
Cartesian Tree Subsequence Matching
Tsubasa Oizumi #

Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

Takeshi Kai
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

Takuya Mieno12 #

Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan

Shunsuke Inenaga #

Department of Informatics, Kyushu University, Fukuoka, Japan
RESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Hiroki Arimura #

Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan

Abstract

Park et al. [TCS 2020] observed that the similarity between two (numerical) strings can be captured
by the Cartesian trees: The Cartesian tree of a string is a binary tree recursively constructed by
picking up the smallest value of the string as the root of the tree. Two strings of equal length are said
to Cartesian-tree match if their Cartesian trees are isomorphic. Park et al. [TCS 2020] introduced
the following Cartesian tree substring matching (CTMStr) problem: Given a text string T of length n

and a pattern string of length m, find every consecutive substring S = T [i..j] of a text string T such
that S and P Cartesian-tree match. They showed how to solve this problem in Õ(n+m) time. In this
paper, we introduce the Cartesian tree subsequence matching (CTMSeq) problem, that asks to find
every minimal substring S = T [i..j] of T such that S contains a subsequence S′ which Cartesian-tree
matches P . We prove that the CTMSeq problem can be solved efficiently, in O(mnp(n)) time,
where p(n) denotes the update/query time for dynamic predecessor queries. By using a suitable
dynamic predecessor data structure, we obtain O(mn log log n)-time and O(n log m)-space solution
for CTMSeq. This contrasts CTMSeq with closely related order-preserving subsequence matching
(OPMSeq) which was shown to be NP-hard by Bose et al. [IPL 1998].

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string algorithms, pattern matching, Cartesian tree subsequence matching,
order preserving matching, episode matching

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.14

Funding Takuya Mieno: JSPS KAKENHI Grant Number JP20J11983.
Shunsuke Inenaga: JST PRESTO Grant Number JPMJPR1922.
Hiroki Arimura: JSPS KAKENHI Grant Number 20H00595, JST CREST Grant Number JP-
MJCR18K3.

Acknowledgements The authors thank the anonymous referees for drawing our attention to refer-
ence [10].

1 Corresponding author
2 Current affiliation: University of Electro-Communications, Japan (tmieno@uec.ac.jp)

© Tsubasa Oizumi, Takeshi Kai, Takuya Mieno, Shunsuke Inenaga, and Hiroki Arimura;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oizumi.tsubasa.e2@elms.hokudai.ac.jp
mailto:takuya.mieno@ist.hokudai.ac.jp
https://orcid.org/0000-0003-2922-9434
mailto:inenaga@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-1833-010X
mailto:arim@ist.hokudai.ac.jp
https://orcid.org/0000-0002-2701-0271
https://doi.org/10.4230/LIPIcs.CPM.2022.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Cartesian Tree Subsequence Matching

1 Introduction

A time series is a sequence of events which can be represented by symbols or numbers in many
cases. An episode is a collection of events which occur in a short time period. The episode
matching problem asks to find every minimal substring S = T [i..j] of a text T such that a
pattern P is a (non-consecutive) subsequence of S. Let n and m be the lengths of the text T

and the pattern P , respectively. There exists a naïve O(mn)-time O(1)-space algorithm for
episode matching, which scans the text back and forth. In 1997, Das et al. [7] presented a
weakly subquadratic O(mn/ log m)-time O(m)-space algorithm for episode matching. Very
recently, Bille et al. [3] showed that even a simpler version of episode matching, which
computes the shortest substring containing P as a subsequence, cannot be solved in strongly
subquadratic O((mn)1−ϵ) time for any constant ϵ > 0, unless the Strong Exponential Time
Hypothesis (SETH) fails.

In some applications, such as analysis of time series data of stock prices, one is often
more interested in finding patterns of price fluctuations rather than the exact prices. The
order preserving matching (OPM) model [16] is motivated for such purposes, where the task
is to find consecutive substring S of a numeric text string T such that the relative orders of
values in S are the same as that of a query numeric pattern string P . The order preserving
substring matching problem (OPMStr) can be solved in Õ(n + m) time [16, 17, 5, 6]. On
the other hand, the order preserving subsequence matching problem (OPMSeq) is known to
be NP-hard [4]. Another known model of pattern matching, called parameterized matching
(PM), is able to capture structures of strings, namely, two strings are said to parameterized
match if one string can be obtained by applying a character bijection to the other string [1].
Again, the parameterized substring matching problem (PMStr) can be solved in Õ(n + m)
time (see [1, 2, 14, 8, 19] and references therein), but the parameterized subsequence matching
(PMSeq) is NP-hard [15]. We remark that both order preserving matching and parameterized
matching belong to a general framework of pattern matching called the substring-consistent
equivalence relation (SCER) [18]. Let ≈ denote a string equivalence relation, and suppose
that X ≈ Y holds for two strings X and Y of equal length n. We say that ≈ is an SCER if
X[i..j] ≈ Y [i..j] hold for any 1 ≤ i ≤ j ≤ n.

Cartesian tree matching (CTM), proposed by Park et al. [20], is a new class of SCER
that is also motivated for numeric string processing. The Cartesian tree CT (T) of a string T

is a binary tree such that the root of CT (T) is i if i is the leftmost occurrence of the smallest
value in T , the left child of the root T [i] is CT(T [1..i− 1]), and the right child of the root
T [i] is CT (T [i + 1..n]). We say that two strings Cartesian-tree match if the Cartesian trees
of the two strings are isomorphic as ordered trees [13], i.e., preserving both the parent and
sibling orders. Observe that CTM is similar to OPM. For instance, strings (7, 2, 3, 1, 5) and
(9, 2, 4, 1, 6) both Cartesian-tree match and order-preserving match. It is easy to observe
that if two strings order-preserving match, then they also Cartesian-tree match, but the
opposite is not true in general. Thus CTM allows for more relaxed pattern matching than
OPM. Indeed, the constraints for OPM that impose the relative order of all positions in the
pattern can be too strict for some applications [20]. For example, two strings (7, 2, 3, 1, 5) and
(6, 2, 4, 1, 9) both having a w-like shape do not order-preserving match. On the other hand,
their similarity can be captured with CTM, since (7, 2, 3, 1, 5) and (6, 2, 4, 1, 9) Cartesian-tree
match. This lead to the study of the Cartesian tree substring matching (CTMStr) problem,
which asks to find every substring S of T such that S and P Cartesian-tree match. The
CTMStr problem can be solved efficiently, in Õ(n + m) time [20, 21].

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:3

On the other hand, since real-world numeric sequences contain errors and indeterminate
values, patterns of interest may not always appear consecutively in the target data. Therefore
numeric sequence pattern matching scheme, which allows for skipping some data and
matching to non-consecutive subsequences, is desirable. However, such pattern matching
is not supported by the CTMStr algorithms. Given the aforementioned background, this
paper introduces Cartesian tree subsequence matching (CTMSeq), and further shows that
this problem can be solved efficiently. Namely, we can find, in time polynomial in n and m,
every minimal substring S = T [i..j] of a text T such that there exists a subsequence S′ of
S where CT(S′) and CT(P) are isomorphic. We remark that this is the CTM version of
episode matching, which is also the first polynomial-time subsequence matching under SCER
(except for exact matching, which is episode matching).

The contribution of this paper is the following:
We first present a simple algorithm for solving CTMSeq in O(mn2) time and O(mn)
space based on dynamic programming (Section 3, Algorithm 1).
We present a faster O(mn log log n)-time O(mn)-space algorithm for solving CTMSeq
(Section 4, Algorithm 2). To achieve this speed-up, we exploit useful properties of
our method that permits us to improve the O(n2)-time part of Algorithm 1 with O(n)
predecessor queries.
We present space-efficient versions of the above algorithms that require only O(n log m)
space, which are based on the idea from the heavy-path decomposition (Section 5).

Technically speaking, our algorithms are related to the work by Gawrychowski et al. [10],
who considered the problem of deciding whether two indeterminate strings of equal length n

match under SCER. They showed that the CTM version of the problem can be solved in
O(n log2 n) time with O(n log n) space when the number r of uncertain characters in the
strings is constant, using predecessor queries. They also proved that the OPM and PM
versions of the problem are NP-hard for r = 2. NP-hardness for the OPM version in the case
of r = 3 was previously shown in [12]. Our results on CTMSeq can be seen as yet another
example that differentiates between CTM and OPM in terms of the time complexity class.

2 Preliminaries

2.1 Basic Notations and Assumptions
For any positive integers i, j with 1 ≤ i ≤ j, we define a set [i] = {1, . . . , i} of integers and a
discrete interval [i, j] = {i, i + 1, . . . , j}. Let Σ = {1, . . . , σ} be an integer alphabet of size
σ. An element of Σ is called a character. A sequence of characters is called a string. The
length of string S is denoted by |S|. The empty string ε is the string of length 0. For a string
S = (S[1], S[2], . . . , S[|S|]), S[i] denotes the i-th character of S for each i with 1 ≤ i ≤ |S|.
For each i, j with 1 ≤ i ≤ j ≤ |S|, S[i..j] denotes the substring of S starting from i and ending
at j. For convenience, let S[i..j] = ε for i > j. We write min(S) := min{S[i] | i ∈ [n]} for the
minimum value contained in the string S. In this paper, all characters in the string S assume
to be different from each other without loss of generality [16] 3. Under the assumption, we
denote by minidx(S) := i the unique index satisfying the condition S[i] = min(S). For any
0 ≤ m ≤ n, let In

m be the set consisting of all subscript sequence I = (i1, . . . , im) ∈ [n]m in
ascending order satisfying 1 ≤ i1 < · · · < im ≤ n. Clearly, |In

m| =
(

n
m

)
holds. For a subscript

3 If the same character occurs more than once in S, the pair ci = (c, i) of the original character c and
index i can be extended as a new character to satisfy the assumption.

CPM 2022

14:4 Cartesian Tree Subsequence Matching

 𝟻

 CT(S)

 1 2 3 4 5 6 7 8
 𝟿 𝟷𝟿 𝟹 𝟷𝟸 𝟷𝟻 𝟸𝟹 𝟼 S

 9
 𝟸𝟷

 5
 2 7

 1 6 8 4

 3 9

Figure 1 Illustration for Cartesian tree CT(S) of S = (23, 6, 15, 9, 3, 12, 5, 19, 21). Since the
minimum value among S is S[5], node v = 5 is the root of CT(S), CT(S[1..4]) is the left subtree of v,
and CT(S[6..9]) is the right subtree of v. Then, v.L = 2, v.R = 7, Sv = S[1..9] = S, Sv.L = S[1..4],
and Sv.R = S[6..9].

sequence I = (i1, . . . , im) ∈ In
m, we denote by SI := (S[i1], . . . , S[im]) the subsequence of S

corresponding to I. Intuitively, a subsequence of S is a string obtained by removing zero
or more characters from S and concatenating the remaining characters without changing
the order. For a subscript sequence I = (i1, . . . , im) ∈ In

m and its elements is, it ∈ I with
is ≤ it, I[is : it] denotes the substring of I that starts with is and ends with it. In this paper,
we assume the standard word RAM model of word size w = Ω(log n). Also we assume that
σ ≤ 2w, i.e., any character in Σ fits within a single word.

2.2 Cartesian Tree

The Cartesian tree of string S, denoted by CT(S), is the ordered binary tree recursively
defined as follows: If S = ε, then CT(S) is empty, and otherwise, CT(S) is the tree
rooted at v such that the left subtree of v is CT (S[1..v − 1]), and the right subtree of v is
CT (S[v + 1..|S|]), where v = minidx(S). For a node v, we denote by v.L the left child of v if
such a child exists and let v.L = nil otherwise. Similarly, we use the notation v.R for the right
child of v. CT (S)v denotes the subtree of CT (S) rooted at v. We say that two Cartesian
trees CT (S) and CT (S′) are isomorphic as ordered trees [13], denoted CT (S) = CT (S′).

There is an interplay between a sequence and its Cartesian tree as follows: We note that
the indices of S identify the nodes of CT (S), and vice versa. For any node v of CT (S), we
define the substring Sv of S recursively as follows:

(i) If v is the root of CT (S), then Sv = S = S[1..|S|].
(ii) If v is a node with substring Sv = S[ℓ..r], then S[v] is the minimum value in S[ℓ..r],

Sv.L = S[ℓ..v − 1], and Sv.R = S[v + 1..r].
An example of a Cartesian tree is shown in Figure 1.

2.3 Cartesian Tree Subsequence Matching

Let T be a text string of length n and P be a pattern string of length m ≤ n. We say
that a pattern P matches text T , denoted by P ⊑ T , if there exists a subscript sequence
I = (i1, . . . , im) ∈ In

m of T such that CT (TI) = CT (P) holds. Then, we refer to the subscript
sequence I as a trace.

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:5

A possible choice of the notion of occurrences of a pattern P in T is to employ the traces
of P as occurrences. However, it is not adequate since there can be exactly

(
n
m

)
traces 4 for

a text and a pattern of lengths n and m. Instead, we employ minimal occurrence intervals
as occurrences defined as follows.

▶ Definition 1 (minimal occurrence interval). For a text T [1..n] and P [1..m], an interval
[ℓ, r] ⊆ [n] is said to be an occurrence interval for pattern P over text T if P ⊑ T [ℓ..r] holds.
It is said to be minimal if there is no occurrence interval [ℓ′, r′] for P over T such that
[ℓ′, r′] ⊊ [ℓ, r].

▶ Example 2. Let text T = (11, 3, 8, 6, 16, 19, 5, 15, 21, 24) and pattern P = (9, 2, 17, 4, 13).
The occurrence interval [3, 9] for P over T is minimal since I = (3, 4, 6, 8, 9) is a trace with
CT (TI) = CT (P), and there is no other occurrence interval [ℓ, r] ⊊ [3, 9] for P over T . The
interval [1, 8] is an occurrence interval, however, it is not minimal since there is another
(minimal) occurrence interval [1, 5] ⊊ [1, 8] for P over T . Overall, all minimal occurrence
intervals for P over T are [1, 5] and [3, 9].

From the definition, there are O(n2) occurrence intervals for P over T , while there are O(n)
minimal occurrence intervals. If we have the set of all minimal occurrence intervals, we can
easily enumerate all occurrence intervals in constant time per occurrence interval. Thus,
we focus on minimal occurrences in this paper. Now, the main problem of this paper is
formalized as follows:

▶ Definition 3 (Cartesian Tree Subsequence Matching (CTMSeq)). Given two strings T [1..n]
and P [1..m], find all minimal occurrence intervals for P over T .

We can easily see that CTMSeq can be solved in O(m
(

n
m

)
) time by simply enumerating

all possible subscript sequences. However, its time complexities are too large to apply
to real-world data sets. Hence, our goal here is to devise efficient algorithms running in
polynomial time.

In the rest of this paper, we fix text T of arbitrary length n and pattern P of arbitrary
length m with 0 < m ≤ n.

3 O(mn2)-time Dynamic Programming Algorithm

This section describes an algorithm based on dynamic programming which runs in time
O(mn2). We later improve the running time to O(mn log log n) in Section 4.

3.1 A Simple Algorithm

By dynamic programming approach, we can obtain a simple algorithm for CTMSeq with
O(mn3) time and O(mn2) space complexities as follows. It recursively decides if the substring
Pv matches in T [ℓ..r] for all indices v of P and all intervals [ℓ..r] in T from shorter to larger.
These complexities mainly come from that it iterates the loop for O(n2) possible intervals in
T . In the following section, we devise more efficient algorithms in time and space complexities
by introducing the notion of minimal fixed-intervals.

4 which can be achieved by monotone sequences for P and T .

CPM 2022

14:6 Cartesian Tree Subsequence Matching

 CT(P)

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8
 𝟼 𝟻 𝟷𝟻 𝟷𝟼 𝟷𝟿 𝟾 𝟷𝟷 𝟹 T

 9 10

 𝟸𝟷 𝟸𝟺

 CT(P)

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8
 𝟼 𝟻 𝟷𝟻 𝟷𝟼 𝟷𝟿 𝟾 𝟷𝟷 𝟹 T

 9 10

 𝟸𝟷 𝟸𝟺

Figure 2 Illustration for fixed-intervals for the pivot (v, i), where T = (11, 3, 8, 6, 16, 19, 5, 15,
21, 24), P = (9, 2, 17, 4, 13), and (v, i) = (2, 4). In the left figure, for the trace I = (1, 4, 5, 8, 9)
indicated by dotted lines, the interval [1, 9] is a fixed-interval with the pivot (v, i). In the right figure,
[3, 9] is a minimal fixed-interval with the pivot (v, i) since there is no fixed-interval [ℓ, r] ⊊ [3, 9] with
the pivot (v, i).

3.2 Minimal Fixed-interval
To solve CTMSeq without iterating for all possible intervals, we focus on fixing the corres-
ponding locations between node v of CT (P) and index i of T . For a node v ∈ [m] and index
i ∈ [n], we refer to a pair (v, i) as a pivot. Then, we define the minimal interval fixed with
pivot (v, i), called the minimal fixed-interval.

▶ Definition 4 ((minimal) fixed-interval). For pivot (v, i) ∈ [m]× [n], interval [ℓ, r] ⊆ [n] is
called a fixed-interval with the pivot (v, i) if there exists a trace I = (i1, . . . , i|Pv|) ∈ In

|Pv|
satisfying the following conditions (i)–(iv): (i) i is an element of I, (ii) [i1, i|Pv|] ⊆ [ℓ, r] (iii)
CT (TI) = CT (Pv) holds, and (iv) T [i] = min(TI) holds. Furthermore, a fixed-interval [ℓ, r]
with the pivot (v, i) is said to be minimal if there is no fixed-interval [ℓ′, r′] ⊊ [ℓ, r] with the
pivot (v, i)

We show examples of (minimal) fixed-intervals on Figure 2. Here, we give an essential lemma
concerning minimal fixed-intervals.

▶ Lemma 5. For any pivot (v, i) ∈ [m]× [n], there exists at most one minimal fixed-interval
with (v, i).

Proof. Assume that there are two minimal fixed-intervals with the pivot (v, i). Let [ℓ, r] and
[ℓ′, r′] be two such distinct intervals. Without loss of generality, assume ℓ ≤ ℓ′. Then, by
the minimalities of [ℓ, r] and [ℓ′, r′], ℓ < ℓ′ and r < r′ must hold. From Definition 4, there
exist I = (ℓ, . . . , i, . . . , r) and I ′ = (ℓ′, . . . , i, . . . , r′) such that CT (TI) = CT (TI′) = CT (Pv)
and T [i] = min(TI) = min(TI′). Since CT(TI) = CT(TI′) and T [i] = min(TI) = min(TI′),
the right subtree of i in CT(TI) is the same as that of CT(TI′). Namely, CT(TI[i+1:r]) =
CT (TI′[i+1:r′]) holds. Thus, we have CT (TI′′) = CT (Pv) where I ′′ is the subscript sequence of
length |I| that is the concatenation of I[ℓ′ : i] and I ′[i+1 : r]. Also, i ∈ I ′′ and T [i] = min(TI′′)
hold, and hence, [ℓ′, r] is a fixed-interval with the pivot (v, i). This contradicts that [ℓ′, r′] is
a minimal fixed-interval. ◀

For convenience, we define the minimal fixed-interval with the pivot (v, i) as [−∞,∞] if there
is no fixed-interval with the pivot (v, i). We denote by mfi(v, i) the minimal fixed-interval
with the pivot (v, i). Let M = {mfi(minidx(P), i) | i ∈ [n]} be the set of all the minimal
fixed-intervals for the root of CT (P). By the definitions of minimal occurrence intervals and
minimal fixed-intervals, the next corollary holds:

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:7

 2 CT(P)

 1

 2

 3

 4

 5 3

 4

 5

 1

 CT(P)

 1 2 3 4 5 6 7 8
 𝟼 𝟻 𝟷𝟻 𝟷𝟼 𝟷𝟿 𝟾 𝟷𝟷 𝟹 T

 9 10

 𝟸𝟷 𝟸𝟺
 1 2 3 4 5 6 7 8

 𝟼 𝟻 𝟷𝟻 𝟷𝟼 𝟷𝟿 𝟾 𝟷𝟷 𝟹 T
 9 10

 𝟸𝟷 𝟸𝟺

Figure 3 Illustration for two minimal fixed-intervals, where T and P are the same as in Figure 2.
From the figure, mfi(2, 3) = [1, 9] and mfi(2, 4) = [3, 9] hold. Note that mfi(2, 3) = [1, 9] is not a
solution of CTMSeq since mfi(2, 4) ⊊ mfi(2, 3) holds.

▶ Corollary 6. For any minimal occurrence interval [ℓ, r] for P over T , [ℓ, r] ∈ M holds.
Contrary, for any interval [ℓ, r] ∈M, if there is no interval [ℓ′, r′] ⊊ [ℓ, r] such that [ℓ′, r′] ∈
M, [ℓ, r] is a minimal occurrence interval for P over T .

Note that not every intervals [ℓ, r] ∈M is a minimal occurrence interval for P over T . We
show an example of a interval [ℓ, r] ∈ M such that [ℓ, r] is not a solution of CTMSeq in
Figure 3.

3.3 The Algorithm
From Corollary 6, once we compute the set M of intervals, we can obtain the solution of
CTMSeq by removing non-minimal intervals from M. Since every interval in M except
[−∞,∞] is a sub-interval of [1, n], we can sort them in O(n) time by using bucket sort, and
thus, can also remove non-minimal intervals.

Thus, in what follows, we discuss how to efficiently computeM, i.e., mfi(minidx(P), i) for
all i ∈ [n]. Now, we define two functions L(v, i) = ℓ and R(v, i) = r for each node v ∈ [m]
in CT(P) and each index i ∈ [n], where [ℓ, r] = mfi(v, i). Then, our task is, to compute
L(minidx(P), i) and R(minidx(P), i) for all i ∈ [n]. Regarding the two functions, we show the
following lemma (see also Figure 4 for illustration):

▶ Lemma 7. For any pivot (v, i) ∈ [m]× [n], the following recurrence relations hold:

L(v, i) =

−∞ if mfi(v, i) = [−∞,∞],
i if mfi(v, i) ̸= [−∞,∞]

and v.L = nil,
max

1≤j≤i−1
{L(v.L, j) | T [i] < T [j], R(v.L, j) < i} otherwise.

R(v, i) =

∞ if mfi(v, i) = [−∞,∞],
i if mfi(v, i) ̸= [−∞,∞]

and v.R = nil,
min

i+1≤j≤n
{R(v.R, j) | T [i] < T [j], i < L(v.R, j)} otherwise.

Proof. We prove the validity of the first equation for L(v, i). The second one can be proven
by symmetric arguments. The first two cases are clearly correct by the definition of minimal
fixed-intervals. We focus on the third case, when mfi(v, i) ̸= [−∞,∞] and v.L ̸= nil.

CPM 2022

14:8 Cartesian Tree Subsequence Matching

 v

 v . L v . R

 r
 j⋆ i

 T[j⋆] T[i]

 ℓ⋆ r⋆

 ℓ
 T

 CT(P)

Figure 4 Illustration for intuitive understanding of recurrence relations in Lemma 7. The minimal
fixed-interval [ℓ, r] with the pivot (v, i) can be obtained from mfi(v.L, j) and mfi(v.R, k) by choosing
j and k appropriately. As for the left subtree of v, the candidates for such j must satisfy the
conditions that the right-end of mfi(v.L, j) does not exceed i − 1 and T [j] > T [i]. To minimize the
width of fixed-intervals with (v, i), we choose j⋆ that maximizes the left-end of mfi(v.L, j⋆) while
satisfying the above conditions. Also, symmetric arguments can be applied to the right subtree of v.

Let [ℓ, r] = mfi(v, i). By Definition 4, there exists I = (ℓ, . . . , i, . . . , r) such that CT (TI) =
CT (Pv) and T [i] = min(TI). We notice that CT(Pv.L) = CT(TI[ℓ:prei]) holds where prei

is the subscript preceding i in I. Thus, there exists k such that ℓ ≤ k ≤ i − 1, T [i] <

T [k], R(v.L, k) < i, and L(v.L, k) ≥ ℓ. Now, let j⋆ := arg max1≤j≤i−1{L(v.L, j) | T [i] <

T [j], R(v.L, j) < i} and [ℓ⋆, r⋆] := mfi(v.L, j⋆). Then, ℓ⋆ = L(v.L, j⋆) ≥ L(v.L, k) ≥ ℓ holds.
For the sake of contradiction, we assume ℓ < ℓ⋆. By Definition 4, there exists I⋆ =

(ℓ⋆, . . . , j⋆, . . . , r⋆) such that CT (TI⋆) = CT (Pv.L) and T [j⋆] = min(TI⋆). Also, by the
definition of j⋆, T [i] < T [j⋆] and r⋆ < i hold. Let I ′ be the concatenation of I⋆ and I[i : r].
Note that I ′ ∈ In

m since r⋆ < i. From the above discussions, CT(TI′) = CT(Pv) holds
since CT(TI⋆) = CT(Pv.L) and min(TI⋆) = T [j⋆] > T [i]. Also, i ∈ I ′ and T [i] = min(TI′)
clearly hold. Then, by Definition 4, [ℓ⋆, r] ⊊ [ℓ, r] is a fixed-interval with (v, i), however,
this contradicts the minimality of [ℓ, r] = mfi(v, i). Therefore, ℓ = ℓ⋆ holds. Namely,
L(v, i) = L(v.L, j⋆) = max1≤j≤i−1{L(v.L, j) | T [i] < T [j], R(v.L, j) < i} holds. ◀

Algorithm 1 is a pseudo code of our algorithm to solve CTMSeq using dynamic programming
based on Lemma 7.

Correctness of Algorithm 1
Algorithm 1 computes tables L[v][i] = L(v, i) and R[v][i] = R(v, i) for all pivot (v, i) ∈ [m]×[n]
in a bottom-up manner in CT (P) (see Line 5). Since the recursion formulae of Lemma 7 hold
for every node, Algorithm 1 correctly computes all the minimal fixed-intervals, and thus, all
the minimal occurrence intervals for pattern P over text T .

Time and Space Complexities of Algorithm 1
At Line 4, we build the Cartesian tree C of a given pattern P . There is a linear-time
algorithm to build a Cartesian tree [9], which takes O(m) time here. In Lines 5–7, we call
functions UPDATE-LEFT-MAX and UPDATE-RIGHT-MIN m times since C has m nodes.

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:9

Algorithm 1 Algorithm for solving CTMSeq using dynamic programming.

1: procedure cartesian-tree-subsequence-match(T [1..n], P [1..m])
2: L[v][i]← −∞ for all v ∈ [m] and i ∈ [n]
3: R[v][i]←∞ for all v ∈ [m] and i ∈ [n]
4: C ← CT (P)
5: for each v ∈ [m] in a bottom-up manner in C do
6: call UPDATE-LEFT-MAX(v, T, L, R)
7: call UPDATE-RIGHT-MIN(v, T, L, R)
8: enumerate all minimal occurrence intervals for P over T by using L and R.
9: function update-left-max(v, T, L, R)

10: if v.L = nil then
11: L[v][i]← i for all i ∈ [n]
12: return
13: for i← 1 to n do
14: for j ← 1 to i− 1 do
15: if T [i] < T [j] and R[v.L][j] < i then
16: L[v][i]← max(L[v][i], L[v.L][j])
17: function update-right-min(v, T, L, R)
18: if v.R = nil then
19: R[v][i]← i for all i ∈ [n]
20: return
21: for i← 1 to n do
22: for j ← i + 1 to n do
23: if T [i] < T [j] and i < L[v.R][j] then
24: R[v][i]← min(R[v][i], R[v.R][j])

It is clear that the functions UPDATE-LEFT-MAX and UPDATE-RIGHT-MIN run in O(n2)
time for each call. Thus, the total running time of Algorithm 1 is O(mn2). Also, the space
complexity of Algorithm 1 is O(mn), which is dominated by the size of tables L and R.

To summarize, we obtain the following theorem:

▶ Theorem 8. The CTMSeq problem can be solved in O(mn2) time using O(mn) space.

With a few modifications, we can reconstruct a trace I = (ℓ, . . . , r) ∈ In
m satisfying

CT (TI) = CT (P) for each minimal occurrence interval [ℓ, r]. Precisely, when we compute
the minimal fixed-interval with each pivot (v, i), we simultaneously compute and store which
index will correspond to the root of the left subtree of v fixed at i. We do the same for
the right subtree. Using the additional information, we can reconstruct a desired subscript
sequence by tracing back from the root of CT (P). The next corollary follows from the above
discussion:

▶ Corollary 9. Once we compute L(v, i) and R(v, i) extended with the information of
tracing back for all pivots (v, i) ∈ [m] × [n], we can find a trace I = (ℓ, . . . , r) satisfying
CT (TI) = CT (P) for each minimal occurrence interval [ℓ, r] for P over T in O(m) time
using O(mn) space.

CPM 2022

14:10 Cartesian Tree Subsequence Matching

 i

ℓ2 r2

ℓ1 r1

Figure 5 Illustration for the third observation for LFI (v, i). The double-headed arrows represent
the intervals in LFI (v, i). The two intervals [ℓ1, r1] and [ℓ2, r2] are in LFI (v, i) and [ℓ1, r1] ⊊ [ℓ2, r2]
holds. It is clear that ℓ2 is never chosen as L(v, i) for any i ∈ [n].

4 Reducing Time to O(mn log log n) with Predecessor Dictionaries

This section describes how to improve the time complexity of Algorithm 1 to O(mn log log n).
In Algorithm 1, functions UPDATE-LEFT-MAX and UPDATE-RIGHT-MIN require O(n2)
time for each call, which is a bottle-neck of Algorithm 1. By devising the update order of
tables L(v, i) and R(v, i) and using a predecessor dictionary, we improve the running time of
the above two functions to O(n log log n).

4.1 Main Idea for Reducing Time
For any pivot (v, i) ∈ [m]× [n], let LFI (v, i) = {[L(v.L, j), R(v.L, j)] | 1 ≤ j ≤ n, T [i] < T [j]}
be a set of intervals which are candidates for a component of the minimal fixed-interval with
(v, i). By Lemma 7, L(v, i) = max({ℓ | [ℓ, r] ∈ LFI (v, i), r < i} ∪ {−∞}) holds if v.L ̸= nil.
Then, the next observations follow by the definitions:

LFI (v, i1) ⊆ LFI (v, i2) holds for any i1, i2 with T [i1] > T [i2].
If there are intervals [ℓ1, r1], [ℓ2, r2] ∈ LFI (v, i) such that ℓ2 = ℓ1 ≤ r1 < r2, then we can
always choose ℓ1 as L(v, i).
If there are intervals [ℓ1, r1], [ℓ2, r2] ∈ LFI (v, i) such that ℓ2 < ℓ1 ≤ r1 ≤ r2, then ℓ2 is
never chosen as L(v, i).

The intuitive explanation of the third observation is shown in Figure 5. From the third
observation, we define a subset LFI ′(v, i) of LFI (v, i), whose conditions are sufficient to
our purpose: Let LFI ′(v, i) be the set of all intervals that are minimal within LFI (v, i).
Namely, LFI ′(v, i) = {[ℓ, r] ∈ LFI (v, i) | there is no other interval [ℓ′, r′] ∈ LFI (v, i) such
that [ℓ′, r′] ⊊ [ℓ, r]}. By the third observation,

L(v, i) = max({ℓ | [ℓ, r] ∈ LFI ′(v, i), r < i} ∪ {−∞}) (1)

holds if v.L ̸= nil.
The main idea of our algorithm is to maintain a set Sv of intervals so that it satisfies

the invariant Sv = LFI ′(v, i). To maintain Sv efficiently, we utilize a data structure called
predecessor dictionary for Sv supporting the following operations:

insert(Sv, ℓ, r): insert interval [ℓ, r] into Sv,
delete(Sv, ℓ, r): delete interval [ℓ, r] from Sv,

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:11

Algorithm 2 Faster algorithm for UPDATE-LEFT-MAX using van Emde Boas tree.

1: function UPDATE-LEFT-MAX(v, T, L, R)
2: if v.L = nil then
3: L[v][i]← i for all i ∈ [n]
4: return
5: Sv ← ∅.
6: for each i ∈ [n] in the descending order of its value T [i] do
7: [ℓ, r]← pred(Sv, i)
8: if [ℓ, r] = nil then
9: L[v][i]← −∞

10: continue
11: L[v][i]← ℓ

12: ℓnew ← L[v.L][i], rnew ← R[v.L][i]
13: loop ▷ delete all intervals that become non-minimal
14: [ℓs, rs]← succ(Sv, rnew − 1)
15: if [ℓs, rs] = nil or [ℓnew, rnew] ̸⊆ [ℓs, rs] then
16: break
17: delete(Sv, ℓs, rs)
18: [ℓp, rp]← pred(Sv, rnew + 1)
19: if [ℓp, rp] = nil or [ℓp, rp] ̸⊆ [ℓnew, rnew] then ▷ insert new interval if it is minimal
20: insert(Sv, ℓnew, rnew)

pred(Sv, x): return the interval [ℓ, r] ∈ Sv on which r is the largest among those satisfying
r < x (if it does not exist return nil), and
succ(Sv, x): return the interval [ℓ, r] ∈ Sv on which r is the smallest among those
satisfying x < r (if it does not exist return nil).

To implement a predecessor dictionary for Sv, we use a famous data structure called van
Emde Boas tree [22] that performs the operations as mentioned above in O(log log n) time
each5. In general, the space usage of van Emde Boas tree is O(U), where U is the maximum
of the integers to store. However, U = n holds in our problem setting, and hence, the space
complexity is O(n).

4.2 Faster Algorithm
Algorithm 2 shows a function UPDATE-LEFT-MAX that computes L(v, i) for all i ∈ [n]
based on the above idea. This function can be used to replace the function of the same name
in Algorithm 1. The implementation of function UPDATE-RIGHT-MIN is symmetric.

Correctness of Algorithm 2
Remark that v is fixed in Algorithm 2. Let (i1, . . . , in) be the permutation of [n] that is
sorted in the order in which they are picked up by the for-loop at Line 6. We assume that the
invariant Sv = LFI ′(v, ij) holds at the beginning of the j-th step of the for-loop. The value
of L[v][ij] is determined at either Line 3, 9, or 11. By Lemma 7, L[v][ij] = L(v, ij) holds

5 The van Emde Boas tree is a data structure for the set of integers, however, it can be easily applied to
the set of pairs of integers by associating the first element with the second element.

CPM 2022

14:12 Cartesian Tree Subsequence Matching

if the value determined at Line 3 or 9. By the invariant Sv = LFI ′(v, ij) and Equation 1,
L[v][ij] = L(v, ij) also holds if the value determined at Line 11. Thus, L(v, ij) is computed
correctly.

Next, let us consider the invariant for Sv. At Line 12, we set [ℓnew, rnew] the minimal
fixed-interval with (v.L, ij). In the internal loop at Lines 13–17, we delete all intervals
[ℓs, rs] from Sv such that [ℓs, rs] becomes non-minimal within Sv ∪ {[ℓnew, rnew]}. To do so,
we repeatedly query succ(Sv, rnew − 1) and check whether the obtained interval includes
[ℓnew, rnew]. Finally, at the last two lines, we insert the new interval [ℓnew, rnew] if it does
not include any other interval in Sv. Then, any intervals in Sv are not nested each other,
and thus, the invariant Sv = LFI ′(v, ij+1) holds at the end of the j-th step.

Time and Space Complexities of Algorithm 2
We analyze the number of calls for each operation on a predecessor dictionary. Firstly,
since insert is called only at Line 20, it is called at most n times throughout Algorithm 2.
Similarly, pred at Line 7 and Line 18 is also called O(n) times. From Line 13 to Line 17, succ
and delete are called in the internal loop. The number of calls for delete is at most that
of insert, and hence, delete is called at most n times, and succ as well. Thus, throughout
Algorithm 2, the total number of calls for all queries is O(n). Therefore, the running time of
Algorithm 2 is O(n log log n). Also, the space complexity of Algorithm 2 is O(n).

To summarize this section, we obtain the following lemma:

▶ Lemma 10. Algorithm 2 computes function UPDATE-LEFT-MAX in O(n log log n) time
using O(n) space.

5 Reducing Space to O(n log m)

This section describes how to reduce the space complexity of our algorithm to O(n log m).
Having the tables L[v][i] and R[v][i] for all pivot (v, i) ∈ [m]× [n] requires Θ(mn) space. By
Lemma 7, to compute the table values for node v ∈ CT (P), we only need the table values
for v.L and v.R. Thus, we can discard the remaining values no longer referenced. However,
even if we discard such unnecessary ones, the space complexity will not be improved in the
worst case if we fix the order in which subtree is visited first: Let us assume that the left
subtree is always visited first, and consider pattern

P = (k + 1, 1, . . . , k + i, i, . . . , 2k, k, 2k + 1) (2)

of length m = 2k + 1. It can be seen that every non-leaf node in CT(P) has exactly two
children, and the left child is a leaf (see also Figure 6 for a concrete example). Thus, when we
process the node v numbered with 2k, we need to store at least k + 1 tables since all tables
for k + 1 leaves have been created and not been discarded yet, and it yields Θ(mn) space.

To avoid such a case, we add a new rule for which subtree is visited first; when we perform
a depth-first traversal, we visit the larger subtree first if the current node v has two children.
Specifically, we visit the left subtree first if |CT (P)v.L| > |CT (P)v.R|, and visit the right
subtree first otherwise, where the cardinality of a tree means the number of nodes in the tree.
Clearly, the correctness of the modified algorithm relies on the original one (i.e., Algorithm 1)
since the only difference is the rule that decides the order to visit.

In the following, we show that the rule makes the space complexity O(n log m). We utilize
a technique called heavy-path decomposition [11] (a.k.a. heavy-light decomposition). For
each internal node v ∈ [m] in CT (P), we choose one of v’s children with the larger subtree

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:13

 CT(P) 2

 P 𝟸 𝟾 𝟺 𝟽 𝟹 𝟼 𝟻 𝟷 𝟿

 4
 6

 8

 1

 3
 5

 7

 v

 9

 1 2 3 4 5 6 7 8 9

Figure 6 Illustration for a worst case example of CT (P) which causes the space complexity to
be Θ(mn), where P = (5, 1, 6, 2, 7, 3, 8, 4, 9). To compute the values of L(v, i) and R(v, i) for v = 8,
we only need the values of L(u, i) and R(u, i) for node u ∈ {7, 9}. However, we have not finished
computing L(u, i) and R(u, i) for node u ∈ {2, 4, 6} yet, so we have to remember all of the values of
L(u, i) and R(u, i) for node u ∈ {1, 3, 5, 7, 9} simultaneously.

size and mark it as heavy, and we mark the other one as light if it exists. Exceptionally, we
mark the root of CT (P) as heavy. Then, it is known that the number of light nodes on any
root-to-leaf path is O(log m) [11].

Now, we prove that the algorithm requires O(n log m) space at any step. Suppose we are
now on node u ∈ [m]. Let pu be the path from the root to u in CT(P). Note that each
node v on pu is marked as either heavy or light. For each light node vℓ on pu, we have not
discarded arrays L and R of size O(n) associated with the sibling of vℓ to process the parent
of vℓ in a later step. For each heavy node vh on pu, we do not have to remember any array
since we recurse on vh first, and hence we require only O(1) space for vh. Since there are at
most O(log m) light nodes on pu, the algorithm requires O(n log m) space at any step.

By combining these discussion with Theorem 8 and Lemma 10, we obtain our main
theorem:

▶ Theorem 11. The CTMSeq problem can be solved in O(mn log log n) time using O(n log m)
space.

Note that the same method as for Corollary 9 can not be applied to the algorithm in this
section since most tables are discarded to save space.

6 Preliminary Experiments

This section aims to investigate the behavior of each algorithm using artificial data. In the
first experiment we use randomly generated strings to see how the algorithms would behave
on average (Table 1). In the second experiment, we use the worst-case instance presented in
Section 5 to check the worst-case behavior of the proposed algorithms (Table 2).

We conducted experiments on mac OS Mojava 10.14.6 with Intel(R) Core(TM) i5-7360U
CPU @ 2.30GHz. For each test, we use a single thread and limit the maximum run time by
60 minutes. All programs are implemented using C++ language compiled with Apple LLVM
version 10.0.1 (clang-1001.0.46.4) with -O3 optimization option. We compared the running
time and memory usage of our four proposed algorithms below by varying the length n of
text and the length m of pattern:

CPM 2022

14:14 Cartesian Tree Subsequence Matching

Table 1 Comparison of four algorithms for solving CTMSeq with randomly generated texts and
patterns. The unit of time is second, and the unit of space is KB.

basic basic-HL vEB vEB-HL

n m time space time space time space time space
5000 50 2.03 1980 0.09 3148 0.03 2496 0.03 2124
5000 500 19.20 2788 19.86 2168 0.37 3272 0.37 2596
5000 1000 40.62 2932 40.34 2236 0.73 3520 0.73 2604
5000 2500 96.27 3124 96.23 2368 1.84 3532 1.84 2816

10000 50 7.77 2128 7.74 1804 0.07 2504 0.07 2188
10000 1000 159.82 2740 159.70 1960 1.38 3128 1.38 2352
10000 2000 321.07 2920 323.09 2068 3.08 3312 3.09 2452
10000 5000 841.85 3252 835.29 2212 7.22 3644 7.23 2592
50000 50 206.49 4976 211.24 3836 0.39 6076 0.40 4920
50000 5000 NA NA NA NA 39.98 13040 39.70 6576
50000 10000 NA NA NA NA 79.42 12684 80.20 7044
50000 25000 NA NA NA NA 199.14 13900 197.71 7340

basic: O(mn2)-time and O(mn)-space algorithm (Algorithm 1) explained in Section 3,
basic-HL: O(mn2)-time and O(n log m)-space algorithm obtained by applying the idea
of memory reduction in Section 5 to basic.
vEB6: O(mn log log n)-time and O(mn)-space algorithm obtained by combining Al-
gorithm 1 in Section 3 with Algorithm 2 in Section 4, and
vEB-HL: O(mn log log n)-time and O(n log m)-space algorithm obtained by applying the
idea of memory reduction in Section 5 to vEB.

Tables 1 and 2 show the comparison of the performance among four algorithms above. NA
indicates that the measurement was terminated when the execution time exceeded 60 minutes.
Common to both Table 1 and Table 2, we use a text T of length n that is a randomly chosen
permutation of (1, 2, . . . , n), and thus, T is a length-n string over the alphabet {1, 2, . . . , n}.
In Table 1, we use a pattern P that is a randomly chosen subsequnce of T , and thus, P

is also a length-m string over the alphabet {1, 2, . . . , n}. In Table 2, we use the pattern
P = (k +1, 1, . . . , k + i, i, . . . , 2k, k) of length m = 2k in Equation 2 (see also Figure 6), which
requires Θ(mn) space when the idea of memory reduction in Section 5 is not applied.

Table 1 shows that the running time of vEB is faster than that of basic for all test cases,
and the same result can be seen for vEB-HL and basic-HL. Comparing the memory usage of
vEB with that of basic, it can be seen that the vEB uses more memory than basic, since
the memory usage of the van Emde Boas tree is constant times larger than that of a basic
array. The same is true for vEB-HL and basic-HL. The only difference between basic (vEB)
and basic-HL (vEB-HL) is the search order of the tree traversal, so they have little difference
in the running time for all test cases. Comparing these algorithms in terms of memory usage,
it can be seen that the basic-HL (vEB-HL) uses less memory than basic (vEB), but the
difference is not as pronounced as the theoretical difference in the space complexity. This is
because P is generated at random, so there is not much bias in the size of the subtrees.

6 For the implementation of van Emde Boas trees, we used the following library: https://kopricky.
github.io/code/Academic/van_emde_boas_tree.html

https://kopricky.github.io/code/Academic/van_emde_boas_tree.html
https://kopricky.github.io/code/Academic/van_emde_boas_tree.html

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:15

Table 2 Comparison of four algorithms for solving CTMSeq with randomly generated texts and
intentionally generated patterns of form P = (k + 1, 1, . . . , k + i, i, . . . , 2k, k) in Equation 2. The
unit of time is second, and the unit of space is KB.

basic basic-HL vEB vEB-HL

n m time space time space time space time space
5000 50 1.85 2572 1.86 1940 0.03 2920 0.03 2208
5000 500 18.01 11712 18.03 1912 0.23 12064 0.23 2372
5000 1000 37.65 21804 37.94 2028 0.41 22236 0.40 2516
5000 2500 92.58 52036 89.04 2220 0.96 52720 0.94 2960

10000 50 7.39 3444 7.45 1644 0.07 3748 0.07 2032
10000 1000 150.70 41632 153.18 1732 0.80 42192 0.79 2304
10000 2000 301.57 81856 303.77 1852 1.49 82584 1.46 2600
10000 5000 754.85 202408 759.71 2244 3.58 203656 3.49 3512
50000 50 186.05 12024 186.63 3048 0.37 13116 0.37 4140
50000 5000 NA NA NA NA 18.36 650768 17.82 5616
50000 10000 NA NA NA NA 35.42 963068 34.25 7112
50000 25000 NA NA NA NA 87.28 998056 83.94 11600

On the other hand, the results in Table 2 show that basic-HL and vEB-HL are significantly
more memory efficient than basic and vEB in the case where m is large. This is consistent
with the theoretical difference in the amount of the space complexity.

We also conducted the additional experiments with other algorithms:
BST: O(mn log n)-time and O(mn)-space algorithm using the binary search tree7 instead
of van Emde Boas tree in Section 4, and
BST-HL: O(mn log n)-time and O(mn)-space algorithm obtained by applying the idea of
memory reduction in Section 5 to BST.

vEB outperformed BST in both time and space for all test cases, and so do vEB-HL and BST-HL,
which we feel is of independent interest. The details of the results are shown in Appendix A.

7 Conclusions

This paper introduced the Cartesian tree subsequence matching (CTMSeq) problem: Given
a text T of length n and a pattern P of length m, find every minimal substring S of T such
that S contains a subsequence S′ which Cartesian-tree matches P . This is the Cartesian-
tree version of the episode matching [7]. We first presented a basic dynamic programming
algorithm running in O(mn2) time, and then proposed a faster O(mn log log n)-time solution
to the problem. We showed how these algorithms can be performed with O(n log m) space.
Our experiments showed that our O(mn log log n)-time solution can be fast in practice.

An intriguing open problem is to show a non-trivial (conditional) lower bound for
the CTMSeq problem. The episode matching (under the exact matching criterion) has
O((mn)1−ϵ)-time conditional lower bound under SETH [3]. Although a solution to the
CTMSeq problem that is significantly faster than O(mn) seems unlikely, we have not found
such a (conditional) lower bound yet. We remark that the episode matching problem is not
readily reducible to the CTMSeq problem, since CTMSeq allows for more relaxed pattern
matching and the reported intervals can be shorter than those found by episode matching.

7 For the implementation of binary search trees, we used std::set in C++.

CPM 2022

14:16 Cartesian Tree Subsequence Matching

References
1 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.

In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 71–80. ACM, 1993. doi:10.1145/167088.167115.

2 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. J. Comput.
Syst. Sci., 52(1):28–42, 1996. doi:10.1006/jcss.1996.0003.

3 Philip Bille, Inge Li Gørtz, Shay Mozes, Teresa Anna Steiner, and Oren Weimann. A conditional
lower bound for episode matching. CoRR, abs/2108.08613, 2021.

4 Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for permutations. Inf.
Process. Lett., 65(5):277–283, 1998. doi:10.1016/S0020-0190(97)00209-3.

5 Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. A fast algorithm for
order-preserving pattern matching. Inf. Process. Lett., 115(2):397–402, 2015. doi:10.1016/j.
ipl.2014.10.018.

6 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Order-preserving
indexing. Theor. Comput. Sci., 638:122–135, 2016. doi:10.1016/j.tcs.2015.06.050.

7 Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitrios Gunopulos, and Juha Kärkkäinen.
Episode matching. In Alberto Apostolico and Jotun Hein, editors, Combinatorial Pattern
Matching, 8th Annual Symposium, CPM 97, Aarhus, Denmark, June 30 - July 2, 1997,
Proceedings, volume 1264 of Lecture Notes in Computer Science, pages 12–27. Springer, 1997.
doi:10.1007/3-540-63220-4_46.

8 Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
The parameterized suffix tray. In Tiziana Calamoneri and Federico Corò, editors, Algorithms
and Complexity - 12th International Conference, CIAC 2021, Virtual Event, May 10-12, 2021,
Proceedings, volume 12701 of Lecture Notes in Computer Science, pages 258–270. Springer,
2021. doi:10.1007/978-3-030-75242-2_18.

9 Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques
for geometry problems. In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages
135–143. ACM, 1984. doi:10.1145/800057.808675.

10 Pawel Gawrychowski, Samah Ghazawi, and Gad M. Landau. On indeterminate strings
matching. In Proc. 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020),
volume 161 of LIPIcs, pages 14:1–14:14, 2020.

11 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

12 Rui Henriques, Alexandre P. Francisco, Luís M. S. Russo, and Hideo Bannai. Order-preserving
pattern matching indeterminate strings. In Annual Symposium on Combinatorial Pattern
Matching (CPM 2018), volume 105 of LIPIcs, pages 2:1–2:15, 2018.

13 Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, 1982. doi:10.1145/322290.322295.

14 Ramana M. Idury and Alejandro A. Schäffer. Multiple matching of parametrized patterns.
Theor. Comput. Sci., 154(2):203–224, 1996. doi:10.1016/0304-3975(94)00270-3.

15 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. On the longest common parameterized
subsequence. Theor. Comput. Sci., 410(51):5347–5353, 2009. doi:10.1016/j.tcs.2009.09.
011.

16 Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Iliopoulos, Kunsoo Park,
Simon J. Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theor. Comput. Sci.,
525:68–79, 2014. doi:10.1016/j.tcs.2013.10.006.

17 Marcin Kubica, Tomasz Kulczynski, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen.
A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.,
113(12):430–433, 2013. doi:10.1016/j.ipl.2013.03.015.

https://doi.org/10.1145/167088.167115
https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.1016/j.ipl.2014.10.018
https://doi.org/10.1016/j.ipl.2014.10.018
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1007/3-540-63220-4_46
https://doi.org/10.1007/978-3-030-75242-2_18
https://doi.org/10.1145/800057.808675
https://doi.org/10.1137/0213024
https://doi.org/10.1145/322290.322295
https://doi.org/10.1016/0304-3975(94)00270-3
https://doi.org/10.1016/j.tcs.2009.09.011
https://doi.org/10.1016/j.tcs.2009.09.011
https://doi.org/10.1016/j.tcs.2013.10.006
https://doi.org/10.1016/j.ipl.2013.03.015

T. Oizumi, T. Kai, T. Mieno, S. Inenaga, and H. Arimura 14:17

18 Yoshiaki Matsuoka, Takahiro Aoki, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Generalized pattern matching and periodicity under substring consistent equivalence relations.
Theor. Comput. Sci., 656:225–233, 2016. doi:10.1016/j.tcs.2016.02.017.

19 Juan Mendivelso, Sharma V. Thankachan, and Yoan J. Pinzón. A brief history of parameterized
matching problems. Discret. Appl. Math., 274:103–115, 2020. doi:10.1016/j.dam.2018.07.
017.

20 Sung Gwan Park, Magsarjav Bataa, Amihood Amir, Gad M. Landau, and Kunsoo Park.
Finding patterns and periods in Cartesian tree matching. Theor. Comput. Sci., 845:181–197,
2020. doi:10.1016/j.tcs.2020.09.014.

21 Siwoo Song, Geonmo Gu, Cheol Ryu, Simone Faro, Thierry Lecroq, and Kunsoo Park. Fast
algorithms for single and multiple pattern Cartesian tree matching. Theor. Comput. Sci.,
849:47–63, 2021. doi:10.1016/j.tcs.2020.10.009.

22 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett., 6(3):80–82, 1977. doi:10.1016/0020-0190(77)90031-X.

CPM 2022

https://doi.org/10.1016/j.tcs.2016.02.017
https://doi.org/10.1016/j.dam.2018.07.017
https://doi.org/10.1016/j.dam.2018.07.017
https://doi.org/10.1016/j.tcs.2020.09.014
https://doi.org/10.1016/j.tcs.2020.10.009
https://doi.org/10.1016/0020-0190(77)90031-X

14:18 Cartesian Tree Subsequence Matching

A Additional Table

Table 3 Comparison of six algorithms with additional two algorithms for solving CTMSeq with
randomly generated texts and patterns. The unit of time is second, and the unit of space is KB.

ba
si

c
ba

si
c-

HL
BS

T
BS

T-
HL

vE
B

vE
B-

HL

n
m

tim
e

sp
ac

e
tim

e
sp

ac
e

tim
e

sp
ac

e
tim

e
sp

ac
e

tim
e

sp
ac

e
tim

e
sp

ac
e

50
00

50
2.

03
19

80
2.

03
20

20
0.

09
32

84
0.

09
31

48
0.

03
24

96
0.

03
21

24
50

00
50

0
19

.2
0

27
88

19
.8

6
21

68
0.

85
38

96
0.

83
32

40
0.

37
32

72
0.

37
25

96
50

00
10

00
40

.6
2

29
32

40
.3

4
22

36
1.

68
40

84
1.

67
33

48
0.

73
35

20
0.

73
26

04
50

00
25

00
96

.2
7

31
24

96
.2

3
23

68
4.

21
43

96
4.

18
34

80
1.

84
35

32
1.

84
28

16
10

00
0

50
7.

77
21

28
7.

74
18

04
0.

20
40

76
0.

19
33

60
0.

07
25

04
0.

07
21

88
10

00
0

10
00

15
9.

82
27

40
15

9.
70

19
60

3.
70

47
24

3.
64

39
40

1.
38

31
28

1.
38

23
52

10
00

0
20

00
32

1.
07

29
20

32
3.

09
20

68
8.

25
49

12
8.

22
40

48
3.

08
33

12
3.

09
24

52
10

00
0

50
00

84
1.

85
32

52
83

5.
29

22
12

20
.2

5
52

32
19

.6
9

41
96

7.
22

36
44

7.
23

25
92

50
00

0
50

20
6.

49
49

76
21

1.
24

38
36

1.
46

10
20

4
1.

45
10

00
4

0.
39

60
76

0.
40

49
20

50
00

0
50

00
N

A
N

A
N

A
N

A
14

1.
22

17
27

6
13

6.
76

10
86

8
39

.9
8

13
04

0
39

.7
0

65
76

50
00

0
10

00
0

N
A

N
A

N
A

N
A

27
1.

18
16

92
0

27
2.

29
11

44
0

79
.4

2
12

68
4

80
.2

0
70

44
50

00
0

25
00

0
N

A
N

A
N

A
N

A
69

1.
63

18
14

4
68

9.
80

11
78

0
19

9.
14

13
90

0
19

7.
71

73
40

	1 Introduction
	2 Preliminaries
	2.1 Basic Notations and Assumptions
	2.2 Cartesian Tree
	2.3 Cartesian Tree Subsequence Matching

	3 O(mn2)-time Dynamic Programming Algorithm
	3.1 A Simple Algorithm
	3.2 Minimal Fixed-interval
	3.3 The Algorithm

	4 Reducing Time to O(mn log log n) with Predecessor Dictionaries
	4.1 Main Idea for Reducing Time
	4.2 Faster Algorithm

	5 Reducing Space to O(n log m)
	6 Preliminary Experiments
	7 Conclusions
	A Additional Table

