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Abstract
In this article, we study two problems consisting in reordering a tree to fit with an order on its leaves
provided as input, which were earlier introduced in the context of phylogenetic tree comparison for
bioinformatics, OTCM and OTDE. The first problem consists in finding an order which minimizes
the number of inversions with an input order on the leaves, while the second one consists in removing
the minimum number of leaves from the tree to make it consistent with the input order on the
remaining leaves. We show that both problems are NP-complete when the maximum degree is
not bounded, as well as a problem on tree alignment, answering two questions opened in 2010 by
Henning Fernau, Michael Kaufmann and Mathias Poths. We provide a polynomial-time algorithm
for OTDE in the case where the maximum degree is bounded by a constant and an FPT algorithm
in a parameter lower than the number of leaves to delete. Our results have practical interest not
only for bioinformatics but also for digital humanities to evaluate, for example, the consistency of
the dendrogram obtained from a hierarchical clustering algorithm with a chronological ordering
of its leaves. We explore the possibilities of practical use of our results both on trees obtained by
clustering the literary works of French authors and on simulated data, using implementations of our
algorithms in Python.
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1 Introduction

The problem of optimizing the consistency between a tree and a given order on its leaves
was first introduced in bioinformatics in the context of visualization of multiple phylogenetic
trees in order to highlight common patterns in their subtree structure [6], under the name
“one-layer STOP (stratified tree ordering problem)”. The authors provided an O(n2) time
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algorithm to minimize, by exchanging the left and right children of internal nodes, the number
of inversions between the left-to-right order of the leaves of a binary tree and an input order
on its leaves. The problem was renamed OTCM (One-Tree Crossing Minimization)
in [9], where an O(n log2 n) time algorithm is provided, as well as a reduction to 3-Hitting
Set of a variant of the problem where the goal is to minimize the number of leaves to delete
from the tree in order to be able to perfectly match the input order on the remaining leaves,
called OTDE (One-Tree Drawing by Deleting Edges). An O(n log2 n/ log log n) time
algorithm is later provided for OTCM by [1], improved independently in 2010 by [10] and [22]
to obtain an O(n log n) time complexity. About OTDE, the authors of [10] note that “the
efficient dynamic-programming algorithm derived for the related problem OTCM [. . . ] cannot
be transferred to this problem. However, we have no proof for NP-hardness for OTDE nor
TTDE, either”. TTDE (Two-Tree Drawing by Deleting Edges) is a variant of OTDE
where two leaf-labeled trees are provided as input and the goal is to delete the minimum
number of leaves such that the remaining leaves of both trees can be ordered with the
same order. We give below an answer to both sentences, providing a dynamic-programming
algorithm solving OTDE for trees with fixed maximum degree as well as an NP-hardness
proof in the general case for OTDE and for TTDE.

Although this problem was initially introduced in the context of comparing tree embed-
dings, one tree having its embedding (that is the left-to-right order of all children) fixed,
we can note that only the order on the leaves of the tree with fixed embedding is useful
to define both problems OTCM and OTDE. Both problems therefore consist not really in
comparing trees but rather in reordering the internal nodes of one tree in order to optimize
its consistency with an order on its leaves provided as input. A popular problem consisting
in finding an optimal order on the leaves of a tree is “seriation”, often used for visualization
purposes [7], where the optimized criterion is computed on data used to build the tree. For
example, a classical criterion, called “optimal leaf ordering”, is to maximize the similarity
between consecutive elements in the optimal order [2, 3, 4]. Another possibility is to minimize
a distance criterion, the “bilateral symmetric distance”, computed on pairs of elements in
consecutive clusters [5]. Seriation algorithms have been implemented for example in the
R-packages seriation [12] and dendsort [19].

With the OTCM and OTDE problems, our goal is not to reorder a tree using only the
original data from which it has been built, but using external data about some expected order
on its leaves. In the context where the leaves of the tree can be ordered chronologically, for
example, this would help providing an answer to the question: how much is this tree consistent
with the chronological order? This issue is relevant for several fields of digital humanities,
when objects associated with a publication date are classified with a hierarchical clustering
algorithm, for example literature analysis [14], political discourse analysis [15] or language
evolution [17], as noticed in [11]. In these articles, the comments about the chronological
signal which can be observed in the tree obtained from the clustering algorithm are often
unclear or imprecise. For example, in [17], the author observes about Figure 15 on page 17
that “the cluster tree gives a visual representation consistent with what is independently
known of the chronological structure of the corpus”. However, the structure of the tree
does not perfectly reflect the chronology2. The algorithms solving the OTCM and OTDE
problems can also prevent researchers from claiming having obtained perfect chronological
trees with clustering, whereas there are still small inconsistencies that are not easy to spot

2 For example 1380Gawain.txt cannot be ordered between 1375AllitMorteArthur.txt and
1400YorksPlays.txt.
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with the naked eye. For example, although “Chez Jacques Chirac, l’examen des parentés
[dans ses discours de vœux] ne suppose aucune rupture, la chronologie étant parfaitement
représentée”3 is claimed about Figure 2.4 in [15], the 1999 speech cannot be ordered between
1998 and 2000.

In this article, we first give useful definitions in Section 1.1. We answer two open problems
from [10], proving that OTDE and TTDE are NP-complete, as well as OTCM, in Section 2.
We then provide a dynamic programming algorithm solving OTDE in polynomial time for
trees with fixed maximum degree in Section 3. This algorithm also works in the more general
case where the order on the leaves is not strict. We then provide an FPT algorithm for the
OTDE problem parameterized by the deletion-degree of the solution, which is lower than
the number of leaves to delete, in Section 4. We also give an example of a tree and an order
built to have a distinct solution for the OTCM and OTDE problems in Section 5. Finally,
we illustrate the relevance of this problem, and of our implementations of algorithms solving
them, for applications in digital humanities, with experiments on trees built from literary
works, as well as simulated trees, in Section 6.

1.1 Definitions
Given a set X of elements, we define an X-tree T as a rooted tree whose leaves are bijectively
labeled by the elements of X. The set of leaves of T is denoted by L(T ) and the set of leaves
below some vertex v of T is denoted by L(T, v) (or simply L(v) if T is clear from the context).
A set of vertices of T is independent if no vertex of T is an ancestor of another vertex of T .

We say that σ is a strict order on X if it is a bijection from X to [1..n] and that it
is a weak order on X if it is a surjection from X to [1..m], where |X| ≥ m. Given any
(strict or weak) order σ, we denote by a ≤σ b the fact that σ(a) ≤ σ(b) and by a <σ b

the fact that σ(a) < σ(b). Considering the elements x1, . . . , xn of X such that for each
i ∈ [1..n − 1], σ(xi) ≤ σ(xi+1), we denote by (x1x2 . . . xn) the (weak or strict) order σ.

Given an X-tree T and a (weak or strict) order σ on X, we say that an independent
pair {u, v} of vertices of T is a conflict wrt. σ if there exist leaves a, c ∈ L(u) and b ∈ L(v)
such that a <σ b <σ c. Conversely, if {u, v} is not a conflict, then either a ≤σ b for all
a ∈ L(u), b ∈ L(v), or b ≤σ a; we then write u ⪯σ v or v ⪯σ u, respectively. We say that σ

is suitable on T if T has no conflict with respect to σ.
Given two (strict or weak) orders σ1 and σ2 on X and two elements a ̸= b of X, we say

that {a, b} is an inversion for σ1 and σ2 if a ≤σ1 b and b <σ2 a, or b ≤σ1 a and a <σ2 b.
Given an X-tree T , a subset X ′ of X and an order σ on X, we denote by σ[X ′] the order

σ restricted to X ′, and by T [X ′] the tree T restricted to X ′, that is the X ′-tree obtained from
T by removing leaves labeled by X \ X ′ and contracting any arc to a non-labeled leaf, any
arc from an out-degree-1 vertex. We define the deletion-degree of X ′ as the maximum degree
of the tree induced by the deleted leaves, i.e., T [X \ X ′]. Intuitively, the deletion-degree
measures how deletions in different branches converge on a few nodes or if they merge
progressively. Note that by definition, the deletion-degree of X ′ is upper-bounded both by
the maximum degree of T and by the size of X \ X ′.

We now define the two main problems addressed in this paper (see Figure 1 for an
illustration). As explained in the introduction, we differ from previous definitions which
considered two trees, one with a fixed order on the leaves, as input, as only the leaf order of
the second tree is useful to define the problem and not the tree itself.

3 “For Jacques Chirac, the examination of the genealogy [of his new year addresses] shows no discontinuity,
the chronology being perfectly represented”

CPM 2022
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Figure 1 Example for the OTDE and OTCM problem. Left: a tree T on leaves {A, . . . , F}, the
reference permutation is σ = (A, B, C, D, E, F) (more precisely, σ(A) = 1, . . . , σ(F) = 6). Middle: a
solution for OTDE with cost 2. The subtree T [X ′] for X ′ = {A, D, E, F} is ordered to show the absence
of conflicts with σ[X ′]. Right: a solution for OTCM with cost 3. The order σ′ = (A, D, B, E, C, F) is
suitable for T and yields three inversions with σ.

We therefore define the OTCM (One-Tree Crossing Minimization) problem as
follows:

Input: An X-tree T , an order σ on X and an integer k.
Output: Yes if there exists an order σ′ on X suitable on T such that the number of
inversions for σ′ and σ is at most k, no otherwise.

We also define the OTDE (One-Tree Drawing by Deleting Edges) problem as
follows:

Input: An X-tree T , an order σ on X and an integer k.
Output: Yes if there exists a subset X ′ of X of size at least |X| − k such that σ[X ′] is
suitable on T [X ′], no otherwise.

We finally define the TTDE (Two-Tree Drawing by Deleting Edges) problem in
the following way:

Input: Two X-trees T1 and T2 and an integer k.
Output: Yes if there exists a subset X ′ of X of size at least |X| − k and an order σ′ on
X ′ that is suitable on T1[X ′] and on T2[X ′], no otherwise.

2 NP-hardness

2.1 OTDE and TTDE are NP-complete for trees with unbounded
degree

▶ Theorem 1. The OTDE problem is NP-complete for strict orders and therefore for weak
orders.

Proof. First note that OTDE is in NP, since, given an X-tree T , an order σ and a set L

of leaves to remove, we can check in linear time, by a recursive search of the tree, saving
on each node the minimum and the maximum leaf in σ[X − L] appearing below, whether
σ[X − L] is suitable on T [X − L]. Regarding NP-hardness, we now give a reduction from
Independent Set, which is NP-hard on cubic graphs [16], to OTDE when the input trees
have unbounded degree.

We consider an instance of the Independent Set problem, that is a cubic graph
G = (V = {v1, . . . , vn}, E) such that |E| = m = 3n/2 and an integer k. For each vertex vi,
we write e1

i , e2
i and e3

i for the three edges incident with vi (ordered arbitrarily).
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We now define an instance of the OTDE problem. The set of leaf labels consists of vertex
labels denoted vi and v′

i for each i ∈ [1..n], one edge label for each edge (also denoted ej
i for

the jth edge incident on vertex vi), and a set of n2 separating labels Bi = {b1
i , b2

i , . . . bn2

i } for
each i ∈ [1..n − 1].

First, we define the strict order σ(G) = (v1e1
1e2

1e3
1v′

1b1
1b2

1 . . . bn2

1 v2e1
2e2

2e3
2v′

2b2
1b2

2 . . . bn2

n−1vne1
n

e2
ne3

nv′
n). Then, let Tvi be the tree with leaves vi and v′

i attached below the root, Te be the tree
with leaves ei′

i and ej′

j attached below the root for each edge e = {vi, vj} of G (with i′, j′ ∈
[1..3]), and TBi be the tree with leaves b1

i , . . . , bn2

i attached below the root for each i ∈ [1..n−1].
We finally define T (G) as the tree such that Tv1 , Tv2 , . . . , Tvn

, Te1 , Te2 , . . . Tem
, TB1 , TB2 , . . .

and TBn−1 are attached below the root.
We claim that G has an independent set of size at least k ⇔ the instance (T (G), σ(G))

of the OTDE problem has a solution with a set L of at most m + n − k leaves to remove.
⇒: Suppose that there exists a size-k independent set S = {s1, . . . , sk} of G. We then

remove the following leaves (also contracting along the way the edge from their parent to the
root of T (G)) in order to get a new tree T ′:

for each edge e = {vi, vj} = ei′

i = ej′

j with i < j, we remove ei′

i and call T
ej′

j

= Te if

vi ∈ S or if neither vi nor vj belong to S; and we remove ej′

j and call Tei′
i

= Te if vj ∈ S

(as S is an independent set we cannot have both vi and vj in S);
for each vertex vi not in S we remove v′

i.
By ordering the children of the root of T (G) such as in Figure 2(1), that is by putting, for each
vi with i ∈ [1..n], Tvi

, then Te1
i
, Te2

i
and Te3

i
for each of the ei′

i which were not removed and
then TBi (except for i = n), the order σ(G) restricted to the remaining m + n + k + n2(n − 1)
leaves is suitable on T ′.

⇐: Suppose that there exists a set L of at most m + n − k leaves such that σ(G)[X − L]
is suitable on T (G)[X − L]. For each parent pBi of the leaves of Bi and any other vertex v of
T such that {pBi

, v} is a conflict wrt. σ(G), we can delete this conflict either by deleting no
leaf of Bi or all leaves of Bi. As each Bi has size n2 > m + n − k, its leaves cannot belong to
the set L of leaves to be deleted.

We now consider the trees Tei for each i ∈ [1..m]: by construction of σ(G), as both leaves
of each such tree are separated by some Bi′ , therefore by n2 > m + n − k leaves, one of these
two leaves has to be removed, so it has to belong to L. We call L′ the set of such leaves of L,
therefore there exists a set L − L′ of at most n − k other leaves to delete. So there exists a
subset SL of [1..n] of size at least k such that for any element i ∈ SL, neither vi, nor v′

i, nor
any of the leaves ej

i for j ∈ {1, 2, 3} belong to L − L′. Note that for such i ∈ SL, all vertices
vi and v′

i are not in L and all ej
i are in L′. We claim that the vertices of G corresponding

to SL are an independent set of G. Suppose for contradiction that it is not the case, then
there exists an edge e = ei′

i = ej′

j between two vertices vi and vj of G. By construction of
L′, exactly one of the leaves labeled by ei′

i and ej′

j is in L′ so the second one is in L − L′:
contradiction. ◀

▶ Corollary 2. The TTDE problem is NP-complete.

Proof. TTDE is clearly in NP. We prove hardness by reduction from OTDE (see Figure 2(2)
for an illustration). Consider an instance (T, σ) of OTDE with σ a strict order on n labels
X. Introduce a set Y of n new labels. Build T1 as a caterpillar with n + 1 internal nodes
forming a path r1, . . . , rn+1 (with root r1) and 2n leaves where each ri with i ≤ n has one
leaf attached with label σ−1(i) ∈ X (in the same order), and rn+1 has n leaves attached
labelled with Y . Build T2 as a tree, where the root has two children y, t, where y has n

children which are leaves labelled with Y , and t is the root of a subtree equal to T .

CPM 2022
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(1) (2)

Figure 2 Illustration of the reductions of Independent Set to OTDE and of OTDE to TTDE. (1,
left) A graph G with independent set S = {v1, v4} of size 2. (1, right) The corresponding tree T (G)
as well as the order σ(G). By removing all leaves connected with dotted lines to the corresponding
element in σ(G), the resulting subtree of T (G) is suitable for the order (since the remaining arcs
are non-crossing). (2) Reduction from an OTDE instance (T, σ) (top) to a TTDE instance (T1, T2)
(bottom). A large set of leaves labelled Y can be seen as a fixed-point, around which T1 must be
ordered according to σ, and T2 according to the input tree T .

We now show our main claim: given 0 ≤ k < n, OTDE(T, σ) admits a solution with at
most k deletions ⇔ TTDE(T1, T2) admits a solution with at most k deletions.

⇒ Let X ′ be a size-(n − k) subset of X such that σ[X ′] is suitable on T [X]. Then let γ

be any order on Y : the concatenation σ[X ′]γ is suitable both on T1[X ′ ∪ Y ] and T2[X ′ ∪ Y ],
so it is a valid solution for TTDE(T1, T2) of size 2n − k, i.e., with k deletions.

⇐ Let X ′, Y ′ be subsets of X, Y , respectively, and σ′ be an order on X ′ ∪ Y ′ such that
σ′ is suitable on both T1[X ′ ∪ Y ′] and T2[X ′ ∪ Y ′], and such that |X ′ ∪ Y ′| ≥ 2n − k > n

(in particular, Y ′ contains at least one element denoted y, and |X ′| ≥ n − k). From T2, it
follows that σ′ is the concatenation (in any order) of an order σx of X ′ suitable for T [X ′]
and an order σy of Y ′. Assume first that σx appears before σy. Then consider each internal
node ri of the caterpillar T1 with i ≤ n and a child c labelled with an element X ′. Then this
child must be ordered before all leaves below ri+1 since the corresponding subtree contains
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all leaves labelled with Y . Thus, the nodes in X ′ are ordered according to σ[X ′], hence
σx = σ[X ′], and T [X ′] is suitable with σ[X ′]. For the other case, where σy is ordered before
σx, then for each ri with a child in X ′, this child must be after the subtree with root ri+1
(containing Y ), and the nodes in X ′ are ordered according to the reverse of σ[X ′] (i.e.,
σx = σ[X ′]). Thus, the reverse of σ[X ′] is suitable for T [X ′], and σ[X ′] as well (this is
obtained by reversing the permutation of all children of internal nodes of T ). In both cases,
X ′ is a solution for OTDE(T, σ) with |X ′| ≥ n − k. ◀

2.2 OTCM is NP-complete for trees with unbounded degree
▶ Theorem 3. The OTCM problem is NP-complete for strict orders and therefore for weak
orders.

Proof. First note that OTCM is in NP, since, given an X-tree T with its leaves ordered
according to an order σ′ on X suitable on T , an order σ and a set L of leaves, the number of
inversions between σ′ and σ can be counted in O(|L|2). Regarding NP-hardness, we now
give a reduction from Feedback Arc Set, which is NP-hard [13], to OTCM.

We consider an instance of the Feedback Arc Set problem, that is a directed graph
G = (V = {v1, . . . , vn}, A) such that |A| = m and an integer f .

We now define an instance of the OTCM problem, illustrated in Figure 3. The set X

of leaf labels is {vj
i | i ∈ [1..n], j ∈ [1..2m]}. We define the order σ(G) in the following way.

For each arc (vi, vj) of G, whose rank in the lexicographic order is k, we add to σ(G) a kth

supplementary ordered sequence (which we will later call a “block” corresponding to this arc)
v2k−1

i v2k−1
j X2k−1

i,j X
2k

i,jv2k
i v2k

j , where Xk′

i,j is the ordered sequence of vk′

i′ where i′ ranges from

1 to n, excluding i and j, and X
k′

i,j is the reverse of Xk′

i,j (i.e., the ordered sequence of vk′

i′

where i′ ranges from n down to 1, excluding i and j). The tree T (G) is made of a root with
n children v1 to vn, each vi having 2m children, the leaves labeled by vk′

i for k′ ∈ [1..2m].

Figure 3 Illustration of the reduction of Feedback Arc Set to OTCM: a graph G with feedback
arc set S = {(v4, v1)} of size 1 and the corresponding tree T (G) as well as the order σ(G).

Given an ordering σ′ suitable for T , and an inversion (vk
i , vk′

i′ ) forming an inversion
between σ(G) and σ′, we say that this pair is short-ranged if k = k′, and long-ranged
otherwise. Furthermore, we say that σ′ is vertex-consistent if, for every i and k < k′, we have
σ′(vk

i ) < σ(vk′

i ). Finally, given σ′, we write σ′′ for the permutation of the [1..n] corresponding
to the children of the root.

We first claim that for any σ′ suitable for T , there are at least 2
(

n
2
)(2m

2
)

long-range
inversions between σ′ and σ(G), and this bound is reached if σ′ is vertex-consistent. Indeed,
pick any pair (vk

i , vk′

i′ ) with i ̸= i′ and k ̸= k′. Then vk
i <σ(G) vk′

i′ iff k < k′ (since they are in
blocks k and k′ of σ(G)), respectively, and vk

i <σ′ vk′

i′ iff σ′′(i) < σ′′(i′) (since they are in
L(T, vi) and L(T, vi′), respectively). Overall, among 4

(
n
2
)(2m

2
)

such pairs of elements, there

CPM 2022
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are 2
(

n
2
)(2m

2
)

pairs creating an inversion (which is long-range by definition). For the case
i = i′, note that pairs (vk

i , vk′

i ) do not create any inversion iff σ′ is vertex-consistent, which
completes the proof of the claim.

Towards counting the number of short-ranged inversions, we say that an arc (vi, vj) of
G is satisfied by σ′′ if σ′′(i) < σ′′(j). Let i, j ∈ [1..n] and k ∈ [1..m], and consider the two
pairs (v2k−1

i , v2k−1
j ) and (v2k

i , v2k
j ). Then these two pairs are, by construction of T , in the

same order in σ′ (as defined by σ′′). If the kth arc of G is (vi, vj), then these two pairs
are also in the same order in σ, i.e., together they account for either 0 or 2 (short-ranged)
inversions. More precisely they yield 0 short-ranged inversions if (vi, vj) is satisfied by
σ′′, and 2 inversions otherwise. If the kth arc of G is any other arc, then exactly one of
(v2k−1

i , v2k−1
j ), (v2k

i , v2k
j ) forms a short-ranged inversion. Overall a pair {i, j} such that one

of (vi, vj), (vj , vi) is a satisfied arc yields m−1 short-ranged inversions, a pair {i, j} such that
one of (vi, vj), (vj , vi) is an unsatisfied arc yields m + 1 short-range inversions, and any other
pair {i, j} with i ̸= j yields m short-ranged inversions. Overall, if there are f unsatisfied
arcs, σ′ yields

(
n
2
)
m − m + 2f inversions.

We can now complete the proof with our main claim: G has a feedback arc set of size
at most f ⇔ the OTCM problem has a solution with at most 2

(
n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f

inversions.
⇒: If G has a feedback arc set F of size f , as G[A−F ] is acyclic, we consider an order σ′′

over n such that for all arcs (vi, vj) in A − F , σ′′(i) < σ′′(j) (i.e., σ′′ is the topological order
of the vertices in G[A − F ]). We now order the children vi of the root of T (G) according to
this order σ′′ and call σ′ the induced order on the leaves of T (G) (also sorting all leaves vj

i

below each vi by increasing values of j). Note that σ′ is vertex-consistent, and that an arc
(vi, vj) is satisfied by σ′′ iff (vi, vj) /∈ F . Thus, σ′ yields 2

(
n
2
)(2m

2
)

+
(

n
2
)
m − m + 2f inversions.

⇐: Consider an order σ′ suitable for T with at most 2
(

n
2
)(2m

2
)

+
(

n
2
)
m−m+2f inversions.

Let σ′′ be the corresponding order on the leaves of the root, and let F be the set of arcs
unsatisfied by σ′′. Since σ′ has at least 2

(
n
2
)(2m

2
)

long-range inversions, it has at most(
n
2
)
m − m + 2f short-range inversions, and |F | ≤ f . Finally, since all arcs in A − F are

satisfied by σ′′, G[A − F ] is acyclic and F is a feedback arc set. ◀

3 A polynomial-time algorithm for fixed-degree trees

We start by presenting a dynamic programming algorithm for fixed-degree trees, which is
easy to implement and leads to an algorithm in O(n4) time for binary trees. The FPT
algorithm presented in the next section has a better complexity but is more complex and
reuses the dynamic programming machinery presented in this section, which explains why
we start with this simpler algorithm.

▶ Theorem 4. The OTDE problem can be solved in time O(d!nd+2) for trees with fixed
maximum degree d and for strict or weak orders.

Proof. Given a vertex v of a rooted tree T , a (strict or weak) order σ : L(T ) → [1..m] and
two integers l ≤ r ∈ [1..m]. We denote by X (v, l, r) a subset of L(T, v) of maximum size
such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and ∀ℓ ∈ X (v, l, r), σ(ℓ) ∈ [l, r]. Note that
X (v, l, r) also depends on T and σ but we simplify the notation by not mentioning them as
they can clearly be identified from the context.

Denoting by c1, . . . , ck the children of v in T , we claim that the following formula allows
to recursively compute X (v, l, r) in polynomial time:

|X (v, l, r)| = max
permutation π of [1..k]

x1=l≤x2≤...≤xk≤xk+1=r

k∑
i=1

∣∣X (cπ(i), xi, xi+1)
∣∣ if v is an internal node of T ;

for any leaf ℓ of T , |X (ℓ, l, r)| = 1 if σ(ℓ) ∈ [l, r], 0 otherwise.
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Correctness. We prove by induction on the size of L(v) that X (v, l, r) is indeed a subset
of L(T, v) of maximum size such that σ[X (v, l, r)] is suitable with T [X (v, l, r)] and ∀ℓ ∈
X (v, l, r), σ(ℓ) ∈ [l, r].

This is obvious for any leaf, so let us consider a vertex v of T with a set {c1, . . . ck} of
children. Suppose for contradiction that there exists a set of integers l ≤ r and a subset
X ′ of L(v) of size strictly greater than X (v, l, r) such that σ[X ′] is suitable with T [X ′] and
∀ℓ ∈ X ′, σ(ℓ) ∈ [l, r]. We then denote by X ′

1, . . . and X ′
k the sets of leaves L(c1) ∩ X ′, . . .

and L(ck) ∩ X ′, respectively. Without loss of generality we consider that the children ci

of v are labeled such that maxℓ∈X′
i
{σ(ℓ)} ≤ minℓ∈X′

i+1
{σ(ℓ)}. For all i ∈ [2..k], we define

mi = minℓ∈X′
i
{σ(ℓ)}, m1 = l and mk+1 = r. Using the induction hypothesis we know that

for each i ∈ [1..k], |X ′
i| ≤

∣∣∣X (v, minℓ∈X′
i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)})

∣∣∣, so |X ′
i| ≤ |X (v, mi, mi+1)|

because
[
minℓ∈X′

i
{σ(ℓ)}, maxℓ∈X′

i
{σ(ℓ)}

]
⊆ [mi, mi+1]. Therefore, |X ′| =

∑k
i=1 |X ′

i| ≤∑k
i=1 |X (v, mi, mi+1)| so by definition of σ[X (v, l, r)], |X ′| ≤ σ[X (v, l, r)]: contradiction!
We therefore obtain a correct solution of OTDE(T, σ) by computing X (root(T ), 0, m).

Running-time. For each v, we compute the table of the O(n2) values of X (v, l, r) for all
intervals [l, r]. Each of these values can be computed by generating the k! permutations of
children of v to consider any possible order among the children and splitting the interval [l, r]
into any possible configurations of d consecutive intervals with integer bounds partitioning
[l, r], which can be done in time O(nd−1). So the computation of each X (v, l, r) is done in time
O(d!nd−1), therefore the total computation of all X (v, l, r) is done in time O(n×n2 ×d!nd−1),
that is in O(d!nd+2). ◀

4 An FPT algorithm for the deletion-degree parameter for OTDE

We recall that with a reduction of OTDE to 3-Hitting Set [10], using the best algorithm
known so far to solve this problem4, we can obtain an algorithm to solve OTDE O∗(2.08k) [23],
where k is the number of leaves to delete and the O∗ notation ignores the polynomial factor.
In this section we obtain an FPT algorithm in time O(n4d∂2∂), where d is the maximum
degree of the tree and ∂ is the deletion-degree of the solution.

▶ Theorem 5. The OTDE problem parameterized by the deletion-degree ∂ of the solution is
FPT and can be solved in time O(n4d∂2∂) for strict or weak orders.

We adapt the dynamic programming algorithm from Theorem 4, using a vertex cover
subroutine to have a good estimation of the permutation of the children of each node.

We first introduce some definitions (see Figure 4 for a illustration of these definitions
and the algorithm in general). Given any vertex v of T , let Cv be the (independent) set of
children of v, and let Gv be the conflict graph with vertex set Cv and with one edge per
conflict. Let K be a vertex cover of Gv. Then the vertices of Cv \ K have a canonical order
(w1, . . . , wk′), with k′ = |Cv \ K| and wi ⪯σ wj for all i ≤ j (ties may happen when two
children contain a single leaf each which are equal, such ties are broken arbitrarily). We say
that P ⊆ Cv is a prefix of Cv wrt. K if P \ K is a prefix of this order (i.e., for some i ≤ k′,
P \ K = {w1, . . . , wi}). In other words, ignoring all subtrees below vertices of K, all leaves
below vertices of a prefix P are necessarily ordered before leaves below vertices outside of P .

4 http://fpt.wikidot.com/fpt-races
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Figure 4 An instance (T, σ) of OTDE (top-left), with a vertex v having children set Cv =
{a, b, c, d, e}. The conflict graph of Cv (right) has a size-2 vertex cover K = {b, d}. Based on the
span of each vertex (bottom-right), the dynamic programming algorithm tests permutations of Cv

such that (a, c, e) appear in this order, interleaved in any possible way with b and d. In particular,
the final solution corresponds to the permutation (a c d b e) of Cv. Note that since σ may be a weak
order (two leaves are labelled 3 in the example), the conflict graph does not correspond exactly to
the intersection graph of the span intervals, e.g. vertices a and c are not in conflict, even though
their spans overlap.

▶ Lemma 6. If X ′ is a solution of OTDE with deletion-degree ∂, then for any vertex v of T ,
the conflict graph Gv admits a vertex cover of size at most ∂.

Proof. Given a subset X ′ of X, we say that a node v of T has a deletion if some L(v) ̸⊆ X ′,
i.e., if v has a leaf in X \ X ′. Let {u, v} be any conflict (edge) of the conflict graph Gv, then
at least one of u, v has a deletion for X ′ (indeed, the conflict involves three leaves a, b, c, of
which at least one must be deleted). Thus, the vertices with a deletion in Gv form a vertex
cover of this graph. The lemma follows from the fact that at most ∂ vertices have a deletion
in each conflict graph. ◀

The first step of our algorithm consists in computing, for each node v of the graph, the
set C of children of v, its conflict graph Gv, and a minimum vertex cover Kv of GC . Since
each Kv has size at most ∂ (by Lemma 6), Kv can be computed in time O(1.3∂ + ∂n) [5],
and overall this first step takes O(1.3∂n + ∂n2).

We proceed with the dynamic programming part of our algorithm. To this end, we
generalize the table X to sets of nodes (instead of only v) as follows: X (P, l, r) corresponds
to the largest set X of leaves in

⋃
u∈P L(u) such that σX is suitable for T [X]. Note that for

a node v with children set C, X (v, l, r) = X ({v}, l, r) = X (C, l, r).
We first compute X ({v}, l, r) for each leaf v: clearly X ({v}, l, r) = {u} if l ≤ σ(v) ≤ r,

and X ({v}, l, r) = ∅ otherwise. For each internal vertex v (visiting the tree bottom-up), we
obtain X ({v}, l, r) by first computing X (P, l, r) for each prefix P of Cv by increasing order
of size, using the following formulas:

|X (P, l, r)| = ∅ if P = ∅
= max

x∈[l..r], u∈P
P \{u} prefix of Cv

|X (P \ {u}, l, x)| + |X ({u}, x, r)|

|X ({v}, l, r)| = |X (Cv, l, r)|.
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Each vertex v has at most d2∂ prefixes, so the dynamic programming table X has at
most n3d2∂ cells to fill. For each prefix P , there exist at most ∂ + 1 vertices u ∈ P such that
P \ {u} is a prefix (u can be any vertex in P ∩ Kv, or the maximum vertex for ⪯σ in P \ Kv).
Overall, the max is taken over O(n∂) elements, and X can be filled in time O(n4d∂2∂).

Before proving the correctness of the above formula, we need a final definition: given
a set of leaves X ′ ⊆ X and a vertex v of T , we write spanX′(v) for the smallest interval
containing σ(u) for each leaf u ∈ L(u) ∩ X ′ (note that spanX′(v) may be empty, if all its
leaves are deleted in X ′).

▶ Lemma 7. Let X ′ be a solution of OTDE(T, σ), v ∈ T and 1 ≤ l ≤ r ≤ m such that
spanX′(v) ⊆ [l, r]. Then there exists a permutation (c1 . . . ck) of the children of v and
integers x0 = l ≤ x1 ≤ . . . ≤ xk = r such that, for each i ≤ k,
(a) spanX′(ci) ⊆ [xi−1, xi], and
(b) Pi = {c1, . . . , ci} is a prefix of the children of v wrt. σ.

Proof. Recall that we write Cv and Kv, respectively, for the set of chidren of v and the
vertex cover in the conflict graph induced by these children. For each element c of Cv with a
non-empty span, let x(c) = max(span(c)). For each element wi of Cv \ Kv with an empty
span (taking i for the rank according to the canonical order), let x(wi) = x(wi−1) (and
x(w1) = l for i = 1). For the remaining vertices (in Kv with an empty span), set x(c) = l.
Finally, order vertices c1, . . . , ck by increasing values of x(ci) (breaking ties according to the
canonical order when applicable, or arbitrarily otherwise), and set xi = x(ci).

Condition (a) follows from the fact that X ′ is a solution for OTDE(T, σ), so that the
span covered by the leaves under siblings do not overlap. For condition (b) we refer to the
definition of prefix: each Pi \ Kc is indeed a prefix in the canonical ordering of Cv \ Kv. ◀

The dynamic programming formula follows from the above remark: one can build the
solution by incrementing prefixes one vertex at a time (rather than trying all possible
permutations of children, as in Theorem 4).

5 Optimizing OTCM and OTDE are two different things

In order to ensure that finding the smallest k such that OTCM or OTDE outputs a positive
answer actually consists in optimizing different criteria, we provide in Figure 5 an example of
X-tree and an order of its leaves where the order reaching the best k for a positive answer of
the OTCM problem does not provide the optimal value for the number of leaves to delete in
a positive answer of OTDE and where the best k for a positive answer of the OTDE problem
does not provide an optimal value for the number of inversions for a positive answer of the
OTCM problem.

We checked the optimality for both criteria by implementing the “naive” dynamic
programming O(n2) algorithm described in Section 2.1 of [10] to solve the OTCM problem
and the O(n4) algorithm described in Section 3 to solve the OTDE problem on binary trees.
Both implementations are available in Python, under the GPLv3 licence, at https://github.
com/oseminck/tree_order_evaluation, as well as the file inputCounterExample1b.txt
containing the Newick encoding for the tree of Figure 5.

6 Experiments and discussion

In this section, we investigate the potential for use of OTCM and OTDE in applications
where the tree of elements is obtained from a clustering algorithm taking as input distances
between those elements, and where we want to test whether this clustering reflects some
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T σ1 σ σ σ2 T

Figure 5 Two planar embeddings of a rooted tree T : the one on the left is optimal for the OTDE
problem (deleting the 3 gray leaves makes the order σ suitable on T restricted to the remaining
leaves, but the order σ1 suitable on T has 11 inversions, shown with empty circles, with σ); the
other one is optimal for the OTCM problem with the order σ2 suitable on T having 10 inversions
with σ but not for the OTDE problem (4 leaves, for example the 4 gray ones, need to be deleted to
make the order σ suitable on T restricted to the remaining leaves).

intrinsic order on the elements, for example the chronological order. We both test the running
time of OTCM and OTDE on real data, and the performance of OTDE on simulated data
to detect possibly misplaced leaves in the order.

The first experiment deals with text data: the CIDRE corpus [20] that contains the works
of 11 French 19th century fiction writers dated by year (every file contains a book that is
annotated with its year of writing). We apply apply hierarchical clustering on the different
corpora using the AgglomerativeClustering class from the package sklearn [18]. Distance
matrices on which the clustering is based are obtained by using the relative frequencies
of the 500 most frequent tokens5 in each corpus. Distance matrices were generated using
the R package stylo [8], with the canberra distance metric. We obtain the results given in
Table 1, which provides the running time in milliseconds of the algorithms we implemented
to solve OTCM and OTDE. They show that both algorithms on binary trees are quick
enough to handle typical instances of the OTCM and the OTDE problems relevant for digital
humanities, a few milliseconds for the first one and a few seconds for the second one, for
instances of about 50 elements in the tree and in the order.

Investigating precisely whether the numbers of inversions or deleted leaves shown in
Table 1 are sufficiently small to reflect consistency with a chronological signal is beyond the
scope of this paper. However, we also provide pOT CM and pOT DE , the percentage of cases
when the best order on the leaves of the tree has the same number of inversions, or less
than the chronological order, among 10000 randomly generated orders for OTCM and 100
randomly generated orders for OTDE, respectively6. These numbers illustrate that in all
cases, it is unlikely that the observed optimal numbers of inversions or deleted leaves are due

5 A token is (a part of) a word form or a punctuation marker. The last sentence would yield the following
tokens: [“A”, “token”, “is”, “(”, “a”, “part”, “of”, “)”, “a”, “word”, “form”, “or”, “a”, “punctuation”,
“marker”, “.”] Deliberately, we do not use the term “word”, because the word can be seen as a linguistic
unit of form and meaning, and henceforward “punctuation marker” would be one word and the period
in the end of the sentence would not be one.

6 We chose to generate less random orders for OTDE in our simulations, as our algorithm is slower to
solve this problem than OTCM.
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Table 1 Results of our implementations for problems OTCM and OTDE on binary trees generated
from corpora of French novels of the 19th century. Time durations are given in milliseconds.

tree # leaves OTCM
time # inversions pOT CM

OTDE
time

# deleted
leaves pOT DE

Ségur 22 1 40 0.24 200 9 1
Féval 23 2 47 0.38 268 8 0

Aimard 24 1 35 0 401 8 0
Lesueur 31 1 48 0 676 13 0
Zévaco 29 1 42 0 727 11 0
Zola 35 2 60 0 1203 9 0

Gréville 36 2 105 0 2211 18 1
Ponson 42 3 167 2.23 3447 18 0
Balzac 59 4 248 0 8292 34 0
Verne 58 3 183 0 13446 27 0
Sand 62 4 283 0 17557 39 1

to chance, as we get equal or smaller values of inversions or deleted leaves on less than 3% of
random orders (for Ponson du Terrail the number of inversions is 167 or less for 2.23% of
random orders; for one of the 10 000 simulated random orders, it reached as little as 124
inversions). These preliminary results obtained thanks to reasonably small running times
open new perspectives in investigating further the practical use of these algorithms, and
comparing their results with other methods to search for signals of chronological evolution in
textual data [21].

Our second experiment involves simulated data, to check whether, in the case the tree is
built to be consistent with the input order, our algorithm finding the minimum of leaves in
the tree to remove inconsistencies with the order is able to detect errors that we intentionally
add to the order. We produced 100 instances of the OTDE problem, for each chosen value of
n, the number of leaves, and e < n, the number of errors, in the following manner:
1. we randomly pick n distinct integers from the interval [0, 999], which will be our set X of

leaves;
2. we build a distance matrix in which the distance between two elements from X is simply

the absolute difference between both; we add some noise to this matrix by adding or
subtracting in each cell a random quantity equal to at most 10% of the cell value, obtaining
a noisy matrix, from which we build an X-tree T using the AgglomerativeClustering
class from the package sklearn;

3. we randomly pick a set Le of e leaves in X and replace their value by another integer,
randomly chosen from the interval [0, 999], distinct from other leaf labels; σ is the set of
leaves ordered by increasing value taking into account these new values;

4. by solving the OTDE problem on T and σ, we compute the minimum set L of leaves to
remove to make σ[X − L] suitable on T [X − L], and check whether L = Le.

This experiment simulates the situation where we would have dating errors on the elements
we clustered in a tree. Note that like in the case of dating errors, the error in our simulation
may not change the overall order on the leaves. Table 2 provides, for each chosen values of
n and e, the proportion of simulated instances of OTDE where L = Le, that is when our
algorithm removed exactly the e leaves whose label had been randomly modified. We can
observe that this happens in a majority of cases only when the number of modified leaves is
small compared with the total number of leaves (up to 2 for 20 leaves, up to 4 for 50 leaves).
Solving OTDE still allows to identify e − 1 among the e modified leaves in a majority of
cases in all our experiments.
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Table 2 Results of the attempts to perfectly detect the set Le of randomly relabeled leaves in
simulated trees (when L = Le); the situation when |L − Le| = 1 corresponds to finding only e − 1
leaves among the e randomly relabeled leaves).

n = # leaves e = # errors proportion of cases when L = Le when |L − Le| = 1
20 1 0.79 1
20 2 0.62 0.96
20 3 0.39 0.88
20 4 0.33 0.77
20 5 0.27 0.67
50 1 0.93 1
50 2 0.83 0.99
50 3 0.70 0.98
50 4 0.59 0.91
50 5 0.56 0.90

7 Conclusion and perspectives

In this article, we addressed two problems initially introduced with motivations from bioin-
formatics, OTCM and OTDE. We stated them in a more simple framework with a tree
and an order as input, instead of two trees as was the case when they were introduced,
opening perspectives for new practical uses in digital humanities and proving that they are
not equivalent. We proved that both problems, as well as a problem on two trees, TTDE,
are NP-complete in the general case. We gave a polynomial-time algorithm for OTDE on
trees with fixed maximum degree and an FPT algorithm in a parameter possibly smaller
than the size of the solution for arbitrary trees.

We also investigated their potential for practical use, checking that the algorithms we
implemented with open source code in Python to solve them are well suited for applications
in digital humanities in terms of running time. We also observed on simulated data that it
is possible to identify a small number of leaves for which there would be an ordering error
if the tree is built from distance data derived from an order on its leaves. Future research
includes the search for FPT algorithms, with relevant parameters, for OTCM and TTDE.
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