ropebwt2, but it remains smooth. In contrast, pfp-ebwt has a more dramatic growth
in memory consumption, with an average memory peak of 156.74 GB (Figure 3A).

We observe that ropeBWT2 and pfp-ebwt performed well in one measure, but not in both.
In contrast, grlBWT maintained a low footprint for both measures, elapsed time and memory
consumption. This result demonstrates that our strategy of keeping the intermediate data of
the BWT algorithm in compressed format works well when the text is repetitive.

Our experiments on the page cache showed there is an average slowdown of 19% in grlBWT
when the cache is disabled with the function posix_advice. This slowdown factor increases
with the input size, being the lowest with HGA05 (12%) and the highest with HGA20 (26%).
This result is expected as we are only using a static buffer of 8 MB. A simple solution would
be to set a dynamic buffer that uses, say, 0.5% of the input instead of the fixed 8 MB.

6 Concluding Remarks

We introduced a method for building the BCR BWT that maintains the data of intermediate
stages in compressed form. The representation we chose not just reduces space usage, but
also reduces computation time. Our experimental results showed that our algorithm is
competitive with the state-of-the-art tools under not so repetitive scenarios, and that it
greatly reduces the computational requirements when the input becomes more repetitive,
standing out as the most efficient tool to date (and to our knowledge) in this context.
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