
Beyond the Longest Letter-Duplicated
Subsequence Problem
Wenfeng Lai #

College of Computer Science and Technology, Shandong University, Qingdao, China

Adiesha Liyanage #

Gianforte School of Computing, Montana State University, Bozeman, MT, USA

Binhai Zhu #Ñ

Gianforte School of Computing, Montana State University, Bozeman, MT, USA

Peng Zou #

Gianforte School of Computing, Montana State University, Bozeman, MT, USA

Abstract
Motivated by computing duplication patterns in sequences, a new fundamental problem called
the longest letter-duplicated subsequence (LLDS) is proposed. Given a sequence S of length n,
a letter-duplicated subsequence is a subsequence of S in the form of xd1

1 xd2
2 · · · x

dk
k with xi ∈ Σ,

xj ̸= xj+1 and di ≥ 2 for all i in [k] and j in [k − 1]. A linear time algorithm for computing the
longest letter-duplicated subsequence (LLDS) of S can be easily obtained. In this paper, we focus
on two variants of this problem. We first consider the constrained version when Σ is unbounded,
each letter appears in S at least 6 times and all the letters in Σ must appear in the solution. We
show that the problem is NP-hard (a further twist indicates that the problem does not admit any
polynomial time approximation). The reduction is from possibly the simplest version of SAT that is
NP-complete, (≤ 2, 1, ≤ 3)-SAT, where each variable appears at most twice positively and exact
once negatively, and each clause contains at most three literals and some clauses must contain
exactly two literals. (We hope that this technique will serve as a general tool to help us proving the
NP-hardness for some more tricky sequence problems involving only one sequence – much harder
than with at least two input sequences, which we apply successfully at the end of the paper on
some extra variations of the LLDS problem.) We then show that when each letter appears in S at
most 3 times, then the problem admits a factor 1.5 − O(1

n
) approximation. Finally, we consider

the weighted version, where the weight of a block xdi
i (di ≥ 2) could be any positive function which

might not grow with di. We give a non-trivial O(n2) time dynamic programming algorithm for this
version, i.e., computing an LD-subsequence of S whose weight is maximized.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Segmental duplications, Tandem duplications, Longest common subsequence,
NP-completeness, Dynamic programming

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.7

Related Version Full Version: https://arxiv.org/abs/2112.05725

Funding This research is partially supported by NNSF of China under project 61872427, 61732009
and 61628207.

1 Introduction

In biology, duplication is an important part of evolution. There are two kinds of duplications:
arbitrary segmental duplications (i.e., select a segment and paste it somewhere else) and
tandem duplications (which is in the form of X → XX, where X is any segment of
the input sequence). It is known that the former duplications occur frequently in cancer
genomes [16, 12, 3]. On the other hand, the latter are common under different scenarios, for

© Wenfeng Lai, Adiesha Liyanage, Binhai Zhu, and Peng Zou;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 7; pp. 7:1–7:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:2290892069@qq.com
mailto:adiesha@gmail.com
mailto:bhz@montana.edu
http://www.cs.montana.edu/bhz
mailto:peng.zou@student.montana.edu
https://doi.org/10.4230/LIPIcs.CPM.2022.7
https://arxiv.org/abs/2112.05725
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 The Longest Letter-Duplicated Subsequence Problem

example, it is known that the tandem duplication of 3 nucleotides CAG is closely related to
the Huntington disease [11]. In addition, tandem duplications can occur at the genome level
(acrossing different genes) for certain types of cancer [13]. In fact, as early as in 1980, Szostak
and Wu provided evidence that gene duplication is the main driving force behind evolution,
and the majority of duplications are tandem [17]. Consequently, it was not a surprise that
in the first sequenced human genome around 3% of the genetic contents are in the form of
tandem repeats [9].

Independently, tandem duplications were also studied in copying systems [5]; as well
as in formal languages [1, 4, 19]. In 2004, Leupold et al. posed a fundamental question
regarding tandem duplications: what is the complexity to compute the minimum tandem
duplication distance between two sequences A and B (i.e., the minimum number of tandem
duplications to convert A to B). In 2020, Lafond et al. answered this open question by
proving that this problem is NP-hard for an unbounded alphabet [7]. In fact, Lafond et
al. proved later that the problem is NP-hard even if |Σ| ≥ 4 by encoding each letter in the
unbounded alphabet proof with a square-free string over a new alphabet of size 4 (modified
from Leech’s construction [10]), which covers the case most relevant with biology, i.e., when
Σ = {A, C, G, T} [8]. Independently, Cicalese and Pilati showed that the problem is NP-hard
for |Σ| = 5 using a different encoding method [2].

Motivated by the above applications (especially when some mutations occur after the
duplications), some new problems related to duplications are proposed and studied in this
paper. Given a sequence S of length n, a letter-duplicated subsequence (LDS) of S is a
subsequence of S in the form xd1

1 xd2
2 · · ·x

dk

k with xi ∈ Σ, where xj ̸= xj+1 and di ≥ 2 for all i

in [k] and j in [k− 1]. (Each xdi
i is called an LD-block.) Naturally, the problem of computing

the longest letter-duplicated subsequence (LLDS) of S can be defined, and a simple linear
time algorithm can be obtained. (We remark that recently a similar problem called longest
run subsequence was studied [15], it differs from our problem in that each letter appears
consecutively at most once in the solution and does not have to be repeated, and the goal is
the same, i.e., the length of the subsequece is to be maximized.)

In this paper, we focus on some important variants around the LLDS problem, focusing
on the constrained and weighted cases. The constraint is to demand that all letters in Σ
appear in a resulting LDS, which simulates that in a genome with duplicated genes, how to
compute the maximum duplicated pattern while including all the genes. Then we have two
problems: feasibility testing (FT for short, which decides whether an LDS of S containing all
letters in Σ exists) and the problem of maximizing the length of a resulting LDS where all
letters in the alphabet appear, which we call LLDS+. It turns out that the status of these
two problems change quite a bit when d, the maximum number a letter can appear in S,
varies. We denote the corresponding problems as FT (d) and LLDS+(d) respectively. Let
|S| = n, we summarize our main results in this paper as follows:
1. We show that when d ≥ 6, both FT (d) and (the decision version of) LLDS+(d) are NP-

complete, which implies that LLDS+(d) does not have a polynomial-time approximation
algorithm when d ≥ 6.

2. We show that when d = 3, FT (d) is decidable in O(n2) time, which implies that LLDS+(3)
admits a factor-1.5 approximation. With an increasing running time, we could improve
the factor to 1.5−O(1

n).
3. When a weight of an LD-block is any positive function (i.e., it does not even have to grow

with its length), we present a non-trivial O(n2) time dynamic programming solution for
this Weighted-LDS problem.

W. Lai, A. Liyanage, B. Zhu, and P. Zou 7:3

Note that the parameter d, i.e., the maximum duplication number, is of practical interest
in bioinformatics, since in many genomes duplication is a rare event and the number of
duplicates is usually a small constant. For example, it is known that plants have undergone
up to three rounds of whole genome duplications, resulting in a number of duplicates bounded
by 8 [20].

At the end of paper, we will briefly mention two extra variations of the LLDS problem,
where in the solution, i.e., a subsequence of S in the form of xd1

1 xd2
2 · · ·x

dk

k , each xi is
either a substring or a subsequence of S. The latter is remotely related to computing the
longest square subsequence of an input sequence S, for which Kosowski gave an O(n2) time
algorithm [6]. Then, what Kosowski considered is the more restricted version of the latter,
i.e., xd1

1 xd1
2 , with x1 = x2 and d1 = d2 = 1.

This paper is organized as follows. In Section 2 we give necessary definitions. In Section 3
we focus on showing that the LLDS+ and FT problems are NP-complete when d ≥ 6 and
some positive results when d = 3. In Section 4 we give polynomial-time algorithms for
Weighted-LDS. We conclude the paper in Section 5.

2 Preliminaries

Let N be the set of natural numbers. For q ∈ N, we use [q] to represent the set {1, 2, ..., q}.
Throughout this paper, a sequence S is over a finite alphabet Σ. We use S[i] to denote the
i-th letter in S and S[i..j] to denote the substring of S starting and ending with indices i and
j respectively. (Sometimes we also use (S[i], S[j]) as an interval representing the substring
S[i..j].) With the standard run-length representation, S can be represented as ya1

1 ya2
2 · · · y

aq
q ,

with yi ∈ Σ, yj ̸= yj+1 and aj ≥ 1, for i ∈ [q], j ∈ [q − 1]. If a letter x appears multiple times
in S, we could use x(i) to denote the i-th copy of it (reading from left to right). Finally, a
subsequence of S is a string obtained by deleting some letters in S.

2.1 The LLDS Problem
A subsequence S′ of S is a letter-duplicated subsequence (LDS) of S if it is in the form
of xd1

1 xd2
2 · · ·x

dk

k , with xi ∈ Σ, xj ̸= xj+1 and di ≥ 2, for i ∈ [k], j ∈ [k − 1]. We call each
xdi

i in S′ a letter-duplicated block (LD-block, for short). For instance, let S = abcacabcb,
then S1 = aaabb, S2 = ccbb and S3 = ccc are all letter-duplicated subsequences of S, where
aaa and bb in S1, cc and bb in S2, and ccc in S3 all form the corresponding LD-blocks.
Certainly, we are interested in the longest ones – which gives us the longest letter-duplicated
subsequence (LLDS) problem.

As a warm-up, we solve this problem by dynamic programming. We first have the
following observation.

▶ Observation 1. Suppose that there is an optimal LLDS solution for a given sequence S of
length n, in the form of xd1

1 xd2
2 . . . xdk

k . Then it is possible to decompose it into a generalized
LD-subsequence ye1

1 ye2
2 . . . y

ep
p , where

2 ≤ ei ≤ 3, for i ∈ [p],
p ≥ k,
yj does not have to be different from yj+1, for j ∈ [p− 1].

The proof is straightforward: For any natural number ℓ ≥ 2, we can decompose it as
ℓ = ℓ1 + ℓ2 + . . . + ℓz ≥ 3, such that 2 ≤ ℓj ≤ 3 for 1 ≤ j ≤ z. Consequently, for every
di > 3, we could decompose it into a sum of 2’s and 3’s. Then, clearly, given a generalized
LD-subsequence, we could easily obtain the corresponding LD-subsequence by combining
yei

i y
ei+1
i+1 when yi = yi+1.

CPM 2022

7:4 The Longest Letter-Duplicated Subsequence Problem

We now design a dynamic programming algorithm for LLDS. Let L(i) be the length of
the optimal LLDS solution for S[1..i]. The recurrence for L(i) is as follows.

L(0) = 0,

L(1) = 0,

L(i) = max


L(i− x− 1) + 2 x = min{x|S[i− x] = S[i]}, x ∈ (0, i− 1]
L(i− x) + 1 x = min{x|S[i− x] = S[i]}, x ∈ (0, i− 1]
L(i− 1) otherwise.

Note that the step involving L(i − x) + 1 is essentially a way to handle a generalized
LD-subsequence of length 3 (by keeping S[i− x] for the next level computation) and cannot
be omitted following the above observation. For instance, if S = dabcdd then without that
step we would miss the optimal solution ddd.

The value of the optimal LLDS solution for S can be found in L(n). For the running
time, for each S[x] we just need to scan S to find the closest S[i] such that S[x] = S[i]. With
this information, the table L can be filled in linear time. With a simple augmentation, the
actual sequence corresponding to L(n) can also be found in linear time. Hence LLDS can be
solved in O(n) time.

2.2 The Variants of LLDS

In this paper, we focus on the following variations of the LLDS problem.

▶ Definition 2 (Constrained Longest Letter-Duplicated Subsequence (LLDS+ for short)).
Input: A sequence S with length n over an alphabet Σ and an integer ℓ.
Question: Does S contain a letter-duplicated subsequence S′ with length at least ℓ such that

all letters in Σ appear in S′?

▶ Definition 3 (Feasibility Testing (FT for short)).
Input: A sequence S with length n over an alphabet Σ.
Question: Does S contain a letter-duplicated subsequence S′′ such that all letters in Σ appear

in S′′?

For LLDS+ we are really interested in the optimization version, i.e., to maximize ℓ. Note
that, though looking similar, FT and the decision version of LLDS+ are different: if there is
no feasible solution for FT, certainly there is no solution for LLDS+; but even if there is a
feasible solution for FT, computing an optimal solution for LLDS+ could still be non-trivial.

Finally, let d be the maximum number of times a letter in Σ appears in S. Then, we
can represent the corresponding versions for LLDS+ and FT as LLDS+(d) and FT (d)
respectively.

It turns out that (the decision version of) LLDS+(d) and FT (d) are both NP-complete
when d ≥ 6, while when d = 3 the status varies: FT (3) can be decided in O(n2) time,
which immediately implies that LLDS+(3) has a factor-1.5 approximation. (If we are willing
to increase the running time – still polynomial but higher than O(n2), with some simple
twist we could improve the approximation factor for LLDS+(3) to 1.5−O(1

n).) We present
the details in the next section. In Section 4, we will consider an extra version of LLDS,
Weighted-LDS, where the weight of an LD-block is an arbitrary positive function.

W. Lai, A. Liyanage, B. Zhu, and P. Zou 7:5

3 Hardness with the full-appearance constraint

3.1 Hardness for LLDS+(d) and FT(d) when d ≥ 6
We first try to prove the NP-completeness of the (decision version of) LLDS+(d), when d ≥ 6.
In fact, we need a very special version of SAT, which is possibly the simplest version of SAT
remaining NP-complete.

Given a 3SAT formula ϕ, which is a conjunction of m disjunctive clauses (over n variable
xi’s), each clause Fj containing exactly 3 literals (i.e., in the form of xi or x̄i), the problem
is to find whether there is a satisfiable truth assignment for ϕ.

▶ Definition 4. (≤ 2, 1,≤ 3)-SAT: this is a special case of SAT where each variable xi

appears at most twice and x̄i appears exactly once in ϕ; moreover, each clause contains either
two or three literals (which will be called 2-clause and 3-clause henceforth).

▶ Lemma 5. (≤ 2, 1,≤ 3)-SAT is NP-complete.

Proof. We modify the proof by Tovey [18]. Given a 3SAT formula ϕ, without loss of
generality, assume that each variable xi and its complement x̄i appears in (different clauses
of) ϕ. We convert ϕ to ϕ′ in the form of (≤ 2, 1 ≤ 3)-SAT as follows.

if both xi and x̄i appears once in ϕ, do nothing.
if xi appears twice and x̄i appears once in ϕ, do nothing.
if x̄i appears twice and xi appears once in ϕ, replace x̄i with a new variable z and replace
xi by z̄.
Otherwise, if the total number of literals of xi (i.e., xi and x̄i) is k ≥ 4 then introduce k

variables yi,1, yi,2, · · · , yi,k replacing the k literals of xi respectively. Moreover, let zi,j be
yi,j if the j-th literal of xi is xi and let zi,j be ȳi,j if the j-th literal of xi is x̄i. Finally,
add k 2-clauses as (zi,j ∨ z̄i,j+1) for j = 1..k − 1 and (zi,k ∨ z̄i,1). (Note that it always
holds that z̄ = z.)

Following [18], when k ≥ 4, the 2-clauses added will force all zi,j ’s to have all True values or
all False values. (The only difference between our construction and Tovey’s is that all literals
appearing at least 4 times in the original clauses in ϕ are replaced by positive variables in the
form of yi,j ’s; the negated literal ȳi,j could only occur in the newly created 2-clauses – exactly
once for each yi,j . On the other hand, each yi,j occur twice – once in the original 3-clauses
of ϕ and once in the newly created 2-clauses.) It is obvious to see that ϕ is satisfiable if and
only if ϕ′ is satisfiable. The transformation obviously takes O(|ϕ|) time. Hence the lemma is
proven. ◀

We remark that (≤ 2, 1 ≤ 3)-SAT, while seemingly similar to SAT3W (each clause has at
most 3 literals and each clause has at most one negated variable [14]), is in fact different
from it. (Following the Dichotomy Theorem for SAT by Schaefer [14], SAT3W is in P.) The
difference is that in ϕ′ we could even have a clause containing 3 negated variables.

Now let ϕ be an instance of (≤ 2, 1,≤ 3)-SAT where either both xi and x̄i appear once in
ϕ (we call such an xi a (1,1)-variable), or xi appears twice and x̄i appears once in ϕ (we call
such an xi a (2,1)-variable), for i = 1..n. (Note that the case when xi appears once and x̄i

does not appear in ϕ at all, or vice versa, can be easily handled. Hence we can assume that
we do not have these kind of “single-appearance” literals in ϕ.) Without loss of generality,
we assume ϕ = F1 ∧ F2 ∧ · · · ∧ Fm and there are n variables x1, x2, · · · , xn; moreover, we
assume that Fj cannot contain xi and x̄i at the same time. Given Fj we say FjFj forms a
2-duplicated clause-string.

CPM 2022

7:6 The Longest Letter-Duplicated Subsequence Problem

Given a (1,1)-sequence T = ACCA over {A, C}, where A and C both appear twice, it
is easy to see that the maximal (longest) LD-subsequences of T are AA or CC. Similarly,
given a (2,1)-sequence T = ACABCB over {A, B, C}, where A, B and C all appear twice,
it is easy to verify that the maximal LD-subsequences of T are AABB or CC.

For each (1,1)-variable xi, i.e., both xi and x̄i appear once in ϕ, say xi in Fj and x̄i in Fk,
we define Li as a (1,1)-sequence: FjFkFkFj . For each (2,1)-variable xi, i.e., xi appears twice
and x̄i appears once in ϕ, say xi in Fj and Fk, and x̄i in Fℓ, we define Li as a (2,1)-sequence:
FjFℓFjFkFℓFk.

Now we proceed to construct the sequence S from an (≤ 2, 1,≤ 3)-SAT instance ϕ.

S = g1g1L1g2g2 · · · gigiLi · · · gn−1gn−1Ln−1gngnLngn+1gn+1.

We claim the following: ϕ is satisfiable if and only if LLDS+ has a solution of length at
least 2(n + 1) + 4K1 + 2K2 + 2J , where K1, K2 are the number of (2,1)-variables in ϕ which
are assigned True and False respectively and J is the number of (1,1)-variables in ϕ.

Proof.
“Only-if part”. Suppose that ϕ is satisfiable. If a (1,1)-variable xi is assigned True, to have
a solution for LLDS+, in Li we select the 2-duplicated clause-string FjFj ; likewise, if xi

is assigned False we select FkFk instead. Similarly, if a (2,1)-variable xi is assigned True,
to have a solution for LLDS+, in Li we select two 2-duplicated clause-strings FjFjFkFk;
likewise, if xi is assigned False we select FℓFℓ. Since gigi only occurs once in S and T ,
we must include them in the solution. Clearly we have a solution for LLDS+ with length
2(n + 1) + 4K1 + 2K2 + 2J .

“If part”. If LLDS+ has a solution of length at least 2(n+1)+4K1 +2K2 +2J , by definition,
it must contain all gigi’s. To find the truth assignment, we look at the contents between gigi

and gi+1gi+1 in the solution as well as in S (i.e., Li). If xi is a (1,1)-variable, Li = FjFkFkFj

and in the solution FjFj is kept then we assign xi ← True; otherwise, we assign xi ← False.
If xi is a (2,1)-variable, Li = FjFℓFjFkFℓFk and in the solution either FjFjFkFk, FjFj or
FkFk is kept then we assign xi ← True. (When FjFj or FkFk is kept, then the LLDS+
solution could be longer by augmenting this sub-solution to FjFjFkFk.) If in the solution
FℓFℓ is kept instead then we assign xi ← False. Since all clauses must appear in a solution
of LLDS+, clearly ϕ is satisfied. ◀

We comment that 2(n + 1) + 4K1 + 2K2 + 2J = 2(n + 1) + 2K1 + 2n = 4n + 2 + 2K1,
as K1 + K2 + J = n. (Note that K1 only represents a part of the truth assignment for ϕ

and it could be general, i.e., K1 could be Ω(n).) But the former makes our arguments more
clear. This reduction obviously takes O(m + n) time. Note that each 3-clause Fj appears 6
times in S and each 2-clause Fℓ appears 4 times in S respectively, while each gk, k ∈ [n + 1],
appears twice in S. Since we could arbitrarily add an LD-block uj , with u ̸∈ Σ and j ≥ 6, at
the end of S, we have the following theorem.

▶ Theorem 6. The decision version of LLDS+(d) is NP-complete for d ≥ 6.

We next present an example for this proof.

▶ Example. Let ϕ = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨
x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x̄4 ∨ x̄5). Then

S =g1g1F1F2F1F4F2F4 · g2g2F1F2F1F3F2F3 · g3g3F1F3F1F2F3F2

· g4g4F3F5F3F4F5F4 · g5g5F4F5F5F4 · g6g6,

W. Lai, A. Liyanage, B. Zhu, and P. Zou 7:7

Corresponding to the truth assignment, x1, x4 = True and x2, x3, x5 = False, we have

S′ = g1g1F1F1F4F4 · g2g2F2F2 · g3g3F3F3 · g4g4F3F3F4F4 · g5g5F5F5 · g6g6,

which is of length 2(5 + 1) + 4×K1 + 2×K2 + 2× 1 = 12 + 4× 2 + 2× 2 + 2 = 26.

The above theorem implies the following corollary.

▶ Corollary 7. FT(d) is NP-complete for d ≥ 6.

Proof. The reduction remains the same. We just need to augment the proof in the reverse
direction. Suppose there is a feasible solution S′′ for S for the feasibility testing problem.
Again, all gigi’s must be in S′′. We now look at the contents between gigi and gi+1gi+1 in
S (i.e., Li) and S′′. Corresponding to Li, if in S′′ we have an empty string between gigi

and gi+1gi+1, then we can assign xi either as True or False. If Li = FjFkFkFj , i.e., xi is
a (1,1)-variable, and FjFj is kept in S′′ then we assign xi ← True; otherwise, we assign
xi ← False. If Li = FjFℓFjFkFℓFk, i.e., xi is a (2,1)-variable, and either FjFjFkFk, FjFj

or FkFk is kept in S′′ then we assign xi ← True. If in the solution FℓFℓ is kept instead
then we assign xi ← False. By definition, all clauses must appear in S′′ (solution of FT),
clearly ϕ is satisfied. It is clear that FT belongs to NP as a solution can be easily checked in
polynomial time. ◀

The above corollary essentially implies that the optimization version of LLDS+(d),
d ≥ 6, does not admit any polynomial-time approximation algorithm (regardless of the
approximation factor), since any such approximation would have to return a feasible solution.
A natural direction to approach LLDS+ is to design a bicriteria approximation for LLDS+,
where a factor-(α, β) bicriteria approximation algorithm is a polynomial-time algorithm
which returns a solution of length at least OPT/α and includes at least N/β letters, where
N = |Σ| and OPT is the optimal solution value of LLDS+. We show that obtaining a
bicriteria approximation algorithm for LLDS+ is no easier than approximating LLDS+ itself.

▶ Corollary 8. If LLDS+(d), d ≥ 6, admitted a factor-(α, N1−ϵ) bicriteria approximation
for any ϵ < 1, then LLDS+(d), d ≥ 6, would also admit a factor-α approximation, where N

is the alphabet size.

Proof. Suppose that a factor-(α, N1−ϵ) bicriteria approximation algorithm A exists. We
construct an instance S∗ for LLDS+(6) as follows. (Recall that S is the sequence we
constructed from an (≤ 2, 1 ≤ 3)-SAT instance ϕ in the proof of Theorem 1.) In addition to
{Fi|i = 1..m} ∪ {gj |j = 1..n + 1} in the alphabet, we use a set of integers {1, 2, ..., (m + n +
1)x − (m + n + 1)}, where x is some integer to be determined. Hence,

Σ = {Fi|i = 1..m} ∪ {gj |j = 1..n + 1} ∪ {1, 2, ..., (m + n + 1)x − (m + n + 1)}.

We now construct S∗ as

S∗ =1 · 2 · · · ((m + n + 1)x − (m + n + 1)) · S · ((m + n + 1)x − (m + n + 1))
· ((m + n + 1)x − (m + n + 1)− 1) · · · 2 · 1.

Clearly, any bicriteria approximation for S∗ would return an approximate solution for S as
including any number in {1, 2, ..., (m + n + 1)x − (m + n + 1)} would result in a solution of
size only 2.

CPM 2022

7:8 The Longest Letter-Duplicated Subsequence Problem

Notice that we have N = m + (n + 1) + (m + n + 1)x− (m + n + 1) = (m + n + 1)x. In this
case, the fraction of letters in Σ that is used to form such an approximate solution satisfies

m + (n + 1)
(m + n + 1)x

≤ 1
N1−ϵ

,

which means it suffices to choose x ≥ ⌈2− ϵ⌉ = 2. ◀

3.2 Solving the Feasiblility Testing Version for d = 3
For the Feasibility Testing Version, as mentioned earlier, Corollary 1 implies that the problem
is NP-complete when d ≥ 6. We next show that if d = 3, then the problem can be decided in
polynomial time.

▶ Lemma 9. Given a string S over Σ such that each letter in S appears at most 3 times, if
a feasible solution for FT (3) contains a 3-block then there is a feasible solution for FT (3)
which only uses 2-blocks.

Proof. Suppose that S = · · · a(1) · · · a(2) · · · a(3) · · · , and a(1)a(2)a(3) is a 3-block in a feasible
solution for FT (3). (Recall that the superscript only indicates the appearance order of letter
a.) Then we could replace a(1)a(2)a(3) by either a(1)a(2) or a(2)a(3). The resulting solution is
still a feasible solution for FT (3). ◀

Lemma 2 implies that the FT (3) problem can be solved using 2-SAT. For each letter a,
we denote the interval (a(1), a(2)) as a variable va, and we denote (a(2), a(3)) as v̄a. (Clearly
one cannot select a(1)a(2) and a(2)a(3) as 2-blocks at the same time.) Then, if another interval
(b(1), b(2)) overlaps the interval (a(1), a(2)), we have a 2-SAT clause va ∧ vb = (v̄a ∨ v̄b).
Forming a 2-SAT instance ϕ′′ for all such overlapping intervals and it is clear that we can
decide whether ϕ” is satisfiable in O(n2) time (as we could have O(n2) pairs of overlapping
intervals).

▶ Theorem 10. Let S be a string of length n. Whether FT (3) has a solution can be decided
in O(n2) time.

The theorem immediately implies that LLDS+(3) has a factor-1.5 approximation as
any feasible solution for FT (3) would be a factor-1.5 approximation for LLDS+(3). In the
following, we extend this trivial observation to have a factor-(1.5−O(1

n)) approximation for
LLDS+(3).

▶ Corollary 11. Let S be a string of length n such that each letter appears at most 3 times
in S. Then LLDS+(3) admits a polynomial-time approximation algorithm with a factor of
1.5−O(1

n) if a feasible solution exists.

Proof. First fix some constant (positive integer) D (D < |Σ|). Then for t = 1 to D, we
enumerate all the sets which contains letters appearing exactly 3 times in S. For a fixed t, let
such a set be Ft = {a1, a2, ..., at}. We put the 3-blocks a

(1)
i a

(2)
i a

(3)
i , i = 1..t, in the solution.

(If two such 3-blocks overlap, then we immediately stop to try a different set F ′
t ; and if all

valid sets of size t have been tried, we increment t to t + 1.) The substrings of S, between
a

(1)
i and a

(2)
i , and a

(2)
i and a

(3)
i , will then be deleted. Finally, for the remaining letters we

use 2-SAT to test whether all together, with the 3-blocks, they form a feasible solution (note
that a

(1)
i a

(2)
i a

(3)
i will serve as an obstacle and no valid interval for 2-SAT should contain it),

this can be checked in O(n2) time following Theorem 2. Clearly, with this algorithm, either
we compute the optimal solution with at most D 3-blocks, or we obtain an approximate
solution of value 2|Σ|+ D. Since OPT is at most 3|Σ|, the approximation factor is

W. Lai, A. Liyanage, B. Zhu, and P. Zou 7:9

3|Σ|
2|Σ|+ D

= 1.5−O(1
|Σ|),

which is 1.5 − O(1
n), because |Σ| is at least ⌈n/3⌉. The running time of the algorithm is

O(
(|Sigma|

D

)
·O(n2)) = O(nD+2), which is polynomial as long as D is a constant. ◀

In the next section, we show that if the LD-blocks are arbitrarily positively weighted,
then the problem can be solved in O(n2) time. Note that the O(n) time algorithm in
Section 2.1 assumes that the weight of any LD-block is its length, which has the property
that ℓ(s) = ℓ(s1) + ℓ(s2), where s = s1s2, s1 and s2 are LD-blocks on the same letter x, and
ℓ(s) is the length of s (or the total number of letters of x in s1 and s2).

4 A Dynamic Programming Algorithm for Weighted-LDS

Given the input string S = S[1...n], let wx(ℓ) be the weight of LD-block xℓ, x ∈ Σ, 2 ≤ ℓ ≤ d,
where d is the maximum number of times a letter appears in S. Here, the weight can be
thought of as a positive function of x and ℓ and it does not even have to be increasing
on ℓ. For example, it could be that w(aaa) = wa(3) = 8, w(aaaa) = wa(4) = 5. Given
wx(ℓ) for all x ∈ Σ and ℓ, we aim to compute the maximum weight letter-duplicated string
(Weighted-LDS) using dynamic programming.

Define T (n) as the value of the optimal solution of S[1...n] which contains the character
S[n]. Define w[i, j] as the maximum weight LD-block S[j]ℓ (ℓ ≥ 2) starting at position i and
ending at position j; if such an LD-block does not exist, then w[i, j] = 0. Notice that S[j]ℓ
does not necessarily have to contain S[i] but it must contain S[j]. We have the following
recurrence relation.

T (0) = 0,

T (i) = max
S[y]̸=S[i]

{
T (y) + w[y + 1, i] if w[y + 1, i] > 0,

0 otherwise.

The final solution value is max
n

T (n). This algorithm clearly takes O(n2) time, assuming
w[i, j] is given. We compute the table w[−,−] next.
1. For each pair of ℓ (bounded by d, the maximum number of times a letter appears in S)

and letter x, compute

w′
x(ℓ) = max

{
w′

x(ℓ− 1)
wx(ℓ)

,

with w′
x(1) = wx(1). This can be done in O(d|Σ|) = O(n2) time.

2. Compute the number of occurrence of S[j] in the range of [i, j], N [i, j]. Notice that i ≤ j

and for the base case we have S[0] = ∅.

N(0, 0) = 0,

N(0, j) = N(0, k) + 1, k = max
{
{y|s[y] = s[j], 1 ≤ y < j}
0

CPM 2022

7:10 The Longest Letter-Duplicated Subsequence Problem

Table 1 Input table for wx(ℓ), with S = ababbaca and d = 4.

x\ℓ 1 2 3 4
a 5 10 20 15
b 4 16 8 3
c 1 3 5 7

Table 2 Table w′
x(ℓ), with S = ababbaca and d = 4.

x\ℓ 1 2 3 4
a 5 10 20 20
b 4 16 16 16
c 1 3 5 7

And,

N(i, j) =
{

N(i− 1, j), if s[i− 1] ̸= s[j]
N(i− 1, j)− 1, if s[i− 1] = [j]

This step takes O(n2) time.

3. Finally, we compute

w[i, j] =
{

w′
s[j](N(i, j)), if N(i, j) ≥ 2

0, else

This step also takes O(n2) time. We thus have the following theorem.

▶ Theorem 12. Let S be a string of length n over an alphabet Σ and d be the maximum
number of times a letter appears in S. Given the weight function wx(ℓ) for x ∈ Σ and ℓ ≤ d,
the maximum weight letter-duplicated subsequence (Weighted-LDS) of S can be computed in
O(n2) time.

We can run a simple example as follows. Let S = ababbaca. Suppose the table wx(ℓ) is
given as Table 1. At the first step, w′

x(ℓ) is the maximum weight of a LD-block made with x

and of length at most ℓ. The corresponding table w′
x(ℓ) can be computed as Table 2. At the

end of the second step, we have Table 3 computed. From Table 3, the table w[−,−] can be
easily computed and we omit the details. For instance, w[1,−] = [0, 0, 10, 16, 16, 20, 0, 20].
With that, the optimal solution value can be computed as T (8) = 36, which corresponds to
the optimal solution aabbaa.

Table 3 Part of the table N [i, j], with S = ababbaca and d = 4.

i\j 1 2 3 4 5 6 7 8
8 0 0 0 0 0 0 0 1

· ·
3 0 0 1 1 2 2 1 3
2 0 1 1 2 3 2 1 3
1 1 1 2 2 3 3 1 4

W. Lai, A. Liyanage, B. Zhu, and P. Zou 7:11

Table 4 Summary of results on LLDS+ and FT, the ? indicates that the problem is still open.

d LLDS+(d) F T (d) Approximability of LLDS+(d)
d ≥ 6 NP-hard NP-complete No approximation
d = 3 ? P 1.5-O(1

n
)

d = 4, 5 ? ? ?

5 Concluding Remarks

We consider the constrained longest letter-duplicated subsequence (LLDS+) and the cor-
responding feasibility testing (FT) problems in this paper, where all letters in the alphabet
must occur in the solutions. We parameterize the problems with d, which is the maximum
number of times a letter appears in the input sequence. For convenience, we summarize the
results one more time in the following table. Obviously, we have many open problems.

We also consider the weighted version (without the “full-appearance” constraint), for
which we give a non-trivial O(n2) time dynamic programming solution.

If we stick with the “full-appearance” constraint, one direction is to consider two additional
variants of the problem where the solutions must be a subsequence of S, in the form of
xd1

1 xd2
2 · · ·x

dk

k with xi being a substring (resp. subsequence) of S with length at least 2,
xj ̸= xj+1 and di ≥ 2 for all i in [k] and j in [k−1]. Intuitively, for many cases these variants
could better capture the duplicated patterns in S. At this point, the NP-completeness
results (similar to Theorem 1 and Corollary 1) would still hold with minor modifications
to the proofs. (This reduction is still from (≤ 2, 1,≤ 3)-SAT and is additionally based
on the following fact: given a (2,1)-sequence T = ABCCAB over {A, B, C}, where A, B

and C all appear twice, the corresponding maximal “substring-duplicated-subsequences” or
“subsequence-duplicated-subsequences” of T are ABAB = (AB)2 or CC.) But whether these
extensions allow us to design good approximation algorithms needs further study. Note that,
without the “full-appearance” constraint, when xi is a subsequence of S, the problem is a
generalization of Kosowski’s longest square subsequence problem [6] and can certainly be
solved in polynomial time.

References
1 Daniel P. Bovet and Stefano Varricchio. On the regularity of languages on a binary alphabet

generated by copying systems. Information Processing Letters, 44(3):119–123, 1992.
2 Ferdinando Cicalese and Nicolo Pilati. The tandem duplication distance problem is hard over

bounded alphabets. In Paola Flocchini and Lucia Moura, editors, Combinatorial Algorithms -
21st International Workshop, IWOCA 2021, Ottawa, Canada, July 5-7, 2021, volume 12757 of
Lecture Notes in Computer Science, pages 179–193. Springer, 2021.

3 Giovanni Ciriello, Martin L Miller, Bülent Arman Aksoy, Yasin Senbabaoglu, Nikolaus Schultz,
and Chris Sander. Emerging landscape of oncogenic signatures across human cancers. Nature
Genetics, 45:1127–1133, 2013.

4 Juegen Dassow, Victor Mitrana, and Gheorghe Paun. On the regularity of the duplication
closure. Bulletin of the EATCS, 69:133–136, 1999.

5 Andrzej Ehrenfeucht and Grzegorz Rozenberg. On regularity of languages generated by copying
systems. Discrete Applied Mathematics, 8(3):313–317, 1984.

6 Adrian Kosowski. An efficient algorithm for the longest tandem scattered subsequence problem.
In Alberto Apostolico and Massimo Melucci, editors, String Processing and Information
Retrieval, 11th International Conference, SPIRE 2004, Padova, Italy, October 5-8, 2004,
Proceedings, volume 3246 of Lecture Notes in Computer Science, pages 93–100. Springer, 2004.

CPM 2022

7:12 The Longest Letter-Duplicated Subsequence Problem

7 Manuel Lafond, Binhai Zhu, and Peng Zou. The tandem duplication distance is NP-hard. In
Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical
Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume
154 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

8 Manuel Lafond, Binhai Zhu, and Peng Zou. Computing the tandem duplication distance is
NP-hard. SIAM J. Discrete Mathematics, 36(1):64–91, 2022.

9 E.S. Lander, et al., and International Human Genome Sequencing Consortium. Initial
sequencing and analysis of the human genome. Nature, 409(6822):860–921, 2001.

10 John Leech. A problem on strings of beads. The Mathematical Gazette, 41(338):277–278, 1957.
11 Marcy Macdonald, et al., and Peter S. Harper. A novel gene containing a trinucleotide repeat

that is expanded and unstable on huntington’s disease. Cell, 72(6):971–983, 1993.
12 The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma.

Nature, 474:609–615, 2011.
13 Layla Oesper, Anna M. Ritz, Sarah J. Aerni, Ryan Drebin, and Benjamin J. Raphael.

Reconstructing cancer genomes from paired-end sequencing data. BMC Bioinformatics,
13(Suppl 6):S10, 2012.

14 Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton, Walter A.
Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors, Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA, pages 216–226. ACM, 1978.

15 Sven Schrinner, Manish Goel, Michael Wulfert, Philipp Spohr, Korbinian Schneeberger, and
Gunnar W. Klau. The longest run subsequence problem. In Carl Kingsford and Nadia Pisanti,
editors, 20th International Workshop on Algorithms in Bioinformatics, WABI 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference), volume 172 of LIPIcs, pages 6:1–6:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

16 Andrew J. Sharp, et al., and Even E. Eichler. Segmental duplications and copy-number
variation in the human genome. The American J. of Human Genetics, 77(1):78–88, 2005.

17 Jack W. Szostak and Ray Wu. Unequal crossing over in the ribosomal dna of saccharomyces
cerevisiae. Nature, 284:426–430, 1980.

18 Craig A. Tovey. A simplified np-complete satisfiability problem. Discret. Appl. Math., 8(1):85–
89, 1984.

19 Ming-Wei Wang. On the irregularity of the duplication closure. Bulletin of the EATCS,
70:162–163, 2000.

20 Chunfang Zheng, P Kerr Wall, James Leebens-Mack, Claude de Pamphilis, Victor A Albert, and
David Sankoff. Gene loss under neighborhood selection following whole genome duplication
and the reconstruction of the ancestral populus genome. Journal of Bioinformatics and
Computational Biology, 7(03):499–520, 2009.

	1 Introduction
	2 Preliminaries
	2.1 The LLDS Problem
	2.2 The Variants of LLDS

	3 Hardness with the full-appearance constraint
	3.1 Hardness for LLDS+(d) and FT(d) when d > = 6
	3.2 Solving the Feasiblility Testing Version for d = 3

	4 A Dynamic Programming Algorithm for Weighted-LDS
	5 Concluding Remarks

