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Abstract
A string w is called a minimal absent word for another string T if w does not occur (as a substring)
in T and all proper substrings of w occur in T . State-of-the-art data structures for reporting the set
MAW(T ) of MAWs from a given string T of length n require O(n) space, can be built in O(n) time,
and can report all MAWs in O(|MAW(T )|) time upon a query. This paper initiates the problem
of computing MAWs from a compressed representation of a string. In particular, we focus on the
most basic compressed representation of a string, run-length encoding (RLE), which represents each
maximal run of the same characters a by ap where p is the length of the run. Let m be the RLE-size
of string T . After categorizing the MAWs into five disjoint sets M1, M2, M3, M4, M5 using RLE,
we present matching upper and lower bounds for the number of MAWs in Mi for i = 1, 2, 4, 5 in
terms of RLE-size m, except for M3 whose size is unbounded by m. We then present a compact
O(m)-space data structure that can report all MAWs in optimal O(|MAW(T )|) time.
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1 Introduction

An absent word (a.k.a. a forbidden word) for a string T is a non-empty string that is not a
substring of T . An absent word X for T is said to be a minimal absent word (MAW ) for
T if all proper substrings of X occur in T . MAWs are combinatorial string objects, and
their interesting mathematical properties have extensively been studied in the literature
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(see [5, 14, 16, 13, 23, 1] and references therein). MAWs also enjoy several applications
including phylogeny [8], data compression [12, 15, 3], musical information retrieval [11], and
bioinformatics [2, 9, 24, 21].

Thus, given a string T of length n over an alphabet of size σ, computing the set MAW(T )
of all MAWs for T is an interesting and important problem: Crochemore et al. [14] presented
the first efficient data structure of O(n) space which outputs all MAWs in MAW(T ) in O(σn)
time and O(n) working space. Since the number |MAW(T )| of MAWs for T can be as large
as O(σn) and there exist strings S for which |MAW(S)| ∈ Ω(σ|S|) [14], Crochemore et al.’s
algorithm [14] runs in optimal time in the worst case. Later, Fujishige et al. [19] presented
an improved data structure of O(n) space, which can report all MAWs in O(n + |MAW(T )|)
time and O(n) working space. Fujishige et al.’s algorithm [19] can easily be modified so
it uses O(|MAW(T )|) time for reporting all MAWs, by explicitly storing all MAWs when
|MAW(T )| ∈ O(n). The key tool used in these two algorithms is an O(n)-size automaton
called the DAWG [7], which accepts all substrings of T . The DAWG for string T can be built
in O(n log σ) time for general ordered alphabets [7], or in O(n) time for integer alphabets of
size polynomial in n [19]. There also exist other efficient algorithms for computing MAWs
with other string data structures such as suffix arrays and Burrows-Wheeler transforms [6, 4].
MAWs in other settings have also been studied in the literature, including length specified
versions [10], the sliding window versions [13, 23, 1], circular string versions [18], and labeled
tree versions [17].

In this paper, we initiate the study of computing MAWs for compressed strings. As the
first step of this line of research, we consider strings which are compactly represented by
run-length encoding (RLE). Let m be the size of the RLE of an input string T . We first
categorize the elements of MAW(T ) into five disjoint subsets M1, M2, M3, M4, and M5,
by considering how the MAWs can be related to the boundaries of maximal character runs
in T (Section 2). In Section 3 and Section 4, we present matching upper bounds and lower
bounds for their sizes |Mi| (i = 1, 2, 4, 5) in terms of the RLE size m or the number σ′

T of
distinct characters occurring in T . Notice that σ′

T ≤ m always holds. The exception is M3,
which can contain Ω(n) MAWs regardless of the RLE size m. Still, in Section 5 we propose
our RLE-compressed O(m)-space data structure that can enumerate all MAWs for T in
output-sensitive O(|MAW(T )|) time. Since m ≤ n always holds, our result is an improvement
over Crochemore et al.’s and Fujishige et al.’s results both of which require O(n) space to
store representations of all MAWs. Charalampopoulos et al. [10] showed how one can use
extended bispecial factors of T to represent all MAWs for T in O(n) space, and to output
all MAWs in optimal O(|MAW(T )|) time upon a query. While the way how we characterize
the MAWs may be seen as the RLE version of their method based on the extended bispecial
factors, our O(m)-space data structure cannot be obtained by a straightforward extension
from [10], since there exists a family of strings over a constant-size alphabet for which the
RLE-size is m ∈ O(1) but |MAW(T )| ∈ Ω(n). We note that, by the use of truncated RLE
suffix arrays [25], our O(m)-space data structure can be built in O(m log m) time with O(m)
working space (the details of the construction will be presented in the full version of this
paper).

2 Preliminaries

2.1 Strings
Let Σ be an ordered alphabet. An element of Σ is called a character. An element of Σ∗

is called a string. The length of a string T is denoted by |T |. The empty string ε is the
string of length 0. If T = xyz, then x, y, and z are called a prefix, substring, and suffix of T ,
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respectively. They are called a proper prefix, proper substring, and proper suffix of T if x ̸= T ,
y ̸= T , and z ≠ T , respectively. For any 1 ≤ i ≤ |T |, the i-th character of T is denoted by
T [i]. For any 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T starting at i and ending at
j. For any i ≤ |T | and 1 ≤ j, let T [..i] = T [1..i] and T [j..] = T [j..|T |]. We say that a string
w occurs in a string T if w is a substring of T . Note that by definition, the empty string ε is
a substring of any string T and hence ε always occurs in T .

Let #T w denote the number of occurrences of a string w in a string T . We will abbreviate
it to #w when no confusion occurs.

2.2 Run length encoding (RLE) and bridges
The run-length encoding rle(T ) of string T is a compact representation of T such that
each maximal run of the same characters in T is represented by a pair of the character
and the length of the maximal run. More formally, rle(T ) = ap1

1 · · · apm
m encodes each

substring T [i..i + p− 1] by ap if T [j] = a ∈ Σ for every i ≤ j ≤ i + p− 1, T [i− 1] ̸= T [i], and
T [i+p−1] ̸= T [i+p]. Each ap in rle(T ) is called a (character) run, and p is called the exponent
of this run. The j-th maximal run in rle(T ) is denoted by rj , namely rle(T ) = r1 · · · rm. The
size of rle(T ), denoted R(T ), is the number of maximal character runs in rle(T ). E.g., for a
string T = aacccccccbbabbbb of length 18, rle(T ) = a2c7b2a1b4 and R(T ) = 5.

Our model of computation is a standard word RAM with machine word size Ω(log |T |),
and the space requirements of our data structures will be measured by the number of words
(not bits). Thus, rle(T ) of size m can be stored in O(m) space.

2.3 Bridges
A string w ∈ Σ∗ of length |w| ≥ 2 is said to be a bridge if w[1] ̸= w[2] and w[|w|− 1] ̸= w[|w|].
In other words, both of the first run and the last run in rle(w) are of length 1. A substring
of T that is a bridge is called a bridge substring of T . Let Bℓ denote the set of bridge
substrings w of T with R(w) = ℓ. Further let B =

⋃
ℓ Bℓ be the set of all bridge substrings of

T . For example, for the same string T = aacccccccbbabbbb as the above one, the substring
ac7b2a of T is a bridge, and B4 = {ac7b2a, cb2a1b}. For a string w with R(w) ≥ 3, we
can obtain a bridge substring of w by removing the first and the last runs of w and then
shrinking the runs at both ends so that their exponents are 1. We denote by shk(w) such
shrunk bridge. For convenience, let shk(w) = ε if R(w) ≤ 2. Also, for every k ≥ 2, we
denote shkk(w) = shk(shkk−1(w)). For example, consider the same T as the above again,
shk(T ) = acccccccbbab, shk2(w) = cbba, shk3(w) = b, and shkk(w) = ε for any k ≥ 4.

2.4 Minimal absent words (MAWs)
A string w ∈ Σ∗ is called an absent word for a string T if w does not occur in T , namely
if #w = 0. An absent word w for T is called a minimal absent word or MAW for T if all
proper substrings of w occur in T . We denote by MAW(T ) the set of all MAWs for T . An
alternative definition of MAWs is such that a string aub of length at least two with a, b ∈ Σ
and u ∈ Σ∗ is a MAW of T if #(aub) = 0, #(au) ≥ 1 and #(ub) ≥ 1. For a MAW of length 1
(namely a character not occurring in T ), we use a convention that u = ε and a and b are
united into a single character.

The MAWs in MAW(T ) are partitioned into the following five disjoint subsets Mi (1 ≤
i ≤ 5) based on their RLE sizes R(aub):

CPM 2022
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M1 = {aub ∈ MAW(T ) | R(aub) = 1};
M2 = {aub ∈ MAW(T ) | R(aub) = 2, u = ε};
M3 = {aub ∈ MAW(T ) | R(aub) = 3, a ̸= u[1] and b ̸= u[|u|]};
M4 = {aub ∈ MAW(T ) | R(aub) ≥ 4, a ̸= u[1] and b ̸= u[|u|]};
M5 = {aub ∈ MAW(T ) | R(aub) ≥ 2, a = u[1] or b = u[|u|]}.

For 1 ≤ i ≤ 5, a MAW aub in Mi is called of type i.
In the rest of this paper, we will consider an arbitrarily fixed string T of length n. For

convenience, we assume that n ≥ 3 and that there are special terminal symbols T [1] = T [n] =
$ ̸∈ Σ not occurring inside T . Since $ /∈ Σ, we do not consider any MAW containing $ for
T in our arguments to follow (recall that a MAW must be an element of Σ∗). In addition,
since $ does not occur elsewhere in T , MAW(T ) = MAW(T [2..n− 1]) holds.

▶ Example 1. Consider T = $b2ac3ba2$ = $bbacccbaa$. All MAWs in MAW(T ) are divided
into the following five types: M1 = {aaa, bbb, cccc}; M2 = {ca, bc}; M3 = {acb, accb};
M4 = {cbac}; M5 = {bbaa}.

Let Σ′ denote the set of characters occurring in T except for $. Let σ′ = |Σ′| be the
number of distinct characters occurring in T [2..n− 1].

3 Upper bounds on the number of MAWs for RLE strings

In this section, we present upper bounds for the number of MAWs in a string T that is
represented by its RLE rle(T ) of size R(T ) = m.

3.1 Upper bounds for the number of MAWs of type 1, 2, 3, 5
We first consider the number of MAWs except for those of type 4.

▶ Lemma 2. |M1| = σ.

Proof. By the definition ofM1, any MAW inM1 is of the form ak. For any character α ∈ Σ′

that occurs in T , let aub = αp+1 such that αp is the longest maximal run of α in T . Clearly
αp = au = ub occurs in T and αp+1 does not occur in T . Since R(aub) = R(αp+1) = 1,
αp+1 ∈M1 and it is the unique MAW of type 1 consisting of α’s. For any character β ∈ Σ\Σ′

that does not occur in T , clearly β is a MAW of T and β ∈M1 since R(β) = 1. In total, we
obtain |M1| = σ. ◀

Note that this upper bound for |M1| is tight for any string T and alphabet Σ of size σ.

▶ Lemma 3. |M2| ∈ O((σ′)2).

Proof. Any MAW in M2 is of the form ab with a, b ∈ Σ and a ̸= b. By the definition of
MAWs, ab can be a MAW for T only if both a and b occur in T , which implies that a, b ∈ Σ′.
The number of such combinations of a and b is σ′(σ′ − 1). ◀

Since σ′ ≤ m always holds, we have that |M2| ∈ O(m2). Later we will show that this upper
bound for |M2| is asymptotically tight.

▶ Lemma 4. |M3| is unbounded by m.

Proof. Consider a string T = acn−2b, where a ̸= c and c ̸= b. Then ackb for each 1 ≤ k ≤ n−3
is a MAW of T and R(ackb) = 3. Since they are the only type 3 MAWs of T , we have that
|M3| = n− 3. Clearly, the original length n of T cannot be bounded by m = R(T ) = 3. ◀
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Although the number of MAWs of type 3 is unbounded by m, later we will present an
O(m)-space data structure that can enumerate all elements in M3 in output-sensitive time.

▶ Lemma 5. |M5| ∈ O(m).

Proof. Any MAW aub ∈M5 can be represented by ai+1vb or avbi+1 with maximal integer
i ≥ 1, where aiv = u in the former and vbi = u in the latter. Let us consider the case of
ai+1vb as the case of avbi+1 is symmetric. Then caivb with some character c ̸= a must occur
in T . Let k be the beginning position of an occurrence of caivb in T . Then, T [k+1..k+i] = ai

is a maximal run of a.
Now consider any distinct MAW ai+1v′b′ ∈M5 \ {ai+1vb} with v′b′ ̸= vb. Again, c′aiv′b′

with some character c′ ≠ a must occur in T . Suppose on the contrary that c′aiv′b′ has an
occurrence beginning at the same position k as caivb. This implies that c′ = c, and both
aivb and aiv′b′ are prefixes of T [k + 1..|T |].

If |aivb| < |aiv′b′|, then aiv′ contains aivb as a substring. Since ai+1v′ occurs in T , ai+1vb

must also occur in T . Hence ai+1vb is not a MAW for T , a contradiction.
If |aivb| > |aiv′b′|, then aiv contains aiv′b′ as a substring. Thus ai+1vb is an absent word
for T but it is not minimal. Hence ai+1vb is not a MAW for T , a contradiction.
If |aivb| = |aiv′b′|, then this contradicts that aiub ̸= aiu′b′.

Hence, at most two element of M5 can be associated with a position k in T such that
T [k] ̸= T [k + 1]. The number of such positions does not exceed 2m. ◀

3.2 Upper bound for the number of MAWs of type 4
In the rest of this section, we show an upper bound of the number of MAWs of type 4.
Namely, we prove the following lemma.

▶ Lemma 6. |M4| ∈ O(m2).

Firstly, we explain a way to characterize MAWs of type 4. For any string w ∈ Σ∗ and
integer t > 0, let Expt(w) be the set of bridges such that Expt(w) = {w′ ∈ B | shkt(w′) = w}.
Namely, Expt(w) is the inverse image of shkt(w′) = w for bridge substrings w′ of T . We use
Exp(w) to denote Exp1(w). Figure 1 gives an example for Expt(w) (Expt

+(w) in the figure
will be defined later). Any MAW z in M4 is of the form aαiuβjb with a, b, α, β ∈ Σ, u ∈ Σ∗,
and positive integers i, j where a, αi, βj , b are the first, the second, the second last, and the
last run of z, respectively. By the definition of MAWs, both the suffix αiuβjb and the prefix
aαiuβj of z occur in T . From this fact, we can obtain the following observations.

▶ Observation 7. Each MAW z ∈M4 corresponds to a pair of distinct bridges (w1, w2) ∈
Exp(shk(z)) × Exp(shk(z)). Formally, for each MAW z = aαiuβjb ∈ M4, there exist
characters a1, b1 ∈ Σ ∪ {$} and integers i1 ≥ i, j1 ≥ j such that w1 = a1αi1uβjb, w2 =
aαiuβj1b1 ∈ Exp(shk(z)) and w1 ̸= w2 (since these two occur in T but z does not occur in T ).

This observation gives a main idea of our characterization which is stated in the following
lemma.

▶ Lemma 8. For any bridge w, |{z | shk(z) = w, z ∈M4}| ≤ |Exp(w)|(|Exp(w)| − 1).

Proof. Let M4(w) = {z | shk(z) = w, z ∈ M4}. By Observation 7, each z ∈ M4(w)
corresponds to a pair (w1, w2) ∈ Exp(shk(z)) × Exp(shk(z)) where w1 ̸= w2. Let z1 =
a1αi1uβj1b1, z2 = a2αi2uβj2b2 be distinct MAWs in M4(w) where shk(z1) = shk(z2) = w.
Assume towards a contradiction that z1 and z2 correspond to (a′αi′

uβjb, aαiuβj′
b′) ∈

CPM 2022
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$b4c7ab3c3ab2c5ab2c5ab6c2$

$b4c7a
ab3c3a
ab2c5a
ab6c2$

𝐸𝑥𝑝(bc)

c5ab2c5ab6
c3ab2c5ab2

𝐸𝑥𝑝(ab2c5a)
ab2c5a

𝐸𝑥𝑝!(bc)

𝐸𝑥𝑝(ab3c3a)
cab3c3ab

Figure 1 The bridge w1 = ab2c5a ∈ Exp(bc) is an element of Exp+(bc) since |Exp(w1)| ≥ 2. On
the other hand, the bridge w2 = ab3c3a ∈ Exp(bc) is not an element of Exp+(bc) since |Exp(w2)| < 2.

Exp(w) × Exp(w). This implies that, by Observation 7, i = i1 = i2, j = j1 = j2, a = a1 =
a2, b = b1 = b2. Thus z1 = z2 holds, a contradiction. Hence, for any distinct MAWs
z1, z2 ∈ M4(w), z1 and z2 correspond to distinct elements of Exp(shk(z)) × Exp(shk(z)).
Since the number of elements (w1, w2) in Exp(shk(z)) × Exp(shk(z)) such that w1 ̸= w2 is
|Exp(w)|(|Exp(w)| − 1), this lemma holds. ◀

Since each MAW z corresponds to an element (w1, w2) ∈ Exp(shk(z))×Exp(shk(z)) such that
w1 ̸= w2, it is enough for the bound to sum up all |Exp(w)|2 such that |Exp(w)| ≥ 2 holds. Let
W be the set of bridges w such that |Exp(w)| ≥ 2 or w ∈ B2 ∪B3. Let X =

∑
w∈W |Exp(w)|.

For considering such Exp(w), we also define a subset Expt
+(w) of Expt(w) as follows: For any

string (bridge) w and integer t > 0,

Expt
+(w) = {w′ | w′ ∈ Expt(w), |Exp(w′)| ≥ 2}.

We also use Exp+(w) to denote Exp1
+(w). Figure 2 shows an illustration for

Expi(w), Expi
+(w),W, and X . We give the following lemma that explains relations between

Expi(w), Expi
+(w), and X .

▶ Lemma 9.

X =
∑

w∈B2∪B3

|Exp(w)|+
⌊m/2⌋−1∑

i=1

∑
z∈Expi

+(w)

|Exp(z)|

 .

Proof. Let zeven be a bridge where R(zeven) = 2i + 2 for some i ≥ 1. Notice that shk(zeven) =
c1c2 ∈ B2 for some distinct characters c1, c2. By the definition of Expi

+(·), if |Exp(zeven)| ≥ 2,
then zeven ∈ Expi

+(c1c2). Let zodd be a bridge where R(zodd) = 2i + 3 for some i ≥ 1. Notice
that shk(zodd) = c1ck

2c3 ∈ B3 for some characters c1, c2, c3 and an integer k ≥ 1. By the
definition of Expi

+(·), if |Exp(zodd)| ≥ 2, then zodd ∈ Expi
+(c1ck

2c3). Therefore the statement
holds. ◀

This implies that |M4| ≤
∑

w∈W |Exp(w)|2 ≤ X 2. Thus, if X ∈ O(m), |M4| ∈ O(m2).
We can also observe that

∑⌊m/2⌋−1
i=1

∑
z∈Expi

+(w) |Exp(z)| is the sum of the number of
children of black nodes (which have more than a single child) in the tree for w. The number
of leaves of the tree is an upper bound for the sum. It is also clear that |Exp(w)| can be
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𝐵! ∪ 𝐵"∋

𝑤

𝐸𝑥𝑝(𝑤)

𝐸𝑥𝑝#(𝑤)

𝐸𝑥𝑝(!)(𝑤)

𝑤&

𝐸𝑥𝑝(𝑤&)

Figure 2 This tree shows an illustration for Expi(w), Expi
+(w), W, and X . The root node represents

a bridge w ∈ B2 ∪ B3. The set of children of the root corresponds to Exp(w), namely, each child
x represents a bridge such that shk(x) = w. Each black node represents a bridge x such that
|Exp(x)| ≥ 2 (i.e., each black node has at least two children) or the root. Let W (w) be the set of
nodes consisting of all the black nodes in the tree rooted at a bridge w ∈ B2 ∪ B3. Then W is the
union of W (w) for all w ∈ B2 ∪ B3, and X is the total number of children of black nodes in W.

bounded by the number of leaves of the tree (In Appendix we give a more mathematical
description for the above discussion as Observation 23 and Proposition 24). Consequently,
we obtain |X | ∈ O(m) as in Lemma 10.

▶ Lemma 10. |X | ∈ O(m).

Proof. By Lemma 9 and the above discussion, we have

X =
∑

w∈B2∪B3

|Exp(w)|+
⌊m/2⌋−1∑

i=1

∑
z∈Expi

+(w)

|Exp(z)|


≤

∑
w∈B2∪B3

2#w

≤ 2 ((m− 1) + (m− 2)) ∈ O(m). ◀

We are ready to prove Lemma 6:

Proof of Lemma 6. |M4| ≤
∑

w∈W |Exp(w)|2 ≤ |X |2 ≤ (2(2m− 3))2 ∈ O(m2). ◀

4 Lower bounds on the number of MAWs for RLE strings

In the previous section, we showed a tight bound |M1| = σ, and showed that |M3| is
unbounded by the RLE size m. In this section, we give tight lower bounds for the sizes
of M2, M3, and M5 which asymptotically match the upper bounds given in the previous
section. Throughout this section, we omit the terminal $ at either end of T , since our lower
bound instances do not need them.

▶ Lemma 11. There exists a string T such that |M2| = σ′(σ′ − 2) + 1.

CPM 2022
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Proof. Let T = 123 · · ·σ′, where all characters in T are mutually distinct. Any bigram
occurring in T is of the form i(i + 1) with 1 ≤ i < σ′. Thus, for each 1 ≤ i < σ′, bigram i · j
with any j ∈ {1, . . . , i− 1, i + 2, . . . , σ′} is a type-2 MAW for T , and bigram σ′ · j is a type-2
MAW for T . Namely, the set M2 of type-2 MAWs for T is:

M2 =



13, . . . , 1σ′,

21, 24, . . . , 2σ′,

31, 32, 35, . . . , 3σ′,

. . . ,

(σ′ − 1)1, . . . , (σ′ − 1)(σ′ − 2),
σ′1, . . . , σ′(σ′ − 1)


.

Thus we have |M2| = σ′(σ′ − 2) + 1 for this string T . ◀

Since σ′ = m for the string T of Lemma 11, we obtain a tight lower bound |M2| ∈ Ω(m2)
in terms of m. The string T = 123 · · ·σ′ can easily be generalized so that m < n, where
n = |T |. For instance, consider T ′ = 1p12p23p3 · · ·σ′pσ′ with pi > 1 for each i. The set of
type-2 MAWs for T ′ is equal to that for T .

▶ Lemma 12. There exists a string T with R(T ) = m such that |M4| ∈ Ω(m2).

Proof. Consider string T = abcp · ab2cp−1 · ab3cp−2 · ab4cp−3 · · · abp−1c2 · abpc · a, where a,
b, and c are mutually distinct characters. Then the set of type-4 MAWs for T is a superset
of the following set:

abca, abc2a, . . . , abcp−1a,

ab2ca, ab2c2a, . . . , ab2cp−2a,

ab3ca, ab3c2a, . . . , ab3cp−3a,

. . . ,

abp−2ca, abp−2c2a,

abp−1ca


.

Since m = 3p + 1, we have |M4| > p(p− 1)/2 ∈ Ω(p2) = Ω(m2). ◀

▶ Lemma 13. There exists a string T with R(T ) = m such that |M5| ∈ Ω(m).

Proof. Consider string T = abc · ab2c2 · ab3c3 · · · abpcp · a, where a, b, and c are mutually
distinct characters. Then the set of type-5 MAWs for T is a superset of the set

{bi+1cia | 1 ≤ i ≤ p− 1}.

Since m = 3p + 1, |M5| > p− 1 ∈ Ω(p) = Ω(m). ◀

5 Efficient representations of MAWs for RLE strings

Consider a string T that contains σ′ distinct characters. In this section, we present compact
data structures that can output every MAW for T upon query, using a total of O(m) space,
where m = R(T ) is the size of rle(T ). We will prove the following theorem:

▶ Theorem 14. There exists a data structure D of size O(m) which can output all MAWs
for string T in O(|MAW(T )|) time, where m is the RLE-size of T .

In our representation of MAWs that follows, we store rle(T ) explicitly with O(m) space.
The following is a general lemma that we can use when we output a MAW from our data
structures.
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▶ Lemma 15. For each MAW w ∈ MAW(T ), rle(w) of size R(w) can be retrieved in O(R(w))
time from a tuple (a, i, s, t, b, j) and rle(T ), where a, b ∈ Σ, 0 ≤ i, j ≤ |T |, and 0 ≤ s, t ≤ m.

Proof. When R(w) = 1 (i.e. w ∈ M1), then since w is of the form ai with i ≥ 1, we can
simply represent it by (a, i, 0, 0, 0, 0).

When R(w) ≥ 2, then let w = aub. When aub ∈ M2, then w = ab and thus it can be
simply represented by (a, 1, 0, 0, b, 1). When aub ∈M3 ∪M4, then a ̸= u[1] and b ̸= u[|u|].
Hence it can be represented by (a, 1, s, t, b, 1) where rs · · · rt = rle(u). When aub ∈M5, then
a = u[1] or u[|u|] = b. Let i, j be the maximal integers such that aiu′bj = aub. We can
represent it by (a, i, s, t, b, j) with rs · · · rt = rle(u′). ◀

For ease of discussion, in what follows, we will identify each MAW w with its corresponding
tuple (a, i, s, t, b, j) which takes O(1) space.

5.1 Representation for M1

We have shown that |M1| = σ (Lemma 2), however, σ can be larger than σ′ and m. However,
a simple representation for M1 exists, as follows:

▶ Lemma 16. There exists a data structure D1 of O(σ′) ⊆ O(m) space that can output each
MAW in M1 in O(1) time.

Proof. For ease of explanation, assume that the string T is over the integer alphabet
Σ = {1, . . . , σ} and let Σ′ = {c1, . . . , cσ′} ⊆ {1, . . . , σ}. Let M = ⟨cp1

1 , . . . , c
pσ′
σ′ ⟩ be the list

of type-1 MAWs in M1 that are runs of characters in Σ′, sorted in the lexicographical
order of the characters, i.e. 1 ≤ c1 < · · · < cσ′ ≤ σ. We store M explicitly in O(σ′) space.
When we output each MAW in M1, we test the numbers (i.e. characters) in Σ = {1, . . . , σ}
incrementally, and scan M in parallel: For each c = 1, . . . , σ in increasing order, if cp ∈M

with some p > 1 then we output cp, and otherwise we output c. ◀

5.2 Representation for M2

Recall that |M2| ∈ O(σ′2) ⊆ O(m2) and this bound is tight in the worst case. Therefore we
cannot store all elements of M2 explicitly, as our goal is an O(m)-space representation of
MAWs. Nevertheless, the following lemma holds:

▶ Lemma 17. There exists a data structure D2 of O(m) space that can output each MAW
in M2 in O(1) amortized time.

Proof. If |M2| ∈ O(m), then we explicitly store all elements of M2.
If |M2| ∈ Ω(m), then let D2 be the trie that represents all bigrams that occur in T .

See Figure 3 for a concrete example of D2. Note that for any pair a, b ∈ Σ′ of distinct
characters both occurring in T , ab is either in D2 or in M2. Since the number of such pairs
a, b is σ′(σ′ − 1), we have that σ′2 = Θ(|D2| + |M2|), where |D2| denotes the size of the
trie D2. Since |D2| < m, we have σ′2 = O(|M2|+ m). Suppose that the character labels of
the out-going edges of each node in D2 are lexicographically sorted. When we output each
element in M2, we test every bigram ab such that a ̸= b and a, b ∈ Σ′ in the lexicographical
order, and traverse D2 in parallel in a depth-first manner. We output ab if it is not in the
trie D2. This takes O(σ′2 + |D2|) ⊆ O(|M2|+ m) = O(|M2|) time, since |M2| ∈ Ω(m). ◀

CPM 2022
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𝑟𝑇 = $ab3cda9cde$

a b c d e

b c a c d a e $

$

a

Figure 3 The trie D2 for string T = $ab3cda9cde$. A bigram ab with a ̸= b, a, b ∈ Σ′ is in M2

iff ab is not in this trie D2. For instance, ae and db are MAWs of T .

5.3 Representation for M3

Recall that the number of MAWs of type 3 inM3 is unbounded by the RLE size m (Lemma 4).
Nevertheless, we show that there exists a compact O(m)-space data structure that can report
each MAW in M3 in O(1) time.

Notice that, by definition, a MAW aub of type 3 is a bridge and therefore, it is of the
form ackb with c ∈ Σ′

T \ {a, b} and k ≥ 1.
We begin with some observations. For a triple (a, c, b) of characters with a ̸= c and b ̸= c,

let us consider the ordered set BSacb(T ) of bridge substrings of T which are of the form
acℓb (ℓ ≥ 1), where the elements in BSacb(T ) are sorted in increasing order of ℓ. Let ℓmax =
max{ℓ | acℓb ∈ BSacb(T )}. Then, for any 1 ≤ k < ℓmax, ackb ∈M3 iff ackb /∈ BSacb(T ). For
instance, consider string T = ac3bac9bac5bc4e for which BSacb(T ) = {ac3b, ac5b, ac9b}.
Then, {ac1b, ac2b, ac4b, ac6b, ac7b, ac8b} is the subset of type-3 MAWs of T of the form
ackb. We remark that the above strategy that is based on bridge substrings of the string
is not enough to enumerate all elements of M3, since e.g. ac3e and bc2b are also type-3
MAWs in this running example. This leads us to define the notion of combined bridges: A
bridge acℓb is a combined bridge of T if (1) acℓb is not a bridge substring of T , (2) acib′ and
a′cjb are bridge substrings of T with b′ ̸= b and a′ ̸= a, and (3) ℓ = min{i, j}. Let CBc(T )
denote the set of combined bridges of T with middle character c.

▶ Observation 18. A bridge ackb is in M3 iff ackb /∈ BSacb(T ) and either (i) ack′
b ∈

BSacb(T ) with k′ > k or (ii) ack′
b ∈ CBc(T ) with k′ ≥ k.

The type-3 MAWs ac3e and bc2b in the running example belong to Case (ii), since ac3e
is in CBc(T ) and bc3b is in CBc(T ), respectively.

Observation 18 leads us to the following idea: For each character c ∈ Σ′
T , let BSc(T ) =⋃

a,b∈Σ′ BSacb(T ) be the ordered set of bridge substrings z of T with R(z) = 3 whose middle
characters are all c. We suppose that the elements of BSc(T ) are sorted in increasing order
of the exponents ℓ of the middle character c. See Figure 4 for a concrete example for BSc(T ).

Given BSc(T ), we can enumerate all type-3 MAWs in M2 by incrementally constructing
a trie Tc of bigrams. Initially, Tc is a trie only with the root. The algorithm has two stages:
First Stage: The first stage deals with Case (i) of Observation 18. We perform a linear scan

over BSc(T ). When we encounter a bridge substring acℓb from BSc(T ), we traverse the
trie Tc with the corresponding bigram ab.
1. If ab is not in the current trie, then ackb for all 1 ≤ k < ℓ are MAWs in M3. After

reporting all these MAWs, we create a node v representing ab and store ℓ.
2. If ab is already in the current trie, then the value ℓ̂ stored in the node v which represents

ab is less than ℓ. Then, ackb for all ℓ̂ < k < ℓ are MAWs in M3. After reporting all
these MAWs, we update the value in v with ℓ.
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𝑇 = $b7ab9cb5db3cb3a4b3cbcb5eab7ab$

cb c
ab $
db3c
cb3a
ab3c
cb5d
cb5e
$b7a
ab9c

ab9
cb5
db3

b7a
b9c
b5d
b5e

ℛbℒbℬ𝒮b 𝑇

Figure 4 BSb, Lb, and Rb for string T = ab7ab9cb5db3cb3a4b3cbcb5eab7abc and character b.

The final trie Tc after the first stage will be unchanged in the following second stage.
Second Stage: The second stage deals with Case (ii) of Observation 18. For each character

a ∈ Σ′
T \ {c}, we store the left component aci of a bridge substring such that i is the

largest exponent of the bridge substrings beginning with ac. Let Lc be the set of aci’s
for all characters a ∈ Σ′

T \ {c}. Similarly, let Rc be the set of the right components cjb

for all characters b ∈ Σ′
T \ {c}, where j is the largest exponent of the bridge substrings

ending with cb. See Figure 4 for a concrete example for Lc and Rc.
For each pair of aci ∈ Lc and cjb ∈ Rc, let acℓb be the combined bridge with ℓ = min{i, j}.
1. If ab is not in the trie Tc, then ackb for all 1 ≤ k ≤ ℓ are MAWs in M3.
2. If ab is in the trie Tc, then let ℓ̂ be the value stored in the node that represents ab.

a. If ℓ̂ < ℓ, then ackb for all ℓ̂ < k ≤ ℓ are MAWs in M3.
b. If ℓ̂ ≥ ℓ, then we do nothing.

We have the following lemma:

▶ Lemma 19. There exists a data structure D3 of O(m) space that can output each MAW
in M3 in amortized O(1) time.

Proof. Analogously to the case of M2, if |M2| ∈ O(m), then we can explicitly store all
type-3 MAWs in O(m) space.

In what follows, we consider the case where |M2| ∈ Ω(m). For each character c ∈ Σ′
T ,

we perform the above algorithm on BSc(T ). The correctness of the algorithm follows from
Observation 18. Since

∑
c∈Σ′

T
|BSc(T )| ∈ O(m), the total space requirement of the data

structure for all characters in Σ′
T is O(m). Let us consider the time complexity. The first

stage takes O(m + f) ⊆ O(|M3|) time, where f is the number of MAWs reported in the first
stage for all characters in Σ′

T . The second stage takes O(|Lc| · |Rc|) time for each c ∈ Σ′
T .

For each combined bridge acℓb created from Lc and Rc, when it falls into Case 1 or Case 2-a,
then at least one MAW is reported. When it falls into Case 2-b, then no MAW is reported.
However, in Case 2-b, there has to be a MAW ackb that was reported in the first stage.
Since we test at most one combined bridge for each pair of characters a, b, a MAW ackb

reported in the first stage is charged at most once. Therefore, the second stage takes a total
of O(

∑
c∈Σ′

T
|Lc| · |Rc|) ⊆ O(|M3|) time. ◀

CPM 2022
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5.4 Representation for M4

Recall that |M4| ∈ O(m2) and this bound is tight in the worst case. Therefore we cannot
store all elements of M4 explicitly, as our goal is an O(m)-space representation of MAWs.
Nevertheless, the following lemma holds:

▶ Lemma 20. There exists a data structure D4 of O(m) space that can output each MAW
in M4 in O(1) amortized time.

Our data structure D4 is based on the discussion in Section 3.2. We consider the following
bipartite graph Gw = (VL ∪ VR, E) for any bridge w ∈ W. We can identify each bridge
aαiuβjb ∈ Exp(w) by representing the bridge as a 4-tuple (a, i, j, b). Let Fw be the set of
4-tuples which represents all elements in Exp(w). Two disjoint sets VL, VR of vertices and set
E of edges are defined as follows:

VL = {(a, i) | ∃(a, i, j, b) ∈ Fw},
VR = {(j, b) | ∃(a, i, j, b) ∈ Fw},
E = {((a, i), (j, b)) | ∃(a, i, j, b) ∈ Fw}.

VL (resp. VR) represents the set of the left (resp. right) parts of bridges in W. For each
edge in E represents a bridge in W. This implies that |E| = |Exp(w)|. Assume that all
vertices in VL (resp. VR) are sorted in non-decreasing order w.r.t. the value i (resp. j)
which represents the exponent of corresponding run. For any k ∈ [1, |VL|] and k′ ∈ [1, |VR|],
vL(k) = (cL(k), eL(k)) denotes the k-th vertex in VL, and vR(k′) = (cR(k′), eR(k′)) denotes
the k′-th vertex in VR. For any vertex vL(k) ∈ VL and vR(k′) ∈ VR, we also define

ELR
max(k) = max{eR(i) | ∃(vL(k), vR(i)) ∈ E},

ERL
max(k′) = max{eL(i) | ∃(vR(i), vR(k)) ∈ E}.

Figure 5 gives an illustration for this graph. Due to Observation 7, each MAW z of type
4 corresponds to an element of Exp(w) × Exp(w) where z(1) = w. By this idea, we detect
each MAW as a pair of vertices in VL × VR which is not an edge in E. The following lemma
explains all MAWs which can be represented by the graph.

▶ Lemma 21. For any vertices vL(k) ∈ VL and vR(k′) ∈ VR of Gαuβ, the string
cL(k)αeL(k)uβeR(k′)cR(k′) is a MAW iff the following three conditions hold (see also Figure 6
for an illustration):

(vL(k), vR(k′)) /∈ E,
ELR

max(k) ≥ eR(k′), and
ERL

max(k′) ≥ eL(k).

Proof. If (vL(k), vR(k′)) /∈ E, cL(k)αeL(k)uβeR(k′)cR(k′) is an absent word. ELR
max(k) ≥

eR(k′) and ERL
max(k′) ≥ eL(k) implies that cL(k)αeL(k)uβeR(k′) and αeL(k)uβeR(k′)cR(k′)

occur in the string. Thus cL(k)αeL(k)uβeR(k′)cR(k′) is a MAW.
On the other hand, if (vL(k), vR(k′)) ∈ E, cL(k)αeL(k)uβeR(k′)cR(k′) occurs in the

text. ELR
max(k) < eR(k′) implies that cL(k)αeL(k)uβeR(k′) does not occur in the string.

ERL
max(k′) < eL(k) implies that αeL(k)uβeR(k′)cR(k′)) does not occur in the string. Thus all

three conditions hold if cL(k)αeL(k)uβeR(k′)cR(k′) is a MAW. ◀
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𝑇 = $ab2c2ab2cb4c5eb4c5a4bc5ab2c6d5ab2cb2$

ab2c2a
ab2c b
cb4c5e
eb4c5a
ab c5a
ab2c6d

𝐺bc

a
a
c
e

1
2
5
5
6

5
6
5
5

2
2
4
4
2

𝐹bc

𝐸!"#$% 𝐸!"#%$
𝑉$ 𝑉%
c$ e$

e% c%
1
2
4
4

b
a
e
a
d

(a,2,2,a)
(a,2,1,b)
(c,4,5,e) 
(e,4,5,a)
(a,1,5,a)
(a,2,6,d)

=
=
=
=
=
=

𝐸𝑥𝑝(bc)

Figure 5 This figure shows Gbc for T = $ab2c2ab2cb4c5eb4c5a4bc5ab2c6d5ab2cb2$. For a bridge
bc, Exp(bc) has 6 bridges. Fbc contains 6 tuples which represents all bridges in Exp(bc). For instance,
a bridge ab2cb = (a, 2, 1, b) where the first character is a, the exponent of the second run is 2, the
exponent of the second last run is 1, and the last character is b. VL is the set of pairs by the left-half
of elements in Fbc. In this example, VL has 4 vertices {(a, 1), (a, 2), (c, 4), (e, 4)} which are sorted in
non-decreasing order of the second key (representing its exponent). VR is the symmetric set for the
right parts. Each bridge corresponds to an edge. For example, the second bridge ab2cb in the figure
corresponds to the edge from the second vertex (a, 2) in VL to the first vertex (1, b) in VR. Since the
number of bridges in Exp(bc)(Fbc) is 6, the graph has 6 edges.

𝑉! 𝑉"

𝐸#$%!" 𝑘
𝐸#$%"! 𝑘′

𝑒!(|𝑉&|) 𝑒"(|𝑉'|)

𝑒!(1) 𝑒"(1)

𝑒!(𝑘)
𝑒"(𝑘′)no edge

...
...

... ...
...

...

Figure 6 This is an illustration for Lemma 21. For the k-th vertex vL(k) ∈ VL and k′-th vertex
vR(k′) ∈ VR, this graph satisfies the three conditions of the lemma.

Proof of Lemma 20. Let x be the number of outputs. If x < m, we can just store all the
MAWs themselves. Assume that x ∈ Ω(m).

For all bridge w = αuβ ∈ W, Gw represents all MAWs which correspond to elements in
Exp(w)× Exp(w). Our data structure D4 consists of Gw for any w ∈ W. It is clear that Gw

can be stored in O(|Exp(w)|) space. This implies that the size of D4 is linear in X , namely,
D4 can be stored in O(m) space (Lemma 10).

We can output all MAWs which are represented by Gw based on Lemma 21 (see Al-
gorithm 1). For the k-th vertex vL(k), C represents all vertices vR(k′) in VB such that
(vL(k), vR(k′)) /∈ E and ERL

max(k′) ≥ eL(k) (the first and third condition in Lemma 21). For
each vertex in C, if ELR

max(k) ≥ eR(k′) (the second condition in Lemma 21), the algorithm
outputs a MAW cL(k)αeL(k)uβeR(k′)cR(k′). Then the running time of our algorithm is
O(x +

∑
w∈W |Gw|) ⊆ O(x + m) = O(x), since x ∈ Ω(m). ◀
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Algorithm 1 Compute all MAWs in M4.

Input: bipartite graph Gαuβ = (VL, VR, E)
Output: all MAWs in M4 that are associated by αuβ, aαk1uβk2b for a, b ∈ Σ, k1, k2 ∈ N

1: CR ← VR

2: for each vL(k) ∈ VL do
3: C = {vR(k′) ∈ CR | eR(k′) ≤ ELR

max(k)} \ {v | (vL(k), v) ∈ E}
4: for each vR(k′) ∈ C do
5: if ERL

max(k′) ≥ eL(vL(k)) then
6: output cL(k)αeL(k)uβeR(k′)cR(k′)
7: else
8: CR ← CR \ {vR(k′)}
9: end if

10: end for
11: end for

5.5 Representation for M5

▶ Lemma 22. There exists a data structure of size O(m) that outputs each element of M5
in O(1) time.

Proof. By Lemma 5, |M5| ∈ O(m). Recall that an element of M5 can be as long as O(n).
However, using Lemma 15 we can represent and store all elements in M5 in a total of O(m)
space. It is trivial that each stored element can be output in O(1) time. ◀

6 Conclusions and open questions

Minimal absent words (MAWs) are combinatorial string objects that can be used in applic-
ations such as data compression (anti-dictionaries) and bioinformatics. In this paper, we
considered MAWs for a string T that is described by its run-length encoding (RLE) rle(T ) of
size m. We first analyzed the number of MAWs for a string T in terms of its RLE size m, by
dividing the set MAW(T ) of all MAWs for T into five disjoint types. Albeit the number of
MAWs of some types is superlinear in m, we devised a compact O(m)-space representation
for MAW(T ) that can output all MAWs in output-sensitive O(|MAW(T )|) time.

We would like to remark that our O(m)-space representation can be built in O(m log m)
time with O(m) space, with the help of the truncated RLE suffix array (tRLESA) data
structure [25]. A suffix s of T is called a tRLE suffix of T if s = ari · · · rm where the first a

is the last character in the previous run ri−1. tRLESA(T ) for rle(T ) = r1 · · · rm is an integer
array of length m such that tRLESA(T )[i] = k iff ari · · · rm is the k-th lexicographically
smallest tRLE suffix for T . tRLESA occupies O(m) space, and can be built in O(m log m)
time with O(m) working space [25]. The details for our tRLESA-based construction algorithm
for our O(m)-space MAW representation will appear in the full version of this paper.

An interesting open question is whether there exist other compressed representations of
MAWs, based on e.g. grammar-based compression [20], Lempel-Ziv 77 [26], and run-length
Burrows-Wheeler transform [22].
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A Appendix

We give a supplemental proposition that can be useful for analyzing the upper bound on the
number of MAWs of type 4.

We begin with the following observation:

▶ Observation 23. For any bridge substring w ∈ Σ∗ of T ,

|Exp(w)| = #w −
∑

z∈Exp(w)

(#z − 1) ≤ #w + |Exp+(w)| −
∑

z∈Exp+(w)

#z.

Note that
∑

z∈Exp+(w) (#z − 1) ≤
∑

z∈Exp(w) (#z − 1) since #z−1 = 0 when z ∈ Exp(w)\
Exp+(w). Below we present Proposition 24 which gives an upper bound for X .

▶ Proposition 24. For any bridge w and t ≥ 1 such that |Exp(w)| ≥ 2,

|Exp(w)|+
t∑

i=1

∑
z∈Expi

+(w)

|Exp(z)| ≤ #w +
t∑

i=1
|Expi

+(w)|. (1)

Proof. We prove this lemma by induction on t. By Observation 23 and |Exp(w)| ≤ #w for
any w, we have

|Exp(w)| +
∑

z∈Exp+(w)

|Exp(z)| ≤ (#w + |Exp+(w)| −
∑

z∈Exp+(w)

#z) +
∑

z∈Exp+(w)

#z = #w + |Exp+(w)|.
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Thus, the statement holds for t = 1. Suppose that the statement holds for some t′ ≥ 1.

|Exp(w)|+
t′+1∑
i=1

∑
z∈Expi

+(w)

|Exp(z)|

= |Exp(w)|+
∑

w′∈Exp+(w)

|Exp(w′)|+
t′∑

i=1

∑
z∈Expi

+(w′)

|Exp(z)|


≤ |Exp(w)|+

∑
w′∈Exp+(w)

#w′ +
t′∑

i=1
|Expi

+(w′)|

 (by induction hypothesis)

≤

#w + |Exp+(w)| −
∑

w′∈Exp+(w)

#w′

 +
∑

w′∈Exp+(w)

#w′ +
∑

w′∈Exp+(w)

t′∑
i=1
|Expi

+(w′)|

(by Observation 23)

= #w + |Exp+(w)|+
∑

w′∈Exp+(w)

t′∑
i=1
|Expi

+(w′)|

≤ #w + |Exp+(w)|+
t′+1∑
i=2
|Expi

+(w)|

= #w +
t′+1∑
i=1
|Expi

+(w)|

Thus, the statement holds for t′ + 1. Therefore, the statement holds for any t ≥ 1. ◀
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