
Reduction Ratio of the IS-Algorithm: Worst and
Random Cases
Vincent Jugé #

LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-Vallée, France

Abstract
We study the IS-algorithm, a well-known linear-time algorithm for computing the suffix array of a
word. This algorithm relies on transforming the input word w into another word, called the reduced
word of w, that will be at least twice shorter; then, the algorithm recursively computes the suffix
array of the reduced word. In this article, we study the reduction ratio of the IS-algorithm, i.e., the
ratio between the lengths of the input word and the word obtained after reducing k times the input
word. We investigate both worst cases, in which we find precise results, and random cases, where we
prove some strong convergence phenomena. Finally, we prove that, if the input word is a randomly
chosen word of length n, we should not expect much more than log(log(n)) recursive function calls.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Word combinatorics, Suffix array, IS algorithm

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.8

Related Version Full Version: https://arxiv.org/abs/2204.04422

1 Introduction

The suffix array of a word is the permutation of its suffixes that orders them for the
lexicographic order. Suffix arrays were introduced in 1990 by Manber and Meyers [9] as a
space-efficient alternative to suffix trees. Like suffix trees, they have been used since then in
many applications [1, 3, 10]: data compression, pattern matching, plagiarism detection, . . .

Suffix arrays were first constructed via the construction of suffix trees. Then, various
algorithms were proposed to construct suffix arrays directly [4, 5, 6, 7]. A more comprehensive
list of approaches towards constructing suffix trees can be found in [14]. In 2010, a new
algorithm, called the IS-algorithm, was proposed for constructing suffix arrays [12]. This
algorithm, which is extremely efficient in practice, is recursive: except if the letters of its
input word w are pairwise distinct, in which case the suffix array of w is easy to compute
directly, the algorithm transforms w into a shorter word w′ and deduces the suffix array of w
from the suffix array of w′.

Thus, the question of knowing the reduction ratio |w′|/|w| between the lengths of the
words w′ and w, as well as the number of recursive calls, is critical to evaluating the efficiency
of the algorithm. More generally, denoting by isk(w) the word obtained after k recursive calls
(with is0(w) = w), we wish to evaluate the ratio |isk(w)|/|w| for all k, as well as computing
the number of recursive calls that the algorithm will make, i.e., the maximal value of k.

In this article, we focus on these two questions in two different contexts. In Section 3,
we consider worst cases, and prove that there exist arbitrarily long words w such that
|isk(w)| ≈ 2−k|w| for all k ⩽ log2(|w|) − 3, thereby extending results from [2].

Then, in Section 4, we refine the work of [11] and consider words whose letters are
generated by a Markov chain of order 1. In this context, and under mild conditions about the
Markov chain, we prove, for each integer k ⩾ 0, that the ratio |isk(w)|/|w| almost surely tends
to a given constant γk when |w| → +∞. Finally, in Section 5, we study the constant γ1 (and,

© Vincent Jugé;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincent.juge@univ-eiffel.fr
https://doi.org/10.4230/LIPIcs.CPM.2022.8
https://arxiv.org/abs/2204.04422
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Reduction Ratio of the IS-Algorithm

in some cases, γ2) when the letters of w are identically and independently generated and, in
Section 6, we propose upper bounds on the number of recursive steps on the IS-algorithm
when the letters of w are given by a finite Markov chain.

2 Preliminaries

2.1 Definitions and notations
Let A be a non-empty alphabet, endowed with a linear order ⩽. For every integer n ⩾ 0, we
denote by An the set of words of length n over A, i.e., the set of sequences of n letters in A.
We also denote by A∗ the set of all finite words over A, i.e., the union

⋃
n⩾0 An, and by ε

the empty word.
Let w be a finite word over A. We denote by |w| the length of w, and by w0, w1, . . . , w|w|−1

the letters of w. We may abusively denote by w−k the letter w|w|−k, i.e., the kth rightmost
letter of w. For all integers i and j such that 0 ⩽ i ⩽ j ⩽ |w| − 1, we also denote by wi···j
the word wiwi+1 · · ·wj . Every such word is called a factor of w. If j = |w| − 1, this word is
a suffix of w, and we also denote it by wi···. Finally, given two words u and v, we denote
by u · v their concatenation, i.e., the word u0u1 · · ·u|u|−1v0v1 · · · v|v|−1.

The suffix array [9] of a word w ∈ A∗ is the unique permutation σ of {0, 1, . . . , |w| − 1}
such that wσ(0)··· <lex wσ(1)··· <lex . . . <lex wσ(|w|−1)···, where <lex denotes the lexicographic
ordering. The IS-algorithm [12] aims at computing the suffix array of its input word w in time
linear in |w|, when the alphabet A is either a given finite set or a subset of {0, 1, . . . , |w| − 1}.

2.2 Unimodal factors and one-step reduction
Let w be a finite word over A, and let $ be a fictitious letter, called the sentinel, that is
defined to be smaller than all letters in A. Below, we simply denote by A$ the set A ∪ {$}.

An integer i ⩽ |w| − 1 is said to be w-non-decreasing if there exists an integer j such that
i+ 1 ⩽ j ⩽ |w| − 1 and wi = wi+1 = . . . = wj−1 < wj . If, in addition, i ⩾ 1 and wi−1 > wi,
we say that i is w-locally minimal.

Then, let i0 < i1 < . . . < ik−1 be the w-locally minimal integers (with k ⩾ 0). We also
set ik = |w|, and we abusively set w|w| = $. This amounts to replacing w by the word w · $,
whose suffix array is the same as the one of w, except that we appended the letter $ to every
suffix and that $ is now the least non-empty suffix of w · $.

We define the unimodal factors of w, also called LMS factors [11, 12], as the k words
wi0···i1 , wi1···i2 , . . . , wik−1···ik

, which belong to A+ · (ε+ $). We call these factors unimodal
because each sequence wiℓ

, wiℓ+1, . . . , wiℓ+1 consists of a non-decreasing prefix followed by a
non-increasing suffix, and we denote by eis(w) – for expanded IS-reduction of w – the word
over the infinite alphabet A+ · (ε+ $) whose letters are the unimodal factors of w.

For instance, if w is the word COMBINATORIAL over the latin alphabet A, its unimodal
factors are BINA, ATO, ORIA and AL$, and thus eis(w) is the four-letter word BINA·ATO·ORIA·AL$
over the alphabet A+ · (ε+ $).

In subsequent sections, we may extend to infinite words w (to which we append the letter
$ if w is left-infinite, but not if w is right-infinite) the notions of w-locally minimal integer,
of unimodal factor, and of expanded IS-reduction.

The IS-algorithm roughly works as follows:
1. compute w-locally minimal integers and the associated unimodal factors, which form the

letters of eis(w);
2. sort these factors;

V. Jugé 8:3

3. if w has ℓ distinct unimodal factors, identify each factor with an integer i ∈ {0, 1, . . . , ℓ−1}:
factors f and f ′ such that f <lex f

′ are identified with integers i and i′ such that i < i′;
4. identify the word eis(w) with a word is(w) over the alphabet {0, 1, . . . , ℓ− 1};
5. compute the suffix array of is(w), either directly (if the letters of is(w) are pairwise

distinct) or recursively (if at least two letters of is(w) coincide with each other);
6. based on that array, sort all suffixes of w.

As mentioned by its authors [12], steps 1, 3 and 4 of the algorithm can clearly be performed
in time O(|w|). If A is a given finite set, or a subset of {0, 1, . . . , |w| − 1}, bucket sorts allow
sorting in linear time unimodal words whose rightmost letters are already sorted, thereby
performing steps 2 and 6 in time O(|w|). Finally, no two consecutive integers i ⩽ |w| − 1
are w-locally minimal, and therefore |is(w)| ⩽ |w|/2, thereby proving that the IS-algorithm
works in time O(|w|).

Thus, a natural question would be that of evaluating the constant hidden in this O(|w|)
running time. To that end, we could focus closely on how each of the steps 1 to 4 and 6 is
performed. However, several variants might be considered for performing each of these steps.
Consequently, we focus on the step 5 and study the behaviour of the ratio |is(w)|/|w| or,
more generally, |isk(w)|/|w|.

2.3 Markov chains and ergodicity
In Sections 4 to 6, we consider random words, whose letters result from a probabilistic
process, and are random variables that form a (homogeneous) Markov chain. Below, we
focus exclusively on such Markov chains, and thus abandon the epithet “homogeneous”.

Let S be a countable set, let µ : S 7→ R be a probability distribution, and letM : S×S 7→ R
be a function such that

∑
t∈S M(s, t) = 1 for all s ∈ S. A homogeneous Markov chain

with set of states S, initial distribution µ and transition matrix M is a sequence of random
variables (Xn)n⩾0 with values in S such that P(X0 = x) = µ(x) for all x ∈ S and such that,
for every integer n ⩾ 1 and every tuple (x0, x1, . . . , xn) ∈ Sn+1, we have

P(Xn = xn | X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = M(xn−1, xn)

whenever P(X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) > 0. Below, we identify the Markov
chain with the pair (M,µ), or with the transition matrix M in contexts where the initial
distribution is irrelevant and might need to be changed. We also abusively say that (Xn)n⩾0
is a trajectory of the Markov chain (M,µ) or, alternatively, is generated by (M,µ).

The underlying graph of (M,µ) is the weighted graph G = (V,E, π) with vertex set V = S,
edge set E = {(s, t) ∈ S × S : M(s, t) > 0}, and whose weight function π : E 7→ R is defined
by π(s, t) = M(s, t). We say that (M,µ) is irreducible if G is strongly connected, and
aperiodic when the lengths of its cycles have no common divisor d ⩾ 2.

These notions are connected to the ergodicity of a Markov chain, which can be defined as
follows. Given a probability distribution ν on S, we denote by Mν the probability distribution
defined by (Mν)(x) =

∑
y∈S M(y, x)ν(y). Then, the L1 distance between two distributions ν

and θ is defined as the real number ∥ν − θ∥1 =
∑

x∈S |ν(x) − θ(x)|. The Markov chain M is
said to be ergodic if there exists a positive probability distribution ν on S (i.e., a probability
distribution such that ν(x) > 0 for all x ∈ S) such that limk→+∞ ∥ν − Mkθ∥1 = 0 for all
probability distributions θ on S.

Such a distribution ν must be the unique stationary distribution of the Markov chain M ,
i.e., the unique probability distribution such that ν = Mν. Conversely, when M is irreducible
and has a stationary distribution that is positive on S, we say that M is irreducible and
positive recurrent. This latter assumption relieves us from the need of aperiodicity, and yet
retains some desirable properties of ergodic Markov chains.

CPM 2022

8:4 Reduction Ratio of the IS-Algorithm

A typical example of an ergodic Markov chain arises if P(Xn = t |Xn−1 = s) = ν(t) for
all s and t in S, i.e., if Mθ = ν for all probability distributions θ on S. In that case, the
random variables (Xn)n⩾0 are said to be independent and identically distributed.

We refer the reader to [8, 13] for a comprehensive review about Markov chains and their
properties, from which we present three crucial results below.

▶ Proposition 1 (Corollary 1.18 and Theorem 21.14 of [8]). Every ergodic Markov chain
is irreducible and aperiodic. Conversely, every irreducible and aperiodic Markov chain is
ergodic, provided that its state set is finite or that it has a positive stationary distribution.

We are particularly interested in Theorem 4.16 of [8], on which we will base Section 4.
However, we will not necessarily handle ergodic Markov chains, and therefore we shall relax
the notion of ergodicity to a less stringent, ad hoc notion that we call almost surely eventually
positive recurrent and irreducible (or EPRI) Markov chains.

A Markov chain M with underlying graph G = (S, E, π), is said to be EPRI if there
exists a set X ⊆ S of states, called the terminal component of M , such that (i) X is a
strongly connected component of G; (ii) M has stationary distribution ν, i.e., a probability
distribution ν such that Mν = ν, that is positive on X and zero on S \ X ; and (iii) for every
initial distribution µ, the sequence generated by (M,µ) almost surely contains a vertex x ∈ X .

Note that, since ν is positive on X and zero elsewhere, no edge of G can leave X , i.e., the
set E contains no edge (x, y) such that x ∈ X and y /∈ X .

In this notion, we completely abandon any requirement to be acyclic, which prevents
the L1 convergence that characterises ergodicity. However, when focusing on average, long-
term behaviours of a Markov chain, such as the frequency of occurrence of a given vertex of
sequence of consecutive vertices, whether the Markov chain is cyclic or acyclic is irrelevant.
Thus, we may just focus on irreducible, positive recurrent Markov chains. Moreover, in EPRI
Markov chains, the path followed before entering the terminal component quickly vanishes.
Consequently, the following result, which is usually stated for irreducible, positive recurrent
Markov chains only, can be generalised to all EPRI Markov chains whose state space is either
finite or countably infinite.

▶ Theorem 2 (Theorem 4.16 of [8], Theorem 2.1.1 of [13]). Let (M,µ) = (Xn)n⩾0 be an
EPRI Markov chain with set of states S and stationary distribution ν. Let ℓ be a positive
integer, let f : Sℓ 7→ R be a bounded function, and let

Eν [f] =
∑

x1,x2,...,xℓ∈S
ν(x1)M(x1, x2)M(x2, x3) · · ·M(xℓ−1, xℓ)f(x1, x2, . . . , xℓ).

We have

P

[
1
n

n−1∑
k=0

f(Xk, Xk+1, . . . , Xk+ℓ−1) n→+∞−−−−−→ Eν [f]
]

= 1.

Proof. It is well-known [13] that Theorem 2 holds when M is irreducible and positive
recurrent, i.e., when its state space S coincides with its terminal component X .

In the general case, trajectories of the Markov chain almost surely meet X after a finite
number of steps, say p, that depends of the trajectory. Once it meets X , the trajectory starts
behaving like an irreducible, positive recurrent Markov chain with state space X . Thus,

1
n− p

n−1∑
k=p

f(Xk, Xk+1, . . . , Xk+ℓ−1)

converges almost surely (as n → +∞) to Eν [f]. Theorem 2 follows. ◀

V. Jugé 8:5

Finally, a crucial well-known property of irreducible, positive recurrent Markov chains
whose initial distribution coincides with their stationary distribution is that they can be
reversed.

▶ Theorem 3 (Proposition 1.22 of [8]). Let (Xn)n⩾0 be an irreducible, positive recurrent
Markov chain with set of states S, transition matrix M , and whose initial distribution
coincides with the stationary distribution ν of M . For all integers ℓ ⩾ 0, the sequence
(Xℓ−n)0⩽n⩽ℓ contains the first ℓ+ 1 elements of an irreducible, positive recurrent Markov
chain, called the reverse Markov chain of (M,ν), with initial distribution ν and whose
transition matrix M̂ is defined by

M̂(x, y) = ν(y)
ν(x)M(y, x).

More generally, if M is EPRI, and provided that its initial distribution is ν, it already
starts inside of its terminal component X , which it cannot leave. Thus, up to deleting those
states of M that do not belong to X , the Markov chain M becomes irreducible and positive
recurrent, and Theorem 3 applies, with the following caveat: the state space of its reverse
Markov chain is restricted to X , and needs not be extended to states outside of X .

3 Deterministic worst case

By construction, no two consecutive integers i ⩽ |w| − 1 are w-locally minimal, and all
w-locally minimal integers belong to the set {1, 2, . . . , |w| − 2}. Hence, at most (|w| − 1)/2
integers are w-locally minimal. This means that |is(w)| + 1 ⩽ (|w| + 1)/2 and, more generally,
that |isk(w)| + 1 ⩽ 2−k(|w| + 1) for every integer k ⩾ 0 and every word w ∈ A∗ such
that isk(w) exists. A genuine question is then: can we do better? The answer, which was
known to be negative [2] when we allow alphabets A with size log2(|w|), remains negative
for every fixed size |A| ⩾ 2.

▶ Theorem 4. Let A be an alphabet of cardinality at least 4. For every integer n ⩾ 3,
there exists a word w ∈ A2n−1 on which the IS-algorithm performs n− 2 recursive calls, and
|isk(w)| + 1 = 2−k(|w| + 1) for all k ∈ {0, 1, . . . , n− 2}.

Proof. Without loss of generality, we assume that A = {0, 1, 2, 4}. Let also B = {0, 1, 2, 3, 4}.
Then, let φ : B∗ 7→ B∗ and ψ : B∗ 7→ A∗ be morphisms of monoids, uniquely defined by their
values on B: φ(0) = 02, φ(1) = 04, φ(2) = 12, φ(3) = 13 and φ(4) = 14; ψ(a) = a for
all a ∈ A, and ψ(3) = 4. We prove below that the word ψ(φn(3)1···) satisfies the requirements
of Theorem 4.

We say that a word w = w0w1 · · ·wk ∈ B∗ is balanced if (1) its length |w| = k + 1 is even,
(2) its rightmost letter wk = 3, (3) its suffix w1··· contains each of the letters 0, 1, 2, 3, 4, and
(4) for all i ⩽ k−1, we have wi ∈ {0, 1} if i is even and wi ∈ {2, 4} if i is odd. The eight-letter
word φ3(3) = 02140413 is balanced, and φ maps each balanced word to a balanced word.

Provided that w is balanced, the φ(w)1···-minimal integers are 1, 3, 5, . . . , 2k − 1, and the
associated unimodal factors are φ(w1)·φ(w2)0, φ(w2)·φ(w3)0, . . . , φ(wk−1)·φ(wk)0, φ(wk) · $.
Since φ(0)1 = φ(1)1 = 0 and φ(2)1 = φ(3)1 = φ(4)1 = 1, this means that the unimodal
factors of φ(w) are θ(w1), θ(w2), . . . , θ(wk), where we set θ(0) = 021, θ(1) = 041, θ(2) = 120,
θ(3) = 13$ and θ(4) = 140. The function θ is increasing, and thus, is(φ(w)1···) = w1···.

Moreover, if w is balanced, and since the rightmost letter of φ(w) is its only occurrence of
the letter 3, the words φ(w)1··· and ψ(φ(w)1···) have the same unimodal factors, except that
their last factors are 13$ and 14$, respectively. Hence, is(ψ(φ(w)1···)) = is(φ(w)1···) = w1···.
Thus, the map is successively sends ψ(φn(3)1···) to φn−1(3)1···, φ

n−2(3)1···, . . . , φ
3(3)1···, and

observing that is(φ3(3)1···) = 201 completes the proof. ◀

CPM 2022

8:6 Reduction Ratio of the IS-Algorithm

Although the conclusions of Theorem 4 are not valid for alphabets of cardinality 2 or 3,
it is still possible to find variants of this worst case. In these variants, the first step of the
IS-algorithm is more efficient, with respective reduction ratios of 3 and 5/2, but every word
considered after that first step belongs to an alphabet of cardinality 4, which explains why
the reduction ratios we compute have similar orders of magnitude.

▶ Corollary 5. Let A be an alphabet of cardinality 2. For every integer n ⩾ 3, there
exists a word w ∈ A3×2n−2 on which the IS-algorithm performs n − 1 recursive calls, and
|isk(w)| + 1 = 21−k(|w| + 2)/3 for all k ∈ {1, 2, . . . , n− 1}.

Proof. Let us assume that A = {0, 1}, and let B and φ be the alphabet and the morphism
defined in the proof of Theorem 4. An immediate induction on ℓ shows that, for all ℓ ⩾ 3,
the word φℓ(3) starts with the letter 0, ends with the letter 3, and contains 2ℓ−2 letters 0,
2ℓ−2 letters 1, 2ℓ−2 − 1 letters 2, one letter 3 (the rightmost one) and 2ℓ−2 letters 4.

Then, we consider a new morphism ψ2 : B∗ 7→ A∗, such that ψ2(0) = 0001, ψ2(1) = 001,
ψ2(2) = 01, and ψ2(3) = ψ2(4) = 011. Like in the proof of Theorem 4, we prove that
is(1 · ψ2(w1···)) = is(φ(w)1···) = w1··· when w is balanced, and having counted occurrences
of each letter in φn(3) allows us to conclude that the word 1 · ψ2(φn(3)1···) satisfies the
requirements of Corollary 5. ◀

▶ Corollary 6. Let A be an alphabet of cardinality 3. For every integer n ⩾ 3, there
exists a word w ∈ A5×2n−3 on which the IS-algorithm performs n recursive calls, and
|isk(w)| + 1 = 22−k(|w| + 3)/5 for all k ∈ {1, 2, . . . , n}.

Proof. The proof is the same as that of Corollary 5, except that we have now A = {0, 1, 2}
and that, instead of the morphism ψ2, we use a new morphism ψ3 : B∗ 7→ A∗, such that
ψ3(0) = 001, ψ3(1) = 01, ψ3(2) = 012, ψ3(3) = ψ3(4) = 02. Indeed, we also have
is(1 · ψ3(w1···)) = is(φ(w)1···) = w1··· when w is balanced, from which we conclude that the
word 1 · ψ3(φn(3)1···) satisfies the requirements of Corollary 6. ◀

4 Words generated by an ergodic Markov chain

Let A be a finite or countably infinite set. Below, we study the typical behaviour of the
IS-algorithm on a word w ∈ An whose letters are the first n elements of an EPRI Markov
chain (M,µ) with set of states A. We prove below the following result, which is the main
(and technically most demanding) result presented in this paper.

▶ Theorem 7. Provided that w is generated by an EPRI Markov chain, and for all integers
k ⩾ 0, there exist a constant γk and a sequence (εn)n⩾0 that tends to 0 such that

P
[∣∣∣∣ |isk(w)|

|w|
− γk

∣∣∣∣ ⩾ ε|w|

]
⩽ ε|w|.

A particular case of interest arises when w is a word over a finite alphabet generated by
an ergodic Markov chain. However, even in that restricted case, studying the words isk(w)
for k ⩾ 1 will require us to consider words over infinite alphabets, which might be generated
by Markov chains no longer ergodic, but only EPRI. That is why, facing the need to treat
such a generalised setting, we chose to include it from the start in our study.

In addition, all finite-state Markov chains can be decomposed as a “sum” of EPRI Markov
chains. Indeed, if the underlying graph of such a Markov chain (M,µ) has k terminal
strongly connected components, the Markov chain will almost surely reach one of these

V. Jugé 8:7

components. Thus, in order to study the Markov chain (M,µ), we may consider, one by
one, its k terminal components; for each such component K, compute the probability that
(M,µ) eventually reaches K; finally, simulate the behaviour of (M,µ) by first selecting at
random which terminal component K it will reach, and then assuming that (M,µ) must
reach that component, thereby transforming (M,µ) into an EPRI Markov chain. This allows
us to obtain the following variant of Theorem 7.

▶ Theorem 8. Let w be a word whose letters are generated by a finite-state Markov chain.
There exist a constant κ and a probability law X over the set {1, 2, . . . , κ} with the following
property: For all integers k ⩾ 0, there exist constants γ1,k, γ2,k, . . . , γκ,k and a sequence
(εn)n⩾0 that tends to 0 such that, for all i ⩽ κ,∣∣∣∣P [∣∣∣∣ |isk(w)|

|w|
− γi,k

∣∣∣∣ ⩽ ε|w|

]
− P[X = i]

∣∣∣∣ ⩽ ε|w|.

4.1 Generating letters from right to left
In [11], the letters of w are generated from right to left, i.e., the letter wn−k is the kth

element of the Markov chain. Here, we mainly focus on this case too. Generating the letters
of w from right to left makes things easier because, although being w-non-decreasing is
not a local property, it enjoys the following local, recursive characterization: an integer i is
w-non-decreasing if and only if i ⩽ |w| − 2 and either (a) wi < wi+1, or (b) wi = wi+1 and
i+ 1 is w-non-decreasing.

Below, we wish to study the sequence w, is(w), is2(w), . . . and in particular the lengths
of these words. In fact, it will be easier to study the sequence w, eis(w), eis2(w), . . . These
two sequences differ from each other because they do not use the same alphabets. Yet, for
all k ⩾ 0, the words isk(w) and eisk(w) are “isomorphic” to each other: they have the same
length, and there exists an increasing mapping φ from the letters of eisk(w) to those of isk(w),
such that φ(eisk(w)i) = isk(w)i for all i < |eisk(w)|.

Following [11, 12], we transform the Markov chain (M,µ) into another Markov chain
(M,µ) that starts with the letter $ and, in addition to telling which letter we produce,
also tells whether the corresponding index is w-non-decreasing: instead of producing letters
a ∈ A$, this new Markov chain shall produce pairs (a, ↑) or (a, ↓), depending on whether the
current position is w-non-decreasing or not: we produce a pair (a, ↑) if the former case, and
(a, ↓) in the latter case. Formally, the Markov chain (M,µ) is defined as follows. Its states
form the set S = A$ × {↑, ↓}. Its initial distribution is defined by µ($, ↑) = 1, and µ(s) = 0
whenever s ̸= ($, ↑). Its transition matrix is then defined by

M
(
($, ↕), (y, ↓)

)
= µ(y) if y ∈ A;

M
(
(x, ↕), (y, ↓)

)
= M(x, y) if (x, y) ∈ A2 and x < y;

M
(
(x, ↕), (y, ↑)

)
= M(x, y) if (x, y) ∈ A2 and x > y;

M
(
(x, ↕), (y,⇕)

)
= M(x, y) if (x, y) ∈ A2, x = y and ↕=⇕;

M
(
(x, ↕), (y,⇕)) = 0 otherwise.

▶ Proposition 9. Let (M,µ) be an EPRI Markov chain whose terminal component has size
at least two. The Markov chain (M,µ) defined above is EPRI.

Proof. Let G = (A, E, π) be the underlying graph of the Markov chain (M,µ), let X be its
terminal component, and let ν be its stationary distribution. In addition, for all x ∈ A, let
x↑ = {y ∈ X : x < y and (y, x) ∈ E} and x↓ = {y ∈ X : x > y and (y, x) ∈ E}.

CPM 2022

8:8 Reduction Ratio of the IS-Algorithm

Since M(x, x) < 1 for all x ∈ A, the distribution ν on S defined by ν($, ↕) = 0 and by

ν(x, ↕) = 1
1 −M(x, x)

∑
y∈x↕

M(y, x)ν(y)

for all (x, ↕) ∈ A × {↑, ↓} is a probability distribution, because

ν(x, ↑) + ν(x, ↓) = 1
1 −M(x, x)

∑
y : x ̸=y

M(y, x)ν(y) = Mν(x) −M(x, x)ν(x)
1 −M(x, x) = ν(x) (1)

for all x ∈ A. We further deduce from (1) that
Mν(x, ↕) −M(x, x)ν(x, ↕) =

∑
y∈x↕

M(y, x)
(
ν(y, ↑) + ν(y, ↓)

)
=

∑
y∈x↕

M(y, x)ν(y)

Mν(x, ↑) −M(x, x)ν(x, ↑) =
∑

y∈x↕

M(y, x)
(
ν(y, ↑) + ν(y, ↓)

)
= (1 −M(x, x))ν(x, ↕),

i.e., that Mν(x, ↕) = ν(x, ↕), for all (x, ↕) ∈ A × {↑, ↓}. This means that ν is a stationary
distribution of (M,µ).

This probability distribution is positive on the set

X def== {(x, ↑) : x ∈ X , x↑ ̸= ∅} ∪ {(x, ↓) : x ∈ X , x↓ ̸= ∅}

and is zero outside of X . Since ν is non-zero, it follows that X is non-empty.
Then, let G be the underlying graph of (M,µ). We shall prove that X satisfies the

requirements (i) and (iii) of EPRI Markov chains. Hence, consider some state (x, ↑) in X ,
and let y be a state in x↑. For every state (z, ↕) in X , the graph G contains a finite path
from z to x whose second-to-last vertex is y, and thus G contains a finite path from (z, ↕)
to (x, ↑). Similarly, every state (x, ↓) in X is accessible from every state (z, ↕) in X , and
thus X satisfies the requirement (i).

Finally, consider some trajectory (Xn)n⩾0 of (M,µ). Deleting its first vertex and removing
the second component of each vertex transforms (Xn)n⩾0 into a trajectory (Xn)n⩾1 of the
Markov chain M , which almost surely contains a vertex x ∈ X and then almost surely meets
a vertex distinct from x; let y be the first such vertex. The trajectory (Xn)n⩾0 contains the
vertex (y, ↑) if y < x, or (y, ↓) if y > x, and in both cases that vertex belongs to X . This
shows that X satisfies the requirement (iii). ◀

Using Theorem 2 for the function f : S × S 7→ R defined by{
f

(
(x, ↑), (y, ↓)

)
= 1 for all x, y ∈ A;

f(u, v) = 0 in all other cases

already allows us to prove a special case of Theorem 7 for k = 1, which was already proven
in [11] in the case A is finite and (M,µ) is ergodic.

However, if the terminal component of M contains only one state z, the Markov
chain (M,µ) is no longer EPRI, since its graph contains two self-loops around (z, ↑) and (z, ↓),
each one with weight 1. We overcome this difficulty by merging the two states (z, ↑) and (z, ↓)
into one single state z, thereby recovering an EPRI Markov chain, and we modify the
function f , redefining it by

f
(
(x, ↑), (y, ↓)

)
= 1 for all x, y ∈ A \ {z};

f
(
(x, ↑), z

)
= 1 for all x ∈ z↓;

f(u, v) = 0 in all other cases.

V. Jugé 8:9

Tackling this special case allows us to derive the following result, whose validity does not
depend on the size of the terminal component of M .

▶ Corollary 10. If the letters of w are generated from right to left by an EPRI Markov chain,
there exists a constant γ1 such that P[|eis(w)|/|w| → γ1] = 1.

Moreover, since |isk+1(w)| ⩽ |isk(w)| for all words w and all integers k ⩾ 0, we already
know that Theorem 7 holds, with γk = 0, when the terminal component of M has size one.
Henceforth, we assume that this terminal component has size at least two.

Under this assumption, let us show that the letters of the word eis(w) are also generated
by a Markov chain. In order to do so, we introduce the function M+ : A → R defined by

M+(x) =
∑

y : x<y

M(x, y)

for every letter x ∈ A, and the function m : A+ · (ε+ $) → R defined by

m(w0w1 · · ·wk) = M(w1, w0)M(w2, w1) · · ·M(wk, wk−1)

and m(w · $) = m(w)µ(w−1) for every word w = w0w1 · · ·wk in A+. We also define the set{
U∧ def== {w0w1 · · ·wℓ ∈ A+ · (ε+ $): M+(w0) > 0 and
U∧ def== {w0w1 · · ·wℓ ∈ A+ · (ε+ $): ∃k ⩽ ℓ, w0 ⩽ . . . ⩽ wk−1 < wk ⩾ . . . ⩾ wℓ−1 > wℓ}.

▶ Lemma 11. The letters of the word eis(w) are generated from right to left by the Markov
chain (M̊, µ̊) with set of states U∧, whose initial distribution is defined by

µ̊(w) = M+(w0)m(w)1w−1=$

for every word w ∈ U∧, and whose transition matrix is defined by

M̊(w,w′) = M+(w′
0)

M+(w0)1w0=w′
−1
m(w′).

Proof. Let u(1), u(2), . . . , u(k) be unimodal words such that u(i)
−1 = u

(i+1)
0 for all i ⩽ k − 1.

These are the k rightmost letters of the word eis(w) if and only if there exists a letter x ∈ A
such that x > u

(1)
0 and w · $ ends with the suffix x · u(1) · u(2)

1··· · u(3)
1··· · · ·u(k)

1···, which happens
with probability

Px
def==M

(
u

(1)
0 , x

)
m

(
u(1))m(

u(2)) · · ·m
(
u(k−1))m(

u(k))1
u

(k)
−1 =$.

Summing these probabilities Px for all x > u1
0, we observe that u(1), u(2), . . . , u(k) are the

rightmost letters of eis(w) with probabilityP = M+(
u

(1)
0

)
m

(
u(1))m(

u(2)) · · ·m
(
u(k−1))m(

u(k))1
u

(k)
−1 =$

P = M̊
(
u(2), u(1))M̊(

u(3), u(2)) · · · M̊
(
u(k), u(k−1))µ̊(

u(k)).
Finally, Corollary 10 proves that, if w is a left-infinite word whose letters are generated

by (M,µ) from right to left, the word eis(w) is almost surely infinite. It follows that µ̊ is
indeed a probability distribution and that M is indeed a transition matrix, i.e., that∑

w′∈U∧

µ̊(w′) = 1 and
∑

w′∈U∧

M̊(w,w′) = 1

for all words w ∈ U∧. ◀

CPM 2022

8:10 Reduction Ratio of the IS-Algorithm

Our next move consists in proving that the Markov chain (M̊, µ̊) is EPRI, by exhibiting
its stationary distribution. To that end, we first require the following result, which roughly
states that “almost surely, every letter of a left-infinite word w generated by (M,µ) belongs
to a unimodal factor of w”, and whose formal proof can be found in Appendix A.1.

▶ Lemma 12. For all letters x ∈ A such that M+(x) ̸= 0, we have

ν(x, ↑) =
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑).

With this result in hand, we can now prove Proposition 13, following the same lines of
the proofs used for Proposition 9.

▶ Proposition 13. Let (M,µ) be an EPRI Markov chain whose terminal component has size
at least two. The Markov chain (M̊, µ̊) is EPRI.

Proof. First, let γ1 be the constant of Corollary 10. Theorem 2 proves that

γ1 =
∑

(x,↑)∈X

 ∑
y∈X : x<y

M(x, y)ν(x, ↑)

 =
∑

(x,↑)∈X

M+(x)ν(x, ↑).

Then, consider the distribution ν̊ defined by

ν̊(w) = 1
γ1
M+(w0)m(w)ν(w−1, ↑)

Lemma 12 proves that∑
w∈U∧

ν̊(w) = 1
γ1

∑
x∈A

M+(x)
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑) = 1
γ1

∑
x∈A

ν(x, ↑)M+(x) = 1,

i.e., that ν̊ is a probability distribution.
Moreover, for every word w ∈ U∧, Lemma 12 also proves that
M̊ν̊(w) = 1

γ1

∑
w′∈U∧

1w−1=w′
0
M+(w0)m(w)m(w′)ν(w′

−1, ↑)

M̊ν̊(w) = 1
γ1
M+(w0)m(w)ν(w−1, ↑) = ν̊(w).

This means that ν̊ is a stationary probability distribution of (M̊, µ̊).
This probability distribution is positive on the set X̊ def== U∧ ∩ X ∗ and is zero outside of

that set. Since ν̊ is a probability distribution, it follows that X̊ ̸= ∅.
Then, let G and G̊ be the respective underlying graphs of (M,µ) and (M̊, µ̊). We shall

prove that X̊ satisfies the requirements (i) and (iii) of EPRI Markov chains.
Hence, consider two words w and w′ in X̊ , and let us choose letters x, y, z, t ∈ X such

that x ∈ (w′
−1)↑, w′

0 ∈ y↓, z ∈ w↑
−1 and w0 ∈ t↓. The graph G contains a finite path that

starts with the letter x, then the letters of w′ (listed from right to left) and then the letter y,
and finishes with the letter z, the letters of w (listed from right to left), and then the letter t.
Writing these letters from right to left, we obtain a word u whose leftmost unimodal factor
is w and whose second rightmost unimodal factor is w′. This proves that G̊ contains a path
from w′ to w, i.e., that X̊ satisfies the requirement (i).

Finally, consider some trajectory (X̊n)n⩾0 of the Markov chain (M̊, µ̊). Up to removing
the first letter of every word (i.e., vertex) w ∈ U∧ encountered on this trajectory, reversing
these shortened words, and then concatenating the resulting words, we obtain a trajectory

V. Jugé 8:11

(Xn)n⩾0 of (M,µ). That trajectory almost surely contains a vertex x ∈ X , and will then
keep visiting vertices in X . Thus, our initial trajectory almost surely contains a word X̊n

that is a word with a letter x ∈ X , and all states X̊m such that m ⩾ n+ 1 will then belong
to the set U∧ ∩ X ∗ = X̊, thereby showing that X̊ satisfies the requirement (iii). ◀

▶ Proposition 14. The conclusion of Theorem 7 holds, provided that the letters of w are
generated by an EPRI Markov chain from right to left.

Proof. Let ℓ be the smallest integer, if any, such that the letters of the word eisℓ(w) are not
generated, from right to left, by an EPRI Markov chain whose terminal component has size
at least two.

If ℓ ⩾ k, or if ℓ does not exist, applying Corollary 10 to the words w, eis(w), . . . , eisk−1(w)
proves that, for all i ⩽ k − 1, there exists a positive constant θi such that

P[|eisi+1(w)|/|eisi(w)| → θi] = 1

when |eisi(w)| → +∞. In that case, the constant γk = θ0θ1 · · · θk−1 satisfies the requirements
of Theorem 7.

However, if ℓ ⩽ k− 1, then eisℓ(w) is generated by an EPRI Markov chain whose terminal
component has size one, i.e., consists in an absorbing state. In that case, Corollary 10
proves that |eisℓ+1(w)|/|eisℓ(w)| → 0 almost surely, and thus the constant γk = 0 satisfies
the requirements of Theorem 7. ◀

4.2 Generating letters from left to right
We focus now on the case where the letters of w are generated from left to right, i.e., the
letter wk is the (k + 1)th element of a Markov chain (M ,µ) – we use a bold-face version of
those notations used in Section 4.1.

The two following phenomena make generating the letters of w from left to right harder.
First, whether an integer k is w-non-decreasing depends on the letters wℓ for ℓ ⩾ k, and not
on the letters wℓ for ℓ ⩽ k. Second, we defined w as the prefix of length n of a right-infinite
word w. However, whether a given integer k ⩽ n− 1 is w-non-decreasing may depend on n

since, for instance, n − 1 is never w-non-decreasing. We overcome this second issue by
generalising the notion of non-decreasing integer and of expanded IS-reduction to infinite
words, which allows us to use the following result.

▶ Lemma 15. Let w be a right-infinite word, let n ⩾ 4 be an integer, and let w be a word
such that n − 4 ⩽ |w| ⩽ n + 6 and w0···n−5 = w0···n−5. Finally, let λ be the number of
w-locally minimal integers that are smaller than n. We have λ− 4 ⩽ |eis(w)| ⩽ λ+ 6, and
eis(w)0···λ−5 = eis(w)0···λ−5 if λ ⩾ 4.

Proof. Let i0 < i1 < . . . < iλ−1 the w-locally minimal integers smaller than n. By
construction, we know that ij + 2 ⩽ ij+1 for all j ⩽ λ− 2. This means that iλ−3 ⩽ n− 5,
and therefore an integer j < iλ−3 is w-locally minimal if and only if it is also w-locally
minimal. Thus, the λ−4 first unimodal factors of both w and w are the words wij ...ij+1 , where
0 ⩽ j ⩽ λ−5. This already proves that |eis(w)| ⩾ λ−4 and that eis(w)0···λ−5 = eis(w)0···λ−5.

Finally, if an integer j ⩽ n− 5 is locally w-minimal but not locally w-minimal, we know
that wj−1 = wj−1 > wj = wj , and therefore j is w-non-decreasing but not w-non-decreasing.
This means that wj−1 > wj = wj+1 = . . . = wn−5, and therefore there may be at most
one such integer j. Furthermore, since no two consecutive integers may be w-minimal, the

CPM 2022

8:12 Reduction Ratio of the IS-Algorithm

interval {n−4, n−3, . . . , n+5} contains at most five w-locally minimal integers. Hence, there
exist at most six w-locally minimal integers that do not belong to the set {i0, i1, . . . , iλ−1}.
This means that |eis(w)| ⩽ λ+ 6. ◀

Lemma 15 allows us to approximate eis(w) with a prefix of length λ of the word eis(w),
and proves that this approximation is of excellent quality. Indeed, if we set λ0 = n, and
inductively define λi+1 as the number of eisi(w)-minimal integers smaller than λi, Lemma 15
ensures that λi − 4 ⩽ |eisi(w)| ⩽ λi + 6. Thus, evaluating |eisi(w)| amounts to evaluating λi:
this is the task on which we focus below, which allows us to identify w with an right-infinite
word, thereby saving us from many technicalities.

The first hurdle we mentioned, which requires being able to “guess” whether a given integer
will be w-non-increasing, is easy to overcome by proceeding as follows. When generating
a new letter a, the corresponding position in the word has a given probability of being
w-non-decreasing, which depends only on a. Thus, we can “guess” whether this position
should be w-non-decreasing with the correct probability, and then stick to our guess. Hence,
once again, we transform our Markov chain (M ,µ) into another Markov chain (M ,µ) that
will generate pairs of the form (wi, ↕i), where wi is the (i+ 1)th letter of our word w, whereas
↕i =↑ if i is w-non-decreasing, and ↕i =↓ otherwise. Note that, unlike its variant (M,µ), this
Markov chain never generates pairs of the form ($, ↕), which means that its state space is
simply a subset of A × {↑, ↓}.

Using this technique allows us to follow the same lines of proof as in Section 4.1. Therefore,
we will just mention some milestone constructions and results towards proving Theorem 7,
and omit their proofs, which can be found in Appendix A.2.

Assume here that the terminal component of the EPRI Markov chain (M ,µ) has size
at least two. Before defining the new Markov chain (M ,µ), we first define functions M↑

and M↓ by

M↑(x) = 1
1 − M(x, x)

∑
y : x<y

M(x, y) and M↓(x) = 1
1 − M(x, x)

∑
y : x>y

M(x, y)

for all x ∈ A. Then, the Markov chain (M ,µ) uses the set of states

S def== {(x, ↕) ∈ A × {↑, ↓} : M↕(x) ̸= 0},

the initial distribution defined by µ(x, ↕) = µ(x)M↕(x) for all (x, ↕) ∈ S, and the transition
matrix defined by

M
(
(x, ↑), (y,⇕)

)
= M⇕(y)

M↑(x) M(x, y) if x < y;

M
(
(x, ↓), (y,⇕)

)
= M⇕(y)

M↓(x) M(x, y) if x > y;

M
(
(x, ↕), (y,⇕)

)
= M(x, x) if x = y and ↕=⇕;

M
(
(x, ↕), (y,⇕)) = 0 otherwise.

As expected, when projecting every pair generated by (M ,µ) onto its first coordinate,
we recover a realisation of the Markov chain (M ,µ). Furthermore, since the word w is now
assumed to be infinite, the kth pair generated by (M ,µ) is of the form (a, ↑) if k − 1 is
w-non-decreasing, or (a, ↓) otherwise, except if the Markov chain keeps looping around a
state (a, ↑), which happens with probability 0 since the terminal component has size at least
two. In addition, this new Markov chain is, unsurprisingly, EPRI.

V. Jugé 8:13

If the terminal component of our Markov chain contains only one state, say z, we need
to adapt our construction. For all x ∈ A \ {z}, we have M(x, x) < 1, and thus the above
construction is well-defined on such states. Then, we just merge the two states (z, ↑) and
(z, ↓) into a single sink state, say (z, ↓), and we set M

(
(z, ↓), (z, ↓)

)
= 1.

Fortunately, the following result does not depend on the size of the terminal component
of the Markov chain.

▶ Proposition 9b. Let (M ,µ) be an EPRI Markov chain. The Markov chain (M ,µ) defined
above is EPRI.

Hence, let us consider the function g : S × S 7→ R defined by{
g
(
(x, ↓), (y, ↑)

)
= 1 for all x, y ∈ A;

g(u, v) = 0 in all other cases.

Given a realisation (w0, ↕0), (w1, ↕1), . . . of the Markov chain (M ,µ), and denoting by
w = w0w1 . . . the word obtained by projecting these pairs onto their first coordinate, an integer
i ⩾ 1 is w-locally minimal if and only if ↕i−1 =↓ and ↕i =↑, i.e., if g

(
(wi−1, ↕i−1), (wi, ↕i)

)
= 1.

Thus, using Theorem 2 for the function g and Lemma 15 allows us to prove a special case of
Theorem 7 for k = 1, which consists in the following variant of Corollary 10.

▶ Corollary 10b. If the letters of w are generated from left to right by an EPRI Markov
chain, there exists a constant γ1 such that P[λ1/λ0 → γ1] = 1 when λ0 → +∞.

We focus below on the case where the Markov chain has a terminal component of size at
least two. In that case, we show that the letters of eis(w) are also generated from left to right
by an EPRI Markov chain. Mimicking Section 4.1, we introduce the function m defined by

m(w0w1 · · ·wk) = M(w0, w1)M(w1, w2) · · · M(wk−1, wk)

for every word w0w1 · · ·wk in A∗. We also define the sets
U∧ def== {w0w1 · · · wℓ ∈ A∗ : M↑(wℓ) > 0 and
U∧ def== {w0w1 · · · wℓ ∈ A∗ : ∃k ⩽ ℓ − 1, w0 ⩽ . . . ⩽ wk−1 < wk ⩾ wk+1 ⩾ . . . ⩾ wℓ−1 > wℓ}
V∧ def== {w0w1 · · · wℓ ∈ A∗ : ∃k ⩽ ℓ − 1, w0 ⩽ . . . ⩽ wk−1 ⩽ wk ⩾ wk+1 ⩾ . . . ⩾ wℓ−1 > wℓ}.

▶ Lemma 11b. The letters of the word eis(w) are generated from left to right by the Markov
chain (M̊ , µ̊) with set of states U∧, whose initial distribution is defined by

µ̊(w) =
∑

w′∈V∧

1w′
−1=w0µ(w′

0)m(w′)m(w)M↑(w−1),

and whose transition matrix is defined by

M̊(w,w′) =
M↑(w′

−1)
M↑(w−1)m(w′)1w−1=w′

0
.

▶ Proposition 13b. Let (M ,µ) be an EPRI Markov chain whose terminal component has
size at least two. The Markov chain (M̊ , µ̊) is EPRI.

The above properties allow us to prove the following result.

▶ Proposition 14b. The conclusion of Theorem 7 holds, provided that the letters of w are
generated by an EPRI Markov chain from left to right.

CPM 2022

8:14 Reduction Ratio of the IS-Algorithm

Proof. Let w be the right-infinite word whose letters are generated, from left to right, by
our Markov chain. Then, let ℓ be the smallest integer, if any, such that the letters of the
word eisℓ(w) are not generated, from left to right, by an EPRI Markov chain whose terminal
component has size at least two.

If ℓ ⩾ k, or if ℓ does not exist, applying Corollary 10b to the words w, eis(w), . . . , eisk−1(w)
proves that, for all i ⩽ k−1, there exists a positive constant θi such that P[λi+1/λi → θi] = 1
when λi → +∞. In that case, the constant γk = θ0θ1 · · · θk−1 satisfies the requirements of
Theorem 7.

However, if ℓ ⩽ k− 1, then eisℓ(w) is generated by an EPRI Markov chain whose terminal
component has size one. In that case, λℓ+1/λℓ → 0 when λℓ → +∞, and therefore the
constant γk = 0 satisfies the requirements of Theorem 7. ◀

5 Words with independent and identically distributed letters

Theorem 7 roughly states that, if the letters of a word w are generated (either from left
to right or from right to left) by an EPRI Markov chain (M,µ), and provided that |w| is
large enough, the ratio |isk(w)|/|w| should be approximately equal to a given constant γk

depending only on k and on the Markov chain.
If we are out of luck, the Markov chain (M,µ) might generate one unique infinite word

of the form w · w · w · · · , where w is one of the worst-case words provided in Theorem 4.
Consequently, and given an integer k ⩾ 0, it is possible to choose the Markov chain (M,µ)
in order to have the equality γk = 2−k. This is indeed a worst case, given that γℓ+1 ⩽ γℓ/2
for every Markov chain and every integer ℓ ⩾ 0.

A specific context that will shield us from such bad cases, while being natural, is that of
words whose letters w0, w1, . . . , wn−1 are independent and identically distributed random
variables with values in the alphabet A. Let X be their common probability law. We first
recall a result that concerns cases where A is finite and X is the uniform law over A.

▶ Proposition 16 (Lemma 3 of [11]). Let w be a word over a finite alphabet A, whose letters
are sampled independently and uniformly over A, i.e., P[wi = a] = 1/|A| for all integers
i ⩽ |w| − 1 and all letters a ∈ A. The constant γ1 of Theorem 7 satisfies the equality

γ1 = 1
3 − 1

6|A|
.

This shows that, in the most simple cases, the constant γ is bounded from above by 1/3,
although γ can be arbitrarily close to 1/3 when the cardinality of A increases. We prove
below that this upper bound is universal.

▶ Proposition 17. Let n ⩾ 1 be an integer, and let A be a finite or countably infinite alphabet.
Let X be a probability law on A, let

Ω def== {t ∈ [0, 1] : ∃a ∈ A such that P[X < a] < t < P[X ⩽ a]}

be a subset of [0, 1] of Lebesgue measure 1, and let f : Ω 7→ A be the function such that f(t)
is the letter a ∈ A for which P[X < a] < t < P[X ⩽ a]. We extend f to a partial function
[0, 1]n 7→ An by setting f(u0u1 · · ·un−1) = f(u0)f(u1) · · · f(un−1) if each letter ui belongs
to Ω, and not defining f over [0, 1]n \ Ωn.

For every word u ∈ Ωn, we have |is(u)| ⩾ |is(f(u))|. Furthermore, if the letters u0, u1, . . . ,

un−1 are independent and distributed according to the uniform law U over [0, 1], they almost
surely belong to Ω, and then the letters f(u0), f(u1), . . . , f(un−1) are also independent and
distributed according to the law X.

V. Jugé 8:15

Proof. First, Ω is a disjoint union of countably many intervals whose lengths P[X = a] sum
up to 1, and thus it has Lebesgue measure 1. The last sentence of Proposition 17 is then
immediate. Hence, we focus on proving that |is(u)| ⩾ |is(f(u))| when u ∈ Ωn.

Given a word w, we say that a sequence of integers a1 < b1 ⩽ a2 < b2 ⩽ . . . ⩽ a2k < b2k

is w-alternating of size k if b2k < |w|, wai > wbi for all odd indices i, and wai < wbi for all
even indices i. One checks easily that |is(w)| is the largest size of a w-alternating sequence.
Since every f(u)-alternating sequence is also u-alternating, Proposition 17 follows. ◀

Unfortunately, in general, the letters of the word is(u) are not independent, and both
inequalities |is2(u)| < |is2(f(u))| and |is2(u)| > |is2(f(u))| may hold, which prevents us from
designing simple bijection-flavoured variants of Proposition 17 for investigating the length
of isk(f(u)). Yet, Proposition 17 still leads to the following result.

▶ Theorem 18. For every alphabet A and every probability law X on A, we have γ1 ⩽ 1/3.

Proof. Let u and w be n-letter words whose letters are independent random variables
following the laws U and X, as described in the statement of Proposition 17. Each integer
i ∈ {1, 2, . . . , n− 2} is u-minimal if and only if ui = min{ui−1, ui, ui+1}, which happens with
probability 1/3, while 0 and n− 1 cannot be u-minimal. It follows that

E[|is(w)|] ⩽ E[|is(u)|] = (n− 2)/3 ⩽ n/3

and, thanks to Theorem 7, that γ1 ⩽ 1/3. ◀

In view of Proposition 16 and Theorem 18, proving that γ1 ⩽ 1/3 − 1/(6|A|) even if X is
not uniform might be tempting. Unfortunately, the inequality is invalid when |A| = 3 and
(p1, p2, p3) = (3/8, 1/4, 3/8), because in that case γ1 = 9/32 > 5/18 = 1/3 − 1/(6|A|).

However, the case |A| = 2 is still promising. Indeed, in that case, γ1 = p1(1 − p1) ⩽ 1/4,
and the letters of the word eis(w) are independent and identically distributed, since the only
constraints they are subject to is that they should begin with the letter 0 and end with the
suffix 10. Thus, we can still use Theorem 18 to evaluate the ratio |is2(w)|/|is(w)|, thereby
deriving the following result, which suggests excellent performances of the IS-algorithm.

▶ Proposition 19. If |A| = 2, we have γ1 ⩽ 1/4 and γ2 ⩽ 1/12.

6 Bounding the number of function calls

In this last section, we provide a short argument for proving that, if A is finite and if the
letters of the word w are generated, either from left to right or from right to left, by a
(non necessarily EPRI) Markov chain (M,µ), we should expect O(log(log(|w|))) recursive
function calls. This is the object of the following result, whose formal proof can be found in
Appendix A.3.

▶ Theorem 20. Let w ∈ An be a word whose letters are generated by a Markov chain (M,µ).
For all integers ℓ ⩾ 0, and provided that n is large enough, the IS-algorithm has a probability
P ⩽ n−2ℓ of performing more than 2 log2(log2(n)) + ℓ recursive function calls.

Proof idea. The probability that two independent trajectories of M (whose initial distri-
butions may differ) coincide with each other on their k first steps decreases exponentially
fast with k, unless they get trapped into a cycle from which they cannot escape. However,

CPM 2022

8:16 Reduction Ratio of the IS-Algorithm

every letter of the word eisℓ(w) represents at least 2ℓ letters from w. Thus, if two such
letters coincide, the word w must contain two identical subwords of length 2ℓ, an event whose
probability decreases severely once 2ℓ exceeds log(|w|).

It remains to treat the case where w gets trapped into a cycle from which it cannot
escape. Again, the probability that it would take more than k steps to reach that cycle
decreases exponentially fast with k, and, when ℓ ⩾ log2(k), these n steps (i.e., letters) will all
be subsumed in the same letter of the word eisℓ(w). However, all the other letters of eisℓ(w)
will coincide with each other, and thus eisℓ+1(w) will contain at most one letter, thereby
preventing subsequent recursive calls to the IS-algorithm. ◀

This result illustrates the fact that detecting as soon as possible special cases in which
suffix arrays are easy to compute (here, observing that the letters of w are pairwise distinct)
can result in dramatically decreasing the size of the recursive call stack. However, the notion
of being a large enough integer n heavily depends on the Markov chain (M,µ), as illustrated
by the worst cases studied in Section 3, which can be arbitrarily well approximated by
Markov chains.

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. Journal of discrete algorithms, 2(1):53–86, 2004.
2 Timo Bingmann, Johannes Fischer, and Vitaly Osipov. Inducing suffix and LCP arrays in

external memory. Journal of Experimental Algorithmics (JEA), 21:1–27, 2016.
3 Maxime Crochemore, Lucian Ilie, and William F Smyth. A simple algorithm for computing

the Lempel Ziv factorization. In Data Compression Conference (DCC 2008), pages 482–488.
IEEE, 2008.

4 Juha Kärkkäinen, Dominik Kempa, Simon J Puglisi, and Bella Zhukova. Engineering external
memory induced suffix sorting. In 2017 Proceedings of the Ninteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 98–108. SIAM, 2017.

5 Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In
International Colloquium on Automata, Languages, and Programming (ICALP), pages 943–
955. Springer, 2003.

6 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction
of suffix arrays. In Annual Symposium on Combinatorial Pattern Matching (CPM), pages
186–199. Springer, 2003.

7 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3(2-4):143–156, 2005.

8 David Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Society, 2017.

9 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

10 Maxim Mozgovoy, Kimmo Fredriksson, Daniel White, Mike Joy, and Erkki Sutinen. Fast
plagiarism detection system. In International Symposium on String Processing and Information
Retrieval (SPIRE), pages 267–270. Springer, 2005.

11 Cyril Nicaud. A probabilistic analysis of the reduction ratio in the suffix-array IS-algorithm.
In Annual Symposium on Combinatorial Pattern Matching (CPM), pages 374–384. Springer,
2015.

12 Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix
array construction. IEEE Transactions on Computers, 60(10):1471–1484, 2010.

13 Ursula Porod. Dynamics of Markov chains for undergraduates, 2021. URL: https://www.
math.northwestern.edu/documents/book-markov-chains.pdf.

14 Simon J Puglisi, William F Smyth, and Andrew H Turpin. A taxonomy of suffix array
construction algorithms. ACM Computing Surveys (CSUR), 39(2):4–es, 2007.

https://www.math.northwestern.edu/documents/book-markov-chains.pdf
https://www.math.northwestern.edu/documents/book-markov-chains.pdf

V. Jugé 8:17

A Appendix

A.1 Proving Lemma 12

We focus here on formally proving Lemma 12, whose intuitive meaning was already given in
Section 4.1. To that end, we first introduce new variants of the set U∧. These are the sets{

U def== {w0w1 · · ·wℓ ∈ A∗ · (ε+ $): w0 ⩾ . . . ⩾ wℓ−1 > wℓ}
U def== {w0w1 · · ·wℓ ∈ A∗ : w0 ⩽ . . . ⩽ wℓ−1 < wℓ}

of non-increasing (respectively, non-decreasing) words in A∗ · (ε+ $) whose last two letters
differ from each other. We can now prove the following auxiliary result, from which we will
then deduce Lemma 12.

▶ Lemma 11-1. For all letters x ∈ A, we have

ν(x, ↓) =
∑

w∈U : x=w0

m(w)ν(w−1, ↑) and ν(x, ↑) =
∑

w∈U : x=w0

m(w)ν(w−1, ↓).

Proof. Up to reversing the order ⩽ on A$, both equalities are equivalent to each other.
Hence, we focus on proving the left one. Let x be some element of X , let M̂ the reverse
transition matrix of M , such as described in Theorem 3, and let (Yn)n⩾0 be the Markov
chain with first element Y0 = x and with transition matrix M̂ . Then, let T be the stopping
time defined as the smallest integer n ⩾ 1 such that Yn belongs to the set {(y, ↑) : y ∈ X }.
Since M̂ is EPRI, the stopping time T is almost surely finite.

For each word w ∈ U such that x = w0 and w↑
−1 ̸= ∅, i.e., ν(w−1, ↑) ̸= 0, the Markov

chain (Yn)n⩾0 has a probability

Pw
def== M̂

(
(w0, ↓), (w1, ↓)

)
M̂

(
(w1, ↓), (w2, ↓)

)
· · · M̂

(
(w−2, ↓), (w−1, ↑)

)
of starting with the letters (w0, ↓), (w1, ↓), . . . , (w−2, ↓), (w−1, ↑), in which case T = |w| − 1.
Using Theorem 3 and the construction of M , we have

Pw = ν(w−1, ↑)
ν(x, ↓) M(w1, w0)M(w2, w1) · · ·M(w−1, w−2) = m(w)ν(w−1, ↑)

ν(x, ↓) .

Conversely, whenever T < +∞, the Markov chain (Yn)n⩾0 starts with such a sequence of
letters. Consequently, the probabilities Pw sum up to 1, which completes the proof. ◀

▶ Lemma 12. For all letters x ∈ A such that M+(x) ̸= 0, we have

ν(x, ↑) =
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑).

Proof. Let us associate every pair (u, v) ∈ U × U such that u−1 = v0 with the word
w

def==u · v1··· ∈ U∧. Lemma 11-1 then proves that

ν(x, ↑) =
∑

u∈U : x=u0

 ∑
v∈U : u−1=v0

m(u)m(v)ν(v−1, ↑)

 =
∑

w∈U∧ : x=w0

m(w)ν(w−1, ↑). ◀

CPM 2022

8:18 Reduction Ratio of the IS-Algorithm

A.2 Proving Proposition 14b
We focus here on formally proving Proposition 14b, by providing complete proofs of the
results mentioned in Section 4.2. This proofs had first been omitted because of their similarity
to those of Section 4.1. Consequently, we list below results that were mentioned explicitly in
Section 4.2 (sometimes adapting their wording) or were left implicit in Section 4.2 but whose
variants had appeared in Section 4.1.

▶ Proposition 9b. Let (M ,µ) be an EPRI Markov chain whose terminal component has size
at least two. The Markov chain (M ,µ) defined in Section 4.2 is EPRI.

Proof. Let G = (A,E,π) be the underlying graph of the Markov chain (M ,µ), let X be
its terminal component, and let ν be its stationary distribution. In addition, for all x ∈ A,
let x↑ = {y ∈ X : x < y and (x, y) ∈ E} and x↓ = {y ∈ X : x > y and (x, y) ∈ E}.

The distribution ν on S defined by ν(x, ↕) = ν(x)M↕(x) is a probability distribution,
because

ν(x, ↑) + ν(x, ↓) = 1
1 − M(x, x)

∑
y : x ̸=y

M(x, y)ν(x) = ν(x) (2)

for all x ∈ A. We also deduce from (2) that
Mν(x, ↕) − M(x, x)ν(x, ↕) =

∑
y : x<y

M↕(x)
M↓(y) M(y, x)ν(y, ↓) +

∑
y : x>y

M↕(x)
M↑(y) M(y, x)ν(y, ↑)

Mν(x, ↕) − M(x, x)ν(x, ↕) = M↕(x)
∑

y : x ̸=y

M(y, x)ν(y)

Mν(x, ↕) − M(x, x)ν(x, ↕) = M↕(x) (Mν(x) − M(x, x)ν(x)) = (1 − M(x, x))ν(x, ↕),

i.e., that Mν(x, ↕) = ν(x, ↕), for all (x, ↕) ∈ A × {↑, ↓}. This means that ν is a stationary
distribution of (M ,µ).

This probability distribution is positive on the set X def== {(x, ↕) ∈ S : x ∈ X }, and zero
outside of X . Since ν is non-zero, it follows that X is non-empty.

Now, let G be the underlying graph of (M ,µ). We shall prove that X satisfies the
requirements (i) and (iii) of EPRI Markov chains.

Consider two states (x, ↕) in X and (z,⇕) in S. Let y and t be letters in x↕ and z⇕,
respectively. The graph G contains a finite path from z to y whose second vertex is t and
whose second last vertex is x. Therefore, G contains a finite path from (z,⇕) to (x, ↕), which
shows that X satisfies the requirement (i).

Finally, consider a trajectory (Yn)n⩾0 of M . Its projection onto the first component is a
trajectory in G, and almost surely contains a vertex x ∈ X , followed by another vertex y.
Thus, (Yn)n⩾0 contains the vertex (x, ↑) if x < y, or (x, ↓) if x > y, and in both cases that
vertex belongs to X . This shows that X satisfies the requirement (iii). ◀

▶ Lemma 11b. The letters of the word eis(w) are generated from left to right by the Markov
chain (M̊ , µ̊) with set of states U∧, whose initial distribution is defined by

µ̊(w) =
∑

w′∈V∧

1w′
−1=w0µ(w′

0)m(w′)m(w)M↑(w−1),

and whose transition matrix is defined by

M̊(w,w′) =
M↑(w′

−1)
M↑(w−1)m(w′)1w−1=w′

0
.

V. Jugé 8:19

Proof. Let u(1), u(2), . . . , u(k) be unimodal words such that u(i)
−1 = u

(i+1)
0 for all i ⩽ k − 1.

These are the k leftmost letters of the word eis(w) if and only if there exists a word v ∈ V∧,
two letters x, y ∈ A and an integer ℓ ⩾ 0 such that v−1 = u

(1)
0 , u(k)

−1 = x < y, and w begins
with the prefix v · u(1)

1··· · u(2)
1··· · · ·u(k)

1··· · xℓ · y. This happens with probability

Pv,xℓ−1·y
def== µ(v0)m(v)m(u(1))m(u(2)) · · · m(u(k))M(x, x)ℓM(x, y).

Summing these probabilities for all v, y and ℓ, we observe that u(1), u(2), . . . , u(k) are the left
letters of eis(w) with probability

P =
∑

v∈V∧

1v−1=w0µ(v0)m(v)m
(
u(1))m

(
u(2)) · · · m

(
u(k))M↑(

u
(k)
−1

)
P = µ̊

(
u(1))M̊

(
u(1), u(2))M̊

(
u(2), u(3)) · · · M̊

(
u(k−1), u(k)).

Finally, Corollary 10b proves that, if w is a right-infinite word whose letters are generated
by (M ,µ) from left to right, the word eis(w) is almost surely infinite. It follows that µ̊ is
indeed a probability distribution that M̊ is indeed a transition matrix, i.e., that∑

w′∈U∧

µ̊(w′) = 1 and
∑

w′∈U∧

M̊(w,w′) = 1

for all words w ∈ U∧. ◀

Then, we adapt Lemma 11-1, which requires introducing variants of the sets U and U
of Section 4.1. These variants are the sets{

U def== {w0w1 · · ·wℓ ∈ A∗ : w0 < w1 ⩾ w2 ⩾ . . . ⩾ wℓ−1}
U def== {w0w1 · · ·wℓ ∈ A∗ : w0 > w1 ⩽ w2 ⩽ . . . ⩽ wℓ−1}.

▶ Lemma 11-1b. For all letters x ∈ A, we have

ν(x) =
∑

w∈U : x=w−1

ν(w0)m(w) and ν(x) =
∑

w∈U : x=w−1

ν(w0)m(w).

Proof. Up to reversing the order ⩽ on A, both equalities are equivalent to each other. Hence,
we focus on proving the left one. Let x be some element of X , let M̂ be the reverse transition
matrix of M , such as described in Theorem 3, and let (Yn)n⩾0 be the Markov chain with
first element Y0 = x and with transition matrix M̂ . Finally, let T be the stopping time
defined as the smallest integer n ⩾ 1 such that Yn < Yn−1. Since M̂ is EPRI, T is almost
surely finite.

For each word w ∈ U such that x = w−1, the Markov chain (Yn)n⩾0 has a probability

Pw
def== M̂(w−1, w−2) · · · M̂(w2, w1)M̂(w1, w0)

of starting with the letters w−1, . . . , w2, w1, w0, in which case T = |w| − 1. Theorem 3 thus
proves that

Pw = ν(w0)
ν(w−1)M(w0, w1)M(w1, w2) · · · M(w−2, w−1) = m(w)ν(w0)

ν(x) .

Conversely, whenever T < 0, the Markov chain (Yn)n⩾0 starts with such a sequence of letters.
Consequently, the probabilities Pw sum up to 1, which completes the proof. ◀

CPM 2022

8:20 Reduction Ratio of the IS-Algorithm

Let us now introduce the function ν+ : A → R defined by

ν+(x) =
∑

y : x<y

ν(y)M(y, x)

for every letter x ∈ A.

▶ Lemma 12b. For all letters x ∈ A, we have

ν+(x) =
∑

w∈U∧ : x=w−1

ν+(w0)m(w).

Proof. We associate every pair (u, v) ∈ U × U such that u−1 = v0 and v−1 > x with the
pair (y, w) def== (u0, u1··· · v1··· · x) ∈ A × U∧, which is such that y > w0. This association is
bijective, and thus Lemma 11-1b proves that

ν+(x) =
∑

y : x<y

ν(y)M(y, x) =
∑

y : x<y

 ∑
v∈U : v−1=y

 ∑
u∈U : u−1=v0

ν(u0)m(u)m(v)


=

∑
w∈U∧ : x=w−1

ν+(w0)m(w). ◀

▶ Proposition 13b. Let (M ,µ) be an EPRI Markov chain whose terminal component has
size at least two. The Markov chain (M̊ , µ̊) is EPRI.

Proof. First, let γ1 be the constant of Corollary 10b. Theorem 2 proves that

γ1 =
∑
x∈A

ν+(x)M↑(x).

Then, consider the distribution ν̊ defined by

ν̊(w) = 1
γ1

ν+(w0)m(w)M↑(w−1).

Lemma 12b proves that

∑
w∈U∧

ν̊(w) =
∑
y∈A

 ∑
w∈U∧ : y=w−1

ν̊(w)

 = 1
γ1

∑
y∈A

ν+(y)M↑(y) = 1,

i.e., that ν̊ is a probability distribution.
Moreover, for every word w ∈ U∧, Lemma 12b proves that

M̊ν̊(w) = 1
γ1

∑
w′∈U∧ : w′

−1=w0

ν+(w′
0)m(w′ · w)M↑(w−1) = 1

γ1
ν+(w0)m(w)M↑(w−1) = ν̊(w).

This means that ν̊ is a stationary probability distribution of (M̊ , µ̊).
This probability distribution is positive on the set

X̊ def== {w ∈ U∧ ∩ X ∗ : ∃x ∈ X , x > w0 and m(x · w) ̸= 0}

and zero outside of that set. Since ν̊ is a probability distribution, it follows that X̊ ̸= ∅.
Then, let G and G̊ be the respective underlying graphs of (M ,µ) and (M̊ , µ̊). We shall

prove that X̊ satisfies the requirements (i) and (iii) of EPRI Markov chains.

V. Jugé 8:21

Hence, consider two words w and w′ in X̊ , and let us choose letters x, y, z, t ∈ X such
that x ∈ (w′

−1)↑, w′
0 ∈ y↓, z ∈ w↑

−1 and w0 ∈ t↓. The graph G contains a finite path that
starts with the letter t, then the letters of w (listed from left to right) and then the letter z,
and finishes with the letter y, the letters of w′ (listed from left to right), and then the letter x.
This path forms a word u whose leftmost unimodal factor is w and whose second rightmost
unimodal factor is w′. This proves that G̊ contains a path from w to w′, i.e., that X̊ satisfies
the requirement (i).

Finally, consider some trajectory (Y̊n)n⩾0 of the Markov chain (M̊ , µ̊). Up to removing
the first letter of every word (i.e., vertex) w ∈ U∧ encountered on this trajectory, and then
concatenating the resulting words, we obtain a trajectory (Yn)n⩾0 of M (for an initial
distribution that may differ from µ). That trajectory almost surely contains a vertex x ∈ X ,
and will then keep visiting vertices in X . Thus, our initial trajectory almost surely contains a
word Y̊n that is a word with a letter x ∈ X , and all states Y̊m such that m ⩾ n+ 1 will then
belong to the set U∧ ∩ X ∗ = X̊ , thereby showing that X̊ satisfies the requirement (iii). ◀

A.3 Proving Theorem 20
▶ Theorem 20. Let w ∈ An be a word whose letters are generated by a Markov chain (M,µ).
For all integers ℓ ⩾ 0, and provided that n is large enough, the IS-algorithm has a probability
P ⩽ n−2ℓ of performing more than 2 log2(log2(n)) + ℓ recursive function calls.

Proof. Given a finite word v with v-locally minimal integers i0 < i1 < . . . < ik−1, we
abusively set ik+1 = |v| and v|v| = $, so that eis(v)ℓ = viℓ···iℓ+1 for all ℓ ⩽ k − 1. Then, let
the source of a word v′ = eis(v)a···b be the word via···ib+1−1, which we also denote by src(v′),
and which is a factor of v1···. If two factors of eis(v) coincide with each other, so do their
sources, and if they do not overlap with each other, neither do their sources. Moreover, the
word src(v′) is at least twice longer than v′.

More generally, the ℓth source of a factor v′ of eisℓ(v), which we denote by srcℓ(v′), is
just v′ itself if ℓ = 0, or the (ℓ− 1)th source of src(v′) if ℓ ⩾ 1. Thus, if two letters of eisℓ(v)
coincide with each other, so do their ℓth sources, which are non-overlapping factors of v2ℓ−1···
of length at least 2ℓ. Moreover, since the last letter of eisℓ(v) is the only one that ends with
the character $, it cannot coincide with any other letter of eisℓ(v). Therefore, the ℓth sources
of our two equal letters are in fact factors of the word v2ℓ−1···|v|−2ℓ .

In addition, we say that the word v is k-periodic except at borders of length b if vj = vj+k

whenever b ⩽ j < j + k ⩽ |v| − b. If the factor vb···|v|−b has exactly one letter, none of the
integers b+ 1, . . . , |v| − b is locally v-minimal, and thus |eis(v)| ⩽ b, thereby proving that the
word eisℓ(v) cannot exist whenever ℓ ⩾ log2(b)+1. This case occurs in particular when k = 1.

Similarly, if |v| ⩽ 2b+ 3k, the word eisℓ(v) cannot exist whenever ℓ ⩾ log2(max{b, k}) + 3.
If, on the contrary, the factor vb···|v|−b has at least two letters and is of length at least 3k,

there exists a factor f of eis(v) whose source is a word of the form vj...j+k−1 for some j such
that b ⩽ j < j + k ⩽ |v| − b. Let us then write v as a concatenation of the form u · src(f)t ·u′

where u and u′ have length at most b+ k, and t is a positive integer. We can also write
eis(v) as a word of the form a · f t · a′ such that src(a) is a suffix of u and src(b) = u′. By
construction, we have

|a| ⩽ |u|/2 ⩽ (b+ k)/2, |f | ⩽ |src(f)|/2 = k/2 and |a′| ⩽ |u′|/2 ⩽ (b+ k)/2,

which means that eis(v) is k′-periodic except at borders of length b′ for some integers
k′ ⩽ k/2 and b′ ⩽ (b+ k)/2 ⩽ max{b, k}. Thus, an immediate induction on k proves that
the word eisℓ(v) cannot exist whenever ℓ ⩾ log2(max{b, k}) + log2(k) + 3.

CPM 2022

8:22 Reduction Ratio of the IS-Algorithm

Now, let G = (S, E) be the underlying graph of the Markov chain (M,µ), and let s = |S|
be the number of states of the Markov chain. Let X (respectively, Y) be the set of states x ∈ E

that belong to a cyclic (respectively, non-cyclic) terminal connected component of G. Finally,
let ε be the smallest non-zero edge weight in G, i.e., ε = min{M(x, y) : M(x, y) > 0}, and
let η = − log2(1 − εs)/s > 0.

From each state x ∈ E, there is a path starting at x and ending in X ∪ Y. Furthermore,
the shortest such path is of length at most s. It follows, for all k ⩾ 0, that

P[Xk+s ∈ X ∪ Y | Xk = x] ⩾ εs

and, more generally, that

P[Xm /∈ X ∪ Y] ⩽ (1 − εs)m/s−1 = 2−(m−s)η

for all m ⩾ 0.
Similarly, assume that Y ̸= ∅. Consider some state x ∈ Y, and let y ∈ Y be a state

accessible from x and with at least two outgoing edges (y, z) and (y, z′). Then, let p be a
path from x to y. The shortest such path has length at most s − 1. Therefore, provided
that Xk = x for some integer k ⩾ 0, the trajectory (Xi)i⩾k has a probability at least εs of
starting with the path p and then going to z, and a probability at least εs of starting with
the path p and then going to z′. In particular, for each finite sequence q consisting of s+ 1
states in Y, we have

P[(Xi)k⩽i⩽k+s = q | Xk] ⩽ 1 − εs

and, more generally, if q is a sequence consisting of m+ 1 states in Y, we have

P[(Xi)k⩽i⩽k+m = q | Xk] ⩽ (1 − εs)m/s−1 = 2−(m−s)η.

Finally, assume that w is a word of length n ⩾ 216s2(s+1)+64s2/η, and set u = log2(n)/(4s),
t = 2⌊log2(u)⌋ + ℓ and m = 2t − 1. Since m ⩾ 2ℓ−2u2 − 1 and 2ℓu ⩾ 1, we have

2−(m−s)η ⩽ 2−(2ℓ−2u2−s−1)η ⩽ 2−(2ℓus(s+1)+2ℓ+2us/η−(s+1))η ⩽ 2−2ℓ+2us = n−2ℓ+2
.

In conclusion, let us consider several (non mutually exclusive) events:
the event E1, which occurs if Xm /∈ X ∪ Y;
the event E2, which occurs if Xm ∈ X ;
for all integers u and v such that m ⩽ u, u+m < v and v +m < n−m, the event Fu,v,
which occurs if Xm ∈ Y and Xu+i = Xv+i whenever 0 ⩽ i ⩽ m.

If E2 happens, the word w is k-periodic except at borders of length m, where k ⩽ s is the
length of the cycle of G to which Xm belongs. Thus, in that case, the IS-algorithm cannot
make more than{

log2(max{s,m}) + log2(s) + 2 = log2(m) + log2(4s)
log2(max{s,m}) + log2(s) + 2 ⩽ 2 log2(u) + log2(4s) + ℓ ⩽ 2 log2(log2(n)) + ℓ

recursive function calls.
Then, if the IS-algorithm makes more than 2 log2(log2(n)) + ℓ ⩾ t recursive function calls,

two letters of the word eist(w) must coincide with each other. This means that two non-
overlapping length-m factors of the word wm···|w|−m−1 must coincide with each other, and
therefore that either Xm /∈ Y or that one of the events Fu,v must have occurred. If Xm /∈ Y ,
and since E2 may not have occurred, this means that E1 occurred.

V. Jugé 8:23

Moreover, the events E1 and Fu,v are rare: our above study proves that P[E1] ⩽ n−2ℓ+2 ;
then, for all u and v, the sequence (Xi)u⩽i⩽u+m being fixed, the event Fu,v also occurs with
probability Pu,v ⩽ n−2ℓ+2 .

In conclusion, the IS-algorithm makes more than 2 log2(n) + ℓ recursive function calls
with a probability P ⩽ P[E1] +

∑
u,v P[Fu,v] ⩽ n2 × n−2ℓ+2

⩽ n−2ℓ . ◀

CPM 2022

	1 Introduction
	2 Preliminaries
	2.1 Definitions and notations
	2.2 Unimodal factors and one-step reduction
	2.3 Markov chains and ergodicity

	3 Deterministic worst case
	4 Words generated by an ergodic Markov chain
	4.1 Generating letters from right to left
	4.2 Generating letters from left to right

	5 Words with independent and identically distributed letters
	6 Bounding the number of function calls
	A Appendix
	A.1 Proving Lemma 12
	A.2 Proving Proposition 14b
	A.3 Proving Theorem 20

