
18th Scandinavian Symposium
and Workshops on Algorithm
Theory

SWAT 2022, June 27–29, 2022, Tórshavn, Faroe Islands

Edited by

Artur Czumaj
Qin Xin

LIPIcs – Vo l . 227 – SWAT 2022 www.dagstuh l .de/ l ip i c s

Editors

Artur Czumaj
University of Warwick, UK
A.Czumaj@warwick.ac.uk

Qin Xin
University of the Faroe Islands, Tórshavn, Faroe Islands
QinX@setur.fo

ACM Classification 2012
Theory of computation → Design and analysis of algorithms

ISBN 978-3-95977-236-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-236-5.

Publication date
June, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SWAT.2022.0

ISBN 978-3-95977-236-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-7743-438X
mailto:A.Czumaj@warwick.ac.uk
https://orcid.org/0000-0002-6178-8538
mailto:QinX@setur.fo
https://www.dagstuhl.de/dagpub/978-3-95977-236-5
https://www.dagstuhl.de/dagpub/978-3-95977-236-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.SWAT.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-236-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SWAT 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Artur Czumaj and Qin Xin . 0:ix

Invited Papers

On Realizing a Single Degree Sequence by a Bipartite Graph
Amotz Bar-Noy, Toni Böhnlein, David Peleg, and Dror Rawitz 1:1–1:17

Time, Clocks and Efficiency of Population Protocols
Leszek Gąsieniec and Grzegorz Stachowiak . 2:1–2:2

Reconstructing the Tree of Life (Fitting Distances by Tree Metrics)
Mikkel Thorup . 3:1–3:2

Regular Papers

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares
Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna,
Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and
Jules Wulms . 4:1–4:19

Fault-Tolerant Edge-Disjoint s-t Paths – Beyond Uniform Faults
David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and
Oliver Schaudt . 5:1–5:19

An Improved ε–Approximation Algorithm for Geometric Bipartite Matching
Pankaj K. Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and
Rachita Sowle . 6:1–6:20

On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction
Safwa Ameer, Matt Gibson-Lopez, Erik Krohn, and Qing Wang 7:1–7:13

Recognizing Map Graphs of Bounded Treewidth
Patrizio Angelini, Michael A. Bekos, Giordano Da Lozzo, Martin Gronemann,
Fabrizio Montecchiani, and Alessandra Tappini . 8:1–8:18

A Novel Prediction Setup for Online Speed-Scaling
Antonios Antoniadis, Peyman Jabbarzade, and Golnoosh Shahkarami 9:1–9:20

On the Approximability of the Traveling Salesman Problem with Line
Neighborhoods

Antonios Antoniadis, Sándor Kisfaludi-Bak, Bundit Laekhanukit, and
Daniel Vaz . 10:1–10:21

Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors
Boris Aronov and Matthew J. Katz . 11:1–11:14

MaxSAT with Absolute Value Functions: A Parameterized Perspective
Max Bannach, Pamela Fleischmann, and Malte Skambath . 12:1–12:20

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Dense Graph Partitioning on Sparse and Dense Graphs
Cristina Bazgan, Katrin Casel, and Pierre Cazals . 13:1–13:15

The Diameter of Caterpillar Associahedra
Benjamin Aram Berendsohn . 14:1–14:12

Stable Approximation Algorithms for the Dynamic Broadcast Range-Assignment
Problem

Mark de Berg, Arpan Sadhukhan, and Frits Spieksma . 15:1–15:21

Well-Separation and Hyperplane Transversals in High Dimensions
Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and
Patrick Schnider . 16:1–16:14

Lions and Contamination: Monotone Clearings
Daniel Bertschinger, Meghana M. Reddy, and Enrico Mann . 17:1–17:11

Predecessor on the Ultra-Wide Word RAM
Philip Bille, Inge Li Gørtz, and Tord Stordalen . 18:1–18:15

An Optimal Algorithm for Product Structure in Planar Graphs
Prosenjit Bose, Pat Morin, and Saeed Odak . 19:1–19:14

Online Unit Profit Knapsack with Untrusted Predictions
Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen . 20:1–20:17

Nearest-Neighbor Decompositions of Drawings
Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler,
Wolfgang Mulzer, and Daniel Perz . 21:1–21:16

Approximation Metatheorems for Classes with Bounded Expansion
Zdeněk Dvořák . 22:1–22:17

Almost Shortest Paths with Near-Additive Error in Weighted Graphs
Michael Elkin, Yuval Gitlitz, and Ofer Neiman . 23:1–23:22

Complexity of Finding Maximum Locally Irregular Induced Subgraphs
Foivos Fioravantes, Nikolaos Melissinos, and Theofilos Triommatis 24:1–24:20

An Almost Optimal Algorithm for Unbounded Search with Noisy Information
Junhao Gan, Anthony Wirth, and Xin Zhang . 25:1–25:15

Optimal Bounds for Weak Consistent Digital Rays in 2D
Matt Gibson-Lopez and Serge Zamarripa . 26:1–26:20

Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and
Streaming Algorithms

Chien-Chung Huang and François Sellier . 27:1–27:15

Non-Uniform k-Center and Greedy Clustering
Tanmay Inamdar and Kasturi Varadarajan . 28:1–28:20

Most Classic Problems Remain NP-Hard on Relative Neighborhood Graphs and
Their Relatives

Pascal Kunz, Till Fluschnik, Rolf Niedermeier, and Malte Renken 29:1–29:19

Contents 0:vii

A Scalable Work Function Algorithm for the k-Server Problem
Sharath Raghvendra and Rachita Sowle . 30:1–30:20

Erdős–Selfridge Theorem for Nonmonotone CNFs
Md Lutfar Rahman and Thomas Watson . 31:1–31:11

Unit-Disk Range Searching and Applications
Haitao Wang . 32:1–32:17

Space-Efficient Data Structure for Posets with Applications
Tatsuya Yanagita, Sankardeep Chakraborty, Kunihiko Sadakane, and
Srinivasa Rao Satti . 33:1–33:16

SWAT 2022

Preface

The Scandinavian Symposium and Workshops on Algorithm Theory (SWAT, formerly the
Scandinavian Workshop on Algorithm Theory) has been held every two years beginning in
1988. It alternates with its sister conference, the Algorithms and Data Structures Symposium
(WADS), which is usually hosted in Canada. This year marks the 18th SWAT hosted on
Faroe Islands.

In response to the call for papers, a total of 90 submissions were received. Each submission
was assigned to at least three Program Committee, aided by external subreviewers. The
committees decided to accept 30 papers for inclusion in the scientific program. The selection
was made by the Program Committees based on originality, quality, and relevance to the
topic of the conference. The quality of the manuscripts was very high indeed, and many
deserving papers could not be selected.

The Program Committee selected the following paper for the best student paper
award (for a paper that is solely authored by students): Daniel Bertschinger, Meghana M.
Reddy and Enrico Mann. Lions and Contamination: Monotone Clearings.

Apart from the contributed talks, SWAT 2022 included invited presentations by Leszek
Ga̧sieniec (University of Liverpool), David Peleg (Weizmann Institute of Science), and
Mikkel Thorup (University of Copenhagen). This volume contains all the contributed papers
presented at the conference, papers that accompany the invited talk of David Peleg and
abstracts of the invited presentations of Leszek Ga̧sieniec and Mikkel Thorup.

We would like to thank the program committee and the subreviewers for their great
effort. For all of the papers, extensive and detailed evaluations were submitted. The program
committee consisted of

Amir Abboud (Weizmann Institute of Science)
Mikkel Abrahamsen (University of Copenhagen)
Peyman Afshani (Aarhus University)
Yossi Azar (Tel Aviv University)
Alkida Balliu (Gran Sasso Science Institute)
Soheil Behnezhad (Stanford University)
Radu Curticapean (ITU Copenhagen)
Artur Czumaj (chair; University of Warwick)
Andreas Emil Feldmann (Charles University, Prague)
Sebastian Forster (University of Salzburg)
Stefan Funke (University of Stuttgart)
Petr Golovach (University of Bergen)
Shaofeng Jiang (Peking University)
Tomasz Kociumaka (UC Berkeley)
Amit Kumar (Indian Institute of Technology Delhi)
Anil Maheshwari (Carleton University)
Dániel Marx (CISPA Helmholtz Center for Information Security)
Kitty Meeks (University of Glasgow)
Slobodan Mitrović (University of California, Davis)
Pan Peng (University of Science and Technology of China (USTC), Hefei, Anhui)
Valentin Polishchuk (Linköping University)
Nicola Prezza (Ca’ Foscari University of Venice)
Chris Schwiegelshohn (Aarhus University)

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Shay Solomon (Tel Aviv University)
Uli Wagner (IST Austria)
Meirav Zehavi (Ben-Gurion University of the Negev)
Rico Zenklusen (ETH Zurich)

This year’s conference was organized by Qin Xin (University of the Faroe Islands) and
his team consisting of Hans Blaasvær (financial chair; KT Húsið and University of the
Faroe Islands), Olavur Ellefsen (Globe Tracker and University of the Faroe Islands), Jogvan
Thomsen (Vinnustovnurin), and Michael Thomsen (Vinnustovnurin and University of the
Faroe Islands).

The SWAT conference series is guided by a steering committee consisting of
Lars Arge† (Aarhus University)
Magnús M. Halldórsson (chair; Reykjavík University)
Andrzej Lingas (Lund University)
Jan Arne Telle (University of Bergen)
Esko Ukkonen (University of Helsinki)

We wish to thank all authors who submitted extended abstracts for consideration, the
Program Committees for their scholarly effort, and all the referees who assisted the Program
Committees in the evaluation process. We are also grateful to all the support staff of the
Organizing Committee for organizing SWAT 2022.

We would like to thank Magnús Halldórsson, the Chair of the SWAT Steering Committee,
for his continuous support.

May 2022 Artur Czumaj
Qin Xin

On Realizing a Single Degree Sequence by a
Bipartite Graph
Amotz Bar-Noy #

City University of New York (CUNY), NY, USA

Toni Böhnlein #

Weizmann Institute of Science, Rehovot, Israel

David Peleg #

Weizmann Institute of Science, Rehovot, Israel

Dror Rawitz #

Bar Ilan University, Ramat-Gan, Israel

Abstract
This paper addresses the classical problem of characterizing degree sequences that can be realized by
a bipartite graph. For the simpler variant of the problem, where a partition of the sequence into the
two sides of the bipartite graph is given as part of the input, a complete characterization was given
by Gale and Ryser over 60 years ago. However, the general question, in which both the partition
and the realizing graph need to be determined, is still open. This paper provides an overview of
some of the known results on this problem in interesting special cases, including realizations by
bipartite graphs and bipartite multigraphs.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Degree Sequences, Graph Realization, Bipartite Graphs, Graphic Sequences,
Bigraphic Sequences, Multigraph Realization

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.1

Category Invited Paper

Funding This work was supported by US-Israel BSF grant 2018043.

1 Introduction

1.1 Background and Motivation
A sequence d = (d1, . . . , dn) of nonnegative integers is graphic if there exists an n-vertex
graph G whose degree sequence deg(G) satisfies deg(G) = d. The question of recognizing
graphic degree sequences was studied extensively in the past six decades. Given a sequence
d, the graphic degree realization (GDR) problem requires deciding whether d is graphic and
constructing a graph G realizing it, if one exists. A complete characterization (implying
also an O(n) time decision algorithm) for graphic degree sequences was given by Erdös and
Gallai [16]. An algorithm that, given a sequence d, generates a realizing graph or proves that
the sequence is not graphic, was given by Havel and Hakimi [19, 22]. This algorithm runs in
time O(

∑
i di), which is optimal1.

A natural variant of the graphic degree realization problem requires the realizing graph
to be bipartite. A sequence admitting a bipartite realizing graph is called bigraphic, and
the corresponding problem is called the bigraphic degree realization (BDR) problem. This
problem has appeared as an open problem over 40 years ago [33], but did not receive a lot of
attention.

1 Note that
∑

i
di = 2m where m is the number of edges in a realizing graph if exists.

© Amotz Bar-Noy, Toni Böhnlein, David Peleg, and Dror Rawitz;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 1; pp. 1:1–1:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amotz@sci.brooklyn.cuny.edu
mailto:toni.bohnlein@weizmann.ac.il
mailto:david.peleg@weizmann.ac.il
https://orcid.org/0000-0003-1590-0506
mailto:dror.rawitz@biu.ac.il
https://doi.org/10.4230/LIPIcs.SWAT.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 On Realizing a Single Degree Sequence by a Bipartite Graph

In contrast, the simpler variant where the partition of d is given as part of the input
was studied extensively. Here, the input consists of a partition of d into two sequences,
a = (a1, . . . , ap) and b = (b1, . . . , bq), and it is required to decide whether there exists a
bipartite graph G(A, B, E) such that |A| = p, |B| = q, and the sequences of degrees of the
vertices of A and B are equal to a and b, respectively. Hereafter, we refer to such a pair
(a, b) as a bigraphic degree partition, and to the problem as the given partition version of the
bigraphic degree realization problem, BDRP .

Necessary and sufficient conditions for a pair of sequences (a, b) to be a bigraphic degree
partition were given in 1957 by Gale and Ryser [17, 34]. These conditions yield also a
polynomial time decision algorithm for BDRP , which can be thought of as a variant of the
Havel-Hakimi algorithm for general graphs applied to one side of the partition.

An obvious question is whether the Gale-Ryser conditions can be used for attacking the
(single sequence) bigraphic degree realization problem BDR. One natural strategy is to search
for a bigraphic degree partition for the given sequence d, relying on the fact that d1 < n

is a necessary condition for a sequence d to be graphic (or bigraphic), and for such d, a
partition can be found (if one exists) in polynomial time, since the PARTITION problem is
pseudo-polynomial (cf. [5, 13]). Unfortunately, it is possible that some partitions of d are
bigraphic while other partitions are not (see Example 1 in Sect. 5). Moreover, the number of
different partitions for a given sequence may be exponential in its length (see Examples 2 & 3
in Sect. 5). Still, one may hope that the special structure required by a bigraphic degree
partition may assist us in searching for them. Unfortunately, so far we have not been able
to fully characterize the class of bigraphic degree sequences, or to determine whether the
problem is NP -hard. In this paper we report what we perceive to be some of the more
interesting findings on the problem.

1.2 Results
We present two types of results. We first identify special instances for which one can solve
the BDR problem, i.e., decide whether a given sequence is bigraphic or not and if so, generate
a realizing graph. Second, we describe realizations by bipartite multigraphs (namely, graphs
that allow parallel edges) for special instances where the BDR problem is decided in the
negative or is unsolved. The multigraph realizations are generated with the objective of
minimizing the maximum multiplicity in order to come close to resolving the bipartite
realization problem, i.e., finding approximate realizations.

The notation of graphic and bigraphic sequences is extended to handle multigraphs.
A sequence d of non-negative integers is said to be t-graphic (t-bigraphic) if it admits a
(bipartite) multigraph realizations with maximum multiplicity of at most t parallel edges. If
a bipartite multigraph realization is based on a partition (a, b), we say that partition (a, b) is
t-bigraphic.

In the following, we classify the known results into several categories depending on the
type of instances that are being considered.

Small Instances. The first category of instances concerns cases where the BDR problem can
be resolved exactly due to the fact that the instance is “small” in some sense. In Section 3, we
focus on two such cases. The first is when the given sequence d admits only a small number
of partitions NP art(d). Formally, it is required that NP art(d) = O(nc) for some constant
c. For such sequences, it is possible to exploit the fact that the PARTITION problem is
pseudo-polynomial. To do that, we use an output-sensitive algorithm for generating all the
partitions of d, namely, an algorithm requiring time O(nc′) per partition for some constant

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:3

c′. A special subcase of this case involves sequences with a constant number of distinct
degrees, since a sequence with only a constant number of different degrees can have at most
polynomially many different partitions.

The second case of “small” instances concerns sequences whose maximum degree is
small. Specifically, we show that for every partitionable nonincreasing n-integer sequence
d = (d1, . . . , dn), if d2

1 ≤ t ·
∑

i di/2, then d is a t-bigraphic degree sequence, and moreover,
any partition (a, b) of d is a t-bigraphic degree partition. An alternative (weaker) condition
on d1 is that d2

1 ≤ t · n/2.

High-Low Partitions. We then shift our attention to specific and significant types of
partitions, referred to as High-Low partitions. A High-Low partition of a non-increasing
sequence d has the form HL(d) = (H, L) where H = (d1, . . . , dk) and L = (dk+1, . . . , dn) for
some k. Clearly, this pair (H, L) is a balanced partition only if

∑k
i=1 di =

∑n
i=k+1 di.

For High-Low partitions, the first Gale-Ryser conditions are key to the realizability of
the sequence. These conditions state that the largest degree on each side does not exceed
the number of vertices on the other side (formally, d1 ≤ n− k and dk+1 ≤ k). A (balanced)
High-Low partition (H, L) that satisfies the first Gale-Ryser conditions is referred to as a
well-behaved High-Low partition.

The fact that a High-Low partition is well-behaved does not guarantee that it is bigraphic
(see Example 4 in Sect. 5). However, as described in Sect. 4, for a non-increasing sequence
d that admits a well-behaved High-Low partition (H, L), the BDR problem turns out to
be solvable [4]. This follows from the fact that for a sequence d admitting a well-behaved
High-Low partition (H, L), if (H, L) is not bigraphic, then no partition of d is bigraphic,
hence d itself is not bigraphic. It follows that if d has a well-behaved High-Low partition,
then it can be decided in polynomial time whether d is bigraphic or not. Moreover, if d

happens to be bigraphic, a bipartite graph realizing d can be computed in polynomial time
(e.g., using the adapted Havel-Hakimi algorithm described in Section 2).

In Section 4 we also discuss bipartite multigraph realizations based on High-Low partitions.
It turns out that even in case a well-behaved High-Low partition fails to be bigraphic, it is still
2-bigraphic. More generally, defining a parameter t(d) indicating the extent to which HL(d)
violates the first Gale-Ryser conditions, we have the following: If an r-graphic sequence d

admits a High-Low partition HL(d), then HL(d) is t-bigraphic where t = max{t(d), 2r}.

Equal Partitions. We explore another specific and important type of partitions, referred
to as equal partitions. An n-integer sequence d admits an equal partition if d is even,
namely, each integer occurring in d appears in it an even number of times. At the cost
of a slight notational inconsistency, resolved by context, we adopt the compact notation
d = (dn1

1 , . . . , d
nq
q), where

∑q
i=1 ni = n, for a sequence consisting of ni copies of the integer

di for 1 ≤ i ≤ q. Then the sequence d is even if ni is even for every 1 ≤ i ≤ q. For such a
sequence d, the equal partition is EQP (d) = (a, b) where a = b = (dn1/2

1 , . . . , d
nq/2
q).

The equal partition does not display a property similar to that of well-behaved High-Low
partitions, i.e., a ”well-behaved” equal partition does not allow us to resolve the BDR problem.
Specifically, there are even sequences d with a well-behaved equal partition EQP (d) = (a, b)
such that (a, b) is not bigraphic but other partitions of d are bigraphic (see Example 5 in
Sect. 5). However, as shown in [3], if the sequence d is graphic and even, then the equal
partition is 2-bigraphic. More generally, for multigraph realizations with bounded maximum
multiplicity, the following holds. Let d be an even and r-graphic degree sequence with equal
partition EQP (d) = (a, b). Then (a, b) is 2r-bigraphic.

SWAT 2022

1:4 On Realizing a Single Degree Sequence by a Bipartite Graph

High-Low vs. Equal Partitions. In some sense, the High-Low partition and the equal
partition are two extremes: whereas the High-Low partition tries to differentiate the two
sides as much as possible, taking all the largest elements to one side and all the smallest
elements to the other, the equal partition attempts to equalize the two parts as much as
possible.

Interestingly, there are bigraphic even sequences for which the High-Low partition is
bigraphic while the equal partition is not, or vice versa (see Examples 5 and 6 in Sect. 5).
One might speculate that if d is bigraphic and has both a High-Low partition and an equal
partition, then at least one of them must be bigraphic, but even that turns out to be false
(see Example 1 in Sect. 5).

1.3 Related Work

The two key questions on degree sequences studied in the literature concern identifying
necessary and sufficient conditions for a sequence to be graphic, and developing efficient
algorithms for computing a realizing graph if exists. As mentioned above, Erdös and
Gallai [16] are the first to present a characterization of graphic sequences (several alternative
proofs exist, see [10, 2, 40, 14, 38, 39, 47, 26].) Havel [22] and Hakimi [19] provide a different
characterization, also, implying an algorithm to construct a realizing graph.

Several related questions are considered in the literature: Given a degree sequence d,
(1.) find all the (non-isomorphic) graphs that realize it. (2.) count all its (non-isomorphic)
realizing graphs. (3.) sample a random realization as uniformly as possible. These questions
are extensively studied, see [10, 16, 19, 22, 24, 36, 38, 44, 45, 46]. Applications to network
design, randomized algorithms, social networks [6, 12, 15, 29] and chemical networks [37]
exists. Miller [30] shows that only a subset of the Erdös and Gallai inequalities needs to
be checked in order to decide if a degree sequence is graphic. The literature also includes
surveys on degree sequences, see [41, 42, 43].

Additional intriguing directions include finding characterizations for degree sequences of
specific graph families. To that end, we call a degree sequence potentially P -graphic if it has a
realizing graph having the graph theoretic property P . Rao [33] surveys results (see references
therein) on various properties like k-edge connected, k-vertex connected, hamiltonian and
tournament. As an open problem characterizing potentially bipartite sequences is mentioned,
i.e., the BDR problem.

Moreover, a characterization is known for trees (cf. [18]). The family of planar graphs was
studied to some extend. The existing results provide a characterization for planar graphic
k-sequences, where the difference between the largest and the smallest degree is bounded by
k, for k = 0, 1, 2 [1, 35]. Full characterizations for the degree sequences of threshold graphs
(see [20]), split graphs (see [21]), matrogenic graphs (see [28]) and difference graphs (see [20])
are known. Degree sequences of chordal, interval, and perfect graphs are considered in [9].

As mentioned above, the BDRP was solved in [17, 34] (for an alternative proof see [27]).
As the title “Combinatorial properties of matrices of zeros and ones” suggests, the problem
motivating Ryser [34] has, naturally, a pair of sequences as its input. Sufficient conditions
for a pair of sequences to be bigraphic were studied in [7, 48].

Owens and Trent [31] were interested in the realization problem for multigraphs. Given a
degree sequence, their results provide a multigraph realizations minimizing the total number
of parallel edges or loops (improved algorithms are presented in [32, 25]). The opposite
objective of maximizing the total number of parallel edges is, however, proven to be NP -hard
(see [23]).

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:5

2 Preliminaries

Let H = (V, E) be a multigraph without loops. In this case, E is a multiset. Denote by
EH(v, w) the multiset of edges connecting v, w ∈ V . The maximum multiplicity of H is

MaxMult(H) = max
(v,w)∈E

(|EH(v, w)|).

2.1 Degree Sequences of Graphs and Multigraphs
Let d = (d1, d2, . . . , dn) be a sequence of nonnegative integers in nonincreasing order2. The
volume of d is

∑
d =

∑n
i=1 di. Note that every graphic sequence must have even volume.

We call a sequence with even volume a degree sequence.
The characterization of Erdös and Gallai [16] for graphic degree sequences is as follows.

▶ Theorem 1 (Erdös-Gallai [16]). A degree sequence d = (d1, d2, . . . , dn) is graphic if and
only if

ℓ∑
i=1

di ≤ ℓ(ℓ− 1) +
n∑

i=ℓ+1
min{ℓ, di}, (1)

for ℓ = 1, . . . , n.

We call Equation (1) the ℓ-th Erdös-Gallai inequality EGℓ. Theorem 1 implies an O(n)
algorithm to verify whether a sequence is graphic.

Let r be a positive integer. Then, a degree sequence d is r-graphic if there exists a
multigraph H such that deg(H) = d and MaxMult(H) ≤ r. A characterization for r-graphic
sequences was shown by Chungphaisan [11].

▶ Theorem 2 (Chungphaisan [11]). Let r be a positive integer. Degree sequence d =
(d1, d2, . . . , dn) is r-graphic if and only if

ℓ∑
i=1

di ≤ rℓ(ℓ− 1) +
n∑

i=ℓ+1
min{rℓ, di}, (2)

for ℓ = 1, . . . , n.

The minimum r such that a sequence d is r-graphic can be computed in polynomial time.

2.2 Degree Sequences of Bipartite Graphs and Multigraphs
Let d be a degree sequence such that

∑
d = 2m for some integer m. A block of d is

a subsequence a such that
∑

a = m. The set of all blocks of sequence d is defined as
B(d) := {a ⊂ d |

∑
a = m}. For each a ∈ B(d) there is a disjoint b ∈ B(d) that completes

it to form a partition of d (so that merging them in sorted order yields d). We call such a
pair a, b ∈ B(d) a (balanced) partition of d since

∑
a =

∑
b. Denote the set of all degree

partitions of d by BP(d) = {{a, b} | a, b ∈ B(d), d \ a = b}.
The Gale-Ryser theorem characterizes bigraphic degree partitions.

2 All sequence that we consider are assumed to be in a non-increasing order.

SWAT 2022

1:6 On Realizing a Single Degree Sequence by a Bipartite Graph

▶ Theorem 3 (Gale-Ryser [17, 34]). Let d be a degree sequence and partition (a, b) ∈ BP(d)
where a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bq). The partition (a, b) is bigraphic if and
only if

ℓ∑
i=1

ai ≤
q∑

i=1
min{ℓ, bi} (3)

for ℓ = 1, . . . , p.

We refer to Equation (3) as the ℓ-th Gale-Ryser inequality GRL
ℓ on the left. By symmetry,

the partition (a, b) is bigraphic if and only if
∑ℓ

i=1 bi ≤
∑p

i=1 min{ℓ, ai}, for ℓ = 1, . . . , q. We
refer to this equation as the ℓ-th Gale-Ryser inequality GRR

ℓ on the right.
Let t be a positive integer. A degree sequence d is t-bigraphic if d has a partition (a, b) ∈

BP(d) such that there is a bipartite multigraph H = (A, B, E) such that MaxMult(H) ≤ t,
|A| = |a|, |B| = |b|, and the sequences of degrees of the vertices of A and B are equal to
a and b, respectively. We also say that partition (a, b) is t-bigraphic. Miller [30] cites the
following result of Berge characterizing t-bigraphic partitions.

▶ Theorem 4 (Berge [30]). Consider a positive integer t, a degree sequence d and a partition
(a, b) ∈ BP(d) where a = (a1, . . . , ap) and b = (b1, . . . , bq). The partition (a, b) is t-bigraphic
if and only if

ℓ∑
i=1

ai ≤
q∑

i=1
min{ℓt, bi}, (4)

for ℓ = 1, . . . , p.

2.3 Havel-Hakimi Algorithm for Bipartite Graphs
Kleitman and Wang [26] generalize the Havel-Hakimi theorem implying an algorithm where
the ’pivot’ can be chosen freely. It is folklore that the same approach can be extended to
bigraphic sequences and a given partition. In the following, we formalize this result and
start with introducing some notation. Let d be a degree sequence and (a, b) ∈ BP(d) where
a = (a1, . . . , ap) and b = (b1, . . . , bq). We assume that partition (a, b) satisfies the first
Gale-Ryser conditions, i.e., a1 ≤ q and b1 ≤ p hold. Let i ≤ p be some index. Define

a−i = a \ ai = (a1, . . . , ai−1, ai+1, . . . , ap),

and

RED(b, ai) = (b1 − 1, . . . , bai
− 1, bai+1, . . . , bq).

Moreover, let G = (A, B, E) be a bipartite graph realizing (a, b). For a positive integer
ℓ ≤ |B|, define the subset MaxDeg(B, ℓ) ⊆ B to contain vertices with degrees b1, . . . , bℓ. Ties
are broken arbitrarily to ensure that |MaxDeg(B, ℓ)| = ℓ.

▶ Lemma 5. Let d be a degree sequence and (a, b) ∈ BP(d). Let i ≤ |a| be some index. If
(a, b) is bigraphic, then there is a bipartite graph G = (A, B, E) where vertex v ∈ A has degree
ai and is adjacent to each vertex in MaxDeg(B, ai).

Proof. Let d, (a, b), and index i as in the theorem. Assume that (a, b) is bigraphic, and let
G = (A, B, E) be a bipartite graph realizing (a, b) where vertex v ∈ A has degree ai. Denote
B′ = MaxDeg(B, ai). If v is adjacent to each vertex in B′, we are done. Otherwise there are

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:7

vertices u ∈ B′ and w ∈ B \B′ such that (v, u) /∈ E and (v, w) ∈ E. By definition of B′, we
have that deg(u) ≥ deg(w). It follows that there is a vertex v′ ∈ A such that (v′, u) ∈ E and
(v′, w) /∈ E. Now, we construct a graph G′ = (A, B, E′) by applying an edge flip operation
to G such that G′ is bipartite, realizes (a, b) and v is adjacent to one more vertex in B′

(comparing G and G′). For the edge flip operation, remove edges (v, w), (v′, u) ∈ E and add
edges (v, u), (v′, w) to E′. Verify that G′ satisfies the claimed properties. The operation can
be applied until v is adjacent to each vertex in B′, and the lemma is shown. ◀

▶ Theorem 6. Let d be a degree sequence and (a, b) ∈ BP(d). Also, let i ≤ |a| be some index,
a′ = a−i, and b′ = RED(b, ai). Then, (a, b) is bigraphic if and only if (a′, b′) is bigraphic.

Proof. Let d, (a, b), index i, and (a′, b′) be as in the theorem.
First, assume that (a, b) is bigraphic. Due to Lemma 5 there is a bipartite graph

G = (A, B, E) realizing (a, b) where vertex v ∈ A has degree ai and v is adjacent to vertices
u1, . . . , uai ∈ B having degrees b1, . . . , bai . Let G′ be the result of removing vertex v and
its incident edges from graph G. Verify that G′ realizes (a′, b′), and consequently (a′, b′) is
bigraphic.

Now, assume that (a′, b′) is bigraphic. Let G = (A, B, E) be a bipartite graph realizing
(a′, b′). Construct a graph G′ = (A′, B, E′) from G by adding a new vertex v to A, i.e., A′ =
A∪v. Next, connect vertex v to vertices u1, . . . , uai

∈ B having degrees b1−1, b2−1, . . . , bai
−1.

Verify that G′ is bipartite, vertex v has degree ai, and that G′ realizes (a, b). It follows that
(a, b) is bigraphic. ◀

Similar to the Havel-Hakimi [19, 22] characterization for graphic degree sequences, The-
orem 6 implies a polynomial time algorithm that, given a partition (a, b), constructs a
bipartite graph realizing (a, b) or decides that (a, b) is not bigraphic.

3 Small Instances

3.1 Output-Sensitive Algorithms: Small Number of Partitions
Typically, the running time of an algorithm is measured as a function of the input size.
However, in situations where the output may be very long, it is of interest to bound the time
complexity also as a function of the output size. More explicitly, we say that A is a polynomial
time output-sensitive algorithm for a problem Π if for every input I of length ℓ(I), whose
output Π(I) is of length ℓ(Π(I)), A computes Π(I) in time polynomial in max{ℓ(I), ℓ(Π(I))}.

This notion may be useful in the context of the bigraphic degree realization problem. For
a degree sequence d, let NP art(d) = |BP(d)| denote the number of different block partitions of
d. The BDR problem can be solved on d by enumerating all possible partitions and applying
Theorem 3 for each of them. This may lead to a polynomial time output-sensitive algorithm
for the problem provided that the enumeration procedure requires O(nc) time, for some
constant c, to generate the next partition.

We design an output-sensitive algorithm for BDR based on the natural enumeration
procedure for block partitions. Recall that given an integer sequence d = (d1, d2, . . . , dn),
such that di < n for every i, it is possible to find a block partition of d in polynomial time,
by using the pseudo-polynomial dynamic programming algorithm for the partition problem,
which in this case becomes polynomial. We claim that it is possible to find all block partitions
of d in time O(TP art(n) · n ·NP art(d)), where TP art(n) is the time complexity of the best
pseudo-polynomial time algorithm for deciding the PARTITION problem. To establish this,
we describe a straightforward recursive algorithm. The algorithm uses a procedure DP(d, A)
that receives as input a sequence

SWAT 2022

1:8 On Realizing a Single Degree Sequence by a Bipartite Graph

d = (dn1
1 , dn2

2 , . . . , dnq
q) (5)

of n = n1 + . . . + nq integers and a subsequence

A = (dj1
1 , . . . , djk

k) (6)

of d, where 0 ≤ k ≤ q and 0 ≤ ji ≤ ni for i = 1, . . . , k. Setting

B = B(A, d) = (dn1−j1
1 , . . . , dnk−jk

k), (7)

the procedure decides, in time polynomial in n, if A ∥ B can be completed into a partition
(A′, B′) of d (namely, such that A′ ∥ B′ = d,

∑
A′ =

∑
B′ =

∑
d/2, A ⊆ A′, B ⊆ B′).

Our recursive algorithm, ALG(d, A, j), gets as input a sequence d and a subsequence A as
in Eq. (5) and (6). and 0 ≤ j ≤ nk. Setting B = B(A, d) as in Eq. (7), the algorithm returns
a set P containing all partitions (A′, B′) of d such that A′ ∥ B′ = d,

∑
A′ =

∑
B′ =

∑
d/2,

A ◦ (dj
k+1) ⊆ A′, B ◦ (dnk+1−j

k+1) ⊆ B′. The set of all partitions of d is obtained by invoking
ALG(d, ∅, 0) (thinking of d as augmented with an “empty prefix” dn0

0 = 00).

Algorithm 1 Algorithm ALG(d, A).
Input: d, A as in Eq. (5) and (6).

Set B ← B(d, A) as in Eq. (7).

1. Set P ← ∅.
2. Invoke Procedure DP(d, A).
3. If the procedure returned “YES” then do:

a. If k = q then set P ← {(A, B)}.
b. Else (* k < q *)

repeat for jk+1 = 0 to nk+1:
i. Set A′ ← A ◦ (djk+1

k+1)
Set B′ ← B ◦ (dnk+1−jk+1

k+1)
ii. Recursively invoke Algorithm ALG(d, A′), which returns Pjk+1 .
iii. Set P ← P ∪ Pjk+1 .

4. Return P.

▶ Observation 7. The algorithm returns all partitions of d.

▶ Observation 8. The algorithm runs in time O(NP art(d) · n · TP art).

Note that the complexity of Algorithm ALG is dominated by the total time spent on
the invocations of Procedure DP. Therefore, to prove Obs. 8, we need to show that when
executing Algorithm ALG on a sequence d, the number of invocations of Procedure DP, KDP,
satisfies

KDP ≤ O(NP art(d) · n) (8)

To see this, let us illustrate the recursive execution of the algorithm on d by an execution
tracing tree TEX consisting of q + 1 levels. Each node in the tree is labeled by a pair (A, R),
where R ∈ {Y, N}, and corresponds to one invocation of Procedure DP. The first entry
in the label corresponds to the parameter A in the invocation, i.e., the root of the tree is

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:9

marked (∅, R), and all nodes on level 1 ≤ k ≤ q are marked (A, R) for some subsequence A

of d as in Eq. (6). The path leading to a node (A, R) in the tree captures the set A in the
corresponding invocation. R = N indicates that there are no partitions of d matching A and
B = B(A, d), whereas R = Y indicates that there is at least one partition of d matching A

and B. See Figure 1.

Figure 1 Illustration of the execution tracing tree TEX of algorithm ALG, in the case where d

has only one partition.

Note that in this tree, every node labeled (A, N) is a leaf, as the algorithm does not
perform any additional recursive calls for this subsequence A. We refer to leaves labeled
(A, N) (respectively, (A, Y)) as N -leaves (resp., Y -leaves), and denote their number by LN

(resp., LY). Also, denote the number of internal nodes on level k of the tree (which are also
labeled by (A, Y)) by I(k).

Observe that KDP, the number of invocations of Procedure DP during the execution of
Algorithm ALG, equals the number of nodes in TEX , i.e.,

KDP = |V (TEX)| = LY + LN +
q−1∑
k=0

I(k). (9)

To bound this number, we redistribute the “charge” for the invocations of Procedure DP
as follows. For 0 ≤ k ≤ q − 1, we reassign the charge for the invocation at an N -leaf v on
level k + 1 to its parent w on level k. Note that w can be charged by at most nk+1 N -leaves,
since it has nk+1 + 1 children and at least one of them is marked Y . It follows that

KDP ≤ LY +
q−1∑
k=0

I(k) · (nk+1 + 1). (10)

Observe that I(k) ≤ LY for every 0 ≤ k ≤ q − 1, since every internal node has at least one
child labeled (A, Y). It follows that

KDP ≤ LY + LY ·
q−1∑
k=0

(nk+1 + 1) = LY + LY · (n + k). (11)

Observe also that LY = NP art(d), the number of distinct partitions of d, hence

KDP ≤ NP art(d) · (n + k + 1), (12)

establishing Eq. (8) and proving Obs. 8. We get the following.

SWAT 2022

1:10 On Realizing a Single Degree Sequence by a Bipartite Graph

▶ Lemma 9. The BDR problem admits a polynomial time output sensitive algorithm. More
specifically, given an integer sequence d = (d1, d2, . . . , dn), such that di < n for every i, it is
possible to find all block partitions of d in time O(TP art(n)·n·NP art(d)), where TP art(n) is the
time complexity of the best pseudo-polynomial time algorithm for deciding the PARTITION
problem.

Due to Theorem 4, the minimum t such that a given partition is t-bigraphic can be
computed efficiently implying the following result.

▶ Corollary 10. Let d be a degree sequence of length n such that NP art(d) = O(nc) for some
constant c. Then, the minimum t such that d is t-bigraphic can be computed in polynomial
time. As a special case, the BDR problem for d can be solved in polynomial time.

We remark that a useful special subclass consists of sequences with a constant number
of different degrees since such a sequence can have at most polynomially many different
partitions.

▶ Corollary 11. Let p be some constant and d = (dn1
1 , dn2

2 , . . . , d
np
p) a degree sequence where

n =
∑p

i=1 ni. Then, NP art(d) = O(nc) for some constant c.

3.2 Small Maximum Degree

Towards attacking the realizability problem of general bigraphic sequences, we first look at
the question of bounding the total deviation of a nonincreasing sequence d = (d1, . . . , dn) as
a function of its maximum degree, ∆ = d1.

Burstein and Rubin [8] consider the realization problem for directed graphs with loops,
which is equivalent to BDRP . They give the following sufficient condition for a pair of
sequences to be the in- and out-degrees of a directed graph with loops.

▶ Theorem 12 ([8]). Consider a degree sequence d with a partition (a, b) ∈ BP(d) assuming
that a and b have the same length p. Let

∑
a =

∑
b = pc where c is the average degree. If

a1b1 ≤ pc + 1, then d is realizable by a directed graph with loops.

In the following, their result is extended to bipartite multigraphs with bounded maximum
multiplicity, i.e., to t-bigraphic sequences. We make use of the following straightforward
technical claim.

▶ Observation 13. Consider a nonincreasing integer sequence x = (x1, . . . , xk) of total sum∑
x = X. Then,

∑
(x[ℓ]) ≥ ℓX/k, for every 1 ≤ ℓ ≤ k.

Proof. Since x is nonincreasing, avg(x1, . . . , xℓ) ≥ avg(xℓ+1, . . . , xk), or more formally,
(
∑ℓ

i=1 xi)/ℓ ≥ (
∑k

i=ℓ+1 xi)/(k − ℓ). Consequently,

X =
k∑

i=1
xi =

ℓ∑
i=1

xi +
k∑

i=ℓ+1
xi ≤

ℓ∑
i=1

xi + k − ℓ

ℓ

ℓ∑
i=1

xi = k

ℓ

ℓ∑
i=1

xi ,

implying the claim. ◀

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:11

▶ Lemma 14. Let t be a positive integer. Consider a degree sequence d of length n with a
partition (a, b) ∈ BP(d). If a1 · b1 ≤ t ·

∑
d/2, then (a, b) is t-bigraphic.

Proof. Let t, d and (a, b) as in the lemma. We first verify that the condition a1 · b1 ≤ t
∑

d/2
implies that b1 ≤ t|a|. Towards a contradiction, suppose that |a| < b1/t. It follows that∑

a ≤ a1 · |a| < a1 · b1/t ≤
∑

d/2 =
∑

a,

a contradiction.
Let X =

∑
a =

∑
b =

∑
d/2. By the assumption, a1 · b1 ≤ tX. Note that the conjugate

sequence b̃ is nonincreasing,
∑

(̃b[b1]) = X, and b̃i = 0 for i > b1. By Observation 13,∑
(̃b[ℓt]) ≥ ℓtX/b1 ≥ ℓa1

for every 1 ≤ ℓ ≤ b1/t. As ai ≤ a1 for every i, we also have∑
(a[ℓ]) ≤ ℓa1

for every 1 ≤ ℓ ≤ b1/t. Combined, we have∑
(a[ℓ]) ≤

∑
(̃b[ℓt])

for every 1 ≤ ℓ ≤ b1/t. The same inequality holds also for |a| ≥ ℓ > b1/t, since
∑

(a[ℓ]) ≤∑
a = X =

∑
(̃b[ℓt]). Note that

∑
(̃b[ℓt]) =

∑m
i=1 min{ℓt, bi}. It follows that

∑
(a[ℓ]) ≤∑m

i=1 min{ℓt, bi} for 1 ≤ ℓ ≤ |a|, implying the lemma due to Theorem 4. ◀

Example 7 (see Sect. 5) establishes the following.

▶ Lemma 15. The above bound is tight for some degree sequences.

Lemma 14 is stated for a given partition (BDRP). For BDR, we immediately have the
following (with the second observation following from the first as

∑
d ≥ n).

▶ Corollary 16. Let t be a positive integer. For every partitionable degree sequence d =
(d1, . . . , dn),
(1.) if d2

1 ≤ t ·
∑

d/2, then any partition (a, b) ∈ BP(d) is t-bigraphic.
(2.) if d2

1 ≤ t · n/2, then any partition (a, b) ∈ BP(d) is t-bigraphic.

This allows us to state the following for bounded-degree sequences whose maximum
degree ∆ is constant.

▶ Corollary 17. Let ∆, t be positive integers. For every n ≥ 2∆2/t, and for every degree
sequence d = (d1, . . . , dn) such that d1 ≤ ∆, if d is partitionable then it is t-bigraphic.

The extreme bound of this type is obtained when the sequence d has a balanced High-Low
partition, in which case we get the following.

▶ Corollary 18. Let t be a positive integer. Consider a degree sequence d = (d1, . . . , dn) with
a balanced High-Low partition (H, L) where H = (d1, . . . , dk) and L = (dk+1, . . . , dn). If
d1 · dk+1 ≤ t ·

∑
d/2, then (H, L) is t-bigraphic.

SWAT 2022

1:12 On Realizing a Single Degree Sequence by a Bipartite Graph

4 Realizations based on the Equal or High-Low partitions

4.1 Realizations using the High-Low partition
Recall that a well-behaved High-Low partition is a balanced High-Low partition (H, L),
H = (d1, . . . , dk) and L = (dk+1, . . . , dn), which satisfies the first Gale-Ryser conditions, i.e.,
d1 ≤ n− k and dk+1 ≤ k. Such a partition may or may not be bigraphic (see Example 4 in
Sect. 5). However, for a non-increasing sequence d that admits a well-behaved High-Low
partition (H, L), the BDR problem turns out to be solvable [4].

More explicitly, when d admits a well-behaved High-Low partition (H, L), it suffices to
test the (entire collection of) Gale-Ryser conditions on (H, L). The realizability of d is then
decided as follows.

If all the Gale-Ryser conditions are met, then (H, L) is a bigraphic degree partition, hence
d is a bigraphic degree sequence.
Conversely, if one or more of the Gale-Ryser conditions is violated for (H, L), then every
partition of d must violate one Gale-Ryser condition and d has no bigraphic degree
partition. Consequently, d itself is not a bigraphic degree sequence.

Relying on the adapted Havel-Hakimi theorem described in Sect. 2, and on the resulting
algorithm for computing a realizing bipartite graph given a bipartite degree partition, we
conclude the following.

▶ Theorem 19 ([4]). Let d be a degree sequence with a well-behaved High-Low partition. It
can be decided in polynomial time whether d is bigraphic or not. If d happens to be bigraphic,
a bipartite graph realizing d can be computed in polynomial time.

Hereafter, we examine degree sequences that have a balanced High-Low partition but
are not well-behaved. Our goal is to generate bipartite multigraphs with low maximum
multiplicity of parallel edges based on the High-Low partition.

In the following, let r be a positive integer, and let d be an r-graphic degree sequence
with High-Low partition HL(d) = (H, L) where H = (d1, . . . , dk) and L = (dk+1, . . . , dn),
for some integer k ∈ [1, n− 1]. We quantify the violation of the first Gale-Ryser conditions
with the following definitions. Let

tH(d) =
⌈

d1
n− k

⌉
and tL(d) =

⌈
dk+1

k

⌉
,

and define t(d) = max{tH(d), tL(d)}. (Note that sequence d has a well-behaved High-Low
partition if t(d) = 1.) First, we observe that tH(d) is bounded for r-graphic sequences.

▶ Lemma 20 ([4]). Let d be an r-graphic degree sequence with High-Low partition HL(d) =
(H, L). Then, tH(d) ≤ 2r.

The main result is the following.

▶ Theorem 21 ([4]). Let d be an r-graphic degree sequence with High-Low partition HL(d) =
(H, L) and let t = max{t(d), 2r}. Then, (H, L) is t-bigraphic.

Example 8 in Sect. 5 shows that the conclusion of Theorem 21 does not hold if the degree
sequence d is not r-graphic. Theorem 21 is complemented by an existential lower bound.
In [4], it is shown that there are degree sequences d with High-Low partition HL(d) such
that t(d) > 1, and d is not t′-bigraphic for any t′ < t(d).

For graphic degree sequences, we state the following result.

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:13

▶ Corollary 22 ([4]). Let d be a graphic degree sequence with High-Low partition (H, L) and
t = t(d).

(i) If t = 1, then (H, L) is 2-bigraphic.
(ii) If t > 1, then (H, L) is t-bigraphic.

In case there is a well-behaved High-Low partition, Theorem 19 implies the following.

▶ Corollary 23 ([4]). Let d be a graphic degree sequence with well-behaved High-Low partition
HL(d) = (H, L). Then, either

(i) (H, L) is bigraphic, or
(ii) d is not bigraphic and (H, L) is 2-bigraphic.

To close this section, we present bounds on tL(d) and tH(d) in case degree sequence d

is r-graphic or bigraphic. The next theorem establishes a bound on tL(d) for an r-graphic
sequence. (A bound on tH(d) is already shown with Lemma 20.)

▶ Theorem 24 ([4]). Let d be an r-graphic sequence with High-Low partition (H, L). Then,

tH(d) ≤ 2r, and tL(d) ≤
⌈

r(k + 1)
2

⌉
.

Examples 9 & 10 in Sect. 5 show that the bound of Theorem 24 is tight and that for
graphic sequences, tL(d) < tH(d) as well as tH(d) < tL(d) can occur.

Finally, the next theorem gives improved bounds for bigraphic degree sequences.

▶ Theorem 25 ([4]). Let d be a bigraphic sequence with High-Low partition HL(d). Then,

tH(d) ≤ 1, and tL(d) ≤
⌈

k + 2 + 1/k

4

⌉
.

4.2 Realizations using the Equal partition
We next consider degree sequences that are even, i.e, where each degree occurs an even
number of times. Let q be a positive integer, and let d be an even degree sequence consisting
of ni copies of the integer di for 1 ≤ i ≤ q where

∑q
i=1 ni = n. We adopt the notation

d = (dn1
1 , . . . , d

nq
q). As ni is even, for every 1 ≤ i ≤ q, the equal partition EQP (d) = (a, b)

where a = b = (dn1/2
1 , . . . , d

nq/2
q) is well-defined.

As mentioned earlier, a well-behaved equal partition does not seem to enable resolving the
BDR problem, as there are even sequences d with an equal partition EQP (d) = (a, b) that
satisfies the first Gale-Ryser conditions where (a, b) is not bigraphic but other partitions of d

are bigraphic (see Example 5 in Sect. 5). However, it is shown in [3] that if the sequence d is
graphic and even, then the equal partition is 2-bigraphic. In general, we have the following
result.

▶ Theorem 26 ([3]). Let d be an even and r-graphic degree sequence of length n with equal
partition EQP (d) = (a, b). Then, (a, b) is 2r-bigraphic.

5 Examples

We adopt the notation d = (dn1
1 , . . . , d

nq
q), where

∑q
i=1 ni = n, for a sequence consisting of

ni copies of the integer di for 1 ≤ i ≤ q.

SWAT 2022

1:14 On Realizing a Single Degree Sequence by a Bipartite Graph

▶ Example 1. Consider the sequence d = (62, 42, 26).
This sequence is even, so it has an equal partition. It also has a balanced High-Low partition,
as well as a third partition:

(i.) a = (6, 4, 23) and b = (6, 4, 23) (the equal partition),
(ii.) a′ = (62, 4) and b′ = (4, 26) (the High-Low partition),
(iii.) a′′ = (62, 22) and b′′ = (42, 24).

However, only the last partition, (a′′, b′′), is bigraphic.

▶ Example 2. Consider the (non-graphic) sequence d = (n − 1, n − 2, . . . , 3, 2, 1) for n

divisible by 4. Split d into length-4 subsequences

B1 = (1, 2, 3, 4), B2 = (5, 6, 7, 8), . . .

For each subsequence Bj = (x, x + 1, x + 2, x + 3) for x = 4(j − 1) + 1, it is possible to place
(x, x + 3) on one side of the partition and (x + 1, x + 2) on the other side. This yields 2n/4

different partitions of d.

▶ Example 3. Consider the graphic sequence d = (n, n, n− 1, n− 1, . . . , 2, 2, 1, 1) of length
2n, for n divisible by 4. Split d into length-8 subsequences

B1 = (1, 1, 2, 2, 3, 3, 4, 4), B2 = (5, 5, 6, 6, 7, 7, 8, 8), . . .

Each subsequence Bj = (x, x, x + 1, x + 1, x + 2, x + 2, x + 3, x + 3), for x = 4(j − 1) + 1, has
three partitions:

(i.) a = (x, x + 1, x + 2, x + 3) and b = (x, x + 1, x + 2, x + 3),
(ii.) a′ = (x, x, x + 3, x + 3) and b′ = (x + 1, x + 1, x + 2, x + 2),
(iii.) a′′ = (x + 1, x + 1, x + 2, x + 2) and b′′ = (x, x, x + 3, x + 3).

This yields 3n/4 different partitions of d.

▶ Example 4. Consider the sequence d = ((6m)m, (2m)5m+1, 12m).
This sequence has a well-behaved High-Low partition

H = ((6m)m, (2m)m+1), L = ((2m)4m, 12m),

but it is not bigraphic.

▶ Example 5. Consider the sequence d = ((k2)k, kk2
, 1k2).

Its High-Low partition

H = ((k2)k, kk/2), L = (kk2−k/2, 1k2
)

is bigraphic, while its equal partition

a = b = ((k2)k/2, kk2/2, 1k2/2)

is not.

▶ Example 6. Consider the sequence d = (kk, 1k2−2k).
Its equal partition

a = b = (kk/2, 1k2/2−k)

is bigraphic, while its High-Low partition

H = (kk−1), L = (k, 1k2−2k)

is not.

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:15

▶ Example 7. Consider the sequence d = (t2k) for positive integers t, k such that t > k.
This sequence has a unique partition

(a, a) ∈ BP(d) where a = (tk).

One can verify that

2(a1 · a1)∑
d

= t

k
≤

⌈
t

k

⌉
.

The partition (a, a) is ⌈t/k⌉-bigraphic but no better.

▶ Example 8. Consider the non-graphic sequence d = ((9m)m−1, 6m + 1, (3m)3m−1, 11) for
some positive integer m. Its High-Low partition is

H = ((9m)m−1, 6m + 1), L = ((3m)3m−1, 11).

We have tH(d) = tL(d) = 3, but the conditions of Theorem 4 for 3-bigraphic degree sequences
are violated. Specifically, the condition for index m− 1 requires

9m(m− 1) ≤ (3m− 1) · 3 · (m− 1) + 1,

which is false.

▶ Example 9. Consider the graphic sequence d = (6, 36) which has exactly one (High-Low)
partition (H, L) with

H = (6, 32), L = (34).

One can verify that tL(d) = 2 and tH(d) = 1.

▶ Example 10. Consider the degree sequence d′ = ((k(k+1)
2)k+1, 1

k(k+1)
2 (k−1)), for a positive

integer k. To see that d′ is graphic, observe that
∑

d′ is even, and that the (k + 1)th-EG
inequality holds (For such a block sequence this is sufficient, see, e.g., [30]). The (k +1)th-EG
inequality requires

(k(k + 1)/2) · (k + 1) ≤ k(k + 1) + (k(k + 1)/2) · (k − 1),

which trivially holds. Moreover, HL(d′) = (H ′, L′) where

H ′ = ((k(k + 1)
2)k), L′ = ((k(k + 1)

2), 1
k(k+1)

2 (k−1)).

Hence, |H ′| = k and dk+1 = k(k+1)
2 .

References
1 Patrick Adams and Yuri Nikolayevsky. Planar bipartite biregular degree sequences. Discr.

Math., 342:433–440, 2019.
2 Martin Aigner and Eberhard Triesch. Realizability and uniqueness in graphs. Discr. Math.,

136:3–20, 1994.
3 Amotz Bar-Noy, Toni Böhnlein, David Peleg, and Dror Rawitz. On realizing even degree

sequences by bipartite graphs. Unpublished manuscript, 2022.
4 Amotz Bar-Noy, Toni Böhnlein, David Peleg, and Dror Rawitz. On the role of high-low

partitions in realizing a degree sequence by a bipartite graph. Unpublished manuscript, 2022.

SWAT 2022

1:16 On Realizing a Single Degree Sequence by a Bipartite Graph

5 Richard Bellman. Notes on the theory of dynamic programming iv-maximization over discrete
sets. Naval Research Logistics Quarterly, 3(1-2):67–70, 1956.

6 Joseph K. Blitzstein and Persi Diaconis. A sequential importance sampling algorithm for
generating random graphs with prescribed degrees. Internet Mathematics, 6(4):489–522, 2011.

7 D. Burstein and J. Rubin. Sufficient conditions for graphicality of bidegree sequences. SIAM
J. Discr. Math., 31:50–62, 2017.

8 David Burstein and Jonathan Rubin. Sufficient conditions for graphicality of bidegree sequences.
SIAM Journal on Discrete Mathematics, 31(1):50–62, 2017.

9 A. A. Chernyak, Z. A. Chernyak, and R. I. Tyshkevich. On forcibly hereditary p-graphical
sequences. Discr. Math., 64:111–128, 1987.

10 Sheshayya A. Choudum. A simple proof of the Erdös-Gallai theorem on graph sequences.
Bull. Austral. Math. Soc., 33(1):67–70, 1991.

11 V Chungphaisan. Conditions for sequences to be r-graphic. Discr. Math., 7(1-2):31–39, 1974.
12 Brian Cloteaux. Fast sequential creation of random realizations of degree sequences. Internet

Mathematics, 12(3):205–219, 2016.
13 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2009.
14 Geir Dahl and Truls Flatberg. A remark concerning graphical sequences. Discr. Math.,

304(1-3):62–64, 2005.
15 Dóra Erdös, Rainer Gemulla, and Evimaria Terzi. Reconstructing graphs from neighborhood

data. ACM Trans. Knowledge Discovery from Data, 8(4):23:1–23:22, 2014.
16 Paul Erdös and Tibor Gallai. Graphs with prescribed degrees of vertices [hungarian]. Matem-

atikai Lapok, 11:264–274, 1960.
17 D. Gale. A theorem on flows in networks. Pacific J. Math., 7:1073–1082, 1957.
18 Gautam Gupta, Puneet Joshi, and Amitabha Tripathi. Graphic sequences of trees and a

problem of Frobenius. Czechoslovak Math. J., 57:49–52, 2007.
19 S. Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph

–I. SIAM J. Appl. Math., 10(3):496–506, 1962.
20 Peter L. Hammer, Toshihide Ibaraki, and Bruno Simeone. Threshold sequences. SIAM J.

Algebra. Discr., 2(1):39–49, 1981.
21 Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1:275–284,

1981.
22 V. Havel. A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat., 80:477–480,

1955.
23 Heather Hulett, Todd G Will, and Gerhard J Woeginger. Multigraph realizations of degree

sequences: Maximization is easy, minimization is hard. Oper. Res. Lett., 36(5):594–596, 2008.
24 P.J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961–968, 1957.
25 Daniel J Kleitman. Minimal number of multiple edges in realization of an incidence sequence

without loops. SIAM J. on Applied Math., 18(1):25–28, 1970.
26 Daniel J Kleitman and Da-Lun Wang. Algorithms for constructing graphs and digraphs with

given valences and factors. Discrete Mathematics, 6(1):79–88, 1973.
27 Manfred Krause. A simple proof of the gale-ryser theorem. The American Mathematical

Monthly, 103(4):335–337, 1996.
28 P. Marchioro, A. Morgana, R. Petreschi, and B. Simeone. Degree sequences of matrogenic

graphs. Discrete Mathematics, 51(1):47–61, 1984.
29 Milena Mihail and Nisheeth Vishnoi. On generating graphs with prescribed degree sequences

for complex network modeling applications. 3rd ARACNE, 2002.
30 Jeffrey W Miller. Reduced criteria for degree sequences. Discrete Mathematics, 313(4):550–562,

2013.
31 AB Owens and HM Trent. On determining minimal singularities for the realizations of an

incidence sequence. SIAM J. on Applied Math., 15(2):406–418, 1967.

A. Bar-Noy, T. Böhnlein, D. Peleg, and D. Rawitz 1:17

32 Alvin B Owens. On determining the minimum number of multiple edges for an incidence
sequence. SIAM J. on Applied Math., 18(1):238–240, 1970.

33 S. B. Rao. A survey of the theory of potentially p-graphic and forcibly p-graphic degree
sequences. In Combinatorics and graph theory, volume 885 of LNM, pages 417–440, 1981.

34 H.J. Ryser. Combinatorial properties of matrices of zeros and ones. Canad. J. Math., 9:371–377,
1957.

35 E. F. Schmeichel and S. L. Hakimi. On planar graphical degree sequences. SIAM J. Applied
Math., 32:598–609, 1977.

36 Gerard Sierksma and Han Hoogeveen. Seven criteria for integer sequences being graphic. J.
Graph Theory, 15(2):223–231, 1991.

37 Akutsu Tatsuya and Hiroshi Nagamochi. Comparison and enumeration of chemical graphs.
Computational and structural biotechnology, 5, 2013.

38 Amitabha Tripathi and Himanshu Tyagi. A simple criterion on degree sequences of graphs.
Discr. Appl. Math., 156(18):3513–3517, 2008.

39 Amitabha Tripathi, Sushmita Venugopalan, and Douglas B. West. A short constructive proof
of the Erdös-Gallai characterization of graphic lists. Discr. Math., 310(4):843–844, 2010.

40 Amitabha Tripathi and Sujith Vijay. A note on a theorem of Erdös & Gallai. Discr. Math.,
265(1-3):417–420, 2003.

41 R. I. Tyshkevich, A. A. Chernyak, and Z. A. Chernyak. Graphs and degree sequences: a
survey, I. Cybernetics, 23:734–745, 1987.

42 R. I. Tyshkevich, A. A. Chernyak, and Z. A. Chernyak. Graphs and degree sequences: a
survey, II. Cybernetics, 24:137–152, 1988.

43 R. I. Tyshkevich, A. A. Chernyak, and Z. A. Chernyak. Graphs and degree sequences: a
survey, III. Cybernetics, 24:539–548, 1988.

44 Regina Tyshkevich. Decomposition of graphical sequences and unigraphs. Discr. Math.,
220:201–238, 2000.

45 S.M. Ulam. A collection of mathematical problems. Wiley, 1960.
46 N.C. Wormald. Models of random regular graphs. Surveys in Combin., 267:239–298, 1999.
47 Igor E Zverovich and Vadim E Zverovich. Contributions to the theory of graphic sequences.

Discrete Mathematics, 105(1-3):293–303, 1992.
48 Igor E. Zverovich and Vadim E. Zverovich. Contributions to the theory of graphic sequences.

Discr. Math., 105(1-3):293–303, 1992.

SWAT 2022

Time, Clocks and Efficiency of Population
Protocols
Leszek Gąsieniec1 # Ñ

University of Liverpool, UK

Grzegorz Stachowiak #

University of Wrocław, Poland

Abstract
The model of population protocols is used to study distributed processes based on pairwise interactions
between simple anonymous agents drawn from a large population of size n. The order in which
agents meet in pairs is determined by the random scheduler, s.t., each consecutive pair is chosen
uniformly at random. After each interaction the state of the relevant agents are amended according
to the predefined transition function (the actual code of the algorithm) which governs the considered
process. The state space of agents is often fixed and the size n is not known in advance, i.e., not
hard-coded in the transition function. We assume that a population protocol starts in the predefined
initial configuration of agents’ states representing the input. And if successful, the protocol stabilises
in a final configuration of states forming the output representing the solution to the considered
problem.

The time complexity of a population protocol refers to the number of interactions required to
stabilise this protocol in a final configuration. We also define parallel time as the time complexity
divided by n. Note that the parallel time of the system and the expected local time of each agent,
i.e., the number of interactions observed by each agent, are correlated. Several mechanisms, known
as phase clocks, have been developed to measure parallel time more accurately than counting local
interactions. Most of the clocks target counting Θ(log n) parallel time required to fully synchronise
all agents in the population. There are leader (and junta) based phase clocks which utilise a
fixed number of states [2, 4]. This type of clocks allows also counting any poly-logarithmic time
while preserving fix state utilisation. The other type refers to leaderless clocks utilising Θ(log n)
states [1, 5]. This type allows approximate counting of parallel time as fixed resolution clocks [5] or
oscillators [1]. Another clock type introduced recently in [3] enables counting Θ(n log n) parallel
time utilising a fixed number of states and either leaders or connections in the network constructor
model.

We also discuss parallel efficiency of population protocols referring to protocols operating in
Θ(poly log n) parallel time, we propose extensions of the population protocol model leading to further
improvement in state and time utilisation, and we state some open problems.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Population protocols, phase clocks, oscillators, parallel time and efficiency

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.2

Category Invited Paper

References
1 D. Alistarh, J. Aspnes, and R. Gelashvili. Space-optimal majority in population protocols.

In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 2221–2239. SIAM, 2018.

2 D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a
leader. Distributed Comput., 21(3):183–199, 2008.

1 Corresponding author

© Leszek Gąsieniec and Grzegorz Stachowiak;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 2; pp. 2:1–2:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.a.gasieniec@liverpool.ac.uk
https://www.csc.liv.ac.uk/~leszek/
https://orcid.org/0000-0003-1809-9814
mailto:gst@cs.uni.wroc.pl
https://orcid.org/0000-0003-0463-3676
https://doi.org/10.4230/LIPIcs.SWAT.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Time, Clocks and Efficiency of Population Protocols

3 L. Gąsieniec, P.G. Spirakis, and G. Stachowiak. New clocks, fast line formation and self-
replication population protocols. CoRR, abs/2111.10822, 2021. arXiv:2111.10822.

4 L. Gąsieniec and G. Stachowiak. Enhanced phase clocks, population protocols, and fast space
optimal leader election. J. ACM, 68(1):2:1–2:21, 2021.

5 D. Doty, M. Eftekhari, L. Gąsieniec, E.E. Severson, P. Uznanski, and G. Stachowiak. A time
and space optimal stable population protocol solving exact majority. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, pages 1044–1055. IEEE, 2021.

http://arxiv.org/abs/2111.10822

Reconstructing the Tree of Life (Fitting Distances
by Tree Metrics)
Mikkel Thorup #

BARC, Department of Computer Science, University of Copenhagen, Denmark

Abstract
We consider the numerical taxonomy problem of fitting an S × S distance matrix D with a tree
metric T . Here T is a weighted tree spanning S where the path lengths in T induce a metric on S.
If there is a tree metric matching D exactly, then it is easily found. If there is no exact match, then
for some k, we want to minimize the Lk norm of the errors, that is, pick T so as to minimize

∥D − T ∥k =

(∑
i,j∈S

|D(i, j) − T (i, j)|k
)1/k

.

This problem was raised in biology in the 1960s for k = 1, 2. The biological interpretation is that
T represents a possible evolution behind the species in S matching some measured distances in D.
Sometimes, it is required that T is an ultrametric, meaning that all species are at the same distance
from the root.

An evolutionary tree induces a hierarchical classification of species and this is not just tied to
biology. Medicine, ecology and linguistics are just some of the fields where this concept appears,
and it is even an integral part of machine learning and data science. Fundamentally, if we can
approximate distances with a tree, then they are much easier to reason about: many questions that
are NP-hard for general metrics can be answered in linear time on tree metrics. In fact, humans
have appreciated hierarchical classifications at least since Plato and Aristotle (350 BC).

The numerical taxonomy problem is important in practice and many heuristics have been
proposed. In this talk we will review the basic algorithmic theory, results and techniques, for the
problem, including the most recent result from FOCS’21 [3]. They paint a varied landscape with big
differences between different moments, and with some very nice open problems remaining.

At STOC’93, Farach, Kannan, and Warnow [4] proved that under L∞, we can find the optimal
ultrametric. Almost all other variants of the problem are APX-hard.
At SODA’96, Agarwala, Bafna, Farach, Paterson, and Thorup [1] showed that for any norm
Lk, k ≥ 1, if the best ultrametric can be α-approximated, then the best tree metric can be
3α-approximated. In particular, this implied a 3-approximation for tree metrics under L∞.
At FOCS’05, Ailon and Charikar [2] showed that for any Lk, k ≥ 1, we can get an approximation
factor of O(((log n)(log log n))1/k) for both tree and ultrametrics. Their paper was focused on
the L1 norm, and they wrote “Determining whether an O(1) approximation can be obtained is a
fascinating question”.
At FOCS’21, Cohen-Addad, Das, Kipouridis, Parotsidis, and Thorup [3] showed that indeed a
constant factor is possible for L1 for both tree and ultrametrics. This uses the special structure
of L1 in relation to hierarchies.
The status of Lk is wide open for 1 < k < ∞. All we know is that the approximation factor is
between Ω(1) and O((log n)(log log n)).

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Approximation algorithms analysis

Keywords and phrases Numerical taxonomy, computational phylogenetics, hierarchical clustering

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.3

Category Invited Paper

Funding Mikkel Thorup: Supported by Investigator Grant 16582, Basic Algorithms Research
Copenhagen (BARC), from the VILLUM Foundation.

© Mikkel Thorup;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 3; pp. 3:1–3:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mikkel2thorup@gmail.com
https://orcid.org/0000-0001-5237-1709
https://doi.org/10.4230/LIPIcs.SWAT.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Reconstructing the Tree of Life

References
1 Richa Agarwala, Vineet Bafna, Martin Farach, Mike Paterson, and Mikkel Thorup. On the

approximability of numerical taxonomy (fitting distances by tree metrics). SIAM J. Comput.,
28(3):1073–1085, 1999. Announced at SODA 1996.

2 Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny.
SIAM J. Comput., 40(5):1275–1291, 2011. Announced at FOCS 2005.

3 Vincent Cohen-Addad, Debarati Das, Evangelos Kipouridis, Nikos Parotsidis, and Mikkel
Thorup. Fitting distances by tree metrics minimizing the total error within a constant factor.
In Proc. 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
468–479, 2021. doi:10.1109/FOCS52979.2021.00054.

4 Martin Farach, Sampath Kannan, and Tandy J. Warnow. A robust model for finding optimal
evolutionary trees. Algorithmica, 13(1/2):155–179, 1995. Announced at STOC 1993.

https://doi.org/10.1109/FOCS52979.2021.00054

Compacting Squares: Input-Sensitive In-Place
Reconfiguration of Sliding Squares
Hugo A. Akitaya #

University of Massachusetts Lowell, MA, USA
Erik D. Demaine #

Massachusetts Institute of Technology,
Cambridge, MA, USA

Matias Korman #

Siemens Electronic Design Automation,
Wilsonville, OR, USA

Irina Kostitsyna #

Eindhoven University of Technology,
The Netherlands

Irene Parada #

Technical University of Denmark, Lyngby,
Denmark

Willem Sonke #

Eindhoven University of Technology,
The Netherlands

Bettina Speckmann #

Eindhoven University of Technology,
The Netherlands

Ryuhei Uehara #

Japan Advanced Institute of Science and
Technology, Ishikawa, Japan

Jules Wulms #

Technische Universität Wien, Austria

Abstract
Edge-connected configurations of square modules, which can reconfigure through so-called sliding
moves, are a well-established theoretical model for modular robots in two dimensions. Dumitrescu
and Pach [Graphs and Combinatorics, 2006] proved that it is always possible to reconfigure one
edge-connected configuration of n squares into any other using at most O(n2) sliding moves, while
keeping the configuration connected at all times.

For certain pairs of configurations, reconfiguration may require Ω(n2) sliding moves. However,
significantly fewer moves may be sufficient. We prove that it is NP-hard to minimize the number
of sliding moves for a given pair of edge-connected configurations. On the positive side we present
Gather&Compact, an input-sensitive in-place algorithm that requires only O(P̄ n) sliding moves to
transform one configuration into the other, where P̄ is the maximum perimeter of the two bounding
boxes. The squares move within the bounding boxes only, with the exception of at most one square
at a time which may move through the positions adjacent to the bounding boxes. The O(P̄ n) bound
never exceeds O(n2), and is optimal (up to constant factors) among all bounds parameterized by
just n and P̄ . Our algorithm is built on the basic principle that well-connected components of
modular robots can be transformed efficiently. Hence we iteratively increase the connectivity within
a configuration, to finally arrive at a single solid xy-monotone component.

We implemented Gather&Compact and compared it experimentally to the in-place modification
by Moreno and Sacristán [EuroCG 2020] of the Dumitrescu and Pach algorithm (MSDP). Our
experiments show that Gather&Compact consistently outperforms MSDP by a significant margin,
on all types of square configurations.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Sliding cubes, Reconfiguration, Modular robots, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.4

Related Version Full Version: https://arxiv.org/abs/2105.07997

Supplementary Material Software: https://alga.win.tue.nl/software/compacting-squares/

Funding Irene Parada was supported by Independent Research Fund Denmark grant 2020-2023 (9131-
00044B) “Dynamic Network Analysis” and Jules Wulms was supported partially by the Austrian
Science Fund (FWF) under grant P31119 and partially by the Vienna Science and Technology Fund
(WWTF) under grant ICT19-035.

© Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke,
Bettina Speckmann, Ryuhei Uehara, and Jules Wulms;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 4; pp. 4:1–4:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo_akitaya@uml.edu
https://orcid.org/0000-0002-6827-2200
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:matias_korman@mentor.com
mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:irmde@dtu.dk
https://orcid.org/0000-0003-2401-8670
mailto:w.m.sonke@tue.nl
https://orcid.org/0000-0001-9553-7385
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
mailto:uehara@jaist.ac.jp
https://orcid.org/0000-0003-0895-3765
mailto:jwulms@ac.tuwien.ac.at
https://orcid.org/0000-0002-9314-8260
https://doi.org/10.4230/LIPIcs.SWAT.2022.4
https://arxiv.org/abs/2105.07997
https://alga.win.tue.nl/software/compacting-squares/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

Acknowledgements Parts of this work were initiated at the 5th Workshop on Applied Geometric
Algorithms (AGA 2020) and at the 2nd Virtual Workshop on Computational Geometry. We thank
all participants for discussions and an inspiring and productive atmosphere. We thank Fabian Klute
for discussions on the computational experiments.

1 Introduction

Self-reconfigurable modular robots [20] promise adaptive, robust, scalable, and cheap solutions
in a wide range of technological areas, from aerospace engineering to medicine. Modular
robots are envisioned to consist of identical building blocks arranged in a lattice and are
intended to be highly versatile, due to their ability to reconfigure into arbitrary forms. An
actual realization of this vision depends on fast and reliable reconfiguration algorithms, which
hence have become an area of growing interest.

One of the best-studied paradigms of modular robots is the sliding cube model [11]. In
this model, a robot configuration is a face-connected set of cubic modules on the cubic grid.
The cubes can perform two types of (sliding) moves, illustrated in two dimensions in Figure 1.

(a) (b)

Figure 1 Moves admitted by the sliding cube model: (a) slide, (b) convex transition.

First, a module can slide along two face-adjacent cubes to reach a face-adjacent empty grid
cell. Second, a module m can make a convex transition around a module m′ to end in an
edge-adjacent empty grid cell. For this second move to be feasible, also the grid cell (not
occupied by m′) face-adjacent to both the starting and the ending positions must be empty.
Moves need to maintain connectivity, that is, a cube c is movable only if the configuration
without c would still be face-connected. There are several prototypes of modular robots
that realize the sliding cube model in 2D [6, 9, 12]. Units of multiple other prototypes,
including expandable and contractible units [17, 18] as well as large classes of modular
robots [4, 16], can be arranged into cubic meta-modules consisting of several units such that
the meta-module can perform slide and convex transition moves. Thus, algorithmic solutions
in the sliding cube model can be applied to modular robot systems realizing other models.

Another well-studied model for modular robots is the pivoting cube model [7, 19]. This
model strengthens the free-space requirements for each move and has also been realized
by some existing prototypes. Previous work [2] showed very recently that in the pivoting
cube model in two dimensions it is PSPACE-hard to decide whether it is possible at all to
reconfigure one configuration into the other. However, if one allows six auxiliary squares
in addition to the input configuration, then there is a worst-case optimal reconfiguration
algorithm [1]. Other models for squares relax the face-connectivity condition [8], restrict or
enlarge the set of allowed moves [13], or relax the free-space requirements [5].

In this paper we study the reconfiguration problem for the sliding cube model in two
dimensions (the sliding square model). Given two configurations of n unlabeled squares (each
describing the relative positions of squares), we compute a short sequence of moves that
transforms one configuration into the other, while preserving edge-connectivity at all times.
Dumitrescu and Pach [10] described an algorithm which transforms any two configurations
of n squares into each other using O(n2) moves. This bound is worst-case optimal: there are
pairs of configurations (a horizontal and a vertical line) which require Ω(n2) moves for any
transformation. However, for other pairs of configurations, significantly fewer moves suffice.

H. A. Akitaya et al. 4:3

We show in Section 2 that it is NP-hard to minimize the number of moves for a given
pair of edge-connected configurations. Due to the O(n2) upper bound on the number of
moves, the corresponding decision problem is NP-complete. In Section 3, we present an
input-sensitive and in-place algorithm for self-reconfiguration, based on the “compact-and-
deploy” approach. Using the basic principle that well-connected components of modular
robots can be transformed efficiently, our algorithm iteratively increases the connectivity
within a configuration, to arrive at a single solid xy-monotone component, before deploying it
into the target configuration. Hence, our algorithm builds the target configuration in such a
way that the lower left corner of the bounding boxes of both configurations are aligned. Our
algorithm is input-sensitive: it requires only O(P̄ n) moves to transform one configuration
into the other, where P̄ is the maximum perimeter of the two bounding boxes. Our algorithm
is also in-place: only one square at a time is allowed to move outside the respective bounding
box, and then only through cells vertex-adjacent to the bounding box.

x

y

Lower bound. Our O(P̄ n) bound is optimal (up to constant factors) among all bounds
parameterized by just n and P̄ . Given P̄ and n, consider a source and target configuration
that each consist of a rectangle filled with squares, with dimensions x × y/2 and x/2 × y,
respectively, such that n = x/2 · y = x · y/2 and P̄ = Θ(x + y). This is satisfied by choosing
x = Θ(P̄) and y = Θ(n/P̄). Without loss of generality assume x > y, so that P̄ = Θ(x).
Given the source configuration, the target configuration may be built anywhere in the grid,
and for such a given target (configuration) position, we call all grid cells that should be filled
with squares target cells. For any target position, every source square s that is not in a target
cell requires at least as many moves as the L∞-distance ds (along the grid) between s and
its closest target cell. Given the set S of source squares not on target cells, the configuration
then requires at least

∑
s∈S ds moves. For any target position, S contains at least an x/4 × y

0

3.000 9.000 12.0005.642 15.441

20.000 60.000 80.00040.000 92.074

(a)

(b)

move

Figure 2 A spiral configuration in a 40 × 40 bounding box. (a) Gather&Compact: gathering
done after 5.642 moves; total 15.441 moves. (b) MSDP [10, 15]: total 92.074 moves.
Video: https://tinyurl.com/algaspiral.

SWAT 2022

https://tinyurl.com/algaspiral

4:4 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

rectangle R of squares, either to the left or to the right of the vertical strip occupied by
the target configuration. Each robot r in the i-th column of R has dr ≥ i, hence the total
required movement is at least

∑x/4
i=1 iy = Θ((x/4)2y) = Θ(xn) = Θ(P̄ n).

Comparison with Dumitrescu and Pach. The algorithm by Dumitrescu and Pach [10]
constructs a canonical shape from both input configurations. In the original paper this
canonical shape is a strip that extends to the right of a rightmost square and hence, necessarily,
their algorithm always requires Ω(n2) moves. Moreno and Sacristán [14, 15] modify the
algorithm of Dumitrescu and Pach to be in-place; their canonical shape is a rectangle within
the bounding box of the input. For either type of canonical shape their algorithm roughly
proceeds as follows. If there is a square which is a leaf in the edge-adjacency graph, then
the algorithm attempts to move this square along the boundary towards the canonical
configuration. If this leaf square “gets stuck” on the way, and hence increases its connectivity,
or if there is no leaf in the first place, then the algorithm identifies a 2-connected square
on the outside of the configuration which it can move towards the canonical configuration.
Hence, if configurations are tree-like (such as the spiral in Figure 2), then each square moves
along all remaining squares, for a total of Ω(n2) moves (see Figure 2 bottom row). However,
the width and the height of this spiral configuration is O(

√
n). Our algorithm gathers Θ(

√
n)

squares from the end of the spiral and then compacts in a total of O(n
√

n) moves.
The in-place modification by Moreno and Sacristán of Dumitrescu and Pach (henceforth

MSDP) has the potential to use fewer than Θ(n2) moves in practice. In Section 4 we compare
our Gather&Compact to MSDP experimentally; Gather&Compact consistently outperforms
MSDP by a significant margin, on all types of square configurations.

2 Hardness of optimal reconfiguration

In this section we sketch the proof of Theorem 1, details can be found in the full version [3].

▶ Theorem 1. Let C and C′ be two configurations of n squares each and let k be a positive
integer. It is NP-complete to determine whether we can transform C into C′ using at most k

moves while maintaining edge-connectivity at all times.

We provide a reduction from Planar Monotone 3SAT. In particular, we start from a
rectilinear drawing of a planar monotone 3SAT instance C with l variables and m clauses
(see Figure 3). We create a problem instance of the reconfiguration problem whose size is
polynomial in l and m; we show that C can be satisfied if and only if the corresponding
reconfiguration problem can be solved in at most 66m + 24l moves.

We replace each variable with a variable gadget, highlighted by an orange-shaded area
in Figure 4 and summarized in Figure 5a. Consecutive variable gadgets are connected by
a horizontal line of squares forming a central path of cycles through all variable gadgets
(pink squares). More precisely, the gadget associated with variable xi has ki O-shaped cycles
in the path of cycles, where ki is the number of times that the variable xi appears in C.
Each O-shaped cycle has two prongs (yellow squares). The spacing between gadgets is large
enough for different variable gadgets not to interact in an optimal reconfiguration process.

The source and target configurations in the variable gadgets are very similar. The only
difference is that the positions marked with × in Figure 5a must be emptied and the positions
marked with ◦ must be occupied. Using an earth movers argument one can argue that a
square must be transferred from the right of the gadget to the left, and the minimum number
of moves required to do so is the horizontal distance between the positions, in this case

H. A. Akitaya et al. 4:5

20ki + 20. There are two paths that achieve this bound, namely a path along the top (shown
in Figure 5a) or one along the bottom. These correspond to setting the variable to true or
false, respectively. The remaining required changes need four additional moves.

▶ Lemma 2. At least 20ki + 24 moves are necessary to reconfigure the variable gadget xi.
Moreover, this number of moves can be achieved only by moving one of the right × squares to
the left ◦ position at the same height, following the path shown in Figure 4 or the equivalent
path connecting the other × and ◦ pair along the bottom.

Lemma 2 shows that to reconfigure using as few moves as possible we must transfer one
of the two × squares on the right to a ◦ position on the left. During the process, the ×
square creates cycles involving the central path of cycles and either all upper or lower prongs.

The clause gadget mainly consists of a set of squares forming a pitchfork (⋔) shape (blue
squares in Figure 5c). The pitchfork has three tines consisting of two squares each. Each
tine corresponds to a literal in the clause. We add a path of squares connecting the ⋔ shape
to the central path of cycles so that the source configuration is connected (gray squares).
Most squares are in both the source and the target configurations. The only exception is one
square (marked with ×) that wants to be transferred to a nearby position (marked with ◦).
However, the move is initially not possible as it would disconnect the ⋔ part.

The wire gadgets are connected to the variable gadgets and part of them is placed very
close to each of the tines of a pitchfork. A wire gadget is a path of squares that form a ⊓
shape for positive literals and a ⊔ shape for negative ones (see Figure 5b, green squares).
Each wire gadget is attached to a different prong of the corresponding variable gadget. This
associates each literal in a clause to a wire gadget and a prong (note that there can be spare
prongs). The goal is to allow creating a different connection between the ⋔ of a clause gadget
and the central path of cycles in two moves as long as the prong is in a cycle.

To avoid interference between different gadgets we place the clause gadgets at different
heights and make the vertical separations between gadgets large enough.

▶ Lemma 3. At least six moves are necessary to reconfigure a clause gadget, and six moves
suffice if and only if a prong associated to a literal in the clause is part of a cycle.

The six moves required by a clause gadget are in fact additional to the 20ki + 24 moves
required to reconfigure the gadget for variable xi and to the six moves required by any other
clause gadget. If we allow only the minimum number of moves per gadget, Lemma 2 forces

x1 x2 x3 x5

x1 ∨ x3 ∨ x5

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x4 ∨ ¬x6

¬x5 ∨ ¬x5 ∨ ¬x6

x6x4

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x1 ∨ x5 ∨ x6

Figure 3 Rectilinear drawing of a Planar Monotone 3SAT instance. Our reduction attaches
the variable gadgets horizontally and the clause gadgets next to the rightmost literal in the clause.

SWAT 2022

4:6 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

Figure 4 An overview of the reduction. (Background colors match Figure 3).

that in each variable gadget either the upper or the lower prongs become part of cycles.
Moreover, Lemma 3 requires that for each clause there is a prong associated to a literal in
the clause that becomes part of a cycle as part of the reconfiguration of the variable gadgets.
This implies that if a reconfiguration sequence exists, the 3SAT instance must be satisfiable.
In the other direction, if the 3SAT instance is satisfiable, then we show how to order the
moves carefully to reconfigure with the minimum number of moves required.

▶ Lemma 4. A Planar Monotone 3SAT instance can be solved if and only if the
corresponding reconfiguration problem instance can be solved using 66m + 24l moves.

3 Input-sensitive in-place algorithm

To describe our input-sensitive reconfiguration algorithm, we first need to introduce the
following definitions and notations. Let C be an edge-adjacent configuration of squares on
the rectangular grid and let G be the edge-adjacency graph of C. In G each node represents
a square and two nodes are connected by an edge, if the corresponding squares are edge-
adjacent. With slight abuse of notation we identify the squares and the nodes in the graph.
A square s ∈ C is a cut square if C \ {s} is disconnected. Otherwise, s is a stable square.

A configuration C is xy-monotone if C contains the entire leftmost column and bottommost
row of C’s bounding box, and each row or column of C forms a single contiguous set of
squares. A chunk is any inclusion-maximal set of squares in C enclosed by (and including) a
simple cycle σ in G of length at least 4 (its boundary cycle), plus any squares with degree 1
in G edge-adjacent to σ (its loose squares). A chunk constitutes a well-connected component
that can be efficiently transformed towards an xy-monotone configuration.

(a)

(b) (c)

Figure 5 (a) Variable gadget. (b) Wire gadget. (c) Clause gadget.

H. A. Akitaya et al. 4:7

(a) (b)

link square

chunk square

loose square

st
ab
le

cu
t

connector

Figure 6 (a) A configuration C. (b) The corresponding component tree T .

A link is a connected component of squares which are not in any chunk. A square
is a connector if it is a chunk square edge-adjacent to a square in a link or in another
non-overlapping chunk, or if it is the single overlapping square of two chunks. By definition a
connector is always a cut square. The size of a chunk C is the number of squares contained
in C (which includes its boundary cycle and any loose squares).

Figure 6a shows an example configuration with its chunks, links, connectors, and
cut / stable squares marked. Note that a square can be part of two chunks simultane-
ously, in which case it must be a connector (for example, see the leftmost connector in
Figure 6a). A chunk can contain both cut and stable squares.

The component tree T of C has a vertex for each chunk / link and an edge (u, v) iff the
chunks / links represented by u and v have edge-adjacent squares or share a square (when
chunks are adjacent), see Figure 6b. The component containing the leftmost square in the
bottom row of C, the root square, is the root of T . Chunks in leaves of T we call leaf chunks.

A hole in C is a finite maximal vertex-connected set of empty grid cells. The infinite
vertex-connected set of empty grid cells is the outside. If a chunk C encloses a hole in C,
we say that C is fragile. Otherwise, we say that C is solid. The boundary of C is the set of
squares vertex-adjacent to any grid cell on the outside. The boundary of a hole H is the
set of squares vertex-adjacent to any grid cell in H. Note that the boundary of a hole is
edge-connected. We can construct T in O(n) time by walking along the boundary of C.

Consider now the bounding box B of C on the square grid. We refer to the bottommost
leftmost grid cell inside B as the origin. Let P be the perimeter of B, then any square in C
can be connected to the origin by an xy-monotone path of at most P/2 squares.

w

nw n

ssw se

e

ne

y

x

Let c = (x, y) be a grid cell. We use compass directions (n, ne, e, etc.) to indicate
neighbors of c. When we use grid coordinates, we assume the usual directions (the x-
axis increases towards e and the y-axis increases towards n, so the n-neighbor of c is
(x, y + 1)). Similarly, we indicate slide moves using compass directions (‘a w-move’) and
convex transitions using a sequence of two compass directions (‘a ws-move’: a movement
toward w followed by a movement towards s).

SWAT 2022

4:8 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

Algorithmic outline. In the first phase of our algorithm we ensure that the leaves of the
component tree T are sufficiently large and well-connected. Specifically, we gather squares
from the leaves of T until each leaf is a chunk of size at least P . In Section 3.1 we explain
how to grow chunks using at most O(P) moves per square that was moved. During this
process, the final position of each square is chosen inside bounding box B, but squares can
move through the layer of grid cells adjacent to B.

After gathering, all leaves are heavy chunks of size at least P . Our goal is now to make
each leaf chunk contain the origin, while ensuring that all squares remain part of their chunk.
A heavy leaf chunk C contains a sufficient number of squares to be transformed into a chunk
containing both the connector of C and the origin: we can connect the connector with the
origin by an xy-monotone path of at most P/2 squares; two such paths, which are disjoint,
form a new boundary cycle for C. We do not explicitly construct these two paths, but instead
we compact the configuration by filling holes and using lexicographically monotone movement
towards the origin for squares in heavy leaf chunks. In Section 3.2 we explain the details of
the compaction algorithm and prove that it leaves us with a solid xy-monotone component.

During compaction each square in a leaf chunk makes only lexicographic monotone moves
towards the origin while staying inside B: s- and w-moves (slides), as well as sw-, ws-,
nw-, and wn-moves (convex transitions). In some cases, a square in the leftmost column or
bottom row can exit B, and move along the bounding box to enter the same column/row
again closer to the origin. This is the only time a non-lexicographic monotone move is used,
and every square can perform it at most O(P) times. Hence compacting takes O(Pn) moves.

When compacting, every (heavy) leaf chunk will eventually contain a square at the
origin. This means that the whole configuration becomes a single chunk, as all leaves of
the component tree have merged into a single component. Therefore, once compacting has
finished we arrive at an xy-monotone configuration that fits inside B. If at any point during
this process the configuration becomes xy-monotone, then we simply stop. In particular, if
the configuration is xy-monotone at the start, for example squares in only a single row or
column, then we do not have to gather or compact, even though there are no heavy chunks.
See the top row of Figure 2 for a visual impression of our algorithm.

In the special case that the input configuration C contains less than P squares, we first
ensure that C contains the origin and then execute the gathering and compaction as before.
The number of moves is trivially bounded by O(Pn) = O(P 2), see Section 3.4.

Finally, in Section 3.3 we show how to convert any xy-monotone configuration into a
different xy-monotone configuration with at most O(P̄ n) moves, where P̄ is the maximum
perimeter of the bounding boxes of source and target configurations. Thus, since all moves are
reversible, we can transform the source into the target configuration via this transformation.

▶ Theorem 5. Let C and C′ be two configurations of n squares each, let P and P ′ denote the
perimeters of their respective bounding boxes, and let P̄ = max{P, P ′}. We can transform C
into C′ using at most O(P̄ n) moves while maintaining edge-connectivity at all times.

Proof. For any two configurations C and C′ of n squares each, we can apply gathering and
compacting to find xy-monotone configurations M in O(Pn) and M ′ in O(P ′n) moves, for C
and C′ respectively. If we want to transform C into C′, we first gather and compact C into M ,
transform M into M ′ in O(P̄ n) moves, and proceed by reversing the sequence of steps for C′

to get configuration C′. In Sections 3.1, 3.2 and 3.3 we show that gathering, compacting and
transforming xy-monotone configurations require the appropriate number of moves, such
that the total number of moves is O(Pn + P̄ n + P ′n) = O(P̄ n). ◀

H. A. Akitaya et al. 4:9

c
b

s

e2 e1

a

s

a

e2 e1

c

b

s

e2 e1

a

(a) (b) (c)

Figure 7 Light square s (green); filling cells e1 and e2 makes s part of a chunk; a stable square
a (dark grey) moves towards e1 along the boundary. (a) a reaches e1. (b) square b (brown) part
of a component outside of D, moving a to c creates a chunk containing s. (c) square b part of a
component in D, moving a to c creates a hole; its inner boundary will not be traversed again.

3.1 Gathering
In this section we show how to gather squares from the leaves of the component tree T until
we create a chunk of size at least P that is a leaf of T . In the following, let s be a connector
or a cut square in a link. By definition, s lies on the boundary of C. Since s is a cut square,
removing s from C results in at least two connected components. One of these components
contains the root of T . We say that the other (up to three) components are descendants of s.
Let D be the set of squares in the descendant components of s. We say that the capacity
of s is |D|, and that s is light if its capacity is less than P and heavy otherwise.

▶ Lemma 6. Let s be a light square with descendant squares D. Then s can be made part of
a chunk with a sequence of O(P) moves by squares in D. This procedure is in-place.

Proof. Observe that there exist up to two empty cells e1 (and e2) neighboring s, such that
moving squares there results in a chunk component containing s (see Figure 7). Cell e1 (and
e2) can be chosen such that they lie inside bounding box B: these cells must exist since
always at least three neighboring cells are inside B, unless B is a single row/column and the
configuration was already xy-monotone. If such cells are already occupied by squares then s

is already in a chunk. We argue that we can move squares from the descendant components
of s into these empty cells with at most O(P) moves. Once this is accomplished, we repeat
the process in the descendant components, for the next light square of maximal capacity,
until no light squares remain in the component tree below the chunk containing s.

Let D′ ⊆ D be a subset of boundary squares in the descendants of s of the subconfiguration
D ∪ {s}. Select an arbitrary stable square a ∈ D′. Such a square exists because of the
following: if there is a link component in D that is a leaf in the component tree, then its
degree-1 node is stable; and if there is a chunk component in D that is a leaf in the component
tree, then an extremal square of the chunk in one of the ne, nw, se, or sw directions is
stable (only one of them can be a connector square).

Consider moving a along the boundary of D towards e1. Let Ea be the set of cells that a

needs to cross to reach e1. If Ea is empty, then we simply move a to e1 (see Figure 7a), and
repeat the procedure for e2 (if it exists). In this case, a takes O(P) moves to get to e1, since
a can take a simple path along the at most P descendants in D.

Now consider the case where Ea is not empty. Let b be the first square in Ea on the
way from a to e1; let c be the square in Ea that is just before and edge-adjacent to b. As
b is not part of the boundary along which the path from a to e1 is considered, it must be
vertex-adjacent to a square that is on that part of the boundary.

SWAT 2022

4:10 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

There can be two cases: either b ̸∈ D or b ∈ D. In the first case, moving a to c merges
a component in D with some component outside of D (see Figure 7b). Thus, a chunk is
created that contains s, resulting in s no longer being a light square.

In the second case, when b ∈ D, moving a to c creates a chunk within D (see Figure 7c). In
this case we select another arbitrary stable square a′ in the new subconfiguration D∪{s, c}\a,
and repeat the procedure. Observe that the empty squares traversed by a are now part of a
hole in the new chunk. Thus the path from a′ to e1 does not overlap with the path taken by
a. Let {a0, a1, a2, . . . } be the sequence of such stable squares chosen by our algorithm as
candidates to be moved to e1. For any square ai, its path along the boundary to e1 does
not overlap with any of the cells traversed by all aj with j < i. Thus, there is some k such
that ak either reaches e1, or it merges the components within and outside of D into a chunk
containing s. The total number of empty cells traversed by all squares ai (0 ≤ i ≤ k) is O(P).

We repeat the above procedure to fill e2. Note that the path taken by a (and a′) may
not always be inside bounding box B. When this path exits B, it will always stay adjacent
to cells in C, and hence it will use only the single row/column of cells adjacent to B. ◀

Using the procedure described in Lemma 6, we can iteratively reduce the number of light
squares to obtain a component tree where all leaves are chunks of size at least P : any light
square with capacity P − 1 will form a chunk of size P with all its descendants.

▶ Lemma 7. An in-place reconfiguration of O(Pn) moves exists, which ensures that all
leaves in the component tree are chunks of size at least P .

Proof. By Lemma 6, we can make a light square s part of a chunk in O(P) moves by moving
cubes from D, the set of descendants of s. This in-place process creates new light squares
only if removal of a square a breaks a cycle in D. Thus, every new light square is part of D.

We repeat the procedure, selecting a light square of maximal capacity at every step.
Overall, a square can be light at most once in the process. Thus, after O(Pn) moves no light
squares remain, and all the leaves in the component tree are chunks of size at least P . Note
that, while the root square always has capacity n − 1, an adjacent square can have capacity
2 ≤ |D| ≤ P , and the resulting chunk will be the root component, either because the root
square is on the boundary cycle, or is a loose square. In case the adjacent square is too light,
namely |D| < 2, then the root component may stay a link. ◀

3.2 Compacting
After the gathering phase, each leaf of the component tree T is a heavy chunk, that is,
each leaf is a chunk of size at least P . In this section, we describe how we compact the
configuration in order to turn it into a left-aligned histogram containing the origin. A left
aligned histogram has a vertical base, and extends only rightward. Our procedure uses three
types of moves: LM-moves, corner moves, and chain moves, which we discuss below. We
iteratively apply any of these moves. The correctness of the algorithm does not depend on
the order in which moves are executed, as long as the moves are valid (defined below). Our
implementation assigns priorities to the various types of moves and chooses according to
these priorities whenever multiple moves are possible (see Section 4).

LM-moves. We say that a move is a lexicographically monotone move (LM-move for short)
if it is either an s- or w-move (slides), or an sw-, ws-, nw-, or wn-move (convex transitions).
Note that an LM-move will never move a square to the east. Squares can move to the north,
but only when they also move to the west. Hence, if a square starts at coordinate (x, y), and
we perform a series of LM-moves, it stays in the region {(x′, y′) | x′ ≤ x ∧ y′ ≤ x − x′ + y}.

H. A. Akitaya et al. 4:11

Let s be a square in a heavy leaf chunk C of C, and consider an LM-move made by s. We
say that this move is valid if s stays inside bounding box B, and all squares s′ ∈ C are still
in a single chunk after the move. While compacting, we allow only valid LM-moves, that is,
we allow each chunk to grow, but a chunk can never lose any squares.

Corner moves. LM-moves on their own are not necessarily sufficient to compact a chunk
into a suitable left-aligned shape. For example, consider the configuration in Figure 8a, which
does not admit any valid LM-moves. However, it has a concave corner that we can fill with
two moves (see Figure 8b), to expand the chunk in that direction. Repeating such corner
moves allows us to make the chunk in the example left-aligned.

We define corners of a chunk C with boundary cycle σ as follows. A top corner (Figure 9a–
d) is an empty cell with squares b1, b2, b3 ∈ σ as n-, ne-, and e-neighbors. Similarly, a bottom
corner (Figure 9e–h) is an empty cell with squares b1, b2, b3 ∈ σ as s-, se-, and e-neighbors.
Note that a corner can be either inside a hole in C (internal corner), or on the outside of C

(external corner), and we treat both of these in the same way.
Let s be a top corner in C with neighbors b1, b2, b3 as above. In the case where b1, b2, b3

are consecutive squares in σ (Figure 9a), we can fill s by two slide moves: first move either
b1 or b3 into s, and then move b2 into the cell left empty by the first move. We call this a
top corner move. We can fill a bottom corner with consecutive b1, b2, b3 (Figure 9e) in the
same way, just mirrored vertically (a bottom corner move). Just like for LM-moves, we say
that a corner move is valid if all squares s′ ∈ C are still in a single chunk after the corner
move. Note that all corners where b1, b2, b3 are not consecutive in σ (Figure 9b–d and 9f–h)
do not allow valid corner moves, as b1 and/or b2 becomes a connector.

Chain moves. Besides LM- and corner moves, we need a special move to prevent getting
stuck when each LM-move is invalid because it would move outside the bounding box B. For
example, some squares on the bottom row or leftmost column of B would be able to perform
LM-moves if they were situated in any other row/column of B, as shown in Figure 10.

A chain move is a series of moves that is started by such an LM-move that violates
validity only by leaving bounding box B. A chain move for a square s in the bottom row of B

requires an empty cell e = (x, 0) closer to the origin, and works as follows. Square s must
be able to perform an LM-move, more precisely an sw-move that is invalid only because
it leaves B. We want to place s in this empty cell e, unless it creates a link component,
which happens only if the square on position (x + 1, 0) is a loose square. We slide such a
loose square upwards with a n-move, and identify the emptied cell as e. Note that e is again
the closest empty cell in the bottom row, closer to the origin. We can then move s to e by
performing an sw-move, a series of w-moves, and finally a wn-move into e. For a square s

in the leftmost column, the direction of all moves is mirrored in x = y.

(a) (b)

Figure 8 (a) A configuration that does not admit LM-moves. For example, an nw-move (in red)
of the top-right square is not valid. (b) Two slide moves expand the concave corner in sw direction.

SWAT 2022

4:12 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

(a) (b) (c) (d) (e) (g) (h)(f)

Figure 9 Empty squares shown in red are corners. The boundary cycle of the chunk is shown in
orange. (a)–(d) Top corners; (e)–(h) bottom corners. Corners shown in (a) and (e) can be both
external and internal. Corners shown in (b)–(d) and (f)–(h) can only be internal.

Figure 10 Examples of chain moves: a square moves outside B to the first empty cell closer to
the origin. This may require a loose square to move as well.

▶ Lemma 8. Let C be a leaf chunk that does not admit valid LM-moves, corner moves, or
chain moves. Then C is solid, and its boundary cycle σ outlines a left-aligned histogram.

Proof. We first show that C is solid. Assume to the contrary that C has a hole. Consider
the top- and bottommost empty squares st and sb of the rightmost column of empty squares
of any hole in C (st may be equal to sb). Let a and b be the n- and e-neighbors of st,
respectively, and let c be the e-neighbor of sb (see Figure 11a). We know that a, b, c ∈ σ,
because otherwise moving a or b into st, or c into sb, would be a valid LM-move. C has at
most one connector ξ, which is part of σ. We now show that ξ lies strictly between a and b

on σ, and also that ξ lies strictly between c and a, to arrive at a contradiction.
Let σ′ be the part of σ strictly between a and b, walking along the boundary of C in

the clockwise order. If σ′ visits the row above a (leaving the row of a for the first time
at square a′), then there exists a bottom corner move filling the w-neighbor of a′ (see
Figure 11b). This move is valid since the part of C to the right of st by definition does not
contain any holes. Similarly, if σ′ visits the row below b (returning to the row of b for the
last time at square b′), then there exists a top corner move filling the w-neighbor of b′ (see

(b) (c)

a

b

c

st

sb

(a)

a′

σ
b′

(d)

(e)

d

(f)

d

(g)

d

(h)

d

ξ

Figure 11 Lemma 8: (a) A chunk hole with st and sb marked. (b)–(d) Possible valid moves
for σ′. (e)–(g) Possible valid moves for σ′′. (h) If a chain move is not possible then ξ is left of d.

H. A. Akitaya et al. 4:13

Figure 12 The boundary cycle σ of the leaf
chunk C outlines a left-aligned histogram.

Figure 13 The chunk C forms a double-Γ
shape, with one or two loose squares (orange).

Figure 11c). We conclude that the part of S attached to a and b is a protrusion of two rows
tall. The protrusion is non-empty, because otherwise we can either move a loose square with
an LM-move or fill st with a corner move (see Figure 11d). Consider the rightmost column
of the protrusion. If this column contains a loose square, we can move it with an LM-move.
Hence, the column contains a square in the row of a and a square in the row of b. If neither
of these is ξ, then we can perform an LM-move. Hence, σ′ contains ξ.

Let σ′′ be the part of σ strictly between c and a in clockwise order. Walk over σ′′ until
encountering the first square d whose n- and w-neighbors are adjacent to d on σ. Assume
that ξ is not d or one of its neighbors. If d or the n-neighbor of d have a loose square attached
to them, we can perform an LM-move on this loose square. Otherwise, if the nw-neighbor
of d is part of a hole in C, then this hole can be filled with a bottom corner move (see
Figure 11e). Otherwise, there are three cases: either (1) we can perform an s- or sw-move
on d (see Figure 11f), or (2) we can perform a horizontal chain move (see Figure 11g), or
(3) the chain move is impossible because no empty square e is available to move to (see
Figure 11h). In cases (1) and (2), by contradiction ξ is d or one of its neighbors; in case (3),
ξ needs to be in the bottommost row. In any case, σ′′ contains ξ.

As σ′ and σ′′ are disjoint, they cannot both contain ξ, which results in a contradiction.
Hence, C is solid. To show that σ outlines a left-aligned histogram, we observe that any
external corner (with neighbors b1, b2, b3 as defined above) admits a valid corner move. Indeed,
none of b1, b2, b3 can be a loose square, as those would admit LM-moves. Furthermore, as C is
solid, a boundary square cannot be a cut square for squares on the inside of σ. Finally, since
C is a leaf chunk, the only cut square in σ is its connector. As only one out of b1 and b3 can
be this connector, we can perform a valid corner move starting with the other (non-connector)
square. Therefore, by our assumption that there are no corner moves in C, there cannot be
external corners, and thus σ outlines a left-aligned histogram (see Figure 12). ◀

A set of squares is a double-Γ if it fills the top two rows and left two columns of its
bounding box.

▶ Lemma 9. Let C be a leaf chunk that does not contain the origin and does not admit valid
LM-moves, corner moves, or chain moves. Then the squares of the boundary cycle of C are
a double-Γ (see Figure 13).

Proof. Let C∗ be the set of squares outlined by σ. By Lemma 8, C∗ is a left-aligned
histogram. Let {r1, r2, . . .} be the rows in C∗, ordered from top to bottom. The connector ξ

of C lies on σ, and thus in C∗. Assume that ξ is in row ri (i ≥ 3). In that case, the leftmost
square of r1 has a valid move m: a ws-move or a vertical chain move. In particular, m is
not blocked by a loose square in the leftmost column of C, because that column can contain
only one loose square in the last row of C∗ (otherwise one of the other loose squares would
admit a valid s-move). Similarly, C cannot contain a loose square, which could block m,
in its topmost row. Indeed, such a loose square would admit a w-, ws-move, or a vertical

SWAT 2022

4:14 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

chain move (if it has an s-neighbor in σ), or it would admit an s-move (if it has a w- or
e-neighbor in σ). The existence of m leads to a contradiction, so ξ lies on r1 or r2. Because
C∗ is 2-connected, this implies that |r1| = |r2|, forming the horizontal leg of the double-Γ.

Consider the last row rk (k ≥ 3) such that |rk| > 2. The rightmost square in rk has a
valid sw-, s-move, or horizontal chain move (which, by a similar argument as before, cannot
be blocked by a loose square). On the other hand, |rk| ≥ 2, again because of 2-connectivity.
Therefore, for all rows ri (i ≥ 3), |ri| = 2, forming the vertical leg of the double-Γ. ◀

▶ Lemma 10. Let C be a configuration in which each leaf is a chunk of size at least P . Let
C′ be the result of exhaustively performing valid LM-moves, corner moves, or chain moves
on C. This reconfiguration is in-place and C′ is xy-monotone.

Proof. In the compaction phase we iteratively apply LM-, corner, and chain moves on the
configuration in which each leaf chunk contains at least P squares. After compaction, a leaf
chunk can either contain the origin, or not. Consider such a chunk C that does not contain
the origin. By Lemma 9, the cycle of C will outline a double-Γ, and since C is a leaf, it has
at least P squares. Gathering and compacting are in-place, since squares always move to a
cell inside the initial bounding box B of the configuration. Even if a square moves outside B

during gathering or chain moves it always ends inside B (by Lemma 6 and by definition,
respectively). Hence the connector of C will also be inside B. Since P is the perimeter of B,
any double-Γ of P squares completely inside B will reach the bottom left corner of B. Thus,
C must contain the origin, as one of the top two rows connects to the connector inside B.
As a result, every leaf chunk contains the origin at some point during compaction.

Once every leaf chunk contains the origin, the whole configuration is one single chunk:
all leaves of the component tree form a single component now. Continuing the compacting
hence results in a left-aligned histogram, by Lemma 8. Finally consider the topmost row r of
this histogram that is longer than the row below it. During compaction, the rightmost cube
of r can perform a valid LM-move, namely a s- or sw-move to the row below it. Note that
these moves cannot put cubes outside of the original bounding box B of C. Thus, once the
compacting phase is completed, the configuration is xy-monotone inside B. ◀

▶ Lemma 11. There is an in-place reconfiguration of O(Pn) moves of a configuration in
which all leaves are chunks of size at least P to an xy-monotone configuration.

Proof. Using Lemmata 8, 9, and 10, we can transform a configuration C, in which all leaves
are chunks of size at least P , to an xy-monotone configuration. Let s = (x, y) be a square
in C. We assign to s the score d(s) = 2x + y, and let d =

∑
s∈C d(s). Each LM-, and bottom

corner move performed in C decreases d by at least 1, while every top corner move decreases d

by two. Initially, d ≤ |C| · P , so the total number of LM- and corner moves is also at most
|C| · P . Every square s is involved in at most P/2 chain moves, since each chain move places s

closer to the origin in the bottom row/leftmost column. Furthermore, every chain move adds
at most one additional move for a loose square, which increases the above score by at most
two, hence the total number of moves as a result of chain moves is also at most O(|C| ·P). ◀

3.3 Transforming xy-monotone configurations
After gathering and compacting we arrive at an xy-monotone configuration. However,
this configuration is not unique and hence we need to be able to transform between such
configurations. We use a potential function to guide this transformation.

H. A. Akitaya et al. 4:15

▶ Lemma 12. Let C1 and C2 be two xy-monotone configurations of n squares each, let P

and P ′ denote the perimeters of their respective bounding boxes, and let P̄ = max{P, P ′}.
We can reconfigure C1 into C2 using at most O(P̄ n) moves, while remaining in-place.

Proof. Let C := C1. For each grid cell c = (x, y), we define the potential of c to be ϕ(c) = x+y.
Let s be the bottommost square in C \ C2 whose cell has maximum potential, and let e be
the topmost empty grid cell with minimum potential that is occupied in C2. We iteratively
move s to e in C until C = C2. We first show that C remains xy-monotone. Removing s

cannot break this property: by definition of ϕ and since C2 is xy-monotone, s does not have
n-, ne-, or e-neighbors in C. Moreover, if it has a nw-neighbor then, by xy-monotonicity
of C, it has a w-neighbor too. Similarly, adding a square in e maintains xy-monotonicity.
By the definition of ϕ and since C2 is xy-monotone, the cells neighboring e in the s, sw,
and w directions must be occupied if they are inside the bounding box of C. Moreover,
xy-monotonicity of C guarantees that e does not have n-, ne-, or e-neighbors.

In every step we move a square from a position occupied in C1 to a position occupied
in C2, hence the perimeter of the bounding box of configuration C is O(P + P ′) = O(P̄).
Moving one square along the boundary of C is allowed for in-place reconfiguration. Since
this takes at most O(P̄) moves per square and no square is moved more than once, it takes
O(P̄ n) moves in total to reconfigure C1 into C2. ◀

3.4 Light configurations
We say that a configuration C is light, if it consists of fewer than P squares, where P is the
perimeter of the bounding box of C. Our algorithm, as explained in the main text, cannot
directly handle such configurations if C does not contain the origin: there are too few squares
to guarantee that compacting will always result in a chunk that contains the origin. However,
we can use a simple preprocessing step to ensure that C will contain the origin.

For a light configuration C which does not contain the origin, we select a stable square as
in the gathering phase: a stable square in a link, or an extremal stable square in a chunk.
We iteratively move this stable square along the boundary of C to the empty cell e that is the
w-neighbor of the root square. We iteratively continue to do so until C contains the origin.
Note that e must necessarily be empty.

At this point, we can simply gather and compact C and arrive at an xy-monotone
configuration, for the following reason. The gathering phase works as in the main text, since
we can iteratively apply Lemma 6 on the light square closest to the root (which can be
the root itself), to get a single chunk. As the root square is located at the origin, and we
never move the root during gathering, we get a chunk containing the origin. Similarly, in

Figure 14 Transforming between two xy-monotone configurations. The dashed lines go through
cells with the same potential.

SWAT 2022

4:16 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

the compaction phase, this chunk will become a solid left-aligned histogram by Lemma 8.
Since it already contains the origin, and we do only monotone moves towards the origin, this
chunk still contains the origin. Finally the topmost row r of this histogram, that is longer
than the row below it, still has valid LM-moves. Hence C is xy-monotone after compaction.

There are at most P/2 empty cells to the left of the root. We fill each of these cells by
by walking along the boundary of C. Since configuration C consists of less than P squares,
this requires at most O(Pn) = O(P 2) moves. Both gathering and compacting take O(Pn)
moves, as proven in the main text, so including the preprocessing, we still arrive at a bound
of O(Pn) for the number of moves.

4 Experiments

We experimentally compared our Gather&Compact algorithm to the JavaScript implementa-
tion1 of the in-place modification by Moreno and Sacristán [14, 15] of the Dumitrescu and
Pach [10] algorithm, which we refer to as MSDP in the remainder of this section. The original
algorithm by Dumitrescu and Pach always requires Θ(n2) moves, since it builds a horizontal
line to the right of a rightmost square as canonical shape. The in-place modification of
Moreno and Sacristán has the potential to be more efficient in practice, since it builds a
rectangle within the bounding box of the input.

We captured the output (sequence of moves) of MSDP and reran the reconfiguration
sequences in our tool, to be able to verify movement sequences, count moves, and generate
figures. Doing so, we discovered that MDSP was occasionally executing illegal moves, see the
full version for details and for our corresponding adaptations [3]. Some of these issues could
be traced to the same origin: MSDP is breaking convex transitions into two separate moves
and sometimes acts on the illegal intermediate state. The number of moves we report in
Table 1 counts one move both for convex transitions and for slides; hence the numbers can be
lower than the numbers Moreno and Sacristán report. However, our adaptations do replace
illegal moves with the corresponding (and generally longer) legal movement sequences, and
hence the number of moves can also be higher than those they report.

We use square grids of sizes 10×10, 32×32, 55×55, 80×80, 100×100 for our experiments.
The data sets for MSDP were created by hand and are not available.2 We attempted to
create meaningful data sets of the same nature by starting with a fully filled square grid and

1 https://dccg.upc.edu/people/vera/TFM-TFG/Flooding/
2 V. Sacristán, personal communication, April 2021.

Table 1 The number of moves for Gather&Compact and MSDP on various grid sizes (D × D,
such that P = 4D) and densities (in % of D × D). Averages and standard deviations (in % of
average) over 10 randomly generated instances are shown.

Gather&Compact MSDP
D 50% 70% 85% 50% 70% 85%

10 237 31% 156 16% 95 8% 502 19% 427 21% 233 35%
32 5.395 4% 4.188 5% 2.529 8% 28.759 12% 18.447 13% 10.027 8%
55 25.916 2% 20.024 3% 12.124 4% 193.390 8% 116.431 12% 61.617 8%
80 77.745 2% 60.516 2% 36.395 3% 638.847 12% 344.529 9% 235.413 5%

100 150.666 1% 118.232 2% 69.488 3% 1.318.232 11% 743.133 17% 513.113 7%

https://dccg.upc.edu/people/vera/TFM-TFG/Flooding/

H. A. Akitaya et al. 4:17

(a) (b) (c)

Figure 15 Example input instances on a 10 × 10 grid: density (a) 50 %; (b) 70 %; (c) 85 %.

3840 229

gathering (229 moves) compaction (155 moves)

100 200 300move

(a)

(b)

6780 450150 300 600move

Figure 16 Execution of the two algorithms on one of the input instances for grid size 10 × 10,
density 50 %. (a) Gather&Compact; (b) MSDP. Video: https://tinyurl.com/alga10x10.

then removing varying percentages of squares while keeping the configuration connected. We
arrived at three densities, namely (50 %, 70 %, 85 %), which arguably capture the different
types of inputs well (see Figure 15). For each value, the density of the configurations
generated is close to homogeneous. The configurations with 85% density are a generalization
of the “dense” configurations in the data sets for MSDP. The configurations with 70% density
correspond to the so-called “medium” configurations in the data sets for MSDP, which
combine the two different substructures considered for that density. The edge-adjacency
graphs of the configurations with 50% density are essentially trees and, especially in the
larger configurations, many leaves are not on the outer boundary (resembling the “nested”
configurations in the evaluation of MSDP). For both algorithms we count moves until they
reach their respective canonical configurations. Our online material3 contains our code for
Gather&Compact, the input instances, and the adapted version of MSDP.

The compaction step of Gather&Compact does not rely on any particular order of the
available valid moves. Our implementation prioritizes squares by descending L∞-distance to
the origin. We also prioritize downwards LM-moves (w, ws, sw, s) over upwards LM-moves
(wn, nw), and top corner moves over bottom moves.

Table 1 summarizes our results and Figure 16 shows snapshots for both algorithms on a
particular instance. We observe that Gather&Compact always uses significantly fewer moves
than MSDP, even on high density instances where most squares are already in place. This
is likely due to the fact that MSDP walks squares along the boundary of the configuration,
while Gather&Compact shifts squares locally into better position. Figure 16b shows this
behavior at move 600 where one can observe a square on its way along the bottom boundary.

3 https://alga.win.tue.nl/software/compacting-squares/

SWAT 2022

https://tinyurl.com/alga10x10
https://alga.win.tue.nl/software/compacting-squares/

4:18 Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

5 Conclusion

We introduced the first universal in-place input-sensitive algorithm to solve the reconfiguration
problem for the sliding cube model in two dimensions. Our Gather&Compact algorithm
is input-sensitive with respect to the size of the bounding box of the source and target
configurations. We experimentally established that Gather&Compact not only improves the
existing theoretical bounds, but that it also leads to significantly fewer moves in practice.

We showed that minimizing the number of moves for reconfiguration is NP-complete
in two dimensions. The question then arises whether the problem admits approximation
algorithms. Our NP-hardness proof can be adapted to show APX-hardness in the 3D sliding
cube model and we conjecture that the problem is also APX-hard for sliding squares.

There may still be room to improve on the algorithm in this paper. Specifically, it may
be possible to improve the hidden constants, by gathering to leaf chucks of size P/2 instead
of P . These chunks still have enough squares to reach the origin, but they have to give up
2-connectivity to do so, and hence the algorithm becomes more complex. Once all leaves
create an xy-monotone path to the origin, the configuration again consists of a single chunk,
and thus the remaining parts of our algorithm still apply.

Finally, extending our algorithm to three dimensions is currently work in progress. While
well-connected components can also be transformed more efficiently in 3D, the algorithm
may require a higher degree of connectivity than 2-connectivity.

References
1 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin

Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera Sacristán.
Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers.
Algorithmica, 83(5):1316–1351, 2021. doi:10.1007/s00453-020-00784-6.

2 Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg,
Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing
universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium
on Computational Geometry (SoCG), pages 10:1–10:20, 2021. doi:10.4230/LIPIcs.SoCG.
2021.10.

3 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem
Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. CoRR, abs/2105.07997, 2021. arXiv:
2105.07997.

4 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Robin Flatland, John
Iacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots. Com-
putational Geometry: Theory and Applications, 46(8):917–928, 2013. doi:10.1016/j.comgeo.
2013.03.004.

5 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristán, and Stefanie
Wuhrer. Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59–71,
2011. doi:10.1017/S026357471000072X.

6 Byoung Kwon An. EM-Cube: Cube-shaped, self-reconfigurable robots sliding on structure
surfaces. In Proc. 2008 IEEE International Conference on Robotics and Automation (ICRA),
pages 3149–3155, 2008. doi:10.1109/ROBOT.2008.4543690.

7 Nora Ayanian, Paul J. White, Ádám Hálász, Mark Yim, and Vijay Kumar. Stochastic
control for self-assembly of XBots. In Proc. ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (IDETC-CIE), pages
1169–1176, 2008. doi:10.1115/DETC2008-49535.

https://doi.org/10.1007/s00453-020-00784-6
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
https://doi.org/10.4230/LIPIcs.SoCG.2021.10
http://arxiv.org/abs/2105.07997
http://arxiv.org/abs/2105.07997
https://doi.org/10.1016/j.comgeo.2013.03.004
https://doi.org/10.1016/j.comgeo.2013.03.004
https://doi.org/10.1017/S026357471000072X
https://doi.org/10.1109/ROBOT.2008.4543690
https://doi.org/10.1115/DETC2008-49535

H. A. Akitaya et al. 4:19

8 Nadia M. Benbernou. Geometric algorithms for reconfigurable structures. PhD thesis,
Massachusetts Institute of Technology, 2011.

9 Chih-Jung Chiang and Gregory S. Chirikjian. Modular robot motion planning using similarity
metrics. Autonomous Robots, 10:91–106, 2001. doi:10.1023/A:1026552720914.

10 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006. doi:10.1007/s00373-005-0640-1.

11 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent
Robots and System, pages 2460–2467, 2003. doi:10.1109/IROS.2003.1249239.

12 Kazuo Hosokawa, Takehito Tsujimori, Teruo Fujii, Hayato Kaetsu, Hajime Asama, Yoji
Kuroda, and Isao Endo. Self-organizing collective robots with morphogenesis in a vertical
plane. In Proc. 1998 IEEE International Conference on Robotics and Automation (ICRA),
pages 2858–2863, 1998. doi:10.1109/ROBOT.1998.680616.

13 Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability of
feasible mechanisms for programmable matter. Journal of Computer and System Sciences,
102:18–39, 2019. doi:10.1016/j.jcss.2018.12.001.

14 Joel Moreno. In-place reconfiguration of lattice-based modular robots. Bachelor’s thesis,
Universitat Politècnica de Catalunya, 2019.

15 Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In Proc.
36th European Workshop on Computational Geometry (EuroCG), pages 32:1–32:7, 2020.

16 Irene Parada, Vera Sacristán, and Rodrigo I. Silveira. A new meta-module design for efficient
reconfiguration of modular robots. Autonomous Robots, 45(4):457–472, 2021. doi:10.1007/
s10514-021-09977-6.

17 Daniela Rus and Marsette Vona. A physical implementation of the self-reconfiguring crystalline
robot. In Proc. 2000 IEEE International Conference on Robotics and Automation (ICRA),
pages 1726–1733, 2000. doi:10.1109/ROBOT.2000.844845.

18 John W. Suh, Samuel B. Homans, and Mark Yim. Telecubes: mechanical design of a module
for self-reconfigurable robotics. In Proc. 2002 IEEE International Conference on Robotics and
Automation (ICRA), pages 4095–4101, 2002. doi:10.1109/ROBOT.2002.1014385.

19 Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning for
pivoting cube modular robots. In Proc. 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1933–1940, 2015. doi:10.1109/ICRA.2015.7139451.

20 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins,
and Gregory S. Chirikjian. Modular self-reconfigurable robot systems. IEEE Robotics &
Automation Magazine, 14(1):43–52, 2007. doi:10.1109/MRA.2007.339623.

SWAT 2022

https://doi.org/10.1023/A:1026552720914
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/ROBOT.1998.680616
https://doi.org/10.1016/j.jcss.2018.12.001
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1007/s10514-021-09977-6
https://doi.org/10.1109/ROBOT.2000.844845
https://doi.org/10.1109/ROBOT.2002.1014385
https://doi.org/10.1109/ICRA.2015.7139451
https://doi.org/10.1109/MRA.2007.339623

Fault-Tolerant Edge-Disjoint s-t Paths – Beyond
Uniform Faults
David Adjiashvili !

Department of Mathematics, ETH Zürich, Switzerland

Felix Hommelsheim !

Department of Mathematics and Computer Science, Universität Bremen, Germany

Moritz Mühlenthaler !

Laboratoire G-SCOP, Grenoble INP, Univ. Grenoble-Alpes, France

Oliver Schaudt
Department of Mathematics, RWTH Aachen University, Germany

Abstract
The Edge-disjoint s-t Paths Problem (s-t EDP) is a classical network design problem whose goal is
to connect for some k ≥ 1 two given vertices of a graph under the condition that any k − 1 edges of
the graph may fail. We extend the simple uniform failure model of the s-t EDP as follows: the edge
set of the graph is partitioned into vulnerable, and safe edges, and a set of at most k vulnerable
edges may fail, while safe edges do not fail. In particular we study the Fault-Tolerant Path (FTP)
problem, the counterpart of the Shortest s-t Path problem in this non-uniform failure model as well
as the Fault-Tolerant Flow (FTF) problem, the counterpart of s-t EDP. We present complexity
results alongside exact and approximation algorithms for both problems. We emphasize the vast
increase in complexity of the problems compared to s-t EDP.

2012 ACM Subject Classification Theory of computation → Routing and network design problems;
Theory of computation → Network flows; Mathematics of computing → Approximation algorithms

Keywords and phrases graph algorithms, network design, fault tolerance, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.5

Related Version Full Version: https://arxiv.org/abs/2009.05382

1 Introduction

The Minimum-Cost Edge-Disjoint s-t Path Problem (s-t EDP) is a classical network design
problem defined as follows. Given an edge-weighted directed graph D = (V, A), two terminal
vertices s, t ∈ V and an integer parameter k ∈ Z≥0, find k edge-disjoint paths connecting s

and t with minimum total cost. Equivalently, the problem s-t EDP asks for the minimum
cost of connecting two nodes in a network, given that any k − 1 edges can “fail” and hence
be a-posteriori removed from the graph. The assumption here is that faults are uniform
in the sense that every edge in the graph is equally vulnerable. Our goal is to advance the
understanding of network design problems in the presence of non-uniform faults. To this end
we study a natural generalization of s-t EDP called the Fault-Tolerant Path (FTP) problem,
in which we partition the set of edges into vulnerable and safe edges. The task is to find
a minimum-cost subgraph of a given graph that contains an s-t path after removing any k

vulnerable edges from the graph. Formally, the problem FTP is defined as follows.

© David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.adjiashvili@ifor.math.ethz.ch
mailto:fhommels@uni-bremen.de
https://orcid.org/0000-0003-4444-9793
mailto:moritz.muhlenthaler@grenoble-inp.fr
https://orcid.org/0000-0002-2729-127X
https://doi.org/10.4230/LIPIcs.SWAT.2022.5
https://arxiv.org/abs/2009.05382
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Fault-Tolerant Edge-Disjoint s-t Paths

Fault-Tolerant Path (FTP)
Instance: edge-weighted directed graph D = (V, A), two vertices s, t ∈ V , set

M ⊆ A of vulnerable edges, and integer k ∈ Z≥0.
Task: Find minimum-cost set S ⊆ A such that S \ F contains an s-t path for

every F ⊆ M with |F | ≤ k.

Observe that if M = A then FTP is exactly s-t EDP. We also study a generalization of
s-t EDP with a simpler but still non-uniform fault model: The problem Fault-Tolerant Flow
(FTF) asks for ℓ ≥ 1 fault-tolerant disjoint s-t paths, assuming that only a single edge can
be a-posteriori removed from the graph:

Fault-Tolerant Flow (FTF)
Instance: edge-weighted directed graph D = (V, A), two vertices s, t ∈ V , set

M ⊆ A of vulnerable edges, and integer ℓ ∈ Z≥0.
Task: Find minimum cost set S ⊆ A such that S \ f contains ℓ disjoint s-t

paths for every f ∈ M .

1.1 Results
Consider the following well-known polynomial-time algorithm for s-t EDP: Assign unit
capacities to all edges in G and find a minimum-cost s-t flow of value k. The integrality
property of the LP formulation of the Minimum-Cost s-t Flow (MCF) problem guarantees
that there is always an integer extreme-point. Such a point corresponds to a set of edges of
an optimal solution and can be found in polynomial time (see for example [18]). It is natural
to ask whether this approach works also for FTP, which generalizes s-t EDP. We give a
negative answer by showing that FTP is NP-hard and hence the existence of a polynomial
time algorithm for FTP is unlikely. In fact, the existence of constant-factor approximation
algorithms is unlikely even when input graphs are directed acyclic graphs. On the positive
side we provide polynomial-time algorithms for arbitrary graphs and k = 1 as well as directed
acyclic graphs and fixed k.

We furthermore investigate the approximatiblity of FTP using its fractional relaxation
FRAC-FTP, which is defined as follows.

Fractional FTP (FRAC-FTP)
Instance: edge-weighted directed graph D = (V, A), two vertices s, t ∈ V , set

M ⊆ A of the edges, and integer k ∈ Z≥0.
Task: Find minimum cost capacity vector x : A → [0, 1] such that for every

F ⊆ M with |F | ≤ k, the maximum s-t flow in GF = (V, A \ F)
capacitated by x is at least one.

Observe that by adding the requirement that x ∈ {0, 1}A to FRAC-FTP, we obtain
FTP. Recall that for MCF the value of an optimal integer solution is equal to the value
of an optimal fractional solution. We show that in contrast to MCF the integrality gap of
FRAC-FTP is bounded by k + 1 and that this bound is essentially tight in the sense that
there is an infinite family of instances with integrality gap arbitrarily close to k + 1. This
result also leads to a simple LP-based (k + 1)-approximation algorithm for FTP, which we

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:3

then combine with an algorithm for the case k = 1 to obtain a k-approximation algorithm
for FTP. Note that FTP also admits the following simple (k + 1)-approximation algorithm:
Replace each safe edge with k + 1 parallel edges and find k + 1 edge-disjoint paths from s to
t with minimum cost. It is not clear however how to obtain a k-approximation based on this
algorithm, so our LP-based analysis is justified.

The second problem we study is FTF, which asks for ℓ ≥ 1 disjoint s-t paths in the
presence of non-uniform single-edge faults. Observe that in the special case of uniform faults
(every edge is vulnerable) an optimal solution is a minimum-cost s-t flow of value k + ℓ which
can be computed in polynomial time. We show that as before the presence of non-uniform
faults makes the problem much harder. In fact, it is as hard to approximate as FTP, despite
the restriction to single-edge faults (the same result holds for FTF on undirected graphs).
On the positive side, we give a simple polynomial-time (ℓ + 1)-approximation algorithm for
FTF which computes a MCF with appropriately chosen capacities.

Note that our positive results for FTP imply a polynomial-time algorithm for FTF when
ℓ = 1. Together with the hardness of FTF in general this motivates the questions how the
complexity of FTF depends on the number ℓ of disjoint paths. To this end, we fix ℓ and study
the corresponding slice Fault-Tolerant ℓ-Flow of FTF. Our main result is a 2-approximation
algorithm for this problem. In a nutshell, the algorithm first computes a minimum-cost ℓ-flow
and then makes the resulting ℓ disjoint paths fault tolerant by solving the corresponding
augmentation problem. We solve the augmentation problem by reducing it to a shortest
path problem; it is basically a dynamic programming algorithm in disguise. However, the
reduction is quite involved: in order to construct the instance of Shortest s-t-Path, we solve
at most n2ℓ instances of the Min-cost Strongly Connected Subgraphs problem on ℓ terminal
pairs, all of which can be done in polynomial time for fixed ℓ. Hence, the overall running
time is polynomial for fixed ℓ.

In the light of our approximation results for Fault-Tolerant ℓ-Flow, one may wonder
whether the problem may even admit a polynomial-time algorithm (assuming P ̸= NP, say).
An indication in this direction is that for a number of problems with a similar flavor, including
robust paths [3], robust matchings [16] or robust spanning trees [2], hardness results were
obtained by showing that the corresponding augmentation problems are hard. However, our
results mentioned above show that this approach does not work for FTF. We show that a
polynomial-time algorithm for Fault-Tolerant ℓ-Flow implies polynomial-time algorithms
for 1-2-connected Directed 2 Steiner Tree. Whether this problem is NP-hard or not is a
long-standing open question.

1.2 Related Work
The shortest path problem is a classical problem in the area of combinatorial optimization
and as such, it has received considerable attention also in the context of fault tolerance,
see for example [4, 10, 13, 6, 19, 20]. Most of the variants of the Shortest Path Problem
studied in these references, as well as FTP and FTF, are subsumed by the Capacitated
Survivable Network Design Problem, which due to its generality is hard to approximate even
within a factor of 2log1−δ(n) on directed graphs for any δ > 0 under standard complexity
assumptions [7]. The problems FTP and FTF also fit in the framework of bulk-robustness
introduced by Adjiashvili, Stiller and Zenklusen [3]. In this model, we are given a set of failure
scenarios, that is, a set of subsets of resources that may fail simultaneously. The task is to
find a minimum-cost subset of the resources such that a desired property (e.g., connectivity
of a graph) is maintained, no matter which failure scenario materializes. Adjiashvili, Stiller
and Zenklusen considered bulk-robust counterparts of the Shortest Path and Minimum

SWAT 2022

5:4 Fault-Tolerant Edge-Disjoint s-t Paths

Matroid basis problems. For bulk-robust shortest paths on undirected graphs they give a
O(k + log n)-approximation algorithm, where k is the maximum size of a failure scenario.
However, the running-time of this algorithm is exponential in k. Note that their bulk-robust
shortest path problem generalizes FTP, and therefore the same approximation guarantee
holds for FTP. Our approximation algorithm for FTP significantly improves on this bound,
on both the approximation guarantee and the running-time. Furthermore, Adjiashvili [1]
obtained an LP-based O(k2)-approximation algorithm for bulk-robust shortest paths on
planar graphs.

Uniform failure models have been considered for other classical connectivity problems,
such as the Minimum Spanning Tree problem: Here, if any k edges of the input graph may
fail we obtain the Minimum k-Edge Connected Spanning Subgraph (k-ECSS) problem. For
k-ECSS, Gabow, Goemans, Tardos and Williamson [12] gave a polynomial time (1 + c

k)-
approximation algorithm for k-ECSS, for some fixed constant c. The authors also show
that for some constant c′ < c, the existence of a polynomial time (1 + c′

k)-approximation
algorithm implies P = NP. The more general Generalized Steiner Network problem admits a
polynomial 2-approximation algorithm due to Jain [17]. This is also the best known bound for
weighted 2-ECSS. Non-uniform single-edge failures for the minimum spanning tree problem
have been considered in [2] and a 2-approximation algorithm for this problem has been given
recently by Boyd et al. [5]. A problem of a similar flavor but with uniform single-edge faults
is Robust Matching Augmentation, which asks for a minimum-cost subgraph such that after
the removal of any single edge, the resulting graph contains a perfect matching [16]. This
problem is as hard to approximate as Directed Steiner Forest, which is known to admit no
log2−ε-approximation algorithm unless NP ⊆ ZTIME(npolylog(n)) [15]. The approximation
hardness of FTF is a consequence of this result.

1.3 Notation

We mostly consider directed graphs, which we denote by (V, A), where V is the set of vertices
set and A the set of arcs. Undirected graphs are denoted by (V, E) where E is the edge
set. When we consider edge-weighted graphs we assume throughout that the weights are
non-negative. Let G = (V, A) be a digraph with vulnerable arcs M ⊆ A. We denote by
M := A \M the set of safe arcs. Furthermore, for any set ∅ ≠ X ⊊ V of vertices of G, we
denote by δ(X) the set of arcs vw ∈ A such that v ∈ X and w /∈ X.

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, we present our results on
FTP. We first show that FTP on undirected graphs is a special case of FTP on directed
graphs. We provide exact polynomial algorithms for two special cases of FTP in Section 2.1.
In Section 2.2 we relate FTP and FRAC-FTP by proving a tight bound on the integrality
gap and show how this result leads to a k-approximation algorithm for FTP. In Section 2.3
we study the approximation hardness of FTP. Section 3 contains the results on the problem
FTF. Approximation hardness of FTF is shown in Section 3.1. Section 3.2 contains the
approximation algorithms for FTF with and without fixed flow value ℓ. Furthermore, in
Section 3.3, we relate the complexity of FTF with fixed ℓ to other problems of open complexity.
Section 4 concludes the paper and contains open problems.

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:5

2 Fault-Tolerant Paths

Assuming non-negative edge-weights, the shortest path problem on undirected graphs is a
special case of the same problem on directed graphs: we may replace each undirected edge
by two anti-parallel directed edges and conclude that any shortest path in the resulting
digraph corresponds to a shortest path in the original undirected graph. We show that
this observation extends to FTP. For this purpose we show that any solution to an FTP
instance on an undirected graph admits an orientation, such that in each failure scenario a
directed s-t paths remains (assuming that if an undirected edge fails, both corresponding
anti-parallel arcs fail). As a consequence, the positive results for FTP on directed graphs
given in sections 2.1 and 2.2 also hold for FTP on undirected graphs.

▶ Proposition 1. Let X ⊆ E be a feasible solution to an instance of FTP on an undirected
graph (V, E). Then there is an orientation −→X of X such that (V,

−→
X − F) contains a directed

s-t path for every F ⊆M with |F | ≤ k.

Proof. Let us assume for a contradiction that there is no such orientation. A set Y of
(undirected and directed) edges is a partial orientation of X if there is a partition of X into
sets X1 and X2 such that Y = X1∪

−→
X2, where −→X2 is an orientation of X2. Let Y be a partial

orientation of X that maximizes the number of directed edges such that (V,
−→
X −F) contains

a directed s-t path for every F ⊆ M with |F | ≤ k. By our assumption, there is at least
one undirected edge e = vw in Y . Furthermore, there are two sets S1, S2 ⊆ V of vertices,
such that {s} ⊆ S1, S2 ⊆ V \ {t}, v ∈ S1 \ S2, and w ∈ S2 \ S1. Note that vw ∈ δ(S1) and
wv ∈ δ(S2).

Since e is needed in both directions for Y to be feasible, there is some F ⊆M , |F | ≤ k

such that X \ F contains an s-t path that must leave S1 via vw. Therefore, the cut δ(S1)
contains at most k + 1 edges and all of them except possibly e are vulnerable. The same
holds for δ(S2) and therefore we have |δ(S1)| = |δ(S2)| = k + 1. From the feasibility of Y

and the fact that all edges in δ(S1) and δ(S2) except possibly e are vulnerable, it follows
that |δ(S1 ∩ S2)| ≥ k + 1 and |δ(S1 ∪ S2)| ≥ k + 1. By the submodularity of the cut function
|δ(·)| we have

2k + 2 = |δ(S1)|+ |δ(S2)| ≥ |δ(S1 ∩ S2)|+ |δ(S1 ∪ S2)| ≥ 2k + 2 (1)

so we have equality throughout. Furthermore, |δ(·)| satisfies the following identity

|δ(S1)|+ |δ(S2)| = |δ(S1 ∩S2)|+ |δ(S1 ∪S2)|+ |A(S1 \S2, S2 \S1)|+ |A(S2 \S1, S1 \S2)| ,

but the observation that e is an edge connecting S1 \ S2 and S2 \ S1, together with the fact
the we have equality in (1) yields a contradiction to the previous identity. ◀

2.1 Exact Algorithms
In this section we give polynomial-time algorithms for FTP on arbitrary graphs, where at
most one edge can fail (k = 1) and FTP on directed acyclic graphs (DAGs) for fixed k. We
start with the following useful observation.

▶ Lemma 2. Let I = (D = (V, A), s, t, M, k) be an FTP-instance and X ⊆ A. Then the
following statements are equivalent.
1. X is a feasible solution to I.
2. The network (V, X) with capacities ce = 1 if e ∈M and ce =∞ otherwise admits an s-t

flow of value at least k + 1.

SWAT 2022

5:6 Fault-Tolerant Edge-Disjoint s-t Paths

Proof. Let X ⊆ E(D). First, suppose that X is a feasible solution to the FTP instance
(D, M, k). Suppose for a contradiction that the network ((V, X), c) capacitated by ce = 1
if e ∈ M and ce = ∞ otherwise admits no s-t flow of value at least k + 1. Then, by the
Max-Flow Min-Cut Theorem, there is some capacitated cut δ(V ′) for some V ′ ⊆ V with
s ∈ V ′ and t /∈ V ′ such that c(δ(V ′)) < k + 1. By the definition of c, this implies that δ(V ′)
does not contain any safe edge. But then F := δ(V ′) is a cut in (V, X) of size at most k, a
contradiction to the feasibility of X.

Now, suppose that X is not a feasible solution to the FTP instance (D, M, k). Then
there is some capacitated cut δ(V ′) for some V ′ ⊆ V with s ∈ V ′ and t /∈ V ′ such that
c(δ(V ′)) ≤ k. But then, by the Max-Flow Min-Cut Theorem, the network ((V, X), c) admits
no s-t flow of value at least k + 1. ◀

We consider the restriction of FTP to k = 1. An s-t bipath in the graph D = (V, A) is a
union of two (not necessarily disjoint) s-t paths P1, P2 ⊆ A. In the context of 1-FTP we call
a bipath Q = P1 ∪P2 robust if P1 ∩P2 ∩M = ∅. Note that every robust s-t bipath Q in G is
a feasible solution to the 1-FTP instance. Indeed, consider any vulnerable edge e ∈M . Since
e ̸∈ P1 ∩ P2 it holds that either P1 ⊆ Q− e, or P2 ⊆ Q− e. It follows that Q− e contains
some s-t path. The next lemma shows that every feasible solution of the 1-FTP instance
contains a robust s-t bipath.

▶ Lemma 3. Every feasible solution S∗ to an 1-FTP instance contains a robust s-t bipath.

Proof. We assume without loss of generality that S∗ is a minimal feasible solution with
respect to inclusion. Let Y ⊆ S∗ be the set of bridges in (V, S∗). From feasibility of S∗, we
have Y ∩M = ∅. Consider any s-t path P in S∗. Let u1, · · · , ur be be the set of vertices
incident to Y = P ∩ Y . Let ui and ui+1 be such that uiui+1 ̸∈ Y . (if such an edge does
not exist, we have Y = P , which means that P is a robust s-t bipath). Note that S∗ must
contain two edge-disjoint ui-ui+1 paths L1, L2. Taking as the set Y together with all such
pairs of paths L1, L2 results in a robust bipath. ◀

We conclude from the previous discussion and Lemma 3 that all minimal feasible solutions
to the 1-FTP instance are robust bipaths. This observation leads to the simple polynomial-
time algorithm for 1-FTP that, using flow-techniques, computes for any pair of vertices u, v

the length of i) a min-cost u-v path using only safe edges and ii) two edge-disjoint u-v paths
of minimum cost. In a second step the algorithm computes a minimum-cost s-t path in a
complete graph with respect to the minimum of the two computed costs. The resulting s-t
path corresponds to a min-cost s-t bipath in the original graph and hence, by Lemma 3, an
optimal robust s-t path.

▶ Theorem 4. 1-FTP admits a polynomial-time algorithm.

Proof. To solve 1-FTP we need to find the minimum cost robust s-t bipath. To this end let
us define two length functions ℓ1, ℓ2 : V × V → R≥0. For two vertices u, v ∈ V let ℓ1(u, v)
denote the shortest path distance from u to v in the graph (V, A \M), and let ℓ2(u, v)
denote the cost of the shortest pair of edge-disjoint u-v paths in D. Clearly, both length
functions can be computed in polynomial time (e.g. using flow techniques). Finally, set
ℓ(u, v) = min{ℓ1(u, v), ℓ2(u, v)}. Construct the complete graph on the vertex set V and
associate the length function ℓ with it. Observe that by definition of ℓ, any s-t path in this
graph corresponds to a robust s-t bipath with the same cost, and vice versa. It remains to
find the shortest s-t bipath by performing a single shortest s-t path in the new graph. For
every edge uv in this shortest path, the optimal bipath contains the shortest u-v path in
(V, A \M) if ℓ(u, v) = ℓ1(u, v), and the shortest pair of u-v paths in D, otherwise. ◀

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:7

We now consider the problem k-FTP (for fixed k ∈ N) on layered graphs. The generaliza-
tion to a directed acyclic graph is done via a standard transformation, which we describe
later. Recall that a layered graph D = (V, A) is a graph with a partitioned vertex set
V = V1 ∪ · · · ∪ Vr and a set of edges satisfying A ⊂

⋃
i∈[r−1] Vi × Vi+1. We assume without

loss of generality that V1 = {s} and Vr = {t}. For every i ∈ [r− 1] we let Ai = A∩Vi×Vi+1.
We reduce k-FTP to a shortest path problem in a larger graph. The following definition sets
the stage for the algorithm.

▶ Definition 5. An i-configuration is a vector d ∈ {0, 1, · · · , k + 1}Vi satisfying
∑

v∈Vi
dv =

k + 1. We let supp(d) = {v ∈ Vi : dv > 0}. For an i-configuration d1 and an (i + 1)-
configuration d2 we let

V (d1, d2) = supp(d1) ∪ supp(d2) and A(d1, d2) = A[V (d1, d2)].

We say that an i-configuration d1 precedes an (i+1)-configuration d2 if the following flow
problem is feasible. The graph is defined as H(d1, d2) = (V (d1, d2), A(d1, d2)). The demand
vector ν and the capacity vector c are given by

νu =
{
−d1

u if u ∈ supp(d1)
d2

u if u ∈ supp(d2)
and ce =

{
1 if e ∈M

∞ if e ∈ E \M,

respectively. If d1 precedes d2 we say that the link (d1, d2) exists. Finally, the cost ℓ(d1, d2)
of this link is set to be minimum value w(A′) over all A′ ⊆ A(d1, d2), for which the previous
flow problem is feasible, when restricted to the set of edges A′.

The algorithm constructs a layered graph H = (V,A) with r layers V1, · · · ,Vr. For every
i ∈ [r] the set of vertices Vi contains all i-configurations. Observe that since V1 = {s} and
Vr = {t}, we have that V1 and Vr contain one vertex each, which we denote by cs and ct,
respectively. The edges correspond to links between configurations. Every edge is directed
from the configuration with the lower index to the one with the higher index. The cost is set
according to Definition 5. The following lemma provides the required observation, which
immediately leads to a polynomial-time algorithm.

▶ Lemma 6. Every cs-ct path P in H corresponds to a fault-tolerant path S with w(S) ≤ ℓ(P),
and vise-versa.

Proof. Consider first a fault-tolerant path S ⊆ A. We construct a corresponding cs-ct

path in H as follows. Consider any k + 1 s-t flow fS , induced by S. Let p1, · · · , pl be a
path decomposition of fS and let 1 ≤ ρ1, · · · , ρl ≤ k + 1 (with

∑
i∈[l] ρi = k + 1) be the

corresponding flow values.
Since D is layered, the path pj contains exactly one vertex vj

i from Vi and one edge ej
i

from Ai for every j ∈ [l] and i ∈ [r]. For every i ∈ [r] define the i-configuration di with

di
v =

∑
j∈[l]:v=vi

j

ρi,

if some path pj contains v, and di
v = 0, otherwise. The fact that di is an i-configuration

follows immediately from the fact that fS is a (k + 1)-flow. In addition, for the same reason
di precedes di+1 for every i ∈ [r − 1]. From the latter observations and the fact that d1 = cs

and dr = ct it follows that P = d1, d2, · · · , dr is a cs − ct path in H with cost ℓ(P) ≤ w(S).
Consider next an cs − ct path P = d1, · · · , dr with cost ℓ(P) =

∑r−1
i=1 ℓ(di, di+1). The

cost ℓ(di, di+1) is realized by some set of edges Ri ⊆ A(di, di+1) for every i ∈ [r − 1].
From Definition 5, the maximal s-t flow in the graph D′ = (V, R) is at least k + 1, where

SWAT 2022

5:8 Fault-Tolerant Edge-Disjoint s-t Paths

R = ∪i∈[r−1]Ri. Next, Lemma 2 guarantees that there exists some feasible solution S ⊆ R,
the cost of which is at most ℓ(P). In the latter claim we used the disjointness of the sets Ri,
which is due the layered structure of the graph G. This concludes the proof of the lemma. ◀

Finally, we observe that the number of configurations is bounded by O(nk+1), which
implies that k-FTP can be solved in polynomial time on layered graphs.

To obtain the same result for directed acyclic graphs we perform the following transforma-
tion of the graph. Let v1, · · · , vn be a topological sorting of the vertices in D. Replace every
edge e = vivj (i < j) with a path pe = vi, ue

i+1, · · · , ue
j−1, vj of length j− i+1 by subdividing

it sufficiently many times. Set the cost of the first edge on the path to w′(viu
e
i+1) = w(vivj)

and set the costs of all other edges on the path to zero. In addition, create a new set of
faulty edges M ′, which contains all edges in a path pe if e ∈M . It is straightforward to see
that the new instance of FTP is equivalent to the original one, while the obtained graph
after the transformation is layered. We summarize the result as follows.

▶ Theorem 7. There is a polynomial-time algorithm for k-FTP restricted to instances with
a directed acyclic graph.

2.2 Integrality Gap and Approximation Algorithms
In this section we study the natural fractional relaxation FRAC-FTP of FTP and prove a
tight bound on its integrality gap. That is, we bound the worst-case ratio of the value of an
optimal solution of an FTP instance and the corresponding optimal value of FRAC-FTP.
This result also suggests a simple approximation algorithm for FTP with ratio k + 1. We
then combine this algorithm with the algorithm for 1-FTP to obtain a k-approximation
algorithm.

Fractional FTP and Integrality Gap

We give the following bound on the integrality gap of FRAC-FTP.

▶ Theorem 8. The integrality gap of FRAC-FTP is at most k + 1. Furthermore, there exists
an infinite family of instances of FTP with integrality gap arbitrarily close to k + 1.

Proof. Consider an instance I = (D, s, t, M, k) of FTP. Let x∗ denote an optimal solution
to the corresponding FRAC-FTP instance, and let OPT = w(x∗) be its cost. Define a vector
y ∈ RA as follows.

ye =
{

(k + 1)xe if e ̸∈M

min{1, (k + 1)xe} otherwise.
(2)

Clearly, it holds that w(y) ≤ (k + 1)OPT . We claim that every s-t cut in D with capacities
y has capacity of at least k + 1. Consider any such cut C ⊂ A, represented as the set of
edges in the cut. Let M ′ = {e ∈M : x∗

e ≥ 1
k+1} denote the set of faulty edges attaining high

fractional values in x∗. Define C ′ = C ∩M ′. If |C ′| ≥ k + 1 we are clearly done. Otherwise,
assume |C ′| ≤ k. In this case consider the failure scenario F = C ′. Since x∗ is a feasible
solution it must hold that

∑
e∈C\C′ x∗

e ≥ 1. Since for every edge e ∈ C \ C ′ it holds that
ye = (k + 1)x∗

e we obtain∑
e∈C\C′

ye ≥ k + 1

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:9

as desired. From our observations it follows that the maximum flow in D with capacities y

is at least k + 1. Finally, consider the minimum cost (k + 1)-flow z∗ in D with capacities
defined by

ce =
{

k + 1 if e ̸∈M

1 otherwise.

From integrality of c and the minimum-cost flow problem we can assume that z∗ is integral.
Note that ye ≤ ce for every e ∈ A, hence any feasible (k + 1)-flow with capacities y is
also a feasible (k + 1)-flow with capacities c. From the previous observation it holds that
w(z∗) ≤ w(y) ≤ (k + 1)OPT . From Lemma 2 we know that the support of z∗ is a feasible
solution to the FTP instance. This concludes the proof of the upper bound of k + 1 for the
integrality gap.

To prove the same lower bound we provide an infinite family of instances, containing
instances with integrality gap arbitrarily close to k + 1. Consider a graph with p≫ k parallel
edges with unit cost connecting s and t, and let M = A. An optimal solution to this FTP
instance chooses any subset of k + 1 edges. At the same time, the optimal solution to
FRAC-FTP assigns a capacity of 1

p−k to every edge. This solution is feasible, since in every
failure scenario, the number of edges that survive is at least p− k, hence the maximum s-t
flow is at least one. The cost of this solution is p

p−k . Taking p to infinity yields instances
with integrality gap arbitrarily close to k + 1. ◀

The proof of Theorem 8 leads to a simple (k + 1)-approximation algorithm for FTP.
However, simply creating k copies of each vulnerable arc and finding a minimum-cost s-t
flow of value at least k + 1 gives a (k + 1)-approximation as well.

▶ Proposition 9. FTP admits a polynomial-time (k + 1)-approximation algorithm.

A k-Approximation Algorithm

We propose an LP-based k-approximation algorithm for FTP that is a refinement of the
LP-based approximation algorithm of Proposition 9. Intuitively, the reason why the algorithm
of Proposition 9 gives an approximation ratio of k + 1 is that the capacity of the edges in
A \M is set to k + 1. Therefore, if an s-t flow z∗ uses such an edge to its full capacity,
the cost incurred is k + 1 times the cost of the edge. Hence, the best possible lower bound
on the cost w(z∗) is (k + 1) OPTF RAC , where OPTF RAC denotes the optimal value of the
corresponding FRAC-FTP instance. To improve the algorithm we observe that each edge
which carries a flow of k + 1 according to z∗ is a cut-edge in the obtained solution.

Let I = (D, s, t, M) be an instance of FTP. We begin our analysis by considering a certain
canonical flow defined by minimal feasible solutions.

▶ Definition 10. Consider an inclusion-wise minimal feasible solution S ⊆ A to I. A flow
fS induced by S is any integral s-t (k + 1)-flow in D respecting the capacity vector

cS
e =

1 if e ∈ S ∩M

k + 1 if e ∈ S \M

0 if e ∈ A \ S.

Consider an optimal solution X∗ ⊆ A to I and a corresponding induced flow f∗. Define

XP AR = {e ∈ X∗ : f∗(e) ≤ k} and XBRIDGE = {e ∈ X∗ : f∗(e) = k + 1} .

SWAT 2022

5:10 Fault-Tolerant Edge-Disjoint s-t Paths

As we argued before, every edge in XBRIDGE must be a bridge in H = (V, X∗) disconnecting
s and t. Let eu denote the tail vertex of an edge e ∈ A. Since every edge e ∈ XBRIDGE

constitutes an s-t cut in H, it follows that the vertices in U = {eu : e ∈ XBRIDGE} ∪ {s, t}
can be unambiguously ordered according to the order in which they appear on any s-t path
in H, traversed from s to t. Let s = u1, · · · , uq = t be this order. Except for s and t, every
vertex in U constitutes a cut-vertex in H. Divide H into q − 1 subgraphs H1, · · · , Hq−1 by
letting Hi = (V, Yi) contain the union of all ui-ui+1 paths in H. We observe the following:

▶ Proposition 11. For every i ∈ {1, 2, . . . , q − 1} the set Yi ⊆ A is an optimal solution to
the FTP instance Ii = (G, ui, ui+1, M).

Consider some i ∈ {1, 2, . . . , q−1} and let f∗
i denote the flow f∗, restricted to edges in Hi.

Note that f∗
i can be viewed as a ui-ui+1 (k + 1)-flow. Exactly one of the following cases can

occur. Either Hi contains a single edge e ∈ A \M , or maxe∈Yi f∗
i (e) ≤ k. In the former case,

the edge e is the shortest ui-ui+1 path in (V, A \M). In the latter case we use an algorithm
that is similar to the one of Proposition 9 to obtain a k-approximation of the optimal FTP
solution on instance Ii. Concretely, the algorithm defines the capacity vector c′(e) = k if
e /∈M and c′(e) = 1, otherwise, and finds an integral minimum-cost ui-ui+1 (k + 1)-flow Y ∗

in D, and returns the support Y ⊆ A of the flow as the solution. The existence of the flow
f∗

i guarantees that w(y∗) ≤ w(f∗
i), while the fact that the maximum capacity in the flow

problem is bounded by k gives w(Y) ≤ kw(y∗). It follows that this algorithm approximates
the optimal solution to the FTP instance Ii to within a factor k.

The final algorithm uses the algorithm for 1-FTP as a blueprint. However, instead
of finding two edge-disjoint u-v paths, the new algorithm solves the aforementioned flow
problem. We summarize the main result of this section as follows.

▶ Theorem 12. FTP admits a polynomial-time k-approximation algorithm.

2.3 Approximation Hardness
We complement our algorithmic results by showing approximation hardness for FTP. An
instance of the problem Directed m-Steiner Tree (m-DST) is given by a weighted directed
graph D = (V, A), a source node s ∈ V , a set T ⊆ V of terminals and an integer m ≤ |T |.
The goal is to find a minimum-cost arboresence X ⊆ A rooted at s that connects s to m

terminals. Halperin and Krauthgamer [15] showed that m-DST cannot be approximated
within a factor log2−ϵ m for every ϵ > 0, unless NP ⊆ ZTIME(npolylog(n)). We show that the
problem m-DST is a special case of FTP.

Given an m-DST instance we construct an instance of FTP as follows. The graph D is
augmented by |T | new arcs A′ of cost 0 connecting every terminal to a new node t. Finally,
we let M = A′ and k = m− 1. It is readily verified that any fault-tolerant s-t path in the
graph so obtained corresponds to a feasible solution to the m-DST instance of the same cost
(we may assume that all arcs in A′ are in some solution to the FTP instance). This implies
the following conditional approximation lower bound for FTP.

▶ Proposition 13. FTP admits no polynomial-time approximation algorithms with ratio
log2−ϵ k for every ϵ > 0, unless NP ⊆ ZTIME(npolylog(n)).

The reduction can be easily adapted to yield a kϵ-approximation algorithm for FTP for
the special case that M ⊆ {e ∈ A : t ∈ e} using the algorithm of Charikar et. al. [8].

We end this discussion by showing that FTP contains as a special case a more general
Steiner problem, which we call Simultaneous Directed m-Steiner Tree (m-SDST). An input
to m-SDST specifies two arc-weighted digraphs D1 = (V, A1, w1) and D2 = (V, A2, w2) on

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:11

the same set V of vertices, a source s, a set T ⊆ V of terminals, and an integer m ≤ |T |. The
goal is to find a subset U ⊆ T of m terminals and two arborescences S1 ⊆ A1 and S2 ⊆ A2
connecting s to U in the respective graphs, so as to minimize w1(S1) + w2(S2). m-SDST is
seen to be a special case of FTP via the following reduction. Given an instance of m-SDST,
construct a graph D = (V ′, A) as follows. Take a disjoint union of D1 and D2, where the
direction of every arc in D2 is reversed. Connect every copy of a terminal u ∈ T in D1 to its
corresponding copy in D2 with an additional zero-cost arc eu. Finally, set M = {eu : u ∈ T}
and k = m− 1. A fault-tolerant path connecting the copy of s in D1 to the copy of s in D2
corresponds to a feasible solution to the m-SDST instance with the same cost, and vice-versa.

3 Fault-Tolerant Flows

In this section we present our results on the problem FTF. We first give an approximation
hardness result and then investigate the complexity of FTF for fixed flow values ℓ. Our main
result is a polynomial-time algorithm for the corresponding augmentation problem, which
we use to obtain a 2-approximation for Fault-Tolerant ℓ-Flow. We conclude by showing that
a polynomial-time algorithm for Fault-Tolerant ℓ-Flow implies polynomial-time algorithms
for two problems whose complexity status is open.

3.1 Approximation Hardness of FTF
We show that FTF is as hard to approximate as Directed Steiner Forest by using an approxi-
mation hardness result from [16] for the problem Weighted Robust Matching Augmentation.
The problem Weighted Robust Matching Augmentation asks for the cheapest edge-set (as-
suming non-negative costs) to add to a bipartite graph such that the resulting graph is
bipartite and contains a perfect matching after a-posteriori removing any single edge. The
idea of our reduction is similar to that of the classical reduction from the Bipartite Maximum
Matching problem to the Max s-t Flow problem. Note that we may assume that both parts
of the input graph have the same size. We add to the graph (U, W, E) on n vertices of a
Weighted Robust Matching Augmentation instance I two terminal vertices s and t, and
connect s to each vertex of U and each vertex of W to t by an arc of cost 0. Now we add all
possible arcs from U to W , marking those as vulnerable that correspond to an edge in E;
the costs are according to I. Observe that a fault-tolerant n/2-flow corresponds to a feasible
solution to the Weighted Robust Matching Augmentation instance after deleting s and t.

▶ Lemma 14. A polynomial-time f(ℓ) approximation algorithm for FTF implies a polynomial-
time f(n/2)-approximation algorithm for Weighted Robust Matching Augmentation, where n

is the number of vertices in the Weighted Robust Matching Augmentation instance.

Proof. In the following it will be convenient to denote by E the edge-set of the bipartite
complement of a bipartite graph with edge-set E. Let I = (G, c) be an instance of Weighted
Robust Matching Augmentation where G = (U, W, E) is a balanced bipartite graph on n

vertices and c ∈ ZE
≥0. Our reduction is similar to the classical reduction from the perfect

matching problem in bipartite graphs to the Max s-t Flow problem. We construct in
polynomial-time an instance I ′ = (D′, c′, s, t, M) of FTF as follows. To obtain the digraph
D′ = (V, A), we add to the vertex set of G two new vertices s and t and add all arcs from s

to U and from W to t. Furthermore, we add all arcs from U to W and consider those that
correspond to an edge in E as vulnerable. That is, we let M := {uw : u ∈ U, w ∈W, uw ∈ E}.
To complete the construction of I ′, we let ℓ = n/2, and let the arc-costs c′ be given by

SWAT 2022

5:12 Fault-Tolerant Edge-Disjoint s-t Paths

c′
uw :=

{
cuw if uw ∈ E(G), and
0 otherwise.

For X ⊆ E ∪ E we write q(X) for the corresponding set of arcs of D′. Similarly, for
a set Y ⊆ A of arcs we write q−1(Y) for the corresponding set of undirected edges of G.
Observe that for a feasible solution X to I, the arc set q(X) ∪ As ∪ At is feasible for I ′,
where As (resp., At) is the set of arcs leaving s (resp., entering t). Furthermore, a feasible
solution Y to I ′ corresponds to a feasible solution q−1(Y \ (As ∪At)) to I. Also note that,
by the choice of c′, we have that the cost of two corresponding solutions is the same. It
follows that since ℓ = n/2, any polynomial-time f(ℓ)-factor approximation algorithm for
Fault-Tolerant ℓ-Flow implies a polynomial-time f(n/2)-factor approximation algorithm for
Weighted Robust Matching Augmentation, where n = |U + W |. ◀

We combine Lemma 14 with two hardness results from [16] and [15] to obtain the following
approximation hardness result for FTF.

▶ Theorem 15. FTF admits no polynomial-time log2−ε(ℓ)-factor approximation algorithm
for every ε > 0, unless NP ⊆ ZTIME(npolylog(n)).

Proof. We give a polynomial-time cost-preserving reduction from Directed Steiner Forest to
FTF via Weighted Robust Matching Augmentation. The intermediate reduction step from
Directed Steiner Forest to Weighted Robust Matching Augmentation is given in [16, Prop. 6.1].
Consider an instance I of Directed Steiner Forest on a weighted digraph D = (V, A) on
n vertices with k terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk). According to the reduction
given in the proof of [16, Prop. 18], we obtain an instance of Weighted Robust Matching
Augmentation on a graph of at most 2(n + k) + 2(n − k) = 4n =: n′ vertices. By the
arguments their proof, a f(n′)-approximation algorithm for Weighted Robust Matching
Augmentation yields a f(4n)-approximation algorithm for Directed Steiner Forest. We apply
Proposition 14 to conclude that an f(ℓ)-approximation algorithm for FTF yields a f(2n)-
approximation algorithm for Directed Steiner Forest. According to the result of Halperin
and Krauthgamer [15], the problem Directed Steiner Forest admits no polynomial-time
log2−ε n-approximation algorithm for every ε > 0, unless NP ⊆ ZTIME(npolylog(n)). We
conclude that FTF admits no polynomial-time log2−ε(ℓ/2)-factor approximation algorithm
under the same assumption. ◀

3.2 Approximation Algorithms
We first present a simple polynomial-time (ℓ + 1)-approximation algorithm for FTF, which is
similar to the LP-based (k + 1)-approximation for FTP. The algorithm computes a minimum-
cost s-t flow of value ℓ + 1 on the input graph with the following capacities: each vulnerable
arc receives capacity 1 and any other arc capacity 1 + 1/ℓ. The solution then consists of
all arcs in the support of the flow. To see that for this choice of capacities we obtain a
feasible solution, recall that the value of any s-t cut upper-bounds the value of any s-t flow.
Therefore, each s-t cut C has value at least ℓ + 1, so C contains either at least ℓ safe arcs
or at least ℓ + 1 arcs. To prove the approximation guarantee, we show that any optimal
solution to an FTF instance contains an s-t flow of value ℓ + 1 and observe that we over-pay
safe arcs by a factor of at most (1 + 1/ℓ).

▶ Theorem 16. FTF admits a polynomial-time (ℓ + 1)-approximation algorithm.

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:13

Proof. Let I be an instance of FTF on a digraph D = (V, A)) with weight c ∈ ZA
≥0,

terminals s and t, vulnerable arcs M and desired flow value ℓ. We consider an instance
I ′ = (D, c, s, t, ℓ + 1, g) of MCF, where the arc capacities g are given by

ge :=
{

1 if e ∈M , and
1 + 1

k otherwise

An optimal solution to I ′ can be computed computed in polynomial-time by standard
techniques. We saw in the discussion at the beginning of Section 3.2 that the set of arcs of
positive flow in a solution to I ′ yields a feasible solution to I.

It remains to bound the approximation ratio. Let Y ∗ be an optimal solution to I of cost
OPT(I). We first show that Y ∗ contains ℓ + 1 disjoint s-t paths.

▷ Claim 1. Y ∗ contains an s-t flow of value ℓ + 1 with respect to the capacities g.

Proof. First observe that in any feasible solution to I, every s-t cut contains either at least ℓ

safe arcs or at least ℓ + 1 arcs. Now, an s-t cut Z in Y ∗ having at least ℓ safe arcs satisfies
g(Z) ≥ (1 + 1

ℓ) · ℓ = ℓ + 1. On the other hand, an s-t cut Z ′ in Y ∗ containing at least ℓ + 1
arcs satisfies g(Z ′) ≥ ℓ + 1. Hence, each s-t cut in Y ∗ has capacity at least ℓ + 1. By the
max-flow-min-cut theorem there is an s-t flow of value at least ℓ + 1. ◁

The theorem now follows from the next claim.

▷ Claim 2. An optimal solution to I ′ has cost at most (ℓ + 1) ·OPT(I).

Proof. Let f∗ ∈ QA be an optimal s-t flow with respect to the capacities g. Furthermore,
let Y be the set of arcs of positive flow, that is Y := {e ∈ A | f∗

e > 0}. Let YM = Y ∩M

be the vulnerable arcs in Y and let YS = Y \ YM be the safe arcs. First, we may assume
that each arc e ∈ Y has flow value at least f∗

e ≥ 1/ℓ, since each arc has capacity either 1
or 1 + 1

ℓ . This is true since we could scale the arc capacities g by a factor ℓ, which allows
us to compute (in polynomial time) an integral optimal solution with respect to the scaled
capacity function, using any augmenting paths algorithm for MCF. In addition, observe that
we may pay a factor of at most 1 + 1

ℓ too much for each safe arc since the capacity of the
safe arc is 1 + 1

ℓ . Therefore, we may bound the cost of a safe arc e ∈ YS by ℓ · (1 + 1
ℓ) · ce · fe

and the cost of each vulnerable arc e ∈ YM by ℓ · ce · fe, where fe is the flow-value of arc e

according to the solution Y . Hence, we obtain

c(Y) = c(YS) + c(YM)

≤ ℓ ·

(
(1 + 1

ℓ
) ·
∑

e∈YS

ce · f∗
e +

∑
e∈YM

ce · f∗
e

)

≤ ℓ · (1 + 1
ℓ

) ·
(∑

e∈YS

ce · f∗
e +

∑
e∈YM

ce · f∗
e

)
≤ (ℓ + 1) ·OPT(I) ,

where the first inequality follows from the two arguments above and the last inequality
follows from Claim 1. ◁

◀

Note that we cannot simply use the dynamic programming approach as in the algorithm
for 1-FTP to obtain an ℓ-approximation for FTF, since a solution to FTF in general does not
have cut vertices, which are essential for the decomposition approach for the k-approximation
for FTP.

SWAT 2022

5:14 Fault-Tolerant Edge-Disjoint s-t Paths

A 2-approximation for Fault-Tolerant ℓ-Flow

We now show that for a fixed number ℓ of disjoint paths a much better approximation
guarantee can be obtained. That is, we give a polynomial-time 2-approximation algorithm for
Fault-Tolerant ℓ-Flow (FTℓF) (however, its running time is exponential in ℓ). The algorithm
first computes a minimum-cost s-t flow of value ℓ and then augments it to a feasible solution
by solving the following augmentation problem.

Fault-Tolerant ℓ-Flow Augmentation
Instance: arc-weighted directed graph D = (V, A), nodes s, t ∈ V , arc-set X0 ⊆ A

that contains ℓ disjoint s-t paths, and set M ⊆ A of vulnerable arcs.
Task: Find minimum weight set S ⊆ A \ X0 such that for every f ∈ M the

set (X0 ∪ S) \ f contains ℓ disjoint s-t paths.

Our main technical contribution is that Fault-Tolerant ℓ-Flow Augmentation can be
solved in polynomial time for fixed ℓ. Our algorithm is based on a dynamic programming
approach and it involves solving many instances of the problem Directed Steiner Forest,
which asks for a cheapest subgraph connecting ℓ given terminal pairs. This problem admits
a polynomial-time algorithm for fixed ℓ [11], but is W[1]-hard when parameterized by ℓ, so
the problem is unlikely to be fixed-parameter tractable [14]. Roughly speaking, we traverse
the ℓ disjoint s-t paths computed previously in parallel, proceeding one arc at a time. In
order to deal with vulnerable arcs, at each step, we solve an instance of Directed Steiner
Forest connecting the ℓ current vertices (one on each path) to ℓ destinations on the same
path by using backup paths. That is, we decompose a solution to the augmentation problem
into instances of Directed Steiner Forest connected by safe arcs. An optimal decomposition
yields an optimal solution to the instance of the augmentation problem. We find an optimal
decomposition by dynamic programming. Essentially, we give a reduction to a shortest path
problem in a graph that has exponential size in ℓ.

Let us fix an instance I of Fault-Tolerant ℓ-Flow Augmentation on a digraph D = (V, A)
with arc-weights c ∈ ZA

≥0 and terminals s and t. Let P1, P2, . . . , Pℓ be ℓ disjoint s-t paths
contained in X0. We assume without loss of generality that X0 is the union of P1, P2, . . . , Pℓ.
If X0 contains an arc e that is not on any of the ℓ paths, we remove e from X0 and assign to
it weight 0.

We now give the reduction to the shortest path problem. We construct a digraph
D = (V,A); to distinguish it clearly from the graph D of I, we call the elements in V (A) of
D vertices (arcs) and elements of V (A) nodes (links). We order the vertices of each path
Pi, 1 ≤ i ≤ ℓ, according to their distance to s on Pi. For two vertices xi, yi of Pi, we write
xi ≤ yi if xi is at least as close to s on Pi as yi. Let us now construct the node set V. We
add a node v to V for every ℓ-tuple v = (x1, ..., xℓ) of vertices in V (X0) satisfying xi ∈ Pi,
for every i ∈ {1, 2, . . . , ℓ}. Note that the corresponding vertices of a node are not necessarily
distinct, since the ℓ edge-disjoint paths P1, P2, . . . , Pℓ may share vertices. We also define a
(partial) ordering on the nodes in V. From now on, let v1 = (x1, ..., xℓ) and v2 = (y1, ..., yℓ)
be two nodes of V . We write v1 ≤ v2 if xi ≤ yi for every 1 ≤ i ≤ ℓ. Additionally, let Qi(x, y)
be the sub-path of Pi from a vertex x of Pi to a vertex y of Pi.

We now construct the link set A := A1 ∪ A2 of D as the union of two link-sets A1 and
A2, defined as follows. We add to A1 a link v1v2, if v1 precedes v2 and the subpaths of each
Pi from xi to yi contain no vulnerable arc. That is, we let

A1 := {v1v2 | v1, v2 ∈ V , v1 ≤ v2, Qi(xi, yi) ∩M = ∅ for 1 ≤ i ≤ ℓ} .

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:15

Algorithm 1 : Exact algorithm for Fault-Tolerant ℓ-Flow Augmentation.

Input: instance I of Fault-Tolerant ℓ-Flow Augmentation on a digraph D = (V, A)
1: Construct the graph D = (V,A)
2: Find a shortest path P in D from (s, . . . , s) to (t, . . . , t)
3: For each link vw ∈ P ∩ A2 add the arcs of an optimal solution to I(v, w) to Y

4: return Y

We now define the link set A2. Let v1, v2 ∈ V such that v1 precedes v2. If there is some
1 ≤ i ≤ ℓ, such that Qi(xi, yi) contains at least one vulnerable arc, then we first need
to solve an instance of Directed Steiner Forest on ℓ terminal pairs in order to compute
the cost of the link v1v2. We construct an instance I(v1, v2) of Directed Steiner Forest as
follows. The terminal pairs are (xi, yi)1≤i≤ℓ. The input graph is given by D′ = (V, A′),
where A′ = (A\X0)∪

⋃
1≤i≤ℓ

←−
Qi(xi, yi), where←−Qi(xi, yi) are the arcs of Qi(xi, yi) in reversed

direction. The arc costs are given by

c′
e :=

{
ce if e ∈ A \X0, and
0 if e ∈

←−
Qi(xi, yi) for some i ∈ {1, 2, . . . , ℓ}.

That is, for 1 ≤ i ≤ ℓ, we reverse the path Qi(xi, yi) connecting xi to yi and make the
corresponding arcs available at zero cost. We then need to connect xi to yi without using
arcs in X0. Since the number of terminal pairs is at most ℓ which is a constant, the Directed
Steiner Forest instance I(v1, v2) can be solved in polynomial time by the algorithm of Feldman
and Ruhl given in [11]. Let OPT(I(v1, v2)) be the cost of an optimal solution to I(v1, v2).
We add a link v1v2 to A2 if the computed solution of I(v1, v2) is strongly connected. This
completes the construction of A2. For a link e ∈ A we let the weight we = 0 if e ∈ A1 and
we = OPT(I(v1, v2)) if e ∈ A2.

We now argue that a shortest path P from node s1 = (s, . . . , s) ∈ V to node t1 =
(t, . . . , t) ∈ V in D corresponds to an optimal solution to I. For every link vw ∈ P, we add
the optimal solution to I(v, w) computed by the Feldman-Ruhl algorithm to our solution Y .
The algorithm runs in polynomial time for a fixed number ℓ of disjoint s-t paths, since it
computes at most nℓ Min-cost Strongly Connected Subgraphs on ℓ terminal pairs, which
can be done in polynomial time by [11]. Proving that the final algorithm is optimal is quite
technical and requires another auxiliary graph and a technical lemma.

▶ Theorem 17. The set Y computed by Algorithm 1 is an optimal solution to the instance
I of Fault-Tolerant ℓ-Flow Augmentation. Furthermore, the running time is bounded by
O(|A||V |6ℓ−2 + |V |6ℓ−1 log |V |).

From Theorem 17 we obtain a polynomial-time 2-approximation algorithm for FTℓF: Let
OPT(I) be the cost of an optimal solution to an instance I of FTℓF. The algorithm first
computes a minimum-cost s-t flow X0 and then runs the algorithm for the augmentation
problem using X0 as initial arc-set. The algorithm returns the union of the arc-sets computed
in the two steps. By Theorem 17 we can augment X0 in polynomial time to a feasible solution
X0 ∪ Y to I. Since we pay at most OPT(I) for the sets X0 and Y , respectively, the total
cost is at most 2 OPT(I).

▶ Corollary 18. FTℓF admits a polynomial-time 2-approximation algorithm.

The remainder of this section is devoted to sketching the proof of Theorem 17. For this
purpose we need another auxiliary graph that we use as a certificate of feasibility. For a
graph H = (V, A∗) such that X0 ⊆ A∗ ⊆ A, we denote the corresponding residual graph

SWAT 2022

5:16 Fault-Tolerant Edge-Disjoint s-t Paths

s t

(a) Graph D and X0 consisting of two disjoint paths.

s t

(b) Residual graph DX0 (X0 ∪ Y).

Figure 1 Illustration of the structure of feasible solutions to Fault-Tolerant ℓ-Flow Augmentation.
Unsafe arcs are red, safe arcs are black. In Fig. 1a: edges of X0 are black and red; edges of A − X0

are light gray and light red. Dashed edges belong to Y .

by DX0(A∗) = (V, A′). The arc-set A′ is given by A′ := {uv ∈ A∗ | uv /∈ X0} ∪ {vu ∈
A∗ | uv ∈ X0}. An illustration of this graph is given in Figure 1. We first show that in a
feasible solution Y ⊆ A \X0, each vulnerable arc in X0 is contained in a strongly connected
component of DX0(X0 ∪ Y).

▶ Lemma 19. Let Y ⊆ A \ X0. Then Y is a feasible solution to I if and only if each
vulnerable arc f ∈M ∩X0 is contained in a strongly connected component of DX0(X0 ∪ Y).

Proof. We first prove the “if” part, so let f = uv be a vulnerable arc in X0 that is contained
in a strongly connected component of DX0(X0 ∪ Y). Since f ∈ X0, the arc f is reversed
in DX0(X0 ∪ Y) and since f is on a cycle C in DX0(X0 ∪ Y), there is a path P from u

to v in DX0(X0 ∪ Y). Let P ′ be the path corresponding to P in X0 ∪ Y . Note that P ′ is
not a directed path in D and that an arc e on P ′ is traversed forward if e ∈ P ′ ∩ Y and
traversed backward if e ∈ P ′ ∩X0. We partition P ′ into two disjoint parts P ′

X0
= P ′ ∩X0

and P ′
Y = P ′ ∩ Y . We now argue that (X0 − P ′

X0
− f) ∪ P ′

Y contains ℓ disjoint s-t paths.
Clearly, we have (X0−P ′

X0
− f)∪P ′

Y ⊆ X0 ∪Y . Furthermore, by our assumption that X0 is
the union of ℓ s-t edge-disjoint paths, for each vertex v ∈ V − {s, t}, we have δ+(v) = δ−(v)
and δ+(s) = δ−(t) = ℓ. Since C is a cycle in DX0(X0 ∪ Y) the degree constraints also hold
for (X0 − P ′

X0
− f) ∪ P ′

Y . Hence (X0 − P ′
X0
− f) ∪ P ′

Y is the union of ℓ disjoint s-t paths.
We now prove the “only if” part. Let f = uv ∈ X0 be a vulnerable arc and suppose f is

not contained in a strongly connected component of DX0(X0 ∪ Y). Let L ⊆ V be the set
of vertices that are reachable from u in DX0(X0 ∪ Y) and let R = V − L. Note that s ∈ L,
since u is on some s-t path in X0 and t ∈ R, since otherwise there is a path from u to v in
DX0(X0 ∪Y) (since every arc in X0 is reversed in DX0(X0 ∪Y)). Let L′ = {x1, . . . , xℓ} ⊆ L,
xi ∈ Pi for 1 ≤ i ≤ ℓ, be the vertices of L that are closest to t in X0. We now claim
that δ+(L) is a cut of size ℓ in X0 ∪ Y containing f . Since f is vulnerable this contradicts
the feasibility of X0 ∪ Y . We have f ∈ δ+(L) in X0 ∪ Y , since otherwise f is contained
in a strongly connected component of DX0(X0 ∪ Y). By the construction of L, we have
Y ∩ δ+(L) = ∅. Since X0 is the union of ℓ disjoint paths, the set δ+(L) has size at most ℓ,
proving our claim, since this implies that X0 ∪ Y is not feasible. ◀

Next, we sketch the proof of Theorem 17.

Proof of Theorem 17 (sketch). Let P be a shortest path in the D and let Y be the solution
computed by Algorithm 1. Using Lemma 19 we can show the feasibility of Y .

▷ Claim 1. The solution Y computed by Algorithm 1 is feasible.

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:17

Let Y ∗ be an optimal solution to I of weight OPT(I). We now show that Y is optimal.
Observe that the weight of Y is equal to c′(P), so it suffices to show that w(P) ≤ OPT(I).
To prove the inequality, we first introduce a partial ordering of the strongly connected
components of DX0(X0 ∪ Y ∗). Using this ordering we can construct a path P ′ in D from
(s, . . . , s) to (t, . . . , t) of cost w(P ′) = OPT(I). We conclude by observing that a shortest
path P has cost at most w(P ′).

▷ Claim 2. There is a path P ′ from (s, . . . , s) to (t, . . . , t) in D of cost at most OPT(I).

Proof of Claim 2 (sketch). We give an algorithm that constructs a path P ′ from (s, . . . , s)
to (t, . . . , t) in D such that P ′ only uses links in A2 that correspond to strongly connected
components of Y ∗ in DX0(X0 ∪ Y ∗). Starting from s1 = (s, . . . , s) ∈ V, we perform the
following two steps alternatingly until we reach (t, ..., t) ∈ V .
1. From the current node u, we proceed by greedily taking links of A1 until we reach a node

v = (v1, v2, . . . , vℓ) ∈ V with the property that each vertex vi, 1 ≤ i ≤ ℓ, is either t or
part of some strongly connected component of DX0(X0 ∪ Y ∗).

2. From the current node v, we take a link vw ∈ A2 to some node w ∈ V , where the link vw

corresponds to a strongly connected component Z of DX0(X0 ∪ Y ∗).
It can be shown that this algorithm indeed finds the desired solution. ◁

Finally, using the algorithm in [11] for finding a cost-minimal strongly connected subgraph
on ℓ terminal pairs, we obtain that Algorithm 1 runs in time O(mn6ℓ−2 + n6ℓ−1 log n). ◀

3.3 Relation to a Problem of Open Complexity
In the previous section we obtained a 2-approximation for Fault-Tolerant ℓ-Flow. Ideally,
one would like to complement this with a hardness (of approximation) result. However,
since Fault-Tolerant ℓ-Flow Augmentation admits a polynomial-time algorithm according
to Theorem 17, we cannot use the augmentation problem in order to prove NP-hardness of
Fault-Tolerant ℓ-Flow; an approach that has been used successfully for instance for robust
paths [3], robust matchings [16] and robust spanning trees [2]. Hence, there is some hope
that Fault-Tolerant ℓ-Flow might actually be polynomial-time solvable. Here, we show that
a polynomial-time algorithm for Fault Tolerant 2-Flow implies polynomial-time algorithms
for 1-2-connected Directed 2 Steiner Tree, a problem whose complexity is open [9].

The problem 1-2-connected Directed 2 Steiner Tree is defined as follows. Given a digraph
D = (V, E) with costs c ∈ QA, a root vertex s ∈ V , and two terminals t1, t2 ∈ V , the goal is
to find a minimum cost set X ⊆ E such that X contains two disjoint s-t1 paths and one s-t2
path.

▶ Proposition 20. A polynomial-time algorithm for Fault Tolerant 2-Flow implies a
polynomial-time algorithm for 1-2-connected Directed 2 Steiner Tree.

Proof. Let I be an instance of 1-2-connected Directed 2 Steiner Tree on a graph D = (V, A)
with edge-weights c ∈ QE , root s ∈ V , and terminals T = {t1, t2}. We construct an instance
I ′ of Fault Tolerant 2-Flow as follows. We add to D two vertices u and t and four directed
edges Â = {(s, u), (t1, u), (u, t), (t2, t)}. Let the resulting graph be D′. The edge weights c′

of D′ are given by

c′
e :=

{
ce if e ∈ A(G), and
0 otherwise.

Finally, we let M := A ∪ {(s, u), (t1, u)}, that is, the edges incident to t are safe while all
other edges are unsafe.

SWAT 2022

5:18 Fault-Tolerant Edge-Disjoint s-t Paths

Let X be a feasible solution to I ′. We have Â ⊆ X, since otherwise X is not feasible.
We now show that there is at least one s-ti path and there are at least two disjoint s-t2
paths in (V, X \ Â). Assume first that there is no path from s to t1 in (V, X \ Â). But then
{(s, u), (v, t)} is a cut of size two in D′, where (s, u) is a vulnerable edge. This contradicts
the feasibility of X. Now assume that there are no two disjoint s-t2 paths in (V, X \ Â). It is
not hard to see that then we have a contradiction to the feasibility of X. Finally, observe
that there is a one-to-one correspondence between feasible solutions to I and I ′. ◀

4 Conclusions and Future Work

We introduced the two problems FTP and FTF, which add a non-uniform fault model to the
classical edge-disjoint s-t paths problem. This fault-model leads to a dramatic increase in
the computational complexity. We gave polynomial-time algorithms for several classes of
instances including the case k = 1 and DAGs with fixed k. Furthermore, we proved a tight
bound on the integrality gap of a natural LP relaxation for FTP and obtained a polynomial
k-approximation algorithm. For FTF, our main result is a 2-approximation algorithm for
fixed ℓ. One of the main open problems is to see whether the approximation guarantee for
FTP can be improved to the approximation guarantees of the best known algorithms for the
Steiner Tree problem. Furthermore, it would be interesting to see if the methods employed
in the current paper for 1-FTP and k-FTP on directed acyclic graphs can be extended to
k-FTP on general graphs. Another intriguing open question is whether Fault-Tolerant ℓ-Flow
is NP-hard, which is not known even for ℓ = 2. We showed that a positive result in this
direction implies polynomial-time algorithms for two Steiner problems whose complexity
status is open.

References
1 David Adjiashvili. Non-uniform robust network design in planar graphs. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-
/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2015.

2 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity.
In International Conference on Integer Programming and Combinatorial Optimization, pages
13–26. Springer, 2020.

3 David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-robust combinatorial optimiza-
tion. Mathematical Programming, 149(1-2):361–390, 2015. doi:10.1007/s10107-014-0760-6.

4 Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Approximation complexity of min-
max (regret) versions of shortest path, spanning tree, and knapsack. In European Symposium
on Algorithms, pages 862–873. Springer, 2005.

5 Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. A 2-approximation
algorithm for flexible graph connectivity. arXiv preprint, 2021. arXiv:2102.03304.

6 Christina Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189, 2012.
7 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Approxima-

bility of capacitated network design. Algorithmica, 72(2):493–514, 2015.
8 Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and

Ming Li. Approximation algorithms for directed Steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

9 Joseph Cheriyan, Bundit Laekhanukit, Guyslain Naves, and Adrian Vetta. Approximating
rooted steiner networks. ACM Transactions on Algorithms (TALG), 11(2):1–22, 2014.

10 Kedar Dhamdhere, Vineet Goyal, R Ravi, and Mohit Singh. How to pay, come what may:
Approximation algorithms for demand-robust covering problems. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), pages 367–376. IEEE, 2005.

https://doi.org/10.1007/s10107-014-0760-6
http://arxiv.org/abs/2102.03304

D. Adjiashvili, F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 5:19

11 Jon Feldman and Matthias Ruhl. The directed Steiner network problem is tractable for
a constant number of terminals. SIAM Journal on Computing, 36(2):543–561, 2006. doi:
10.1137/S0097539704441241.

12 Harold N Gabow and Suzanne R Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.

13 Daniel Golovin, Vineet Goyal, Valentin Polishchuk, R Ravi, and Mikko Sysikaski. Improved
approximations for two-stage min-cut and shortest path problems under uncertainty. Mathe-
matical Programming, 149(1-2):167–194, 2015.

14 Jiong Guo, Rolf Niedermeier, and Ondřej Suchỳ. Parameterized complexity of arc-weighted
directed Steiner problems. SIAM Journal on Discrete Mathematics, 25(2):583–599, 2011.

15 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, pages 585–594, 2003. doi:
10.1145/780542.780628.

16 Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. How to secure matchings
against edge failures. SIAM Journal on Discrete Mathematics, 35(3):2265–2292, 2021.

17 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

18 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

19 Gang Yu and Jian Yang. On the robust shortest path problem. Computers and Operations
Research, 25(6):457–468, June 1998.

20 Paweł Zieliński. The computational complexity of the relative robust shortest path problem
with interval data. European Journal of Operational Research, 158(3):570–576, November 2004.
doi:10.1016/s0377-2217(03)00373-4.

SWAT 2022

https://doi.org/10.1137/S0097539704441241
https://doi.org/10.1137/S0097539704441241
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/780542.780628
https://doi.org/10.1007/s004930170004
https://doi.org/10.1016/s0377-2217(03)00373-4

An Improved ε–Approximation Algorithm for
Geometric Bipartite Matching
Pankaj K. Agarwal #

Duke University, Durham, NC, USA

Sharath Raghvendra #

Virginia Tech, Blacksburg, VA, USA

Pouyan Shirzadian #

Virginia Tech, Blacksburg, VA, USA

Rachita Sowle #

Virginia Tech, Blacksburg, VA, USA

Abstract
For two point sets A, B ⊂ Rd, with |A| = |B| = n and d > 1 a constant, and for a para-
meter ε > 0, we present a randomized algorithm that, with probability at least 1/2, computes
in O(n(ε−O(d3) log log n + ε−O(d) log4 n log5 log n)) time, an ε-approximate minimum-cost perfect
matching under any Lp-metric. All previous algorithms take n(ε−1 log n)Ω(d) time. We use a
randomly-shifted tree, with a polynomial branching factor and O(log log n) height, to define a
tree-based distance function that ε-approximates the Lp metric as well as to compute the matching
hierarchically. Then, we apply the primal-dual framework on a compressed representation of the
residual graph to obtain an efficient implementation of the Hungarian-search and augment operations.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Euclidean bipartite matching, approximation algorithms, primal dual method

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.6

Funding Work on this paper was supported by NSF under grant CCF 1909171.

1 Introduction

Let A, B ⊂ Rd be two point sets of size n each, where d > 1 is a constant, and d(·, ·) a
metric. Let G = (A ∪B, A×B) be a weighted complete bipartite graph in which the cost of
an edge (a, b) ∈ A×B is d(a, b). A matching in G is a set of vertex-disjoint edges in G. A
perfect matching in G is a matching of size n. The cost of a matching M , denoted by ¢(M),
is ¢(M) =

∑
(a,b)∈M d(a, b). The minimum-cost perfect matching in G, denoted by M∗, is a

perfect matching in G of the minimum cost. For any ε > 0, a perfect matching M in G is
called an ε-approximate matching if ¢(M) ≤ (1 + ε)¢(M∗). We consider the case where the
cost d(a, b) is the Lp distance denoted by ∥a− b∥p. The optimal transport (OT) distance
between two (possibly continuous) distributions can be estimated by taking n samples from
both distributions and then computing their minimum-cost perfect matching. The wide
applicability of OT in Machine Learning and Computer Vision [17, 20, 4] has motivated the
design of fast exact and approximation algorithms that compute a minimum-cost perfect
matching. In this paper, for the Lp-norm, we present a new algorithm to computing an
ε-approximate matching.

Related work. For an arbitrary weighted bipartite graph with n vertices and m edges, the
Kuhn-Munkres algorithm [13] computes a minimum-weight bipartite matching in a weighted
bipartite graph in O(mn + n2 log n) time. For bipartite graphs with non-negative integer
costs bounded by C, Gabow and Tarjan [9] gave an O(m

√
n log(nC))-time algorithm. Both

© Pankaj K. Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and Rachita Sowle;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 6; pp. 6:1–6:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:sharathr@vt.edu
mailto:pshirzadian@vt.edu
mailto:rachita18@vt.edu
https://doi.org/10.4230/LIPIcs.SWAT.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

the Hungarian and Gabow-Tarjan algorithms are combinatorial algorithms that iteratively
find an augmenting path and augment the matching along this path. The augmenting paths
are chosen such that the increase in the matching cost after each augmentation is minimized.
This cost increase is referred to as the net-cost of the path. Alternate approaches such as the
electrical flow [21] method and the matrix multiplication based methods [15] can be used to
obtain fast matching algorithms. The current best known execution time is Õ(m + n1.5).

When A ∪ B is a 2-dimensional point set in the Euclidean space, a Euclidean
minimum-weight matching (EMWM) can be computed in O(n2 polylog n) time [12], and
in O(n3/2 polylog n) time when the points have integer coordinates [19, 18]. For this case,
it is easy to compute a O(log n)-approximate matching in expectation using a randomly
shifted quad-tree [6, 7]. Agarwal and Varadarajan [1] used the shifted quad-tree to compute
an O(log 1/δ)-approximate solution in O(n1+δ) time. Following this, there were several
results that used such a decomposition; see for instance [11, 3, 8]. The current best-known
approximation algorithm for computing EMWM is by Raghvendra and Agarwal [16], which
computes an ε-approximate matching with high probability in n(ε−1 log n)O(d) time. In their
algorithm, each cell □ of a randomly shifted quad-tree Q is decomposed by a uniform grid
into (log n/ε)O(d) subcells. The Euclidean distance between any pair of points u, v with □ as
their least common ancestor in Q is ε-approximated by the distance between the subcells
of □ that contain u and v respectively. Their algorithm uses Q to compute a minimum
net-cost augmenting path P with respect to the new distance and augment the matching
along this path, both in time O(|P |poly log n). They obtain a near-linear execution time
by bounding the total length of all augmenting paths by O(ε−1n log n). To compute these
paths quickly, they compress the residual graph inside □ into a graph of (log n/ε)O(d) size
and execute Bellman-Ford algorithm on this graph. Lahn and Raghvendra [14] extended
this framework to approximate the 2-Wasserstein distance of planar point sets, i.e., an
approximate minimum-cost matching when d(u, v) is ∥u− v∥2

2. Unlike Euclidean distance,
approximating the squared-Euclidean distance using Q results in a polynomial sized com-
pressed residual graph at each cell. Since using Bellman-Ford algorithm on such a compressed
graph can be prohibitively expensive, they introduce a novel primal-dual framework and
define compressed feasibility on the compressed residual graph. Using this framework, they
are able to find an augmenting path as well as augment it along this path in sub-linear time.
Consequently, they achieve an O(n5/4poly(log n, 1/ε)) time algorithm for the 2-Wasserstein
distance between planar point sets. Recently, Agarwal et al. [2] have designed a deterministic
algorithm that uses multiple quadtrees to compute a (1 + ε)-approximate Euclidean matching
in n(ε−1 log n)O(d) time.

Our result. The following theorem states our main result.

▶ Theorem 1. Let A, B be two point sets in Rd of size n each, for a constant d > 1, and let
0 < ε ≤ 1 be a parameter. With probability at least 1/2, an ε-approximate matching under
any Lp-metric can be computed in O(n(ε−O(d3) log log n + ε−O(d) log4 n log5 log n)) time.

For the sake of simplicity, we describe the algorithm for the Euclidean metric. It can be
extended to other Lp-metrics in a straight forward manner. For any two points a and b, we use
∥a−b∥ to denote the Euclidean distance between them. Using standard techniques [16, 14], we
can preprocess the input points in O(n log n) time so that the point sets A and B satisfy the
following conditions: (P1) All input points have integer coordinates bounded by nO(1). (P2)
No integer grid point contains points of both A and B. (P3) ¢(M∗) ∈

[
3

√
dn

ε , 9
√

dn
ε

]
. Details

of how we preprocess A and B can be found in the Appendix (Section A). Assuming A and

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:3

B satisfy (P1)–(P3), we present an algorithm that, with probability 1/2, computes an (ε/2)-
approximate matching in O(n(ε−O(d3) + ε−O(d) log4 n log4 log n)) time. The preprocessing
step adds an additional log log n factor to the running time of the algorithm, resulting in
the running time mentioned in Theorem 1. In the following, we provide an overview of our
approach and its comparison with existing work.

As in [16, 14], we also define a tree based distance dT(·, ·) that approximates the Euclidean
distance (Section 2). Unlike [16, 14] that use a quad-tree of height O(log n), we build a tree T

of height O(log log n) (see Section 2.1). Each cell of T at level i (root is assigned level 0) with
a side length of ℓi is partitioned using a randomly-shifted grid into children whose side-length
ℓi+1 = ℓc

i where c < 1 is a constant that depends only on d. Given that the point set have
integer coordinates bounded by nO(1) (from (P1)), the height of T is h = O(log log n). For
any pair of points (u, v) with a cell □ of level i as its least common ancestor, let □u and □v

be the children of □ that contain u and v respectively. As in the case of a randomly shifted-
quadtree where we get an O(h) = O(log n) approximation, one can show that the distance
between the centers of □u and □v is a O(h) = O(log log n) approximation of the Euclidean
distance (in expectation). We obtain a refined (1 + ε)-approximation of the Euclidean
distance by partitioning □u and □v into finer subcells and then using the distance between
the centers of those sub-cells that contain u and v. As in [16, 14], one can divide each cell
into O(hd) many subcells and obtain a (1+ε)-approximation of the Euclidean distance. With
h = log log n, this will result in an execution time of Ω(n log4 n(ε−1 log log n)d3). Instead, we
partition a cell into subcells more carefully (See the definition of subcells in Section 2.2).
Intuitively, we make the number of subcells a function of the height of the cell, i.e., smaller
cells have significantly fewer than logO(d) log n subcells. As a result, we are able to improve
the dependence of our algorithm from logO(d3) log n to logO(d) log n. Interestingly, we show
that the expected distortion is higher for cells that are closer to the leaves. Nonetheless, we
are able to bound the expected error of our distance between any two points u and v by
ε∥u− v∥ (See Lemma 3).

Similar to [14], our algorithm compactly stores the residual graph (Section 5.2) as well
as the dual weights (Section 5.3) and uses this compact representation to efficiently find
augmenting paths. The size of the compressed residual graph inside any cell is bounded by the
side-length of its child, i.e., smaller cells have a smaller compressed graph (Lemma 14). As a
result, finding augmenting paths in smaller cells is significantly faster than that in larger ones.
In our analysis, we show that most of the augmenting paths in the algorithm are found in
smaller cells which can be computed quickly. In particular, only O(n

εℓi+1
) augmenting paths

are found inside a compressed graph at level i, each of which can be found in O(ℓi+1 log2 n)
time. Combining across all O(log log n) levels, we get a near-linear execution time.

Typical matching algorithms that are based on a compressed residual graph modify
the dual weights and find an augmenting path with respect to current matching M . The
algorithms presented in [16, 14] classify edges into local and non-local which they use critically
in computing a minimum net-cost augmenting path. We remove the need for this classification
and make our algorithm and its analysis simpler. Instead of using the classification, our
algorithm carefully updates the dual weights, possibly modifies a matching M to another
matching M ′ of the same size and cost, and finds an augmenting path with respect to the
new matching M ′.

SWAT 2022

6:4 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

2 Hierarchical Partition and the Distance Function

In this section, we present a randomized hierarchical partitioning of space, used to define a
new distance function dT(·, ·) that approximates the Euclidean metric (in expected sense) as
well as to guide the construction of matching (in a hierarchical manner).

2.1 Hierarchical Partitioning
For a value ℓ > 0, let G[ℓ] be the d-dimensional uniform grid with cell side-length ℓ, i.e.,
G[ℓ] = (ℓZ)d + [0, ℓ]d. For a point x ∈ Rd, we use G[ℓ] + x to denote the translate of G[ℓ]
by x. For any rectangle R, let AR = A ∩ R and BR = B ∩ R. We say that R is non-empty
if AR ∪ BR ̸= ∅. Given R and a grid G, let C[R, G] denote the set of non-empty rectangles
in the rectangular subdivision of R induced by G. If G is fixed or clear from the context,
we use C[R] to denote C[R, G]. By abusing the notation slightly, we use C[R] to denote the
subdivision as well as the set of non-empty rectangles in the subdivision. For a non-empty
rectangle R, we designate one of the points in AR ∪BR, say rR, as its representative.

Let □0 be the smallest axis-aligned hypercube that contains A ∪ B. Let ℓ0 be its side
length. By property (P1), ℓ0 = nO(1). We construct a hierarchical partition and the
associated tree T , as follows. Each node in T is associated with a non-empty rectangle which
we refer to as a cell and we will not distinguish between the two. The level of a node (and
the corresponding rectangle) is the length of the path in T from the root. The root of T

is □0 and its level is 0. Set α = 1 − 1
8d+2 . For i > 0, set ℓi = ℓi−1

α. Let h > 0 be the
smallest integer such that ℓh ≤ (ε−1d)

α
(1−α)2 . Any cell □ in T of level h is designated as a

leaf node. By construction, h = O(log log n) The choice for the condition of the leaf node
will become apparent in Section 2.2. Otherwise, we choose a random point, ξ□ ∈ [0, ℓi+1]d
and set G = G[ℓi+1] + ξ□. Let C[□] := C[□, G] be the subdivision of □ induced by G. Each
rectangle □′ ∈ C[□] is a level i + 1 node. We create a child of □ in T for each non-empty
rectangle □′ ∈ C[□] and recursively construct the partition and associated sub-tree of □′.
For any 0 ≤ i ≤ h− 1, let ∆[i] denote all cells of T of level i.

2.2 Euclidean Distance Approximation
For any pair of points (a, b) ∈ A×B, let □ be the least common ancestor of a and b in T ,
i.e., the cell with the highest level that contains a and b. Let the level of □ be i. We define
the level of (a, b), lev(a, b), to be i and refer to (a, b) as a level i edge. Let □a and □b be the
children of □ that contain a and b respectively. We divide □a and □b into O(ε−d(h− i)2d)
subcells and show that the distance between any two points in the subcells that contain a

and b is a (1 + ε)-approximation of ∥a− b∥. Note that the smaller cells, i.e., those at a higher
level, have fewer subcells. Using this and the bound on the side-length of any leaf node of T ,
we can bound the number of subcells of the children of □ by ℓi+1 (independent of log log n).
In Section 5, we use this fact to compress the residual graph more efficiently.

Subcells. Any cell □ is divided into subcells as follows. For each 0 < i < h, set

µi = ε

c2
√

d(h− i)2
ℓi, (1)

where c2 = 24π2. We set µ0 = ∞ and µh = 0. A subcell is formed by combining a subset
of children of □ such that the diameter of points in these children is no more than µi. Set
µ̄i =

⌊
µi√

dℓi+1

⌋
ℓi+1 (By Lemma 2 below,

⌊
µi√

dℓi+1

⌋
is a positive integer). For any non-leaf

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:5

Figure 1 Euclidean distance approximation: The grey rectangular subdivision shows the children
of □ (on left) and the bold grey rectangular subdivision shows the subcells.

and non-root cell of level i in the tree T , let G□ = G[µ̄i] + ξ□, where ξ□ is the random shift
for the grid constructed in □. By construction, the boundary of grid cells in G□ are aligned
with those of G[ℓi+1] + ξ□ (See Figure 1). Therefore, each non-empty child cell of □ lies in
exactly one subcell of subdivision C[□, G□]. Let S□ be this set of non-empty subcells, and
let R□ be the set of representative points of S□, i.e., R□ = {rR | R ∈ S□}. It is clear that the
diameter of each subcell is at most µi. The following lemma relates the side-length of the
children of a cell to the diameter of the subcells of that cell.

▶ Lemma 2. For any 0 ≤ i < h, ℓi+1 ≤ µi/
√

d.

WSPD. For any cell □, the number of pairs of children subcells of □ can be prohibitively
large. We use a well-separated pair decomposition (WSPD) to compactly store these pairs.
For simplicity of the algorithm, similar to [14], we use WSPD to define our Euclidean distance
approximation. For a point set X, let DiamX be the distance between the farthest pair
of points in X. For any ε > 0, two point sets X and Y are called ε-well-separated if for
all x ∈ X and y ∈ Y , max{DiamX , DiamY } ≤ (ε/12)∥x − y∥. Given a point set X ∈ Rd

of size n and a parameter ε > 0, an ε-WSPD (or simply WSPD for brevity) of X is a set
W = {(R1, S1), · · ·, (Rk, Sk)} such that (i) each (Ri, Si) is ε-well separated, (ii) for each pair
of points (u, v) ∈ X ×X, there is a unique pair (Ri, Si) ∈ W such that (u, v) ∈ Ri × Si or
(u, v) ∈ Si × Ri, and (iii) k = O(ε−dn). Also, if the spread of X, the ratio of the largest
to smallest pairwise distances, is bounded by nO(1), then every point of X participates
in O(ε−d log n) pairs of W. W can be constructed in O(n log n + ε−dn) time [5, 10]. For
any (Ri, Si) ∈ W, we choose an arbitrary pair (xi, yi) ∈ Ri × Si and make this pair its
representative pair.

For any non-leaf cell □ ∈ T , let X□ =
⋃

□′∈C[□] R□′ be the set of representative points of all
non-empty subcells of the children of □. We build an ε-WSPDW□ = {(R1, S1), . . . , (Rk, Sk)}
on X□. For a leaf cell □, we construct an ε-WSPD W□ on A□ ∪B□.

Distance function. We are now ready to define the distance function dT : A×B 7→ R≥0.
For any pair of points (a, b) ∈ A×B of level i with □ as its least common ancestor, if i = h,
we set δab = 0 and if i < h, we set δab = µi+1. For i = h, we set (Rj , Sj) to be the pair in

SWAT 2022

6:6 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

W□ such that (a, b) ∈ Rj × Sj . For i < h, (Rj , Sj) is defined as follows. Let □a (resp. □b)
be the child of □ that contains a (resp. b), and let ξa

ab (resp. ξb
ba) be the subcell of □a (resp.

□b) that contains a (resp. b). Let ra and rb be the representatives of ξa
ab and ξb

ba respectively.
Let (Rj , Sj) be the unique ε-well separated pair of W□ such that (ra, rb) ∈ Rj × Sj . We say
that (a, b) is covered by (Rj , Sj). Now let (xj , yj) be the representative pair of (Rj , Sj) (See
Figure 1). Then, we define

dT(a, b) = (1 + ε/4)∥xj − yj∥+ 2δab. (2)

Unlike in [16, 14], we create fewer subcells for cells that are closer to the leaves, which results
in a larger distortion for the edges within these cells. However, Lemmas 3 and 4 together
establish that the expected distortion on any pair of points (a, b) ∈ A×B is still proportional
to ε∥a− b∥. See Appendix B for the proof.

▶ Lemma 3. For any pair of points (a, b) ∈ A×B, E[δab] ≤ π2

6c2
ε∥a− b∥.

Using Lemma 3, we show in Lemma 4 that our distance function, in expectation, approx-
imates the Euclidean distance within a factor of (1 + ε).

▶ Lemma 4. For any pair of points (a, b) ∈ A × B, dT(a, b) ≥ ∥a − b∥. Furthermore,
E[dT(a, b)] ≤ (1 + (5π2

6c2
+ 11

24)ε)∥a− b∥.

3 Preliminaries

We begin by presenting notations pertaining to the distance function that will help us describe
our algorithm. For any subset E ⊆ A × B of edges, we use w(E) =

∑
(u,v)∈E dT(u, v) to

denote the sum of the weights of the edges in E with respect to dT(·, ·).
Next, we describe definitions related to matching that will assist us in presenting our

algorithm. Let M be any matching in G. A vertex is free with respect to M if it has no edges
of M incident on it. An alternating path with respect to M is a simple path in G whose
edges alternate between those in M and not in M . An augmenting path is an alternating
path whose endpoints are free. We can augment M along an augmenting path P by simply
setting M ← M ⊕ P . For any matched vertex u ∈ A ∪ B, let m(u) denote the vertex to
which u is matched in M . For any edge (u, v), we define the net-cost ϕ(u, v) of (u, v) as
follows: ϕ(u, v) = dT(u, v) + δuv if (u, v) /∈M , and ϕ(u, v) = −dT(u, v) if (u, v) ∈M . For a
set E ⊆ A×B of edges, we define its net-cost as ϕ(E) =

∑
(u,v)∈E ϕ(u, v).

A residual graph GM is a directed bipartite graph that has the same set of edges as G
and for any matching (resp. non-matching) edge (a, b) ∈ A× B, it is directed from a to b

(resp. b to a). We refer to the weight of (a, b) in GM to be its net-cost. It is easy to see that
any simple directed path P in GM alternates between matching and non-matching edges and
therefore, P is an alternating path. For any rectangle R, let MR be the subset of the edges
of M with both endpoints inside R, and let GR

M denote the residual graph on AR ∪BR with
respect to the matching MR.

Similar to the Hungarian algorithm, our algorithm assigns a dual weight y(v) ≥ 0 to each
vertex v ∈ A∪B. We say that a matching M and a set of non-negative dual weights y(·) are
feasible if, for every directed edge (u, v) of GM , y(u)− y(v) ≤ ϕ(u, v). The presence of δuv

in the definition of ϕ(u, v) makes our feasibility conditions a relaxed form of the feasibility
conditions of the Hungarian algorithm. It can be shown that a feasible perfect matching is
(in expectation) a (1 + ε/2)-approximation of the minimum-cost Euclidean matching.

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:7

▶ Lemma 5. Suppose a perfect matching M along with a set of dual weights y(·) are feasible
and let M∗ denote an optimal matching with respect to the Euclidean cost ¢(·). Then,
E[¢(M)] ≤ E[w(M)] ≤ (1 + ε/2)¢(M∗).

For any directed edge (u, v) of GM , we define its slack as s(u, v) = ϕ(u, v)− y(u) + y(v).
Based on the definition of feasibility, it is clear that s(u, v) ≥ 0. An edge (u, v) of GM is
called admissible if s(u, v) = 0. Given a feasible matching M , we can use the definition of
slack to relate the weight of any directed path P from u to v in GM to the slack on its edges:

ϕ(P) =
∑

(u′,v′)∈P

(y(u′)− y(v′) + s(u′, v′)) = y(u)− y(v) +
∑

(u′,v′)∈P

s(u′, v′). (3)

We present a slow yet simple implementation to find a (1 + ε)-approximate matching,
which is basically the Hungarian algorithm. Initialize for every v ∈ A ∪ B, y(v) = 0 and
M ← ∅. At each step, we find an augmenting path in the residual graph as follows. We
set the edge weights in the residual graph to be their slacks. Next, starting from the free
vertices of B, we execute the Dijkstra’s shortest-path algorithm (also called the Hungarian
Search) in this graph. For any v ∈ A ∪B, let κv be the shortest path from any free vertex of
B to v. The algorithm returns the augmenting path P to a free vertex a of A that minimizes
κa; i.e, the minimum net-cost augmenting path. We update the dual weight of every vertex
v with κv < κa by setting y(v)← y(v)− κv + κa, making all edges of P admissible. Finally,
we set M = M ⊕ P . Augmenting the matching along P keeps the matching feasible. In the
following lemma, we state two observations of this algorithm.

▶ Lemma 6. During the execution of the algorithm described above,
(i) augmenting paths are computed in increasing order of their net-costs; and
(ii) if the net-cost of an augmenting path P is less than µi, then P does not contain any

edge of level lower than i (Recollect that any such edge has a cost of at least µi).
Lemma 6 suggests that we can search for augmenting paths in residual graph inside the

cells of ∆[i] until the net-cost of the augmenting path reaches µi.
The implementation described above requires n executions of Dijkstra’s algorithm, each

taking Θ(n2) time. In the next two sections, we use the properties of this algorithm (Lemma 6)
to present an efficient implementation of a variant of the above algorithm.

4 Overview of the Algorithm

We present our algorithm assuming the existence of three procedures, namely, Build,
HungarianSearch, and Augment procedures. The details of these procedures is deferred
to Section 5.

Our algorithm computes a feasible perfect matching by processing the cells of T in
decreasing order of their levels. Initially i← h− 1 and M ← ∅ (no matching is computed at
level h). For any cell □ ∈ ∆[i], the algorithm executes the following steps:

If i < h− 1, the algorithm calls the Build(□, M) procedure. This step builds a compact
representation of the residual graph (defined in Section 5.2).
The algorithm does the following iteratively: It calls the HungarianSearch(□, M)
procedure. This procedure returns NULL if there is no augmenting path in G□M of a
net-cost less than µi (see (1)). In this case, the algorithm stops processing □. Otherwise,
if there is an augmenting path, the procedure updates the dual weights y(·) and may
update M ←M ′ where M ′ is another matching of equal size such that y(·), M ′ is feasible
and w(M) = w(M ′). Then it returns a minimum net-cost augmenting path P with
respect to the updated matching. The algorithm calls Augment(□, P, M) to augment
M along P .

SWAT 2022

6:8 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

After all cells in ∆[i] are processed, if i = 0, the algorithm returns the matching M . Otherwise,
it sets i← i− 1 and continues.

Execution time of the procedures. The Build, HungarianSearch, and Augment
procedures presented in Section 5 have the following execution time. For any cell □, let n□ =
|A□ ∪B□|. If □ has a level i < h− 1, the Build procedure takes n□ log3 n(ε−1 log log n)O(d)

time. Next, we present the running time of HungarianSearch and Augment procedures.
For any cell □, if □ is at level h− 1 of T , then the HungarianSearch and Augment

procedures takes ε−O(d3) time. Otherwise, let i = lev(□) < h− 1. For j > i, let kj be the
number of level j cells that contains at least one vertex of P . If HungarianSearch returns
NULL, kj = 0. HungarianSearch takes

O(µi+1ε−O(d) log3 n log2 log n +
h−1∑

j=i+1
kjµj+1ε−O(d) log3 n log3 log n)

time and the total time taken by Augment is O(
∑h−1

j=i+1 kjµj+1ε−O(d) log3 n log3 log n).

Invariants. In Section 5, we also show that the three procedures maintain the following two
invariants while processing cells at level i. At any point, for the matching M , there is a set
of dual weights y(·) such that
(J1) M, y(·) is feasible, and,
(J2) For any vertex u ∈ B, y(u) ≤ µi. Furthermore, if u is a free vertex of B, its dual weight

y(u) ≥ µi+1. If u is a free vertex of A, its dual weight y(u) = 0.
Our procedures will not maintain dual weights y(·) explicitly but only guarantee the existence
of dual weights that satisfy (J1) and (J2). From (J1), (J2), and (3), we get the following:

▶ Corollary 7. For any i ≥ 0, while the algorithm is processing level i cells, the net-cost of
any augmenting path in GM is at least µi+1.

4.1 Analysis of the algorithm

Note that at the root cell □0, µ0 = ∞ and therefore, the second step of the algorithm
terminates only when there are no more augmenting paths in GM ; i.e, M is prefect. Since
M, y(·) is also feasible, from Lemma 5, it is (in expectation) a (1 + ε)-approximate matching.
Let W be the cost of the matching returned by our algorithm. From (P3) and the fact that
ε ≤ 1, we get that, with probability at least 1/2,

W = Θ(n/ε). (4)

Next, using the execution time of the procedures and the invariants they maintain, we bound
the execution time of our algorithm.

We introduce a few notation that helps us analyze our algorithm. Recollect that n□ =
|A□ ∪ B□| and M∗ denotes the optimal matching of A ∪ B with respect to the Euclidean
costs. Let P = ⟨P1, . . . , Pn⟩ be the sequence of augmenting paths computed by the algorithm
in the order in which they were computed. Let M0 = ∅ and let Mi be the matching after
augmenting along the path Pi.

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:9

Efficiency analysis. We begin by bounding the time taken by Build(□, M) across all
O(log log n) levels of T by

h−1∑
i=0

∑
□∈∆[i]

n□ log3 n□(ε−1 log log n)O(d) = O(n log3 n(ε−1 log log n)O(d)). (5)

This equality follows from the fact that
∑

□∈∆[i] n□ = n and h = O(log log n). Next, we
bound the execution time of HungarianSearch and Augment procedures. For any cell □
of level h− 1, the HungarianSearch and Augment procedures take (1/ε)O(d3) time. The
total time taken across all level h− 1 cells is n/εO(d3). Next, we bound the running time for
cell at levels less than h− 1.

▶ Lemma 8. For i < h, the number of free vertices after processing level i cells is O
(

W
µi

)
.

Therefore, there are O(W
µi+1

) executions of HungarianSearch on level i cells. The time
taken by all HungarianSearch executions that return a NULL is at most(

W

µi+1

)
×O(µi+1ε−O(d) log3 n log2 log n) = O(Wε−O(d) log3 n log2 log n).

Otherwise, the HungarianSearch procedure returns a minimum net-cost augmenting path
P and the Augment procedure augments the matching along P . The time taken by each
such execution of HungarianSearch and Augment procedure is

O(µi+1ε−O(d) log3 n log2 log n +
h∑

j=i+1
kjµj+1ε−O(d) log3 n log3 log n)

= O(µi+1ε−O(d) log3 n log4 log n +
h∑

j=i+1
(kj − 1)µj+1ε−O(d) log3 n log3 log n). (6)

The equality follows from the fact that µi+1 > µj+1. While processing ∆[i], O(W/µi+1)
augmenting paths are found (see Lemma 8), so the first term in the RHS of (6) is
O(Wε−O(d) log3 n log5 log n) over all augmenting paths. Next, we bound the second term
over all augmenting paths.

Any augmenting path P has at least kj − 1 edges of level at most j − 1. Furthermore,
for any j′ ≥ j, every level j − 1 edge on P will contribute at most two new cells to kj′ .
Suppose γj is the number of level j − 1 edges across all augmenting paths. The second
term of the RHS of (6), when summed across all augmenting paths, can be written as
O(

∑h
j=1 γjµj+1ε−O(d) log3 n log3 log n). Lemma 9 (See Appendix B for a proof) establish

that γj = O
(

W log n
µj+1

)
.

▶ Lemma 9. For any 1 ≤ j ≤ h− 1, γj = O(W log n/µj+1).

Therefore, the second term of the RHS of (6) over all augmenting paths
is O(Wε−O(d) log4 n log4 log n) and the total running time is O(W (ε−O(d3) +
ε−O(d) log4 n log4 log n)). Since W = Θ(n/ε) with probability at least 1/2, we get the
following:

▶ Lemma 10. Let A, B ∈ Rd be two point sets of size n each and a parameter 0 < ε ≤ 1
that satisfy (P1)− (P3). With probability at least 1/2, an ε-approximate matching of A, B

can be computed in time O(n(ε−O(d3) + ε−O(d) log4 n log4 log n)).

SWAT 2022

6:10 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

Figure 2 Illustrates two boundary clusters A
(R,S)
ξ1

and B
(R,S)
ξ2

. □1 and □2 are siblings. Grey
subdivision represents the subcells and matching edges are shown as solid black.

5 Algorithm Details

In this section, we present the details of the Build, HungarianSearch and Augment
procedures for some level i. For any cell, we cluster the points inside the cell into
O(µ1/4

i+1ε−d log n log log n) clusters (Section 5.1). We use these clusters to compress the
residual graph (Section 5.2) and feasibility conditions (Section 5.3). Next, we describe an
efficient implementation of the Build, HungarianSearch, and Augment procedures using
the compressed graph and feasibility conditions (Section 5.4). Our compressed graph is
different from [16, 14] as it does not recursively expand an augmenting path in this compressed
graph to an admissible augmenting path with respect to M . Instead, our algorithm may
modify the matching M to another matching M ′ of the same cost and size and returns an
admissible path with respect to M ′.

We begin by introducing a few notation that will assist in describing the procedures. For
any cell □ and ξ ∈ S□, let K ⊆ C[□] be the subset of children of □ that are contained inside
ξ. Let D(ξ) =

⋃
□′′∈K S□′′ be the set of subcells of the children cells of □ that lie inside ξ.

For any cell □ with lev(□) < h− 1 and for any j < lev(□), let □j be the ancestor of □ at
level j. Consider any □′ ∈ C[□] and a subcell ξ ∈ S□′ of □′. Then, it can be shown that
each level-j edge (a, b) ∈ A□j ×B□j with one endpoint in ξ is covered by at least one WSPD
pair from a subset Wj

ξ ⊆ W□j , with |Wj
ξ | = O(ε−1 log n).

▶ Lemma 11. For any cell □ with lev(□) < h− 1, for any j < lev(□), and for any subcell
ξ ∈ S□, |Wj

ξ | = O(ε−1 log n). Furthermore, for any non-empty subcell ξ′ ∈ D(ξ), Wj
ξ =Wj

ξ′ .

5.1 Clustering points
For any cell □ of level k ∈ [i, h − 1), we partition A□ ∪ B□ into a set of clusters denoted
by V□. For a subcell ξ of a child □′ of □ (i.e, ξ ∈ S□′), we partition Aξ ∪Bξ into three
types of clusters. We create one free cluster AF

ξ (resp. BF
ξ) for all free points of Aξ (resp.

Bξ) and one internal cluster AI
ξ (resp. BI

ξ) for all points a ∈ Aξ (resp. b ∈ Bξ) such that
m(a) ∈ □′ (resp. m(b) ∈ □′). Additionally, we create boundary clusters as follows: For any
level j ∈ [i, k], recall that Wj

ξ is the set of WSPD pairs that cover all level-j edges with
at least one endpoint in ξ. For every pair (R, S) ∈ Wj

ξ , we create one cluster A
(R,S)
ξ (resp.

B
(R,S)
ξ) of A (resp. B) that contains all points a ∈ Aξ (resp. b ∈ Bξ) whose matching edge

(a, m(a)) (resp. (m(b), b)) is a level-j edge that is covered by the well-separated pair (R, S)
(See Figure 2). For each level j, there are O(ε−d log n) WSPD pairs in Wj

ξ and there are
O(log log n) levels. Therefore, there are O(ε−d log n log log n) many clusters of this type.

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:11

For any cell □ of level k ∈ [i, h− 1), and for any child □′ ∈ C[□], every subcell ξ ∈ S□′

is formed by combining the children of □′. For any subcell ξ ∈ S□, the free and internal
clusters of ξ are formed as in Equation (7).

AF
ξ =

⋃
ξ′∈D(ξ)

AF
ξ′ , BF

ξ =
⋃

ξ′∈D(ξ)

BF
ξ′ . (7)

AI
ξ =

⋃
ξ′∈D(ξ)

{(AI
ξ′ ∪

⋃
(R,S)∈Wk+1

ξ′

A
(R,S)
ξ′)}, BI

ξ =
⋃

ξ′∈D(ξ)

{(BI
ξ′ ∪

⋃
(R,S)∈Wk+1

ξ′

B
(R,S)
ξ′)}.

For any i ≤ j ≤ k and any (R, S) ∈ Wj
ξ , the boundary cluster of ξ corresponding to (R, S) is

formed as follows.

A
(R,S)
ξ =

⋃
ξ′∈D(ξ)

A
(R,S)
ξ′ , B

(R,S)
ξ =

⋃
ξ′∈D(ξ)

B
(R,S)
ξ′ . (8)

Based on these relations, we extend the definition of D(·) for any cluster X to denote
the clusters that combine to form X as D(X). We refer to each cluster X ′ ∈ D(X) as a
child-cluster of X.

If □ is a level h − 1 node, for every child □′ ∈ C[□], we add A□′ ∪ B□′ to V□ and
appropriately classify them as free, internal, or boundary cluster depending on whether they
are free, matched inside □′, or outside □′.

We present an upper bound on the number of subcells of the children of any cell in the
following lemma. See Appendix B for a proof.

▶ Lemma 12. For any cell □ at level i < h− 1,
∑

□′∈C[□] |S□′ | = O(µ1/4
i+1).

For each cell □ at level i < h−1 and each child □′ ∈ C[□], any subcell ξ ∈ S□′ contributes
O(ε−d log n log log n) clusters to V□. Therefore, by Lemma 12,

▶ Corollary 13. For any cell □ at level i < h− 1, |V□| = O(µ1/4
i+1ε−d log n log log n).

5.2 Compressed residual graph
At every non-leaf node □ in the tree T , we create a compressed residual graph AG□ of G□M
with V□ being its vertex set. For any non-leaf node □, the vertex set of AG□ consists of
one vertex for each cluster in V□. For any cell □ and its child □′ ∈ C[□], we use V□(□′) to
denote the clusters of V□ that are inside □′. Next, we define E□, the set of edges of AG□,
and a weight Φ(X, Y) for every edge (X, Y) ∈ E□.

If lev(□) = h − 1, we simply set the edges of AG□ to be the edges of G□M and use its
net-cost as the weight, i.e., for any edge (u, v) in G□M , Φ(u, v) = ϕ(u, v). If lev(□) < h− 1,
then we define internal and bridge edges between vertices of V□ as follows:

Bridge edges: For any two children □1 ̸= □2 ∈ C[□], let X1 ∈ V□(□1) and X2 ∈ V□(□2)
be two clusters in those children, such that X1 (resp. X2) is a cluster of type A (resp. B).
If there is at least one non-matching edge (b, a) ∈ X2 ×X1, we add a directed edge from
X2 to X1 and assign it a weight equal to Φ(X2, X1) = ϕ(b, a). We refer to this edge as a
non-matching arc. If there is a matching edge (a, b) ∈ X1 ×X2, we add an edge from X1 to
X2 and set its cost to be Φ(X1, X2) = ϕ(a, b). We call this edge from X1 to X2 a matching
arc.

We classify clusters as entry and exit clusters, and define internal edges from an entry
to an exit cluster: The free cluster BF

ξ , the internal cluster AI
ξ , and every boundary cluster

B
(R,S)
ξ , for i ≤ j ≤ k and (R, S) ∈ Wj

ξ , is designated as an entry cluster. The free cluster AF
ξ ,

SWAT 2022

6:12 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

the internal cluster BI
ξ , and every boundary cluster A

(R,S)
ξ , for i ≤ j ≤ k and (R, S) ∈ Wj

ξ ,
is designated as an exit cluster. For any cell □ and its child □′ ∈ C[□], we use V ↓

□(□′) and
V ↑
□(□′) to denote the entry and exit clusters of V□(□′).

We classify entry and exit clusters in this way for the following reason. Consider any
augmenting path P . For any cell □′, consider any edge (u, v) of P such that (u, v) is in G□′

M

but the edge preceding (u, v) (resp. succeeding (u, v)) is not. Then u has to be a point in an
entry (resp. exit) cluster.

Internal edges: Let □′ be any child of □. For any pair of clusters (X1, X2) ∈
V ↓
□(□′) × V ↑

□(□′), we create an internal edge (X1, X2) in AG□. Let E□(□′) denote
the set of these edges. For any (X ′

1, X ′
2) ∈ V (□′) × V (□′), define P□′(X ′

1, X ′
2) to

be the minimum-weight path between X ′
1 and X ′

2 in AG□′ . Define P (X1, X2) =
arg minX′

1∈D(X1),X′
2∈D(X2) Φ(P□′(X ′

1, X ′
2)). We set Φ(X1, X2) to be the weight of the path

P (X1, X2) in AG□′ .
For consistency, if □ is a cell of level h− 1, any edge that lies completely inside a child of

□ becomes an internal edge and edges that go between two points in two different children is
referred to as a bridge edge.

We abuse notation and refer to any directed path P between two free clusters in the
compressed residual graph AG□ as an augmenting path. For efficiency reasons, we only
store the internal edges of E□. To compute the bridge edges and their costs efficiently, we
construct an ε-WSPD as described in Section 2. In the following lemma, we bound the total
size of all compressed residual graphs across all cells. See Appendix B for a proof.

▶ Lemma 14. The total size of all compressed residual graphs across all cells of T is
O(n log n(ε−1 log log n)O(d)).

▶ Lemma 15. For any cell □ and for any augmenting path P from u to v in G□M , there
is an augmenting path P ′ in AG□ that goes from the cluster of u to the cluster of v and
Φ(P ′) ≤ ϕ(P).

5.3 Compressed Feasibility
We use the compressed residual graph to compute an augmenting path. To assist us with
the computation of this path, we describe a set of dual weights of V□ and a set of feasibility
conditions for the edges of the compressed graph. Let □ be a cell of level i. For every X ∈ V□,
we assign a dual weight y(X). We say that a matching and dual weights are compressed
feasible with respect to AG□ if, for any directed edge (X, Y) ∈ E□,

y(X)− y(Y) ≤ Φ(X, Y). (9)

Next, we define slack on any compressed edge (X, Y) to be s(X, Y) = Φ(X, Y)−y(X)+y(Y).
Note that s(X, Y) ≥ 0 for a compressed feasible matching. We say that an edge (X, Y) is
admissible if s(X, Y) = 0. Similar to (3), one can express the weight of any path P in AG□
from X to Y using the slacks on its edges as follows.

Φ(P) =
∑

(X′,Y ′)∈P

(y(X ′)− y(Y ′) + s(X ′, Y ′)) = y(X)− y(Y) +
∑

(X′,Y ′)∈P

s(X ′, Y ′). (10)

After any execution of Build, HungarianSearch, or Augment procedures at □ within
our algorithm, in addition to (J1) and (J2), our algorithm also satisfies a third invariant. Let
□′ be either □ or any descendant of □ in T .

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:13

(J3) There exists a set of dual weights y(·) on V□′ that satisfy compressed feasibility
conditions for edges in AG□′ . In addition, for any X ∈ V□′ , if X is a free cluster
of A, then y(X) = 0 and if X is a free cluster of B, then y(X) = maxX′∈V□′ y(X ′).
Furthermore, for any cluster X ∈ V□′ ,

(a) if X is an internal entry (resp. exit) cluster, y(X) ≤ minX′∈D(X) y(X ′) (resp. y(X) ≥
maxX′∈D(X) y(X ′)), and

(b) if X is a free or a boundary cluster then for every cluster X ′ ∈ D(X), y(X ′) = y(X).

5.4 Details of the Procedures
Assume that the algorithm has executed until level i + 1 and (J1)–(J3) hold at the end. We
describe the implementation of Build, HungarianSearch and Augment procedures and
show that (J1)–(J3) continue to hold after their executions.

5.4.1 Build procedure
For any cell □ of level i and for every □′ ∈ C[□], we have a set of compressed feasible
dual weights on V□′ . The Build procedure creates a cluster X at □ by simply combining
the clusters D(X) of its children and set its dual weight y(X) to minX′∈D(X) y(X ′) (resp.
maxX′∈D(X) y(X ′)) provided X is an entry (resp. exit) cluster.

In order to compute the weight of any internal edge (X, Y) ∈ V ↓
□(□′)×V ↑

□(□′), we observe
that from (10), the minimum-weight path P (X, Y) is also the path with the smallest total
slack between any two clusters X ′, Y ′ ∈ D(X) × D(Y) in AG□′ . For every entry cluster
X ∈ V ↓

□(□′), this can be found in a straight-forward way using an execution of Dijkstra’s
shortest-path algorithm. More specifically, we add a source s to AG□′ , connect s to all
X ′ ∈ D(X) with an edge of weight of y(X ′), and replace the weight of every other edge
in AG□′ with its slack. Then, we execute Dijkstra’s algorithm in AG□′ from s to find the
distance of each cluster Y ′ from s, denoted by κY ′ . For any exit cluster Y ∈ V ↑

□(□′), we set
the weight of the edge (X, Y) in AG□, to be Φ(X, Y) = minY ′∈D(Y){κY ′ − y(Y ′)}.

The Build procedure does not affect the invariants (J1) and (J2). The following lemma
states that the invariant (J3) holds after the execution of Build procedure.

▶ Lemma 16. The dual weights assigned to the clusters of V□ by the Build procedure satisfy
(J3).

Efficiency of the Build procedure. To compute the internal edges incident on the entry
cluster X, instead of using an O(|V□′ |2) time Dijkstra’s algorithm, as in [14], we use the
WSPDs in a straight-forward way to compute the shortest path in O(|E□′ | log |E□′ |) time.
Given that the number of entry clusters in each cell is log n(ε−1 log log n)O(d) and since
|E□′ | = O(ε−O(d)n□′ log n logO(d) log n)) (from Lemma 14), the total running time of the
Build procedure is

O

 ∑
□′∈C[□]

∑
X∈V ↓

□
(□′)

ε−O(d)n□′ log2 n logO(d) log n

 = O(n□ log3 n□(ε−1 log log n)O(d)).

5.4.2 HungarianSearch procedure
Let □ be a cell of level i. The HungarianSearch procedure on □ consists of two parts.
In the first part, the algorithm modifies the dual weights of V□ and make the edges on the
minimum-weight augmenting path in AG□ admissible (Search step). Then, the algorithm

SWAT 2022

6:14 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

updates the dual weights of the clusters and points and may modify the matching M

to another feasible matching M ′ with w(M ′) = w(M). Then, it returns an admissible
augmenting path in G□M ′ with respect to M ′ (Update step). This path is also the minimum
net-cost augmenting path with respect to M ′.

Search Step: From (10), the path from a free cluster F ′ to a free cluster F with the
smallest total slack is also the minimum-weight path between F ′ and F in AG□. To compute
this path, we replace the cost of every edge in AG□ with its slack and then execute a
Dijkstra’s algorithm that starts at the free clusters of B. Let PX be the shortest path
from a free cluster of B to any cluster X and κX be its cost. Let F be a free cluster of
A that has the smallest shortest path. If there are no free clusters of A in AG□, then the
HungarianSearch returns NULL. Let the path PF start at some free cluster F ′ of B.
PF is the minimum-weight augmenting path in AG□ and y(F) = 0 (from (J3)). Therefore,
from (10), the augmenting path PF has a weight of Φ(PF) = y(F ′) + κF . If Φ(PF) ≤ µi,
let U ⊆ V□ be the subset of clusters whose shortest-path distances from s is less than κF .
We update the dual weights of any cluster X ∈ U by setting y(X)← y(X)− κX + κF . If
Φ(PF) > µi, the algorithm sets κF = µi−y(F ′), updates the dual weights as described above
and then returns NULL. The dual updates to the clusters of V□ in the search step ensures
that the dual weights of free clusters of B do not exceed µi.

For any cell □1 and its child □2 ∈ C[□1], we say that the dual weights of V□1 dominates
the dual weights of V□2 if for each exit cluster X ∈ V ↑

□1
(□2), y(X) ≥ maxX′∈D(X) y(X ′).

During the search step, the dual weight of any cluster X ∈ V□ is non-decreasing. Therefore,
after the search step, for each child □′ ∈ C[□], the dual weights of V□ dominates the dual
weights of V□′ . Furthermore, the updated dual weights are compressed feasible and the edges
of PF is admissible.

▶ Lemma 17. For any cell □, after the execution of the search step of the HungarianSearch
procedure, the updated dual weights of V□ are compressed feasible and every edge on the
minimum-weight path computed by the search step is admissible. Furthermore, for any child
□′ ∈ C[□], the dual weights of V□ dominate the dual weights of V□′ .

After the search step, the updated dual weights of V□ remain compressed feasible and the
edges of PF are admissible. In the Update Step, we expand the path PF into an admissible
augmenting path in the residual graph. We describe a procedure called Sync that assists in
expanding this path. In particular, consider any admissible edge (X, Y) on PF where (X, Y)
is an internal edge for some child □′ ∈ C[□]. The Sync procedure updates the dual weight
of V□′ so that the path P (X, Y) becomes admissible.

Sync Procedure. The Sync procedure takes any cell □1 and its child □2 ∈ C[□1] along
with a set of compressed feasible dual weights of V□1 and V□2 such that the dual weights of
V□1 dominates the dual weights of V□2 . This procedure then generates a set of compressed
feasible dual weights of V□2 such that the dual weights of V□1 and V□2 satisfy conditions (a)
and (b) of (J3). Furthermore, if any internal edge (X, Y) ∈ E□1(□2) is admissible, then the
path P (X, Y) is also admissible with respect to the dual weights of V□2 . The description
of the Sync procedure is provided in Appendix C. Let □1 be a cell of level j of T . The
execution of the Sync procedure on □2 requires an execution of Dijkstra’s algorithm on
AG□2 and takes a total of O(µj+1ε−O(d) log3 n log2 log n) time. The following lemma states
the important properties of the Sync procedure.

▶ Lemma 18. For any cell □1 and any child □2 ∈ C[□1], suppose the set of dual weights of
V□1 and V□2 are compressed feasible and the set of dual weight of V□1(□2) dominates the
set of dual weights of V□2 . After applying the Sync procedure on □2, we have that:

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:15

(i) The updated dual weights on AG□2 are compressed feasible,
(ii) For any cluster X ∈ V□1(□2), the dual weight of X and clusters in D(X) satisfies the

conditions (a) and (b) of (J3), and,
(iii) If □2 is not a leaf cell, for any □3 ∈ C[□2], the dual weights of V□2(□3) dominates the

set of dual weights of V□3 .
Using Lemma 18 part (iii), it is clear that one can recursively apply the Sync procedure

on all descendants of a cell □. The following lemma shows that after the search step, if
we apply the Sync procedure on all descendants of every cell □ ∈ ∆[i], the dual weights
assigned to all clusters and points satisfy (J1)–(J3).

▶ Lemma 19. After executing the search step of HungarianSearch on AG□, for every
□ ∈ ∆[i], suppose we apply Sync to □ and all its descendants. The resulting up-to-date dual
weights satisfy (J1)–(J3).

The following lemma helps in converting the minimum-weight path obtained by the search
step into an admissible augmenting path.

▶ Lemma 20. For any admissible internal edge (X, Y) ∈ E□(□′), let X ′ ∈ D(X) and
Y ′ ∈ D(Y) be the clusters containing the first and the last vertex of some P (X, Y). Then,
after calling the Sync procedure on □′, the path P (X, Y) is admissible, y(X ′) = y(X), and
y(Y ′) = y(Y).

Using the Sync procedure, the Update step converts the augmenting path PF returned
by the Search step to an admissible augmenting path P̃F in the residual graph. In this
process, the Update step might change the matching M to another matching M ′ with the
same weight and size. We describe the Update step as a recursive procedure that initially
takes PF as the input.

Update step: For any cell □′, the Update step takes any admissible path P = ⟨X =
X1, X2, . . . , Xm = Y ⟩ in AG□′ as input and returns an admissible alternating path from a
point p to p′ in G□′

M with the property that y(p) = y(X) and y(p′) = y(Y).
If □′ is a cell of level h− 1, then P is also an admissible path in G□′

M and the procedure
returns this path. Otherwise, let k = lev(□′) < h− 1 be the level of □′. Let I denote the set
of all internal edges on the path P . Note that I is a set of vertex-disjoint edges. Let B be
the set of all clusters Xt on P that do not participate in any edge of I. It is easy to see that
B is a set of boundary clusters.

For any internal edge (Xj , Xj+1) ∈ I, let □j ∈ C[□′] such that (Xj , Xj+1) ∈ E□′(□j).
We execute the Sync procedure on □j . Since (Xj , Xj+1) is an admissible edge, the path
P (Xj , Xj+1) is admissible with y(X ′

j) = y(Xj) and y(X ′
j+1) = y(Xj+1) (From Lemma 20).

We recursively apply the Update step on P (Xj , Xj+1).
Assume that for each internal edge (Xj , Xj+1) ∈ I, this recursive call has returned an

admissible path Πj in the residual graph from a point pj ∈ Xj to a point pj+1 ∈ Xj+1 with
y(pj) = y(Xj) and y(pj+1) = y(Xj+1). We select the point pj for the cluster Xj and the
point pj+1 for the cluster Xj+1. For any boundary cluster Xt ∈ B, we select an arbitrary
point pt. Let Z be the set of all ancestors of pt in T of level greater than k. First, we
iteratively apply Sync on every cell in Z in increasing order of their level. After all executions
of the Sync procedure, from Lemma 18 (ii), y(pt) = y(Xt). Thus, from every cluster Xj on
P , we have selected one point pj with y(pj) = y(Xj).

Next, we construct the admissible alternating path P̃ corresponding to the path P as
follows. For every internal edge (Xj , Xj+1) ∈ I, we replace (Xj , Xj+1) with the path Πj .
For every bridge edge (Xj , Xj+1), if (Xj , Xj+1) is a non-matching arc, we simply add an
edge from pj to pj+1 to the path. If (Xj , Xj+1) is a matching arc, then both Xj and Xj+1

SWAT 2022

6:16 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

Figure 3 (a) Compact minimum-weight path P in AG□. (b) and (c) show how the matching M

is modified to a matching M ′ to obtain an augmenting path.

are boundary clusters. While there may not be a matching edge between pj and pj+1,
we know that there is some matching edge (a, b) such that a ∈ Xj and b ∈ Xj+1. Let Z

(resp. Z ′) be the set of all ancestors of a (resp. b) of level greater than k. We apply the
Sync procedure on the cells in Z (resp. Z ′) in increasing order of their level. Then, we
modify our matching M to M ′ as follows: Add matching edges (pj , pj+1), (a, m(pj)), and
(b, m(pj+1)) to the matching and remove the edges (a, b), (pj , m(pj)), and (pj+1, m(pj+1))
from the matching (See Figure 3). The new matching continues to be feasible since the
dual weights of a (resp. b) and pj (resp. pj+1) are identical. This is because Xj (resp.
Xj+1) is a boundary cluster and therefore, from Lemma 18 (ii), the application of the Sync
procedure on the ancestors of pj (resp. pj+1) and a (resp. b) will make y(a) = y(pj) (resp.
y(b) = y(pj+1)). Note that, for every internal edge (Xj , Xj+1), the path Πj consists of only
admissible edges. Furthermore, for every bridge edge (Xj , Xj+1), the edge (pj , pj+1) added
to the path is admissible. This follows from the fact that y(pj) = y(Xj), y(pj+1) = y(Xj+1),
and (Xj , Xj+1) is admissible. Finally, the dual weight of the first (resp. last) point p1 (resp.
pm) is equal to y(X) (resp. y(Y)) as desired. This completes the description of the Update
step. Let P̃F be the admissible augmenting path in G□ returned by the Update step with
PF as input.

▶ Lemma 21. The matching M can be modified to another matching M ′ so that, w(M) =
w(M ′), M ′, y(·) is feasible and the compressed residual graph at each node remains unchanged.
Furthermore, there is an admissible augmenting path in the residual graph GM ′ .

Recollect that, we only require the existence of a set of dual weights that satisfy the
conditions in (J1)–(J3). For efficiency reasons, the Update step does not maintain the
up-to-date dual weights explicitly. Instead, it computes the up-to-date dual weights for all
cells □′ whose V□′ or M□′ may change after augmenting M along P̃F . For every other cell
□′′, from Lemma 22 and Lemma 19, we can always retrieve the up-to-date dual weights for
these cells satisfying (J1)–(J3) by recursively applying Sync on □′′ and all its descendants.

▶ Lemma 22. During the execution of our algorithm, consider a sequence of consecutive
applications of the Sync procedure on a cell □. If M□ and the clusters in V□ remain
unchanged, then, this sequence of Sync executions can be replaced with the last one while
producing the same set of dual weights of V□.

Efficiency of the HungarianSearch procedure. The search step requires execution of a single
Dijkstra’s algorithm on AG□ which takes O(µi+1ε−O(d) log3 n log2 log n) time. Applying
Sync procedure for a cell □′ of level j requires an execution of Dijkstra’s algorithm on AG□′ ,
which takes O(µj+1ε−O(d) log3 n log2 log n) time. Recall that for any level j of T and an

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:17

augmenting path P̃F on the residual graph, kj denotes the number of level j cells containing
at least one point of P̃F . In the Update step, For each level j > i, we execute the Sync
procedure on the cell of level j containing at least one point of P̃F . Furthermore, during the
Update step, for each bridge matching arc (Xj , Xj+1) the algorithm may also apply the Sync
procedure on an additional O(log log n) cells. This is done before the algorithm modifies
the matching. These executions of the Sync procedure can be charged to the O(log log n)
Sync procedures executed for the ancestors of points pj ∈ Xj and pj+1 ∈ Xj+1. Therefore,
there are at most O(kj log log n) executions of the Sync procedure during the execution
of the Update step. The execution time of HungarianSearch procedure, therefore, is
O(µi+1ε−O(d) log3 n log2 log n +

∑h−1
j=i+1 kjµj+1ε−O(d) log3 n log3 log n).

5.4.3 Augment procedure
Given an augmenting path P = ⟨b0, a0, b1, · · · , bk, ak⟩ with respect to the matching M , the
Augment procedure will simply update M ←M ⊕ P . After augmentation, any edge (ai, bi)
is a matching edge and any edge (bi+1, ai) is a non-matching edge (Note that the direction
of the edges are reversed after the augmentation). For a new matching edge (ai, bi) after
an augmentation, suppose □i is the least common ancestor of ai and bi. Let X, Y ∈ V□i

be
the pair of boundary clusters such that (ai, bi) ∈ X × Y . If there exists another matching
edge (a′

i, b′
i) ∈ (X × Y) \ P , then ai and bi inherit their dual weights, i.e., y(ai) ← y(a′

i)
and y(bi) ← y(b′

i). Otherwise, their dual weight remains unchanged. This completes the
description of the Augment procedure. For every new matching edge (ai, bi), the procedure
may inherit the dual weights from another matching edge (a′

i, b′
i) that did not participate

in P . Since (J2) holds prior to augmentation, y(a′
i) and y(b′

i) satisfy (J2). Therefore, post
augmentation, y(ai) and y(bi) also satisfy (J2).

The following lemma shows that the dual weights of the points after the Augment
procedure remains feasible and (J1) holds.

▶ Lemma 23. After augmenting the matching and updating the dual weights by the Augment
procedure, the dual weights of the points are feasible with respect to the new matching.

The vertex and the edge sets of the compressed residual graph change after augmentation.
The Augment procedure creates the new clusters at all ancestors of every point in P in
a straight-forward way. In a bottom-up fashion, for any cluster X ∈ V□, if X is an exit
(resp. entry) cluster, it assigns maxX′∈D(X) y(X ′) (resp. minX′∈D(X) y(X ′)) as y(X). For
each edge on P , the procedure will update the bridge edges in AG□ in a straight-forward
way. The following lemma shows that the updated dual weights are compressed feasible with
respect to AG□.

▶ Lemma 24. After augmenting the matching, the new set of clusters and their dual weights
y(·) satisfy (J3).

Next, for any □′ ∈ C[□], in order to update the weights on the internal edges E□(□′)
in AG□, we apply the Build procedure. From Corollary 13, if □ is a cell of level i, then
|V□| = O(µ1/4

i+1ε−d log n log log n). Since there at most O(|V□|) entry clusters in V□ and the
Build procedure executes that many Dijkstra’s algorithm to construct the internal edges,
the total time taken is bounded by O(µi+1ε−O(d) log3 n log3 log n).

The Augment procedure executes Build procedure on all ancestors of any
vertex of P in a bottom-up fashion. Therefore, the total time taken is
O(

∑i
j=1(kjµi+1ε−O(d) log3 n log3 log n)).

SWAT 2022

6:18 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

References
1 Pankaj Agarwal and Kasturi Varadarajan. A near-linear constant-factor approximation

for Euclidean bipartite matching? In Proceedings of the twentieth annual symposium on
Computational geometry, page 247, 2004.

2 Pankaj K Agarwal, Hsien-Chih Chang, Sharath Raghvendra, and Allen Xiao. Deterministic,
near-linear ε-approximation algorithm for geometric bipartite matching. arXiv preprint
arXiv:2204.03875, 2022.

3 A. Andoni, K. D. Ba, P. Indyk, and D. P. Woodruff. Efficient sketches for earth-mover distance,
with applications. In Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, pages 324–330, 2009.

4 Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Proc. 34th International Conference on Machine Learning, pages 214–223, 2017.

5 Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67–90, January 1995.

6 Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proc. 34th
Annu. ACM Sympos. Theory Comput., pages 380–388, 2002.

7 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, pages 448–455, 2003.

8 Kyle Fox and Jiashuai Lu. A near-linear time approximation scheme for geometric transporta-
tion with arbitrary supplies and spread. In Proc. 36th Annual Symposium on Computational
Geometry, pages 45:1–45:18, 2020.

9 H. N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems. SIAM Journal
on Computing, 18:1013–1036, 1989.

10 Sariel Har-Peled. Geometric approximation algorithms, 2011.
11 Piotr Indyk. A near linear time constant factor approximation for Euclidean bichromatic

matching (cost). In SODA 2007, page 4, 2007.
12 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic

planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2495–2504, 2017.

13 Harold Kuhn. Variants of the hungarian method for assignment problems. Naval Research
Logistics, 3(4):253–258, 1956.

14 Nathaniel Lahn and Sharath Raghvendra. An O(n5/4) time ε-approximation algorithm for
RMS matching in a plane. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, pages 869–888, 2021.

15 Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. 45th
Annual IEEE Symposium on Foundations of Computer Science, pages 248–255, 2004.

16 Sharath Raghvendra and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm
for geometric bipartite matching. Journal of the ACM, 67(3):1–19, June 2020.

17 Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a metric
for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

18 R. Sharathkumar. A sub-quadratic algorithm for bipartite matching of planar points with
bounded integer coordinates. In 29th International Symposium on Computational Geometry,
pages 9–16, 2013. doi:10.1145/2462356.2480283.

19 R. Sharathkumar and P. K. Agarwal. Algorithms for transportation problem in geometric
settings. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 306–317, 2012.

20 Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas Guibas. Convolutional wasserstein distances: Efficient optimal
transportation on geometric domains. ACM Transactions on Graphics, 34(4):66, 2015.

https://doi.org/10.1145/2462356.2480283

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle 6:19

21 Jan van den Brand, Danupon Nanongkai Yin-Tat Lee, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. IEEE 61st Annual Symposium on Foundations of Computer Science, pages
919–930, 2020.

A Preprocessing Step

Similar to some of the earlier algorithms [16, 14], we perform the following preprocessing
step that makes the input “well-conditioned” at a slight increase in the cost of the optimal
matching. Using a quad-tree based greedy algorithm [6], we compute a c1 log n-approximate
matching M0 of A and B, in O(n log n) time, for some constant c1 ≥ 0 [7]. Let w0 = ¢(M0).
Then w0

c1 log n ≤ ¢(M∗) ≤ w0.
For any integer i ∈ [0, log(c1 log n)], define βi = w0/2i; there is an i such that βi ≤

¢(M∗) ≤ βi−1. Set t(n) = c0n(ε−O(d3) + log3 n(ε−1 log log n)O(d) + ε−O(d) log4 n log log4 n)
for some sufficiently large constant c0. We run the algorithm described in Section 4 for at
most t(n) steps on each choice of βi. In the i-th iteration, either the algorithm returns a
perfect matching of A and B or terminates without computing a perfect matching. Among
the perfect matchings computed by the algorithm, we return the one with the smallest
cost. Theorem 10 ensures that if βi ≤ ¢(M∗) ≤ βi−1 then with probability at least 1/2, the
algorithm returns an ε-approximate matching within t(n) time. Now forward, we assume
that we have computed a value β > 0 such that ¢(M∗) ≤ β ≤ 2¢(M∗). As in [16, 14], by
scaling A ∪B and snapping points to an integer grid, we can assume A and B satisfy the
following conditions: (P1) All input points have integer coordinates bounded by nO(1). (P2)
No integer grid point contains points of both A and B. (P3) ¢(M∗) ∈

[
3

√
dn

ε , 9
√

dn
ε

]
. We

compute an (ε/2)-approximate matching of A and B satisfying (P1)− (P3) in t(n) time.

B Missing Proofs

Proof of Lemma 3. If the edge (a, b) intersects the boundary of a cell at level i + 1, then,
lev(a, b) ≤ i. Therefore, Pr[lev(a, b) = i] ≤

√
d∥a−b∥
ℓi+1

. As a result,

E[δab] ≤
h−1∑
i=0

Pr[lev(a, b) = i].µi+1 ≤
h−1∑
i=0

√
d∥a− b∥
ℓi+1

.
εℓi+1

c2
√

d(h− i)2
= ε

c2
∥a−b∥

h−1∑
i=0

1
(h− i)2 .

∑∞
i=1

1
i2 = ζ(2) = π2

6 , where ζ(·) is the Riemann zeta function. Therefore, E[δab] ≤
π2

6c2
ε∥a− b∥.

Proof of Lemma 9. To prove this lemma, first, we bound the total additive error across all
augmenting paths computed during the execution of our algorithm.

▶ Lemma 25.
∑

Pi∈P
∑

(u,v)∈Pi∩Mi
δuv = O(W log n).

Every level j − 1 edge in γj appears as a matching or a non-matching edge. Furthermore,
any matching edge will first appear as a non-matching edge in an augmenting path and carry
an additive error of µj+1. Therefore, we charge at most two level j − 1 edges in γj to the
additive error of any non-matching edge. So, the total additive error on all non-matching
edges of γj is at least γjµj+1/2. Combining with Lemma 25, we get γj = O(W log n/µj+1).

SWAT 2022

6:20 An Improved ε–Approximation Algorithm for Geometric Bipartite Matching

Proof of Lemma 12. By construction, the number of subcells of a cell □′ is bounded by
the number of children of □′; i.e, |S□′ | ≤ |C[□′]|. Furthermore, for any cell □′ at level j,
|C[□′]| ≤ (ℓj

ℓj+1
)d = ℓ

d(1−α)
j . As a result,

∑
□′∈C[□]

|S□′ | ≤
∑

□′∈C[□]

|C[□′]| ≤ ℓ
d(1−α)
i ℓ

d(1−α)
i+1 ≤ ℓ

2d
8d+2
i . (11)

From Lemma 2, µi+1 ≥ ℓi+2. Furthermore, from the construction of the tree and since d ≥ 2,
ℓi+2 = ℓ

(8d+1
8d+2)2

i ≥ ℓ
8d

8d+2
i . Plugging this in (11), we get

∑
□′∈C[□] |S□′ | = O(µ1/4

i+1).

Proof of Lemma 14. By construction, for any cell □ and any child □′ ∈ C[□] and
for each pair of clusters (X, Y) ∈ V ↓

□(□′) × V ↑
□(□′), there exists at most one internal

edge in E□. Therefore, each cluster X ∈ V□(□′) has degree at most |V□(□′)| =
O(|S□′ |ε−d log n log log n) = O(ε−O(d) log n logO(d) log n), where the last equality is resul-
ted since |S□′ | = O(ε−d log2d log n). Summing over all clusters in V□,

|E□| = O(ε−O(d)|V□| log n logO(d) log n).

Summing across all cells in T , we get∑
□∈T

|E□| =
∑
□∈T

|V□| ×O(ε−O(d) log n logO(d) log n). (12)

Since each point participates in a single cluster per level and O(log log n) clusters overall, we
get

∑
□∈T |V□| by O(n log log n). Plugging this in (12), we can conclude that the total size

of the compressed residual graph across all cells is O(n log n(ε−1 log log n)O(d)).

C Details of the Sync procedure

For any entry cluster X ∈ V ↓
□ and any cluster X ′ ∈ D(X), the dual weight y(X ′) needs

to be no less than the updated y(X) (In the case of free or boundary clusters, it should
be equal). We define inc(X ′) to be the value by which y(X ′) should be increased, i.e.,
inc(X ′) = y(X)− y(X ′). Note that inc(X ′) can be negative. Let ρX = maxX′∈D(X) inc(X ′)
and let ρ = max{0, maxX∈V ↓

□
(□′) ρX}. The value ρ corresponds to the largest increase in

dual weights we desire across all child-clusters in each entry cluster. So, for any cluster
X ∈ V ↓

□(□′) and X ′ ∈ D(X), −∞ < inc(X ′) ≤ ρ.
Let AG′ be an augmented compressed residual network that is created by adding a vertex

s to AG□′ and connecting s to every X ′ ∈ D(X) for any entry cluster X ∈ V ↓
□(□′). We set

the weight of (s, X ′) to be ρ− inc(X ′). Since inc(X ′) ≤ ρ, the weight on the edge will be
non-negative. For every other edge (U, V), we set its weight to be the slack s(U, V). We then
execute Dijkstra’s algorithm on AG′ from the source s. For any cluster V , let κV denote
the weight of the shortest-path distance from s to V . The dual updates are done in an
identical fashion to the HungarianSearch. Let U denote the set of all clusters V ∈ V□′

with κV < ρ. For any V ∈ U , we update the dual weight y(V)← y(V)− κV + ρ.
After updating these dual weights, for every boundary and free exit cluster X ∈ V ↑

□(□′)
and any X ′ ∈ D(X), we set y(X ′)← y(X). This step will not decrease the dual weight of
any cluster. This completes the description of Sync procedure.

On the Visibility Graphs of Pseudo-Polygons:
Recognition and Reconstruction
Safwa Ameer #

Department of Computer Science, The University of Texas at San Antonio, TX, USA

Matt Gibson-Lopez #

Department of Computer Science, The University of Texas at San Antonio, TX, USA

Erik Krohn #

Department of Computer Science, The University of Wisconsin – Oshkosh, WI, USA

Qing Wang #

Department of Computer Science, University of Tennessee at Martin, TN, USA

Abstract
We give polynomial-time algorithms that solve the pseudo-polygon visibility graph recognition and
reconstruction problems. Our algorithms are based on a new characterization of the visibility graphs
of pseudo-polygons.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Pseudo-Polygons, Visibility Graph Recognition, Visibility Graph Reconstruc-
tion

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.7

Funding Supported by the National Science Foundation under Grant No. 1733874.

1 Introduction

Geometric covering problems have been a focus of research for decades. Here we are given a
set of points P and a set S where each s ∈ S can cover some subsets of P . The subset of P is
generally induced by some geometric object. For example, P might be a set of points in the
plane, and s consists of the points contained within some disk in the plane. For most variants,
the problem is NP-hard and can easily be reduced to an instance of the combinatorial set
cover problem which has a polynomial-time O(log n)-approximation algorithm, which is
the best possible approximation under standard complexity assumptions [5]. The main
question therefore is to determine for which variants of geometric set cover we can obtain
polynomial-time approximation algorithms with approximation ratio o(log n), as any such
algorithm must exploit the geometry of the problem to achieve the result. This area has been
studied extensively, see for example [2, 14, 1], and much progress has been made utilizing
algorithms that are based on solving the standard linear programming relaxation.

Unfortunately this technique has severe limitations for some variants of geometric set
cover, and new ideas are needed to make progress on these variants. In particular, the
techniques are lacking when the points P we wish to cover is a simple polygon, and we wish
to place the smallest number of points in P that collectively “see” the polygon. This problem
is classically referred to as the art gallery problem as an art gallery can be modeled as a
polygon and the points placed by an algorithm represent cameras that can “guard” the art
gallery. This has been one of the most well-known problems in computational geometry for
many years, yet still to this date the best polynomial-time approximation algorithms for this
problem have approximation ratios that are ω(1). The key issue is a fundamental lack of
understanding of the combinatorial structure of visibility inside simple polygons. It seems
that in order to develop powerful approximation algorithms for this problem, the community
first needs to better understand the underlying structure of such visibility.

© Safwa Ameer, Matt Gibson-Lopez, Erik Krohn, and Qing Wang;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:safwa.ameer@utsa.edu
mailto:matthew.gibson@utsa.edu
https://orcid.org/0000-0001-5777-8313
mailto:krohne@uwosh.edu
mailto:qwang44@utm.edu
https://doi.org/10.4230/LIPIcs.SWAT.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction

Visibility Graphs. A very closely related issue which has received a lot of attention in the
community is the visibility graph (VG) of a simple polygon. Given a simple polygon P , the
VG G = (V, E) of P has the following structure. For each vertex p ∈ P , there is a vertex in
V , and there is an edge connecting two vertices in G if and only if the corresponding vertices
in P “see” each other (i.e., the line segment connecting the points does not go outside the
polygon). The VG of a simple polygon must contain a Hamiltonian cycle that corresponds
with the boundary of the P , and it generally is assumed that the input G comes with a labeled
Hamiltonian cycle. Three major open problems regarding VGs of simple polygons are the VG
characterization problem, the VG recognition problem, and the VG reconstruction problem.
The VG characterization problem seeks to define a set of properties that all VGs satisfy. The
VG recognition problem is the following. Given a graph G, determine if there exists a simple
polygon P such that G is the VG of P in polynomial time. The VG reconstruction problem
seeks to construct a simple polygon P such that a given VG G is the VG of P .

The problems of characterizing and recognizing the VGs of simple polygons have had
partial results given dating back to over 25 years ago [6] and remain open to this day with
only a few special cases being solved. Characterization and recognition results have been
given in the special cases of “spiral polygons” [4] and “tower polygons” [3]. There have been
several results [7, 4, 12] that collectively have led to four necessary conditions (NCs) that
a simple polygon VG must satisfy. That is, if the graph G does not satisfy all four of the
conditions then we know that G is not the VG for any simple polygon, and moreover it can
be determined if a graph G satisfies all of the NCs in polynomial time. Streinu, however,
has given an example of graph that satisfies all of the NCs but is not a VG for any simple
polygon [13], implying that the set of conditions is not sufficient and therefore a strengthening
of the NCs is needed. Unfortunately it is not even known if simple polygon VG recognition
is in NP. See [8] for a nice survey on these problems and other related visibility problems.

Pseudo-polygons. Given the difficulty of understanding simple polygon VGs, O’Rourke
and Streinu [10] considered the VGs for a special case of polygons called pseudo-polygons
which we will now define. An arrangement of pseudo-lines L is a collection of simple curves,
each of which separates the plane, such that each pair of pseudo-lines of L intersects at
exactly one point, where they cross. Let P = {p0, p2, . . . , pn−1} be a set of points in R2, and
let L be an arrangement of

(
n
2
)

pseudo-lines such that every pair of points pi and pj lie on
exactly one pseudo-line in L, and each pseudo-line in L contains exactly two points of P .
The pair (P, L) is called a pseudo-configuration of points (pcp) in general position.

Intuitively a pseudo-polygon is determined similarly to a standard Euclidean simple
polygon except using pseudo-lines instead of straight line segments. Let Li,j denote the
pseudo-line through the points pi and pj . We view Li,j as having three different components.
The subsegment of Li,j connecting pi and pj is called the segment, and we denote it pipj .
Removing pipj from Li,j leaves two disjoint rays. Let ri,j denote the ray starting from pi

and moving away from pj , and we let rj,i denote the ray starting at pj and moving away
from pi. Consider the pseudo-line Li,i+1 in a pcp (indices taken modulo n and are increasing
in counterclockwise order throughout the paper). We let ei denote the segment of this line.
A pseudo-polygon is obtained by taking the segments ei for i ∈ {0, . . . , n − 1} if (1) the
intersection of ei and ei+1 is only the point pi+1 for all i, and (2) for any i and j such that
j > i+1, the segments ei and ej do not intersect. We call the segments ei the boundary edges.
A pseudo-polygon separates the plane into two regions: “inside” the pseudo-polygon and
“outside” the pseudo-polygon, and any two points pi and pj see each other if the segment pipj

does not go outside of the pseudo-polygon. See Fig. 1 for an illustration. Pseudo-polygons

S. Ameer, M. Gibson-Lopez, E. Krohn, and Q. Wang 7:3

p4

p3

p2

p1

v1

v4

v3v2

(a) (b)

Figure 1 (a) A pcp and pseudo-polygon. (b) The corresponding VG.

can be viewed as a combinatorial abstraction of simple polygons. Note that every simple
polygon is a pseudo-polygon (simply allow each Li,j to be the straight line through pi and
pj), and Streinu showed that there are pseudo-polygons that cannot be “stretched” into a
simple polygon [13].

O’Rourke and Streinu [10] give a characterization of vertex-edge VGs of pseudo-polygons.
In this setting, for any vertex v we are told which edges v sees rather than which vertices
it sees. Unfortunately, O’Rourke and Streinu showed that vertex-edge VGs encode more
information about a pseudo-polygon than a regular VG [11]. Gibson, Krohn, and Wang [9]
gave a characterization of the VGs of pseudo-polygons. Unfortunately this characterization
did not directly lead to a polynomial-time recognition or reconstruction algorithm.

Our Results. In this paper, we give results for the VGs of both pseudo-polygons and simple
polygons. First, we settle the remaining two open questions for the VGs of pseudo-polygons:
recognition and reconstruction. First, we present a polynomial-time algorithm that can decide
if a given graph G (with a labeled Hamiltonian cycle) is the VG for some pseudo-polygon,
settling the recognition problem for pseudo-polygons. To obtain the result, we give a slightly
different characterization of pseudo-polygon VGs than the one given in [9]. We then show
that we can extend the recognition algorithm to obtain a polynomial-time reconstruction
algorithm for pseudo-polygons. Our algorithm computes a vertex-edge VG that can then be
reconstructed into a pseudo-polygon using the technique described in [10].

2 Preliminaries

We begin with some definitions that were relied upon heavily in the characterization of [9]
that will be used in this paper as well. Note that the visibility graph G of a pseudo-polygon P

must contain a Hamiltonian cycle because each pi must see pi−1 and pi+1. Since determining
if a graph contains a Hamiltonian cycle is NP-hard, previous research has assumed that G

does have such a cycle C and the vertices are labeled in counterclockwise order according to
this cycle. So now suppose we are given an arbitrary graph G = (V, E) with the vertices
labeled p0 to pn−1 such that G contains a Hamiltonian cycle C = (p0, p2, . . . , pn−1) in order
according to their indices. We are interested in determining if G is the visibility graph for
some pseudo-polygon P where C corresponds with the boundary of P . For any two vertices
pi and pj , we let ∂(pi, pj) denote the vertices and boundary edges encountered when walking
counterclockwise around C from pi to pj (inclusive). For any edge {pi, pj} in G, we say that
{pi, pj} is a visible pair, as their points in P must see one another. If {pi, pj} is not an edge
in G, then we call (pi, pj) and (pj , pi) invisible pairs. Note that visible pairs are unordered,
and invisible pairs are ordered (for reasons described below).

SWAT 2022

7:4 On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction

v1

v4

v2

v3

p4

p2
p1p3

p4

p2

p1p3

p1

p4

p2

p3

p1

p4

p2

p3

(a) (b) (c) (d) (e)

Figure 2 (a) A visibility graph G. (b) A simple polygon using p2 to block p1 and p3. (c) A
simple polygon using p4 to block p1 and p3. (d) A pseudo-polygon using p2 to block p1 and p3. Note
that if the segment p1p3 does not exit the polygon then it would have to intersect L1,2 at least twice
(once at p1 and once in the dashed ray r2,1. (e) A pseudo-polygon using p4 to block p1 and p3.

Consider any invisible pair (pi, pj). If G is the visibility graph for a pseudo-polygon P ,
the segment pipj must exit P . For example, suppose we want to construct a polygon P

such that the graph in Fig. 2 (a) is the visibility graph of P . Note that p1 should not see
p3, and thus if there exists such a polygon, it must satisfy that p1p3 exits the polygon. In
the case of a simple polygon, we view this process as placing the vertices of P in convex
position and then contorting the boundary of P to block p1 from seeing p3. We can choose
p2 or p4 to block p1 from seeing p3 (see (b) and (c)). Note that as in Fig. 2 (b) when using
p2 ∈ ∂(p1, p3) as the blocker in a simple polygon, the line segment p1p2 does not go outside
P and the ray r2,1 first exits P through a boundary edge in ∂(p3, p1). Similarly as in Fig. 2
(c) when using p4 ∈ ∂(p3, p1) as the blocker, the line segment p1p4 does not go outside of the
polygon and the ray r4,1 first exits the polygon through a boundary edge in ∂(p1, p3). The
situation is similar in the case of pseudo-polygons, but since we do not have to use straight
lines to determine visibility, instead of bending the boundary of P to block the invisible pair
we can instead bend the pseudo-line. See Fig. 2 (d) and (e). Note that the combinatorial
structure of the pseudo-line shown in part (d) (resp. part (e)) is the same as the straight
line in part (b) (resp. in part (c)). The following definition plays an important role in our
characterization. Consider a pseudo-polygon P , and let pi and pj be two vertices of P that
do not see each other. We say a vertex pk ∈ ∂(pi, pj) of P is a designated blocker for the
invisible pair (pi, pj) if pi sees pk (i.e. the segment pipk is inside the polygon) and the ray
rk,i first exits the polygon through an edge in ∂(pj , pi). The definition for pk ∈ ∂(pj , pi) to
be a designated blocker for (pi, pj) is defined similarly. Intuitively, a designated blocker is a
canonical vertex that prevents the points in an invisible pair from seeing each other.

The key structural lemma proved in [9] that led to their characterization was to show that
every invisible pair (pi, pj) in a pseudo-polygon must have exactly one designated blocker.
Moreover, the designated blocker must be one of at most two candidate blockers. There is
at most one candidate blocker in ∂(pi, pj) and there is at most one candidate blocker in
∂(pj , pi). We will define the candidate blocker in ∂(pi, pj), and the other case is handled
symmetrically. Starting from pj , walk clockwise towards pi until we reach the first point
pk such that {pi, pk} is a visible pair (clearly there must be such a point since {pi, pi+1}
is a visible pair). We say that pk is a candidate blocker for (pi, pj) if there are no visible
pairs {ps, pt} such that ps ∈ ∂(pi, pk−1) and pt ∈ ∂(pk+1, pj). If there is such a visible pair
{ps, pt}, then there is no candidate blocker (and therefore no designated blocker) for (pi, pj)
in ∂(pi, pj). Note that a vertex may be a candidate blocker for (pi, pj) but not for (pj , pi),
and we view invisible pairs as ordered pairs for this reason. The formal statement of the
lemma proved in [9] is as follows.

▶ Lemma 1. For any invisible pair (pi, pj) in a pseudo-polygon P , there is exactly one
designated blocker pk. Moreover, pk is a candidate blocker for the invisible pair (pi, pj) in
the visibility graph of P .

S. Ameer, M. Gibson-Lopez, E. Krohn, and Q. Wang 7:5

pi
pj

pk
ps

pi
pjps

pkpt

(a) (b)

Figure 3 (a) If pk is the designated blocker for (pi, pj) and ps sees pk then pk is the designated
blocker for (ps, pj). (b) If ps does not see pk, and pt is the designated blocker for (ps, pk) then pt is
also the designated blocker for (ps, pj).

2.1 The Characterization of [9]
We now state the characterization of pseudo-polygon VGs given in [9]. The main idea is
that if G is the VG of some pseudo-polygon P , then each invisible pair must be able to be
assigned exactly one of its candidate blockers to serve as the designated blocker in P because
of Lemma 1. However, we cannot simply arbitrarily pick a candidate blocker to serve as
the designated blocker, as some choices may cause pseudo-lines to violate the pseudo-line
properties. That is, some assignments may force a pair of pseudo-lines to intersect more
than once and/or they may intersect at a vertex but not cross. The proof for each of the
following assignment properties (APs) from the characterization in [9] showed that if the AP
was violated then we would violate such a pseudo-line property. They later proved that if
one can assign a designated blocker to each invisible pair that satisfies all of these properties,
then G is in fact the VG for some pseudo-polygon (i.e., the properties are necessary and
sufficient). We remark that the first four properties will also be used in the characterization
in this paper, but the fifth property will be replaced with a new property to obtain a different
characterization that will better fit within the framework of our reconstruction algorithm.

Let (pi, pj) be an invisible pair, and let pk be the candidate blocker assigned to it. The
first AP uses the definition of pseudo-lines and designated blockers to provide additional
constraints on pi and pk. Note that while the condition is stated for pk ∈ ∂(pi, pj), a
symmetric condition for when pk ∈ ∂(pj , pi) clearly holds.

▶ Assignment Property 1. If pk ∈ ∂(pi, pj) is the candidate blocker assigned to invisible
pair (pi, pj) then both of the following must be satisfied: (1) pk is assigned to the invisible
pair (pi, pt) for every pt ∈ ∂(pk+1, pj) and (2) if (pk, pj) is an invisible pair then pi is not
the candidate blocker assigned to it.

Again let pk be the candidate blocker assigned to an invisible pair (pi, pj) such that
pk ∈ ∂(pi, pj). Since pk is a candidate blocker, we have that (ps, pj) is an invisible pair for
every ps ∈ ∂(pi, pk−1). The next AP is a constraint on the location of designated blockers for
(ps, pj). In particular, if {ps, pk} is a visible pair, then pk must be the designated blocker for
(ps, pj). See Fig. 3 (a). If (ps, pk) is an invisible pair, then it must be assigned a designated
blocker pt. In this case, pt must also be the designated blocker for (ps, pj). See Fig. 3 (b).

▶ Assignment Property 2. Let (pi, pj) denote an invisible pair, and suppose pk is the
candidate blocker assigned to this invisible pair. Without loss of generality, suppose pk ∈
∂(pi, pj), and let ps be any vertex in ∂(pi, pk−1). Then exactly one of the following two cases
holds: (1) {ps, pk} is a visible pair, and the candidate blocker assigned to the invisible pair
(ps, pj) is pk, or (2) (ps, pk) is an invisible pair. If the candidate blocker assigned to (ps, pk)
is pt, then (ps, pj) is assigned the candidate blocker pt.

The next AP is somewhat similar to AP 2, except instead of introducing constraints on

SWAT 2022

7:6 On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction

pi
pj

pk
pspt

pi
pspt pj

pqpk

(a) (b)

Figure 4 (a) If pk is the designated blocker for (pi, pj) and pj sees pk then pk is the designated
blocker for (pj , ps), (pj , pi), and (pj , pt). (b) If pj does not see pk, and pq is the designated blocker
for (pj , pk) then pq is the designated blocker for (pj , ps), (pj , pi), and (pj , pt). Moreover, (pi, pq) is
an invisible pair and pk is its designated blocker.

the designated blockers for (ps, pj), it introduces constraints on the designated blockers for
(pj , ps) (where the order is reversed). Similar to the previous case, if pj sees pk then pk must
block pj from seeing every ps ∈ ∂(pi, pk−1), but we can also see that pk must block pj from
any point pt such that pi is the designated blocker for (pk, pt). See Fig. 4 (a). If pj does not
see pk, then there must be a designated blocker pq for (pj , pk). See Fig. 4 (b). We show that
in this case, pq must be the designated blocker for all (pj , ps) and (pj , pt). Also, (pi, pq) must
be an invisible pair with designated blocker pk.

▶ Assignment Property 3. Let (pi, pj) denote an invisible pair, and suppose pk is the
candidate blocker assigned to this invisible pair. Without loss of generality, suppose pk ∈
∂(pi, pj). Then exactly one of the following two cases holds:
1. (a) {pj , pk} is a visible pair. (b) For all ps ∈ ∂(pi, pk−1), the candidate blocker assigned

to the invisible pair (pj , ps) is pk. (c) If pt is such that pi is the candidate blocker assigned
to the invisible pair (pk, pt), then (pj , pt) is an invisible pair and is assigned the candidate
blocker pk.

2. (a) (pj , pk) is an invisible pair. Let pq denote the candidate blocker assigned to (pj , pk).
(b) (pi, pq) is an invisible pair, and pk is the candidate blocker assigned to it. (c) For all
ps ∈ ∂(pi, pk), the candidate blocker assigned to the invisible pair (pj , ps) is pq. (d) If pt

is such that pi is the candidate blocker assigned to the invisible pair (pk, pt), then (pj , pt)
is an invisible pair and is assigned the candidate blocker pq.

Suppose pk is a candidate blocker for an invisible pair (pi, pj) (or (pj , pi)), and suppose
without loss of generality that pi ∈ ∂(pj , pk). If pk is also a candidate blocker for an invisible
pair (ps, pt) such that ps, pt ∈ ∂(pk, pj) then we say that the two invisible pairs are a separable
invisible pair. We have the following condition which is the same as Necessary Condition 3
for simple polygons in [8]. See Fig. 5 (a).

▶ Assignment Property 4. Suppose (pi, pj) and (ps, pt) are a separable invisible pair with
respect to a candidate blocker pk. If pk is assigned to (pi, pj) then it is not assigned to (ps, pt).

We now give the final AP. Let pj , pi, pt, and ps be four vertices of G in “counter-clockwise
order” around the Hamiltonian cycle C. We say that they are {pi, pt}-pinched if there is
a pm ∈ ∂(pi, pt) such that pi is the designated blocker for the invisible pair (pj , pm) and
pt is the designated blocker for the invisible pair (ps, pm). See Fig. 5 (b). The notion of
{pj , ps}-pinched is defined symmetrically.

▶ Assignment Property 5. Let pi, pj, ps, and pt be four vertices of G in counter-clockwise
order around the Hamiltonian cycle C that are {pi, pt}-pinched. Then they are not {pj , ps}-
pinched.

S. Ameer, M. Gibson-Lopez, E. Krohn, and Q. Wang 7:7

pj
pt

pi ps

pk

pspt

pi

pj

pm

(a) (b)

Figure 5 (a) If pk blocks one invisible pair of a separable invisible pair then it cannot block the
other one as well. (b) pi, pj , ps, and pt are {pi, pt}-pinched. If pj blocks pi from seeing some point,
then ps cannot also block pt from seeing that point.

w0
w1

w2wk−1

wi wi−1

w0
w1

w2wk−1

wi wi−1

(a) (b)

Figure 6 Illustrations for the proof of NC 1. (a) If w0 is the designated blocker for (w1, wi) and
w1 is the designated blocker for (w0, wi−1) then L0,1 will intersect the segment wi−1wi twice. (b) If
w0 is the designated blocker for (w1, wi) and wk−1 is the designated blocker for (w0, wi−1) then L0,1

intersects L0,k−1 twice (once at w0 and again in the dashed rays).

3 A New Characterization of Pseudo-Polygon VGs

In this section, we prove a different characterization of the VGs of pseudo-polygons. This
characterization proves a property that must be satisfied by all VGs of pseudo-polygons. We
then show that if G satisfies this property, then AP 5 is not needed. That is, if G satisfies
this property and we can find an assignment of candidate blockers to invisible pairs that
satisfies APs 1-4, then AP 5 must also be satisfied.

The property we prove is similar to the NC given by Ghosh [6] for simple polygon VGs;
however, the proof uses geometric arguments that do not apply to general pseudo-polygons and
therefore a new proof is needed. To state and prove the property, we first need some definitions.
Suppose w0, w1, . . . , wk−1 form a cycle in G such that the vertices w0, w1, . . . , wk−1 follow
the order in the Hamiltonian cycle C. Then, we say that w0, w1, . . . , wk−1 are an ordered
cycle. Note that the Hamiltonian cycle C is an ordered cycle of all n vertices in G. An edge
in G connecting two non-adjacent vertices of an ordered cycle is called a chord.

▶ Necessary Condition 1. If G is the VG of a pseudo-polygon then any ordered cycle in G

of length at least 4 must have at least one chord.

Proof. Suppose G has an ordered cycle O of length k ≥ 4, and let w0, w1, . . . , wk−1 denote
the vertices around O in counterclockwise order, and for the sake of contradiction assume
that O does not have any chords. This implies that any wi ∈ O sees no other vertices in O

other than wi−1 and wi+1 (indices taken modulo k). Moreover, since k ≥ 4, this implies that

SWAT 2022

7:8 On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction

there is at least one vertex on O that wi does not see. Let wj be such a vertex. Note that
any candidate blocker for (wi, wj) must be a vertex that is on O, because any vertex v not
on O is in ∂(wa, wa+1) for some a and wa sees wa+1 since they are consecutive points on O.

So now consider w1. There is at least one vertex on O that w1 does not see, and it must
be that either w0 and w2 is the designated blocker for any such invisible pairs. Without loss
of generality, assume that w0 is a designated blocker for (w1, wj) for at least one wj ∈ O.
Walking counterclockwise around O starting at w1, let wi be the first point we encounter
such that w0 is the designated blocker for (w1, wi). Now note that i − 1 ≥ 2, in particular i

cannot be 2 because w1 sees w2. Therefore (w0, wi−1) is an invisible pair and either wk−1 or
w1 must be its designated blocker. But if w1 is its designated blocker, then L0,1 will intersect
wi−1wi twice (see Figure 6 (a)). If wk−1 is its designated blocker then Lk−1,0 will intersect
L0,1 twice (see Figure 6 (b)). ◀

Ghosh [7] showed it can be determined if G satisfies this property in O(n2) time. Now
suppose that G does indeed satisfy this property. We will show then that it suffices to pick
an assignment of candidate blockers to invisible pairs that satisfies only APs 1-4. In order to
prove this, we prove two lemmas which will be used to prove the new characterization.

▶ Lemma 2. Let pi, pj , pk be three vertices of a pseudo-polygon VG in counterclockwise order.
If pj is a candidate blocker for invisible pair (pi, pk), then (pk, pk′) is an invisible pair for
any pk′ ∈ ∂(pk, pi) such that pi is a candidate blocker for (pj , pk′).

Proof. We will show that if pk sees pk′ then G violates NC 1. Suppose pk sees pk′ . If pk sees
pj and pk′ sees pi then pi, pj , pk, pk′ is an ordered cycle of length four with zero chords, a
violation of NC 1. So now suppose that pk does not see pj . We will pick a “chain” C1 of
vertices (c1, c2, . . . cm) in ∂(pj , pk) such that: 1) the order of the vertices in C1 is in clockwise
order, and 2) a vertex ci only sees vertices ci−1 and ci+1 (if they exist) in C1. Initially we let
c1 = pk. Now suppose ci is the last vertex in C1 we have found and we wish to find ci+1. We
start at pj and walk counterclockwise until we find the first vertex that sees ci (it may be pj

itself). If this vertex sees pk′ , then we throw out the current chain restart a new chain with
this vertex as c1, and otherwise we let this vertex be ci+1 in the current chain. We continue
this process until pj is added to C1. Note that pj cannot be c1 since it does not see pk′ , and
therefore the length of C1 is at least 2.

We repeat a symmetric process to obtain a chain C2 = (c′
1, c′

2, . . . , c′
m′) in ∂(pk′ , pi),

except we compute C2 with respect to the vertices of C1. That is, when we have computed
c′

i and wish to compute c′
i+1, we consider if it sees any of the vertices in C1. If it doesn’t,

then we add it to C2 as vertex c′
i+1. If it does see some vertex of C1, then we update both

chains. We restart C2 with this vertex as c′
1, and we will remove a “prefix” of C1 depending

on what c′
1 sees. Let z be the maximum integer such that c′

1 sees cz of C1. Then we remove
all vertices from C1 with index less than z. Note that c′

1 cannot see pj or else pi would not
be a candidate blocker for (pj , pk′), and therefore C1 still has length at least 2. We continue
this until pi gets added to C2. Note that when pi is added to C2, C1 is not reduced because
if pi saw any vertex in C1 other than pj then pj would not be a candidate blocker for (pi, pk).
Therefore C1 and C2 both have length at least 2.

The following is an ordered cycle of length at least four that does not have any chords:
c′

1, c′
2 . . . , c′

m′ , cm, cm−1, . . . c1. Indeed we have that the only visible pairs that has one vertex
in C1 and the other in C2 are {c1, c′

1} and {c′
m′ , cm} by construction. Note c′

m′ = pi and
cm = pj . {pi, pj} must be a visible pair because they are candidate blockers for each other.
And finally there are no chords connecting two vertices of C1 or two vertices of C2 by
construction of the chains. It follows that if pk sees pk′ , then G violates NC 1. ◀

S. Ameer, M. Gibson-Lopez, E. Krohn, and Q. Wang 7:9

▶ Lemma 3. Let pi, pj , ps, pt be four vertices of a pseudo-polygon VG G in counterclockwise
order such that {pi, pj}, {pi, ps}, {pj , pt}, and {ps, pt} are visible pairs. Suppose we have an
assignment of candidate blockers to invisible pairs that satisfies AP 1-4. Let B be the set of
all vertices in ∂(pj , ps) such that for each pz ∈ B, pj is the designated blocker for (pi, pz) and
ps is the designated blocker for (pt, pz). If |B| ≥ 1, then there is at least one vertex pk ∈ B

such that satisfies one property of set 1 and one property of set 2:
1. a. {pk, pj} is a visible pair, or

b. (pk, pj) is an invisible pair blocked by a designated blocker in ∂(pj , pk)
2. a. {pk, ps} is a visible pair, or

b. (pk, ps) is an invisible pair blocked by a designated blocker in ∂(pk, ps).

Proof. We first show a fact about any point pz in B that does not satisfy the conditions of
the lemma. Suppose for pz at least one of the two sets of properties has both properties not
satisfied. Without loss of generality, assume it is the first set. Then (pz, pj) is an invisible
pair blocked by a candidate blocker pb ∈ ∂(pz, pj). We will show that pb must be in B.
To prove this, we first show that pb must be in ∂(pz+1, ps−1). pz cannot see any point in
∂(pi, pj−1) or else pj would not be a candidate blocker for (pi, pz). If pb were in ∂(ps, pi),
AP 3 case 2 (b) implies that pj must the designated blocker for (pi, pb). But if this is true
then AP 1 case 1 implies that pj must be the designated blocker for (pi, ps), but {pi, ps} is a
visible pair. Therefore it must be pb ∈ ∂(pz+1, ps−1). We now show that pb ∈ B. That is, it
must be that (pb, pi) and (pb, pt) are both invisible pairs. If {pb, pt} were a visible pair then
ps would not be a candidate blocker for (pt, pz). Also (pi, pb) must be an invisible pair with
designated blocker pj by AP 3 case 2 (b). Therefore pb is indeed in B.

Now we show how to find a point in B that satisfies the conditions of the lemma. Walk
counterclockwise starting from pj until we find the first vertex that is in B, and let us call
this vertex px1 . If this vertex does not satisfy a property from each set, then it must be that
there is a blocker px2 that blocks px1 from pj (it must also block it from ps by AP 1). From
the above analysis px2 ∈ B, and therefore px2 must be in ∂(px1+1, ps−1) since px1 is the first
point encountered in B. Likewise, if px2 does not satisfy a property from each set, then
there must be a blocker px3 ∈ B that blocks px2 from both ps and pj . Again we can see that
px3 ∈ ∂(px2+1, ps−1). Indeed, it cannot be in ∂(pj , px1−1) since none of these points are in
B, and it cannot be in ∂(px1 , px2−1) as that would contradict that px2 is a candidate blocker
for (px1 , ps). Inductively we repeat this until we find a point that satisfies the condition.
This process must terminate since if pxi

does not satisfy a property from each set, it must be
blocked by a point in ∂(pxi+1, ps−1). Eventually we will run out of points in B and there
will be no more points to be the blocker, and therefore we will find the desired point. ◀

We are now ready to prove the our new characterization that removes the need to satisfy
AP 5 if G satisfies NC 1.

▶ Theorem 4. A graph G with a labeled Hamiltonian cycle is the visibility graph of some
pseudo-polygon if and only if it satisfies NC 1 and there is an assignment of candidate
blockers to the invisible pairs of G that satisfies APs 1-4.

Proof. Assuming that G satisfies NC 1, we will prove that if an assignment violates AP 5,
then it also violates one of the other APs. Assume AP 5 is violated. That is, let pi, pj , ps, pt

be four vertices of G in counterclockwise order around C such that there is a pk ∈ ∂(pj , ps)
and a pk′ ∈ ∂(pt, pi) satisfying: 1) (pi, pk) is an invisible pair that has been assigned pj , 2)

SWAT 2022

7:10 On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction

(pt, pk) is an invisible pair that has been assigned ps, 3) (pj , pk′) is an invisible pair that has
been assigned pi, and 4) (ps, pk′) is an invisible pair that has been assigned pt. Here, we pick
pk and pk′ to be points that satisfy the conditions of Lemma 3.

Now note that (pk, pk′) must be an invisible pair by Lemma 2, and therefore there must
be a candidate blocker assigned to this invisible pair. Since pj is the candidate blocker
assigned to (pi, pk) and pi is the candidate blocker assigned to (pj , pk′), AP 3 implies that
the candidate blocker assigned to (pk, pk′) must be in ∂(pk′ , pk) (i.e., the blocker is pj if pk

sees pj or whatever point is blocking pk from pj which must be in ∂(pj , pk) since pk satisfies
Lemma 3). However, we can apply the same argument symmetrically to ps and pt to see
that (pk, pk′) must be assigned a blocker in ∂(pk, pk′). Therefore no matter which candidate
blocker we assign to (pk, pk′), it must be that AP 3 is violated. ◀

4 Recognition and Reconstruction Algorithms

In this section, we give a polynomial-time algorithm to determine whether or not a given
graph G with a labeled Hamiltonian cycle C is the VG for some pseudo-polygon. We
then extend the algorithm to obtain a polynomial-time algorithm that can reconstruct a
pseudo-polygon P such that G is the VG of P if the recognition algorithm returns YES.

Algorithm 1 Recognition Algorithm.

1: if G does not satisfy NC 1 then
2: Return NO
3: for all invisible pairs (pi, pj) do
4: Compute their (at most 2) candidate blockers.
5: Add (pi, pj) to the set of all invisible pairs I.
6: while there is an invisible pair (IP) (pi, pj) ∈ I such that (pi, pj) has < 2 remaining

feasible candidate blockers do
7: if some IP has 0 remaining candidate blockers then
8: Return NO
9: else

10: if some IP has exactly 1 feasible candidate blocker then
11: Assign this candidate blocker to the IP.
12: Remove the IP from I.
13: For every other IP in I, remove any remaining candidate blocker if its selection

would violate APs 1-4.
14: Return YES

The recognition algorithm is stated formally in Algorithm 1. The algorithm itself is
fairly simple. We first check that G satisfies NC 1, and if it does not then we return NO.
If it satisfies this property, then for each invisible pair, we compute the set of at most two
candidate blockers for this invisible pair. If some invisible pair has 0 candidate blockers, we
return NO. If some invisible pair has only 1 candidate blocker, then it must be the designated
blocker so we assign it to the candidate blocker. We then remove any candidate blocker for
any other invisible pair if that candidate blocker would violate one of the APs. We then
repeat this until every invisible pair has been assigned a candidate blocker, or until every
remaining invisible pair has two candidate blockers remaining. In either case, we return YES.

The algorithm runs in polynomial time. Checking NC 1 can be done in O(n2) time [7].
There are at most O(n2) invisible pairs of G. Checking a violation of an AP involves only
2 invisible pairs, and this check can be done in constant time. The algorithm is clearly

S. Ameer, M. Gibson-Lopez, E. Krohn, and Q. Wang 7:11

correct if we return NO or if we return YES because every invisible pair was assigned a
candidate blocker. We must prove that the algorithm is correct when we return YES because
every remaining invisible pair has two candidate blockers. We prove this constructively by
assigning a candidate blocker to each remaining invisible pair in I. The algorithm for this is
formally stated in Algorithm 2.

Algorithm 2 Candidate Blocker Assignment.

1: Let I denote the invisible pairs of G that are not assigned a candidate blocker by
Algorithm 1.

2: Let px be any arbitrarily chosen vertex of G.
3: for all invisible pairs (pi, pj) ∈ I do
4: Walk counterclockwise around the Hamiltonian cycle C starting at px. Let pa denote

which vertex of (pi, pj) is encountered first and let pb denote the other vertex.
5: Assign to (pi, pj) the candidate blocker in ∂(pa, pb).

We now prove that the combination of candidate blocker assignments in Algorithm 1 and
in Algorithm 2 satisfies APs 1-4, thereby proving the correctness of Algorithm 1.

▶ Lemma 5. The combination of candidate blocker assignments in Algorithm 1 and in
Algorithm 2 assigns a valid candidate blocker to every invisible pair of G.

Proof. Each of the APs regards the feasibility of a pair of assigned candidate blockers. Since
we removed any candidate blocker that would have created a violation with a choice made
in Algorithm 1, we only need to consider candidate blockers assigned in Algorithm 2. We
go through each AP and show that any assignment we make will not violate the AP, which
completes the proof of the lemma.
AP 1. Case 1 states that if pk ∈ ∂(pi, pj) is the candidate blocker assigned to invisible pair,

(pi, pj) then it must also be assigned (pi, pt) for every pt ∈ ∂(pk+1, pj). Since pk ∈ ∂(pi, pj),
it must be that pi = pa and pj = pb in Algorithm 2 implying that px ∈ ∂(pj+1, pi). Then
it also must mean that pi = pa and pt = pb when considering (pi, pt), and therefore
pk will be assigned to (pi, pt). Case 2 states that if (pk, pj) is an invisible pair then pi

is not assigned to it, but since px ∈ ∂(pj+1, pi) it must be that pk = pa and pj = pb

when considering (pk, pj) and therefore we will assign to (pk, pj) the candidate blocker in
∂(pk, pj) which is not pi.

AP 2. This AP applies when pk ∈ ∂(pi, pj) is assigned to invisible pair (pi, pj) and then
considers the invisible pairs (ps, pj) for each ps ∈ ∂(pi, pk−1). If we choose pk ∈ ∂(pi, pj),
then it must be that px ∈ ∂(pj+1, pi), and therefore we will assign to (ps, pj) the candidate
blocker in ∂(ps, pj). Case 1 of AP 2 states that if {ps, pk} is a visible pair, then pk must be
assigned to (ps, pj), and indeed this is what we do if {ps, pk} is a visible pair because no
point in ∂(ps, pk−1) can see any point in ∂(pk+1, pj) or else pk would not be a candidate
blocker for (pi, pj). Case 2 says that if (ps, pk) is an invisible pair, then the candidate
blocker assigned to (ps, pj) must be the same as the candidate blocker assigned to (ps, pk).
But given the location of px, it must be that for both invisible pairs we have ps = pa in
Algorithm 2, and therefore we will assign the same candidate blocker to both invisible
pairs.

AP 3. This AP applies when pk ∈ ∂(pi, pj) is assigned to invisible pair (pi, pj) and then
considers the invisible pairs (pj , pi) as well as (pj , pt) for any pt such that pi is the
candidate blocker assigned to (pk, pt). First we consider (pj , pi). If pk ∈ ∂(pi, pj) is
assigned to invisible pair (pi, pj), then it must be that px ∈ ∂(pj+1, pi). This implies

SWAT 2022

7:12 On the Visibility Graphs of Pseudo-Polygons: Recognition and Reconstruction

that when considering (pj , pi), we will assign the candidate blocker in ∂(pi, pj) to (pj , pi).
Case 1 states that if {pj , pk} is a visible pair that this blocker must be pk, and in fact this
the candidate blocker in ∂(pi, pj) because no point in ∂(pi, pk−1) can see any point in
∂(pk+1, pj) or else pk would not be a candidate blocker for (pi, pj). Case 2 states that if
(pj , pk) is an invisible pair, then whatever blocker is assigned to (pj , pk) must be assigned
to (pj , pi), but here we have pj = pb in both scenarios, and therefore we will assign the
same blocker to both (pj , pk) and (pj , pi).
Now consider (pj , pt) for any pt such that pi is the candidate blocker assigned to (pk, pt).
The analysis is very similar to the previous case. If pk ∈ ∂(pi, pj) is assigned to invisible
pair (pi, pj) and pi ∈ ∂(pt, pk) is assigned to invisible pair (pk, pt), then it must be that
px ∈ ∂(pj+1, pt). This implies that pt = pa and pj = pb when considering (pj , pt). For
the same reasons as in Case 1 for AP 3, we will assign the correct candidate blocker to
(pj , pt).

AP 4. Here we have (pi, pj) and (ps, pt) which are a separable invisible pair with respect
to candidate blocker pk. If pk is assigned to (pi, pj), then that implies that pj = pa and
pi = pb which means that px ∈ ∂(pi+1, pj). This means that when we consider (ps, pt) we
will have ps = pa and pt = pb, and therefore we will assign it the candidate blocker in
∂(ps, pt) which is not pk. ◀

This gives us the following theorem.

▶ Theorem 6. There is a polynomial-time algorithm that can determine whether a given
graph G with a labeled Hamiltonian cycle C is the visibility graph for some pseudo-polygon P

such that C corresponds with the boundary of P .

We can then combine our Algorithms 1 and 2 into a reconstruction algorithm by building
a vertex-edge VG based on our computed assignment (details in [9]) and then reconstruct
the pseudo-polygon from this graph using the technique described in [10].

▶ Theorem 7. There is a polynomial-time algorithm that can construct a pseudo-polygon P

such that a given visibility graph G of a pseudo-polygon with a labeled Hamiltonian cycle C

is the visibility graph of P where C corresponds to the boundary of P .

References
1 Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, David Orden, and

Pedro Ramos. Decomposition of multiple coverings into more parts. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 302–
310, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=1496770.1496804.

2 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size epsilon-nets for axis-parallel rectangles
and boxes. SIAM J. Comput., 39(7):3248–3282, July 2010. doi:10.1137/090762968.

3 Seung-Hak Choi, Sung Yong Shin, and Kyung-Yong Chwa. Characterizing and recognizing
the visibility graph of a funnel-shaped polygon. Algorithmica, 14(1):27–51, 1995. doi:
10.1007/BF01300372.

4 Hazel Everett and Derek G. Corneil. Negative results on characterizing visibility graphs.
Comput. Geom., 5:51–63, 1995. doi:10.1016/0925-7721(95)00021-Z.

5 Uriel Feige, Magnús M. Halldórsson, Guy Kortsarz, and Aravind Srinivasan. Approx-
imating the domatic number. SIAM J. Comput., 32(1):172–195, January 2003. doi:
10.1137/S0097539700380754.

6 Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
In SWAT, pages 96–104, 1988.

http://dl.acm.org/citation.cfm?id=1496770.1496804
https://doi.org/10.1137/090762968
https://doi.org/10.1007/BF01300372
https://doi.org/10.1007/BF01300372
https://doi.org/10.1016/0925-7721(95)00021-Z
https://doi.org/10.1137/S0097539700380754
https://doi.org/10.1137/S0097539700380754

S. Ameer, M. Gibson-Lopez, E. Krohn, and Q. Wang 7:13

7 Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete & Computational Geometry, 17(2):143–162, 1997. doi:10.1007/BF02770871.

8 Subir Kumar Ghosh and Partha P. Goswami. Unsolved problems in visibility graphs of points,
segments, and polygons. ACM Comput. Surv., 46(2):22, 2013. doi:10.1145/2543581.2543589.

9 Matt Gibson, Erik Krohn, and Qing Wang. A characterization of visibility graphs for pseudo-
polygons. In ESA, pages 607–618, 2015.

10 Joseph O’Rourke and Ileana Streinu. Vertex-edge pseudo-visibility graphs: Characterization
and recognition. In Symposium on Computational Geometry, pages 119–128, 1997. doi:
10.1145/262839.262915.

11 Joseph O’Rourke and Ileana Streinu. The vertex-edge visibility graph of a polygon. Computa-
tional Geometry, 10(2):105–120, 1998. doi:10.1016/S0925-7721(97)00011-4.

12 G. Srinivasaraghavan and Asish Mukhopadhyay. A new necessary condition for the vertex
visibility graphs of simple polygons. Discrete & Computational Geometry, 12:65–82, 1994.
doi:10.1007/BF02574366.

13 Ileana Streinu. Non-stretchable pseudo-visibility graphs. Comput. Geom., 31(3):195–206, 2005.
doi:10.1016/j.comgeo.2004.12.003.

14 Kasturi R. Varadarajan. Epsilon nets and union complexity. In Symposium on Computational
Geometry, pages 11–16, 2009. doi:10.1145/1542362.1542366.

SWAT 2022

https://doi.org/10.1007/BF02770871
https://doi.org/10.1145/2543581.2543589
https://doi.org/10.1145/262839.262915
https://doi.org/10.1145/262839.262915
https://doi.org/10.1016/S0925-7721(97)00011-4
https://doi.org/10.1007/BF02574366
https://doi.org/10.1016/j.comgeo.2004.12.003
https://doi.org/10.1145/1542362.1542366

Recognizing Map Graphs of Bounded Treewidth
Patrizio Angelini #

Department of Mathematics, Natural, and Applied Sciences, John Cabot University, Rome, Italy

Michael A. Bekos #

Department of Mathematics, University of Ioannina, Greece

Giordano Da Lozzo #

Department of Engineering, Roma Tre University, Rome, Italy

Martin Gronemann #

Algorithms and Complexity Group, Technische Universität Wien, Austria

Fabrizio Montecchiani #

Department of Engineering, University of Perugia, Italy

Alessandra Tappini #

Department of Engineering, University of Perugia, Italy

Abstract

A map graph is one admitting a representation in which vertices are nations on a spherical map and
edges are shared curve segments or points between nations. We present an explicit fixed-parameter
tractable algorithm for recognizing map graphs parameterized by treewidth. The algorithm has
time complexity that is linear in the size of the graph and, if the input is a yes-instance, it reports a
certificate in the form of a so-called witness. Furthermore, this result is developed within a more
general algorithmic framework that allows to test, for any k, if the input graph admits a k-map
(where at most k nations meet at a common point) or a hole-free k-map (where each point is covered
by at least one nation). We point out that, although bounding the treewidth of the input graph also
bounds the size of its largest clique, the latter alone does not seem to be a strong enough structural
limitation to obtain an efficient time complexity. In fact, while the largest clique in a k-map graph
is ⌊3k/2⌋, the recognition of k-map graphs is still open for any fixed k ≥ 5.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathe-
matics of computing → Graph algorithms

Keywords and phrases Map graphs, Recognition, Parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.8

Funding Michael A. Bekos: Partially supported by DFG grant KA812/18-1.
Giordano Da Lozzo: Partially supported by MSCA-RISE project “CONNECT”, N◦ 734922, and by
MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”.
Fabrizio Montecchiani: Partially supported by MIUR, grant 20174LF3T8 “AHeAD: efficient Algo-
rithms for HArnessing networked Data”, and by Dipartimento di Ingegneria, University of Perugia,
grants RICBA20ED and RICBA21LG.
Alessandra Tappini : Partially supported by MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms
for HArnessing networked Data”, and by Dipartimento di Ingegneria, University of Perugia, grants
RICBA20ED and RICBA21LG.

Acknowledgements We thank the anonymous reviewers of a previous version of this paper for
pointing out that the map recognition problem admits an MSO2 formulation.

© Patrizio Angelini, Michael A. Bekos, Giordano Da Lozzo, Martin Gronemann, Fabrizio Montecchiani,
and Alessandra Tappini;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pangelini@johncabot.edu
https://orcid.org/0000-0002-7602-1524
mailto:bekos@uoi.gr
https://orcid.org/0000-0002-3414-7444
mailto:giordano.dalozzo@uniroma3.it
https://orcid.org/0000-0003-2396-5174
mailto:mgronemann@ac.tuwien.ac.at
https://orcid.org/0000-0003-2565-090X
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0002-0543-8912
mailto:alessandra.tappini@unipg.it
https://orcid.org/0000-0001-9192-2067
https://doi.org/10.4230/LIPIcs.SWAT.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Recognizing Map Graphs of Bounded Treewidth

1 Introduction

Planarity is one of the most influential concepts in Graph Theory. Inspired by topological
inference problems and by intersection graphs of planar curves, in 1998, Chen, Grigni and
Papadimitriou [8] suggested the study of map graphs as a generalized notion of planarity. A
map of a graph G is a function M that assigns each vertex v of G to a region M(v) on the
sphere homeomorphic to a closed disk such that no two regions share an interior point, and
any two distinct vertices v and w are adjacent in G if and only if the boundaries of M(v)
and M(w) share at least one point. For each vertex v of G, the region M(v) is called the
nation of v. A connected open region of the sphere that is not covered by nations is a hole.
A graph that admits a map is a map graph, whereas a graph that admits a map without
holes is a hole-free map graph; Figs. 1a and 1b show a graph and a map of it, respectively.
Map graphs generalize planar graphs by allowing local non-planarity at points where more
than three nations meet. In fact, the planar graphs are exactly those graphs having a map
in which at most three nations share a boundary point [8, 19].

Besides their theoretical interest, the study of map graphs is motivated by applications
in graph drawing, circuit board design, and topological inference problems [1, 4, 5, 11]. Map
graphs are also useful to design parameterized and approximation algorithms for several
optimization problems that are NP-hard on general graphs [6, 16, 21, 22, 23].

A natural and central algorithmic question regards the existence of efficient algorithms
for recognizing map graphs. Towards an answer to this question, Chen et al. [8, 9] first gave
a purely combinatorial characterization of map graphs: A graph is a map graph if and only if
it admits a witness, formally defined as follows; see Fig. 1c. A witness of a graph G = (V, E)
is a bipartite planar graph W = (V ∪ I, A) with A ⊆ V × I and such that W 2[V] = G, where
the graph W 2[V] is the half-square of W , that is, the graph on the vertex set V in which two
vertices are adjacent if and only if their distance in W is 2. Here, the vertices in I are meant
to represent the adjacencies among nations. Since W can always be chosen to have linear
size in the number of vertices of G [9], the problem of recognizing map graphs is in NP. In
1998, Thorup [31] proposed a polynomial-time algorithm to recognize map graphs. However,
the extended abstract by Thorup does not contain a complete proof of the result and, to the
best of our knowledge, a full version has not appeared yet. Moreover, the proposed algorithm
has two drawbacks. First, the time complexity is not specified explicitly (the exponent of the
polynomial bounding the time complexity is estimated to be about 120 [10]; see also [5, 28]).
Second, it does not report a certificate in the positive case; a natural one would be a witness.

Hence, the problem of finding a simple and efficient recognition algorithm for map graphs
remains open. In the last years, several authors focused on graphs admitting restricted types
of maps. Aside from the already defined hole-free maps, another notable example consists
of the k-maps, in which at most k nations meet at a common point; observe that, when
k ≥ n − 1, map graphs and k-map graphs trivially coincide. For instance, Chen studied the
density of k-map graphs [7], while in a recent milestone paper on linear layouts Dujmović et
al. [20] proved that the queue number of k-map graphs is cubic in k. Note that the algorithm
by Thorup [31] cannot be directly used to recognize k-map graphs (unless k ≥ n − 1). Chen
et al. [10] focused on hole-free 4-map graphs and gave a cubic-time recognition algorithm for
this graph family. Later, Brandenburg [5] gave a cubic-time recognition algorithm for general
(i.e., not necessarily hole-free) 4-map graphs, by exploiting an alternative characterization of
these graphs closely related to maximal 1-planarity. Notably, a polynomial-time recognition
algorithm for the family of (general or hole-free) k-map graphs with k > 4 is still missing. In
particular, for k > 4, the only result we are aware of is a characterization of 5-map graphs in

P. Angelini et al. 8:3

(a) A graph G. (b) A map M of G. (c) A witness W of G.

Figure 1 (a) A graph G, (b) a map of G - the striped region is a hole, and (c) a witness of G.

terms of forbidden crossing patterns [4]. A different approach for the original problem is the
one by Mnich, Rutter, and Schmidt [28], who proposed a linear-time algorithm to recognize
the map graphs with an outerplanar witness, which also reports a certificate witness, if any.

We remark that the size of the largest clique in a k-map graph is ⌊3k/2⌋ (see, e.g., [9]),
thus bounding the size of the largest clique does not seem to be a strong enough structural
limitation of the input to obtain an efficient time complexity. Despite the notable amount of
work, no prior research focuses on further structural parameters of the input graph to design
efficient recognition algorithms. In this paper, we address precisely this challenge.

Our contribution. Our main result is a novel algorithmic framework that can be used to
recognize map graphs, as well as variants thereof; in particular, hole-free k-map graphs and
k-map graphs. Recall that, by setting k = n−1, our algorithm also recognizes (hole-free) map
graphs. In fact, we can also compute the minimum value of k within the same asymptotic
running time. The proposed algorithm is parameterized by the treewidth [18, 29] of the
n-vertex input graph G and its time complexity has a linear dependency in n, while it does
not depend on the natural parameter k. Notably, for graphs of bounded treewidth, our
algorithm improves over the existing literature [5, 10, 31] in three ways: it solves the problem
for any fixed k, it can deal with both scenarios where holes are or are not allowed in the
sought map, and it exhibits an asymptotically optimal running time in the input size. The
following theorem summarizes our main contribution.

▶ Theorem 1. Given an n-vertex graph G and a tree-decomposition of G of width t, there
is a O(tO(t) · n)-time algorithm that computes the minimum k, if any, such that G admits
a (hole-free) k-map. In the positive case, the algorithm returns a certificate in the form of
a witness of G within the same time complexity.

We remark that the problem of recognizing map graphs can be expressed by using MSO2 logic.
Thus the main positive result behind Theorem 1 can be alternatively achieved by Courcelle’s
theorem [13]. However, with this approach, the dependency of the time complexity on the
treewidth is notoriously very high. As a matter of fact, Courcelle’s theorem is generally used
as a classification tool, while the design of an explicit ad-hoc algorithm remains a challenging
and valuable task [15].

To prove Theorem 1, we first solve the decision version of the problem. For a fixed k,
we use a dynamic-programming approach, which can deal with different constraints on the
desired witness. While we exploit such flexibility to check whether at most k nations intersect
at any point and whether holes can be avoided, other constraints could be plugged into the
framework such as, for example, the outerplanarity of the witness (as in [28]). In view of
this versatility, future applications of our tools may be expected.

SWAT 2022

8:4 Recognizing Map Graphs of Bounded Treewidth

Proof strategy. We exploit the characterization in [9] and test for the existence of a suitable
witness of the input graph. The crux of our technique is in the computation of suitable records
that represent equivalent witnesses and contain only vertices of a tree-decomposition bag.
Each such record must carry enough information, in terms of embedding, so to allow testing
whether it can be extended with a new vertex or merged with another witness. Moreover, we
need to check whether any such witness yields a k-map and, if required, a hole-free one. To
deal with the latter property, we provide a strengthening of the characterization in [9], which
we believe to be of independent interest, that translates into maintaining suitable counters
on the edges of our records. Additional checks on the desired witness can be plugged in the
presented algorithmic framework, provided that the records store enough information. One
of the main difficulties is hence “sketching” irrelevant parts of the embedded graph without
sacrificing too much information. (A similar challenge is faced in the context of different
planarity and beyond-planarity problems [17, 25, 27].) Also, when creating such sketches,
multiple copies (potentially linearly many) of the same edge may appear, which we need
to simplify to keep our records small. The formalization of such records then allows us to
exploit a dynamic-programming approach on a tree-decomposition.

Paper structure. Section 2 contains preliminary definitions. Section 3 illustrates basic
properties of map graphs that will be used throughout the paper. Section 4 introduces the
concept of “sketching” an embedding of a witness, the key ingredient of the algorithmic
framework, which we present in Section 5. Section 6 contains open problems raised by our
work. The proofs of the statements marked as ⋆ have been omitted.

2 Preliminaries

We only consider finite, undirected, and simple graphs, although some procedures may
produce non-simple graphs. In such a case the presence of self-loops or multiple edges will
be clearly indicated. Let G = (V, E) be a graph; for a vertex v ∈ V , we denote by N(v) the
set of neighbors of v in G, and by deg(v) the degree of v, i.e., the cardinality of N(v).

Embeddings. A topological embedding of a graph G on the sphere Σ is a representation
of G on Σ in which each vertex of G is associated with a point and each edge of G with
a simple arc between its two endpoints in such a way that any two arcs intersect only at
common endpoints. A topological embedding of G subdivides the sphere into topologically
connected regions, called faces. If G is connected, the boundary of a face f is a closed walk,
that is, a circular list of alternating vertices and edges; otherwise, the boundary of f is a set
of closed walks. Note that a cut-vertex of G may appear multiple times in any such walk.
A topological embedding of G uniquely defines a rotation system, that is, a cyclic order of
the edges around each vertex. If G is connected, the boundary defining each face can be
reconstructed from a rotation system; otherwise, to reconstruct the boundary of every face f ,
we also need to know which connected components are incident to f . We call the incidence
relationship between closed walks of different components and faces the position system of
G. A combinatorial embedding of G is an equivalence class of topological embeddings that
define the same rotation and position systems. An embedded graph G is a graph along with a
combinatorial embedding. A pair of parallel edges e and e′ of G with end-vertices v and w is
homotopic if there is a face of G whose boundary consists of a single closed walk ⟨v, e, w, e′⟩.

P. Angelini et al. 8:5

Tree-decompositions. Let (X , T) be a pair such that X = {X1, X2, . . . , Xℓ} is a collection
of subsets of vertices of a graph G, called bags, and T is a tree whose nodes are in one-to-one
correspondence with the elements of X . When this creates no ambiguity, Xi will denote
both a bag of X and the node of T whose corresponding bag is Xi. The pair (X , T) is a
tree-decomposition of G if: (i) for every edge (u, v) of G, there exists a bag Xi that contains
both u and v, and (ii) for every vertex v of G, the set of nodes of T whose bags contain v

induces a non-empty (connected) subtree of T .
The width of (X , T) is maxℓ

i=1 |Xi| − 1, while the treewidth of G is the minimum width
over all tree-decompositions of G. For an n-vertex graph of treewidth t, a tree-decomposition
of width t can be found in FPT time [2].

▶ Definition 2. A tree-decomposition (X , T) of a graph G is called nice if T is a rooted tree
with the following properties [3].
(P.1) Every node of T has at most two children.
(P.2) If a node Xi of T has two children whose bags are Xj and Xj′ , then Xi = Xj = Xj′ .

In this case, Xi is a join bag.
(P.3) If a node Xi of T has only one child Xj, then Xi ̸= Xj and there exists a vertex

v ∈ G such that either Xi = Xj ∪ {v} or Xi ∪ {v} = Xj . In the former case Xi is an
introduce bag, while in the latter case Xi is a forget bag.

(P.4) If a node Xi is a leaf of T , then Xi contains exactly one vertex, and Xi is a leaf bag.

Note that, given a tree-decomposition of width t, a nice tree-decomposition can be
computed in O(t · n) time (see, e.g., [26]).

3 Basic Properties of Map Graphs and Their Witnesses

The following statements (in a weaker or different form) have already been discussed in the
work by Chen et al. [9] and their proofs are omitted here.

Let G = (V, E) be a map graph and let W = (V ∪ I, A) be a witness of G, i.e., W is a
planar bipartite graph such that W 2[V] = G. A vertex u ∈ I is an intersection vertex of W ,
while a vertex v ∈ V is a real vertex of W . Also, we let nV = |V |, nI = |I|, and n = nV + nI .

▶ Property 3. A graph is a k-map graph if and only if it admits a witness such that the
maximum degree of every intersection vertex is k.

▶ Property 4. A graph G admits a map if and only if each of its biconnected components
admits a map. Also, if G admits a hole-free map, then G is biconnected.

u u′

(a)

u1 u2

v

w

(b)

Figure 2 (a) Inessential intersection vertices, and (b) a twin-pair.

Let W = (V ∪I, A) be an embedded witness (i.e., with a prescribed combinatorial embedding).
An intersection vertex u ∈ I is inessential if deg(u) = 2 and there exists u′ ∈ I such that
N(u) ⊂ N(u′); see Fig. 2a. Furthermore, a pair of intersection vertices u1, u2 ∈ I is a
twin-pair if N(u1) = N(u2) = {v, w}, for some v, w ∈ V , and W contains a face whose

SWAT 2022

8:6 Recognizing Map Graphs of Bounded Treewidth

boundary consists of a single closed walk with exactly four edges with end-vertices v, u1, w, u2;
see Fig. 2b. Note that removing an inessential vertex or one vertex of a twin-pair from
W does not modify W 2[V].

▶ Definition 5. An embedded witness of a map graph is compact if it contains neither
inessential intersection vertices nor twin-pairs.

We remark that a compact witness is not necessarily minimal, i.e., it may contain
intersection vertices of degree greater than 2 whose removal does not modify its half-square;
see also [9]. However, in our setting, removing further information from a witness would
have an impact on the proof of Theorem 7 and on the recognition algorithm (Section 5).

The next lemma shows that focusing on compact witnesses is not restrictive.

▶ Lemma 6 (⋆). A graph G = (V, E) is a map graph if and only if it admits a compact
witness. Also, G is a k-map graph if and only if it admits a compact witness whose intersection
vertices have degree at most k.

In [9], it is observed (without a formal argument) that a map graph is hole-free if and only if
it admits a witness whose faces have 4 or 6 edges each. The next characterization improves
over this observation and hence can be of independent interest. A connected embedded graph
is a quadrangulation if each face boundary consists of a single closed walk with 4 edges.

▶ Theorem 7 (⋆). A graph is a hole-free map graph if and only if it admits a compact witness
that is a biconnected quadrangulation.

▶ Lemma 8 (⋆). A (hole-free) map graph G admits a compact witness with n ≤ 6nV − 10
(respectively, n ≤ 3nV − 4) vertices.

Based on Lemma 8, we can make the following remark.

▶ Remark 9. Without loss of generality, we assume in the following that any compact witness
W of G has n ≤ 3nV − 4 vertices if G is hole-free, or n ≤ 6nV − 10 vertices otherwise.

4 Embedding Sketches

Let G be an input graph. Property 4 allows us to assume that G is biconnected, and thus
every witness of G, if any, is connected. Also, by Lemma 6, it suffices to consider compact
witnesses.

Let (X , T) be a nice tree-decomposition of G of width t = ω − 1, i.e., each bag contains
at most ω vertices. Given a bag X ∈ X , we denote by TX the subtree of T rooted at X,
and by GX = (VX , EX) the subgraph of G induced by all the vertices in all bags of TX . Let
WX = (VX ∪ IX , AX) be a compact witness of GX (in particular, W 2

X [VX] = GX). Note
that, although G is connected, GX may have multiple connected components. However, since
G is connected, each connected component of GX must contain at least one vertex of X.
Moreover, for each connected component C of GX , there is a connected component C ′ of
WX such that C ′ is a witness of C. A vertex of WX is an anchor vertex if it is either a
real vertex of X or an intersection vertex whose neighbors in WX all belong to X. Observe
that if an intersection vertex u has a neighbor v in VX \ X, then no real vertex in V \ VX is
adjacent to v, and therefore there is no way to add further edges to u without creating a
false adjacency involving v.

P. Angelini et al. 8:7

v

(a) S(W, X ′)

v

(b) S(W, X), X ∪ {v} = X ′

Figure 3 (a) A sketch S(W, X ′) computed from the witness W of Fig. 1 with respect to a bag
X ′ (VX′ = V). The anchor vertices of X ′ are opaque, while the non-anchor vertices are faded. The
active boundaries are red and the background of the active faces is light red. (b) A sketch S(W, X),
where X ∪ {v} = X ′ computed from S(W, X ′) by applying the deletion operation (Section 5).

We will exploit anchor vertices to reduce the size of WX from O(|VX |) to O(ω), by
“sketching” parts of the embedding that are not relevant1. The idea of sketching an embedded
graph is inspired by a previous work about orthogonal planarity [17]; applying such idea to
our problem requires the development of several new tools and concepts, described in the
remainder of this section (and partly in Section 2). A face f of WX is active either if its
boundary contains only one vertex v (which implies WX = ({v}, ∅)) and v is an anchor vertex,
or if its boundary contains more vertices among which there are at least two anchor vertices;
refer to Fig. 3a. The active boundary of f (red in Fig. 3a) is obtained by shortcutting all
non-anchor vertices of f , where the shortcut operation is defined as follows. For a closed walk
π and a vertex v in π, shortcutting v consists of removing each occurrence of v (if more than
one), together with the edge (u, v) that precedes it in π, and the edge (v, u′) that follows it
in π, and of adding the edge (u, u′) between u and u′ in π. Fig. 4 illustrates a single face f

v1

u2 v3

v4

v2
u1

u3

u4
u5 v5

v6 v7

u7

u6

v8

Figure 4 An active boundary (red) made of three closed walks (edges are omitted):
⟨v1, v2, u2, v3, u3, v4, v1⟩, ⟨u6, v6, u7, v7⟩, ⟨v8⟩; vertices u1, u3, u4, v5, u5 have been shortcut.

and the corresponding active boundary. The embedding sketch (for short the sketch) of WX

with respect to X is the embedded graph S(WX , X) formed by all the vertices and edges that
belong to the active boundaries of WX . For each active boundary Bf of an active face f

of WX , S(WX , X) has an active face f∗ (light red in Figs. 3a and 4). Note that S(WX , X)
also has faces that are not active (white in Figs. 3a and 4). Also, the position system of

1 In the database and data engineering fields, sketching algorithms form a powerful toolkit to compress
data in a way that supports answering various queries [12]. Our idea of sketching has some similarities
with this concept but serves a different purpose.

SWAT 2022

8:8 Recognizing Map Graphs of Bounded Treewidth

H1 H2 H5.

v

w

(a) Ŵ

H1 H2 H5
. . .

v

w

(b) W

Figure 5 Illustrations for the proof of Lemma 10. Modifying the rotation system of Ŵ such that
each Hi lies in B1 and all other non-extensible active boundaries become empty.

WX yields a position system for S(WX , X), since if two closed walks of distinct components
of WX were incident to the same active face f , then the two corresponding closed walks of
S(WX , X) are also incident to the same active face f∗. However, S(WX , X) may not be
bipartite any longer (as in Fig. 4) and it may contain multiple edges (but no self-loops). It is
worth noting that the embedding sketch of WX can be defined with respect to any bag X ′

as long as VX′ = VX (see Fig. 3a).
We now further refine S(WX , X) to avoid active boundaries that are not useful for our

purposes. Namely, an active boundary is non-extensible if it consists of two homotopic
parallel edges. Given a witness W of G, the restriction of W to GX is the compact
witness W [GX] of GX obtained from W by removing all the real vertices not in GX , all
the intersection vertices that are isolated (due to the removal of some real vertices) or
inessential, as well as a vertex for each twin-pair until the graph contains none of them.
The next lemmas allow us to bound the size of a sketch.

▶ Lemma 10. If G is a map graph, then it admits a compact witness W with the following
property. If S(W [GX], X) contains h > 1 non-extensible active boundaries that share the same
pair of end-vertices, then the vertices of W lie in at most one of these h active boundaries.

Proof. Refer to Fig. 5. Let Ŵ be a compact witness of G, and suppose S(Ŵ [GX], X) contains
h > 1 non-extensible active boundaries B1, B2, . . . , Bh with common end-vertices v, w. Let
Hi be the subgraph of W that lies inside Bi (if any), for 1 ≤ i ≤ h. Since each Bi consists of
two parallel edges, v and w separate Hi and S(W [GX], X) \ Hi. We obtain a new compact
witness W of G by modifying the rotation system of Ŵ so that each Hi lies inside B1. ◀

▶ Remark 11. By Lemma 10, we assume in the following that for any compact witness W

of G such that, for some X ∈ X , the sketch S(W [GX], X) contains h > 1 non-extensible
active boundaries, the vertices of W lie in at most one of such active boundaries. Therefore,
in S(W [GX], X), we keep only one of the corresponding h pairs of homotopic parallel edges.

▶ Lemma 12. A sketch S(WX , X) contains O(ω) vertices and edges.

Proof. With a similar argument as in the proof of Lemma 8 we can show that, in WX , each
real vertex in X is adjacent to O(ω) intersection vertices that are anchor vertices. Therefore,
S(WX , X) contains O(ω) vertices in total. Concerning the number of edges, since S(WX , X)
is embedded on the sphere, it contains O(ω) edges such that each pair of edges is either
non-parallel or non-homotopic parallel. In addition, since each of these edges participates in
at most one homotopic pair by Remark 11, it follows that S(WX , X) contains O(ω) edges. ◀

We now exploit the concept of sketch to define an equivalence relation among witnesses.

P. Angelini et al. 8:9

▶ Definition 13. Two compact witnesses WX and W ′
X of GX are X-equivalent if they have

the same sketch with respect to X, i.e., S(WX , X) = S(W ′
X , X).

The next lemma deals with the size of the quotient of such a relation.

▶ Lemma 14. The X-equivalence relation yields ωO(ω) classes for the compact witnesses of
GX .

Proof. Let n1 be the number of possible (abstract) graphs that can be obtained from the
real vertices of X and all possible sets of intersection vertices. For each such graph, let n2 be
the maximum number of possible rotation and position systems that it can have. It follows
that the number of X-equivalent classes is upper bounded by the product of n1 and n2.

Given the set X of real vertices and a compact witness WX of GX , any sketch S(WX , X)
contains O(ω) intersection vertices, as otherwise WX would contain inessential intersection
vertices or twin-pairs. Since each intersection vertex is adjacent to a set of at most ω

real vertices, we can bound the number nint of possible sets of intersection vertices by
a ·

∑ω
i=2

(
ω
i

)
< a · 2ω, where a is the maximum number of intersection vertices in any sketch

that have the same set of neighbors. Since a ∈ O(ω), we have that nint ∈ 2O(ω). Let IX be
one of the nint possible sets of intersection vertices. The number nabs of distinct abstract
graphs with vertex set X ∪IX can be upper bounded by the number of possible neighborhoods
of a real vertex combined for all real vertices, that is

nabs ≤
∏

v∈X

ωdeg(v) = ω
∑

v∈X
deg(v) ≤ ωO(ω)

holds, which yields n1 ≤ nint · nabs ∈ ωO(ω).
For a fixed graph S, the number of possible rotation systems nrot is upper bounded by

the number of possible permutations of edges around each vertex. Thus we have

nrot ≤
∏
v∈S

deg(v)! <
∏
v∈S

deg(v)deg(v) ≤ ω
O

(∑
v∈S

deg(v)
)

≤ ωO(ω).

Each rotation system of S fixes the closed walk of each face of each connected component
of S. Since S contains, over all its connected components, at most ω closed walks (at most
one for each real vertex in X) and hence at most ω faces, for the number npos of possible
position systems it holds npos ≤ ωω. Therefore we have n2 ≤ nrot · npos ∈ ωO(ω), which
yields n1 · n2 ∈ ωO(ω), as desired. ◀

5 Algorithmic Framework

Let G = (V, E) be an input graph, let k be an integer, and let (X , T) be a nice tree-
decomposition of G of width t = ω − 1. We present an algorithmic framework to test whether
G is a k-map graph or a hole-free k-map graph. Namely, we traverse T bottom-up and equip
each bag X ∈ X with a suitably defined set of sketches, called record RX . The framework
can be tailored by imposing different properties for the records. The next three properties
are rather general; the first two are useful to prove the correctness of our approach, as shown
in Theorem 22, whereas the third property comes into play when dealing with the efficiency
of the approach, and in particular in Lemma 16.

▶ Definition 15. The record RX is valid if the following properties hold:
F1 For every compact witness WX of GX , RX contains its sketch S(WX , X).
F2 For every entry r ∈ RX , there is a compact witness WX of GX such that r = S(WX , X).
F3 RX contains no duplicates.

SWAT 2022

8:10 Recognizing Map Graphs of Bounded Treewidth

▶ Lemma 16. For every X ∈ X , if RX is valid, it contains ωO(ω) entries, each of size O(ω).

Proof. By F1–F3, the entries of RX are all and only the possible sketches of WX and are all
distinct. Hence, |RX | ∈ ωO(ω) by Lemma 14. Each sketch has size O(ω) by Lemma 12. ◀

We now describe the additional properties that we incorporate in the framework. In order
to verify that G admits a k-map we exploit Property 3, which translates into verifying that,
for each sketch, the degree of any intersection vertex is at most k.

▶ Definition 17. A record RX is k-map valid if it is valid and it contains a non-empty
subset R∗

X ⊆ RX , called subrecord, for which the following additional property holds:
F4 For every entry r ∈ RX , it holds r ∈ R∗

X if and only if r contains no intersection vertex
u with deg(u) > k.

It is worth observing that, since an intersection vertex of degree k implies the existence of a
clique of size k in the input graph G, property F4 is trivially verified when k ≥ ω. On the
other hand, the size of the largest clique of a k-map graph is ⌊3k/2⌋ (see, e.g., [9]).

To check whether G has a hole-free k-map, we exploit Theorem 7. Namely, consider a
sketch S(WX , X) and an active boundary Bf of S(WX , X). Let f be the active face of WX

corresponding to Bf . Note that any edge e that is part of Bf represents a subsequence πe of a
closed walk π in the boundary of f . Therefore, to control the number of edges on the boundary
of each face of WX , for every edge e that is part of an active boundary of S(WX , X) we also
store a counter c(e) ≥ 1 , which represents the number of edges in πe. If there is an edge e

such that c(e) > 4, then G does not admit a compact witness W that is a quadrangulation
and such that WX = W [GX]; hence we can avoid storing counters greater than 4. Moreover,
for any face f of a compact witness W of G, we know there exist two bags X̂ ′ and X̂ in T

such that X̂ ′ is the child of X̂, X̂ is a forget bag, the active boundary representing f in X̂ ′

has more than one anchor vertex, while the one in X̂ has only one anchor vertex (and hence
is not part of S(WX̂ , X̂)). We call such an active boundary complete in X̂ ′, as it will not be
modified anymore by the algorithm. As such, for each complete active boundary, the sum of
the counters of its edges in S(WX̂′ , X̂ ′) must be exactly 4, otherwise G does not admit a
compact witness W that is a biconnected quadrangulation such that WX̂ = W [GX̂].

▶ Definition 18. A record RX is hole-free valid if it is valid and it contains a non-empty
subset R◦

X ⊆ RX , called subrecord, for which the following additional property holds:
F5 For every entry r ∈ RX , it holds r ∈ R◦

X if and only if r contains no intersection vertex u

with deg(u) > k and each complete active boundary of r (if any) is such that its edge
counters sum up to 4.

Each leaf bag contains only one vertex v, thus its record consists of one sketch with only
one active face whose active boundary is ⟨v⟩. Such a record can be computed in O(1) time
and it is trivially valid. Also, it is hole-free (and hence k-map) valid, as its unique active
boundary is not complete. The next three operations are performed on a non-leaf bag X of
T , based on the type of X, to compute a k-map or hole-free valid record RX , if any.

Deletion operation. Let X be a forget bag whose child X ′ in T has a k-map (hole-free)
valid record RX′ . Let v be the vertex forgotten by X. We generate RX from RX′ as follows.

For a fixed sketch S(WX′ , X ′) of RX′ , let NI(v) ⊆ N(v) be the set of intersection vertices
adjacent to v in S(WX′ , X ′). Since v is forgotten by X, all its neighbors have already been
processed, thus no vertex in NI(v) can connect vertices that will be introduced by bags
visited after X. Therefore, for every vertex y ∈ NI(v) ∪ {v} and for every sketch S(WX′ , X ′)

P. Angelini et al. 8:11

u1

u2

u3

u4

(a) S(WX′ , X ′)

u2

u4

v

u1 u3

(b)

u2

u4
v

u1 u3

(c)

u2

u4
v

u1 u3

(d) S(WX , X)

Figure 6 Illustration for the addition of vertex v. (a) Details of a face of S(WX′ , X ′) that
contains all the neighbors of v. (b–c) Two distinct embedded graphs computed from S(WX′ , X ′)
by introducing vertex v in different ways (as described in the proof of Lemma 20). (d) The sketch
S(WX , X) obtained by replacing the active boundary of the red face with the new active boundaries
corresponding to the three newly created active faces in (c).

of RX′ , we apply a deletion operation, which consists of updating each active boundary Bf

of S(WX′ , X ′) containing y; see Fig. 3b. Namely, let Bf be one of these active boundaries,
we distinguish two cases based on whether Bf contains only y or it contains further vertices.
Let πy be the closed walk of Bf that contains all occurrences of y (there might be more
than one). If Bf contains only y, we remove πy (and hence the whole active boundary Bf)
from S(WX′ , X ′). If Bf contains further vertices, we shortcut every occurrence of y in πy.
Also for each edge e introduced to shortcut y such that e replaces edges e1 and e2 of πy, we
set c(e) = c(e1) + c(e2). Observe that, if y has only one neighbor u in πy, this procedure
creates a self-loop at u, which we remove. If this procedure generates more than one pair of
homotopic parallel edges with the same pair of end-vertices, then we keep only one such pair.
Once all active boundaries have been updated, the resulting embedded graph is stored in RX .
After each sketch of RX′ has been processed, we might have produced the same embedded
graph for RX from two distinct sketches of RX′ ; in this case we keep only one copy.

Addition operation. Let X be an introduce bag whose child X ′ in T has a k-map (hole-free)
valid record RX′ . Let v be the vertex introduced by X and NX(v) ⊆ N(v) be the set of
vertices that are neighbors of v and belong to X. We generate RX from RX′ with the
following addition operation. For each sketch S(WX′ , X ′) of RX′ , the high-level idea is to
exhaustively generate all possible embedded graphs that can be obtained by introducing v in
S(WX′ , X ′). We distinguish two cases.

Case 1. NX(v) = ∅. For each active boundary Bf of S(WX′ , X ′), we generate a new
embedded graph by adding the closed walk ⟨v⟩ to Bf .

Case 2. NX(v) ̸= ∅. We look for a face f∗ of S(WX′ , X ′) that contains all the vertices of
NX(v) on its active boundary Bf (which may consist of multiple closed walks). If such a face
does not exist, we discard S(WX′ , X ′). Else, for each such face, we generate a set of entries
Ef∗ as follows. Intuitively, we will insert v inside f∗ and generate one entry of Ef∗ for each
possible way in which v can be connected to its neighbors. Namely, we can connect v to its
neighbors by means of different intersection vertices and by realizing different permutations
of the edges around v and around those neighbors that appear multiple times along some
closed walk of Bf ; refer to Fig. 6 for an illustration. Concerning the intersection vertices, we
can use those that already belong to Bf and are adjacent only to vertices in NX(v), as well
as we can create new ones. We note that since v has at most ω − 1 neighbors in NX(v), there
are

∑ω−1
i=1

(
ω−1

i

)
= 2ω−1 possible combinations of intersection vertices (see also the proof of

SWAT 2022

8:12 Recognizing Map Graphs of Bounded Treewidth

Lemma 14). This is done avoiding inessential intersection vertices and twin-pairs. For each
choice of intersection vertices, since the degree of a vertex is O(ω), there are ωO(ω) distinct
rotation systems to consider. Additionally, if Bf consists of multiple closed walks, we shall
consider all possible permutations of the edges around v that do not cause edge crossings
(i.e., any edge permutation in which there are no four edges e1, e2, e3, e4 in this order around
v, such that e1, e3 connect v to the vertices of a closed walk π and e2, e4 connect v to the
vertices of a closed walk π′ with π ̸= π′), and we consider each of them independently as a
new embedded graph. Based on the fixed intersection vertices and rotation system, if the
insertion of v does not split f∗ into multiple faces, we can suitably update Bf , otherwise we
can generate the new active boundaries that appear in place of Bf ; see in particular Fig. 6d.
Also, for each newly introduced edge e in a closed walk, we set c(e) = 1.

Merge operation. Let X be a join bag whose children X1 and X2 in T have k-map (hole-
free) valid records RX1 and RX2 , respectively. We generate RX from RX1 and RX2 . Since
X is a join bag, X, X1, and X2 contain the same vertices, whereas GX1 and GX2 only
share the vertices in X. Consider any pair of sketches S(WX1 , X) of RX1 and S(WX2 , X)
of RX2 . Such sketches share the same set of real vertices, whereas they may have different
sets of intersection vertices and different combinatorial embeddings. At high-level, we aim at
combining S(WX1 , X) and S(WX2 , X) in all possible ways, provided that the original rotation
and position systems of each sketch are preserved and that we never insert a subgraph of
one sketch into a non-active face of the other. In practice, we apply the merge operation,
consisting of the next steps.

(S.1) We compute all possible unions of the two abstract graphs underlying the two
sketches. Namely, let IX1 and IX2 be the sets of intersection vertices of S(WX1 , X)
and S(WX2 , X), respectively. We identify each pair of real vertices the two sketches
share, and we consider all possible abstract graphs whose set of intersection vertices
IX is such that: (a) IX ⊆ IX1 ∪ IX2 ; (b) for each intersection vertex of IX1 there is an
intersection vertex in IX with the same set of neighbors, and the same holds for IX2 .

(S.2) For each generated graph S∗, we compute all combinatorial embeddings, i.e., all possible
rotation and position systems yielding a topological embedding on the sphere of S∗. If
no such combinatorial embeddings exist, we discard S∗, else we go to the next step.

(S.3) We generate all possible one-to-one mappings ϕ1 between intersection vertices of S∗ and
of S(WX1 , X), and all possible one-to-one mappings ϕ2 between intersection vertices
of S∗ and of S(WX2 , X).

(S.4) We check, for each pair ϕ1, ϕ2, that the restriction of the resulting embedded graph on
the real vertices, intersection vertices (up to the mapping defined by ϕ1 and ϕ2) and
edges of each of the two sketches preserves the corresponding rotation and position
systems. If so, we go to the next step; otherwise, we discard the candidate solution.

(S.5) Since the previous step guaranteed that the active boundaries of each sketch are
preserved when looking at the corresponding restriction, we can verify that there is no
subgraph of one sketch inside a non-active face of the other.

(S.6) We suitably update the active boundaries of the resulting embedded graph and we add
it to RX . More precisely, the boundary of a face is active if it does not correspond to
a non-active boundary in any of the two sketches and it contains either exactly one
anchor vertex or at least two anchor vertices.

(S.7) We remove inessential intersection vertices and iteratively one intersection vertex for
each twin-pair, until there are no twin-pairs.

(S.8) Once all pairs of sketches have been processed, we remove possible duplicates.

P. Angelini et al. 8:13

This concludes the description of the main algorithmic steps for proving Theorem 1. Next,
we provide lemmas to establish the correctness and the time complexity of these steps.

▶ Lemma 19. Let X be a forget bag whose child X ′ in T has a k-map (resp. hole-free) valid
record RX′ . The algorithm either rejects the instance or computes a k-map (resp. hole-free)
valid record RX of X in ωO(ω) time.

Proof. Let v be the vertex forgotten by X. We prove that the record RX generated by
applying the deletion operation is valid, given that RX′ is valid. In particular, since we
removed possible duplicates, F3 holds and it remains to argue about F1 and F2. To this
aim, since X is a forget bag, note that GX = GX′ . Hence any compact witness WX′ of GX′

is also a compact witness of GX . Moreover, since RX′ is valid, it follows by F1 that RX′

contains a sketch S(WX′ , X ′) for every compact witness WX′ . Now since X ′ = X ∪ {v}, the
sketch of WX′ with respect to X, namely S(WX′ , X), coincides with the one obtained by
applying the deletion operation to S(WX′ , X ′). Thus F1 holds for X. Similarly, since RX′ is
valid, it follows by F2 that every entry of RX′ is the sketch S(WX′ , X ′) of a compact witness
WX′ of GX′ . Again since X ′ = X ∪ {v}, the entry of RX obtained by applying the deletion
operation to S(WX′ , X ′) corresponds to the sketch S(WX′ , X). Thus F2 holds for X and
consequently RX is valid, as claimed. Suppose now that RX′ is k-map valid, i.e, R∗

X′ ̸= ∅.
We show how to check whether a sketch of RX belongs to R∗

X . Since the deletion operation
does not modify the degree of any intersection vertex, the subrecord R∗

X contains all sketches
of RX generated from sketches in R∗

X′ . Based on this observation, we can check whether
R∗

X = ∅ or not. In the former case the algorithm rejects the instance, in the latter case
RX is k-map valid. Suppose that RX′ is hole-free valid, i.e., R◦

X′ ̸= ∅. Again the subrecord
R◦

X contains all sketches of RX that have been generated from sketches in R◦
X′ and that

contain no active boundary whose edge counters sum up to 4. To decide whether an active
boundary is complete, it suffices to check whether the parent of X is a forget bag such that
the shortcuttings due to the removal of the forgotten vertex make that active boundary a
self-loop. If any complete active boundary does not meet this condition, the corresponding
sketch does not belong R◦

X . As before if R◦
X = ∅ the algorithm rejects the instance, otherwise

RX is hole-free valid.
By Lemma 16, RX′ contains ωO(ω) entries, each of size O(ω). Updating each of them

takes O(ω) time. Also, RX contains at most as many entries as RX′ . It follows that removing
duplicates can be naively done in (ωO(ω))2 ∈ ωO(ω) time. For the sake of efficiency, if we
interpret each rotation and position system together as a number with Õ(ω2) bits, then
removing duplicates can be done in Õ(ω2) · ωO(ω) ∈ ωO(ω) time by using radix sort (we omit
the details as the asymptotic running time would be the same). We have seen that condition
F4 is always verified. Checking condition F5 requires scanning each active boundary in RX

and decide whether it is complete or not, and if so to verify whether it will become a self-loop
when visiting the parent of X. This can be done in O(ω) time for each of the O(ω) active
boundaries of each of the ωO(ω) sketches, and thus in ωO(ω) time overall. Thus RX and its
subrecords can be computed in ωO(ω) time, as desired. ◀

▶ Lemma 20. Let X be an introduce bag whose child X ′ in T has a k-map (resp. hole-free)
valid record RX′ . The algorithm either rejects the instance or computes a k-map (resp.
hole-free) valid record RX of X in ωO(ω) time.

Proof. Let v be the vertex introduced by X. We prove that the record RX generated by
applying the addition operation is valid, given that RX′ is valid. Regarding F1, let WX′

and WX be a witness of GX′ and GX , respectively, such that WX [GX′] = WX′ . Since F1

SWAT 2022

8:14 Recognizing Map Graphs of Bounded Treewidth

holds for RX′ , we know that S(WX′ , X ′) ∈ RX′ . Observe that the only difference between
WX and WX′ lies in the presence of vertex v and of a (possibly empty) set Iv of intersection
vertices adjacent to v.

If NX(v) = ∅, then v forms a trivial closed walk that might be added in any face of WX′

that either consists of exactly one anchor vertex or contains at least two anchor vertices
(among possibly other non-anchor vertices). We recall that an active face satisfying the
mentioned properties corresponds to an active boundary of the witness’ sketch. Also, adding
the closed walk to a face that contains more than one vertex, but at most one anchor vertex,
on its boundary would imply that the resulting witness cannot be augmented to a witness
of G, since G is biconnected. Since Case 1 places v in all possible active boundaries of
S(WX′ , X ′), we can conclude that S(WX , X) belongs to RX .

On the other hand, if NX(v) ̸= ∅, then all v’s neighbors belong to a common boundary of
some face f of WX′ , as otherwise the rotation system of WX would not be compatible with
a topological embedding (in particular, some edges would cross each other). Hence all v’s
neighbors are part of the same active boundary Bf of S(WX′ , X ′). Since Case 2 exhaustively
considers all ways in which v can be inserted into Bf , avoiding inessential intersection vertices
and twin-pairs (which cannot belong to WX since it is compact), we can again conclude that
S(WX , X) belongs to RX . Consequently F1 holds for RX .

About F2, it suffices to prove that each entry generated by the addition operation is
indeed a sketch of some compact witness of GX with respect to X. Since F2 holds for RX′ ,
the addition operation starts from a sketch S(WX′ , X ′) and it generates new entries in which
there are neither inessential intersection vertices nor twin-pairs; therefore, such entries are
indeed sketches of compact witnesses, as desired.

Concerning F3, if RX contained two entries r1, r2 that are the same (up to a homeomor-
phism of the sphere), then r1 and r2 would have been originated by the same sketch r of RX′ ,
as otherwise either r1 and r2 would not be the same or F3 would not hold for RX′ . On the
other hand, since the addition operation inserts v in different ways but without repetitions,
it cannot generate two entries that are the same starting from a single entry of RX′ . Thus
F3 holds for RX .

If RX′ is k-map valid, we know that R∗
X contains those sketches of R∗

X′ for which the
addition operation did not introduce intersection vertices of degree larger than k. Based on
this observation, we can check whether R∗

X = ∅ or not. In the former case the algorithm
rejects the instance, in the latter case RX is k-map valid. The case when RX′ is hole-free
valid can be proved analogously as in the proof of Lemma 19.

Finally, each single entry constructed by the addition operation can be computed in O(ω)
time and RX contains ωO(ω) entries by Lemma 16. Also, condition F4 can be easily verified
in O(ω) time, for each of the ωO(ω) sketches of RX . Checking condition F5 requires scanning
each active boundary in RX and decide whether it is complete or not. This can be done in
O(ω) time, for each of the O(ω) active boundaries of each of the ωO(ω) sketches, and thus in
ωO(ω) time overall. Thus RX and its subrecords can be computed in ωO(ω) time. ◀

The proof of the next lemma exploits the merge operation.

▶ Lemma 21. Let X be a join bag whose children X1 and X2 in T both have k-map (resp.
hole-free) valid records RX1 and RX2 . The algorithm either rejects the instance or computes
a k-map (resp. hole-free) valid record RX of X in ωO(ω) time.

Proof. We prove that the record RX generated by applying the merge operation is valid, given
that RX1 and RX2 are valid. Consider any compact witness WX of GX and its restrictions
WX [GX1] and WX [GX2] to GX1 and GX2 , respectively. By definition of restriction, there must

P. Angelini et al. 8:15

exist a mapping of the intersection vertices of WX to the intersection vertices of WX [GX1] such
that when looking at the restriction of WX to the real and intersection vertices of WX [GX1]
(up to the above mentioned mapping), the rotation and position systems of WX [GX1] are
preserved. The same property must hold for WX [GX2]. These properties clearly carry over
to the corresponding sketches S(WX , X), S(WX [GX1], X), and S(WX [GX2], X). Since RX1

and RX2 are valid, they contain S(WX [GX1], X) and S(WX [GX2], X), respectively. Hence,
Steps S.1–S.4 guarantee that the aforementioned mapping is considered and that all the
above properties hold on the candidate solutions given by the combination of S(WX [GX1], X)
and S(WX [GX2], X). Moreover, any subgraph of WX that belongs to WX [GX1] but not
to WX [GX2], except for the shared vertices of X, must lie in an active face of WX [GX2]
(and vice-versa); if this is not the case, then WX would not be augmentable to a witness
of G, since G is biconnected. This property translates into verifying that any subgraph of
S(WX [GX1], X) lies in an active face of S(WX [GX2], X) (and vice-versa). This is achieved
in Step S.5. Step S.6 suitably updates the active boundaries so that a boundary is active
only if it represents a face of WX that either consists of exactly one anchor vertex or
contains at least two anchor vertices, as by definition of active boundary. Step S.7 removes
inessential intersection vertices and twin-pairs, which is a safe operation because WX is
compact. Therefore we can conclude that S(WX , X) belongs to RX , and thus F1 holds for
RX . Concerning F2, any entry S in RX generated by the merge operation, starting from
entries S(WX1 , X) ∈ RX1 and S(WX2 , X) ∈ RX2 , defines a way to combine the combinatorial
embeddings of S(WX1 , X) and S(WX2 , X) at common real vertices and at possibly common
(based on some mappings ϕ1 and ϕ2) intersection vertices. Such information can be used to
combine in the same way the corresponding witnesses WX1 and WX2 , which exist because
F2 holds for RX1 and RX2 , respectively. On the other hand, such combination yields a
compact witness WX of GX with respect to X, whose sketch is S, as desired. Thus F2 holds
for RX . In Step S.8 we remove possible duplicates, hence F3 holds by construction for RX .
Therefore RX is valid. Since the merge operation does not increase the degree of intersection
vertices, and since RX1 and RX2 are k-map valid, the subrecord R∗

X contains all sketches of
RX generated from sketches in R∗

X1
and R∗

X2
. If R∗

X = ∅, the algorithm rejects the instance,
otherwise RX is k-map valid. If RX1 and RX2 are hole-free valid, R◦

X contains all sketches of
RX that are generated from sketches in R◦

X1
and R◦

X2
and whose complete active boundaries

are such that the edge counters sum up to 4. If R◦
X = ∅, the algorithm rejects the instance,

otherwise RX is hole-free valid.
Concerning the time complexity, we process each pair of sketches, one in RX1 and one in

RX2 , and since both RX1 and RX2 are valid, we have ωO(ω) such pairs. Each of Steps S.1,
S.2, and S.3 generates ωO(ω) new entries, and each entry is computed in O(ω) time. The
remaining steps all run in O(ω) time for each processed entry. Condition F4 can be easily
verified in O(ω) time, for each of the ωO(ω) sketches of RX . Furthermore, verifying condition
F5 requires scanning the active boundaries of each entry in RX and deciding whether it is
complete or not. This can also be done in O(ω) time for each of the O(ω) active boundaries
of each of the ωO(ω) sketches, and thus in ωO(ω) time overall. Consequently, RX and its
subrecords can be computed in ωO(ω) time. ◀

Lemmas 19–21 imply the next theorem, which summarizes the correctness of the approach.

▶ Theorem 22. Let G be a graph in input to the algorithm, along with a nice tree-
decomposition (T, X) of G and an integer k > 0. Graph G is a k-map graph, respectively a
hole-free k-map graph, if and only if the algorithm reaches the root ρ of T and the record Rρ

is k-map valid, respectively hole-free valid.

SWAT 2022

8:16 Recognizing Map Graphs of Bounded Treewidth

We are finally ready to prove Theorem 1. We recall that if k ≥ n− 1, recognizing n-vertex
(resp. hole-free) k-map graphs coincides with recognizing general n-vertex (resp. hole-free)
map graphs.

Proof of Theorem 1. We first discuss the decision version of the problem for a fixed k > 0.
Namely, the algorithm described below is used in a binary search to find the optimal value
of k. Recall that t is the width of the tree decomposition (i.e., ω = t + 1). Note that, if G is
a positive instance, then k varies in the range [1, t + 1], since the size of the largest clique of
G is at most t + 1. Thus the algorithm is executed O(log t) times, which however does not
affect the asymptotic running time.

If G is not biconnected, by Property 4, it is not hole-free, and it is k-map if and only if
all its biconnected components are k-map. Hence we run our algorithm on each biconnected
component independently. Theorem 22 implies the correctness of the algorithm (which
assumes the input graph to be biconnected).

For the time complexity, suppose that G has h ≥ 1 biconnected components and let ni

be the size of the i-th component Ci, for each i ≤ h. Decomposing G into its biconnected
components takes O(n + m) time [30], where m is the number of edges of G and, since G has
treewidth t, it holds m ∈ O(n · t2). Given a tree-decomposition of G with O(n) nodes and
width t, we can easily derive a tree-decomposition (Ti, Xi) for each Ci in overall O(n) time,
such that each Ti has O(ni) nodes and width at most t. Then we can apply the algorithm
in [3] to obtain, in O(ni)-time, a nice tree-decomposition of Ci with O(ni) nodes without
increasing the original width. Since each bag is processed in tO(t) time by Lemmas 19–21,
the algorithm runs in tO(t) · ni time for each Ci. Since

∑h
i=1 ni ∈ O(n), decomposing the

graph and applying the algorithm to all its biconnected components takes tO(t) · n time.
To reconstruct a witness of a yes-instance, we store additional pointers for each record (a

common practice in dynamic programming). Namely, for each sketch S of a record RX of
a bag X, we store a pointer to the sketch of the child bag X ′ that generated S, if X is an
introduce or forget bag, and we store two pointers to the two sketches of the children bags X1
and X2 that generated S, if X is a join bag. With these pointers at hand, we can apply a top-
down traversal of T , starting at any sketch of the non-empty subrecord of ρ, and reconstruct
the corresponding witness W by incrementally combining the retrieved sketches, except at
forget bags (the only points in which we lose information). Suppose first that G is a k-map
graph but not hole-free. If G is not biconnected, a witness W ∗ of G is obtained by merging
the witnesses of its biconnected components. Note that distinct witnesses corresponding to
distinct biconnected components of G can only share real vertices. Thus, each intersection
vertex of W ∗ has degree at most k and W ∗ is a certificate by Property 3. Suppose now
that G is a hole-free k-map graph. Then G is biconnected and the resulting witness is a
biconnected quadrangulation whose intersection vertices have degree at most k, a certificate
by Theorem 7. ◀

6 Open Problems

Recognizing general map graphs efficiently remains a major algorithmic challenge. To restrict
the complexity of the input, further parameters of interest might be the cluster vertex
deletion number [24] and the clique-width [14] of the input graph, as well as the treewidth
of the putative witness [28]. Another interesting line of research would be generalizing our
framework to recognize (g, k)-map graphs, i.e., those graphs that admit a k-map on a surface
of genus g (see, e.g., [19]).

P. Angelini et al. 8:17

References
1 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-

nani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms Appl.,
21(4):731–755, 2017.

2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

3 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996. doi:10.1006/jagm.1996.0049.

4 Franz J. Brandenburg. Characterizing 5-map graphs by 2-fan-crossing graphs. Discret. Appl.
Math., 268:10–20, 2019.

5 Franz J. Brandenburg. Characterizing and recognizing 4-map graphs. Algorithmica, 81(5):1818–
1843, 2019.

6 Zhi-Zhong Chen. Approximation algorithms for independent sets in map graphs. J. Algorithms,
41(1):20–40, 2001.

7 Zhi-Zhong Chen. New bounds on the edge number of a k-map graph. J. Graph Theory,
55(4):267–290, 2007. doi:10.1002/jgt.20237.

8 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Planar map graphs. In
STOC, pages 514–523. ACM, 1998.

9 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map graphs. J. ACM,
49(2):127–138, 2002.

10 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Recognizing hole-free
4-map graphs in cubic time. Algorithmica, 45(2):227–262, 2006.

11 Zhi-Zhong Chen, Xin He, and Ming-Yang Kao. Nonplanar topological inference and political-
map graphs. In SODA, pages 195–204. ACM/SIAM, 1999.

12 Graham Cormode. Data sketching. ACM Queue, 15(2):60, 2017.
13 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.

Inf. Comput., 85(1):12–75, 1990.
14 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph

grammars. J. Comput. Syst. Sci., 46(2):218–270, 1993.
15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
16 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.

Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, 2005.

17 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing
of bounded treewidth graphs. J. Comput. Syst. Sci., 125:129–148, 2022.

18 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

19 Vida Dujmovic, David Eppstein, and David R. Wood. Structure of graphs with locally
restricted crossings. SIAM J. Discret. Math., 31(2):805–824, 2017. doi:10.1137/16M1062879.

20 Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R.
Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020. URL:
https://dl.acm.org/doi/10.1145/3385731, doi:10.1145/3385731.

21 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:
Approximation, kernelization and optimal FPT algorithms. In FOCS, pages 470–479. IEEE,
2012.

22 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Decomposition of map graphs with applications. In ICALP, volume 132 of LIPIcs, pages
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

23 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In SODA, pages 1563–1575. SIAM, 2012.

SWAT 2022

https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1002/jgt.20237
https://doi.org/10.1137/16M1062879
https://dl.acm.org/doi/10.1145/3385731
https://doi.org/10.1145/3385731

8:18 Recognizing Map Graphs of Bounded Treewidth

24 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196–217, 2010.

25 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In SODA, pages 1802–1811. SIAM, 2014.

26 Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer,
1994.

27 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81(9):3655–3691, 2019.

28 Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt. Linear-time recognition of map graphs
with outerplanar witness. Discret. Optim., 28:63–77, 2018.

29 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

30 Robert Endre Tarjan and Uzi Vishkin. Finding biconnected components and computing tree
functions in logarithmic parallel time (extended summary). In FOCS, pages 12–20. IEEE,
1984. doi:10.1109/SFCS.1984.715896.

31 Mikkel Thorup. Map graphs in polynomial time. In FOCS, pages 396–405. IEEE, 1998.

https://doi.org/10.1109/SFCS.1984.715896

A Novel Prediction Setup for Online Speed-Scaling
Antonios Antoniadis # Ñ

University of Twente, Enschede, The Netherlands

Peyman Jabbarzade #

University of Maryland, College Park, MD, USA

Golnoosh Shahkarami # Ñ

Max Planck Institut für Informatik, Saarbrücken, Germany
Universität des Saarlandes, Saarbrücken, Germany

Abstract
Given the rapid rise in energy demand by data centers and computing systems in general, it is
fundamental to incorporate energy considerations when designing (scheduling) algorithms. Machine
learning can be a useful approach in practice by predicting the future load of the system based on,
for example, historical data. However, the effectiveness of such an approach highly depends on the
quality of the predictions and can be quite far from optimal when predictions are sub-par. On the
other hand, while providing a worst-case guarantee, classical online algorithms can be pessimistic
for large classes of inputs arising in practice.

This paper, in the spirit of the new area of machine learning augmented algorithms, attempts to
obtain the best of both worlds for the classical, deadline based, online speed-scaling problem: Based
on the introduction of a novel prediction setup, we develop algorithms that (i) obtain provably low
energy-consumption in the presence of adequate predictions, and (ii) are robust against inadequate
predictions, and (iii) are smooth, i.e., their performance gradually degrades as the prediction error
increases.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases learning augmented algorithms, speed-scaling, energy-efficiency, scheduling
theory, online algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.9

Related Version Full Version: https://arxiv.org/abs/2112.03082

1 Introduction

Energy is a major concern in society in general and computing environments in particular.
Indeed, data centers alone are estimated to consume 200 terawatt-hours (TWh) per year,
which is likely to increase by a factor of 15 by year 2030 [21]. Hardware manufacturers
approach this problem by incorporating energy-saving capabilities into their hardware, with
the most popular one being dynamic speed scaling, i.e., one can adjust the speed of the
processor or device. A higher speed implies a higher energy consumption but also more
processing capacity. In contrast, a lower speed incurs energy savings while being able to
perform less processing per unit of time. Naturally, to take advantage of this energy-saving
capability, scheduling algorithms need to decide on what speed to use at each timepoint
and consider the energy consumption of the produced schedule alongside more “traditional”
quality-of-service considerations.

This paper studies online, deadline-based speed-scaling scheduling, augmented with
machine-learned predictions. More specifically, a set of jobs J , each job j ∈ J with an
associated release time rj , deadline dj and processing requirement wj , arrives online and has
to be scheduled on a single speed-scalable processor. A scheduling algorithm needs to decide
for each timepoint t on: (i) the processor speed s(t) and (ii) which job j ∈ J to execute at t

© Antonios Antoniadis, Peyman Jabbarzade, and Golnoosh Shahkarami;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.antoniadis@utwente.nl
http://www.antoniosantoniadis.net
https://orcid.org/0000-0003-2152-7883
mailto:peymanj@terpmail.umd.edu
mailto:gshahkar@mpi-inf.mpg.de
https://people.mpi-inf.mpg.de/~gshahkar/
https://orcid.org/0000-0002-6169-7337
https://doi.org/10.4230/LIPIcs.SWAT.2022.9
https://arxiv.org/abs/2112.03082
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Novel Prediction Setup for Online Speed-Scaling

(j(t)). Both decisions have to be made by the algorithm at any timepoint t while only having
knowledge of the jobs with a release time equal to or less than t. A schedule is said to be
feasible if the whole processing requirement of every job j is executed within the respective
release time and deadline interval, i.e., if

∫
t:j(t)=j

s(t)dt ≥ wj . The energy consumption of
a schedule, which we seek to minimize over all feasible schedules, is given by

∫ +∞
0 s(t)αdt,

where α > 1 is a constant, which in practice is between 1.1 and 3 depending on the employed
technology [15, 31]. The offline setting of the problem in which the complete job set J
including their release times, deadlines, and workloads are known in advance was solved in
the seminal paper by Yao, Demers, and Shenker [32] who gave an optimal offline algorithm
called YDS. The arguably more interesting online setting in which the characteristics of a job
j only become known at its release time rj has been extensively studied [32, 10, 12, 11, 3],
and the currently best known online algorithm is qOA, by Bansal et al. [11] achieving a
competitive ratio of 4α/(2e1/2α1/4).

However, the purely online setting may be too restrictive in many practical scenarios
for which one can predict – with reasonable accuracy – the characteristics of future jobs,
for example, by employing a learning approach on historical data. Learning augmented
algorithms is a very novel research area (arguably first introduced in 2018 by Lykouris and
Vassilvitskii [23]) trying to capture such scenarios in which predictions of uncertain quality
are available for future parts of the input. The goal in learning augmented algorithms
is to design algorithms that are at the same time (i) consistent, i.e., obtain an improved
competitive ratio in the presence of adequate predictions, (ii) robust, i.e., there is a worst case
guarantee independently of the prediction accuracy (ideally within a constant factor of the
competitive ratio of the best known online algorithm that does not employ any predictions)
and (iii) smooth, i.e., the performance guarantee degrades gracefully with the quality of the
predictions.

Previous Predictions Setups and Our Setup

Online Speed-Scaling with machine learned predictions has been investigated before by
Bamas et al. [8] who consider a prediction setup in a sense orthogonal to ours; the release
times and deadlines of jobs are known in advance, and there is a prediction on the processing
requirement. Although any input instance (with integer release times and deadlines) can
be modeled in such a way (by considering all possible pairs of release times and deadlines
and a processing requirement of zero for the pairs that do not correspond to a job), this can
be computationally quite expensive. Bamas et al. present a consistent, robust, and smooth
algorithm for the particular case in which the interval length of each job is the same and
generalize their consistency and robustness results to the general case (in which each job can
have an arbitrary interval length). For this more general setting, the proof of smoothness is
omitted because “. . . the prediction model and the measure of error quickly get complex and
notation heavy”.

In the current paper, we consider the novel prediction setup in which predictions on the
release times and deadlines are provided to the algorithm. To keep the model simple, we
assume that the actual processing requirement of each job j ∈ J , as well as the number
of jobs n are known. It may be useful for the reader to think about our setup as having
as many unit-size jobs as total processing volume in the instance, and a prediction on the
release time and deadline of each such job. We note, however, that our actual setup requires
significantly fewer predictions than this simplified one.

In this context, the main contribution of the current paper is to introduce a natural
alternative prediction setup and error measure as well as an algorithm (SwP) within that
setup, which possesses the desired properties of consistency, smoothness, and robustness in

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:3

the general setting. It should be pointed out that since the two papers consider different
prediction settings and in turn also error measures, the algorithms as well as their guarantees
are incomparable. However one can consider the two prediction setups as complementary of
each other.

Our Contribution

We show how the predictions can be used to develop an algorithm called Scheduling with
Predictions (SwP), that improves upon qOA when the predictions are reasonably accurate.
More formally, in Section 3 we show the following theorem:

▶ Theorem 1. Given a parameter λ, algorithm SwP achieves a competitive ratio of(
1

1−µ

)α−1 (2η+1
1−2λ

)α−1
if η ∈ (0, λ), and 2α−1αα

(
1
µ

)α−1
otherwise.

Here, η is the error of the prediction (defined formally later) that captures the distance
between the predicted and the actual input instances, and 0 ≤ λ < 1/2, 0 ≤ µ ≤ 1 are two
hyperparameters that can be thought of as the confidence in the prediction. Theorem 1 implies
that SwP is at the same time consistent, smooth and robust where the exact consistency,
smoothness and robustness depend on the choice of the hyperparameters λ and µ.

Additionally, in Section 4 we obtain improved results for the restricted case in which all
jobs have a common deadline d, and we are given predictions regarding the release times of
the jobs. The corresponding algorithm is called Common-Deadline-Scheduling with
Predictions (CDSwP) and obtains the following improved competitive ratio:

▶ Theorem 2. Given a parameter λ, algorithm CDSwP achieves a competitive ratio of(
1+η
1−λ

)α−1
if η ∈ (0, λ), and 2α

(
1+λ
1−λ

)α−1
otherwise.

Although restricted, this case seems to capture the difficulty of the online setting for
the problem, as supported by the fact that the strongest lower bound of eα−1/α on the
competitive ratio for online algorithms for the problem is proven on such an instance [11].

Finally, in Section 5 we present an empirical evaluation of our results on a real-world
data-set, which suggests the practicality of our algorithm. The actual results are preceded
by Section 2 which contains preliminary results and observations. All omitted proofs can be
found in the supplementary material.

1.1 Related Work

1.1.1 Online Energy-Efficient Scheduling
As already mentioned, speed-scaling was first studied from an algorithmic point of view
by [32]. They studied the deadline-based version of the problem also considered here, and in
addition to providing the optimal offline algorithm called Y DS, two online algorithms called
Optimal Available (OA) and Average Rate (AVR). OA recalculates an optimal offline schedule
for the remaining instance at each release time, whereas AVR “spreads” the processing
volume equally between its release time and deadline in order to determine the speed for each
timepoint t. The actual schedule then is simply an Earliest Deadline First (EDF) schedule
with these speeds. They show that AVR obtains a competitive ratio of 2α−1αα which is
essentially tight as shown by [10]. Algorithm OA, on the other hand, was analyzed by [11]
who proved a tight competitive ratio of αα.

SWAT 2022

9:4 A Novel Prediction Setup for Online Speed-Scaling

The currently best known algorithm for the problem, at least for modern processors which
satisfy α = 3 is the aforementioned qOA algorithm, which for any parameter q ≥ 1 sets the
speed of the processor to be q times the speed that the optimal offline algorithm would run
the jobs in the current state. Algorithm qOA attains a competitive ratio of 4α/(2e1/2α1/4),
for q = 2 − 1/α ≈ 1.667.

The multiprocessor version of online, deadline-based, speed-scaling has also been studied,
see [3, 5] as well as other objectives, for example, flow time [4, 13]. We refer the interested
reader to surveys [2, 20].

1.1.2 Further Results on Learning Augmented Algorithms
[23] was arguably the seminal paper in the area, considered the online caching problem.
Subsequently, [27] considered the ski-rental problem as well as non-clairvoyant scheduling.
Similar to the current work, the robustness and consistency guarantees were given as a
function of a hyperparameter that is part of the input to the algorithm. Both the caching
and the ski-rental problem have since been extensively studied in the literature (see for
example [28, 6, 30] and [29, 18]).

Several other online problems have been investigated through the lens of learning-
augmented algorithms and results of similar flavor were obtained. Examples include scheduling
and queuing problems [26, 24], online selection and matching problems [7, 16], or the more
general framework of online primal-dual algorithms [9]. We direct the interested reader to a
recent survey [25].

2 Preliminaries

We consider online, deadline-based speed-scaling as described in the introduction. Given a
scheduling algorithm A on the set jobs J , the energy consumption of A on J is denoted
by EA(J). When clear from the context, we may write EA instead of EA(J) to simplify the
notation.

As usual for online problems, the performance guarantees are given by employing com-
petitive analysis. Following the speed-scaling literature (see for example [11]) we use the
strict competitive ratio. Formally, the (strict) competitive ratio of algorithm A for the online,
deadline-based speed-scaling problem, on input instance I is given by

max
I

EA(I)

EY DS(I)
,

where EA(I) is the cost that algorithm A incurs on instance I, and the maximum is taken
over all possible input instances I. The competitive ratio in many cases will depend on the
prediction error.

Prediction Setup

The algorithm initially gets information about the number of jobs n, the corresponding
processing volumes wj , ∀j ∈ J , as well as for every job j ∈ J a prediction pj for the release
time rj and another prediction qj for the deadline dj . Again, the actual values of rj and dj

only become known at timepoint rj . Let R = {r1, . . . rn}, D = {d1, . . . dn}, P = {p1, . . . pn}
and Q = {q1, . . . qn}. Note that in the special case where all jobs have a common deadline d

we naturally only obtain predictions for the release times.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:5

The quality of the prediction is measured in terms of a prediction error η, which intuitively
η measures the distance between the predicted values and the actual ones. We start by
defining the individual prediction error ηi for each job i ∈ J .

▶ Definition 3. Let the prediction error for job i be ηi = max
{

|pi−ri|
qi−pi

, |qi−di|
qi−pi

}
.

Note that we implicitly assume that pi ≤ qi for all i ∈ J since otherwise, it is immediately
obvious that the quality of the predictions is low, and one could just run a classical online
algorithm for the problem. Furthermore, if the instance has a common deadline then ηi

simplifies to ηi = |pi−ri|
d−pi

.
The (total) prediction error η of an input instance is then given by η = maxi ηi. We call

this max-norm-error.

▶ Definition 4. We say that the total error η is a max-norm-error if η is given by the infinity
norm of the vector of the respective errors for each job. More formally,

η = ∥η∥∞ = max(η1, η2, . . . ηn).

Performance Guarantees

In the following we formalize the performance guarantees used to evaluate our algorithms.

▶ Definition 5. We say that an algorithm within the above prediction setup is:
Consistent, if its competitive ratio is strictly better than that of the best online algorithm
without predictions for the problem, whenever η = 0.
Robust, if its competitive ratio is within a constant factor from that of the best online
algorithm without predictions for the problem. Note that Robustness is independent of the
prediction quality.
Smooth, if its competitive ratio is a smooth function of η.

Shrinking of Intervals

The most straightforward way to consider the predictions would arguably be to blindly trust
the predictions, i.e., schedule jobs assuming that the predicted instance is the actual instance.

Consider the instance JP Q (resp. JRD) in which every job has the corresponding predicted
(resp. actual) release time and deadline. The naive algorithm would compute the optimal
offline schedule Y DS(JP Q) and try to schedule tasks according to it. If the predictions are
perfectly accurate, then this clearly is an optimal schedule, and the best one can do. However,
if the predictions are even slightly inaccurate, then the resulting schedule may be infeasible.
Moreover, our goal is to have a robust algorithm, which cannot be obtained by following the
predictions blindly. For these reasons, one has to trust the predictions more cautiously and
not blindly.

One of our crucial ideas is to slightly shrink the interval between each job’s release time
and deadline before scheduling it. The intuition is that if the predictions are only slightly off,
then a YDS schedule for the newly obtained instance will be feasible at a slight increase in
energy consumption over the YDS schedule of the predicted instance. The following lemmas
formalize this intuition. We note that a similar result is also presented in [8]; however, given
that the actual setups are different new proofs are required (the proofs of these lemmas can
be found in the supplementary material).

SWAT 2022

9:6 A Novel Prediction Setup for Online Speed-Scaling

▶ Lemma 6. Consider a common deadline instance J , and another common deadline
instance Ĵ constructed from J such that every job ĵi ∈ Ĵ has workload ŵi = wi, d̂ = d, and
r̂i = ri + (1 − ci) · (d − ri) for some shrinking parameter 0 < ci ≤ 1. Set c = maxi ci. Then,

EY DS(Ĵ) ≤ (1/c)α−1EY DS(J).

▶ Lemma 7. Consider a (general) instance J , and another instance Ĵ in which every job
ji ∈ J corresponds to a job ĵi ∈ Ĵ with workload ŵi = wi, r̂i = ri + 1−c

2 · (di − ri) and
d̂i = di − 1−c

2 · (di − ri) for some shrinking parameter 0 < c ≤ 1. Then,

EY DS(Ĵ) ≤ (1/c)α−1EY DS(J).

It will be useful to bound the energy consumption of (the possibly infeasible for the
original input instance) schedule Y DS(JP Q). We compute the energy consumption of
schedule Y DS(JP Q) in the following lemma.

▶ Lemma 8. For any η ≥ 0 there holds

EY DS(JP Q) ≤ (2η + 1)α−1EY DS(JRD).

Proof. Consider two sets P ∗ = {p∗
1, . . . p∗

n} and Q∗ = {q∗
1 , . . . q∗

n}, with p∗
i = pi − ηi(qi − pi)

and q∗
i = qi + ηi(qi − pi).

By the definition of ηi, p∗
i and q∗

i , we have (ri, di) ⊆ (p∗
i , q∗

i), and therefore

EY DS(JP ∗Q∗) ≤ EY DS(JRD).

By having c = 1
(2η+1) , and J = JP ∗Q∗ (ri = p∗

i , di = q∗
i) in Lemma 7, we obtain J ′ = JP Q

and therefore,

EY DS(JP Q) ≤ (2η + 1)α−1EY DS(JP ∗Q∗). ◀

Using Lemma 6, we can obtain a similar result for common deadline instances.

▶ Corollary 9. In common deadline instances for any parameter η ≥ 0, there holds

EY DS(JP) ≤ (η + 1)α−1 · EY DS(JR).

The idea of shrinking intervals as described above will be useful for the general case as
well as the restricted common deadline case.

How much each algorithm will shrink the predicted job intervals will depend on the
confidence. This will be denoted by a confidence parameter 0 < λ ≤ 1/2 that will be given
as input to the respective algorithm. In the following, we define the shrunk prediction set
of release times and deadlines parametrized by this λ, and use the above lemmas to argue
about how this “shrinking” actually affects the energy consumption of the corresponding
Y DS-schedule.

▶ Definition 10. Let P ′ = {p′
1, . . . , p′

n} and Q′ = {q′
1, . . . , q′

n} be the shrunk prediction set of
release times and deadlines respectively in which p′

i = ⌊pi+λ(qi−pi)⌋ and q′
i = ⌈qi−λ(qi−pi)⌉

for all i ∈ [n].

We first observe that any schedule that considers the sets P ′ and Q′ as the actual release
times and deadlines of the jobs will be feasible, as long as the error η is not larger than λ.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:7

▶ Observation 11. Under the assumption that η ∈ (0, λ), it follows that ri ≤ p′
i and q′

i ≤ di

hold for every job i.

Therefore, the schedule Y DS(JP ′Q′) is feasible. Although shrinking the intervals and
then running YDS is not a robust algorithm, it will be useful to bound its energy consumption
when η ≤ λ holds.

▶ Lemma 12. For any η ∈ (0, λ) there holds

EY DS(JP ′Q′) ≤
(

2η + 1
1 − 2λ

)α−1
· EY DS(JRD).

Proof.

EY DS(JP ′Q′) ≤ 1
(1 − 2λ)(α−1) · EY DS(JP Q) ≤

(
2η + 1
1 − 2λ

)α−1
· EY DS(JRD). (1)

By Lemma 7 we have the first inequality in (1), and the second inequality holds because of
Lemma 8. ◀

Similarly for common deadline instances, since we shrink from one side, we obtain a
better competitive ratio.

▶ Corollary 13. For any η ∈ (0, λ) in common deadline instances there holds

EY DS(JP ′) ≤
(

1 + η

1 − λ

)α−1
· EY DS(JR).

Proof.

EY DS(JP ′) ≤ 1
(1 − λ)(α−1) · EY DS(JP) ≤

(
1 + η

1 − λ

)α−1
· EY DS(JR).

By Lemma 6 we have the first inequality, and the second inequality holds because of
Corollary 9. ◀

3 General Case

In this section we present algorithm ScheduleWithPredictions(λ, µ) (SwP(λ, µ) for
short) for the general learning-augmented speed-scaling setting. Parameter 0 ≤ λ < 1/2
describes for which range of prediction errors we would like to obtain an improved competitive
ratio. The smaller the λ, the smaller that range but the better the corresponding competitive
ratio for η < λ. On the other hand, parameter 0 ≤ µ ≤ 1 allows us to set the desired trade-off
between consistency and robustness. As we will see, perfect predictions and λ = µ = 0 would
give a competitive ratio of 1.

Inspired by [8] algorithm SwP begins by partitioning each time slot It = [t, t + 1), t ∈ Z
into two parts: Iℓ

t = [t, t + (1 − µ)) and Ir
t = [t + (1 − µ), t + 1). We call Iℓ

t the left part,
and Ir

t the right part of time slot It. The idea is to reserve the left parts of time-slots for
following the prediction, and the right parts of the time-slots are, roughly speaking, intended
for safeguarding against inaccurate predictions. A key component of our algorithm consists
of elegantly and dynamically distributing the processing volume of each job upon its arrival
among the two parts. This distribution is crucial in order to obtain a trade-off between
consistency and robustness, based on the parameters λ and µ. The algorithm consists of two
steps, the preprocessing and the online step which we now describe in more detail.

SWAT 2022

9:8 A Novel Prediction Setup for Online Speed-Scaling

Preprocessing: Partition left parts into intervals and assign jobs to them

Upon receiving the predictions (P, Q), SwP computes a YDS-schedule S′ for instance (P ′, Q′)
– which is obtained by “shrinking” (P, Q) as described above. Although S′ may not be feasible
for the actual instance (R, D), it will be used to partition the left parts into intervals and
subsequently assign each such interval of the partition to a specific job.

To this end, let It(j) := [t + at(j), t + bt(j)) ⊆ It be the maximal subinterval of It during
which j is executed under S′. Note that It(j) could be empty for some combinations of j

and t. Furthermore, since by definition there are no release times or deadlines within It, and
YDS schedules according to EDF, there can be at most one execution interval of j within It.
Let, for every job j and left part Iℓ

t , Iℓ
t (j) := [t + aℓ

t(j), t + bℓ
t(j)), where aℓ

t(j) = at(j)/(1 − µ)
and bℓ

t(j) = bt(j)/(1 − µ), be the subinterval of Iℓ
t assigned to job j.

To obtain some intuition, scheduling the whole processing volume of each job j at a uniform
speed throughout intervals Iℓ

t (j) would result in a “compressed” version of Y DS(P ′Q′) where
each time-slot is sped-up by a factor of 1/(1 − µ) to fit in the left part only, thus having an
energy consumption increased by a factor of (1/(1 − µ))α over that of Y DS(P ′Q′). Although
(as we will see) such a compressed schedule would be consistent, it may not be robust (or
even feasible) in the presence of subpar predictions. For this reason, we will eventually only
schedule part of the volume of each job in the associated left parts whenever feasible, and
the remaining volume will be processed on right parts.

Online Step: Job arrivals and processing

SwP needs to decide exactly when each job is to be processed within each time-slot and at
what speed. This is done by (i) distributing the processing volume of each job j to right
parts of different time-slots It and associated left parts Iℓ

t (j) upon its arrival, and (ii) feasibly
scheduling the whole volume assigned to the current time-slot (both to its left and right
part), within the time-slot itself. In the following we discuss how this is accomplished.

(i) Job Arrivals: Upon arrival of job j at rj , let δj = wj/(dj − rj) be its density and
ℓ(j) :=

∑
t∈[rj ,dj) |Iℓ

t (j)| be the total processing time reserved for job j on the left parts
during the preprocessing step that can actually be feasibly used for job j. Furthermore let
Vt(j) be the total volume currently (from jobs 1, 2, . . . j − 1) assigned to Ir

t , for all t (thus
Vt(1) = 0).

The algorithm assigns some amount of volume yt
j (to be determined later) of job j to

interval Ir
t (thus Vt(j + 1) := Vt(j) + yt

j), for all t ∈ [rj , dj), with 0 ≤ yt
j ≤ δj . Finally

the remaining volume Xj := wj −
∑

t yt
j is assigned to the left parts Iℓ

t (j) with t ∈ [rj , dj),
proportionally to their length, i.e., an interval Iℓ

t (j) with t ∈ [rj , dj) receives an |Iℓ
t (j)|/ℓ(j)-

fraction of Xj which implies that the average speed within Iℓ
t (j) must be Xj/ℓ(j). To gain

some intuition on the values of yt
j , it is useful to think of the algorithm as waterfilling the

volume of j to both the left and the right parts such that no right part receives more than δj

amount of volume. More formally, the yt
j , with 0 ≤ yt

j ≤ δj and t ∈ [rj , dj) are defined such
that they satisfy the following inequalities:

Vt(j)
µ

≥ Xj/ℓ(j) ∀t ∈ [rj , dj) with yt
j = 0 (2)

Vt(j) + yt
j

µ
= Xj/ℓ(j) ∀t ∈ [rj , dj) with 0 < yt

j < δj (3)

Vt(j) + yt
j

µ
≤ Xj/ℓ(j) ∀t ∈ [rj , dj) with yt

j = δj . (4)

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:9

Time

Speed

0 1 2 3 4 5 6 7 8 9

Figure 1 The speed profile corresponds to an instance with µ = 0.25. Job i arrives at ri = 2,
with di = 9, and wi = 7. Hence, δi = wi

di−ri
= 1. For this instance, Y DS(P ′Q′) runs job i only in 3

blocks, so we have ℓ(i) = 3 · 0.75 = 2.25. For the first four blocks we have yt
i = 0 and inequality (2)

holds. In the fifth and sixth blocks, 0 < yt
i < δi and equality (3) holds. And in the last block,

yt
i = δi = 1 and inequality (4) holds.

Note that the left hand side in each of the above inequalities corresponds exactly to
Vt(j + 1)/µ and therefore to the average speed required to process the volume assigned to t

before the arrival of job j + 1 within Ir
t . We prove the existence of such yt

j and describe how
they can be computed in Appendix A.

(ii) Processing: For each It, t = rj , . . . rj+1 − 1 the algorithm processes job j′ ≤ j within
every Iℓ

t (j′) at a speed of Xj′/ℓ(j′), and the assigned volume to Ir
t is processed within Ir

t at
a speed of Vt(j + 1)/µ, with the order of the jobs within each Ir

t being determined by EDF.
The online step gets repeated upon the arrival of each job. We next show that the

resulting schedule is feasible.

▶ Lemma 14. In the schedule output by SwP(λ, µ) a volume of wj is fully processed for
each job j within [rj , dj).

Proof. It is relatively easy to see that a total volume of wj is assigned to left and right parts
of It’s with t ∈ [rj , dj): Indeed, by the algorithm definition volume of wj only gets assigned
to Iℓ

t ⊂ It or Ir
t ⊂ It with t ∈ [rj , dj). In addition, a volume of

∑
t yt

j gets assigned to the
right parts and wj −

∑
t yt

j to the left parts for a total volume assignment of wj . It therefore
remains to show that all the assigned volume is feasibly processed in the processing step.

Consider some It with rj ≤ t < rj+1 and the corresponding Iℓ
t and Ir

t . Note that by
the above argument, for any such t no job with an index greater than j will assign any
volume, and that only job j′ ≤ j may be assigned to Iℓ

t (j′). Therefore a speed of Xj′/ℓ(j′)
throughout every such Iℓ

t (j) is sufficient to schedule all volume assigned to it. Finally, since
there are no release times or deadlines within each individual interval, the total volume of
Vt(j + 1) can be feasibly scheduled within Ir

t at a speed of Vt(j + 1)/µ. ◀

We next show consistency and robustness of the algorithm.

▶ Lemma 15 (Consistency & Smoothness). For any η ∈ (0, λ) there holds

ESwP ≤
(

1
1 − µ

)α−1(2η + 1
1 − 2λ

)α−1
EY DS(RD).

SWAT 2022

9:10 A Novel Prediction Setup for Online Speed-Scaling

Proof. We can express ESwP as:

ESwP =
n∑

j=1

 Xα
j

ℓ(j)α−1 +
∑

t∈[rj ,dj)

(
Vt(j + 1)α

µα−1 − Vt(j)α

µα−1

)
=

n∑
j=1

 Xα
j

ℓ(j)α−1 +
∑

t∈[rj ,dj)

((
Vt(j) + yt

j

)α

µα−1 − Vt(j)α

µα−1

)
≤

n∑
j=1

wα
j

ℓ(j)α−1 =
(

1
1 − µ

)α−1
Ej

Y DS(JP ′Q′).

The inequality holds by convexity of the power function and by the fact that Vt(j + 1)/µ ≤
Xj/ℓ(j) for each t such that yt

j > 0 (Equations 3 and 4). The last equality follows since for
η ∈ (0, λ), for every job j there holds [rj , dj) ⊇ [p′

j , q′
j) (Observation 11), and by construction

ℓ(j) is 1/(1 − µ) times the total processing time reserved for job j under YDS(P ′Q′).
The lemma directly follows, since by Lemma 12,

EY DS(JP ′Q′) ≤
(

2η + 1
1 − 2λ

)α−1
· EY DS(JRD). ◀

▶ Lemma 16 (Robustness). For any instance, we have

ESwP ≤ 2α−1αα

(
1
µ

)α−1
EY DS(JRD).

Proof. Note that by the algorithm definition there holds that Vt(j) ≥ Vt(i), for j > i and
any t, since upon each release time new volume gets assigned but volume never gets removed.
We therefore have

ESwP ≤
n∑

j=1

(
Xα

j

ℓ(j)α−1

)
+
∑

t

(
Vt(n + 1)α

µα−1

)

≤
∑

t

(∑

j:t∈[rj ,dj) δj

)α

µα−1

 =
(

1
µ

)α−1
EAV R.

The second inequality follows by the convexity of the power function and the fact that
Vt(n + 1)/µ ≥ Vt(j + 1)/µ ≥ Xj/ℓ(j) for each t such that yt

j < δj (Equations 3 and 2). The
lemma follows by the competitive ratio of AVR [10]. ◀

Lemmas 15 and 16 together directly imply Theorem 1. Note that Theorem 1 not only
implies consistency and robustness, but also smoothness: the competitive ratio gracefully
degrades as the error increases.

4 All Jobs Have a Common Deadline

In this section, we present a simpler algorithm that achieves improved consistency and
robustness over SwP for the special case in which all jobs have the same deadline, i.e., dj = d

for all j ∈ J . Since the deadline is the same for all jobs, we only consider predictions on the
n release times R = {r1, . . . , rn} and denote these by a set P = {p1, . . . , pn}.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:11

We begin by analyzing a framework for combining different algorithms before presenting
an algorithm in Subsection 4.1 that is based on combining two different algorithms; the
classic online algorithm qOA that has a worst-case guarantee independent of the prediction
error, and a second one, that considers the predictions and has a good performance in the
case of small prediction error.

The general idea of combining online algorithms has been repeatedly employed in the
past in the areas of online algorithms and online learning, see, for example, the celebrated
results of Fiat et al. [17], Blum and Burch [14], Herbster and Warmuth [19], Littlestone and
Warmuth [22]. Such a technique has also been used in the learning augmented setting, see
Antoniadis et al. [6] for an explicit framework for combining algorithms, and Lykouris and
Vassilvtiskii [23] as well as Rohatgi [28] for implicit uses of such algorithm combinations.
However, as we will see, the specific problem considered in this paper allows for way more
flexibility in such algorithm combinations since it is possible to simulate the parallel execution
of different algorithms by increasing the speed. This allows us to obtain a much more tailored
result with at most one switch between the different algorithms and more straightforward
analysis. We start with the following structural lemma.

▶ Lemma 17. Consider a partition of the job set of instance J into m job sets J1, J2, . . . Jm,
and furthermore consider m schedules C1, C2, . . . Cm with speed functions s1(t), s2(t), . . . sm(t)
respectively, such that Ci is a feasible schedule for Ji for all i = 1, . . . m. Then there exists a
schedule C with speed function sC(t) =

∑
i si(t) that is feasible for the complete job set J

and has an energy consumption of EC ≤ mα−1∑
i Ei, where for each i, Ei =

∫
t
si(t)αdt is the

energy consumption of the respective schedule.

4.1 Algorithm CommonDeadlineScheduleWithPredictions (CDSwP)
At a high level CDSwP(λ) (almost) follows the optimal schedule for the predicted instance as
long as the prediction error is not higher than λ and switches to a classical online algorithm
(i.e., one without predictions) in case the prediction error becomes higher than λ.

More formally, the algorithm can reside in one of two modes: follow the prediction (FtP)
mode, and recovery mode. Initially, before the release time r1 of the first job the algorithm
is in the FtP-mode and has an associated speed-profile given by s(FtP (0), t) = 0 for all
t ∈ [0, d]. Upon each release time ri, i = 1, . . . n, and while in the FtP-mode, CDSwP(λ)
does the following:

If ηi ≤ λ, CDSwP remains in the FtP-mode and updates the speed profile from s(FtP (i−
1), t) to s(FtP (i), t) for [ri, d] with the help of a job instance J i. Instance J i consists of:

One job i′ with release time ri′ = ri, workload wi′ equal to the total amount of
unfinished workload at ri workload that was released at any timepoint t ≤ ri, and
deadline d.
For each job j not yet released at rj , include job j with a release time of p′

j , a deadline
of d and a volume of wj in J i.

The new speed-profile s(FtP (i), t) is given for any t ∈ [ri, d] by

s(FtP (i), t) :=
{

s(Y DS(J ′), t), if Y DS(J ′) runs job i′ at t,
0, otherwise.

Algorithm CDSwP now runs at s(FtP (i), t) for any t ∈ [ri, ri+1), and remains in the
FtP-mode.
Otherwise, if ηi > λ then CDSwP switches to the recovery-mode, and sets k := i.

SWAT 2022

9:12 A Novel Prediction Setup for Online Speed-Scaling

Time

Speed

0 1 2 3 4 5 6 7 8 9

Figure 2 A common deadline instance with η > λ. The first time point with ηi > λ is time 5
in which we start to run qOA for the rest of the jobs (blue part) while we continue running Y DS

for the jobs released before 5 (red part). At time point 7.5, the workload of the first set of jobs is
finished.

When in recovery-mode, the algorithm runs at speed s(t) = s(FtP (k−1), t)+s(qOA(k), t)
at each timepoint t until d, where s(FtP (k − 1), t) is the last speed-profile generated in
the FtP-mode, and s(qOA(k), t), is the speed that the online algorithm qOA would have at
timepoint t when presented (in an online fashion) with (the actual) jobs k, . . . n.

Note that defining the speed at any timepoint t is sufficient in order to fully describe
the algorithm. Indeed, since all jobs have a common deadline of d, it is irrelevant which
job (among the active jobs) is being processed at any timepoint t. Nevertheless, to simplify
the presentation we will implicitly assume in the following that at timepoint t the currently
active and unfinished job with the earliest release time is the one being processed – and ties
are broken arbitrarily. We first prove that the algorithm produces feasible schedules:

▶ Observation 18. Algorithm CDSwP fully processes the whole processing volume of each
job wj, within [rj , d].

Proof. Note that by the algorithm definition, no job starts being processed before its arrival
in any mode. So it suffices to show that the complete processing volume of each job is
completed before its deadline. Assume first that the algorithm remains in the FtP-mode
until d. By the definition of the job instances J i, any still unfinished processing volume wn′

will be assigned to job n′ at timepoint rn and YDS will schedule it within [rn, d) according
to YDS at a speed of wn′/(d − rn). So the resulting schedule is feasible in that case. If
the algorithm switches to the recovery mode at some rk, then by the above argument the
speed profile s(FtP (k − 1), t) is sufficient to finish jobs 1, . . . k − 1, and furthermore speed
profile s(qOA(k), t) is feasible for for jobs k, . . . n, by the feasibility of algorithm qOA. So
the overall speed profile s(FtP (k − 1), t) + s(qOA(j), t) is sufficient for processing the whole
volume. ◀

We begin by showing the following theorem which will imply consistency and smoothness.

▶ Lemma 19 (Consistency & Smoothness). Under the assumption that η ∈ (0, λ), there holds

ECDSwP ≤
(

1 + η

1 − λ

)α−1
· EY DS(JR).

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:13

Before proving Lemma 19 we show the following intermediate result.

▶ Lemma 20. Assuming that η ∈ (0, λ), there holds

ECDSwP ≤ EY DS(JP ′)

Proof. Consider job instance J i′ which consists of:
A job ji−1 with release time ri, deadline d and volume wji−1 := w′

i − wi equal to the
total volume of jobs 1, . . . i − 1 that is still unfinished at ri,
Job i with release time at p′

i (and still deadline d and processing volume wi),
For each job j not yet released at rj , include job j with a release time of p′

j , a deadline of
d and a volume of wi in J i′.

Note that, instance J i′ differs from J i only in that job i is considered separately, and not
together with all previously released jobs that are still not finished. By Observation 11 a
YDS schedule for the former is a feasible schedule for the later, and therefore by optimality
of YDS,

E [ri,∞)
CDSwP (Ji) ≤ E [ri,∞)

CDSwP (Ji′), (5)

where E [a,b]
A(J), refers to the energy consumption that the schedule produced by algorithm A

on instance J has within interval [a, b].
Using this notation, we can express the total energy-consumption of the CDSwP as

ECDSwP =
n∑

i=1
E [ri,ri+1)

CDSwP (Ji)

=
n−2∑
i=1

E [ri,ri+1)
CDSwP (Ji) + E [rn−1,rn)

CDSwP (Jn−1) + E [rn,d)
CDSwP (Jn)

≤
n−2∑
i=1

E [ri,ri+1)
CDSwP (Ji) + E [rn−1,rn)

CDSwP (Jn−1) + E [rn,d)
CDSwP (Jn′)

=
n−2∑
i=1

E [ri,ri+1)
CDSwP (Ji) + E [rn−1,d)

CDSwP (Jn−1)

...

≤ E [r1,d)
CDSwP (J1) ≤ EY DS(JP ′),

where the inequalities follow by applying Equation (5). ◀

Proof of Lemma 19. By combining Lemmas 20 and 13 we have,

ECDSwP ≤ EY DS(JP ′) ≤
(

1 + η

1 − λ

)α−1
· EY DS(JR),

and the lemma directly follows. ◀

We note that the above proof also works in exactly the same way when only a subset A

of the job set is processed.

▶ Corollary 21. Consider a set of jobs A ⊆ J and assume that ηi ∈ (0, λ) holds for every
job i ∈ A. Then

ECDSwP (A) ≤ EY DS(JP ′ (A))

SWAT 2022

9:14 A Novel Prediction Setup for Online Speed-Scaling

We next analyze the case of inadequate predictions.

▶ Lemma 22. (Robustness) With a parameter η /∈ (0, λ), we have

ECDSwP ≤ 2α

(
1 + λ

1 − λ

)α−1
· EqOA.

Proof. As in the definition of CDSwP, let k be the smallest index, such that ηk > λ. Hence,
the algorithm switches to the recovery mode at rk. We partition the job set into two subsets
A = {1, · · · , k − 1} and B = {k, · · · , n}. By Lemma 17, and by the fact that by Corollary 21
the energy consumption for set B is at most the energy consumption of qOA for the whole
job instance, it suffices to upper bound the energy consumption required for set A by the
total energy that qOA(k) uses.

We transform the schedule obtained by CDSwP for job set A through three intermediate
steps to the schedule produced by Y DSJ(R). Since EY DSJ (R) ≤ EqOAJ (R) this will imply
the theorem.

Step 1. Let JA be the job instance that contains all jobs in A, along with jobs j =
k, k + 1, . . . n with respective release time p′

j , deadline d and processing volume wj .
Let EA

CDSwP , and EA
Y DS(JA) be the energy consumptions incured while scheduling the

subset of jobs A for CDSwP(J) and Y DS(JA) respectively. By Corollary 21,

EA
CDSwP ≤ EA

Y DS(JP ′).

Let JA
P be the job instance, consisting of the predicted release times (pi) of jobs in set A

and the “shrunk” predicted release times (p′
i) for the remaining jobs. Note that JA

P differs
from JA only in the release-times of jobs in set A. Since ηi ≤ λ for any i ∈ A, there holds
for any such i that d − p′

i = 1/(1 − λ)(d − pi). By Lemma 6, there therefore holds

EA
Y DS(JP ′) ≤

(
1

1 − λ

)α−1
· EA

Y DS(JA
P

).

Consider set P ∗ = {p∗
1, . . . p∗

k−1, p′
k, . . . , p′

n} with p∗
i = pi − ηi(qi − pi) for all j ∈ [k − 1].

There holds

EY DS(JA
P

) ≤ (1 + λ)α−1EY DS(JP ∗) ≤ (1 + λ)α−1EY DS(JA). (6)

By having c = 1
(1+λ) , and J = JP ∗ (ri = p∗

i) in Lemma 6, we obtain J ′ = JP . Since we
have ηj < λ for all j < k, the first inequality in (6) holds. For every job i ∈ A there holds
(ri, d) ⊆ (p∗

i , d). More specifically, a feasible schedule for JA is feasible for JP ∗ as well. The
second inequality in (6) then directly follows by the optimality of Y DS.

Putting things together we therefore have

EA
CDSwP ≤

(
1 + λ

1 − λ

)α−1
· EA

Y DS(JA), (7)

Step 2. In this step, we want to compare EA
Y DS(JA) with the energy of Y DS algorithm for

a new job instance in which we consider the real release times for some jobs in set B that
their shrinking predictions are after their real release times.

A job instance J l is defined, consisting of the real release times of jobs in set A, the real
release times of job j in set B for which rj ≤ p′

j , and the shrunk prediction (p′
j) for the rest.

Since moving the release times of the future jobs to the left could increase the speed (and
hence increases energy) in the first part,

EA
Y DS(JA) ≤ EA

Y DS(Jl).

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:15

Step 3. In the last step, we want to compare EA
Y DS(Jl) with the optimum offline algorithm

(Y DS) for the complete job instance J and their real release time JR. We want to show

EA
Y DS(Jl) ≤ EJ

Y DS(Jl) ≤ EJ
Y DS(JR).

The first inequality holds because A ⊆ J . Consider the difference between two job instances
JR and J l. Since for each job i, its available time in JR is a subset of its available time in J l,
Y DS(JR) is a feasible algorithm for job instance J l. Therefore, the second inequality holds.

So far we proved that

EA
CDSwP ≤

(
1 + λ

1 − λ

)α−1
· EJ

Y DS(JR).

Since we run qOA for the job set B,

EB
CDSwP = EB

qOA(JR) ≤ EJ
qOA(JR).

And by Lemma 17,

ECDSwP ≤ 2α−1 · (
(

1 + λ

1 − λ

)α−1
· EJ

Y DS(JR) + EJ
qOA(JR)).

Since EJ
Y DS(JR) ≤ EJ

qOA(JR),

ECDSwP ≤ 2α−1 · (EqOA)(
(

1 + λ

1 − λ

)α−1
+ 1) ≤ 2α

(
1 + λ

1 − λ

)α−1
· (EqOA). ◀

Lemmas 19 and 22 together imply Theorem 2.

5 Discussion on Confidence Parameters λ and µ

In order to give some intuition on how the confidence parameters µ and λ affect the obtained
performance guarantees of SwP, we perform some numerical experiments for different settings.
Moreover, we compare our algorithm with the currently best-known online algorithm qOA
and the optimum offline algorithm YDS using real-world data. All experiments were run on
a typical laptop computer.

We only consider α = 3 for the experiments, as this is the typical value of α for real-world
processors, see for example [15, 31]. Furthermore for qOA, we only consider q = 2− 1

α ≈ 1.667
since this is the value that minimizes the competitive ratio [11].

The input data for our experiments is the same as in [1]. There, jobs are generated
from http requests received on EPAs web-server. For practical reasons, we limit our input
instances to the first 1000 jobs of their sample. In order to generate predictions for the input,
we use a normal distribution with a mean of 0, and a standard deviation of 0.01, 0.05, or 0.1.
For each job, two samples from this distribution are taken and each of them is scaled by the
real interval length of the job. The result is then added to each job’s actual release time and
deadline to obtain predictions for them.

In order to illustrate the effect of parameters λ and µ, we run SwP for different combin-
ations of these values. In particular we consider λ = 0, 0.1, 0.2, 0.3 and µ = 0.1, 0.2, · · · , 1.
Our results with standard deviation 0.05 can be found in Figure 3. Our results with standard
deviations 0.01, and 0.1 can be found in the supplementary material.

SWAT 2022

9:16 A Novel Prediction Setup for Online Speed-Scaling

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5
·109

µ

en
er

gy
co

ns
um

pt
io

n

SwP, λ = 0
SwP, λ = 0.1
SwP, λ = 0.2
SwP, λ = 0.3

qOA
YDS

Figure 3 Prediction set 2, stddev=0.05.

To gain some intuition on the results, recall that µ denotes the portion of each block
for which AVR is run. In particular, for µ = 1 the SwP algorithm becomes identical to the
AVR algorithm and disregards the predictions, whereas the smaller µ’s value the more the
predictions are trusted. This explains why the competitive ratio increases with µ. Similarly,
recall that λ defines how much the predicted interval will be shrunk and that the improved
competitive ratio is only proven for η ≤ λ but on the other hand the bigger λ gets the smaller
that improvement in the competitive ratio will be. Although the best choices for λ and µ

depend on the quality and/or structure of the predictions, our experiments highlight that
for appropriate such choices, one can significantly improve upon the energy-consumption of
qOA. To summarize, in practice the most sensible settings of λ and µ will depend on the
quality as well as structure of the predictions and it may be worthwhile experimenting with
different such settings.

6 Conclusion

In this paper, we have presented a consistent, smooth, and robust algorithm for the general
classical, deadline-based, online speed-scaling problem using ML predictions for release times
and deadlines.

We can remove the assumption of knowing the number of jobs n, by slightly adapting
the error definition, so that the prediction is considered to be inadequate if the predicted
number of jobs is wrong.

It remains an interesting open question on whether a similar robust, consistent and
smooth algorithm exists for the more general setup in which the workloads of the jobs are
not known in advance but predicted along with their release times and deadlines. Although
we were able to extend SwP under the assumption that it satisfies a natural monotonicity
property, it is unclear if that property holds in general.

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:17

References
1 Ahmed Abousamra, David P. Bunde, and Kirk Pruhs. An experimental comparison of

speed scaling algorithms with deadline feasibility constraints. CoRR, abs/1307.0531, 2013.
arXiv:1307.0531.

2 Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010.
3 Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-processor speed scaling

with migration. J. Comput. Syst. Sci., 81(7):1194–1209, 2015.
4 Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time minimization.

ACM Trans. Algorithms, 3(4):49, 2007.
5 Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios. Speed scaling on parallel

processors with migration. J. Comb. Optim., 37(4):1266–1282, 2019.
6 Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon.

Online metric algorithms with untrusted predictions. In International Conference on Machine
Learning, pages 345–355. PMLR, 2020.

7 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online
matching problems with machine learned advice. In NeurIPS, 2020.

8 Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In NeurIPS, 2020.

9 Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In NeurIPS, 2020.

10 Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed scaling.
Algorithmica, 60(4):877–889, 2011.

11 Nikhil Bansal, Ho-Leung Chan, Dmitriy Katz, and Kirk Pruhs. Improved bounds for speed
scaling in devices obeying the cube-root rule. Theory Comput., 8(1):209–229, 2012.

12 Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and temper-
ature. J. ACM, 54(1), March 2007.

13 Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted flow time. SIAM J.
Comput., 39(4):1294–1308, 2009.

14 Avrim Blum and Carl Burch. On-line learning and the metrical task system problem. Machine
Learning, 39(1):35–58, 2000.

15 Dale L. Critchlow, Robert H. Dennard, and Stanley Schuster. Design and characteristics of
n-channel insulated-gate field-effect transistors. IBM J. Res. Dev., 44(1):70–83, 2000.

16 Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In EC, pages 409–429. ACM, 2021.

17 Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. Journal of
Computer and System Sciences, 48(3):410–428, 1994.

18 Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In ICML, 2019.

19 Mark Herbster and Manfred K Warmuth. Tracking the best expert. Machine learning,
32(2):151–178, 1998.

20 Sandy Irani and Kirk Pruhs. Algorithmic problems in power management. SIGACT News,
36(2):63–76, 2005.

21 Nicola Jones. How to stop data centers from gobbling up the world’s electricity, 2018. [Online;
accessed 02-August-2021].

22 N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994. doi:10.1006/inco.1994.1009.

23 Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine learned advice.
In International Conference on Machine Learning, pages 3296–3305. PMLR, 2018.

24 Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In ITCS,
volume 151 of LIPIcs, pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

SWAT 2022

http://arxiv.org/abs/1307.0531
https://doi.org/10.1006/inco.1994.1009

9:18 A Novel Prediction Setup for Online Speed-Scaling

25 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Beyond the
Worst-Case Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.

26 Benjamin Moseley, Sergei Vassilvitskii, Silvio Lattanzi, and Thomas Lavastida. Online
scheduling via learned weights. In SODA, 2020.

27 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

28 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
SODA, 2020.

29 Shufan Wang and Jian Li. Online algorithms for multi-shop ski rental with machine learned
predictions. In AAMAS, pages 2035–2037. International Foundation for Autonomous Agents
and Multiagent Systems, 2020.

30 Alexander Wei. Better and simpler learning-augmented online caching. In APPROX/RANDOM,
volume 176 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

31 Adam Wierman, Lachlan L. H. Andrew, and Ao Tang. Power-aware speed scaling in processor
sharing systems: Optimality and robustness. Perform. Evaluation, 69(12):601–622, 2012.

32 F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. In FOCS, pages 374–382. IEEE Computer Society, 1995.

A Calculating the yt
i’s

First we show the following lemma.

▶ Lemma 23. For any given 0 ≤ X ≤ ℓ(j) maxt∈[rj ,dj)(Vt(j) + δj)/µ there exist values yt
j,

with 0 ≤ yt
j ≤ δj so that equations (3),(4) and (2) are satisfied for all t ∈ [rj , dj), with X in

place of Xj . Furthermore for any t, t′ with yt
j ≤ yt′

j there holds Vt′(j) ≤ Vt(j), and
∑

yt
j is a

continuous and non-decreasing function in X.

Proof. If X/ℓ(j) < mint∈[rj ,dj) Vt(j)/µ, then it is easy to verify that yt
j = δj for all t ∈ [rj , dj)

satisfies all equations. So we assume for the remainder of this proof that mint∈[rj ,dj) Vt(j)/µ ≤
X/ℓ(j) ≤ maxt∈[rj ,dj)(Vt(j) + δj)/µ.

For any t ∈ [rj , dj), let

yt
j :=

0, if Vt(j)/µ ≥ X/ℓ(j),
δj , if (Vt(j) + δj)/µ ≤ X/ℓ(j),
µX/ℓ(j) − Vt(j), otherwise.

(8)

It is easy to verify that for the above definition of yt
j , equations (3), (4) and (2) are satisfied

with X in place of Xj , and that for any t, t′ with yt
j ≤ yt′

j there holds Vt′(j) ≤ Vt(j). Finally,∑
yt

j is a continuous function as a sum of a finite number of continuous functions, and
non-decreasing in X (as each yt

j is by definition a non-increasing function of X). ◀

▶ Lemma 24. For any set of values Vt(j), there exist values yt
j, with 0 ≤ yt

j ≤ δj so that
equations (3),(4) and (2) are satisfied for all t ∈ [rj , dj).

Proof. Note that it suffices to show that there exists Xj = wj −
∑

t yt
j where the yt

j are as
defined in the proof of Lemma 23, since then by Lemma 23 the equations (3),(4), and (2)
would hold for Xj = wj −

∑
t yt

j .
First, let X = wj and compute the values of yt

j via (8). If
∑

t yt
j = 0 , then we have found

the desired X and are done. Assume therefore, that 0 <
∑

t yt
j ≤ wj . By Lemma 23,

∑
t yt

j is

A. Antoniadis, P. Jabbarzade, and G. Shahkarami 9:19

a non-decreasing and continuous function of X within [0, wj] that obtains value 0 for X = 0,
and a value ≤ wj for X = wj . Equivalently the function wj −

∑
t yt

j is non-increasing and
continuous in X within [0, wj] and obtains value wj for X = 0 and a value ≥ 0 for X = wj .
Therefore, by the intermediate value theorem there must exist an Xj ∈ [0, wj], such that
wj −

∑
t yt

j obtains a value of Xj , which concludes the proof of the lemma. ◀

Algorithm

Lemmas 23 and 24 directly imply an algorithm for identifying such values of yt
j . In particular,

since for any t, t′ with yt
j ≤ yt′

j there holds Vt′(j) ≤ Vt(j), we can order all relevant t’s by
Vt(j) and find (through enumeration) t′, t′′ such that for any Vt(j) ≥ V ′

t (j) we have yt
j = 0,

for any Vt(j) ≤ Vt′′(j), yt
j = δj and for all other t there holds 0 < yt

j < δj . Let N be the
number of t’s such that yt

j = δj , and Z = wj − Nδj be the remaining processing volume that
needs to be assigned through the yt

j ’s for t’s with Vt′′(j) < Vt(j) < Vt′(j). In other words we
need to find 0 < yt

j < δj so that Z −
∑

t yt
j = Xj , and for each individual such yt

j , we have
yt

j = µXj/ℓ(j) − Vt(j). This implies a system of k + 1 equations (for some k) with k + 1
unknowns, that by Lemma 24 has a solution assuming that t′, t′′ were chosen correctly.

B Missing Plots of Section 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

·109

µ

en
er

gy
co

ns
um

pt
io

n

SwP, λ = 0
SwP, λ = 0.1
SwP, λ = 0.2
SwP, λ = 0.3

qOA
YDS

Figure 4 Prediction set 1, stddev=0.01.

SWAT 2022

9:20 A Novel Prediction Setup for Online Speed-Scaling

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

·109

µ

en
er

gy
co

ns
um

pt
io

n

SwP, λ = 0
SwP, λ = 0.1
SwP, λ = 0.2
SwP, λ = 0.3

qOA
YDS

Figure 5 Prediction set 3, stddev=0.1.

On the Approximability of the Traveling Salesman
Problem with Line Neighborhoods
Antonios Antoniadis #

University of Twente, Enschede, The Netherlands

Sándor Kisfaludi-Bak #

Aalto University, Finland

Bundit Laekhanukit #

Shanghai University of Finance and Economics, China

Daniel Vaz #

Operations Research Group, Technische Universität München, Germany

Abstract
We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points,
we are given a set of lines as input, and the goal is to find the shortest tour that visits each line.
The best known upper and lower bounds for the problem in Rd, with d ≥ 3, are NP-hardness and an
O(log3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem.

We show that TSP with lines in Rd is APX-hard for any d ≥ 3. More generally, this implies that
TSP with k-dimensional flats does not admit a PTAS for any 1 ≤ k ≤ d − 2 unless P = NP, which
gives a complete classification regarding the existence of polynomial time approximation schemes for
these problems, as there are known PTASes for k = 0 (i.e., points) and k = d − 1 (hyperplanes). We
are able to give a stronger inapproximability factor for d = O(log n) by showing that TSP with lines
does not admit a (2 − ε)-approximation in d dimensions under the Unique Games Conjecture. On
the positive side, we leverage recent results on restricted variants of the group Steiner tree problem
in order to give an O(log2 n)-approximation algorithm for the problem, albeit with a running time
of nO(log log n).

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Approximation algorithms analysis

Keywords and phrases Traveling Salesman with neighborhoods, Group Steiner Tree, Geometric
approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.10

Related Version The article has an earlier version available on ArXiv.
Full Version: https://arxiv.org/abs/2008.12075

Funding Antonios Antoniadis: Work done in part while the author was at Saarland University and
Max Planck Institute for Informatics and supported by DFG grant AN 1262/1-1.
Daniel Vaz : This work has been supported by the Alexander von Humboldt Foundation with funds
from the German Federal Ministry of Education and Research (BMBF). Work done in part while
the author was at Saarland University and Max Planck Institute for Informatics.

1 Introduction

In the Euclidean Traveling Salesman problem, one is given n points in d-dimensional Euclidean
space (denoted by Rd), and the goal is to find the shortest tour visiting all the points. The
problem is NP-hard for d ≥ 2 [41], but it has a celebrated polynomial time approximation
scheme (PTAS), i.e., a polynomial-time algorithm that produces a tour of length at most 1+ε

times the optimum for any fixed ε > 0, due to Arora [3] and (independently) by Mitchell [38].
© Antonios Antoniadis, Sándor Kisfaludi-Bak, Bundit Laekhanukit, and Daniel Vaz;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.antoniadis@utwente.nl
mailto:sandor.kisfaludi-bak@aalto.fi
mailto:bundit@sufe.edu.cn
mailto:daniel.vaz@tum.de
https://doi.org/10.4230/LIPIcs.SWAT.2022.10
https://arxiv.org/abs/2008.12075
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 On the Approximability of TSP with Line Neighborhoods

In the past decades, a considerable amount of work has concentrated on finding approxim-
ations for variants and generalizations of the Euclidean Traveling Salesman Problem, e.g., by
changing the underlying space [4, 33, 16, 6], or the objects being visited [15, 7, 11, 20, 39, 40,
28]. In the latter case which is known as the Traveling Salesman Problem with Neighborhoods
(TSPN), the input consists of n neighborhoods, and the goal is to find the shortest tour that
visits each neighborhood. More formally, we are given the sets S1, . . . , Sn ⊂ Rd, and we wish
to compute the shortest closed curve τ such that for each i ∈ {1, . . . , n} we have Si ∩ τ ̸= ∅.
(Observe that the optimum curve τ consists of at most n segments.)

In contrast to regular TSP, TSPN is already APX-hard in the Euclidean plane [15], i.e.,
it has no PTAS unless P = NP. Worse still, even the basic case in which each neighborhood
is an arbitrary finite set of points in the Euclidean plane (the so called Group TSP) admits
no polynomial-time O(1)-approximation (unless P = NP) [43]. Even in the case in which
each neighborhood consists of exactly two points [18] the problem remains APX-hard.

This inherent hardness of TSPN gives rise to studying variants of the problem in which
the neighborhoods are restricted in some ways. In a seminal paper, Arkin and Hassin [2]
looked into the problem for various cases of bounded neighborhoods, including translates
of convex regions and parallel unit segments, and gave constant-factor approximation al-
gorithms for them. The best known approximation algorithm for a more general case of
bounded neighborhoods in the plane is due to Mata and Mitchell [35] and attains an O(log n)
approximation factor. However, there exist special cases of such bounded neighborhoods in
the plane that do allow for O(1)-approximation algorithms. These include neighborhoods
which are disjoint, fat, or have comparable sizes [15, 7, 11, 20, 39, 40].

The complementary case of TSPN where neighborhoods are unbounded regions (the
focus of this paper) is, in general, less well understood. Consider neighborhoods that
are affine subspaces (flats) of dimension k < d in Rd. On the positive side, and despite
the APX-hardness of the general TSPN problem already in R2, the version with flats (in
this case lines) as neighborhoods can be solved exactly in O(n4 log n)-time via a reduction
to the watchman route problem [29, 17]. Furthermore, Dumitrescu [19] provides a 1.28-
approximation algorithm that runs in linear time. In R3, the problem of line and plane
neighborhoods was first raised by Dumitrescu and Mitchell [20]. For the line case, they
already point out that the problem is NP-hard as a direct consequence of the NP-hardness
of Euclidean TSP in the plane [41]. Although this leaves the possibility for a PTAS open,
the best known approximation algorithm to date for TSPN with lines in R3 was given by
Dumitrescu and Tóth [21] and achieves an O(log3 n)-approximation. For the case of (d − 1)-
dimensional flats in Rd (which also includes planes in R3), they give a linear-time (for any
constant dimension d and any constant ε > 0) (1 + ε)2d−1/

√
d-approximation. This result

was subsequently improved by Antoniadis et al. [1] to an EPTAS that also runs in linear
time for fixed d and ε. Whether this variant is NP-hard or not remains an interesting open
problem. As for the case of line neighborhoods in Rd for d ≥ 3, a PTAS for k-dimensional
flats for 1 ≤ k ≤ d − 2 also remained out of reach.

We show that unless P = NP, there is no PTAS for lines in R3. As a direct consequence,
we can rule out the existence of a PTAS in all remaining open cases of TSPN with flats:
there is no PTAS for k-dimensional flat neighborhoods for any 1 ≤ k ≤ d − 2, unless P = NP.

Let us call the Euclidean TSP problem in Rd with k-dimensional flat neighborhoods
(k, d)-TSPN. Although ruling out a PTAS for (1, 3)-TSPN is an important step towards
settling the approximability of the problem, the inapproximability factor obtained is very
close to 1. It would be desirable to obtain a stronger inapproximability factor, especially
given how far we are from any constant-approximation algorithm for the problem. A natural

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:3

way to obtain such a stronger inapproximability result is to consider the problem in higher
dimensional spaces. For example, regarding the classic Euclidean TSP, it is known that the
problem becomes APX-hard for d = log n [44]. This result directly implies that TSPN with
line neighborhoods in R1+log n is APX-hard, but this is barely satisfactory, since it again only
gives a small inapproximability factor. However, by using a different reduction from the vertex
cover problem, we are able to show that the problem has no polynomial (2−ε)-approximation
in RO(log n) for any fixed ε > 0 under the Unique Games Conjecture [30].

On the algorithmic side, very little is known about (k, d)-TSPN. For d = 3, the best
known polynomial time approximation for (1, 3)-TSPN is the aforementioned O(log3 n)-
approximation algorithm due to Dumitrescu and Tóth [21]. Their approach is to discretize
the problem by selecting a polynomial number of “relevant” points on each line. It is shown
that restricting the solution to visiting lines at these points only increases the tour length
by a constant factor. The resulting instance can now be seen as an instance of group-TSP,
where the relevant points of each line form a group. By feeding this into the O(log3 n)-
approximation algorithm for general group Steiner tree [25, 24] (it is easy to go from the tree
solution to a tour by doubling each edge), they obtain the same asymptotic approximation
factor for TSPN with line neighborhoods. This is somewhat unsatisfactory, since it ignores
that the group Steiner tree instances constructed by the reduction are (i) Euclidean and (ii)
all the points of a group are collinear. In other words, although the constructed group Steiner
tree instances are highly restricted, there is no known technique to exploit this restriction.

However, the reduction from TSPN with line neighborhoods to the group Steiner tree
problem implies that, if we allow quasi-polynomial running time, then TSPN with line
neighborhoods admits an approximation ratio of O(log2 n/ log log n) in O(nlog2 n) time [13].
This approximation ratio of group Steiner tree is tight for the class of quasi-polynomial time
algorithms due to the recent work of Grandoni et al. [26], which holds under the Projection
Game Conjecture and NP ̸⊆

⋂
0<ϵ<1 ZPTIME

(
2nϵ)

. Their hardness result is built on the
seminal work of Halperin and Krauthgamer [27], who prove that group Steiner tree admits
no log2−ϵ n-approximation for any fixed ϵ > 0, unless NP ⊆ ZTIME

(
npolylog(n)).

For the class of polynomial-time approximation algorithms, the group Steiner tree problem
admits an approximation ratio of O(log2 n) on some special cases, e.g., trees [25] and bounded
treewidth graphs [10, 9]. It is still open whether the group Steiner tree problem in general
graphs admits a polynomial-time O(log2 n)-approximation algorithm; the best running time
to obtain an O(log2 n)-approximation is nO(log n) [13].

The connection between TSPN and group Steiner tree also holds in the reverse direction:
Given an instance of group Steiner tree, one may embed the input metric into a Euclidean
space with distortion O(log n) [8] and cast it as TSPN with “set neighborhoods”.

While we cannot improve the approximation factor in polynomial time, we can do so in
quasi-polynomial time: we give an O(log2 n)-approximation in nO(log log n) time. We obtain
this result by using Arora’s PTAS for TSP [3], together with the framework of Chalermsook
et al. [10, 9], to transform TSPN into a variant of group Steiner tree when the input graph is
a tree, and then employing an O(log2 n)-approximation algorithm.

Our Contribution. Our first contribution is to show that unlike the problem with hyperplane
neighborhoods, the problem with line neighborhoods is APX-hard.

▶ Theorem 1. The TSPN problem for lines in R3 is APX-hard. More specifically, it has no
polynomial time (1 + 1

230000)-approximation unless P = NP.

The reduction is from the vertex cover problem on tripartite graphs. The idea is to
represent the graph edges with lines, where two lines intersect if and only if they correspond to
incident edges. The main challenge is to keep the pairwise distance between non-intersecting

SWAT 2022

10:4 On the Approximability of TSP with Line Neighborhoods

lines large enough. We solve this by carefully placing the intersection points on non-adjacent
edges of a cube. For technical reasons, we do not work directly with this placement, but
rather on a “flattened” version of this point set. Additionally, we want to restrict the optimal
tour so that it visits each line near one of its intersection points with other lines. This is
achieved by forcing the optimal tour to follow a certain closed curve using special point
gadgets (each consists of polynomially many lines), and to visit the lines representing the
edges only at (or close to) intersection points. Visiting an intersection point corresponds to
including the corresponding vertex in the vertex cover of the graph. As a direct consequence
of Theorem 1, we obtain the following.

▶ Corollary 2. The Euclidean TSP problem with k-dimensional flat neighborhoods in Rd is
APX-hard for all 1 ≤ k ≤ d − 2.

To prove Corollary 2, suppose we are given a set L of lines in R3. We can first change each
line ℓ ∈ L into the flat ℓ ×Rk−1, resulting in k-dimensional flats in Rk+2. Since k ≤ d − 2, we
have that Rk+2 is a subspace of Rd, so this is a valid construction for (k, d)-TSPN. Moreover,
any tour in R3 visiting the lines is also a valid tour of the k-flats, and a valid tour of the
k-flats can be projected into a valid tour of L in R3 of less or equal length.

Our second contribution is to show a larger inapproximability factor in higher dimensions
under the Unique Games Conjecture:

▶ Theorem 3. For any ε > 0, there exists a constant c such that there is no (2 − ε)-
approximation algorithm for TSPN with line neighborhoods in Rc·log n, unless the Unique
Games Conjecture is false. Moreover, for any ε > 0, there is a constant c such that it is
NP-hard to give a (

√
2 − ε)-approximation for TSPN with line neighborhoods in Rc·log n.

This reduction is from the general vertex cover problem. Again we represent the edges of
the graph with lines and the vertices correspond to intersection points. This time however the
intersection points are almost equidistant: they are obtained via the Johnson-Lindenstrauss
lemma applied on an n-simplex. This allows the tour to visit the intersection points in any
order. To obtain a direct correspondence with vertex cover, we need to ensure that lines are
visited near intersection points. To this end, we blow up the underlying graph by replacing
each edge by a complete bipartite graph. Thus, we get the following corollary of Theorem 3.

▶ Corollary 4. For any ε > 0 there is a number c = c(ε) such that the Euclidean TSP
problem with k-dimensional flat neighborhoods in Rd has no polynomial (2−ε)-approximation
for any k ∈ {1, . . . , d − c log n}, unless the Unique Games Conjecture is false.

On the positive side, our third contribution is to develop an O(log2 n)-approximation
algorithm with slightly superpolynomial running time.

▶ Theorem 5. There is a deterministic O(log2 n)-approximation algorithm for TSPN with
line neighborhoods in Rd that runs in time nO(log log n) for any fixed dimension d.

The algorithm is based on adapting the dynamic program by Arora [3], and reformulating
TSPN into the problem of finding a solution in the dynamic programming space that visits
all the line neighborhoods. We then build upon the techniques of Chalermsook et al. [10, 9],
and show that this task can be reduced to a variant of the group Steiner tree problem
that admits an O(log2 n)-approximation in slightly superpolynomial running time. The
O(log log n)-factor in the exponent of the running time is a consequence of the running time
of Arora’s algorithm, and it is possible that we can improve it to polynomial time if an
appropriate EPTAS for TSP with running time O(f(ε, d)n log n) is discovered.

Due to space constraints, missing proofs are deferred to the full version of the paper.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:5

Q

P

∈ P

Q

detours

Figure 1 Left: Overview of a basic construction with a cube. Right: The optimal tour must visit
all points of Q, and it makes detours to some points pv.

2 Inapproximability in 3 dimensions

The goal of this section is to prove Theorem 1. The overall setup of our construction is
lightly inspired by a reduction in Elbassioni et al. [22]. The reduction is from vertex cover
on 3-partite graphs (i.e., on graphs G where the vertices can be partitioned into three
independent sets V1, V2 and V3). It is NP-hard to decide whether a given instance has a
vertex cover of size n/2 or if all vertex covers have size at least 34

33
n
2 [14]. In our construction,

each vertex v of G is assigned to a point pv on an edge of a unit cube; the classes V1, V2, V3
are mapped to pairwise non-adjacent and non-parallel (i.e., skew) cube edges. For each edge
uv ∈ E(G), we add the line pupv; see Fig. 1.

Consider now a closed curve γ of length 10 which is disjoint from the cube, but follows
some edges of the cube at a distance c/n for some constant c. Let Q be a set of points along
γ such that any two consecutive points have distance c/(10n).

We define a special point gadget – which consists of a large collection of lines – at each
point q ∈ Q. This ensures that any TSP tour that has length at most 20 will touch an
infinitesimally small ball around each vertex of Q. Consequently, any not too long TSP
tour will have to “trace” γ. The points in P = ∪pv which are placed near the cube edges
are arranged so that one can visit each point pv with a short detour from γ of length c/n.
Given a vertex cover of size k in G one can create a TSP tour of length at most 10 + kc/n,
namely by folowing γ and making the short detour at pv if and only if v is in the vertex
cover. Conversely, by a careful arrangement of the lines and point gadgets, we can ensure
that a tour of length 10 + kc/n implies the existence of a vertex cover of size at most 1.011k.

For technical reasons, we need to transform the constructed cube to a very flat paral-
lelepiped; it is convenient to define the point set Q and the point gadgets only after this
flattening transformation takes place. We are now ready to define our construction.

2.1 The construction
Let G = (V, E) be a tripartite graph on n vertices with partition classes V1, V2, V3. We add
dummy vertices (without any incident edges) to G so that each class has n vertices; the
vertices of Va (a = 1, 2, 3) are denoted by va

1 , . . . , va
n. Notice that the addition of dummy

vertices does not change the set of vertex covers of G. Let C denote the unit cube [0, 1]3, and
let e1, e2, e3 be the unit segments (0, 0, 1)T(1, 0, 1)T , (1, 0, 0)T(1, 1, 0)T and (0, 1, 0)T(0, 1, 1)T

respectively. We assign each vertex va
i to a point on the middle third of ei. The assignment

is denoted by p, and defined as:

SWAT 2022

10:6 On the Approximability of TSP with Line Neighborhoods

p(va
i) =

(n+i

3n , 0, 1)T if a = 1
(1, n+i

3n , 0)T if a = 2
(0, 1, n+i

3n)T if a = 3.

We denote by P = p(V (G)) the set of points created this way. For each edge uv ∈ E(G),
let ℓ(uv) be the line through p(u) and p(v), and let L be the set of lines created this way:
L = {ℓ(uv) | uv ∈ E(G)}. The following technical lemma plays a key role in the contruction.

▶ Lemma 6. If ℓ, ℓ′ ∈ L correspond to non-incident edges, then they are disjoint and the
distance between them is at least 1

20n .

Flattening. We must ensure that the points of Q near a cube edge are similarly distant
from the lines in L incident to the cube edge (we will do this in Claim 9). We achieve
this by transforming the above construction so that the angle of each line ℓ with the plane
x + y + z = 0 is at most some small constant. Practically, we transform the point set P

and the line set L with the linear transformation x 7→ Ax, where A = I − 0.3J and J is the
all-ones matrix.

Essentially, the transformation pushes everything closer to the plane H : x + y + z = 0:
for a given point p and its perpendicular projection q on H, the point Ap is the point
on the segment pq for which dist(q, Ap) = 1

10 dist(q, p). Note that if pq is any segment of
length λ, then its length after the transformation is at least λ/10 and at most λ. When the
transformation is applied to an edge ea of the cube C, then the resulting segment has length
σ =

√
0.72 + 0.32 + 0.32 ≃ 0.8185. Consequently, Ap(va

i) and Ap(va
i+1) has distance σ/(3n).

Let P̄ and L̄ be the resulting point set and line set. Using Lemma 6 and the above
arguments we get the following corollary.

▶ Corollary 7. The minimum distance between points of P̄ is σ
3n , and the minimum distance

between lines of L̄ corresponding to non-incident edges of G is at least 1
200n .

Defining the point gadgets, and wrapping up the construction. For a point set X, let
X̄ denote its image under the flattening transformation A. Let F a

1 and F a
2 be the planes of

the faces of [0, 1]3 incident to ea. The following claim shows that F̄ a
1 and F̄ a

2 are two planes
through ēa whose angle is small.

▷ Claim 8. For a = 1, 2, 3 we have ∢(F̄ a
1 , F̄ a

2) < 1
4 .

Let Ha be the angle bisector plane of F̄ a
1 and F̄ a

2 which does not intersect the image of
C, see Figure 2(i). Within Ha, we place a set of points Qa, which we define next.

Let δ = 1
4000n , and let δ∗ be the height of the isoceles triangle Tδ with base δ and two

sides of length 10δ, that is δ∗ =
√

99.75δ. Consider a half-plane in Ha whose boundary is
parallel to ēa and is at distance δ∗ from it. Within this half-plane, let Qa be a set of at most
4000n points with the following properties: (i) for each p(va

i) there are two points q, q′ ∈ Qa

such that p(va
i), q and q′ form an isoceles triangle of side lengths 10δ, 10δ, δ and (ii) there is

a unique shortest TSP path of Qa, whose edges are of length exactly δ; see Figure 2(ii).
Let Q be a point set with the following properties:
Q1 ∪ Q2 ∪ Q3 ⊆ Q

For any pair of distinct points q, q′ ∈ Q, dist(q, q′) ≥ δ.
Each segment of the minimum TSP tour T (Q) of Q has length δ, and cost(T (Q)) = 10.
The minimum distance of points of Q from L̄ is attained only in Q1 ∪ Q2 ∪ Q3

Q is disjoint from the cylinder Y of axis (0, 0, 0)T (1, 1, 1)T and radius σ/2.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:7

ēa

Ha F̄ a1

F̄ a2

C̄
L̄

δ∗

q ∈ Q

p(vai) p(vai+1) p(vai+2)

δ∗

σ
3n

10δ

δ
δ

Ha

(ēa)⊥

ēa
ē1

ē2ē3

Q

Q3

Q1

Q2

(i)

(ii) (iii)

Q2

Y

Figure 2 (i) Cross-section given by a plane perpendicular to ēa. (The segment ēa appears as a
point, and the plane Ha as a line in this picture.) All lines of L̄ intersect such a plane in the gray
area. (ii) Defining Qa within the plane Ha, so that all points have distance at least δ∗ from ēa. (iii)
Defining Q so that it has all the required properties. The cylinder Y is perpendicular to the plane
x + y + z = 0, a plane to which all points of the construction are close to. The “triangle” defined by
the skew lines ēa wraps around the cylinder Y.

Such a set Q is easy to find, for example by following the lines ēa and connecting them
far from the origin. See Fig. 2(iii) for an illustration.

We need the following claim on the distance of Q from the lines in L̄. Intuitively, it shows
that the points in Q are far from the lines in L̄, and thus a certain detour is necessary to
visit a line in L̄. Note that the bound would not be strong enough without the flattening.

▷ Claim 9. For any q ∈ Q and ℓ ∈ L̄ we have dist(q, ℓ) > 9.9δ.

▶ Lemma 10 (Point gadget). Given a positive integer n and a point q ∈ R3, there is a set
L of O(n6) lines through q such that any TSPN tour of L which is disjoint from the ball
B(q, 1

n3) has length at least 20.

Our construction is the union of the line set L̄ together with a point gadget placed at
each point q ∈ Q; let L∗ denote the resulting line set.

2.2 Putting things together
▶ Lemma 11. If G has a vertex cover of size k, then there is a tour in L∗ of length 10+19δk.
If L∗ has a tour of length 10 + 19δk, then G has a vertex cover of size 1.011k.

The proof of the first part of the lemma is straightforward. To prove the second claim,
we use the fact that the tour must touch the small balls B(q, 1

n3) for each point q ∈ Q by
Lemma 10. We can then consider a portion of the tour between two consecutive ball visits,
i.e., a polygonal curve g that starts near some point q ∈ Q and ends near some other point
q′ ∈ Q, and visits some of the lines in L̄ along the way. In the full version we show that g

cannot touch lines from all three classes, in other words there is a segment ēi such that all
lines visited by g have an endpoint on ēi. The proof relies on the property that Q avoids
the cylinder Y with axis (0, 0, 0)T , (1, 1, 1)T and radius σ/2. Intuitively, if g would touch
lines from all three classes, then it would have to go around the cylinder partially, which

SWAT 2022

10:8 On the Approximability of TSP with Line Neighborhoods

would be too costly. We can then define a vertex cover based on the tour portions g: for
each line ℓ visited by g, the line ℓ has a point on ēi that corresponds to some vertex v of
the graph. These vertices v form a set W which is clearly a vertex cover; the goal is then to
prove that |W | ≤ 1.011k. The proof hinges on the fact that if a tour portion g contributes
s unique vertices to W , then it must jump between non-incident lines of L̄ at least (s − 1)
times, which incurs a cost of at least 20(s − 1)δ by Corollary 7. In case of s = 1, the tour
still needs to visit some line in L̄, which incurs a cost of at least 19.8δ by Claim 9. Putting
these observations together (and that the minimum cost tour of the balls B(q, 1/n3) has
length very close to 10) yields the desired bound on |W |.

Proof of Theorem 1. Suppose that there is a polynomial time algorithm that approximates
TSPN with lines in R3 within a factor of 1 + 1

230000 . Let G be a given 3-partite graph. If
G has a vertex cover of size n/2, then the above construction would have a tour of length
10 + 19δ n

2 = 10.002375. On the other hand, if all vertex covers of G have size at least 34
33

n
2 ,

then all tours of the construction have length at least 10 + 19δ 34
33

n
2·1.011 > 10.00242. As

10.00242/10.002375 > 1 + 1
230000 , we could use the hypothetical approximation algorithm to

distinguish between these two cases in polynomial time, which would imply P = NP. ◀

3 No (2 − ϵ)-approximation Algorithm

In this section we prove Theorem 3. In particular, we will show that when the objects are
lines, TSPN is at least as hard to approximate as the Vertex Cover problem which is known
to be hard to approximate to within a factor of 2 − ε, for any constant ε > 0, under the
Unique Games Conjecture (and inapproximable within a factor of 1.42 unless P = NP [31]).

▶ Theorem 12 ([32]). Unless the Unique Games Conjecture is false, for any constant ε > 0,
there is no polynomial-time algorithm that, given a graph G = (V, E) and an integer k,
distinguishes between the cases (i) G has a vertex cover of size at most k or (ii) G has no
vertex cover of size less than (2 − ε)k.

The main idea behind the reduction is to represent a graph G in Euclidean space such that:
Each vertex v ∈ V (G) corresponds to a point pv ∈ Rd,
Each edge e = uv ∈ E(G) corresponds to a line going through the points pu and pv,
An optimal tour visits each line sufficiently close to the points pv, and therefore the vertex
set corresponding to the points in the vicinity of the tour is a vertex cover.

However, in order to enforce that an optimal tour passes through (or not too far from)
the points pv, we will have to further build upon this idea. In particular, for each vertex v,
instead of constructing only one point pv, we will construct a set Pv of polynomially many
points corresponding to v. If there is an edge e = uw ∈ E(G), then we connect each point
corresponding to u with each point corresponding to w. More precisely, for each edge uv

and for every pair of points (pu, pw) with pu ∈ Pu and pw ∈ Pw, we add a line going through
pu and pw. Notice that the number of edges increases quadratically in the number of vertex
copies. Therefore, tours that visit lines away from the vertices are disproportionally affected,
which forces an optimal tour to visit lines at (or close to) the points in Pv.

Another key aspect of our construction is that we position the points of P :=
⋃

v∈V (G) Pv

in Rd so that the distance between any pair of distinct points is (roughly) the same. This
helps us to have a more direct correspondence between the cost of the optimal tour and the
size of an optimal vertex cover. The reduction is desribed formally in the next subsection.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:9

3.1 Reduction: Vertex Cover to TSP with Line Neighborhoods
Take an instance of the Vertex Cover problem on a graph G = (V, E) with n vertices and m

edges. We first take a lexicographic product of the graph G with an independent set of size
α = n2. Informally speaking, we construct a graph G′ by making α copies of each vertex
v ∈ V (G), and denote the corresponding vertex set by Qv. Then, for each edge vw ∈ E(G),
we add edges between every pair of vertices vi ∈ Qv and wj ∈ Qw, thus forming a complete
bipartite graph on Qv and Qw. More formally, the graph G′ is defined as:

V (G′) = {vi : v ∈ V (G) ∧ i ∈ [α]} and E(G′) = {viwj : vw ∈ E(G) ∧ v ̸= w ∧ i, j ∈ [α]}.

Next, we use the graph G′ to construct an instance I(G′) of the TSPN with line neigh-
borhoods problem in d = O(δ−2 ln n′) dimensions for any small enough δ > 0 and with
n′ = |V (G′)| = α · n. We map each vertex v of G′ to a point pv in Rd such that for any two
points pv and pu with v ≠ u, v, u ∈ V (G′) the distance dist(pv, pu) between them satisfies
the following property: 1 ≤ dist(pv, pu) ≤ 1 + δ.

The fact that this is possible and can be done in polynomial time follows by Theorem 3.1
by Engebretsen, Indyk and O’Donnell [23], which we restate for completeness in the Appendix
as Theorem 19. In particular, we can employ the theorem in order to deterministically map a
unit side length simplex from Rn′−1 to Rd such that the desired property holds for all pairs
of points.

We denote the resulting point set by P . Next, we create a collection of lines L in an
instance of TSPN, by adding to L a line ℓvw passing through points pv and pw if vw ∈ E(G′).

We devote the rest of this section to prove completeness and soundness of our reduction.

Completeness. Suppose the graph G has a vertex cover of size ≤ k. Then we claim that
there is a tour T of cost at most αk(1+δ) that touches each line at least once. To see this, let
S = {v1, . . . , vk} denote the vertex cover of G. By construction, S′ = {vi

j : i ∈ [α] ∧ j ∈ [k]}
is a vertex cover of G′. By the construction of L and by the fact that S′ is a vertex cover of
G′, it follows that any tour that visits points pv1

1
, pv2

1
, . . . pvα

k
(in any order) is a feasible tour,

i.e., it touches all lines in L. So, in total such a tour visits a total of at most αk points, and
the distance between any pair of these points is by construction at most 1 + δ. Thus, there
is a solution to TSPN with cost at most αk(1 + δ).

Soundness. We show that if there is a tour of cost x (where x ≤ αn(1 + δ)), then there is a
vertex cover in G of size at most x

α(1−2∆)λ , where ∆ is a small positive number and λ ∈ [0, 1]
is very close to 1.

The intuition behind ∆ is that it describes the maximum distance that the tour is allowed
to have to a given point, assuming that the vertex corresponding to that point contributes to
the vertex cover. For each point pvi ∈ P (note that vi ∈ V (G′)), let B(vi) be a d-dimensional
ball of radius ∆ centered at pvi . Note that ∆ is small enough so the only lines from L
intersecting a ball B(vi) are the ones that go through pvi . Given a tour T , we say that a
ball B(vi) is non-empty if T ∩ B(vi) ̸= ∅; otherwise, we say that B(vi) is empty. We say
that a line ℓuw is covered by a ball if at least one of the balls B(u) and B(w) is non-empty.
Otherwise ℓuw is not covered by a ball. We first show that any point p ∈ ℓuw that is outside
the two balls corresponding to u and w will not be “too close” to any other line:

▶ Lemma 13. For any point p ∈ ℓuw such that p ̸∈ B(u) and p ̸∈ B(w) and for any
ℓ ∈ L \ {ℓuw} we have dist(p, ℓ) ≥ ∆/2.

We are now ready to prove that any optimal tour T must cover almost all lines by balls:

SWAT 2022

10:10 On the Approximability of TSP with Line Neighborhoods

▶ Lemma 14. Let T be a tour of cost at most x with x ≤ αn(1 + δ) for the instance I(G′).
Then the number of lines of I(G′) that are not covered by balls is at most 2x

∆ .

Proof. Note it is without loss of generality to assume that T consists of line segments with
endpoints on lines of I(G′). By Lemma 13 any line ℓuiwj ∈ Luw that is visited at a point
p with p ̸∈ B(ui) and p ̸∈ B(wj), must have two adjacent segments on T of length at least
∆/2 each. Since the total tour cost of T is at most x there can be at most x

∆/2 = 2x
∆ lines

that are visited by T outside a ball. ◀

Let λ = 1 − ε2 and set α = n2. We can construct a vertex cover of G based on a tour T

the following way: if a set Qv has at least λα non-empty balls, then we add v to the vertex
cover.

▶ Lemma 15. The set S = {v : |∪i∈[a]{vi : B(vi) is non-empty}| ≥ λα} is a vertex cover of
G of size |S| < x

α(1−2∆)λ .

Proof. We first argue that S is a vertex cover of G. Assume for the sake of contradiction that
some edge uv ∈ E(G) is not covered by S. Then it must be the case that there are at least
α(1 − λ) empty balls among the balls corresponding to both u and v. But any line defined
by two such empty balls corresponding to u and v is not covered by a ball. In total there are
more than (1 − λ)2α2 = Ω(n4) many such lines. This is a contradiction, since by Lemma 14
there can be at most 2nαk(1+δ)

∆ = O(n3) such lines in total over the whole instance.
Let S be the vertex cover of G we have obtained. Since the dsitance of any two balls is

at least 1 − 2∆, and we have visited at least αλ balls among Qv for each v ∈ S, the total
cost of the tour is at least

x > |S|αλ(1 − 2∆),

therefore we have that |S| < x
αλ(1−2∆) . ◀

Proof of Theorem 3. Suppose that there is an algorithm that can distinguish in polynomial
time, for any 0 < ε′ and any x ∈ R+, whether there is a tour of length at most x or all tours
have length at least (2 − ε′)x. Take some instance of vertex cover, where the goal is to decide
if there is a vertex cover of size at most k or all vertex covers of the graph have size at least
(2 − ε)k, where ε ∈ (0, 0.1]. By the above polynomial construction, it would be sufficient to
distinguish the cases where I(G′) has a tour of size at most kα(1 − 2∆)λ (implying a vertex
cover of size at most k), or all tours have length at least (2 − ε)kα(1 + δ) (implying that all
vertex covers have size at least (2 − ε)k). If we set δ = ∆ = ε2, then we get that the ratio of
these tours is:

(2 − ε)kα(1 + δ)
kα(1 − 2∆)λ = (2 − ε)(1 + ε2)

(1 − 2ε2)(1 − ε2) < 2,

so the hypothetical algorithm on I(G′) distinguishes these cases, which is a contradiction. ◀

We note that our reduction implies that TSPN with Line Neighborhoods is Vertex Cover
hard, and therefore also inapproximable within a factor of

√
2 − ε unless P = NP [31].

4 A Quasipolynomial-Time Approximation Algorithm

In this section, we will show a quasi-polynomial time algorithm to approximate TSPN for
lines to a factor of O(log2 n). In fact, our approach is more general: we show how to
O(log N log n)-approximate TSPN for discrete neighborhoods of total size N , in running time

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:11

NO(log log N) for any fixed d. In this problem, we are given n neighborhoods Pi ⊂ Rd, which
are discrete sets of points. Let P =

⋃
i∈[n] Pi, N = |P |. Using the approach of Dumitrescu

and Tóth [21], we can convert any instance of TSPN with line neighborhoods into an instance
of discrete TSPN on a set of N = O(n4) points and n neighborhoods. This transformation
has a running time of O(N), and incurs the loss of a constant factor in the approximation.
From now on, we focus on TSPN for discrete neighborhoods.

Our main result is an O(log N log n)-approximation algorithm that runs in time
NO(log log N) for constant d. Our algorithm combines the dynamic program by Arora [3] with
the framework of Chalermsook et al. [10, 9]. As Dumitrescu and Tóth show [21], TSPN is
related to the group Steiner tree problem, and can be reduced to this problem to obtain an
O(log3 n)-approximation. We show that, using the structure of the Euclidean space, which
is exploited in the algorithm presented by Arora for TSP, we can use the techniques of
Chalermsook et al. to approximate discrete instances of TSPN and group Steiner tree in Rd.

We note that, even on tree metrics, the group Steiner tree problem is Ω(log2 n/ log log n)-
hard to approximate under the projection games conjecture [27, 26]. As every tree metric
can be embedded into some Euclidean space with distortion O(

√
log log n) [34, 36, 37],

the group Steiner tree problem in Euclidean space is also hard to approximate to within
Ω(log2 n/(log log n)3/2) under the same assumption.

▶ Theorem 16. There is a randomized O(log N log n)-approximation algorithm for TSPN
with discrete neighborhoods in Rd that runs in time NO(log log N) for constant d.

The theorem above, together with the result of Dumitrescu and Tóth [21] imply Theorem 5,
along with the derandomization techniques of Arora [3] and Charikar et al. [12].

We start by recalling the main steps of the PTAS for TSP by Arora, as our result builds
upon the dynamic program used there. While describing the algorithm, we state some
modifications that are necessary for our purpose. Then, we show how to use the framework
of Chalermsook et al. [10, 9] to find a feasible solution using the dynamic program. We note
that, among different results on Euclidean TSP, the work of Arora yields the best running
time for our algorithm as the use of other techniques, e.g., spanners [42, 5], to improve the
running time is not compatible with our approach. Nevertheless, an existence of a “pure”
dynamic program for Euclidean TSP that has constant number of branches in each recursive
call will immediately lead to a polynomial-time algorithm without further modification.

4.1 Chalermsook et al.’s Framework
Firstly, we discuss the technique of Chalermsook et al. [10, 9] that reduces an instance of the
group Steiner tree problem on bounded treewidth graphs into a tree-instance. In fact, the
algorithm of Chalermsook et al. works on arbitrary graphs, but the size of the tree produced
depends on the running time of a dynamic program or any recursive algorithm that solves
the corresponding point-to-point problem, i.e., the classical Steiner tree problem. Specifically,
the resulting tree will have a polynomial-size only if the recursive algorithm terminates in
polynomial-time. Indeed, each node in the tree corresponds to a state in the search space
of the dynamic program. In our case, while a polynomial-time algorithm is not available
for Euclidean TSP (due to its NP-hardness), there exists a pure dynamic-programming
based PTAS by Arora [3], which suffices for reducing the Euclidean TSP instance into
a tree-instance of the group Steiner tree problem, albeit losing a constant factor in the
approximation ratio.

Now we wish to extract a near-optimal solution of the original problem from the tree-
instance, which appears as a subtree. This is relatively straightforward for the point-to-point
network design problems like the classical Steiner tree problem and Euclidean TSP. The

SWAT 2022

10:12 On the Approximability of TSP with Line Neighborhoods

neighborhood problem (i.e., TSPN), on the other hand, has multiple points where we can
enter a neighborhood, and each choice affects the solution globally. Chalermsook et al. solves
this issue by exploiting linear programs to find an (fractional) optimal solution that satisfies
the global constraints. Henceforth, we are left with rounding a fractional solution obtained
from the LP, and this problem reduces to solving a group Steiner tree problem on the
tree-instance, which admits an O(log N log n)-approximation algorithm.

Lastly, we remark that, while Chalermsook’s algorithm runs in polynomial-time, our
algorithm for TSPN runs in slightly super polynomial-time even in constant dimension.
This is because each recursive call in Arora’s algorithm may branch up to O(log n)2O(d log d)

sub-processes, thus causing the transformation to produce a tree of size O(n2O(d log d) log log n).
The remaining part of this section is devoted to give more details on our algorithm. The

full discussion and proofs are deferred to an appendix due to page limit.

4.2 Arora’s Algorithm
In this section, we briefly summarize the algorithm of Arora [3] (a more detailed description
can be found in Appendix B.1). This algorithm approximates TSP to a factor of 1 + 1/c; for
our purpose, it is sufficient to consider c = 1. Arora’s algorithm has three main steps:
1. Perturbation, which ensures that all coordinates are integral and bounded by O(n);
2. Construction of a shifted quadtree;
3. Dynamic program, which finds the approximate solution for TSP.

The dynamic program is based on the (m, r)-multipath problem (see Definition 21), which
given a cell of the quadtree and a set of pairs of portals on the boundary of the cell, has as
its objective to find a minimum-cost set of paths, each connecting a pair of portals, and such
that all of the points in the cell are visited. We refer to the multiset of portals and their
pairing as the state of an (m, r)-multipath problem.

Two main changes are required to use the algorithm by Arora to approximate TSPN.
First, we must guess a point v0 in an optimum solution, as well as a value R = O(OPT) (see
Appendix B.1.1). Second, we must allow the solutions to the (m, r)-multipath problem to
not visit every point in the cell. We achieve this by adding a visit bit to the state of the
(m, r)-multipath problem on leaves, which indicates if the (unique) point in the cell must be
visited (it is True), or it is sufficient to connect the portals (see Appendix B.1.3).

4.3 Approximating TSPN using the framework by Chalermsook et al.
After perturbation and construction of the shifted quadtree, we use the dynamic program
above to define a dynamic programming graph. The intuition is that a solution to the problem
can be represented as a tree in this graph, where the vertices in the tree correspond to all of
the (m, r)-multipath problems that assemble into the solution.

We now describe the nodes and edges of this graph, denoted by H.
Nodes: There are two types of nodes, which we refer to as subproblem nodes and
combination nodes. The graph contains one subproblem node for every entry of the
modified dynamic programming table in Section 4.2, i.e. one node for each instance of
the (m, r)-multipath problem for every cell, pairing of portals and visit bit (for leaves).
Combination nodes correspond to the possibilities of recursion for a given subproblem:
for a given (m, r)-multipath problem (for a non-leaf cell), there is a combination node for
every possible way for the p paths to cross the boundary between children cells.
Root: The root of H corresponds to (m, r)-multipath on the root cell with no portals.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:13

Edges: There are (directed) edges connecting the node for each (m, r)-multipath prob-
lem to the corresponding combination nodes, and then the combination nodes to the
corresponding nodes for the subproblems in the children cells.
Costs: Edges incident to leaf nodes have cost equal to the corresponding entry in the
dynamic programming table; all other edges have cost 0.

Using this definition, we can represent any (m, r)-light salesman path, that is a path
which crosses each facet of each cell at most r times and always at a portal, as a tree T in
H. For each cell, the solution restricted to that cell consists of a union of disjoint paths,
which induce a set of portals and their pairing, and hence an instance of the (m, r)-multipath
problem. We include the corresponding subproblem node in T . For each non-leaf cell, there
is a combination node which represents the way in which the paths cross boundaries between
children cells. We add that combination node to T , as well as all of the edges containing it.

The trees obtained by this process have a specific structure, which was implicitly formu-
lated in the work of Chalermsook et al. [10, 9], and which we formalize below.

▶ Definition 17 (Solution tree). Let H be a DAG with root r, and its nodes be partitioned
into combination nodes Hc, and subproblem nodes Hp. We say an out-arborescence T ⊆ H

rooted at r is a solution tree if:
1. Every combination node tc ∈ T ∩ Hc has full out-degree (i.e., all children are also in T),
2. Every non-leaf subproblem node t ∈ T ∩ Hp (including the root r) has out-degree 1 in T .

As we mentioned above, we can construct a solution tree for any (m, r)-light salesman
path. The converse is also true: for each solution tree, there is a corresponding (m, r)-light
salesman path. The final requirement for a solution to be feasible is that each neighborhood
must be covered, meaning that the tour must intersect every neighborhood.

Consider a tour corresponding to a solution tree in T . The set of points visited by this
tour is exactly the set of points contained in the leaf cells for subproblem nodes whose visit
bit is set to True. In other words, the points of the leaf subproblems with visit bit True are
visited by the tour, and so the corresponding neighborhoods are covered. Therefore, we can
solve TSPN by formulating it as finding a solution tree that covers every neighborhood.

Let Si be the set of all subproblem nodes whose visit bit is True, and whose cell contains a
point in Pi. We can formulate our goal as finding a minimum-cost solution tree that contains
at least one node of each set Si. This problem resembles GST, and is defined in the work of
Chalermsook et al. [10, 9]. We redefine the problem using our own notation.

▶ Definition 18 (Solution Tree Group Steiner Tree (STGST)). Let H be a DAG with edge-costs
cost : E(H) → R and root r, as well as groups Si ⊆ V (H), for i ∈ [h], and a partition of
the nodes into Hc and Hp. The objective of this problem is to find a minimum-cost solution
tree T that contains at least one vertex of every group Si.

Their work shows that we can obtain an O(log2 n)-approximation to STGST (see [10,
Sec. 4]). By reducing TSPN to STGST, we can apply the same approximation result, thus
proving Theorem 16. We show the details of these steps in Appendix B.2.

5 Conclusion

We have shown that TSPN with line neighborhoods is APX-hard, so a PTAS for this problem
is unlikely. This implies the same hardness for k-dimensional flats in Rd for 1 ≤ k ≤ d − 2,
which together with the known PTAS results for k = 0 and k = d − 1 gives a complete
classification of these problems. We have also proved a stronger inapproximability factor

SWAT 2022

10:14 On the Approximability of TSP with Line Neighborhoods

for d = O(log n): there is no (
√

2 − ε)-approximation assuming P ̸= NP and no (2 − ϵ)-
approximation assuming the UGC. On the positive side, we gave an O(log2 n)-approximation
algorithm in slightly superpolynomial time.

There is still a large gap between the lower bounds and the algorithms for TSPN with
line neighborhoods. Perhaps the most important question related to TSPN is to find a
constant-approximation for line neighborhoods in R3, or to prove that it does not exist.
Furthermore, for general point sets in higher dimensions there is an inapproximability of
Ω(log2 n/(log log n)3/2) under the Projection Games Conjecture. Whether that holds for
flats or lines is an open problem.

References

1 Antonios Antoniadis, Krzysztof Fleszar, Ruben Hoeksma, and Kevin Schewior. A PTAS for
Euclidean TSP with hyperplane neighborhoods. In SODA’19, pages 1089–1105. SIAM, 2019.
doi:10.1137/1.9781611975482.67.

2 Esther M. Arkin and Refael Hassin. Approximation algorithms for the geometric covering
salesman problem. Discret. Appl. Math., 55(3):197–218, 1994.

3 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

4 Sanjeev Arora, Michelangelo Grigni, David R. Karger, Philip N. Klein, and Andrzej Woloszyn.
A polynomial-time approximation scheme for weighted planar graph TSP. In SODA’98, pages
33–41. ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314632.

5 Yair Bartal and Lee-Ad Gottlieb. A linear time approximation scheme for Euclidean TSP. In
FOCS’13, pages 698–706. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.80.

6 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput.,
45(4):1563–1581, 2016. doi:10.1137/130913328.

7 Hans L. Bodlaender, Corinne Feremans, Alexander Grigoriev, Eelko Penninkx, René Sitters,
and Thomas Wolle. On the minimum corridor connection problem and other generalized
geometric problems. Comput. Geom., 42(9):939–951, 2009. doi:10.1016/j.comgeo.2009.05.
001.

8 Jean Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal
of Mathematics, 52(1-2):46–52, 1985.

9 Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, and Daniel Vaz.
Survivable network design for group connectivity in low-treewidth graphs. In APPROX-
RANDOM, volume 116 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

10 Parinya Chalermsook, Syamantak Das, Bundit Laekhanukit, and Daniel Vaz. Beyond metric
embedding: Approximating group Steiner trees on bounded treewidth graphs. In SODA’17,
pages 737–751. SIAM, 2017. doi:10.1137/1.9781611974782.47.

11 T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality: Improved
PTAS for TSP (with neighborhoods) in doubling metrics. ACM Trans. Algorithms, 14(1):9:1–
9:18, 2018. doi:10.1145/3158232.

12 Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. Rounding via trees:
Deterministic approximation algorithms for group Steiner trees and k-median. In Jef-
frey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 114–123. ACM, 1998.
doi:10.1145/276698.276719.

13 Chandra Chekuri and Martin Pál. A recursive greedy algorithm for walks in directed graphs.
In FOCS’05, pages 245–253. IEEE Computer Society, 2005. doi:10.1109/SFCS.2005.9.

https://doi.org/10.1137/1.9781611975482.67
https://doi.org/10.1145/290179.290180
http://dl.acm.org/citation.cfm?id=314613.314632
https://doi.org/10.1109/FOCS.2013.80
https://doi.org/10.1137/130913328
https://doi.org/10.1016/j.comgeo.2009.05.001
https://doi.org/10.1016/j.comgeo.2009.05.001
https://doi.org/10.1137/1.9781611974782.47
https://doi.org/10.1145/3158232
https://doi.org/10.1145/276698.276719
https://doi.org/10.1109/SFCS.2005.9

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:15

14 Andrea E. F. Clementi, Pierluigi Crescenzi, and Gianluca Rossi. On the complexity of
approximating colored-graph problems. In COCOON’99, volume 1627 of Lecture Notes in
Computer Science, pages 281–290. Springer, 1999. doi:10.1007/3-540-48686-0_28.

15 Mark de Berg, Joachim Gudmundsson, Matthew J. Katz, Christos Levcopoulos, Mark H.
Overmars, and A. Frank van der Stappen. TSP with neighborhoods of varying size. J.
Algorithms, 57(1):22–36, 2005. doi:10.1016/j.jalgor.2005.01.010.

16 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction
decomposition in h-minor-free graphs and algorithmic applications. In STOC’11, pages 441–450,
2011. doi:10.1145/1993636.1993696.

17 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In STOC’03, pages 473–482. ACM, 2003. doi:10.1145/780542.780612.

18 Moshe Dror and James B. Orlin. Combinatorial optimization with explicit delineation of
the ground set by a collection of subsets. SIAM J. Discret. Math., 21(4):1019–1034, 2008.
doi:10.1137/050636589.

19 Adrian Dumitrescu. The traveling salesman problem for lines and rays in the plane. Discrete
Math., Alg. and Appl., 4(4):44:1–44:12, 2012.

20 Adrian Dumitrescu and Joseph S. B. Mitchell. Approximation algorithms for TSP with
neighborhoods in the plane. J. Algorithms, 48(1):135–159, 2003. doi:10.1016/S0196-6774(03)
00047-6.

21 Adrian Dumitrescu and Csaba D. Tóth. The traveling salesman problem for lines, balls, and
planes. ACM Trans. Algorithms, 12(3):43:1–43:29, 2016. doi:10.1145/2850418.

22 Khaled M. Elbassioni, Aleksei V. Fishkin, and René Sitters. Approximation algorithms for
the Euclidean traveling salesman problem with discrete and continuous neighborhoods. Int. J.
Comput. Geometry Appl., 19(2):173–193, 2009. doi:10.1142/S0218195909002897.

23 Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. Derandomized dimensionality reduction
with applications. In SODA’02, pages 705–712. SIAM, 2002. URL: http://dl.acm.org/
citation.cfm?id=545381.545476.

24 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. Approximating metrics by tree metrics.
SIGACT News, 35(2):60–70, 2004. doi:10.1145/992287.992300.

25 Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the
group Steiner tree problem. J. Algorithms, 37(1):66–84, 2000. doi:10.1006/jagm.2000.1096.

26 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k / log log k)-approximation
algorithm for directed Steiner tree: a tight quasi-polynomial-time algorithm. In STOC’19,
pages 253–264. ACM, 2019. doi:10.1145/3313276.3316349.

27 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In STOC’03,
pages 585–594. ACM, 2003. doi:10.1145/780542.780628.

28 Su Jia and Joseph S. B. Mitchell. Geometric tours to visit and view polygons subject to time
lower bounds, 2019. URL: https://www.andrew.cmu.edu/user/sjia1/wrp_with_tlb.pdf.

29 Håkan Jonsson. The traveling salesman problem for lines in the plane. Inf. Process. Lett.,
82(3):137–142, 2002. doi:10.1016/S0020-0190(01)00259-9.

30 Subhash Khot. On the power of unique 2-prover 1-round games. In STOC’02, pages 767–775.
ACM, 2002. doi:10.1145/509907.510017.

31 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have
near-perfect expansion. In FOCS’18, pages 592–601. IEEE Computer Society, 2018. doi:
10.1109/FOCS.2018.00062.

32 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

33 Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In FOCS’06,
pages 119–132. IEEE Computer Society, 2006. doi:10.1109/FOCS.2006.9.

34 Nathan Linial, Avner Magen, and Michael E Saks. Low distortion Euclidean embeddings of
trees. Israel Journal of Mathematics, 106(1):339–348, 1998.

SWAT 2022

https://doi.org/10.1007/3-540-48686-0_28
https://doi.org/10.1016/j.jalgor.2005.01.010
https://doi.org/10.1145/1993636.1993696
https://doi.org/10.1145/780542.780612
https://doi.org/10.1137/050636589
https://doi.org/10.1016/S0196-6774(03)00047-6
https://doi.org/10.1016/S0196-6774(03)00047-6
https://doi.org/10.1145/2850418
https://doi.org/10.1142/S0218195909002897
http://dl.acm.org/citation.cfm?id=545381.545476
http://dl.acm.org/citation.cfm?id=545381.545476
https://doi.org/10.1145/992287.992300
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1145/3313276.3316349
https://doi.org/10.1145/780542.780628
https://www.andrew.cmu.edu/user/sjia1/wrp_with_tlb.pdf
https://doi.org/10.1016/S0020-0190(01)00259-9
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1109/FOCS.2006.9

10:16 On the Approximability of TSP with Line Neighborhoods

35 Cristian S. Mata and Joseph S. B. Mitchell. A new algorithm for computing shortest paths in
weighted planar subdivisions (extended abstract). In SoCG’97, pages 264–273. ACM, 1997.
doi:10.1145/262839.262983.

36 Jiří Matoušek. On embedding trees into uniformly convex Banach spaces. Israel Journal of
Mathematics, 114(1):221–237, 1999.

37 Jiri Matoušsek. Lectures on discrete geometry, volume 212. Springer Science & Business Media,
2013.

38 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

39 Joseph S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane. In
SODA’07, pages 11–18. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.
1283385.

40 Joseph S. B. Mitchell. A constant-factor approximation algorithm for TSP with pairwise-
disjoint connected neighborhoods in the plane. In SoCG’10, pages 183–191. ACM, 2010.
doi:10.1145/1810959.1810992.

41 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theor.
Comput. Sci., 4(3):237–244, 1977.

42 Satish Rao and Warren D. Smith. Approximating geometrical graphs via "spanners" and
"banyans". In STOC’98, pages 540–550, 1998. doi:10.1145/276698.276868.

43 Shmuel Safra and Oded Schwartz. On the complexity of approximating TSP with neigh-
borhoods and related problems. Comput. Complex., 14(4):281–307, 2006. doi:10.1007/
s00037-005-0200-3.

44 Luca Trevisan. When Hamming meets Euclid: The approximability of geometric TSP and
Steiner tree. SIAM J. Comput., 30(2):475–485, 2000. doi:10.1137/S0097539799352735.

A Theorem 3.1 from [23]

▶ Theorem 19 (3.1 from [23]). Let v1, v2, . . . vm be a sequence of vectors in Rd and let
ε, F ∈ (0, 1]. Then we can compute, in deterministic time O(dm

(
log n + 1

ε

)O(1)), a linear
mapping A : Rd → Rk where k = O(log(1/F)/ε2) such that:

k|vi|2 ≤ |Avi|2 ≤ k(1 + ε)|vi|2

for at least a fraction 1 − F of i’s.

B Details of Section 4

Among all the PTASes for Euclidean TSP, we choose to base our algorithm on the work of
Arora, as it results in the lowest running time for our algorithm. Unfortunately, the results
of Rao and Smith [42], and Bartal and Gottlieb [5] cannot be adapted for our purposes, since
their algorithms use spanners to reduce the total weight of the graph to be a constant factor
away from the optimum. It is unclear if this technique can be used for discrete TSPN, as the
spanner contains the entire set P of points, and a minimum-cost tree spanning P may be
much larger than the optimum solution. In other words, the total weight of the graph can
be more than a constant factor away from the weight of an optimal solution.

https://doi.org/10.1145/262839.262983
https://doi.org/10.1137/S0097539796309764
http://dl.acm.org/citation.cfm?id=1283383.1283385
http://dl.acm.org/citation.cfm?id=1283383.1283385
https://doi.org/10.1145/1810959.1810992
https://doi.org/10.1145/276698.276868
https://doi.org/10.1007/s00037-005-0200-3
https://doi.org/10.1007/s00037-005-0200-3
https://doi.org/10.1137/S0097539799352735

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:17

B.1 Arora’s Algorithm
Arora’s algorithm consists of three main steps:
1. Perturbation, which changes the instance so that all coordinates are integral and bounded

by O(n);
2. Construction of a shifted quadtree;
3. Dynamic program, which finds the approximate solution for TSP.

We describe all of these steps, including any minor alterations needed for them to work
in our setting.

B.1.1 Perturbation
Arora shows how to perturb the solution such that:
1. All nodes have integer coordinates;
2. Every (non-zero) distance between two points is at least 8 units;
3. The maximum distance between two points is O(n).

Given a bounding box on the instance of size L0, Arora achieves this perturbation by
snapping points to an appropriately fine grid. To use this step for our problem, we need
to specify a value of L0 such that OPT ≤ L0 ≤ O(OPT). To this effect, we guess the value
of OPT rounded up to a power of 2, as well as a vertex v0 that is included in an optimum
solution. We implement this guessing step by iterating over all of the possible values, and
computing a feasible solution for each possibility. The best feasible solution we obtain will
be at least as good as the solution for the correct guess (in expectation).

The guessing step is done as follows. We start by guessing a vertex v0 that is contained in
an optimum solution. Then, we compute the minimum radius R0 such that at least one point
from each neighborhood is contained in the ball B of radius R0 centered at v0. Such a ball
can be computed simply by iterating over all neighborhoods and finding the neighborhood’s
nearest point to v0. If the optimum solution contains v0, then its cost is at least R0, as it
must visit the farthest neighborhood, at distance R0. On the other hand, OPT ≤ 2R0n, since
the ball B contains at least one point from each neighborhood, and the distance between
any two points in B is at most 2R0. Hence, there is a tour of cost at most 2R0n. Knowing
that R0 ≤ OPT ≤ 2R0n (assuming v0 is in an optimum solution), we can simply run the
algorithm for every v0 and for any R ∈ [R0, 4R0n] that is a power of 2.

Given a vertex v0 and a guess R for the value of the optimum solution, we set L0 = R/2
(so that if R/2 ≤ OPT ≤ R, L0 ≤ OPT). Finally, we remove all of the vertices u ∈ P that
are at a distance more than R from v0, that is, dist(v0, u) > R. A solution containing both
v0 and u would cost more than R ≥ OPT, implying that for correct choices of R and v0, such
vertices can be safely removed. We now have a bounding box of side length 4L0 containing
all the points in the instance, and hence the perturbation step in Arora’s algorithm ensures
the stated properties.

B.1.2 Construction of a shifted quadtree
Let L = O(n) be the size of the bounding box. The algorithm computes a random shift
a′ = (a′

1, a′
2, . . . , a′

d), with a′
i ∈ {0, . . . , L − 1}, i ∈ [d]. Then, it constructs a quadtree where

the dissection points are shifted according to a′. The resulting quadtree has height O(log n),
and O(n log n) cells. For our purpose, no changes are needed to this process.

SWAT 2022

10:18 On the Approximability of TSP with Line Neighborhoods

B.1.3 Dynamic Program
Arora’s algorithm uses dynamic programming to find a salesman path, which may visit
additional points along the boundary of the cells of the quadtree. The following definition
formalizes this concept.

▶ Definition 20. Let m, r be positive integers. An m-regular set of portals for a shifted
dissection is a set of points on the facets of the cells in it. Each cell has a portal at each
of its vertices and m other portals on each facet, placed in a d − 1-dimensional square grid
whose vertices are identical to the vertices of the facet.

A salesman path is a path in Rd that visits all the input points, and some subset of
portals. It may visit a portal more than once.

The salesman path is (m, r)-light with respect to the shifted dissection if it crosses each
facet of each cell in the dissection at most r times and always at a portal.

The goal of the dynamic program is to find a minimum cost (m, r)-light salesman path,
for the instance. For our purpose, a 2-approximation of TSP is sufficient, and hence we
set m = O(

√
d log n)d−1 and r = O(

√
d)d−1. By restricting the solution to cross the cell

boundaries only through portals, we can see that any solution to the problem, restricted to
a single cell, consists of a set of paths that together cover all of the points inside the cell.
Since we want to find an (m, r)-light solution, this further implies that at most r portals
per facet of the cell are used. This motivates the definition of the (m, r)-multipath problem,
which is the problem solved by the dynamic program for each cell:

▶ Definition 21 ((m, r)-multipath problem [3]). An instance of this problem is specified by
the following inputs:
1. A nonempty cell in the quadtree.
2. A multiset of r portals on each of the 2d facets of this cell such that the sum of the sizes

of these multisets is an even number 2p ≤ 2dr.
3. A pairing (a1, a2), (a3, a4), . . . (a2p−1, a2p) between the 2p portals specified in Item 2.

The goal in the (m, r)-multipath problem is to find a minimum cost collection of p paths in
the cell that is (m, r)-light. The i-th path connects a2i−1 to a2i, and the p paths together visit
all the points in the cell.

The dynamic programming table consists of all of these instances of (m, r)-multipath
problem, for each cell and pairing of portals (considered here to include the multiset of
portals in Item 2. We refer to the multiset of portals and their pairing as the state of an
(m, r)-multipath problem.

The values of the table can be computed recursively. The entries corresponding to leaves
of the quadtree can be easily determined: given the portal set of size 2p and the pairing,
we simply need to find the shortest paths between the paired portals, and add the (single)
point in the cell to one of these paths. For all other entries, the algorithm enumerates all
possible ways that the p paths can cross the boundary between children cells. For each of
these arrangements, the cost of the solution can be obtained by summing the costs of the
respective instances for the children cells. Once all of the entries have been computed, the
minimum cost (m, r)-light salesman path can be found by looking at the (m, r)-multipath
problem for the root cell of the quadtree with no portals used.

The dynamic programming table contains a total of O
(
n(log n)O(d)(d−1)/2)

entries, and
the value at each cell can be computed in time (log n)O(d)(d−1)/2 . Therefore, the running time
of this algorithm is O

(
n(log n)O(d)(d−1)/2)

.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:19

Our algorithm uses a very similar dynamic program, with only a small change needed at
the leaves. In the TSP problem, all of the points must be visited, which implies that any
feasible solution to the (m, r)-multipath problem must visit all the points contained in that
cell. However, the same is not true of the TSPN problem: as long as one point from each
neighborhood is visited in the whole path, the solution is feasible, which means that not all
neighborhoods are visited in every cell that intersects them. To that effect, we add an extra
input to the (m, r)-multipath problem for leaf cells, which we call visit bit. If the visit bit
is set to True, then the (single) point in the cell must be visited; if it is set to False, then
the solution only needs to connect the portals as specified in the input (meaning that the
optimum solution will be a union of shortest paths between paired portals).

We remark that finding a solution in this new dynamic program can be thought of as
two different tasks: choosing which points in the leaf cells should be visited (by choosing the
corresponding subproblems with visit bit True or False) and choosing the tour visiting these
points (using the portals as in the original dynamic program).

B.2 Approximating TSPN using the framework by Chalermsook et al.
To prove Theorem 16, we need to show how to formulate TSPN as an instance of STGST,
and then show how to obtain an O(log2 n)-approximation to this problem. In this section,
we provide details to both of these steps.

B.2.1 Formulating discrete TSPN as an instance of STGST
We will formally describe the construction of a DAG H based on the dynamic program for
TSP. We assume that the perturbation and random shift steps implemented by Arora have
been performed, with the alterations described in Section 4.2.

We now consider the dynamic program as presented by Arora, and construct our DAG
H as follows. The vertex set is partitioned into subproblem nodes Hp and combination nodes
Hc.

For every (m, r)-multipath subproblem considered by Arora, we create a subproblem node.
Formally, for every cell C in the quadtree, and every state A or (A, b) (where b represents
the visit bit if C is a leaf cell), we create a node t[C, A] (resp. t[C, A, b]) in Hp.
For every non-leaf cell C with children C1, . . . , Ck and states X for C and Xi for Ci,
we add a combination node tc[C, X, {Xi}i∈[k]] if the states are consistent, that is, if
the combination of the portal pairings for each of the cells Ci forms the portal pairing
represented by X in C.
For each combination node t′ = tc[C, X, {Xi}i∈[k]], we add edges from t[C, X] to t′ and
from t′ to t[Ci, Xi] for each i ∈ [k].
The edges entering leaf nodes t[C, A, b] have cost equal to the minimum cost of a solution
to the (m, r)-multipath problem in C with portal pairings specified by A, and which
visits the point in C if b = True.
All other edges have cost 0.

The root of H is the node t[C, X], where C is the root cell of the quadtree (the bounding
box of the instance), and X represents an empty set of portals. The height of the resulting
DAG H is O(log n), since its structure is similar to the dynamic program of Appendix B.1.

▶ Lemma 22. Let v0 ∈ P be a point and R0 be a radius guessed in Appendix B.1.1.
For every (m, r)-light tour F in the resulting quadtree there is a solution tree X in H

such that cost(F) = cost(X) and they visit the same set of points in P .
Similarly, for any solution tree X ⊂ H, there is an (m, r)-light tour F of the same cost,

which visits the same points in P .

SWAT 2022

10:20 On the Approximability of TSP with Line Neighborhoods

B.2.2 Obtaining an O(log2 n)-approximation
We will use the following theorem, which is implicit in the work of Chalermsook et al. [10,
Section 4]. We remark that, even though the work of Chalermsook et al. is formulated in
terms of the tree decomposition of a graph, it also applies when obtaining the DAG from a
quad-tree, as the necessary properties still hold.

▶ Theorem 23 ([10, 9]). Let H be a DAG with edge-costs cost : E(H) → R and root r, as
well as groups Si ⊆ V (H), for i ∈ [h], and a partition of the nodes into Hc and Hp. There is
an algorithm that outputs a solution tree X ⊆ H sampled from a distribution D such that:
1. EX∼D[cost(X)] ≤ cost(OPT), where cost(OPT) denotes the cost of the optimal solution
2. For any group Si, the probability that the group is covered (for some constant α > 1) is

PrX∼D
[
|Si ∩ X| > 0

]
≥ 1

α height(H)

The algorithm runs in time ∆(H)O(height(H)), where ∆(H) is the max-degree of H.

We will now show how to use Theorem 23 and Lemma 22 to obtain an O(log N log n)-
approximation for the TSPN problem on discrete neighborhoods, and hence prove Theorem 16.

We start by guessing a vertex v0 to be the starting point of our solution. For every
vertex v0 ∈ P , we compute the minimum radius R0 such that every neighborhood contains a
point at distance at most R0 from v0. Next, we guess R, an approximation for OPT, in the
range [R0, 4nR0]. For the powers R = 2i, i ∈ Z, R0 ≤ R ≤ 4nR0, we can now preprocess the
instance according to the perturbation step of Arora’s algorithm. (Appendix B.1.1). Next,
we enumerate the shift a = (a1, . . . , ad) ∈ {0, . . . , L − 1}d, and construct the shifted tree
as in Arora’s algorithm (Appendix B.1.2). Finally, we construct the DAG H based on the
dynamic programming table, as specified in Appendix B.2.1. We recall that the height of
the tree, as well as of DAG H is O(log N).

We now use Theorem 23 repeatedly to obtain solution trees X1, . . . , Xℓ, where ℓ =
c log n log N , and c is a large constant. Then, we use Lemma 22 to convert each solution tree
Xi into a tour Fi, and finally take the union of all these tours to obtain a solution F . While
F is not necessarily a tour, it is simple enough to remove crossings. For every neighborhood
Pi that is not visited by F , we add a detour visiting the closest point in Pi. We denote by
F ∗ the minimum-cost solution among all solutions F for all the enumerated values of v0, R0,
and a.

By construction, F ∗ is a feasible solution, as it is a tour that visits every group. To
prove that it is O(log N log n)-approximate, consider the solution F ′ that we obtained for the
correct values of v0, R0, and a, that is, for a vertex v0 in an optimum solution, R0 such that
R0/2 ≤ OPT ≤ R0, and a shift a for which an (m, r)-light tour exists. By Theorem 23, each
of the solution trees X ′

i obtained has expected cost at most OPT, and by Lemma 22, the
corresponding tour F ′

i also has expected cost at most OPT. Therefore, the union of all tours
F ′

i costs at most O(log N log n OPT) in expectation. The probability that a neighborhood is
not visited, and hence that we must add a detour, is (for sufficiently large c)

Pr

⋂
j

|Si ∩ Xj | = 0

 ≤
(

1 − 1
α height(H)

)ℓ

≤ e−O(log n)

≤ 1
n3

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, and D. Vaz 10:21

We conclude that the expected cost of F ′ is at most O(log N log n OPT), and since, by
Lemma 22, cost(F ∗) ≤ cost(F ′), F ∗ is O(log N log n)-approximate in expectation. By The-
orem 23, the running time of our algorithm is

NO(d) (log N)O(d)(d−1)/2 O(log N) = NO(d)(d−1)/2 log log N .

This completes the proof of Theorem 16.

SWAT 2022

Dynamic Approximate Multiplicatively-Weighted
Nearest Neighbors
Boris Aronov #

Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA

Matthew J. Katz #

Department of Computer Science, Ben Gurion University of the Negev, Beer Sheva, Israel

Abstract
We describe a dynamic data structure for approximate nearest neighbor (ANN) queries with respect
to multiplicatively weighted distances with additive offsets. Queries take polylogarithmic time, while
the cost of updates is amortized polylogarithmic. The data structure requires near-linear space and
construction time.

The approach works not only for the Euclidean norm, but for other norms in Rd, for any fixed d.
We employ our ANN data structure to construct a faster dynamic structure for approximate

SINR queries, ensuring polylogarithmic query and polylogarithmic amortized update for the case of
non-uniform power transmitters, thus closing a gap in previous state of the art.

To obtain the latter result, we needed a data structure for dynamic approximate halfplane range
counting in the plane. Since we could not find such a data structure in the literature, we also show
how to dynamize one of the known static data structures.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Nearest neighbors, Approximate nearest neighbors, Weighted nearest neigh-
bors, Nearest neighbor queries, SINR queries, Dynamic data structures

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.11

Funding Supported by Grants 2019715/CCF-20-08551 from the US-Israel Binational Science Foun-
dation/US National Science Foundation.
Boris Aronov: Supported in part by NSF grant CCF 15-40656.
Matthew J. Katz : Supported in part by Grant 1884/16 from the Israel Science Foundation.

Acknowledgements We wish to thank Pankaj K. Agarwal for his help and encouragement, and
David Mount for a clarification regarding the approximating polytope in [8].

1 Introduction

Nearest-neighbor (NN) search is a fundamental problem that has received much attention in
a variety of research fields, such as databases, machine learning, and statistics. It is a central
ingredient in clustering and pattern matching algorithms, as well as in numerous retrieval
and recommendation systems. In this study, we are interested in the multi-shot version of the
problem: Given a set P in some space S and a distance function d(·, ·) on S, preprocess P

for nearest-neighbor queries, where such a query is specified by an element q ∈ S and the
goal is to return an element of P that is nearest to q under d among all elements in P . In
this study, we shall restrict our attention to the case where the input set consists of points
in Rd and the distance is measured by a weighted version of a metric derived from a norm.

Let P = {p1, . . . , pn} be a set of n points in Rd, such that each point pi ∈ P is
associated with a positive real weight wi and a non-negative real weight ai, and let ∥·∥
denote any norm on Rd. The distance from q ∈ Rd to pi ∈ P is now defined as dW,A(q, pi) :=
wid(q, pi) + ai, where d(q, pi) := ∥q − pi∥ and W and A are the sets of multiplicative

© Boris Aronov and Matthew J. Katz;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0003-3110-4702
mailto:matya@cs.bgu.ac.il
https://orcid.org/0000-0002-0672-729X
https://doi.org/10.4230/LIPIcs.SWAT.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

and additive weights, respectively. We consider nearest-neighbor search in this setting,
that is, following a preprocessing stage, service a sequence of queries of the form: given a
query point q, return a point pi ∈ P realizing minpi∈P dW,A(q, pi). Notice that when ∥·∥ is
the Euclidean norm, we obtain the additively weighted Euclidean nearest-neighbor search
problem, if w1 = · · · = wn = 1, the multiplicatively weighted Euclidean nearest-neighbor
search problem, if a1 = · · · = an = 0, and the combined additively and multiplicatively
weighted Euclidean nearest-neighbor search problem, otherwise.

More specifically, we consider dynamic approximate nearest-neighbor (ANN) search in
this setting, where, in addition, points may be inserted into and deleted from P over time.
An approximate nearest neighbor of q in P is a point pj ∈ P , such that dW,A(q, pj) ≤
(1 + ε)dW,A(q, pi), where pi is a nearest neighbor of q in P and ε > 0 is a prespecified
parameter. The reason for considering approximate, rather than exact, nearest-neighbor
search is that already in the plane the induced (multiplicatively-weighted) Voronoi diagram
may have complexity Θ(n2) [11], so constructing it explicitly for sufficiently large values of n

is impractical. On the other hand, we want to be able to handle queries efficiently, typically
in time polylogarithmic in n, thus we resort to approximate queries.

Although there are known solutions for approximate nearest-neighbor search (see below),
we are not aware of any published technique suitable for efficient updates of P , where
each such update involves the adjustment of the data structure following an insertion or
a deletion of a point to/from P . We present a data structure for dynamic approximate
nearest-neighbor search in this general setting. The data structure is of size O(tn polylog n),
which is also the bound on its construction time; it supports approximate nearest-neighbor
queries in O(t polylog n) time and it can be updated in O(t polylog n) amortized time, where
t =

√
1/ε for d = 2, t = 1/ε for d = 3, and in general t = 1/ε(d−1)/2 for d ≥ 2.

The case where ∥·∥ is the Euclidean norm and a1 = · · · = an = 0, namely, dynamic
approximate multiplicatively weighted Euclidean nearest-neighbor search, is of special interest,
since (i) it applies to many practical scenarios, and (ii) it is more difficult than some of the
other common cases, such as in the additively weighted scenario. In Section 5, we show that
our data structure for this case enables us to significantly improve the best known solution
to the most general version of the approximate SINR (signal-to-interference-plus-noise ratio)
query problem. In this version, we are given a set of simultaneous transmitters, where each
transmitter is represented by a point in the plane and has its own power level. Moreover,
transmitters may appear or disappear over time. The goal is to construct a dynamic data
structure, so that given a receiver (i.e., a point) q, one can (approximately) determine which
transmitter (if any) is received at q, according to the SINR model (see Section 5). After
a preprocessing stage of near-linear time, in which a data structure of near-linear size is
constructed, we can answer a query in polylogarithmic time and insert or delete a transmitter
in polylogarithmic amortized time. In contrast, in the best previous solution, the query time
was roughly

√
n [4]. Our algorithm is randomized, with performance guarantees holding with

high probability; see Theorem 5.
To obtain the latter result, we also need a data structure for handling approximate

halfplane range counting queries in a dynamic setting in two dimensions. Since we could not
find such a data structure in the literature, we also show how to dynamize one of the known
static data structures. We include the description for completeness.

Previous work

There is extensive literature, both in computational geometry and in other fields, on nearest-
neighbor (NN) and approximate nearest-neighbor (ANN) data structures; see, for example,
[9,10,15,17,18,20,26], and the book [30] for a database perspective. (As we assume throughout

B. Aronov and M. J. Katz 11:3

that the dimension d is a small constant, the work addressing nearest-neighbor queries in
high dimension [3] is out of scope for this summary.) This includes structures under the
Euclidean metric and other metrics, supporting both exact and approximate queries, possibly
in a dynamic setting. Moreover, many of these structures can also accommodate (with
minor adjustments) additive weights (i.e., a non-negative weight ai is added to the distance
between q and pi). However, multiplicative weights are much more challenging, and we are
only aware of two teams of researchers who studied this case in low dimension, as well as
more general ones, albeit not in a dynamic setting.

Next we discuss the work of these two teams. Recall first that, if we require a near-
linear-size structure, then we need to resort to approximation. Har-Peled and Kumar [22]
were the first to present a near-linear-size data structure with logarithmic query time for
approximate multiplicatively weighted Euclidean nearest-neighbor search. Actually, their
result is for a much more general problem, where the input is a set F of d-variate functions,
satisfying several rather weak conditions, and the goal is to construct a data structure, so
that given a query point q ∈ Rd, one can return a function in F whose value at q is at
most 1 + ε times the minimum value attained at q by any function in F . Now, if we define
fi(q) = wi∥q − pi∥, we get approximate multiplicatively weighted nearest-neighbor search.
The bounds that they obtain in this case are O(n

ε2(d+1) logd+2 n + n
εd(d+1)) for the structure

size, O(n
ε2(d+1) log2d+3 n + n

εd(d+1)) for the construction time, and O(log n
ε) for the query time.

Subsequently, Abdelkader et al. [1] presented a data structure, based on convexification,
for approximate multiplicatively weighted Euclidean nearest-neighbor search (see also [28]).
Their result is actually for scaling distance functions, which also include the Minkowski
distance (provided the unit ball is fat and smooth) and the Mahalanobis distance. It improves
the bound on the structure size to O(n log 1

ε

εd/2), while retaining the O(log n
ε) bound on the query

time, thus almost matching (up to a log 1
ε factor) the best known bounds for approximate

Euclidean nearest-neighbor search [9]. However, it is not clear how fast this structure can be
constructed.

Our results

(i) In Section 2 we describe a near-linear-size data structure that supports queries for
approximate Euclidean nearest neighbors with multiplicative weights in the plane. The
query and the amortized update times are both polylogarithmic.

(ii) In Section 3 we explain how to handle other norms and also a combination of additive
and multiplicative weights.

(iii) We point out, in Section 4, that a further generalization extends the results of Section 3
to higher dimensions.

(iv) We show how the data structures described above allow approximate dynamic SINR
queries with logarithmic query times and amortized logarithmic time updates; see
Section 5. The data structure can accommodate non-uniform transmitter powers; to
the best of our knowledge it was not known how to achieve this performance for the
case of non-uniform powers.

(v) To facilitate the latter result, we also show in Section 6 how to dynamize with minimal
overhead a data structure for approximate halfplane range counting queries.

The purpose of this paper is to demonstrate the existence of several related data structures,
of near-linear size and construction time, polylogarithmic query time, and polylogarithmic
amortized update time. We did not make any effort to optimize the performance of these
structures and often used the “classical” well known tools as the building blocks. More

SWAT 2022

11:4 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

precisely, it was not our objective to optimize polylogarithmic factors; this may be a
worthwhile project on its own. Hence, with one or two exceptions, we leave the precise
polylogarithmic factors unspecified.

2 Multiplicatively weighted Euclidean nearest neighbors

For ease of presentation, we start with the basic case, that is, we consider the Euclidean norm
in the plane with multiplicative weights. Generalizations to other norms, higher dimensions,
and more complicated weights are described in some detail subsequently.

Consider a set P = {p1, . . . , pn} of n points in the plane. The points have an associated
(multiplicative) weight function W : P → R+; the (positive) weight of pi will be denoted
by wi := W (pi). The (multiplicatively weighted) distance from q ∈ R2 to p ∈ P is defined
as dW (q, p) := W (p) · d(q, p), where d(p, q) := ∥p − q∥ stands for the Euclidean distance
and ∥·∥ – for the Euclidean norm, in this section. A multiplicatively weighted Euclidean
nearest neighbor N(q) = N(q; P, W) of q ∈ R2 is a point p ∈ P realizing minp∈P dW (q, p).
For brevity, we will refer to N(q) simply as the nearest neighbor of q (in P). (When we need
to compute N(q), if more than one point realizes the minimum distance, we are allowed to
pick one of them arbitrarily.) We are interested in building a data structure that supports
fast nearest-neighbor queries: preprocess a given pair (P, W), so that N(q) = N(q; P, W)
can be computed quickly for any query point q ∈ R2; “quickly” here and hereafter means “in
time polylogarithmic in n = |P |.”

A natural approach to preprocessing for fast nearest-neighbor queries is to consider the
induced Voronoi diagram; unfortunately, in presence of multiplicative weights, the Voronoi
diagram may have complexity Θ(n2) [11] and is thus not a viable option for a compact
data structure. We therefore focus on looking for an approximate (multiplicatively weighted
Euclidean) nearest neighbor Ñ(q) for q, which is a point p ∈ P such that dW (q, p) ≤
(1 + ε)dW (q, N(q)); of course, by definition, for this point p, dW (q, N(q)) ≤ dW (q, p).

Terminology and notation

We use f(x) = poly(x) to indicate that there exists a constant a > 0 such that f(x) is
in O(xa); similarly, g(x, y) = poly(x, y) means that there exist two constants a, b > 0 such
that g(x, y) is in O(xayb).

We say that an event holds with high probability, if it holds with probability 1 − 1/nc for
a suitably large c > 0.

Finally, we say that a quantity k′ (1 + ε)-approximates a quantity k, if (1 − ε)k ≤ k′ ≤
(1 + ε)k.

Problem statement

Dynamic approximate multiplicatively weighted Euclidean nearest neigh-
bors in the plane
Input: an n-point set P in the plane with positive weights W as above and ε > 0
Output: a data structure

of size O(n poly(log n, 1/ε)),
constructed in time O(n poly(log n, 1/ε)),
that supports approximate nearest-neighbor queries in time poly(log n, 1/ε), and
insertions and deletions for P in amortized time poly(log n, 1/ε).

B. Aronov and M. J. Katz 11:5

Outline of our approach

We use the standard approximation that replaces the unit disk U of the Euclidean norm by
a regular k-gon Uk inscribed in it, for a suitable choice of k = Θ(ε−1/2). More precisely, we
choose k, so that for any point z ∈ U , its closest point of Uk on the segment oz connecting z

to the origin o is at Euclidean distance at most ε from z: ∀z ∈ U : d(z, oz ∩ Uk) ≤ ε.
The norm ∥·∥k defined by Uk as the unit disk is a (1 + ε)-approximation of the Euclidean

norm. We will denote the distance induced by this norm by dk(·, ·) and its multiplicatively
weighted version by dk,W (·, ·). We thus have d(q, P) ≤ dk(q, P) ≤ (1 + ε)d(q, P), where
dist(q, P) := minp∈P dist(q, p) and dist stands for either dk or d.

With each edge e of Uk we associate a wedge X(e) centered at the origin and delimited
by the rays from the origin through the endpoints of e; see Figure 1 (left).

e
X(e)

q

q ⊕X(e)

de

Figure 1 Left: The regular k-gon Uk, for k = 6, and the wedges X(e). Right: Determining the
distance de for query point q.

Given a point q, dk(q, P) can be computed as follows: for each edge e of Uk, let Pe :=
P ∩ (q ⊕ X(e)), or, in words, consider the subset Pe of points of P (if any) that lie in the
wedge X(e) translated to q; see Figure 1 (right). Now project the points of Pe onto the
central ray of q ⊕ X(e) and compute de as the distance from q to the closest projected point
(set de = +∞ if Pe = ∅). Then dk(q, P) = mine de. (Up to this point, our approach is quite
similar to that of Kapoor and Smid [26], who studied the basic (i.e., unweighted Euclidean)
version of dynamic approximate nearest neighbors.)

We will make use of the fact that computing dk,W (q, P) is a decomposable problem, since
dk,W (q, P1 ∪ P2) = min{dk,W (q, P1), dk,W (q, P2)}.

Approximately nearest in a wedge

We first examine a fundamental subproblem. Fix an edge e of Uk and denote its associated
wedge X(e) by X. Let R ⊆ P be a subset of the given points and consider only those
queries q for which R ⊆ q ⊕ X. We will describe a data structure for determining, given q, its
nearest neighbor N(q; R, W) in R, which we will continue to denote N(q), slightly abusing
the notation.

After a suitable rotation, we may suppose that the central ray of X coincides with the
positive x-axis; recall that the apex of X is the origin; refer to Figure 1.

By definition, if q = (xq, yq), the function dk,W (q, p), for p ∈ q ⊕ X, is simply W (p) · |xq −
xp| = W (p)(xp − xq), since p ∈ q ⊕ X implies xp ≥ xq. Therefore N(q) is precisely the point
p ∈ R whose corresponding function achieves minp∈R W (p)(xp − xq). One way to view this

SWAT 2022

11:6 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

operation is to consider the graphs of functions fp(x) = W (p)(xp − x), for p ∈ R, define the
lower envelope L : R → R by x 7→ minp∈R fp(x), and then perform vertical ray-shooting in
(the graph of) L, namely given x = xq, identify (the graph of) the function that achieves the
value L(xq) at this x.

Being a lower envelope of a set of lines, the graph of L is the boundary of the intersection
of a set of lower halfplanes in the plane, and so a monotone concave chain. In a static setting,
it can be precomputed and stored in, say, an array, to facilitate vertical ray shooting via
binary search on the x-coordinate of the query point q. In a dynamic setting, the intersection
of lower halfplanes is dual to the upper convex hull of the dual points of the lines bounding
the halfplanes. It can be stored, say, in the data structure of Overmars and van Leeuwen [29],
that supports O(log2 n) time updates and O(log n) time queries, where n = |R|.1 A vertical
ray shooting query corresponds in the dual to finding the extreme point of the hull in a given
direction, one of the standard queries supported by the data structure.

The general case

We build k data structures, one for each wedge X = X(e). For each X, let u and v be
the directions of its bounding rays and m be the direction of its central ray. We build a
three-level range-search tree structure on the points of P , where the first two levels sort
points of P in the directions orthogonal to u and to v, respectively. The effect of this is that
a query with a point q will return the points of P ∩ (q ⊕ X) as a disjoint union of O(log2 n)
canonical subsets on the second level of the structure; here we use the decomposability of
the queries we are interested in. On the bottommost level, for each canonical subset R, we
build the nearest-in-a-wedge data structure described above, with the distinguished direction
being m, the central direction of X (rather than that of the positive x-axis).

Among the O(k log2 n) points returned from O(log2 n) canonical subsets in each of the
k structures, we pick the one that is closest to q in the distinguished direction as the
approximate nearest neighbor Ñ(q); this produces the correct answer, since our query is
decomposable.

Now to address the efficiency of the updates. Given m points, the corresponding nearest-
in-a-wedge structure for them can be built from scratch in O(m log m) time. This structure
is fully dynamic by construction and hence the only concern is maintaining the balance in
the upper levels of the overall range tree. If upper levels of the range-search structure are
implemented as BB[α] trees, amortized rebalancing costs are polylogarithmic, as implied by
Theorem 5 in section III.5.1 of Mehlhorn’s monograph [27, pages 198–199].

We summarize in the following theorem:

▶ Theorem 1. For any n-point set P in the plane and ε > 0, we can construct a dynamic
data structure for (1 + ε)-approximate multiplicatively weighted Euclidean nearest-neighbor
queries in P

of size O(n poly(log n, 1/ε)),
in time O(n poly(log n, 1/ε)),
supporting O(poly(log n, 1/ε))-time queries and
O(poly(log n, 1/ε)) amortized time updates.

1 Recall that, in this work, a conservative choice of the data structure that guarantees performance
polylogarithmic in n and polynomial in 1/ε but does not necessarily attempt to achieve optimal
performance is sufficient.

B. Aronov and M. J. Katz 11:7

▶ Remark. As an illustration, we calculate the actual performance characteristics using
admittedly suboptimal “classical” building blocks: With the Overmars-van Leeuwen data
structure for dynamic convex hulls with O(log n) time queries and O(log2 n) time updates,
and with k = O(ε−1/2) top-level structures, we obtain space and time O((n/

√
ε) log2 n),

query time of O(ε−1/2 log3 n) and amortized update time of O(ε−1/2 log4 n).

3 Other norms

In this section we outline how the results of Section 2 generalize to an arbitrary norm
on R2. Indeed, for any norm ∥·∥, consider its unit disk D := {p ∈ R2 : ∥p∥ ≤ 1}. D is a
compact centrally symmetric convex set with non-empty interior.2 We proceed as follows:
by a theorem of John [24] there exists a pair of concentric ellipses, one contained in D and
one containing it, which are scaled copies of each other, with a scaling factor of at most 2.
Consider an affine transformation that turns the inner ellipse into the Euclidean unit disk
and the outer one into a Euclidean disk of radius at most 2. Apply this transformation to
the unit ball D, to all of R2, and to P for the subsequent processing. It is easy to check that
this transformation leaves the answer to the (both exact and approximate) nearest-neighbor
problem unchanged. With a slight abuse of notation, we will continue to refer to objects
after the transformation by the same symbols.

q

de

X(e)

q ⊕X(e)

e

ρe

Figure 2 Left: Approximating D by a centrally-symmetric convex k-gon Uk, and the wedges
X(e). Right: Determining the distance de for query point q.

After the transformation, the unit ball D is “fat” in the sense that it is sandwiched
between two concentric disks with a bounded ratio of radii. It therefore can be approximated
by a centrally-symmetric convex polygon Uk ⊆ D with k = Θ(ε−1/2) sides, just as the
Euclidean disk in Section 2 (except that now Uk is not necessarily a regular polygon) [14], see
Figure 2 (left). Uk approximates D in the sense that, for any direction ρ, the ratio between
the distances of the farthest points of D and Uk along the ray from the origin in direction ρ

is at most 1 + ε. This implies that replacing D by Uk as the unit disk distorts the distance
by a factor of at most 1 + ε, as desired.

We now proceed as before: We associate each of Uk’s edges e with the wedge X(e) formed
by the rays from the origin passing through e’s endpoints. We use a shifted version q ⊕ X(e)
of X(e) to compute the “approximately closest” point of Pe = P ∩ (q ⊕ X(e)) from q, where
the distance from q is measured along a ray ρe emanating from q and orthogonal to e (ρe

need not be the central ray of X(e) any longer), see Figure 2 (right). That is, we project the
points of Pe onto ρe, and measure the distance de from q to the first projected point along
ρe. The remainder of the argument and the data structure remain unchanged.

2 D with empty interior would allow non-zero vectors of zero norm, violating the standard norm definition.

SWAT 2022

11:8 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

We summarize in the following theorem.

▶ Theorem 2. For any norm in R2, there exists a dynamic data structure supporting (1 + ε)-
approximate multiplicatively weighted nearest-neighbor queries with the same performance as
the data structure in Theorem 1.

Notice that at no extra cost, we can support more general approximate nearest-neighbor
queries where both multiplicative and positive additive weights are present. More precisely, let
A : P → R+

0 be non-negative additive weights on P and modify the distance from q to p ∈ P

to mean A(p) + W (p) · ∥q − p∥, where ∥·∥ is any norm as above. (Setting A(p) ≡ 0 recovers
the multiplicative-weights-only version of the problem, and setting W (p) ≡ 1 recovers the
familiar additive-weights-only version.) Indeed the functions fp(x) as defined above become
W (p)(xp − x) + A(p), i.e., remain linear, and the argument goes through verbatim.

▶ Theorem 3. For any norm in R2, we can construct a dynamic data structure supporting
(1 + ε)-approximate additively and multiplicatively weighted nearest-neighbor queries with the
same performance guarantees as the data structure in Theorem 1.

▶ Remark. In fact, our result is slightly more general. It applies to any asymmetric norm,
whose unit disk is a not necessarily centrally-symmetric convex set with non-empty interior,
provided that this disk is sandwiched between two Euclidean disks centered at the origin,
with a constant ratio c of the outer and inner radii. In this situation the unit disk is still
approximable by a D(c)

√
ε-gon where D(c) is a constant that depends on c. The argument

goes through essentially without modification, taking care that the distance from p to q need
not be equal to the distance from q to p.

4 Higher dimensions

We now outline the fairly standard procedure to extend our results from Sections 2 and 3
from the plane to any fixed dimension d ≥ 2; we assume d is a small constant. We proceed
as in Section 3. Consider a norm ∥·∥ on Rd and let D be its unit ball – a compact centrally
symmetric convex set with with non-empty interior. We consider the Löwner-John ellipsoids
for D that approximate it up to a factor of d, in the following sense: The two ellipsoids are
concentric, one is contained in D while the other contains it, and the outer ellipsoid is a
scaled copy of the inner one, with a scaling factor of at most d [24]. We now apply an affine
transformation to the entire space turning the inner ellipsoid into the Euclidean unit ball and
proceed with the transformed problem; transforming the space, the input point set P , and
the unit ball D does not affect distance measurements according to ∥·∥. Slightly abusing the
notation, we use the same symbols referring to the objects after the transformation. After
the transformation, D is “fat” in the sense that it is sandwiched between two concentric balls
with radius ratio of at most d.

Bronshteyn and Ivanov [14] proved that D in this situation (see also [21] for a compact
self-contained proof) can be (1 + ε)-approximated in the Hausdorff metric by a polytope
with O(1/ε(d−1)/2) vertices. Dudley [19] showed that there exists such an approximating
polytope with O(1/ε(d−1)/2) facets. Much more recently Arya et al. [8] proved that one can
construct such an approximating polytope whose total number of faces of all dimensions
is k := O(1/ε(d−1)/2);3 moreover, one can assume that the resulting polytope Uk is simplicial,

3 This is the best possible answer, as Ω(1/ε(d−1)/2) faces are sometimes required. In fact, this is the case
for the Euclidean norm.

B. Aronov and M. J. Katz 11:9

that is each of its faces is a simplex. As in the plane, Uk approximates D in the sense that
the norm ∥·∥k defined by Uk as the unit ball has the property that ∥p∥ ≤ ∥p∥k ≤ (1 + ε)∥p∥.
Since Uk is a simplicial polytope with at most k facets, its boundary is already triangulated
by at most k simplices.

We now repeat the reasoning of Section 3 for each facet ∆ of Uk (which is a simplex): ∆ is
associated with a (simplicial) cone of directions X = X(∆), and for any point of q ∈ Rd, the
distance dk(q, P (q, ∆)) from q to the closest point of P (q, ∆) := P ∩ (q ⊕X) can be computed
exactly by using a suitable range-searching data structure, as P (q, ∆) is the intersection of P

with the simplicial cone q ⊕ X with fixed and known directions of its d bounding hyperplanes,
and the distance ∥p − q∥k for p ∈ P (q, ∆) is the distance from q to the projection of p

onto the ray ρ = ρ(∆) emanating from q and orthogonal to the hyperplane containing ∆.
Employing a suitable dynamic range structure, á la Section 3, completes the description; the
only difference is that there are d upper levels in the structure to handle the narrowing to
the cone X. Note that the bottommost level still handles dynamic vertical ray shooting in
two dimensions.

The query structure has to be built for each of the at most k cones.

▶ Theorem 4. For any norm in Rd, d ≥ 2, any n-point set P , and ε > 0, there exists
a dynamic data structure for approximate additively-and-multiplicatively weighted nearest-
neighbor queries, with performance guarantees as follows:

data structure has size O(kn polylog n) and it can be constructed in this time,
updates in O(k polylog n) amortized time, and
queries in O(k polylog n) time,

where k = Θ(1/ε(d−1)/2). In particular, when d = 2, k = Θ(1/
√

ε), and when d = 3,
k = Θ(1/ε).

5 Dynamic SINR queries: An application

We now explain how to use the ANN data structure described in Section 2 to speed up
dynamic approximate SINR (signal-to-interference-plus-noise ratio) queries for non-uniform
power transmitters. We first formulate the problem, give some background and history, and
then outline the application.

Problem setup and formulation

Let S = {s1, . . . , sn} be a set of n transmitters (distinct points in the plane), and let pi ≥ 0
denote the transmission power of si, for i = 1, . . . , n. Let q be a receiver (a point in the
plane). According to the SINR model, q receives si if and only if

pi

d(q,si)α∑
j ̸=i

pj

d(q,sj)α + N
=: sinr (q, si) ≥ β ,

where α ≥ 1 and β > 1 are given constants, N is a given constant representing the background
noise, and d(a, b) is the Euclidean distance between points a and b. The quantity pi

d(q,si)α is
the strength of the signal of the ith transmitter (located at si with power pi) as measured at
the receiver q, where α is the path-loss parameter. In words, the above inequality states that
q receives si if and only if si’s signal (at q) is at least β times stronger than the combined
signal of all other transmitter and the noise; see, for example, [31].

Observe that, since β > 1, q may receive at most one transmitter – the one for which the
value 1

p
1/α
i

d(q, si) is minimum. Thus, in the uniform power situation, where p1 = p2 = · · · =
pn, one needs to test reception at q for the (Euclidean) nearest neighbor of q in S, while in

SWAT 2022

11:10 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

the non-uniform power situation, where transmitter powers vary, one needs to test reception
for the multiplicatively weighted nearest neighbor of q. An SINR query is therefore: Given a
receiver q, find the sole transmitter s ∈ S that may be received by q and determine whether
sinr (q, s) ≥ β.

Since it seems unlikely that one can answer an SINR query exactly in significantly sublinear
time with the help of a near-linear-size data structure, as the degree of the polynomials
involved is high, the relevant research has focused on preprocessing to facilitate efficient
approximate SINR queries.

Given ε > 0, an approximate SINR query is: Given a receiver q, find the sole transmitter s

that may be received by q and return a value sĩnr (q, s), such that (1 − ε)sinr (q, s) ≤
sĩnr (q, s) ≤ (1 + ε)sinr (q, s). Thus, unless (1 − ε)β ≤ sĩnr (q, s) < (1 + ε)β, the value
sĩnr (q, s) enables us to determine definitely whether or not s is received by q.

Given S, α, β, and N , as above, and ε > 0, there are four natural problems to consider,
depending on whether the transmission powers are uniform or not, and whether the setting
is static or dynamic (i.e., transmitters may be added to or deleted from S). In each of these
problems, the goal is to devise efficient algorithms for handling approximate SINR queries,
after some preprocessing of total near-linear time, where in the dynamic setting one also
needs to handle updates (i.e., insertions and deletions of transmitters) efficiently.

Some history

For all but the most general problem, satisfactory solutions already exist, where by satisfactory
we mean near-linear time preprocessing, polylogarithmic-time approximate queries and
amortized polylogarithmic-time updates (in the dynamic setting) [4]; the dependence on 1/ε

is polynomial (see also [6, 12,25]).
In this section, we obtain a satisfactory solution also for the most general problem. That

is, we show that even if the transmission powers are non-uniform, it is possible to construct
in near-linear time a dynamic data structure that supports polylogarithmic-time approximate
SINR queries and amortized polylogarithmic-time updates.

Tools required

A static structure supporting fast approximate SINR queries was presented in [4, section 6].
With the goal of generalizing it to support dynamic updates, inspecting the proposed
algorithm, we discover that dynamizing the following two structures is sufficient for achieving
our objective: The first one is a dynamic approximate multiplicatively weighted nearest-
neighbor structure, which is precisely the problem in Section 2.

The second issue is handling approximate halfplane range counting queries in a dynamic
setting; the problem is stated formally and a reasonably efficient solution is sketched in
Section 6.

Examining the static algorithm of [4, section 6], we note that the approximate halfplane
range counting data structure is used as the bottom level of a multilevel dynamic orthogonal
range-searching structure, where approximate halfplane range counting queries are applied
to bottommost canonical subsets of points. Replacing the static structure by the dynamic
one from Section 6 completes the dynamization of the algorithm.4

4 In slightly more detail, if we use BB[α] trees as the basis of the orthogonal range counting structure,
then, by Theorem 5 in section III.5.1 and subsequent discussion in [27, pages 198–199], the amortized
cost of an update remains polylogarithmic.

B. Aronov and M. J. Katz 11:11

We thus summarize our result.

▶ Theorem 5. Given a set S of n transmitters in the plane, with their power transmission
levels, parameters α, β, N , and an approximation constant ε > 0, one can preprocess S

into a data structure of worst-case size O(n poly(log n, 1/ε)) that supports approximate SINR
queries in time O(poly(log n, 1/ε)) and updates in amortized time O(poly(log n, 1/ε)).

The construction time is O(n poly(log n, 1/ε)) with high probability, and query and update
times are with high probability, assuming the number of queries is polynomial.

▶ Remark. As already noted in [4], the same approach generalizes to any fixed dimension d > 2
with increased overhead in the dependence on 1/ε and higher polylogarithmic factors. The
algorithm still only needs dynamic approximate counting in the plane and results from
Section 4 provide the machinery for finding nearest neighbors.

6 Dynamic approximate halfplane counting

In this section we outline a solution to the following problem which is required to complete
our algorithm for efficient dynamic SINR queries in Section 5. No effort has been made to
optimize the performance of the data structure; this may be an interesting question in itself.

Dynamic Approximate Halfplane Range Counting: Given a set P of n points
in the plane and a parameter ε, 0 < ε < 1, preprocess P in O(n poly(log n, 1/ε)) time
so that, given a query halfplane h, a (1 + ε)-approximation of the number |P ∩ h| can
be returned in time O(poly(log n, 1/ε)). Moreover, insertions and deletions can be
processed in O(poly(log n, 1/ε)) amortized time.

We sketch a Monte Carlo algorithm for this problem, where the (1 + ε)-approximation is
correct with high probability (i.e., with probability 1 − 1/nc, for a sufficiently large c > 0),
provided one makes a polynomial number of queries, assuming that the updates to the data
structure do not depend on the random choices made by the algorithm.

The easiest, though perhaps not the most efficient method to achieve our goal is to use the
“black-box” reduction of Aronov and Har-Peled [5], who observed that an approximate range
counting structure can be obtained, at the cost of multiplicative overhead of poly(log n, 1/ε)
in construction time and space and in query time, from a data structure for emptiness
testing. In our context, emptiness testing is, given a set P of points in the plane, preprocess
it so that, for a query halfplane h, one can quickly check whether or not h ∩ P = ∅. The
nature of the reduction is constructing a number of emptiness-testing structures on randomly
chosen subsets of P . In our case, emptiness testing is easily dynamized by using, say, the
classical dynamic convex hull data structure of Overmars-van Leeuwen [29]. Random subsets
generated by the reduction involve picking each point of P independently with a given
probability and so can be updated efficiently on insertion into and deletion from P . The
number of such subsets is poly(log n, 1/ε), so an update cannot affect too many of them,
even in the worst case. (Some additional aspects of the structure depend on the value of n,
but these can be handled, as is standard, by periodic rebuilds when n changes substantially.)

If one is interested in improving the performance of this data structure, there are several
natural avenues of improvement:

One can replace the dynamic convex hull structure of Overmars-van Leeuwen [29] by a
faster alternative, such as [16] or [13, 23]; refer to the introduction of the latter reference
for a more thorough literature survey.

SWAT 2022

11:12 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

Using the black-box reduction from [5] likely affects efficiency, see more elaborate non-
black-box work in [7] (though that work focuses on the higher-dimensional case and does
not address supporting updates).
Afshani and Chan [2] describe a more efficient Monte Carlo black-box reduction from
approximate counting to small-count range searching, where a query needs to check if
|P ∩ h| is small for a halfplane h, and if so, produce the correct answer, and otherwise
output too large. The algorithm essentially builds small-count structures for random
samples of the input, of various sizes, conceptually similar to the reduction from [5]. As
the counts required in the reduction are essentially of size O(poly(1/ε) log n), one could
implement such a dynamic data structure in (near-)linear space with efficient updates
using classical tools such as [29] or their subsequent improvements. One could even
employ a dynamic reporting structure in this situation, provided it can interrupt the
reporting if the query answer is too large; most reporting structures have such an ability.
We conclude with an open problem: All the reductions described so far produce a
Monte Carlo algorithm for dynamic approximate halfplane range counting. Is there a
(simple and straightforward) Las Vegas algorithm with comparable performance? Or even
a deterministic one?

7 Discussion and open problems

Our data structures in Sections 2 through 4 can handle farthest rather than nearest
neighbors, with simple and obvious modifications.
It might be interesting to determine the best performance that can be attained in
Theorems 1 through 4 with the current state-of-the-art data structures.
The static data structures of Har-Peled and Kumar [22] and of Abdelkader et al. [1]
cover a large class of (weighted) distance measures. In particular, both structures allow
assigning different norms to different sites, which our approach cannot accommodate.

Refer to the end of Section 6 for some discussion and open problems related to the approximate
halfplane range counting data structure described there.

References
1 Ahmed Abdelkader, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Approxi-

mate nearest neighbor searching with non-Euclidean and weighted distances. In Timothy M.
Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 355–372. SIAM,
2019. doi:10.1137/1.9781611975482.23.

2 Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Discret.
Comput. Geom., 42(1):3–21, 2009. doi:10.1007/s00454-009-9177-z.

3 Alexandr Andoni and Piotr Indyk. Nearest neighbors in high-dimensional spaces. In Handbook
of Discrete and Computational Geometry, pages 1135–1155. Chapman and Hall/CRC, 2017.

4 Boris Aronov, Gali Bar-On, and Matthew J. Katz. Resolving SINR queries in a dynamic
setting. SIAM J. Comput., 49(6):1271–1290, 2020.

5 Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM
J. Comput., 38(3):899–921, 2008.

6 Boris Aronov and Matthew J. Katz. Batched point location in SINR diagrams via algebraic
tools. ACM Transactions on Algorithms, 14(4):41:1–41:29, 2018.

7 Boris Aronov and Micha Sharir. Approximate halfspace range counting. SIAM J. Comput.,
39:2704–2725, 2010.

https://doi.org/10.1137/1.9781611975482.23
https://doi.org/10.1007/s00454-009-9177-z

B. Aronov and M. J. Katz 11:13

8 Rahul Arya, Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal bound on
the combinatorial complexity of approximating polytopes. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 786–805. SIAM, 2020. doi:10.1137/1.9781611975994.48.

9 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal approximate polytope
membership. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 270–288. SIAM, 2017. doi:10.1137/1.9781611974782.18.

10 Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-time tradeoffs for approximate
nearest neighbor searching. J. ACM, 57(1):1:1–1:54, 2009. doi:10.1145/1613676.1613677.

11 Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for constructing
the weighted Voronoi diagram in the plane. Pattern Recogn., 17:251–257, 1984. URL:
https://dx.doi.org/10.1016/0031-3203(84)90064-5.

12 Chen Avin, Yuval Emek, Erez Kantor, Zvi Lotker, David Peleg, and Liam Roditty. SINR
diagrams: Convexity and its applications in wireless networks. J. ACM, 59(4):18:1–18:34,
2012. doi:10.1145/2339123.2339125.

13 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pages 617–626.
IEEE, 2002. See also [23].

14 Efim M. Bronshteyn and L.D. Ivanov. The approximation of convex sets by polyhedra. Siberian
Mathematical Journal, 16(5):852–853, 1975.

15 Timothy M. Chan. Approximate nearest neighbor queries revisited. Discret. Comput. Geom.,
20(3):359–373, 1998. doi:10.1007/PL00009390.

16 Timothy M Chan. Dynamic planar convex hull operations in near-logarithmic amortized time.
Journal of the ACM (JACM), 48(1):1–12, 2001.

17 Timothy M. Chan. Applications of Chebyshev polynomials to low-dimensional computational
geometry. J. Comput. Geom., 9(2):3–20, 2018. doi:10.20382/jocg.v9i2a2.

18 Kenneth L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput.,
17(4):830–847, 1988. doi:10.1137/0217052.

19 Richard M Dudley. Metric entropy of some classes of sets with differentiable boundaries.
Journal of Approximation Theory, 10(3):227–236, 1974.

20 Sariel Har-Peled. A replacement for Voronoi diagrams of near linear size. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA, pages 94–103. IEEE Computer Society, 2001. doi:10.1109/SFCS.2001.959884.

21 Sariel Har-Peled and Mitchell Jones. Proof of Dudley’s convex approximation, 2019. arXiv:
1912.01977.

22 Sariel Har-Peled and Nirman Kumar. Approximating minimization diagrams and generalized
proximity search. SIAM J. Comput., 44(4):944–974, 2015.

23 Riko Jacob and Gerth Stølting Brodal. Dynamic planar convex hull, 2019. arXiv:1902.11169.
24 Fritz John. Extremum problems with inequalities as subsidiary conditions. R. Courant

Anniversary Volume, pages 187–204, 1948.
25 Erez Kantor, Zvi Lotker, Merav Parter, and David Peleg. The topology of wireless

communication. In Proceedings 43rd ACM Symposium on Theory of Computing, STOC
2011, pages 383–392, 2011. URL: https://doi.acm.org/10.1145/1993636.1993688, doi:
10.1145/1993636.1993688.

26 Sanjiv Kapoor and Michiel H. M. Smid. New techniques for exact and approximate dy-
namic closest-point problems. SIAM J. Comput., 25(4):775–796, 1996. doi:10.1137/
S0097539793259458.

27 Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, volume 1
of EATCS Monographs on Theoretical Computer Science. Springer, 1984. doi:10.1007/
978-3-642-69672-5.

SWAT 2022

https://doi.org/10.1137/1.9781611975994.48
https://doi.org/10.1137/1.9781611974782.18
https://doi.org/10.1145/1613676.1613677
https://dx.doi.org/10.1016/0031-3203(84)90064-5
https://doi.org/10.1145/2339123.2339125
https://doi.org/10.1007/PL00009390
https://doi.org/10.20382/jocg.v9i2a2
https://doi.org/10.1137/0217052
https://doi.org/10.1109/SFCS.2001.959884
http://arxiv.org/abs/1912.01977
http://arxiv.org/abs/1912.01977
http://arxiv.org/abs/1902.11169
https://doi.acm.org/10.1145/1993636.1993688
https://doi.org/10.1145/1993636.1993688
https://doi.org/10.1145/1993636.1993688
https://doi.org/10.1137/S0097539793259458
https://doi.org/10.1137/S0097539793259458
https://doi.org/10.1007/978-3-642-69672-5
https://doi.org/10.1007/978-3-642-69672-5

11:14 Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

28 David M. Mount. New directions in approximate nearest-neighbor searching. In Sude-
bkumar Prasant Pal and Ambat Vijayakumar, editors, Algorithms and Discrete Applied
Mathematics - 5th International Conference, CALDAM 2019, Kharagpur, India, February
14-16, 2019, Proceedings, volume 11394 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2019. doi:10.1007/978-3-030-11509-8_1.

29 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane.
J. Comput. Syst. Sci., 23(2):166–204, 1981. doi:10.1016/0022-0000(81)90012-X.

30 A. N. Papadopoulos and Y. Manolopoulos. Nearest Neighbor Search: A Database Perspective.
Springer US, 2005.

31 Theodore S. Rappaport. Wireless Communications – Principles and Practice. Prentice Hall,
1996.

https://doi.org/10.1007/978-3-030-11509-8_1
https://doi.org/10.1016/0022-0000(81)90012-X

MaxSAT with Absolute Value Functions:
A Parameterized Perspective
Max Bannach #

Institute for Theoretical Computer Science, Universität zu Lübeck, Germany

Pamela Fleischmann #

Department of Computer Science, Christian-Albrechts-Universität zu Kiel, Germany

Malte Skambath #

Department of Computer Science, Christian-Albrechts-Universität zu Kiel, Germany

Abstract
The natural generalization of the Boolean satisfiability problem to optimization problems is the
task of determining the maximum number of clauses that can simultaneously be satisfied in a
propositional formula in conjunctive normal form. In the weighted maximum satisfiability problem
each clause has a positive weight and one seeks an assignment of maximum weight. The literature
almost solely considers the case of positive weights. While the general case of the problem is only
restricted slightly by this constraint, many special cases become trivial in the absence of negative
weights. In this work we study the problem with negative weights and observe that the problem
becomes computationally harder – which we formalize from a parameterized perspective in the sense
that various variations of the problem become W[1]-hard if negative weights are present.

Allowing negative weights also introduces new variants of the problem: Instead of maximizing
the sum of weights of satisfied clauses, we can maximize the absolute value of that sum. This turns
out to be surprisingly expressive even restricted to monotone formulas in disjunctive normal form
with at most two literals per clause. In contrast to the versions without the absolute value, however,
we prove that these variants are fixed-parameter tractable. As technical contribution we present a
kernelization for an auxiliary problem on hypergraphs in which we seek, given an edge-weighted
hypergraph, an induced subgraph that maximizes the absolute value of the sum of edge-weights.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases parameterized complexity, kernelization, weighted maximum satisfiability,
absolute value maximization

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.12

Related Version Technical Report: https://arxiv.org/abs/2204.12614

1 Introduction

Maximum satisfiability is the natural generalization of the satisfiability problem of propos-
itional logic to optimization problems. In its decision version max-sat, we seek a truth
assignment for a given propositional formula in conjunctive normal form that satisfies at
least α ∈ N clauses. This problem is known to be NP-complete even in the restricted case
that every clause contains at most two literals [16]. On the positive side, it is known that
the problem can be decided in time f(α) · nc for some function f : N → N and constant
c ∈ N, which means that the problem is fixed-parameter tractable parameterized by α [26].
This also holds for the weighted version in which clauses have positive integer weights.
In this paper we extend the previous scenario by allowing also negative weights. We de-
note the corresponding problem with max-cnf: decide for a given propositional formula
with arbitrary integer weights whether there is an assignment of weight at least α. In the
presence of negative weights, many non-trivial variants of the problem arise, for instance
max-dnf (the propositional formula is in disjunctive normal form), max-monotone-cnf

© Max Bannach, Pamela Fleischmann, and Malte Skambath;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bannach@tcs.uni-luebeck.de
https://orcid.org/0000-0002-6475-5512
mailto:fpa@informatik.uni-kiel.de
https://orcid.org/0000-0002-1531-7970
mailto:malte.skambath@email.uni-kiel.de
https://orcid.org/0000-0003-2048-3559
https://doi.org/10.4230/LIPIcs.SWAT.2022.12
https://arxiv.org/abs/2204.12614
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 MaxSAT with Absolute Value Functions

and max-monotone-dnf (all literals in the formulas are positive), and abs-cnf as well as
abs-dnf (maximize the absolute value of the sum of the satisfied clauses). Even an obscure
combination such as abs-monotone-dnf becomes surprisingly expressive if negative weights
are allowed (we show that this version is NP-hard restricted to formulas in which every clause
contains at most two literals). This complexity jump (many of these versions are trivially
in P if negative weights are not allowed) motivates a systematic study of the parameterized
complexity of abs-dnf and its variants. The main problem we investigate is defined as:

▶ Problem 1 (pα-d-abs-dnf).
Instance: A propositional formula ϕ in disjunctive normal form with clauses of size at

most d, a target value α ∈ N, and a weight function w : clauses(ϕ) → Z.
Parameter: α
Question: Is there an assignment β such that |

∑
c∈clauses(ϕ),β|=c w(c)| ≥ α (the absolute

value of the sum of the weights of satisfied clauses is at least α)?

We investigate the complexity of this problem by varying the status of α and d as
parameter. In the notation above (α as index of p and d in the problem description) we
consider α as a parameter and d as a fixed constant. But we also consider α and d to be
parameters at the same time, or both to be constant, or to be neither a parameter nor a
constant. An overview of the complexity of abs-dnf can be found in Table 1.

Table 1 Summary of our results for the maximum satisfiability problem over formulas in
disjunctive normal form with negative weights and an absolute value target function (abs-dnf).
We distinguish how α (the weight of the sought solution) and d (maximum size of a clause) are
interpreted (as constant, as parameter, or as unbounded). The columns correspond to d, while the
rows represent α. Upper bounds are highlighted in green and lower bounds in red.

α d constant parameter unbounded

constant P
(Corollary 25)

FPT
(Corollary 24)

unknown

parameter FPT
(Theorem 3)

FPT
(Corollary 24)

W[1]-hard
(Corollary 12)

unbounded NP-hard
(Corollary 9)

para-NP-hard
(Corollary 10)

NP-hard
(Corollary 9)

As mentioned before, we will also study other variations of the problem, which we obtain
by replacing the dnf by a cnf, by forcing the formula to be monotone, or by replacing
the absolute value function by a normal sum. It turns out that without the absolute value
function, many natural versions of the problem become W[1]-hard in the presence of negative
weights. However, the problems become tractable if the aim is to maximize the absolute
value of the target sum as they than can all be fpt-reduced to pα-d-abs-monotone-dnf,
which in turn is equivalent to the following hypergraph problem:

▶ Problem 2 (pα-d-unbalanced-subgraph).
Instance: A d-hypergraph H = (V,E), a weight function w : E → Z, and a number α ∈ N.
Parameter: α
Question: Is there a set X ⊆ V with |w[X]| ≥ α.

In words, we seek a subset X of the vertices of an edge-weighted hypergraph such that
the absolute value of w[X] =

∑
e∈E[X] w(e) is maximized. Here E[X] are the hyperedges

induced by the set X. Intuitively, that means we have to find a subgraph that contains either
more positive than negative edges or more negative edges than positive ones. Thus, we seek
an unbalanced subgraph.

M. Bannach, P. Fleischmann, and M. Skambath 12:3

Our Contribution I: Hardness Results. We present hardness results for the paramet-
erized and non-parameterized variants of max-dnf and abs-dnf (both with negative
weights). In particular, we prove that max-dnf and abs-dnf are NP-hard when restric-
ted to monotone formulas with at most two literals per clause. However, the problems
differ from a parameterized perspective: pα-d-max-monotone-dnf is W[1]-hard for all
d ≥ 2, while pα-d-abs-dnf ∈ FPT. We also prove a similar result for the cnf-versions: pα-
d-max-monotone-cnf is W[1]-hard for all d ≥ 2, but pα-d-abs-cnf ∈ FPT.

Our Contribution II: Satisfiability Based Optimization with Absolute Value Function.
We derive a kernelization algorithm for pα-d-unbalanced-subgraph, which implies that
the problem is in FPT parameterized by α. Using an fpt-reduction we show:

▶ Theorem 3. pα-d-abs-dnf ∈ FPT

Our Contribution III: Absolute Integer Optimization. Theorem 3 can be generalized to
an absolute integer optimization problem. Given a multivariate polynomial p : Zn → Z with
integer coefficients and intervals [(bmin)i; (bmax)i] for every i ∈ {1, . . . , n}, the task is to find
a solution (x1, . . . , xn) ∈ Zn with (bmin)i ≤ xi ≤ (bmax)i such that the non-linear objective
function |p(x1, . . . , xn)| is maximized. With the value of the sought solution α and the
maximal degree d of the polynomial, we prove:

▶ Theorem 4. pα,d-abs-io ∈ FPT

We emphasize that there are no restrictions on the number of variables or on the size of
an interval [(bmin)i; (bmax)i]. There may be even infinitely large intervals like [−∞; ∞].

Related Work. Optimization problems based on satisfiability or constraint-satisfaction
problems are usually NP-complete [23, 31]. The parameterized complexity of these problems
is, thus, an active field of research [17, 18, 21, 32]. An overview over the current trends can be
found in [8, 30]. In a propositional formula in conjunctive normal form, we can always satisfy
at least (1 − 2−d)m clauses if m is the number of clauses and d is the size of these clauses [7,
Chapter 9.2]. Therefore, the problem is fixed-parameter tractable when parameterized by the
solution size α. It is known that the problem remains in FPT parameterized above this lower
bound, i. e., the parameter is the distance between (1−2−d)m and the number of clauses that
can actually be satisfied simultaneously [1]. The currently fastest algorithm for parameter α
runs in time O∗(1.3248α) and improving the base is an active field of research [3].

Another parameterized approach to (non-optimizing) satisfiability problems are backdoors,
which are small sets of variables such that assigning values to these variables yields an easy
formula, e. g., a krom- or horn-formula [5, 28]. Unfortunately, max-cnf remains NP-hard
on such formulas, making the approach less appealing for optimization problems.

A third line of research on parameterized algorithms for satisfiability problems focuses on
structural parameters, i. e., graph theoretic properties of a graph representation of the formula.
Depending on the details of that representation, various tractability and intractability results
can be derived for parameters such as the treewidth of the corresponding graph [29, 30]. Such
algorithms usually can be obtained from general frameworks such as Courcelle’s Theorem
and carry over to the optimization versions [4]. Generalizing this approach to a broader
range of graphs is an active field of research, see for instance [15] or [2, Chapter 17].

A related problem is max-lin2 [1, 6, 27]: given variables x1, . . . , xn and a set of equations
Πi∈Ixi = b for b ∈ {−1, 1} and I ⊆ {1, . . . , n}, find an assignment to {−1, 1} that satisfies as
many equations as possible. This can be seen as maximizing parity constraints, in contrast

SWAT 2022

12:4 MaxSAT with Absolute Value Functions

to or constraints (max-cnf) or and constraints (max-dnf). The parameterized complexity
of linear integer programming is well understood, see for instance the famous result of
Lenstra [25] or recent developments in algorithms based on structural parameters [9, 14, 22, 24].
There are also recent results on non-linear programs, see for instance [10, 19, 20]. For separable
convex functions, fixed-parameter tractability results are known for structural parameters
depending on the constraint matrix [11]. There are also results that directly cover absolute
values of polynomials – for instance, for maximizing convex functions, which include absolute
values of convex polynomials [20].

Structure of this Work. After some brief preliminaries in Section 2, we present lower bounds
for various versions of abs-dnf and related problems in Section 3. Afterwards, we formulate
our main result – an FPT-algorithm for pα-d-abs-dnf – in Section 4. We also present
the underlying machinery, i. e., a kernelization-algorithm for pα-d-unbalanced-subgraph.
Section 5 concludes with further applications and an outlook is presented in Section 6. Due
to space constraints, some proofs are only available in the technical report.

2 Preliminaries

A parameterized problem is a set Q ⊆ Σ∗ × N, where an instance (w, k) consists of a word w

and a parameter k. We denote parameterized problems with a preceding “p-” with an
index that indicates what the parameter is – for instance, pk-vertex-cover denotes the
well-known vertex cover problem parameterized by the solution size k. A parameterized
problem is fixed-parameter tractable (fpt or it is in FPT) if there is a computable function
f : N → N and a constant c ∈ N such that we can decide (w, k) ∈? Q in time f(k) · |w|c. A
size-g kernelization for a parameterized problem Q and a computable function g : N → N is a
polynomial-time algorithm that, on input of an instance (w, k), outputs an instance (w′, k′)
such that (w, k) ∈ Q ⇔ (w′, k′) ∈ Q and |w′| + k′ ≤ g(k). The output of the algorithm
is called a kernel. If g is a polynomial then the kernel is called a polynomial kernel. It is
well-known that a decidable problem is in FPT iff it admits a kernelization [13, Theorem 1.39].

A d-hypergraph H = (V,E) consists of a set V of vertices and a set E of edges with
e ⊆ V and |e| ≤ d for all e ∈ E. A hypergraph is d-uniform if all edges have size
exactly d. For d = 2, they are just graphs. The neighborhood of a vertex v is the set
N(v) = {w | (∃e ∈ E)(v, w ∈ e) } and its degree deg(v) is the number of edges containing
it. The link of a set c ⊆ V is defined as link(c) = { e | e ∈ E and c ⊊ e }. A subedge of some
hyperedge e ∈ E is any subset s ⊆ e. We use ∆(H) = maxv∈V deg(v) (or just ∆, if H is
clear from the context) to denote the maximum degree of H. For X ⊆ V and w : E → Z,
let E[X] = { e ∈ E | e ⊆ X } denote the edges of the induced hypergraph H[X] = (X,E[X])
over X, and define its weight as w[X] =

∑
e∈E[X] w(e).

We need only little terminology from propositional logic. A formula ϕ is in disjunctive
normal form if it is a disjunction of conjunctions, e. g., ψ ≡ (x1 ∧ x2) ∨ (x2 ∧ x3). It is in
conjunctive normal form if it is a conjunction of disjunctions, e. g., χ ≡ (x1 ∨x2) ∧ (x2 ∨ ¬x3).
We refer to the variables of ϕ with vars(ϕ), and we call the conjunctions in a formula in
disjunctive normal form and the disjunctions in a formula in conjunctive normal form clauses.
These objects are addressed with clauses(ϕ). For instance, vars(ψ) = vars(χ) = {x1, x2, x3},
clauses(ψ) = {(x1, x2), (x2, x3)}, and clauses(χ) = {(x1, x2), (x2,¬x3)}. A literal is a variable
(then it is positive) or its negation (then it is negative). Formulas that contain only positive
literals are monotone, e. g., ψ is monotone but χ is not.

M. Bannach, P. Fleischmann, and M. Skambath 12:5

3 Lower Bounds for MaxSAT and AbsSAT Based Optimization

The problems max-dnf and abs-dnf may seem similar on first sight. After all, if there are
no negative weights they are clearly equivalent. However, if negative weights are present, a
solution of abs-dnf may either construct a sum of at least α or of at most −α; in contrast,
a solution for max-dnf does not have such freedom and has to find a weight-α solution.
This results in an interesting complexity gap: pα-d-max-monotone-dnf is W[1]-hard for
d ≥ 2 while pα-abs-dnf is only W[1]-hard if d is unbounded (recall that d is the size of
the clauses and that in pα-d-max-monotone-dnf the size of every clause is bounded by
a constant d). We prove the hardness results in this section and complement them with a
proof of pα-d-abs-dnf ∈ FPT in the next section.

We first consider pα-d-max-monotone-dnf. This problem is W[1]-hard by a reduction
from the independent set problem (given a graph and an integer k, decide whether there is a
set of at least k pairwise non-adjacent vertices):

▶ Lemma 5. pα-d-max-monotone-dnf is W[1]-hard for d ≥ 2.

Proof. Let G = (V,E) and k ∈ N be an instance of pk-independent-set. We build a
formula ϕ that contains a variable xv for every v ∈ V :

ϕ ≡
∨

v∈V

(xv)

1

∨
∨

{v,w}∈E

(xv ∧ xw)

-1

.

The red labeling shows the corresponding weight function w. Clearly, a size-k independent
set translates into an assignment of weight k. For the other direction consider an assignment
of weight k. We can assume that the assignment satisfies only positively weighted clauses.
Otherwise we can flip one variable of a satisfied and negatively weighted clause. This does
not decrease the weight because there is at most one positively weighted clause containing
this variable. Since k variables are set to true and no negatively weighted clauses are satisfied,
the assignment translates back to an independent set. ◀

▶ Corollary 6. pα-d-max-dnf is W[1]-hard for d ≥ 2.

On the other hand, the absolute value version of the problem remains intractable in the
classical sense, which motivates our parameterized perspective. In detail, the (unparameter-
ized) problem d-abs-dnf is NP-hard by a reduction from independent-set. Note that in
contrast to the previous lemma, the reduction in the following is not parameter-preserving.
Thus, the theorem does not imply that pα-d-abs-monotone-dnf is W[1]-hard.

▶ Theorem 7. d-abs-monotone-dnf is NP-hard for d ≥ 2.

Proof. We reduce from independent-set and let G = (V,E) with k ∈ N be a corresponding
instance. Construct the following formula ϕ that contains four variables v+

1 , v
+
2 , v

−
1 , v

−
2 for

every vertex v ∈ V (the red arrows illustrate the weight function):

ϕ ≡
∨

v∈V

(v+
1 ∧ v+

2)

-1

∨ (v−
1 ∧ v−

2)

1

∨
∨

{v,w}∈E

(v+
1 ∧ w+

1)

1

∨ (v−
1 ∧ w−

1)

-1

.

The intuition (also illustrated in Example 8) behind the formula is as follows: Think of two
weighted copies of G called G+ and G− such that all edges in G+ have weight +1 and all
edges in G− have weight −1. This is the second part of the formula. Observe that by taking
either all edges of G+ or all edges of G−, a solution would always have absolute value |E|.

SWAT 2022

12:6 MaxSAT with Absolute Value Functions

To encode the independent set problem, we introduce an extra gain for every vertex,
these are the variables v+

2 and v−
2 . Observe that in the first part of ϕ, we can add −1 or +1

to the solution by setting v+/−
1 and v

+/−
2 to true at the same time. Finally, note that the

signs in the first part of the formula are exactly the opposite of the signs in the second part.
We claim that G has a size-k independent set iff ϕ has a solution of weight k+ |E|. Let S be
a size-k independent set in G, then the following assignment has an absolute value of k+ |E|:

β(vσ
i) =

{
true if (v ∈ S and σ = −) or (σ = + and i = 1);
false else.

For the other direction let β be an assignment that achieves an absolute value |ν| of at
least k+ |E|. Assume for simplicity that ν > 0 (the case ν < 0 is symmetric). We may assume
β(v+

1) = true and β(v+
2) = false – otherwise we can increase the solution by modifying the

assignment locally. Observe that by setting only variables v+
i to true, we have ν ≤ |E|

and, since we assumed |ν| ≥ k + |E|, β sets further variables v−
j to true. We may assume

β(v−
1) = β(v−

2) for all v ∈ V , as setting both variables to true is the only way to increase ν
(the clauses of the form (v−

1 ∧ w−
1) all have a negative weight and we assumed ν > 0).

Let {v, w} ∈ E be an edge such that β(v−
1) = β(w−

1) = true. Observe that changing
β(w−

1) to β(w−
1) = false does not decrease the value of the solution (it decreases the number

of satisfied clauses with negative weight by exactly one, as the positively weighted clause
(w−

1 ∧ w−
2) is not satisfied anymore; but it increases the number of satisfied clauses with

positive weight by at least one as the negatively weighted clause (v−
1 ∧ w−

1) is also no longer
satisfied). Hence, we may adapt β such that S = { v | β(v−

1) = true } is an independent set.
Since the absolute value of β is at least |E| + k and since all clauses containing variables of
the form v+

i can contribute at most |E| to this sum, we have |S| ≥ k. ◀

▶ Example 8. Let us illustrate the reduction used within the theorem with an example.
Consider the following graph G with an independent set of size three:

a

b

c d

e f

g

Within the reduction, we virtually generate the following edge-weighted graph that
contains two copies of G, namely G+ and G−. In both copies, every vertex has a mirror
vertex attached to it. Edges have either a positive weight of +1 or a negative weight of -1:

a+
1

b+
1

c+
1 d+

1

e+
1 f +

1

g+
1 a-

1

b-
1

c-
1 d-

1

e-
1 f -

1

g-
1

The reduction continues by defining a weighted formula that contains a clause for every
edge with the same weight as that edge, e. g., we would have (a+

1 ∧ b+
1) of weight +1 and

(a−
1 ∧ b−

1) of weight −1. By selecting from one copy (i. e., setting the corresponding variables
to true) all vertices except the mirrors, we obtain an assignment of weight ±|E|; selecting the
independent set together with its mirrors in the other copy provides another ±k, yielding a
solution of absolute value |E| + k. In this example we could take all green vertices (providing
a weight of +8) and {b−

1 , d
−
1 , f

−
1 } together with their mirrors (for another +3); yielding a

solution with absolute value 11. ⌟

▶ Corollary 9. d-abs-dnf is NP-hard for d ≥ 2.

M. Bannach, P. Fleischmann, and M. Skambath 12:7

▶ Corollary 10. pd-abs-dnf is para-NP-hard.

Due to the previous theorem, we cannot hope to achieve parameterized tractability with
respect to the sole parameter d. The following lemma shows that this is also not possible for
the parameter α. In the upcoming sections, we thus rely on the combined parameter α+ d.

▶ Lemma 11. pα-abs-monotone-dnf is W[1]-hard.

Proof. Let G = (V,E) and k ∈ N be an instance of pk-independent-set. Consider the
following formula ϕ that contains a variable xv for every vertex v ∈ V :

ϕ ≡
∨

v∈V

¬xv ∧
∧

{v,w}∈E

xw

 .

Let α = k and w be a weight function that maps all clauses of ϕ to 1. We show that
(G, k) is a yes-instance of independent-set iff (ϕ,w, α) is a yes-instance of abs-dnf. For
the first direction let I ⊆ V be a size-k independent set and consider the assignment:

β(xv) =
{

false if v ∈ I;
true otherwise.

Since I is an independent set we have β(xw) = true for all vertices w that have a neighbor
v ∈ I. Therefore, β satisfies every clause that corresponds to a vertex of I and, hence, β is
an assignment of weight at least k.

For the other direction let β be an assignment of weight at least k, i. e., one that satisfies
at least k clauses. For each of these clauses there is a unique vertex v such that xv appears
negatively only in that clause and, thus, at least k variables must be assigned to false by β.
Furthermore, for all neighbors w of v we have β(xw) = true by the second part of the clause.
We conclude that { v | β(xv) = false } is an independent set of size at least k.

The formula ϕ is not monotone, however, in the proof of Lemma 17 we describe how an
arbitrary instance can be turned into an equivalent one with a monotone formula. In this
case we obtain the following monotone formula ϕ′, which (instead of ϕ) can be constructed
directly for this reduction.

ϕ′ ≡
∨

v∈V

 ∧
{v,w}∈E

xw

1

∨
∨

v∈V

xv ∧
∧

{v,w}∈E

xw

-1

.

The red labeling shows the corresponding weight function w′. As we describe in the proof of
Lemma 17 the instances (ϕ,w, k) and (ϕ′, w′, k) are equivalent. This completes the proof. ◀

▶ Corollary 12. pα-abs-dnf is W[1]-hard.

3.1 From Disjunctive Normal Form to Conjunctive Normal Form
So far, we have seen that the parameterized dnf maximization variants are W[1]-hard. We
can use this to show that the same holds also for the conjunctive normal forms:

▶ Lemma 13. pα-d-max-monotone-cnf is W[1]-hard for d ≥ 2.

▶ Corollary 14. pα-d-max-cnf is W[1]-hard for d ≥ 2.

SWAT 2022

12:8 MaxSAT with Absolute Value Functions

3.2 Finding an Assignment with a Certain Weight
We finish this section with a variant of the problem in which we seek an assignment of a
certain absolute value. In detail, pα,d-exact-abs-monotone-dnf asks, given a weighted
propositional formula in disjunctive normal form, whether there is an assignment such that
the absolute value of the weighted sum is exactly α (and not at least α).

▶ Lemma 15. d-exact-abs-monotone-dnf is NP-hard for any constant d ≥ 2 and α = 0.

Proof. Since pα-d-max-monotone-dnf is W[1]-hard by Lemma 5, it is not surprising
that d-exact-max-monotone-dnf is NP-hard. We just use the same polynomial-time-
computable reduction, which is possible since the independent set problem is monotone in
the sense that the existence of a solution of size ≥ k implies the existence of an independent
set of size = k.

We can turn a d-exact-max-monotone-dnf instance into a d-exact-abs-monotone-
dnf instance: Just add the empty clause with weight −α and set the target value to 0. Every
assignment of weight α in the original instance will have weight 0, as the empty clause is
always satisfied. On the other hand, any weight-0 assignment in the new formula has to
satisfy clauses of weight exactly α to compensate for the empty clause. ◀

▶ Corollary 16. pα-d-exact-abs-monotone-dnf is para-NP-hard.

Proof. A parameterized problem is para-NP-hard if there are finitely many slices whose
union is NP-hard [13, Theorem 2.14]. The claim follows as already the slice α = 0 alone is
NP-hard by Lemma 15. ◀

4 Satisfiability Based Optimization with Absolute Value Function

In the previous section we showed that various sat-based optimization problems are pre-
sumably not in FPT with respect to the natural parameter α. There are various ways to
deal with these negative results. For instance, we could restrict ourselves to structured
instances – such as formulas of bounded incidence-treewidth [8]. For the absolute version of
the problem, we fortunately do not need such a strong structural parameter. Instead, we
provide a reduction to an auxiliary hypergraph problem for which we present a polynomial
kernel. This results in the main theorem of this section:

▶ Theorem 3. pα-d-abs-dnf ∈ FPT

It is well-known that various optimization problems over cnfs and dnfs are equal to
problems on hypergraphs. For instance, it is easy to see that the question of whether a given
monotone d-cnf can be satisfied by setting at most k variables to true equals the hitting
set problem on d-hypergraphs. Notice that “monotone” here is a crucial key word, as this
property allows us to encode clauses as edges. Such an approach does not work directly for
pα-d-max-dnf. Fortunately, pα-d-abs-dnf reduces to its monotone version:

▶ Lemma 17. pα-d-abs-dnf ≤ pα-d-abs-monotone-dnf

Proof. Let ϕ be a d-dnf and w : clauses(ϕ) → N be a weight function on its clauses. We
argue how we can remove one occurrence of a negative literal – an iterated application of
this idea then leads to the claim.

M. Bannach, P. Fleischmann, and M. Skambath 12:9

Let c ∈ clauses(ϕ) be a clause containing a negative literal x. We remove c from ϕ and
add two new clauses: c+ and c−. The clause c+ equals c without x, and we set c− = c+ ∧ x.
Define w(c+) = w(c) and w(c−) = −w(c), and observe that an assignment that satisfies c
does satisfy c+ but not c− and, thus, yields the same value. On the other hand, every
assignment that satisfies c− does also satisfy c+ and, hence, the values cancel each other. ◀

Given a monotone dnf and a weight function on its clauses, we can encode the problem
pα-d-abs-monotone-dnf as a hypergraph by introducing one vertex per variable and by
representing clauses as edges. The task then is to identify a set of vertices such that the
absolute value of the total weight of the edges appearing in the subgraph induced by the
vertices is as large as possible. Formally this is Problem 2 from the introduction.

▶ Corollary 18. pα-d-abs-dnf ≤ pα-d-unbalanced-subgraph

4.1 A Polynomial Kernel for Unbalanced Subgraph
In this section we develop a polynomial kernel for pα-d-unbalanced-subgraph. The
kernelization consists of a collection of reduction rules which we just call rules. Every rule
obtains as input an instance of pα-d-unbalanced-subgraph and either (i) is not applicable,
or (ii) outputs an equivalent smaller instance. The rules are numbered and we assume
that whenever we invoke a rule, all rules with smaller numbers have already been applied
exhaustively. It will always be rather easy to show that the rules can be implemented in
polynomial time, so we only prove that they are safe. To get started, we consider the following
simple rules, where ∆ is the maximum vertex degree in the hypergraph:

▶ Rule 1. If H contains an isolated vertex v, delete v.

▶ Rule 2. If H contains an edge e with w(e) = 0, delete e.

▶ Rule 3. If H has at least 2α · d3∆2 vertices, reduce to a trivial yes-instance.

▶ Lemma 19. Rule 1–3 are safe.

Proof. For the first two rules observe that neither isolated vertices nor weight-0 edges can
contribute to any solution and, hence, may be discarded.

For Rule 3 we argue that H contains a set X ⊆ V with |w[X]| ≥ α. Consider a maximal set
M ⊆ E such that (i) all edges in M are pairwise disjoint and (ii) H

[
∪e∈M e

]
=

(
∪e∈M e,M

)
,

that is, M is a set packing that induces itself. Such a set always exists and can also be
computed as the following greedy algorithm shows: Start with M = ∅ and repeatedly pick a
remaining nonempty edge e from H that is no superset of any edge in H (except ∅) and add it
to M . Since Rule 1 has already removed isolated vertices, there must be such an edge as long
as V is not empty. After picking an edge e, remove the set Ee of all edges that intersect e.
Observe that |Ee| ≤ d∆. Clearly, if we just remove Ee, the algorithm would already generate
a maximal set packing – however, it would not necessarily be self-induced. Let therefore
Ve = { v ∈ V | (∃e′ ∈ Ee)(v ∈ e′) } be the set of vertices covered by the to-be-removed
edges. Since every edge has size at most d, we have |Ve| ≤ d2∆. To ensure that M will be
self-induced, we remove all edges that contain a vertex of Ve – which are at most d2∆2 edges
as H has maximum degree ∆.

For every edge that is picked to be in M , at most d2∆2 edges are removed from |E|.
Therefore we have |M | ≥ |E|/

(
d2∆2)

. Furthermore, we have |E| ≥ |V |/d because Rule 1 has
already removed isolated vertices. Given that |V | ≥ 2α · d3∆2, we deduce |M | ≥ 2α. There
are at least α edges in M that have the same sign (no edge has a zero-weight by Rule 2).
Therefore, the set X of vertices induced by the larger set satisfies |w[X]| ≥ α. ◀

SWAT 2022

12:10 MaxSAT with Absolute Value Functions

The rules yield a kernel for the combined parameter α+∆, which means that an exhaustive
application of these rules leaves an instance of size bounded in α and ∆.

▶ Corollary 20. pα,∆-d-unbalanced-subgraph has a kernel with O(α · ∆2) vertices.

If we only consider α + d as parameter, rules 1–3 are not applicable, and the graph is
still large, we know that the input graph has no isolated vertices, all edges have a non-zero
weight, and we know that there is at least one vertex of high degree. Our final reduction
rule states that in this case we can as well reduce to a trivial yes-instance, since the high
degree vertex induces a solution. Intuitively, this is similar to an application of the well-
known Sunflower Lemma [12], which states that large enough hypergraphs contain a set
of hyperedges that pairwise all intersect in the same set of vertices (i. e., the “hypergraph
version” of a high-degree vertex). Unfortunately, a direct application of the lemma is tricky
as other hyperedges may intersect arbitrarily with such sunflowers. To circumnavigate this
difficulties, we need objects that are more like a self-induced sunflower. This leads to the
following reduction rule; details of these concepts are postponed to the proof of Lemma 21.

▶ Rule 4. Let g(i) = (ii2α·22d)2i−1 for i > 0 and g(0) = 1. If H contains a subedge c ⊆ e ∈ E

such that (i) | link(c)| ≥ g(i) where i = d− |c| and (ii) for every superset f ⊋ c it holds that
| link(f)| < g(j) where j = d− |f |, then reduce to a trivial yes-instance.

Before we prove the safeness of the rule in the general case, let us quickly sketch why the
rule is correct for 2-uniform hypergraphs, i. e., normal graphs. A vertex v with deg(v) ≥ 4α
is incident to at least 2α edges of the same sign. For the sake of an example let there be a set
P (v) ⊆ N(v) with |P (v)| ≥ 2α and w({v, u}) > 0 for all u ∈ P (v). Either P (v) is a solution
(i. e., |w[P (v)]| > α) or P (v) ∪ {v} is a solution (since w[P (v) ∪ {v}] ≥ 2α− |w[P (v)]| ≥ α).

▶ Lemma 21. Rule 4 is safe.

Proof. Let c ⊆ V be a set for which the rule is applicable. We argue that H contains a set
X ⊆ V with |w[X]| ≥ α. Let i = d−|c|, E(c) = link(c) = {e ∈ E | c ⊊ e}, N(c) =

⋃
E(c) \ c,

and degE(c)(v) = |{e ∈ E(c) | v ∈ e}|. We can assume that |c| < d and i > 0 because
otherwise | link(c)| = 0 < g(i). Since | link(f)| < g(j) holds for any superset f ⊋ c with
j = d− |f |, it also holds that degE(c)(v) ≤ g(i− 1) for every vertex v ∈ N(c). Otherwise we
have a contradicion with f = c ∪ {v}.

Consider a maximal set M ⊆ E(c) such that (i) all edges in M contain c as a subedge,
(ii) c is the intersection of any pair of different edges in M , and (iii) for every edge e ∈ E(c)
it holds that either e ∈ M , or e ̸⊆

(⋃
e′∈M e′), that is, M is a set of edges that induces only

itself in Hc = (V,E(c)). By (i) and (ii) M is also known as a sunflower with core c. Such a
set always exists as the following greedy algorithm shows: Start with M = ∅ and observe
that all three properties hold. Repeatedly pick an edge e ∈ E(c) that has no smaller subedge
in E(c) and add it to M as long as the properties are preserved.

We will use M to identify the soughted set X. For this, we require a lower bound for the
size of M . Therefore, let us carefully analyze which edges cannot be choosen after an edge has
been added to M . After picking an edge e ∈ E(c), we can remove the whole set Ee ⊆ E(c)
of all edges that intersect e not only in c (a proper superset of c) because picking one of
those edges contradicts property (ii). There may be also an edge e′ ∈ E(c) \Ee that has not
been added yet, but for which there is another edge e′′ ∈ E(c) \M with e′′ ∈

⋃
M ∪ {e′}.

This implies that e′ may not be added to M to preserve property (iii). Furthermore, there
must be an edge e ∈ M such that e′ intersects either e or some edge in Ee outside in the
core. Let E′

e ⊆ E(c) be the set of all edges that intersect Ee not only in c. It follows

M. Bannach, P. Fleischmann, and M. Skambath 12:11

that any edge in E(c) will either be inserted to M , or is in Ee or E′
e for an edge e ∈ M .

Observe that |Ee| ≤ ig(i− 1) because e \ c contains at most i vertices that are in at most
g(i − 1) − 1 edges from E(c). For the same reason, we have |E′

e| ≤ |Ee| · (i − 1) · g(i − 1).
Therefore, |{e} ∪ Ee ∪ E′

e| ≤ i2(g(i − 1))2 edges are removed for every edge in M . This
implies |M | ≥ |E(c)|/

(
i2g(i− 1)2)

. Given that E(c) ≥ g(i), we deduce |M | ≥ 2α · 22d : For
i = 1, we have |M | ≥ |E(c)| because of g(0) = 1. For i > 1 we use that x2i−1/x2·2i−1−2 = x

and g(i) = x2i−1 for x = 2α · 22d .
We show that we can find a set X ⊆

⋃
e∈M e with |w[X]| ≥ α. Let M+ denote all

positively weighted edges in M and let M− denote the other ones. Let us consider three
cases based on the size of the core.

First Case (|c| = 0). We have c = ∅ and, without loss of generality, let w[∅] = |w[∅]| ≥ 0.
Otherwise we could flip the sign of all weights. Note that E(∅) = E \ {∅}. By Property (iii),
any subset of

⋃
M induces only edges in M ∪ {∅}. It follows that w[

⋃
M+] = |M+| + w[∅].

We are done for w[
⋃
M+]| ≥ α, otherwise we obtain

|w[
⋃
M−]| = |M−| − w[∅] = |M | − (|M+| + w[∅]) > |M | − α.

The claim follows with |M | ≥ 2α.

Second Case (|c| = 1). In this case we have c = {v} for some vertex v ∈ V . Without loss
of generality, let w[c] = |w[c]| ≥ 0 – otherwise we can flip the sign of all weights again. In
contrast to the previous case, a subset of

⋃
M ∪ c might induce edges in M and subedges

of c. Those edges are induced by V ′ =
⋃
M \ c. For any X ′ ⊆ V ′ we have |w[X ′]| < α,

otherwise we are done. Observe that w[
⋃
M+] = |M+| + w[c] + w[

⋃
M+]. The statement

follows immediately for w[
⋃
M+]| ≥ α. Otherwise we obtain

|M+| + w[c] < α+ w[
⋃
M+] < 2α and

|w[
⋃
M−]| = |M−| − w[c] + w[

⋃
M−]

= |M | − |M+| − w[c] − w[
⋃
M−] > |M | − 3α.

The claim follows with |M | ≥ 4α.

Third Case (|c| ≥ 2). Observe that in this case
⋃
M may induce edges that are neither

in E(c) nor subedge of c, but that intersect c (and other vertices covered by M). This is
because M contains only edges of E(c). Let us recursively define the following subsets of
E [

⋃
Mσ] for σ ∈ {−,+}:

Eσ
∅ = E

[(⋃
Mσ \ c

)]
\ E[c];

Eσ
c′ = E

[
c′ ∪

(⋃
Mσ \ c

)]
\

⋃
f⊊c′

Eσ
f \ E[c] for every c′ ⊆ c.

For all c′ ⊆ c these sets are disjoint and every edge e ∈ E[
⋃
Mσ] is either in one of these

sets or in E[c]. To be precisely, an edge e ∈ E[
⋃
Mσ] is in Eσ

e∩c if it is a proper superset of c.
Otherwise e ⊆ c (if e ⊆ c). Note that Mσ = Eσ

c . We will now show that there is a set c′ ⊆ c

and such that the absolute value of the induced weight of c′ ∪ (
⋃
M− \ c) or c′ ∪ (

⋃
M+ \ c)

is at least α. Assume this is not the case and that for all subsets X ⊆
⋃
M we have

|w[X]| < α (1)

SWAT 2022

12:12 MaxSAT with Absolute Value Functions

for any c′ ⊆ c and σ ∈ {−,+}. Observe that

E
[
c′ ∪

(⋃
Mσ \ c

)]
= Eσ

c′ ∪̇E[c′] ∪̇
⋃

f⊊c′

Eσ
f . (2)

Let wσ
c′ =

∑
e∈Eσ

c′
w(e) and note that this is the total weight of the edges in Eσ

c′ . Hence:

w
[
c′ ∪

(⋃
Mσ \ c

)]
= wσ

c′ + w[c′] +
∑
f⊊c′

wσ
f . (3)

For any k ∈ {0, . . . , |c|} let wk = 22k−1 · 2α. We show that wk is an upper bound in the
sense that |wσ

c′ | < wk for c′ ⊆ c and k = |c′|. By (1) and (3) we deduce that

|wσ
∅ | =

∣∣∣w [(⋃
Mσ \ c

)]
− w[∅]

∣∣∣ < 2α = w0.

Otherwise either |w[∅]| ≥ α or |w [(
⋃
Mσ \ c)]| ≥ α. Observe that 2α+ (2k−1 − 1)wk−1 ≤ wk

for k > 0. Then for ∅ ̸= c′ ⊆ c it follows by induction that

|wσ
c′ | =

∣∣∣∣∣∣w
[
c′ ∪

(⋃
Mσ \ c

)]
− w[c′] −

∑
f⊊c′

wσ
f

∣∣∣∣∣∣
< α+ α+

|c′|−1∑
k=0

(
|c′|
k

)
wk

≤ 2α+ (2|c′| − 1)w|c′|−1

≤ w|c′|.

Since |M | ≥ 2α · 22d ≥ 4α · 22|c|−1 = 2 · w|c| either |M+| ≥ w|c| or |M−| ≥ w|c|. Recall
that Mσ = Eσ

c and, thus, with |wσ
c | ≥ |Mσ| we get that our assumption must be wrong. ◀

▶ Corollary 22. pα-d-unbalanced-subgraph has a kernel with O
(
α2d)

vertices.

Proof. If Rule 4 cannot be applied, there is no such subedge c ⊆ e ∈ E that meets the
two properties of the rule. However, this also implies that there is no subedge c that
only meets the first property because otherwise there would be an inclusionwise largest
superset (at last a size-(d − 1) edge), which does. Therefore, for any subedge c ⊆ e ∈ E

it holds that | link(c)| < (ii2α · 22d)2i−1 where i = d − |c|. Especially for c = ∅ we have
| link(c)| < (2dd22d

α)2d−1. By the definition of the link we have |E| ≤ | link(∅)|+1. Thus, the
total number of edges is at most (2dd22d

α)2d−1. Hence, we get a kernel of size O
(
α2d)

. ◀

Proof of Theorem 3. Combine Corollary 18 with Corollary 22. ◀

If d is not a constant but a parameter, then, by an exhaustive application of the rules
above, we obtain reduced instances of size O

(
d(2dd22d

α)2d−1)
. Note that there could be up

to nd possible subedges, therefore it is not clear that we obtain a kernel. However, a closer
look at Rule 4 reveals that we are not forced to consider these subedges – we can directly
return a trivial yes-instance if |E| ≥ (2dd22d

α)2d−1.

▶ Corollary 23. pα,d-unbalanced-subgraph ∈ FPT

Proof. A simple induction shows that when Rule 1 and Rule 2 were applied exhaustively and
|E| ≥ (2dd22d

α)2d−1, Rule 4 can be applied on c = ∅ because E \ {∅} = link(∅) or on some
larger subedge. Hence we can return a trivial yes-instance whenever |E| ≥ (2dd22d

α)2d−1. ◀

▶ Corollary 24. pα,d-abs-dnf ∈ FPT

▶ Corollary 25. α-d-abs-dnf ∈ P

M. Bannach, P. Fleischmann, and M. Skambath 12:13

4.2 From Disjunctive Normal Form to Conjunctive Normal Form
Similar to Lemma 13 in Section 3, the goal of this section is to companion Corollary 24 with
a cnf-version of the claim.

▶ Lemma 26. pα,d-abs-cnf ≤fpt pα,d-abs-dnf

Proof. Let (ϕ,w, α) be an instance of pα,d-abs-cnf and let Φ = clauses(ϕ). The idea of the
reduction is to successively replace every disjunction in Φ by a set of conjunctions with new
weights such that we have for the resulting pair (Φ′, w′):∑

σ∈Φ,β|=σ

w(σ) =
∑

σ∈Φ′,β|=σ

w′(σ).

Let c be some disjunction in Φ. Recall that c contains at most d variables. There is
a set X of at most 2| vars(c)| conjunctions such that we have for every truth assignment
β : vars(ϕ) → {true, false} (i) β |= c iff β satisfies exactly one formula in X, and (ii) β ̸|= c

iff β satisfies no formula in X. Such a set X can easily be computed using the truth table
of c, which is possible in the reduction as d is a parameter. Let w′(c′) = w(c) for any c′ ∈ X,
and w′(c̃) = w(c̃) for any c̃ ∈ Φ \ {c}.

For the reduction, we replace Φ by Φ′ = Φ\{c}∪X and update w to w′ accordingly as long
as there is a disjunction c ∈ Φ. Note that this will replace exactly | clauses(ϕ)| disjunctions
with at most 2d conjunctions each, which implies that the reduction can be carried out by
an fpt-algorithm. The resulting pair (Φ′, w′) satisfies for every truth assignment β:∑

σ∈Φ,β|=σ

w(σ)

=
∑

σ∈Φ\{c},β|=σ

w(σ) +
{
w(c) if β |= c;
0 otherwise;

=
∑

σ∈Φ\{c},β|=σ

w(σ) +
∑

σ∈X,β|=c

w(c)

=
∑

σ∈Φ\{c},β|=σ

w′(σ) +
∑

σ∈X,β|=c

w′(σ)

=
∑

σ∈Φ\{c}∪X,β|=σ

w′(σ). ◀

▶ Corollary 27. pα,d-abs-cnf, pα,d-abs-monotone-cnf ∈ FPT

5 Application: Absolute Integer Optimization

We have seen that pα,d-abs-monotone-dnf ∈ FPT. We can generalize this problem to an
algebraic optimization problem: Given a sum of products (a multivariate polynomial over
binary variables), find an assignment such that the absolute value of the sum is at least α.
Using binary variables, this problem is essentially the same problem as abs-monotone-dnf
(in fact, optimization over DNFs is sometimes called sum of products). However, what
happens if we do not have binary variables, but arbitrary integers from some given domain?
We prove in this section that the problem remains tractable for similiar parameters.

Let us represent a multivariate polynomial pA,w(z1, . . . , zn) over n variables z1, . . . , zn

by an n×m matrix A and a vector w of length m as follows: Define A⟨z, i, j⟩ to be zAi,j if
z ̸= 0 or Ai,j ̸= 0 and 1 otherwise; then write pA,w(z1, . . . , zn) =

∑m
j=1 wj ·

∏n
i=1 A⟨zi, i, j⟩.

SWAT 2022

12:14 MaxSAT with Absolute Value Functions

▶ Problem 28 (pα,d-abs-io).
Instance: An n × m matrix A ∈ Nn×m

≥0 , a weight vector w ∈ Zm, two bounding vectors
bmin ∈ (Z ∪ {−∞})n and bmax ∈ (Z ∪ {∞})n, and a target value α ∈ N.

Parameter: α, d = maxj∈{1,...,m}
∑n

i=1 Ai,j

Question: Is there a solution x = (x1, x2, . . . , xn) ∈ Zn such that |pA,w(x)| ≥ α and for all
i ∈ {1, . . . , n} we have (bmin)i ≤ xi ≤ (bmax)i?

Here the parameter d is the maximal number of variables that do occur in any product
of the polynomial. If there is no exponent larger than 1, then d is the number of variables in
every product or monomial.

In this problem we restrict the domain of each variable to an interval. One might ask
whether we could allow arbitrary linear inequations instead of upper and lower bounds, which
is common in linear programming. However, in this case the problem becomes W[1]-hard:

▶ Lemma 29. pα,d-abs-io with linear inequation constraints is W[1]-hard.

Proof. To prove this we turn an instance of pk-independent-set into an instance of pα,d-
abs-io with additional inequations. For a graph G = ({1, . . . , n}, E) and a number k ∈ N,
let A ∈ Zn×n be the identity matrix, w = (1, . . . , 1) ∈ Zn, and α = k. Further set bmin = (0)n,
bmax = (1)n, and let xu + xv ≤ 1 for every edge {u, v} ∈ E be additional constraints.

Since all weights in w are positive, the absolute value is the exact value of the sum. Every
size-k independent has now a corresponding variable assignment and vice versa. ◀

Observe that variables may have a huge or possibly infinite domain of possible values and,
hence, it is not obvious that pα,d-abs-io is in FPT. However, we already mentioned that pα,d-
abs-monotone-dnf is equivalent to pα,d-abs-io if (i) the domain of all variables is {0, 1}
(i. e., bmin = (0)n and bmax = (1)n), and if (ii) we have no exponents (i. e., A ∈ {0, 1}m×n).

Therefore, we only have to consider the remaining cases. If (i) holds but (ii) does
not, we can simply replace all nonzero-values in A by 1. This does not change the value
of pA,w(x1, . . . , xn) as by (i) we have only binary variables and w remains the same.

If (i) does not hold, we use a set of reduction rules to transform an instance over an
arbitrary domain into one in which the domain is a superset of {0, 1}. This is, of course, not
the same as property (i). However, while adapting the domain, we can transform the instance
such that it is reducible to an instance of pα,d-unbalanced-subgraph with the following
property: Rule 4 either identifies it as a yes-instance or does nothing. This property can be
used by an algorithm for pα,d-abs-io with the following trick: First modify the domain such
that it contains {0, 1}; then virtually shrink the domain to {0, 1} (this restricts the solution
space and, thus, may turn a yes-instance to a no-instance, but may not turn a no-instance to
a yes-instance); perform the reduction and apply Rule 4; either deduce that we are dealing
with a yes-instance (trivial decision of Rule 4) or that the instance is small (as the rule did
nothing). In the latter case restore the larger domain and explore a search tree to solve the
problem (the size of the search tree is bounded, as Rule 4 did not trigger).

Let us first describe the reduction rules. As before, we assume that a rule may only
be applied if rules with smaller numbers were applied exhaustively. The first rule removes
unnecessary variables, products, and constraints; or detects that the instance has no solution.

▶ Rule 5. Apply the following modifications if possible:
1. If wj = 0 for some j, then remove the j-th column from A and w.
2. If there is some i such that Ai,j = 0 for every j, then remove the i-th row from A, (bmin)i,

and (bmax)i.

M. Bannach, P. Fleischmann, and M. Skambath 12:15

3. If there is some i with (bmax)i < (bmin)i, then return a trivial no-instance.
4. If there is some i with (bmax)i = (bmin)i, then for every j where Ai,j > 0 replace wj by

wj · (bmax)Ai,j

i and set Ai,j = 0.
5. If there are two equal columns j0, j1 in A, then replace wj0 by wj0 + wj1 and remove the

j1th column from A and w.

▶ Lemma 30. Rule 5 is safe.

Proof. For Item 1 and 2 observe that neither variables that do not occur in the represented
polynomial nor products that contain zero as a factor contribute to the value of the polynomial.
Item 3 follows from the fact that there cannot be a solution if the domain of a variable is the
empty set. Finally, Item 4 follows by the distributivity of addition and multiplication. ◀

If this rule cannot be applied, the domain of any variable contains at least two consecutive
values. With the next rule we change and shift the domains of all variables such that the
domain of every variable contains 0 and 1.

▶ Rule 6. Apply the following modifications if possible:
1. If there is an i with {0, 1} ̸⊆ [(bmin)i, (bmax)i] and (bmin)i ∈ Z, then for every column j0

where Ai,j0 > 0 add c := Ai,j0 new j1, j2, . . . , jc-th columns such that

Ai′,jk
=

{
Ai′,j0 if i′ ̸= i

Ai,j0 − k if i′ = i
and wjk

=
(
c

k

)
· wj0 · (bmin)k

i for k ∈ {1, . . . , c}.

Finally set (bmin)i to 0 and (bmax)i to (bmax)i − (bmin)i.
2. If there is an i with (bmin)i = −∞ and (bmax)i ≤ 0, then replace wj by −wj for every j

where Ai,j is odd, and set (bmin)i to −(bmax)i and (bmax)i to ∞.

▶ Lemma 31. Rule 6 is safe.

The first subrule shifts the domain of variables that have a finite lower bound. Variables
without such a bound are turned into variables with a finite lower bound by the second
subrule. The first subrule may then be applied again.

As soon as none of the rules can be applied, every variable that occurs in the polyno-
mial pA,w has a domain that is a superset of {0, 1}. We can turn our reduced instance into
an instance of pα,d-abs-dnf, which directly translates into an equivalent instance of pα,d-
unbalanced-subgraph.

Thereby we might turn an abs-io yes-instance into a no-instance of unbalanced-
subgraph. Recall that running the kernelization algorithm from Section 4 (especially Rule 4)
either returns a trivial yes-instance or does nothing. After applying Rule 5 on the initial
instance, rules 1 and 2 cannot be applied on the hypergraph. Therefore, the inital instance
is a yes-instance or the size of the matrix is bounded by the parameters (because (H,w) is a
kernel). Note that this does not imply that we obtain a kernel: The values in the bounding
vectors are eventually not bounded yet. However, we show that such problematic instances
can be reduced to a set of equivalent instances in which we have control over all these values.

▶ Theorem 4. pα,d-abs-io ∈ FPT

Proof. Let us firstly present some branching rule for our problem:

SWAT 2022

12:16 MaxSAT with Absolute Value Functions

▶ Branching Rule 1. Let there be some i∗ where (bmax)i∗ −(bmin)i∗ ≥ 2eα with e = maxj Ai∗,j .
Let w(k) ∈ Zm with w(k)

j = wj if Ai∗,j = k and w(k)
j = 0 otherwise, and let A′ be the matrix

obtained by setting all values in the i∗-th row of A to 0. Then (A,w, bmin, bmax, α) ∈ abs-io
iff there is some k ∈ {0, . . . , e} such that (A′, w(k), bmin, bmax, αk) ∈ abs-io where αk = 1 for
k > 1 and α0 = α.

▷ Claim 32. Branching Rule 1 is safe.

Proof. Let (x1, . . . , xn) be an arbitrary solution for the input instance. By term rewriting it
follows that

pA,w(x1, . . . , xn) =
m∑

j=1
wj ·

n∏
i=1

A⟨xi, i, j⟩

=
e∑

k=0

 ∑
j∈{1,...,m}

Ai∗,j=k

wj ·
∏

i∈{1,...,n}

A⟨xi, i, j⟩

=
e∑

k=0

 ∑
j∈{1,...,m}

Ai∗,j=k

w
(k)
j ·

∏
i∈{1,...,n}

i̸=i∗

A′⟨xi, i, j⟩ ·A⟨xi∗ , i∗, j, ⟩

=

e∑
k=0

(
pA′,w(k)(x1, . . . , xn) ·A⟨xi∗ , i∗, k, ⟩

)
.

We show that one of the branching instance has a solution, too. If pA′,w(k)(x1, . . . , xn) > 0 for
some k > 0, we are done. Otherwise pA′,w(k)(x1, . . . , xn) = 0 holds for every k > 0. Then the
equation above implies pA′,w(0)(x1, . . . , xn) = pA,w(x1, . . . , xn). Since |pA,w(x1, . . . , xn)| ≥ α,
we get that |pA′,w(0)(x1, . . . , xn)| ≥ α, which means (A′, w(0), bmin, bmax, α) ∈ abs-io.

It remains to show that the input instance is a yes-instance if one of the branching instances
is a yes-instance. Firstly, consider (A′, w(0), bmin, bmax, α). Note, that pA′,w(0)(x1, . . . , xn)
does not depend on xi∗ because w(0)

j = 0 for every product that does include xi∗ . For
the same reason it also holds that pA,w(x1, . . . , xi∗−1, 0, xi∗+1, . . . , xn) = pA′,w(0)(x1, . . . , xn).
Therefore, we can turn any solution of (A′, w(0), bmin, bmax, α) into a solution for the input
instance (A,w, bmin, bmax, α) by replacing xi by 0.

Now assume that (A′, w(0), bmin, bmax), α) is a no-instance and consider the largest num-
ber k ∈ {1, . . . , e} such that (A′, w(k), bmin, bmax, 1) is a yes-instance. Let (y1, . . . , yn) be
one of its solutions. Define the polynomial p(z) := pA,w(y1, . . . , yi∗−1, z, yi∗+1, . . . , yn). It
follows that p(z) =

∑k
ℓ=0 cℓ · zℓ with cℓ = pA′,w(ℓ)(y1, . . . , yn). Note that for every z we have

|pA′,w(k)(y1, . . . , yi∗−1, z, yi∗+1, . . . , yn)| ≥ 1 as A′
i∗,j = 0 for every column j and, thus, ck ̸= 0.

We will now argue by curve sketching over R that there is a z ∈ {(bmin)i, . . . , (bmax)i} ∩ Z
with |p(z)| ≥ α. Any interval [a, b] with b− a > 2α where either (a, b] or [a, b) contains no
extremum of the polynomial contains at least one value z ∈ Z where |p(z)| ≥ α. This is
because the polynomial is strictly increasing or decreasing on such an interval and the domain
and image are restricted to Z. The polynomial p has a degree of k, which is at most e, and,
thus, it has at most e − 1 extreme points. Since (bmax)i − (bmin)i ≥ 2eα, there is such an
interval within [(bmin)i; (bmax)i]. Hence, there is a z ∈ [(bmin)i; (bmax)i] with |p(z)| ≥ α. By
the definition of p(z), we finally get that (y1, . . . , yi−1, z, yi+1 . . . , yn) is a solution for the
input instance. ◁

M. Bannach, P. Fleischmann, and M. Skambath 12:17

Note that this rule reduces the number of variables on which the value of the polynomial
depends. Recall Rule 5: As soon as a row contains only zeroes, it can be safely removed.
Since the rules output at most e ≤ d branches, an exhaustive application of all the reduction
rule results in a search tree of size O(dn). This search tree computes O(dn) instances in
total, all of which have no variables with large domain (more than 2dα possible values).

We partition the remaining part of the proof into three parts: First, we present the
algorithm sketched in the main text in detail; second, we prove that this algorithm correctly
solves pα,d-abs-io; and third, we argue that the algorithm in fpt-time.

The Algorithm. Our algorithm has four phases. In the first phase it exhaustively applies
the reduction rules 5 and 6 to obtain an instance (A,w, bmin, bmax, α). If Rule 5 returns a
trivial no-instance, we reject the initial input. As soon as no reduction rule can be applied, it
follows from Rule 5 that every variable in pA,w has a domain of size at least two. By Rule 6
every domain must be a superset of {0, 1}.

In the second phase we use the kernelization algorithm for pα,d-unbalanced-subgraph:
For the instance (A,w, bmin, bmax, α) obtained from the previous phase, let H = (V,E) be a
d-hypergraph and let w : E → Z be a weight function with V = {1, . . . , n}, E = {e1, . . . , em},
ej = {i | Ai,j > 0}, and w(ej) = wj . We test whether |E| ≥ (2dd22d

α)2d−1 and accept if so.
Otherwise m = |E| ≤ (2dd22d

α)2d−1 and n ≤ d · m. Then we continue with the third
phase and exhaustively apply Branching Rule 1 as well as the reduction rules (Rule 5 and
Rule 6). This gives us a search tree that computes a set of instance on which neither a
reduction rule nor the branching rule is applicable. The domain of all variables in all of these
instances is bounded by the parameters and, hence, we can solve them via “brute-force.”

Proof of Correctness. Consider the first phase of the algorithm where rules 5 and 6 are
applied in the given order as long as possible. Since the rules are safe, it is correct to stop
and reject if Rule 5 returns a trivial no-instance. Otherwise we obtain an instance that has a
solution if, and only if, the initial input instance does.

Since the reduction rules have been applied exhaustively in the first phase, the domain for
every variable is a superset of {0, 1} afterwards. Therefore, any solution for the constructed
unbalanced-subgraph instance gives us a valid solution. By Rule 5 there is no isolated
vertex in V nor an edge e ∈ E with w(e) = 0 in the constructed hypergraph. This means
the only rules that modify the hypergraph (Rule 1 and Rule 2) are not applicable. Because
of that, from the proof of Corollary 23, and from Lemma 21, the test for the size of
the hypergraph correctly identifies trivial yes-instances or does nothing. We can derive a
solution (x1, . . . , xn) ∈ Zn with |pA,w(x1, . . . , xn)| ≥ α from a solution X for our hypergraph
where |w[X]| ≥ α as follows by setting xi = 1 if i ∈ X, and by setting xi = 0 otherwise.
This is correct as the term that we maximize for the unbalanced-subgraph instance is
the same as |pA,w(x1, . . . , xn)|, and because the domain of every variable contains 0 and 1.

In the third phase, the algorithm reduces the instance to a set of instances in which the
domain of every variable is bounded by the parameter. Variables with a too large domain
will be eliminated by the branching rule and a following application of Rule 5 to remove the
row containing only zeros. From the safeness of the branching rule it directly follows that
there is one yes-instance if, and only if, one of the final branching instances is a yes-instance.
Since the number of possible solutions for each instance is finite, a brute-force algorithm will
decide for each of these instances correctly whether it is a yes-instance.

SWAT 2022

12:18 MaxSAT with Absolute Value Functions

Runtime Analysis. We first argue that applying the reduction rules exhaustively can be
done in time f(α, d) · µc, were µ is the encoding length of the input, f some computable
function, and c ∈ N a constant.

Rule 6 removes a variable with a domain that is not a superset of {0, 1} and no rule
introduces new variables. Hence, Rule 6 is applied at most O(n) times. Rule 5 can only
be applied O(n + m) times because subrules 1–4 can be applied only once initially; the
fifth subrule can be applied after Rule 6. Hence the rules can only be applied a polynomial
number times. Observe that almost all reduction rules are computable in polynomial time
with respect to the size of the input instance. The sole exceptions are Rule 6.1 and Rule 5.4,
which still run in fpt-time.

We also have to show that the size of subproblems does not exceed the algorithm’s time
bound of f(α, d) · µc. The critical part is Rule 6.1 – in all other cases the instance becomes
only smaller. Each time we apply the rule for some i, the number of columns j for which
Ai,j > 0 is increased by a factor of at most d as Ai,j ≤ d. Every new column arises directly
or indirectly from one column that was in the initial instance and, hence, the size of the
instance increases at most by a factor of dd in total.

For the search tree note that once the kernelization was used in the second phase, n
and m are bounded by the parameters. The height and size of the search tree is therefore
bounded, too. Note that the kernelization itself runs in polynomial time by the definition
of a kernelization algorithm. Finally, whenever Branching Rule 1 cannot be applied, we
have to solve the instance at the leaves of the search tree. Since neither a reduction rule
nor the branching rule are applicable, it holds that n, m, all values in the matrix, and all
values in the bounding vectors are bounded by the parameters for these instances. Thus,
the brute-force algorithm’s runtime is bounded by some computable function that depends
only on the parameters (note that the weights are not necessarily bounded, but this is no
problem for a combinatorial algorithm that enumerates the solutions). ◀

6 Conclusion and Outlook

We considered several variants of the maximum satisfiability problem and showed that, as
soon as we allow negative weights, those variants become W[1]-hard parameterized by the
solution size α – even for monotone clauses of fixed size d. On the other hand, we obtained
fixed-parameter tractability results parameterized by α+ d if we optimize the absolute value
of the target function. The latter result was obtained via a kernelization for the auxiliary
hypergraph problem pα,d-unbalanced-subgraphs, which we think may be of independent
interest. Using these techniques, we were able to almost completely resolve the complexity
of abs-dnf, see Table 1 in the introduction for an overview. The only remaining case is
α-abs-dnf, i. e., the version in which the sought solution size α is constant while the size of
the clauses is unbounded. We do not see how our techniques can be used for this version, as
our algorithms for the unbalanced subgraph problem rely on hyperedges of bounded size.

Using a collection of additional reduction rules, we were able to generalize the results
from pα,d-abs-dnf to pα,d-abs-io, which tries to optimize the absolute value of the target
function of a restricted integer optimization problem.

An interesting line of further research could be to study the minimization version of the
problems presented within this paper. Usually, minimization and maximization problems
have similar complexity, as one can perform some easy modifications such as multiplying
all weights with −1. This is, however, not the case if we optimize the absolute value of the
target function, as the following observation illustrates: Let d-min-abs-monotone-dnf be
defined as d-abs-monotone-dnf, but with ≥ α being replaced by ≤ α, then:

M. Bannach, P. Fleischmann, and M. Skambath 12:19

▶ Observation 33. independent-set ≤ d-min-abs-monotone-dnf

Sketch of Proof. We use the same reduction as in Lemma 5 to reduce independent-set to
d-max-monotone-dnf. Hence, we obtain weighted formula (ϕ,w) and seek an assignment
of weight at least ≥ α (without absolute values). Note that if such an assignment exists, then
there is also one with weight = α as the independent set problem is monotone. We continue
by adding the empty clause (which is always true in a dnf) and set its weight to −α. Finally,
we seek an solution with absolute value ≤ 0. ◀

Note that this reduction works for constant d and produces an instance with α = 0, i. e.,
a parameterization by α and d alone is not enough. However, restricting, for instance, the
weights may yield tractable subproblems that should be explored further.

References
1 N. Alon, G.Z. Gutin, E.J. Kim, S. Szeider, and A. Yeo. Solving max-r-SAT above a tight

lower bound. Algorithmica, 61(3):638–655, 2011.
2 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, Second

Edition, volume 185 of Front. Artif. Intell. Appl. IOS Press, 2021.
3 J. Chen, C. Xu, and J. Wang. Dealing with 4-variables by resolution: An improved maxsat

algorithm. Theor. Comput. Sci., 670:33–44, 2017.
4 B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.

Inf. Comput., 85(1):12–75, 1990.
5 Y. Crama, O. Ekin, and P.L. Hammer. Variable and term removal from boolean formulae.

Discret. Appl. Math., 75(3):217–230, 1997.
6 R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé, and A. Yeo.

Simultaneously Satisfying Linear Equations Over F2: MaxLin2 and Max-r-Lin2 Parameterized
Above Average. In FSTTCS, volume 13, pages 229–240, 2011.

7 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

8 H. Dell, E.J. Kim, M. Lampis, V. Mitsou, and T.Mömke. Complexity and approximability of
parameterized max-csps. Algorithmica, 79(1):230–250, 2017.

9 E. Eiben, R. Ganian, D. Knop, and S. Ordyniak. Unary integer linear programming with
structural restrictions. In IJCAI, pages 1284–1290. ijcai.org, 2018.

10 E. Eiben, R. Ganian, D. Knop, and S. Ordyniak. Solving integer quadratic programming via
explicit and structural restrictions. In AAAI, pages 1477–1484. AAAI Press, 2019.

11 F. Eisenbrand, C. Hunkenschröder, K.M. Klein, M. Koutecký, A. Levin, and S. Onn. An
algorithmic theory of integer programming, 2019. arXiv:1904.01361.

12 P. Erdős and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc.,
1(1):85–90, 1960.

13 J. Flum and M. Grohe. Parameterized Complexity Theory. EATCS. Springer, 2006.
14 R. Ganian and S. Ordyniak. Solving integer linear programs by exploiting variable-constraint

interactions: A survey. Algorithms, 12(12):248, 2019.
15 R. Ganian and S. Szeider. New width parameters for model counting. In SAT, volume 10491

of Lecture Notes in Computer Science, pages 38–52. Springer, 2017.
16 M.R. Garey, D.S. Johnson, and L.J. Stockmeyer. Some simplified np-complete graph problems.

Theor. Comput. Sci., 1(3):237–267, 1976.
17 S. Gaspers and S. Szeider. Kernels for global constraints. In IJCAI, pages 540–545. IJ-

CAI/AAAI, 2011.
18 S. Gaspers and S. Szeider. Guarantees and limits of preprocessing in constraint satisfaction

and reasoning. Artif. Intell., 216:1–19, 2014.
19 T. Gavenčiak, D. Knop, and M. Koutecký. Integer Programming in Parameterized Complexity:

Three Miniatures. In IPEC, volume 115, pages 21:1–21:16, 2019.

SWAT 2022

http://arxiv.org/abs/1904.01361

12:20 MaxSAT with Absolute Value Functions

20 T. Gavenčiak, M. Koutecký, and D. Knop. Integer programming in parameterized complexity:
Five miniatures. Accepted for Discrete Optimization, 2020. doi:10.1016/j.disopt.2020.
100596.

21 M. Grohe. The structure of tractable constraint satisfaction problems. In MFCS, volume 4162,
pages 58–72. Springer, 2006.

22 K. Jansen, A. Lassota, and L. Rohwedder. Near-linear time algorithm for n-fold ilps via color
coding. SIAM J. Discret. Math., 34(4):2282–2299, 2020.

23 S. Khanna, M. Sudan, and D.P. Williamson. A complete classification of the approximability
of maximization problems derived from boolean constraint satisfaction. In STOC, pages 11–20,
1997.

24 M. Koutecký, A. Levin, and S. Onn. A Parameterized Strongly Polynomial Algorithm for
Block Structured Integer Programs. In ICALP), volume 107 of LIPIcs, pages 85:1–85:14, 2018.

25 H.W. Lenstra. Integer programming with a fixed number of variables. Math. Oper. Res.,
8:538–548, 1983.

26 M. Mahajan and V. Raman. Parameterizing above guaranteed values: Maxsat and maxcut. J.
Algorithms, 31(2):335–354, 1999.

27 M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed values. J.
Comput. Syst. Sci., 75(2):137–153, 2009.

28 N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to horn and
binary clauses. In SAT, 2004.

29 M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Algorithms,
8(1):50–64, 2010.

30 M. Samer and S. Szeider. Constraint satisfaction with bounded treewidth revisited. J. Comput.
Syst. Sci., 76(2):103–114, 2010.

31 T.J. Schaefer. The complexity of satisfiability problems. In STOC, pages 216–226, 1978.
32 S. Szeider. The parameterized complexity of k-flip local search for SAT and MAX SAT. Discret.

Optim., 8(1):139–145, 2011.

https://doi.org/10.1016/j.disopt.2020.100596
https://doi.org/10.1016/j.disopt.2020.100596

Dense Graph Partitioning on Sparse and Dense
Graphs
Cristina Bazgan # Ñ

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE,
75016 Paris, France

Katrin Casel # Ñ

Hasso Plattner Institut, Universität Potsdam, Germany

Pierre Cazals #

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE,
75016 Paris, France

Abstract
We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs
of maximum density. The density of a partition is the sum of the densities of the subgraphs, where
the density of a subgraph is half its average degree, that is, the ratio of its number of edges and its
number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general
graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable.

In this paper we study the restriction of Dense Graph Partition to particular sparse and dense
graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as
on cubic graphs. On dense graphs on n vertices, it is polynomial-time solvable on graphs with
minimum degree n − 3 and NP-hard on (n − 4)-regular graphs. We prove that it is polynomial-time
4/3-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme
on graphs of minimum degree n − t for any constant t ≥ 4.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Mathe-
matics of computing → Graph algorithms; Mathematics of computing → Approximation algorithms

Keywords and phrases NP-hardness, approximation, density, graph partitioning, bipartite graphs,
cubic graphs, dense graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.13

Related Version Full Version: https://arxiv.org/abs/2107.13282

1 Introduction

The research around communities in social networks can be seen as a contribution to the
well establish research of clustering and graph partitioning. Graph partitioning problems
have been intensively studied with various measures in order to evaluate clustering quality,
see e.g. [17, 18, 10, 6] for an overview. In the context of social networks, a ‘community’ is a
collection of individuals who are relatively well connected compared to other parts of the
social network graph . A ‘community structure’ then corresponds to a partition of the whole
social network into communities.

We consider a classical definition of the density of a (sub)graph (see, for example,
[12, 15, 8]) given by half its average degree, that is, the ratio between its number of edges and
its number of vertices. For this definition of density, there are several papers on finding the
densest subgraph. This problem was shown solvable in polynomial time by Goldberg [12] but
if the size of the subgraph is a part on the input, the problem called k-Densest Subgraph
becomes NP-hard even restricted to bipartite or chordal graphs [7]. The approximability of
k-Densest Subgraph was also studied, see [14, 9, 4].

© Cristina Bazgan, Katrin Casel, and Pierre Cazals;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 13; pp. 13:1–13:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cristina.bazgan@dauphine.fr
https://www.lamsade.dauphine.fr/~bazgan/
https://orcid.org/0000-0002-5460-6222
mailto:Katrin.Casel@hpi.de
https://hpi.de/friedrich/people/katrin-casel.html
https://orcid.org/0000-0001-6146-8684
mailto:pierre.cazals@dauphine.eu
https://orcid.org/0000-0002-7681-476X
https://doi.org/10.4230/LIPIcs.SWAT.2022.13
https://arxiv.org/abs/2107.13282
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Dense Graph Partitioning on Sparse and Dense Graphs

In this paper, we study the problem Max Dense Graph Partition that models finding
a community structure, that is, finding a dense partition. More precisely, given an undirected
graph G, we aim to find a partition P = {V1, . . . , Vk}, k ≥ 1, of the vertices of G, such that
sum of the densities of the subgraphs G[Vi] is maximized. We denote the sum of the densities
of the subgraphs G[Vi] by d(P), and call this the density of the partition P.

Note that the general concept of a community structure does not put any restriction
on the number of communities. We therefore address the problem Max Dense Graph
Partition of finding a partition of maximum density, without fixing the number of classes
of the partition. Indeed, when the number of classes is given, the problem is a generalization
of a partition into k cliques. By not fixing the number of classes, Max Dense Graph
Partition differs from partitioning into cliques: observe that while there exists a partition
into exactly k sets of density (n − k)/2 if and only if the input graph can be partitioned into
k cliques (see Lemma 2), there can be a partition into less than k sets with a density even
higher than (n − k)/2 even if the input cannot be partitioned into k cliques. As an example,
consider a complete graph of an even number n of vertices and turn four of the vertices
into an independent set by removing all edges among them. The resulting graph cannot be
partitioned into 3 cliques (at least one set contains two of the four independent vertices), but
it has a partition into two sets of equal cardinality with density (n − 2)/2 − 4/n.

Darley et al. [8] studied Max Dense Graph Partition, and its complement Min
Sparse Graph Partition. They defined the sparsity of a partition P as F (P) = |P|

2 + d(P)
and the problem Min Sparse Graph Partition as finding a partition of a given undirected
graph G such that the sparsity of the partition is minimized. Observe that Max Dense
Graph Partition and Min Sparse Graph Partition are dual in the sense that solving
the first one on a graph G is the same as solving the second one on the complement of
G. In [8] it is shown that both problems are NP-complete, and that there is no constant
factor approximation for Min Sparse Graph Partition unless P = NP . Moreover, a
polynomial time algorithm for Max Dense Graph Partition on trees is given. We point
out that their proof of NP-completeness is a polynomial-time reduction from k-Coloring.
By construction, the same reduction when starting from 3-Coloring on graphs of degree at
most 4 (proved NP-complete in [11]) yields as instance of Max Dense Graph Partition a
graph on n vertices and of minimum degree greater than n− 4n4/5. Thus it follows that Max
Dense Graph Partition is NP-complete restricted to graphs of minimum degree n − 4n4/5.

Aziz et al. [2] studied the problem Fractional Hedonic Game, and more particularly
the Max Utilitarian Welfare problem as the simple symmetric version of the game
defined as follows. Let N be a set of agents, the utility of i ∈ N in a coalition S ⊆ N

is ui(S) = 1
|S|

∑
j∈S ui(j) where ui(j) is such that ui(j) ∈ {0, 1} for a simple game and

ui(j) = uj(i) for a symmetric one. For Max Utilitarian Welfare one tries to find a
partition C of N into coalitions that maximizes

∑
S∈C

∑
i∈S ui(S). This game can be seen

as a graph G where agents are vertices and there is an edge between two agents i and j if and
only if ui(j) = 1. In this context, ui(S) = 1

|S|
∑

j∈S ui(j) = 1
|S| degG[S](i). We deduce that∑

S∈C

∑
i∈S ui(S) = 1

|S|
∑

S∈C

∑
i∈S degG[S](i) = 1

|S|
∑

S∈C 2|E(S)| = 2 · d(C). Hence, the
problems Max Utilitarian Welfare and Max Dense Graph Partition are equivalent
to within a constant, which means that the 2-approximation for the former given in [2]
directly translates to the latter.

Our contributions. The following overview summarises the results achieved in this paper
concerning Max Dense Graph Partition (MDGP).

MDGP is trivially solvable on graphs of maximum degree 2, we prove its NP-hardness
for 3-regular (cubic) graphs.

C. Bazgan, K. Casel, and P. Cazals 13:3

We establish that on bipartite complete graphs an optimal partition consists of one part,
that is the whole graph. Moreover if the size of the two independent sets are relatively
prime numbers then this optimal solution is unique. We use this result to show that
MDGP is NP-hard on dense bipartite graphs.
MDGP is trivial on complete graphs since the optimal solution is the whole graph as one
part of the partition. Moreover, as we previously explained, it is NP-hard on graphs of
minimum degree n − 4n4/5. We show that for graphs of minimum degree ≥ n − 3, the
problem is solvable in polynomial time and any optimal solution has two parts. Moreover
on (n − 4)-regular graphs, the problem becomes NP-hard.
We further improve on the 2-approximation for MDGP [2] for specific sparse and
dense graph classes. In particular, we show that MDGP admits a polynomial-time
4/3-approximation on cubic graphs. Moreover we establish a polynomial-time n−1

δ+1 -
approximation, where δ is the minimum degree of the input graph (note that this improves
on the ratio of 2 for all δ > n−3

2). Also, we give an eptas (i.e. a (1 + ε)-approximation for
any ε > 0) on graphs of minimum degree n − t for any constant t ≥ 4

Our paper is organized as follows. Notations and formal definitions are given in Section 2.
The study of (dense) bipartite graphs is established in Section 3. Section 4 presents the
results on cubic graphs. In Section 5 we study dense graphs. Some conclusions are given at
the end of the paper.

2 Preliminaries

In this paper we assume that all graphs are undirected, without loops or multiple edges, and
not necessary connected. We use G = (V, E) to denote an undirected graph with a set V of
vertices and a set E of edges. We use |V | to denote the number of vertices in G, i.e., the
order of G, and we use |E| to denote the number of edges in G, i.e., the size of G. We denote
by degG(v) the degree of v ∈ V in G that is the number of edges incident to v and by DG(i)
the set of vertices of degree i in G. The maximum degree of G, denoted by ∆(G), is the
degree of the vertex with the greatest number of edges incident to it. The minimum degree
of G, denoted by δ(G), is the degree of the vertex with the least number of edges incident to
it. For any vertex v ∈ V , NG(v) is the set of neighbors of v in G and NG[v] = NG(v) ∪ {v}.
Moreover, NG(S) =

⋃
v∈S NG(v). For a graph G = (V, E) and a subset S ⊆ V we denote

by E(S) the set of the edges of G with both endpoints in S. For a given partition {A, B}
of V , we denote by E(A, B) = {uv ∈ E : u ∈ A, v ∈ B}. Further, G[S] denotes the graph
induced by S, defined as G[S] = (S, E(S)).

A triangle graph is the cycle graph C3 or the complete graph K3. A diamond graph
has 4 vertices and 5 edges, it consists of a complete graph K4 minus one edge. A graph is
called cubic if all its vertices are of degree three. A graph is bipartite if its vertices can be
partitioned into two sets A and B such that every edge connects a vertex in A to one in B.
A complete bipartite graph is a special kind of bipartite graph where every vertex of A is
connected to every vertex in B. A graph on n vertices is δ-dense if its minimum degree is at
least δn. A set of instances is called dense if there is a constant δ > 0 such that all instances
in this set are δ-dense (this notion was introduced in [1] and called everywhere-dense).

The density d(G) of a graph G = (V, E) is the ratio between the number of edges and the
number of vertices in G, that is, d(G) = |E|

|V | . Moreover, for S ⊆ V , d(S) = d(G[S]) = |E(S)|
|S| .

We use P to denote a partition of the set V of vertices of G, that is, P = {V1, . . . , Vk}, where
∪k

i=1Vi = V , and Vi ∩ Vj = ∅ for each i, j ∈ {1, . . . , k}. Then the density of a partition P
of G is defined as d(P) =

∑k
i=1 d(G[Vi]), where G[Vi] is the subgraph of G induced by the

subset Vi of vertices, that is, G[Vi] = (Vi, Ei), Ei = {{u, v} : {u, v} ∈ E ∧ u, v ∈ Vi}.

SWAT 2022

13:4 Dense Graph Partitioning on Sparse and Dense Graphs

We study the problem of finding a partition P = {V1, . . . , Vk} of a given graph G, such
that k ≥ 1 and that, among all such partitions, d(P) is maximized. We refer to this problem
as Max Dense Graph Partition and we define its decision version as follows.

Dense Graph Partition
Input: An undirected graph G = (V, E), a positive rational number r.
Question: Is there a partition P such that d(P) ≥ r ?

Given an optimization problem in NPO and an instance I of this problem, we denote by
|I| the size of I, by opt(I) the optimum value of I, and by val(I, S) the value of a feasible
solution S of instance I. The performance ratio of S (or approximation factor) is r(I, S) =
max{ val(I,S)

opt(I) , opt(I)
val(I,S) } ≥ 1. For a function f , an algorithm is an f(|I|)-approximation, if for

every instance I of the problem, it returns a solution S such that r(I, S) ≤ f(|I|). Moreover
if the algorithm runs in polynomial time in |I|, then this algorithm gives a polynomial-time
f(|I|)-approximation. We consider in this paper only polynomial time algorithms. When f

is a constant α, the problem is polynomial-time α-approximable. When f = 1 + ε, for any
ε > 0, the problem admits a polynomial-time approximation scheme. When the running time
of an approximation scheme is of the form O(g(1/ε)poly(|I|) the problem has an efficient
polynomial-time approximation scheme (eptas).

Before we start studying specific graph classes, we observe the following helpful structural
properties that hold for Dense Graph Partition on general graphs.
▶ Remark 1. We can assume that for any optimal partition P and for any part P ∈ P , G[P]
is connected, since otherwise turning each connected component into its own part does not
decrease the density.

When discussing the density of a (sub)graph, it is often useful to think about how close
this subgraph is to being a clique. We therefore call a pair of non-adjacent vertices in a
(sub)graph a missing edge, and use the number of such missing edges to estimate the density
of the (sub)graph. With such estimations, it is easy to show that the following intuition
about favouring complete graphs as communities.

▶ Lemma 2. Among all partitions of G into t ≥ 2 parts, those where the parts correspond to
complete graphs, if there exists such, have the largest density.

Proof. Consider a partition of G into t parts {V1, . . . , Vt} of size n1, . . . , nt. If G[Vi] has oi

missing edges for any 1 ≤ i ≤ t, then the density of this partition is n−t
2 − o1

n1
− . . . − ot

nt
.

Consider a partition of G into t parts of size n′
1, . . . , n′

t such that each part induces a
complete graph for any 1 ≤ i ≤ t. Then the density of this partition is n−t

2 and thus it is
larger than the density of any partition in t parts where at least one edge is missing inside
G[Vi] for some 1 ≤ i ≤ t. ◀

A direct consequence of this is the following.

▶ Lemma 3. Let G = (V, E) be a graph and P be any partition of V . Then d(P) ≤ |V |
2 − |P|

2 .

3 Dense Bipartite Graphs

In this section we show that Max Dense Graph Partition has a trivial solution on
complete bipartite graphs. Moreover, using this result we show that the problem is NP-hard
on dense bipartite graphs.

Considering all possibilities to partition a complete bipartite graph Gn,m with the two
subsets that are independent sets of size n and m one can derive the following.

C. Bazgan, K. Casel, and P. Cazals 13:5

v1
v2

v3 v4

v5

⇒

v1 v2 v3 v4 v5 w1
1 w1

2 w1
3 w2

1 w2
2 w2

3 z

v′
1 v′

2 v′
3 v′

4 v′
5 x1

1 x1
2 x1

3 x1
4 x1

5 x1
6 x1

7 x2
1 x2

2 x2
3 x2

4 x2
5 x2

6 x2
7

z1 z2

Figure 1 A graph G, instance of Dominating Set and the bipartite graph G′ obtained from G,
for k = 2 and n = 5.

▶ Lemma 4. The density d(Gn,m) of a complete bipartite graph Gn,m is greater than or
equal to the density d(P) of any partition P of Gn,m.

It follows that an optimal solution of any complete bipartite graph is the whole graph.
The calculations used to prove Lemma 4 inductively also give the following.

▶ Corollary 5. For any complete bipartite graph G = (A, B, E) with |A| = n and |B| = m, a
partition P = {V1, . . . , Vk} of A ∪ B satisfies d(P) = nm

n+m if and only if G[Vi] = Gni,mi
with

ni ̸= 0 and mi ̸= 0 and ni

mi
= n

m for all i ∈ {1, . . . , k}.

Consequently, for any complete bipartite graph Gn,m, if n and m are relatively prime the
only optimal solution of Gn,m is the whole graph. Otherwise, several optimal solutions exist
and are characterized exactly by Corollary 5.

▶ Theorem 6. Dense Graph Partition is NP-hard on dense bipartite graphs.

Proof. We give a reduction from Dominating Set. Let G = (V, E) with V = {v1, . . . , vn}
and an integer k ≥ 1 be an instance of Dominating Set. Assume without loss of generality
that G is connected. We first construct a bipartite graph G′ = (V1, V2, E′), that is not dense,
and show how solving Dense Graph Partition on it solves Dominating Set on G. In a
second step, we show how to make G′ dense maintaining the reduction.

We construct G′ = (V1, V2, E′) as follows:
V1 = V ∪ {wj

i : 1 ≤ i ≤ n − k, 1 ≤ j ≤ k} ∪ {z}
V2 = V ′ ∪{xj

r : 1 ≤ r ≤ N, 1 ≤ j ≤ k}∪{zi : 1 ≤ i ≤ N −n} where V ′ = {v′
1, . . . , v′

n} and
N ∈ N is chosen as follows. Let c ∈ N be the smallest integer such that c(n−k+1)−1 > n

(note that 1 ≤ c ≤ n) and define N = c(n − k + 1) − 1. For this choice of N it follows
that the greatest common divisor of N and n − k + 1 is 1, and n < N ≤ 2n.
E′ = Ed ∪ Ewx ∪ Ec ∪ Ez with
Ed = {{vi, v′

j} : {vi, vj} ∈ E} ∪ {{vi, v′
i} : 1 ≤ i ≤ n},

Ewx = {{wj
i , xj

r} : 1 ≤ i ≤ n − k, 1 ≤ r ≤ N − 1, 1 ≤ j ≤ k},
Ec = {{wj

i , v′
s} : 1 ≤ i ≤ n − k, 1 ≤ j ≤ k, 1 ≤ s ≤ n} ∪ {{vs, xj

r} : 1 ≤ s ≤ n, 1 ≤ r ≤
N, 1 ≤ j ≤ k} and
Ez = {{z, zj} : 1 ≤ j ≤ N − n} ∪ {{z, xj

r} : 2 ≤ r ≤ N, 1 ≤ j ≤ k} ∪ {{vi, zj} : 1 ≤ i ≤
n, 1 ≤ j ≤ N − n}

Notice that G′ is a bipartite graph with |V1| = n + 1 + k(n − k) and |V2| = (k + 1)N .
We show that there exits a dominating set of cardinality at most k in G if and only if

there exists a partition P of G′ with d(P) = (k + 1)d(Gn−k+1,N).

SWAT 2022

13:6 Dense Graph Partitioning on Sparse and Dense Graphs

Suppose there exists a dominating set D in G with |D| = k. Let D = {vi1 , . . . , vik
} and

N ′(vij
) = NG[vij

] \ (D ∪ NG({vi1 , . . . , vij−1}). Define the partition P = {P1, . . . , Pk+1} by:
Pj = {vij

} ∪ {v′
r : vr ∈ N ′(vij

)} ∪ {wj
r : 1 ≤ r ≤ n − k} ∪ {xj

r : 1 ≤ r ≤ N − |N ′(vij
)|} for

1 ≤ j ≤ k and Pk+1 = V1 ∪ V2 \ (∪k
j=1Pj). With this definition, P is clearly a partition of

V1 ∪ V2, and each part Pj contains n − k + 1 vertices from V1 and N vertices from V2 for
each 1 ≤ j ≤ k + 1. Further, each Pj induces a complete bipartite graph Gn−k+1,N : All
vertices wj

r and xj
r are connected to each other, and to all vertices in V2 and V1, respectively,

by construction. Further, vij is connected in G′ to all vertices in N ′(vij); note here that
in G′ we connected vi to its “copy” v′

i for all 1 ≤ i ≤ n, which models the case that vij

dominates itself. For Pk+1, note that z is adjacent to all xj
i -vertices, and each zi is adjacent

to all vertices in V . Since D is a dominating set, each vertex from V ′ is contained in some
N ′(vij

), thus V2 \ (∪k
j=1Pj) only contains xj

i -vertices. Also, the Pj contain all wj
i vertices

and hence V1 \ (∪k
j=1Pj) only contains vertices from V .

Conversely, let P be a partition of G′ of density (k + 1)d(Gn−k+1,N). Thus, Corollary 5
implies that the vertices for each set P ∈ P induce a complete bipartite graph Gr,s such that
r
s = |V1|

|V2| = k(n−k)+n+1
(k+1)N = n−k+1

N . Since the greatest common divisor of n − k + 1 and N is
one, this yields r ≥ n − k + 1 and s ≥ N and especially P can contain at most k + 1 sets.

For all wj
i and wt

ℓ, if j ̸= t, wj
i and wt

ℓ have n common neighbors, and since n < N there
is no part P ∈ P such that wj

i , wt
ℓ ∈ P . Moreover, for all i, j, wj

i and z have N − 1 common
neighbors so they also cannot be in the same P ∈ P. Hence, there are exactly k + 1 parts
in P that are complete bipartite graphs Gn−k+1,N .

For all 1 ≤ j ≤ k, denote by Pj the set containing the vertices wj
i for all 1 ≤ i ≤ n − k

and Pz the set containing z. To reach cardinality exactly n − k + 1, Pj ∩ V1 has to contain
exactly one vertex from V for each 1 ≤ j ≤ k. Further, since for any i, v′

i is not adjacent to z,
V ′ ⊆ ∪k

j=1Pj . As each P ∈ P induces a complete bipartite graph in G′, D = V ∩ ∪k
j=1Pj

is a set of size k, such that each vertex in V ′ is adjacent to at least one vertex in D, so we
deduce that D is a dominating set of size k in G.

We extend the construction of the proof to create from G′ a dense bipartite graph
G′′ = (V ′′, E′′) by adding four sets of vertices V u

1 , V d
1 , V u

2 , V d
2 with |V u

1 | = |V d
1 | = kn|V1| =

kn(k(n−k)+n+1) and |V u
2 | = |V d

2 | = kn|V2| = knN(k+1). Further, we add edges to turn the
pairs (V u

1 , V u
2), (V d

1 , V d
2), (V u

1 , V1), and (V d
2 , V2) each into complete bipartite graphs. Observe

that with this construction G′′ has |V ′′| = (2kn + 1)(k(n − k) + n + 1) + (2kn + 1)N(k + 1) <

10k2n2 vertices and that all vertices have degree at least kn|V1| ≥ 1
2 k2n2 ∈ Θ(|V ′′|). (Note

that if k ≥ n
2 , G is a trivial yes-instance for Dominating Set.)

We claim that there exists a partition P ′ of G′′ with d(P ′) = (k+1)d(Gn−k+1,N)+2kn(k+
1)d(Gn−k+1,N) if and only if there exists a dominating set of size k for G. Corollary 5 again
implies that this density for G′′ can only be achieved by a partition into complete bipartite
graphs Gr,s with r

s = (2kn+1)(k(n−k)+n+1)
(2kn+1)N(k+1) = n−k+1

N . The vertices in V d
1 are only adjacent to

vertices in V d
2 , and the vertices in V u

2 are only adjacent to vertices in V u
1 . Clustering these in

a ratio r
s results in clusters containing exactly all newly added vertices, and this can be done

with just two sets in total. What remains is to cluster the graph G′ into complete bipartite
graphs Gr,s such that r

s = |V1|
|V2| = k(n−k)+n+1

(k+1)N = n−k+1
N as before. ◀

4 Cubic Graphs

In this section, we study Dense Graph Partition on cubic graphs, show that it remains
NP-complete on this restricted graph class, but also give a polynomial time 4

3 -approximation
for its optimization variant Max Dense Graph Partition. We start with some general
observations on the structure of communities in cubic graphs.

C. Bazgan, K. Casel, and P. Cazals 13:7

▶ Definition 7. For P ⊆ V , the utility of a vertex v ∈ P is defined by uP (v) = d(P)
|P | , and

the utility of P is defined by u(P) = uP (v) for any v ∈ P . For a partition P = {V1, . . . , Vk},
the utility of a vertex v in P is defined by uP(v) = uVi

(v) with i such that v ∈ Vi.

Considering these definitions, we can remark that:
For any subset P ⊆ V , and v, w ∈ P , uP (v) = uP (w).
If P = {v} then uP (v) = 0.
For any partition P of G,

∑
Vi∈P

d(Vi) =
∑

v∈V

uP(v).

▶ Lemma 8. Let G = (V, E) be a cubic graph without connected components that induce a
K4. For any partition P of G the following holds:

uP(v) ≤ 1
3 for all vertices v ∈ V

if P ∈ P is not a triangle, diamond or Case 1 in Figure 2 then u(P) ≤ 1
4

Proof. Let P be a partition of G, P ∈ P and v ∈ P . Since G is cubic, d(P) ≤ 3|P |
2|P | = 3

2 .
Then uP(v) ≤ 3

2|P | . If |P | ≥ 6, uP(v) ≤ 3
2·6 = 1

4 . For |P | = 5 it follows that uP(v) ≤ 7
25 < 1

3 ,
since a cubic graph on 5 vertices cannot have more than 7 edges. Also, since there exists
no K4 in G, the only graph on 5 vertices with 7 edges is Case 1 in Figure 2, and all other
graphs on 5 vertices have 6 or less edges which yields a utility of at most 6

25 < 1
4 .

Case analysis on the graphs of size 4 or less yields that the largest utility is achieved
for P being a triangle, which gives uP(v) = 1

3 . Further, if P is not a triangle or a diamond,
case analysis on the graphs of size 4 or less shows that uP(v) is maximized when P is an
induced matching and its value is 1

4 . ◀

Considering all cases to distribute vertices of a diamond, as illustrated in Figure 2 can be
used to show the following.

▶ Lemma 9. Let G be a cubic graph without connected components that induce a K4, and let
v1, v2, v3, v4 be vertices in G that induce a diamond. Then uP(v1)+uP(v2)+uP(v3)+uP(v4) ≤
5
4 for any partition P for G.

▶ Lemma 10. Let G be a cubic graph on n vertices without connected components that
induce a K4, and let D be the set of diamonds in G and T the set of triangles in G that do
not belong to a diamond. For any partition P, d(P) ≤ 5

4 |D| + |T | + 1
4 (n − 3|T | − 4|D|).

Proof. By Lemma 8, the only vertices with utility more than 1
4 are those that are in

triangles, diamonds, or the unique neighbors of diamonds (in the sense of vertex v5 in Case 1
of Figure 2), and we know that the sum of the utilities of the vertices constituting a triangle

v1

v2

v3

v4

v5

Case 1 Case 2 Case 3

Figure 2 Different cases of Lemma 9.

SWAT 2022

13:8 Dense Graph Partitioning on Sparse and Dense Graphs

vx

vx
xy1z1

vx
xy2z2

vx
xy3z3

Figure 3 Subgraph containing one vertex
of type 1, vx, and its neighbors in G.

vx
xyz

vy
xyz

vx

vz
xyz

Figure 4 Subgraph containing one vertex
of type 1, vx, and three of type 2.

is at most 3 · 1
3 = 1. By Lemma 9, we further know that the sum of the utilities of the

vertices constituting a diamond is at most 5
4 . The unique neighbors of diamonds have a

utility of more than 1
4 if and only if they are in a part isomorphic to Case 1 of Figure 2,

which has a density of 7
5 < 5

4 + 1
4 . Thus, if S is the set of unique neighbors of diamonds, then

the sum of the utilities of the vertices in the diamonds in D and the vertices in S is at most
5
4 |D| + 1

4 |S|. All remaining vertices have a utility of at most 1
4 by Lemma 8. We deduce that

d(G) ≤ 5
4 |D| + 1

4 |S| + |T | + 1
4 (n − 3|T | − 4|D| − |S|) = 5

4 |D| + |T | + 1
4 (n − 3|T | − 4|D|). ◀

We will reduce from the following problem, known to be NP-hard by [13]:

Restricted Exact Cover By 3-Sets (RX3C)
Input: A set X of elements with |X| = 3q and a collection C of 3-element subsets of X

where each element appears in exactly 3 sets.
Question: Does C contain an exact cover for X, i.e. a subcollection C ′ ⊆ C such that
every element occurs in exactly one member of C ′ ?

The following definition gives the construction to reduce RX3C to Dense Graph Partition.

▶ Definition 11. Let I = (X, C) be an instance of RX3C. We define the construction σ

transforming I into the graph G = (V, E) := σ(I) as follows (see Figures 3 and 4):
for each element x ∈ X, add the vertex vx to V (called vertices of type 1 or black vertices).
for each subset of the collection {x, y, z} ∈ C, add the vertices vx

xyz, vy
xyz, vz

xyz to V

(called vertices of type 2 or white vertices).
add the edges {vx

xyz, vy
xyz}, {vx

xyz, vz
xyz} and {vy

xyz, vz
xyz} to E

add the edges {vx
xyz, vx}, {vy

xyz, vy} and {vz
xyz, vz} to E

Notice that G is a cubic graph on |X| vertices of type 1 and 3|X| vertices of type 2.

Case distinction on the subgraphs in σ(I) can be used to show:

▶ Lemma 12. For G = (V, E) = σ(I) and any P ⊆ V , it holds that u(P) ≥ 1
4 if and only if

G[P] is isomorphic to one of the following three graphs:
a triangle where all the vertices are of type 2 and then u(P) = 1

3 .
an edge with at least one vertex of type 2, and then u(P) = 1

4 .
the subgraph described in Figure 4 and then u(P) = 1

4 .

▶ Remark 13. The case-analysis in the proof of Lemma 12 also shows that for any subset
P ⊆ V of the vertices of the graph σ(I), if v is of type 2 then uS(v) ≤ 1

3 , otherwise uS(v) ≤ 1
4 .

▶ Theorem 14. Dense Graph Partition is NP-complete on cubic graphs.

C. Bazgan, K. Casel, and P. Cazals 13:9

Proof. Let I = (X, C) be an RX3C instance. We claim that I is a yes-instance of RX3C if
and only if I ′ = (G, 7|X|

6) with G = σ(I) is a yes-instance of Dense Graph Partition.
Let C ′ ⊆ C be an exact cover for X of size |X|

3 . Consider the partition P built from
the following 5|X|

3 parts: for any c ∈ C ′, c = {x, y, z} add {vx, vx
xyz}, {vy, vy

xyz}, {vz, vz
xyz}

and for any c /∈ C ′, c = {x, y, z} add {vx
xyz, vy

xyz, vz
xyz}. Since C ′ is an exact cover, P is a

partition for G and its density is 3
2 · |X|

3 + 2
3 |X| = 7

6 |X|.
Let P ′ be a partition of G of density d(P ′) = 7

6 |X|. Firstly, we show that P ′ has
necessarily the following shape: 2|X|

3 parts of size 3 containing only vertices of type 2 forming
a triangle and |X| parts of size 2 containing one vertex of type 1 and one of type 2 adjacent
in G. From Remark 1, we can assume that all parts induce connected subgraphs.

We first show that d(P ′) = 7|X|
6 implies that there are at least 2|X|

3 parts in P ′ which are
triangles. Assume by contradiction that P ′ has 2|X|

3 − ℓ triangles, with ℓ > 0. Since G has
4|X| vertices, there are 2|X| + 3ℓ vertices that do not belong to a part in P ′ that corresponds
to a triangle. By Lemma 12 the utility of these vertices is at most 1

4 which yields:

d(P ′) ≤ 2|X|
3 − ℓ + (2|X| + 3ℓ) · 1

4 = 7|X|
6 − ℓ

4 <
7|X|

6 .

This contradicts the choice of P ′ such that d(P ′) = 7|X|
6 , hence P ′ has at least 2|X|

3 triangles.
Assume by contradiction that P ′ has 2|X|

3 + ℓ triangles, with ℓ > 0. Since there are 3|X|
vertices of type 2 and among these vertices 3 · (2|X|

3 + ℓ) belong to a triangle, |X| − 3ℓ vertices
of type 2 do not belong to a triangle. Each neighbor of a vertex vx of type 1 is of type 2, so
if the utility of vx is positive, there exists a vertex of type 2, vx

xyz, neighbor of vx, that is in
the same part as vx and vx

xyz does not belong to a triangle. Moreover, as all type 1 vertices
have no common neighbors, for each type 1 vertex with positive utility, there is a type 2
vertex that is not in a triangle. Since there are at most |X| − 3ℓ type 2 vertices that do not
belong to a triangle, there are at most |X| − 3ℓ type 1 vertices with positive utility, thus:

d(P ′) ≤ 2|X|
3 + ℓ + |X| − 3ℓ

4 + |X| − 3ℓ

4 ≤ 7|X|
6 − ℓ

2 <
7|X|

6 .

This again contradicts the choice of P ′ with d(P ′) = 7|X|
6 , thus P ′ has exactly 2|X|

3 triangles.
We claim that d(P ′) = 7|X|

6 implies that all type 1 vertices are in a part that is a matching
with a type 2 vertex. There are |X| type 1 vertices and |X| type 2 vertices that are not
in some triangle in P ′. Since there are exactly 2|X|

3 parts in P ′ forming a triangle and the
utility of each other vertex is smaller than or equal to 1

4 , to reach a density of 7|X|
6 it is

necessary that each of the 2|X| vertices outside the parts that are triangles has a utility of
exactly 1

4 . To reach this utility, by Lemma 12 there are two possibilities, the graph described
in Figure 4 and an edge. Since there are exactly |X| vertices of type 1 and |X| vertices of
type 2 outside the triangles in P ′, and vertices of type 1 only have neighbors of type 2, the
only possibility is if each type 1 vertex is matched with one type 2 vertex.

Consider now the following subcollection C ′′ ⊆ C: for each triple vx
xyz,vy

xyz,vz
xyz that does

not belong to a triangle, we add the set {x, y, z} to C ′′. The subcollection C ′′ is a cover since
each type 1 vertex is a neighbor of one of these vertices and it is an exact cover since there
are exactly |X|

3 3-element subsets that do not belong to a triangle. ◀

Our observations about the maximum utility of certain vertices can also be used to show
the following positive result.

▶ Theorem 15. Max Dense Graph Partition is polynomial-time 4
3 -approximable on

cubic graphs.

SWAT 2022

13:10 Dense Graph Partitioning on Sparse and Dense Graphs

Proof. Let I = G be a cubic graph, instance of Max Dense Graph Partition. If G

contains connected components isomorphic to K4, create a part for each such component, as
this is the optimum way to partition these sets. Then, let D be the set of all diamonds in G,
and T the set of all triangles that do not belong to a diamond. Diamonds (resp. triangles) can
be found in polynomial time simply by enumerating all 4-tuples (resp. 3-tuples) of vertices
and checking if they induce a diamond (resp. triangle) as subgraph. Let G′ be the graph
obtained from G after removing the vertices of D and T . Compute a maximum matching M

of G′, and let G′′ be the graph obtained from G′ after removing the vertices of M . Since M

is a maximal matching, the vertices in G′′ form an independent set.
We show in the following that |V (G′′)| ≤ |V (G)|

4 . For each v ∈ V we associate a function
t(v) and initialize it with t(v) = 1. When removing the diamonds and triangles from G in
order to get G′ we update the function t as follows:

For every diamond {u1, u2, u3, u4} ⊆ V that is deleted from V , let u1 and u3 be the
vertices with neighbors outside of the diamond (if these vertices still exist) and let
v1 and v3 be these neighbors (with the possibility that v1 = v3). We update the
function t : t(v1) := t(v1) + t(u1) + t(u2) and t(v3) := t(v3) + t(u3) + t(u4) (thus
t(v1) := t(v1) + t(u1) + t(u2) + t(u3) + t(u4) if v1 = v3). If v1 or v3 were already deleted,
we delete their associated t function.
For every triangle {u1, u2, u3} ⊆ V that is deleted from V , let v1 (resp. v2 and v3) be the
neighbor of u1 (resp. u2 and u3) outside of the triangle (if these vertices exist). We update
the function t : t(v1) := t(v1) + t(u1), t(v2) := t(v2) + t(u2) and t(v3) = t(v3) + t(u3). If
v1, v2 or v3 do not exist, we delete their associated t function.

Observe that after updating t for any v ∈ V (G′), if v ∈ DG′(3) then t(v) ≥ 1, if v ∈ DG′(2)
then t(v) ≥ 2, if v ∈ DG′(1) then t(v) ≥ 3 and if v ∈ DG′(0) then t(v) ≥ 4. In order to
justify this, observe that the t function associated to vertices in V (G′) cannot decrease. If a
vertex v is of degree 3 − i in G′, 1 ≤ i ≤ 3, then there are at least i adjacent edges to distinct
vertices in triangles or diamonds that were removed from G and increase t(v). Each time
when a neighbor of a vertex v from a diamond or a triangle is removed then t(v) increases
by at least one. Then, in G′, each vertex v of degree 3 − i has t(v) ≥ i + 1.

Let n′
i be the number of vertices of degree i in G′. By the previous remark, we have∑

v∈V (G′)

t(vi) ≥ 4n′
0 + 3n′

1 + 2n′
2 + n′

3 (1)

Since G′ is a subcubic triangle-free graph and M a maximum matching in G′, using a
result of Munaro [16], we get

|V (M)| ≥ 9
10n′

3 + 3
5n′

2 + 3
10n′

1 (2)

We show now that 4|V (G′′)| ≤
∑

v∈V (G′)
t(vi). In fact, combining |V (G′)| = n′

0+n′
1+n′

2+n′
3

with inequality (2) gives |V (G′′)| ≤ n′
0 + 7

10 n′
1 + 2

5 n′
2 + 1

10 n′
3. Thus, 4|V (G′′)| ≤ 4n′

0 +
28
10 n′

1 + 8
5 n′

2 + 4
10 n′

3 ≤ 4n′
0 + 3n′

1 + 2n′
2 + n′

3 ≤
∑

v∈V (G′)
t(vi) using inequality (1). Then

4|V (G′′)| ≤
∑

v∈V (G′)
t(vi) and since |V (G)| ≥

∑
v∈V (G′)

t(vi) we get |V (G′′)| ≤ 1
4 V (G).

Consider the partition P = D ∪ T ∪ M ∪ V (G′′) in the sense that P contains a set for
each diamond in D, one set for each triangle in T , one set for each edge in the matching
M and one set for each vertex in V (G′′). Then d(P) = 5

4 |D| + |T | + 1
2 |M | ≥ 5

4 |D| +
|T | + 1

4 (n − 3|T | − 4|D| − n
4) since |V (G′′)| ≤ 1

4 V (G). By Lemma 10 it follows that:
opt(I)
d(P) ≤

5
4 |D|+|T |+ 1

4 (n−3|T |−4|D|)
5
4 |D|+|T |+ 1

4 (n−3|T |−4|D|− n
4) =

1
4 |D|+ 1

4 |T |+ n
4

1
4 |D|+ 1

4 |T |+ 3n
16

= 1 + n
4|D|+4|T |+3n ≤ 1 + 1

3 . ◀

C. Bazgan, K. Casel, and P. Cazals 13:11

5 Dense Graphs

In this section we consider graphs G = (V, E) on n vertices such that G can be viewed
as G = H where H is a graph of small maximum degree. Note that the edges of H are
exactly the missing edges of G. We first consider graphs G = (V, E) on n vertices such that
δ(G) ≥ n − 3, that is G = H where H has ∆(H) = 2 and has q ≤ n edges and show that
Max Dense Graph Partition is solvable in polynomial time on these graphs.

▶ Lemma 16. For any graph G on n vertices such that δ(G) ≥ n − 3, its density d(G) is
greater than or equal to the density of any partition P of G into t ≥ 3 parts.

Proof. The density of G is given by d(G) =
n(n−1)

2 −q

n = n−1
2 − q

n . From Lemma 2, among
all partitions of G into t ≥ 3 parts, those where the parts correspond to complete graphs
have the largest density. The density of such a partition into t parts of size n1, . . . , nt is n−t

2 .
Thus, the density of G is at least as large as the density of this last partition since t ≥ 3 and
q ≤ n (note here that a graph with minimum degree n − 3 has at most n missing edges). ◀

Observe that in the proof of the previous lemma when q = n and t = 3, the density of a
partition in 3 parts corresponding to complete subgraphs and the density of the entire graph
are the same. This previous lemma implies that for any graph G such that δ(G) ≥ n − 3,
there exists a partition into one or two parts of maximum density.

▶ Lemma 17. For any graph G on n vertices such that δ(G) ≥ n − 3, in any partition for G

into two parts, the sum of missing edges in the two parts is at least o, where o is the number
of odd cycles in G.

Proof. Let C be an odd cycle in G. Since C is not bipartite, there is no partition {V1, V2} of
V such that all the edges of C have one endpoint in V1 and one endpoint in V2. Hence, for
any partition {V1, V2} at least one of the missing edges from C is inside G[V1] ∪ G[V2]. ◀

▶ Lemma 18. Among all partitions into 2 parts of fixed size containing x missing edges, the
one containing all missing edges in the largest part has the best density.

Proof. Consider two partitions {V1, V2} and {V ′
1 , V ′

2} such that |V1| = |V ′
1 | = n1 and

|V2| = |V ′
2 | = n2 with n1 ≤ n2 and G[V1] (resp. G[V2]) containing x1 (resp. x2) missing

edges and G[V ′
1] (resp. G[V ′

2]) containing 0 (resp. x = x1 + x2) missing edges. Then:
d({V1, V2}) = n−2

2 − x1
n1

− x2
n2

, and
d({V ′

1 , V ′
2}) = n−2

2 − x
n2

.
Since x = x1 + x2 and n1 ≤ n2, it follows that d({V1, V2}) ≤ d({V ′

1 , V ′
2}). ◀

▶ Lemma 19. Among all partitions into 2 parts containing 0 (resp. x) missing edges in the
smaller (resp. larger) part, the one with a maximum number of vertices in the largest part
has the best density.

Proof. Consider two partitions {V1, V2} and {V ′
1 , V ′

2} such that |V1| = n1, |V2| = n2 with
n1 ≤ n2 and |V ′

1 | = n′
1, |V ′

2 | = n′
2 with n′

1 ≤ n′
2 and G[V1] (resp. G[V2]) containing 0 (resp. x)

missing edges and G[V ′
1] (resp. G[V ′

2]) containing 0 (resp. x) missing edges. Moreover suppose
n2 ≤ n′

2. The densities for these partitions are:
d({V1, V2}) = n−2

2 − x
n2

, and
d({V ′

1 , V ′
2}) = n−2

2 − x
n′

2
.

Since n2 ≤ n′
2, it follows that d({V1, V2}) ≤ d({V ′

1 , V ′
2}). ◀

SWAT 2022

13:12 Dense Graph Partitioning on Sparse and Dense Graphs

V2

V1

Figure 5 Construction of V1 and V2 in Theorem 20.

▶ Theorem 20. Max Dense Graph Partition is solvable in polynomial time on graphs G

with n vertices with δ(G) ≥ n − 3.

Proof. Let G be a graph of minimum degree n − 3. We first define a partition {V1, V2} of
the vertices of G by giving vertices color 1 or 2, in the sense that V1 (resp. V2) contains
vertices of color 1 (resp. 2). An example is given in Figure 5. We assign color 2 to each
vertex of degree n − 1. Since the minimum degree in G is n − 3, the graph H of missing
edges is a collection of paths and cycles. We color the vertices on paths or cycles with an
even number of vertices alternating by 1 and 2. For vertices on paths or cycles with an odd
number of vertices we also color them alternating by 1 and 2, always starting with color 2.
Thus cycles of odd size have two adjacent vertices of color 2.

Let o be the number of odd cycles in H. The partition {V1, V2} defined by our 2-coloring
contains o missing edges in V2 and |V2| is maximized among all such partitions. Its density
is equal to n−2

2 − o
n2

, where n2 = |V2|. Denote by dn−1 the number of vertices of G of
degree n − 1 and by po the number of paths with an odd number of vertices (even length)
among the missing edges. The sets V1 and V2 contain the same number of vertices of degree
n − 2 that are extremities of a path with an even number of vertices in H. The set V2
contains po more vertices of degree n − 2, that are extremities of a path with an odd number
of vertices, than V1. The set V2 contains o more vertices of degree n − 3 than V1. Thus
n1 = 1

2 (n − dn−1 − po − o) and n2 = 1
2 (n + dn−1 + po + o). We claim that there is no partition

into two parts that has a higher density.
By Lemma 17, any partition into two sets contains at least o missing edges inside the

two parts. By construction we have maximized the number of vertices in the part with the
missing edges among all partitions with the minimum number o of missing edges, i.e., there is
no partition into two parts {V ′

1 , V ′
2} with o missing edges all contained in V ′

2 and |V ′
2 | > |V2|.

Hence, by Lemmas 18 and 19, it remains to show that any partition {V ′
1 , V ′

2} with o + x > o

missing edges for some x > 0 has a smaller density than {V1, V2}.
Let {V ′

1 , V ′
2} be a partition with o + x > o missing edges for some x > 0 and assume

w.l.o.g. that |V ′
1 | ≤ |V ′

2 |. By definition of the partition {V1, V2}, it follows that |E(H)| =
2n1 − po + o (note that all non-edges have to either be among the o missing edges in
the partition or in the cut between V1 and V2). In the partition {V ′

1 , V ′
2}, it follows that

|E(H)| ≤ 2|V ′
1 | − r1 + (o + x), where r1 is the number of vertices in V ′

1 adjacent to only one
edge in H. In the cut between V ′

1 and V ′
2 , each vertex in V ′

1 is adjacent to at most two such
edges. Combining these two bounds on |E(H)| yields

2n1 − po ≤ 2|V ′
1 | − r1 + x . (3)

We claim that r1 ≥ po − x. To see this, observe that every path of odd length either results
in a vertex in V ′

1 adjacent to only one edge in E(H) (r1) or in a missing edge. Also, every
cycle of odd length creates at least one missing edge. Thus the number of missing edges
o + x for {V ′

1 , V ′
2} is at least po − r1 + o. Reordering this yields the claimed

r1 ≥ po − x . (4)

C. Bazgan, K. Casel, and P. Cazals 13:13

Figure 6 The construction of G′ in Definition 21.

Inequalities (3) and (4) yield 2n1 − po ≤ 2|V ′
1 | − po + 2x and thus n1 − |V ′

1 | ≤ x. Since
{V ′

1 , V ′
2} is a partition it follows that |V ′

2 | = n − |V ′
1 | ≤ n − n1 + x = n2 + x.

By Lemmas 18 and 19, the best case of missing edges for {V ′
1 , V ′

2} is that they all are in
the larger part V ′

2 , hence the density of {V ′
1 , V ′

2} is at most n−2
2 − o+x

|V ′
2 | . With |V ′

2 | ≤ n2 + x,
we can bound d(V ′

1 , V ′
2) ≤ n−2

2 − o+x
n2+x . Since H is of degree at most 2, we know that there

cannot be more missing edges than vertices in a part, thus in particular o ≤ n2. This last
observation allows to bound d(V ′

1 , V ′
2) ≤ n−2

2 − o+x
n2+x ≤ n−2

2 − o
n2

= d(V1, V2), thus the
density of {V ′

1 , V ′
2} is not larger than the density of {V1, V2}. ◀

We now consider graphs G = (V, E) on n vertices that are (n − 4)-regular, that is
G = H where H is a cubic graph. We show that Dense Graph Partition is NP-hard on
(n − 4)-regular graphs, by showing a reduction from Min UnCut on cubic graphs, that is
the complement of Max Cut. This last problem on cubic graphs was proved NP-hard and
even not polynomial-time 1.003-approximable, unless P=NP [3].

Min UnCut
Input: A graph G = (V, E), an integer k.
Question: Does G contain a partition of V into two parts A, B such that the number
of edges with both endpoints in the same part is at most k?

▶ Definition 21. Let I = (G, k) be an instance of Min UnCut where G = (V, E) is
a cubic graph. We define the construction σ transforming the graph G into the graph
G′ := (V ′, E′) = σ(G) (see Figure 6) as follows:

let G0 = (V0, E0) be the union of n2−n
6 copies of K3,3 (see remark below). Thus G0 is

a cubic bipartite graph with n2 − n vertices and V0 is the union of two independent sets
L, R such that |L| = |R|.
let G1 = (V ∪ V0, E ∪ E0).
let G′ = G1.

▶ Remark 22. Note that we can assume that the number of vertices of a cubic graph G is a
multiple of 6. Since G is cubic, n is a multiple of 2. If n is not a multiple of 3, we consider
the instance Itriple defined as follows: Gtriple is the union of 3 copies of G and ktriple = 3k,
and thus in the new instance Itriple the graph has 3n vertices. Note that the number of
edges with both endpoints in the same part is 3k in Gtriple if and only if it is k in G.

Let n = |V |, m = |E|, n′ = |V ′| and m′ = |E′|. Observe that n′ = n2, and G′ is a
(n′ − 4)-regular graph. With this construction one can show the following.

▶ Theorem 23. Dense Graph Partition is NP-complete on (n − 4)-regular graphs with n

vertices.

SWAT 2022

13:14 Dense Graph Partitioning on Sparse and Dense Graphs

At the end of this section we show that a partition into a bounded number of cliques
provides a good approximation for graphs of large minimum degree.

▶ Theorem 24. Dense Graph Partition is polynomial-time n−1
δ(G)+1 -approximable on

graphs G with n vertices.

Proof. Let G be a graph on n vertices with minimum degree δ = δ(G), instance of Max
Dense Graph Partition. If δ ≥ n − 3, we can give an optimum solution in polynomial
time by Theorem 20. So assume δ ≤ n − 4. By Lemma 3, any partition P for the vertices of
G satisfies d(P) ≤ n−1

2 . Using Brooks’ theorem [5], G is (n − δ − 1)-colorable, and further,
such a coloring can be computed in polynomial time. (Note that δ ≤ n − 4 implies that G

is not a complete graph or a circle, the two exceptions in Brooks’ theorem where one more
color is needed.) Using such a coloring, G can be partitioned into n − δ − 1 cliques. Then the
density of this partition is n−(n−δ−1)

2 = δ+1
2 . Comparing this value with the upper bound of

n−1
2 on the optimum shows that this partition into n − δ − 1 cliques gives a polynomial-time

n−1
δ+1 -approximation for Dense Graph Partition. ◀

Notice that if δ(G) > n−3
2 , the ratio given in Theorem 24 improves upon the current best

ratio of 2 for Dense Graph Partition on general graphs. This approximation can further
be used to show the following.

▶ Theorem 25. There is an efficient polynomial-time approximation scheme for Max Dense
Graph Partition on graphs G with n vertices and δ(G) = n − t for a constant t ≥ 4.

Proof. Let I = G be a graph on n vertices and δ(G) = n − t, instance of Max Dense
Graph Partition. We establish in the following an eptas. Given ε > 0, consider two cases.

If n ≥ t − 1 + t−2
ε , then let P be a partition that corresponds to a (t − 1)-coloring of G

such that each part is a clique in G as in the proof of Theorem 24. Then d(P) = n−t+1
2 ≥

n+1− nε+ε+2
1+ε

2 ≥ n−1
2(1+ε) ≥ opt(I)

1+ε , where the last inequality opt(I) ≤ n−1
2 comes from Lemma 3.

Otherwise, that is n < t − 1 + t−2
ε , enumerate all the partitions of G and consider the

best one. Since the number of partitions of G is the Bell number of order |V | = n, Bn, and
Bn ≤ nn, we get an optimal solution in time (1/ε)O(1/ε). ◀

6 Conclusion

In order to have a better understanding of the complexity of Max Dense Graph Partition
it would be nice to study it on other graph classes. It was proved to be polynomial-time
solvable on trees, but the complexity on graphs of bounded treewidth remains open. Moreover
no result exists on split graphs. Concerning approximation, no lower bound was established, it
would be nice to improve the 2-approximation algorithm or to show that no polynomial-time
approximation scheme exist on general instances.

References
1 Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation

schemes for dense instances of np-hard problems. Journal of Computer and System Sciences,
58(1):193–210, 1999.

2 Haris Aziz, Serge Gaspers, Joachim Gudmundsson, Julián Mestre, and Hanjo Taubig. Welfare
maximization in fractional hedonic games. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence, IJCAI 2015, pages 468–474. AAAI Press, 2015.

C. Bazgan, K. Casel, and P. Cazals 13:15

3 Piotr Berman and Marek Karpinski. On some tighter inapproximability results (extended
abstract). In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, Proceedings
of the 26th International Colloquium on Automata, Languages and Programming, ICALP 1999,
volume 1644 of LNCS, pages 200–209. Springer, 1999.

4 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 201–210. ACM, 2010.

5 Rowland Leonard Brooks. On colouring the nodes of a network. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 37:2, pages 194–197. Cambridge University
Press, 1941.

6 Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
advances in graph partitioning. In Lasse Kliemann and Peter Sanders, editors, Algorithm
Engineering - Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science,
pages 117–158. Springer, 2016.

7 Derek G. Corneil and Yehoshua Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27–39, 1984.

8 Julien Darlay, Nadia Brauner, and Julien Moncel. Dense and sparse graph partition. Discrete
Applied Mathematics, 160(16-17):2389–2396, 2012.

9 Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

10 Santo Fortunato. Community detection in graphs. Physics Reports, 486:75–174, 2010.
11 M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.

Theoretical Computer Science, 1(3):237–267, 1976.
12 Andrew V. Goldberg. Finding a maximum density subgraph. University of California Berkeley,

1984.
13 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical

Computer Science, 38:293–306, 1985.
14 Subhash Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite

clique. SIAM J. Comput., 36(4):1025–1071, 2006.
15 Samir Khuller and Barna Saha. On finding dense subgraphs. In Proceedings of 36th Interna-

tional Colloquium on Automata, Languages and Programming, ICALP 2009, Part I, volume
5555 of LNCS, pages 597–608, 2009.

16 Andrea Munaro. On line graphs of subcubic triangle-free graphs. Discrete Mathematics,
340(6):1210–1226, 2017.

17 Mark E. J. Newman. Detecting community structure in networks. The European Physical
Journal B - Condensed Matter and Complex Systems, 38(2):321–330, 2004.

18 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

SWAT 2022

The Diameter of Caterpillar Associahedra
Benjamin Aram Berendsohn #

Institut für Informatik, Freie Universität Berlin, Germany

Abstract
The caterpillar associahedron A(G) is a polytope arising from the rotation graph of search trees
on a caterpillar tree G, generalizing the rotation graph of binary search trees (BSTs) and thus the
conventional associahedron. We show that the diameter of A(G) is Θ(n + m · (H + 1)), where n is
the number of vertices, m is the number of leaves, and H is the entropy of the leaf distribution of G.

Our proofs reveal a strong connection between caterpillar associahedra and searching in BSTs.
We prove the lower bound using Wilber’s first lower bound for dynamic BSTs, and the upper bound
by reducing the problem to searching in static BSTs.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Theory of compu-
tation → Data structures design and analysis

Keywords and phrases Graph Associahedra, Binary Search Trees, Elimination Trees

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.14

Funding Work supported by DFG grant KO 6140/1-1.

Acknowledgements I would like to thank László Kozma for helpful discussions and suggestions.

1 Introduction

Associahedra are a family of polytopes with interesting combinatorial properties. In particular,
the skeleton of the (n − 1)-dimensional associahedron An represents the rotation graph of
binary search trees (BSTs) on n keys. More precisely, each vertex of An represents a BST, and
each edge represents a rotation (definitions of BSTs and rotations can be found in standard
textbooks). The diameter of An is known to be precisely 2n − 6 when n > 10 [21, 19]; that
is, every BST can be transformed into any other BST with at most 2n − 6 rotations, and
this is tight.

In this paper, we study a generalization of associahedra called graph associahedra. Graph
associahedra were originally defined using tubings [6]. We use an equivalent definition based
on search trees on graphs (STGs). While the keyspace of a BST is a linearly ordered set, the
key space of an STG is a graph. Formally, given a connected graph G = (V, E), a search
tree on G is a rooted tree T that can be constructed as follows. Choose a vertex r ∈ V as
the root. Then, recursively create search trees on the connected components of G \ v, and
add them to T as children of r. Rotations on STGs can be defined similarly as for BSTs
(more details in Section 2). Search trees on graphs have been used in various contexts under
different names (see, e.g., [3, Section 2.2]).

Given a connected graph G on n vertices, Carr and Devadoss [6] defined the graph
associahedron A(G) as an (n − 1)-dimensional polytope such that the skeleton of A(G) is
isomorphic to the rotation graph of the search trees on G. Since search trees on the path
with n vertices correspond to BSTs on n nodes, we obtain the conventional associahedron
when G is a path.

For search trees T1 and T2 on a graph G, let the rotation distance d(T1, T2) be the
minimum number of rotations required to transform T1 into T2. The diameter δ(A(G)) of
A(G) is the maximum rotation distance between two search trees on G. Manneville and
Pilaud [15] showed that the diameter of graph associahedra is monotone under the addition
of edges, and max{2n − 18, m} ≤ δ(A(G)) ≤

(
n
2
)

holds for each connected graph G on n

© Benjamin Aram Berendsohn;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beab@zedat.fu-berlin.de
https://orcid.org/0000-0002-3430-5262
https://doi.org/10.4230/LIPIcs.SWAT.2022.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 The Diameter of Caterpillar Associahedra

vertices and m edges. Both the upper and the lower bound are asymptotically tight: For
example, conventional associahedra (G is a path) and cyclohedra (G is a cycle) have linear
diameter, and permutohedra (G is a complete graph) have diameter

(
n
2
)
.

In this paper, we consider the case where G is a caterpillar tree. A caterpillar tree (or
simply caterpillar) is a tree consisting of a path and some number of leaves that are adjacent
to the path. The choice of that path is not unique for non-trivial caterpillars (it is always
possible to either add or remove a leaf at the end of the path), but we assume that any
considered caterpillar consists of a distinguished path called the spine and any number of
leaves, called legs. Our asymptotic results are not affected by the choice of the spine.

We determine the diameter of every caterpillar associahedron up to a constant factor.
This involves the Shannon entropy of the “leg distribution”, which we now properly define.
Let G be a caterpillar tree with n spine vertices s1, s2, . . . , sn, let si be adjacent to mi leg
vertices, and let m = m1 + m2 + · · · + mn be the total number of leg vertices. Then

H(G) = H(m1, m2, . . . , mn) =
∑

i∈[n],mi>0

mi

m
log

(
m

mi

)
.

For simplicity of presentation, we write H ′(·) = H(·) + 1. We are now ready to state our
main result.

▶ Theorem 1.1. Let G be a caterpillar tree with n spine vertices and m leg vertices. Then
δ(A(G)) ∈ Θ(n + m · H ′(G)).

Notably, if m = n and each spine node is adjacent to one leaf node, then δ(A(G)) ∈
Ω(n log n).

Our proofs make use of techniques from the design of optimal BSTs. A connection
between rotations in BSTs and rotations in search trees on caterpillars is not surprising –
caterpillars are similar to paths, after all. However, we show a connection to queries to BSTs.
Essentially, the leg nodes in search trees on caterpillars can be seen as queries to the BST on
the spine nodes. For our upper bound (Section 4), we use the fact that an optimal static
BST for an input distribution X has amortized query cost H ′(X) [16]. For our lower bound
(Section 5), we use Wilber’s first lower bound [22], which bounds the performance of dynamic
BSTs on a certain input sequence. We show that it also bounds the rotation distance between
certain search trees on a caterpillar. Finally, we show that Wilber’s first lower bound is
asymptotically equal to H ′(X) if the input distribution X is fixed, but the order of queries is
worst possible. Note that this implies that dynamic BSTs cannot beat optimal static BST on
any distribution if the ordering is worst possible. Kujala and Elomaa [12] previously showed
that this is true even if the ordering is random, but they did not use Wilber’s bound.

1.1 Related work
Improved bounds on δ(A(G)) are known if G belongs to certain graph classes. Pournin [18]
showed that δ(A(G)) ≈ 2.5n if G is the cycle on n vertices. Manneville and Pilaud [15]
noted that δ(A(G)) ∈ O(n log n) if G is a tree on n vertices, and Cardinal, Langerman and
Pérez-Lantero [3] showed this bound is tight if G has the form of a balanced binary tree.

Recently, Cardinal, Pournin, and Valencia-Pabon [4, 5] showed that δ(A(G)) ∈ O(td(G) ·
n), where td(G) is the treedepth1 of G, and that this bound is attained by trivially perfect
graphs. Using the relationship between treedepth and treewidth, this extends the O(n log n)

1 The treedepth td(G) can be defined as the minimum height of a search tree on G.

B. A. Berendsohn 14:3

upper bound to graphs with bounded treewidth. They also showed that this bound is is
tight for graphs of pathwidth two (which have treewidth at most two, but are not necessarily
trees). For the definitions of treewidth and pathwidth, we refer to [4]. Our Theorem 1.1
shows that the O(n log n) bound is tight already for caterpillars, which are both trees and
have pathwidth one (in fact, caterpillars are precisely the graphs of pathwidth one).

We do not consider queries to STGs in this paper. Some results from BSTs have been
shown to hold in the more general case where G is a tree. Bose, Cardinal, Iacono, Koumoutsos,
and Langerman [2] presented an O(log log n)-competitive search tree algorithm based on
tango trees for BSTs [10]. Berendsohn and Kozma [1] described a variant of Splay trees [20],
and a polynomial-time approximation scheme for the optimal static search tree on a given
tree for a given input distribution. Notably, it is still unknown whether an optimal static
search tree on a tree can be found in polynomial time.

Berendsohn and Kozma [1] also showed that if we only consider a subset of search trees
on a tree G called k-cut trees, then the maximum rotation distance between two STGs is
linear. A special case of k-cut trees are Steiner-closed trees, which play a central role in the
results of [2] and [1].

2 Preliminaries

In this paper, we consider (simple and undirected) graphs on the one hand, and (rooted)
search trees on the other. We call the vertices of search trees nodes. In both cases, we denote
by V (·) the set of vertices or nodes and by E(·) the set of edges.

Let G be a graph. We denote the subgraph of G induced by U ⊆ V (G) by G[U]. For
v ∈ V (G), we write G \ v = G[V (G) \ {v}].

Let T be a rooted tree and x ∈ V (T). For a node x, Tx denotes the subtree of T consisting
of x and all its descendants. The depth of x is the number of nodes in the path from the
root of T to x, and is denoted by depthT (x).

2.1 Queries in binary search trees
In the dynamic BST model, we are given a starting BST S on [n] and a sequence σ of access
queries. Each access query specifies a node i ∈ [n]. We start each query with a pointer at the
root, and are required to move the pointer to the node i to satisfy the query. To this end,
we are allowed to move the pointer to the the parent or a child of the node it is currently
pointing at, or execute a rotation involving that node. Let OPT(S, σ) denote the minimum
number of pointer moves and rotations needed to serve σ. We charge a pointer move at
the start of each query, when the pointer is moved to the root, so each query has cost at
least one.

Since the rotation distance between two BSTs is O(n), we can always replace the starting
BST S by a different one at the cost of O(n). If the access sequence is long enough, this
cost is insignificant; therefore, let us define OPT(σ) = minS OPT(S, σ). For each BST S, we
have OPT(S, σ) ≤ OPT(σ) + O(n).

It is not known how to compute or approximate OPT(S, σ) or the associated sequence
of operations efficiently. However, a number of algorithms have been conjectured to be
instance-optimal, i.e, to serve every access sequence σ with a cost of O(OPT(σ) + n), most
notably Splay [20] and Greedy [14, 17]. We emphasize that Splay is an online algorithm,
i.e., it serves each query independently from future queries, and that Greedy can be made
online [9] with only a constant-factor overhead. It is currently unknown whether any online
algorithm can approximate the offline optimum OPT(σ) by a constant factor; this is the
subject of the dynamic optimality conjecture.

SWAT 2022

14:4 The Diameter of Caterpillar Associahedra

There are several lower bounds known for OPT(σ). In this paper, we use Wilber’s first
lower bound [22], which we define and discuss in Section 5.1.

If we do not allow rotations, then the best strategy is to simply move the pointer down
until we hit the queried node. Thus, the minimum cost of serving σ = (x1, x2, . . . , xm) in S

is
∑m

i=1 depthS(xi). A BST S minimizing this quantity is called an optimal static BST. Note
that only the frequencies of the elements in σ affect the static cost, not the order. For a BST
S on [n] and element frequencies m1, m2, . . . , mn ∈ N0, define

cost(S, m1, m2, . . . , mn) =
n∑

i=1
mi · depthS(i).

Let OPT-ST(m1, m2, . . . , mn) be the minimum cost(S, m1, m2, . . . , mn) over all possible
BSTs S.

It is possible to compute an optimal static BST in O(n2) time [11]. Mehlhorn showed
that 1

m OPT-ST(m1, m2, . . . , mn) is close to the entropy of the input distribution.

▶ Lemma 2.1 (Mehlhorn [16]). Let X = (m1, m2, . . . , mn) be a sequence of nonnegative
integers, and let m = m1 + m2 + · · · + mn. Then

1
2H(X) · m ≤ OPT-ST(X) ≤ (2H(X) + 2) · m = 2H ′(X) · m.

2.2 Search trees on graphs
Let G be a connected graph, and T be a rooted tree, such that V (T) = V (G). Let r be root
of T and let c1, c2, . . . , ck be the children of r in T . Then T is a search tree on G if
(a) G \ r consists of precisely k connected components C1, C2, . . . , Ck such that V (Tci

) =
V (Ci) for each i ∈ [k]; and

(b) Tci
is a search tree on Ci for each i ∈ [k].

Let T be a search tree on G, let p ∈ V (G), let c be a child of p in T , and let g be the
parent of p in T , if p is not the root. A rotation of the edge (p, c) makes c the parent of p and
child of g (or root), and accordingly redistributes children so that the result is still a search
tree on G. More precisely, it (1) makes c a child of g, if p is not the root, and otherwise,
makes c the root; (2) makes p a child of c; and (3) makes each child x of c a child of p where
V (Tc) contains both a vertex adjacent to p and a vertex adjacent to c. See Figure 1 for an
illustration. It can be checked that the rooted tree resulting from a rotation is indeed a
search tree on G. It is also easy to see that each search tree on G can be rotated into every
other search tree on G, e.g., by rotating the correct element to the root and then recursing
on the subtrees.

2.3 Projections of STGs
Both of our proofs make use of a concept defined by Cardinal, Langerman, and Pérez-
Lantero [3]. Let T be a search tree on a graph G, and let v be a leaf vertex in G. Note that
v has at most one child in T . We define T \ v to be the following search tree on G \ v: If v

has no children, simply remove v. If v has a parent p and a child c, remove v and make c a
child of p. If v is the root of T and has a child c, then remove v and make c the root. We
call this operation pruning v.

If G is a tree, then we can obtain every subgraph of G by progressively removing leaves.
Accordingly, if T is a search tree on a tree G, and U ⊆ V (G) is a set of vertices such that
G[U] is connected, then we can define the projection of T onto U , written T [U], as the search

B. A. Berendsohn 14:5

Aj

...

A1
p

Bk

...

B1

c

Cℓ

...

C1

A1 Aj

B1 Bk C1 Cℓ

p

c. . .

.
A1 Aj B1 Bk

C1 Cℓ

c

p

.

. . .

Figure 1 A rotation in a search tree on G. (left) A subgraph G′ of G with two vertices p and
c that split G′ into j + k + ℓ components. Each solid line represents one or more edges. Dashed
lines indicate possible edges to the rest of G. (center) A subtree Tp in a search tree T on G, with
V (Tp) = V (G′). (right) The result of the rotation (p, c) in T .

tree on G[U] obtained by progressively pruning the vertices in V (G) \ U . It is easy to see
that the order of pruning does not matter.

The main utility of projections lies in the following lemma, which essentially states that
projections onto U are only affected by rotations between nodes in U .

▶ Lemma 2.2 (Cardinal et al. [3]). Let T be a search tree on a tree G, let U ⊆ V (G) such
that G[U] is connected, let (x, y) be an edge of T , and let T ′ be the tree obtained by rotating
(x, y). If x, y ∈ U , then T ′[U] is the STG obtained when rotating (x, y) in T [U]. Otherwise,
T ′[U] = T [U].

3 Search trees on caterpillars

Let n ∈ N+ and m1, m2, . . . , mn ∈ N0, and write m =
∑n

i=1 mi. We define the caterpillar
C(m1, m2, . . . , mn) with n spine vertices and m leg vertices as follows. The spine of G

consists of the vertices s1, s2, . . . , sn, in that order. Additionally, for each i ∈ [n] and j ∈ [mi],
there is a leg vertex ℓi,j that is adjacent to si. Clearly, every caterpillar can be constructed
this way.

Let T be a search tree on G = C(m1, m2, . . . , mn), and let x ∈ V (T). We call x a leg
node if it corresponds to a leg vertex, and a spine node if it corresponds to a spine vertex.
We denote nodes in T in the same way we denote vertices in G, i.e., we write ℓi,j for leg
nodes and si for spine nodes.

We call a leg node bound if it has no children, and free otherwise.

▶ Observation 3.1. Let T be a search tree on C(m1, m2, . . . , mn). Consider a leg node ℓi,j .
If ℓi,j has no children, then si is its parent. Otherwise, ℓi,j has exactly one child, and si is a
descendant of ℓi,j.

Define bst(T), the spine BST, as the projection of T onto the spine vertices of G (see
Figure 2 for an example). Since the spine vertices form a path, bst(T) indeed corresponds to
a binary search tree. By Lemma 2.2, each rotation between two spine nodes in T corresponds
to a BST rotation in bst(T). However, the converse is not true in general, since two nodes
u, v that are parent and child in bst(T) might have leg nodes between them in T , in which
case a rotation of u, v in bst(T) cannot be applied to T . Call an edge (u, v) of bst(T) light if
(u, v) is also an edge in T . Essentially, as long as we restrict ourselves to light edges, we can
apply BST restructuring algorithms to T . This will be useful to prove our upper bound. We
further observe that rotations between spine nodes preserve the parents of leg nodes.

SWAT 2022

14:6 The Diameter of Caterpillar Associahedra

s1

s2

s3

s4

s5

ℓ1,1

ℓ1,2

ℓ3,1

ℓ4,1

ℓ5,1

ℓ5,2

s1

s2

s3

s4

s5

ℓ1,1

ℓ1,2

ℓ3,1

ℓ4,1
ℓ5,1

ℓ5,2

s1

s2

s3

s4

s5

s1

s2

s3

s4

s5

ℓ1,1

ℓ1,2
ℓ3,1

ℓ4,1

ℓ5,1

ℓ5,2

s1

s2

s3
s4

s5
ℓ1,1 ℓ1,2

ℓ3,1

ℓ4,1

ℓ5,1 ℓ5,2

Figure 2 (left) The caterpillar G = C(2, 0, 1, 1, 2). (center left) A search tree T on G. (center) The
spine BST S = bst(T). (center right) The STG A(S, π) with π = (ℓ3,1, ℓ1,2, ℓ5,2, ℓ1,1, ℓ4,1, ℓ5,1).
(right) The STG B(S).

▶ Observation 3.2. Let T be a search tree on a caterpillar, let T ′ arise from a rotation
between spine nodes in T , and let ℓ be a leg node. If ℓ is the root of T , then ℓ is also the root
of T ′. Otherwise, the parent of ℓ in T ′ is equal to the parent of ℓ in T .

3.1 Special STGs
Before proceeding with the proofs, we define two useful kinds of STGs where the spine BST
has only light edges. Let G = C(m1, m2, . . . , mn) be a caterpillar, let S be a BST on the
spine nodes of G, and let π be an ordering of the leg nodes of G. Define A(S, π) to be the
unique search tree on G such that bst(A(S, π)) = S, each leg node is above each spine node
(i.e., the leg nodes form a path at the top of the tree), and the order of the leg nodes from
bottom to top is π. Define B(S) to be the unique search tree on G such that all leg nodes are
bound and bst(B(S)) = S. Clearly, every search tree T on G without free leg nodes is equal
to B(bst(T)). Figure 2 shows examples.

4 Upper bound

Fix a caterpillar G = C(m1, m2, . . . , mn). We first consider only STGs without free leg
nodes.

▶ Lemma 4.1. Let T1, T2 be search trees on G without free leg nodes. Then, T1 can be
transformed into T2 with O(n) rotations.

Proof. Let S1 = bst(T1) and S2 = bst(T2). As stated in the introduction, there is a sequence
of at most O(n) rotations that transforms S1 into S2. We simply apply these rotations to T1.
For this to be well-defined, we need to show that we never (attempt to) rotate a heavy edge.
Since T1 has no free leg nodes, all edges in S1 are light, so the first rotation goes through.
Furthermore, a rotation between two spine nodes can never change a leg node from bound to
free (or vice versa). Thus, by induction, after each rotation, all leg nodes are still bound, so
we can apply the next rotation. ◀

The above lemma provides us with a “core” of the caterpillar associahedron with linear
diameter. In the following, we show that the rotation distance from any search tree to some
STG without free leg nodes is O(n + H ′(G) · m). By the triangle inequality, this means
that the rotation distance between any two STGs is at most 2 · O(n + H ′(G) · m) + O(n) =
O(n + H ′(G) · m), and thus we have the upper bound of Theorem 1.1.

B. A. Berendsohn 14:7

We first show how to reduce the problem to the case that T = A(S, π) for some BST S

and some leg node ordering π. For this, the following lemma is useful.

▶ Lemma 4.2. Let T be a BST. There exists a sequence of O(n) rotations on T such that
(i) every rotation involves only nodes at depth at most 3; and
(ii) every node becomes the root of bst(T) at some point.

Lemma 4.2 can be easily derived from a result by Cleary [8], which uses algebraic
techniques. We provide an elementary proof for completeness.

Proof of Lemma 4.2. We proceed in two phases. In the first phase, we repeatedly rotate
the root of T with its left child, until the root has no left child. This requires O(n) rotations.

In the second phase, we repeat the following step as long as the root has a right child u.
If u has a left child v, then rotate u with v. Otherwise, rotate the root with u.

We now bound the number of rotations in the second phase. Let L(T) be the left path of
a BST T , i.e., the maximal sequence v1, v2, . . . where v1 is the root and vi+1 is the left child
of vi. Let the right path R(T) be defined similarly. Observe that each step in the second
phase increases the quantity 2|L(T)| + |R(T)| by one. Since 2|L(T)| + |R(T)| ≤ 2n + 1 for
every BST T , the total number of rotations is linear.

The rotations only involve the root, its children, and its grandchildren, so (i) holds. To
show (ii), suppose a node v never becomes the root. At the start of the second phase, v is in
the right subtree of the root, and at the end, v is in the left subtree of the root. Thus, v

must pass from the right subtree to the left subtree of the root at some point. The only way
this can happen without v becoming the root is that v is in the left subtree of the right child
of the root, and we rotate at the root. But in the second phase we only rotate at the root
when the right child of the root has no left child, a contradiction. Thus, (ii) holds. ◀

▶ Lemma 4.3. Let T be an arbitrary search tree on G. Then T can be transformed into
some A(S, π) using 2m + O(n) rotations.

Proof. An STG has the form A(S, π) if and only if each leg node has no spine ancestor. The
basic idea of the proof is to apply rotations between spine nodes to eventually bring each
spine node to the root (of the spine BST). At any point, if the current root of the spine
BST has a leg node as a child, rotate it with the leg node. We refer to all such rotations
between two spine node rotations as the cleanup step. By Observation 3.2, every leg node
is transported to the top this way.

The problem with this approach is that we can only rotate light edges in the spine BST,
and the only edges that we know must be light are the edges between the BST root and its
children. However, if we extend our cleanup step to consider leg nodes that are somewhat
deeper in the tree (that is, nodes with two spine ancestors instead of just one), we guarantee
that all BST edges near the BST root are light. This allows us to apply Lemma 4.2 to
bring each spine node to the root. We now describe the sequence of rotations more formally,
starting with the cleanup step.

Let T ′ be the current STG. Let cleanup(T ′) be the following sequence of rotations: As
long as there is a leg node ℓ with a spine parent p and at most two spine ancestors, rotate
(p, ℓ). Arbitrarily resolve conflicts. Let T ′′ be the STG after applying cleanup. Clearly, no
spine node s with depthbst(T ′′)(s) ≤ 2 has a leg node child in T ′′, so all edges in bst(T ′′)
involving the root or its children are light. Moreover, each leg node that is touched by
cleanup is rotated at most twice, and afterwards has no spine node ancestors.

SWAT 2022

14:8 The Diameter of Caterpillar Associahedra

Let X be the sequence of rotations obtained by applying Lemma 4.2 to bst(T). We first
apply cleanup to T , then apply the spine rotations in X , with a cleanup step after each
spine rotation. Since each rotation in X involves either the root of the spine BST or one of
its children, the rotation is applied to a light edge. Thus, the whole sequence can indeed be
applied to T .

The number of rotations is at most 2m + O(n). Indeed, since no rotation between spine
nodes can change the parent of a leg node (see Observation 3.2), each leg node is only touched
in a single cleanup step (where it is rotated above all spine nodes), and only twice in that
cleanup step. The length of X is O(n) by Lemma 4.2.

Finally, we show that the final tree is indeed of the form A(S, π). For this, it suffices
to show that each leg node that has at least one spine ancestor in T is touched in some
cleanup step. Suppose that such a leg node ℓ is not involved in a cleanup step. Without
loss of generality, let the parent p of ℓ be a spine node. By Observation 3.2, since ℓ is not
touched in a cleanup step and we never rotate between leg nodes, p stays the parent of ℓ

throughout the sequence of rotations. However, then p will be the root of bst(T) at some
point, so ℓ is rotated upwards by the next cleanup step, a contradiction. ◀

It remains to show how to transform A(S, π) into an STG without free leg nodes.

▶ Lemma 4.4. Let T = A(S, π). Then there is a sequence of O(n + H ′(G) · m) rotations
that transform T into a search tree without free leg nodes.

Proof. Since every edge in bst(T) is light, we can first transform bst(T) into an arbitrary
BST S′ using O(n) rotations. We will later specify S′. Let T ′ = A(S′, π) be the resulting
STG. Now pick the lowest leg node ℓi,j in T ′, and rotate it down until it is bound (i.e., a
child of si). Clearly, this requires depthbst(T ′)(si) = depthS′(si) rotations. Repeat this until
all leg nodes are bound.

The total number of rotations is

O(n) +
n∑

i=0
mi · depthS′(si).

This is precisely cost(S′, m1, m2, . . . , mn), the cost of accessing each i ∈ [n] with frequency
mi in the static BST S′. As such, if we choose S′ to be the optimal static BST for these
frequencies, we need O(n) + OPT-ST(m1, m2, . . . , mn) ≤ O(n) + 2H ′(G) · m rotations, by
Lemma 2.1. ◀

Lemmas 4.1, 4.3, and 4.4 together imply the upper bound in Theorem 1.1.
In the proof of Lemma 4.4, we essentially treat the leg nodes as queries to our optimal

static BST, where a leg node ℓi,j queries the spine node si. Rotating the leg nodes down is
akin to moving down the pointer in the static BST model. Here, the pointer always points
at the parent of the one leg node that has a spine node parent.

Observe that we can similarly implement the dynamic BST model as rotations trans-
forming A(S, π) into a search tree without bound leg nodes, simply by allowing spine node
rotations (BST rotations) in between leg node rotations (pointer moves). If the dynamic BST
algorithm wants to rotate the single heavy edge in the spine BST of our STG, we have to
move the leg node out of the way (and back afterwards), but this only adds a constant-factor
overhead. Thus we obtain a generalization of the dynamic BST model, where we can start
processing queries before finishing previous ones (although the way “pointers” work in this
model is not very intuitive).

B. A. Berendsohn 14:9

Let σ = σ(π) be the sequence of spine nodes obtained by replacing every leg node in
π by its adjacent spine node. Our observations imply that transforming A(S, π) into an
STG without free leg nodes requires no more than O(OPT(S, σ)) rotations, and Lemma 4.4
essentially uses the fact that OPT(S, σ) ≤ OPT-ST(m1, m2, . . . , mn). In the next section,
we show that Wilber’s first lower bound [22] for OPT(S, σ) also holds for our generalized
model.

5 Lower bound

We start by defining a variant of Wilber’s first lower bound and proving that it is equal to
the Shannon entropy of the query distribution in the worst case (up to a constant factor).
Then, we show that it also bounds the rotation distance between A(S, σ) and B(S) if σ is
the worst-case ordering and S is a suitable search tree.

5.1 Wilber’s first lower bound for binary search trees
Let S be a binary search tree on n nodes, let σ = (x1, x2, . . . , xm) be a sequence of queries,
and let u be a node of S. Then we define λ(S, u, σ) as follows. If u has at most one child,
then λ(S, u, σ) = 0. Otherwise, let v, w be the children of u and write A = V (Su) =
{u} ∪ V (Sv) ∪ V (Sw). Let σ|A be the sequence obtained from σ by removing all elements not
in A. Now λ(S, u, σ) is defined as the number of times the sequence σ|A switches between
an element of V (Sv), an element of V (Sw), and u. More formally, λ(S, u, σ) is the number
of pairs of adjacent values x, y in σ such that neither x, y ∈ V (Sv), nor x, y ∈ V (Sw), nor
x = y = u. Let Λ(S, σ) =

∑
u∈V (S) λ(S, u, σ).

For convenience, define λ′(S, u, σ) as λ(S, u, σ) plus the number of occurrences of u in
σ, and let Λ′(S, σ) =

∑
u∈V (S) λ′(S, u, σ) = Λ(S, σ) + m. It is known that OPT(S, σ) ∈

Ω(Λ′(S, σ)). This is not tight in general [7, 13]. Still, Wilber [22] showed that if σ is the bit
reversal permutation, then Λ′(S, σ) ∈ Θ(n log n) for all S. This bound is already matched by
a balanced static tree, so, on that sequence, Wilber’s bound is tight and dynamic BSTs do not
perform better than balanced trees. We now generalize this result to arbitrary distributions.

▶ Lemma 5.1. Let n ∈ N+, let m1, m2, . . . , mn ∈ N0, and let m =
∑n

i=1 mi. Then there is
a BST S on [n] and a sequence σ of length m where each i ∈ [n] occurs precisely mi times,
such that Λ′(S, σ) ≥ 1

2 H(m1, m2, . . . , mn) · m.

Proof. We recursively construct a BST Sp,q on each interval [p, q] with 1 ≤ p ≤ q ≤ n, and
in the end set S = S1,n. The construction is essentially the approximately optimal static
BST construction due to Mehlhorn [16].

Fix p and q. Let k = q − p + 1 be the number of nodes in Sp,q, and, for each i

with p ≤ i ≤ q, let ai =
∑i−1

j=p mj and bi =
∑q

j=i+1 mj . We claim that there exists an
i ∈ [p, q] such that mi + min(ai, bi) ≥ k

2 . Suppose not. Then, for each i, we have either
(1) mi + ai < k

2 < bi or (2) mi + bi < k
2 < ai. Observe that for i = p, (2) cannot hold, and

likewise for i = q, (1) cannot hold. Let i′ be the maximum index where (1) holds. Then,
i < q and mi + ai < bi = mi+1 + bi+1 < ai+1 = mi + ai, a contradiction.

Choose i ∈ [p, q] such that mi + min(ai, bi) ≥ k
2 . Make i the root of Sp,q, and attach the

recursively constructed subtrees Sp,i−1 and Si+1,q as the left and right child to it (for p′ > q′,
we let Sp′,q′ be the empty BST).

Let c(p, q) =
∑q

j=p mj · depthSp,q
(j). Intuitively, c(p, q) is the cost of accessing the

relevant nodes within Sp,q. We now recursively construct a sequence σp,q such that c(p, q) ≤
2Λ′(Sp,q, σp,q).

SWAT 2022

14:10 The Diameter of Caterpillar Associahedra

First, if p = q, then let σp,q simply consist of mp times the element p. Clearly, c(p, q) =
mp = Λ′(Sp,q, σp,q). Otherwise, let i be the root of Sp,q. We construct σp,q by combining
σp,i−1, σi+1,q, and the mi occurrences of the element i as follows. Start with the mi

occurrences of i, then alternate between σp,i−1 and σi+1,q for as long as possible, and finally
append the remaining elements from either σp,i−1 or σi+1,q. Since σp,i−1 has length ai, and
σi+1,q has length bi, we have λ′(Sp,q, i, σp,q) ≥ mi + min(ai, bi) ≥ k

2 .
For each j ∈ [p, i − 1], we have depthSp,q

(j) = 1 + depthSp,i−1
(j), and similarly for each

j ∈ [i + 1, q], we have depthSp,q
(j) = 1 + depthSi+1,q

(j). Thus, by induction,

c(p, q) = mi + ai + c(p, i − 1) + bi + c(i + 1, q)
≤ k + 2Λ′(Sp,i−1, σp,i−1) + 2Λ′(Si+1,q, σi+1,q)
≤ 2λ′(Sp,q, i, σp,q) + 2Λ′(Sp,i−1, σp,i−1) + 2Λ′(Si+1,q, σi+1,q) ≤ 2Λ′(Sp,q, σp,q).

Now let S = S1,n and σ = σ1,n. We have c(1, n) ≤ 2Λ′(S, σ), and by Lemma 2.1, we know
that c(1, n) ≥ cost(m1, m2, . . . , mn) ≥ H(m1, m2, . . . , mn) · m. This concludes the proof. ◀

5.2 Wilber’s lower bound for rotation distance
We now show that the rotation distance between A(S, π) and B(S) is at least 1

2 Λ′(S, σ(π)),
where σ(π) is defined as in Section 4, by replacing the leaf nodes in π with their adjacent
spine nodes. Our proof is based on the lower bound on the diameter of tree associahedra by
Cardinal, Langerman, and Pérez-Lantero [3, Lemma 8].

▶ Lemma 5.2. Let G = C(m1, m2, . . . , mn) be a caterpillar, let S be a BST on the spine
nodes of G, and let π be an ordering of the leg nodes of G. Then, transforming A(S, π) into
B(S) requires at least 1

2 Λ′(S, σ(π)) rotations.

Proof. Write T = A(S, π), T ′ = B(S), σ = σ(π), and let r be the root of S. Let the set D

consist of r and its adjacent legs, i.e., if r = si, then D = {si} ∪ {ℓi,j | j ∈ [mi]}. Suppose r

has two children u and v. Then G \ D has two connected components, one consisting of the
spine nodes V (Su) and all adjacent legs, and the other consisting of V (Sv) and all adjacent
legs. Call the former E and latter F . If r has only one child u, let E consist of V (Su) and
all adjacent legs, and let F = ∅. If r has no children, let E = F = ∅. Note that D, E, F form
a partition of V (G).

We first consider the rotations within each of the three sets. By Lemma 2.2, we can
simply sum up the number of rotations required to transform T [D], T [E], and T [F] into
T ′[D], T ′[E], T ′[F], respectively.

T [D] consists of the spine node r and mr free leg nodes, and T ′[D] consists of r and mr

bound leg nodes. Thus, we need mr rotations to make all leg nodes bound.
If E ̸= ∅, observe that T [E] = A(Su, π|E) and T ′[E] = B(Su), so we need 1

2 Λ′(Su, σ|E) =
1
2 Λ′(Su, σ) rotations by induction. If F ̸= ∅, we similarly get a lower bound of 1

2 Λ′(Sv, σ) to
transform T [F] into T ′[F].

We now show that there are at least 1
2 λ(S, r, σ) rotations between different parts of the

partition D, E, F . If λ(S, r, σ) = 0, this is trivially true, so suppose λ(S, r, σ) > 0 and thus
E ̸= ∅.

Define the alternation number of a path P in a search tree on G as the number of
edges (x, y) in P such that x and y are in different parts of the partition D, E, F . Define
the alternation number alt(T ∗) of a search tree T ∗ on G as the maximum alternation
number among all paths starting at the root in T ∗. Observe that alt(T ′) = 1, and that
alt(T) ≥ λ(S, r, σ) + 1, since the leg nodes in T have λ(S, r, σ) alternations by definition, and
there is one more alternation from r to E ̸= ∅.

B. A. Berendsohn 14:11

We now show how rotations affect the alternation number. Consider a rotation between
the nodes x and y, and a node z. The path from the root to z before and after the rotation
may only differ if it contains x or y (or both), and only in one of the following ways:

x is inserted before y, or y is inserted before x.
x is deleted before y, or y is deleted before x.
x and y are swapped (and are neighbors).

It is easy to see that if x, y ∈ D, or x, y ∈ E, or x, y ∈ F , then the rotation (x, y) does not
affect the alternation number, and otherwise, it can only differ by at most two. This means
that we need at least 1

2 |alt(T) − alt(T ′)| ≥ 1
2 λ(S, r, σ) rotations not within one of the sets D,

E, or F . The total number of rotations is thus at least (setting Λ′(S′, σ) = 0 if S′ is empty):

mr + 1
2Λ′(Su, σ) + 1

2Λ′(Sv, σ) + 1
2λ(S, r, σ) ≥ 1

2Λ′(S, σ). ◀

Lemmas 5.1 and 5.2 together imply that δ(A(G)) ≥ 1
4 H(G) · m. As mentioned in the

introduction, Manneville and Pilaud [15] proved that δ(A(G)) ∈ Ω(m + n). This concludes
the proof of the lower bound.

6 Conclusion

In this paper, we determined the diameter of each caterpillar associahedron up to a constant,
revealing a surprising connection to searching in static and dynamic binary search trees.
In particular, transforming A(S, π) into B(S) via rotations can be seen as a generalization
of serving the access sequence σ(π) in a dynamic BST. The number of rotations required
is between Wilber’s first lower bound Λ(S, σ(π)) and OPT(S, σ(π)), begging the question
whether other lower bounds for OPT hold in our generalized model, or whether it perhaps
matches Λ or OPT. Results in this direction could give new insight into the dynamic BST
model.

References
1 Benjamin Aram Berendsohn and László Kozma. Splay trees on trees. In Proceedings of the

2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1875–1900, 2022.
doi:10.1137/1.9781611977073.75.

2 Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, and Stefan Langerman.
Competitive online search trees on trees. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1878–1891, 2020. doi:10.1137/1.9781611975994.115.

3 Jean Cardinal, Stefan Langerman, and Pablo Pérez-Lantero. On the diameter of tree associ-
ahedra. The Electronic Journal of Combinatorics, 2018. doi:10.37236/7762.

4 Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. Bounds on the diameter of graph
associahedra. Procedia Computer Science, 195:239–247, 2021. Proceedings of the XI Latin and
American Algorithms, Graphs and Optimization Symposium. doi:10.1016/j.procs.2021.
11.030.

5 Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. Diameter estimates for graph
associahedra. arXiv e-prints, 2021. arXiv:2106.16130.

6 Michael Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra. Topology
and its Applications, 153:2155–2168, 2004. doi:10.1016/j.topol.2005.08.010.

7 Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the Strong
Wilber 1 Bound for Binary Search Trees. In Jarosław Byrka and Raghu Meka, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020), volume 176 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 33:1–33:21, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.33.

SWAT 2022

https://doi.org/10.1137/1.9781611977073.75
https://doi.org/10.1137/1.9781611975994.115
https://doi.org/10.37236/7762
https://doi.org/10.1016/j.procs.2021.11.030
https://doi.org/10.1016/j.procs.2021.11.030
http://arxiv.org/abs/2106.16130
https://doi.org/10.1016/j.topol.2005.08.010
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.33

14:12 The Diameter of Caterpillar Associahedra

8 S. Cleary. Restricted rotation distance between binary trees. Inf. Process. Lett., 84:333–338,
2002. doi:10.1016/S0020-0190(02)00315-0.

9 Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Pătras,cu. The geometry
of binary search trees. In Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 496–505, 2009. doi:10.1137/1.9781611973068.55.

10 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pătras,cu. Dynamic optimality –
almost. SIAM Journal on Computing, 37(1):240–251, 2007. doi:10.1137/S0097539705447347.

11 D. E. Knuth. Optimum binary search trees. Acta Informatica, 1(1):14–25, March 1971.
doi:10.1007/BF00264289.

12 Jussi Kujala and Tapio Elomaa. The cost of offline binary search tree algorithms and the
complexity of the request sequence. Theoretical Computer Science, 393(1):231–239, 2008.
doi:10.1016/j.tcs.2007.12.015.

13 Victor Lecomte and Omri Weinstein. Settling the relationship between wilber’s bounds for
dynamic optimality. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th
Annual European Symposium on Algorithms (ESA 2020), volume 173 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 68:1–68:21, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2020.68.

14 J.M. Lucas. Canonical forms for competitive binary search tree algorithms. Technical report
DCS-TR-250, Department of Computer Science, Hill Center for the Mathematical Sciences,
Busch Campus, Rutgers University, New Brunswick, New Jersey 08903, 1988.

15 Thibault Manneville and Vincent Pilaud. Graph properties of graph associahedra. Sémin-
aire Lotharingien de Combinatoire, 73, 2015. URL: https://www.mat.univie.ac.at/~slc/
wpapers/s73mannpil.html.

16 Kurt Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5(4):287–295, December
1975. doi:10.1007/BF00264563.

17 J. Ian Munro. On the competitiveness of linear search. In Mike S. Paterson, editor, Algorithms
– ESA 2000, pages 338–345, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. doi:
10.1007/3-540-45253-2_31.

18 L. Pournin. The asymptotic diameter of cyclohedra. Israel Journal of Mathematics, 219:609–
635, 2014. doi:10.1007/s11856-017-1492-0.

19 Lionel Pournin. The diameter of associahedra. Advances in Mathematics, 259:13–42, 2014.
doi:10.1016/j.aim.2014.02.035.

20 D. Sleator and R. Tarjan. Self-adjusting binary search trees. J. ACM, 32:652–686, 1985.
doi:10.1145/3828.3835.

21 Daniel D Sleator, Robert E Tarjan, and William P Thurston. Rotation distance, triangulations,
and hyperbolic geometry. Journal of the American Mathematical Society, 1(3):647–681, 1988.
doi:10.1090/S0894-0347-1988-0928904-4.

22 Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM journal
on Computing, 18(1):56–67, 1989. doi:10.1137/0218004.

https://doi.org/10.1016/S0020-0190(02)00315-0
https://doi.org/10.1137/1.9781611973068.55
https://doi.org/10.1137/S0097539705447347
https://doi.org/10.1007/BF00264289
https://doi.org/10.1016/j.tcs.2007.12.015
https://doi.org/10.4230/LIPIcs.ESA.2020.68
https://www.mat.univie.ac.at/~slc/wpapers/s73mannpil.html
https://www.mat.univie.ac.at/~slc/wpapers/s73mannpil.html
https://doi.org/10.1007/BF00264563
https://doi.org/10.1007/3-540-45253-2_31
https://doi.org/10.1007/3-540-45253-2_31
https://doi.org/10.1007/s11856-017-1492-0
https://doi.org/10.1016/j.aim.2014.02.035
https://doi.org/10.1145/3828.3835
https://doi.org/10.1090/S0894-0347-1988-0928904-4
https://doi.org/10.1137/0218004

Stable Approximation Algorithms for the
Dynamic Broadcast Range-Assignment Problem
Mark de Berg #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Arpan Sadhukhan #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Frits Spieksma #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Abstract
Let P be a set of points in Rd (or some other metric space), where each point p ∈ P has an associated
transmission range, denoted ρ(p). The range assignment ρ induces a directed communication graph
Gρ(P) on P , which contains an edge (p, q) iff |pq| ⩽ ρ(p). In the broadcast range-assignment problem,
the goal is to assign the ranges such that Gρ(P) contains an arborescence rooted at a designated
root node and the cost

∑
p∈P

ρ(p)2 of the assignment is minimized.
We study the dynamic version of this problem. In particular, we study trade-offs between the

stability of the solution – the number of ranges that are modified when a point is inserted into or
deleted from P – and its approximation ratio. To this end we introduce the concept of k-stable
algorithms, which are algorithms that modify the range of at most k points when they update the
solution. We also introduce the concept of a stable approximation scheme, or SAS for short. A
SAS is an update algorithm alg that, for any given fixed parameter ε > 0, is k(ε)-stable and that
maintains a solution with approximation ratio 1 + ε, where the stability parameter k(ε) only depends
on ε and not on the size of P . We study such trade-offs in three settings.

For the problem in R1, we present a SAS with k(ε) = O(1/ε). Furthermore, we prove that this
is tight in the worst case: any SAS for the problem must have k(ε) = Ω(1/ε). We also present
algorithms with very small stability parameters: a 1-stable (6 + 2

√
5)-approximation algorithm –

this algorithm can only handle insertions – a (trivial) 2-stable 2-approximation algorithm, and a
3-stable 1.97-approximation algorithm.
For the problem in S1 (that is, when the underlying space is a circle) we prove that no SAS
exists. This is in spite of the fact that, for the static problem in S1, we prove that an optimal
solution can always be obtained by cutting the circle at an appropriate point and solving the
resulting problem in R1.
For the problem in R2, we also prove that no SAS exists, and we present a O(1)-stable O(1)-
approximation algorithm.

Most results generalize to when the range-assignment cost is
∑

p∈P
ρ(p)α, for some constant α > 1.

All omitted theorems and proofs are available in the full version of the paper [14].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Computational geometry, online algorithms, broadcast range assignment,
stable approximation schemes

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.15

Related Version Full Version: https://doi.org/10.48550/arXiv.2112.05426

Funding MdB, AS, and FS are supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.

© Mark de Berg, Arpan Sadhukhan, and Frits Spieksma;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 15; pp. 15:1–15:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:M.T.d.Berg@tue.nl
mailto:A.Sadhukhan@tue.nl
mailto:f.c.r.spieksma@tue.nl
https://doi.org/10.4230/LIPIcs.SWAT.2022.15
https://doi.org/10.48550/arXiv.2112.05426
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Stable Approximation Algorithms for Range Assignment

Acknowledgements We thank the reviewers of an earlier version of the paper for pointing us to
some important references and for other helpful comments.

1 Introduction

The broadcast range-assignment problem. Let P be a set of points in Rd, representing
transmission devices in a wireless network. By assigning each point p ∈ P a transmission
range ρ(p), we obtain a communication graph Gρ(P). The nodes in Gρ(P) are the points
from P and there is a directed edge (p, q) iff |pq| ⩽ ρ(p), where |pq| denotes the Euclidean
distance between p and q. The energy consumption of a device depends on its transmission
range: the larger the range, the more energy it needs. More precisely, the energy needed
to obtain a transmission range ρ(p) is given by ρ(p)α, for some real constant α > 1 called
the distance-power gradient. In practice, α depends on the environment and ranges from 1
to 6 [18]. Thus the overall cost of a range assignment is costα(ρ(P)) :=

∑
p∈P ρ(p)α, where

we use ρ(P) to denote the set of ranges given to the points in P by the assignment ρ. The
goal of the range-assignment problem is to assign the ranges such that Gρ(P) has certain
connectivity properties while minimizing the total cost [6]. Desirable connectivity properties
are that Gρ(P) is (h-hop) strongly connected [8, 9, 10, 16] or that Gρ(P) contains a broadcast
tree, that is, an arborescence rooted at a given source s ∈ P . The latter property leads to
the broadcast range-assignment problem, which is the topic of our paper.

The broadcast range-assignment problem has been studied extensively, sometimes with
the extra condition that any point in P is reachable in at most h hops from the source s.
For α = 1 the problem is trivial in any dimension: setting the range of the source s to
max{|sp| : p ∈ P} and all other ranges to zero is optimal; however, for any α > 1 the problem
is np-hard in Rd for d ⩾ 2 [5, 15]. Approximation algorithms and results on hardness of
approximation are known as well [4, 7, 15]. Many of our results will be on the 1-dimensional
(or: linear) broadcast range-assignment problem. Linear networks are important for modeling
road traffic information systems [3, 17] and as such they have received ample attention. In R1,
the broadcast range-assignment problem is no longer np-hard, and several polynomial-time
algorithms have been proposed, for the standard version, the h-hop version, as well as the
weighted version [2, 4, 7, 11, 12]. The currently fastest algorithms for the (standard and
h-hop) broadcast range-assignment problem run in O(n2) time [11].

All results mentioned so far are for the static version of the problem. Our interest lies
in the dynamic version, where points can be inserted into and deleted from P (except the
source, which should always be present). This corresponds to new sensors being deployed
and existing sensors being removed, or, in a traffic scenario, cars entering and exiting the
highway. Recomputing the range assignment from scratch when P is updated may result
in all ranges being changed. The question we want to answer is therefore: is it possible to
maintain a close-to-optimal range assignment that is relatively stable, that is, an assignment
for which only few ranges are modified when a point is inserted into or deleted from P ? And
which trade-offs can be achieved between the quality of the solution and its stability?

To the best of our knowledge, the dynamic problem has not been studied so far. The
online problem, where the points from P arrive one by one (there are no deletions) and
it is not allowed to decrease ranges, is studied by De Berg et al. [13]. This restriction is
arguably unnatural, and it has the consequence that a bounded approximation ratio cannot
be achieved. Indeed, let the source s be at x = 0, and suppose that first the point x = 1
arrives, forcing us to set ρ(s) := 1, and then the points x = i/n arrive for 1 ⩽ i < n. In the
optimal static solution at the end of this scenario all points, except the rightmost one, have

M. de Berg, A. Sadhukhan, and F. Spieksma 15:3

range 1/n; for α = 2 this induces a total cost of n · (1/n)2 = 1/n. But if we are not allowed
to decrease the range of s after setting ρ(s) = 1, the total cost will be (at least) 1, leading
to an unbounded approximation ratio. Therefore, [13] analyze the competitive ratio: they
compare the cost of their algorithm to the cost of an optimal offline algorithm (which knows
the future arrivals, but must still maintain a valid solution at all times without decreasing
any range). As we will see, by allowing to also decrease a few ranges, we are able to maintain
solutions whose cost is close even to the static optimum.

Our contribution. Before we state our results, we first define the framework we use to
analyze our algorithms. Let P be a dynamic set of points in Rd, which includes a fixed
source point s that cannot be deleted.

An update algorithm alg for the dynamic broadcast range-assignment problem is an
algorithm that, given the current solution (the current ranges of the points in the current
set P) and the location of the new point to be inserted into P , or the point to be deleted
from P , modifies the range assignment so that the updated solution is a valid broadcast
range assignment for the updated set P . We call such an update algorithm k-stable if it
modifies at most k ranges when a point is inserted into or deleted from P . Here we define
the range of a point currently not in P to be zero. Thus, if a newly inserted point receives
a positive range it will be counted as receiving a modified range; similarly, if a point with
positive range is deleted then it will be counted as receiving a modified range. To get a more
detailed view of the stability, we sometimes distinguish between the number of increased
ranges and the number of decreased ranges, in the worst case. When these numbers are
k+ and k−, respectively, we say that alg is (k+, k−)-stable. This is especially useful when
we separately report on the stability of insertions and deletions; often, when insertions are
(k1, k2)-stable then deletions will be (k2, k1)-stable.

We are not only interested in the stability of our update algorithms, but also in the
quality of the solutions they provide. We measure this in the usual way, by considering the
approximation ratio of the solution. As mentioned, we are interested in trade-offs between
the stability of an algorithm and its approximation ratio. Of particular interest are so-called
stable approximation schemes, defined as follows.

▶ Definition 1. A stable approximation scheme, or SAS for short, is an update algorithm
alg that, for any given yet fixed parameter ε > 0, is k(ε)-stable and that maintains a solution
with approximation ratio 1 + ε, where the stability parameter k(ε) only depends on ε and not
on the size of P .

Notice that in the definition of a SAS we do not take the computational complexity of the
update algorithm into account. We point out that, in the context of dynamic scheduling
problems (where jobs arrive and disappear in an online fashion, and it is allowed to re-assign
jobs), a related concept has been introduced under the name robust PTAS: a polynomial-time
algorithm that, for any given parameter ε > 0, computes a (1 + ε)-approximation with
re-assignment costs only depending on ε, see e.g. [19] and [20].

We now present our results. Recall that costα(ρ(P)) :=
∑

p∈P ρ(p)α, is the cost of a
range assignment ρ, where α > 1 is a constant. To make the results easier to interpret, we
state the results for α = 2; the dependencies of the bounds on the parameter α can be found
in the theorems presented in later sections.

In Section 3 we present a SAS for the broadcast range-assignment problem in R1, with
k(ε) = O(1/ε). We prove that this is tight in the worst case, by showing that any SAS
for the problem must have k(ε) = Ω(1/ε).

SWAT 2022

15:4 Stable Approximation Algorithms for Range Assignment

p∗s

chain chain

`|L| `j ri r|R|

chain ZrightZleft

Figure 1 The structure of an optimal solution. The non-filled points are zero-range points, the
solid black points all have a standard range (for ℓ|L| and r|R| the standard range is zero), except for
the root-crossing point which (in this example) has a long range.

Our SAS (as well as some other algorithms) needs to know an optimal solution after each
update. The fastest existing algorithms to compute an optimal solution in R1 run in
O(n2) time. In Section 2 we show how to recompute an optimal solution in O(n log n)
time after each update, which we believe to be of independent interest. As a result, our
SAS also runs in O(n log n) time per update.
There is a very simple 2-stable 2-approximation algorithm. We show that a 1-stable
algorithm with bounded approximation ratio does not exist when both insertions and
deletions must be handled. For the insertion-only case, however, we give a 1-stable (6 +
2
√

5)-approximation algorithm. We have not been able to improve upon the approximation
ratio 2 with a 2-stable algorithm, but we show that with a 3-stable we can get a 1.97-
approximation. Due to lack of space, these results are mostly delegated to the appendix.
Next we study the problem in S1, that is, when the underlying 1-dimensional space is
circular. This version has, as far as we know, not been studied so far. We first prove that
in S1 an optimal solution for the static problem can always be obtained by cutting the
circle at an appropriate point and solving the resulting problem in R1. This leads to an
algorithm to solve the static problem optimally in O(n2 log n) time. We also prove that,
in spite of this, a SAS does not exist in S1.
Finally, we consider the problem in R2. Based on the no-SAS proof in S1, we show that
the 2-dimensional problem does not admit a SAS either. In addition, we present an
17-stable 12-approximation algorithm for the 2-dimensional version of the problem.

All omitted results and proofs are there in the full version of the paper [14].

2 Maintaining an optimal solution in R1

Before we can present our stable algorithms for the broadcast range-assignment problem
in R1, we first introduce some terminology and we discuss the structure of optimal solutions.
We also present an efficient subroutine to maintain an optimal solution.

2.1 The structure of an optimal solution
Several papers have characterized the structure of optimal broadcast range assignments in R1,
in a more or less explicit manner. We use the characterization by Caragiannis et al. [4],
which is illustrated in Figure 1 and described next.

Let P := L ∪ {s} ∪ R be a point set in R1. Here s is the designated source node,
L := {ℓ1, . . . , ℓ|L|} contains all points from P to the left of s, and R := {r1, . . . , r|R|} contains
all points to the right of s. The points in L are numbered in order of increasing distance
from s, and the same is true for the points in R. The points ℓ|L| and r|R| are called extreme
points. In the following, and with a slight abuse of notation, we sometimes use p or q to
refer a generic point from P – that is, a point that could be s, or a point from R, or a point
from L. Furthermore, we will not distinguish between points in P and the corresponding
nodes in the communication graph Gρ(P).

M. de Berg, A. Sadhukhan, and F. Spieksma 15:5

For a non-extreme point ri ∈ R, we define ri+1 to be its successor ; similarly, ℓi+1 is
the successor of ℓi. The source s has (at most) two successors, namely r1 and ℓ1. The
successor of a point p is denoted by succ(p); for an extreme point p we define succ(p) = nil.
If succ(p) = q ≠ nil, the we call p the predecessor of q and we write pred(q) = p. A chain is
a path in the communication graph Gρ(P) that only consists of edges connecting a point to
its successor. Thus a chain either visits consecutive points from {s} ∪ R from left to right, or
it visits consecutive points from {s} ∪ L from right to left. It will be convenient to consider
the empty path from s to itself to be a chain as well.

Consider a range assignment ρ. We say that a point q ∈ P is within reach of a point
p ∈ P if |pq| ⩽ ρ(p). Let B a broadcast tree in Gρ(P) – that is, B is an arborescence rooted
at s. A point in R ∪ L in B is called root-crossing in B if it has a child on the other side of s;
the source s is root-crossing if it has a child in L and a child in R. The following theorem,
which holds for any distance-power gradient α > 1, is proven in [4].

▶ Theorem 2 ([4]). Let P be a point set in R1. If all points in P \ {s} lie to the same side
of the source s, then the optimal solution induces a chain from s to the extreme point in P .
Otherwise, there is an optimal range assignment ρ such that Gρ(P) contains a broadcast
tree B with the following structure:

B has a single root-crossing point, p∗.
B contains a chain from s to p∗.
All points within reach of p∗, except those on the chain from s to p∗, are children of p∗.
Let ri and ℓj be the rightmost and leftmost point within reach of p∗, respectively. Then B
contains a chain from ri to r|R|, and a chain from ℓj to ℓ|L|.

From now on, whenever we talk about optimal range assignments and their induced
broadcast trees, we implicitly assume that the broadcast tree has the structure described
in Theorem 2. Note that the communication graph Gρ(P) induced by an optimal range
assignment ρ can contain more edges than the ones belonging to the broadcast tree B.
Obviously, for ρ to be optimal it must be a minimum-cost assignment inducing B.

Define the standard range of a non-extreme point ri ∈ R to be |riri+1|; the standard range
of the extreme point r|R| is defined to be zero. The standard ranges of the points in L are
defined similarly. The source s has two standard ranges, |sℓ1| and |sr1|. A range assignment
in which every point has a standard range is called a standard solution; a standard solution
may or may not be optimal. Note that, in the static problem, it is never useful to give a point
a non-zero range that is smaller than its standard range. Hence, we only need to consider
three types of points: standard-range points, zero-range points, and long-range points. Here
zero-range points are non-extreme points with a zero range, and a point is said to have a
long range if its range is greater than its standard range. Theorem 2 implies that an optimal
range assignment has the following properties; see also Figure 1.

There is at most one long-range point.
The set Z ⊂ P of zero-range points (which may be empty) can be partitioned into two
subsets, Zleft and Zright, such that Zleft consists of consecutive points that lie to the left
of the source s, and Zright consists of consecutive points to that lie to the right of s.

2.2 An efficient update algorithm
Using Theorem 2 an optimal solution for the broadcast range-assignment problem can be
computed in O(n2) time [11]. Below we show that maintaining an optimal solution under
insertions and deletions can be done more efficiently than by re-computing it from scratch:
using a suitable data structure, we can update the solution in O(n log n) time. This will also
be useful in later sections, when we give algorithms that maintain a stable solution.

SWAT 2022

15:6 Stable Approximation Algorithms for Range Assignment

s p∗

∆j = | pred(q) q|α ∆j = | pred(q) q|α + |q succ(q)|α − | pred(q) succ(q)|α

∆j = 0 ∆j = |q succ(q)|α − | pred(q) succ(q)|α

ρjρj

Figure 2 Various cases that can arise when a new point q is inserted into P . Open disks indicate
zero-range points. The arcs indicate the ranges of the points before the insertion of q, where the
range of the root-crossing point is drawn both to its right and to its left. The colored intervals relate
the possible locations of q to the corresponding values ∆j , where ∆j refers to the (signed) difference
of the cost of the range assignment before and after the insertion of q.

Recall that an optimal solution for a given point set P has a single root-crossing point, p∗.
Once the range ρ(p∗) is fixed, the solution is completely determined. Since ρ(p∗) = |p∗p| for
some point p ̸= p∗, there are n − 1 candidate ranges for a given choice of the root-crossing
point p∗. The idea of our solution is to implicitly store the cost of the range assignment for
each candidate range of p∗ such that, upon the insertion or deletion of a point in P , we can
find the best range for p∗ in O(log n) time. By maintaining n such data structures Tp∗ , one
for each choice of the root-crossing point p∗, we can then find the overall best solution.

The data structure for a given root-crossing point. Next we explain our data structure
for a given candidate root-crossing point p∗. We assume without loss of generality that p∗

lies to the right of the source point s; it is straightforward to adapt the structure to the
(symmetric) case where p∗ lies to the left of s, and to the case where p∗ = s.

Let Rp∗ be the set of all ranges we need to consider for p∗, for the current set P . The
range of a root-crossing point must extend beyond the source point. Hence,

Rp∗ := {|p∗p| : p ∈ P and |p∗p| > |p∗s|}.

Let λ1, . . . , λm denote the sequence of ranges in Rp∗ , ordered from small to large. (If Rp∗ = ∅,
there is nothing to do and our data structure is empty.) As mentioned, once we fix a range λj

for the given root-crossing point p∗, the solution is fully determined by Theorem 2: there is a
chain from s to p∗, a chain from the rightmost point within range of p∗ to the right-extreme
point, and a chain from the leftmost point within range of p∗ to the left-extreme point. We
denote the resulting range assignment1 for P by Γ(P, p∗, λj).

Our data structure, which implicitly stores the costs of the range assignments Γ(P, p∗, λj)
for all λj ∈ Rp∗ , is an augmented balanced binary search tree Tp∗ . The key to the efficient
maintenance of Tp∗ is that, upon the insertion of a new point p (or the deletion of an existing
point), many of the solutions change in the same way. To formalize this, let ∆j be the signed
difference of the cost of the range assignment Γ(P, p∗, λj) before and after the insertion of
q, where ∆j is positive if the cost increases. Figure 2 shows various possible values for ∆j ,
depending on the location of the new point q with respect to the range λj . It follows from
the figure that there are only four possible values for ∆j . This allows us to design our data
structure Tp∗ such that it can be updated using O(1) bulk updates of the following form:

1 When P lies completely to one side of s, then the range assignment is formally not root-crossing. We
permit ourselves this slight abuse of terminology because by considering s as root-crossing point, setting
ρ(s) := |s succ(s)| and adding a chain from succ(s) to the extreme point, we get an optimal solution.

M. de Berg, A. Sadhukhan, and F. Spieksma 15:7

Given an interval I of range values and an update value ∆, add ∆ to the cost of
Γ(P, p∗, λj) for all λj ∈ I.

In the full version of the paper [14]. we define the information stored in Tp∗ and we show how
bulk updates can be done in O(log n) time. We eventually obtain the following theorem.

▶ Theorem 3. An optimal solution to the broadcast range-assignment problem for a point set
P in R1 can be maintained in O(n log n) per insertion and deletion, where n is the number
of points in the current set P .

3 A stable approximation scheme in R1

In this section we use the structure of an optimal solution provided by Theorem 2 to obtain
a SAS for the 1-dimensional broadcast range-assignment problem. Our SAS has stability
parameter k(ε) = O((1/ε)1/(α−1)), which we will show to be asymptotically optimal.

The optimal range assignment can be very unstable. Indeed, suppose the current point
set is P := {s, r1, . . . , rn} with s = 0 and ri = i (1 ⩽ i ⩽ n), and take any α > 1. Then
the (unique) optimal assignment ρopt has ρopt(s) = ρopt(r1) = · · · = ρopt(rn−1) = 1 and
ρopt(rn) = 0. If now the point ℓ1 = −n is inserted, then the optimal assignment becomes
ρopt(s) = n and ρopt(r1) = · · · = ρopt(rn) = ρopt(ℓ1) = 0, causing n ranges to be modified.

Next, we will define a feasible solution, referred to as a canonical range assignment ρk that
is more stable than an optimal assignment, while still having a cost close to the cost of an
optimal solution. Here k is a parameter that allows a trade-off between stability and quality
of the solution. The assignment ρk for a given point set P will be uniquely determined by the
set P –it does not depend on the order in which the points have been inserted or deleted. This
means that the update algorithm simply works as follows. Let ρk(P) be the canonical range
assignment for a point set P , and suppose we update P by inserting a point q. Then the
update algorithm computes ρk(P ∪ {q}) and it modifies the range of each point p ∈ P ∪ {q}
whose canonical range in ρk(P ∪ {q}) is different from its canonical range in ρk(P). The goal
is now to specify ρk such that (i) many ranges in ρk(P ∪ {q}) are the same as in ρk(P), (ii)
the cost of ρk(P) is close to the cost of ρopt(P).

The instance in the example above shows that there can be many points whose range
changes from being standard to being zero (or vice versa) when preserving optimality of
the consecutive instances. Our idea is therefore to construct solutions where the number of
points with zero range is limited, and instead give many points their standard range; if we do
this for points whose standard range is relatively small, then the cost of this solution remains
bounded compared to the cost of an optimum solution. We now make this idea precise.

Consider a point set P and let ρopt be an optimal range assignment satisfying the structure
described in Theorem 2. Assuming there are points in P on both sides of the source, ρopt
induces a broadcast tree B with the structure depicted in Figure 1. Let ρst(p) be the standard
range of a point p. The canonical range assignment ρk is now defined as follows.

If all points from P lie to the same side of s, then ρk(p) := ρopt(p) for all p ∈ P . Note
that in this case ρk(p) = ρst(p) for all p ∈ P .
Otherwise, let Z be the set of zero-range points in ρopt(P). If |Z| ⩽ k then let Zk := Z;
otherwise let Zk ⊆ Z be the k points from Z with the largest standard ranges, with ties
broken arbitrarily. We define ρk as follows.

ρk(p) := ρopt(p) for all p ∈ P \ Z. Observe that this means that ρk(p) = ρst(p) for all
p ∈ P \ Z except (possibly) for the root-crossing point.
ρk(p) := 0 for all p ∈ Zk.
ρk(p) := ρst(p) for all p ∈ Z \ Zk.

SWAT 2022

15:8 Stable Approximation Algorithms for Range Assignment

Notice that ρk is a feasible solution since ρk(p) ⩾ ρopt(p) for each p ∈ P . The next lemma
analyzes the stability of the canonical range assignment ρk. Recall that for any range
assignment ρ – hence, also for ρk – and any point q not in the current set P , we have ρ(q) = 0
by definition.

▶ Lemma 4. Consider a point set P and a point q ̸∈ P . Let ρold(p) be the range of a point p

in ρk(P) and let ρnew(p) be the range of p in ρk(P ∪ {q}). Then

|{p ∈ P ∪ {q} : ρnew(p) > ρold(p)}| ⩽ k+3 and |{p ∈ P ∪ {q} : ρnew(p) < ρold(p)}| ⩽ k+3.

Proof. The range of a point p ∈ P ∪ {q} can increase due to the insertion of q only if
(i) p = q and ρnew(q) > 0, or
(ii) p is a zero-range point in ρk(P), or
(iii) p is the root-crossing point in ρk(P ∪ {q}), or
(iv) the standard range of p increases due to the insertion of q, or
(v) p = s and, out of the two standard ranges it has, s gets assigned a larger one in ρk(P ∪{q})

than in ρk(P).
Recall that we defined ρk such that the number of zero-range points is at most k. Furthermore,
at most one standard range can increase due to the insertion of q, namely, the standard
range of a point that is extreme in P but not in P ∪ {q}. When this happens, however, q

is extreme in P ∪ {q} and so ρnew(q) = 0; this implies that cases (i) and (iv) cannot both
happen. Hence, |{p ∈ P ∪ {q} : ρnew(p) > ρold(p)}| ⩽ k + 3.

The range of a point p can decrease only if
(i) p is a zero-range point in ρk(P ∪ {q}), or
(ii) p is the root-crossing point in ρk(P), or
(iii) the standard range of p decreases due to the insertion of q, or
(iv) p = s and, out of the two standard ranges it has, p gets a assigned a smaller one in

ρk(P ∪ {q}) than in ρk(P).
Since the only point whose standard range decreases is the predecessor of q in P , we conclude
that |{p ∈ P ∪ {q} : ρnew(p) < ρold(p)}| ⩽ k + 3. ◀

Next we bound the approximation ratio of ρk.

▶ Lemma 5. For any set P and any α > 1, we have costα(ρk(P)) ⩽
(
1 + 2α

kα−1

)
·

costα(ρopt(P)).

Proof. If all points in P lie to the same side of s then ρk(P) = ρopt(P), and we are done.
Otherwise, let p∗ be the root-crossing point. The only points receiving a different range
in ρk(P) when compared to ρopt(P) are the points in Z \ Zk; these points have ρk(p) = ρst(p)
while ρopt(p) = 0. This means we are done when Z \ Zk = ∅. Thus we can assume that
|Z| > k, so Z \ Zk ̸= ∅. Assume without loss of generality that ρopt(p∗) = 1. As each p ∈ Z is
within reach of p∗, we have

∑
p∈Z ρst(p) ⩽ 2. Since Zk contains the k points with the largest

standard ranges among the points in Z, we have max{ρst(p) : p ∈ Z \ Zk} ⩽ 2/k. Hence,∑
p∈Z\Zk

ρk(p)α =
∑

p∈Z\Zk

ρst(p)α =
∑

p∈Z\Zk

ρst(p)α−1 · ρst(p) ⩽
(2

k

)α−1 ∑
p∈Z\Zk

ρst(p) ⩽ 2α

kα−1 .

(The analysis can be made tighter by using that
∑

p∈Z\Zk
ρst(p) ⩽ 2 − k maxp∈Z\Zk

ρst(p),
but this will not change the approximation ratio asymptotically.) We conclude that

costα(ρk(P))
costα(ρopt(P)) ⩽

∑
p∈P \(Z\Zk) ρk(p)α +

∑
p∈Z\Zk

ρk(p)α∑
p∈P \(Z\Zk) ρopt(p)α

⩽ 1 + 2α

kα−1 ,

where the last inequality follows because we have ρk(p) = ρopt(p) for all p ∈ P \ (Z \ Zk) and∑
p∈P \(Z\Zk) ρopt(p)α ⩾ 1. ◀

M. de Berg, A. Sadhukhan, and F. Spieksma 15:9

By maintaining the canonical range assignment ρk for k = (2α/ε)1/(α−1) = O((1/ε)1/(α−1))
we obtain the following theorem.

▶ Theorem 6. There is a SAS for the dynamic broadcast range-assignment problem in R1

with stability parameter k(ε) = O((1/ε)1/(α−1)), where α > 1 is the distance-power gradient.
The time needed by the SAS to compute the new range assignment upon the insertion or
deletion of a point is O(n log n), where n is the number of points in the current set.

Proof. Our SAS maintains the canonical range assignment ρk for k = (2α/ε)1/(α−1) =
O((1/ε)1/(α−1)). We then have costα(ρk(P)) ⩽ (1 + ε) · ρopt(P) by Lemma 5. Furthermore,
the number of modified ranges when P is updated is 2k + 6 by Lemma 4. To determine
the assignment ρk, we need to know an optimal assignment ρopt with the structure from
Theorem 2. Such an optimal assignment can be maintained in O(n log n) time per update,
by Theorem 3. Once we have the new optimal assignment, the new optimal assignment can
be determined in O(n) time. ◀

Next we show that the stability parameter k(ε) in our SAS is asymptotically optimal.

▶ Theorem 7. Any SAS for the dynamic broadcast range-assignment problem in R1 must
have stability parameter k(ε) = Ω((1/ε)1/(α−1)), where α > 1 is the distance-power gradient.

Proof. Let alg be a k-stable algorithm, where k ⩾ 4 and kα−1 ⩾ 1
2α+1(2α−1−1) and k is even,

and let ρalg be the range assignment it maintains. Note that the condition on k is satisfied
for k large enough. We will show that the approximation ratio of alg is at least 1 + 1

2α+2kα−1 .
Since a SAS has approximation ratio 1 + ε, this implies that the stability parameter k(ε) of
alg must satisfy k(ε) = Ω((1/ε)1/(α−1)).

Consider the point set P := {s, r1, r2, . . . r2k}, where s = 0 and ri = i/(2k) for i =
1, 2, . . . , 2k. We consider two cases.
Case I: The number of zero-range points in ρalg(P) is at least k/2, where we assume

without loss of generality that all points with range less than 1/(2k) actually have
range zero. The cheapest possible solution in this case is to have exactly k/2 zero-range
points, k points with range 1/(2k), and k/2 points with range 1/k, for a total cost of

costα(ρalg(P)) ⩾ k ·
(

1
2k

)α

+ k

2 ·
(

1
k

)α

=
(

1 + 2α−1 − 1
2

)
· 2k

(
1
2k

)α

.

An optimal solution has cost 2k · (1/(2k))α, and so the approximation ratio of alg in
Case I is at least 1 + 2α−1−1

2 , which is at least 1 + 1
2α+2kα−1 since kα−1 ⩾ 1

2α+1(2α−1−1) .
Case II: The number of zero-range points ρalg(P) is less than k/2. Now suppose the

point ℓ1 = −1 arrives. Since ρalg(P) had less than k/2 zero-range points and alg
can modify at most k ranges, ρalg(P ∪ {ℓ1}) has less than 3k/2 zero-range points. Hence,
at least k/2 points in P ∪ {ℓ1} have a range that is at least 1/(2k), one of which must
have a range at least 1. This implies that costα(ρalg(P ∪ {ℓ1})) ⩾ 1 + (k/2 − 1) ·

(1
2k

)α
⩾

1 + 1
2α+2kα−1 , where the last inequality holds since k/2 − 1 ⩾ k/4 (because k ⩾ 4). An

optimal range assignment on P ∪ {ℓ1} has ρopt(s) = 1 and all other ranges equal to
zero, for a total cost of 1, and so the approximation ratio of alg in Case II is at least
1 + 1

2α+2kα−1 as well. ◀

SWAT 2022

15:10 Stable Approximation Algorithms for Range Assignment

Table 1 An overview of the approximation ratio of 1-stable, 2-stable and 3-stable algorithms.

ℓ-stable algorithm Approximation Ratio Remarks
ℓ = 1 6 + 2

√
5 ≈ 10.47 α = 2, insertions only

ℓ = 2 2 for any α > 1
ℓ = 3 1.97 α = 2

4 1-Stable, 2-Stable, and 3-Stable Algorithms in R1

In Section 3 we presented a (2k + 6)-stable algorithm with approximation ratio 1 + 2α/kα−1,
which provided us with a SAS. For small k the algorithm is not very good: the most stable
algorithm we can get is 6-stable, by setting k = 0. A careful analysis shows that the
approximation ratio of this 6-stable algorithm is 3, for α = 2. Below we briefly discuss the
results we obtained for more stable algorithms; details are available in the full version [14].

We give a 1-stable O(1)-approximation algorithm; obviously, this is the best we can do
in terms of stability. This algorithm can only handle insertions. We also show that this is
necessarily the case: a 1-stable algorithm that can handle insertions as well as deletions
cannot have bounded approximation ratio. We then present a straightforward 2-stable
2-approximation algorithm, which simply gives every point its standard range. Finally, we
study 3-stable algorithms: we show that using a 3-stable algorithm it is possible to get an
approximation ratio strictly below 2. See Table 1 for an overview of results. We now briefly
sketch our 3-stable algorithm.

A 3-stable algorithm with approximation ratio less than 2. Given the simplicity of our
2-stable 2-approximation algorithm, it is surprisingly difficult to obtain an approximation
ratio strictly smaller than 2. In fact, we have not been able to do this with a 2-stable
algorithm. Below we show this is possible with a 3-stable algorithm, at least for the case
α = 2, which we assume from now on.

Recall that for any set P with points on both sides of the source point s, there is an
optimal range assignment inducing a broadcast tree with a single root-crossing point; see
Figure 1. Unfortunately the root-crossing point may change when P is updated. This may
cause many changes if we maintain a solution with a good approximation ratio and the same
root-crossing point as the optimal solution. We therefore restrict ourselves to source-based
range assignments, where s is the root-crossing point. The main question is then how large
the range of s should be, and which points within range of s should be zero-range points.

We now define our source-based range assignment, which we denote by ρsb, more precisely.
It will be uniquely defined by the set P ; it does not depend on the order in which points
have been inserted or deleted. Let δ be a parameter with 1/2 < δ < 1; later we will choose δ

such that the approximation ratio of our algorithm is optimized. We call a point p ∈ P \ {s}
expensive if succ(p) ̸= nil and |p succ(p)| > δ · |s succ(p)|, and we call it cheap otherwise.
The source s is defined to be always expensive. (This is consistent in the sense that for p = s

the condition |p succ(p)| > δ · |s succ(p)| holds for both successors, since δ < 1.) We denote
the set of all expensive points in P by Pexp and the set of all cheap points by Pcheap. Define
dmax := max{|s succ(p)| : p ∈ Pexp}, that is, dmax is the maximum distance from s to the
successor of any expensive point. We say that a point p ∈ Pexp is crucial if |s succ(p)| = dmax.
Typically there is a single crucial point, but there can also be two: one on the left and one
on the right of s. Our source-based range assignment ρsb is now defined as follows.

M. de Berg, A. Sadhukhan, and F. Spieksma 15:11

ρsb(s) := dmax,
ρsb(p) := 0 for all p ∈ Pexp \ {s}, and
ρsb(p) := ρst(p) for all p ∈ Pcheap, where ρst(p) denotes the standard range of a point.

It is easily checked that we can maintain this range assignment with a 3-stable algorithm.
The challenge is to analyze its approximation ratio. In the full version of the paper [14].
we show that, for a suitable choice of δ, the approximation ratio is strictly smaller than 2,
leading to the following theorem.

▶ Theorem 8. There exists a 3-stable 1.97-approximation algorithm for the dynamic broadcast
range-assignment problem in R1 for α = 2.

5 The problem in S1

We now turn to the setting where the underlying space is S1, that is, the points in P lie
on a circle and distances are measured along the circle. In Section 5.1, we prove that the
structure of an optimal solution in S1 is very similar to the structure of an optimal solution
in R1 as formulated in Theorem 2. In spite of this, and contrary to the problem in R1, we
prove in Section 5.2 that no SAS exists for the problem in S1.

Again, we denote the source point by s. The clockwise distance from a point p ∈ S1 to a
point q ∈ S1 is denoted by dcw(p, q), and the counterclockwise distance by dccw(p, q). The
actual distance is then d(p, q) := min(dcw(p, q), dccw(p, q)). The closed and open clockwise
interval from p to q are denoted by [p, q]cw and (p, q)cw, respectively.

5.1 The structure of an optimal solution in S1

Here we prove that the structure of an optimal solution in S1 is very similar to the structure
of an optimal solution in R1. The heart of this proof is the following lemma 9. Define the
covered region of P with respect to a range assignment ρ, denoted by cov(ρ, P), to be the set
of all points r ∈ S1 such that there exists a point p ∈ P with ρ(p) ⩾ d(p, r).

▶ Lemma 9. Let P be a point set in S1 with |P | > 2 and let ρopt be an optimal range
assignment for P . Then there exists a point r ∈ S1 such that r /∈ cov(ρopt, P).

Lemma 9 implies that an optimal solution for an instance in S1 corresponds to an
optimal solution for an instance in R1 derived as follows. For a point r ∈ S1, define the
mapping µr : P → R1 such that µr(s) := 0, and µr(p) := dcw(s, p) for all p ∈ [s, r]cw, and
µr(p) := −dccw(s, p) for all p ∈ [r, s]cw. Let µr(P) denote the resulting point set in R1.

▶ Theorem 10. Let P be an instance of the broadcast range-assignment problem in S1.
There exists a point r ∈ S1 such that an optimal range assignment for µr(P) in R1 induces
an optimal range assignment for P . Moreover, we can compute an optimal range assignment
for P in O(n2 log n) time, where n is the number of points in P .

Proof. Let r ∈ S1 be a point such that r /∈ cov(ρopt, P), which exists by Lemma 9. Consider
the mapping µr. Any feasible range assignment for µr(P) induces a feasible range assignment
for P in S1, since d(p, q) ⩽ |µr(p)µr(q)| for any two points p, q ∈ P . Conversely, an optimal
range assignment for P induces a feasible range assignment for µr(P), since the point r is
not covered in the optimal solution. This proves the first part of the theorem.

Now let P := {s, p1, . . . , pn}, where the points pi are ordered clockwise from s. For
0 ⩽ i ⩽ n, let ri be a point in (pi, pi+1)cw, where p0 = pn+1 = s. Since µri = µr for any
r ∈ (pi, pi+1)cw, an optimal solution can be computed by finding the best solution over all

SWAT 2022

15:12 Stable Approximation Algorithms for Range Assignment

mappings µri . The only difference between µri and µri+1 is the location that pi+1 is mapped
to, so after computing an optimal solution for µ1(P) in O(n2 log n) time, we can go through
the mappings µ2, . . . , µn and update the optimal solution in O(n log n) time using Theorem 3.
Hence, an optimal range assignment for P can be computed in O(n2 log n) time. ◀

Next we prove Lemma 9. Without loss of generality we identify S1 with a circle of perimeter 1.
Let ρopt be a fixed optimal range-assignment on P . We will need the following lemma.

▶ Lemma 11. If |P | > 2 then ρopt(p) < 1
2 for all p ∈ P .

Proof. Note that setting ρ(s) = 1
2 and ρ(p) = 0 for all p ∈ P \ {s} gives a feasible solution.

Since ρ(s) > 0 in any feasible solution, this means that ρopt(p) < 1
2 for all p ≠ s. Hence, it

suffices to show that ρopt(s) < 1
2 . If there is no point p ∈ P which is diametrically opposite s

then clearly ρopt(s) < 1
2 . Now suppose some point p ∈ P lies diametrically opposite s. Let

q ∈ P \{s, p} be a point that maximizes the distance from s among all points in P \{s, p}. The
point q exists since |P | > 2. Note that d(s, q) + d(q, p) = 1

2 . Hence, setting ρ(s) = d(s, q) and
ρ(q) = d(q, p) (and keeping all other ranges zero) gives a solution of cost d(s, q)α + d(q, p)α,
which is less than

(1
2
)α since α > 1. Thus ρopt(s) < 1

2 , which finishes the proof. ◀

Before we proceed, we introduce some more notation.
For two points p, q ∈ S1, we let [p, q]cw ⊂ S1 denote the closed clockwise interval

from p to q. In other words, [p, q]cw is the clockwise arc along S1 from p to q, including
its endpoints. Furthermore, we define (p, q)ccw to be the open clockwise interval from p

to q. The intervals [p, q]ccw and (p, q)ccw are defined similarly, but for the counterclockwise
direction. Now consider a directed edge (p, q) in a communication graph Gρ(P). We say
that (p, q) is a clockwise edge if ρ(p) ⩾ dcw(p, q), and we say that it is a counterclockwise
edge if ρ(p) ⩾ dccw(p, q). Lemma 11 implies that an edge cannot be both clockwise and
counterclockwise in an optimal range assignment, assuming |P | > 2. Finally, we define the
covered region of a subset Q ⊆ P with respect to a range assignment ρ to be the set of all
points r ∈ S1 such that there exists a point p ∈ Q such that ρ(p) ⩾ d(p, r). We denote
this region by cov(ρ, Q). Furthermore, the counterclockwise covered region of Q, denoted
by covccw(ρ, Q), is the set of all points r ∈ S1 such that there exists a point p ∈ Q such
that ρ(p) ⩾ dccw(p, r). The clockwise covered region of Q, denoted by covcw(ρ, Q), is defined
similarly.

We can now state the main lemma of this section.

▶ Lemma 9. Let P be a point set in S1 with |P | > 2 and let ρopt be an optimal range
assignment for P . Then there exists a point r ∈ S1 such that r /∈ cov(ρopt, P).

Proof. Let dhop(p, q) denote the hop distance from p to q in the communication
graph Gρopt(P). Let B broadcast tree rooted at s in Gρopt(P) with the following properties.

B is a shortest-path tree in terms of hop distance, that is, the hop-distance from s to any
point p in B is equal to dhop(s, p).
Among all such shortest-path trees, B maximizes the number of clockwise edges.

For two points p, q ∈ P , let π(p, q) denote the path from p to q in B, and let |π(p, q)| be its
length, that is, the number of edges on the path. Note that |π(s, p)| = dhop(s, p) for any
p ∈ P . Let pa(p) denote the parent of a point p in B and define

Scw = {p ∈ P \ {s} : (pa(p), p) is a clockwise edge}

and

Sccw = {p ∈ P \ {s} : (pa(p), p) is a counterclockwise edge}.

M. de Berg, A. Sadhukhan, and F. Spieksma 15:13

qcw

qccw

s

qccw

qcw

s

qccw

qcw

s

[qcw, qccw]
cw is covered

by a single range
[qcw, qcw]

ccw is covered
by two ranges

qcw and qccw are in
reverse order

p∗
p∗1

(i) (ii) (iii)

p∗2

Figure 3 Illustration for the proof of Lemma 9. Note that the point p∗ in part (ii) of the figure
could also lie in [s, qcw]cw. Similarly, in part (iii) the points p∗

1 and p∗
2 could lie on “the other side”

of s.

Note that Scw ∪ Sccw = P \ {s}. Now define

qcw = the point from Scw that maximizes dcw(s, p),

where qccw = s if Scw = ∅. Similarly, define

qccw = the point from Sccw that maximizes dccw(s, p),

where qccw = s if Sccw = ∅. Let anc(p) be the set of ancestors in B of a point p ∈ P , that is,
anc(p) contains the points of π(s, p) excluding the point p. The following observation will be
used repeatedly in the proof.

▷ Observation. If (pa(p), p) is a clockwise edge, then [s, p]cw ⊂ cov(ρopt, anc(p)). Similarly,
if (pa(p), p) is a counterclockwise edge, then [s, p]ccw ⊂ cov(ρopt, anc(p)).

Proof. Assume (pa(p), p) is a clockwise edge; the proof for when (pa(p), p) is a
counterclockwise edge is similar. If s ∈ [pa(p), p)]cw – this includes the case where pa(p) = s

– then the statement obviously holds, so assume pa(p) ∈ [s, p]cw. Since (pa(p), p) is a
clockwise edge, it then suffices to prove that [s, pa(p)]cw ⊂ cov(ρopt, anc(p)). Note that
cov(ρopt, anc(p)) is connected, because the points in anc(p) form a path, namely π(s, pa(p)).
Since π(s, p) is shortest path, p ̸∈ cov(ρopt, anc(pa(p)), which implies that [s, pa(p)]cw ⊂
cov(ρopt, anc(pa(p))) ⊂ cov(ρopt, anc(p)). ◁

We now proceed to show that qccw must lie clockwise from qcw, as seen from s, that is, the
situation shown in Fig. 3(i) cannot happen.

▷ Claim. dcw(s, qcw) + dccw(s, qccw) < 1.

Proof. Note that dcw(s, qcw) + dccw(s, qccw) ̸= 1, since otherwise qcw = qccw which cannot
happen since Scw ∩ Sccw = ∅.

Now assume for a contradiction that dcw(s, qcw) + dccw(s, qccw) > 1, which means that
qccw ∈ [s, qcw]cw. Since qcw is reached from its parent by a clockwise edge, this implies
that qccw ∈ cov(ρopt, anc(qcw)) by the observation above. Hence, dhop(s, qcw) ⩾ dhop(s, qccw).
An analogous argument shows that dhop(s, qccw) ⩾ dhop(s, qcw). Hence, dhop(s, qccw) =
dhop(s, qcw). This implies that the edge (pa(qcw), qcw) passes over qccw, otherwise some
other edge of π(s, qcw) would pass over qccw and we would have dhop(s, qccw) < dhop(s, qcw).
But then we also have a shortest path from s to qccw whose last edge is a clockwise edge,
contradicting the definition of B. ◁

SWAT 2022

15:14 Stable Approximation Algorithms for Range Assignment

So we can assume that dcw(s, qcw) + dccw(s, qccw) < 1 or, in other words, that qccw lies
clockwise from qcw, as seen from s. Clearly no point from P lies in (qcw, qccw)cw. If we
have (qcw, qccw)cw ̸⊂ cov(ρopt, P) then we are done, so assume for a contradiction that
(qcw, qccw)cw ⊂ cov(ρopt, P). This can happen in three ways, each of which will lead to a
contradiction.

Case I: There exists a point p∗ ∈ B such that qcw ∈ covccw(ρopt, {p∗}).

See Fig. 3(ii) for an illustration of the situation. If p∗ = s then dhop(s, qcw) = 1. Since
qcw ∈ Scw this means that qcw must also have an incoming clockwise edge from s. But then
ρopt(s) ⩾ 1

2 , which contradicts Lemma 11. So p∗ ̸= s. Now note that p∗ must have an
outgoing clockwise edge in B, else we can reduce the range of p∗ to dccw(p∗, qccw), which
is smaller than dccw(p∗, qcw), and still get a feasible solution. Observe that p∗ /∈ π(s, qcw);
otherwise we must have p∗ = pa(qcw) (since qcw lies in the range of p∗) which contradicts
that qcw ∈ Scw. So for any point from P in the region [s, qcw]cw there exists a path from s in
the communication graph induced by ρopt that does not use p∗. We now have two subcases.

If p∗ ∈ [s, qccw]ccw then clearly p∗ ∈ Sccw (otherwise the definition of qcw is contradicted).
Hence, each point from P in the region [s, p∗]ccw has a path from s that does not use p∗.
This implies that can reduce the range of p∗ to dccw(p∗, qccw) and still get a feasible solution.

If p∗ ∈ [s, qcw]cw then obviously we can also reduce the range of p∗ to dccw(p∗, qccw) and
still get a feasible solution.

So both subcases lead to the desired contradiction.

Case II: There exists a point p∗ ∈ B such that qccw ∈ covcw(ρopt, {p∗}).

In the proof of Case I we never used that B maximizes the number of clockwise edges. Hence,
a symmetric argument shows that Case II also leads to a contradiction.

Case III: There are two points p∗
1, p∗

2 ∈ P such that [qcw, qccw]cw ⊆ covccw(ρopt, {p∗
1}) ∪

covcw(ρopt, {p∗
2}).

See Fig. 3(iii) for an illustration of the situation. We can assume that qcw /∈ covccw(ρopt, {p∗
1})

and qccw /∈ covcw(ρopt, {p∗
2}), otherwise we are in Case I or Case II. Now either p∗

2 /∈ π(s, p∗
1)

or p∗
1 /∈ π(s, p∗

2) or both. Without loss of generality, assume p∗
2 /∈ π(s, p∗

1). Then p∗
2 ̸= s

and all points from P in the region [s, qccw]ccw have a path from s in the communication
graph Gρopt(P) that does not use p∗

2. The point p∗
2 must have an outgoing counterclockwise

edge, else we can reduce the range of p∗
2 to dcw(p∗

2, qcw) and still get a feasible solution. We
have two subcases.

If p∗
2 ∈ [s, qccw]ccw then by reducing the range of p∗

2 to dcw(p∗
2, qcw) we still get a feasible

solution.
If p∗

2 ∈ [s, qcw]cw then p∗
2 must be reached by a clockwise edge from its parent in B,

otherwise the definition of qccw would be contradicted. Hence, for each point from P in the
region [s, p∗

2]cw there is a path from s that does not use p∗
2. So again we can reduce the range

of p∗
2 to dcw(p∗

2, qcw) we still get a feasible solution.
Thus both subcases lead to a contradiction.

This finishes the proof of the lemma. ◀

5.2 Non-existence of a SAS in S1

We have seen that an optimal solution for a set P in S1 can be obtained from an optimal
solution in R1, if we cut S1 at an appropriate point r. It is a fact however that the insertion
of a new point into P may cause the location of the cutting point r to change drastically.
Next we show that this means that the dynamic problem in S1 does not admit a SAS.

M. de Berg, A. Sadhukhan, and F. Spieksma 15:15

δ

p1
p2p2n+1

q
s

xδ
xδ

2

1

(i) (ii)

δxδ
s

qxδ

δα = (2α + 1)n

xα = 1
4
+
(
1
2

)α+1

Figure 4 (i) The instance showing that there is no SAS in S1. (ii) The instance in R2.

▶ Theorem 12. The dynamic broadcast range-assignment problem in S1 with distance power
gradient α > 1 does not admit a SAS. In particular, there is a constant cα > 1 such that the
following holds: for any n large enough, there is a set P := {s, p1, . . . , p2n+1} and a point q

in S1 such that any update algorithm alg that maintains a cα-approximation must modify
more than 2n/3 − 1 ranges upon the insertion of q into P .

The rest of this section is dedicated to proving Theorem 12. We will prove the theorem for

cα := min
(

1 + 2α−4 − 1
8 , 1 + 2α−1 − 1

3 · 2α + 2 , 1 +
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
4(2α + 1)

)
.

Note that each term is a constant strictly greater than 1 for any fixed constant α > 1. In
particular, for α = 2 we have cα = 1 + 1

14 .

Let P := {s, p1, . . . , p2n+1}, where dcw(pi, pi+1) = 2 for odd i and dcw(pi, pi+1) = 1 for
even i; see Fig. 4(i). Let dcw(s, p1) = δ, where δα = (2α + 1)n. Finally, let dcw(p2n+1, q) =
dcw(q, s) = xδ, where xα = 1

4 +
(1

2
)α+1. Note that (1/2)α < xα < 1/2 for any α > 1.

Let ρ(p) denote the range given to a point p by alg. A directed edge (p, p′) in the
communication graph induced by ρ is called a clockwise edge if ρ(p) ⩾ dcw(p, p′), and it is
called a counterclockwise edge if ρ(p) ⩾ dccw(p, p′). Observe that we may assume that no edge
(p, p′) is both clockwise and counterclockwise, because otherwise ρ(p) ⩾ (δ + 3n + 2xδ)/2,
which is much too expensive for an approximation ratio of at most cα. Define the range
ρ(p) of a point in P to be cw-minimal if ρ(p) equals the distance from p to its clockwise
neighbor in P . Similarly, ρ(p) is ccw-minimal if ρ(p) equals the distance from p to its
counterclockwise neighbor. The idea of the proof is to show that before the insertion of q,
most of the points s, p1, . . . , p2n+1 must have a cw-minimal range, while after the insertion
most points must have a ccw-minimal range. This will imply that many ranges must be
modified from being cw-minimal to being ccw-minimal.

Before the insertion of q, giving every point a cw-minimal range leads to a feasible
assignment of total cost δα + (2α + 1)n = 2δα. After the insertion of q, giving every point a
ccw-minimal range leads to a feasible assignment of total cost 2(xδ)α+(2α+1)n = (2xα+1)δα.
Hence, if opt(·) denotes the cost of an optimal range assignment, then we have:

▶ Observation 13. opt(P) ⩽ 2δα and opt(P ∪ {q}) ⩽ (2xα + 1)δα < 2δα.

SWAT 2022

15:16 Stable Approximation Algorithms for Range Assignment

We first prove a lower bound on the total cost of the points p1, . . . , p2n+1. Intuitively, only
o(n) of those points can be reached from s or q (otherwise the range of s or q would be
too expensive) and the cheapest way to reach the remaining points will be to use only
cw-minimal or ccw-minimal ranges.

▶ Lemma 14.
∑2n+1

i=1 ρ(pi)α ⩾ (2α + 1)n − o(n), both before and after the insertion of q.

Proof. By Observation 13, we have ρ(p)α ⩽ cα · 2δα and, hence, ρ(p) ⩽ (2cα)1/α · δ < 3δ, for
any point p. Consider the interval I = [y1, y2]cw where dcw(s, y1) = 3δ and dccw(q, y2) = 3δ.
All the points in I ∩ P are at distance more than 3δ from s or q and hence I ∩ P ⊆
cov(ρopt, P \ {s, q}). Let pi ∈ I ∩ P be the point whose clockwise distance from s is
minimum, and let pj ∈ I ∩ P be the point whose counterclockwise distance from q is
minimum. Then the cost of covering all the points in I ∩ P using the points in P \ {s, q} is
at least

∑j−1
t=i dcw(pt, pt+1)α − 2α, where the term −2α is because the covered region may

leave one interval [pt, pt+1]cw uncovered. Recall that the cost of assigning all the points in
P \ {s, q} a cw-minimal range is (2α + 1)n. Note that i = O(δ) since dcw(s, pi) ⩽ 3δ + 2 and
(2n + 1) − j = O(δ) since dcw(pj , q) ⩽ 3δ + 2. Hence,

2n+1∑
i=1

ρ(pi)α ⩾ (2α + 1)n − O(δ) · 2α ⩾ (2α + 1)n − o(n),

since δ = ((2α + 1)n)1/α = o(n). ◀

The following lemma gives a key property of the construction.

▶ Lemma 15. The point p2n+1 cannot have an incoming counterclockwise edge before q is
inserted, and the point p1 cannot have an incoming clockwise edge after q has been inserted.

Proof. Suppose before insertion of q the point p2n+1 has an incoming counterclockwise
edge. The cheapest incoming counterclockwise edge would be from s and this is already too
expensive. Indeed, if ρ(s) ⩾ 2xδ then by Lemma 14 the total cost of the range assignment
by alg is at least

(2xδ)α + (2α + 1)n − o(n) =
(

2α ·

(
1
4 +

(
1
2

)α+1
)

+ 1
)

· δα − o(n)

=
(

1 +
(

2α−3 − 1
4

))
· 2δα − o(n)

>

(
1 + 1

2 ·
(

2α−3 − 1
4

))
· 2δα for n sufficiently large

⩾ cα · opt(P) by definition of cα and Observation 13.

This contradicts the approximation ratio of alg, proving the first part of the lemma.
Now suppose after the insertion of q the point p1 has an incoming clockwise edge. The

cheapest way to achieve this is with ρ(s) = δ, which is too expensive. Indeed, by Lemma 14
the total cost of the range assignment is then at least

M. de Berg, A. Sadhukhan, and F. Spieksma 15:17

δα + (2α + 1)n − o(n) = 2δα

(2xα + 1)δα
· (2xα + 1)δα − o(n)

⩾

(
1 + 1

2 ·
(

2δα

(2xα + 1)δα
− 1
))

· opt(P ∪ {q}) for n sufficiently large

=
(

1 + 2 − (2xα + 1)
2(2xα + 1)

)
· opt(P ∪ {q})

=

(
1 +

1 −
(

1
2 + 1

2α

)
2
(

1
2 + 1

2α + 1
)) · opt(P ∪ {q}) since 2xα = 1

2 + 1
2α

=
(

1 + 2α−1 − 1
3 · 2α + 2

)
· opt(P ∪ {q})

⩾ cα · opt(P ∪ {q}) by definition of cα and Observation 13.

This contradicts the approximation ratio of alg, proving the second part of the lemma. ◀

We are now ready to prove that many edges must change from being cw-minimal to being
ccw-minimal when q is inserted. Observe that before and after the insertion of a point q, the
distance between any two points is either 1, 2 or at least 3. Hence, in the following lemma
we may assume that ρ(p) ∈ {0, 1, 2} ∪ [3, ∞) for any point p ∈ P ∪ {q}.

▶ Lemma 16. Before the insertion of q, at least 4n/3 + 1 of the points from {s, p1, . . . , p2n}
have a cw-minimal range and after the insertion of q at least 4n/3 + 1 of the points from
{q, p1, . . . , p2n} have a ccw-minimal range.

Proof. We prove the lemma for the situation before q is inserted; the proof for the situation
after the insertion of q is similar. It will be convenient to define p0 := s (although we may
still use s if we want to stress that we are talking about the source). Recall that p2n+1 does
not have an incoming counterclockwise edge in the communication graph Gρ(P) before the
insertion of q. Let π∗ be a minimum-hop path from s to p2n+1 in Gρ(P). Since p2n+1 does
not have an incoming counterclockwise edge and π∗ is a minimum-hop path, all edges in
π are clockwise. We assign each point pj with 1 ⩽ j ⩽ 2n + 1 to the edge (pi, pt) in π∗

such that i + 1 ⩽ j ⩽ t, and we define A(pi, pt) := {pi+1, . . . , pt} to be the set of all points
assigned to (pi, pt). We define the excess of a point pj ∈ A(pi, pt) to be

excess(pj) := 1
|A(pi, pt)|

·

ρ(pi)α −
∑

pℓ∈A(pi,pt)

d(pℓ−1, pℓ)α

 .

We say that an edge (pi, pt) in π∗ is cw-minimal if pi has a cw-minimal range. Note that if a
point pj is assigned to a cw-minimal edge, then this is the edge (pj−1, pj) and excess(pj) = 0.
Intuitively, excess(pj) denotes the additional cost we pay for reaching pj compared to reaching
it by a cw-minimal edge, if we distribute the additional cost of a non-cw-minimal edge over
the points assigned to it. Because each of the points p1, . . . , p2n+1 is assigned to exactly one
edge on the path π∗, we have

∑
pi∈π∗

ρ(p)α ⩾
2n+1∑
j=1

d(pj−1, pj)α +
2n+1∑
j=1

excess(pj) ⩾ opt(P) +
2n+1∑
j=1

excess(pj) (1)

where the second inequality follows from Observation 13 and because p0 = s. The following
claim is proved in the full version. (Essentially, the smallest possible excess is obtained when
|A(pi, pt)| ∈ {1, 2, 3}; the three terms in the claim correspond to these cases.)

SWAT 2022

15:18 Stable Approximation Algorithms for Range Assignment

▷ Claim. If pj is not assigned to a cw-minimal edge then excess(pj) ⩾ c′
α, where c′

α =
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
.

Now suppose for a contradiction that less than 4n/3 + 1 points from {s, p1, . . . , p2n+1} have
a cw-minimal range. Then at least 2n/3 + 1 points pj have excess(pj) ⩾ c′

α by the claim
above. By Inequality (1) the total cost incurred by alg is therefore more than

opt(P) + c′
α · (2n/3) = opt(P) + c′

α

3(2α + 1) · 2(2α + 1)n (2)

>

(
1 +

min
(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
4(2α + 1)

)
· opt(P) (3)

⩾ cα · opt(P) (4)

which contradicts the approximation ratio achieved by alg. ◀

Lemma 16 implies that at least 4n/3 of the points p1, . . . , p2n+1 have a cw-minimal range
before q is inserted, and at least 4n/3 of those points have a ccw-minimal range after the
insertion. Hence, at least 2n + 1 − 2 · (2n/3 + 1) = 2n/3 − 1 points must change from being
cw-minimal to being ccw-minimal, thus finishing the proof of Theorem 12.

The claim in the proof of Lemma 16

▷ Claim. If pj is not assigned to a cw-minimal edge then excess(pj) ⩾ c′
α, where c′

α =
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
.

Proof. Consider a non-cw-minimal edge (pi, pt). First suppose only a single point pj is
assigned to (pi, pt). Then t = i + 1 and pj = pt. Hence, ρ(pi) ⩾ d(pj−1, pj) + 1 because we
assumed ρ(pi) ∈ {0, 1, 2} ∪ [3, ∞). Thus when |A(pi, pt)| = 1 then

excess(pj) ⩾ (d(pj−1, pj) + 1)α − d(pj−1pj)α ⩾ 2α − 1 ⩾ c′
α.

Now suppose |A(pi, pt)| > 1. Let z1 be the number of points pj ∈ A(pi, pt) with d(pj−1, pj) =
1, and let z2 be the number of points pj ∈ A(pi, pt) with d(pj−1, pj) = 2. Since |A(pi, pt)| > 1
we have z1 ⩾ 1 and z2 ⩾ 1 and |z1 − z2| ⩽ 1. When |A(pi, pt)| = 2 then z1 = z2 = 1, and
we are distributing the cost of an edge of length at least 3, minus the costs of edges of
length 2 and 1, over two points. Thus in this case we have

excess(pj) ⩾ 3α − 2α − 1
2 .

Similarly, when |A(pi, pt)| = 3 then z1 = 2 and z2 = 1 (or vice versa, but that will only lead
to a larger excess), and we have

excess(pj) ⩾ 4α − 2α − 2
3 .

It remains to argue that we do not get a smaller excess when |A(pi, pt)| ⩾ 4. To see this, we
compare the excess we get when (pi, pt) is an edge of π with the excesses we would get when,
instead of (pi, pt), the edges (pi, pi+2) and (pi+2, pt) would be in π∗. Note that

d(pi, pt)α =
(

d(pi, pi+2) + d(pi+2, pt)
)α

> d(pi, pi+2)α + d(pi+2, pt)α

since α > 1. Hence,

M. de Berg, A. Sadhukhan, and F. Spieksma 15:19

d(pi, pt)α −
∑t

ℓ=i+1 d(pℓ−1, pℓ)α

t − i

>

(
d(pi, pi+2)α −

∑i+2
ℓ=i+1 d(pℓ−1, pℓ)α

)
+
(

d(pi+2, pt)α −
∑t

ℓ=i+3 d(pℓ−1, pℓ)α
)

t − i

⩾
d(pi, pi+2)α −

∑i+2
ℓ=i+1 d(pℓ−1, pℓ)α

2 +
d(pi+2, pt)α −

∑t
ℓ=i+3 d(pℓ−1, pℓ)α

t − i − 2

where the last inequality uses that a1+a2
b1+b2

⩾ min
(

a1
b1

, a2
b2

)
for any a1, a2, b1, b2 > 0. Thus the

excess we get for (pi, pt) is at least the minimum of the excesses we would get for (pi, pi+2)
and (pi+3, pt). More generally, when |A(pi, pt)| > 4 then we can compare the excess for
(pi, pt) with the excesses we get when we would replace (pi, pt) with a path of smaller edges,
each being assigned two or three points. The excess for (pi, pi+2) is at least the minimum of
the excesses for these shorter edges. (Reducing to edges that are assigned a single point is
not useful, since these may be cw-minimal and have zero excess.) This finishes the proof of
the claim. ◁

6 The 2-dimensional problem

The broadcast range-assignment problem is np-hard in R2, so we cannot expect a
characterization of the structure of an optimal solution similar to Theorem 2. Using a
similar construction as in S1 we can also show that the problem in R2 does not admit a SAS.

▶ Theorem 17. The dynamic broadcast range-assignment problem in R2 with distance power
gradient α > 1 does not admit a SAS. In particular, there is a constant cα > 1 such that the
following holds: for any n large enough, there is a set P := {s, p1, . . . , p2n+1} and a point q

in R2 such that any update algorithm alg that maintains a cα-approximation must modify
at least 2n/3 − 1 ranges upon the insertion of q into P .

Proof. We use the same construction as in S1, where we embed the points on a square
and the distances used to define the instance are measured along the square; see Fig. 4(ii).
We now discuss the changes needed in the proof to deal with the fact that distances in R2

between points from P ∪ {q} may be smaller than when measured along the square. With a
slight abuse of terminology, we will still refer to an edge (p, p′) that was clockwise in S1 as a
clockwise edge, and similarly for counterclockwise edges.

Note that Observation 13 still holds. Now consider Lemma 14. The proof used that the
points pi at distance more than 3δ from s or q must be covered by the ranges of the points
p1, . . . , p2n+1. We now restrict our attention to the points that are also at distance more
than 3δ from a corner of the square. Each such point pi must be covered by the range of
some point pj on the same edge of the square. Hence, the distance in R2 of from pj to pi

is the same as the distance in S1, so we can use the same reasoning as before. Thus the
exclusion of the points that are at distance at most 3δ from a corner of the square only
influences the constant in the o(n) term in the lemma. Hence, Lemma 14 still holds.

The proof of Lemma 15 still holds, since the cheapest counterclockwise edge to p2n+1
before the insertion of q is still from s (and the distance from s to p2n+1 did not change),
and the cheapest clockwise edge to p1 after the insertion of q is still from s (and the distance
from s to p1 did not change).

SWAT 2022

15:20 Stable Approximation Algorithms for Range Assignment

It remains to check Lemma 16. The proof still holds, except that the claim that
excess(pj) ⩾ c′

α may not be true for the given value of c′
α when pj is near a corner of

the square, because the distances between points on different edges of the square do not
correspond to the distances in S1. To deal with this, we simply ignore the excess of any
point within distance 3δ from a corner. This reduces the total excess by o(n). It is easily
verified that this does not invalidate the rest of the proof: we have to subtract o(n) from the
formulae in Equality (2), but this is still larger than cα · opt(P).

We conclude that all lemmas still hold, which proves Theorem 17. ◀

Although the problem in R2 does not admit a SAS, there is a relatively simple O(1)-stable
O(1)-approximation algorithm for α ⩾ 2. The algorithm is based on a result by Ambühl [1],
who showed that a minimum spanning tree (MST) on P gives a 6-approximation for the
static broadcast range-assignment problem: turn the MST into a directed tree rooted at
the source s, and assign as a range to each point p ∈ P the maximum length of any of its
outgoing edges. To make this stable, we set the range of each point to the maximum length of
any of its incident edges (not just the outgoing ones). Because an MST in R2 has maximum
degree 6, this leads to 17-stable 12-approximation algorithm; see the full version [14].

7 Concluding remarks

We studied the dynamic broadcast range-assignment problem from a stability perspective,
introducing the notions of k-stable algorithms and stable approximation schemes (SASs).
Our results provide a fairly complete picture of the problem in R1, in S1, and in R2. In
particular, we presented a SAS in R1 that has an asymptotically optimal stability parameter,
and showed that the problem does not admit a SAS in S1 and R2. Future work can focus
on improving the (the upper and/or lower bounds for) approximation ratios that we have
obtained for algorithms with constant stability parameter.

References
1 Christoph Ambühl. An optimal bound for the MST algorithm to compute energy efficient

broadcast trees in wireless networks. In Proc. 32nd International Colloquium on Automata,
Languages and Programming (ICALP 2005), volume 3580 of Lecture Notes in Computer
Science, pages 1139–1150, 2005. doi:10.1007/11523468_92.

2 Mohammad R. Ataei, Amir H. Banihashemi, and Thomas Kunz. Low-complexity energy-
efficient broadcasting in one-dimensional wireless networks. IEEE Trans. Veh. Technol.,
61(7):3276–3282, 2012. doi:10.1109/TVT.2012.2204077.

3 Mostafa A. Bassiouni and Chun-Chin Fang. Dynamic channel allocation for linear macrocellular
topology. In Proc. 1999 ACM Symposium on Applied Computing, pages 382–388, 1999.
doi:10.1145/298151.298391.

4 Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. New results for
energy-efficient broadcasting in wireless networks. In Proc. 13th International Symposium
on Algorithms and Computation (ISAAC 2002), volume 2518 of Lecture Notes in Computer
Science, pages 332–343, 2002. doi:10.1007/3-540-36136-7_30.

5 Andrea E. F. Clementi, Pierluigi Crescenzi, Paolo Penna, Gianluca Rossi, and Paola Vocca.
On the complexity of computing minimum energy consumption broadcast subgraphs. In
Proc. 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2001),
volume 2010 of Lecture Notes in Computer Science, pages 121–131. Springer, 2001. doi:
10.1007/3-540-44693-1_11.

6 Andrea E. F. Clementi, Gurvan Huiban, Paolo Penna, Gianluca Rossi, and Yann C. Verhoeven.
Some recent theoretical advances and open questions on energy consumption in ad-hoc
wireless networks. In Proc. 3rd Workshop on Approximation and Randomization Algorithms
in Communication Networks (ARACNE 2002), 2002.

https://doi.org/10.1007/11523468_92
https://doi.org/10.1109/TVT.2012.2204077
https://doi.org/10.1145/298151.298391
https://doi.org/10.1007/3-540-36136-7_30
https://doi.org/10.1007/3-540-44693-1_11
https://doi.org/10.1007/3-540-44693-1_11

M. de Berg, A. Sadhukhan, and F. Spieksma 15:21

7 Andrea E. F. Clementi, Miriam Di Ianni, and Riccardo Silvestri. The minimum broadcast
range assignment problem on linear multi-hop wireless networks. Theor. Comput. Sci., 299(1-
3):751–761, 2003. doi:10.1016/S0304-3975(02)00538-8.

8 Andrea E. F. Clementi, Paolo Penna, Afonso Ferreira, Stephane Perennes, and Riccardo
Silvestri. The minimum range assignment problem on linear radio networks. Algorithmica,
35(2):95–110, 2003. doi:10.1007/s00453-002-0985-2.

9 Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. Hardness results for the power
range assignment problem in packet radio networks. In Proc. 3rd International Workshop on
Randomization and Approximation Techniques in Computer Science, and 2nd International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems (RANDOM-
APPROX’99), volume 1671 of Lecture Notes in Computer Science, pages 197–208, 1999.
doi:10.1007/978-3-540-48413-4_21.

10 Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. The power range assignment
problem in radio networks on the plane. In Proc. 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), volume 1770 of Lecture Notes in Computer Science,
pages 651–660, 2000. doi:10.1007/3-540-46541-3_54.

11 Gautam K. Das, Sandip Das, and Subhas C. Nandy. Range assignment for energy efficient
broadcasting in linear radio networks. Theor. Comput. Sci., 352(1-3):332–341, 2006. doi:
10.1016/j.tcs.2005.11.046.

12 Gautam K. Das and Subhas C. Nandy. Weighted broadcast in linear radio networks. Inf.
Process. Lett., 106(4):136–143, 2008. doi:10.1016/j.ipl.2007.10.016.

13 Mark de Berg, Aleksandar Markovic, and Seeun William Umboh. The online broadcast range-
assignment problem. In Proc. 31st International Symposium on Algorithms and Computation
(ISAAC), volume 181 of LIPIcs, pages 60:1–60:15, 2020. doi:10.4230/LIPIcs.ISAAC.2020.60.

14 Mark de Berg, Arpan Sadhukhan, and Frits C. R. Spieksma. Stable approximation algorithms
for the dynamic broadcast range-assignment problem. CoRR, abs/2112.05426, 2021. arXiv:
2112.05426.

15 Bernhard Fuchs. On the hardness of range assignment problems. Networks, 52(4):183–195,
2008. doi:10.1002/net.20227.

16 Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. Power
consumption in packet radio networks. Theor. Comput. Sci., 243(1-2):289–305, 2000.
doi:10.1016/S0304-3975(98)00223-0.

17 Rudolf Mathar and Jürgen Mattfeldt. Optimal transmission ranges for mobile communication
in linear multihop packet radio networks. Wireless Networks, 2(4):329–342, 1996. doi:
10.1007/BF01262051.

18 Kaveh Pahlavan and Allen H. Levesque. Wireless information networks, Second Edition. Wiley
series in telecommunications and signal processing. Wiley-VCH, 2005.

19 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Math. Oper. Res., 34(2):481–498, 2009. doi:10.1287/moor.1090.0381.

20 Martin Skutella and José Verschae. A robust PTAS for machine covering and packing. In
Proc. 18th Annual European Symposium (ESA 201), volume 6346 of Lecture Notes in Computer
Science, pages 36–47, 2010. doi:10.1007/978-3-642-15775-2_4.

SWAT 2022

https://doi.org/10.1016/S0304-3975(02)00538-8
https://doi.org/10.1007/s00453-002-0985-2
https://doi.org/10.1007/978-3-540-48413-4_21
https://doi.org/10.1007/3-540-46541-3_54
https://doi.org/10.1016/j.tcs.2005.11.046
https://doi.org/10.1016/j.tcs.2005.11.046
https://doi.org/10.1016/j.ipl.2007.10.016
https://doi.org/10.4230/LIPIcs.ISAAC.2020.60
http://arxiv.org/abs/2112.05426
http://arxiv.org/abs/2112.05426
https://doi.org/10.1002/net.20227
https://doi.org/10.1016/S0304-3975(98)00223-0
https://doi.org/10.1007/BF01262051
https://doi.org/10.1007/BF01262051
https://doi.org/10.1287/moor.1090.0381
https://doi.org/10.1007/978-3-642-15775-2_4

Well-Separation and Hyperplane Transversals in
High Dimensions
Helena Bergold #

Institut für Informatik, Freie Universität Berlin, Germany

Daniel Bertschinger #

Department of Computer Science, ETH Zürich, Switzerland

Nicolas Grelier #

Department of Computer Science, ETH Zürich, Switzerland

Wolfgang Mulzer #

Institut für Informatik, Freie Universität Berlin, Germany

Patrick Schnider #

Department of Mathematical Sciences, University of Copenhagen, Denmark

Abstract

A family of k point sets in d dimensions is well-separated if the convex hulls of any two disjoint
subfamilies can be separated by a hyperplane. Well-separation is a strong assumption that allows us
to conclude that certain kinds of generalized ham-sandwich cuts for the point sets exist. But how
hard is it to check if a given family of high-dimensional point sets has this property? Starting from
this question, we study several algorithmic aspects of the existence of transversals and separations
in high-dimensions.

First, we give an explicit proof that k point sets are well-separated if and only if their convex
hulls admit no (k − 2)-transversal, i.e., if there exists no (k − 2)-dimensional flat that intersects the
convex hulls of all k sets. It follows that the task of checking well-separation lies in the complexity
class coNP. Next, we show that it is NP-hard to decide whether there is a hyperplane-transversal
(that is, a (d − 1)-transversal) of a family of d + 1 line segments in Rd, where d is part of the input.
As a consequence, it follows that the general problem of testing well-separation is coNP-complete.
Furthermore, we show that finding a hyperplane that maximizes the number of intersected sets
is NP-hard, but allows for an Ω

(log k
k log log k

)
-approximation algorithm that is polynomial in d and

k, when each set consists of a single point. When all point sets are finite, we show that checking
whether there exists a (k − 2)-transversal is in fact strongly NP-complete.

Finally, we take the viewpoint of parametrized complexity, using the dimension d as a parameter:
given k convex sets in Rd, checking whether there is a (k − 2)-transversal is FPT with respect to d.
On the other hand, for k ≥ d + 1 finite point sets in Rd, it turns out that checking whether there is
a (d − 1)-transversal is W [1]-hard with respect to d.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases hyperplane transversal, high-dimension, hardness

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.16

Funding Helena Bergold: Supported by the German Science Foundation within the research training
group “Facets of Complexity” (GRK 2434).
Nicolas Grelier : Supported by the Swiss National Science Foundation within the collaborative DACH
project Arrangements and Drawings as SNSF Project 200021E-171681.
Wolfgang Mulzer : Supported in part by ERC StG 757609 and by the German Research Foundation
within the collaborative DACH project Arrangements and Drawings as DFG Project MU 3501/3-1.

© Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:helena.bergold@fu-berlin.de
mailto:daniel.bertschinger@inf.ethz.ch
mailto:nicolas.grelier@inf.ethz.ch
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
mailto:ps@math.ku.dk
https://doi.org/10.4230/LIPIcs.SWAT.2022.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Well-Separation and Hyperplane Transversals in High Dimensions

1 Introduction

In the study of high-dimensional ham-sandwich cuts, the following notion has turned out to
be fundamental: we call k sets S1, . . . , Sk in Rd are well-separated if for any proper index
set I ⊂ [k] (i.e., I is neither empty nor all of [k]), the convex hulls of [k]) SI = ∪i∈ISi and
of S[k]\I = ∪i∈[k]\ISi can be separated by a hyperplane. Since any two disjoint convex sets
can be separated by a hyperplane [16], well-separation is equivalent to the fact that for
any proper index set I, the convex hulls of SI and S[k]\I do not intersect. A hyperplane
h is a transversal of S1, . . . , Sk if we have Si ∩ h ̸= ∅, for all i ∈ [k]. More generally, for
m ∈ {0, . . . , d − 1}, an m-transversal of S1, . . . , Sk is an m-flat (i.e., an m-dimensional
affine subspace of Rd) that intersects all the Si. As we shall see below, it turns out that
well-separation is intimately related to transversals: the sets S1, . . . , Sk are well-separated if
and only if there is no (k − 2)-transversal of the convex hulls of S1, . . . , Sk.1

In the past, transversals have been studied extensively, mostly from a combinatorial, but
also from a computational perspective. Arguably the most well-known such theorem is Helly’s
theorem [12], which states that for any finite family of convex sets in Rd, it holds that if every
d + 1 of them have a point in common, then all of them do. In other words, Helly’s theorem
gives a sufficient fingerprint condition for a family of convex sets to have a 0-transversal.
In 1935, Vincensini asked whether such a statement holds for general k-transversals, that
is, whether there is some number m(k, d) such that if any m(k, d) sets of a family have a
k-transversal, then all of them do. This was disproved by Santaló, who showed that already
the number m(1, 2) does not exist (cf. [13] for more details).

One reason why 0-transversals differ significantly from k-transversals with k > 0 is that
the space of 0-transversals of a family of convex sets is itself a convex set. In constrast, for
k > 0, the space of k-transversals can be very complicated, even for pairwise disjoint convex
sets. Thus, in order to generalize Helly’s theorem to k-transversals with k > 0, additional
assumptions become necessary. For example, Hadwiger’s Transversal Theorem [11] states
that for any family S of compact and convex sets in the plane, it holds that if there exists
a linear ordering on S such that any three sets can be transversed by a directed line in
accordance with this ordering, then there is a line transversal for S. This result has been
extended to higher dimensions by Pollack and Wenger [18]. Note that to have a well-defined
order in which a directed line intersects the sets, the sets should be pairwise disjoint. Now,
well-separation is a way to extend this idea to transversals of higher dimensions: if no k + 1
sets in a family S of convex sets have a (k − 1)-transversal, then every k-transversal H

intersects the set S in a well-defined k-ordering, that is, for every way of choosing a k-tuple
of points from the intersections of H with S, one point from each set, the orientation of
the resulting simplices is the same (that is, they all have the same order type) [18]. Under
well-separation, the space of transversals becomes simpler, in particular for hyperplane
transversals: it is now a union of contractible sets [21]. Note that in d dimensions, there can
be no d + 2 sets that are well-separated, due to Radon’s theorem which states that any set
of d + 2 points in d dimensions can be partitioned into two sets whose convex hulls intersect.
For more background on transversals, we refer the interested readers to the relevant surveys,
e.g., [2, 10,13].

1 Observe that for any k ≤ d sets in Rd, there is always a (k − 1)-transversal: choose one point from each
set, and consider a (k − 1)-flat that goes through these points. The (k − 1)-flat is unique if the chosen
points are in general position.

H. Bergold, D. Bertschinger, N. Grelier, W. Mulzer, and P. Schnider 16:3

Thus, well-separation is a strong assumption on set-families, and it does not come as a
surprise that for many problems it leads to stronger results and faster algorithms compared
to the general case. One such example is obtained for Ham-Sandwich cuts, a well-studied
notion that occurs in many places in discrete geometry and topology [16]. Given d point
sets P1, . . . , Pd in Rd, a Ham-Sandwich cut is a hyperplane that simultaneously bisects all
point sets. While a Ham-Sandwich cut exists for any family of d point sets [20], finding
such a cut is PPA-complete when the dimension is not fixed [9], meaning that it is unlikely
that there is an algorithm that runs in polynomial time in the dimension d. On the other
hand, if P1, . . . , Pd are well-separated, not only do there exist bisecting hyperplanes, but
the Ham-Sandwich theorem can be generalized to hyperplanes cutting off arbitrary given
fractions from each point set [5, 19]. Further, the problem of finding such a hyperplane lies
in the complexity class UEOPL [8], a subclass of PPA that is believed to be much smaller
than PPA.

From an algorithmic perspective, the main focus of the previous work have been an
efficient algorithms for finding line transversals in two and three dimensions, e.g., see [1,4,17].
To the authors’ knowledge, in higher dimensions only algorithms for hyperplane transversals
have been studied, where the best known algorithm for deciding whether a set of n polyhedra
with m edges has a hyperplane transversal runs in time O(nmd−1) [3]. In particular, there
is an exponential dependence on the dimension d, and there are no non-trivial algorithmic
results for the case that the dimension is part of the input. This curse of dimensionality
appears in many geometric problems. For several problems, it has been shown that there is
probably no hope to get rid of the exponential dependence in the dimension. As a relevant
example, Knauer, Tiwary, and Werner [14] showed the following: given d point sets S1, . . . , Sd

in Rd and a point p ∈ Rd, where d is part of the input, it is W [1]-hard (and thus NP-hard)
to decide whether there is there a Ham-sandwich cut for the sets that passes through p.

Our Results. First, we prove that a family of k sets in Rd is well-separated if and only if
the convex hulls of the sets have no (k − 2)-transversal. This fact seems to be known, but
we could only find some references without proofs, and some proofs of only one direction,
for similar definitions of well-separation [6,7]. Therefore, for the sake of completeness, we
present a short proof in Section 2. This immediately implies that testing well-separation is
in coNP.

In [8], the authors ask for the complexity of determining whether a family of point
sets is well-separated when d is not fixed. We present several hardness results for finding
(k − 2)-transversals in a family of k sets in Rd. We consider two cases: a) finite sets, and b)
possibly infinite, but convex set.

▶ Theorem 1. Given a set of k > d point sets in Rd, each with at most two points, it is
NP-hard to check whether there is a (d − 1)-transversal, even in the special case k = d + 1.

Note that this decision problem is trivial for k ≤ d, as the answer is always yes. The
assumption k = d + 1 is of special interest to us since the transversals we are considering
are hyperplanes in Rd, as in the Ham-sandwich cuts problem. Moreover, it shows that the
problem becomes NP-hard for the first non-trivial value of k. We extend Theorem 1 to show
the following:

▶ Theorem 2. Given a set of k > d line segments in Rd, it is NP-hard to check whether
there is a (d − 1)-transversal, even in the special case k = d + 1.

Theorem 2 implies that testing well-separation is coNP-complete even for d + 1 segments
in Rd, answering the question from [8]. Further, we show the following result, with a stronger
hardness than Theorem 1; however, we remove the additional constraint that k = d + 1.

SWAT 2022

16:4 Well-Separation and Hyperplane Transversals in High Dimensions

▶ Theorem 3. Given a set of k ≤ d + 1 point sets in Rd, each with most two points, it is
strongly NP-hard to check whether there is a (k − 2)-transversal.

Observe that for the problem of Theorem 3, we consider (k − 2)-transversals instead of
(d − 1)-transversals. In this context, the problem becomes trivial for k ≥ d + 2, because all
sets lie in Rd. On the positive side, we can show the existence of the following approximation
algorithm. This can be seen as the special case where each point set consists of a single point.

▶ Theorem 4. Given a set P of k points in Rd, it is possible to compute in polynomial
time in d and k a hyperplane that contains Ω(OPT log k

k log log k) points of P , where OPT denotes the
maximum number of points in P that a hyperplane can contain.

In Section 4, we study the problem through the lens of parametrized complexity. We
show a significant difference between finite sets and convex sets.

▶ Theorem 5. Checking whether a family of k convex sets in Rd has a (k − 2)-transversal
(or equivalently, whether it is well-separated) is FPT with respect to d.

▶ Theorem 6. Checking whether a family of k ≥ d + 1 finite point sets in Rd has a
(d − 1)-transversal is W[1]-hard with respect to d.

Observe that for finite point sets (and, more generally, for any non-convex sets), having
no (k − 2)-transversal does not a priori imply well-separation. The result of Theorem 6
bears a similarity with the following result, shown in [14]: given a point set P in Rd, is the
origin contained in the affine hull of any d points? Indeed, in our reduction in the proof of
Theorem 6, one of the point sets contains only the origin. However, our proof uses a radically
different technique, as we have several point sets instead of one, and more importantly the
number of points one can choose from is k ≤ d + 1, whereas in the proof in [14] the set P

contains fairly more than d points.

2 Well-separation and transversals

Let us recall some definitions. Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions. An m-
transversal of S1, . . . , Sk is an m-flat h ⊂ Rd (that is, an affine subspace of dimension m)
with h ∩ Si ̸= ∅ for i = 1, . . . , k. Transversals are intimately related to well-separation: the
sets S1, . . . , Sk ⊂ Rd are well-separated if and only if there is no (k − 2)-transversal of their
convex hulls. As mentioned in the introduction, this fact seems to be well known, but as
we could not find a reference with all details for it, we give a short proof for the sake of
completeness. In particular, a (k − 2)-transversal of the convex hulls is a certificate that
S1, . . . , Sk are not well-separated. For a given (k − 2)-flat h, it can be checked in polynomial
time whether h is a (k − 2)-transversal, yielding a proof that checking well-separation is in
coNP.

▶ Lemma 7. Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions. Then S1, . . . , Sk are well-
separated if and only if their convex hulls have no (k − 2)-transversal.

Proof. In the following, we assume without loss of generality that the sets are convex, that
is, the are equal to their convex hulls. Assume first that S1, . . . , Sk have a (k − 2)-transversal
h. Consider the intersection of the sets with h. This gives a collection of k sets S′

1, . . . , S′
k in

a (k − 2)-dimensional space, thus by Radon’s theorem there is an index set I ⊂ [k] such that
the convex hulls of S′

I and of S′
[k]\I intersect. But then also the convex hulls of SI and of

S[k]\I intersect, and thus S1, . . . , Sk are not well-separated.

H. Bergold, D. Bertschinger, N. Grelier, W. Mulzer, and P. Schnider 16:5

For the other direction, assume that S1, . . . , Sk are not well-separated, that is, there is
an index set I ⊂ [k] such that the convex hulls of SI and of S[k]\I intersect. Let p be a point
in this intersection. The point p can be written as a convex combination of points in SI .
Note that not only can we write it as a convex combination of points in SI , but we can
even ensure that in this combination, we use at most one point of each Si, for i ∈ I. This is
because the sets Si are convex and so instead of taking two individual points we can take a
convex combination of them. This means that in particular, there is a (|I| − 1)-transversal
hI of SI which contains p. The same holds for S[k]\I , giving a (k − |I| − 1)-transversal h[k]\I

of S[k]\I which contains p. Then the affine hull of hI and h[k]\I is a transversal of S1, . . . , Sk

and has dimension at most |I| − 1 + k − |I| − 1 = k − 2. ◀

3 Hyperplane Transversals in High Dimensions

Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions, where d is not fixed. Recall that a hyperplane
transversal of S1, . . . , Sk is a (d − 1)-transversal. Note that we do not assume the sets to
be convex. In particular, the sets can even be finite. We consider the decision problem
HypTrans: Given sets S1, . . . , Sk, decide if there is a hyperplane transversal for them.
There are different variants of HypTrans, depending on what we require from the sets Si.
We consider the finite case and the case of line segments. We also consider the optimisation
formulation of HypTrans, that we name MaxHyp: Given the sets S1, . . . , Sk, find a
hyperplane that intersects as many of these sets as possible.

3.1 Finite Case
We begin with the case that all Si are finite point sets. We provide an approximation algorithm
for MaxHyp in the situation where every Si contains a single point, for i = 1, . . . , k. Note
that in this situation, HypTrans can be solved greedily. We also provide some hardness
results for HypTrans even in the restricted setting where every Si contains at most two
points, for i = 1, . . . , k.

3.1.1 Singleton sets
We assume that every Si contains a single point, for i = 1, . . . , k. We denote by P the point
set that is the union of all Si. Let us denote by OPT the maximum number of points in P

that a hyperplane may contain.

▶ Theorem 8. It is possible to compute in polynomial time in d and k a hyperplane that
contains Ω(OPT log k

k log log k) points in P .

Proof. If k ≤ d, we just output a hyperplane that contains all points of P . Otherwise, let
f(k) = log k/ log log k. If f(k) < d, we pick d points from P , and we output a hyperplane
through these points. If f(k) ≥ d, we partition P into disjoint groups of size f(k). In each
group, we compute all hyperplanes that go through some d points from the group. Among
all hyperplanes for all groups, we output the hyperplane that contains the most points in P .
For each group, we have O(f(k)d) = O(f(k)f(k)) = O(k) hyperplanes to consider. Thus, the
algorithm runs in polynomial time in d and k.

We now analyze the approximation guarantee. If f(k) < d, then we output a hyperplane
with at least d > f(k) ≥ f(k)OPT/k points, since OPT ≤ k. If f(k) ≥ d, we let h be an
optimal hyperplane. If h contains at least d points in a single group, then we output an
optimal solution. Otherwise, h contains less than d points in each group, so OPT ≤ d(k/f(k)).
This means that d ≥ f(k)OPT/k, and the claim follows from the fact that our solution
contains at least d points. ◀

SWAT 2022

16:6 Well-Separation and Hyperplane Transversals in High Dimensions

3.1.2 Sets of at most two points
Here, we restrict ourselves to the situation that every Si contains at most two points, for
i = 1, . . . , k. We prove that this version of HypTrans is NP-hard, with a reduction from
SubsetSum. In SubsetSum, we are given n + 1 integers a1, . . . , an, b ∈ Z, and the goal is to
decide whether there exists an index set I ⊆ {1, . . . , n} with

∑
i∈I ai = b. It is well-known

that SubsetSum is (weakly) NP-complete.
Given an input a1, . . . , an, b ∈ Z for SubsetSum, we create an input S1, . . . , Sn+2 ⊂ Rn+1

for HypTrans, as follows. Note that the number of sets and the dimension are differing by
exactly one. First, we define 2n + 1 vectors u, v1, . . . , vn, w1, . . . , wn ∈ Rn+1, by setting

u(1) = −b and u(j) = −1, for j = 2, . . . , n + 1,

vi(1) = ai and vi(j) = δi+1,j , for j = 2, . . . , n + 1, i = 1, . . . , n, and
wi(1) = 0 and wi(j) = δi+1,j , for j = 2, . . . , n + 1, i = 1, . . . , n.

Here, for i, j ∈ Z,

δi,j =
{

1, if i = j,

0, if i ̸= j,

denotes the Kronecker delta. Using these vectors, we define the input for HypTrans as
S1 = {v1, w1}, . . . , Sn = {vn, wn}, Sn+1 = {u}, and Sn+2 = {0}, where 0 is the origin of
Rn+1.

▷ Claim 9. We have that a1, . . . , an, b is a yes-input for SubsetSum if and only if S1, . . . , Sn+2
is a yes-input for HypTrans.

Proof. First, suppose that a1, . . . , an, b is a yes-input for SubsetSum, and let I ⊂ [n] be an
index set with

∑
i∈I ai = b. Then, we define a point set x1, . . . , xn+2 with xi ∈ Si as follows:

for i = 1, . . . , n, if i ∈ I, we set xi = vi, and if i ̸∈ I, we set xi = wi. Furthermore, we set
xn+1 = u and xn+2 = 0. Then, the points x1, . . . , xn+2 lie on a common hyperplane. For
this, it suffices to check that

0 =
n+1∑
i=1

1
n + 1xi,

which follows immediately from the definitions and the choice of the xi. Thus, there is a
hyperplane transversal for S1, . . . , Sn+2, as desired.

Conversely, suppose that S1, . . . , Sn+2 is a yes-input for HypTrans. Thus, there is a
choice xi ∈ Si, for i = 1, . . . , n + 2, such that x1, . . . , xn+2, lie on a common hyperplane.
Obviously, we have xn+1 = u and xn+2 = 0, so we can conclude that 0 is in the affine span
of x1, . . . , xn, u and can be written as

0 =
n∑

i=1
λixi + λn+1u,

where λi ∈ R with
∑n+1

i=1 λi = 1. Let I ⊆ [n] be the set of those indices i for which xi = vi.
By inspecting the coordinates and applying the definitions, we get the following system of
equations:∑

i∈I

λiai = λn+1b, and

λi = λn+1, for i = 1, . . . , n.

H. Bergold, D. Bertschinger, N. Grelier, W. Mulzer, and P. Schnider 16:7

From this, it now follows that λ1 = · · · = λn+1. Since
∑n+1

i=1 λi = 1, this implies that
λi = 1/(n + 1), for i = 1, . . . , n + 1. Thus, the first equation implies that a1, . . . , an, b is a
yes-input for SubsetSum, with I as the certifying index set. ◁

3.1.3 A second reduction
Now, we prove that HypTrans is strongly NP-hard, by reducing from BinPacking. Our
reduction will pass through two intermediate problems EqualBinPacking and FlatTrans.
We start by defining all the involved problems.

In BinPacking, we are given a sequence w1, . . . , wn ∈ Z+ of weights, a number k of
bins and a capacity b ∈ Z+. The goal is to decide whether there is a partition of n items
with weights w1, . . . , wn into k bins such that in each bin the total weight of the items
does not exceed the capacity b. It is known that BinPacking is strongly NP-hard. In
EqualBinPacking, we are given the same input, but now the goal is to decide whether
there exists a partition of the items into the bins such that in each bin the total weight
of the items equals exactly the capacity. Note that BinPacking can easily be reduced
to EqualBinPacking by adding the appropriate number of elements of weight 1, so
EqualBinPacking is strongly NP-hard as well.

Finally, in FlatTrans, we are given m sets S0, . . . , Sm−1 in Rd, where m and d are both
part of the input, and the goal is to decide whether there is an (m − 2)-transversal. In other
words, the question is whether there exists an (m − 2)-dimensional affine subspace h such
that for all i ∈ {0, . . . , m − 1}, we have Si ∩ h ̸= ∅. Note that HypTrans with k = d + 1 is
the same as FlatTrans with m = d + 1.

▶ Theorem 10. FlatTrans is strongly NP-hard even when S0 = {0} and any other Si

consists of at most two points.

Proof. We reduce from EqualBinPacking. Given an input w1, . . . , wn, k, b for to Equal-
BinPacking, we construct an instance of FlatTrans as follows: we set the dimension
d = k + n + kn and the number of sets m = kn + 2. For every pair (i, j) ∈ [n] × [k], define
the vectors

vi,j(x) :=

wi, if x = j,

1, if x = k + i,

1, if x = n + k + (i − 1)k + j,

0, otherwise,

, ui,j(x) :=

0, if x = j,

0, if x = k + i,

1, if x = n + k + (i − 1)k + j,

0, otherwise.

Here, we denote by x ∈ {1, . . . , n+k +kn} the entries of the vector, e.g., the first entry of vi,j

is denoted by vi,j(1). Furthermore, let c be the vector whose entries are −b, for 1 ≤ x ≤ k,
and −1 everywhere else. Now set S0 = {0}, and Sl = {vi,j , ui,j}, for l = (i − 1)k + j,
i = 1, . . . , n, j = 1, . . . , k (note that this choice of l just gives that the order of the l’s
corresponds to the lexicographic order of the (i, j)’s) and Skn+1 = {c}. All these vectors can
be constructed in polynomial time.

We claim that there is a kn-transversal of the sets S0, . . . , Skn+1, if and only if there is a
valid solution for the EqualBinPacking instance.

Assume first that there is a solution for EqualBinPacking. For each Sl, 1 ≤ l ≤ kn,
l = (i − 1)k + j, choose pl = vi,j , if item i is placed in bin j, and choose pl = ui,j , otherwise.
Furthermore, set p0 = 0, pkn+1 = c. We claim that there exist coefficients λl such that

kn+1∑
l=1

λlpl = 0 (1)

SWAT 2022

16:8 Well-Separation and Hyperplane Transversals in High Dimensions

and
kn+1∑
l=1

λl = kn + 1. (2)

This implies the claim, because then 0 can be written as a non-trivial linear combination of
the other points. Set λl := 1, for all l. Then, (2) is certainly satisfied. Consider the x’th row
of (1), where 1 ≤ x ≤ k. By construction, and since we assumed a valid solution for the bin
packing problem, this row evaluates to(∑

i:item i in bin x

wi

)
− b = 0.

Similarly, for k + 1 ≤ x ≤ k + n, the x’th row evaluates to 1 − 1 = 0, since each item is placed
in exactly one bin. All remaining rows evaluate to 1 − 1 = 0, and thus (2) is also satisfied.

Assume now that there exist coefficients λl that satisfy (1) and (2) (which must be the
case of 0 can be written as a non-trivial linear combination of the other points). From
the x’th rows in (1) with x > k + n, we get λl − λkn+1 = 0, for 1 ≤ l ≤ kn, and thus
λ1 = · · · = λkn+1. Together with (2), we thus get λl = 1, for all l. Put item i into bin j if
and only if pl = vi,j for l = (i − 1)k + j. Analogous to above we get from the x’th rows of
(1), for k + 1 ≤ x ≤ k + n, that each item is placed into exactly one bin. Further, we get
from the x’th rows of (1), for 1 ≤ x ≤ k, that each bin is filled exactly to capacity. Thus, we
have a valid solution for EqualBinPacking, as desired. ◀

Now, there is only one reduction remaining:

▶ Theorem 11. HypTrans is strongly NP-hard even when S0 = {0} and Si consists of at
most two points for all i = 1, . . . , m − 1.

Proof. We reduce from FlatTrans. Let us assume that S0 = {0} and let S0, S1, . . . , Sm−1 ⊂
Rd be the sets in the instance of FlatTrans, and assume that m − 1 < d. We construct
sets in Rd+2 as follows: First, for each point p in some set Si we define the point p′ = (p, 0, 0)
and place it in the set S′

i. For m ≤ i ≤ d + 2, define S′
i as the set consisting only of the point

s′
i = (0, . . . , 0, 1, i). Additionally, let S′

0 := {0}.
We claim that S0, S1, . . . , Sm−1 ⊂ Rd have an (m − 2)-transversal, if and only if

S′
0, S′

1, . . . , S′
d+2 ⊂ Rd+2 can be transversed by a hyperplane.

Assume first that S0, S1, . . . , Sm−1 ⊂ Rd indeed have an (m−2)-transversal, that is, there
are points pi ∈ Si and parameters λi such that

∑m−1
i=1 λipi = 0 and

∑m−1
i=1 λi = 1. Choosing

the corresponding points p′
i and setting λ′

i = λi for i ≤ m − 1 and λ′
i = 0 for i > m − 1 we

get
∑d+2

i=1 λ′
ip

′
i = 0 and

∑d+2
i=1 λ′

i = 1, that is, S′
0, S′

1, . . . , S′
d+2 ⊂ Rd+2 can be transversed by

a hyperplane.
Assume now that S′

0, S′
1, . . . , S′

d+2 ⊂ Rd+2 can be transversed by a hyperplane, that is,
there are points p′

i ∈ S′
i and parameters λ′

i, such that
∑d+2

i=1 λ′
ip

′
i = 0 and

∑d+2
i=1 λ′

i = 1.
The second to last row of the first equation evaluates to

∑d+2
i=m λ′

i = 0, and we thus have∑m−1
i=1 λ′

i = 1. Set pi = p′
i and λi = λ′

i. Then
∑m−1

i=1 λi = 1 by the observation above. Further,∑m−1
i=1 λipi = 0 by the first m rows of the first equation. Thus, S0, S1, . . . , Sm−1 ⊂ Rd can

be transversed by a (m − 2)-flat. ◀

3.2 Line segments
In this section, we will show that deciding whether there is a hyperplane transversal for d

line segments and the origin in Rd, where d is not fixed, is NP-hard.

H. Bergold, D. Bertschinger, N. Grelier, W. Mulzer, and P. Schnider 16:9

We will reduce this to one of the previous cases shown, that is, to the restricted version
of HypTrans where the sets Si contain at most two points, see Section 3.1.2. This is done
with the help of a gadget that enforces that every hyperplane transversal must use one of
the two endpoints of a given line segment. The gadget is shown in Figure 1.

s1 s2

s3

Figure 1 Every hyperplane transversal through s1, s2, s3 must choose an endpoint of s1 (and
of s2).

Given a collection of sets of size at most two, for each set we take the line segment formed
by its points as s1, the origin as point s3, and we construct the corresponding new segment
s2 using the gadget presented in Figure 1. This gives a family S of 2k line segments that all
lie in a k-dimensional space. In order to prove our result, we need to lift our construction to
R2k. Let Ai,Bi in Rk denote the endpoints of the i’th original segment (s1 in Figure 1) and
let Gi,Hi in Rk denote the endpoints of the i’th gadget segment (s2 in Figure 1). Denote by
εj the vector in Rk which is 0 everywhere except in the j’th entry, where it is ε. Further, we
write 0k for the zero vector in Rk. We now lift the points Ai, Bi, Gi, Hi to R2k as follows:

A′
i :=

(
Ai

0k

)
, B′

i :=
(

Bi

0k

)
, G′

i :=
(

Gi

εi

)
, H ′

i :=
(

Hi

εi

)
.

We denote the corresponding set of line segments A′
iB

′
i and G′

iH
′
i in R2k by S′.

▶ Lemma 12. S ⊂ Rk has a hyperplane transversal if and only if S′ ⊂ R2k does.

Proof. We will prove this by explicitly computing affine combinations of points on the line
segments that give us the required transversals. In this setting, S ⊂ Rk has a hyperplane
transversal if and only if there are real numbers λi, γi, µ

(i)
j , with i ∈ [k], j ∈ {0, . . . , k} and

the following properties
k∑

i=1
µ

(i)
0
(
λiAi + (1 − λi)Bi

)
= 0,

k∑
i=1

µ
(i)
0 = 1; (3)

and for all j ∈ {1, . . . , k}
k∑

i=1
µ

(i)
j

(
λiAi + (1 − λi)Bi

)
= γjGj + (1 − γj)Hj ,

k∑
i=1

µ
(i)
j = 1. (4)

Here, the λi and γi fix points on the segments, and the µ
(i)
j write the origin (Equation (3))

and the points on the gadget segments (Equation (4)) as affine combinations of the points
on the reduction segments.

Similarly, S′ ⊂ R2k has a hyperplane transversal if and only if there are real li, gi, m(i), n(i),
with i ∈ [k] with the following property:

k∑
i=1

m(i)(liA′
i + (1 − li)B′

i

)
+

k∑
i=1

n(i)(giG
′
i + (1 − gi)H ′

i

)
= 0,

k∑
i=1

m(i) + n(i) = 1. (5)

SWAT 2022

16:10 Well-Separation and Hyperplane Transversals in High Dimensions

Here, the li and gi fix points on the segments and the m(i) and n(i) write the origin as
an affine combination of these points.

Assume first that S ⊂ Rk has a hyperplane transversal. Then Equation (5) can be
satisfied by setting li = λi, m(i) := µ

(i)
0 , n(i) := 0, gi := 0. Thus, if S ⊂ Rk has a hyperplane

transversal then so does S′ ⊂ R2k.
As for the other direction, assume that S′ ⊂ R2k has a hyperplane transversal. Note that

the (k + i)’th row of Equation (5) reduces to n(i)ε = 0, so in particular we must have n(i) = 0
for every i ∈ {1, . . . , k}. Thus, we may set λi := li and µ

(i)
0 := m(i) and Equation (3) follows.

As for Equation (4), fix some j ∈ {1, . . . , k} and note that by the construction of the gadget
segments there exist real numbers αj and βj such that Gj = αjAj and Hj = βjBj . Pick real
numbers γj and xj that satisfy the following two equations:

xjλj = (1 + xj)γjαj , and xj(1 − λj) = (1 + xj)(1 − γj)βj . (6)

It is straightforward to show that such numbers always exist, for the sake of readability we
will not prove this here. Now, define µ

(i)
j := m(i)

1+xj
for j ̸= i and µ

(j)
j := m(j)+xj

1+xj
. Then

k∑
i=1

µ
(i)
j

(
λiAi +(1−λi)Bi

)
= 1

1 + xj

k∑
i=1

m(i)(liAi +(1− li)Bi

)
+ xj

1 + xj

(
liAi +(1− li)Bi

)
.

By Equation 5, we have
∑k

i=1 m(i)(liAi + (1 − li)Bi

)
= 0 (recall that n(i) = 0), thus we have

k∑
i=1

µ
(i)
j

(
λiAi + (1 − λi)Bi

)
= 1

1 + xj

(
xj liAi + xj(1 − li)Bi

)
.

From our choice of γj and xj , we thus get

1
1 + xj

(
xj liAi + xj(1 − li)Bi

)
= γjαjAj + (1 − γj)βjBj = γjGj + (1 − γj)Hj ,

which is what we want. Further, we have

k∑
i=1

µ
(i)
j = 1

1 + xj

(
k∑

i=1
m(i) + xj

)
= 1 + xj

1 + xj
= 1,

so Equation (4) is indeed satisfied. ◀

4 Parametrized complexity

4.1 An FPT algorithm for d sets
Recall that our original motivation comes from determining whether d sets in Rd are well-
separated. Let us consider those d sets, and let us denote by n the total number of extreme
vertices on their respective convex hulls (for general convex sets, this might be infninte, but
we consider only the finite case). We say that n is the convex hull complexity of the set
family. We assume that we are given the extreme points of the convex hull of every set and
hence have a finite number of points for every set.

▶ Theorem 13. Checking whether a family of k sets in Rd with convex hull complexity n is
well-separated is FPT with parameter d.

H. Bergold, D. Bertschinger, N. Grelier, W. Mulzer, and P. Schnider 16:11

Proof. For the O(2d) choices of index sets I ⊂ [k], we check whether the convex hulls of
SI and S[k]\I intersect. For each I, we check with an LP whether there is a hyperplane
separating the points from SI from the points in S[k]\I . This can be done by a linear program
with d+1 variables a0, a1, . . . , ad describing a hyperplane in Rd. The hyperplane is separating
if the constraints

a0 +
d∑

i=1
aipi ≥ 0 for all p = (p1, . . . , pd) ∈ SI and

a0 +
d∑

i=1
aiqi ≤ 0 for all q = (q1, . . . , qd) ∈ S[k]\I

In total we have O(n) constraints.
If there exists a hyperplane for every I, we output that the family is well-separated.

Thus, there exists a constant c > 0 such that the total running time of the algorithm is in
O(2d(nd)cL), where L is the number of input bits. ◀

4.2 A W[1]-hardness proof
▶ Theorem 14. FlatTrans is W [1]-hard with respect to the dimension.

Proof. We use a framework similar to the one introduced by Marx [15]. The reduction is
from the following problem: Given a graph G = (V, E) with n vertices, is there a clique of
size k in G?

Before describing the point sets, we first explain the framework. We define a set of k2

gadgets, that we call the encoding gadgets. To help defining them, we assume that these
gadgets lie on k rows and k columns. Note that this representation is purely a help for the
definition, but does not correspond to any geometric structure of the point sets we define
later. To each gadget we assign a set of admissible tuples (i, j), with 1 ≤ i, j ≤ n. Let us
assume that we are considering the gadget in row α and column β, with 1 ≤ α, β ≤ k. If
α = β, the set of admissible tuples is {(i, i) | 1 ≤ i ≤ n}. Otherwise, the set of admissible
tuples is {(i, j) | {i, j} ∈ E}. We have in addition the row gadgets and the column gadgets.
A row gadget forces the left value of each encoding gadget from the same row to be the same.
Similarly, a column gadget forces the right value of every encoding gadget from the same
column to be the same. There is a row gadget for each row, and a column gadget for each
column. We say that an encoding is valid if each encoding gadget is assigned an admissible
tuple, and if all the row and column gadgets are satisfied. As shown by Marx [15], G has a
clique of size k if and only if there exists a valid encoding. First let us assume that v1, . . . , vk

form a clique. Then we assign to the encoding gadget in row α and column β the tuple
(vα, vβ). Observe that this is an admissible tuple (as there is an edge between vα and vβ),
and that the encoding is valid since all rows have the same left value, and all columns have
the same right value. Reciprocally, let us assume that we have a valid encoding. Assume
that the left value of row α is i, and that the left value of row β ̸= α is j. Then the encoding
gadget in row α and column α is assigned the tuple (i, i), thus column α is assigned right
value i, which implies that the encoding gadget in row β and column α is assigned the tuple
(j, i). We have shown that vertices i and j in G are adjacent.

We now describe how to reduce the valid encoding problem to FlatTrans. We define
k2 + 2k + 2 point sets in Rk2+4k. Let k′ denote k2 + 2k and let k′′ denote k2 + 3k. We
consider the k′ gadgets from the framework described above, that is, k2 encoding gadgets
as well as k row and k column gadgets, respectively. Let f denote a bijective function

SWAT 2022

16:12 Well-Separation and Hyperplane Transversals in High Dimensions

from the set of gadgets to [k′]. For each encoding gadget g in row α and column β,
1 ≤ α, β ≤ k we have a point set P α,β that contains O(n2) points. First let us assume
α = β. The point set P α,α contains the points pα,α

i , for 1 ≤ i ≤ n, where the coordinates
of pα,α

i are: pα,α
i (x) = δf(g),x + kiδk′+α,x + kiδk′′+α,x. Now let us assume that α ≠ β.

The point set P α,β contains the points pα,β
i,j , for 1 ≤ i, j ≤ n and {i, j} ∈ E, where the

coordinates of pα,β
i,j are: pα,β

i (x) = δf(g),x + kiδk′+α,x + kjδk′′+β,x. Now let g be a row
gadget, say for row α. The point set P α,· contains the points pα,·

i , for 1 ≤ i ≤ n, where
pα,·

i (x) = δf(g),x − ki+1δk′+α,x. Similarly, we have a point set P ·,β for the column gadget g

in column β, and p·,β
i (x) = δf(g),x − ki+1δk′′+β,x for 1 ≤ i ≤ n. Finally, we have the point set

P0 = {0} and the point set P1 = {p1}, where for all 1 ≤ x ≤ k′, p1(x) = −1, and p1(x) = 0
otherwise. Observe that we have indeed k2 + 2k + 2 point sets of size O(n2) in Rk2+4k. The
absolute values of all point coordinates are at most kn+1. Thus, we can describe it with
log(kn+1) = (n + 1) log(k) bits. We claim that there is a (k2 + 2k)-transversal if and only if
G has a clique of size k. From the reduction, this immediately implies that FlatTrans is
W [1]-hard with respect to the dimension.

First let us assume that there is a clique of size k in G. From what we argued, it implies
that there is a valid encoding of the gadgets. We define a set of k′ + 1 points as follows. First
we take the point p1. If the tuple assigned to gadget in row α and column β ̸= α is (i, j),
then we take the point pα,β

i,j . If the gadget in row α and column α is assigned the tuple (i, i),
then we take the point pα,α

i . Likewise, if the left value of row α is i, we take the point pα,·
i .

Finally, if the right value of column β is j, we take the point p·,β
j . We denote those k′ + 1

points by p1, . . . , pk′+1 and claim that they lie on a common hyperplane which contains 0. It
suffices to show that∑

1≤ℓ≤k′+1

1
k′ + 1pℓ = 0.

Consider the first k′ coordinates. Recall that f is a bijection between the set of gadgets
and [k′] and recall that by definition, the points pℓ have exactly one entry 1 in the first k′

coordinates. Therefore in this sum, we have exactly one entry 1 from exactly one of the
gadgets and exactly one entry −1 from the point p1 in each of these coordinates. So it is clear
that this equation is satisfied in the first k′ coordinates. Now let us consider the coordinate
k′ + α, for some 1 ≤ α ≤ k. As the encoding is valid, it implies that the left value in row α

of all encoding gadgets is the same. Let us denote by i this left value. We have indeed

∑
1≤ℓ≤k′+1

1
k′ + 1pℓ(k′ + α) = 1

k′ + 1

 ∑
1≤β≤k

ki

− ki+1

 = 0.

Likewise if the coordinate is of the form k′′ + β for some 1 ≤ β ≤ k, we argue using the fact
that the right value of all encoding gadgets in column β is the same. This completes the first
direction of our proof.

For the second direction, let us assume that there is a hyperplane h that contains at least
one point from each point set. By assumption one of these points is 0, another is p1, and we
denote the others by p2, . . . , pk′+1. This implies that we have 0 = λ1p1 +

∑
2≤ℓ≤k′+1 λℓpℓ,

where λℓ ∈ R and
∑

1≤ℓ≤k′+1 λℓ = 1. By looking at the k′ first coordinates, we immediately
obtain λ1 = λi = 1

k′+1 , for all 2 ≤ i ≤ k′ + 1. Let assume that in point set P α,β with
1 ≤ α, β ≤ k, the point pα,β

i,j is contained in h, for some 1 ≤ i, j ≤ n. Note that by definition,
(i, j) is an admissible tuple of the encoding gadget in row α and column β. We assign this
tuple to this gadget, and do likewise with all other encoding gadgets. It remains to show

H. Bergold, D. Bertschinger, N. Grelier, W. Mulzer, and P. Schnider 16:13

that the left value of all encoding gadgets in the same row is the same, and that the same
holds with the right value of encoding gadgets from the same column. Let us consider row α.
We consider the points contained in h that belong to P α,β , for some 1 ≤ β ≤ k. Let us
denote by Y the set of their (k′ + α)-th coordinate. Let z be equal to max{logk(y) | y ∈ Y }.
By assumption, we know that

∑
y∈Y y = ki for some 2 ≤ i ≤ n + 1. This is because the

coefficients λℓ for these point sets are equal to the coefficient for the point in P α,· contained
in h. As the elements in Y are non-negative, we obtain i ≥ z + 1. Assume for a contradiction
that not all elements in Y are equal. Then we have

∑
y∈Y y <

∑
y∈Y kz = kz+1 ≤ ki. As this

is not possible, we know that all elements in Y are equal, which implies that the left value of
all encoding gadgets in row α is the same. We can argue likewise for the columns. ◀

5 Conclusion and Open Problems

We showed that the problem of testing well-separability of k sets in Rd is hard. However,
it may be that there exist some algorithms which solve the problem in a smarter way than
simply testing the 2k choices of index set. This question is still open.

It would be interesting to have some inapproximability results, or some better approxi-
mation algorithms, for the problem of finding a hyperplane that intersects as many points as
possible in a point set P in Rd, where d is not fixed.

References
1 Pankaj K. Agarwal. On stabbling lines for convex polyhedra in 3d. Comput. Geom. Theory

Appl., 4(4):177–189, 1994.
2 Nina Amenta, Jesús A De Loera, and Pablo Soberón. Helly’s theorem: new variations and

applications. arXiv preprint arXiv:1508.07606, 2015.
3 David Avis and Mike Doskas. Algorithms for high dimensional stabbing problems. Discrete

applied mathematics, 27(1-2):39–48, 1990.
4 David Avis and Rephael Wenger. Algorithms for line transversals in space. In Proc. 3rd Annu.

Sympos. Comput. Geom. (SoCG), pages 300–307, 1987.
5 Imre Bárány, Alfredo Hubard, and Jesús Jerónimo. Slicing convex sets and measures by a

hyperplane. Discrete Comput. Geom., 39(1-3):67–75, 2008.
6 Ted Bisztriczky. On separated families of convex bodies. Archiv der Mathematik, 54(2):193–199,

1990.
7 Federico Castillo, Joseph Doolittle, and Jose Alejandro Samper. Common tangents to polytopes.

arXiv preprint, 2021. arXiv:2108.13569.
8 Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational complexity of the

α-ham-sandwich problem. In Proc. 47th Internat. Colloq. Automata Lang. Program. (ICALP),
pages 31:1–31:18, 2020.

9 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
ham sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 638–649, 2019.

10 Jacob E. Goodman, Richard Pollack, and Rephael Wenger. Geometric transversal theory. In
New trends in discrete and computational geometry, pages 163–198. Springer, 1993.

11 Hugo Hadwiger. Über Eibereiche mit gemeinsamer Treffgeraden. Portugaliae mathematica,
16(1):23–29, 1957.

12 Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht
der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.

13 Andreas Holmsen and Rephael Wenger. 4 Helly-type theorems and geometric transversals.
Handbook of Discrete and Computational Geometry, 2017.

SWAT 2022

http://arxiv.org/abs/2108.13569

16:14 Well-Separation and Hyperplane Transversals in High Dimensions

14 Christian Knauer, Hans Raj Tiwary, and Daniel Werner. On the computational complexity of
ham-sandwich cuts, helly sets, and related problems. In Proc. 28th Sympos. Theoret. Aspects
Comput. Sci. (STACS), volume 9, pages 649–660, 2011.

15 Dániel Marx. Parameterized complexity of independence and domination on geometric graphs.
In International Workshop on Parameterized and Exact Computation, pages 154–165. Springer,
2006.

16 Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

17 Marco Pellegrini and Peter W. Shor. Finding stabbing lines in 3-space. Discrete Comput.
Geom., 8(2):191–208, 1992.

18 Richard Pollack and Rephael Wenger. Necessary and sufficient conditions for hyperplane
transversals. Combinatorica, 10(3):307–311, 1990.

19 William Steiger and Jihui Zhao. Generalized ham-sandwich cuts. Discrete Comput. Geom.,
44(3):535–545, 2010.

20 Arthur H. Stone and John W. Tukey. Generalized “sandwich” theorems. Duke Math. J.,
9(2):356–359, June 1942.

21 Rephael Wenger. Geometric permutations and connected components. DIMACS, Center for
Discrete Mathematics and Theoretical Computer Science, 1990.

https://doi.org/10.1007/978-1-4613-0039-7

Lions and Contamination: Monotone Clearings
Daniel Bertschinger #

Department of Computer Science, ETH Zürich, Switzerland

Meghana M. Reddy1 #

Department of Computer Science, ETH Zürich, Switzerland

Enrico Mann #

Department of Computer Science, ETH Zürich, Switzerland

Abstract
We consider a special variant of a pursuit-evasion game called lions and contamination. In a graph
whose vertices are originally contaminated, a set of lions walk around the graph and clear the
contamination from every vertex they visit. The contamination, however, simultaneously spreads to
any adjacent vertex not occupied by a lion. We study the relationship between different types of
clearings of graphs, such as clearings which do not allow recontamination, clearings where at most
one lion moves at each time step and clearings where lions are forbidden to be stacked on the same
vertex. We answer several questions raised by Adams et al. [2].

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Combinatorial algorithms

Keywords and phrases Algorithmic Games, Pursuit-Evasion Games, Graph Contamination, Clearings

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.17

Funding Meghana M. Reddy: Supported by the Swiss National Science Foundation within the
collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681.

1 Introduction

Pursuit-evasion problems have a long and rich history going back more than 50 years [11, 14].
Countless similar problems have been studied under very different names in the past. What
they all have in common is that there is a group of pursuers that try to catch an evader.
The typical question asked in a pursuit-evasion problem is whether the evader can escape
the pursuers, and if so, for how long. Naturally, the more pursuers there are, the harder
it is for the evader to escape. Some objectives of the pursuers can be to catch the evader
fast (minimize the time taken) or with minimal effort (minimize the distance traveled); the
different objectives all have their origins in numerous applications such as robot motion
planning, collision avoidance, and intruder detection in networks [1, 8, 13].

There are different variations of the problem depending on the exact rules. For detailed
definitions of the various problems, see the surveys [4, 5, 7, 10] and the references therein. In
this paper, we study the problem of lions and contamination [9]. Traditionally, a group of
lions tries to eradicate contamination from a graph while the contamination spreads to all
adjacent vertices that are not occupied by lions. A scenario that is relevant to current day is
where a set of doctors tries to get rid of a disease; people can get tested and quarantined to
stop the spread of the disease, whereas the contamination spreads to people that had contact
with infected people.

1 The second author’s full last name consists of two words and is Mallik Reddy. However, she consistently
refers to herself with the first word of her last name being abbreviated.

© Daniel Bertschinger, Meghana M. Reddy, and Enrico Mann;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 17; pp. 17:1–17:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.bertschinger@inf.ethz.ch
mailto:meghana.mreddy@inf.ethz.ch
mailto:emann@student.ethz.ch
https://doi.org/10.4230/LIPIcs.SWAT.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Lions and Contamination: Monotone Clearings

Formally, suppose there is a graph G = (V, E). At the very beginning, every vertex
occupied by a lion is considered cleared of contamination, whereas the remaining vertices are
considered to be contaminated. Time is viewed as discrete; and in each step, the lions and the
contamination both move simultaneously. Every lion is allowed to move along an edge that
is incident to its current position. Contamination, on the other hand, spreads along every
incident edge to every adjacent vertex, unless the edge is used by a lion or a lion occupies
the adjacent vertex. Figure 1 illustrates an example. Note that the sequential variant of this
problem, where the lions and contamination move one after the other in alternating time
steps, results in a setting where the lions are more powerful and hence is a very different
problem compared to the one we study.

Figure 1 A graph and two lions (indicated by blue crosses), every vertex that is not occupied
by a lion is contaminated initially (indicated by red disks). One lion moves in the first time step,
however, contamination moves simultaneously and the vertex gets recontaminated. After the second
step, a vertex that is not occupied by a lion is cleared of contamination (indicated by green squares).

Note that for some graphs, it is easy to see whether k lions can clear the graph of
contamination. However, finding the minimum number of lions required to clear a graph is a
hard question. For example, the minimum number of lions required to clear the n × n-grid
is not known. Nevertheless, it is known that at least ⌊ n

2 ⌋ + 1 lions are needed [6]. Since n

lions can simply sweep the graph from left to right and clear the grid of contamination, n is
an upper bound on the number of lions needed for clearing the n × n-grid, and this is the
best upper bound currently known. Further, it is believed that n − 1 lions are not sufficient.
For higher-dimensional grids, that is for the nd-grid, it is known that Θ(nd−1/

√
d) lions are

necessary and sufficient [3].

In this paper, we study different types of clearings that were defined by Adams et al. [2]
and answer several questions raised in their paper. A clearing of a graph using k lions is
denoted as a k-clearing and the graph itself is referred to as k-clearable. We say a clearing is
monotone if no vertex ever gets recontaminated. The lions and the clearing are said to be
polite if at most one lion moves in each time step and non-stacked if no two lions occupy the
same vertex at any point in time.

The remainder of this paper is organized in the following way. In Section 2, we show that
there exist k-clearable graphs which require more than k lions for any monotone clearing.
This implies that monotone clearings are harder to achieve than non-monotone clearings
and stands in contrast to a result in the graph searching setting [12], where monotonicity
does not matter. In Section 3, we show that any monotone clearing can be paused at any
time and no recontamination occurs. This allows us to show in an algorithmic way that any
monotone clearing can be converted into a monotone and polite clearing. We then show that
polite clearings can be transformed into non-stacked clearings (see Theorem 3.6). Finally, in
Section 4, we tackle the subgraph question raised in [2]: given a k-clearable graph G and
some subgraph H ⊆ G, is H k-clearable as well? We answer this question in some settings.

D. Bertschinger, M. M. Reddy, and E. Mann 17:3

2 Monotone Clearings

2.1 The n × n Grid
Let us consider the n × n grid. As already mentioned, at least ⌊ n

2 ⌋ + 1 lions are needed,
while n lions are sufficient to clear the grid. When restricted to monotone clearings, we can
improve the lower bound and close the gap between the bounds.

Let V (t) be the set of cleared vertices at time t. We define a boundary vertex as a vertex
of V (t) that has a neighbor in V \ V (t). Before we state and prove our result, we first make
two simple observations and recall a lemma proved by Berger et al. [3].

▶ Observation 2.1. The number of cleared vertices in a k-clearing cannot increase by more
than k in one time step.

▶ Observation 2.2. If there are more than k boundary vertices at time t, then at least one
vertex gets recontaminated in the next time step.

▶ Lemma 2.3 (Lemma 5 of [3]). Any vertex set S that is a subset of the n × n grid and
satisfies n2

2 − n
2 ≤ |S| ≤ n2

2 + n
2 has at least n boundary vertices.

▶ Theorem 2.4. A monotone clearing of the n × n grid needs at least n lions.

Proof. Assume that the n × n grid has a monotone clearing with n − 1 lions. Initially, the
lions start with at most n − 1 < n2

2 + n
2 cleared vertices and eventually have to clear all n2

vertices. Further, Observation 2.1 implies that at most n − 1 vertices are cleared in each
time step. Thus, at some time t, the set of cleared vertices V (t) must satisfy the condition
n2

2 − n
2 ≤ |V (t)| ≤ n2

2 + n
2 . The number of boundary vertices at such a time t will be at

least n due to Lemma 2.3, and Observation 2.2 then implies that at least one vertex will
get recontaminated at time t + 1. Hence, no monotone (n − 1)-clearing of the n × n grid
exists. ◀

In hindsight, this might not be a very surprising result. However, this does not necessarily
improve the lower bound for non-monotone clearings as we will see in the next subsection.

2.2 Graphs with no Monotone Clearing
Unfortunately, not every graph with a k-clearing admits a monotone k-clearing. Indeed, we
can show that the set of monotone k-clearable graphs is a proper subset of the set of all
k-clearable graphs, which implies that monotonicity is a strong assumption on clearings.
Theorem 2.4 does not improve the general lower bound for grids due to this reason.

▶ Theorem 2.5. For any k ≥ 2 there exist k-clearable graphs with no monotone k-clearing.

We first describe the construction of one set of such graphs for any k ≥ 2. We start with
three distinct k × k-grids connected by (k − 1)-grid-like paths from row 2 through row n.
The center grid additionally has two vertices of degree one each attached to its leftmost
and rightmost vertices of row 1 respectively, let these vertices be denoted by uℓ and ur. For
simplicity let us denote graphs constructed in this form as Gk, the graph G3 is illustrated in
Figure 2.

▶ Lemma 2.6. The graph Gk is k-clearable for any k ≥ 2, but admits no monotone k-clearing.

SWAT 2022

17:4 Lions and Contamination: Monotone Clearings

G3×3 G3×3G3×3

uru`

Figure 2 Illustration of Gk when k = 3. The center grid has two additional vertices of degree
one attached at distinct corners of the first row. The colors indicate one possible clearing state.

Proof. To see that Gk is k-clearable we describe a clearing. Each lion is assigned to clear
one row of the graph. The lions start on the leftmost vertices of the graph and start sweeping
the graph from left to right. After the lions have cleared the left grid, the lions on rows
2, . . . , n move to the vertices on the (k − 1)-path between the left and center grids and wait
for the lion from row 1 to move to uℓ. Observe that this can be achieved without stacking
lions, by moving the lion of row 1 to the position of the lion of row 2, and moving the lion
of row 2 to uℓ. All the lions then together sweep further until the center grid and ur are
cleared; and similarly wait on the (k − 1)-path between the center and right grids before
finally clearing the right grid.

It remains to show that this graph cannot be cleared in a monotone fashion by k lions.
To clear the graph monotonically, the lions must all either start on the left or the right grids.
All or any subset of the k lions starting in the center grid will always lead to recontamination
of some vertex (in the center) since the left and right grids are contaminated. Without loss
of generality, assume the lions start in the left grid. Irrespective of the strategy followed
by the lions, the lions always end up in a situation where either there is a lion each on uℓ

and its neighbor, or there are k − 1 lions that stop the movement of contamination from the
center grid to the left grid. In the first case, the remaining k − 2 lions are not sufficient to
stop contamination from recontaminating the left grid, and in the second, the neighbor of
uℓ gets recontaminated when the last lion moves to uℓ to clear the vertex. Hence, we can
conclude that no monotone clearing exists for Gk. ◀

We give another construction for graphs that have clearings with k lions but do not
admit monotone k-clearings. It gives further insights into how such graphs can look like.
Interestingly, the following construction has four cut-vertices; which should ideally make it
easy to isolate contamination to one section of the graph.

We denote the second type of graph as Hk. The graph Hk consist of several parts. The
main building block is a (k + 1)-clique Kk+1, to which we add four arms at different vertices.
Each of the arms consists of a long k-grid (length of 3k is enough), where the farthest
vertices form a clique themselves; see Figure 3 for an example with k = 5. The graph Hk is
(k + 1)-clearable, but has no monotone (k + 1)-clearing.

Theorem 2.5 shows that monotonicity is a very restrictive assumption on clearings. This
result however raises the following question for further research.

▶ Open Question 1. Given a k-clearable graph G = (V, E), is it always monotonically
clearable with k + 1 lions? More formally, is there a non-trivial upper bound on the number
of lions required for a monotone clearing?

D. Bertschinger, M. M. Reddy, and E. Mann 17:5

Kk+1

. . .

G3k×k

v1
Kk

. . .

. . .

. . .

v2

v3 v4

Figure 3 The graph Hk consisting of a (k + 1)-clique in the middle and four attached arms, each
consisting of a long k-grid with a k-clique at the far end.

3 Transforming between Different Types of Clearings

3.1 Monotone Clearings
We now analyse some properties of monotone clearings. These will then allow us to show
that monotone clearings can always be adapted to monotone clearings with polite lions. We
start with an important observation.

▶ Proposition 3.1. Let C be any clearing of a graph G. Assume that all the lions are paused
indefinitely at time t, that is, no lion moves after time t. If no vertex gets recontaminated at
time t + 1, then no vertex gets recontaminated at a later time either.

Proof. Recall that contamination spreads along every incident edge at each time step. If no
vertex gets recontaminated at time t + 1, it implies that every cleared vertex neighboring
a contaminated vertex is occupied by a lion that blocks the contamination from spreading.
Then, no vertex can get recontaminated after time t + 1 either, since the lions continue to
block the contamination from spreading. ◀

With this result, we are now able to argue about stopping lions in monotone clearings.

▶ Lemma 3.2. A monotone clearing can be paused at any time and no vertex gets recontam-
inated.

Proof. Assume that every lion is paused at time t in a monotone clearing. For contradiction,
assume v is one of the first vertices to get recontaminated. Then no lion occupies vertex v at
time t, vertex v is not contaminated at time t and v gets recontaminated earliest at time
t + 1 due to Proposition 3.1.

Then there must exist w ∈ N(v) that is contaminated at time t, which contaminates v

at time t + 1. Since the clearing is monotone until time t, vertex w must have never been
cleared of contamination. Therefore, the contamination was present at w at t − 1 and must
have spread to v at time t (recall that no lion occupies v at time t). This contradicts the
fact that no vertex gets recontaminated in a monotone clearing, and our clearing remains
monotone until and including time t. ◀

SWAT 2022

17:6 Lions and Contamination: Monotone Clearings

With a more careful analysis of pausing monotone clearings, we can prove a much stronger
result.

▶ Theorem 3.3. Let G be a graph and C be a monotone clearing of G with k lions. Then,
there exists another monotone clearing which uses k polite lions.

Before being able to prove Theorem 3.3, we need some observations. Let us reconsider
a monotone clearing, denoted by C. Let us once again pause all the lions at time t. By
Lemma 3.2 we know that no recontamination occurs. Consider a lion ℓ1 and assume that
this lion moved from v to w at time t + 1 in the clearing C. We define a new strategy for a
clearing, denoted by C′, where we move all lions according to C up to time t and at time
t + 1, we move lion ℓ1 from v to w. No other lion moves at time t + 1 or after.

It is now important to note that this strategy might not be a clearing and it can happen
that vertices get recontaminated, see Figure 4. However, we certainly know which vertex
gets recontaminated first. More specifically, we can prove vertex v is the only vertex that
can get recontaminated at t + 1.

Figure 4 A lion moving from the left vertex to one of the vertices on the right. The left vertex
gets recontaminated at the same time.

▶ Lemma 3.4. Let C be a monotone clearing. Let C′ be a new strategy that mirrors C until
time t, and moves one lion from v to w at time t + 1, and no other lion is moved from
t + 1 onwards. If recontamination occurs in C′, the first vertex that gets recontaminated must
be v and it gets recontaminated at time t + 1. Further, no other vertex except v can get
recontaminated at time t + 1.

Proof. We know that if C′ is paused at t, no recontamination occurs due to Lemma 3.2. The
only difference between C and C′ at t + 1 is that the lion ℓ1 moved away from v in C′. Thus,
at time t + 1, no vertex other than v can get recontaminated. If v is not recontaminated
at time t + 1, then by Proposition 3.1, we know that no vertex ever gets recontaminated.
Hence, v is the only vertex that might get recontaminated at time t + 1. ◀

Unfortunately, we may not be able to avoid this recontamination when moving lion ℓ1 in
C′. Nonetheless, we use the fact that vertex v does not get recontaminated in C and analyse
the situation closely. Let us assume that v gets recontaminated in C′ at time t + 1.

Let us take a closer look at this vertex v. Since v is recontaminated at time t + 1 in C′,
there must exist x ∈ N(v) that was contaminated at t in C′, which spread the contamination
to v at t + 1. Observe that x must be contaminated at time t in the original clearing C as
well and v is not recontaminated at time t + 1 in C. Therefore some lion must occupy v at
time t + 1 in C (otherwise v would also get recontaminated in the monotone clearing C at
time t + 1). Let this lion be ℓj . Note that ℓj ≠ ℓ1 as ℓ1 moved away from v at time t + 1
in C. If we move ℓj before moving ℓ1, then the recontamination of vertex v can be avoided
at time t + 1. Hence, we say that ℓ1 depends on ℓ2 at time t + 1.

We construct a graph on the set of lions, where a directed edge from ℓj to ℓi is added if
and only if lion ℓj moves to vertex u at time t + 1 in C, and the lion ℓi moves away from u at
time t + 1 in C. In this way, we capture all dependencies of the lions and we refer to this
graph as the dependency graph of lions at time t + 1. Note that the dependency graph can
contain cycles.

D. Bertschinger, M. M. Reddy, and E. Mann 17:7

▶ Observation 3.5. By renaming lions, we can avoid any cycle in the dependency graph.

To see this, we consider one cycle in the dependency graph. Note that this cycle
corresponds to a set of vertices in the underlying graph that are occupied by a set of lions;
and occupied by the same set of lions at time t + 1 in C. Each lion moved to a different
vertex in the same set. Thus, the state of the corresponding vertices in the underlying graph
G is the same at time t and at time t + 1; and in particular this does not change if the lions
are not moved but are only renamed. Once the lions belonging to one cycle are renamed, the
dependency graph clearly changes. In particular, the number of edges (and cycles) strictly
decreases by renaming the lions and hence we eventually get an acyclic dependency graph.

With this we can now prove Theorem 3.3.

Proof of Theorem 3.3. We prove the theorem by showing how the number of time steps
that use polite lions can be iteratively increased by modifying a monotone clearing. Given
a monotone k-clearing C that is polite up to some time t, we define a new clearing C′ that
is identical to C up to time t and is polite up to some time t′ > t. In particular, let Lt+1
be the set of lions that move at time t + 1 in C. Consider the dependency graph of Lt+1
at time t + 1 obtained after all the cycles have been removed (and thus some lions might
have been renamed). Since this graph is acyclic, a topological ordering τ of the lions can be
obtained such that any lion ℓi that depends on ℓj only comes after ℓj in τ . After time t, the
new clearing C′ moves lions one by one according to the order τ up to time t′ ≤ t + k (the
lions not in τ do not move). Note that the state of C′ at time t′ is identical to the state of C
at time t + 1. Finally, C′ follows the same strategy as C did from time t + 2 until the graph
is completely cleared.

It is easy to see that C′ is monotone up to time t and since there is no recontamination
between time t and t + k, we indeed have a clearing. Furthermore, C′ is polite up to time
t′ > t, while C was polite only until time t. Following this procedure iteratively, we are
guaranteed to eventually get a monotone k-clearing that uses only polite lions from any
monotone k-clearing. ◀

Note that this proof is algorithmic, in particular, given a monotone clearing, we can
compute another monotone clearing that uses polite lions without increasing the number of
lions.

3.2 Polite and Non-Stacked Clearings
In this subsection, we study clearings which need not be monotone and consider other
restrictions on clearings. In particular, we study the relationship between clearings that use
polite lions and clearings that do not stack lions. We can show the following relation.

▶ Theorem 3.6. Let G be a graph on n vertices and C be a polite clearing of G with k ≤ n

lions. Then, there exists another k-clearing that does not stack lions.

Proof. For each time step in C, we describe how to move the corresponding lion (and
probably some additional lions) in C′ by avoiding stacking while ensuring that the new
strategy developed is a valid clearing of G. Let VC(t) and VC′(t) denote the set of cleared
vertices at time t in C and C′ respectively. We show that VC(t) ⊆ VC′(t) at any time t.

Every lion in C begins at its starting vertex, follows a walk in the graph, and finally ends
at its end vertex, and remains there for the rest of the clearing. In the process of adapting C
to C′, some lions are labelled as retired. These are lions that are stacked on their end vertices
in C, and thus their position in C′ is irrelevant since they do not help in clearing any more
vertices.

SWAT 2022

17:8 Lions and Contamination: Monotone Clearings

Before we describe the overall strategy (or algorithm), we describe the procedure of
finding the next location for a lion ℓi in C′. Assume ℓi has to be placed at v at time t ≥ 0
because ℓi starts at v or moves to v from a neighboring vertex. Note that since C is a polite
clearing, this is the only lion that needs to be moved in this time step. If there is no lion at v,
ℓi is placed on v (or moved to v). For the other case, let us assume that there is another lion
ℓj on v at time t. If ℓj is a retired lion, then ℓi is placed at v, and ℓj is moved to the closest
vertex with no lion. We do not really care where ℓj is placed since the position of a retired
lion is irrelevant in the rest of the clearing. If ℓj is not retired, the situation is a bit more
delicate. If ℓi leaves v before ℓj in C, then we instead place ℓj at the next vertex in the path
of ℓi in C (which must be a neighbor of v). Then we place ℓi at v and switch the naming of
the lions. This ensures that we do not stack the lions in this time step, while keeping them
on their path. In the other case, namely if ℓj leaves v before ℓi in C, we place ℓi at v, and
place ℓj at the next vertex in its path in C. Finally, in the case when v is the end vertex of
both ℓi and ℓj , we label the lion ℓi as retired and place ℓi on the closest vertex which has
no lion. It could happen that all the neighboring vertices of v are occupied by lions, or the
vertex that we intend to move ℓi or ℓj to is occupied by a lion, in which case we have to
follow this procedure recursively and move multiple lions. Note that even though multiple
lions might have to be moved through this procedure to simulate one time step of the polite
clearing, every step will eventually terminate as we reach retired lions (since k ≤ n).

To find the starting positions of the lions in C′ we use the procedure just described. The
overall strategy follows the procedure as well. We consider one lion movement at a time
(since C is polite) and move lions according to the description above. As already mentioned,
this might move more than one lion for an individual movement in C, but most importantly,
this ends for sure. As each movement of a single lion individually terminates, the recursive
procedure eventually terminates as well.

It remains to show that C′ is indeed a clearing. For this, observe that whenever the last
lion ℓ leaves a vertex u in C at time t, it also holds that ℓ leaves u in C′ at the same time t.
This is because the last lion to leave u is the lion that is positioned at u in C′ by construction.
Thus, every vertex that has a lion in C at some time t also has a lion in C′ at t. Thus, it
follows that at every time step t, VC(t) ⊆ VC′(t) and hence, C′ is a clearing. ◀

Note that this result implies that the set of graphs that are clearable with polite lions
is a subset of the set of graphs that admit non-stacked clearings. Though we were unable
to prove it, we believe that the converse of Theorem 3.6 is false, because the time taken by
polite lions might be much higher when compared to clearings where multiple lions can be
moved simultaneously, even when stacking is not allowed.

▶ Open Question 2. Is the converse of Theorem 3.6 also true or are there graphs with a
non-stacked clearing but no polite clearing?

When the clearing C is monotone, the converse is indeed true (follows from Theorem 3.3).

4 Clearable Subgraphs

In the final section of this paper, we study clearings of subgraphs of a k-clearable graph.
More formally, let G = (V, E) be a k-clearable graph, and let H be a subgraph of G. It is
natural to ask if H also admits a k-clearing (see Question 6.1 in [2]). On one hand, the
contamination is restricted due to some missing edges; on the other hand, some edges or
paths in G \ H might be crucial for the lions to clear the graph.

D. Bertschinger, M. M. Reddy, and E. Mann 17:9

We show that this question can be answered in the affirmative if the clearing on G is
monotone, and that surprisingly, this need not be possible in some other restricted settings.

▶ Theorem 4.1. Let G be a graph with a monotone k-clearing. Then any connected
subgraph H ⊂ G also admits a (polite) k-clearing.

Proof. Consider a monotone clearing C of G using k polite lions (which exists by Theorem 3.3).
The idea is to use the same clearing in H with some modifications. In C, if all lions use edges
(and vertices) that are present in H, then the clearing C restricted to H is a clearing of H

and the theorem is proved.
Otherwise, assume for now that VG = VH . Let t be the first time step such that a lion

ℓi uses edge e = (v, w) to move from v to w in C, where e ∈ G \ H. Since H is connected,
there exists a path pv,w from v to w. We construct a new strategy C′ for H, which mirrors
C until time t − 1, then moves lion ℓi along the path pv,w instead of moving it along the
edge e at time t, and no other lion moves until ℓi reaches w. Let t′ > t be the time when ℓi

reaches w in C′. Let VC(t) and VC′(t′) denote the set of cleared vertices in C at time t and C′

at time t′ respectively. We claim that VC(t) ⊆ VC′(t′). Note that in C′, v is the only vertex
that might get recontaminated at time t due to Lemma 3.4. However, v gets recontaminated
in C′ at time t if and only if v gets recontaminated at time t in C, and we know that v is
not recontaminated in C since C is monotone. We further claim that no vertex u ∈ VC(t)
is recontaminated in C′ after time t while ℓi is moving along the path pv,w. Assume some
vertex u ∈ VC(t) is recontaminated in C′ at time t′′ > t. Since the only vertex that contains
a lion in C at time t but contains no lion in C′ is w, the contamination must have spread
to u from w through a path w, u1, u2, . . . , u which contains no lion. However, the vertex u1
must have been contaminated at time t in C as well since no lion is present on u1 and C uses
polite lions. The contamination would have then spread to u if the lions were paused at time
t in C, which is a contradiction to Lemma 3.2. This proves that VC(t) ⊆ VC′(t′).

Now, consider the case where VH ⊊ VG. In C, if a lion moves along an edge (v, w) in C
where v, w ∈ VH , but (v, w) ̸∈ EH , we follow the same strategy as discussed above. Now,
let t be the first time when a lion ℓi uses edge e = (v, w) to move from v to w in C, where
v ∈ VH , but w ̸∈ VH . Let the path of ℓi in C be . . . , v, w, w1, w2, . . . , wk, . . . and let wi be
the first vertex in this path after v such that wi ∈ VH . We proceed similar to the previous
case, and construct a new strategy C′ which mirrors C until time t − 1, and then moves lion
ℓi to wi while keeping the other lions stationary. Let ℓi reach wi at time t′. By the same
argument as above, we can prove that VC(t) ⊆ VC′(t′). Observe that with this strategy, no
lion ever ends up in a vertex of G \ H, except for the start vertex. However, if the start
vertex of a lion lies in G \ H, we instead move it to the first vertex on its path lying in H.

Thus, we can follow the described strategy and adapt C to H to construct a new strategy
C′ that is a valid clearing of H . Furthermore, note that we only moved one lion at each time
step and thus the resulting clearing of the subgraph is polite. ◀

Note that the strategy given in this proof may not be monotone since the vertices that
were cleared on a detour might get recontaminated later on. In general, clearings of a
subgraph need not be monotone. Figure 5 illustrates a graph G∗ that admits a monotone
2-clearing (sweeping from left to right). However, recall graph G2 described in Section 2.2
(for reference, graph G3 is illustrated in Figure 2), which is a subgraph of G∗ that has no
monotone 2-clearing. Note that this recontamination cannot be avoided with the strategy
given, not even for induced subgraphs.

Finally, we illustrate a graph where one of its subgraphs does not admit a 2-clearing with
polite and non-stacked lions.

SWAT 2022

17:10 Lions and Contamination: Monotone Clearings

G∗

Figure 5 A supergraph of G2 (graph G3 is illustrated in Figure 2). G∗ is monotone 2-clearable
even in the restricted setting of polite and non-stacked lions.

▶ Observation 4.2. The graph G illustrated in Figure 6 is monotone 2-clearable with polite
non-stacked lions. However, its subgraph H is not 2-clearable with polite non-stacked lions.

Note that H is not only a subgraph but also an induced subgraph of G.

G H

Figure 6 Graph G is 2-clearable with polite and non-stacked lions, whereas subgraph H is not.

5 Conclusion

In the first part of the paper, we studied different types of clearings, namely monotone, polite
and non-stacked clearings and we showed some of the relations between them. This gives a
good overview over the different restrictions, though a few questions remain open.

In the second part, we focused on the subgraph question raised by Adams et al. [2]. We
were able to answer the question in some restricted settings. In the general setting, we
believe that there exist graphs with subgraphs that admit no k-clearing. Such a graph might
be rather large. A next step in this direction would be to design an algorithm that checks
whether a given graph is k-clearable. Such an algorithm, however, may not be easy to find.

References
1 H. Adams and G. Carlsson. Evasion paths in mobile sensor networks. The International

Journal of Robotics Research, 34(1):90–104, 2015. doi:10.1177/0278364914548051.
2 H. Adams, L. Gibson, and J. Pfaffinger. Lions and contamination, triangular grids, and cheeger

constants. arXiv, 2020. arXiv:2012.06702.
3 F. Berger, A. Gilbers, A. Grüne, and R. Klein. How many lions are needed to clear a grid?

Algorithms, 2(3):1069–1086, 2009. doi:10.3390/a2031069.
4 A. Bonato and B. Yang. Graph searching and related problems. In P. M. Pardalos, D.-Z. Du,

and R. L. Graham, editors, Handbook of Combinatorial Optimization, pages 1511–1558, 2013.
doi:10.1007/978-1-4419-7997-1_76.

5 R. Borie, S. Koenig, and C. Tovey. Section 9.5: Pursuit-evasion problems. In J. Yellen J. Gross
and P. Zhang, editors, Handbook of Graph Theory, pages 1145–1165. Chapman and Hall/CRC,
2013.

6 P. Brass, K. D. Kim, H.-S. Na, and C.-S. Shin. Escaping off-line searchers and a discrete
isoperimetric theorem. In Algorithms and Computation, pages 65–74, 2007.

https://doi.org/10.1177/0278364914548051
http://arxiv.org/abs/2012.06702
https://doi.org/10.3390/a2031069
https://doi.org/10.1007/978-1-4419-7997-1_76

D. Bertschinger, M. M. Reddy, and E. Mann 17:11

7 T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion in mobile robotics, a
survey, 2011. URL: https://calhoun.nps.edu/handle/10945/45474.

8 V. de Silva and R. Ghrist. Coordinate-free coverage in sensor networks with controlled
boundaries via homology. The International Journal of Robotics Research, 25(12):1205–1222,
2006. doi:10.1177/0278364906072252.

9 A. Dumitrescu, I. Suzuki, and P. Zylinski. Offline variants of the "lion and man" problem.
In Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, pages
102–111. Association for Computing Machinery, 2007. URL: 10.1145/1247069.1247085.

10 F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph searching.
Theoretical Computer Science, 399(3):236–245, 2008. Graph Searching. doi:10.1016/j.tcs.
2008.02.040.

11 R. Isaacs. Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. John Wiley & Sons, 1965.

12 A. S. LaPaugh. Recontamination does not help to search a graph. J. ACM, 40(2):224–245,
1993. doi:10.1145/151261.151263.

13 S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots having
independent goals. IEEE Transactions on Robotics and Automation, 14(6):912–925, 1998.
doi:10.1109/70.736775.

14 T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors, Theory and
Applications of Graphs, pages 426–441, 1978.

SWAT 2022

https://calhoun.nps.edu/handle/10945/45474
https://doi.org/10.1177/0278364906072252
10.1145/1247069.1247085
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1145/151261.151263
https://doi.org/10.1109/70.736775

Predecessor on the Ultra-Wide Word RAM
Philip Bille !

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Inge Li Gørtz !

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Tord Stordalen !

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Abstract
We consider the predecessor problem on the ultra-wide word RAM model of computation, which
extends the word RAM model with ultrawords consisting of w2 bits [TAMC, 2015]. The model
supports arithmetic and boolean operations on ultrawords, in addition to scattered memory operations
that access or modify w (potentially non-contiguous) memory addresses simultaneously. The ultra-
wide word RAM model captures (and idealizes) modern vector processor architectures.

Our main result is a simple, linear space data structure that supports predecessor in constant
time and updates in amortized, expected constant time. This improves the space of the previous
constant time solution that uses space in the order of the size of the universe. Our result is based on
a new implementation of the classic x-fast trie data structure of Willard [Inform. Process. Lett. 17(2),
1983] combined with a new dictionary data structure that supports fast parallel lookups.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Ultra-wide word RAM model, predecessor, word-level parallelism

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.18

Related Version Full Version: https://arxiv.org/abs/2201.11550

Funding Philip Bille: Danish Research Council grant DFF-8021-002498.
Inge Li Gørtz : Danish Research Council grant DFF-8021-002498.

Acknowledgements We thank the anonymous reviewers for their comments, which improved the
presentation of the article.

1 Introduction

Let S be a set of n w-bit integers. The predecessor problem is to maintain S under the
following operations.

predecessor(x): return the largest y ∈ S such that y ≤ x.
insert(x): add x to S.
delete(x): remove x from S.

The predecessor problem is a fundamental and well-studied data structure problem, both
from the perspective of upper bounds [2,5,7,8,23,31,33,37,38,39] and lower bounds [1,5,28,29,
31,32,35]. The problem has many applications, for instance integer sorting [2,3,23,25], string
sorting [4,9, 20], and string searching [6,8, 10,11,13]. See Navarro and Rojas-Ledesma [30]
for a recent survey.

On the word RAM model of computation, the complexity of the problem is well-understood
with the following tight upper and lower bound on the time for operations given by Pătraşcu
and Thorup [33].

Θ

max

1, min

logw n,
log w

log w

log
(

log w
log w / log log n

log w

) , log log(2w − n)
log w

 . (1)

© Philip Bille, Inge Li Gørtz, and Tord Stordalen;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phbi@dtu.dk
https://orcid.org/0000-0002-1120-5154
mailto:inge@dtu.dk
https://orcid.org/0000-0002-8322-4952
mailto:tjost@dtu.dk
https://orcid.org/0000-0002-1525-0104
https://doi.org/10.4230/LIPIcs.SWAT.2022.18
https://arxiv.org/abs/2201.11550
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Predecessor on the Ultra-Wide Word RAM

From the upper bound perspective, the first branch matches dynamic fusion trees [23], the
second branch is based on an extension of the techniques from Beame and Fich [5], and the
last branch is based on an extension of dynamic van Emde Boas trees [38]. Note that the
lower bound implies that we cannot support operations in constant time for general n and w.
Hence, a natural question is if practical models of computation capturing modern hardware
can allow us to overcome the superconstant lower bound.

One such model is the RAM with byte overlap (RAMBO) by Brodnik et al. [14]. This
model extends the word RAM model by adding a set of special words that share bits; flipping
a bit in one word will also affect all the other words that share that bit. The precise model
is determined by the layout of the shared bits. It is feasible to make hardware based on this
model, and prototypes have been built [27]. In the RAMBO model, Brodnik et al. [14] gave a
predecessor data structure using constant time per operation with O(2w/w) space (counting
both regular words and shared words). They also gave a randomized version of the solution
that uses constant time with high probability and reduces the regular space to O(n) (but
still needs Ω(2w/w) space for the shared words). In both cases, the total space is near-linear
in the size of the universe.

More recently, Farzan et al. [21] introduced the ultra-wide word RAM model (UWRAM).
The UWRAM extends the word RAM model by adding special ultrawords of w2 bits. The
model supports standard boolean and arithmetic operations on ultrawords, as well as scattered
memory operations that access w words in memory in parallel. The UWRAM model captures
(and idealizes) modern vector processing architectures [15, 34, 36] (see Section 2 for details of
the model). Farzan et al. [21] showed how to simulate algorithms for the RAMBO model on
the UWRAM at the cost of increasing the space by a polylogarithmic factor. Simulating the
above RAMBO solution for the predecessor problem, they gave a solution to the predecessor
problem on the UWRAM using worst case constant time for all operations and O(w2w)
space.

1.1 Our Results
We revisit the predecessor problem on the UWRAM and show the following main result.

▶ Theorem 1. Given a set of n w-bit integers, we can construct an O(n) space data structure
on a UWRAM which supports predecessor in constant time and insert and delete in amortized
expected constant time.

Compared to the previous result of Farzan et al. [21], Theorem 1 significantly reduces the
space from O(w2w) to linear while maintaining constant time for operations (note that query
time is worst-case, while updates are amortized expected).

A key component in our solution is a new dictionary data structure of independent interest
that supports fast parallel lookups on the UWRAM. We define the problem as follows. Recall
that an ultraword X consists of w2 bits. We view X as divided into w words of w consecutive
bits each, numbered from right to left starting from 0. The ith word in X is denoted X⟨i⟩
(we discuss the model in detail in Section 2). Given a set S of n w-bit integers, the w-parallel
dictionary problem is to maintain S under the following operations.

pMember(X): return an ultraword I where I⟨i⟩ = 1 if X⟨i⟩ ∈ S and I⟨i⟩ = 0 otherwise.
insert(x): Add x to S.
delete(x): Remove x from S.

Thus, pMember takes an ultraword X of w integers and returns an ultraword encoding which
of these integers are in S. To the best of our knowledge, the w-parallel dictionary problem
has not been studied before. We show the following result.

P. Bille, I. L. Gørtz, and T. Stordalen 18:3

▶ Theorem 2. Given a set of n w-bit integers, we can construct an O(n + w)-space data
structure on a UWRAM which supports pMember in worst case constant time and insert and
delete in amortized expected constant time.

Note that the queries are worst-case constant time, while the updates are amortized expected
constant time. The time bounds of Theorem 2 thus match the well-known dynamic perfect
hashing structure of Dietzfelbinger et al. [19] (which is also the basis of our solution), except
that the queries are parallel. The space is linear except for the additive w term, which is
needed even for storing the input to the pMember query.

1.2 Techniques
Our results are achieved by novel and efficient parallel implementations of well-known
sequential data structures.

Our parallel dictionary structure of Theorem 2 is based on the dynamic perfect hashing
structure of Dietzfelbinger et al. [19]. This is a two-level data structure similar to the classic
static perfect hashing structure of Fredman et al. [22]. At the first level, a universal hash
function partitions the input into smaller subsets, each of which is then resolved at the
second level using another universal hash function mapping the elements into sufficiently
large tables. The structure supports (sequential) membership queries in worst-case constant
time by evaluating the hash functions and navigating the structure accordingly. Updates are
supported in amortized expected constant time by carefully rebuilding and rehashing the
structure during execution. At any point in time the structure never uses more than O(n)
space. We show how to parallelize the evaluation of a universal hash function (the simple and
practically efficient multiply-shift hash function). Then, using the scattered memory access
operations, we show how to access the corresponding entries in the structure in parallel. Our
technique requires only small changes to the structure of Dietzfelbinger et al. [19] and we
can directly apply their update operations to our solution. Thus, we are able to parallelize
the worst-case constant time sequential membership query while maintaining the amortized
expected constant update time bound of Dietzfelbinger et al. [19], leading to the bounds of
Theorem 2.

Our predecessor data structure of Theorem 1 is based on the x-fast trie of Willard [39]
combined with our parallel dictionary structure of Theorem 2. The x-fast trie consists of
the trie T of the binary representation of the input set. Also, at each level i, the structure
stores a dictionary containing the length-i prefixes of the input set. In total, this uses O(nw)
space. The x-fast trie supports predecessor queries in O(log w) time by binary searching
the levels (with the help of the dictionaries) to find the longest common prefix of the query
and the input set. Though not designed for it, we can implement updates on the x-fast
trie in O(w) time by directly updating each level of the dictionary accordingly. Our new
predecessor structure, which we call the xtra-fast trie, instead stores the compact trie of
the binary representation of the input set (i.e., the trie where paths of nodes with a single
child are merged into a single edge). We store a dictionary representing the prefixes (similar
to in the x-fast trie) using our parallel dictionary structure of Theorem 2, but now only
for the branching nodes in the compact trie. This reduces the space to O(n). To support
predecessor queries for an integer x, we generate all w prefixes of x and apply a parallel
membership query on these in the dictionary. We show how to identify the longest match in
parallel which in turn allows us to identify the predecessor. In total this takes worst-case
constant time for the predecessor query. To handle updates, we show how to modify the trie
efficiently using scattered memory access operations and a constant number of dictionary
updates, leading to the expected amortized constant time bound of Theorem 1.

SWAT 2022

18:4 Predecessor on the Ultra-Wide Word RAM

Figure 1 The layout of an ultraword X.

In our data structures we only need to store a constant number of ultrawords during the
computation. This is important since modern vector processor architectures only have a
limited number of ultraword registers.

1.3 Outline
In Section 2 we describe the UWRAM model of computation and some useful procedures.
In Sections 3 and 4 we show how to do parallel hash function evaluation and w-parallel
dictionaries, proving Theorem 2. Finally, in Section 5 we prove Theorem 1.

2 The Ultra-Wide Word RAM Model

The word RAM model of computation [24] consists of an unbounded memory of w-bit words
and a standard instruction set including arithmetic, boolean, and bitwise operations (denoted
“&”, “|” and “∼” for and, or and not) and shifts (denoted “≫” and “≪”) such as those
available in standard programming languages (e.g., C). We make the standard assumption
that we can store a pointer into the input in a single word and hence w ≥ log n, where n is
the size of the input, and for simplicity we assume that w is even. We denote the address of
x in memory as addr(x), and the address of an array is the address of its first index. The
time complexity of a word RAM algorithm is the number of instructions and the space is the
number of words stored by the algorithm.

The ultra-wide word RAM (UWRAM) model of computation [21] extends the word
RAM model with special ultrawords of w2 bits. As in [21], we distinguish between the
restricted UWRAM that supports a minimal set of instructions on ultrawords consisting of
addition, subtraction, shifts, and bitwise boolean operations, and the multiplication UWRAM
that additionally supports multiplications. We extend the notation for bitwise operations
and shifts to ultrawords. The UWRAM (both restricted and multiplication) also supports
contiguous and scattered memory access operations, as described below. The time complexity
is the number of instructions (on standard words or ultrawords) and the space complexity is
the number of words used by the algorithms, where each ultraword is counted as w words. The
UWRAM model captures (and idealizes) modern vector processing architectures [15, 34, 36].
See also Farzan et al. [21] for a detailed discussion of the applicability of the UWRAM model.

2.1 Instructions and Componentwise Operations
Recall that ultrawords consists of w2 bits. We often view an ultraword X as divided into
w words of w consecutive bits each, which we call the components of X. We number the
components in X from right-to-left starting from 0 and use the notation X⟨i⟩ to denote the
ith word in X (see Figure 1). We will also use the notation X = ⟨xw−1, . . . , x0⟩, denoting
that X⟨i⟩ = xi.

We define a number of useful componentwise operations on ultrawords that we will need
for our algorithms in the following. Let X and Y be ultrawords. The componentwise addition
of X and Y , denoted X + Y , is the ultraword Z such that Z⟨i⟩ = X⟨i⟩ + Y ⟨i⟩ mod 2w.

P. Bille, I. L. Gørtz, and T. Stordalen 18:5

We define componentwise subtraction, denoted X − Y , and componentwise multiplication,
denoted XY , similarly. The componentwise comparison of X and Y is the ultraword Z

such that Z⟨i⟩ = 1 if X⟨i⟩ < Y ⟨i⟩ and 0 otherwise. Given another ultraword I where each
component is either 0 or 1, we define the componentwise blend of X, Y , and I to be the
ultraword Z such that Z⟨i⟩ = X⟨i⟩ if I⟨i⟩ = 0 and Z⟨i⟩ = Y ⟨i⟩ if I⟨i⟩ = 1.

Except for componentwise multiplication, all of the above componentwise operations
can be implemented in constant time on the restricted UWRAM using standard word-level
parallelism techniques [12,24] (see the full version for details on blend). For our purposes, we
will need componentwise multiplication as an instruction (for evaluating hash functions in
parallel) and thus we include this in the instruction set of the UWRAM. This is the UWRAM
model that we will use throughout the rest of the paper. Note that all of the componentwise
operations are widely supported directly in modern vector processing architectures. For
instance, a componentwise multiplication (e.g., the vpmullw operation) is defined in Intel’s
AVX2 vector extension [16].

We will need componentwise operations on components that are small constant multiples
of w. In particular, we will need a 2w-bit componentwise multiplication that multiplies w/2
components of w bits and returns the w/2 resulting components of 2w bits. Specifically,
let X = ⟨0, xw−2, . . . , 0, x2, 0, x0⟩ and Y = ⟨0, yw−2, . . . , 0, y2, 0, y0⟩, i.e., X and Y store w/2
components aligned at the even positions. The 2w-bit componentwise multiplication is
the ultraword Z = ⟨z+

w−2, z−
w−2, . . . , z+

2 , z−
2 , z+

0 , z−
0 ⟩ where z+

i and z−
i is the leftmost and

rightmost w bits, respectively, of the 2w-bit product of xi and yi. We can implement 2w-bit
componentwise multiplication using standard techniques in constant time on the UWRAM.
See the full version for details.

Finally, the UWRAM model supports the compress operation that, given X, returns the
word that results from concatenating the rightmost bit of each component of X. We do not
need the corresponding inverse spread operation, defined by Farzan et al. [21].

2.2 Memory Access
The UWRAM supports standard memory access operations that read or write a single word
or a sequence of w contiguous words. More interestingly, the UWRAM also supports scattered
access operations that access w memory locations (not necessarily contiguous) in parallel.
Given an ultraword A containing w memory addresses, a scattered read loads the contents of
the addresses into an ultraword X, such that X⟨i⟩ contains the contents of memory location
A⟨i⟩. Given ultrawords X and A a scattered write sets the contents of memory location
A⟨i⟩ to be X⟨i⟩. Scattered memory accesses captures the memory model used in IBM’s Cell
architecture [15]. They also appear (e.g., vpgatherdd) in Intel’s AVX2 vector extension [16].
Scattered memory access operations were also proposed by Larsen and Pagh [26] in the
context of the I/O model of computation. Note that while the addresses for scattered writes
must be distinct, we can read simultaneously from the same address. We can use this to
efficiently copy x into all w components of an ultraword X. To do so, create the ultraword
⟨0, . . . , 0⟩ by left-shifting any ultraword by w2 bits, write x to address 0, and do a scattered
read on ⟨0, . . . , 0⟩. We say that we load x into X.

3 Computing Multiply-Shift in Parallel

We show how to efficiently compute a universal hash function in parallel. The multiply-shift
hashing scheme is a standard and practically efficient family of universal hash functions due
to Dietzfelbinger et al. [18]. For some integer 1 ≤ c ≤ w, define the class Hc = {ha | 0 < a <

SWAT 2022

18:6 Predecessor on the Ultra-Wide Word RAM

2w and a is odd} of hash functions where ha(x) = (ax mod 2w) ≫ (w − c). Each function
in Hc maps from w-bit to c-bit integers. The class Hc is universal in the sense that for any
x ̸= y and for ha ∈ Hc selected uniformly at random, it holds that P [ha(x) = ha(y)] ≤ 2/2c.

We will show how to evaluate w such functions in constant time. Given X⟨i⟩ = xi,
A⟨i⟩ = ai and C⟨i⟩ = 2ci where hi(x) = (aix mod 2w) ≫ (w − ci) the goal is to compute
H⟨i⟩ = hi(xi). To do so we first evaluate the functions in two rounds of w/2 functions each,
and then combine the results.

Step 1: Evaluate the hash function on the even indices. We construct an ultraword
Heven containing all the values of hi(xi) at all even indices i. First construct the ultrawords

C ′ = ⟨0, 2cw−2 , . . . , 0, 2c0⟩
T ′ = ⟨0, aw−2xw−2 mod 2w, . . . , 0, a0x0 mod 2w⟩.

To do so, we do componentwise multiplication of C with the constant M = ⟨0, 1, . . . , 0, 1⟩
and componentwise multiplications of A, X, and M . Then, we do a 2w-bit multiplication of
C ′ and T ′ and right shift the result by w. This produces the ultraword

Heven = ⟨⋆, (aw−2xw−2 mod 2w) ≫ (w − cw−2), . . . , ⋆, (a0x0 mod 2w) ≫ (w − c0)⟩

Thus, all even indices in Heven store the resulting hash values of the integers at the even
indices in the input. We will not need the values in the odd indices (resulting from the 2w-bit
multiplication and the right shift) and therefore these are marked with a wildcard symbol ⋆.

Step 2: Evaluate the hash function on the odd indices. Symmetrically, we now construct
the ultraword Hodd containing hi(xi) at all odd indices i. To do so, repeat step 1 and modify
the shifting to align the computation for the odd indices. More precisely, right shift X, C

and A by w and repeat step 1, then left shift the result by w to align the results back to the
odd positions. This produces the ultraword

Hodd = ⟨(aw−1xw−1 mod 2w) ≪ cw−1, ⋆, . . . , (a1x1 mod 2w) ≪ c1, ⋆⟩

Step 3: Combine the results. Finally, we combine the results by blending Heven and Hodd
using I = ⟨1, . . . , 1⟩ − M , producing the ultraword H of the even indices of Heven and the
odd indices of Hodd.

This takes constant time since componentwise multiplication, 2w-bit multiplication,
shifting, blending, loading 1 into ⟨1, . . . , 1⟩, and componentwise subtraction all run in
constant time. Hence, we can evaluate each case of w/2 hash functions in constant time and
combine the results in constant time. In summary, we have the following result.
▶ Lemma 3. Given X⟨i⟩ = xi, A⟨i⟩ = ai, C⟨i⟩ = 2ci , and the constant M = ⟨0, 1, . . . , 0, 1⟩
we can evaluate each of the w multiply-shift hash functions hi(x) = (aix mod 2w) ≫ (w − ci)
by computing the ultraword H = ⟨hw−1(xw−1), . . . , h0(x0)⟩ in constant time on a UWRAM.

4 The w-Parallel Dictionary

We now show how to construct the w-parallel dictionary of Theorem 2. To do so we use a
dictionary by Dietzfelbinger et al. that implements a dynamic perfect hashing strategy [19].
Their dictionary already supports insert and delete in amortized expected constant time.
Furthermore, it supports sequential member queries (i.e. “is x ∈ S”) in worst case constant
time. We will show that we can use scattered memory operations to run w member queries
simultaneously, thus implementing pMember in constant time.

P. Bille, I. L. Gørtz, and T. Stordalen 18:7

4.1 Dynamic Perfect Hashing
In this section we briefly describe the contents of the data structure of Dietzfelbinger et
al. [19]. Note that we use the multiply-shift hashing scheme, while they use another class
of universal hash functions. Multiply-shift satisfies all the necessary constraints and the
analysis from [19] still works. It does however incur a multiplicative, constant space overhead
for our arrays since the range of a multiply-shift function is a power of two.

The main idea of the data structure is as follows. Let S be a set of w-bit integers. Choose
h ∈ Hc and partition S into 2c = Θ(n) sets S0, . . . , S2c−1 where Si = {x | x ∈ S and h(x) =
i}. Each set Si is stored in a separate array using a hash function hi. Dietzfelbinger et al.
show how to implement the operations insert and delete such that they maintain that hi has
no collisions on Si.

The data structure consists of the following.
For each Si, store an array Ti of size 2ci . Let hi(x) = (aix mod 2w) ≫ (w − ci). For
each x ∈ Si let Ti[hi(x)] = x, i.e. the position that x hashes to stores x. If there is no
x ∈ Si that hashes to j, then Ti[j] = 2w−1 if j = 0 and Ti[j] = 0 otherwise. We claim
that hi(0) is always zero and hi(2w−1) is never zero, so it follows from this construction
that x ∈ Si if and only if Ti[hi(x)] = x. We have that hi(2w−1) is not zero because

hi(2w−1) = (ai2w−1 mod 2w) ≫ (w − ci) = 2w−1 ≫ (w − ci) ≥ 1.

The second step follows since ai is odd; then ai2w−1 = 2w−1 + (ai − 1)2w−1, and the
latter term is 0 modulo 2w since ai − 1 is even. The last step follows because ci ≥ 1.
An array T of size 2c. At index T [i] we store the 5-tuple (addr(Ti), 2ci , ai, ⋆, ⋆) where ⋆

are book-keeping values used by insert and delete. Note that 2ci and ai encode hi.
The integers a and 2c representing the top-level hash function h(x) = (ax mod 2w) ≫
(w − c), as well as addr(T).

It follows from this construction that x ∈ S if and only if Ti[hi(x)] = x where i = h(x).
Dietzfelbinger et al. show that the data structure uses linear space, that member runs in
worst-case constant time, and that insert and delete run in amortized expected constant
time [19].

Extending the Data Structure. We extend this data structure by storing the constant
M = ⟨0, 1, . . . , 0, 1, 0, 1⟩ from Section 3 used to evaluate multiply-shift functions in parallel.
This increases the space of the data structure to O(n + w). Note that linear space in w is
needed even to store the input to a pMember query.

4.2 Parallel Queries
In this section, we begin by describing a single member query, before we show how to run w

copies of the member query in parallel to support pMember. We compute member(x) as
follows.
1. Using a and 2c, compute j = h(x).
2. Let q = addr(T) + 5j = addr(T [j]) (recall that each index in T stores five words). Read

the values stored at q, q + 1 and q + 2 to get respectively addr(Tj), 2cj and aj , the first
three words stored at T [j]. Compute k = hj(x).

3. Check whether the value stored at addr(Tj) + k = addr(Tj [k]) is equal to x.
The parallel algorithm runs this algorithm for all w inputs simultaneously. Given X =
⟨xw−1, . . . , x0⟩ we implement pMember(X) as follows. Each of the steps below executes the
corresponding step above in parallel for each of the w inputs.

SWAT 2022

18:8 Predecessor on the Ultra-Wide Word RAM

Step 1: Evaluate the top-level hash function. Load the two ultrawords A = ⟨a, . . . , a⟩ and
C = ⟨2c, . . . , 2c⟩. Compute the ultraword J = ⟨h(xw−1), . . . , h(x0)⟩ using the multiply-shift
algorithm of Lemma 3.

Step 2: Evaluate each of the second-level hash functions. Load F = ⟨5, . . . , 5⟩ and P =
⟨addr(T), . . . , addr(T)⟩. Compute Q = P +FJ . Then Q⟨i⟩ = addr(T)+5J⟨i⟩ = addr(T [J⟨i⟩]).
Do scattered reads of Q, Q + ⟨1, . . . , 1⟩, and Q + ⟨2, . . . , 2⟩ to produce the ultrawords P ′, C ′,
and A′. We have that

P ′ = ⟨addr(TJ⟨w−1⟩), . . . , addr(TJ⟨0⟩)⟩
C ′ = ⟨2cJ⟨w−1⟩ , . . . , 2cJ⟨0⟩⟩
A′ = ⟨aJ⟨w−1⟩, . . . , aJ⟨0⟩⟩

Compute the ultraword K = ⟨hJ⟨w−1⟩(xw−1), . . . , hJ⟨0⟩(x0)⟩ using the multiply-shift
algorithm of Lemma 3.

Step 3: Check whether the inputs are present in the dictionary. Do a scattered read of
P ′ + K and name the result R. Then R⟨i⟩ = Tj [hj(xi)] where j = h(xi). Return the result
I of componentwise equality between X and R. That is

I⟨i⟩ =
{

1 if X⟨i⟩ = R⟨i⟩
0 otherwise

Evaluating the hash functions in steps 1 and 2 takes constant time according to Lemma 3.
The remaining operations are scattered reads, loads and componentwise operations, all of
which run in constant time. Since there is only a constant number of operations, pMember
runs in constant time. This concludes the proof of Theorem 2.

4.3 Satellite Data

Suppose we associate some value data(x) with each x ∈ S. We extend the data structure to
support the following operation, where X = ⟨xw−1, . . . , x0⟩ as above.

pRetrieve(X): returns a pair (I, D) where I is the result of pMember(X) and

D⟨i⟩ =
{

addr(data(xi)) if I⟨i⟩ = 1, i.e if xi ∈ S

undefined otherwise

We return addr(data(x)) instead of data(x) since the data would not fit into an ultraword if
data(x) requires more than one word to store.

We extend the data structure as follows to support pRetrieve. Store two words for each
index in Ti. For each x ∈ Si, the first word in Ti[hi(x)] stores x and the second stores
addr(data(x)). The remaining entries store either 0 or 2w−1, as above.

To do the retrieval, first compute I = pMember(X). However, in step 3, multiply K by
⟨2, . . . , 2⟩ before the scattered read since each index in Ti now stores two words. Also, add
⟨1, . . . , 1⟩ to P ′ + ⟨2, . . . 2⟩K and do a scattered read to compute the ultraword D. The space
of the data structure remains O(n + w) (assuming that data(x) uses constant space), and
pRetrieve runs in constant time.

P. Bille, I. L. Gørtz, and T. Stordalen 18:9

5 The xtra-fast Trie

In this section we describe our data structure, the xtra-fast trie, which supports predecessor
in worst case constant time and insert and delete in amortized expected constant time.

Below we assume that we have keys of w − 1 bits each and give a solution that uses
O(n + w) space. At the end of this section we will reduce the space to O(n) and extend the
solution to w-bit keys, proving Theorem 1.

5.1 Data Structure
Consider the compacted trie T over the binary representation of the elements in S. For each
node v ∈ T define str(v) to be the bitstring encoded by the path from the root to v in T .
Also let min(v) and max(v) be the smallest and largest leaves in the subtree of v, respectively.
By min(v) and max(v) we refer both to a leaf and to the value the leaf represents.

For each edge (u, v) ∈ T , let label(u, v) be str(u) followed by the first bit on the edge
(u, v). Define key(u, v) to be label(u, v) followed by a single 1-bit and w − |label(u, v)| − 1
zeroes. Note that |key(u, v)| = w and that the keys of two distinct edges in T always differ.
See Figure 2 for an example.

We define the exit edge for an integer x to be the edge in T where the match of x ends.
In other words, it is the edge (u, v) ∈ T such that label(u, v) is a prefix of x and |label(u, v)|
is maximum. See Figure 2 for an example. It is possible that x has no exit edge if the root
has fewer than two children.

Our data structure consists of the following:
A sorted, doubly linked list L of the leaves of T , i.e., the elements of S.
A dictionary D supporting parallel queries using Theorem 2. For each edge (u, v) ∈ T we
store an entry in D with the key key(u, v) and data(u, v) = (addr(min(v)), addr(max(v))).
Here, addr(min(v)) and addr(max(v)) are the addresses to the corresponding elements in
L, and we denote the addresses to min(v) and max(v) as the min- and max-pointer of
(u, v).
The two ultraword constants M ′ and H described in the next section.

Storing L and the ultraword constants takes O(n + w) space combined. Since T is compacted
there are O(n) entries in D, so by Theorem 2 the dictionary also uses O(n + w) space.

5.2 Predecessor Queries
The main idea of the predecessor query for x is to first find the exit edge of x by simultaneously
searching for all prefixes of x in D. Then we use the min- and max-pointer of the exit edge
to find the predecessor of x. If x has no exit edge, then the root does not have an outgoing
edge matching the leftmost bit of x. If the leftmost bit of x is 1, the predecessor of x is the
largest leaf in the left subtree of the root, and otherwise x has no predecessor. Assuming
that x has an exit edge, the procedure has three steps.

Step 1: Compute all prefixes of x. Let bw−2bw−3 · · · b0 be the binary representation of x

of length w − 1. We compute the ultraword

X = ⟨bw−2bw−3 · · · b01 , bw−2bw−3 · · · b110 , . . . , 10 · · · 0⟩.

That is, X⟨i⟩ contains the prefix of x of length i followed by a 1-bit and w − i − 1 zeroes.
Thus, for any edge (u, v) ∈ T such that label(u, v) is the length-i prefix of x, we have
X⟨i⟩ = key(u, v). We compute X as follows.

SWAT 2022

18:10 Predecessor on the Ultra-Wide Word RAM

Figure 2 An xtra-fast trie for S ={001000,001010,001011,101000,101010,110110,110111,111100}.
The dashed edge and nodes illustrate how the trie would change if x = 110101 were inserted. The
exit edge for x is (u, v) since we match the bitstring 1101 but do not match the next 1 on (u, v).
Similarly, the exit edge for 100100 is (s, t). We have that key(u, v) = label(u, v)1000 = 1101000
where the underlined part is what we append to the labels to disambiguate the keys. Similarly,
key(r, s) = 1100000 and key(s, t) = 1010000. The dictionary entry of (s, u) has key(s, u) = 1110000,
and the min- and max-pointer of (s, u) are addr(min(u)) and addr(max(u)). Similarly, the min-pointer
of (r, s) is to min(s) = min(t) and the max-pointer is to max(s) = max(u). Note that if we insert x

we would have to update the min-pointer of (s, u), since x < min(v). However, the min-pointer of
(r, s) remains unchanged since min(t) < x.

Let M ′ be the constant such that M ′⟨i⟩ consists of i consecutive 1-bits followed by w − i

consecutive 0-bits. Let H be the constant where the (i+1)th leftmost bit in H⟨i⟩ is 1 and the
remaining bits are zeroes. First load x into X such that X = ⟨x, x, . . . , x⟩. Then compute
X = (X & M ′) | H.

Step 2: Find the exit edge (u, v) of x. First do (I, P) = pRetrieve(X) on D. Then
compute c = compress(I) such that the ith rightmost bit in c is 1 if I⟨i⟩ = 1 and zero
otherwise. Note that x has no exit edge if c = 0. Find the index k of the leftmost bit in c

that is 1 (see [23]). Then X⟨k⟩ = key(u, v) where (u, v) is the exit edge of x. Furthermore,
the values stored at the addresses P ⟨k⟩ and P ⟨k⟩ + 1 are the min- and max-pointers of (u, v),
respectively.

Step 3: Find the predecessor of x. Use the min- and max-pointer of (u, v) found in
step 2 to retrieve min(v) and max(v). If x ≥ max(v) then return max(v), otherwise return
the element immediately left of min(v) in L. Note that there might not be an element
immediately left of min(v) if x is smaller than than everything in S, in which case x has no
predecessor.

Since we search for all prefixes of x and take the edge corresponding to the longest prefix
found, we find the exit edge (u, v) of x. If x ∈ S, then x = v = max(v) and we correctly
return that x is the predecessor of itself. If x ̸∈ S then the path to where x would have
been located if it were in T branches off (u, v) either to the left (if x < min(v)) or right
(if x > max(v)). In the first case, predecessor(x) is the element located immediately left of
min(v) in T , and in the second case predecessor(x) is max(v).

By Theorem 2 the parallel dictionary query in step 2 takes worst case constant time.
Finding the leftmost bit that is 1 takes constant time on the word RAM [23]. The remaining
operations are standard operations available in the model, so the procedure runs in constant
time.

P. Bille, I. L. Gørtz, and T. Stordalen 18:11

5.3 Insertions

The main idea of the insertion procedure is as follows. Since T is compacted, inserting a
new leaf x will cause only a constant number of edges to be inserted and removed, so we can
make these changes sequentially. Furthermore, some of the at most w − 1 edges on the path
from the root to x might have their min- or max-pointers changed, and we will update these
edges in parallel.

Consider inserting x = 110101 in the trie in Figure 2. When x is inserted we add a new
leaf for x, as well as a new node p at the location where the path to x branches off the exit
edge (u, v) of x. This removes the edge (u, v), but adds the three new edges (u, p), (p, x) and
(p, v). Furthermore, we must update the min-pointer of (s, u), because min(v) was replaced
by x as the smallest leaf under u. On the other hand, we do not update the min-pointer of
(r, s) because min(t) is smaller than x. Note that we do not explicitly store internal nodes
and therefore do not add p anywhere in the data structure.

We now describe the insertion procedure. First we note that if x does not have an exit
edge it is because the root does not have an outgoing edge which shares the same leftmost
bit as x. This case is easily solved by adding an edge from the root to the new leaf x and
adding x to either the start or end of L. We will now assume that x has an exit edge, and
also that x branches off its exit edge to the left; the other case is symmetric.

Step 1: Find the predecessor of x. Do a predecessor query as described in Section 5.2,
which determines

The predecessor of x in L.
The exit edge (u, v) of x, label(u, v) and data(u, v) = (addr(min(v)), addr(max(v))).
The result (I, P) of pRetrieve(X) on D.

Step 2: Insert x in L. Insert x immediately to the right of its predecessor in L.

Step 3: Update edges. We insert (u, p), (p, x) and (p, v) and remove (u, v) from D. We find
the labels of the three edges to insert as follows. We have that label(u, p) = label(u, v) since
(u, p) is the edge (u, v) shortened by adding the node p and since only the first character of
the edge affects the label. By definition, label(p, x) and label(p, v) consist of str(p) with a zero
and a one appended, respectively. We compute str(p) by finding the longest common prefix p̂

of x and min(v). To do so, do bitwise XOR between x and min(v) and find the index k of the
leftmost bit that is 1 in the result (see [23]). Now k indicates the leftmost bit where x and
min(v) differ. To extract the longest common prefix compute p̂ = x & ∼((1 ≪ (k + 1)) − 1).
Given the labels we can easily construct the keys for the edges.

We now construct the satellite data for the edges. Both the min- and max-pointer for
(p, x) are addr(x) since x is a leaf. For (p, v) they are addr(min(v)) and addr(max(v)), which
were determined during the predecessor query. Finally, the min-pointer for (u, p) is addr(x)
and the max-pointer is addr(max(v)).

Step 4: Update min-pointers. We update the min-pointers for the edges on the path from
the root to u that are incorrect after inserting x. Note that inserting x cannot invalidate any
max-pointers since we assumed that x branched off its exit edge to the left. The edges that
must be updated are exactly those that have a min-pointer to min(v), since x has replaced
min(v) as the smallest leaf under u.

SWAT 2022

18:12 Predecessor on the Ultra-Wide Word RAM

Consider the result (I, P) from the pRetrieve query. We begin by setting I⟨k′⟩ = 0 for the
index k′ corresponding to the exit edge (u, v) of x (we know k′ from the predecessor query).
The indices in I that now contain 1 indicate the edges on the path from the root to u.

Next we identify the edges that needs to be updated by creating I ′ where I ′⟨i⟩ = 1 if and
only if both I⟨i⟩ = 1 and what is stored at address P ⟨i⟩ is the address of min(v). To do so,
first do a scattered read of P and store the result in M . Now M contains addr(min(b)) for
each edge (a, b) on the path to u.1 Note the value of P ⟨i⟩ is arbitrary if I⟨i⟩ = 0, i.e. if no
edge has the length-i prefix of x as its label. Load addr(min(v)) into the ultraword V . Let E

be the result of componentwise equality between M and V . Then E⟨i⟩ = 1 if and only if
what is stored at address P ⟨i⟩ is addr(min(v)). Finally compute I ′ = I & E.

Now we use P and I ′ to update the incorrect min-pointers. First, load the address of the
node for x into U . Then compute B by blending M (the result of the scattered read of P)
and U conditioned on I ′ such that

B⟨i⟩ =
{

M⟨i⟩ if I ′⟨i⟩ = 0 (i.e. the value already at the address P ⟨i⟩)
U⟨i⟩ if I ′⟨i⟩ = 1 (i.e. the address of x)

Finally, do a scattered write of B to the addresses in P . Hence, what is stored at the
address P ⟨i⟩ remains the same if I ′⟨i⟩ = 0 and is replaced by the address of x otherwise.

The predecessor query in step 1 takes constant time. The operations in step 2 and step 4
are all standard RAM or UWRAM operations, except for finding the leftmost 1-bit which
takes constant time [23]. The dictionary updates in step 3 run in amortized expected constant
time by Theorem 2. Since the rest of step 3 consists of standard operations, the running
time for insertions is amortized expected constant.

5.4 Deletions
The deletion procedure is essentially the inverse of the insertion procedure. We assume that
x is the left child of its parent p; the other case is symmetric.

Step 1: Find x. Do a predecessor query for x. Since x ∈ S, the predecessor of x is itself.
This determines

The position of x in L.
The exit edge (p, x) for x, along with label(p, x). Since x ∈ S, this edge must end in the
leaf for x.
The result (I, P) of pRetrieve(X) on D.

Step 2: Update min-pointers. If p is the root (i.e. if |label(p, x)| = 1) we remove the edge
(p, x) from D and remove x from L which completes the deletion of x. Otherwise p is an
internal node and must have another child which we denote by v. Consider the edges on the
path to p. Any min-pointer to x should be replaced by the address of min(v), since min(v) is
the successor of x and also in the subtree of all of these edges. We find min(v) in the node
immediately right of x in L. As we did for insertions, replace any min-pointer that is an
address of x by the address of min(v) in parallel using I and P .

1 If x branched off to the right of its exit edge, we would do a scattered read of P + ⟨1, . . . , 1⟩ to load the
max-pointers instead of min-pointers.

P. Bille, I. L. Gørtz, and T. Stordalen 18:13

Step 3: Delete edges. We delete (p, x) and (p, v) from D. Determine label(p, v) by flipping
the last bit in label(p, x). Using the labels we easily find the keys. Note that we do not
explicitly delete the edge (u, p) or insert the edge (u, v). These two edges share the same key,
and the min-pointer of (u, p) was changed to the address of min(v) in step 2.

Step 4: Update L. Remove x from L.

Steps 1, 2 and 4 all take constant time (see Sections 5.2 and 5.3). The two deletions in
step 3 take amortized constant time according to Theorem 2. The remainder of step 3 takes
constant time, so deletions run in amortized expected constant time.

5.5 Reducing to Linear Space and Supporting w-bit Keys

Here, we reduce the space to O(n) and show how to support w-bit keys, concluding the proof
of Theorem 1.

The O(w) term in the space bound above is due to the w-parallel dictionary D and O(1)
ultraword constants. To avoid this when n = o(w), we will initially support predecessor,
insert and delete using the dynamic fusion tree by Pătraşcu and Thorup [33] (based on the
fusion tree by Fredman and Willard [23]), which uses linear space and supports all three
operations in constant time for sets of size wO(1). Simultaneously, we build the ultraword
constants we need over the course of Θ(w) insertions, maintaining linear space. When n ≥ w,
the constants have been built and we move all elements into the trie. If at any point n ≤ w/2,
we move all elements from the trie into a fusion tree and remove the trie and the ultraword
constants, leaving us with linear space and Θ(w) insert operations in which to rebuild the
constants. Updates still run in amortized expected constant time since we always do Ω(w)
updates before we move O(w) elements.

To extend the solution to work with w-bit keys, we partition the input set S into S0 and
S1 where Si = {s | s ∈ S and the leftmost bit of s is i}, and store an xtra-fast trie for each
set. Suppose the leftmost bit of an integer x is i. An insert, delete or predecessor operation
on x is performed on the data structure for Si. Additionally, if i = 1 and the predecessor
query on S1 returns that x has no predecessor, we return the largest element in S0, or report
that x has no predecessor if S0 is empty.

6 Conclusion and Open Problems

We have studied the predecessor problem on the UWRAM model of computation. We have
given a linear space data structure that supports predecessor queries in worst case constant
time and updates in amortized expected constant time.

Furthermore, we have shown how to implement a w-parallel dictionary on the UWRAM.
The dictionary supports w simultaneous membership queries in worst case constant time
and individual updates in amortized expected constant time.

We wonder if it is possible to achieve constant time with high probability for all operations
in the predecessor problem. The limiting factor for our solution is the time for updates
in the w-parallel dictionary. There are dictionaries that achieve constant time with high
probability for all operations in the word RAM model, e.g. [17]. However, such dictionaries
seem to require hash functions that are difficult to evaluate in parallel on the UWRAM. For
instance, [17] uses the modulo operator, for which we cannot see an obvious way to make a
component-wise version.

SWAT 2022

18:14 Predecessor on the Ultra-Wide Word RAM

References
1 Miklós Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Comb.,

8(3):235–247, 1988. doi:10.1007/BF02126797.
2 Arne Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37th

FOCS, pages 135–141, 1996. doi:10.1109/SFCS.1996.548472.
3 Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?

J. Comput. Syst. Sci., 57(1):74–93, 1998. doi:10.1006/jcss.1998.1580.
4 Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter. On sorting strings

in external memory (extended abstract). In Proc. 29th STOC, pages 540–548, 1997. doi:
10.1145/258533.258647.

5 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci., 65(1):38–72, 2002. doi:10.1006/jcss.2002.1822.

6 Djamal Belazzougui. Worst-case efficient single and multiple string matching on packed texts
in the word-RAM model. J. Discrete Algorithms, 14:91–106, 2012. doi:10.1016/j.jda.2011.
12.011.

7 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone minimal
perfect hashing: searching a sorted table with O(1) accesses. In Proc. 20th SODA, pages
785–794, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496856.

8 Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Proc. 17th
SPIRE, pages 159–172, 2010. doi:10.1007/978-3-642-16321-0_15.

9 Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. Cache-oblivious string
B-trees. In Proc. 25th PODS, pages 233–242, 2006. doi:10.1145/1142351.1142385.

10 Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj. Time-
space trade-offs for Lempel-Ziv compressed indexing. Theor. Comput. Sci., 713:66–77, 2018.
doi:10.1016/j.tcs.2017.12.021.

11 Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic indexing for packed
strings. In Proc. 28th CPM, pages 6:1–6:11, 2017. doi:10.4230/LIPIcs.CPM.2017.6.

12 Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Partial sums on the ultra-
wide word RAM. Theor. Comput. Sci., 905:99–105, 2022. Announced at TAMC 2020.
doi:10.1016/j.tcs.2022.01.002.

13 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and
Oren Weimann. Random access to grammar-compressed strings and trees. SIAM J. Comput.,
44(3):513–539, 2015. doi:10.1137/130936889.

14 Andrej Brodnik, Svante Carlsson, Michael L. Fredman, Johan Karlsson, and J. Ian Munro.
Worst case constant time priority queue. J. Syst. Softw., 78(3):249–256, 2005. doi:10.1016/
j.jss.2004.09.002.

15 Thomas Chen, Ram Raghavan, Jason N. Dale, and Eiji Iwata. Cell Broadband engine
architecture and its first implementation - A performance view. IBM J. Res. Dev., 51(5):559–
572, 2007. doi:10.1147/rd.515.0559.

16 Intel Corporation. Intel® advanced vector extensions programming reference. Intel Corporation,
2011.

17 Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash
functions and dynamic hashing in real time. In Proc. 17th ICALP, pages 6–19, 1990. doi:
10.1007/BFb0032018.

18 Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable
randomized algorithm for the closest-pair problem. J. Algorithms, 25(1):19–51, 1997. doi:
10.1006/jagm.1997.0873.

19 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
J. Comput., 23(4):738–761, 1994. doi:10.1137/S0097539791194094.

20 Martin Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th FOCS,
pages 137–143, 1997. doi:10.1109/SFCS.1997.646102.

https://doi.org/10.1007/BF02126797
https://doi.org/10.1109/SFCS.1996.548472
https://doi.org/10.1006/jcss.1998.1580
https://doi.org/10.1145/258533.258647
https://doi.org/10.1145/258533.258647
https://doi.org/10.1006/jcss.2002.1822
https://doi.org/10.1016/j.jda.2011.12.011
https://doi.org/10.1016/j.jda.2011.12.011
http://dl.acm.org/citation.cfm?id=1496770.1496856
https://doi.org/10.1007/978-3-642-16321-0_15
https://doi.org/10.1145/1142351.1142385
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.4230/LIPIcs.CPM.2017.6
https://doi.org/10.1016/j.tcs.2022.01.002
https://doi.org/10.1137/130936889
https://doi.org/10.1016/j.jss.2004.09.002
https://doi.org/10.1016/j.jss.2004.09.002
https://doi.org/10.1147/rd.515.0559
https://doi.org/10.1007/BFb0032018
https://doi.org/10.1007/BFb0032018
https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.1006/jagm.1997.0873
https://doi.org/10.1137/S0097539791194094
https://doi.org/10.1109/SFCS.1997.646102

P. Bille, I. L. Gørtz, and T. Stordalen 18:15

21 Arash Farzan, Alejandro López-Ortiz, Patrick K. Nicholson, and Alejandro Salinger. Algorithms
in the ultra-wide word model. In Proc. 12th TAMC, pages 335–346, 2015. doi:10.1007/
978-3-319-17142-5_29.

22 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

23 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)90040-4.

24 Torben Hagerup. Sorting and searching on the word RAM. In Proc. 15th STACS, pages
366–398, 1998. doi:10.1007/BFb0028575.

25 Yijie Han. Deterministic sorting in O(n log log n) time and linear space. J. Algorithms,
50(1):96–105, 2004. doi:10.1016/j.jalgor.2003.09.001.

26 Kasper Green Larsen and Rasmus Pagh. I/O-efficient data structures for colored range and
prefix reporting. In Proc. 23rd SODA, pages 583–592, 2012. doi:10.1137/1.9781611973099.
49.

27 R. Leben, M. Miletic, M. S̆pegel, A. Torst, A. Brodnik, and K. Karlsson. Design of high
performance memory module on PC100. In Proc. Electrotechnical and Computer Science
Conference (ERK), pages 75–78, 1999.

28 Peter Bro Miltersen. Lower bounds for union-split-find related problems on random access
machines. In Proc. 26th STOC, pages 625–634, 1994. doi:10.1145/195058.195415.

29 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures
and asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998. doi:
10.1006/jcss.1998.1577.

30 Gonzalo Navarro and Javiel Rojas-Ledesma. Predecessor search. ACM Comput. Surv.,
53(5):105:1–105:35, 2020. doi:10.1145/3409371.

31 Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proc.
38th STOC, pages 232–240, 2006. doi:10.1145/1132516.1132551.

32 Mihai Pătraşcu and Mikkel Thorup. Randomization does not help searching predecessors.
In Proc. 18th SODA, pages 555–564, 2007. URL: http://dl.acm.org/citation.cfm?id=
1283383.1283443.

33 Mihai Pătraşcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and
predecessor search. In Proc. 55th FOCS, pages 166–175, 2014. doi:10.1109/FOCS.2014.26.

34 James Reinders. Intel® AVX-512 instructions. Intel® Corporation, 2013.
35 Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor searching in the cell

probe model. J. Comput. Syst. Sci., 74(3):364–385, 2008. doi:10.1016/j.jcss.2007.06.016.
36 Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo Gabrielli,

Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanaël Prémillieu, Alastair Reid,
Alejandro Rico, and Paul Walker. The ARM scalable vector extension. IEEE Micro, 37(2):26–
39, 2017. doi:10.1109/MM.2017.35.

37 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inform. Process. Lett., 6(3):80–82, 1977. doi:10.1016/0020-0190(77)90031-X.

38 Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Math. Syst. Theory, 10:99–127, 1977. doi:10.1007/BF01683268.

39 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inform.
Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

SWAT 2022

https://doi.org/10.1007/978-3-319-17142-5_29
https://doi.org/10.1007/978-3-319-17142-5_29
https://doi.org/10.1145/828.1884
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1016/j.jalgor.2003.09.001
https://doi.org/10.1137/1.9781611973099.49
https://doi.org/10.1137/1.9781611973099.49
https://doi.org/10.1145/195058.195415
https://doi.org/10.1006/jcss.1998.1577
https://doi.org/10.1006/jcss.1998.1577
https://doi.org/10.1145/3409371
https://doi.org/10.1145/1132516.1132551
http://dl.acm.org/citation.cfm?id=1283383.1283443
http://dl.acm.org/citation.cfm?id=1283383.1283443
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1016/j.jcss.2007.06.016
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1007/BF01683268
https://doi.org/10.1016/0020-0190(83)90075-3

An Optimal Algorithm for Product Structure
in Planar Graphs
Prosenjit Bose !

School of Computer Science, Carleton University, Ottawa, Canada

Pat Morin !

School of Computer Science, Carleton University, Ottawa, Canada

Saeed Odak !

Department of Computer Science and Electrical Engineering, University of Ottawa, Canada

Abstract
The Product Structure Theorem for planar graphs (Dujmović et al. JACM, 67(4):22) states that any
planar graph is contained in the strong product of a planar 3-tree, a path, and a 3-cycle. We give a
simple linear-time algorithm for finding this decomposition as well as several related decompositions.
This improves on the previous O(n log n) time algorithm (Morin. Algorithmica, 85(5):1544–1558).

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Graph algorithms

Keywords and phrases Planar graphs, product structure

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.19

Related Version Full Version: https://arxiv.org/abs/2202.08870

Funding This research was partly funded by NSERC.

Acknowledgements This research was initiated at the BIRS 21w5235 Workshop on Graph Product
Structure Theory, held November 21–26, 2021 at the Banff International Research Station. The
authors are grateful to the workshop organizers and participants for providing a stimulating research
environment. We are especially grateful to Vida Dujmović for sharing Theorem 1.b with us.

1 Introduction

For two graphs G and X, the notation G ⊆ X denotes that G is isomorphic to some
subgraph of X. The following planar product structure theorems have recently been used as
a key tool in resolving a number of longstanding open problems on planar graphs, including
queue number [8], nonrepetitive chromatic number [11], adjacency labelling [10], universal
graphs [12], p-centered colouring [6], and vertex ranking [5].12

▶ Theorem 1 (Dujmović et al. [8], Ueckerdt et al. [18]). For any planar graph G, there exists:
(a) a planar graph H of treewidth at most 3 and a path P such that G ⊆ H ⊠ P ⊠K3 [8];
(b) a planar graph H of treewidth at most 4 and a path P such that G ⊆ H ⊠ P ⊠K2; and
(c) a planar graph H of treewidth at most 6 and a path P such that G ⊆ H ⊠ P [18].

1 For graphs G and X, an X-decomposition of G is a collection X := (Bx : x ∈ V (X)) of subsets of V (G)
called bags indexed by the vertices of X and such that (i) for each v ∈ V (G), X[{x ∈ V (X) : v ∈ Bx}]
is connected; and (ii) for each vw ∈ E(G), there exists some x ∈ V (X) such that {v, w} ⊆ Bx. The
width of X is max{|Bx| : x ∈ V (X)} − 1. In the special case where X is a tree, X is called a tree
decomposition of G. The treewidth tw(G) of G is the minimum width of any tree decomposition of G.

2 For two graphs G1 and G2, the strong graph product of G1 and G2, denoted G1 ⊠ G2, is a graph
whose vertex set is V (G1 ⊠G2) := V (G1) × V (G2) and that contains an edge between distinct vertices
v = (v1, v2) and w = (w1, w2) if and only if (i) v1 = w1 and v2w2 ∈ E(G2); (ii) v2 = w2 and
v1w1 ∈ E(G1); or (iii) v1w1 ∈ E(G1) and v2w2 ∈ E(G2).

© Prosenjit Bose, Pat Morin, and Saeed Odak;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jit@scs.carleton.ca
https://orcid.org/0000-0002-8906-0573
mailto:morin@scs.carleton.ca
https://orcid.org/0000-0003-0471-4118
mailto:saeed.odak@gmail.com
https://doi.org/10.4230/LIPIcs.SWAT.2022.19
https://arxiv.org/abs/2202.08870
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 An Optimal Algorithm for Product Structure

In each of the applications of Theorem 1, the proofs are constructive and lead to algorithms
whose running-time is dominated by the time required to compute the relevant decomposition.
The proofs of each part of Theorem 1 are constructive and lead to O(n2) time algorithms
as observed already by Dujmović et al. [8]. Morin [16] later showed that there exists an
O(n log n) time algorithm to find the decomposition in Theorem 1.a. In the current note, we
show that there exists a linear time algorithm for finding each of the three decompositions
guaranteed by Theorem 1. This immediately gives an O(n)-time algorithm for each of the
following problems on any n-vertex planar graph G:

computing an O(1)-queue layout of G [8];
nonrepetitively vertex-colouring G with O(1) colours [11];
assigning (1 + o(1)) log n-bit labels to the vertices of G so that one can determine from
the labels of vertices v and w whether or not v and w are adjacent in G [10];
mapping the vertices of G into a universal graph Un that has n1+o(1) vertices and edges
so that any pair of vertices that are adjacent in G maps to a pair of vertices that are
adjacent in Un [12];
colouring the vertices of G with O(p3 log p) colours so that each connected subgraph H

of G contains a vertex whose colour is unique in H or contains vertices of at least p+ 1
different colours [6]; and
colouring the vertices of G with O(log n/ log log log n) integers so that the maximum
colour that appears on any path P of length at most ℓ appears at exactly one vertex of
P (for any fixed ℓ ≥ 2) [5].

In addition to planar graphs, product structure theorems similar to Theorem 1 exist for
k-planar graphs, h-framed graphs, bounded-genus graphs, and graphs from apex-minor-free
families [8, 9, 2]. The existence of each of these decompositions relies at some point on
Theorem 1. Thus, the algorithm presented here can also serve as an optimal subroutine in
the computation of product structure decompositions of graphs from these classes. However,
these larger graph classes also require additional machinery that (at the time of writing)
makes finding these decompositions largely impractical.3

The remainder of this paper is organized as follows: Section 2 presents some necessary
background and notation. Section 3 reviews the proof of Theorem 1.a. Section 4 presents
the linear time algorithm for finding the decomposition in Theorem 1.a. Section 5 describes
the algorithms for finding the decompositions in Theorem 1.b and Theorem 1.c.

2 Preliminaries

Throughout this paper we use standard graph theory terminology as used in the textbook
by Diestel [7]. All graphs discussed here are simple and finite. For a graph G, V (G) and
E(G) denote the vertex and edge sets of G, respectively. We use the terms vertex and node
interchangeably, though we typically refer to the vertices of some primary graph G of interest
and refer to the nodes of some auxilliary graph (such as a spanning tree) related to G. We
say that a subgraph G′ of a graph G spans a set S ⊆ V (G) if S ⊆ V (G′).

Quotient Graphs

Given a graph G and a partition P of V (G), the quotient graph G/P is the graph with vertex
set V (G/P) := P and in which two nodes X,Y ∈ V (G/P) are adjacent if G contains at least
one edge xy with x ∈ X and y ∈ Y .

3 Possible exceptions here are cases in which a bounded-genus graph, k-planar graph, or h-framed graph
is given along with its embedding.

P. Bose, P. Morin, and S. Odak 19:3

Embeddings, Planar Graphs, and (Near-)Triangulations

An embedding ψ of a graph G associates each vertex v of G with a point ψ(v) ∈ R2

and each edge vw of G with a simple open curve ψ(vw) : (0, 1) → R2 whose endpoints4

are ψ(v) and ψ(w). We do not distinguish between such a curve ψ(vw) and the point set
{ψ(vw)(t) : 0 < t < 1}. We let ψ(V (G)) := {ψ(v) : v ∈ V (G)}, ψ(E(G)) :=

⋃
vw∈E(G) ψ(vw),

and ψ(G) := ψ(V (G)) ∪ ψ(E(G)). An embedding ψ of G is plane if ψ(vw) ∩ ψ(V (G)) = ∅
and ψ(vw) ∩ ψ(xy) = ∅ for each distinct pair of edges vw, xy ∈ E(G). A graph G is planar
if it has a plane embedding. A triangulation is an edge-maximal planar graph.

If ψ is a plane embedding of a planar graph G, then we call the pair (G,ψ) an embedded
graph and we will not distinguish between a vertex v of G and the point ψ(v) or between an
edge vw of G and the curve ψ(vw). Similarly, we will not distinguish between G and the
point set ψ(G). Any cycle in an embedded graph defines a Jordan curve. For such a cycle C,
R2 \ C has two components, one bounded and the other unbounded. We will refer to the
bounded component as the interior of C and the unbounded component as the exterior of
C. If G is an embedded triangulation, then the subgraph of G consisting of all edges and
vertices of G contained in the closure of the interior of C is called a near-triangulation.

Each component of R2 \G is a face of G and we let F (G) denote the set of faces of G. If
G is 2-connected then, for any face f ∈ F (G), the set of vertices and edges of G contained in
the boundary of f forms a cycle. We may therefore treat a face f of a 2-connected graph G

as a component of R2 \G or as the cycle of G on the boundary of f , relying on context to
distinguish between the two usages. Note that every embedded graph contains exactly one
face – the outer face – that is unbounded.

Duals and Cotrees

The dual G⋆ of an embedded graph G is the graph with vertex set V (G⋆) := F (G) and
edge set E(G⋆) := {fg ∈

(
F (G)

2
)

: E(f) ∩ E(g) ̸= ∅}.5 If T is a spanning tree of G
then the cotree T of (G,T) is the graph with vertex set V (T) := V (G⋆) and edge set
E(T) := {ab ∈ E(G⋆) : E(a) ∩ E(b)\E(T) ̸= ∅}. It is well known that, if G is connected and
T is a spanning tree of G then T is a spanning tree of G⋆ [7, Chapter 4, Exercise 42].

For our purposes, a binary tree is a rooted tree of maximum degree 3 whose root has
degree at most 2 and in which each child v of a node u is either the unique left child or
the unique right child of u. If G is a triangulation and we root T at any face f0 ∈ F (G)
that contains an edge of T , then T is a binary tree, with the classification of left and right
children determined by the embedding of G.6

Paths and Distances

A path in G is a (possibly empty) sequence of distinct vertices v0, . . . , vr with the property
that vi−1vi ∈ E(G), for each i ∈ {1, . . . , r}. The endpoints of a path v0, . . . , vr are the
vertices v0 and vr. The length of a non-empty path v0, . . . , vr is the number, r, of edges in
the path.

4 The endpoints of an open curve ψ : (0, 1) → R2 are the two points limϵ↓0 ψ(ϵ) and limϵ↓0 ψ(1 − ϵ).
5 For a set S,

(
S
2

)
denotes the

(|S|
2

)
-element set

(
S
2

)
:= {{x, y} : x, y ∈ S, x ̸= y}.

6 There is a small ambiguity here when T contains two edges of f0, in which case the unique child of f0
in T can be treated as the left or right child of f0.

SWAT 2022

19:4 An Optimal Algorithm for Product Structure

Figure 1 A binary tree T with set S ⊆ V (T) depicted in red and the model of T with respect to S.

Trees, Depth, Ancestors, and Descendants

Let T be a tree rooted at a vertex v0 ∈ V (T). For any vertex w ∈ V (T), PT (w) denotes the
path in T from w to v0. For any w0 ∈ V (T), any prefix w0, . . . , wr of PT (w0) is called an
upward path in T ; w0 is the lower endpoint of this path and wr is the upper endpoint. The
T -depth of a node w ∈ V (T) is the length of the path PT (w). The second node in PT (v) (if
any) is the T -parent of v. A vertex a ∈ V (T) is a T -ancestor of w ∈ V (T) if a ∈ V (PT (w)).
If a is a T -ancestor of w then w is a T -descendant of a.

Lowest Common Ancestors

For any two vertices v, w ∈ V (T), the lowest common ancestor lcaT (v, w) of v and w is the
node a in PT (v) ∩ PT (w) having maximum T -depth. The lowest commmon ancestor problem
is a well-studied data structuring problem that asks to preprocess a given n-vertex rooted
tree so that one can quickly return lcaT (v, w) for any two nodes v, w ∈ V (T). A number
of optimal solutions to this problem exist that, after O(n) time preprocessing using O(n)
space, can answer queries in O(1) time [4, 17, 15, 1, 3, 13]. The most recent work in this area
includes simple and practical data structures that achieve this optimal performance [1, 3, 13].

Reconstructing Binary Tree Models

Let T be a binary tree and S ⊆ V (T). An upward path v0, . . . , vr in a binary tree T is
S-non-branching if vi has degree 2 and vi /∈ S for each i ∈ {1, . . . , r − 1}. For any binary
tree T and set S ⊆ V (T), the model T ′ of T with respect to S is the binary tree obtained by
replacing each maximal S-non-branching path v0, . . . , vr with the edge v0vr; if vr−1 is the
left (respectively, right) child of vr then v0 becomes the left (respectively, right) child of vr.
See Figure 1.

▶ Lemma 2. Let T be a binary tree, let S = {x1, . . . , xd} ⊆ V (T), and let T0 be the minimal
subtree of T that spans S. Then there exists an algorithm that, given an O(1)-query time
lowest common ancestor data structure for T , computes the model T ′

0 of T0 with respect to S
in O(d2) time.

Proof. The proof is by induction on |S|. The base case |S| = 1 is trivial, since then T ′
0 = T0

is the tree with one node, which is the unique element in S.
If |S| ≥ 2, then the first step is to determine the root r of T0, which must also be the root

of T ′
0. This is easily done by first setting r := x1 and then repeatedly setting r := lcaT (r, xi)

for each i ∈ {2, . . . , d}. This step takes O(d) time.

P. Bose, P. Morin, and S. Odak 19:5

Figure 2 A (G,T)-tripod decomposition of a triangulation G (and the underlying spanning
tree T).

If r has no left child in T , then we can immediately apply induction on S \ {r} and make
the right child of r in T ′

0 the root of the model obtained by induction. The case in which r

has no right child can be handled similarly. If r has both a left child r1 and a right child r2,
then the next step is to partition S \ {r} into a set S1 of descendants of r1 and a set S2 of
descendants of r2. For each x ∈ S \ {r} there are only two possibilities for lcaT (r1, x)
1. If lcaT (r1, x) = r1 then x ∈ S1.
2. If lcaT (r1, x) = r then x ∈ S2.
Therefore, using O(d) lowest common ancestor queries, we can determine the root r of T ′

and partition S \ {r} into sets S1 and S2 that define the left and right subtrees of r. We
can now recurse on S1 to obtain a tree with root r′

1 and recurse on S2 to obtain a tree with
root r′

2. We make r′
1 the left child of r and r′

2 the right child of r to obtain the model T ′
0 of

T0. The running-time of this algorithm obeys the recurrence T (d) ≤ O(d) + T (d1) + T (d2),
where d1 + d2 ≤ d and d1, d2 ≤ d− 1. This recurrence resolves to T (d) ∈ O(d2). ◀

3 Tripod Decompositions

Refer to Figure 2. Let G be an n-vertex triangulation and let T be a spanning tree of G.
For a face uvw of G, a (G,T)-tripod Y with crotch uvw is the vertex set of three disjoint
(and each possibly empty) upward paths in T (the legs of Y) whose lower endpoints are u, v,
and w. A (G,T)-tripod decomposition is a partition of V (G) into (G,T)-tripods. Dujmović
et al. [8] proved the following result:

▶ Theorem 3. Let G be a triangulation and T be a spanning tree of G. Then there exists a
(G,T)-tripod decomposition Y such that G/Y has treewidth at most 3.

It is straightforward to verify that Theorem 3 implies Theorem 1.a by first triangulating
the given graph and then taking T to be a breadth-first spanning tree of the resulting
triangulated graph [8, Observation 35].

3.1 Tripod Decompositions from Face Orderings
We now describe how a (G,T)-tripod decompositions can be obtained from a sequence of
distinct faces of G. Throughout this section (and for the remainder of the paper):

G is an embedded triangulation with outer face f0 and
T is a spanning-tree of G rooted at a vertex v0 ∈ V (f0).

SWAT 2022

19:6 An Optimal Algorithm for Product Structure

For any subgraph f of G, we define YT (f) := f ∪
⋃

v∈V (f) PT (v).7 In words, YT (f) is the
subgraph of G that includes all the vertices and edges of f and all the vertices and edges of
each path from each vertex of f to the root of T .

Let F := f0, . . . , fr be a sequence of distinct faces of G whose first element is the outer
face f0. Let G−1 denote the graph with no vertices and, for each i ∈ {0, . . . , r}, define the
graph Gi :=

⋃i
j=0 YT (fj) and let Yi := V (Gi) \ V (Gi−1). Let GF := G0, . . . , Gr and let

YF := Y0, . . . , Yr.
Informally, we require that each of the legs of each tripod Yi have a foot on a different

vertex of Gi−1 and that the tripods Y1, . . . , Yr cover all the vertices and edges of G. Formally,
we say that the sequence F is proper if, for each i ∈ {1, . . . , r}, and each distinct v, w ∈ V (fi),
V (YT (v) ∩Gi−1) ̸= V (YT (w) ∩Gi−1). The sequence F is complete for G if Gr = G. Note
that, if F is complete, then {Y0, . . . , Yr} is a tripod decomposition of G.

From the preceding definitions it follows that, if F is proper, then Gi is 2-connected for
each i ∈ {0, . . . , r}. For any i ∈ {0, . . . , r}, consider any face f of Gi, that we now treat as a
cycle in G. An easy proof by induction shows that, for any j ∈ {0, . . . , i}, the induced graph
f [Yj] is connected. We are interested in keeping the number of tripods in Y0, . . . , Yi that
contribute to V (f) as small as possible, which motivates our next definition.

The sequence F is good if the resulting sequence of graphs GF := G0, . . . , Gr and tripods
YF := Y0, . . . , Yr satisfy the following condition: For each i ∈ {0, . . . , r} and each face f
of Gi,

|{ℓ ∈ {0, . . . , i} : V (f) ∩ Yℓ ̸= ∅}| ≤ 3 .

In words, each face of each graph Gi has vertices from at most three tripods of Y0, . . . , Yi on
its boundary. Even more, the vertices of f can be partitioned into at most three paths where
the vertices of each path belong to a single tripod. Dujmović et al. [8] prove Theorem 3 by
proving the next lemma.

▶ Lemma 4. Let G be a triangulation with a vertex v0 on its outer face f0 and let T be a
spanning tree of G rooted at v0. Then there exists a sequence F := f0, . . . , fr of distinct faces
of G that is proper, good, and complete.

▶ Remark 5. Lemma 4 is stated in terms of sequences only for convenience and could be
rephrased in terms of partial orders. Indeed, consider the partial order ≺ defined as follows:
For each i ∈ {1, . . . , r} let f ′

i be the face of Gi−1 that contains fi; then fℓ ≺ fi for each
ℓ ∈ {0, . . . , i−1} such that V (f ′

i)∩Yℓ ̸= ∅. It is straightforward to check that any linearization
of this partial order will result in the same tripod decomposition YF := {Y0, . . . , Yr}.

Dujmović et al. [8] prove Lemma 4 by giving a recursive algorithm that constructs the
face sequence F . For a face f of Gi, define the set If := {ℓ ∈ {0, . . . , i} : V (f) ∩ Yℓ ̸= ∅}.
They begin with the outer face f0 of G. To find the face fi, i > 0, they consider some face
f ̸∈ {f0, . . . , fi−1} of Gi−1 and use Sperner’s Lemma to show that there is an appropriate
face fi of G (called a Sperner triangle) that is contained in f . In particular, fi is chosen
so that the three upward paths in YF (fi) lead back to each of the (at most 3) tripods in
{Yj : j ∈ If }. See Figure 3.

This proof leads to a divide-and-conquer algorithm: After finding fi, the algorithm
recursively decomposes each of the near-triangulations that are bounded by the at most
three new faces in Si := F (Gi) \ F (Gi−1) \ {fi}. The Sperner triangle fi can easily be found

7 In all of our examples, the subgraph f will always be a single edge or single face of G.

P. Bose, P. Morin, and S. Odak 19:7

f

Ya Yb

Yc

Ya Yb

Yc

Yi

Ya Yb

Yc

Yi
fi

(a) (b) (c)

Figure 3 Each face f in Gi−1 is bounded by at most three tripods Yaf , Ybf , and Ycf and the
tripod Yi is chosen so that it connects each of these.

in time proportional to the number of faces of G in the interior of f . However, because
the resulting recursion is not necessarily balanced, a straightforward implementation of this
yields an algorithm with Θ(n2) worst-case running time.

Morin [16] later showed that, using an appropriate data structure for T , this approach
can be implemented in such a way that the resulting algorithm runs in O(n log n) time.
Essentially, Morin’s algorithm works by finding the Sperner triangle fi in time proportional
to the minimum number of faces of G contained in any of the faces in Si. In the next section,
we will show that, by using a lowest common ancestor data structure for the cotree T along
with Lemma 2, the Sperner triangle fi can be found in constant time, yielding an O(n) time
algorithm.

By now, our presentation of this material differs somewhat from that in [8, 18]. Therefore,
we now pause to explain how Lemma 4 implies Theorem 3. Let G be a triangulation, let
T be spanning tree of G, let F := f0, . . . , fr be the proper good face sequence guaranteed
by Lemma 4, and let YF := {Y0, . . . , Yr} be the resulting tripod decomposition. We now
show that there exists a chordal graph H whose largest clique has size at most 4 and that
contains G/YF . We construct the graph H so that for each i ∈ {0, . . . , r} and each face f of
Gi, H contains a clique on {Yj : j ∈ If }. To accomplish this, for each i ∈ {1, . . . , r} let f be
the face of Gi−1 that contains fi and form a clique on {Yi} ∪ {Yj : j ∈ If }. Inductively, the
elements of {Yj : j ∈ If } already form a clique, so this operation is equivalent to attaching Yi

to all the vertices of an existing clique of size at most 3. Therefore, this results in a chordal
graph H whose largest clique has size at most 4 and therefore H has treewidth at most 3 [14].

4 An O(n)-Time Algorithm

Refer to Figure 4 for an illustration of the following (probably well-known) simple lemma,
which is closely related to Sperner’s Lemma:

▶ Lemma 6. Let N be a near-triangulation with outer face v0, . . . , vr and colour each vertex
of N red or blue in such a way that v0, . . . , vℓ are coloured red for some ℓ ∈ {0, . . . , r − 1}
and vℓ+1, . . . , vr are coloured blue. Then there exists a path w0, . . . , wk in N⋆ such that
1. w0 is the inner face of N with v0vr on its boundary;
2. wk is the inner face of N with vℓvℓ+1 on its boundary; and
3. for each i ∈ {1, . . . , k}, the single edge in E(wi−1)∩E(wi) has an endpoint of each colour.

SWAT 2022

19:8 An Optimal Algorithm for Product Structure

v0

vr

v`

v`+1

f0

C

w0

wk

Figure 4 Lemma 6.

Proof. If w0 = wk, the lemma is immediately true, so assume w0 ̸= wk. Say that an edge of
N is bichromatic if one of its endpoints is red and the other is blue. Any edge that is not
bichromatic is monochromatic. The outer face f0 of N has exactly two bichromatic edges
v0vr and vℓvℓ+1 and any inner face of N has either zero or two bichromatic edges. Consider
the subgraph H of N⋆ obtained removing each edge fg ∈ E(N⋆) such that the edge in
E(f) ∩ E(g) is monochromatic. Every vertex in H has degree 0 or 2, so each connected
component of H is either an isolated vertex or a cycle. The face f0 has degree 2 so it is
contained in a cycle C of H. The two neighbours of f0 in H are w0 and wk. Therefore C
contains a path w0, . . . , wk that satisfies the conditions of the lemma. ◀

The next lemma, which is the main new insight in this paper, allows us to use Lemma 2
to find Sperner triangles in constant time.

▶ Lemma 7. Let G be a triangulation with a vertex v0 on its outer face f0; let T be a
spanning tree of G rooted at v0; let T be the cotree of (G,T) rooted at f0; let f0, . . . , fi−1 be
a good proper sequence of faces of G that yields a sequence GF := G0, . . . , Gi−1 of graphs
and a sequence YF := Y0, . . . , Yi−1 of tripods; let f ̸∈ {f0, . . . , fi−1} be a face of Gi−1, and
let S ⊆ F (G) contain exactly the (at most three) faces g ∈ F (G) such that

(i) g is contained in the interior of f ;
(ii) g contains an edge vw ∈ E(f) with v ∈ Ya and w ∈ Yb for some distinct a, b ∈ If .

Let T 0 be the minimal subtree of T that spans S. Then, if S is non-empty and fi ∈ V (T 0) is
such that each component of T 0 − fi contains at most one element of S, Then f0, . . . , fi is
good.

Proof. Let N be the near-triangulation consisting of all vertices and edges of G contained
in the closure of the interior of f . Recall that If := {j ∈ {0, . . . , i − 1} : Yj ∩ V (f) ̸= ∅}.
Since f0, . . . , fi−1 is good, |If | ≤ 3. Since S is non-empty |If | ≥ 2. For each j ∈ If , colour
each vertex v of N with the colour j if the first vertex of PT (v) in V (f) is contained in Yj .
Say that an edge or face of N is monochromatic, bichromatic, or trichromatic if it contains
vertices of one, two, or three colours, respectively.

E(f) contains exactly |If | bichromatic edges. Since each element of S is an inner face
of N that contains a bichromatic edge of f , |S| ≤ |If | ≤ 3. Let X be the subgraph of N⋆

that contains an edge fg ∈ E(N⋆) if and only if f and g are inner faces of N and the edge

P. Bose, P. Morin, and S. Odak 19:9

fi

(a) (b) (c)

Figure 5 The proof of Lemma 7.

in E(f) ∩E(g) is bichromatic. We claim that X is a subgraph of T . In order to show this,
we need only argue that each edge uv of T in the interior of f is monochromatic. Consider
any uv ∈ E(N) \ E(f) where u is the T -parent of v. If v ̸∈ V (f) then, by definition, v has
the same colour as u, so uv is monochromatic. The case where v ∈ V (f) and u ̸∈ V (f) can
not occur since v ∈ V (f) implies that PT (v) ⊆ Gi−1, but u ̸∈ V (Gi−1). Similarly, the case
in which u ∈ V (f) and v ∈ V (f) can not occur since this implies that PT (v) ⊆ Gi−1, but
uv ̸∈ E(Gi−1).

Next we claim that all the elements of S are in a single connected component of X. If
|If | = 2, then this follows immediately from Lemma 6. If |If | = 3, then let {a, b, c} := If

and consider a pair g1, g2 ∈ S where (without loss of generality) g1 contains a bichromatic
edge of f with colours a and b and g2 contains a bichromatic edge of f with colours b and c.
By treating a and c as a single colour we may again apply Lemma 6 to conclude that g1 and
g2 are in the same component of X.

Refer to Figure 5(a). Therefore X is a subgraph of T that has a component containing
all the elements of S. Therefore X contains T 0. By choice, T 0 contains a path from fi to
each g ∈ S and each of these paths is disjoint except for their shared starting location fi.

Refer to Figure 5(b). Now, consider the embedded graph X0 obtained as follows: For
each g ∈ V (T 0), place a vertex on the center of each bichromatic edge of g and, if g is
trichromatic, then place a vertex in the center of g. Next,
1. add an edge joining the center of each trichromatic triangle to each of the centers of its

bichromatic edges; and
2. add an edge (embedded as a straight line segment) joining the centers of each pair of

bichromatic edges that are on a common bichromatic face g ∈ V (T 0).
The graph X0 is a tree of maximum-degree 3 that has |If | leaves. (Each leaf in X0 is the
center of a bichromatic edge in E(f)). With the exception of these three leaves, every point
in the embedding of X0 is contained in the interior of f .

Refer to Figure 5(c). Now treat X0 as a point set and consider the point set f ′ obtained
by removing X0 from the closure of f . Now f ′ has |If | connected components and each
vertex of fi is in a different component. Each of the components of f ′ contains vertices of Yj

for exactly one j ∈ If ; call this the colour of the component. Since no edge of T crosses X0,
the colour of each vertex in fi is equal to the colour the component of f ′ that contains it.

Finally, to see that f0, . . . , fi is good first observe that we need only be concerned with
the at most three faces in F (Gi) \ F (Gi−1) \ {fi} and each of these shares a bichromatic
edge with fi. If g is a face in F (Gi) \ F (Gi−1) \ {fi} with E(g) ∩ E(fi) = {uv} and uv is
coloured with a and b, then V (g) ∩ Yj = ∅ for any j ∈ {0, . . . , i} \ {a, b, i}. This completes
the proof. ◀

SWAT 2022

19:10 An Optimal Algorithm for Product Structure

▶ Theorem 8. There exists an O(n) time algorithm that, given any n-vertex triangulation
G and any rooted spanning tree T of G, produces a (G,T)-tripod decomposition Y such that
tw(G/Y) ≤ 3.

Proof. Let v0 be the root of T and let f0 be a face of G incident to v0 that contains an
edge of T incident to v0. In a preprocessing step, we compute the cotree T of (G,T) and
construct a lowest common ancestor data structure for T in O(n) time that allows us to
compute lcaT (f, g) for any two faces f, g ∈ F (G) in O(1) time.

After this preprocessing, we construct the good sequence f0, . . . , fr recursively. Concep-
tually, during any recursive invocation, the input is a near-triangulation N bounded by a
cycle C in G whose vertices belong to at most three tripods computed in previous steps.
Each vertex of G starts initially unmarked and we mark a vertex once we have placed it in a
tripod. The precise input to a recursive invocation is defined as follows:
1. If C intersects three tripods then the input consists of the three inner faces g1, g2, and g3

of N that contain bichromatic edges of C. Lemma 7 characterizes the face fi in terms
of the minimum subtree T 0 of T that contains g1, g2, and g3. Indeed, fi is either the
unique degree-3 node of T 0 (if g1, g2, and g3 are all leaves of T 0) or fi is the unique node
among g1 g2, or g3 that has degree 2. By Lemma 2 we can construct the model T ′

0 of T 0
in constant time and find the node fi.

2. If C intersects two tripods, then the input consists of two inner faces g1, g2, of N with
bichromatic edges of C on their boundary. In this case, we let fi := g1 or fi = g2, either
choice satisfies our requirements.

3. If C intersects only one tripod, then the input consists of any inner face g1 of N that
contains an edge in E(f). In this case fi := g1 satisfies our requirements.

Once we have found the Sperner triangle fi, we can compute the tripod Yi and mark its
vertices by following the path in T from each vertex of fi to its nearest marked ancestor
in T . This takes O(1 + |Yi|) time. Once we have done this, we have also found the at
most three bichromatic edges of Gi that are needed to perform the at most three recursive
invocations on the near triangulations whose outer faces coincide with each of the new faces
in F (Gi) \ F (Gi−1) \ {fi}.

After setting f0, the initial recursive call falls into the third case above, so its input is
any of the three inner faces that shares an edge with the outer face, f0. Each recursive
invocation adds a new face fi to the good face sequence f0, . . . , fr and takes O(1 + |Yi|)
time. Since Y0, . . . , Yr is a partition of V (G), the running time of this algorithm is therefore∑r

i=0 O(1 + |Yi|) = O(n). ◀

5 Variations

In this section we show that there are O(n) time algorithms for computing the decompositions
in Theorem 1.b and Theorem 1.c. In the same way that Theorem 1.a follows from the tripod
decomposition of Theorem 3, Theorem 1.b follows from a bipod decomposition given by
Theorem 10 and Theorem 1.c follows from a monopod decomposition given by Theorem 11.

5.1 Bipod Decompositions
We begin with the decomposition in Theorem 1.b, which was communicated to us by
Vida Dujmović, and has not appeared before. This decomposition is obtained by selecting
a proper sequence E := e0, . . . , ek of distinct edges of G, which define a sequence of graphs
GE := G0, . . . , Gk where Gi :=

⋃i
j=0 PT (ej) and a sequence of bipods IE := Λ0, . . . ,Λk where

Λi = V (Gi) \ V (Gi−1). We call E good if, for each i ∈ {0, . . . , k} and each face f ∈ F (Gi),
V (f) has a non-empty intersection with at most 4 bipods in Λ0, . . . ,Λi.

P. Bose, P. Morin, and S. Odak 19:11

Exactly the same argument used in Section 3.1 to show that G/YF is contained in
a chordal graph of maximum clique size 4 also shows that if E is a good edge sequence
that produces a bipod partition IE of V (G), then G/IE is contained in a chordal graph of
maximum clique size 5, so G/IE has treewidth at most 4.

We now explain why a good edge sequence e0, . . . , er exists.8 As before, we set f0 to be
any face of G such that E(f0) contains an edge of T incident to the root v0 of T . The edge
e0 is any edge of E(f0) \E(T). Next we take special care to ensure that Gi is biconnected
for i ≥ 1. In particular, if G0 contains only two edges of f0, then we take e1 to be the edge
of f0 that does not appear in G0. Otherwise, we choose e1 using the general strategy for
choosing ei, described next.

Refer to Figure 6. Now we may assume that Gi−1 is biconnected. To choose the edge ei,
we consider any face f ∈ F (Gi−1) \ F (G). Inductively, V (f) contains vertices from at most
four bipods in Λ0, . . . ,Λi−1. Let If := {j ∈ {0, . . . , i− 1} : Λj ∩ V (f) ̸= ∅}. If |If | < 4 then
we can select ei to be any edge in the interior f . Therefore, we focus on the case |If | = 4.
As before we colour vertices in the near triangulation N using colours in the set If ; we let S
be the set of inner faces in N that contain a bichromatic edge in E(f); and let T 0 be the
minimal subtree of T that spans S. The same argument in the proof of Lemma 7 shows that
every node of T 0 is contained in f .

Claim 9, below, shows that T 0 contains an edge xy such that each component of T 0 − xy

contains at most two elements of S. It is straightforward to verify that, if we choose ei to the
be the edge in E(x) ∩ E(y) then we obtain a graph Gi in which each of the two new faces
containing vertices from Λi contains vertices from at most three bipods in {Λj : j ∈ If }, as
required.

x
yα βx1

Figure 6 Choosing the next ei in a good edge sequence.

▷ Claim 9. T 0 contains an edge xy such that each component of T 0 − xy contains at most
two nodes of S.

Proof. Direct each edge xy of T 0 in the direction −→xy if the component of T 0 − xy that
contains y contains three or more nodes of S. It is sufficient to show that this process leaves
some edge xy of T 0 undirected. Assume for the sake of contradiction that every edge of T 0
is directed. Then some node x of T 0 has only incoming edges. Certainly x does not have
degree 1 in T 0.

If x has degree 2 in T 0 then T 0 contains two subtrees T1 and T2 that have only the
node x in common and such that |V (T1) ∩ S| ≥ 3 and |V (T2) ∩ S| ≥ 3, which implies that
|S| ≥ 3 + 3 − 1 > 4, a contradiction.

8 The existence of this edge sequence is more easily proven using Sperner’s Lemma, but we want a proof
that lends itself to a linear time algorithm.

SWAT 2022

19:12 An Optimal Algorithm for Product Structure

Suppose therefore that x has degree 3 in T 0. Each face in S contains an edge in E(f), so
each face in S has degree at most 2 in T 0. Therefore x ̸∈ S. Therefore T 0 − x contains three
components T1, T2, T3 such that each pair of components contains at least 3 elements of S.
But this implies that |S| ≥ (3 × 3)/2 > 4, a contradiction. ◁

Algorithmically, using Lemma 2, we can construct the model T ′
0 of T 0 in constant time

given the set S. The model T ′
0 will also contain an edge αβ such that each component of

T
′
0 − αβ contains at most two nodes in S. We claim that E(α) contains an edge that makes

a suitable choice for ei, and this edge can be found in constant time. Indeed, the edge αβ in
T

′
0 corresponds to a path α, x1, . . . , xk, β in T 0 and the unique edge in E(α) ∩ E(x1) is a

suitable choice for ei.
The rest of the details of the algorithm are similar to those given in the proof of Theorem

8: Each subproblem is a near-triangulation N bounded by a cycle C and the input that
defines the subproblem consists of the (at most four) faces S ⊆ F (N) incident to bichromatic
edges of C.9

▶ Theorem 10. There exists an O(n) time algorithm that, given any n-vertex triangulation
G and any rooted spanning tree T of G, produces a (G,T)-bipod decomposition I such that
tw(G/I) ≤ 4.

5.2 Monopod Decompositions
Finally we consider the decomposition described in Theorem 1.c. This decomposition is
obtained from a tripod decomposition Y := Y0, . . . , Yr, obtained by a sequence F := f0, . . . , fr

of faces of G in the same manner described in Section 3.1. However in this setting, the
sequence f0, . . . , fr is good if, for each i ∈ {0, . . . , r} and each face f of Gi :=

⋃i
j=0 YT (fj),

V (f) contains vertices from at most 5 legs of tripods in Y0, . . . , Yi. Under these conditions,
Ueckerdt et al. [18] are able to show that the monopod decomposition I obtained by splitting
each tripod Yi into three upward paths yields a quotient graph G/I of treewidth at most 6.

As before we focus on the extreme case when V (f) contains vertices from exactly 5
legs of tripods. Refer to Figure 7. Following the same strategy used for the previous two
decompositions, the set S in this case has size at most 5 and the face fi corresponds to a
node of T 0 such that each component of T 0 − fi contains at most 2 nodes in S. (This is
always possible because ⌊5/2⌋ = 2.) Again, a suitable choice for fi can be found in the model
T

′
0 of T0 in constant time.

▶ Theorem 11. There exists an O(n) time algorithm that, given any n-vertex triangulation
G and any rooted spanning tree T of G, produces a (G,T)-monopod decomposition I such
that tw(G/I) ≤ 6.

References
1 Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common ancestors:

A survey and a new algorithm for a distributed environment. Theory Comput. Syst., 37(3):441–
456, 2004. doi:10.1007/s00224-004-1155-5.

2 Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, and Michael Kaufmann. Graph product
structure for h-framed graphs. CoRR, abs/2204.11495, 2019. arXiv:2204.11495.

9 In the degenerate case where C has no bichromatic edges, the input is any face of N incident to an
edge of C.

https://doi.org/10.1007/s00224-004-1155-5
http://arxiv.org/abs/2204.11495

P. Bose, P. Morin, and S. Odak 19:13

fi

Figure 7 The selection of a tripod by Ueckerdt et al. [18].

3 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

4 Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993. doi:10.1137/0222017.

5 Prosenjit Bose, Vida Dujmović, Mehrnoosh Javarsineh, and Pat Morin. Asymptotically optimal
vertex ranking of planar graphs. CoRR, abs/2007.06455, 2020. arXiv:2007.06455.

6 Michal Debski, Stefan Felsner, Piotr Micek, and Felix Schröder. Improved bounds for centered
colorings. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2212–
2226. SIAM, 2020. doi:10.1137/1.9781611975994.136.

7 Reinhard Diestel. Graph Theory, Fifth Edition, volume 173 of Graduate texts in mathematics.
Springer, 2017. doi:10.1007/978-3-662-53622-3.

8 Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R.
Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020. URL:
https://dl.acm.org/doi/10.1145/3385731.

9 Vida Dujmovic, Pat Morin, and David R. Wood. Graph product structure for non-minor-closed
classes. CoRR, abs/1907.05168, 2019. arXiv:1907.05168.

10 Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat Morin.
Adjacency labelling for planar graphs (and beyond). J. ACM, 68(6):42:1–42:33, 2021. doi:
10.1145/3477542.

11 Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R. Wood. Planar
graphs have bounded nonrepetitive chromatic number. CoRR, abs/1904.05269, 2019. arXiv:
1904.05269.

12 Louis Esperet, Gwenaël Joret, and Pat Morin. Sparse universal graphs for planarity. CoRR,
abs/2010.05779, 2020. arXiv:2010.05779.

13 Johannes Fischer and Volker Heun. Theoretical and practical improvements on the rmq-
problem, with applications to LCA and LCE. In Moshe Lewenstein and Gabriel Valiente,
editors, Combinatorial Pattern Matching, 17th Annual Symposium, CPM 2006, Barcelona,
Spain, July 5-7, 2006, Proceedings, volume 4009 of Lecture Notes in Computer Science, pages
36–48. Springer, 2006. doi:10.1007/11780441_5.

14 Fănică Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16:47–56, 1974. doi:doi:10.1016/0095-8956(74)
90094-X.

15 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

SWAT 2022

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1137/0222017
http://arxiv.org/abs/2007.06455
https://doi.org/10.1137/1.9781611975994.136
https://doi.org/10.1007/978-3-662-53622-3
https://dl.acm.org/doi/10.1145/3385731
http://arxiv.org/abs/1907.05168
https://doi.org/10.1145/3477542
https://doi.org/10.1145/3477542
http://arxiv.org/abs/1904.05269
http://arxiv.org/abs/1904.05269
http://arxiv.org/abs/2010.05779
https://doi.org/10.1007/11780441_5
https://doi.org/doi:10.1016/0095-8956(74)90094-X
https://doi.org/doi:10.1016/0095-8956(74)90094-X
https://doi.org/10.1137/0213024

19:14 An Optimal Algorithm for Product Structure

16 Pat Morin. A fast algorithm for the product structure of planar graphs. Algorithmica,
83(5):1544–1558, 2021. doi:10.1007/s00453-020-00793-5.

17 Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput., 17(6):1253–1262, 1988. doi:10.1137/0217079.

18 Torsten Ueckerdt, David R. Wood, and Wendy Yi. An improved planar graph product
structure theorem. CoRR, abs/2108.00198, 2021. arXiv:2108.00198.

https://doi.org/10.1007/s00453-020-00793-5
https://doi.org/10.1137/0217079
http://arxiv.org/abs/2108.00198

Online Unit Profit Knapsack with Untrusted
Predictions
Joan Boyar # Ñ

University of Southern Denmark, Odense, Denmark

Lene M. Favrholdt # Ñ

University of Southern Denmark, Odense, Denmark

Kim S. Larsen # Ñ

University of Southern Denmark, Odense, Denmark

Abstract
A variant of the online knapsack problem is considered in the settings of trusted and untrusted
predictions. In Unit Profit Knapsack, the items have unit profit, and it is easy to find an optimal
solution offline: Pack as many of the smallest items as possible into the knapsack. For Online
Unit Profit Knapsack, the competitive ratio is unbounded. In contrast, previous work on online
algorithms with untrusted predictions generally studied problems where an online algorithm with a
constant competitive ratio is known. The prediction, possibly obtained from a machine learning
source, that our algorithm uses is the average size of those smallest items that fit in the knapsack.
For the prediction error in this hard online problem, we use the ratio r = a

â
where a is the actual

value for this average size and â is the prediction. The algorithm presented achieves a competitive
ratio of 1

2r
for r ≥ 1 and r

2 for r ≤ 1. Using an adversary technique, we show that this is optimal in
some sense, giving a trade-off in the competitive ratio attainable for different values of r. Note that
the result for accurate advice, r = 1, is only 1

2 , but we show that no deterministic algorithm knowing
the value a can achieve a competitive ratio better than e−1

e
≈ 0.6321 and present an algorithm with

a matching upper bound. We also show that this latter algorithm attains a competitive ratio of
r e−1

e
for r ≤ 1 and e−r

e
for 1 ≤ r < e, and no deterministic algorithm can be better for both r < 1

and 1 < r < e.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases online algorithms, untrusted predictions, knapsack problem, competitive
analysis

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.20

Related Version Full Version: https://arxiv.org/abs/2203.00285

Funding Supported in part by the Independent Research Fund Denmark, Natural Sciences, grant
DFF-0135-00018B.

1 Introduction

In this paper, we consider the Online Unit Profit Knapsack Problem: The request sequence
consists of n item with sizes in (0, 1]. An online algorithm receives them one at a time, with
no knowledge of future items, and makes an irrevocable decision for each, either accepting
or rejecting the item. It cannot accept any item if its size, plus the sum of the sizes of the
already accepted items, is greater than 1. The goal is to accept as many items as possible.
The obvious greedy algorithm solves the offline Unit Profit Knapsack Problem, since the set
consisting of as many of the smallest items that fit in the knapsack is an optimal solution.

Even for this special case of the Knapsack Problem, no competitive online algorithms
can exist. Thus, we study the problem under the assumption that (an approximation of)
the average item size, a, in an optimal solution is known to the algorithm. We study the

© Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joan@imada.sdu.dk
https://imada.sdu.dk/~joan/
https://orcid.org/0000-0002-0725-8341
mailto:lenem@imada.sdu.dk
https://imada.sdu.dk/~lenem/
https://orcid.org/0000-0003-3054-2997
mailto:kslarsen@imada.sdu.dk
https://imada.sdu.dk/~kslarsen/
https://orcid.org/0000-0003-0560-3794
https://doi.org/10.4230/LIPIcs.SWAT.2022.20
https://arxiv.org/abs/2203.00285
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Online Unit Profit Knapsack with Untrusted Predictions

case, where the exact value of a is given to the algorithm as advice by an oracle, as well
as the case where a is untrusted, e.g., estimated using machine learning. For instance, the
characteristics of the input may be different depending on the time of day the input is
produced, which source produced the input, etc. This could be learned to some extent and
result in a prediction, which could be provided to the algorithm.

When considering machine-learned advice, the concepts of consistency and robustness are
often considered, describing the balance between performing well on accurate advice and not
doing too poorly when the advice is completely wrong. Our setting is different from most
work on online algorithms with machine-learned advice, where there is generally a known
online algorithm with a constant competitive ratio for the problem without advice. For this
problem, if the advice is completely wrong, the algorithm cannot be competitive, since the
problem without advice does not allow for competitive algorithms. Despite this hardness for
the standard online version of the problem, we obtain results with untrusted predictions that
are surprisingly consistent and robust.

1.1 Previous Work
The Knapsack Problem is well studied and comes in many variants; see Kellerer et al. [24].
Cygan et al. [18] refer to the online version we study, where all items give the same profit, as
the unit case. They mention that it is well-known that no online algorithm for this version of
the problem is competitive, i.e., has a finite competitive ratio. To verify this result, consider,
for instance, the family of input sequences σj consisting of items of sizes 1

i , i = 1, 2, 3, . . . , j.
In the General Knapsack Problem, each item comes not only with a size, but also with a

profit, and the goal is to accept as much profit as possible given that the total size must be
at most 1. The ratio of the profit to the size is the importance1 of an item.

The Online Knapsack Problem was first studied by Marchetti-Spaccamela and Vercel-
lis [34]; they prove that the problem does not allow for competitive online algorithms, even
for Relaxed Knapsack (fractions of items may be accepted), where all item sizes are 1. They
concentrate on a stochastic version of the problem, where both the profit and size coefficients
are random variables.

The Online Unweighted (or Simple) Knapsack Problem with advice was studied in [14].
This is also called the proportional or uniform case. In this version, the importance of each
item is equal to 1. They show that 1 bit of advice is sufficient to be 1

2 -competitive, Ω(log n)
bits are necessary to be better than 1

2 -competitive, and n− 1 advice bits are necessary and
sufficient to be optimal. (As mentioned later, they also considered the General Knapsack
Problem in the advice model.) The fundamental issues and many of the early results on
oracle-based advice algorithms, primarily in the direction of advice complexity, can be found
in [15], though many newer results for specific problems have been published since.

In [45], a knapsack problem is considered in a setting with machine-learned advice, with
results incomparable to ours. In their setting, the General Knapsack Problem is considered,
and results depend on upper and lower bounds on the importance of the items. The authors
define limited classes of algorithms, based on a parameter, leading to some controlled
degradation compared to an optimal competitive ratio. Within the defined classes, focus
is then on tuning compared with historical data. Decisions to accept or reject an item are
based on a threshold function based on the item’s importance. Though the definition of this
function is ad hoc, in the sense that it is not derived from some direct optimality criterion, it
is well-motivated, aiming to coincide with the behavior found in optimal algorithms for the
standard online algorithms setting.

1 This is sometimes called value, but we want to avoid confusion with other uses of the word.

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:3

Recently, in [21], the General Knapsack Problem is revisited, again with upper and
lower bounds on the possible importance of items. Machine-learned advice is given for each
importance v, both an upper and a lower bound for the sum of the sizes of the items with
importance v. The authors present an algorithm which has some similarities to ours. In
particular their budget function has a similar function to our threshold function; both specify
the maximum number of the low importance, large items that need to be accepted to obtain
the proven competitive ratios. Their results can be extended to the case where the predictions
are off by a small amount, the lower bounds can be divided by 1 + ε, and the upper bounds
can be multiplied by 1 + ε. This is in contrast to ours, where robustness results are proven
for arbitrarily large errors in the predictions, but only a is predicted. Since we have no
bounds on the ratio of the largest to smallest size, those values do not enter into our results.
Their algorithm obtains what they prove to be the optimal competitive ratio (for the given
predictions), up to an additive factor that goes to zero as the size of the largest item goes to
zero; this result has some of the flavor of our negative result. The authors also consider two
related problems.

The Bin Packing Problem is closely related to the Knapsack Problem. This is especially
true for the dual variant where the number of bins is fixed and the objective is to pack as
many items as possible [17]; the Unit Price Knapsack Problem is Dual Bin Packing with
one bin. The standard Bin Packing Problem was considered with machine learning in [3],
considering a model of machine learning where, for a given algorithm, Alg, they consider a
pair of values, (rAlg, wAlg), representing worst case ratios compared to the optimal offline
algorithm, Opt. The value rAlg gives the ratio for the best (trusted) advice and wAlg
gives the ratio for the worst possible (untrusted) advice. They use a parameter α in their
algorithm, and show that their algorithm achieves values (r, f(r)) with 1.5 < r ≤ 1.75 and
f(r) = max{33− 18r, 7/4}.

Bin Packing is also studied in [5] in the standard setting for online algorithms with
machine learning, giving a trade-off between consistency and robustness, with the performance
degrading as a function of the prediction error. They also have experimental results. Since
the problem is so difficult, they have restricted their consideration to integer item sizes.

Much additional work has been done for other online problems, studying variants with
untrusted predictions (machine-learned advice, for instance), initiated by the work of Lykouris
and Vassilvitskii [32, 33] and Purohit et al. [39] in 2018, with further work in the directions
of search-like problems [2, 6, 13, 29, 30, 35], scheduling [1, 4, 9, 20, 26, 27, 31, 36], rental
problems [19, 25, 42], caching/paging [12, 22, 23, 40, 43], and other problems [5, 7, 8, 11, 37,
41], while some papers attack multiple problems [3, 10, 28, 44]. For a survey, see [38].

1.2 Preliminaries
We let a denote the average size of items accepted by the offline, optimal algorithm, Opt,
that accepts as many of the smallest items as possible. Moreover, we let â denote the
“guessed” or predicted value of a. In the case of accurate advice (received from an oracle),
â = a. If â may not be accurate, possibly determined via machine learning, and therefore
not necessarily exactly a, we define a ratio r such that a = r · â. This particular advice is
considered as a value that might be available or predictable, and the competitive ratios we
present are a function of r.

We use the asymptotic competitive ratio throughout this paper. Thus, an algorithm
Alg, is c-competitive if there exists a constant b such that for all request sequences σ,
Alg(σ) ≥ c Opt(σ)− b, where Alg(σ) denotes Alg’s profit on σ. Alg’s competitive ratio
is then sup{c | Alg is c-competitive}. Note that this is a maximization problem and all
competitive ratios are in the interval [0, 1].

SWAT 2022

20:4 Online Unit Profit Knapsack with Untrusted Predictions

We use the notation N = {0, 1, 2, . . .}. Define
∑y

i=x f(k) for some function f and real-
valued x and y such that y − x ∈ N as f(x) + f(x + 1) + · · · + f(y). We generalize the
Harmonic numbers by defining Hk =

∑k
i=1+k−⌊k⌋

1
k , for any real-valued k ≥ 1. The following

easy result is proven in the full paper [16].

▶ Lemma 1. If k ≥ p ≥ 1 and k − p ∈ N, then ln k − ln(p + 1) ≤ Hk −Hp ≤ ln k − ln p.

At any given time during the processing of the input sequence, the level of the knapsack
denotes the total size of the items accepted.

1.3 Our Results
We consider both the case where the advice â is known to be accurate, so r = 1, and the
case where it might not be accurate. Different algorithms are presented for these two cases,
but they have a common form.

For our algorithm Adaptive Threshold (AT) where the advice is accurate and, thus,
â = a, the competitive ratio is e−1

e , and we prove a matching upper bound that applies to
any deterministic algorithm knowing a. This upper bound limits how well any algorithm
using trusted predictions can do; the competitive ratio cannot be better than e−1

e ≈ 0.6321
for r = 1.

If AT is used for untrusted predictions, it obtains a competititve ratio of r e−1
e for r ≤ 1,

e−r
e for 1 ≤ r ≤ e, and 0 for r ≥ e. No deterministic algorithm can be better than this for

both r < 1 and 1 < r < e.
For our algorithm, Adaptive Threshold for Untrusted Predictions (ATup) we

have two cases: for r ≤ 1 the competitive ratio is r
2 , and for r ≥ 1 the competitive ratio is 1

2r .
Thus, for accurate advice, the competitive ratio of ATup is 1

2 , slightly less good than for the
other algorithm. We show a negative result implying that a deterministic online algorithm
cannot both be 1

2r -competitive for a range of large r-values and better than 1
2 -competitive

for r = 1.
Exact, oracle-based advice is not our focus point, though it is a crucial step in our work

towards an algorithm for untrusted predictions. Thus, we do not emphasize the direction
of advice complexity, where the focus is on the number of bits of oracle advice used to
obtain given competitive ratios (or optimality), but we include a brief discussion in the full
paper [16]. Instead, we focus on advice that may be easy to obtain. It seems believable that
the average size of requests in an optimal solution would be information easily obtainable.
The average size is probably a crucial component with regards to the profit secured by a
process and quite possibly crucial with regards to supplying resources (knapsacks) over time.
It is a single number (or two numbers: number of items and total size) to collect and store,
as opposed to more detailed information about a distribution. So little storage is required
that one could keep multiple copies if, for instance, the expected average changes during
the day.

Given the simple optimal algorithm for the offline version of unit price knapsack, it seems
obvious to consider another possibility for advice, the maximum size, s, for items to accept.
However, this is insufficient, as there might be many items of that size, but the optimal
solution may contain very few of them. Thus, one also needs further advice, including, for
example, the fraction of the knapsack filled by items of size s. With these parameters given
as advice, there would be two possibilities for the error. An extension of this idea is presented
in [14], where the minimum importance is used, instead of the maximum size, for the General
Knapsack Problem, giving k-bit approximations to the advice.

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:5

The full paper [16] contains the proofs missing from this paper. We treat the trusted as
well as the untrusted case, and they build on similar ideas. To make this exposition accessible,
we have emphasized giving a full account of the simpler, the trusted case, here, and refer the
reader to the full paper for the more technical elements from the untrusted case.

2 The Adaptive Threshold Algorithm

In Algorithm 1, we introduce an algorithm template, which can be used to establish an
oracle-based advice algorithm as well as an algorithm for untrusted predictions. The template
omits the definition of a threshold function, T , since it is different for the two algorithms. In
both algorithms, the threshold functions have the property that T (i) > T (i + 1) for i ≥ 1.
We use the notation nx to denote the number of accepted items strictly larger than x.

Algorithm 1 Algorithm Adaptive Threshold.
1: â ← predicted average size of Opt’s accepted items
2: level ← 0
3: for each input item x do
4: i = maxj≥0

{
nT (j+1) = j

}
5: if size(x) ≤ T (i + 1) and level + size(x) ≤ 1 then
6: Accept x

7: level += size(x)
8: else
9: Reject x

Intuitively, Adaptive Threshold accepts items that fit as long as it has not accepted
too many items larger than the current item. The threshold functions are used to determine
how many larger items is too many; no more than i items of size larger than T (i + 1) are
accepted. For smaller item sizes, this number of larger items is larger, since we need to
accept more items if there are many small items.

Note that using maxj≥0
{

nT (j+1) ≥ j
}

instead of maxj≥0
{

nT (j+1) = j
}

in Line 4 would
result in the same algorithm. Thus, i is nondecreasing through the processing of the input
sequence, and the value of the threshold function, T (i), is decreasing in i, so larger items
cannot be accepted after i increases.

3 Accurate Predictions

In this section, we give an e−1
e -competitive algorithm which receives a, the average size of

the items in Opt, as advice and prove that it is optimal among algorithms that get only a

as advice.

3.1 Positive Result
To define an advice-based algorithm, we define a threshold function; see Algorithm 2.
Throughout this section, we assume that â = a, but the algorithm is also be used for
untrusted predictions in Subsection 4.1.

First, we prove that AT with â = a has competitive ratio at least e−1
e ≈ 0.6321.

▶ Theorem 2. For â = a, AT, as defined in Algorithm 2, is e−1
e -competitive.

SWAT 2022

20:6 Online Unit Profit Knapsack with Untrusted Predictions

Algorithm 2 Adaptive Threshold with advice, AT.

1: Define T (i) = âe

âe(i− 1) + 1 for i ≥ 1

2: Run Adaptive Threshold, Algorithm 1

Proof. If AT never rejects an item, it performs optimally. So assume it rejects an item at
some point in the request sequence σ. Considering the conditional statement in the algorithm,
if AT rejects an item, x, then either size(x) > T (i + 1) or level + size(x) > 1.

Case 1. This is the case where, at some point, AT rejects an item, x, because
level + size(x) > 1.

The value of T (k) from Algorithm 1 is an upper bound on the size of the kth largest item
accepted by the algorithm. Thus, the kth largest accepted item has size at most

T (k) = ae

ae(k − 1) + 1 = 1
k − 1 + 1

ae

.

Using the definitions of sums over non-integer values (see Section 1.2), this gives an upper
bound on the total size of items accepted by AT of

level ≤
AT(σ)∑
k=1

1
k − 1 + 1

ae

=
AT(σ)+ 1

ae −1∑
k= 1

ae

1
k

= HAT(σ)+ 1
ae −1 −H 1

ae −1 .

Simple calculations (detailed in Lemma 1) give,

HAT(σ)+ 1
ae −1 −H 1

ae −1 < ln
(

AT(σ) + 1
ae
− 1
)
− ln

(
1
ae
− 1
)

= ln
(AT(σ) + 1

ae − 1
1

ae − 1

)

By assumption, level + size(x) > 1, and since level ≤ ln
(

AT + 1
ae −1

1
ae −1

)
, we have

ln
(AT(σ) + 1

ae − 1
1

ae − 1

)
> 1− size(x)

⇕
AT(σ) + 1

ae − 1
1

ae − 1
> e1−size(x)

⇕

AT(σ) >

(
1
ae
− 1
)

e1−size(x) − 1
ae

+ 1

⇕

AT(σ) >
e1−size(x) − 1

ae
+ 1− e1−size(x) .

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:7

In the algorithm, i is at least zero, so we cannot accept items larger than T (1) = ae.

AT(σ) >
e1−size(x) − 1

ae
+ 1− e, since −e1−size(x) > −e

>
e1−ae − 1

ae
+ 1− e, by the observation above

≥ e− e2a− 1
ae

+ 1− e, by simple calculcations; see the full paper [16]

= e− 1
ae
− 2e + 1

≥ e− 1
e

Opt(σ)− 2e + 1, since Opt(σ) ≤ 1
a

So, limOpt→∞
AT(σ)
Opt(σ) ≥

e−1
e .

Case 2. This is the case where AT never rejects any item, x, when size(x) ≤ T (i + 1). Let
it denote the final value of i as the algorithm terminates. Suppose Opt accepts ℓ items larger
than T (it + 1) and s items of size at most T (it + 1). Since Opt accepts ℓ items larger than
T (it + 1) and ℓ + s items in total, we have a > ℓ · T (it + 1)/(ℓ + s), which is equivalent to

s >

(
T (it + 1)

a
− 1
)

ℓ (1)

By the definition of T , we have that T (it+1) = ae
aeit+1 . Solving for the it on the right-hand

side, we get

it = 1
T (it + 1) −

1
ae

. (2)

Thus, AT has accepted at least it = 1
T (it+1) −

1
ae items of size greater than T (it +1). Further,

due to the assumption in this second case, AT has accepted all of the s items no larger
than T (it + 1). To see this, note that the is of the algorithm can only increase, so at no
point has there been a size demand more restrictive than T (it + 1).

We split in two subcases, depending on how T (it + 1) relates to Opt’s average size, a.

Subcase 2a: T (it + 1) > a. In this subcase, the lower bound on s of Ineq. (1) is positive.

AT(σ)
Opt(σ) ≥

(
1

T (it+1) −
1

ae

)
+ s

ℓ + s
, by Eq. (2)

>

(
1

T (it+1) −
1

ae

)
+
(

T (it+1)
a − 1

)
ℓ

ℓ +
(

T (it+1)
a − 1

)
ℓ

, by Ineq. (1)

=

(
1

T (it+1) −
1

ae

)
+
(

T (it+1)
a − 1

)
ℓ

T (it+1)
a ℓ

.

The second inequality follows since the ratio is smaller than one and s is replaced by a
smaller, positive term in the numerator as well as the denominator.

SWAT 2022

20:8 Online Unit Profit Knapsack with Untrusted Predictions

We prove that this is bounded from below by e−1
e :(

1
T (it+1) −

1
ae

)
+
(

T (it+1)
a − 1

)
ℓ

T (it+1)
a ℓ

≥ e− 1
e

⇕
e

T (it + 1) −
1
a

+ e

(
T (it + 1)

a
− 1
)

ℓ ≥ e
T (it + 1)

a
ℓ− T (it + 1)

a
ℓ

⇕
e

T (it + 1) −
1
a
≥
(

e− T (it + 1)
a

)
ℓ

⇕
ea− T (it + 1)

aT (it + 1) ≥ ea− T (it + 1)
a

ℓ

⇕
1

T (it + 1) ≥ ℓ

For the last biimplication, we must argue that ea − T (it + 1) ≥ 0, but this holds since
T (1) = ea and T is decreasing. Finally, the last statement, 1

T (it+1) ≥ ℓ holds regardless of
the relationship between T (it + 1) and a, since the knapsack obviously cannot hold more
than 1

T (it+1) items of size greater than T (it + 1).

Subcase 2b: T (it + 1) ≤ a.

AT(σ)
Opt(σ) ≥

(
1

T (it+1) −
1

ae

)
+ s

ℓ + s
, by Eq. (2)

≥

(
1

T (it+1) −
1

ae

)
ℓ

, since s ≥ 0 and AT(σ)
Opt(σ) ≤ 1

>

(
1

T (it+1) −
1

ae

)
1

T (it+1)
, since, as above, ℓ ≤ 1

T (it + 1)

= 1− T (it + 1)
ae

≥ 1− a

ae
, by the subcase we are in

= e− 1
e

.

This concludes the second case, and, thus, the proof. ◀

3.2 Negative Result
Now, we show that AT is optimal among online algorithms knowing a and nothing else.

▶ Theorem 3. Any deterministic algorithm getting only a as advice has a competitive ratio
of at most e−1

e .

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:9

Algorithm 3 Adversarial sequence establishing optimality with advice.

▷ Assume a < 1
2e and 1

a ∈ N
1: ε ← a2

10

2: k ←
⌊ 1

ae

⌋
3: while Alg’s level ≤ 1− 1

k − kε do
4: for k times do
5: Give an item of size 1

k − ε

6: if Alg accepts then
7: k++
8: continue (* the while-loop *)

▷ Alg did not accept any of the k items of this round.
9: Give 1

a − k items of size kaε
1−ka

10: terminate ▷ Case 1
11: Give 1

a items of size a ▷ Case 2

Proof. Let Alg denote the online algorithm with advice, and let σ be the adversarial
sequence defined by Algorithm 3, which explains how the adversary defines its sequence
based on Alg’s actions.

Let kt be the value of k at the beginning of the last iteration of the while-loop. We
perform a case analysis based on how the generation of the adversarial sequence terminates.

Case 1. Opt accepts the kt items of size 1
kt
− ε in the last iteration of the while-loop and

the 1
a − kt items of size ktaε

1−kta for a total of 1
a items of total size

kt

(
1
kt
− ε

)
+
(

1
a
− kt

)
ktaε

1− kta
= 1− ktε + (1− kta) ktε

1− kta
= 1 .

Note that the average size of the items accepted by Opt is a, consistent with the advice.
Alg accepts one item in each iteration of the while-loop, except the last iteration, and at

most 1
a − kt items after that, so no more than

kt −
⌊

1
ae

⌋
+ 1

a
− kt <

1
a
− 1

ae
+ 1 = e− 1

e
· 1

a
+ 1 .

Thus, Alg(σ) ≤ e− 1
e
· 1

a
+ 1 = e− 1

e
Opt(σ) + 1 .

Case 2. Opt accepts the 1
a items of size a.

For the analysis of Alg, we start by establishing an upper bound on kt. The following
inequality holds since Alg accepts one item per round, and Alg’s level just before the last
round is at most 1− 1

kt
− ktε before the last item of size 1

kt
− ε is accepted.

SWAT 2022

20:10 Online Unit Profit Knapsack with Untrusted Predictions

kt∑
k=⌊ 1

ae⌋

(
1
k
− ε

)
≤ 1− (kt + 1)ε

⇓
Hkt
−H⌊ 1

ae⌋−1 − ktε < 1− ktε

⇕
Hkt −H⌊ 1

ae⌋−1 < 1
⇓

ln(kt)− ln
(⌊

1
ae

⌋)
< 1, by Lemma 1

⇕

kt < e

⌊
1
ae

⌋
In the case we are treating, Alg leaves the while-loop because its level is more than

1− 1
kt+1 − (kt + 1)ε. Now, we give a bound on the amount of space available at that point.

For the first inequality, note that by the initialization of k in the algorithm, kt ≥
⌊ 1

ae

⌋
.

1
kt + 1 + (kt + 1)ε <

1⌊ 1
ae

⌋
+ 1

+
(

e

⌊
1
ae

⌋
+ 1
)

ε < ae +
(

1
a

+ 1
)

a2

10

<

(
e +

(
1 + a

10

))
a < 3a

Thus, after the while-loop, Alg can accept at most two of the items of size a. Clearly,
the number of rounds in the while-loop is kt −

⌊ 1
ae

⌋
+ 1. Using kt < e

⌊ 1
ae

⌋
, we can now

bound Alg’s profit:

Alg(σ) ≤ kt −
⌊

1
ae

⌋
+ 1 + 2 < (e− 1)

⌊
1
ae

⌋
+ 3 ≤ e− 1

e

1
a

+ 3 = e− 1
e

Opt(σ) + 3

This establishes the bound on the competitive ratio of e−1
e .

Finally, to ensure that our proof is valid, we must argue that the number of rounds we
count in the algorithm and the sizes of items we give are non-negative. For the remainder of
this proof, we go through the terms in the algorithm, thereby establishing this.

The largest value of k in the algorithm is kt, and we have established that kt < e
⌊ 1

ae

⌋
< 1

a .
Additionally, from the start value of k, we know that

⌊ 1
ae

⌋
≤ k. Using these facts, together

with the assumption from the algorithm that a < 1
2e , we get the following bounds on the

various terms.

1− 1
k
− kε > 1− 1⌊ 1

ae

⌋ − 1
a

a2

10 > 1− 1⌊
1

1/2

⌋ − 1
20e

> 0

Further, 1
k − ε ≥ 1

kt
− ε > 1

1
a

− a2

10 > 0 and 1
a − k ≥ 1

a − kt > 1
a −

1
a = 0.

For the last relevant value, 1 − ka ≥ 1 − kta > 1 − 1
a a = 0 and from Case 1, we know

that the 1
a − kt items given in Line 9 of the algorithm sum up to at most one. ◀

4 Untrusted Predictions

Some of our main results are found in this section, but the proofs build on ideas from the
trusted case. To make the exposition accessible, we have emphasized explaining the ideas in
the simpler setting. The reader is referred to the full paper [16] for the missing details.

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:11

For the case where the predictions may be inaccurate, the algorithm AT can be used
with â possibly not being a as long as r < e, see Subsection 4.1. In Subsection 4.2, we give
an adaptive threshold algorithm, ATup, that works for all r.

For r < 1
2 (e +

√
e2 − 2e) ≈ 2.06, AT has a better competitive ratio than ATup. Thus, if

an upper bound on r of approximately 2 (or lower) is known, AT may be preferred, and if a
guarantee for any r is needed, ATup should be used.

4.1 Semi-Trusted Predictions
In this section, we consider the algorithm AT with a semi-trusted (being guaranteed that
r < e) prediction, â, instead of a. See the full paper [16] for the proofs.

Using a proof analogous to the proof of Theorem 2, we get the following result.

▶ Theorem 4. For untrusted advice, AT has a competitive ratio of at least

cAT(r) ≥

e− 1

e
· r, if r ≤ 1

e− r

e
, if r ≥ 1

▶ Theorem 5. If a deterministic algorithm is e−r
e -competitive for all 1 ≤ r < e, it cannot be

better than r · e−1
e -competitive for any r ≤ 1.

If a deterministic algorithm is better than r · e−1
e -competitive for some r ≤ 1, it cannot be

e−r
e -competitive for all 1 ≤ r < e.

Combining Theorems 4 and 5, we obtain that, if r is guaranteed to be smaller than e, no
deterministic algorithm can be better than AT for both r < 1 and r > 1. Moreover, we get
the following tight result on the performance of AT.

▶ Theorem 6. AT has a competitive ratio of

cAT(r) =

e− 1

e
· r, if r ≤ 1

e− r

e
, if 1 ≤ r ≤ e

0, if r ≥ e

4.2 Untrusted Predictions
4.2.1 Positive Result
When considering the case where the average item size is estimated to be â, and the accurate
value is a = r · â, we consider two cases, r > 1 and r < 1. In either case, we have the
problem that we do not even know which case we are in, so, when large items arrive, we
have to accept some to be competitive. The algorithm we consider when the value of r is
not necessarily one achieves similar competitive ratios in both cases. Algorithm 4, ATup,
is Adaptive Threshold with a different threshold function than was used for accurate
advice (and in AT).

Since we need to accept larger items than in the case of accurate advice, we need a
threshold function that decreases faster than the threshold function used in Section 3, in
order not to risk filling up the knapsack before the small items arrive. Therefore, it may seem
surprising that we are using a threshold function that decreases as 1√

i
, when the threshold

function of Section 3 decreases as 1
i . However, the 1

i -function of the algorithm for accurate
advice is essentially offset by 1

ae .

SWAT 2022

20:12 Online Unit Profit Knapsack with Untrusted Predictions

Algorithm 4 Adaptive Threshold for Untrusted Predictions, ATup.

1: Define T (i) =
√

â
2i for i ≥ 1

2: Run Adaptive Threshold, Algorithm 1

We prove a number of more or less technical results before stating the positive results for
r ≤ 1 (Theorem 11) and r ≥ 1 (Theorem 10). See the full paper [16] for those missing here,
along with the missing proofs.

▶ Lemma 7. For any k ≥ 1, the total size of the k largest items accepted by ATup is at
most

√
2kâ.

The following corollary implies that ATup never rejects an item based on the level being
too high if r > 2. This is because r > 2 means that the items in Opt are relatively large
compared to â. Since Opt accepts the smallest items of the sequence, it means that the
sequence contains relatively few small items. Thus, the algorithm reserves space for small
items that never arrive.

▶ Corollary 8. If ATup rejects an item based on the level being too high, ATup(σ) >
r
2 Opt(σ)− 1.

▶ Lemma 9. Assume that Opt accepts ℓ items larger than
√

â
2(i+1) and s items of size at

most
√

â
2(i+1) , i ≥ 0. Then, the following inequalities hold:

1. s > ℓ

(
1

r
√

2â(i + 1)
− 1
)

2. ℓ <

√
2(i + 1)

â
For the case where the actual average size in Opt’s packing is at least as large as the

predicted average size, we get the following result.

▶ Theorem 10. For all request sequences σ, such that r ≥ 1,

ATup(σ) ≥ 1
2r

Opt(σ)− 1 .

Proof. By Corollary 8, if ATup rejects an item in σ due to the knapsack not having room
for the item, ATup(σ) ≥ r

2 Opt(σ)− 1 ≥ 1
2r Opt(σ)− 1 for r ≥ 1.

Now, suppose that ATup does not reject any item due to it not fitting in the knapsack.
If it is not optimal, it must reject due to the size of the item.

Let it denote the final value of i when the algorithm is run. This means that ATup has
accepted it items of size greater than

√
â

2(it+1) . We perform a case analysis based on whether
this value is smaller or larger than râ.

Case 1: r ≥ 1√
2â(it+1)

. In this case, it + 1 ≥ 1
2r2â and Opt(σ) ≤ 1

râ ≤
√

2(it+1)
â . Thus,

ATup(σ) + 1
Opt(σ) ≥ it + 1√

2(it+1)
â

=
√

â(it + 1)
2 ≥

√
â 1

2r2â

2 = 1
2r

.

Therefore, ATup(σ) ≥ 1
2r Opt(σ)− 1.

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:13

Case 2: r < 1√
2â(it+1)

. Suppose Opt accepts ℓ items larger than
√

â
2(it+1) and s items

of size at most
√

â
2(it+1) . Note that ATup also accepts the s items of size at most

√
â

2(it+1) ,
since we are in the case where it does not reject items because of the knapsack being too full.

Given the input sequence σ, we consider the ratio

ATup(σ) + 1
Opt(σ) ≥ (it + 1) + s

ℓ + s
.

The result follows if this ratio is always at least 1
2r .

Subcase 2a: it + 1 ≥ 1
2â

. In this case, ATup(σ) ≥ it ≥ 1
2â − 1, while Opt(σ) ≤ 1

râ . Thus,
ATup(σ) ≥ r

2 Opt(σ)− 1.

Subcase 2b: it + 1 < 1
2â

. By Ineq. 1 of Lemma 9, and since ATup(σ)+1
Opt(σ) ≤ 1,

ATup(σ) + 1
Opt(σ) ≥ (it + 1) + s

ℓ + s
≥

(it + 1) +
(

1
r
√

2â(it+1)
− 1
)

ℓ

ℓ

r
√

2â(it+1)

.

In the full paper, we show that this is at least 1
2r . ◀

For the case where the actual average size in Opt’s packing is no larger than the predicted
average size, we get the following result.

▶ Theorem 11. For all request sequences σ, such that r < 1,

ATup(σ) ≥ r

2 Opt(σ)− 1 .

4.2.2 Negative Result
In Section 3, we showed that, even with accurate advice, no deterministic algorithm can be
better than e−1

e -competitive. In this section, we give a trade-off in the competitive ratio
attained for different values of r.

▶ Theorem 12. Let 0 < z ≤ 2 and consider a deterministic algorithm, Alg.
If Alg is 1

zr -competitive for every r between 2
z and 1√

zâ
, it cannot be better than zr

4 -
competitive, for any r ≤ 2

z .
Moreover, if Alg is better than zr

4 -competitive for some r ≤ 2
z , it cannot be 1√

zâ
-

competitive for all r between 2
z and 1√

zâ
.

Proof. We consider the adversary that gives the input sequence σz defined by Algorithm 5.
Consider an online algorithm, Alg, and assume that there exists a constant, b, such that
Alg(σ) ≥ 1

zr Opt(σ) − b, for any sequence σ and any r such that 2
z ≤ r ≤ 1√

zâ
. Now,

consider the adversary that gives the input sequence σz defined by Algorithm 5.
If the adversarial algorithm terminates in Line 6, then, Alg has accepted at most

k − b − 1 items. In this case, a =
√

â
zk , and Opt accepts exactly the

⌊√
zk
â

⌋
items

from the last iteration of the while-loop. Since a = râ, r =
√

1
zkâ , which lies between

SWAT 2022

20:14 Online Unit Profit Knapsack with Untrusted Predictions

Algorithm 5 Adversarial sequence establishing trade-off on robustness versus consistency. The
adversarial algorithm takes parameters, z, q, and b, such that 0 < z ≤ 2, 0 < q < 1√

zâ
, and b ≥ 0.

▷ Assume 1
qâ ∈ N

1: p ← ⌊ z
4â⌋

2: k ← 0
3: while k ≤ p− 1 do
4: k++
5: Give

⌊√
zk
â

⌋
items of size

√
â

zk

6: if Alg has accepted fewer than k − b items then terminate

7: Give 1
qâ items of size qâ

√
1

zpâ ≥
√

1
zâ ·

4â
z = 2

z and 1√
zâ

. Thus,

Alg(σz) ≤ k − b− 1 ≤ k − 1⌊√
zk
â

⌋ Opt(σz)− b <
k − 1√
zk
â − 1

Opt(σz)− b

<
k√
zk
â

Opt(σz)− b =
√

kâ

z
Opt(σz)− b = 1

zr
Opt(σz)− b ,

where the second strict inequality holds because 1 is added to the numerator and denominator
of a positive fraction less than 1. This contradicts the assumption that for each r between
2
z and 1√

zâ
, Alg(σ) ≥ 1

zr Opt(σ)− b, for any sequence σ, when the adversarial algorithm
terminates in Line 6. Thus, the adversarial algorithm does not terminate there.

If the adversarial algorithm does not terminate in Line 6, r = q and Opt(σz) = 1
qâ = 1

râ .

Moreover, for Alg, the ith accepted item must have size at least
√

â
z(i+b) , for 1 ≤ i ≤ p− b.

Thus, these first p− b items fill the knapsack to at least
p∑

i=b+1

√
â

zi
≥
√

â

z

∫ p+1

b+1

1√
i
di =

√
â

z
(2
√

p + 1− 2
√

b + 1),

where we use that 1√
i

is a decreasing function.
Since the items of size râ are the smallest items of the sequence, this means that

Alg(σz) ≤ p +
1−

√
â
z (2
√

p + 1− 2
√

b + 1)
râ

≤ z

4â
+

1−
√

â
z

(
2
√

z
4â − 2

√
b + 1

)
râ

= z

4â
+

1− 1 + 2
√

â(b+1)
z

râ

= 1
râ

(
zr

4 + 2
√

â(b + 1)
z

)

=
(

zr

4 + 2
√

â(b + 1)
z

)
Opt(σz) .

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:15

As a function of â, the upper bound is zr
4 + 2

√
â(b+1)

z , but the second term becomes
insignificant as â approaches zero. This proves the first part of the theorem.

The second part of the theorem is the contrapositive of the first part. ◀

Setting z = 2 in Theorem 12 demonstrates a Pareto-like trade-off between consistency
and robustness for ATup:

▶ Corollary 13. Consider a deterministic algorithm, Alg.
If Alg is 1

2r -competitive for every r between 1 and 1√
2â

, it has a competitive ratio of at
most r

2 , for any positive r ≤ 1.
Moreover, if Alg is better than r

2 -competitive for some r ≤ 1, it cannot be 1
2r -competitive

for all r between 1 and 1√
2â

.

References
1 Sara Ahmadian, Hossein Esfandiari, Vahab Mirrokni, and Binghui Peng. Robust load balancing

with machine learned advice. In 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 20–34. SIAM, 2022.

2 Spyros Angelopoulos. Online search with a hint. In 12th Innovations in Theoretical Computer
Science Conference (ITCS), volume 185 of LIPIcs, pages 51:1–51:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

3 Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P. Renault.
Online computation with untrusted advice. In 11th Innovations in Theoretical Computer
Science Conference (ITCS), volume 151 of LIPIcs, pages 52:1–52:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

4 Spyros Angelopoulos and Shahin Kamali. Contract scheduling with predictions. In 35th
AAAI Conference on Artificial Intelligence (AAAI), 33rd Conference on Innovative Applica-
tions of Artificial Intelligence (IAAI), 11th Symposium on Educational Advances in Artificial
Intelligence (EAAI), pages 11726–11733. AAAI Press, 2021.

5 Spyros Angelopoulos, Shahin Kamali, and Kimia Shadkami. Online bin packing with predic-
tions. ArXiv, 2021. arXiv:2102.03311.

6 Spyros Angelopoulos, Shahin Kamali, and Dehou Zhang. Online search with best-price and
query-based predictions. ArXiv, 2021. arXiv:2112.01592.

7 Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon.
Online metric algorithms with untrusted predictions. In 37th International Conference on
Machine Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pages
345–355. PMLR, 2020.

8 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online
matching problems with machine learned advice. In 33rd Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 7933–7944. Curran Associates, Inc., 2020.

9 Etienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In 33rd Annual conference on Neural Information
Processing Systems (NeurIPS), pages 15350–15359. Curran Associates, Inc., 2020.

10 Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In 33rd Annual conference on Neural Information Processing Systems
(NeurIPS), pages 20083–20094. Curran Associates, Inc., 2020.

11 Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. Online nash social welfare
maximization with predictions. In 2022 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1–19. SIAM, 2022.

12 Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Learning-
augmented weighted paging. In 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 67–89. SIAM, 2022.

SWAT 2022

http://arxiv.org/abs/2102.03311
http://arxiv.org/abs/2112.01592

20:16 Online Unit Profit Knapsack with Untrusted Predictions

13 Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with
imperfect hints. In 37th International Conference on Machine Learning (ICML), volume 119
of Proceedings of Machine Learning Research, pages 822–831. PMLR, 2020.

14 Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith. The
online knapsack problem: Advice and randomization. Theoretical Computer Science, 527:61–72,
2014.

15 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen.
Online Algorithms with Advice: A Survey. ACM Computing Surveys, 50(2):1–34, 2017. Article
No. 19.

16 Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online unit profit knapsack with untrusted
predictions. ArXiv, 2022. arXiv:2203.00285.

17 Joan Boyar, Lene M. Favrholdt, Kim S. Larsen, and Morten N. Nielsen. The competitive ratio
for on-line dual bin packing with restricted input sequences. Nordic Journal of Computing,
8:463–472, 2001.

18 Marek Cygan, Łukasz Jeż, and Jirí Sgall. Online knapsack revisited. Theory of Computing
Systems, 58, 2016.

19 Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with ex-
pert advice. In 36th International Conference on Machine Learning (ICML), volume 97 of
Proceedings of Machine Learning Research, pages 2319–2327. PMLR, 2019.

20 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant
scheduling with predictions. In 33rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 285–294. ACM, 2021.

21 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack
with frequency predictions. In Pre-Proceedings of the 34th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2021.

22 Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrović, and Ronitt Rubinfeld. Online
page migration with ML advice. ArXiv, 2020. arXiv:2006.05028.

23 Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging
with predictions. In 47th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 168 of LIPIcs, pages 69:1–69:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

24 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
25 Rohan Kodialam. Optimal algorithms for ski rental with soft machine-learned predictions.

ArXiv, 2019. arXiv:1903.00092.
26 Arvind Kumar and Bashir Alam. Task scheduling in real time systems with energy harvesting

and energy minimization. Journal of Computational Science, 14(8):1126–1133, 2018.
27 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online

scheduling via learned weights. In 31st ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1859–1877. SIAM, 2020.

28 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and Instance-
Robust Predictions for Online Matching, Flows and Load Balancing. In 29th Annual European
Symposium on Algorithms (ESA), volume 204 of LIPIcs, pages 59:1–59:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021.

29 Russell Lee, Mohammad H. Hajiesmaili, and Jian Li. Learning-assisted competitive algorithms
for peak-aware energy scheduling. ArXiv, 2020. arXiv:1911.07972.

30 Russell Lee, Jessica Maghakian, Mohammad H. Hajiesmaili, Jian Li, Ramesh K. Sitaraman,
and Zhenhua Liu. Online peak-aware energy scheduling with untrusted advice. In 12th ACM
International Conference on Future Energy Systems (e-Energy), pages 107–123. ACM, 2021.

31 Shi Li and Jiayi Xian. Online unrelated machine load balancing with predictions revisited. In
38th International Conference on Machine Learning (ICML), volume 139 of Proceedings of
Machine Learning Research, pages 6523–6532. PMLR, 2021.

http://arxiv.org/abs/2203.00285
http://arxiv.org/abs/2006.05028
http://arxiv.org/abs/1903.00092
http://arxiv.org/abs/1911.07972

J. Boyar, L. M. Favrholdt, and K. S. Larsen 20:17

32 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In 35th International Conference on Machine Learning (ICML), volume 80, pages 3302–3311.
PMLR, 2018.

33 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
Journal of the ACM, 68(4):24:1–24:25, 2021.

34 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.
Mathematical Programming, 68:73–104, 1995.

35 Andres Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate bid
predictions. In 30th Annual Conference on Neural Information Processing Systems (NIPS),
pages 1858–1866. Curran Associates, Inc., 2017.

36 Michael Mitzenmacher. Scheduling with Predictions and the Price of Misprediction. In 11th
Innovations in Theoretical Computer Science Conference (ITCS), volume 151 of LIPIcs, pages
14:1–14:18. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.

37 Michael Mitzenmacher. Queues with small advice. In SIAM Conference on Applied and
Computational Discrete Algorithms (ACDA), pages 1–12, 2021.

38 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. ArXiv, 2020.
arXiv:2006.09123.

39 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In 31st Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 9661–9670. Curran Associates, Inc., 2018.

40 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In 31st
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1834–1845. SIAM, 2020.

41 Daan Rutten and Debankur Mukherjee. A new approach to capacity scaling augmented with
unreliable machine learning predictions. ArXiv, 2021. arXiv:2101.12160.

42 Shufan Wang and Jian Li. Online algorithms for multi-shop ski rental with machine learned
predictions. In 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 2035–2037. International Foundation for Autonomous Agents and Multiagent
Systems, 2020.

43 Alexander Wei. Better and simpler learning-augmented online caching. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM), volume 176 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

44 Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. ArXiv, 2020. arXiv:2010.11443.

45 Ali Zeynali, Bo Sun Mohammad Hajiesmaili, and Adam Wierman. Data-driven competitive
algorithms for online knapsack and set cover. In 35th AAAI Conference on Artificial Intelligence
(AAAI), 2021.

SWAT 2022

http://arxiv.org/abs/2006.09123
http://arxiv.org/abs/2101.12160
http://arxiv.org/abs/2010.11443

Nearest-Neighbor Decompositions of Drawings∗

Jonas Cleve #

Institut für Informatik, Freie Universität Berlin, Germany

Nicolas Grelier #

Department of Computer Science, ETH Zürich, Switzerland

Kristin Knorr #

Institut für Informatik, Freie Universität Berlin, Germany

Maarten Löffler #

Utrecht University, The Netherlands

Wolfgang Mulzer #

Institut für Informatik, Freie Universität Berlin, Germany

Daniel Perz #

Technische Universität Graz, Austria

Abstract
Let D be a set of straight-line segments in the plane, potentially crossing, and let c be a positive
integer. We denote by P the union of the endpoints of the straight-line segments of D and of the
intersection points between pairs of segments. We say that D has a nearest-neighbor decomposition
into c parts if we can partition P into c point sets P1, . . . , Pc such that D is the union of the nearest
neighbor graphs on P1, . . . , Pc. We show that it is NP-complete to decide whether D can be drawn
as the union of c ≥ 3 nearest-neighbor graphs, even when no two segments cross. We show that for
c = 2, it is NP-complete in the general setting and polynomial-time solvable when no two segments
cross. We show the existence of an O(log n)-approximation algorithm running in subexponential
time for partitioning D into a minimum number of nearest-neighbor graphs.

As a main tool in our analysis, we establish the notion of the conflict graph for a drawing D.
The vertices of the conflict graph are the connected components of D, with the assumption that each
connected component is the nearest neighbor graph of its vertices, and there is an edge between
two components U and V if and only if the nearest neighbor graph of U ∪ V contains an edge
between a vertex in U and a vertex in V . We show that string graphs are conflict graphs of certain
planar drawings. For planar graphs and complete k-partite graphs, we give additional, more efficient
constructions. We furthermore show that there are subdivisions of non-planar graphs that are not
conflict graphs. Lastly, we show a separator lemma for conflict graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases nearest-neighbors, decompositions, drawing

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.21

Funding Jonas Cleve: Supported in part by ERC StG 757609.
Nicolas Grelier : Supported by the Swiss National Science Foundation within the collaborative DACH
project Arrangements and Drawings as SNSF Project 200021E-171681.
Kristin Knorr : Supported by the German Science Foundation within the research training group
“Facets of Complexity” (GRK 2434).
Wolfgang Mulzer : Supported in part by ERC StG 757609 and by the German Research Foundation
within the collaborative DACH project Arrangements and Drawings as DFG Project MU 3501/3-1.
Daniel Perz: Partially supported by FWF within the collaborative DACH project Arrangements
and Drawings as FWF project I 3340-N35.

∗ This research was started at the 4th DACH Workshop on Arrangements and Drawings, February 24–28,
2020, in Malchow, Germany. We thank all participants of the workshops for valuable discussions and
for creating a conducive research atmosphere.

© Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolfgang Mulzer, and Daniel Perz;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonascleve@inf.fu-berlin.de
https://orcid.org/0000-0001-8480-1726
mailto:nicolas.grelier@inf.ethz.ch
mailto:knorrkri@inf.fu-berlin.de
https://orcid.org/0000-0003-4239-424X
mailto:m.loffler@uu.nl
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
mailto:daperz@ist.tugraz.at
https://orcid.org/0000-0002-6557-2355
https://doi.org/10.4230/LIPIcs.SWAT.2022.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Nearest-Neighbor Decompositions of Drawings

1 Introduction

Let P ⊂ R2 be a finite planar point set, and let C be a finite set of colors. A coloring is a
function σ : P → C that assigns a color to each point in P . For any color c ∈ C, we write
Pc = {p ∈ P | σ(p) = c} for the points in P that were colored with c.

In the following, we assume all pairwise distances in P are distinct. The nearest-neighbor
graph for a color c ∈ C, NNc, is the embedded graph with vertex set Pc and a straight-line
edge between p, q ∈ Pc if and only if p is the nearest neighbor of q among all points in Pc, or
vice versa.1 We will consider NNc both as a combinatorial graph, consisting of vertices and
edges, and as a subset of the plane, consisting of the points in Pc and the line segments that
represent the edges. We write NN =

⋃
c∈C NNc for the union of the nearest-neighbor graphs of

all colors. Again, we consider NN both as a graph and as a set.

(a) (b) (c)

Figure 1 (a) A drawing. (b) A 3-colored point set. (c) The nearest-neighbor graphs.

We are interested in the following problem: suppose we are given a drawing D, i.e., a
set of straight-line segments in the plane such that if two segments intersect, then their
intersection is a point and the two segments are not parallel. Under this assumption, by
considering a drawing as a set of points Q in the plane, the input segments of D are the
inclusion maximal segments in Q. The special points of D are the endpoints of the segments
in D and the intersection points between pairs of segments in D. We denote the set of special
points by P . We require that the pairwise distances between the special points of D are all
distinct. Our general task is to find a set of colors C and a color assignment σ, such that
the union NN of the nearest-neighbor graphs for P and C equals D, interpreted as subsets of
the plane. We call NN an NN-decomposition of D with vertex set P , where NN stands for
Nearest-Neighbor and we call |C| the color-number of NN : see Figure 1.

Figure 2 The possible violations that make a drawing non-plane.

A drawing D is called plane if its segments meet only at their endpoints, i.e., no segment
of D contains a special point in its relative interior; see Figure 2 for an illustration where the
bold edges contain an endpoint or crossing point (marked with a square) in their interior
which is not allowed by the definition.

Let C be a connected component in a plane drawing D, and let p be a special point in C.
We denote by a(p) the special point in C \ {p} that is closest to p (with distance d). Let b(p)
be the set of special points in D whose distance to p is strictly less than d. By definition,

1 Our notion of nearest-neighbor graph is undirected, but a directed version also exists.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:3

b(p) ⊂ D \ C. Let C1 and C2 be two distinct connected components. We say that C1 and C2
are conflicting if there is a special point p ∈ C1 such that b(p) ∩ C2 ̸= ∅, or vice-versa. We
denote by V = {Ci}1≤i≤n the connected components of D. We define E as the set of pairs
{Ci, Cj} where Ci and Cj are conflicting. We say that the graph G := (V, E) is the conflict
graph of D. We call the connected component C NN-representable if C is the nearest-neighbor
graph of its special points. An abstract graph is a conflict graph if it is the conflict graph of
some plane drawing.

Related work. The nearest-neighbor graph of a planar point set P is well understood [1, 10].
It is a subgraph of the relative neighborhood graph of P [7, 10], which in turn is a subgraph of
the Delaunay triangulation. The problem of recognizing whether a given abstract graph can
be realized as a nearest-neighbor graph of a planar point set is open and we conjecture it to
be hard. In contrast, testing whether a given embedded graph is a (single) nearest-neighbor
graph is easy, as it suffices to test if each vertex is indeed conencted to its closest point.

Our problem also has applications in automated content generation for puzzle games:
van Kapel introduces a version of connect-the-dots puzzles where the task is to connect dots
based on colors rather than numbers [12]. In this puzzle, points may have multiple colors;
see Figure 3. Van Kapel implemented a heuristic approach for generating such puzzles. The
heuristic works well for small instances, but for larger instances, it generates too many colors
to be practical [9].

(a) (b) (c)

Figure 3 (a) Multi-colored points with 5 colors: blue, red, green, yellow, and orange: (b) the
orange nearest-neighbor graph. (c) The union of all nearest-neighbor graphs. Figure taken from [9].

Our Results. First, we consider the problem of testing whether a given drawing D can
be decomposed into c nearest-neighbor graphs. We show that under the assumption that
the drawing is plane, meaning that segments in D may only meet at their endpoints, this
problem is in P for c ≤ 2, and NP-complete for c ≥ 3. If we allow the segments of D to cross
the problem is already NP-complete for c = 2.

Inspired by our algorithms, we also introduce the new graph class of conflict graphs of
drawings. We show that string graphs are conflict graphs and give additional, more efficient
constructions in terms of size complexity for planar graphs and complete k-partite graphs.
On the other hand, subdivisions of non-planar graphs are not conflict graphs.

We show a separator lemma for conflict graphs, which allows us to provide an algorithm
for computing a maximum independent set in conflict graphs in subexponential time. Using
it as a subroutine, we obtain an O(log n)-approximation algorithm for coloring conflict graphs
that runs in subexponential time. This problem is of importance to us because we show that
coloring conflict graphs is equivalent to partitioning a plane drawing into nearest-neighbor
graphs.

SWAT 2022

21:4 Nearest-Neighbor Decompositions of Drawings

2 Existence of NN-Decompositions on Special Points

2.1 The Plane Case
Let D be a straight-line drawing. If s is a line segment with s ⊂ D such that s is not a segment
of D, we say that s is covered by D. Recall that the vertex set of the NN-decomposition
consists of the special points in D. We investigate the question under which circumstances it
is possible to find such a NN-decomposition of D.

▶ Lemma 2.1. Let D be a plane drawing. Suppose there is a NN-decomposition NN of D,
and let σ be the underlying coloring of NN . Then, for any connected component C of D, the
coloring σ assigns the same color to all special points in C.

Proof. Suppose D has a connected component C in which σ assigns two distinct colors. Then,
C has a segment s = uv between two special points u and v such that σ(u) ̸= σ(v). However,
the line segment uv must be covered by NN , and thus, there exists a segment t in NN that
contains u, v, and another special point of D (since the segments in NN are derived from
nearest-neighbor relations between points of the same color). By our assumption that D
is a plane drawing, the segment t is not in D, so NN is not an NN-decomposition of D, a
contradiction. ◀

▶ Theorem 2.2. Let C be a set of colors with |C| ≤ 2. There is a polynomial-time algorithm
for the following task: given a plane drawing D, is there a NN-decomposition of D with color
set C?

Proof. Let D be a plane drawing. If there is a decomposition of D with color set C, then,
by Lemma 2.1, every connected component is colored with a single color of C, i.e., every
connected component of D is NN-representable. The latter necessary condition can be
checked in polynomial time, as we only need to compute the nearest-neighbor graph of the
special vertices in each component. If there is a connected component where this is not the
case, the algorithm answers that there is no solution.

Otherwise, we construct the conflict graph G of D, and we check if G can be colored with
C. This takes polynomial time since |C| ≤ 2 (for |C| = 2, check whether G is bipartite, for
|C| = 1, check that G has no edges). Now, if G is C-colorable, we give all special points
in a component C the color assigned to the corresponding vertex in G. Since all connected
components are NN-representable, this is also a NN-decomposition of D with C. On the
other hand, if D has a NN-decomposition with color set C, then G must be C-colorable, by
definition of G. ◀

▶ Theorem 2.3. Let C be a set of colors with |C| ≥ 3. The following task is NP-complete:
given a plane drawing D, is there a NN-decomposition of D with color set C?

Proof. Gräf, Stumpf, and Weißenfels [6] showed how to reduce k-colorability to k-colorability
of unit disk graphs. Our proof is inspired by theirs. Let k = |C|. We show the NP-hardness of
coloring the special points of D with k ≥ 3 colors by means of a reduction from k-colorability.
We make use of four types of gadgets: k-wires, k-chains, k-clones, and k-crossings. They
are depicted in Figures 4–7, together with their conflict graphs. The symbol consisting of a
number x in a circle denotes a clique of size x. A vertex v connected to such a symbol means
that there is an edge between v and all the vertices of the clique. These conflict graphs are
exactly the gadgets defined by Gräf, Stumpf, and Weißenfels. Note that each connected
component in these gadgets is NN-representable. The gadgets shown are for k = 5.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:5

k − 1 k − 1 k − 1 k − 1

Figure 4 A 5-wire of length 5 and the conflict graph of a k-wire of length 5. The symbol consisting
of a number x in a circle denotes a clique of size x.

k − 1 k − 1 k − 1 k − 1

Figure 5 A 5-chain of length 5 and the conflict graph of a k-chain of length 5.

k − 1 k − 1 k − 1 k − 1

Figure 6 A 5-clone of length 4 and and the conflict graph of a k-clone of length 4.

k − 2 k − 2

k − 2 k − 2

k − 2

Figure 7 The 5-crossing gadget and the conflict graph of the k-crossing gadget.

In Figures 4–6, there are several sets of four segments that are very close and nearly
vertical. For other values of k, the gadgets are analogous, but with k − 1 almost vertical
segments instead of four. Similarly, in Figure 7, there are five sets consisting of three close
segments. For other values of k, there are five sets of k − 2 segments. In Figures 4 and 5,
k-wires and k-chains are drawn as if they were on a line, but they may also bend with a right
angle. Note that in Figures 4–7 some vertices are specially marked with larger empty circles.
These vertices will be called extreme vertices.

In Figure 7, there seem to be points lying on a segment between two other points. Actually,
these points are shifted by a sufficiently small ε > 0, to ensure that the resulting drawing is
plane.

The main property of a k-wire is that in any coloring with k colors of its conflict graph,
the extreme vertices are assigned the same color. In contrast, in a k-chain, the extreme
vertices are assigned different colors. In a k-clone of length ℓ, there are ℓ extreme vertices.
In any coloring with colors from C, all extreme vertices have the same color. Finally, for
the k-crossing, opposite extreme vertices must have the same color; a pair of consecutive
extreme vertices (e.g., top and left extreme vertices) may or may not be assigned the same
color, as shown in [5].

SWAT 2022

21:6 Nearest-Neighbor Decompositions of Drawings

v1

v2 v4

v3
clone clone

v1 v2 v4

clone clone

v2 v3

+

+ +

+
+ = crossing gadget

= wire
= end of chain

Figure 8 A graph with four vertices (left). Converting it to an NN-graph (right).

Now we follow the proof of Gräf, Stumpf, and Weißenfels. Suppose we are given a graph
G = (V, E). We describe a drawing D whose conflict graph can be colored with color set C if
and only if the vertices of G can be colored with C. Refer to Figure 8. For each vertex v of
degree δ in G, we draw a k-clone of size δ. The clones are drawn so that they are arranged
on a horizontal line and such that their upper points have the same y-coordinate. Then, for
each edge {u, v} ∈ E, we draw it on the plane as two vertical segments, each incident to
one k-clone, and one horizontal segment that connects the two upper points of the vertical
segments. We do that such that for any pair of edges, their horizontal segments have distinct
y-coordinates. Then we replace each crossing between a pair of edges by a k-crossing. Finally,
let us consider one edge {u, v} ∈ E, and let us orient it arbitrarily, say toward v. We replace
each part of the edge between two k-crossings by k-wires of sufficient length. If there are no
crossings, we replace the edge by a k-chain. Otherwise, the part of the edge between u and
the first k-crossing is replaced by a k-wire, and the part between the last k-crossing and v

is replaced by a chain. As the points of distinct gadgets are sufficiently remote (except for
pairs of gadgets that are connected on purpose), the conflict graph of this drawing is the
union of the conflict graphs of the individual gadgets.

It is possible to find positions with a polynomial number of bits such that all pairwise
distances are distinct but at the same time the positions are sufficiently close to the prescribed
positions. This concludes the reduction.

It is straightforward to see that the problem is in NP with the certificate being a coloring
of the vertices. For each point we can easily find its closest point with the same color (we
compare squared distances to avoid taking square roots) and add the edges to the resulting
graph. We can then compare the edges with the segments of the original drawing. ◀

2.2 The non-plane case
We show that if drawings are not required to be plane, the problem is hard for two colors.

▶ Theorem 2.4. Let C be a set of colors with |C| = 2. The following problem is NP-complete:
given a drawing D, is there a NN-decomposition of D with color set C?

Proof. We reduce from Not-All-Equal 3SAT (NAE-3SAT), where each clause has three
variables and is satisfied if not all variables are equal. Let Φ be an NAE-3SAT formula with
variable set X and clause set Y . Let GΦ be the associated bipartite graph with vertex set
X ∪ Y , where two vertices x and y are adjacent if and only if x is a variable that appears in
clause y. We draw GΦ as follows: clauses are represented by vertical segments on the y-axis
of length 3. Variables of degree δ are represented as horizontal segments on the x-axis of

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:7

clone
x1 x2 x3 x4 x5

+

+

+

+

c1

c2

c3

clone clone

+

cla
u
se

cla
u
se

cla
u
se

+

= wire

+ = crossing gadget

= end of chain

Figure 9 Structure of the conversion of the NAE-3SAT formula with clauses c1 = (x1, x2, ¬x3),
c2 = (¬x1, x3, ¬x4), and c3 = (x2, x3, x5) into a 2-color NN graph.

(a) (b) (c)

Figure 10 A clause gadget with (a) a valid assignment, (b)–(c) two invalid assignments. The
dashed circles indicate distance to the nearest neighbor.

length δ. Each edge {x, y} is drawn as the union of one vertical and one horizontal segment.
The vertical segment is incident to the variable gadget for x. The horizontal segment is
incident to a clause gadget for y. See Figure 9 for an example.

We use some gadgets from the proof of Theorem 2.3. We replace each variable by a
2-clone of length δ. We replace each clause by the gadget in Figure 10a (see Figure 10b-c
for assignments where all literals have the same color). In Figure 10a, there seem to be
points lying on a segment between two other points. Actually, these points are shifted by
a sufficiently small ε > 0, to ensure that the resulting drawing is plane. We replace each
crossing by the gadget in Figure 11. In Figure 11, some points have been colored. Note
that this does not correspond to an assignment of truth values, but is supposed to provide

1− ε

1

1 + ε

1

> 1

> 1

Figure 11 A non-plane crossing gadget.

SWAT 2022

21:8 Nearest-Neighbor Decompositions of Drawings

(a) (b)

Figure 12 Two valid assignments of the non-plane crossing gadget. (a) All extreme segments
have the same color. (b) Opposite segments have the same color.

visual information for the reader. The distance between a green point and a blue point is
1 − ε, for a sufficiently small ε > 0. The distance between a blue point and the red point is
1. The distance between the red point and an orange point is 1 + ε. The blue point on the
left and the orange point on the right are finally shifted by a suitable η > 0 with η ≪ ε, so
that no two points are at the same distance from the red point. The points in the clause
gadget that are on the vertical connected component on the left side are arranged so that
this connected component is NN-representable. Finally, each part of an edge between two
gadgets is replaced by a 2-wire of suitable length. We have thus obtained a drawing D.

We claim that Φ is satisfiable if and only if there exists a special-point NN-decomposition
of D with two colors. First, notice a clause gadget has a special-point NN-decomposition
if and only if two of the horizontal segments on the right side are assigned different colors.
Indeed, we show in Figure 10b-c that if all literals have the same color, then the corresponding
NN-graph is not the one that is required, the one shown in Figure 10a. It remains to show that
if not all literals have the same color, then we obtain the correct NN-graph. By symmetry,
if the top and bottom literals do not have the same color, then we are in the situation of
Figure 10a. If the top and bottom literals have the same color, say red, then we keep the
color of the remaining points of the clause gadget as in Figure 10a. Let us denote by p the
point of the clause gadget incident to the middle literal. By assumption, p is blue. Let us
denote by q the top right vertex of the clause gadget, which is also colored in blue. Therefore
the closest neighbor of q which is also blue is p. Likewise, in the NN-graph, the closest
neighbor colored in blue of the bottom right vertex is p. This shows that in this situation,
the NN-graph is the same as in Figure 10a.

In the non-plane crossing gadget opposite segments are assigned the same color. All of
them may be assigned the same color, as in Figure 12a, or consecutive segments might be
assigned different colors, as in Figure 12b. Therefore, by associating the colors of C with
truth values, D has a special-point NN-decomposition if and only if Φ is satisfiable.

That the problem is in NP can be seen the same way as in the proof for Theorem 2.3. ◀

3 Conflict Graphs and Related Graph Classes

We show in Theorem 2.3 that k-coloring of conflict graphs is NP-complete, for any fixed
k ≥ 3. To put this result into context, we will show that there exist graphs that are not
conflict graphs. Moreover, we will prove the inclusion of some well-known graph classes in
the class of conflict graphs. The aim is to characterise the class of conflict graphs, as it gives
some information about what kind of running time we can expect for the vertex coloring
algorithms on conflict graphs.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:9

Let G be a graph, and let us denote by G′ the graph obtained from G by subdividing each
edge of G once (i.e., for each edge e = {u, v} in G, we add a vertex in G′ whose neighbors
are exactly u and v). In this section we will show that G′ is a conflict graph if and only if
G is planar. Sinden [11] showed the same statement for G′ being a string graph, i.e., an
intersection graph of continuous curves in the plane.

First, let us recall Sinden’s proof for string graphs. Let G be a graph, and let G′ be
obtained from G as described above. Assume that G′ is a string graph, and consider a
representation R of G′ as a string graph. Contract to a point each curve in R that corresponds
to a vertex in G and extend the curves corresponding to the edges in G. In the process, one
can maintain the property that the curves corresponding to the edges in G intersect only two
other curves, which are now reduced to single points. Observe that the resulting drawing is
a plane embedding of G. We adapt this method for conflict graphs.

Let G be a graph, and let G′ be the edge-subdivision of G. Suppose that G′ is a conflict
graph, and let R be a representation of G′ as a conflict graph. We still would like to contract
each connected component of R that corresponds to a vertex in G to a single point. However,
now it is not clear that we can extend the connected components corresponding to edges in G

such that they only intersect two other connected components (now reduced to points). This
is illustrated in Figure 13. The connected components in blue correspond to the vertices in G,
those in red correspond to the edges in G. The dashed segments show a conflict between two
connected components. Inside the green square, we have a connected component blocking
another one. We therefore want to reroute the connected component so that there is no
intersection. To show how we do it, we first need the following lemmas.

1

2

3

4

5

1 2

3 5

4

Figure 13 A representation of the subdivision of G (G is shown on the right side) as a conflict
graph. The connected components in blue correspond to vertices in G, the ones in red correspond to
edges in G. The dashed segments show a conflict between two connected components. In the green
zone, a conflict overlaps with a connected component.

Let D be a plane drawing. Let GD be its conflict graph. Let D1, D2 be a pair of connected
components that are conflicting. Let us consider two points p and q that certify this conflict
(for instance, assume without loss of generality p ∈ D1, q ∈ D2, q ∈ b(p)). We denote by s

the segment with endpoints p and q.

▶ Lemma 3.1. If a connected component intersects the line segment s, then this connected
component is conflicting with D1 or D2.

Proof. The proof is illustrated in Figure 14. Let us denote by s′ a segment in a component
D3 which intersects s. Let us assume that D3 is not conflicting with D1, and let us show that
it is conflicting with D2. Let us consider the circle Cp centered at p going through a(p), the
closest point to p among the ones that are in the same connected component. By assumption,

SWAT 2022

21:10 Nearest-Neighbor Decompositions of Drawings

D1

D2
s

Cp
D

s′

p

q
a(p)

p′

q′

Figure 14 Illustration of Lemma 3.1. The disk D contains q.

the endpoints of s′, denoted by p′ and q′, are not inside Cp. In contrast, q is inside Cp. We
consider the disk D with diameter s′. To show that D3 is conflicting with D2, it is sufficient
to show that q is contained in D, for then we have q ∈ b(p′) or q ∈ b(q′). We know that s′

intersects Cp twice. By assumption, p is not contained in D. As two circles can intersect at
most twice, D contains all of Cp on at least one side of s′. Therefore, D contains q. ◀

Let us consider another pair of conflicting components, denoted by D3 and D4. Let
u ∈ D3 and v ∈ D4 be two points that certify this conflict. Let us assume without loss of
generality v ∈ b(u). We denote by s′ the segment with endpoints u and v.

▶ Lemma 3.2. Assume that u and v are not in b(p). If the segments s and s′ intersect, then
p or q is in b(u). In particular, at least one of D3 and D4 is conflicting with D1 or D2.

Proof. The situation is similar to the one of Lemma 3.1. By assumption, the segment s′

intersects twice the circle Cp centered at p with radius a(p). Therefore the proof of Lemma 3.1
can be applied in this situation, too. ◀

We are now ready to prove the theorem. As we are considering conflict graphs, there
might be obstacles when we try to follow Sinden’s proof that were not there with string
graphs. We use the two lemmas above to reroute these obstacles.

▶ Theorem 3.3. Let G be a graph and let G′ denote the subdivision of G. If G′ is a conflict
graph then G is planar.

Proof. Let us assume we have a representation of G′ as a conflict graph. We denote by V

the vertices in G′ corresponding to vertices in G and by E the vertices in G′ corresponding
to edges in G. For each vertex v ∈ V , we pick an arbitrary point pv on the connected
component that represents v in the conflict representation. We are going to reduce all
connected components v to their corresponding point pv. Let e ∈ E be the vertex in G′

corresponding to the edge {w, x} in G. We want to extend e to a curve that contains vx

and vw at each endpoint. We want to do that for all vertices in E, such that no two curves
intersect, except maybe at endpoints. Therefore, we would obtain a plane representation
of G.

Let us first consider all connected components in the representation as a conflict graph,
before reducing some of them to points, and extending the rest to curves. For each pair of
connected components (D1, D2) that are conflicting, we find two points p and q that certify
it, meaning that p is in b(q) or vice versa. We now draw the segment with endpoint p and
q, for each such pair of conflicting components. We denote by S the set of segments we
have obtained. Let us consider a connected component D corresponding to a vertex in E,

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:11

that intersects with some segments in S. For one of these segments it intersects, say s, we
name its endpoints p and q. Without loss of generality, we assume p ∈ D1 and q ∈ D2.
By Lemma 3.1, D is conflicting with D1 or D2. By assumption, D1 and D2 are conflicting.
Therefore one of them, say D1, corresponds to a vertex in V , and the other corresponds to
a vertex in E. By definition of G′, no two vertices in E are connected by an edge. This
implies that D is conflicting with D1. This shows that when we want to extend a connected
component e to a curve that contains vx and vw at each endpoint (see the notation above),
we might be blocked by other curves, but these curves have to also contain vx or vw at an
endpoint. This is the situation depicted in Figure 13. Here we simply have to reroute the
edge going from vertex 1 to 3.

One issue that might still occur is that when trying to extend a connected component
into a curve, we are not blocked by another connected component, but by the extension into
a curve of a connected component. Namely, how do we do the rerouting when two segments
in S intersect? Let s and s′ be those two segments. By construction, s is a segment between
two connected components D1 and D2. Without loss of generality, we can assume that D1
corresponds to a vertex in V and D2 to a vertex in E. Likewise, s′ is a segment between
two connected components D3 and D4 , with D3 corresponding to a vertex in V and D4 to
a vertex in E. Now we use Lemma 3.2, which states that one connected component from
each pair are conflicting. By construction, this pair is (D1, D4) or (D2, D3). This shows
that we are in the same situation as in the paragraph above. Thus it is possible to reduce
each connected component corresponding to a vertex in V to a point, and then extend
the connected components from E into curves. By doing that, we obtain a plane drawing
of G. ◀

Theorem 3.3 and its analogy to the proof for string graphs in [11] may suggest that the
class of conflict graph is equal to the class of string graphs. We show that, indeed, the string
graphs are contained in the conflict graphs, but conjecture that the opposite is not true.

▶ Theorem 3.4. All string graphs are conflict graphs.

Proof. Let G be a string graph. We start by embedding G as a set of n strings (curves)
in the plane. We may assume the strings are non-self-intersecting, but they could intersect
other strings multiple times. For ease of exposition, we further assume that all curves are
orthogonal polylines aligned to a unit grid. The proof steps are illustrated in Figure 15.

Fix a resolution r0 = 1
2 such that if we place points on each string at distance r0 from

each other, then these points will always be closer to each other than to points on other
strings, except near crossings. Pick an arbitrary string s0. Consider the “tunnel” of width r0
around s0; by construction the other strings cross this tube in consecutive proper crossings.
Consider the ordered list c1, c2, ..., ck of crossings of s0 with other strings (note that k could
be independent of n).

Set r1 = r0/10k. We increase the resolution of all strings except s0 to r1. Now we reroute
all other strings inside the tube of s0 so that they keep distance r1 from each other and from
the tube boundary, but such that the crossings with s0 are close to the start point of s0;
specifically, crossing ci should be at distance 2ir1 from the start point of s0. Note that this
rerouting is always possible.

Now, we shorten s0 by deleting the first r0 length of it. After this, s0 does not intersect
any other strings, but if we keep the resolution of s0 at r0, it will have a conflict with exactly
those strings that it originally intersected. Since the resolutions of the remaining strings
were increased, they do not have any conflicts except near crossings with each other.

SWAT 2022

21:12 Nearest-Neighbor Decompositions of Drawings

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15 Illustration of the proof of Theorem 3.4. (a) A string representation with 3 strings.
(b) The tunnel around the red string. (c) Rerouting the blue and green strings inside the red tunnel.
Note that the blue string crosses the red string twice. (d) The final set of strings after one iteration
of the algorithm. The red string no longer intersects any other strings. (e-h) The second (and last)
iteration of the algorithm.

We recursively apply this strategy: pick an arbitrary remaining string si, keep its resolution
at ri, determine its crossings and a finer resolution ri+1, reroute all strings, and shorten si.
In the end, we will have n strings s0, . . . , sn−1 at increasingly fine resolutions r0, . . . , rn−1
whose conflict graph is exactly the original string graph. ◀

Note that the resolution (and hence the size of the components) has a superexponential
growth. Hence, this does not give us a polynomial-time reduction, and thus we cannot
conclude that coloring embedded conflict graphs is NP-hard from the fact that coloring
embedded string graphs is NP-hard.

However, the following lemmas show that both planar graphs as well as complete k-partite
graphs are conflict graphs and the proof gives a polynomial-time reduction (for a fixed k in
the latter case). Note that Lemma 3.5 gives us an alternative proof that coloring embedded
conflict graphs is NP-hard.

▶ Lemma 3.5. Every planar graph with n vertices is a conflict graph of a set of components
of complexity polynomial in n.

Proof. Given a plane straight-line drawing D of a planar graph G (obtained by Fáry’s
theorem [2]) such that no two points are on a common vertical or horizontal line. We
construct a drawing D′ such that its conflict graph is G. The rough idea is to replace every
vertex by the gadget in Figure 16, and replace each edge by two edges which enforce a
conflict.

The gadget’s drawing H (Figure 16) depends on the number of vertices n of G. We
construct a horizontal line with 4n − 3 points with small distance ℓ. To every odd vertex we
add vertical lines, starting with 4 additional vertices on the left and right end, increasing by 4
vertices every step towards the center (with same distance ℓ). The topmost and bottommost
vertex of these lines are denoted by ak and bk respectively, from left to right.

We replace every vertex vi in D with a copy of H, called Vi. Let ai,j and bi,j denote
aj and bj of Vi respectively. Consider an edge {vi, vj} of D. Without loss of generality
assume vj is above and to the left of vi (the other cases are symmetric). We consider all
vertices in this quadrant of vi in clockwise order and assume that vj is the x-th such vertex.
Accordingly, assume vi is the y-th vertex in clockwise order below and to the right of vj .

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:13

a1

a2

b1

b2

a7

b7

Figure 16 Every vertex is replaced by this gadget. Here for |V | = 4.

We draw the edge (ai,x, bj,2n−y) and replace it by a path P of segments of length ℓ from
bj,2n−y to a point p with 0 < d(p, ai,x) < ℓ. The points p and ai,x enforce the conflict between
Vi and Vj and hence the edge {vi, vj} in G.

The conflict graph of D′ obviously contains all the edges of G. It remains to show, that
no additional edges are introduced by showing that any introduced path P only conflicts
with the corresponding component Vi. Assume that the distance between every edge e and
every vertex not incident to e is at least d. If ℓ is chosen small enough then the distance of
P to every gadget Vk except Vi and Vj is larger than ℓ.

Assume Q is a path that conflicts with P . If Q does neither start at Vi nor at Vj , then
Q cannot conflict with P since the distance between two independent edges is at least d.
If Q starts at Vj we have two cases. If Q is below P , then the slope of Q is less than the
slope of P . If Q is above P , then the slope of Q is greater than the slope of P . In both
cases the smallest distance is between the starting points of P and Q which is at least 2ℓ by
construction. Hence, there does not exist such a further conflict. ◀

▶ Lemma 3.6. Every complete k-partite graph with n vertices is a conflict graph of a set of
components of complexity polynomial in n.

Proof. Given a complete k-partite graph where each set with index i has ni vertices. We
will construct a graph with a drawing D such that G is the conflict graph of D, i.e., each set
i will consist of ni components which are not in conflict with each other but with all other
components from the other sets.

For each group i the drawing needs two properties: the components’ resolution ri and the
components’ minimum distance to each other di. The idea of the construction is that di > ri

for all i but rj > di for all j > i so that components in the same set do not conflict but all
components in a set j conflict with all other components i < j (and thus also with all i > j).

We start with n1 parallel components where r1 = 1 and d1 = 2r1 = 2, see Figure 17
(left). For all following sets 1 < i ≤ k we set ri = 3

2 ni−1di−1 = 3ni−1ri−1 and di = 2ri =
3ni−1di−1 = 6ni−1ri−1. We place the components from the ith set orthogonal to the (i−1)th,
starting at the opposite corner of a square of size ni−1di−1 × ni−1di−1, as seen in Figure 17
(right). We finally route the (i − 1)th set between the last two components of the ith set
with distance di−1 to the last component. This requires that ri and di are multiples of ri−1
and that di is a multiple of di−1 which in ensured by our choices for ri and di.

A depiction of the resulting drawing for n1 = 4, n2 = 3, and n3 = 3 can be found in
Figure 18. From the construction it is immediate that a component is not in conflict with a
component of the same group but with all other components. Hence the initial graph G is a
conflict graph of our constructed drawing D. ◀

SWAT 2022

21:14 Nearest-Neighbor Decompositions of Drawings

...

d1

r1 }n1

d2

r1
n1d1 × n1d1

Figure 17 Left: The drawing for the first set. Right: The drawing for the third set with rerouted
first set.

n2d2 × n2d2

Figure 18 A conflict graph representation of the complete 3-partite graph K4,3,3.

4 Separators of conflict graphs and chromatic number

Let us recall the motivation for our problem. Starting from a drawing D, we want to color
the vertices of that drawing such that the nearest-neighbor graph on those colored vertices
is the drawing D. If the drawing is plane, we have shown that this problem boils down to
coloring a conflict graph, where one vertex corresponds to a connected component of the
drawing. We have shown in Theorem 2.3 that this problem is NP-hard, even for 3-coloring
plane drawings. In this section, we show the following theorem:

▶ Theorem 4.1. There exist an exact algorithm for maximum independent set, and an
O(log n)-approximation algorithm for vertex coloring in conflict graphs with n vertices,
running in 2n4/5 polylog n-time.

The exact algorithm for maximum independent set is used as a subroutine to obtain the
O(log n)-approximation algorithm for coloring conflict graphs in subexponential time, where
n denotes the number of vertices in the conflict graph. Indeed, coloring vertices can be seen
as a covering problem, where there is a hyperedge for a set of vertices if and only if those are
independent. As we have an exact algorithm for maximum independent set, we can use the
greedy algorithm for covering to obtain the O(log n) approximation.

In [4], Fox and Pach present an algorithm running in 2n4/5 polylog n-time for maximum
independent set in string graphs. The input is an abstract graph, and it outputs a maximum
independent set or a certificate that the input graph is not a string graph. As they observe,

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:15

the only property they use is the following separator lemma: Every string graph with m edges
and maximum degree ∆ contains a separator of order at most c∆m1/2 log m [4]. A separator
in a graph G = (V, E) with n vertices is a subset V0 ⊂ V such that there is partition of V

into three sets V = V0 ∪V1 ∪V2, with |V1| ≤ 2n/3 and |V2| ≤ 2n/3, such that there is no edge
between a vertex in V1 and a vertex in V2. We show that this lemma also holds for conflict
graphs, which immediately implies that the algorithm by Fox and Pach also applies to our
setting. The lemma was actually proven in another paper by the same authors, denoted there
as Theorem 2.5 [3]. The proof uses several lemmas, but the assumption that the considered
graph is a string graph appears only once. As defined in [3], the pair-crossing number pcr(G)
of a graph G is the minimum number of pairs of edges that intersect in a drawing of G. Fox
and Pach showed that if G is a string graph, then pcr(G) is at most the number of paths
of length 2 or 3 in G, where the length of a path is the number of its edges. Following the
proof of their Theorem 2.5 [3], it is sufficient for us to show the following:

▶ Lemma 4.2. If G is a conflict graph, then pcr(G) is at most the number of paths of length
2 or 3 in G.

Proof. We use a similar notation to [3]. Let us consider a representation of a conflict graph.
For each pair of conflicting connected components Di and Dj , we consider two points p ∈ Di

and q ∈ Dj , such that q ∈ b(p). We now consider the drawing D consisting of the union of the
connected components and the line segments with endpoints p, q, for each pair of conflicting
connected components. If three or more line segments intersect at the same point, we shift
slightly the relative interior of one so that this is not the case anymore. It is not an issue that
those are not segments anymore, we only want them to be Jordan curves. For simplicity, we
keep referring to them as line segments with endpoints p, q. For each connected component
Di, we consider an arbitrary point pi on Di. Let x = {Di, Dj} denote a pair of conflicting
connected components. We denote by α(x) a curve that starts at pi, goes along Di until it
reaches the line segment between Di and Dj that we have added to the drawing, follows this
line segment until it reaches Dj , and finally goes along Dj until it reaches pj . Observe that
this gives us a drawing of G in the plane. Suppose that two edges α(x) and α(y) in this
drawing intersect. We claim that they determine a unique path of length 2 or 3 in G.

First if x and y share a connected component Di, then they determine a path of length 2
where Di is the middle vertex. Now let us assume without loss of generality that x = {D1, D2}
and y = {D3, D4}. If the curves α(x) and α(y) intersect inside one of the connected
components, say D3, then we can apply Lemma 3.1 to infer that D3 is in conflict with one of
the components in x, say D1. If α(x) and α(y) intersect outside of a connected component
(i.e., the line segment between D1 and D2 intersects the line segment between D3 and D4)
we can similarly apply Lemma 3.2 to show that one component from y, say D3, is in conflict
with one component in x, say D1. In both cases the vertices D2, D1, D3, D4 form a path
of length 3. We have shown that a pair of edges that intersect in the drawing determine a
unique path of length 2 or 3 in G. ◀

Lemma 4.2 is sufficient to show that conflict graphs with m edges and maximum degree ∆
contain a separator of order at most c∆m1/2 log m, as shown by Fox and Pach [3]. Following
their notation, the bisection width b(G) of a graph is the least integer such that there is a
partition V = V1 ∪ V2 with |V1|, |V2| ≤ 2|V |/3 and the number of edges between V1 and V2
is b(G). As shown by Kolman and Matoušek [8], we have for every graph G on n vertices
b(G) ≤ c log(n)(

√
pcr(G)+

√
ssqd(G)) where c is a constant and ssqd(G) is twice the number

of paths of length 1 or 2 in G. By denoting by p the number of paths of length at most 3
in G, we derive from Lemma 4.2 that if G is a conflict graph, then b(G) = O(p1/2 log n). A
simple argument proven by Fox and Pach states that p is at most m∆2 for a graph with m

edges and maximum degree ∆ [3], which concludes the proof.

SWAT 2022

21:16 Nearest-Neighbor Decompositions of Drawings

5 Conclusion and open problems

In this work we studied the decomposition of a drawing into nearest-neighbor graphs. First,
we studied the decision problem, whether for a given natural number k ≥ 2 it is possible
to decompose a drawing into k nearest-neighbor graphs. If we allow that segments of the
drawing cross the problem is NP-complete. If we assume that the segments only meet
at endpoints, it is NP-complete for k ≥ 3 and polynomial-time solvable for k = 2. We
provided an O(log n)-approximation algorithm running in subexponential time for coloring
plane drawings with a minimum number of colors, which we showed to be equivalent to
partitioning a plane drawing into a minimum number of nearest-neighbor graph. It would be
interesting to find better approximation algorithms, with respect to the approximation ratio
or the running time. Also, it would be interesting to study other variants of this problem;
specifically, where points can have multiple colors.

We introduced so called conflict graphs and showed that not every graph is a conflict
graph, but every string graph is a conflict graph. It is an open problem, whether there is a
conflict graph, which is not a string graph. Further it would be interesting to know relations
between other graph classes and conflict graphs.

References
1 D. Eppstein, M.S. Paterson, and F.F. Yao. On nearest-neighbor graphs. Discrete Comput

Geom, 17:263–282, 1997. doi:10.1007/PL00009293.
2 István Fáry. On straight-line representation of planar graphs. Acta scientiarum mathemati-

carum, 11(229-233):2, 1948.
3 Jacob Fox and János Pach. A separator theorem for string graphs and its applications.

Combinatorics, Probability and Computing, 19(3):371–390, 2010.
4 Jacob Fox and János Pach. Computing the independence number of intersection graphs. In

Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms, pages
1161–1165. SIAM, 2011.

5 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1:237–267, 1976. doi:10/dwvqpj.

6 Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs. Algorith-
mica, 20(3):277–293, 1998.

7 J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their relatives. Proc.
of the IEEE, 80(9):1502–1517, 1992.

8 Petr Kolman and Jiřı Matoušek. Crossing number, pair-crossing number, and expansion.
Journal of Combinatorial Theory, Series B, 92(1):99–113, 2004.

9 Maarten Löffler, Mira Kaiser, Tim van Kapel, Gerwin Klappe, Marc van Kreveld, and Frank
Staals. The connect-the-dots family of puzzles: Design and automatic generation. ACM
Transactions on Graphics, 33(4):72, 2014. doi:10.1145/2601097.2601224.

10 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

11 F. W. Sinden. Topology of thin film RC circuits. The Bell System Technical Journal,
45(9):1639–1662, 1966. doi:10.1002/j.1538-7305.1966.tb01713.x.

12 Tim van Kapel. Connect the closest dot puzzles. Master’s thesis, Utrecht University, 2014.
URL: http://dspace.library.uu.nl/handle/1874/296600.

https://doi.org/10.1007/PL00009293
https://doi.org/10/dwvqpj
https://doi.org/10.1145/2601097.2601224
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://doi.org/10.1002/j.1538-7305.1966.tb01713.x
http://dspace.library.uu.nl/handle/1874/296600

Approximation Metatheorems for Classes with
Bounded Expansion
Zdeněk Dvořák #

Computer Science Institute, Charles University, Prague, Czech Republic

Abstract
We give a number of approximation metatheorems for monotone maximization problems expressible
in the first-order logic, in substantially more general settings than previously known. We obtain

a constant-factor approximation algorithm in any class of graphs with bounded expansion,
a QPTAS in any class with strongly sublinear separators, and
a PTAS in any fractionally treewidth-fragile class (which includes all common classes with
strongly sublinear separators).

Moreover, our tools also give an exact subexponential-time algorithm in any class with strongly
sublinear separators.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases bounded expansion, approximation, meta-algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.22

Related Version Full Version: https://arxiv.org/abs/2103.08698

Funding Supported by the ERC-CZ project LL2005 (Algorithms and complexity within and beyond
bounded expansion) of the Ministry of Education of Czech Republic.

1 Introduction

We are interested in approximation algorithms for problems such as the Maximum Inde-
pendent Set and its variants (weighted, distance-d independent for a fixed parameter d,
. . .), Maximum Induced Matching, Maximum 3-Colorable Induced Subgraph, and
similar. There are many strong non-approximation results that preclude the existence of
constant-factor approximation algorithms for these problems in general; for example, it is
NP-hard to approximate the independence number [40] of an n-vertex graph up to the factor
of n1−ε for every ε > 0. Hence, we need to consider more restricted settings.

There is a close connection between approximability and the existence of efficient algo-
rithms parameterized by the solution size. Indeed, the existence of an EPTAS (arbitrarily
precise polynomial-time approximation algorithm such that the degree of the polynomial
bounding the complexity does not depend on the precision) directly implies fixed-parameter
tractability, and a constant-factor approximation often forms a starting point for proving
fixed-parameter tractability. A natural family of problems, namely those expressible in
the first-order logic, is known to be fixed-parameter tractable in a subgraph-closed class
of graphs if and (under standard complexity-theoretic assumptions) only if the class is
nowhere-dense [26]. Moreover, in a slightly more restrictive setting of classes with bounded
expansion, the parameterized algorithms have linear time complexity [17]. We refer the reader
not familiar with the concept of bounded expansion to Section 1.1; here, let us just mention
that examples of graph classes with this property are planar graphs and more generally all
proper minor-closed classes, all graph classes with bounded maximum degree, and even more
generally, graph classes closed under topological minors, as well as almost all Erdős-Rényi
random graphs with bounded average degree.

© Zdeněk Dvořák;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rakdver@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-8308-9746
https://doi.org/10.4230/LIPIcs.SWAT.2022.22
https://arxiv.org/abs/2103.08698
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Approximation Metatheorems for Classes with Bounded Expansion

Motivated by this connection, we explore the approximability of maximization problems
expressible in the first-order logic when restricted to classes with bounded expansion. As
our first main result, we show that every monotone maximization problem expressible in the
first-order logic admits a constant-factor approximation algorithm in every class of graphs of
bounded expansion, even in the weighted setting. We need a few definitions to formulate the
precise statement.

Let I be a finite index set and let S be a set of vertices of a graph G. An I-tuple of
subsets of S is a system AI = {Ai : i ∈ I}, where Ai ⊆ S for each i. We say that the I-tuple
covers a vertex v ∈ V (G) if v ∈

⋃
i∈I Ai. A property of I-tuples of subsets in G is a set π of

I-tuples of subsets of V (G), listing the I-tuples that satisfy the property π. As an example,
suppose I = {1, 2, 3} and π consists exactly of the I-tuples {A1, A2, A3} such that A1, A2,
and A3 are disjoint independent sets in G; then an induced subgraph of G is 3-colorable if
and only if its vertex set is covered by some I-tuple satisfying the property π. For I-tuples
AI and A′

I , we write A′
I ⊆ AI if A′

i is a subset of Ai for each i ∈ I. Similarly, we define
AI ∪ A′

I , AI ∩X and AI \X for a set X ⊆ V (G) by applying the operation in each index
separately. We say that the property π is monotone if for all I-tuples A′

I ⊆ AI , if AI satisfies
the property π, then so does A′

I .
Our goal will be to maximize the weight of an I-tuple satisfying the given property. The

weight of the I-tuple is the sum of the weights of the covered vertices, where the weight
of vertex can depend on its membership in the elements of the I-tuple. More precisely,
for a vertex v ∈ V (G), let χAI

(v) ∈ 2I be the set of indices i ∈ I such that v ∈ Ai. A
function w : V (G) × 2I → Z is a weight assignment if w(v, ∅) = 0 for each v ∈ V (G); with
a few exceptions, we will only consider assignments of non-negative weights. Let us define
w(AI) =

∑
v∈V (G) w(v, χAI

(v)), and let MAX(π,w) be the maximum of w(AI) over the
systems AI satisfying the property π.

Let XI = {Xi : i ∈ I} be a system of unary predicate symbols (to be interpreted as subsets
of vertices of the input graph). A first-order I-formula is a formula φ using quantification
over vertices, the predicates Xi for i ∈ I, equality, and the standard logic conjunctions. A
first-order graph I-formula can additionally use a binary symmetric adjacency predicate E.
A formula is a sentence if it has no free variables. For a graph G, an I-tuple AI of subsets of
V (G), and a first-order I-sentence φ, we write G,AI |= φ if the sentence φ holds when the
variables in its quantifiers take values from V (G), the adjacency predicate is interpreted as
the adjacency in G, and for i ∈ I, Xi is interpreted as the set Ai. The property π expressed
by φ consists of all I-tuples AI such that G,AI |= φ. For example, the property “X1 is a
distance-2 independent set” is expressed by the first-order graph {1}-sentence

(∀x, y) (X1(x) ∧X1(y) ∧ x ̸= y) ⇒ (¬E(x, y) ∧ ¬(∃z)E(x, z) ∧ E(y, z)).

▶ Theorem 1. Let I be a finite index set and let φ be a first-order graph I-sentence expressing
a monotone property π. For any graph class G with bounded expansion, there exists a constant
c ≥ 1 and a linear-time algorithm that, given

a graph G ∈ G and
a weight assignment w : V (G) × 2I → Z+

0 ,
returns an I-tuple AI of subsets of V (G) satisfying the property π such that

w(AI) ≥ 1
c · MAX(π,w).

Actually, the result applies to even more general class of properties, expressible by the
fragment of monadic second-order logic where we allow quantification only over the subsets
of the vertices in the solution. For a finite index set I that does not contain the integers

Z. Dvořák 22:3

1, . . .n, a solution-restricted MSOL I-sentence with first-order graph core ψ is a formula
of form (Q1X1 ⊆

⋃
i∈I Xi) . . . (QnXn ⊆

⋃
i∈I Xi) ψ, where Q1, . . . , Qn are quantifiers, X1,

. . . , Xn are unary predicate symbols (interpreted as subsets of vertices of the input graph),
and ψ is a first-order graph I ∪ {1, . . . , n}-sentence. For example, the property “G[X] is a
union of cycles, and the distance in G between the distinct cycles is at least three” (or more
natural properties such as “G[X] is planar” or “G[X] is acyclic” that however do not use the
fact that in the first-order core, we are allowed to quantify also over the vertices not in X)
can be expressed in this way.

▶ Theorem 2. Let I be a finite index set and let φ be a solution-restricted MSOL I-sentence
with first-order graph core expressing a monotone property π. For any class G with bounded
expansion, there exists a constant c ≥ 1 and a linear-time algorithm that, given

a graph G ∈ G and
a weight assignment w : V (G) × 2I → Z+

0 ,
returns an I-tuple AI of subsets of V (G) satisfying the property π such that

w(AI) ≥ 1
c · MAX(π,w).

We are also interested in the graph classes for which every monotone maximization
problem expressible in the first-order logic admits a polynomial-time approximation scheme
(PTAS), i.e., an arbitrarily precise polynomial-time approximation algorithm. Note that
it is hard to approximate the maximum independent set size within the factor of 0.995
in graphs of maximum degree at most three [4], and thus we do not aim to obtain PTAS
in all classes with bounded expansion. The class of graphs of maximum degree three has
exponential expansion, motivating us to consider the classes with polynomial expansion.
Dvořák and Norin [18] proved these are exactly the graph classes with strongly sublinear
separators1, and approximation questions have been intensively studied for various graph
classes with this property (such as planar graphs or more generally for proper minor-closed
classes); see Section 1.2 for an overview. While we were not able to obtain a PTAS for all
classes with strongly sublinear separators, we were at least able to obtain a quasi-polynomial
time approximation scheme (but only for properties expressed by first-order graph sentences,
rather than solution-restricted MSOL sentences with first-order graph core).

▶ Theorem 3. Let I be a finite index set and let φ be a first-order graph I-sentence expressing
a monotone property π. For any class G with strongly sublinear separators, there exists a
polynomial p and an algorithm that, given

a graph G ∈ G,
a weight assignment w : V (G) × 2I → Z+

0 , and
a positive integer o,

returns in time exp(p(o · log |V (G)|)) an I-tuple AI of subsets of V (G) satisfying the property
π such that

w(AI) ≥
(
1 − 1

o

)
· MAX(π,w).

Interestingly, the ideas used to prove Theorem 3 also lead to exact subexponential-time
algorithms for classes with strongly sublinear separators1.

1 For an n-vertex graph G, a set X ⊆ V (G) is a balanced separator if each component of G − X has at
most 2n/3 vertices. Let s(G) denote the minimum size of a balanced separator in G, and for a class G
of graphs, let sG : Z+ → Z+

0 be defined by sG(n) = max{s(H) : H ⊆ G ∈ G, |V (H)| ≤ n}. The class G
has strongly sublinear separators if sG(n) = O(n1−β) for some β > 0.

SWAT 2022

22:4 Approximation Metatheorems for Classes with Bounded Expansion

▶ Theorem 4. Let I be a finite index set and let φ be a first-order graph I-sentence expressing
a property π. Let G be a class of graphs such that sG(n) = O(n1−β) for some positive β < 1.
There exists an algorithm that, given

a graph G ∈ G and
a weight assignment w : V (G) × 2I → Z (of not necessarily non-negative weights),

returns in time exp(O(|V (G)|1−β log1/2 |V (G)|)) an I-tuple AI of subsets of V (G) satisfying
the property π such that w(AI) = MAX(π,w).

We can obtain PTASes under a slightly stronger assumption on the considered class of
graphs, efficient fractional treewidth-fragility. For a positive integer s and a positive real
number δ ≤ 1, a multiset Z of subsets of vertices of a graph G is an (s, δ)-generic cover
of G if for every set S ⊆ V (G) of size at most s, we have S ⊆ Z for at least δ|Z| sets
Z ∈ Z. The treewidth of the cover is the maximum of tw(G[Z]) over all Z ∈ Z. We say that
a class of graphs G is fractionally treewidth-fragile if for some function f : Z+ → Z+, the
following claim holds: for every G ∈ G and any positive integers s and o, there exists an
(s, 1 − 1/o)-generic cover of G of treewidth at most f(os). The class is efficiently fractionally
treewidth-fragile if such a cover can be found in time polynomial in |V (G)|, and in particular,
Z has polynomial size2.

▶ Theorem 5. Let I be a finite index set and let φ be a solution-restricted MSOL I-sentence
with first-order graph core expressing a monotone property π. For any class G that is efficiently
fractionally treewidth-fragile, there exists a function f , a polynomial p, and an algorithm
that, given

a graph G ∈ G,
a weight assignment w : V (G) → Z+

0 , and
a positive integer o,

returns in time f(o)p(|V (G)|) an I-tuple AI of subsets of V (G) satisfying the property π

such that

w(AI) ≥
(
1 − 1

o

)
· MAX(π,w).

Efficiently fractionally treewidth-fragile classes include many of the known graph classes
with strongly sublinear separators, in particular

all hereditary classes with sublinear separators and bounded maximum degree [13],
all proper minor-closed classes, as an easy consequence of the result of DeVos et al. [10]
(or [16] without using the Robertson-Seymour structure theorem), and
many geometric graph classes, such as the intersection graphs of convex sets with bounded
aspect ratio in a fixed Euclidean space that have bounded clique number (as can be seen
using the idea of [22]).

Indeed, it is possible (and I have conjectured) that all classes with sublinear separators are
fractionally treewidth-fragile.

2 Note this is a somewhat non-standard formulation of fractional treewidth-fragility. In the usual
definition [13, 14], one requires the existence of a system of sets whose deletion results in a graph of
treewidth at most f(o) and such that each vertex belongs to at most 1/o fraction of the sets, i.e.,
the complements of the sets of the system form a (1, 1 − 1/o)-generic cover of treewidth at most
f(o). To match this with our definition, it suffices to observe that a

(
1, 1 − 1

os

)
-generic cover is also

(s, 1 − 1/o)-generic.

Z. Dvořák 22:5

Let us finish the introduction by giving two natural open questions. Our results only
apply to maximization problems. More precisely, the technique we use can be applied to
minimization problems (with monotone meaning the supersets of valid solutions are also
valid solutions) as well, but the resulting algorithms have error bounded by a fraction of the
total weight of all vertices, rather than a fraction of the optimal solution weight.

▶ Problem 6. Do monotone minimization problems expressible in the first order logic admit
constant factor approximation in all classes with bounded expansion? And PTASes in all
efficiently fractionally treewidth-fragile graph classes?

As a simplest example, we do not know whether there exists a PTAS for weighted vertex
cover in fractionally treewidth-fragile graph classes.

Secondly, many results for classes of graphs with bounded expansion extend to nowhere-
dense graph classes, up to replacement of some constants by terms of order no(1). Our
approach does not apply to this setting, since it is based on a quantifier elimination result
specific to graph classes with bounded expansion.

▶ Problem 7. Do monotone maximization problems expressible in the first order logic admit
an O(no(1))-factor approximation for n-vertex graphs from nowhere-dense classes?

Let us remark that if a hereditary class G of graphs is not nowhere-dense, then for some fixed
integer r, it contains r-subdivisions of all graphs. Consequently, using the non-approximability
results for the independence number [40], we conclude that for every ε > 0, Maximum-
Weight Distance-r Independent Set cannot be approximated in polynomial time for
n-vertex graphs from G up to the factor of O(n1/2−ε), unless P = NP.

1.1 Bounded expansion
The theory of bounded expansion and nowhere-density was developed chiefly by Nešetřil and
Ossona de Mendez in a series of papers [32, 33, 34] to capture the notion of graph sparsity
with respect to the expressive power of the first-order logic.

For a non-negative integer r, an r-shallow minor of a graph G is any graph obtained from
a subgraph of G by contracting pairwise vertex-disjoint subgraphs of radius at most r. A
class of graphs G has expansion bounded by a function f : Z+

0 → Z+
0 if for every r ≥ 0, every

r-shallow minor of a graph belonging to G has average degree at most f(r). We say that a
class has bounded expansion if it has expansion bounded by some function, and polynomial
expansion if it has expansion bounded by a polynomial.

Many natural graph classes have bounded expansion, thus making it possible to treat
them uniformly within this framework. For example, Dvořák and Norin [18] proved that a
class of graphs has polynomial expansion if and only if it has strongly sublinear separators.
This includes

planar graphs [29], and more generally all proper minor-closed classes [2];
graphs drawn in the plane (or on a fixed surface) with a bounded number of crossings on
each edge [36]; and
many geometric graph classes, such as the intersection graphs of convex sets with bounded
aspect ratio in a fixed Euclidean space that have bounded clique number, or nearest-
neighbor graphs of point sets in a fixed Euclidean space [31].

Classes with bounded (but superpolynomial) expansion include
Graph classes with bounded maximum degree, and more generally all graph classes closed
under topological minors [32];
graphs with bounded stack or queue number [36]; and,
almost all Erdős-Rényi random graphs with linear number of edges [36].

SWAT 2022

22:6 Approximation Metatheorems for Classes with Bounded Expansion

For a more in-depth introduction to the topic, the reader is referred to the book of
Nešetřil and Ossona de Mendez [35]. The classes with bounded expansion have found many
applications in the design of parameterized algorithms [17, 11, 1, 28, 21]. Their applications
in the context of approximation algorithms are discussed in the following section.

1.2 Related work
Distance versions of both minimum dominating set and the maximum independent set
are known to admit constant-factor approximation algorithms in classes with bounded
expansion [12, 15]. A constant-factor approximation algorithm for weighted and distance
version of the minimum dominating set also follows from [6] combined with the bounds on
the neighborhood complexity in classes with bounded expansion [38].

There are many known techniques to obtain approximation schemes for specific classes
of graphs with strongly sublinear separators (polynomial expansion). We illustrate the
power of these techniques on variants of the maximum independent set problem: The
distance-r independent set problem (parameterized by a fixed positive integer r), where
we require the distance between distinct vertices of the chosen set to be greater than r, and
the weighted version of the problem, where the input contains an assignment of weights to
vertices and we maximize the sum of weights of vertices in the set rather than the size of the
set; see Table 1 for a summary.

Let us start with the techniques that apply to all classes with strongly sublinear separators.
Lipton and Tarjan [30] observed that for each ε > 0, one can split the input graph G

by iteratively deleting sublinear separators into components of size poly(1/ε), where the
resulting set R of removed vertices has size at most ε|V (G)|. One can then solve the
problem in each component separately by brute force and obtain an approximation with
the additive error ε|V (G)|. In addition to only giving an additive approximation bound,
this technique is limited to the problems for which a global solution can be obtained from
the partial solutions in G−R; e.g., it does not apply to the distance-2 independent
set problem. It also does not apply in the weighted setting.
Har-Peled and Quanrud [27] proved that in any hereditary class with sublinear separators,
a simple local search approach (incrementally improving an initial solution by changes of
bounded size) gives PTAS for a number of natural optimization problems, including the
r-independent set problem for any fixed r ≥ 1 (this is not explicitly stated in their
paper, but it is easy to work out the argument). On the other hand, it is not clear which
problems are amenable to this approach, and it fails even for some very simple problems
(e.g., finding the maximum monochromatic set in an edgeless graphs with vertices colored
red and blue). The technique does not apply in the weighted setting.
The property of fractional treewidth-fragility, which as noted above is satisfied by many
classes with strongly sublinear separators, was developed as a way to extend Baker’s
technique (discussed below) to more general graph classes. While a direct application
(solving the problem separately in each subgraph induced by the cover) fails for the
distance versions of the problems, we have overcame this restriction in a joint work
with Lahiri [20]. The approach presented in this paper can be seen as a substantial
generalization in terms of the algorithmic problems to which it applies (Dvořák and
Lahiri [20] only consider problems expressible in terms of distances between the solution
vertices). The approach works for weighted problems. However, as a major restriction, it
generally only applies to maximization problems.
In [19], I made a rather technical attempt to improve upon the fractional treewidth-
fragility, by introducing a more powerful notion of thin systems of overlays. All hereditary
classes with sublinear separators and bounded maximum degree have this property, and

Z. Dvořák 22:7

Table 1 PTAS design techniques in hereditary classes with sublinear separators.

Technique Applies to indep. set r-indep. s. weighted i.s. monot. FO

Iterated sepa-
rators

all classes with sublinear sep-
arators

✓

Local search all classes with sublinear sep-
arators

✓ ✓

Fractional
treewidth-
fragility

bounded max. degree,
proper minor closed, . . . ;
maybe all?

✓ ✓ ✓ ✓(this work)

Thin systems
of overlays

bounded max. degree,
proper minor closed, . . .

✓ ✓ ✓

Baker’s tech-
nique

proper minor closed, some ge-
ometric settings

✓ ✓ ✓ ✓

so do all proper minor-closed classes. Thin systems of overlays make it possible to design
PTAS for the r-independent set problem for any fixed r ≥ 1, as well as for other
problems defined in terms of distances between the vertices in the solution (including
minimization problems such as the distance version of the minimum dominating set).
However, the notion is not suitable for the problems where more complex relationships
need to be considered.
Baker [3] designed a very powerful technique for planar graphs based on finding a partition
of the graph into layers (where the edges are allowed only within the layers and between
consecutive layers) such that the union of a bounded number of these layers induces a
subgraph of bounded treewidth. This is a substantially more restrictive condition than
fractional treewidth-fragility (not even all proper minor-closed classes have this property).
In a trade-off, the range of problems for which it applies is much wider. In particular,
it can deal with all (maximization or minimization) problems expressible in monotone
first-order logic [8], which includes all the discussed variants of the independent set
problem. A modified version of this technique (where the layering step is iterated and
combined with removal of a bounded number of vertices) also can be used in less restricted
settings [16], including for example all proper minor-closed classes (but not all classes
with sublinear separators).
The arguments based on bidimensionality [9] are rather powerful, but limited in scope to
(subclasses of) the proper minor-closed classes. With regards to the PTAS design, they
essentially build on the Baker’s technique framework.

1.3 Proof outline
The proofs of all our results are based on three ingredients:

(1) A strong locality result for first-order properties in graphs from classes with bounded
expansion , proved using a modification of the quantifier elimination procedure of [17]. To
state the result, we need a few more definitions. A simple signature σ is a set of unary
predicate and function symbols. For a finite index set I and a system XI of unary predicate
symbols disjoint from σ, a first-order graph (I, σ)-formula is a formula φ using all the
ingredients from the definition of a first-order graph I-formula and additionally the predicates
and unary functions from σ. For a graph G, a unary function f : V (G) → V (G) is guarded
by G if for each v ∈ V (G), either f(v) = v or v is adjacent to f(v) in G. A G-interpretation
I of σ assigns to each unary predicate symbol P a subset PI of vertices of G and to each

SWAT 2022

22:8 Approximation Metatheorems for Classes with Bounded Expansion

unary function symbol f a unary function fI guarded by G. For a positive integer s and a
graph G, a function h : V (G) → 2V (G) is an s-shroud if for each v ∈ V (G), |h(v)| ≤ s and
v ∈ h(v). The h-center of a set Y ⊆ V (G) is the set {v ∈ Y : h(v) ⊆ Y }.

▶ Theorem 8. Let I be a finite index set, let φ be a first-order graph I-sentence, and let G
be a class of graphs with bounded expansion. There exists a constant s, a simple signature σ
disjoint from all symbols appearing in φ, and a first-order graph (I, σ)-sentence φ′ such that
the following claim holds.

Given a graph G ∈ G, we can in time O(|V (G)|) find an s-shroud h with the following
property: For any Y ⊆ V (G), we can in linear time find a G[Y]-interpretation IY of σ for
which every I-tuple AI of subsets of the h-center of Y satisfies

G,AI |= φ if and only if G[Y], IY , AI |= φ′.

That is, for the I-tuples of subsets of the h-center of Y , we can evaluate whether they
have the property π (in the whole graph G) just by looking at the induced subgraph G[Y]
enhanced by IY . Note that Theorem 8 straightforwardly extends to solution-restricted MSOL
I-sentences (Q1X1 ⊆

⋃
i∈I Xi) . . . (QnXn ⊆

⋃
i∈I Xi) ψ with first-order graph core, since

if XI is interpreted as an I-tuple AI of subsets of the h-center of Y , then X1, . . . , Xn also
correspond to subsets of the h-center of Y .

▶ Corollary 9. Let I be a finite index set, let φ be a solution-restricted MSOL I-sentence
with first-order graph core, and let G be a class of graphs with bounded expansion. There
exists a constant s, a simple signature σ disjoint from all symbols appearing in φ, and a
solution-restricted MSOL (I, σ)-sentence φ′ with first-order graph core such that the following
claim holds.

Given a graph G ∈ G, we can in linear time find an s-shroud h with the following property:
For any Y ⊆ V (G), we can in linear time find a G[Y]-interpretation IY of σ for which every
I-tuple AI of subsets of the h-center of Y satisfies

G,AI |= φ if and only if G[Y], IY , AI |= φ′.

(2) The existence of sufficiently generic covers. For efficiently fractionally treewidth-
fragile classes, we have them by definition. For classes with bounded expansion, we use covers
obtained from low-treedepth colorings. A rooted forest F is an acyclic graph with a specified
root vertex in each component. The depth of F is the number of vertices on the longest path
from a root to a leaf. If the path in F from a root to a vertex v contains a vertex u, we say
that u is an ancestor of v and v is a descendant of u. The closure of F is the graph with the
vertex set V (F) where each vertex is adjacent exactly to its ancestors and descendants in F .
The treedepth of a graph H is the minimum d such that H is a subgraph of the closure of a
rooted forest of depth d. A graph of treedepth d is known to have treewidth (in fact, even
pathwidth) smaller than d [35]. For a positive integer s, a treedepth-s coloring of a graph G

is a coloring such that the union of every s color classes induces a subgraph of treewidth at
most s. Nešetřil and Ossona de Mendez [33] proved the following claim.

▶ Theorem 10 (Nešetřil and Ossona de Mendez [33]). For every class G of graphs with bounded
expansion and every positive integer s, there exists an integer a and a linear-time algorithm
that given a graph G ∈ G returns a treedepth-s coloring of G using at most a colors.

By considering the cover consisting of all c =
(

a
s

)
unions of s-tuples of color classes, we obtain

the following claim.

Z. Dvořák 22:9

▶ Corollary 11. For every class G of graphs with bounded expansion and every positive
integer s, there exists a positive integer c and a linear-time algorithm that given a graph
G ∈ G returns an (s, 1/c)-generic cover of size c and treedepth at most s.

For classes with strongly sublinear separators, in [14] I proved they are “almost” fractionally
treewidth-fragile, in the following sense (again, with a somewhat different notation, see the
footnote at the definition of fractional treewidth-fragility).

▶ Theorem 12 (Dvořák [14]). For every class G with strongly sublinear separators, there
exists a polynomial f : Z+ → Z+ and a polynomial-time algorithm that, for every G ∈ G
and positive integers s and o, returns an (s, 1 − 1/o)-generic cover of G of treewidth at most
f(os log |V (G)|). Moreover, the algorithm also returns the corresponding tree decomposition
for each element of the cover.

(3) The means to solve the problem on graphs of bounded treewidth. For Theorems 2
and 5, we use the well-known result of Courcelle [7], in the following optimization version
(note that we do not need to be given a tree decomposition, as for graphs of bounded
treewidth, we can find an optimal tree decomposition in linear time [5]).

▶ Theorem 13. Let I be a finite index set and let φ be a MSOL graph formula with free
variables XI , expressing a property π. For any positive integer t, there exists a linear-time
algorithm that, given

a graph G of treewidth at most t,
a set X ⊆ V (G), and
a weight assignment w : V (G) × 2I → Z,

returns an I-tuple AI of subsets of X satisfying the property π such that w(AI) is maximum
among all such I-tuples, or decides no such I-tuple of subsets of X exists.

This is not sufficient for the proof of Theorem 3, where we work with covers of poly-
logarithmic treewidth, and thus we need a better control over the dependence of the time
complexity on the treewidth. We use the following result proved using the locality property
underlying Theorem 8; we believe this result to be of independent interest.

▶ Theorem 14. Let I be a finite index set and let φ be a first-order graph I-sentence
expressing a property π. For any class G with bounded expansion, there exists a constant
c > 0 and an algorithm that, given

a graph G ∈ G,
a tree decomposition τ of G with at most |V (G)| nodes,
a set X ⊆ V (G), and
a weight assignment w : V (G) × 2I → Z0,

returns in time O(exp(ct)|V (G)|), where t is the width of the decomposition τ , an I-tuple
AI of subsets of X satisfying the property π such that w(AI) is maximum among all such
I-tuples, or decides no such I-tuple of subsets of X exists.

Let us remark that the reason we are not able to generalize Theorem 3 to solution-restricted
MSOL sentences with first-order graph core is that we cannot prove the analogue of Theo-
rem 14 in that setting.

We are now ready to prove our results.

Proof of Theorems 2, 3 and 5. Note that G has bounded expansion:
In the situation of Theorem 2, this is an assumption.
In the situation of Theorem 3, this is the case since classes with strongly sublinear
separators have polynomial expansion [18].

SWAT 2022

22:10 Approximation Metatheorems for Classes with Bounded Expansion

In the situation of Theorem 5, this is the case since every fractionally treewidth-fragile
class has bounded expansion [13].

Let s, σ, and φ′ be obtained by applying Theorem 8 or Corollary 9 to φ and G. Now, for the
input graph G and the weight assignment w (and the precision o in the case of Theorems 3
and 5), we apply the following algorithm:

Let h be the s-shroud obtained using Theorem 8 or Corollary 9.
Let Z be an (s, δ)-generic cover of treewidth at most t, where

in the situation of Theorem 2, Z is obtained using Corollary 11, δ = 1/c, and t = s;
in the situation of Theorem 3, Z is obtained using Theorem 12 for the given o and s,
δ = 1 − 1/o, and t = poly(os log |V (G)|); and
in the situation of Theorem 5, Z is obtained using the definition of efficient fractional
treewidth-fragility for the given o and s, δ = 1 − 1/o, and t = f(os).

For each Y ∈ Z:
Let IY be the G[Y]-interpretation of σ obtained using Theorem 8 or Corollary 9.
Let Y ′ be the h-center of Y .
Using Theorem 13 or 14 in the bounded-treewidth graph G[Y], find an I-tuple AY

I of
subsets of Y ′ satisfying G[Y], IY , A

Y
I |= φ′ such that w(AY

I) is maximum possible.
Return the I-tuple AY

I such that w(AY
I) is maximum over all Y ∈ Z.

Note that Theorem 8 or Corollary 9 implies that G,AY
I |= φ, and thus it suffices to bound

the approximation ratio of the algorithm.
Let AI be an I-tuple of subsets of vertices of G satisfying the property π such that

w(AI) is maximum. Choose Y ∈ Z uniformly at random. Since h is an s-shroud and Z
is an (s, δ)-cover, for each v ∈ V (G), the probability that h(v) ⊆ Y is at least δ. Hence,
letting A′

I = AI ∩ Y ′ (where Y ′ is the h-center of Y), the expected value of w(A′
I) is at least

δ · w(AI). Since π is monotone, we have G,A′
I |= φ, and by Theorem 8, G, IY , A

′
I |= φ′.

This implies w(AY
I) ≥ w(A′

I), and thus the expected value of w(AY
I) is also at least δ ·w(AI).

Since we return the maximum over all elements of Z, this implies the weight of the returned
set is at least δ · w(AI). ◀

Proof of Theorem 4. Note that since G has strongly sublinear separators, it has bounded
(in fact, polynomial) expansion [18].

Using the algorithm of [23], we can for any n-vertex subgraph of G in polynomial time
find a balanced separator of size O(n1−β log1/2 n). Using this algorithm, let us construct a
tree decomposition τ of G as follows:

Find a balanced separator S in G.
Recursively find a tree decomposition τC of each component C of G− S.
Add a new root vertex adjacent to the root of τC for each each component C of G− S,
and add S to all bags (including the bag of the new root vertex).

This tree decomposition has width t = O(|V (G)|1−β log1/2 |V (G)|). We then apply the
algorithm from Theorem 14 for this tree decomposition and X = V (G). ◀

Theorem 8 is a consequence of a quantifier-elimination result whose proof is inspired
by the approach of Dvořák, Král’, and Thomas [17] (but likely could also be proved using
the alternative approaches to quantifier elimination in bounded expansion classes, such
as [24, 25, 37, 39]); we state the result and derive Theorem 8 in Section 2. Theorem 14
follows by a standard dynamic programming approach, with Theorem 8 used to bound the
number of states; we give the proof in Section 3.

Z. Dvořák 22:11

2 The quantifier elimination result and its applications

In [13], it has been shown that any first-order formula on a graph from a class with bounded
expansion can be transformed into an equivalent quantifier-free first-order formula on a graph
from a (different) class with bounded expansion, by introducing unary functions guarded by
the resulting graph and new unary predicates, both computable in linear time. Essentially the
same procedure can be applied to first-order formulas describing set properties; however, for
our application, we need to be more explicit in terms of how the newly introduced functions
and predicates are defined and in particular, how they depend on the set system whose
weight we are maximizing.

To this end, in addition to unary functions and predicates, we introduce counters.
Semantically, a counter γ assigns a non-negative integer γ(v) to each vertex v. For each
counter symbol γ, our formulas can use expressions of form γ(x) ≥ m, where x is a term and
m is a positive integer, with the natural interpretation. The symbols for counters are linearly
ordered, and we say that a formula is γ-dominated if all counter symbols appearing in the
formula are strictly smaller than γ. For a variable x, we say that a formula θ is x-local if θ is
quantifier-free, does not use unary functions, and x is the only variable appearing in θ.

The counters are used to keep track of the numbers of vertices that satisfy a prescribed
property. Formally, the values of each counter γ are determined by an associated trigger
(f, θ), where f is a unary function symbol and θ is an x-local γ-dominated first-order formula.
For each vertex v, the value γ(v) is equal to the number of vertices u ∈ V (G) \ {v} such that
f(u) = v and θ(u) holds.

A global formula is a formula that can additionally use elementary formulas of form
#θ ≥ m, where θ is an x-local formula and m is a positive integer; this elementary formula
is true if there are at least m vertices v ∈ V (G) such that θ(v) holds.

Let I be a finite index set. A counter I-signature σ is a set of unary predicate and
function symbols and linearly ordered counter symbols, together with the triggers associated
with these counter symbols, where the triggers are allowed to refer to the unary predicates
from XI and σ. For a graph G, a G-interpretation of σ is a G-interpretation of the simple
signature consisting of the unary predicate and function symbols from σ. We can now state
the quantifier elimination result.

▶ Theorem 15. Let I be a finite index set, let φ be a first-order graph I-sentence, and let
G be a class of graphs with bounded expansion. There exists a counter I-signature σ and a
global quantifier-free first-order (I, σ)-sentence φ′ such that the following claim holds. Given
a graph G ∈ G, we can in linear time compute a G-interpretation I of σ such that

G,AI |= φ if and only if G, I, AI |= φ′

for every I-tuple AI of subsets of V (G).

As we mentioned before, Theorem 8 can be proved by a straightforward modification of
known arguments [17, 24, 25, 37, 39] and we omit the proof in this extended abstract; it can
be found in the full version of the paper at https://arxiv.org/abs/2103.08698.

Let us remark that since φ′ is a quantifier-free sentence, it is a Boolean combination of
formulas of form #θ ≥ m, where θ is an x-local formula, and in particular φ′ does not refer
to any function symbols.

Importantly, the interpretation I of the predicate and function symbols from σ is
independent on AI ; the choice of AI only affects the values of counters. Let ℓ(σ) denote
the number of counter symbols in σ, and for i = 1, . . . , ℓ(σ), let fi,I be the interpretation

SWAT 2022

https://arxiv.org/abs/2103.08698
https://arxiv.org/abs/2103.08698

22:12 Approximation Metatheorems for Classes with Bounded Expansion

of the unary function from the trigger of the i-th counter symbol in σ, in their fixed
linear ordering. For v ∈ V (G), let us define h0,I(v) = {v} and for i = 1, . . . , ℓ(σ), let
hi,I(v) = hi−1,I(v) ∪ {fi,I(u) : u ∈ hi−1,I(v)}. We let hI = hℓ(σ),I ; note that hI is a
2ℓ(σ)-shroud.

For a counter γ of a counter I-signature σ, a G-interpretation I, and an I-tuple AI of
subsets of V (G), let γ(I, AI , v) denote the value of the counter γ when the symbols of σ are
interpreted according to I and the predicates XI are interpreted as AI . The applications of
Theorem 15 use the simple fact that the membership of a vertex v in the sets of an I-tuple
AI only affects the values of the counters in hI(v).

▶ Lemma 16. Let I be a finite index set, let σ be a counter I-signature, let G be a graph and
let I be a G-interpretation of σ. For any X ⊆ V (G) and I-tuples AI and A′

I of subsets of
vertices of G, if AI \X = A′

I \X, then γ(I, AI , v) = γ(I, A′
I , v) for every v ∈ V (G) \ hI(X).

Proof. For i = 1, . . . , ℓ(σ), let (θi, fi) be the trigger of the i-th counter symbol γi in σ, in
their fixed linear ordering, and let fi,I be the interpretation of fi in I. By induction on i,
we show that γi(I, AI , v) = γi(I, A′

I , v) for each v ∈ V (G) \ hi,I(X). Recall that γi(I, AI , v)
is the number of vertices u ∈ V (G) \ {v} such that fi,I(u) = v and G, I, AI |= θi(u).
Note that u ∈ V (G) \ hi−1,I(X) ⊆ V (G) \ hj,I(X) ⊆ V (G) \ X for each j ≤ i − 1, and
thus γj(I, AI , u) = γj(I, A′

I , v) for each such j by the induction hypothesis. Since θi is
x-local, the value of θi(u) only depends on these counters, I, and the interpretation of
XI on u ̸∈ X, and thus G, I, AI |= θi(u) if and only if G, I, A′

I |= θi(u). Consequently,
γi(I, AI , v) = γi(I, A′

I , v), as required. ◀

This is useful in combination with the fact that vertices with fixed values of the counters
can be deleted. Let I be a finite index set, let σ be a counter I-signature, and let φ be a global
quantifier-free first-order (I, σ)-sentence. For a graph G and Y ⊆ V (G), a (G, Y, σ, φ)-census
is a function n that, letting M be the largest integer appearing in the formula φ and the
triggers of σ, assigns an element of {0, . . . ,M} to

each x-local formula θ appearing in an elementary formula #θ ≥ m in φ, and
each pair (γ, v), where γ is a counter symbol of σ and v ∈ Y is a vertex with at least one
neighbor in V (G) \ Y .

Given a G-interpretation I of σ and an I-tuple AI of subsets of vertices of G, we say that n
is a (G, Y, I, σ, φ)-shadow of AI if

for each x-local formula θ appearing in an elementary formula #θ ≥ m in φ, n(θ) is the
minimum of M and the number of vertices u ∈ V (G) \ Y such that G, I, AI |= θ(u); and,
for each counter γ with trigger (θ, f) and each vertex v ∈ Y with at least one neighbor in
V (G) \ Y , n(γ, v) is the minimum of M and the number of vertices u ∈ V (G) \ Y such
that fI(u) = v and G, I, AI |= θ(u).

▶ Lemma 17. Let I be a finite index set, let σ be a counter I-signature, and let φ be a
global quantifier-free first-order (I, σ)-sentence. There exists a signature σ′ obtained from σ

by adding unary predicate symbols and changing the triggers on the counter symbols, and a
global quantifier-free first-order (I, σ′)-sentence φ′ such that the following claim holds. For
any graph G, a G-interpretation I of σ, a set Y ⊆ V (G) and a (G, Y, σ, φ)-census n, we can
in linear time find a G[Y]-interpretation I of σ′s such that

G, I, AI |= φ if and only if G[Y], I ′, AI |= φ′

for every I-tuple AI of subsets of Y with (G, Y, I, σ, φ)-shadow n.

Z. Dvořák 22:13

Proof. Let M be the largest integer appearing in the formula φ or the triggers of σ. For
each counter symbol γ and each positive integer m ≤ M , we add to σ′ a unary predicate
Pγ,m, interpreted in I ′ as the set of vertices v ∈ Y such that n(γ, v) ≥ m. Each function
symbol g is interpreted in I ′ by setting gI′(v) = gI(v) if gI(v) ∈ Y and gI(v) = v otherwise.
The predicate symbols are interpreted in I ′ as the restrictions of their intepretations in I
to Y .

For a counter symbol γ with trigger (θ, f), we set the trigger of γ in σ′ to be (θ′, f),
where θ′ is obtained from θ by replacing each formula of form γ′(x) ≥ m by the formula

(γ′(x) ≥ m) ∨ (Pγ′,1(x) ∧ γ′(x) ≥ m− 1) ∨ . . . ∨ Pγ′,m(x).

This ensures that for each v ∈ Y and each I-tuple AI of subsets of Y with (G, Y, I, σ, φ)-
shadow n, we have

min(M,γ(I, AI , v)) = min(M,γ(I ′, AI , v) + n(γ, v)),

where n(γ, v) = 0 if all neighbors of v belong to Y . For each subformula of φ of form #θ ≥ m,
let θ′ be obtained by performing the same replacements. The formula φ′ is obtained from φ

by replacing each such subformula by the formula #θ′ ≥ max(0,m− n(θ)). The fact that
G, I, AI |= φ if and only if G[Y], I ′, AI |= φ′ holds for every I-tuple AI of subsets of Y with
(G, Y, I, σ, φ)-shadow n is clear from the construction. ◀

We also need the fact that counters can be eliminated at the expense of re-introducing
quantifiers.

▶ Lemma 18. Let I be a finite index set, let σ be a counter I-signature, and let σ′ be the
simple signature consisting of the predicate and function symbols from σ. For any counter
symbol γ ∈ σ and a positive integer m, there exists a first-order (I, σ′)-formula ψγ,m with
one free variable x such that the following claim holds: Let G be a graph and let I be a
G-interpretation of σ. For any I-tuple AI of subsets of vertices of G, we have γ(I, AI , v) ≥ m

if and only of G, I, AI |= ψγ,m(v).

Proof. We prove the claim by induction along the linear ordering of the counter symbols in
σ, and thus we can assume that the claim holds for all counter symbols appearing in the
trigger (θ, f) of γ. Let θ′ be the (I, σ′)-formula obtained from θ by replacing each formula of
form γ′(x) ≥ m′ by the formula ψγ′,m′(x). We let ψγ,m be the formula

(∃x1) . . . (∃xm)

∧
i<j

xi ̸= xj

 ∧
m∧

i=1
(xi ̸= x ∧ f(xi) = x ∧ θ′(xi)). ◀

We now straightforwardly compose the results.

Proof of Theorem 8. Let σ1 be the counter I-signature and φ1 the global quantifier-free
first-order (I, σ1)-sentence obtained using Theorem 15. Let s = 2ℓ(σ1). Let σ2 and φ2 be the
counter I-signature and the global quantifier-free first-order (I, σ2)-sentence obtained using
Lemma 17 for σ1 and φ1. We let σ be the simple signature consisting of the predicate and
function symbols from σ2, and for each counter symbol γ of σ2 and each positive integer m,
we let ψγ,m be the formula constructed in Lemma 18. We let φ′ be the formula obtained
from φ2 by replacing every subformula of form γ(x) ≥ m by the formula ψγ,m(x), and every
subformula of form #θ ≥ m by the formula

(∃x1) . . . (∃xm)

∧
i<j

xi ̸= xj

 ∧
m∧

i=1
θ(xi).

SWAT 2022

22:14 Approximation Metatheorems for Classes with Bounded Expansion

Now, given a graph G, we first use the algorithm from Theorem 15 to compute a
G-interpretation I1 of σ1 such that

G,AI |= φ if and only if G, I1, AI |= φ1

for every I-tuple AI of subsets of V (G). We let h be the s-shroud hI1 and let X be the
h-center of Y . Let n be the (G, Y, I1, σ1, φ1)-shadow of the I-tuple of empty sets. Note that
by Lemma 16, every I-tuple AI of subsets of X has (G, Y, I1, σ1, φ1)-shadow n. Using the
algorithm from Lemma 17, we compute a G[Y]-interpretation I2 of σ2 such that

G, I1, AI |= φ1 if and only if G[Y], I2, AI |= φ2

for every I-tuple AI of subsets of X. By construction, φ′ is a first-order (I, σ)-sentence such
that

G[Y], I2, AI |= φ2 if and only if G[Y], I2, AI |= φ′

for every I-tuple AI of subsets of Y . Therefore,

G,AI |= φ if and only if G[Y], I2, AI |= φ′

for every I-tuple AI of subsets of the h-center X of Y , and we can set IY = I2. ◀

3 Deciding first-order properties in time exponential in treewidth

In this section, we give the algorithm from the statement of Theorem 14. Let I be a finite
index set, let σ be a counter I-signature, let φ be a global quantifier-free first-order (I, σ)-
sentence, let G be a graph, and let I be a G-interpretation of σ. Suppose G = L ∪ R for
some subgraphs L and R of G. In this context, for I-tuples AI and A′

I of subsets of vertices
of L, we write AI ≡(L,R) A

′
I if for every I-tuple BI of subsets of V (R) \ V (L), we have

G, I, AI ∪BI |= φ if and only if G, I, A′
I ∪BI |= φ.

The algorithm is based on the following key fact.

▶ Lemma 19. Let I be a finite index set, let σ be a counter I-signature, let φ be a global
quantifier-free first-order (I, σ)-sentence, let G = L ∪ R be a graph and let I be a G-
interpretation of σ. Let hI be the corresponding 2ℓ(σ)-shroud and let S = hI(V (L∩R))∩V (L).
If AI and A′

I are I-tuples of subsets of V (L) such that
AI ∩ S = A′

I ∩ S and
AI and A′

I have the same (G,V (L) \ S, I, σ, φ)-shadow n,
then AI ≡(L,R) A

′
I .

Proof. By the definition of hI , we have S = hI(V (R)) ∩ V (L). Consider any I-tuple
BI of subsets of V (R) \ V (L). By Lemma 16 applied with X = V (R) \ V (L), we have
γ(I, AI ∪ BI , v) = γ(I, AI , v) and γ(I, A′

I ∪ BI , v) = γ(I, A′
I , v) for each v ∈ V (L) \ S.

Consequently, the (G,V (L) \ S, I, σ, φ)-shadow of both AI ∪BI and A′
I ∪BI is equal to n.

Let σ′, φ′, and I ′ be obtained using Lemma 17 for the census n and Y = V (R) ∪ S. By the
assumptions, we have (AI ∪BI) ∩ (V (R) ∪ S) = (A′

I ∪BI) ∩ (V (R) ∪ S), and thus

G, I, AI ∪BI |= φ if and only if
G[V (R) ∪ S], I ′, (AI ∪BI) ∩ (V (R) ∪ S) |= φ′ if and only if
G[V (R) ∪ S], I ′, (A′

I ∪BI) ∩ (V (R) ∪ S) |= φ′ if and only if
G, I, A′

I ∪BI |= φ,

as required. ◀

Z. Dvořák 22:15

▶ Corollary 20. Let I be a finite index set, let σ be a counter I-signature, let φ be a
global quantifier-free first-order (I, σ)-sentence, let G = L ∪ R be a graph and let I be a
G-interpretation of σ. Then ≡(L,R) has exp(O(|V (L ∩R)|)) equivalence classes.

Proof. Let M be the largest integer appearing in the formula φ and the triggers of σ and
let a be the number of x-local formulas appearing in φ. Let

c = (M + 1)ℓ(σ)2ℓ(σ)
2|I|2ℓ(σ)

.

Let hI be the 2ℓ(σ)-shroud corresponding to I and let S = hI(V (L ∩R)) ∩ V (L).
By Lemma 19, each equivalence class of ≡(L,R) is determined by
the (G,V (L)\S, σ, φ)-census n: since only the vertices of S can have neighbors in V (L)\S,
the number of such censuses is at most (M + 1)a+ℓ(σ)|S| ≤ (M + 1)a+ℓ(σ)2ℓ(σ)·|V (L∩R)|;
and
the restriction of the I-tuple to S: there are 2|I|·|S| ≤ 2|I|2ℓ(σ)·|V (L∩R)| options.

Hence, the number of equivalence classes of ≡(L,R) is at most (M + 1)ac|V (L∩R)|. ◀

Proof of Theorem 14. Let T be the tree of the tree decomposition τ , rooted arbitrarily.
For each node x ∈ V (T), let Tx denote the subtree of T induced by x and its descendants.
Let Lx = G[

⋃
y∈V (Tx) τ(y)] and Rx = G[

⋃
y∈(V (T)\V (Tx))∪{x} τ(y)], so that Lx ∪Rx = G and

|V (Lx ∩Rx)| = |τ(x)| ≤ t+ 1.
Let σ, φ′ and I be obtained using Theorem 15. We use the standard dynamic programming

approach, computing for each x ∈ V (T) a table assigning to each equivalence class C of
≡(Lx,Rx) an I-tuple AI,C ∈ C of subsets of X ∩ V (Lx) such that w(AI,C) is maximized.
Since ≡(Lx,Rx) has exp(O(t)) equivalence classes by Corollary 20, this can be done in total
time exp(O(t))|V (G)| for all nodes of τ .

Let r be the root of T , and note that Lr = G and Rr = G[τ(r)]. We go over the
equivalence classes C of ≡(Lr,Rr) corresponding to I-tuples satisfying the property expressed
by φ′ (and thus also by φ), and return the I-tuple AI,C maximizing w(AI,C). ◀

References
1 Saeed Akhoondian Amiri, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian

Siebertz. Distributed domination on graph classes of bounded expansion. In Proceedings of the
30th on Symposium on Parallelism in Algorithms and Architectures, SPAA ’18, pages 143–151,
New York, NY, USA, 2018. Association for Computing Machinery.

2 Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for graphs with an excluded
minor and its applications. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pages 293–299. ACM, 1990.

3 B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the ACM (JACM), 41(1):153–180, 1994.

4 Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In International
Colloquium on Automata, Languages, and Programming, pages 200–209. Springer, 1999.

5 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on computing, 25(6):1305–1317, 1996.

6 Timothy M Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capacitated,
priority, and geometric set cover via improved quasi-uniform sampling. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 1576–1585. SIAM,
2012.

7 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990.

SWAT 2022

22:16 Approximation Metatheorems for Classes with Bounded Expansion

8 Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Approximation
schemes for first-order definable optimisation problems. In 21st Annual IEEE Symposium on
Logic in Computer Science (LICS’06), pages 411–420. IEEE, 2006.

9 Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: new connections between
FPT algorithms and PTASs. In Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 590–601. Society for Industrial and Applied Mathematics, 2005.

10 Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel Sanders, Bruce Reed, Paul Seymour, and
Dirk Vertigan. Excluding any graph as a minor allows a low tree-width 2-coloring. J. Comb.
Theory, Ser. B, 91:25–41, 2004.

11 Pøal G. Drange, Markus Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov, Marcin
Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh, Sebastian
Siebertz, and Somnath Sikdar. Kernelization and Sparseness: the Case of Dominating Set.
In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), volume 47
of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:14, Dagstuhl,
Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

12 Z. Dvořák. Constant-factor approximation of domination number in sparse graphs. European
Journal of Combinatorics, 34:833–840, 2013.

13 Z. Dvořák. Sublinear separators, fragility and subexponential expansion. European Journal of
Combinatorics, 52:103–119, 2016.

14 Z. Dvořák. On classes of graphs with strongly sublinear separators. European Journal of
Combinatorics, 71:1–11, 2018.

15 Z. Dvořák. On distance r-dominating and 2r-independent sets in sparse graphs. J. Graph
Theory, 91(2):162–173, 2019.

16 Z. Dvořák. Baker game and polynomial-time approximation schemes. In Proceedings of
the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, pages
2227–2240. Society for Industrial and Applied Mathematics, 2020.

17 Z. Dvořák, Daniel Král’, and Robin Thomas. Testing first-order properties for subclasses of
sparse graphs. Journal of the ACM (JACM), 60(5):36, 2013.

18 Z. Dvořák and Sergey Norin. Strongly sublinear separators and polynomial expansion. SIAM
Journal on Discrete Mathematics, 30:1095–1101, 2016.

19 Zdeněk Dvořák. Thin graph classes and polynomial-time approximation schemes. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’18), pages
1685–1701. ACM, 2018.

20 Zdeněk Dvořák and Abhiruk Lahiri. Approximation schemes for bounded distance problems
on fractionally treewidth-fragile graphs. arXiv, 2105.01780, 2021. arXiv:2105.01780.

21 Carl Einarson and Felix Reidl. A General Kernelization Technique for Domination and
Independence Problems in Sparse Classes. In 15th International Symposium on Parameterized
and Exact Computation (IPEC 2020), volume 180 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 11:1–11:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

22 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing, 34:1302–1323, 2005.

23 Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. Improved approximation algo-
rithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–657,
2008.

24 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona De Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded
expansion classes. ACM Transactions on Computational Logic (TOCL), 21(4):1–41, 2020.

25 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. Model Theoretic
Methods in Finite Combinatorics, 558:181–206, 2011.

http://arxiv.org/abs/2105.01780

Z. Dvořák 22:17

26 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 89–98. ACM, 2014.

27 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion and
low-density graphs. In Algorithms-ESA 2015, pages 717–728. Springer, 2015.

28 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and
wideness properties of nowhere dense graph classes. ACM Transactions on Algorithms (TALG),
15(2):24, 2018.

29 R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied
Mathematics, 36:177–189, 1979.

30 R. Lipton and R. Tarjan. Applications of a planar separator theorem. SIAM Journal on
Computing, 9:615–627, 1980.

31 Gary L Miller, Shang-Hua Teng, William Thurston, and Stephen A Vavasis. Separators for
sphere-packings and nearest neighbor graphs. Journal of the ACM (JACM), 44(1):1–29, 1997.

32 J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion I. Decomposi-
tions. European J. Combin., 29:760–776, 2008.

33 J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion II. Algorithmic
aspects. European J. Combin., 29:777–791, 2008.

34 J. Nešetřil and P. Ossona de Mendez. First order properties on nowhere dense structures. J.
Symbolic Logic, 75:868–887, 2010.

35 J. Nešetřil and P. Ossona de Mendez. Sparsity (Graphs, Structures, and Algorithms), volume 28
of Algorithms and Combinatorics. Springer, 2012.

36 J. Nešetřil, P. Ossona de Mendez, and D. Wood. Characterisations and examples of graph
classes with bounded expansion. Eur. J. Comb., 33:350–373, 2012.

37 Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Parameterized circuit complexity
of model-checking on sparse structures. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 789–798, 2018.

38 Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos Stavropoulos. Characterising
bounded expansion by neighbourhood complexity. European Journal of Combinatorics, 75:152–
168, 2019.

39 Szymon Toruńczyk. Aggregate queries on sparse databases. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 427–443,
2020.

40 David Zuckerman. Linear degree extractors and the inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3:103–128, 2007.

SWAT 2022

Almost Shortest Paths with Near-Additive Error in
Weighted Graphs
Michael Elkin !

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Yuval Gitlitz !

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Ofer Neiman !

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
Let G = (V, E, w) be a weighted undirected graph with n vertices and m edges, and fix a set of
s sources S ⊆ V . We study the problem of computing almost shortest paths (ASP) for all pairs
in S × V in both classical centralized and parallel (PRAM) models of computation. Consider the
regime of multiplicative approximation of 1 + ε, for an arbitrarily small constant ε > 0 (henceforth
(1 + ε)-ASP for S × V). In this regime existing centralized algorithms require Ω(min{|E|s, nω})
time, where ω < 2.372 is the matrix multiplication exponent. Existing PRAM algorithms with
polylogarithmic depth (aka time) require work Ω(min{|E|s, nω}).

In a bold attempt to achieve centralized time close to the lower bound of m + ns, Cohen [10]
devised an algorithm which, in addition to the multiplicative stretch of 1 + ε, allows also additive
error of β · Wmax, where Wmax is the maximum edge weight in G (assuming that the minimum edge
weight is 1), and β = (log n)O(log 1/ρ

ρ
) is polylogarithmic in n. It also depends on the (possibly)

arbitrarily small parameter ρ > 0 that determines the running time O((m + ns)nρ) of the algorithm.
The tradeoff of [10] was improved in [15], whose algorithm has similar approximation guarantee

and running time, but its β is (1/ρ)O(log 1/ρ
ρ

). However, the latter algorithm produces distance
estimates rather than actual approximate shortest paths. Also, the additive terms in [10, 15] depend
linearly on a possibly quite large global maximum edge weight Wmax.

In the current paper we significantly improve this state of affairs. Our centralized algorithm
has running time O((m + ns)nρ), and its PRAM counterpart has polylogarithmic depth and work
O((m + ns)nρ), for an arbitrarily small constant ρ > 0. For a pair (s, v) ∈ S × V , it provides a path
of length d̂(s, v) that satisfies d̂(s, v) ≤ (1 + ε)dG(s, v) + β · W (s, v), where W (s, v) is the weight
of the heaviest edge on some shortest s − v path. Hence our additive term depends linearly on a
local maximum edge weight, as opposed to the global maximum edge weight in [10, 15]. Finally, our
β = (1/ρ)O(1/ρ), i.e., it is significantly smaller than in [10, 15].

We also extend a centralized algorithm of Dor et al. [14]. For a parameter κ = 1, 2, . . ., this
algorithm provides for unweighted graphs a purely additive approximation of 2(κ − 1) for all pairs
shortest paths (APASP) in time Õ(n2+1/κ). Within the same running time, our algorithm for
weighted graphs provides a purely additive error of 2(κ−1)W (u, v), for every vertex pair (u, v) ∈

(
V
2

)
,

with W (u, v) defined as above.
On the way to these results we devise a suite of novel constructions of spanners, emulators and

hopsets.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases spanners, hopset, shortest paths, PRAM, distance oracles

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.23

Related Version Full Version: https://arxiv.org/abs/1907.11422

Funding Michael Elkin: ISF grant 2344/19
Yuval Gitlitz : Partially supported by the Lynn and William Frankel Center for Computer Sciences
and ISF grant 970/21.
Ofer Neiman: ISF grant 970/21

© Michael Elkin, Yuval Gitlitz, and Ofer Neiman;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elkinm@cs.bgu.ac.il
mailto:gitlitz@post.bgu.ac.il
mailto:neimano@cs.bgu.ac.il
https://doi.org/10.4230/LIPIcs.SWAT.2022.23
https://arxiv.org/abs/1907.11422
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

1 Introduction

We study the problem of computing almost shortest paths from a set S ⊆ V of designated
vertices, called sources, to all other vertices in an n-vertex m-edge weighted undirected graph
G = (V, E, w), with non-negative edge weights. We aim at approximation guarantee of the
form (1 + ε, β · W), meaning that for every pair (s, v) ∈ S × V , our algorithm will return a
path of length d̂(s, v) (called distance estimate) that satisfies

dG(s, v) ≤ d̂(s, v) ≤ (1 + ε)dG(s, v) + β · W (s, v) , (1)

where W (s, v) is the weight of the heaviest edge on some shortest s − v path in G (If there
are multiple shortest paths, pick the one with minimal W (s, v)).

Here ε > 0 is an arbitrarily small positive constant, and β is typically a large constant
that depends on ε, and on the running time of the algorithm.1 We call this problem
(1 + ε, β · W)-ASP for S × V .

The problem of computing approximate shortest paths is one of the most central,
fundamental and well-researched problems in Graph Algorithms. We study this problem in
both the classical centralized and in the parallel (PRAM CRCW) models of computation.
Next, we overview the main previous results for this problem in these two settings, and
describe our new results. We start with the centralized model, and then turn our attention
to the PRAM model.

1.1 Centralized Setting
The classical algorithm of Dijkstra for the exact single-source shortest path (SSSP) problem
provides running time of O(m + n log n) [24]. Thorup [42] devised an algorithm with running
time O(m + n log log n) for the case when all edge weights are integer. Using this algorithm
separately from each of the s = |S| sources results in running time of at least (m · s).

On the opposite end of the spectrum, one can compute (1 + ε)-APASP (All Pair
Approximate Shortest Paths) using matrix multiplication in Õ(nω) time [26, 4, 45], where
ω < 2.372 is the matrix multiplication exponent [13, 44, 27]. There are also a number
of combinatorial (i.e., not exploiting fast matrix multiplication) APASP algorithms. In
particular, Cohen and Zwick [11] showed that 3-APASP can be computed in Õ(n2) time.
(They also provided a few additional algorithms with approximation ratio between 2 and 3
and running time greater than n2.) Baswana and Kavitha [6] improved their approximation
guarantee to (2, W) (with the same running time of Õ(n2)), and with W defined as in (1).

Finally, Cohen [10] devised an algorithm that for an arbitrarily small parameter ρ > 0,
solves (1 + ε, β · Wmax)-ASP for S × V in Õ((m + s · n) · nρ) time2, with β = βCoh =
(log n)O(log(1/ρ)

ρ). Here Wmax is the maximum edge weight in the entire graph (assuming the
minimum edge weight is 1).

This result was improved by Elkin [15]. The algorithm of Elkin [15] also solves (1 +
ε, β · Wmax)-ASP for S × V in Õ((m + sn)nρ) time, with β = βElk = (1/ρ)O(log(1/ρ)

ρ). This
algorithm reports distance estimates, rather than actual paths.3

1 In the introduction we will mostly suppress the dependence on ε. It can however be found in the
technical part of the paper.

2 The running time of the algorithm of [10], as well as of the algorithm of [15] and of our algorithm, is
actually slightly better than O((m + sn)nρ). Specifically, it is roughly O(mnρ + sn1+1/21/ρ

). We use
the simpler expression of O((m + sn)nρ) to simplify presentation. More precise and general bounds can
be found in the technical part of the paper.

3 There is a variant of the algorithm of [15] which reports actual paths, but requires time Õ((m + sn)nρ ·
Wmax). This running time is typically prohibitively large as it depends linearly on Wmax.

M. Elkin, Y. Gitlitz, and O. Neiman 23:3

The running time of [10, 15] is close (up to nρ, for an arbitrarily small constant ρ > 0)
to the lower bound of Ω(m + n · s). This is unlike other aforementioned algorithms, whose
running time is much larger, i.e., Ω(min{m ·s, n2}). However, the algorithms of [10, 15] suffer
from a number of drawbacks. First, their additive term is linear in the maximum edge weight
Wmax. Second, the coefficient β in them is quite large, even for a relatively large values
of the parameter ρ. Third, as was mentioned above, the algorithm of [15] returns distance
estimates, as opposed to actual paths that implement these estimates, and in the algorithm
of [10] the coefficient β of the additive term is super-constant (specifically, polylogarithmic
in n).

In the current paper we address these issues, and devise an algorithm for (1+ε, β ·W)-ASP
for S × V with running time O((m + sn)nρ), for an arbitrarily small parameter ρ > 0, with
β = (1/ρ)O(1/ρ). This algorithm does report paths, rather than just distance estimates. Note
also that the additive term grows linearly with the local maximum edge weight, i.e., with the
weight of heaviest edge on each particular source-destination shortest path, as opposed to
the global maximum edge weight Wmax. Finally, its coefficient β is significantly smaller than
βElk = (1/ρ)O(log(1/ρ)

ρ), though it is admittedly still quite large4. (The coefficient βCoh of [10]
depends polylogarithmically on n, while the coefficient β in [15] and here are independent
of n.)

We also extend an algorithm of Dor et al. [14] to weighted graphs. Specifically, the
algorithm of [14] works for unweighted undirected graphs. For any parameter κ = 1, 2, . . ., it
provides an additive 2(κ − 1)-APASP in Õ(n2+1/κ) time. Our extension applies to weighted
undirected graphs. It computes additive 2(κ − 1)W -approximation for all pairs shortest
paths within the same time Õ(n2+1/κ), i.e., for any vertex pair u, v ∈ V , it produces a path
of length at most dG(u, v) + 2(κ − 1) · W (u, v), where W (u, v) is as in (1).

Note that the linear dependence of additive error on W is unavoidable, as an algorithm
with stretch (1 + ε, o(W)) can be translated into an algorithm with the same running time
and with a purely multiplicative stretch of 1 + ε.

1.2 Parallel Setting
In the PRAM model, multiple processors are connected to a single memory block, and
the operations are performed in parallel by these processors. We will mostly be concerned
with the Concurrent Read Concurrent Write (CRCW) PRAM model, that allows multiple
processors to access any memory cell at any given round. The running time is measured by
the number of rounds, and the work by the number of processors multiplied by the number
of rounds.

Early algorithms for these problems [43, 31, 38, 39] require Ω(
√

n) parallel time.
Algorithms of [26, 4, 45], that were discussed in Section 1.1, can also be applied in PRAM.
They provide (1 + ε)-APASP in polylogarithmic time and Õ(nω) work. The algorithm of
Cohen [10], for a parameter ρ > 0, solves (1 + ε)-ASP for S × V in polylogarithmic time
(log n)O(log(1/ρ)

ρ) and work Õ((m + n1+ρ)s + m · nρ).
This tradeoff was then improved in [18, 19], where the running time is (log n)O(1/ρ), and

the work is the same as in [10]. Further spectacular progress was recently achieved by [33, 5],
who devised (1 + ε)-SSSP algorithms with time (log n)O(1) and work Õ(m). Nevertheless,
for (1 + ε)-ASP problem from the set S ⊆ V of sources, one needs to run these algorithms in
parallel from all the s sources. As a result, their work complexity becomes Θ̃(ms).

4 We are able to further decrease β to 2O(1/ρ), at the expense of increasing the multiplicative stretch from
1 + ε to 3 + ε.

SWAT 2022

23:4 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

To summarize, all existing solutions for the problem with polylogarithmic time have
work complexity Ω(min{m · s, nω}). We devise the first algorithm with polylogarithmic
time (log n)O(1/ρ) and work complexity Õ((m + ns)nρ), for an arbitrarily small constant
ρ > 0. In other words, our work complexity is within nρ, for an arbitrarily small constant
ρ > 0, close to the lower bound of Ω(m + ns). On the other hand, unlike algorithms of
[45, 10, 18, 19, 33, 5], whose approximation guarantee is a purely multiplicative 1 + ε, for an
arbitrarily small ε > 0, our approximation guarantee is (1 + ε, β · W), with β = (1/ρ)O(1/ρ),
and W as in (1).

Moreover, our result can, in fact, be viewed as a PRAM distance oracle. Specifically,
following the preprocessing that requires time (log n)O(1/ρ) and work Õ(mnρ), our algorithm
stores a compact data structure of size Õ(n1+ρ). Given a query vertex s, this data structure
provides distance estimates d̂(s, v) for all v ∈ V , which satisfies (1) in constant time and using
work Õ(n1+ρ), where β = (1/ρ)O(1/ρ). Note that the distance oracle has size arbitrarily close
to linear in n, its preprocessing time is polylogarithmic and preprocessing work is arbitrarily
close to linear in m, and the query time is constant and the query work is arbitrarily
close to linear in n. (Note that as the query provides distance estimates for n vertex pairs
{(s, v) | v ∈ V }, its query work complexity must be Ω(n).)

1.3 Hopsets, Spanners and Emulators
From the technical viewpoint, these results are achieved via a combination of our new
constructions of emulators, spanners and hopsets. For parameters α, β ≥ 1, we say that a
graph H = (V, E′, w) is an (α, β)-hopset for a (weighted) graph G = (V, E, w), if by adding
E′ to the graph, every pair x, y ∈ V has an α-approximate shortest path consisting of at
most β hops; Formally,

dG(x, y) ≤ d
(β)
G∪H(x, y) ≤ α · dG(x, y) ,

where d
(β)
G∪H is the shortest path in G ∪ H containing at most β edges. The parameter α is

called the stretch, and β is the hopbound.
We say that H is an (α, β)-emulator if for every x, y ∈ V ,

dG(x, y) ≤ dH(x, y) ≤ α · dG(x, y) + β ,

and H is a spanner if it is an emulator and a subgraph of G.
Hopsets and near-additive spanners are fundamental combinatorial constructs, and play

a major role in efficient approximation of shortest paths in various computational models.
These objects have been extensively investigated in recent years [21, 16, 41, 23, 36, 37, 7,
17, 32, 10, 9, 35, 28, 34, 29, 25, 18, 2, 19, 30]. The main interest is to understand the triple
tradeoff between the size of the hopset (respectively, spanner), to the stretch α, and to the
hopbound (resp., additive stretch) β. For algorithmic applications, it is also crucial to bound
the construction time of the hopset/spanner/emulator.

We show near-additive spanners for weighted graphs, where the additive stretch for the
pair x, y may depend also on the largest edge weight on the corresponding shortest path
from x to y, W (x, y). For a parameter 0 < ρ < 1, we devise an algorithm that constructs a

(1 + ε, β · W)-spanner of size O(n1+1/21/ρ + n/ρ) with β ≤
(

1/ρ
ε

)O(1/ρ)
. We also show how

to analyze the construction so that it yields smaller additive stretch, while increasing the
multiplicative one. Specifically, we get a (c, β · W)-spanner of same size as above, for every
constant c > 3, and with β =

(1
ε

)O(1/ρ). Our emulators have a somewhat improved β. All of
our results admit near-linear time algorithms, i.e., their running time is O(|E|nρ), for an
arbitrarily small constant ρ > 0.

M. Elkin, Y. Gitlitz, and O. Neiman 23:5

1.4 Technical Overview
We adapt the constructions of [41, 36, 17, 19, 30] of hopsets, spanners and emulators so
that they are suitable for weighted graphs, and provide an improved additive stretch (or
hopbound) β. The basic idea in all these constructions is to generate a random hierarchy of
vertex sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅, where for each 0 ≤ i < k − 1, each element in Ai

is included in Ai+1 with probability ≈ n−2i−k (one should think of k = 1/ρ). We also refer
to vertices at Ai as vertices at level i. For each v ∈ V , the pivot pi(v) is the closest vertex in
Ai to v. Then the set of edges H is created by connecting, for every 0 ≤ i ≤ k − 1, every
vertex v ∈ Ai \ Ai+1 to its bunch: all other vertices in Ai that are closer to it than pi+1(v).
One difference in our construction is that we also connect each vertex to all its (at most k)
pivots. The main technical innovation in this work is the new analysis of this construction,
yielding various hopsets, emulators and spanners that apply for weighted graphs, and admit
improved parameters. (Previous constructions of spanners and emulators [21, 41, 36, 17, 30]
applied only for unweighted graphs.)

The previous analysis of the stretch for some pair x, y ∈ V goes roughly as follows. Divide
the x − y path into intervals, and try to connect these intervals using low stretch paths in H

(and for hopsets, also some of the graph edges, but with few hops). Each interval can either
have a low stretch path; or fail, in which case that interval admits a nearby pivot (of some
level i). Then, consider two failed intervals (the leftmost and rightmost ones), and try to
find an x − y path via the pivots of these intervals.

We note that this partitioning of the x − y path to equal size intervals (used in previous
works), cannot work directly for weighted graphs, since it may not be possible to divide the
path to intervals of equal (or even near-equal) size. We provide a subtle adaptation of this
technique so that it can handle weights. In particular, we distinguish between short and long
distances: The sufficiently long distances may suffer a partition to un-equal intervals, as the
induced error is dominated by the multiplicative stretch of 1 + ε. For the short distances, we
stop this partitioning when it becomes too “expensive”, and resort to an argument similar
to the one in [40], which has large multiplicative stretch (of roughly 21/ρ). However, at the
point where we stop, that stretch can be accounted for by the additive stretch β · W .

An additional ingredient in our new analysis of H as an emulator/spanner for weighted
graphs, given a pair x, y ∈ V , is to iteratively find a vertex z on the x − y shortest path
(sufficiently far from x) that admits in H a path with low multiplicative stretch from x.
When there is no such z, we show that we can reach y with small additive stretch. This
technique can be used to obtain the improved dependence of β on the parameter k = 1/ρ.

Recall that emulators are insufficient for reporting paths. In particular, the approach
of [10, 15] was based on emulators, rather than on spanners, and it is not clear if these
algorithms can be adapted to build spanners (for weighted graphs). On the other hand, with
our approach we can convert our constructions of emulators into constructions of spanners.
Specifically, to build a spanner, we must use graph edges. So in order to connect vertices
v ∈ Ai \Ai+1 to the vertices in their bunch B(v), we need to add paths of possibly many edges
in the graph (rather than a single edge, as for emulators/hopsets). To do this we connect
every vertex v to all vertices in its half-bunch (see Section 4 for its definition), as opposed to
connecting it to all vertices in its full bunch. (The latter is the case in the construction of
emulators.) This turns out to be sufficient to ensure that the union of all these paths does
not contain too many edges. For this analysis we employ ideas of counting pairwise path
intersections, developed in the context of distance preservers [12] and near-additive spanners
and distance oracles for unweighted graphs [36, 22]. We simplify this approach, and extend
it to weighted graphs.

SWAT 2022

23:6 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

1.5 Organization
In Section 2 we describe the construction of our emulators and hopsets. In Section 3 we
analyze this construction, showing it provides emulators for weighted graphs. In Section
4 we describe the construction of our spanners for weighted graphs (proofs are deferred to
Appendix D) and use them for our centralized algorithms for the ASP problem. In Section
5 we provide efficient implementations of our constructions, and use them in Section 6 for
solving ASP in PRAM, and for PRAM distance oracles.

Our hopsets and emulators with improved β appear in Appendices A and B.
Our algorithm for pure additive APASP for weighted graphs is available in the full version

of the paper.

Bibliographical note
Related results about (α, β)-spanners for unweighted graphs and (α, β)-hopsets with α ≥ 3+ε

were achieved independently of us and simultaneously by [8]. In another submission [20] , an
(1+ε)-ASP algorithm for S ×V with |S| = nr, for some 0 < r ≤ 1. was devised. The running
time of this algorithm in the centralized setting is Õ(nω(r)), where ω(r) is the rectangular
matrix multiplication exponent. (nω(r) is the time required to multiply an nr × n matrix by
an n × n one.) In PRAM setting that algorithm runs in polylogarithmic time and Õ(nω(r))
work. For graphs G = (V, E, w) and sets of sources S ⊆ V of size s such that m + ns = o(n2),
the algorithms that we devise in the current submission are more efficient than in [20].

Following our work, [3] devised algorithms for purely additive spanners (e.g., spanners
with multiplicative stretch exactly 1) for weighted graphs. In their results, the additive term
depends on the global maximal edge weight Wmax, and the size of their spanners is always
Ω(n4/3) (the latter is unavoidable for purely additive spanners, due to a lower bound of [1]).

2 Construction

We use a similar construction to that of [41, 19, 30]. One difference is that every vertex
connects to pivots in all levels. (Recall that the main difference is in the analysis.) Let
G = (V, E, w) be a weighted graph with n vertices, and fix an integer parameter k ≥ 1.
Let ν = 1/(2k − 1). Let A0 . . . Ak be sets of vertices such that A0 = V , Ak = ∅, and for
0 ≤ i ≤ k − 2, Ai+1 is created by sampling independently every element from Ai with
probability qi = n−2iν · 2−2i−1. For every 0 ≤ i ≤ k − 1, the expected size of Ai is:

Ni = E[|Ai|] = n
i−1∏
j=0

qj = n1−(2i−1)ν · 2−2i−i+1

For every i ∈ [k − 1], define the pivot pi(v) to be the closest vertex in Ai to v, breaking
ties by lexicographic order. For every u ∈ Ai\Ai+1 define the bunch (see Figure 1)

B(u) = {v ∈ Ai|dG(u, v) < dG(u, Ai+1)} ∪ {pj(u)|i < j < k} . (2)

That is, the bunch B(u) contains all the vertices which are in Ai and closer to u than pi+1(u),
and at most k pivots. We then define H = {(u, v) : u ∈ V, v ∈ B(u)}, where the weight of
the edge (u, v) is set as the weight of the shortest path between u, v in G.

▶ Lemma 1. The size of H is

H = O(kn + n1+ν)

M. Elkin, Y. Gitlitz, and O. Neiman 23:7

Figure 1 The bunch of u. Here vertices in Ai\Ai+1 are colored in blue, in Ai+1\Ai+2 are colored
in red and in Ai+2 are colored in green.

The proof of Lemma 1 is similar to previous works, we include it for completeness in
appendix C.

3 Near-Additive Emulators for Weighted Graph

In this section we will show that H as defined in Section 2 is a (1 + ε, β · W)-emulator for
weighted graphs. Note that the construction there does not depend on ε, and indeed, H will
be an emulator for all values of 0 < ε < 1 simultaneously (with β = β(ε) depending on ε).

Let G = (V, E) be a weighted graph with non-negative weights w : E → R+, recall that
for x, y ∈ V we have W (x, y) = max{w(e) : e ∈ Pxy} (where Pxy is a shortest path from x

to y in G). Let k ≥ 1 and ∆ > 3 be given parameters (think of ∆ = 3 + O(k/ε)). We begin
by proving two lemmas, handling long and short distances, respectively. The first lemma
asserts that pairs which are sufficiently far apart admit either a low stretch path, or a nearby
pivot of a higher level.

▶ Lemma 2. Fix ∆ > 3. Let 0 ≤ i < k and let x, y ∈ V such that dG(x, y) ≥ (3∆)iW (x, y).
Then at least one of the following holds:
1. dH(x, y) ≤ (1 + 4i

∆−3)dG(x, y)
2. dH(x, pi+1(x)) ≤ ∆

∆−3 dG(x, y)
(For i = k − 1, the first item must hold since pi+1 doesn’t exist).

Proof. Denote W = W (x, y). The proof is by induction on i. For the base case i = 0,
if y ∈ B(x) then dH(x, y) = dG(x, y) and the first item holds. Otherwise, if x ∈ A1 then
dG(x, p1(x)) = 0, so the second item holds. The last case is that x ∈ A0 \ A1 and y /∈ B(x),
then by (2) we have dH(x, p1(x)) = dG(x, p1(x)) ≤ dG(x, y) ≤ ∆

∆−3 dG(x, y), thus the second
item holds. Assume the lemma holds for i and prove for i + 1. Let x, y ∈ V be a pair of
vertices such that dG(x, y) ≥ (3∆)i+1W (x, y)

Divide the shortest path between x and y into J segments {Lj = [uj , uj+1]}j∈[J] of length
at least (3∆)iW and at most dG(x, y)/∆. It can be done as follows: define u1 = x, j = 2 and
walk on the shortest path from x to y. Define uj as the first vertex which dG(uj−1, uj) ≥
(3∆)iW or define uj = y if dG(uj−1, y) < (3∆)iW . Increase j by 1 and repeat. Note that
each segment has length at most (3∆)iW + W . Finally, we join the last two segments. The
length of the last segment is at most (3∆)iW + W + (3∆)iW ≤ 3i+1∆iW ≤ dG(x, y)/∆.
The length of any segment except the last is also at most (3∆)iW + W ≤ dG(x, y)/∆.

SWAT 2022

23:8 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

Apply the induction hypothesis for every segment Lj with parameter i. If for all the
segments the first item holds, then first item holds for x, y and i + 1, since

dH(x, y) ≤
∑
j∈J

dH(uj , uj+1) ≤
∑
j∈J

(1 + 4i

∆ − 3)dG(uj , uj+1)

≤ (1 + 4i

∆ − 3)dG(x, y).

Otherwise, for at least one segment the second item holds. Let Ll (resp., Lr−1) be the
leftmost (resp., rightmost) segment for which the second item holds. We have that the second
item holds for the pair ul, ul+1, and by symmetry of the first item, the second item also holds
for the pair ur, ur−1 with parameter i. Hence

dH(ur, pi+1(ur)) ≤ ∆
∆ − 3dG(ur−1, ur) ≤ dG(x, y)

∆ − 3 ,

dH(ul, pi+1(ul)) ≤ ∆
∆ − 3dG(ul, ul+1) ≤ dG(x, y)

∆ − 3 . (3)

Consider first the case that pi+1(ur) ∈ B(pi+1(ul)). In this case H contains the edge
{pi+1(ul), pi+1(ur)}, so we have

dH(pi+1(ul), pi+1(ur)) ≤ dG(pi+1(ul), ul) + dG(ul, ur) + dG(ur, pi+1(ur)). (4)

By the triangle inequality,

dH(ul, ur) (5)
≤ dH(ul, pi+1(ul)) + dH(pi+1(ul), pi+1(ur)) + dH(pi+1(ur), ur)
(4)
≤ 2dH(ul, pi+1(ul)) + dG(ul, ur) + 2dH(pi+1(ur), ur)
(3)
≤ 4dG(x, y)

∆ − 3 + dG(ul, ur). (6)

Thus, the distance between x and y in H,

dH(x, y) ≤
∑

j∈[J]

dH(uj , uj+1)

≤
l−1∑
j=1

(
1 + 4i

∆ − 3

)
dG(uj , uj+1) + dH(ul, ur) +

J∑
j=r

(
1 + 4i

∆ − 3

)
dG(uj , uj+1)

≤
(

1 + 4i

∆ − 3

)
dG(x, ul) + dH(ul, ur) +

(
1 + 4i

∆ − 3

)
dG(ur, y)

(6)
≤

(
1 + 4i

∆ − 3

)
dG(x, ul) + 4dG(x, y)

∆ − 3 + dG(ul, ur) +
(

1 + 4i

∆ − 3

)
dG(ur, y)

≤
(

1 + 4(i + 1)
∆ − 3

)
dG(x, y),

therefore the first item holds.
The other case is that pi+1(ur) /∈ B(pi+1(ul)). Then

dH(pi+1(ul), pi+2(pi+1(ul))) ≤ dG(pi+1(ul), pi+1(ur)) . (7)

M. Elkin, Y. Gitlitz, and O. Neiman 23:9

We can bound the distance dH(x, pi+2(x)) by

dH(x, pi+2(x))
≤ dG(x, ul) + dG(ul, pi+1(ul)) + dG(pi+1(ul), pi+2(pi+1(ul)))
≤ dG(x, ul) + dG(ul, pi+1(ul)) + dG(pi+1(ul), pi+1(ur))
(4)
≤ dG(x, ul) + dG(ul, pi+1(ul)) + dG(ul, pi+1(ul)) + dG(ul, ur) + dG(pi+1(ur), ur)
(3)
≤ dG(x, y) + 3dG(x, y)

∆ − 3 = ∆
∆ − 3dG(x, y).

Hence the second item holds. ◀

The previous lemma is useful for vertices which are very far from each other, since for
i = k − 1 the first item must hold. For vertices which are close to each other, we will need
the following lemma.

▶ Lemma 3. Let 0 ≤ i < k and fix x, y ∈ V . Let
m = max{dG(x, pi(x)), dG(y, pi(y)), dG(x, y)}. Then at least one of the following holds:

1. dH(x, y) ≤ 5m

2. dH(x, pi+1(x)) ≤ 4m and dH(y, pi+1(y)) ≤ 4m

(For i = k − 1, the first item must hold since pi+1 doesn’t exist).

Proof. If pi(y) ∈ B(pi(x)) the first item holds, since

dH(x, y) ≤ dH(x, pi(x)) + dH(pi(x), pi(y)) + dH(pi(y), y)
≤ dG(x, pi(x)) + dG(pi(x), x) + dG(x, y) + dG(y, pi(y)) + dG(pi(y), y)
≤ 5m .

If pi(y) /∈ B(pi(x)), then dG(pi(x), pi+1(pi(x))) ≤ dG(pi(x), pi(y)), in this case the second
item holds, as

dH(x, pi+1(x)) ≤ dH(x, pi(x)) + dH(pi(x), pi+1(pi(x)))
≤ dG(x, pi(x)) + dG(pi(x), x) + dG(x, y) + dG(y, pi(y)) ≤ 4m .

The bound on dH(y, pi+1(y)) is symmetric. ◀

We are now ready to prove the following theorem.

▶ Theorem 4. For any weighted graph G = (V, E) on n vertices, and any integer k > 1,
there exists H of size at most O(kn + n1+1/(2k−1)), which is a (1 + ε, β · W)-emulator for
any 0 < ε < 1, where β = O(k

ε)k−1.

Proof. Fix ∆ = 3 + 4(k−1)
ε , β = 10(3∆)k−1. Let x, y ∈ V , and W = W (x, y). If dG(x, y) ≥

(3∆)k−1W , we can apply Lemma 2 for x, y and i = k − 1. Since pk(x) does not exist, the
first item must hold. Thus,

dH(x, y) ≤
(

1 + 4(k − 1)
∆ − 3

)
dG(x, y) = (1 + ε)dG(x, y) .

Otherwise, take the integer 0 ≤ i < k − 1 satisfying (3∆)iW ≤ dG(x, y) < (3∆)i+1W

(note that there must be such an i, since dG(x, y) ≥ W). Apply Lemma 2 for x, y and i. If
the first item holds, we will get 1 + ε stretch as before.

SWAT 2022

23:10 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

Otherwise, the second item holds, and we know that dG(x, pi+1(x)) ≤ ∆
∆−3 dG(x, y) ≤

2dG(x, y) (using that k ≥ 2). By symmetry of x, y in the first item of Lemma 2, we have
dG(y, pi+1(y)) ≤ 2dG(x, y) as well. Set j = i + 1 and apply Lemma 3 with x, y, j, noting that
m ≤ 2dG(x, y). If the first item holds, we found a path in H from x to y of length at most
5m ≤ 10dG(x, y) ≤ 10(3∆)k−1W = β · W .

If the second item holds, we increase j by one and apply Lemma 3 again. We continue
this procedure until the first item holds. The fact that the second item holds implies that
the bound m (the maximal distance of x, y to the level j pivots) increases every iteration
by a factor of at most 4. Since the first item must hold for j = k − 1, the path we found
is of length at most 10 · 4k−i−2dG(x, y) ≤ 10 · 4k−i−2 · (3∆)i+1W , which is maximized for
i = k − 2. Hence the additive stretch is at most 10 · (3∆)k−1W = O((9 + 12(k−1)

ε)k−1W), as
required. ◀

▶ Remark 5. We note that the analysis did not use the fact that the path from x to y is a
shortest path. In particular, for every path P from x to y of length d, we can obtain a path
in H of length at most (1 + ε) · d + β · W (P), where W (P) is the largest edge weight in P .

4 Near-Additive Spanners for Weighted Graphs

In this section we devise our spanners for weighted graphs. We first describe the new
construction, that differs from that of Section 2 in several aspects, which are required in
order to keep the size of the spanner under control (and independent of Wmax). In particular,
since we add paths, rather than edges, between each vertex to other vertices in its bunch,
we need to ensure the size of H is small enough. To do that, we use half-bunches rather
than bunches to define H (see (8) below), and show that there are few intersections between
the aforementioned paths (see Lemma 17). One last ingredient is altering the sampling
probabilities, so that the argument on intersection goes through. This approach refines and
improves ideas from [36, 22].

Construction

Let G = (V, E) be a weighted graph with n vertices, and fix an integer parameter k ≥ 3. Let
ν = 1

(4/3)k−1 . Let A0 . . . Ak be sets of vertices such that A0 = V , Ak = ∅, and for 0 ≤ i ≤ k−2,
Ai+1 is created by sampling every element from Ai with probability qi = n−4iν/3i+1 . For
every 0 ≤ i ≤ k − 1, the expected size of Ai is:

Ni = E[|Ai|] = n
i−1∏
j=0

qj = n
1− ν

3

∑i−1
j=0

(4/3)j

= n1−((4/3)i−1)ν .

For every i ∈ [k − 1], define the pivot pi(v) to be the closest vertex in Ai to v, breaking
ties by lexicographic order. For every u ∈ Ai\Ai+1 define the half bunch

B1/2(u) = {v ∈ Ai : dG(u, v) < dG(u, Ai+1)/2} . (8)

Let H = {Puv : u ∈ V, v ∈ B1/2(u) ∪ {pj(u)|i < j < k}}, where Puv is the shortest path
between u, v in G (if there is more than one, break ties consistently, by vertex id, say).

▶ Theorem 6. For any weighted graph G = (V, E) on n vertices, and any integer k > 2,
there exists H of size at most O(kn + n1+1/((4/3)k−1)), which is a (1 + ε, β · W)-spanner for
any 0 < ε < 1, with β = O(k/ε)k−1.

M. Elkin, Y. Gitlitz, and O. Neiman 23:11

▶ Theorem 7. For any weighted graph G = (V, E) on n vertices, and any integer k > 2,
there exists H of size at most O(kn + n1+1/((4/3)k−1)), which is a (3 + ε, β · W)-spanner for
any ε > 0 with β = O(1 + 1/ε)k−1.

Full proofs for both theorems are given in appendix D.

5 Efficient Implementation

Since we use very similar constructions to the ones in [19], we can use their efficient
implementations (connecting to all pivots, which is the difference between constructions,
can be done efficiently in their framework as well). We consider here the standard model of
computation, and the PRAM (CRCW) model. Given a parameter 1/k < ρ < 1/2, we will
want poly-logarithmic parallel time and Õ(|E| · nρ) work / centralized time. This is achieved
by adding additional ⌈1/ρ⌉ sets Ai, that are sampled with uniform probability n−ρ, which
in turn increases the exponent of β by an additive 1/ρ + 1. (In the case of multiplicative
stretch 1 + ε, it also increases the base of the exponent in β.)

We summarize the efficient implementation results for hopsets and emulators in the
following theorem.

▶ Theorem 8. For any weighted graph G = (V, E) on n vertices, parameters k > 2 and
1/k < ρ < 1/2, there is a randomized algorithm running in time Õ(|E| · nρ), that w.h.p.
computes H of size at most O(kn + n1+1/(2k−1)), such that for any 0 < ε < 1 this H is:

1. A (1 + ε, β · W)-emulator with β = O
(

k+1/ρ
ε

)k+1/ρ

.

2. A (3 + ε, β · W)-emulator with β = O(1/ε)k+1/ρ.
3. A (3 + ε, β)-hopset with β = O(1/ε)k+1/ρ.

Given ε in advance, the algorithm can also be implemented in the PRAM (CRCW) model,

in parallel time
(

log n
ε

)O(k+1/ρ)
and work Õ(|E| · nρ), while increasing the size of H by a

factor of O(log∗ n).

For spanners, recall that in Section 4 we have a somewhat different construction, and in
the analysis we enforce a stricter requirement on the sampling probabilities qi. To handle
this, we start sampling with the uniform probability n−ρ only when Ni ≤ n1−3ρ (and not
when Ni ≤ n1−ρ like before). Now the bound of Claim 18 still holds, as Ni/q3

i ≤ n even for
these latter sets. The “price” we pay for waiting until Ni ≤ n1−3ρ is that the work will now
be |E| · n3ρ. Rescaling ρ by 3, we get the following.

▶ Theorem 9. For any weighted graph G = (V, E) on n vertices, parameters k > 6 and
1/k < ρ < 1/6, there is a randomized algorithm running in time Õ(|E| · nρ), that w.h.p.
computes H of size at most O(kn + n1+1/(2k−1)), such that for any 0 < ε < 1 this H is:

1. A (1 + ε, β · W)-spanner with β = O
(

k+1/ρ
ε

)k+3/ρ

.

2. A (3 + ε, β · W)-spanner with β = O(1/ε)k+3/ρ.
Given ε in advance, the algorithm can also be implemented in the PRAM (CRCW) model, in

parallel time
(

log n
ε

)O(k+1/ρ)
and work Õ(|E| · nρ), while increasing the size of H by a factor

of O(log∗ n).

SWAT 2022

23:12 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

6 Almost Shortest Paths in Weighted Graphs

Given a weighted graph G = (V, E, w) with n vertices and a set S ⊆ V of s sources, fix
parameters k > 6, 0 < ε < 1 and 0 < ρ < 1/6. Here we show that our hopsets, emulators
and spanners can be used for a (1 + ε, β · W)-approximate shortest paths for pairs in S × V ,
in various settings.

For the standard centralized setting, we first compute a (1 + ε, β · W)-spanner H of
size O(kn + n1+1/(2k−1)) with β = O(k+3/ρ

ε)k+3/ρ, in time Õ(|E| · nρ) as in Theorem 9.
Next, for every u ∈ S run Dijkstra’s shortest path algorithm in H, which takes time
O(s · (|E(H)| + n log n)) = Õ(s · n1+1/(2k−1)).

The total running time for computing (1 + ε, β · W)-approximate shortest path for all
S × V , is Õ(|E| · nρ + s · n1+1/(2k−1)). One may choose ρ = 1/k and obtain the following.

▶ Theorem 10. For any weighted graph G = (V, E) on n vertices, a set S ⊆ V of s sources,
and parameters k > 6 and 0 < ε < 1, there is a randomized algorithm running in time
Õ(|E| · n1/k + s · n1+1/(2k−1)), that computes (1 + ε, β · W)-approximate shortest paths for
all pairs in S × V , where β =

(
k
ε

)O(k).

We remark that there is a more general tradeoff by choosing ρ as a free parameter. In
addition, if one desires improved additive stretch, simply use the (3 + ε, β · W)-spanner with
β = ε−O(k).

6.1 PRAM Shortest Paths and Distance Oracles

Given a weighted graph G = (V, E, w) with n vertices, fix parameters k ≥ 1, 0 < ε < 1 and 0 <

ρ < 1/6. The first step in both settings (computing approximate shortest paths and distance
oracles) is the same. We construct a (1+ε, β·W)-emulator G′ of size O(kn+n1+1/(2k−1))·log∗ n

with β = O
(

k+1/ρ
ε

)k+1/ρ

, in parallel time
(

log n
ε

)O(k+1/ρ)
and work Õ(|E| · nρ) as in

Theorem 8. Next, compute a (1 + ε, β)-hopset H size O(n1+1/(2k−1)) · log∗ n for G′ with the

same β = O
(

k+1/ρ
ε

)k+1/ρ

within the same parallel time and work [19].5 We store both G′

and H.

Approximate Shortest Paths

For the sake of simplicity we will choose ρ = 1/k. Given a set S of s sources, for each source
u ∈ S run β rounds of the Bellman-Ford algorithm in the graph G′ ∪ H starting at u. In
each round of Bellman-Ford, every vertex sends its neighbors the current distance estimate
to u that it has, and they update their distance estimate if needed. Since G′ ∪ H is a sparse
graph with Õ(n1+1/(2k−1)) edges, with Õ(n1+1/(2k−1)) processors one can implement each
iteration in PRAM (CRCW) in O(2k) time (see [19] for more details). As we have only
β rounds, the total parallel time for all the Bellman-Ford rounds from all vertices in S is
(k/ε)O(k), and the total work is Õ(s · n1+1/(2k−1)).

As the error of the emulator is (1 + ε, β · W), and the hopset has only multiplicative 1 + ε

stretch, the total error is only (1 + O(ε), O(β · W). We thus have the following result.

5 We remark that even though the emulator and hopset have exactly the same construction, we run the
hopset algorithm on G′ and not on G, thus we get a different set of edges.

M. Elkin, Y. Gitlitz, and O. Neiman 23:13

▶ Theorem 11. For any weighted graph G = (V, E) on n vertices, a set S ⊆ V of s sources,
and parameters k > 2 and 0 < ε < 1, there is a PRAM randomized algorithm running
in

(
log n

ε

)O(k)
parallel time and using Õ(|E| · n1/k + s · n1+1/(2k−1)) work, that computes

(1 + ε, β · W)-approximate shortest paths for all pairs in S × V , where β =
(

k
ε

)O(k).

As above, we can get a more general tradeoff with the parameter ρ, and improve
the additive stretch by using the hopsets and emulators from Sections A,B, albeit the
multiplicative stretch will increase.

Distance Oracles

Recall that we store the emulator G′ and a hopset H for G′. Whenever a query u ∈ V arrives,
we run β rounds of Bellman-Ford algorithm in the graph G′ ∪ H . As noted above, each round
of Bellman-Ford can be implemented in PRAM (CRCW) in O(2k) time using Õ(n1+1/(2k−1))

processors. So the total parallel time for the query is O
(

k+1/ρ
ε

)k+1/ρ

. Rescaling ε, we

get a
(

1 + ε, O
(

k+1/ρ
ε

)k+1/ρ

· W

)
-approximation. We conclude that the properties of the

distance oracle we devise are:
Has size O(kn + n1+1/(2k−1)) · log∗ n.
Given query u ∈ V , can report (1 + ε, β · W)-approximation to all distances in {u} × V ,

with β = O
(

k+1/ρ
ε

)k+1/ρ

.

Has query time O
(

k+1/ρ
ε

)k+1/ρ

and Õ(n1+1/(2k−1)) work.

The preprocessing time is
(

log n
ε

)O(k+1/ρ)
and work Õ(|E| · nρ).

References

1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. J. ACM,
64(4):28:1–28:20, 2017. doi:10.1145/3088511.

2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear
additive spanners. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
568–576, 2017. doi:10.1137/1.9781611974782.36.

3 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Stephen Kobourov, and Richard Spence.
Weighted additive spanners, 2020. arXiv:2002.07152.

4 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci., 54(2):255–262, 1997. doi:10.1006/jcss.1997.1388.

5 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest
paths via low hop emulators. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
322–335. ACM, 2020. doi:10.1145/3357713.3384321.

6 Surender Baswana and Telikepalli Kavitha. Faster algorithms for approximate distance oracles
and all-pairs small stretch paths. In FOCS, pages 591–602, 2006. doi:10.1109/FOCS.2006.29.

7 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (alpha, beta)-spanners. ACM Transactions on Algorithms, 7(1):5, 2010. doi:10.1145/
1868237.1868242.

SWAT 2022

https://doi.org/10.1145/3088511
https://doi.org/10.1137/1.9781611974782.36
http://arxiv.org/abs/2002.07152
https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1145/3357713.3384321
https://doi.org/10.1109/FOCS.2006.29
https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1145/1868237.1868242

23:14 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

8 Uri Ben-Levy and Merav Parter. New (α, β) spanners and hopsets. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1695–1714. SIAM, 2020. doi:10.1137/1.9781611975994.104.

9 Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast
query and close to linear update time. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 693–702,
2009. doi:10.1109/FOCS.2009.16.

10 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. J. ACM, 47(1):132–166, 2000. doi:10.1145/331605.331610.

11 Edith Cohen and Uri Zwick. All-pairs small-stretch paths. J. Algorithms, 38(2):335–353, 2001.
doi:10.1006/jagm.2000.1117.

12 D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In SODA:
ACM-SIAM Symposium on Discrete Algorithms, pages 660–669, 2005.

13 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

14 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29:1740–1759, 2000.

15 M. Elkin. Computing almost shortest paths. In Proc. 20th ACM Symp. on Principles of
Distributed Computing, pages 53–62, 2001.

16 M. Elkin. An unconditional lower bound on the time-approximation tradeoff of the minimum
spanning tree problem. In Proc. of the 36th ACM Symp. on Theory of Comput. (STOC 2004),
pages 331–340, 2004.

17 Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners
and emulators. ACM Trans. Algorithms, 15(1):4:1–4:29, 2019. doi:10.1145/3274651.

18 Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to
approximate shortest paths. SIAM J. Comput., 48(4):1436–1480, 2019. doi:10.1137/
18M1166791.

19 Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-
hopbound hopsets in RNC. In The 31st ACM on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019., pages 333–341, 2019.
doi:10.1145/3323165.3323177.

20 Michael Elkin and Ofer Neiman. Centralized, parallel, and distributed multi-source shortest
paths via hopsets and rectangular matrix multiplication. In Petra Berenbrink and Benjamin
Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science,
STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of
LIPIcs, pages 27:1–27:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.STACS.2022.27.

21 Michael Elkin and David Peleg. (1+epsilon, beta)-spanner constructions for general graphs.
SIAM J. Comput., 33(3):608–631, 2004. doi:10.1137/S0097539701393384.

22 Michael Elkin and Seth Pettie. A linear-size logarithmic stretch path-reporting distance oracle
for general graphs. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 805–821,
2015. doi:10.1137/1.9781611973730.55.

23 Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1+epsilon, beta)-
spanners in the distributed and streaming models. Distributed Computing, 18(5):375–385,
2006. doi:10.1007/s00446-005-0147-2.

24 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874.

25 Stephan Friedrichs and Christoph Lenzen. Parallel metric tree embedding based on an algebraic
view on moore-bellman-ford. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’16, pages 455–466, New York, NY, USA, 2016. ACM.
doi:10.1145/2935764.2935777.

https://doi.org/10.1137/1.9781611975994.104
https://doi.org/10.1109/FOCS.2009.16
https://doi.org/10.1145/331605.331610
https://doi.org/10.1006/jagm.2000.1117
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/3274651
https://doi.org/10.1137/18M1166791
https://doi.org/10.1137/18M1166791
https://doi.org/10.1145/3323165.3323177
https://doi.org/10.4230/LIPIcs.STACS.2022.27
https://doi.org/10.4230/LIPIcs.STACS.2022.27
https://doi.org/10.1137/S0097539701393384
https://doi.org/10.1137/1.9781611973730.55
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/2935764.2935777

M. Elkin, Y. Gitlitz, and O. Neiman 23:15

26 Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer length
edges. Inf. Comput., 134(2):103–139, 1997. doi:10.1006/inco.1997.2620.

27 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,
Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages
296–303. ACM, 2014. doi:10.1145/2608628.2608664.

28 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear total update time. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 146–155, 2014. doi:10.1109/FOCS.2014.24.

29 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In Proceedings of
the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 489–498,
New York, NY, USA, 2016. ACM. doi:10.1145/2897518.2897638.

30 Shang-En Huang and Seth Pettie. Thorup-zwick emulators are universally optimal hopsets.
Inf. Process. Lett., 142:9–13, 2019. doi:10.1016/j.ipl.2018.10.001.

31 Philip N. Klein and Sairam Subramanian. A linear-processor polylog-time algorithm for
shortest paths in planar graphs. In 34th Annual Symposium on Foundations of Computer
Science, Palo Alto, California, USA, 3-5 November 1993, pages 259–270, 1993. doi:10.1109/
SFCS.1993.366861.

32 Philip N. Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. J. Algorithms, 25(2):205–220, 1997. doi:10.1006/jagm.1997.0888.

33 Jason Li. Faster parallel algorithm for approximate shortest path. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 308–321. ACM, 2020. doi:10.1145/3357713.3384268.

34 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’15, pages 192–201, New York, NY, USA, 2015. ACM.
doi:10.1145/2755573.2755574.

35 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 565–573, 2014. doi:10.1145/2591796.2591850.

36 Seth Pettie. Low distortion spanners. ACM Transactions on Algorithms, 6(1), 2009. doi:
10.1145/1644015.1644022.

37 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons.
Distributed Computing, 22(3):147–166, 2010. doi:10.1007/s00446-009-0091-7.

38 Hanmao Shi and Thomas H. Spencer. Time-work tradeoffs of the single-source shortest paths
problem. J. Algorithms, 30(1):19–32, 1999. doi:10.1006/jagm.1998.0968.

39 Thomas H. Spencer. Time-work tradeoffs for parallel algorithms. J. ACM, 44(5):742–778,
1997. doi:10.1145/265910.265923.

40 M. Thorup and U. Zwick. Approximate distance oracles. In Proc. of the 33rd ACM Symp. on
Theory of Computing, pages 183–192, 2001.

41 M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In Proc. of
Symp. on Discr. Algorithms, pages 802–809, 2006.

42 Mikkel Thorup. Undirected single source shortest path in linear time. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 12–21. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646088.

43 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure
algorithms. SIAM J. Comput., 20(1):100–125, 1991. doi:10.1137/0220006.

SWAT 2022

https://doi.org/10.1006/inco.1997.2620
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1109/FOCS.2014.24
https://doi.org/10.1145/2897518.2897638
https://doi.org/10.1016/j.ipl.2018.10.001
https://doi.org/10.1109/SFCS.1993.366861
https://doi.org/10.1109/SFCS.1993.366861
https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1145/3357713.3384268
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1145/2591796.2591850
https://doi.org/10.1145/1644015.1644022
https://doi.org/10.1145/1644015.1644022
https://doi.org/10.1007/s00446-009-0091-7
https://doi.org/10.1006/jagm.1998.0968
https://doi.org/10.1145/265910.265923
https://doi.org/10.1109/SFCS.1997.646088
https://doi.org/10.1109/SFCS.1997.646088
https://doi.org/10.1137/0220006

23:16 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

44 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
887–898. ACM, 2012. doi:10.1145/2213977.2214056.

45 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

A A (3 + ε, β)-Hopset

Here we show that the set H of Section 2 serves as a (3 + ε, β)-hopset, for all 0 < ε < 12
simultaneously, with β = 2O(k·log(1/ε)).

Denote by d
(t)
G (u, v) the length of the shortest path between u, v in G that contains

at most t edges. The following lemma bounds the number of hops and the stretch of the
constructed hopset:

▶ Lemma 12. Fix any 0 < δ ≤ 1/4 and any x, y ∈ V . Then for every 0 ≤ i ≤ k − 1, at least
one of the following holds:

1. d
(2·(1/δ)i−1)
G∪H (x, y) ≤ (3 + 12δ

1−3δ)dG(x, y)

2. d
(1)
G∪H(x, pi+1(x)) ≤ 3

1−3δ dG(x, y)

Proof. The proof is by induction on i. For the base case i = 0, if y ∈ B(x), then the edge (x, y)
was added to the hopset and the first item holds. If not, it means that dG(x, y) ≥ dG(x, p1(x)).
Because every vertex is connected by a direct edge to all its pivots, the second item holds
(since the coefficient of the right hand side is between 3 and 12 for 0 < δ ≤ 1/4).

Assume the claim holds for i, and we will prove it holds for i + 1. Partition the shortest
path between x and y into J ≤ 1/δ segments {Lj = [uj , vj]}j∈[J] each of length at most
δ · dG(x, y), and at most (1/δ − 1) edges {(vj , uj+1)}j∈[J] between consecutive segments. We
can use the following: setting u1 = x, and for each j ∈ [J], set vj as the vertex in the shortest
path between uj and y which is farthest from uj , but still dG(uj , vj) ≤ δ · dG(x, y). If vj ≠ y,
set uj+1 as the vertex which follows vj in the shortest path between x and y. Otherwise set
uj+1 = y. This partition satisfies our requirement J ≤ 1/δ because for every j ∈ [J − 1],
dG(uj , uj+1) > δ · dG(x, y) (otherwise, we could have chosen vj as uj+1).

Next, apply the induction hypothesis for all the pairs (uj , vj) with parameter i. If for all
the pairs (uj , vj) the first item holds, we can show that the first item holds for (x, y) with
parameter i + 1. Consider the path from x to y which uses the guaranteed path in G ∪ H of
the first item for all the pairs (uj , vj), and the edges (vj , uj+1). The number of hops in this
path is bounded by (1/δ) · (2(1/δ)i − 1) + (1/δ − 1) ≤ 2 · (1/δ)i+1 − 1. The length of the
path is bounded by (using the induction hypothesis on each pair):

d
(2(1/δ)i+1−1)
G∪H (x, y) ≤

∑
j∈[J]

(d(2(1/δ)i−1)
G∪H (uj , vj) + d

(1)
G (vj , uj+1))

≤ (3 + 12δ

1 − 3δ
)dG(x, y) .

Otherwise, there exist at least one segment for which the first item doesn’t hold. Let
l ∈ [J] be the smallest index so that only the second item holds for the pair (ul, vl). By the
induction hypothesis

d
(1)
G∪H(ul, pi+1(ul)) ≤ 3

1 − 3δ
dG(ul, vl) ≤ 3δ

1 − 3δ
dG(x, y).

https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/567112.567114

M. Elkin, Y. Gitlitz, and O. Neiman 23:17

Since we added the edges (x, pi+1(x)), (y, pi+1(y)) to the hopset H, by the triangle
inequality,

d
(1)
G∪H(x, pi+1(x)) ≤ dG(x, ul) + dG(ul, pi+1(ul))

≤ dG(x, ul) + 3δ

1 − 3δ
dG(x, y), (9)

d
(1)
G∪H(y, pi+1(y)) ≤ dG(y, ul) + dG(ul, pi+1(ul))

≤ dG(y, ul) + 3δ

1 − 3δ
dG(x, y). (10)

If the edge (pi+1(x), pi+1(y)) exists in H, its length can be bounded by

d
(1)
G∪H(pi+1(x), pi+1(y))

≤ d
(1)
G∪H(pi+1(x), x) + dG(x, y) + d

(1)
G∪H(y, pi+1(y)). (11)

Thus, the distance between x and y using 3 hops is

d
(3)
G∪H(x, y)

≤ d
(1)
G∪H(x, pi+1(x)) + d

(1)
G∪H(pi+1(x), pi+1(y)) + d

(1)
G∪H(pi+1(y), y)

(11)
≤ 2d

(1)
G∪H(x, pi+1(x)) + dG(x, y) + 2d

(1)
G∪H(pi+1(y), y)

(9)+(10)
≤ 2

(
dG(x, ul) + 3δ

1 − 3δ
dG(x, y)

)
+ dG(x, y) + 2

(
dG(y, ul)

3δ

1 − 3δ
dG(x, y)

)
≤ (3 + 12δ

1 − 3δ
)dG(x, y),

therefore the first item holds.
If (pi+1(x), pi+1(y)) /∈ H, then we know that d

(1)
G∪H(pi+1(x), pi+2(pi+1(x))) ≤

dG(pi+1(x), pi+1(y)). We can bound the distance d
(1)
G∪H(x, pi+2(x)) using the triangle

inequality:

d
(1)
G∪H(x, pi+2(x))
≤ dG(x, pi+1(x)) + dG(pi+1(x), pi+2(pi+1(x)))
(11)
≤ 2dG(pi+1(x), x) + dG(x, y) + dG(y, pi+1(y))

≤ 2(dG(x, ul) + 3δ

1 − 3δ
dG(x, y)) + dG(x, y) + dG(y, ul) + 3δ

1 − 3δ
dG(x, y)

≤ 3dG(x, y) + 9δ

1 − 3δ
dG(x, y) = 3

1 − 3δ
dG(x, y).

Thus the second item holds. ◀

We conclude by summarizing the main result of this section.
▶ Theorem 13. For any weighted graph G = (V, E) on n vertices, and any k ≥ 1, there
exists H of size at most O(kn + n1+1/(2k−1)), which is a (3 + ε, β)-hopset for any 0 < ε ≤ 12,
with β = 2(3 + 12/ε)k−1.
Proof. Let x, y ∈ V . Apply lemma 12 for x, y with δ = ε

12+3ε and i = k − 1. Since Ak = ∅,
the first item must hold:

d
(2(3+12/ε)k−1)
G∪H (x, y) ≤ (3 + ε)dG(x, y). ◀

▶ Remark 14. Note that at its lowest, the hopbound is O(4k), achieved with stretch 15.

SWAT 2022

23:18 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

B A (3 + ε, β · W)-Emulator

In this section we show that the same H constructed in Section 2 can also serve as a
(3 + ε, β · W) emulator for weighted graphs, for all values of 0 < ε < 1 simultaneously.

Let G = (V, E) be a weighted graph and let k ≥ 1 and ∆ > 3 be given parameters (think
of ∆ = 3 + O(1/ε)). Fix a pair x, y ∈ V . Define D−1 = 0 and for any integer i ≥ 0, let
Di = W (x, y) ·

∑i
j=0 ∆j . We can easily verify that

Di+1 = ∆ · Di + W (x, y). (12)

▶ Lemma 15. Let 0 ≤ i ≤ k and let x, y ∈ V such that dG(x, y) ≤ Di and dH(x, pi(x)) ≤
2∆

∆−3 Di−1. Define m = max{∆Di−1, dG(x, y)}. Then at least one of the following holds:

1. dH(x, y) ≤ (3 + 8
∆−3)m.

2. dH(x, pi+1(x)) ≤ 2∆
∆−3 Di.

Proof. The proof is by induction on i. For the base case i = 0, if y ∈ B(x), the first item
holds. Otherwise dH(x, p1(x)) ≤ dG(x, y) ≤ W (x, y) = D0, thus the second item holds.

Assume the claim holds for i and prove for i + 1. By the triangle inequality:

dH(y, pi+1(y)) ≤ dG(y, x) + dG(x, pi+1(x)). (13)

If pi+1(y) ∈ B(pi+1(x)), we have

dH(pi+1(x), pi+1(y)) ≤ dG(pi+1(x), x) + dG(x, y) + dG(y, pi+1(y)). (14)

Thus, the distance between x and y is

dH(x, y)
≤ dH(x, pi+1(x)) + dH(pi+1(x), pi+1(y)) + dH(pi+1(y), y)
(14)
≤ 2dH(x, pi+1(x)) + dG(x, y) + 2dH(pi+1(y), y)

(13)
≤ 2dH(x, pi+1(x)) + dG(x, y) + 2(dG(y, x) + dG(x, pi+1(x)))

≤ 3dG(x, y) + 4 · 2∆
∆ − 3Di

≤
(

3 + 8
∆ − 3

)
m,

therefore the first item holds.
If pi+1(y) /∈ B(pi+1(x)), then we know that

dH(pi+1(x), pi+2(pi+1(x))) ≤ dG(pi+1(x), pi+1(y)) . (15)

M. Elkin, Y. Gitlitz, and O. Neiman 23:19

We can bound the distance dH(x, pi+2(x)) as follows.

dH(x, pi+2(x))
≤ dG(x, pi+1(x)) + dG(pi+1(x), pi+2(pi+1(x)))
(15)
≤ 2dG(pi+1(x), x) + dG(x, y) + dG(y, pi+1(y))

(13)
≤ 2dH(x, pi+1(x)) + dG(x, y) + dG(y, x) + dG(x, pi+1(x))

≤ 2dG(x, y) + 3 · 2∆
∆ − 3Di

(12)
≤ 2Di+1 + 6

∆ − 3Di+1

= 2∆
∆ − 3Di+1.

Hence the second item holds. ◀

We are now ready to state the result of this section.

▶ Theorem 16. For any weighted graph G = (V, E) on n vertices, and any k ≥ 1, there
exists H of size at most O(kn + n1+1/(2k−1)), which is a (3 + ε, β · W)-emulator for any
ε > 0 with β = O(1 + 1/ε)k−1.

Proof. Let x, y ∈ V . Recall that Pxy is the shortest path between x and y in G, and
fix ∆ = 3 + 8/ε. Initialize i = 0. Let z be the farthest vertex from x in Pxy satisfying
dG(x, z) ≤ Di. Note the requirement dH(x, p0(x)) ≤ 2∆

∆−3 D−1 = 0 holds since p0(x) = x.
Apply lemma 15 on x, z and i. If the second item holds, we increase i by one, update z to be
the last vertex in P (x, y) satisfying dG(x, z) ≤ Di, and apply the lemma again for x, z and i

(since the second item held for i − 1, we have that dH(x, pi(x)) ≤ 2∆
∆−3 Di−1 indeed holds).

Consider now the index i such that the first item holds (we must find such an index,
since at i = k − 1 there is no pivot in level k). If it is the case that dG(x, y) ≥ Di then since
Di − ∆Di−1 = W (x, y), it must be that dG(x, z) ≥ ∆Di−1, as otherwise we could have taken
a further away z (recall that every edge on this path has weight at most W (x, y)). Therefore
m = dG(x, z) and we found a path in H from x to z with stretch at most 3 + 8

∆−3 . Next we
update x = z, i = 0 and repeat the same procedure all over again.

The last remaining case is that we found an index i such that the first item holds but
dG(x, y) < Di. Note that in such a case it must be that z = y. The path in H we have from x

to y is of length at most (3+ 8
∆−3)·Di = (3+ε)·Di. As i ≤ k−1 and Dk−1 ≤ 2∆k−1 ·W (x, y),

we have that

dH(x, y) ≤ 2(3 + ε) · (3 + 8/ε)k−1 · W (x, y) ,

which is our additive stretch β. ◀

C Full proof of Lemma 1

If we order the vertices in Ai by their distance to u, it is easy to see that the number of
vertices which are in Ai and closer than pi+1(u) is bounded by a random variable sampled
from a geometric distribution with parameter qi. Hence E[|B(u)|] ≤ k + 1/qi = k + n2iν22i+1.
For u ∈ Ak−1, since pk(u) doesn’t exist, B(u) contains all the vertices in Ak−1. The number
of vertices in Ak−1 is a random variable sampled from binomial Distribution with parameters
(n,

∏k−2
j=0 qj) = (n, n−(2k−1−1)ν · 2−2k−1−k+2). Hence, the expected number of edges added by

bunches of vertices in Ak−1 is

SWAT 2022

23:20 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

E

[(
|Ak−1|

2

)]
≤ E[|Ak−1|2] = E[|Ak−1|]2 + V ar(|Ak−1|)

= n2
k−2∏
j=0

q2
j + n(1 −

k−2∏
j=0

qj)
k−2∏
j=0

qj

≤ n2−2(2k−1−1)ν · 22(−2k−1−k+2) + n · 2−2k−1−k+2

≤ (n1+ν + n)23−k.

Hence, the total expected number of edges in H is:

k−2∑
i=0

(Ni · n2iν · 22i+1) + E[|Ak−1|2] + kn

=
k−2∑
i=0

(n1+ν · 2−i+2) + E[|Ak−1|2] + kn

= O(kn + n1+ν)

D Proofs of Theorems 6,7

D.1 Size analysis
Recall the construction of H described in Section 4. Define the bunch B(u) as in (2). The
following lemma will be useful to bound the size of the spanner H.

▶ Lemma 17. Fix 0 ≤ i ≤ k−1. Let u, v, x, y ∈ Ai be such that v ∈ B1/2(u) and y ∈ B1/2(x),
and Puv ∩ Pxy ̸= ∅, then all four points are in B(u), or all four are in B(x).

Proof. Assume w.l.o.g. that Puv is not shorter than Pxy. Let z ∈ V be a point in the
intersection of the two shortest paths, then

dG(u, x) ≤ dG(u, z) + dG(z, x) ≤ dG(u, v) + dG(y, x)
≤ 2dG(u, v) < dG(u, Ai+1) ,

so x ∈ B(u). The calculation showing y ∈ B(u) is essentially the same. ◀

Define the shortest path between two vertices consistently, s.t. each subpath is also a shortest
path. Therefore two shortest paths can have at most one common subpath.

Fix 0 ≤ i ≤ k − 2, and consider the graph Gi containing all the shortest paths Puv with
u ∈ Ai and v ∈ B1/2(u). We claim that the number of edges in Gi is at most O(n + Ci),
where Ci is the number of pairwise intersections between these shortest paths. This is because
vertices participating in at most 1 path have degree at most 2, and each intersection increases
the degree of one vertex by at most 2 (recall that shortest paths can meet at most once).

▷ Claim 18. E[|Ci|] ≤ O(n1+ν).

Proof. By Lemma 17 each intersecting pair of paths Puv and Pxy we have that all four
points belong to the same bunch. Thus, each u ∈ Ai can introduce at most |B(u)|3 pairwise
intersecting paths. Recall that |B(u)| is a random variable distributed geometrically with
parameter qi, so

M. Elkin, Y. Gitlitz, and O. Neiman 23:21

E[|B(u)|3] =
∞∑

j=1
j3 · qi · (1 − qi)j−1

≤ qi ·
∞∑

j=1
(1 − qi)j−1 · j(j + 1)(j + 2) ≤ 6

q3
i

.

Thus the expected number of intersections at level i is at most

E

[∑
u∈Ai

|B(u)|3
]

≤ O(Ni/q3
i) = O(n1−((4/3)i−1)ν · (n4iν/3i+1

)3)

= O(n1+ν) .

It remains to bound path intersections in the last level k − 1. Recall that

Nk−1 = n1−((4/3)k−1−1)ν = n1−((4/3)k−1−1)/((4/3)k−1) ≤ n(1+ν)/4 .

Since the random choices for each point are independent, we have by Chernoff bound that
Pr[Nk−1 > 2n(1+ν)/4] ≤ e−Ω(n(1+ν)/4), so with very high probability the last set Ak−1 contains
O(n(1+ν)/4) points. It means that we have O(

√
n1+ν) paths connecting these points, and

even if they all intersect, they can yield at most O(n1+ν) intersections. ◁

It remains to bound the number of edges to pivots. For every v ∈ V , pi(v) is the closest
vertex to v in Ai breaking ties by id. Therefore all the vertices in Pv,pi(v) share the same
pivot at level i. Thus we add at most one edge for each vertex at every level, and O(nk)
edges overall.

We conclude that the size of H is at most O(k · n1+ν) (we can slightly change the
probabilities by introducing a factor of 2−4i/3i+1−1 to obtain size O(kn + n1+ν), as we did
before.

D.2 Proof of Theorem 6
We use the corresponding analysis of the emulator from Section 3. The use of half-bunches
instead of bunches creates the following version of Lemma 2.

▶ Lemma 19. Fix ∆ > 5. Let 0 ≤ i < k and let x, y ∈ V such that dG(x, y) ≥ (3∆)iW (x, y).
Then at least one of the following holds:
1. dH(x, y) ≤ (1 + 8i

∆−5)dG(x, y)
2. dH(x, pi+1(x)) ≤ 2∆

∆−5 dG(x, y)

The main difference in the proof is in (7), which is replaced by

dH(pi+1(ul), pi+2(pi+1(ul))) ≤ 2dG(pi+1(ul), pi+1(ur)) .

The new bounds in the Lemma guarantee the calculations still go through. For Lemma 3
which takes care of small distances, we have the following change, with a very similar proof.

▶ Lemma 20. Let 0 ≤ i < k and fix x, y ∈ V . Let
m = max{dG(x, pi(x)), dG(y, pi(y)), dG(x, y)}. Then at least one of the following holds:

1. dH(x, y) ≤ 5m

2. dH(x, pi+1(x)) ≤ 7m

In the proof we set ∆ = 5 + 8(k−1)
ε . The rest of the calculations follow analogously, one

change is that when iteratively applying Lemma 20, the bound m increases by a factor of 7
(rather than 4, as in Lemma 3), but as 7 ≤ 3∆ is still true, it does not change anything.

SWAT 2022

23:22 Almost Shortest Paths with Near-Additive Error in Weighted Graphs

D.3 Proof of Theorem 7
The stretch analysis is very similar to that of the emulator from Section B, the main difference
is in the use of half-bunches rather than the full ones, but this will increase the distance
to pivots by a factor of 2, and affect the additive stretch only. We follow the analysis and
notation presented in Section B, but with ∆ > 5. We replace Lemma 15 with the following.

▶ Lemma 21. Let 0 ≤ i ≤ k and let x, y ∈ V such that dG(x, y) ≤ Di and dH(x, pi(x)) ≤
3∆

∆−5 Di−1. Define m = max{∆Di−1, dG(x, y)}. Then at least one of the following holds:
1. dH(x, y) ≤ (3 + 16

∆−5)m.
2. dH(x, pi+1(x)) ≤ 4∆

∆−5 Di.

The main difference in the proof is in (15), which is replaced by

dH(pi+1(x), pi+2(pi+1(x))) ≤ 2dG(pi+1(x), pi+1(y)) ,

since we use half-bunches. One can then follow the calculations in the proof of Lemma 15,
and check that the altered constants used in the 2 cases above suffice.

The proof of Theorem 7 is the same as the proof of Theorem 16, the only differences are
taking ∆ = 5 + 16

ε (which affects the value of β) and using the bounds of Lemma 21 rather
than of Lemma 15.

Complexity of Finding Maximum Locally Irregular
Induced Subgraphs
Foivos Fioravantes #

Université Côte d’Azur, Inria, CNRS, I3S, Valbonne, France

Nikolaos Melissinos #

Université Paris-Dauphine, Université PSL, CNRS, LAMSADE, 75016, Paris, France

Theofilos Triommatis #

School of Electrical Engineering, Electronics and Computer Science, University of Liverpool, UK

Abstract

If a graph G is such that no two adjacent vertices of G have the same degree, we say that G is
locally irregular. In this work we introduce and study the problem of identifying a largest induced
subgraph of a given graph G that is locally irregular. Equivalently, given a graph G, find a subset S

of V (G) with minimum order, such that by deleting the vertices of S from G results in a locally
irregular graph; we denote with I(G) the order of such a set S. We first examine some easy graph
families, namely paths, cycles, trees, complete bipartite and complete graphs. However, we show
that the decision version of the introduced problem is N P-Complete, even for restricted families of
graphs, such as subcubic planar bipartite, or cubic bipartite graphs. We then show that we can not
even approximate an optimal solution within a ratio of O(n1− 1

k), where k ≥ 1 and n is the order
the graph, unless P=N P, even when the input graph is bipartite.

Then, looking for more positive results, we turn our attention towards computing I(G) through
the lens of parameterised complexity. In particular, we provide two algorithms that compute I(G),
each one considering different parameters. The first one considers the size of the solution k and
the maximum degree ∆ of G with running time (2∆)knO(1), while the second one considers the
treewidth tw and ∆ of G, and has running time ∆2twnO(1). Therefore, we show that the problem
is FPT by both k and tw if the graph has bounded maximum degree ∆. Since these algorithms
are not FPT for graphs with unbounded maximum degree (unless we consider ∆ + k or ∆ + tw as
the parameter), it is natural to wonder if there exists an algorithm that does not include additional
parameters (other than k or tw) in its dependency.

We answer negatively, to this question, by showing that our algorithms are essentially optimal.
In particular, we prove that there is no algorithm that computes I(G) with dependence f(k)no(k) or
f(tw)no(tw), unless the ETH fails.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms; Mathematics of computing →
Approximation algorithms

Keywords and phrases Locally irregular, largest induced subgraph, FPT, treewidth, W-hardness,
approximability

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.24

Related Version Full Version: https://hal.archives-ouvertes.fr/hal-03358273

Funding Foivos Fioravantes: Supported by the French government through the UCA JEDI (ANR-
15-IDEX-01) and the EUR DS4H (ANR-17-EURE-004) Investments in the Future projects.
Theofilos Triommatis: Supported by EP/S023445/1 EPSRC CDT in Distributed Algorithms, Uni-
versity of Liverpool.

© Foivos Fioravantes, Nikolaos Melissinos, and Theofilos Triommatis;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:foivos.fioravantes@inria.fr
mailto:nikolaos.melissinos@dauphine.eu
mailto:Theofilos.Triommatis@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.SWAT.2022.24
https://hal.archives-ouvertes.fr/hal-03358273
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

1 Introduction

A graph G is said to be locally irregular, if every two adjacent vertices of G have different
degrees. In this paper, we introduce and study the problem of finding a largest locally
irregular induced subgraph of a given graph. This problem is equivalent to identifying what
is the minimum number of vertices that must be deleted from G, so that what remains is a
locally irregular graph.

Locally irregular graphs. The notion of locally irregular graphs was first introduced in [6].
The most interesting aspect of locally irregular graphs, comes from their connection to the
so-called 1-2-3 Conjecture, proposed in [22]. Formally, the 1-2-3 Conjecture states that for
almost every graph, we should be able to place weights from {1, 2, 3} on the edges of that
graph, so that the colouring, that assigns a colour to each vertex equal to the sum of the
weights on its adjacent edges, is a proper vertex-colouring of the graph.

As we said earlier, the 1-2-3 Conjecture seems to have some very interesting links to
locally irregular graphs. An obvious connection is that this conjecture holds for locally
irregular graphs. Indeed, placing weight equal to 1 to all the edges of a locally irregular
graph, suffices to produce a proper vertex-colouring, as each vertex receives a colour equal to
its degree. Furthermore, there have been some steps towards proving that conjecture, which
involve edge-decomposing a graph into a constant number of locally irregular subgraphs,
i.e., given G, find an edge-colouring of G using a constant number of colours, such that each
colour induces a locally irregular subgraph of G. This is the main motivation behind [6], and
it seems to remain interesting enough to attract more attention [8, 25, 30].

Note that the class of locally irregular graphs can be seen as an antonym to that of regular
graphs, i. e., graphs such that all of their vertices have the same degree. It is important to
state here that there exist several alternative such notions. This is mainly due to the very well
known fact that there are no non-trivial irregular graphs, i. e., graphs that do not contain two
vertices (not necessarily adjacent) with the same degree (see [12]). Thus, the literature has
plenty of slightly different definitions of irregularity (see for example [2, 12, 13, 20, 29]). One
way to deal with the nonexistence of irregular graphs, is to define a notion of local irregularity.
Intuitively, instead of demanding for all vertices of a graph to have different degrees, we are
now considering each vertex v separately, and request that the vertices “around” v to verify
some properties of irregularity. For example, the authors of [3] study graphs G such that for
every vertex v of G, no two neighbours of v have the same degree. For an overview of other
interesting notions of irregularity (local or otherwise), we refer the reader to [4].

Largest induced subgraph verifying specific properties. The problem we introduce belongs
in a more general and well studied family of problems, which is about identifying a largest
induced subgraph of a given graph that verifies a specific property Π. That is, given a graph
G = (V, E) and an integer k, is there a set V ′ ⊆ V such that |V ′| ≤ k and G[V \ V ′] has
the specified property Π? In our case, the property Π is “the induced subgraph is locally
irregular”. This generalised problem is indeed classic in graph theory, and it is known as the
Induced Subgraph with Property Π (ISPΠ for short) problem in [21]. Unfortunately,
it was shown in [24], that ISPΠ is a hard problem for any property Π that is hereditary, i. e.,
all induced subgraphs of G verify Π if G itself verifies that property.

However, the ISPΠ problem remains interesting (one could say that it actually becomes
more interesting) even if the property Π is not hereditary. Recently, the authors of [7] studied
the problem for Π being “all vertices of the induced subgraph have odd degree”, which

F. Fioravantes, N. Melissinos, and T. Triommatis 24:3

clearly is not a hereditary property. Nevertheless, they showed that this is an NP-hard
problem, and they gave an FPT algorithm that solves the problem when parameterised by
the rank-width. Also, the authors of [1, 5, 28] studied the ISPΠ problem, where Π is the
rather natural property “the induced subgraph is d-regular”, where d is an integer given in
the input (recall that a graph is said to be d-regular if all of its vertices have the same degree
d). In particular, in [5] it is shown that finding a largest (connected) induced subgraph that
is d-regular, is NP-hard to approximate, even when restricted on bipartite or planar graphs.
The authors of [5] also provide a linear-time algorithm to solve this problem for graphs with
bounded treewidth. In contrast, the authors of [1] take a more practical approach, as they
focus on solving the problem for the particular values of d = 1 and d = 2, by using bounds
from quadratic programming, Lagrangian relaxation and integer programming.

It is quite clear that, in some sense, the property that interests us lies on the opposite
side of the one studied in [1, 5, 28]. However, both properties, “the induced subgraph is
regular” and “the induced subgraph is locally irregular” are not hereditary. This means that
we do not get an NP-hardness result directly from [24]. Furthermore, the ISPΠ problem
always admits an FPT algorithm, when parameterised by the size of the solution, if Π is
a hereditary property (proven in [11, 23]), but for a non-hereditary one, this is not always
true. Indeed in [28], the authors proved that when considering Π as “the induced subgraph
is regular”, the ISPΠ problem is W[1]-hard when parameterised by the size of the solution.
That is, there should be no f(k)nc time algorithm for this problem, where c is a constant.
For such problems, it is also interesting to see if there exists any algorithm with running
time no(k) or f(k)no(k). The authors of [14, 15, 16] provide techniques that can be used to
strongly indicate the non-existence of such algorithms, by applying them on a variety of
W[1]-hard and W[2]-hard problems, such as the Independent Set and the Dominating
Set, parameterised by the size of their solutions. Usually these lower bounds are shown
under the assumption of a weaker version of the Exponential Time Hypothesis, which
states that SAT can not be solved in time 2o(n+m).

Our contribution. We begin in Section 2 by providing the basic notations and definitions
that are going to be used throughout this paper. In Section 3, we deal with the complexity
of the introduced problem. In particular, we show that the problem belongs in P if the
input graph is a path, cycle, tree, complete bipartite or complete graph. We then prove that
finding the maximum induced locally irregular subgraph of a given graph G is NP-hard,
even if G is restricted to being a subcubic planar bipartite, or a cubic bipartite graph.

As the introduced problem seems to be computationally hard even for restricted families
of graphs, we then investigate its approximability. Unfortunately, we prove in Section 4 that
for any bipartite graph G of order n and k ≥ 1, there can be no polynomial time algorithm
that finds an approximation of I(G) within ratio O(n1− 1

k), unless P=NP . Nevertheless, we
do provide a (simple) d-approximation algorithm for d-regular bipartite graphs.

We then decide to look into its parameterised complexity. In Section 5, we present two
algorithms that compute I(G), each one considering different parameters. The first considers
the size of the solution k and the maximum degree ∆ of G, and and has running time
(2∆)knO(1), while the second considers the treewidth tw and ∆ of G, and has running time
∆2twnO(1). Unfortunately, these algorithms can be considered as being FPT only if ∆ is part
of the parameter. In Section 5.1, we present two linear fpt-reductions which prove that the
problem is W[2]-hard when parameterised only by the size of the solution and W[1]-hard
when parameterised only by the treewidth. These reductions also show that we can not even
have an algorithm that computes I(G) in time f(k)no(k) or O∗(f(tw)no(tw)), unless the ETH
fails. The O∗ notation is used to suppress polynomial factors in regards to n and tw.

SWAT 2022

24:4 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

2 Preliminaries

For notions and definitions on graph theory not explained here, we refer the reader to [18].
Let G = (V, E) be a graph and G′ = (V ′, E′) be a subgraph of G (i.e., created by deleting

vertices and/or edges of G). Recall first that the subgraph G′ is induced if it can be created
only by deleting vertices of G. That is, for each edge uv ∈ E, if u, v ∈ V ′, then uv ∈ E′. For
any vertex v ∈ V , let NG(v) = {u ∈ V : uv ∈ E} denote the neighbourhood of v in G, and let
dG(v) = |NG(v)| denote the degree of v in G. We also define NG[v] = NG(v) ∪ {v}. Finally,
for any X ⊆ V , we define NG[X] =

⋃
v∈X NG[v]. Note that, whenever the graph G is clear

from the context, we will omit the subscript and simply write N(v), d(v), N [v] and N [X].
One way to show that a problem can not be approximated within a certain ratio, is

through a gap reduction. The goal of such a reduction is to show that it is NP-hard to
differentiate between instances that have a solution of size ≤ α and those for which any
solution has size > β. If such is the case, then we know that we cannot approximate the
optimal solution within a ratio of β

α , as otherwise we would get that P=NP .
Finally, recall that a fixed parameter-tractable (FPT for short) algorithm, is an algorithm

with running time f(k)nO(1), where f is a computable function and k is the considered
parameter. We also make use of what is known as a linear fpt-reduction, a type of polynomial
reduction such that the size of the parameter of the new problem is linear in regards to the
size of the parameter of the original problem. Observe that if we have a linear fpt-reduction
from a problem Q with parameter k to a problem Q′ with parameter k′ and the assumption
that Q can not be solved in time f(k)no(k)

1 (where n1 is the size of the input of Q), then we
can conclude that there is no f(k′)no(k′)

2 time algorithm for Q (where n2 is the size of the
input of Q).

Let G = (V, E) be a graph. We say that G is locally irregular if for every edge uv ∈ E, we
have d(u) ̸= d(v). Now, let S ⊆ V be such that G[V \ S] is a locally irregular graph; any set
S that has this property is said to be an irregulator of G. For short, we will say that S is an
ir(G). Moreover, let I(G) be the minimum order that any ir(G) can have. We will say that
S is a minimum irregulator of G, for short S is an ir∗(G), if S is an ir(G) and |S| = I(G).

We also define the following notion, which generalises ir(G). Let G = (V, E) be a graph,
S, X ⊆ V and let G′ = G[V \ S]. Now, let S ⊆ V be such that, for each two neighbouring
vertices u, v in X \ S, we have that dG′(u) ̸= dG′(v); any set S that has this property is said
to be an irregulator of X in G, for short ir(G, X). We define the notions of ir∗(G, X) and
I(G, X) analogously to the previous definitions.

We will now provide some lemmas and an observation that will be useful throughout this
paper. As the proofs of the following lemmas mainly follow from the definitions, we chose to
only include them in the full version of this paper. In the three lemmas below, we investigate
the relationship between I(G) and I(G, X).

▶ Lemma 1. Let G = (V, E) be a graph and let X ⊆ V . Then I(G, X) ≤ I(G).

▶ Lemma 2. Let G = (V, E) be a graph and S, X ⊆ V such that S is an ir∗(G, X). Then,
S ⊆ N [X] and I(G, X) = I(G[N [X]], X).

▶ Lemma 3. Let G = (V, E) be a graph, and X1, . . . , Xn ⊆ V such that N [Xi] ∩N [Xj] = ∅
for every 1 ≤ i < j ≤ n. Then

∑n
i=1 I(G, Xi) ≤ I(G).

▶ Lemma 4. Let G = (V, E) be a graph, X be a subset of V and S be an ir(G). The set
S ∩N [X] is an ir(G, X) and an ir(G[N [X]], X).

The following, almost trivial, observation, will be useful throughout the rest of the paper.

F. Fioravantes, N. Melissinos, and T. Triommatis 24:5

u1
u2

u3
u4

u r

w1

w2

Figure 1 The gadget used in the proof of Theorem 7. The white and black vertices are used to
denote vertices belonging to different bipartitions.

▶ Observation 5. Let G = (V, E) be a graph and S be an ir(G). Then, for each edge uv ∈ E,
if d(u) = d(v), then S contains at least one vertex in N [{u, v}]. Additionally, for a set
X ⊆ V , let S∗ be an ir(G[N [X]], X). Then for each edge uv ∈ E(G[X]), if d(u) = d(v),
then S∗ contains at least one vertex in N [{u, v}].

3 (Classic) complexity

In this section, we deal with the complexity of the problem we introduced. In the following
theorem, we sum up all the families of graphs for which we prove that I(G) is computed in
polynomial time.

▶ Theorem 6. Let G be a graph. If G is a path, cycle, tree, complete bipartite or a complete
graph, then the problem of computing I(G) is in P.

The result for the case of paths and cycles is proven through induction on the order of
the graph. Then, complete and complete bipartite graphs have a rather trivial structure
in regards to the problem studied here. Finally, the polynomial algorithm for trees follows
directly from upcoming Theorem 14.

3.1 N P-Hard Cases
We now show that finding a minimum irregulator of a graph is NP-hard. Interestingly,
this remains true even for quite restricted families of graphs, such as cubic (i. e., 3-regular)
bipartite, and subcubic planar bipartite graphs, i. e., planar bipartite graphs of maximum
degree at most 3.

▶ Theorem 7. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete, even when
G is a planar bipartite graph with maximum degree ∆ ≤ 3.

Proof. Since the problem is clearly in NP , we will focus on proving it is also NP-hard. The
reduction is from the Vertex Cover problem, which remains NP-complete when restricted
to planar cubic graphs [27]. In that problem, a planar cubic graph G and an integer k ≥ 1
are given as an input. The question is, whether there exists a vertex cover of G of order at
most k. That is, whether there exists a set V C ⊆ V (G) such that for every edge uv ∈ E(G),
at least one of u and v belongs in V C and |V C| ≤ k.

Let G′ be a planar cubic graph and k ≥ 1 given as input for Vertex Cover. Let
|E(G′)| = m. We will construct a planar bipartite graph G as follows; we start with the
graph G′, and modify it by using multiple copies of the gadget, illustrated in Figure 1. Note
that we will be following the naming convention illustrated in Figure 1 whenever we talk
about the vertices of our gadgets. When we say that we attach a copy H of the gadget to
the vertices v and v′ of G′, we mean that we add H to G′, and we identify the vertices w1
and w2 to the vertices v and v′ respectively. Now, for each edge vv′ ∈ E(G′), attach one

SWAT 2022

24:6 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

v2

v1

v3

(a) G′

v3

v2

v1
r

u

(b) G

Figure 2 The construction in the proof of Theorem 7. The graph G′ is the initial planar cubic
graph, and G is the graph built during our reduction. In G, the white and black vertices are used to
denote vertices belonging to different bipartitions.

copy H of the gadget to the vertices v and v′, and then delete the edge vv′ (see Figure 2).
Clearly this construction is achieved in linear time (we have added m copies of the gadget).
Note also that the resulting graph G has ∆(G) = 3 and that the planarity of G′ is preserved
since G is constructed by essentially subdividing the edges of G′ and adding a tree pending
from each new vertex. Also, G is bipartite. Indeed, observe that after removing the edges
of E(G′), the vertices of V (G′) form an independent set of G. Furthermore, the gadget is
bipartite, and the vertices w1, w2 (that have been identified with vertices of V (G′)) belong
to the same bipartition (in the gadget). Finally, for any 1 ≤ i ≤ m, let Hi be the ith copy of
the gadget attached to vertices of G′. We will also be using the vertices ri and ui to denote
the copies of the vertices r and u (respectively) that also belong to Hi.

We are now ready to show that the minimum vertex cover of G′ has size k′ if and only if
I(G) = k′.

Let V C be a minimum vertex cover of G′ and |V C| = k′. We will show that the set
S = V C is an ir(G). Let G∗ = G[V (G) \ S]. First, note that S contains only vertices of G′.
Thus, for each i, the vertices of Hi except from ri, which also remain in G∗, have the same
degree in G′ and in G∗. Also note that each vertex of G′ is adjacent only to copies of r. It
follows that it suffices to only consider the vertices ri to show that V C is an ir(G). Now,
for any 1 ≤ i ≤ m, consider the vertex ri. Since V C is a vertex cover of G′, for each edge
vv′ ∈ E(G′), V C contains at least one of v and v′. It follows that dG∗(ri) ≤ 2. Note also
that NG∗(ri) contains the vertex ui ∈ V (Hi) and possibly one vertex v ∈ V (G′).

Also, since we only delete vertices in V (Hi)∩ V (G′), we have that dG∗(ui) = 3 > dG∗(ri).
In the case where NG∗(ri) also contains a vertex v ∈ V (G′), the vertex v is adjacent only to
vertices which do not belong in V (G′). Thus, dG∗(v) = dG(v) = 3 > dG∗(ri). It follows that
ri has a different degree from all of its neighbours and that V C is an ir(G).

Now, we prove that if I(G) = k′ then there exists a vertex cover of size at most k′. Assume
that I(G) = k′ and let S be an ir∗(G). Observe that since S is an ir∗(G), S contains at least
one vertex of Hi (for each 1 ≤ i ≤ m). Let Xi = V (Hi)∩ V (G′). To construct a vertex cover
V C of G′ with |V C| ≤ k′, we work as follows. For each 1 ≤ i ≤ m:
1. for each vertex v ∈ Xi, if v ∈ S then put v in V C. Then,
2. if S ∩Xi = ∅, put any one of the two vertices of Xi in V C.

F. Fioravantes, N. Melissinos, and T. Triommatis 24:7

Observe now that any vertex that is added to V C during step 1. of the above procedure,
also belongs to S and any vertex that is added during step 2. of the above procedure
corresponds to at least one vertex in S. It follows that |V C| ≤ k′. Also note that V C

contains at least one vertex of Xi, for each i, and that for each uv ∈ E(G′), there exists an i

such that V (Xi) = {u, v}. Thus V C is indeed a vertex cover of G′.
Therefore G′ has a minimum vertex cover of size k′ if and only if I(G) = k′. To complete

the proof note that deciding if I(G) = k′ < k for a given k, answers the question whether G′

has a vertex cover of size less than k or not. ◀

In the following theorem we show that calculating I(G) is NP-hard even if G is a cubic
bipartite graph.

▶ Theorem 8. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete even in
cubic bipartite graphs.

This theorem is shown through a reduction from the 2-Balanced 3-SAT, which was
proven to be NP-complete in [9].

4 (In)approximability

In the previous section we showed that computing I(G) is NP-hard, even for graphs G

belonging to quite restricted families of graphs. So the natural question to pose next, which
we investigate in this section, is whether we can approximate I(G). Unfortunately, most of
the results we present below are once again negative.

We start with a corollary that follows from the proof of Theorem 7 and the inapproxim-
ability of Vertex Cover in cubic graphs [17]:

▶ Corollary 9. Given a graph G, it is NP-hard to approximate I(G) to within a ratio of 100
99 ,

even if G is bipartite and ∆(G) = 3.

Now, we are going to show that there can be no algorithm that approximates I(G) to
within any decent ratio in polynomial time, unless P=NP, even if G is a bipartite graph
(with no restriction on its maximum degree).

▶ Theorem 10. Let G be a bipartite graph of order N and k ∈ N be a constant such that
k ≥ 1. It is NP-hard to approximate I(G) to within O(N1− 1

k).

Proof. The proof is by a gap producing reduction from 2-Balanced 3-SAT, which was
proven to be NP-complete in [9]. In that problem, a 3CNF formula F is given as an input,
comprised by a set C of clauses over a set of Boolean variables X. In particular, we have
that each clause contains exactly 3 literals, and each variable x ∈ X appears in F exactly
twice as a positive and twice as a negative literal. The question is, whether there exists a
truth assignment to the variables of X satisfying F .

Let F be a 3CNF formula with m clauses C1, . . . , Cm and n variables x1, . . . , xn that is
given as input to the 2-Balanced 3-SAT problem. Let 2k = k′ + 1. Based on the instance
F , we are going to construct a bipartite graph G = (V, E) where |V | = O(nk′+1) and

I(G) ≤ n if F is satisfiable
I(G) > nk′ otherwise.

To construct G = (V, E), we start with the following graph: for each literal xi (¬xi resp.)
in F , add a literal vertex vi (v′

i resp.) in V , and for each clause Cj of F , add a clause vertex
cj in V . Next, for each 1 ≤ j ≤ m, add the edge vicj (v′

icj resp.) if the literal xi (¬xi resp.)

SWAT 2022

24:8 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

u

u1

u2

w1

w2

(a) The gadget

vi

v′
i

...

...

u1
i

u1
i,1

...
. ..

u1
i,2

uz
i,1

uz
i,2

uz
i

c1
1 s1

1

c1
m s1

m

cz
1 sz

1

cz
m sz

m

(b) The constructed graph G for nk′ = z

Figure 3 The construction in the proof of Theorem 10. In subfigure (b), we illustrate how each
pair of literal vertices is connected to the rest of the graph. Whenever there is an upper index
1 ≤ l ≤ nk′

on a vertex, it is used to denote the lth copy of that vertex. The dashed lines are used
to represent the edges between the literal and the clause vertices.

appears in Cj according to F . Observe that the resulting graph is bipartite, for each clause
vertex c we have d(c) = 3 and for each literal vertex v we have d(v) = 2 (since in F , each
variable appears twice as a positive and twice as a negative literal). To finish the construction
of G, we will make use of the gadget shown in Figure 3(a), as well as some copies of S5, the
star on 5 vertices. When we say that we attach a copy H of the gadget to the vertices vi

and v′
i (for some 1 ≤ i ≤ n), we mean that we add H to G, and we identify the vertices w1

and w2 to the vertices vi and v′
i respectively. Now:

for each 1 ≤ i ≤ n, we attach nk′ copies of the gadget to the vertices vi and v′
i of G.

For convenience, we will give unique names to the vertices corresponding to each gadget
added that way. So, the vertex ul

i (for 1 ≤ l ≤ nk′ and 1 ≤ i ≤ n) is used to represent
the vertex u of the lth copy of the gadget attached to vi and v′

i, and ul
i,1 (ul

i,2 resp.) is
used to denote the vertex u1 (u2 resp.) of that same gadget. Then,
for each 1 ≤ j ≤ m, we add nk′ − 1 copies of the clause vertex cj to G, each one of these
copies being adjacent to the same literal vertices as cj . For 1 ≤ l ≤ nk′ , the vertex cl

j is
the lth copy of cj . Finally,
for each 1 ≤ j ≤ m and 1 ≤ l ≤ nk′ , we add a copy of the star on 5 vertices S5 to G and
identify any degree-1 vertex of S5 to cl

j . Let sl
j be the neighbour of cl

j that also belongs
to a copy of S5.

Observe that the resulting graph G (illustrated in Figure 3(b)) remains bipartite and that
this construction is achieved in polynomial time in regards to n + m.

From the construction of G, we know that for every 1 ≤ i ≤ n, d(vi) = d(v′
i) = Θ(nk′).

So, for sufficiently large n, the only pairs of adjacent vertices of G that have the same degrees
are either the vertices ul

i and ul
i,2, or the vertices cl

j and sl
j (for every 1 ≤ i ≤ n, 1 ≤ l ≤ nk′

and 1 ≤ j ≤ m).

F. Fioravantes, N. Melissinos, and T. Triommatis 24:9

First, let F be a satisfiable formula and let t be a satisfying assignment of F . Also, let S

be the set of literal vertices vi (v′
i resp.) such that the corresponding literals xi (¬xi resp.)

are assigned value true by t. Clearly |S| = n. We will also show that S is an ir(G). Consider
the graph G′ = G[V \ S]. Now, for any 1 ≤ i ≤ n, we have that either vi or v′

i, say vi,
belongs to the vertices of G′. Now for every 1 ≤ l ≤ nk, we have that dG′(ul

i) = 3, while
dG′(ul

i,1) = 2 and dG′(ul
i,2) = 4 (since none of the neighbours of ul

i,1 and ul
i,2 belongs to S).

Also, for every 1 ≤ j ≤ m and 1 ≤ l ≤ nk′ , since t is a satisfying assignment of F , N(cl
j)

contains at least one vertex in S. It follows that dG′(cl
j) = 3 < 4 = dG′(sl

j). Finally, since S

does not contain any neighbours of vi, we have that dG′(vi) = dG(vi) = O(nk′). It follows
that S is an ir(G) and thus that I(G) ≤ n.

Now let F be a non-satisfiable formula and assume that there exists an S that is an ir(G)
with |S| ≤ nk′ . As usual, let G′ = G[V \ S]. Then:
1. For every 1 ≤ j ≤ m, there exists a literal vertex v such that v ∈ N(cl

j) for every
1 ≤ l ≤ nk′ . Assume that this is not true for a specific j. Then, since dG(cl

j) = dG(sl
j) = 4,

for every 1 ≤ l ≤ nk′ , we have that S contains at least one vertex in N [{cl
j , sl

j}], which
does not belong to the literal vertices. That is, S contains at least one (non-literal) vertex
for each one of the nk′ copies of cj . Observe also that even if this is the case, S would
also have to contain at least one more vertex to, for example, stop u1

i,2 and u1
i , from

having the same degree in G′. It follows that |S| > nk′ , which is a contradiction.
2. For every 1 ≤ i ≤ n, S does not contain both vi and v′

i. Assume this is not true for a
specific i. Then, for every 1 ≤ l ≤ nk′ , we have that dG′(ul

i) = dG′(ul
i,1) = 2, unless S

also contains an additional vertex of the gadgets attached to vi and v′
i, for each one of

the nk′ such gadgets. It follows that |S| ≥ nk′ . Since we have also assumed that for a
specific i, both vi and v′

i belong to S, we have that |S| > nk′ , a contradiction.
3. For every 1 ≤ i ≤ n, S contains at least one of vi and v′

i. Assume this is not true for
a specific i. Then, for every 1 ≤ l ≤ nk′ , we have that dG′(ul

i) = dG′(ul
i,2) = 4, unless

S also contains an additional vertex of the gadgets attached to vi and v′
i, for each one

of the nk′ such gadgets. Even if this is the case, S would also have to contain at least
one more vertex to, for example, stop c1

1 and S1
1 from having the same degree in G′. It

follows that |S| > nk′ , which is a contradiction.

So from items 2. and 3. above, it follows that for each 1 ≤ i ≤ n, S contains exactly one
of vi and v′

i. Now consider the following truth assignment: we assign the value true to every
variable xi if the corresponding literal vertex vi belongs in S, and value false to every other
variable. Now, from item 1. above, it follows that each clause Cj contains either a positive
literal xi which has been set to true, or a negative literal ¬xi which has been set to false.
Thus F is satisfied, which is a contradiction.

Up to this point, we have shown that there exists a graph G = (V, E) with |V (G)| =
N = O(nk′+1) where

I(G) ≤ n if F is satisfiable
I(G) > nk′ otherwise.

Therefore, we have that I(G) is not O(nk′−1) approximable in polynomial time unless P=NP .
Now, since N = |V (G)| = Θ(nk′+1) and 2k = k′ + 1 we have O(nk′−1) = O(N

k′−1
k′+1) =

O(N1− 2
k′+1) = O(N1− 1

k). This ends the proof of this theorem. ◀

Now, we consider the case where G is regular bipartite graph. Below we present an
upper bound to the size of I(G). This upper bound is then used to obtain a (simple)
∆-approximation of an optimal solution.

SWAT 2022

24:10 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

▶ Theorem 11. For any d-regular bipartite graph G = (L, R, E) of order n we have that
I(G) ≥ n/2d.

Now recall that in any bipartite graph G, any bipartition of G is a vertex cover of G.
Also observe that any vertex cover of a graph G, is also an irregulator of G. Indeed, deleting
the vertices of any vertex cover of G, leaves us with an independent set, which is locally
irregular. The next corollary follows from these observations and Theorem 11:

▶ Corollary 12. For any d-regular bipartite graph G = (L, R, E), any of the sets L and R is
a d-approximation of ir∗(G).

5 Parameterised complexity

As the problem of computing a minimal irregulator of a given graph G seems to be rather
hard to solve, and even to approximate, we focused our efforts towards finding parameterised
algorithms that can solve it. First we present an FPT algorithm that calculates I(G) when
parameterised by the size of the solution and ∆, the maximum degree of the graph.

▶ Theorem 13. For a given graph G = (V, E) with |V | = n and maximum degree ∆, and
for k ∈ N, there exists an algorithm that decides if I(G) ≤ k in time (2∆)knO(1).

The main tool we use to show Theorem 13 is Observation 5. Let G = (V, E) be a graph
and k ∈ N. A high level description of our recursive algorithm is as follows: first find an edge
uv ∈ E such that d(u) = d(v). Now, assume that we are making a correct guess of a vertex
w ∈ N [{u, v}] ∩ S where S is a minimum irregulator. Then, Gw = G[V \ w] must have a
minimum irregulator of size |S| − 1. Note that if we repeat the above process and we make
correct guesses, we are going to stop after deleting |S| vertices or when we have deleted k

vertices (meaning that I(G) > k). Then, by considering all the 2∆ choices for w, we have a
running time of (2∆)k.

We now turn our attention towards graphs that are “close to being trees”, that is graphs
of bounded treewidth. In particular, we provide an FPT algorithm that finds a minimum
irregulator of G, when parameterised by the treewidth of the input graph and by ∆.

▶ Theorem 14. For a given a graph G = (V, E) and a nice tree decomposition of G, there
exists an algorithm that returns I(G) in time ∆2twnO(1), where tw is the treewidth of the
given decomposition and ∆ is the maximum degree of G.

The idea of the proof of Theorem 14, is based on the classic dynamic programming
technique on the given nice tree decomposition of G. Let us denote by Bc the bag of vertices
of a node c of a nice tree decomposition of G. In essence, for each node c of the tree
decomposition, we store the necessary information that allows us to find all the sets that
are ir(G, B↓

c \Bc), where B↓
c denotes the vertices appearing in a sub-tree rooted at c. Then

for the root r of the tree decomposition, we can check which of the stored sets that are
ir(G, B↓

r \Br), are also ir(G); the minimum such set is an ir∗(G).
The running time of our algorithm follows from the size of the tables we keep for these

sets. In particular, for each set stored for a node c, for each vertex v of Bc, we keep the
degree that we want v to have in the final, locally irregular graph (i. e. the graph G after the
removal of ir(G)) and the degree that v has in G[B↓

c \ S]. This gives us ∆2 choices for each
vertex of Bc.

It is worth noting that the algorithms of Theorem 13 and 14 can be used in order to also
return an ir∗(G).

F. Fioravantes, N. Melissinos, and T. Triommatis 24:11

5.1 W-Hardness
Observe that both of the algorithms presented above, have to consider ∆ as part of the
parameter if they are to be considered as FPT. The natural question to ask at this point is
whether we can have an FPT algorithm, when parameterised only by the size of the solution,
or the treewidth of the input graph. In this section, we give a strong indication towards
the negative answer for both cases, proving that, in some sense, the algorithms provided in
Section 5 are optimal.

▶ Theorem 15. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is W[2]-hard, when
parameterised by k.

The proof of Theorem 15 is done through a linear-fpt reduction from the Dominating
Set problem, when parameterised by the size of the solution.

▶ Theorem 16. Let G be a graph with treewidth tw, and k ∈ N. Deciding if I(G) = k is
W [1]-hard when parameterised by tw.

Proof. We will present a reduction from the List Colouring problem: the input consists
of a graph H = (V, E) and a list function L : V → P({1, . . . , k}) that specifies the available
colours for each vertex u ∈ V . The goal is to find a proper colouring c : V → {1, . . . , k} such
that c(u) ∈ L(u) for all u ∈ V . When such a colouring exists, we say that (H, L) is a yes-
instance of List Colouring. This problem is known to be W [1]-hard when parameterised
by the treewidth of H [19].

Now, starting from an instance (H, L) of List Colouring, we will construct a graph
G = (V ′, E′) (see Figure 4 (a)) such that:
|V ′| = O(|V |6),
tw(G) = tw(H) and
I(G) = nk if and only if (H, L) is a yes-instance of List Colouring.

Before we start with the construction of G, let us give the following observation.

▶ Observation 17. Let (H, L) be an instance of List Colouring where H = (V, E) and
there exists a vertex u ∈ V such that |L(u)| > d(u). Then the instance (H[V \ {u}], L′),
where L′(v) = L(v) for all v ∈ V \ {u}, is a yes-instance of List Colouring if and only if
(H, L) is a yes-instance of List Colouring.

Indeed, observe that for any vertex u ∈ V , by any proper colouring c of H, c(u) only has to
avoid d(u) colours. Since |L(u)| > d(u), we will always have a spare colour to use on u that
belongs in L(u). From the previous observation, we can assume that in our instance, for all
u ∈ V , we have |L(u)| ≤ d(u). Furthermore, we can deduce that k ≤ n(n− 1) as the degree
of any vertex is at most n− 1. Finally, let us denote by L(u) the set {0, 1, . . . , k} \ L(u). It
is important to note here that for every u ∈ V , the list L(u) contains at least one element
belonging in {1, . . . , k}. It follows that L(u) also contains at least one element, the colour 0.
To sum up, we have that 1 ≤ |L(u)| ≤ k.

Now, we present the three gadgets we are going to use in the construction of G. First,
we have the “forbidden colour gadget” Hi, which is a star with i leaves (see Figure 4(c)).
When we say that we attach a copy of Hi on a vertex v of a graph G, we mean that we
add Hi to G and we identify the vertices v and w2 (where here and in what follows, we are
using the naming illustrated in Figure 4 when talking about the vertices w1, w2, w3, v1 and
v2). The second, will be the “degree gadget”, which is presented in Figure 4(b). Finally, we
have the “horn gadget”, which is a path on three vertices (see Figure 4(d)). We define the

SWAT 2022

24:12 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

u′

Edges incident to the
vertices v′ ∈ NG(u′) ∩ U

(a) The graph G

m horn gadgets

. . .

Hk1

. . .

Hk2

. . .

Hkl

. . .

. . .

. . .

l forbidden colour gadgets

. . .

k degree gadgets

w1 v1

v2

(b) Degree gadget

w2 ...

(c) Forbidden colour gadget
Hi

i− 1 vertices

w3

(d) Horn gadget

Figure 4 In (a) we illustrate the construction of G, as it is described in the proof of Theorem 16.
The black vertex represents every vertex that belongs in U . For the specific vertex u′ shown in
the figure, we have that L(u) = {c1, . . . , cl} and ki = n3 − ci for all i = 1, . . . , l. We also have that
m = 2n3 − dG(u) − k − l.

operation of attaching these two gadgets on a vertex v of a graph G similarly to how we
defined this operation for the forbidden colour gadget (each time using the appropriate w1
or w3, according to if it is a degree or a horn gadget respectively).

In order to construct G, we start from a copy of H . Let us use G|H to denote the copy of
H that lies inside of G and, for each vertex u ∈ V , let u′ be its copy in V ′. We will call the
set of these vertices U . That is, U = {v ∈ V (G|H)}. Then, we are going to attach several
copies of each gadget to u′, for each vertex u′ ∈ U . We start by attaching k copies of the
degree gadget to each vertex u′ ∈ U . Then, for each u ∈ V and each i ∈ L(u), we attach one
copy of the forbidden colour gadget H2n3−i to the vertex u′. Finally, for each u′ ∈ U , we
attach to u′ as many copies of the horn gadget as are needed, in order to have dG(u′) = 2n3.

Before we continue, observe that, for sufficiently large n, we have attached more than n3

horn gadgets to each vertex of U . Indeed, before attaching the horn gadgets, each vertex
u′ ∈ U has dG(u) ≤ n − 1 neighbours in U , k neighbours from the degree gadgets and at
most k < n2 neighbours from the forbidden colour gadgets (recall that |L(u)| ≤ k). We will
now show that |V ′| = O(n6). For that purpose, let us calculate the number of vertices in
all the gadgets attached to a single vertex u′ ∈ U . First, we have 5k < 5n2 vertices in the
degree gadgets. Then, we have less than 4n3 vertices in the horn gadgets (as we have less
that 2n3 such gadgets). Finally, we have at most k < n2 forbidden colour gadgets, each
one of which containing at most 2n3 vertices. So, for each vertex u′ ∈ U , we have at most
2n5 + 4n3 + 5n2 vertices in the gadgets attached to u′. Therefore, we have |V ′| = O(n6).

Before we prove that I(G) ≤ nk if and only if (H, L) is a yes-instance of List Colouring,
we need to argue about two things. First, about the treewidth of the graph G and second,
about the minimum value of I(G). Since our construction only attaches trees to each
vertex of G|H (and recall that a tree has a treewidth of 1 by definition), we know that
tw(G) = tw(G|H) = tw(H). As for I(G), we will show that it has to be at least equal to nk.
For that purpose we have the following two claims.

▷ Claim 18. Let S be an ir(G) and S ∩ U ̸= ∅. Then |S| > n3.

▷ Claim 19. Let S be an ir(G) and S ∩ U = ∅. Then |S| ≥ nk. In particular, S includes at
least one vertex from each copy of the degree gadget used in the construction of G.

F. Fioravantes, N. Melissinos, and T. Triommatis 24:13

By the previous two claims, we conclude that I(G) ≥ nk. We are ready to show that, if
(H, L) is a yes-instance of List Colouring, then there exists a set S ⊆ V ′ such that S is
an ir(G) and |S| = nk. Let c be a proper colouring of H such that c(u) ∈ L(u) for all u ∈ V .
We will construct an ir(G) as follows. For each u ∈ V , we partition (arbitrarily) the k degree
gadgets attached to the vertex u′ to c(u) “good” and (k − c(u)) “bad” degree gadgets. For
each good degree gadget, we add the copy of the vertex v1 of that gadget to S and for each
bad degree gadget we add the copy of the vertex v2 of that gadget to S. This process creates
a set S of size nk, as it includes k distinguished vertices for each vertex u′ ∈ U .

Now we need to show that S is an ir(G). Let G′ = G[V ′ \ S]; observe that each vertex
u′ ∈ U has degree dG′(u′) = 2n3 − c(u). Therefore, u′ does not have the same degree as any
of its neighbours that do not belong in U . Indeed, for every v ∈ NG′(u′) \ U , we have that
dG′(v) ∈ {1, 2} (if v belongs to a bad degree or a horn gadget) or dG′(v) ∈ {2n3−i : i ∈ L(u)}
(if v belongs to a forbidden colour gadget). Furthermore, since c is a proper colouring of H,
for all uv ∈ E, we have that c(u) ̸= c(v). This gives us that for any edge u′v′ ∈ E′ with
u′, v′ ∈ U , we have that dG′(u′) = 2n3 − c(u) ̸= 2n3 − c(v) = dG′(v′).

So, we know that for every vertex u′ ∈ U , there is no vertex w ∈ NG′(u′) such that
dG′(u′) = dG′(w). It remains to show that, in G′, there exist no two vertices belonging to the
same gadget, which have the same degrees. First of all, we have that S does not contain any
vertex from any of the horn and forbidden colour gadgets, nor from U . Thus any adjacent
vertices belonging to these gadgets have different degrees. Last, it remains to check the
vertices of the degree gadgets. Observe that for any copy of the degree gadget, S contains
either v1 or v2. In both cases, after the deletion of the vertices of S, any adjacent vertices
belonging to any degree gadget have different degrees. Therefore, S is an ir(G) of order nk

and since I(G) ≥ nk we have that I(G) = nk.
Now, for the opposite direction, assume that there exists a set S ⊆ V ′ such that S is an

ir∗(G) and |S| = nk. Let G′ = (V ′′, E′′) be the graph G[V ′ \ S]. It follows from Claim 18
and Claim 19, that S ∩ U = ∅ and that S contains exactly one vertex from each copy of
the degree gadget in G and no other vertices. Consider now the colouring c of H defined as
c(u) = 2n3 − dG′(u′). We will show that c is a proper colouring for H and that c(u) ∈ L(u).
First, we have that c is a proper colouring of H . Indeed, for any edge uv ∈ E, there exists an
edge u′v′ ∈ E′′ (since S∩U = ∅). Since G′ is locally irregular we have that dG′(u′) ̸= dG′(v′),
an thus c(u) ̸= c(v). It remains to show that c(u) ∈ L(u) for all u ∈ V . First observe that,
during the construction of G, we attached exactly k degree gadgets to each u′ ∈ U . It follows
that dG′(u′) = 2n3 − j and c(u) = j for a j ∈ {0, 1, . . . , k}. It is sufficient to show that
j /∈ L(u). Since S contains only vertices from the copies of the degree gadgets, we have that
each u′ ∈ U has exactly one neighbour of degree 2n3 − i for each i ∈ L(u) (this neighbour
is a vertex of the Hi forbidden colour gadget that was attached to u′). Furthermore, for
all u′ ∈ U , since G′ is locally irregular, we have that dG′(u′) ̸= 2n3 − i for all i ∈ L(u).
Equivalently, dG′(u′) = 2n3 − j for any j ∈ L(u). Thus, c(u) ∈ L(u) for all u ∈ V . ◀

Note that the reductions presented in the proofs of Theorem 15 and Theorem 16 are
linear fpt-reductions. Additionally we know that

there is no algorithm that answers if a graph G of order n has a Dominating Set of size
at most k in time f(k)no(k) unless the ETH fails [26] and
there is no algorithm that answers if an instance (G, L) of the List Colouring is a
yes-instance in time O∗(f(tw)no(tw)) unless the ETH fails [19].

So, the following corollary holds.

SWAT 2022

24:14 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

▶ Corollary 20. Let G be a graph of order n and assume the ETH. For k ∈ N, there is no
algorithm that decides if I(G) ≤ k in time f(k)no(k). Furthermore, assuming that G has
treewidth tw, there is no algorithm that computes I(G) in time O∗(f(tw)no(tw)).

6 Conclusion

In this work we introduce the problem of identifying the largest locally irregular induced
subgraph of a given graph. There are many interesting directions that could be followed for
further research. An obvious one is to investigate whether the problem of calculating I(G)
remains NP-hard for other, restricted families of graphs. The first candidate for such a family
would be the one of chordal graphs. On the other hand, there are some interesting families,
for which the problem of computing an optimal irregulator could be decided in polynomial
time, such as split graphs. Also, it could be feasible to conceive approximation algorithms for
regular bipartite graphs, which have a better approximation ratio than the (simple) algorithm
we present. The last aspect we find intriguing, is to study the parameterised complexity of
calculating I(G) when considering other parameters, like the size of the minimum vertex
cover of G, with the goal of identifying a parameter that suffices, by itself, in order to have an
FPT algorithm. Finally, it is worth investigating whether calculating I(G) could be done in
FPT time (parameterised by the size of the solution) in the case where G is a planar graph.

References
1 Agostinho Agra, Geir Dahl, Torkel Andreas Haufmann, and Sofia J. Pinheiro. The k-regular

induced subgraph problem. Discretete Applied Mathematics, 222:14–30, 2017. doi:10.1016/j.
dam.2017.01.029.

2 Yousef Alavi, Alfred Boals, Gary Chartrand, Ortrud Oellermann, and Paul Erdős. K-path
irregular graphs. Congressus Numerantium, 65, January 1988.

3 Yousef Alavi, Gary Chartrand, Fan R. K. Chung, Paul Erdös, Ronald L. Graham, and
Ortrud R. Oellermann. Highly irregular graphs. Journal of Graph Theory, 11(2):235–249,
1987. doi:10.1002/jgt.3190110214.

4 Akhbar Ali, Gary Chartrand, and Ping Zhang. Irregularity in Graphs. Springer briefs in
mathematics. Springer, 2021. doi:10.1007/978-3-030-67993-4.

5 Yuichi Asahiro, Hiroshi Eto, Takehiro Ito, and Eiji Miyano. Complexity of finding maximum
regular induced subgraphs with prescribed degree. Theoretical Computer Science, 550:21–35,
2014. doi:10.1016/j.tcs.2014.07.008.

6 Olivier Baudon, Julien Bensmail, Jakub Przybyło, and Mariusz Wozniak. On decomposing
regular graphs into locally irregular subgraphs. European Journal of Combinatorics, 49:90–104,
2015. doi:10.1016/j.ejc.2015.02.031.

7 Rémy Belmonte and Ignasi Sau. On the complexity of finding large odd induced subgraphs
and odd colorings. Algorithmica, 83(8):2351–2373, 2021. doi:10.1007/s00453-021-00830-x.

8 Julien Bensmail, Martin Merker, and Carsten Thomassen. Decomposing graphs into a constant
number of locally irregular subgraphs. European Journal of Combinatorics, 60:124–134, 2017.
doi:10.1016/j.ejc.2016.09.011.

9 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity,
2003. URL: https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-049/index.html.

10 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

11 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

https://doi.org/10.1016/j.dam.2017.01.029
https://doi.org/10.1016/j.dam.2017.01.029
https://doi.org/10.1002/jgt.3190110214
https://doi.org/10.1007/978-3-030-67993-4
https://doi.org/10.1016/j.tcs.2014.07.008
https://doi.org/10.1016/j.ejc.2015.02.031
https://doi.org/10.1007/s00453-021-00830-x
https://doi.org/10.1016/j.ejc.2016.09.011
https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-049/index.html
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6

F. Fioravantes, N. Melissinos, and T. Triommatis 24:15

12 Gary Chartrand, Paul Erdös, and Ortrud Oellermann. How to define an irregular graph. The
College Mathematics Journal, 19, January 1988. doi:10.2307/2686701.

13 Gary Chartrand, Michael Jacobon, Jenö Lehel, Ortrud Oellermann, Sergio Ruiz, and Farrokh
Saba. Irregular networks. Congressus Numerantium, 64, January 1986.

14 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized np-hard problems. Information
and Computation, 201(2):216–231, 2005. doi:10.1109/CCC.2004.1313826.

15 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. On the computational hardness
based on linear FPT-reductions. Journal of Combinatorial Optimization, 11(2):231–247, 2006.
doi:10.1007/s10878-006-7137-6.

16 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006. doi:10.1016/j.jcss.2006.04.007.

17 Miroslav Chlebík and Janka Chlebíková. Complexity of approximating bounded variants of
optimization problems. Theor. Comput. Sci., 354(3):320–338, 2006. doi:10.1016/j.tcs.2005.
11.029.

18 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012. doi:10.1007/978-3-662-53622-3.

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

20 Alan M. Frieze, Ronald J. Gould, Michal Karonski, and Florian Pfender. On graph irregularity
strength. Journal of Graph Theory, 41(2):120–137, 2002. doi:10.1002/jgt.10056.

21 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

22 Michał Karoński, Tomasz Łuczak, and Andrew Thomason. Edge weights and vertex colors.
Journal of Combinatorial Theory, 91:151–157, May 2004. doi:10.1016/j.jctb.2003.12.001.

23 Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with
hereditary properties. Theoretical Computer Science, 289(2):997–1008, 2002. doi:10.1016/
S0304-3975(01)00414-5.

24 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:10.1016/
0022-0000(80)90060-4.

25 Carla Negri Lintzmayer, Guilherme Oliveira Mota, and Maycon Sambinelli. Decomposing
split graphs into locally irregular graphs. Discrete Applied Mathematics, 292:33–44, 2021.
doi:10.1016/j.entcs.2019.08.053.

26 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of the European Association for Theoretical Computer Science,
105:41–72, 2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/92.

27 Bojan Mohar. Face covers and the genus problem for apex graphs. J. Comb. Theory, Ser. B,
82(1):102–117, 2001. doi:10.1006/jctb.2000.2026.

28 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular induced
subgraphs. Journal of Discrete Algorithms, 7(2):181–190, 2009. doi:10.1016/j.jda.2008.09.
005.

29 Jakub Przybyło. Irregularity strength of regular graphs. Electronic Journal of Combinatorics,
15, June 2008. doi:10.37236/806.

30 Jakub Przybyło. On decomposing graphs of large minimum degree into locally irregular
subgraphs. Electronic Journal of Combinatorics, 23(2):2–31, 2016. doi:10.37236/5173.

SWAT 2022

https://doi.org/10.2307/2686701
https://doi.org/10.1109/CCC.2004.1313826
https://doi.org/10.1007/s10878-006-7137-6
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.tcs.2005.11.029
https://doi.org/10.1016/j.tcs.2005.11.029
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1002/jgt.10056
https://doi.org/10.1016/j.jctb.2003.12.001
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/j.entcs.2019.08.053
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1006/jctb.2000.2026
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.37236/806
https://doi.org/10.37236/5173

24:16 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

A Omitted proofs

A.1 Proof of Theorem 13
Let us first present the following lemma:

▶ Lemma 21. Let G = (V, E) be a graph such that, G is not locally irregular, and S be an
ir∗(G). Furthermore let Gv = (V ′, E′) be the graph G[V \ {v}] for a vertex v ∈ S. Then
I(Gv) = I(G)− 1.

Proof. First observe that S′ = S \ {v} must be an ir(Gv) as Gv[V ′ \ S′] = G[V \ S]. It
follows that I(Gv) ≤ I(G)− 1. Assume that I(Gv) < I(G)− 1. Then these exists an S′′ such
that |S′′| < I(G)− 1 and S′′ is an ir(Gv). Since Gv[V ′ \ S′′] = G[V \ (S′′ ∪ {v})], we have
that S′′ ∪ {v} is an ir(G) and |S′′ ∪ {v}| = |S′′|+ 1 < I(G). This is a contradiction. ◀

Now, we are ready to present the proof of the theorem.

Proof of Theorem 13. In order to decide if I(G) ≤ k we are going to use a recursive
algorithm. The algorithm has input (G, k), where G = (V, E) is a graph and k ≥ 0 is an
integer. The basic idea of this algorithm, is to take advantage of Observation 5. We present
the exact procedure in Algorithm 1.

Algorithm 1 [IsIrregular(G, k) decision function].

Input: A graph G = (V, E) and an integer k ≥ 0.
Output: Is I(G) ≤ k or not?

1: if G is irregular then
2: return yes

3: else if k = 0 then
4: return no

5: else ▷ k > 0 and G is not irregular
6: ans← no

7: find an edge vu ∈ E such that dG(v) = dG(u)
8: for all w ∈ NG[{u, v}] do
9: set Gw = G[V \ {w}]

10: if IsIrregular(Gw, k − 1) returns yes then
11: ans← yes

12: return ans

Now, let us argue about the correctness and the efficiency of this algorithm. We claim
that for any graph G = (V, E) and any integer k ≥ 0, Algorithm 1 returns yes if I(G) ≤ k

and no otherwise. Furthermore, the number of steps that the algorithm requires, is f(k, n) =
(2∆)knO(1), where n = |V |. We will prove this by induction on k.

Base of the induction (k = 0): Here, we only need to check if G is locally irregular.
Algorithm 1 does this in line 1 and returns yes if it is (line 2) and no otherwise (line 4).
Furthermore, we can check if G is locally irregular in polynomial time. So, the claim is true
for the base.

Induction hypothesis (k = k0 ≥ 0): We assume that we have a k0 ≥ 0 such that
Algorithm 1 can decide if any graph G with n vertices and maximum degree ∆ has I(G) ≤ k0
in f(k0, n) = (k0 + 1)(2∆)k0nO(1) steps.

F. Fioravantes, N. Melissinos, and T. Triommatis 24:17

Induction step (k = k0 + 1): Let G = (V, E) be a graph. If G is locally irregular then
I(G) = 0 and Algorithm 1 answers correctly (in line 2). Assume that G is not locally irregular;
then there exist an edge vu ∈ E such that dG(v) = dG(v). Now, let S be an ir∗(G). It
follows from Observation 5 that S must include at least one vertex w ∈ NG[{v, u}]. Since
Algorithm 1 considers all the vertices in NG[{v, u}], at some point it also considers the
vertex w ∈ S ∩ NG[{v, u}]. Now, observe that for any x ∈ S, the set Sx = S \ {x} is an
ir∗(Gx), where Gx = G[V \ {x}]. Furthermore, by Lemma 21, we have I(Gx) ≤ k − 1 = k0
iff I(G) ≤ k. By the induction hypothesis, we know that the algorithm answers correctly for
all the instances (Gx, k0). Thus, if I(G) ≤ k = k0 + 1, there must exist one instance (Gw, k0),
where w ∈ S ∩NG[{v, u}], for which the Algorithm 1 returns yes. Therefore the algorithm
answers for (G, k0 + 1) correctly. Finally, this process request nO(1) steps in order to check
if the graph is locally irregular and 2∆f(k − 1, n − 1) steps (by induction hypothesis) in
order to check if for any graph Gx we have I(Gx) ≤ k − 1 = k0 (where x ∈ N [{u, v}]). So,
the algorithm decides in nO(1) + 2∆f(k − 1, n − 1) ≤ nO(1) + 2∆k(2∆)k−1(n − 1)O(1) ≤
nO(1) + k(2∆)knO(1) ≤ (k + 1)(2∆)knO(1) steps. Finally, note that k ≤ n− 1, and the result
follows. ◀

A.2 Proof of Theorem 14
Proof. As the techniques we are going to use are standard, we are sketching some of the
introductory details. For more details on tree decompositions (definition and terminology)
see [19]. We are going to perform dynamic programming on the nodes of the given nice tree
decomposition (see [10] for the definition of a nice tree decomposition). For a node t of the
given tree decomposition of G, we denote by Bt the bag of this node and by B↓

t the set of
vertices of the graph that appears in the bags of the nodes of the subtree with t as a root.
Observe that Bt ⊆ B↓

t .
The idea behind our algorithm, is that for each node t we store all the sets S ⊆ B↓

t such
that S is an ir(G, B↓

t \Bt). We will also store the necessary “conditions” (explained more
in what follows) such that if there exists a set S′, where S′ \ S ⊆ V \B↓

t , that meets these
conditions, then S′ is an ir(G, B↓

t). Observe that if we manage to do such a thing for every
node of the tree decomposition, then we can find I(G). To do so, it suffices to check the
size of all the irregulators we stored for the root r of the tree decomposition, which also
meet the conditions we have set. In that way, we can find a set S that is an ir(G, B↓

r \Br),
satisfies our conditions and is of minimum order, and since B↓

r = V , this set S is a minimum
irregulator of G and I(G) = |S|.

Let us now present the actual information we are keeping for each node. Assume that t

is a node of the tree decomposition and S ⊆ B↓
t is an irregulator of B↓

t \Bt in G, i. e., S is
an ir(G, B↓

t \Bt). For this S we want to remember which vertices of Bt belong to S as well
as the degrees of the vertices v ∈ Bt \ S in G[B↓

t \Bt]. This can be done by keeping a table
D of size tw + 1 where, if v ∈ Bt \ S we set D(v) = dG[B↓

t \Bt](v) and if v ∈ Bt ∩ S we set
D(v) = ∅ (slightly abusing the notation, by D(v) we mean the position in the table D that
corresponds to the vertex v). Like we have already said, we are going to keep some additional
information about the conditions that could allow these sets to be extended to irregulators
of B↓

t in G if we add vertices of V \B↓
t . For that reason, we are also going to keep a table

with the “target degree” of each vertex; in this table we assign to each vertex v ∈ Bt \ S

a degree dv such that, if there exists S′ where S′ \ S ⊆ V \ B↓
t and for all v ∈ Bt \ S we

have dG[V \S′](v) = dv, then S is an ir(G, B↓
t). This can be done by keeping a table T of size

tw + 1 where for each v ∈ Bt \ S we set T (v) = i, where i is the target degree, and for each
v ∈ Bt ∩ S we set T (v) = ∅. Such tables T will be called valid for S in Bt. Finally, we are
going to keep the set X = S ∩ Bt and the value min = |S|. Note that the set X does not
gives us any extra information, but we keep it as it will be useful to refer to it directly.

SWAT 2022

24:18 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

To sum up, for each node t of the tree decomposition of G, we keep a set of quadruples
(X, D, T, min), each quadruple corresponding to a valid combination of a set S that is
an ir(G, B↓

t \ Bt) and the target degrees for the vertices of Bt \ S. Here it is important
to say that when treating the node Bt, for every two quadruples (X1, D1, T1, min1) and
(X2, D2, T2, min2) such that for all v ∈ Bt we have that D1(v) = D2(v) and T1(v) = T2(v)
(this indicates that X1 = X2 as well), then we are only going to keep the quadruple with the
minimum value between min1 and min2 as we will prove that this is enough in order to find
I(G).

▷ Claim 22. Assume that for a node t, we have two sets S1 and S2 that are both
ir(G, B↓

t \Bt), and that T is a target table that is common to both of them. Furthermore,
assume that (X1, D1, T, |S1|) and (X2, D2, T, |S2|) are the quadruples we have to store for
S1 and S2 respectively (both respecting T), with D1(v) = D2(v) for every v ∈ Bt. Then
for any set S ⊆ V \ B↓

t such that dG[V \(S1∪S)](v) = T (v) for all v ∈ Bt, we also have that
dG[V \(S2∪S)](v) = T (v) for all v ∈ Bt.

Proof. Assume that we have such an S for S1, let v be a vertex in Bt and H = G[v ∪
(
(V \

B↓
t) \ S

)
] (observe that H does not depend on S1 or S2). Since dG[V \(S1∪S)](v) = T (v), we

know that in the graph H , v has exactly T (v)−D1(v) neighbours (as D1(v) = dG[B↓
t \S1)](v)).

Now, since D1(v) = D2(v) = dG[B↓
t \S2](v) we have that dG[V \S2∪S](v) = T (v). Therefore,

the claim holds. ◁

Simply put, Claim 22 states that for any two quadruples Q1 = (X, D, T, min1) and
Q2 = (X, D, T, min2), any extension S of S1 is also an extension of S2 (where S1 and S2 are
the two sets that correspond to Q1 and Q2 respectively). Therefore, in order to find the
minimum solution, it is sufficient to keep the quadruple that has the minimum value between
min1 and min2.

Now we are going to explain how we create all the quadruples (X, D, T, min) for each
type of node in the tree decomposition. First we have to deal with the Leaf Nodes. For a Leaf
node t we know that Bt = B↓

t = ∅. Therefore, we have only one quadruple (X, D, T, min),
where the size of both D and T is zero (so we do not need to keep any information in them),
S = ∅ and min = |S| = 0.

Now let t be an Introduce node; assume that we have all the quadruples (X, D, T, min) for
its child c and let v be the introduced vertex. By construction, we know that v is introduced
in Bt and thus it has no neighbours in B↓

t \Bt. It follows that if S ⊆ B↓
c is an irregulator

for B↓
c \Bc, then both S and S ∪ {v} are irregulators for B↓

t \Bt in G. Furthermore, there
is no set S ⊆ B↓

t \ {v} that is an irregulator of B↓
t \Bt and is not an irregulator of B↓

c \Bc.
So, we only need to consider two cases for the quadruples we have to store for c; if v belongs
in the under-construction irregulator of B↓

t \Bt in G or not.
Case 1. (v is in the irregulator): Observe that for any S that is an ir(G, B↓

c \ Bc),
which is stored in the quadruples of Bc, for every u ∈ Bc \ S, we have that dG[B↓

c \S](u) =
dG[B↓

t \(S∪{v})](u). Moreover, for any target table T which is valid for S in c, the target table
T ′ is valid for S∪{v} in t, where T ′ is almost the same as T , the only difference being that T ′

also contains the information about v, i.e, T ′(v) = ∅. So, for each quadruple (X, D, T, min)
in c, we need to create one quadruple (X ∪ {v}, D′, T ′, min + 1) for t, where D′ is the almost
the same as D, except that it also contains the information about v, i. e., D′(v) = ∅.

Case 2. (v is not in the irregulator): Let q = (X, D, T, min) be a stored quadruple of
c and S be the corresponding ir(G, B↓

c \Bc). We will first explain how to construct D′ of
t, based on q. Observe that the only change between G[B↓

c \ S] and G[B↓
t \ S], is that in

the latter there exist some new edges from v to some of the vertices of Bc. Therefore, for

F. Fioravantes, N. Melissinos, and T. Triommatis 24:19

each vertex u ∈ Bc \X we set D′(u) = D(u) + 1 if u ∈ N [v] and D′(u) = D(u) otherwise.
Finally, for the introduced vertex v, we set D′(v) = |N(v) ∩ (Bc \X)|. We will now treat
the target degrees for t. Observe that the target degrees for each vertex in Bt \ {v} are the
same as in T , since v only has edges incident to vertices in Bt. Now, we only need to decide
which are the valid targets for v. Since dG[B↓

t \S](v) = D′(v), we know that for every target
t′, we have that D′(v) ≤ t′ ≤ ∆. Furthermore, we can not have the target degrees of v to
be the same as the targets of one of its neighbours in Bc (these values are stored in T), as,
otherwise, any valid target table T ′ of t would lead to adjacent vertices in Bt having the
same degree. Let {t1, . . . , tk} ⊂ {D(v), . . . , ∆} be an enumeration of all the valid targets
for v (i.e. ti ̸= T (u) for all u ∈ N [v] ∩ Bc \ X). Then, for each quadruple (X, D, T, min)
in c, and for each i = 1, . . . , k, we need to create the quadruple (X, D′, Ti, min), such that
Ti(u) = T (u) for all u ∈ Bc and Ti(v) = ti. In total, we have k ≤ ∆ such quadruples.

Now, let us explain how we deal with the Join nodes. Assume that t is a Join Node with
c1 and c2 as its two children in the tree decomposition. Here, it is important to mention that
Bc1 = Bc2 and (B↓

c1
\Bc1) ∩ (B↓

c2
\Bc2) = ∅. Assume that there exists an irregulator S of

B↓
t \Bt in G, a valid target table T of S, and let (X, D, T, min) be the quadruple we need to

store in t for this pair (S, T). Observe that this pair (S, T) is valid for both c1 and c2, so we
must already have stored at least one quadruple in each node. Let X ⊆ Bt and a target table
T such that (X, D1, T, min1) and (X, D2, T, min2) are stored for c1 and c2 respectively. We
create the quadruple (X, D, T, min) for t by setting D(u) = D1(u) + D2(u)− dG[Bt\X](u) for
all u ∈ Bt \X, D(u) = ∅ for all u ∈ X and min = min1 +min2−|X|. Observe that these are
the correct values for the D(u) and min, as otherwise we would count dG[Bt\X](u) and |X|
twice. Finally, we need to note that we do not store any quadruple (X, D, T, min) we create
for the Join Note such that D(u) > T (u) for a vertex u ∈ Bt \X. This is because for such
quadruples, the degree of vertex u will never be equal to any of the target degrees we have
set, as it can only increase when we consider any of the ancestor (i. e. parent, grantparent
etc.) nodes of t.

Finally, we need to treat the Forget nodes. Let t be a Forget node, c be the its child and
v be the forgotten vertex. Assume that we have to store in t a quadruple (X, D, T, min).
Then, since X = Bt ∩ S for an irregulator S of Bt in G, we know that in c we must have
already stored a quadruple (X ′, D′, T ′, min′) such that, X ′ = S ∩Bc, D′(u) = D(u) for all
u ∈ Bc, T ′(u) = T (u) for all u ∈ Bc and min′ = min. Therefore, starting from the stored
quadruples in c, we can create all the quadruples of t. For each quadruple (X ′, D′, T ′, min′)
in c, we create at most one quadruple (X, D, T, min) for t by considering two cases; the
forgotten vertex vf belongs to X ′ or not.

Case 1. (v belongs to X ′): then the quadruple (X, D, T, min) is almost the same as
(X ′, D′, T ′, min′), with the following differences: X = X ′ \ {v}, min = min′, D(u) = D′(u)
and T (u) = T ′(u) for all u ∈ Bt and the tables D and T do not include any information for
v as this vertex does not belong to Bt anymore.

Case 2. (v does not belong to X ′): we will first check if D′(vf) = T ′(vf) or not. This
is important because the degree of the v will never again be considered by our algorithm,
and thus its degree will remain unchanged. So, if D′(vf) = T ′(vf), we create the quadruple
(X, D, T, min) where X = X ′, min = min′, D(u) = D′(u) and T (u) = T ′(u) for all u ∈ Bt

and the tables D and T do not include any information for v.
For the running time, observe that the number of nodes of a nice tree decomposition is

O(tw ·n) and all the other calculations are polynomial in n + m. Thus we only need to count
the different quadruples in each node. Now, for each vertex v, we either include it in X or
we have ∆ + 1 options for the value D(u) and ∆ + 1− i for the value T (u) if D(u) = i. Also,

SWAT 2022

24:20 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

for sufficiently large ∆, we have that 1 +
∑∆

i=0(∆ + 1− i) < ∆2. Furthermore, the set X

and the value min do not increase the number of quadruples because X = {u | D(u) = ∅}
and from all quadruples (X, D1, T1, min1), (X, D2, T2, min2) such that D1(u) = D2(u) and
T1(u) = T2(u) for all u ∈ Bt, we only keep one of them (by Claim 22).

In total, the number of different quadruples in each node is ∆2tw, and therefore the
algorithm decides in ∆2twnO(1) time. ◀

An Almost Optimal Algorithm for Unbounded
Search with Noisy Information
Junhao Gan !

School of Computing and Information Systems, The University of Melbourne, Australia

Anthony Wirth !

School of Computing and Information Systems, The University of Melbourne, Australia

Xin Zhang !

School of Computing and Information Systems, The University of Melbourne, Australia

Abstract
Given a sequence of integers, S = s1, s2, . . . in ascending order, called the search domain, and an
integer t, called the target, the predecessor problem asks for the target index N such that sN is the
largest integer in S satisfying sN ≤ t. We consider solving the predecessor problem with the least
number of queries to a binary comparison oracle. For each query index i, the oracle returns whether
si ≤ t or si > t. In particular, we study the predecessor problem under the UnboundedNoisy
setting, where (i) the search domain S is unbounded, i.e., n = |S| is unknown or infinite, and (ii)
the binary comparison oracle is noisy. We denote the former setting by Unbounded and the latter
by Noisy. In Noisy, the oracle, for each query, independently returns a wrong answer with a fixed
constant probability 0 < p < 1/2. In particular, even for two queries on the same index i, the
answers from the oracle may be different. Furthermore, with a noisy oracle, the goal is to correctly
return the target index with probability at least 1 − Q, where 0 < Q < 1/2 is the failure probability.

Our first result is an algorithm, called NoS, for Noisy that improves the previous result by
Ben-Or and Hassidim [FOCS 2008] from an expected query complexity bound to a worst-case
bound. We also achieve an expected query complexity bound, whose leading term has an optimal
constant factor, matching the lower bound of Ben-Or and Hassidim. Building on NoS, we propose
our NoSU algorithm, which correctly solves the predecessor problem in the UnboundedNoisy
setting. We prove that the query complexity of NoSU is

∑k

i=1(log(i) N)/(1 − H(p)) + o(log N)
when log Q−1 ∈ o(log N), where N is the target index, k = log∗ N , the iterated logarithm, and H(p)
is the entropy function. This improves the previous bound of O(log(N/Q)/(1 − H(p))) by reducing
the coefficient of the leading term from a large constant to 1. Moreover, we show that this upper
bound can be further improved to (1 − Q)

∑k

i=1(log(i) N)/(1 − H(p)) + o(log N) in expectation, with
the constant in the leading term reduced to 1 − Q. Finally, we show that an information-theoretic
lower bound on the expected query cost of the predecessor problem in UnboundedNoisy is at least
(1 − Q)(

∑k

i=1 log(i) N − 2k)/(1 − H(p)) − 10. This implies the constant factor in the leading term
of our expected upper bound is indeed optimal.

2012 ACM Subject Classification Theory of computation → Predecessor queries; Theory of compu-
tation → Sorting and searching

Keywords and phrases Fault-tolerant search, noisy binary search, query complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.25

Funding Junhao Gan: J.G. is supported in part by Australian Research Council (ARC) Discovery
Early Career Researcher Award (DECRA) DE190101118.
Anthony Wirth: A.W. is supported by the Faculty of Engineering and Information Technology at
The University of Melbourne.
Xin Zhang: X. Z.’s research is supported by an Australian Government Research Training Program
(RTP) Scholarship.

Acknowledgements We thank Przemysław Uznański and Dariusz Dereniowski for the discussions on
noisy search, particularly for highlighting the nuances of the binary and ternary comparison models.

© Junhao Gan, Anthony Wirth, and Xin Zhang;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:junhao.gan@unimelb.edu.au
https://orcid.org/0000-0001-9101-1503
mailto:awirth@unimelb.edu.au
https://orcid.org/0000-0003-3746-6704
mailto:xinz11@student.unimelb.edu.au
https://orcid.org/0000-0001-5411-4968
https://doi.org/10.4230/LIPIcs.SWAT.2022.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 An Almost Optimal Algorithm for Unbounded Search with Noisy Information

1 Introduction

Consider a sequence of integers S = s1, s2, . . . sorted in ascending order. The predecessor
problem for a given integer, t, asks for the index N such that sN is the largest integer in S
satisfying sN ≤ t. We assume sN always exists. We refer to S as the search domain and
to N as the target index. The goal of the predecessor problem is to find the target index
with the least number of queries of a given binary comparison oracle, F . Specifically, let
n = |S|; F is a function from the index domain of S, i.e., {1, 2, . . . , n}, to a binary domain
{1,−1}, such that F (i) = −1, if si ≤ t, but F (i) = 1, if si > t. Clearly, when n is known
and the oracle F always returns correct answers, the well-known binary search algorithm
solves the predecessor problem optimally with ⌈log2 n⌉ queries.

Arguably, the predecessor problem is one of the most important and classic problems in
computer science. Departing from the standard setting, there is much research on variants of
binary search [2, 23, 31]. We are particularly interested in two settings of the predecessor
problem, Unbounded and Noisy, as well as the combination of them.

The Unbounded Setting. In the Unbounded setting, the size of S, i.e., n, is either
unknown or unbounded, i.e., infinite. The Unbounded problem was studied by Bentley and
Yao [5] and has many applications, e.g., in range-count queries and in shortlisting [16]. Several
algorithms solving the Unbounded problem are result sensitive: their query complexity
does not depend on the (possibly infinite) size of the search domain, but rather the location
of the result (i.e., the target index N) in S, a property desirable in the context of local
algorithms [21]. Bentley and Yao [5] wrote the state-of-the-art algorithm, BY, with query
complexity

∑
1≤i≤k⌊log(i)(N)⌋+5+2k, where log(i) N is the nested logarithm and k = log∗ N

is the iterated logarithm of N .

The Noisy Setting. In the Noisy setting, the comparison oracle might not always respond
correctly, or truthfully: it could return incorrect results. In this case, the comparison oracle
is said to be noisy. This setting captures the fact that real-world information can be noisy
and, hence, the results of comparisons might not be correct. There has been a long line of
work for dealing with faulty information or uncertainties in searching problems, from the
1965 Rényi-Ulam game [27] to some more recent work [15, 11, 16]. In this paper, we focus
on the probabilistic error model [27, 29, 17, 11, 15], where the oracle F behaves as follows.

▶ Definition 1. For a specified fixed constant error probability p, with 0 < p < 1/2, in the
probabilistic error model, on each query the comparison oracle F independently returns
a wrong answer with probability p.

The goal of the predecessor problem under Noisy is to return the correct target index with
probability at least 1−Q, where 0 < Q < 1/2 is the failure probability.

The UnboundedNoisy Setting. The main focus of this paper is on algorithms solving
the predecessor problem in the UnboundedNoisy setting. This setting combines both
Unbounded and Noisy, and UnboundedNoisy has the following characteristics:

First, due to the unbounded search domain, the anticipated query complexity is a function
of the target index, N , rather than the unknown or unbounded n;
Second, inheriting from Noisy, the query complexity should also be related to both the
error probability, p, and the failure probability, Q. On the one hand, aligned with previous
work [17, 4, 15, 14, 16], parameter p is treated as a constant. On the other hand, as the

J. Gan, A. Wirth, and X. Zhang 25:3

target index N depends on the target integer t, it no longer makes sense to aim at “high
success probability” in terms of N . We require that 1/Q is far less than N ; otherwise, one
can turn this problem into the bounded Noisy case by searching the first c/Q elements
for some constant c. In particular, we assume throughout that log Q−1 ∈ o(log N). As
we see shortly, in this case, the leading term in the query complexity is log2 N , which is
typically the most important term in the query cost. We hence focus on reducing the
hidden constant in such a leading term.

1.1 Our contributions
Bounded search

Our first contribution is an improved algorithm, NoS, for the Noisy setting. It achieves
the same asymptotic query complexity as the state-of-the-art algorithm by Ben-Or and
Hassidim [4]. However, our query bound is more powerful by being worst-case, while theirs is
in expectation. Comparing the constant factors, when log Q−1 ∈ o(log n), the leading term in
their query bound is (1−Q)/(1−H(p)) log2 n, where H(p) = −p log p− (1− p) log(1− p) is
the well-known entropy function. We show that NoS can achieve the same leading term in the
query bound, in expectation, but the randomness stems purely from the algorithm mechanism
rather than the assumption on the target index distribution. Furthermore, according to the
lower bound of Ben-Or and Hassidim [4], the constant factor on this leading term in the
query bounds of both their algorithm and NoS is indeed optimal.

▶ Theorem 2. Our NoS algorithm solves the predecessor problem in the Noisy setting, with
constant error probability 0 < p < 1/2, and a failure probability 0 < Q < 1/2, with worst-case
query complexity:

1
1−H(p)

(
log2 n + O(log log n) + O(

√
log n log Q−1 · log log n

log Q−1) + O(log Q−1)
)

. (1)

▶ Corollary 3. When log Q−1 ∈ o(log n), NoS achieves expected query complexity:

1−Q

1−H(p)
(
log2 n + o(log n)

)
. (2)

According to the lower bound of Ben-Or and Hassidim [4], we have the following:

▶ Fact 4 ([4]). The expected query complexity for solving the predecessor problem under
Noisy, parameterized by 0 < p < 1/2 and 0 < Q < 1/2, is at least:

1−Q

1−H(p) log2 n− 10 .

Therefore, the constant factor of the leading term in the query complexity of NoS is tight,
when log Q−1 ∈ o(log n). Very recently, and concurrently with the technical development of
this paper, Dereniowski et al. [10] also proposed improvements over the results of Ben-Or
and Hassidim, achieving a query bound with the same leading term as ours. We compare
the two contributions further in Section 2.

Unbounded search

Building upon Theorem 2, our second contribution is a new algorithm, NoSU, which improves
the query complexity bound for UnboundedNoisy.

SWAT 2022

25:4 An Almost Optimal Algorithm for Unbounded Search with Noisy Information

▶ Theorem 5. Our NoSU algorithm solves the predecessor problem in the UnboundedNoisy
setting, parameterized by a constant error probability 0 < p < 1/2 and a failure probability
0 < Q < 1/2, with worst-case query complexity:

1
1−H(p)

 k∑
i=1

log(i)
2 N + O(log log N) + O(

√
log N log Q−1 · log log N

log Q−1) + O(k log k

Q
)

 ,

where k = log∗ N is the iterated logarithm of N .

▶ Corollary 6. When log Q−1 ∈ o(log N), NoSU has expected query complexity:

1−Q

1−H(p)

 k∑
i=1

log(i)
2 N + o(log N)

 . (3)

Our NoSU algorithm significantly reduces the hidden constant factor in the state-of-the-art
bound by Epa et al. [16] and Dereniowski et al. [11], i.e., O(log(N/Q)/(1 −H(p))). The
coefficients of the leading terms in these bounds are required to be sufficiently large to
invoke the Chernoff bound. In contrast, by Corollary 6, the constant factor in the leading
term, log2 N , of NoSU, is just 1−Q

1−H(p) .
Our final contribution is a lower bound on the expected query complexity for the

predecessor problem under UnboundedNoisy.

▶ Theorem 7. The expected query complexity for solving the predecessor problem under
UnboundedNoisy, parameterized by 0 < p < 1/2 and 0 < Q < 1/2, is at least:

1−Q

1−H(p)

 k∑
i=1

log(i)
2 N − 2k

− 10 . (4)

Combining Theorem 7 and Corollary 6, the leading term in the expected query complexity
of NoSU is thus optimal.

1.2 Applications of UnboundedNoisy
The UnboundedNoisy setting naturally produces algorithms whose costs are result-sensitive:
the query complexity relies on the target index rather than the size of the search domain.
Epa et al. [16] listed a range of applications that solves the predecessor in a noisy setting,
including, for instances, counting the number of elements from a sorted list that fall into a
range, and obtaining the top-ranked elements from two sorted lists. When applying NoSU
to bounded domains, NoSU is an improvement to the algorithm by Epa et al. [16] in the
result-sensitive setting.

The unbounded domain also arises from the context of local algorithms [21], where
computing units in a distributed environment have access to local, but not some global
information, e.g., the total size of the domain. Since the search domain is distributed, it
is hard to discern the total size and run the normal binary search algorithm. Kim and
Winston [20] adapted BY [5], an unbounded binary search algorithm to the problem maximum
power point tracking, processing a large volume of data created from the voltage change in
logarithmic time and avoiding a linear scan of the input. Since unbounded domains are often
a consequence of large-scale, automatically generated, or distributed datasets, it is natural to
consider the comparisons on those data points with the presence of errors [33]. In software

J. Gan, A. Wirth, and X. Zhang 25:5

testing, there often is a breakpoint for certain resource, be it time, space or workload [32].
For instance, finding the number of requests of services that break a load-balancer requires a
tester to check the status of the software under a range of different request numbers. Due to
the randomness commonly existing in those tests, it is reasonable to assume that the search
domain (possible breakpionts) is not only unbounded but also noisy.

2 Related Work

Computing with faulty or uncertain information has long been active field of research. An
early model that deals with uncertainty is the Rényi-Ulam game [26, 28, 34]. In this two-
player game, Player 1’s goal is to identify an element in a finite set by posing questions
to Player 2. In answering these questions, Player 2 tries to stop Player 1 from meeting
their goal by lying sometimes. One standard model for is fixed lies [11, 25, 7, 9], where the
number of lies Player 2 can tell is bounded. Another common error model is linearly bounded
lies [13, 1], where the number of lies the adversary is allowed to tell is at all times linear in
the number of queries. The error model in this paper is the probabilistic model [17], where
for each query the adversary (a.k.a., oracle) independently lies with fixed probability. Feige
et al. [17] proposed algorithms for not just searching, but also sorting, ranking and merging
with the probabilistic model. They refer to this model as the noisy comparison tree: at each
“node” (query), the result leads us in two different directions, and the configurations of the
query responses naturally form a binary tree. When searching an integer domain, algorithms
are often based on binary search [6, 29, 30].

There are well-known connections between these models. We consider the MWU
algorithm by Dereniowski et al. [12], who studied a graph search framework proposed by
Emamjomeh-Zadeh et al. [15]. Though designed for the fixed-lies model, with carefully
selected parameters, it could return the correct answer with desirable guarantees under the
probabilistic error model, which is the setting of Noisy.

Bentley and Yao first introduced the Unbounded setting for binary search and the
definitive algorithm, BY [5], detailed in Section 4. Invoking results from prefix codes, they
also established a lower bound for Unbounded predecessor search, which is at the heart
of our lower bound in Section 6. Their bounds [5] were later improved by Beigel [3] on the
non-leading terms. As our analysis focuses on the leading term, we still consider BY as the
state of the art.

Combining the two settings, UnboundedNoisy was studied by Pelc [24] and then by
Aslam and Dhagat [1], who achieved a bound of O(log N) for the linearly bounded lies model.
Dereniowski et al. [11] and Epa et al. [16] recently studied the problem under the same
setting as ours, but our algorithm NoSU has a better constant on the leading term.

Table 1 displays state-of-the-art results for those problems and the query complexity.
Although the hidden constant on the leading term log n of Feige’s bound is not as small

as that of BH, a nice feature of Feige is that it is a Monte-Carlo algorithm and provides a
worst-case query complexity. We incorporate Feige as a subroutine in our algorithm, NoSU.

Simultaneously with the technical development of our work, Dereniowski et al. [10] applied
the Bayesian-update technique, further developing and improving the result of Ben-Or and
Hassidim [4], to sorted integers as well as graphs. Similar to NoS, their algorithms also
improve the previous bounds [17, 4, 10] in Noisy. Their algorithm PŁU and our NoS
(stated in Theorem 2) achieve the same query complexity bound in the leading term. Upon
closer inspection, PŁU is tighter on the second dominating term (O(

√
log n log Q−1)) than

ours. While we are interested in constant error probability, PŁU is able to handle the

SWAT 2022

25:6 An Almost Optimal Algorithm for Unbounded Search with Noisy Information

Table 1 Summary of complexity results for predecessor search in a variety of settings.

Problem Algorithm Upper Bound Complexity Source

Bounded BinarySearch ⌈log n⌉ Folklore
Unbounded BY

∑
1≤i≤log∗ N

⌊log(i)(N)⌋ + 5 + 2 log∗ N [5]

Noisy BH Expected (1 − H(p))−1 · (log n +
O(log log n) + O(log Q−1)) [4]

Noisy Feige (1 − H(p))−1O(log n/Q) [17]

Noisy PŁU (1 − H(p))−1 · (log n +
O(

√
log n log Q−1) + O(log Q−1))

[10]

UnboundedNoisy Unbounded (1 − H(p))−1O(log(N/Q)) [11]
UnboundedNoisy EGW Expected (1 − H(p))−1O(log(N/Q)) [16]

case when p is not a constant For this work, this is not an issue as we already require that
p be a constant. Although both their and our algorithms share similar ideas of selecting
items by adjusting the pre-assigned weights, interestingly, the actual details are substantially
different: while PŁU processes the items in epochs with repeated queries, our NoS first
adopts the existing MWU algorithm as a blackbox and then refines the certain candidates
in the subsequent stages. Thanks to this, the proof of NoS is relatively simpler. Moreover,
NoS is also easily incorporated into the UnboundedNoisy setting which is the main focus
of this work.

There is a variety of models, and accompanying algorithms, for solving binary search in
noisy conditions; several of these models differ substantially from ours [19, 22, 18, 8]. For
instance, Karp and Kleinberg [19] considered a setting where the search is conducted on
a sequence of coins, each equipped with a fixed (but distinct) probability of showing head
when tossed. The coins are sorted according to their head probabilities. The goal is to find
the leftmost coin whose head probability is lower than some target probability, with the
least number of coin tosses. This is a more general noisy binary search model than Noisy as
the probability of making a mistake varies from query to query. Interestingly, NoS almost
matches the information-theoretical lower bound obtained by Karp and Kleinberg [19].

3 Bounded Search with Noisy Information

We begin our technical presentation with an introduction to an existing algorithm in Noisy
setting, but with a different oracle definition, culminating in our algorithm NoS, as part of
the proof of Theorem 2.

3.1 Preliminary: A Graph-based Noisy Search Algorithm
We outline the MWU (Multiplicative Weight Update) algorithm [11]1 in this section, as
a preliminary to our NoS algorithm. MWU is designed for the problem of searching in a
graph via queries to an oracle. Since a sorted sequence of integers can be viewed as a path
graph, MWU is also applicable to the predecessor problem. However, MWU requires a
ternary oracle in the probability model, which is a stronger oracle than the binary oracle
as discussed earlier. Specifically, for the index domain [n], a ternary comparison oracle is

1 Here and onwards we cite the ArXiv version [11] instead of the conference version [12]: as the authors
themselves later noted, the bounds established in the conference version turn out to be inaccurate.

J. Gan, A. Wirth, and X. Zhang 25:7

defined as a function F ′ such that for all i ∈ [n], F ′(i) = −1 if si < t, F ′(i) = 0 if si = t,
while F ′(i) = 1 if si > t. Nonetheless, as we show shortly, we can strengthen the MWU
algorithm to be applicable with a binary oracle without affecting its query complexity.

To avoid distractions, we describe MWU in the context of predecessor problem on a
sorted sequence of integers. Let us define some notation first. For an index i ∈ [n], define
its left set as Li = [1, i − 1] and its right set as Ri = [i + 1, n], each an interval that
includes both endpoints. For a query on i, the response F ′(i) = 1 implies t ∈ Li, while
F ′(i) = −1 implies t ∈ Ri, and F ′(i) = 0 implies t = si. For a specified error probability
0 < p < 1/2, each response is correct, independently, with probability at least 1 − p. An
index j is called compatible with the oracle’s response for index i if j is in the implied
interval2, and is called incompatible otherwise. We learn the target t by eliminating indices
that are incompatible with too many queries, and assess the likelihood of an index being the
target via the assignment of weights at each round of the algorithm. For every index i ∈ [n],
let µ(i) be the weight of i, initialized to be 1. We overload function µ so that for a subset of
indices S ⊆ [n], define µ(S) =

∑
i∈S µ(i), and let µ = µ([n]), the total weight in array [n].

The weighted distance sum of index i ∈ [n] is

Φ(i) =
∑

j∈[n]

µ(j) · |i− j| .

Let q = argmini∈[n] Φ(i) be the index that minimizes the weighted distance sum, Φ. Analogous
to standard binary search, q is the median that we query, and the response suggests eliminating
half of the potential candidates for the target. In Noisy, we choose q so that the nodes
preceding q constitute roughly half the weight and those following q roughly possess half the
total weight.

Algorithm MWU proceeds in iterations. Initially each index has weight 1. At each
iteration, MWU queries the comparison oracle at q: it reduces the weight of each incompatible
index multiplying by factor 1/Γ, for some Γ > 0 defined later. MWU terminates when
only one index in [n] has weight at least 1/ΓL, for some pre-determined integer L > 0.
This termination condition assumes that the oracle makes at most L mistakes throughout
the search, a property of an oracle in the fixed-lies error model. However, by setting the
parameters appropriately, the fixed-lies error model can be transformed into the probabilistic
error model. In particular, Dereniowski et al. [11], show the following:

▶ Fact 8. Over all iterations of the entire process of MWU, the amortized rate of decrease
of the total weight is at least Γ+1

2Γ . Specially, if the total weight at the beginning of an iteration
is µ, at the end of this iteration, the total weight decreases to Γ+1

2Γ µ, amortized.

The main result of MWU is as follows.

▶ Theorem 9 (Section 3.3 [11]). Algorithm MWU solves the predecessor problem under
Noisy parameterized by 0 < p < 1/2 and 0 < Q < 1/2 with a ternary comparison oracle,
with at most

1
1−H(p)

(
log2 n + O(

√
log n log Q−1 · log log n

log Q−1) + O(log Q−1)
)

(5)

queries, and the parameters are set as L = (r log2 n)/(1−H(r)), Γ = (1−r)/r, r = (1−ε0)/2,
and ε0 = (1− 2p)/

(
1 +

√
8 ln Q−1/ ln n

)
.

2 Treat F ′(i) = 0 as t ∈ [si, si]

SWAT 2022

25:8 An Almost Optimal Algorithm for Unbounded Search with Noisy Information

In fact, Dereninowski et al. [11] showed that as long as an iterative algorithm can reduce
the total weight by an (amortized) rate of (Γ + 1)/(2Γ), the algorithm satisfies the bound in
Expression (5) with the parameters set in Theorem 9. With high probability, it takes that
many (Expression 5) iterations to reduce the total weight to an amount such that only one
node can possibly have weight more than 1/ΓL. Unfortunately, Theorem 9 is not directly
applicable to the setting with a binary comparison oracle. The binary oracle cannot provide
answers to the queries as strong as those a ternary oracle provides. Specifically, for a query
index i, a binary oracle can only separate [n] into two parts, Li ∪ {i} and Ri, rather than
three parts: Li, {i} and Ri. Hence Fact 8 need not hold for the binary oracle.

3.2 Our Two-Stage Noisy Search Algorithm
In this section, we present our algorithm NoS (Noisy Search), to solve the predecessor
problem under the Noisy setting with a binary oracle, achieving the same query complexity
as MWU. Algorithm NoS first finds a smaller candidate set that includes the target index
and then searches on the set to find the target index. Recall that for a queried index v, the
possible compatible sets yielded from a query response are Lv ∪ {v} when F (v) = −1 and
Rv when F (v) = 1. We call the first response that includes the queried index an inclusive
answer and the second an exclusive answer. The basic idea of our NoS is that it first collects
all the queried indices into a set M as if a ternary oracle is adopted, and then, it further
searches the target index in M in the second stage.

Algorithm 1 Algorithm WeightedBinary with Γ and L as parameters (defined in Theorem 9).

1: function WeightedBinary(A, L, Γ)
2: M ← ∅
3: for v ∈ [1, n] do µ(v)← 1 and lv ← 0
4: while more than one index x ∈ [n] has lx ≤ L do
5: Query the oracle at q ← arg minx∈[1,n] Φ(x)
6: if the query response is an inclusive answer then
7: M ←M ∪ {q}, µ(q)← 0, and lq ← L + 1
8: for all incompatible v do
9: µ(v)← µ(v)/Γ and lv ← lv + 1

10: M ←M ∪ {x ∈ [n] : lx ≤ L}
11: return M

Algorithm 1 is the first stage of NoS, where a small set of potential targets is identified. We
adapt the ternary-oracle algorithm MWU in the previous section to our setting. Compared
to its ternary counterpart, WeightedBinary returns a set M that contains the single index
that has sufficiently large weight, plus all queried indices for which an inclusive answer is
returned. We have:

▶ Lemma 10. At each iteration, if the total weight at the beginning of the iteration is µ,
then WeightedBinary reduces the total weight to Γ+1

2Γ µ.

Proof. To see this, we compute the rate by which the total weight diminishes at an iteration.
It is easy to prove that by the definition of q, µ(Lq) ≤ µ/2 and µ(Rq) ≤ µ/2.

At any iteration, consider the response of the binary oracle for a queried node q. Suppose
the total weight is µ. Then by definition µ = µ(Lq) + µ(Rq) + µ(q). If the answer is exclusive,
then weights in Lq ∪ {q} are lowered. Since µ(Lq ∪ {q})/Γ + µ(Rq) ≤ µ

Γ + Γ−1
Γ µ(R) ≤ Γ+1

2Γ µ,
the total weight is reduced sufficiently. If the answer is inclusive, then the total weight is
lowered by a factor at least Γ+1

2Γ , as here q has its weight reduced to 0. ◀

J. Gan, A. Wirth, and X. Zhang 25:9

Observe that the bound in Lemma 10 holds at every iteration, contrasting with Fact 8, which
holds in amortization. From Theorem 9 we conclude the following.

▶ Theorem 11. With suitable parameter settings (as in Theorem 9), for the predecessor
problem under Noisy, with 0 < p < 1/2 and 0 < Q < 1/2, Algorithm WeightedBinary
returns a set M containing the target, taking at most β queries, where |M | ≤ β + 1 and

β = 1
1−H(p)

(
log2 n + O(

√
log n log Q−1 · log log n

log Q−1) + O(log Q−1)
)

.

The second stage of NoS can be conducted with an existing algorithm, e.g., Feige [17]
whose query complexity is O(log(n/Q))/(1−H(p)), as shown in Algorithm 2.

Algorithm 2 Algorithm NoS.

1: function NoS(A, Q)
2: Q← Q/2 ▷ For the union bound

3: r ←
(

1− 1−2p

1+
√

8(ln Q−1)/(ln n)

)
/2

4: L← (r log2 n)/(1−H(r)) and Γ← (1− r)/r

5: M ←WeightedBinary(A, L, Γ)
6: Run Feige on (M, Q/2)
7: return the target found

It first runs WeightedBinary on the input to obtain M , whose size is bounded
by O(log2 n/(1 − H(p)). Second, it runs Feige [17] on M and obtain a target within(

O(log log n
1−H(p)) + O(log Q−1)

)
/(1−H(p)) = O(log log n + log Q−1)/(1−H(p)) queries. A

union bound on the failure probability and summing up these two costs lead to Theorem 2.

3.3 Proof of Corollary 3
To obtain the promised expected query complexity of NoS, we apply a familiar trick [4].
Observe that when log Q−1 ∈ o(log n), the worst-case query complexity of NoS can be
written as 1

1−H(p)
(
log2 n + o(log n)

)
. As a result, the “gap” (i.e., the difference) between this

worst-case bound and the expected bound, in Expression (2), is Q
1−H(p)

(
log2 n + o(log n)

)
.

We strengthen NoS as follows. On the one hand, when Q ≤ 1
log2 n , this gap becomes

at most 1
1−H(p) (1 + o(1)) ∈ o(log n). In this case, the worst-case query complexity of NoS

suffices to meet the bound 1−Q
1−H(p)

(
log2 n + o(log n)

)
. But when Q > 1

log2 n , we perform the
following steps. With probability Q− 1

log2 n , we return index 1, and are done. Otherwise,
i.e., with probability 1−Q + 1

log2 n , we run NoS with a failure probability Q′ = 1
log2 n .

Clearly, the probability of not returning the target index by the above strengthened
version of NoS is at most Q− 1

log2 n + Q′ = Q. Furthermore, in expectation, the query cost
is (1−Q + 1

log2 n) · 1
1−H(p)

(
log2 n + o(log n)

)
which is bounded by 1−Q

1−H(p)
(
log2 n + o(log n)

)
.

4 Unbounded Search Without Noise

In this section we introduce an algorithm for the Unbounded setting by Bentley and Yao [5]
(denoted by BY), a central plank of our approach to Unbounded. Bentley and Yao express
their results, i.e., Lemmas 12, 13 and 14 via some customized functions. Our exposition has
more standard notation, via the logarithmic function.

SWAT 2022

25:10 An Almost Optimal Algorithm for Unbounded Search with Noisy Information

We consider Unbounded for the index domain A = {1, 2, . . .}, an infinite sequence. We
first define a series of subsequences of A. Specifically, put A0 ≡ A, and for i, j ≥ 1 let
Ai[j] = Ai−1[2j − 1]. We illustrate the definition of the {Ai} in Figure 1’s left panel.

𝐴∗ 𝑚" = 16
𝐴" = 1, 2 , 3, … , 𝑖, … 𝑚# = 5 𝐵" = 16,17,18, … , 31
𝐴# = 1, 3 , 7, … , 2$ − 1,… 𝑚% = 3 𝐵# = 15, 31, 63,127
𝐴% = 1, 7 , 127, … , 2%!&# − 1,… 𝑚' = 2 𝐵% = 7, 127

𝐴' = 1, 127 ,2#%(−1,… , 2%"
!#$&# − 1,… 𝑢 = 3 𝐵' = 1, 127

Figure 1 Left panel: An illustration of the first four subsequences, A0, A1, A2, A3, and A∗.
Right panel: an example of running BY for target index N = 16, with u, mi and Bi. The arrow
indicates the execution order, and the red-colored item indicates the answer to the predecessor query.
Quantity mi is the index of the red-colored item in Ai.

For all i ≥ 0, define mi to be the answer to the predecessor query for t on Ai: the goal of
Unbounded is to find m0. We can also express the value of mi in terms of N , the target.

▶ Lemma 12 (Derived from [5]). For 1 ≤ i ≤ k, where k = log∗ N , mi ≤ ⌊log(i) N⌋+ 2.

Next, the unbounded sequence A∗ consists of the second item in each sequence Ai. Formally,
A∗[j] = Aj [2], for j ≥ 1. Let u denote the answer to the predecessor query on A∗.

▶ Lemma 13 (Derived from [5]). We have u ≤ k + 1, where k = log∗ N .

Algorithm 3 outlines the BY algorithm. It has two stages: first we find u via a unary
search on A∗; then we repeatedly call BinarySearch on suitable subsequences, Bi. For some
array R, BinarySearch(R) returns the lowest i satisfying F (i) = 1, in ⌈log |R|⌉ queries.
Line 6 defines Bi−1, a subsequence of Ai−1, so that it contains all items that are between
the immediate preceding item of the current search result, Ai[mi− 1], and the current search
result, Ai[mi]. Formally, for 1 ≤ j < 2mi−1 + 1, we have Bi−1[j] = Ai−1[j + 2mi−1 − 1]. The
intuition of the algorithm is simple: at each iteration, we identify, via binary search, the
answer to the predecessor problem for a subsequence of Ai, and the result helps us to “zoom
in” to the items contained by an interval of a more fine-grained subsequence, Ai−1. The
right panel of Figure 1 shows an example of running BY.

Algorithm 3 BY.

1: function BY(A)
2: Find u by evaluating A∗ linearly
3: Bu ← Au

4: for i← u down to 1 do
5: mi ← BinarySearch(Bi)
6: Bi−1 ← the subsequence of Ai−1 for indexes in [2mi−1, 2mi)
7: m0 ← BinarySearch(B0)
8: return m0

▶ Lemma 14 (Derived from [5]). Let k = log∗ N . The query complexity of algorithm BY is
5 + 2k +

∑
1≤i≤k⌊log(i)(N)⌋.

J. Gan, A. Wirth, and X. Zhang 25:11

5 Unbounded Noisy Search

With the help of algorithms BY and NoS, we can tackle UnboundedNoisy. Algorithm
NoSU builds on the idea of an almost result-sensitive algorithm [16, Section 3.1].

5.1 An Existing Algorithm
We first describe an existing UnboundedNoisy algorithm called Unbounded, derived from
Noisy algorithm Feige.

▶ Theorem 15 (Theorem C.3 [11]). For the predecessor problem under UnboundedNoisy
parameterized by 0 < p < 1/2 and 0 < Q < 1/2, Algorithm Unbounded, with probability at
least 1 − Q, correctly finds the target index. Unbounded is built upon an existing Noisy
algorithm A and it uses at least 10 but at most O(1) times as many queries as does A. When
A is Feige [17], Unbounded has query complexity O

(
1

1−H(p) · log(N/Q)
)

.

The Unbounded algorithm invokes Feige as a blackbox and inherits the same asymptotic
query complexity bound. Theorem 15 provides a satisfactory algorithm for solving Unboun-
dedNoisy. In contrast, NoSU achieves a bound with leading term 1

1−H(p) · log2(N/Q). The
hidden constant leading coefficient in Unbounded is at least 10, i.e., the query complexity of
algorithm Unbounded is not as tight as desired. The bound of Epa et al. [16] also includes
a large constant, dervied from the Chernoff bound.

5.2 Algorithm NoSU
Algorithm 4 details our procedure, NoSU. Symbols mi, u and Bi are the same as in BY,
defined in Section 4. Similar to BY, NoSU has stages, one to figure out u, the other to
simulate the iterations of Bi. We prove Theorem 5 here.

Algorithm 4 NoSU.

1: function NoSU(A, Q)
2: run Unbounded(A∗, Q/3) to find u

3: Bu ← Au

4: for i from u to 1 do
5: mi ← NoS(Bi, Q/(3u))
6: Let Bi−1 be a subsequence of Ai−1 for indexes in [2mi−1, 2mi)
7: m0 ← NoS(B0, Q/3)
8: return m0

Proof of Theorem 5. Clearly, by the union bound, Algorithm 4 correctly finds the target
index N with probability at least 1−Q.

We now focus on the query complexity of each of the two stages of the algorithm. Line 2
identifies u by calling Unbounded(A∗, Q/3). Recall that k = log∗ N . Lemma 13 shows
that the target index is u and k + 1 ≥ u, so Theorem 15 implies that O

(
1

1−H(p) · log(k/Q)
)

many queries are needed for this step.
For 1 ≤ i ≤ u, let gi(N, p, Q) be the upper bound on the number of queries issued by

algorithm NoS (Theorem 2) when applied to Bi. For 0 ≤ i ≤ u − 1, the size of Bi at
iteration i is 2mi+1−1; and according to Lemma 12, for 1 ≤ j ≤ k, mj ≤ ⌊log(j) N⌋ + 2.

SWAT 2022

25:12 An Almost Optimal Algorithm for Unbounded Search with Noisy Information

Therefore, for 0 ≤ i ≤ u− 1, |Bi| = 4 log(i)(N)− 1. Also, since |Bu| = 2, the cost of calling
NoS on Bu is a constant. Summing over all gi(N, p, Q) terms yields

u−1∑
i=0

gi(N, p, Q) ≤
k∑

i=0
gi(N, p, Q) = 1

1−H(p) (C1 + C2 + C3 + C4) ,

where C1 =
∑k

i=0 log(i+1)
2 N , C2 =

∑k
i=0 O(log(i+2) N), C3 =

k∑
i=1

O

(√
log(i+1) N log(3k/Q) · log log(i+1) N

log(3k/Q)

)
+ O

(√
log N log(3/Q) · log log N

log(3/Q)

)
,

and C4 =
∑k

i=1 O(log(3k/Q)) + O(log(3/Q)).
We inspect each of the four terms individually. For the first term, C1, we have simply∑k+1

i=1 log(i)
2 N , which is

∑k
i=1 log(i)

2 N plus a small constant. For the second term, C2, the
quantity folds into O(log log N). For the third term, C3, with large enough N , we have

k∑
i=1

O(
√

log(i+1) N log(3k/Q)) + O(
√

log N log(3/Q)) ≤ O(
√

log N log Q−1) .

And for 1 ≤ i ≤ k the multiplicative factor of C3 satisfies log log(i+1) N
log(3k/Q) ≤ log log N

log Q−1 , and
log log N

log(3/Q) ≤ log log N
log Q−1 . The fourth term, C4, adds up to O(k log(k/Q)), and it absorbs

the cost of Unbounded. We thus obtain the bound of Theorem 5. ◀

Although tight, the upper bound in Theorem 5 does not immediately provide a clear
perspective on the bound. Consider the worst-case query complexity of NoSU. In our
setting, we have

∑k
i=1 log(i)

2 N +O(k log k) < log2 N +O(log log N), so the Theorem 5 bound
is at most

1
1−H(p)

(
log2 N + O(log log N) + O(

√
log N log Q−1 log log N

log Q−1) + O(k log Q−1)
)

.

This is remarkably similar to the bound in Theorem 2. We now prove Corollary 6.

Proof of Corollary 6. Recall that Unbounded requires O
(
(1−H(p))−1 log(k/Q)

)
many

queries, which resolves to o(log N) under our setting. For i ∈ [0, k], the call of NoS on Bi

only results at most log(i+1)
2 N + o(log(i+1) N) queries, as |Bi| = 4 log(i) N − 1. The cost of

searching in Bu is again a small constant. Corollary 3 hence confirms NoSU has expected
query complexity (1−Q)/(1−H(p))

∑k
i=1 log(i)

2 N + o(log N). ◀

6 The Lower Bound

This section is dedicated to prove Theorem 7, a lower bound on the expected query complexity
for the predecessor problem under UnboundedNoisy. Let γ̄ be the expected query complex-
ity of an arbitrary algorithm A that solves the predecessor problem under UnboundedNoisy,
parameterized by 0 < p < 1/2 and 0 < Q < 1/2. We lower bound γ̄.

The idea of the lower bound proof is to reduce to the predecessor problem under Un-
boundedNoisy, from a well-studied task in information theory. The proof for the Noisy
setting by Ben-Or and Hassidim [4] is not directly applicable.

First we introduce some basic concepts and terminologies in information theory. In a
classic communication problem, we have a transmitter, A, who wants to send some information
to a receiver, B. The information is from a source set S, and it is sent via a communication

J. Gan, A. Wirth, and X. Zhang 25:13

channel where only special symbols are allowed to travel, one at a time. In our context, we
focus on a binary channel that transmits only a binary string bit by bit. A codeword w

from a binary alphabet is defined as a non-empty binary string, i.e., w ∈ {0, 1}+. A code
scheme is an injective mapping c : S → {0, 1}+ that maps an item in the source set S to its
unique codeword. The communication channel we consider here is a noisy binary symmetric
memoryless channel with feedback (BSM-F). The channel is noisy if for every bit sent from A

to B, upon arrival, it could be flipped (from 1 to 0 or from 0 to 1) independently with certain
probability. A channel is symmetric if the probability of flipping is the same for the bit 1
and 0, and memoryless if the probability also does not vary throughout the transmission,
independent to the transmission history before that bit. A communication channel has
a feedback channel if for every bit A sends, A knows what B receives from the feedback
(sometimes called backward) channel. The feedback is useful here as A is adaptive to the
noise and can make a decision on the next bit to transmit accordingly.
From the full version of the paper by Ben-Or and Hassidim [4] we have:

▶ Fact 16 (Theorem B.1 of full version [4]). For a fixed flipping probability 0 < p < 1/2 and
a failure probability 0 < Q < 1/2, consider the communication problem where A sends a
message to B over a BSM-F. A bit is received wrongly with probability p, and the message is
of length η. Besides, the codeword is correctly received with probability at least 1−Q. Let τ(η)
be the expected number of bits A has to send to achieve the goal. Then for a large enough η,
we have τ(η) > (1−Q) η

1−H(p) − 10.

Define a communication task Comm that requires A to send to B the information, an item
of S = {1, 2, . . . }, over a BSM-F. This naturally induces an UnboundedNoisy instance
with error probability p and failure probability Q. Denote by A an algorithm that solves the
predecessor problem under UnboundedNoisy. We invoke A to solve Comm, and the lower
bound on Comm implies a lower bound on the query complexity of A.

The following construction of the communication protocol between A and B is inspired
by the proof of Theorem 2.8 by Ben-Or and Hassidim [4]. B employs Algorithm A to identify
the index of the item in S (which is equivalent to the item itself in this case) that A wants
to send; and B also uses the feedback channel to inform A which index it wants to query.
Specifically, A sends back a bit 0 if F (i) = −1, and a bit 1 if F (i) = 1 via the noisy channel
to B. The communication is terminated once Algorithm A decides that the target index is
found, i.e., B knows the target item in S. In the above definition of the feedback channel, A

only knows the bit B received from the last transmission, i.e., the noisy answer for the latest
query. However, we can achieve the same effect by simulating algorithm A on A as well as
on B. As both A and B know the same queried answer, each copy of the algorithm yields
the same steps. Conceptually, we can think of the feedback channel is capable of requesting
a specific item index to inquire.

As alluded to earlier, the channel handles not directly the index N of the item but a
binary code, which we refer to as the codeword of N . Algorithm A defines a code scheme
c : S → {0, 1}+, where c(N) is the codeword for the index N transmitted in the channel
when none of the bits of c(N) is flipped by the noise. Intuitively, when B receives from A

successfully the information of N , c(N) is the message that B actually discovers from the
transmission. B may not receive exactly the bits in c(N) but after correcting errors caused
by the channel noise, B should be able to conclude that the right codeword is c(N).

We define a code scheme to connect Comm to Theorem 16. Let ηN =
∣∣c(N)

∣∣ be the
number of bits of c(N). Crucially, as observed by Bentley and Yao [5], the code scheme c

determines a prefix code, i.e., c(i) is not a prefix of c(j) for all i < j. This is also easy to

SWAT 2022

25:14 An Almost Optimal Algorithm for Unbounded Search with Noisy Information

verify, because if for some i, c(i) is a prefix of another codeword, then algorithm A will not
know whether to terminate or not when c(i) arrives. They proved the following lower bound
on the message length of a prefix-code codeword.

▶ Fact 17 (Theorem A, section 3 of [5]). Let k = log∗ N . We have ηN >
∑k

i=1 log(i)
2 N − 2k .

Our lower bound result (Theorem 7) follows from Fact 16 and Fact 17.

7 Conclusion

In this work, we provide improved algorithms for both Noisy and UnboundedNoisy settings
of predecessor search. For the former, our algorithm NoS achieves, in the leading term, query
complexity (log n)(1−H(p))−1 and expected complexity ((1−Q) log n)(1−H(p))−1. For the
latter, our algorithm NoSU achieves, in the leading term, query complexity

∑k
i=1(log N)(1−

H(p))−1 and expected complexity (1−Q)(
∑k

i=1 log N)(1−H(p))−1. Our expected upper
bounds also closely match lower bounds. We construct NoSU by creatively combining
results from the Unbounded and Noisy settings. Our result emphasizes obtaining the best
constant on the leading term, particularly in the UnboundedNoisy setting.

Since our NoS algorithm is derived from algorithms designed for graph searches, it would
be interesting in future to explore the unbounded setting in graphs and test if our idea can be
generalized to more general graphs as well. The error model assumes here that the probability
of the oracle making a mistake is the same for all queries. In a more flexible setting, the
error probability follows a different distribution, rather than the uniform distribution. As
others found [16, 17], our algorithm could potentially be applied as a subroutine to many
more problems that rely on the predecessor problem.

References
1 Javed A Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors. In

Proc. 23rd ACM Symposium on Theory of Computing, pages 486–493, 1991.
2 Paul Beame and Faith E Fich. Optimal bounds for the predecessor problem and related

problems. Journal of Computer and System Sciences, 65(1):38–72, 2002.
3 Richard Beigel. Unbounded searching algorithms. SIAM Journal on Computing, 19(3):522–537,

1990.
4 Michael Ben-Or and Avinatan Hassidim. The Bayesian learner is optimal for noisy binary

search (and pretty good for quantum as well). In Proc. 49th IEEE Symposium on Foundations
of Computer Science, pages 221–230, 2008.

5 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Information Processing Letters, 5(SLAC-PUB-1679), 1976.

6 Ryan S Borgstrom and S Rao Kosaraju. Comparison-based search in the presence of errors.
In Proc. 25th ACM Symposium on Theory of Computing, pages 130–136, 1993.

7 Ferdinando Cicalese. Fault-Tolerant Search Algorithms: Reliable Computation with Unreliable
Information. Springer, 2013.

8 Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural
Information Processing Systems, volume 17, pages 337–344, 2005.

9 Christian Deppe. Coding with feedback and searching with lies. In Imre Csiszár, Gyula OH
Katona, and Gábor Tardos, editors, Entropy, Search, Complexity, pages 27–70. Springer, 2007.

10 Dariusz Dereniowski, Aleksander Łukasiewicz, and Przemysław Uznański. Noisy searching:
simple, fast and correct. arXiv preprint, 2021. arXiv:2107.05753.

11 Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf. A
framework for searching in graphs in the presence of errors. arXiv preprint, 2018. arXiv:
1804.02075.

http://arxiv.org/abs/2107.05753
http://arxiv.org/abs/1804.02075
http://arxiv.org/abs/1804.02075

J. Gan, A. Wirth, and X. Zhang 25:15

12 Dariusz Dereniowski, Stefan Tiegel, Przemyslaw Uznanski, and Daniel Wolleb-Graf. A
framework for searching in graphs in the presence of errors. In Proc. 2nd Symposium on
Simplicity in Algorithms, volume 69, pages 4:1–4:17, 2019.

13 Aditi Dhagat, Peter Gács, and Peter Winkler. On playing “twenty questions” with a liar. In
Proc. 3rd ACM/SIAM Symposium on Discrete Algorithms, volume 92, pages 16–22, 1992.

14 Ehsan Emamjomeh-Zadeh and David Kempe. A general framework for robust interactive
learning. In Proc. 31st International Conference on Neural Information Processing Systems,
pages 7082–7091, 2017.

15 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabilistic
binary search in graphs. In Proc. 48th ACM Symposium on Theory of Computing, pages
519–532, 2016.

16 Narthana S Epa, Junhao Gan, and Anthony Wirth. Result-sensitive binary search with noisy
information. In Proc. 30th International Symposium on Algorithms and Computation, pages
60:1–60:15, 2019.

17 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994.

18 Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning
with noisy observations. In Advances in Neural Information Processing Systems, volume 23,
pages 766–774, 2010.

19 Richard M Karp and Robert Kleinberg. Noisy binary search and its applications. In Proc.
18th ACM-SIAM Symposium on Discrete Algorithms, pages 881–890, 2007.

20 Yong Sin Kim and Roland Winston. Unbounded binary search for a fast and accurate maximum
power point tracking. In AIP Conference Proceedings, volume 1407, pages 289–292, 2011.

21 Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. Toward more localized local
algorithms: removing assumptions concerning global knowledge. Distributed Computing,
26(5-6):289–308, 2013.

22 Robert Nowak. Generalized binary search. In Proc. 46th IEEE Allerton Conference on
Communication, Control, and Computing, pages 568–574, 2008.

23 Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proc.
38th ACM Symposium on Theory of Computing, pages 232–240, 2006.

24 Andrzej Pelc. Searching with known error probability. Theoretical Computer Science, 63(2):185–
202, 1989.

25 Andrzej Pelc. Searching games with errors – fifty years of coping with liars. Theoretical
Computer Science, 270(1-2):71–109, 2002.

26 Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl. B,
6(MR143666):505–516, 1961.

27 Alfréd Rényi. On the foundations of information theory. Revue de l’Institut International de
Statistique, pages 1–14, 1965.

28 Alfréd Rényi and Zsuzsanna Makkai-Bencsáth. A Diary on Information Theory. Akadémiai
Kiadó Budapest, 1984.

29 Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and Joel Spencer.
Coping with errors in binary search procedures. Journal of Computer and System Sciences,
20(3):396–404, 1980.

30 Michael Saks and Avi Wigderson. Probabilistic Boolean decision trees and the complexity of
evaluating game trees. In Proc. 27th IEEE Symposium on Foundations of Computer Science,
pages 29–38, 1986.

31 Pranab Sen. Lower bounds for predecessor searching in the cell probe model. In Proc. 18th
IEEE Conference on Computational Complexity, pages 73–83, 2003.

32 Sanjay Kumar Singh and Amarjeet Singh. Software testing. Vandana Publications, 2012.
33 John A Stankovic. Research directions for the internet of things. IEEE Internet of Things

Journal, 1(1):3–9, 2014.
34 Stanislaw M Ulam. Adventures of a Mathematician. University of California Press, 1991.

SWAT 2022

Optimal Bounds for Weak Consistent Digital Rays
in 2D
Matt Gibson-Lopez #

Department of Computer Science, The University of Texas at San Antonio, TX, USA

Serge Zamarripa #

Department of Computer Science, The University of Texas at San Antonio, TX, USA

Abstract
Representation of Euclidean objects in a digital space has been a focus of research for over 30 years.
Digital line segments are particularly important as other digital objects depend on their definition
(e.g., digital convex objects or digital star-shaped objects). It may be desirable for the digital line
segment systems to satisfy some nice properties that their Euclidean counterparts also satisfy. The
system is a consistent digital line segment system (CDS) if it satisfies five properties, most notably
the subsegment property (the intersection of any two digital line segments should be connected) and
the prolongation property (any digital line segment should be able to be extended into a digital line).
It is known that any CDS must have Ω(log n) Hausdorff distance to their Euclidean counterparts,
where n is the number of grid points on a segment. In fact this lower bound even applies to consistent
digital rays (CDR) where for a fixed p ∈ Z2, we consider the digital segments from p to q for each
q ∈ Z2. In this paper, we consider families of weak consistent digital rays (WCDR) where we
maintain four of the CDR properties but exclude the prolongation property. In this paper, we give a
WCDR construction that has optimal Hausdorff distance to the exact constant. That is, we give
a construction whose Hausdorff distance is 1.5 under the L∞ metric, and we show that for every
ϵ > 0, it is not possible to have a WCDR with Hausdorff distance at most 1.5 − ϵ.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Digital Geometry, Consistent Digital Rays

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.26

Related Version Full Version: https://arxiv.org/abs/2205.03450

Funding Supported by the National Science Foundation under Grant No. 1733874.

1 Introduction

In this paper, we consider the digital representation of Euclidean objects. For example,
suppose we take a photograph of a convex object O. Since O is convex, we have that the
Euclidean line segment connecting any two points inside of O is contained within O. If one
wants an image segmentation algorithm to be able to find the pixels in our photograph that
correspond to O, we may want the algorithm to be able to ensure that the output pixels
are in some sense “convex”. How should we define a set of pixels to be convex? The most
natural way would be a similar definition to the Euclidean setting: a set of pixels is a digital
convex object if the digital line segment connecting any two pixels is contained within the
object. This raises the question of how to define digital line segments.

In particular, consider unit grid Z2 where each point in the grid represents a pixel in an
infinite image, and in particular consider the unit grid graph: for any two points p = (px, py)
and q = (qx, qy) in Z2, p and q are neighbors if and only if |px − qx| + |py − qy| = 1. Now
consider some pair of grid points p and q; we would like to define a digital line segment Rp(q)
from p to q that is a path in the unit grid graph. There may be multiple “good” ways to
digitally represent a Euclidean line segment. For example, consider Figure 1 (a). In isolation,
it may seem that either of Figure 1 (b) or (c) would be a fine representation. However when
considering it within a family of digital line segments, the choice we make could impact

© Matt Gibson-Lopez and Serge Zamarripa;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthew.gibson@utsa.edu
https://orcid.org/0000-0001-5777-8313
mailto:sergio.zamarripa@my.utsa.edu
https://doi.org/10.4230/LIPIcs.SWAT.2022.26
https://arxiv.org/abs/2205.03450
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Optimal Bounds for Weak Consistent Digital Rays in 2D

(a) (b) (c)

Figure 1 (a) Euclidean line to digitize. (b) One option. (c) Another option.

Figure 2 Rounding two Euclidean line segments.

the results for segmentation algorithms that rely on them. In particular, the most simple
definitions of digital line segments (“rounding” the Euclidean line segment to the closest
pixel) have a potentially undesirable property that their intersections may not be connected.
See Figure 2. In scenarios where we are not concerned with individual digital line segments
but rather multiple digital line segments (e.g., we are interested in digital convex objects), it
may be desirable to consider carefully constructed digital line segment systems that satisfy
some nice properties.

For any point o ∈ Z2, we call the set of all digital line segments Ro(p) for each p ∈ Z2 a
digital ray system Ro. Intuitively a digital ray system is a family of digital line segments
that all share o as a common endpoint. A digital line segment system has Rp(q) defined for
every p, q ∈ Z2.

1.1 Consistent Digital Line Segments
To deal with these issues, past researchers have considered systems of digital rays and digital
line segments that collectively satisfy some properties that are also satisfied by their Euclidean
counterparts. In particular [7, 6, 4, 5, 1] has considered systems that satisfy the following
five properties.
(S1) Grid path property: For all p, q ∈ Z2, Rp(q) is the points of a path from p to q in the

grid topology.
(S2) Symmetry property: For all p, q ∈ Z2, we have Rp(q) = Rq(p).
(S3) Subsegment property: For all p, q ∈ Z2 and every r, s ∈ Rp(q), we have Rr(s) ⊆ Rp(q).
(S4) Prolongation property: For all p, q ∈ Z2, there exists r ∈ Z2, such that r /∈ Rp(q) and

Rp(q) ⊆ Rp(r).
(S5) Monotonicity property: For all p, q ∈ Z2, if px = qx = c1 for any c1 (resp. py = qy = c2

for any c2), then every point r ∈ Rp(q) has rx = c1 (resp. ry = c2).

M. Gibson-Lopez and S. Zamarripa 26:3

(0, 0) (0, 0)

(a) (b)

Figure 3 (a) A CDR for (0, 0) that satisfies (S4). (b) A set of digital rays from (0, 0) that do not
satisfy (S4). In particular, the segments R(0,0)((1, 3)) and R(0,0)((2, 1)) do not prolong.

Properties (S2) and (S3) are quite natural to ask for; the subsegment property (S3) is
motivated by the fact that the intersection of any two Euclidean line segments is connected,
and this property is violated by simple rounding schemes. The prolongation property (S4) is
motivated by the fact that any Euclidean line segment can be extended to an infinite line,
and we may want a similar property to hold for our digital line segments. While (S1)-(S4)
form a natural set of axioms for digital segments, there are pathological examples of segments
that satisfy these properties which we would like to rule out. For example, Christ et al. [6]
describe a CDS where a double spiral is centered at some point in Z2, traversing all points of
Z2. A CDS is obtained by defining Rp(q) to be the subsegment of this spiral connecting p

and q. To rule out these CDSes, property (S5) was added.
A digital ray system that satisfies properties (S1)-(S5) is called a consistent digital ray

system or CDR for short. A digital line segment system that satisfies (S1)-(S5) is called a
consistent digital line segment system or CDS for short. A CDR Ro (or the rays for a single
point in a CDS) can be viewed as a tree rooted at o, where the segment Ro(p) is the unique
simple path between o and p in the tree. Note that the segments must be a tree because of
property (S3). See Figure 3 (a) for an example CDR for (0, 0) to all grid points (x, y) such
that x ≥ 0, y ≥ 0, and x + y ≤ 5. See Figure 3 (b) for an example of digital segments that
satisfy all properties except for (S4). Since they still satisfy (S3), the rooted tree perspective
still applies to these segments.

Previous Work on CDSes and CDRs

Luby [8] considers grid geometries which are equivalent to systems of digital line segments
satisfying (S1), (S2), (S5) described in this paper, and various works have considered CDRs
and CDSes as defined above. Past work has shown that there are many different CDR and
CDS systems, so how should we measure the quality of such a system? Past work usually
measures the error of a system by considering the Hausdorff distance of a system. For each
grid point v ∈ Rp(q), the distance from v to the Euclidean line segment pq is usually defined
to be the Euclidean distance between v and the closest point to v on pq. Then the error of
Rp(q), which we denote E(Rp(q)), is the maximum distance from v to pq over all v ∈ Rp(q).
The error of a CDR or a CDS is then defined to be supp,q∈Z2{E(Rp(q))}. Chun et al. [7]
give an Ω(log n) lower bound on the error of a CDR where n is the number of grid points on
a digital segment (i.e., n := |px − qx| + |py − qy| for Rp(q)) which of course also applies to
CDSes. Chun et al. give a construction of CDRs that satisfy the desired properties (S1)-(S5)
with a tight upper bound of O(log n) on the error. Note that the lower bound is due to
combining properties (S3), (S4) and (S5). For example, if we are willing to drop property

SWAT 2022

26:4 Optimal Bounds for Weak Consistent Digital Rays in 2D

(S3) then digital line segment systems with O(1) error are easily obtained, for example the
trivial “rounding” scheme used in Figure 1 (d). This system clearly satisfies (S5), and we can
see that it will satisfy (S4) as well. Without loss of generality assume that p = (0, 0). Then
Rp(q) will clearly extend to Rp(r) where r = (2qx, 2qy) as p, q, and r are co-linear. Chun et
al. [7] also show that if (S5) is relaxed, then O(1) error is possible, although they describe
the segments as “locally snake-like almost everywhere” but the segments may be acceptable
if the resolution of the grid is sufficiently large. Christ et al. [6] extend the upper bound
results from CDRs to CDSs by giving an optimal O(log n) upper bound the error for a CDS
in Z2. Chowdhury and Gibson have a pair of papers [4, 5] providing a characterization of
CDSes in Z2.

Most of the previous works listed above only apply to two-dimensional grids, but each of
the properties (S1)-(S5) have natural generalizations to higher dimensions, and we may be
interested in computing CDRs and CDSes for higher dimensions. The construction of Chun
et al. [7] for two-dimensional CDRs can be extended to obtain an O(log n) construction for
a CDR in a three-dimensional grid. More recently Chiu and Korman [1] have considered
extending the two-dimensional results of [6] to three dimensions, and they show that at times
they are able to obtain three-dimensional CDRs with error Ω(log n), and even at times they
can obtain a three-dimensional CDS, but unfortunately these systems have error Ω(n).

1.2 Weak Consistent Digital Rays
Suppose we have a CDR Ro in Z3 where o = (0, 0, 0), and suppose we consider the two-
dimensional “slice” of points v = (vx, vy, vz) such that vz = 0. Now consider the digital rays
Ro(v) for each such v. These rays must satisfy (S1), (S2), (S3), and (S5). If any of these
properties would be violated then the original CDR system would have to violate the same
property; however, the two-dimensional slice does not have to satisfy (S4). Indeed, there
may be a v with vz = 0 such that the digital segment Ro(v) does not “extend” to any other
point v′ such that v′z = 0 but instead extends “up” to the point (vx, vy, vz + 1).

This sparked the initial interest in what are called weak consistent digital rays (WCDR)
where the segments should satisfy all of the CDR properties except (S4). In particular,
the Ω(log n) error lower bound of [7] for two-dimensional CDRs critically relies upon (S4).
Consider a (not-weak) CDR Ro in two-dimensions, and let Q1 denote the “first quadrant” of
o, that is v ∈ Q1 if and only if vx ≥ 0 and vy ≥ 0. For any d ∈ N, let diagonal d denote the
Euclidean line x + y = d. For any v ∈ Q1, we say that v is on diagonal vx + vy. Consider
the “extension” of Ro from the points on diagonal d to the points on diagonal d + 1. Chun
et al. show that there must be exactly 1 split point s on diagonal d such that Ro(s) extends
to both (sx, sy + 1) and (sx + 1, sy). For an example, see Figure 4 (a) which shows the
extensions of the CDR from Figure 3 (a) from diagonal 4 to diagonal 5. Then for every point
v on diagonal d such that vx < sx, it only extends vertically to (vx, vy + 1), and every point
v on diagonal d such that vx > sx only extends horizontally to (vx + 1, vy). This structure
of CDRs helps lead to the error lower bound. In the context of a WCDR, this split point
property no longer holds. Instead of picking a single split point on diagonal d that then
forces the extension of all other points on diagonal d, we can let each point on diagonal
d + 1 pick a “parent” point on diagonal d (using the rooted tree perspective of a WCDR),
and these parent selections do not need to be coordinated in any way since we do not have
the requirement that segments on diagonal d must extend to diagonal d + 1. See Figure 4
(b) which shows the WCDR from Figure 3 (b) between diagonals 4 and 5. Points that are
not chosen to be a parent are called inner leaves. Suppose on diagonal d we have that the
number of inner leaves is x. Then it is not difficult to see that there will be x + 1 split points

M. Gibson-Lopez and S. Zamarripa 26:5

s

(a) (b)

Figure 4 (a) A CDR extension with a single split point s. (b) A WCDR extension with two split
points and an inner leaf.

on diagonal d, and when scanning the points on diagonal d from left to right, we alternate
between encountering split points and inner leaves, and the first and last will be split points.
This difference in structure creates the possibility of having o(log n) WCDRs, which in turn
implies that it may be possible to obtain a (non-weak) CDR in Z3 with o(log n) error.

Chiu et al. [2] considered 2D WCDRs and considered their impact on (non-weak) CDRs
in higher dimensions. In particular, they consider the tradeoff between the number of inner
leaves a 2D WCDR can have and the error of the system. Indeed if a system does not have
any inner leaves, then it is just a regular CDR and the Ω(log n) error bound applies. It
may be possible to introduce some number of inner leaves to obtain a 2D WCDR with error
o(log n). How many inner leaves do we need to, say, obtain an error of O(1)? They show
that any WCDR defined for all points p ∈ Q1 such that px + py ≤ N and has k inner leaves
between diagonals N/2 and N has error Ω(N log N

N+k). They then show the impact this has on
(non-weak) CDRs in higher dimensions, as every inner leaf on a 2D slice must extend to a
point not on this slice which will impact other slices. They use this to show that any CDR
in d dimensions has error Ω(log

1
d−1 N). They also consider what is the minimum number of

inner leaves needed to obtain a WCDR with error e. In the full version of their paper [3],
they give a system with error 2.5 under the L∞ metric establishing that O(1) error is in fact
possible. Note that their Ω(N log N

N+k) lower bound implies that k ∈ Ω(N log N) in order to
achieve O(1) error, but their construction has k ∈ Θ(N2). This leaves open the question the
question as to whether is possible to have a WCDR with O(1) error and o(N2) inner leaves
or if the lower bound could be improved.

1.3 Our Contribution

We consider optimizing the error of a 2D WCDR to the exact constant as we view the WCDR
to be of general interest. For some users, the Ω(log n) lower bound that comes from including
(S3), (S4) and (S5) may be unacceptable. If we wish to achieve o(log n) error, then we are
forced to drop at least one of these properties. For a user who elects to drop (S3), there
are plenty of options available that achieve O(1) error and also satisfy (S4) and (S5) (e.g.,
a greedy rounding strategy). It’s possible to only drop (S5) and obtain O(1) error, but a
drawback of this system is the “locally snake-like” property that causes the segments to be
of different “widths” on different diagonals (e.g, a segment may pass through 1 point on one
diagonal but it passes through 3 points on another diagonal). The WCDR is the option for
the user who does not want Ω(log n) error but wants (S3) and (S5).

SWAT 2022

26:6 Optimal Bounds for Weak Consistent Digital Rays in 2D

Since we want to optimize the exact constant, we need to pick the error metric carefully
(i.e., use L∞, L2, etc.). Chiu et al. used L∞ metric in their 2.5 error construction, and we
believe that the L∞ metric indeed is the metric that best captures the error of a system.
That is, the diagonals 1 to px + py form a kind of parametrization of op, and when picking a
point v on diagonal d to be on Ro(p), we argue the goal should be to minimize the distance
of v to the intersection of diagonal d and op. Let i denote this intersection point. Using L∞,
the point on op that is closest to v will always be i regardless which v on diagonal d we are
considering. This does not hold for the L2 metric where the closest point of op to (vx, vy)
and (vx + 1, vy − 1) could be two different points. For this reason, we believe that when
being careful with constant factors, it is best to consider L∞.

Our Results

In this paper, we give a tight bound on the error of a WCDR in 2D to the exact constant.
We prove the following two theorems.

▶ Theorem 1. There is a WCDR in Z2 with error 1.5 in the L∞ metric.

▶ Theorem 2. For every ϵ > 0, there is no WCDR in Z2 with error at most 1.5 − ϵ in the
L∞ metric.

We give a WCDR construction Ro such that for every p ∈ Z2, we have that the error
of Ro(p) is less than 1.5 in the L∞ metric, and we show that for any ϵ > 0 that it is not
possible to have a WCDR in 2D with error at most 1.5-ϵ in the L∞ metric. Essentially, as
the length of the segments gets larger, the error of our construction approaches 1.5 but never
reaches it, and our lower bound shows that it is not possible to do better than this.

To state our results in the context of the work of Chiu et al. [2], recall they showed that
for all segments with length N and k inner leaves between diagonals N/2 and N has error
Ω(N log N

N+k). This implies that Ω(N log N) inner leaves are required to obtain O(1) error. We
remark that for our construction, k ∈ Θ(N2). Our goal was to optimize the error and not
minimize the number of inner leaves, but we are not aware of a “simple” way to modify our
construction to obtain o(N2) inner leaves while maintaining O(1) error.

1.4 Organization of the Paper
In Section 2, we present our construction with optimal error. In Section 3, we present a
high-level overview of our lower bound argument, and we then state the lemmas and theorem
that lead to the result.

2 Upper Bound

In this section, we present a WCDR construction with error 1.5. We begin with some
preliminaries and definitions.

2.1 Preliminaries
We now define some notation that we will use throughout the paper. Let o be the origin
(0, 0). For any point p ∈ Q1 such that p ̸= o, let D(p) := px + py denote the diagonal that p

is on, and let ℓ(p) denote the Euclidean line through o and p. We define M(p) := py

px
to be

the slope of ℓ(p) if px > 0, and otherwise we define M(p) to be ∞. Let p←, p↓, p→, and p↑

denote the points (px − 1, py), (px, py − 1), (px + 1, py), and (px, py + 1) respectively. Let p↖

M. Gibson-Lopez and S. Zamarripa 26:7

a

b

o

ps

Ro(s)

Ro(p)

Figure 5 An example of Ro(s) and Ro(p) splitting apart at a and coming back together at b.
The dashed line represents Ro(s) and the solid line represents Ro(p).

and p↘ denote the points (px − 1, py + 1) and (px + 1, py − 1) respectively. For two points p

and q, we say p is above ℓ(q) if M(p) > M(q), and we say p is below ℓ(q) if M(p) ≤ M(q)
(i.e., we break ties by saying p is below ℓ(q). We say that p is between ℓ(q) and ℓ(q′) if p is
below ℓ(q) and is above ℓ(q′).

We can view any WCDR as a binary tree rooted at o, and then in this setting each point
v ∈ Q1 such that v ̸= o will have a “parent” on diagonal D(v) − 1. From this perspective,
the following procedure will produce a WCDR Ro in Q1. For each point v ∈ Q1 \ {o}, if
vx = 0 set v.parent = v↓, else if vy = 0 set v.parent = v←, else arbitrarily choose one of v↓

and v← to be v.parent. Then the digital ray Ro(p) can be computed in “reverse” by starting
at p and following the parents back to o. This procedure clearly satisfies (S1), (S2), and (S5).
We can show that (S3) will be satisfied with a simple proof by contradiction. Assume there
exists an s ∈ Ro(p) such that Ro(s) ̸⊆ Ro(p). As pointed out in [6] there must be a point
a where Ro(s) and Ro(p) split apart for the first time, and a point b when they first come
back together, see Figure 5. Note in the figure b.parent = b← in Ro(s) and b.parent = b↓ in
Ro(p). However, our procedure only allows b to select one parent for all segments that pass
through b, a contradiction. Hence, (S3) holds. Therefore a construction that was obtained
from this procedure will certainly produce a feasible WCDR, and then the goal can be to
carefully choose the parents so as to minimize the error. After a WDCR for Q1 is obtained,
it can easily be extended to Z2 by “mirroring” the construction to the other quadrants. We
remark that regular CDRs that satisfy (S4) also can be viewed as a rooted binary tree in
this way, but the key difference between the two problems is that if we want (S4), we have
to ensure that every point on diagonal d − 1 gets picked to be the parent for some point on
diagonal d. We have no such restriction when considering WCDRs; points on diagonal d − 1
that have no points on diagonal d that pick them to be a parent will be inner leaves.

2.2 The Construction

In this section we describe a method for each point in Q1 to pick its parent so that the
resulting WCDR has error 1.5. We maintain a pattern on each diagonal d such that d is a
power of 2 starting with diagonal 4. In particular, let p be a point on diagonal 2i for an
integer i ≥ 2. Then p will be a split point that will extend to points on diagonal 2i+1 if and
only if px is odd. If px is even such that 0 < px < 2i, then p will be an inner leaf. If px = 0
or px = 2i, then it is on the x or y axis and only extends to the point of diagonal 2i+1 that
is on the same axis. See Figure 6 where the split points are represented as squares and the
inner leaves are represented as crosses.

SWAT 2022

26:8 Optimal Bounds for Weak Consistent Digital Rays in 2D

(0,0) d=2 d=4 d=8 d=16

v
1

2

v
2

2

v
3

2

v
1

3

v
3

3

v
5

3

v
7

3

v
2

3

v
4

3

v
6

3

v
2

4

v
4

4

v
12

4

v
6

4

v
8

4

v
10

4

v
14

4

v
1

4

v
3

4

v
5

4

v
7

4

v
9

4

v
11

4

v
13

4

v
15

4

Figure 6 Illustrating the definitions used in the construction.

(0,0) d=2 d=4 d=8 d=16

Figure 7 Illustration of our construction of a WCDR with error 1.5 up to d = 16.

M. Gibson-Lopez and S. Zamarripa 26:9

If p is such that px ≤ 1 or py ≤ 1, then any monotone segment has error less than 1. We
will then focus on the points p such that px ≥ 2 and py ≥ 2. For each i ≥ 0, let Ci denote the
points p such that 2i < D(p) ≤ 2i+1, px ≥ 2, and py ≥ 2. Let vj

i denote the point (j, 2i − j)
(i.e., the point on diagonal 2i with x-coordinate j) for each j ∈ {1, . . . , 2i − 1}, and now
consider the lines ℓ(v1

i), ℓ(v2
i), . . . ℓ(v2i−1

i). Again suppose that i ≥ 2 (so that there are at
least 3 lines). Then let Zj

i denote all r ∈ R2 such that 2i < rx + ry ≤ 2i+1, r is below ℓ(vj
i),

and r is above ℓ(vj+1
i). We call each Zj

i a zone. Again see Figure 6 where the shaded regions
represent the zones. The intuition behind the zones is that they designate which points of
Ci we want the split points of diagonal 2i to extend to. Point vj

i will be a split point if and
only if j is odd. Then we will have that all grid points in Zj−1

i and Zj
i will have vj

i as an
“ancestor”. More specifically, as vj

i will be a split point, we will have (vj
i)↑ and (vj

i)→ will
both pick vj

i as their parent. Then all of the points of Zj−1
i will have (vj

i)↑ as an ancestor
and all the points of Zj

i will have (vj
i)→ as an ancestor.

Now let M(i, j, d) for some diagonal d ∈ {2i +1, . . . , 2i+1 −1} denote the “midpoint” of Zj
i

with respect to diagonal d. That is, it is the point (not necessarily with integer coordinates)
on diagonal d whose L∞ distance to ℓ(vj

i) and ℓ(vj+1
i) is the same. Also observe that for

every diagonal d ∈ {2i + 1, 2i+1} there is either one or two grid points on diagonal d that is in
Zj

i . This follows from the fact that the distance between ℓ(vj
i) and ℓ(vj+1

i) is 1 on diagonal
2i, and therefore for any such d the distance between the lines is greater than 1 (implying
there must be at least 1 grid point in Zj

i on diagonal d). Also on diagonal 2i+1 the distance
between the lines is 2, and therefore there cannot be 3 or more grid points on the diagonal
(since we break ties in the same direction).

Now we are ready to formally state the construction. For each p ∈ Q1, we use Algorithm
1 to pick its parent. The digital ray Ro(p) (which we will now call R(p) for brevity) then is
determined “in reverse” by going from p, p.parent, (p.parent).parent, etc. until we reach the
origin. See Figure 7 for an illustration. As mentioned before, this will certainly produce a
feasible WCDR. It remains to argue that the error of the resulting WCDR is 1.5. We remind
the reader that the error of the WCDR is the supremum of the errors of all digital rays. In
this section we prove that every digital ray in our WCDR has error less than 1.5. Then in
the next section we prove that it is not possible to have any WCDR with error strictly better
than 1.5 which implies that the supremum for our construction is in fact 1.5.

Algorithm 1 pickParent(p).

1: if px ≤ 1 and p is not (1, 0) then
2: p.parent = p↓

3: else if py ≤ 1 then
4: p.parent = p←

5: else if py is 2 and D(p) is a power of 2 then
6: p.parent = p↓

7: else if D(p) − 1 is a power of 2 then
8: Set p.parent to be whichever of p↓ and p← has odd x-coordinate.
9: else

10: Let Zj
i be the zone that p belongs to. Set p.parent to be whichever of p↓ and p← is

closest to M(i, j, D(p) − 1), breaking ties arbitrarily.

▶ Lemma 3. The WCDR produced by Algorithm 1 is such that for every p ∈ Q1, R(p) has
error less than 1.5 in the L∞ metric.

SWAT 2022

26:10 Optimal Bounds for Weak Consistent Digital Rays in 2D

Proof. Let p be any point in Q1. If px ≤ 1 or py ≤ 1 then trivially any monotone digital ray
will have error less than 1, so let us consider the points p such that px ≥ 2 and py ≥ 2.

In this paragraph, we handle the case where p does not have a zone. The only such points
p that do not have a zone are the points p such that D(p) is a power of 2 (at least 4) and py

is 2 (this is due to the fact that we break ties by rounding down, and the region below these
points are not in any zone). Consider “walking” along R(p) for these p starting at p and
walking back towards o. The segment moves vertically once, then moves horizontally until
we reach (1, 1), then moves vertically once, then finally horizontally once to reach o. Clearly
this segment has error less than 1 for all such p.

For the remainder of the proof, assume that p does have a zone. At a high level, we show
that R(p) will only contain grid points that are in zones that are intersected by ℓ(p) (until
we reach a grid point with some coordinate that is 1). This gets us most of the way there,
but zones have diagonal widths that approach 2 as we reach the next power of 2 diagonal
from the origin. This means that it could be possible to have that R(p) only contains grid
points that are in zones intersected by ℓ(p) and yet the error approaches 2. We will show
that given our construction, the error of R(p) will in fact be less than 1.5.

For every q ∈ R(p) such that qx > 1 and qy > 1, ℓ(p) intersects the zone of q. Let Zj
i

denote the zone that p belongs to. We first argue that when walking from p to o along R(p),
the segment “stays inside” Zj

i until we reach diagonal 2i. This can be argued inductively:
take any q ∈ R(p) that is in Zj

i . If D(q) = 2i + 1 then we are done, so suppose D(q) > 2i + 1.
Then q picked its parent by choosing whichever of q↓ and q← is closest to the midpoint of
Zj

i . Since there must be at least one grid point on diagonal D(q) − 1 in Zj
i , it must be that

at least one of q↓ and q← is in Zj
i . Indeed, if q↓ is above ℓ(vj

i) or q← is below ℓ(vj+1
i) then q

would not be in Zj
i , and if q← is above ℓ(vj

i) and q↓ is below ℓ(vj+1
i) then there would not

be any grid point on D(q) − 1 in Zj
i . So q has at least one parent option in Zj

i , and a point
in Zj

i clearly must be closer to the midpoint than a point outside Zj
i , and therefore q.parent

will be in Zj
i .

Now consider the first point we encounter on R(p) that is not in Zj
i when walking along

R(p) towards o. This point is either vj+1
i or vj

i (depending on if j is odd or even). If this
point has some coordinate that is 1, then we are done, so suppose it doesn’t and therefore has
a zone. In the case where j is even, then we reach vj+1

i “from above”. Note that the “top line”
of vj+1

i ’s zone is the same as the “top line” of p’s zone (the points used to define the respective
lines have the same slope). Therefore ℓ(p) will intersect vj+1

i ’s zone. Symmetrically, when j

is odd then we reach vj
i “from the right”, and in this scenario we have that ℓ(vj+1

i) is the
same line as the “bottom line” of vj

i ’s zone, and therefore ℓ(p) intersects vj
i ’s zone. We then

can apply these arguments inductively to see that R(p) will stay inside the zones intersected
by ℓ(p) until we reach a point with some coordinate that is 1.

If R(p) contains a point q that is distance at least 1.5 to one of the lines ℓ defining
its zone, then every q′ such that D(q) < D(q′) ≤ D(p) is in the same zone and is
distance at least 1.5 from ℓ. Consider such a q, and let Zj

i denote the zone of q. Note
that by the above argument, it must be that ℓ(p) intersects Zj

i . If q is p then we are done,
so suppose q is not p. Then some point q′ ∈ R(p) picked q to be its parent. We will first
argue that q′ must also be in Zj

i . Of course it must be in a zone intersected by ℓ(p), and
therefore it cannot be in Zj−1

i or Zj+1
i . Moreover the only point in Zj

i that is chosen to be
the parent of a point in a different zone is the split point on diagonal 2i+1, but this point is
distance 1 to both lines defining the zone, and therefore cannot be q. This implies that q′

must also be in Zj
i .

M. Gibson-Lopez and S. Zamarripa 26:11

o

p

(2px, 2py)

Ro(2px, 2py)

1

Figure 8 Illustrating for any inner leaf p the segment Ro(2px, 2py) must have error of at least 1.

Now suppose without loss of generality we have that the distance from q to ℓ(vj+1
i) is

at least 1.5. We will show that the distance from q′ to ℓ(vj+1
i) is also at least 1.5. We will

do this by showing that q′ must be q↑. Note that when q′ picked q as its parent, it must
have done so in the last line of Algorithm 1 since D(q) cannot be a power of 2. Since the
distance from q to ℓ(vj+1

i) is at least 1.5 it must be that q↘ is also in Zj
i . Moreover since the

distance between ℓ(vj
i) and ℓ(vj+1

i) is less than 2 on D(q) it must be that the distance from
q to ℓ(vj

i) is less than 0.5, which implies that the distance from q↘ to ℓ(vj
i) is less than 1.5.

So which point could have picked q as its parent? It could not have been q→, as it would
have preferred q↘ as its parent over q. Therefore it must have been q↑ that picked q as its
parent, and q↑ will be farther from ℓ(vj+1

i) than q.

Putting it all together. Now consider R(p), let Zj
i denote p’s zone, and consider any point

q ∈ R(p). We will argue that the distance from q to ℓ(p) is less than 1.5 on D(q). If q is
distance at least 1.5 from one of the lines for its zone, then by the previous argument we
have that p is in the same zone as q and is distance more than 1.5 from the same line. Since
the “width” of the zone at D(q) is less than 2, this implies that the distance from q to ℓ(p)
on D(q) is less than 0.5. So now assume that q is less than 1.5 to both lines of its zone. Since
we know that ℓ(p) intersects the zone of q, it directly follows that the distance from q to ℓ(p)
on D(q) is less than 1.5. ◀

3 Lower Bound

In this section, we prove Theorem 2 which implies that Algorithm 1 produces a WCDR with
an optimal error of 1.5. Due to lack of space, we will only sketch the proof.

3.1 Trivial Lower Bounds

There is no known previous work in obtaining a lower bound. There is a trivial lower bound
of 0.5 for the segment R((1, 1)). There are two options for the segment (pass through either
(0, 1) or (1, 0)), and both of them have an error of 0.5. We can also obtain a fairly easy
lower bound of 1 by considering the effects of inner leaves. If a WCDR does not have any
inner leaves, then it satisfies (S4) as well and therefore is actually a CDR and therefore has
Ω(log n) error, so consider an WCDR, Ro, that has an inner leaf p. We can show that it
must have an error of at least 1 in the following way. Consider the segment Ro((2px, 2py)).
Trivially, ℓ(2px, 2py) passes through p, but by assumption p is an inner leaf and therefore
Ro((2px, 2py)) must pass through a point on D(p) that is either “above” p or “below” p, see
Figure 8. Hence, any WCDR must have error of at least 1.

SWAT 2022

26:12 Optimal Bounds for Weak Consistent Digital Rays in 2D

So obtaining a lower bound of 0.5 is trivial, improving it to 1 is fairly simple, but improving
it to 1.5 (which is tight given our construction) is more technical.

3.2 Tight Lower Bound Preliminaries
We begin with some definitions that we use in the lower bound proof. Fix any WCDR in
Z2. Recall we are proving that for any ϵ > 0, it is not possible for the WCDR to have
error at most 1.5 − ϵ. For a sufficiently large integer N (which depends on ϵ), we will “cut
off” the WCDR at diagonal N , obtaining a finite WCDR that is sufficient for proving the
lower bound. This allows us to use maximums and minimums in our definitions rather than
supremums and infimums. Similar to the previous section, we only consider the first quadrant
Q1 of o. We say that a point v extends to diagonal d > D(v) if there is some point p with
D(p) = d such that v ∈ R(p). Similarly, if we say that v extends to p if v ∈ R(p). We let
Subtree(v) denote the set of all grid points that v extends to. For any subset S of the grid
points, we define Cone(S) to denote all points that are between ℓ(t) and ℓ(r), where t is the
point in S with maximum slope, and r is the point in S with minimum slope. We define
ConeWidth(S, d) to be the distance between ℓ(t) and ℓ(r) on diagonal d. For a split point s,
we call Subtree(s→) the bottom branch of s, and we call Subtree(s↑) the top branch of s.

We will use the following lemma in our lower bound proof.

▶ Lemma 4. Suppose we have a WCDR in Z2 with error less than 1.5, and further suppose
there is a point v that does not extend to diagonal d for some d > D(v). Then v↖ extends to
diagonal d (if it is in Q1), and v↘ extends to diagonal d (if it is in Q1).

Proof. Suppose the contrary. Without loss of generality, suppose that v↘ also does not
extend to diagonal d. Then on some diagonal d′ > d there will be a grid point p such that
M(p) = M(v)+M(v↘)

2 (because the slopes are rational). Then v and v↘ are both distance 0.5
to ℓ(p), but R(p) cannot contain v or v↘. Therefore no matter which point from diagonal
D(v) is on R(p), we must have that the error at that point is at least 1.5, a contradiction. ◀

3.3 Tight Lower Bound Proof Sketch
We now give a high level overview of our lower bound proof. Suppose we have any WCDR
construction with error at most 1.5. We will show that there is some point p ∈ Z2 such that
1. py > px but M(p) is “very close” to 1,
2. ConeWidth(Subtree(p), D(p)) is “very close” to 2,
3. and p is “very close” to the center of Cone(Subtree(p)) on diagonal D(p).

Suppose we can show the existence of such a point p. We will show that this implies that
no matter which point p picks as its parent, the error of that choice will be “very close” to
1.5. See Figure 9 (a). Let t be the point in Subtree(p) with maximum slope, and let r be
the point in Subtree(p) with minimum slope. From the assumptions on p, we have that ℓ(t)
is a distance of close to 1 “above” p on D(p), and ℓ(r) is a distance of close to 1 “below” p

on D(p). Moreover M(p) is “very close” to 1 (which implies that M(t) and M(r) also are
“very close” to 1 if D(p) is “sufficiently large”). Whichever point p picked as its parent will
be on R(t) and R(r). But if p picks p← as its parent, p← will have a distance that is “very
close” to 1.5 from ℓ(r). If p picks p↓ as its parent, p↓ will have a distance that is “very close”
to 1.5 from ℓ(t). Therefore the WCDR will have to have an error that is “very close” to 1.5
no matter which choice p made.

M. Gibson-Lopez and S. Zamarripa 26:13

p

ℓ(t)

≈ 1

ℓ(r)

≈ 1

≈ 1.5

≈ 1.5

s

r

t

ℓ(r)

ℓ(t)

≈ 2

(a) (b)

Figure 9 (a) p satisfies the three properties above and no matter which parent it picks, the error
will be close to 1.5. (b) ConeW idth(Subtree(s), D(r)) is close to 2. D(r) − D(s) will be sufficiently
small so that ConeW idth(Subtree(s), D(s)) is also close to 2.

Now to show that for any ϵ > 0 that there is no WCDR with error at most 1.5 − ϵ, we
pick a δ such that 0 < δ < min{ϵ, 0.1} and we show that such a point p exists where “very
close” is a function of δ. Then the above analysis will show that no matter which point p

picks as its parent, the error will have to be at least 1.5 − δ > 1.5 − ϵ.
We show that p exists by showing that there must be a split point s that satisfies:
1 + 2δ

3−2δ < M(s) < 1 + 4δ
3−2δ

ConeWidth(Subtree(s), D(s)) is “very close” to 2.

Since M(s) > 1, eventually it will either have to make two consecutive vertical extensions
in its bottom branch, or it will have to have a split point in Subtree(s). We can show that
this will imply that ConeWidth(Subtree(s), D(s)) is “very close” to 2. For example, see
Figure 9 (b) which shows a split point with two consecutive vertical extensions in its bottom
branch. It then follows that s must extend to the points t and r, where r is the point at the
“bottom” of the double vertical extension in the bottom branch of s, and t is ((r↑)↑)↖. Since
M(s), M(r) and M(t) are all “very close” to 1, it follows that ConeWidth(Subtree(s), D(r))
is “very close” to 2, and we in fact will show that ConeWidth(s, D(s)) remains “very close”
to 2 as D(r) is sufficiently close to D(s). Recall we are looking for a point p with 3 properties.
Certainly s satisfies both properties (1) and (2) above, but it may not satisfy (3). But we
will show that we do not have to go “too many” diagonals before D(s) before we must find a
point p ∈ R(s) that is close to the center of its cone and still satisfies (1) and (2). In order
to show this last part, we need D(s) to be sufficiently large.

3.4 Formal Proof
For any ϵ > 0, fix any δ such that 0 < δ < min{ϵ, 0.1}. The following lemma proves the
existence of the split point s as we described in the proof sketch. The proof appears in
Appendix A.

▶ Lemma 5. For any WCDR in Z2 with error less than 1.5 and any 0 < δ ≤ 0.1 there is a
split point s that satisfies the following:
1. For every p ∈ Subtree(s), 1 + 2δ

3−2δ < M(p) < 1 + 4δ
3−2δ

2. ConeWidth(Subtree(s), D(s) + 7+δ
δ) > 2 − 2δ

3
3. 63

δ2 ≤ D(s) ≤ 382
δ2− 2

3 δ3

SWAT 2022

26:14 Optimal Bounds for Weak Consistent Digital Rays in 2D

Using the existence of s from Lemma 5, we can prove the lower bound. We show that
given such an s, there there must be a point p as described in the proof sketch. Then it is
the case that p is on a segment whose error is at least 1.5 − δ > 1.5 − ϵ. The proof is omitted
due to lack of space.

References

1 Man-Kwun Chiu and Matias Korman. High dimensional consistent digital segments. SIAM J.
Discret. Math., 32(4):2566–2590, 2018. doi:10.1137/17M1136572.

2 Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama. Distance bounds
for high dimensional consistent digital rays and 2-d partially-consistent digital rays. In Fabrizio
Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium
on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume
173 of LIPIcs, pages 34:1–34:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ESA.2020.34.

3 Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama. Distance bounds
for high dimensional consistent digital rays and 2-d partially-consistent digital rays. CoRR,
abs/2006.14059, 2020. arXiv:2006.14059.

4 Iffat Chowdhury and Matt Gibson. A characterization of consistent digital line segments in
Z2. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September
14-16, 2015, Proceedings, pages 337–348, 2015. doi:10.1007/978-3-662-48350-3_29.

5 Iffat Chowdhury and Matt Gibson. Constructing consistent digital line segments. In Evangelos
Kranakis, Gonzalo Navarro, and Edgar Chávez, editors, LATIN 2016: Theoretical Informatics
- 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, volume
9644 of Lecture Notes in Computer Science, pages 263–274. Springer, 2016. doi:10.1007/
978-3-662-49529-2_20.

6 Tobias Christ, Dömötör Pálvölgyi, and Milos Stojakovic. Consistent digital line segments.
Discrete & Computational Geometry, 47(4):691–710, 2012. doi:10.1007/s00454-012-9411-y.

7 Jinhee Chun, Matias Korman, Martin Nöllenburg, and Takeshi Tokuyama. Consistent
digital rays. Discrete & Computational Geometry, 42(3):359–378, 2009. doi:10.1007/
s00454-009-9166-2.

8 Michael G. Luby. Grid geometries which preserve properties of euclidean geometry: A study
of graphics line drawing algorithms. In Rae A. Earnshaw, editor, Theoretical Foundations of
Computer Graphics and CAD, volume 40, pages 397–432, 1988.

A Proof of Lemma 5

Our proof will use the following observations.

▶ Observation 6. Given a set of points, S, the number of grid points between Cone(S) on
diagonal d must be either ⌊ConeWidth(S, d)⌋ or ⌊ConeWidth(S, d)⌋ + 1.

Let Inter(ℓ(p), d) be the point ℓ(p) intersects diagonal d.

▶ Observation 7. Given a point p and a diagonal d, the x-coordinate of the Inter(ℓ(p), d) is
d px

px+py
, and the y-coordinate of Inter(ℓ(p), d) is d

py

px+py
.

Fix any 0 < δ ≤ 0.1. Suppose there exists a WCDR with error at most 1.5-δ. We prove
the lemma by first showing how to pick the split point s from the WCDR, and then we show
that this choice of s must satisfy the three conditions of Lemma 5.

https://doi.org/10.1137/17M1136572
https://doi.org/10.4230/LIPIcs.ESA.2020.34
http://arxiv.org/abs/2006.14059
https://doi.org/10.1007/978-3-662-48350-3_29
https://doi.org/10.1007/978-3-662-49529-2_20
https://doi.org/10.1007/978-3-662-49529-2_20
https://doi.org/10.1007/s00454-012-9411-y
https://doi.org/10.1007/s00454-009-9166-2
https://doi.org/10.1007/s00454-009-9166-2

M. Gibson-Lopez and S. Zamarripa 26:15

Σ

(x, y)

(x− 21, y + 21)

ℓ(r)

ℓ(t)

Figure 10 An illustration of the consecutive grid points in Σ.

Picking the split point s. Let x := ⌈ 200
δ2 ⌉, y := x+⌈ 600−182δ

δ(3−2δ) ⌉, and N := x+y. Let Σ denote
the subset of consecutive grid points along diagonal N from the grid point (x − 21, y + 21)
to (x, y). Let ℓ(t) and ℓ(r) be the Euclidean lines as previously defined for Cone(Σ). That is
t is the point in Σ with maximum slope, and r is the point in Σ with minimum slope. See
Figure 10. We will first show that (3) from Lemma 5 must be satisfied. Let N ′ := ⌈20 N

21 ⌉,
and let Σ′ denote the set of points between ℓ(t) and ℓ(r) on N ′. Notice that the width
of Cone(Σ) increases by 1 every N

21 diagonals. That is to say that ConeWidth(Σ, 20
21 N) =

ConeWidth(Σ, N) − 1 = 20. It follows that ConeWidth(Σ, N ′) ≥ 20 which implies from
Observation 6 that |Σ′| ≥ 20.

We will lower bound the number of points in Σ′ that must extend to a point in Σ. Let p

be a point in Σ′. There are three cases for why p does not extend to a point in Σ. The first
is that p extends to a point above ℓ(t), the second is p extends to a point below ℓ(r), and the
third is that p does not extend to N . Let us consider the first case. Let p extend to a point
q, such that q /∈ Σ, D(q) = N , and q is above ℓ(t). Consider the point w := (x − 22, y + 22).
Notice that w↘ is on ℓ(t) and D(w) = N . It follows that M(q) ≥ M(w).

We would like to know the difference in x-coordinates when ℓ(w) and ℓ(w↘) intersect
N ′. Recall that N ′ = ⌈ 20

21 N⌉, which implies that N ′ ≥ 20
21 N . We know that the difference

in x-coordinates of w↘ and w is 1. It then follows that the difference in x-coordinates of
Inter(ℓ(w↘), N ′) and Inter(ℓ(w), N ′) is at least 20

21 . Therefore error of R(q) is at least the
difference between px and the x-coordinate of Inter(ℓ(w↘), N ′) plus 20

21 . It follows that p can
only be the point with the largest slope in Σ′, otherwise error for R(q) is greater than 1 + 20

21 .
See Figure 11. We now analyze case two with a similar argument. Let l := (x + 1, y − 1). If
p extends to a point on N that is below ℓ(r), then error of R(q) is at least the difference
between the x-coordinate of Inter(ℓ(l↖), N ′) and px plus 20

21 . It then follows that p can only
be the point with the smallest slope in Σ′, otherwise error for R(q) is greater than 1 + 20

21 .
Therefore there are only two points in Σ′ that can extend to a point on N that is not in Σ.
It follows that there are at least 20 − 2 = 18 points in Σ′ that either extend to a point in Σ
or do not extend to N . If a point p ∈ Σ′ does not extend to N then from Lemma 4 it must
be that p↖ and p↘ extend to N . It then follows that the number of points that must extend
to Σ is at least 18

2 = 9.

SWAT 2022

26:16 Optimal Bounds for Weak Consistent Digital Rays in 2D

w

w
ց

Σ

Σ
′

>
20

21

N

N
′

Figure 11 An example of why p must be the point with the highest slope in Σ′. Note that the
difference between N and N ′ is not drawn to scale.

ℓ(t)

ℓ(r)

N
′′

Figure 12 An example of the maximum points on N ′′ that can extend to Σ. α is represented by
the outside purple lines.

Next we will upper bound the number of points on diagonal N ′′ := ⌊5 N
21 ⌋ that can extend

to a point in Σ. Let p be a point on N ′′ that extends to Σ. Let α be a cone such that the
top edge is 1.5 − δ above ℓ(t) on N ′′ and the bottom edge is 1.5 − δ below ℓ(r) on N ′′. If p

is more than 1.5 − δ above ℓ(t) or more than 1.5 − δ below ℓ(r) then the error is more than
1.5 − δ. It follows that p must be between the edges of α. Recall that the width of Cone(Σ)
increases by 1 every N

21 diagonals. It follows that ConeWidth(Σ, N ′′) ≤ 5 which implies that
the cone width of α on N ′′ is at most 5 + 3 − 2δ. Therefore the cone width of α on N ′′ is less
than 8. It follows from Observation 6 that the number of grid points between α on N ′′ is at
most 8. Therefore there are at most 8 points on N ′′ that can extend to Σ. See Figure 12.

Since there is at least 9 points in Σ′ that extend to a point in Σ, and there is at most 8
points on N ′′ that extend to a point in Σ, it follows that there must be a split point s such
that N ′′ ≤ D(s) < N ′, that has both s↑ and s→ extend to at least one point in Σ. This is
the split point s that we will now show satisfies the three conditions of the lemma.

Proving s satisfies (3). We have N ′′ ≤ D(s) < N ′. We first will show that 63
δ2 ≤ N ′′ by

showing that 63
δ2 ≤ ⌊ 5

21 N⌋ is true. We have N = 2⌈ 200
δ2 ⌉ + ⌈ 600−182δ

δ(3−2δ) ⌉ ≥ 272
δ2 for all δ ∈ (0, 0.1],

and therefore 63
δ2 ≤ ⌊ 5

21 (272
δ2)⌋. Thus 63

δ2 ≤ ⌊ 5
21 N⌋ is true which implies 63

δ2 ≤ N ′′.

M. Gibson-Lopez and S. Zamarripa 26:17

ℓ(r)

N
′′

P

y = 3

3−2δ

Figure 13 An illustration of P under ℓ(r). The Euclidean line with slope 3
3−2δ

is represented by
the purple line on the bottom.

Next we want to show that N ′ ≤ 382
δ2− 2

3 δ3 by showing that ⌈ 20
21 N⌉ ≤ 382

δ2− 2
3 δ3 . We have

N = 2⌈ 200
δ2 ⌉ + ⌈ 600−182δ

δ(3−2δ) ⌉ ≤ 400
δ2− 2

3 δ3 for all δ ∈ (0, 0.1], and ⌈ 20
21 (400

δ2− 2
3 δ3)⌉ ≤ 382

δ2− 2
3 δ3 . Thus

⌈ 20
21 N⌉ ≤ 382

δ2− 2
3 δ3 which implies N ′ ≤ 382

δ2− 2
3 δ3 . This concludes the proof of (3) from Lemma 5.

Proving s satisfies (1). While it is true that both s↑ and s→ must extend to at least
one grid point in Σ, it is possible that they also extend to grid points outside of Σ on N .
However, any ℓ(p), such that p ∈ Subtree(s), must cross D(s) at most 1.5 − δ above or below
s. Moreover, since s extends to at least two grid points in Σ it must be that s can be at
most 1.5 − δ above ℓ(t) or at most 1.5 − δ below ℓ(r). It follows that any ℓ(p), such that
p ∈ Subtree(s), must cross D(s) at most 3 − 2δ above ℓ(t) or at most 3 − 2δ below ℓ(r).
Recall that we just showed that (3) from Lemma 5 is true. Therefore to prove (1) from
Lemma 5 we will show that M(p) < 1 + 4δ

3−2δ for every point p that is 3 above ℓ(t) such that
N ′′ ≤ D(p) < N ′, and that M(p) > 1 + 2δ

3−2δ for every point p that is 3 below ℓ(r) such that
N ′′ ≤ D(p) < N ′.

We will begin by first showing that M(p) > 1 + 2δ
3−2δ = 3

3−2δ for every point p that is 3
below ℓ(r) such that N ′′ ≤ D(p) < N ′. Let p ∈ P be the set of all points such that p is 3 below
ℓ(r) and N ′′ ≤ D(p) < N ′. Notice that the point p ∈ P with minimum slope is such that

D(p) = N ′′. See Figure 13. Recall that M(r) = y
x =

⌈ 200
δ2 ⌉+⌈

600−182δ

3δ−2δ2 ⌉
⌈ 200

δ2 ⌉
≥ 3+δ−0.91δ2

3−2δ+0.015δ2−0.01δ3 .
From Observation 7 we can obtain the x-coordinate of the intersection of ℓ(r) and our bound
on N ′′ with (63

δ2) · (3−2δ+0.015δ2−0.01δ3

6−δ−0.89δ2−0.01δ3) ≤ 189−125.055δ
6δ2−1.905δ3 since δ is at most 0.1. Similarly, we can

obtain the x-coordinate of the intersection of the line with slope 3
3−2δ and our bound on N ′′

with (63
δ2) · (3−2δ

6−2δ) = 189−126δ
6δ2−2δ3 . If 189−126δ

6δ2−2δ3 − 189−125.055δ
6δ2−1.905δ3 > 3 is true, then M(p) > 3

3−2δ for all
p ∈ P . We have 189−126δ

6δ2−2δ3 − 189−125.055δ
6δ2−1.905δ3 > 3 which is true if 24.57−236.16δ+140.58δ2+22.86δ3

72δ−46.86δ2−7.62δ3 > 0.
The denominator is always positive since δ is at most 0.1. It follows from δ ≤ 0.1 that the
numerator is always positive. Indeed, 24.57−236.16(0.1)+140.58(0.1)2+22.86(0.1)3 = 2.38266.
Thus M(p) > 3

3−2δ for all p ∈ P which implies that for every p ∈ Subtree(s) it must be that
M(p) > 3

3−2δ .

SWAT 2022

26:18 Optimal Bounds for Weak Consistent Digital Rays in 2D

s

s
′

d

≥ 2s
′↑տ

Figure 14 An illustration of the first case.

Next we will show that M(p) < 1 + 4δ
3−2δ = 3+2δ

3−2δ for every point p that is 3 above ℓ(t)
such that N ′′ ≤ D(p) < N ′. Let p ∈ P ′ be the set of all points such that p is 3 above

ℓ(t) and N ′′ ≤ D(p) < N ′. Recall that M(t) = y+21
x−21 =

⌈ 200
δ2 ⌉+⌈

600−182δ

3δ−2δ2 ⌉+21
⌈ 200

δ2 ⌉−21 ≤ 3+δ
3−2.5δ . From

Observation 7 we can obtain the x-coordinate of the intersection of ℓ(t) and our bound
on N ′′ with (63

δ2) · (3−2.5δ
6−1.5δ) = 189−157.5δ

6δ2−1.5δ3 . Similarly, we can obtain the x-coordinate of the
intersection of the line with slope 3+2δ

3−2δ and our bound on N ′′ with (63
δ2) · (3−2δ

6) = 189−126δ
6δ2 .

If 189−157.5δ
6δ2−1.5δ3 − 189−126δ

6δ2 > 3 is true then M(p) < 3+2δ
3−2δ for all p ∈ P ′. We then have

189−157.5δ
6δ2−1.5δ3 − 189−126δ

6δ2 > 3 is true if 186−594δ+54δ2

72δ−18δ2 > 0. The denominator is always positive
since δ is at most 0.1. The numerator is positive since δ ≤ 0.1. Indeed, when δ = 0.1 we
have 186 − 594(0.1) + 54(0.1)2 = 127.14. Thus M(p) < 3+2δ

3−2δ for all p ∈ P ′ which implies
that for every p ∈ Subtree(s) it must be that M(p) < 3+2δ

3−2δ . Therefore it must be that for
every p ∈ Subtree(s) that 1 + 2δ

3−2δ < M(p) < 1 + 4δ
3−2δ . This concludes the proof of (1) from

Lemma 5.

Proving s satisfies (2). We will first show that N −D(s) > 7+δ
δ , and then use this bound to

show that (2) must be true. Recall that N = x + y = 2⌈ 200
δ2 ⌉ + ⌈ 600−182δ

δ(3−2δ) ⌉ ≥ 1200−200δ−182δ2

3δ2−2δ3 .
Next, recall that D(s) < N ′ ≤ 382

δ2− 2
3 δ3 . The difference between these two bounds is

1200−200δ−182δ2

3δ2−2δ3 − 382
δ2− 2

3 δ3 = 54−200δ−182δ2

3δ2−2δ3 . Clearly we can see that 54−200δ−182δ2

3δ2−2δ3 > 7+δ
δ is

true. It follows that N − D(s) > 7+δ
δ . Let d = D(s) + 7+δ

δ . Recall that s↑ extends to at
least one point in Σ and s→ must also extend to at least one point in Σ. It then follows from
N − D(s) > 7+δ

δ that s↑ extends to at least one point on d and s→ must also extend to at
least one point on d. We will show that this implies that ConeWidth(Subtree(s), d) > 2− 2δ

3 .
There are two cases to consider. The first is there is a split point in the path from

s→ before d, and the second is there is no split point in the path from s→ before d. Let
us consider the first case. Let s′ be a split point in the path from s→. We will show
that ConeWidth(Subtree(s), D(s′) + 1) ≥ 2. By assumption D(s′) < d which implies that
D(s′) + 1 ≤ d. Trivially, s→ ∈ R(s′→) and s→ ∈ R(s′↑). Furthermore, since s↑ must extend
to d it then trivially extends to D(s′) + 1. We also know from (S3) that any point that s↑

extends to on D(s′) + 1 must be above s′↑. Notice that the diagonal distance between s′→

and s′↑↖ is 2. It then follows that ConeWidth(Subtree(s), D(s′) + 1) ≥ 2 which implies
ConeWidth(Subtree(s), d) ≥ 2. See Figure 14.

In the second case we consider the point h := (sx + 1.5, sy − 1.5). Recall that the error is
less than 1.5. This implies that the bottom edge of Cone(Subtree(s)) must intersect D(s)
above h. See Figure 15. It follows that all points in Subtree(s→) have slope greater than

M. Gibson-Lopez and S. Zamarripa 26:19

s

h

pj′

Figure 15 An illustration of the points of the form pj and the point h.

pj′

s

r′

t′
> 2− 2δ

3

ℓ(t′)

Figure 16 An illustration of how two consecutive movements on the path from s→ to d implies
that ConeW idth(Subtree(s), D(r′) > 2 − 2δ

3 .

M(h) otherwise the error is at least 1.5. Let the points pj be of the form pj := (s→x +j, s→y +j)
for any j ≥ 1. If s→ extends to a pj then it must be that the path from s→ to diagonal
D(pj) has j vertical and j horizontal movements. We would like to know the maximum j for
which s→ can extend to pj such that M(pj) > M(h). Notice that s→ = (hx − 0.5, hy + 1.5)
which implies M(pj) = hy+1.5+j

hx−0.5+j . We will now solve for which j satisfies hy+1.5+j
hx−0.5+j ≤ M(h).

Notice this is equivalent as asking for what j satisfies hy+1.5+j
hx−0.5+j ≤ hy

hx
. We then have

hyhx + hx(1.5 + j) ≤ hyhx + hy(j − 0.5) =⇒ 1.5+j
j−0.5 ≤ hy

hx
. Thus we would like to know for

which j satisfies 1.5+j
j−0.5 ≤ M(h).

Given a fixed M(s), we can see that M(h) grows as D(s) becomes larger. Recall that
M(s) > 3

3−2δ and D(s) ≥ N ′′. It follows that M(h) is at least the slope of the point, q, that
is 1.5 diagonal distance below Inter(ℓ(3 − 2δ, 3), N ′′). From Observation 7 we then have
qx = 3−2δ

6−2δ N ′′ + 1.5 ≤ 189−117δ
6δ2−2δ3 and qy = N ′′ − 189−117δ

6δ2−2δ3 = 189−9δ
6δ2−2δ3 . We can then conclude

that M(h) ≥ 189−9δ
189−117δ .

It follows that if we find for which j is 1.5+j
j−0.5 ≤ 189−9δ

189−117δ true, it will also be true for
1.5+j
j−0.5 ≤ M(h). We then have 1.5+j

j−0.5 ≤ 189−9δ
189−117δ is true for all j ≥ 378−180δ

108δ . Therefore the
maximum j for which s→ can extend to pj is j = ⌈ 378−180δ

108δ ⌉ − 1. Let j′ := ⌈ 378−180δ
108δ ⌉, that

is the maximum j plus 1. Let us then consider what point s→ must extend to on D(pj′).
Because M(pj′) < M(h) it must be that s→ extends to a point who’s slope is at minimum
M(p↖j′). Recall that pj′ is j′ vertical and j′ horizontal movements away from s→. It then
follows that p↖j′ is j′ + 1 vertical and j′ − 1 horizontal movements away from s→. Therefore

SWAT 2022

26:20 Optimal Bounds for Weak Consistent Digital Rays in 2D

the path from s→ to D(pj′) must have at least two more vertical than horizontal movements.
It then follows from pigeonhole principle that the path from s→ to D(pj′) must contain at
least two consecutive vertical movements. See Figure 16.

Notice that D(pj′) = D(s)+2j′+1 = D(s)+2·⌈ 378−180δ
108δ ⌉+1 < D(s)+2·(378−180δ

108δ +1)+1 ≤
D(s) + 7

δ . Recall that d = D(s) + 7+δ
δ . Clearly D(pj′) < d. Therefore the path from s→ to d

must contain at least two consecutive vertical movements. We will now show these consecutive
vertical movements imply ConeWidth(Subtree(s), d) > 2 − 2δ

3 . Let r′ be a point such that
D(r′) ≤ d−2 and s→ extends to r′, r′↑, and r′↑↑. Let t′ := r′↑↑↖. Recall that s↑ must extend
to N which implies s↑ also extends to D(t′). We also know from (S3) that any point that s↑

extends to on D(t′) must be above r′↑↑. This implies that ConeWidth(Subtree(s), D(r′)) is
at least the diagonal distance between r′ and Inter(ℓ(t′), D(r′)). As we showed in our proof
of (1) from Lemma 5 all points s extends to must have slope less than 3+2δ

3−2δ which implies that
M(t′) < 3+2δ

3−2δ , otherwise there is no point s↑ can extend to on D(t′). Let z be the point that is
2− 2δ

3 above r′. Let t′ be the Euclidean line that intersects both t′ and z. If Inter(ℓ(t′), D(r′))
is above Inter(t′, D(r′)) then ConeWidth(Subtree(s), D(r′)) > 2 − 2δ

3 . We then have
M(t′) = t′

y−zy

t′
x−zx

= t′
y−(t′

y−(1+ 2δ
3))

t′
x−(t′

x−(1− 2δ
3)) = 3+2δ

3−2δ . It then follows that M(t′) < M(t′) which implies
that Inter(ℓ(t′), D(r′)) is above Inter(t′, D(r′)). Thus ConeWidth(Subtree(s), D(r′)) >

2 − 2δ
3 which implies that ConeWidth(Subtree(s), d) > 2 − 2δ

3 . This concludes the proof of
(2) from Lemma 5, which then concludes the entire proof of Lemma 5.

Matroid-Constrained Maximum Vertex Cover:
Approximate Kernels and Streaming Algorithms
Chien-Chung Huang #

CNRS, DI ENS, École normale supérieure, Université PSL, Paris, France

François Sellier #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
MINES ParisTech, Université PSL, F-75006, Paris, France

Abstract
Given a graph with weights on the edges and a matroid imposed on the vertices, our problem is to
choose a subset of vertices that is independent in the matroid, with the objective of maximizing the
total weight of covered edges. This problem is a generalization of the much studied max k-vertex
cover problem, where the matroid is the simple uniform matroid, and it is also a special case of
maximizing a monotone submodular function under a matroid constraint.

In this work, we give a Fixed Parameter Tractable Approximation Scheme (FPT-AS) when the
given matroid is a partition matroid, a laminar matroid, or a transversal matroid. Precisely, if k

is the rank of the matroid, we obtain (1 − ε) approximation using
(

1
ε

)O(k)
nO(1) time for partition

and laminar matroids and using
(

1
ε

+ k
)O(k)

nO(1) time for transversal matroids. This extends a
result of Manurangsi for uniform matroids [26]. We also show that these ideas can be applied in the
context of (single-pass) streaming algorithms.

Our FPT-AS introduces a new technique based on matroid union, which may be of independent
interest in extremal combinatorics.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Approximation algorithms analysis; Theory of computation
→ Streaming, sublinear and near linear time algorithms

Keywords and phrases Maximum vertex cover, matroid, approximate kernel, streaming

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.27

Funding This work was funded by the grants ANR-19-CE48-0016 and ANR-18-CE40-0025-01 from
the French National Research Agency (ANR).

Acknowledgements The authors thank the anonymous reviewers for their helpful comments. One of
them especially pointed out a mistake on a counter-example for gammoids in the submitted version.

1 Introduction

Let G = (V, E) be a graph. A weight w(e) is associated with each edge e ∈ E. By convention
we set n = |V | and m = |E|. For a vertex v ∈ V we define δ(v) the set of edges that are
incident to v. The degree of a vertex v ∈ V , denoted deg(v), is the size of δ(v), and we define
the weighted degree of a vertex v ∈ V as the sum degw(v) =

∑
e∈δ(v) w(e). For two sets of

vertices S, T ⊆ V in a graph G, we denote EG(S, T) =
∑

e∈E,e∩S ̸=∅,e∩T ̸=∅ w(e) the sum of
the weights of the edges that have one endpoint in S and one endpoint in T . Then EG(S, S),
abbreviated EG(S), denotes the sum of the weights of the edges that are covered by S (i.e.
having at least one of its endpoints in S).

Let M = (V, I) be a matroid on the ground set V . Recall that M = (V, I) is a matroid
if the following three conditions hold: (1) ∅ ∈ I, (2) if X ⊆ Y ∈ I, then X ∈ I, and (3) if
X, Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so that X ∪ {e} ∈ I. The sets in I

© Chien-Chung Huang and François Sellier;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chien-chung.huang@ens.fr
mailto:francois.sellier@mines-paristech.fr
https://doi.org/10.4230/LIPIcs.SWAT.2022.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and Streaming

are the independent sets and the rank k of the matroid M is defined as maxX∈I |X|. For
more details about matroids, we refer the reader to [33]. In this paper, given a set S ⊆ V

and v ∈ V , we will denote S ∪ {v} by S + v and S\{v} by S − v for conciseness.
The problem that we consider in this paper is to choose an independent set of vertices

S ∈ I, with the objective of maximizing EG(S), namely, the total weight of the edges covered
by S.

Let us put our problem in a larger picture. When the given matroid M is a uniform
matroid (see below for a formal definition), our problem reduces to the max k-vertex-cover
problem, where we want to choose k arbitrary vertices so as to maximize the total weight
of covered edges. This is a classical problem with a long history: the greedy heuristics
is known to give 1 − 1/e approximation as shown by Hochbaum and Pathria [23]. Ageev
and Sviridenko [1] propose an LP-based approach and the technique of pipage rounding to
obtain 3/4 approximation. Using SDP, Feige and Langberg [14] improve this ratio to 3/4 + δ

for some small constant δ > 0. The current best approximation ratio is 0.92, achieved by
Manurangsi [26]. For some special cases of the problem, different ratios are also obtained,
e.g. see [4, 21, 22]. On the hardness side, to our knowledge, the best inapproximability ratio
is due to Austrin and Stankovic [2], which is 0.929.

The max k-vertex-cover has also been studied through the lens of fixed-parameterized-
tracability. Guo et al. [19] show the problem to be W [1]-hard with k as parameter, thus
showing the unlikelihood of getting an exact solution in FPT time. Nonetheless, Marx [28]
shows that it is possible to get a near-optimal solution in FPT time. Precisely, he gives
an FPT approximation scheme (FPT-AS), that delivers a (1 − ε)-approximate solution
in (k/ϵ)O(k3/ϵ)nO(1) time. This running time is later improved by Gupta et al. [20] and
Manurangsi [26].

Here we recall the definition of an FPT-AS [28]:

▶ Definition 1. Given a parameter function κ associating a natural number to each instance
x ∈ I of a given problem, a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) is
an algorithm that can provide a (1− ε) approximation in f(ε, κ(x)) · |x|O(1) time.

In our case, the instances are made of a graph and a matroid, and the parameter of an
instance is the rank k of its matroid.

Regarding the more general case of an arbitrary matroid of rank k, one can obtain 3/4
approximation in polynomial time by combining known techniques.1 This is also a special
case of maximizing a submodular function (more precisely, a coverage function) under matroid
constraint, for which a 1− 1/e approximation can be achieved in polynomial time [6, 18].
In this work, we try to do better than this ratio for some special cases of matroids, in the
context of fixed-parameter algorithms. We also show that the ideas developed here can be
applied in the streaming setting [31]. In streaming, maximizing of a submodular function
under a general matroid constraint has received much attention recently [8, 10, 16].

1 Ageev and Sviridenko [1] show that, for the case of a uniform matroid, the optimal fractional solution x∗

of the LP has at least 3/4 of the optimal value. They then use the pipage rounding to transform it into
an integral solution with value no less than x∗. The same LP approach can be generalized for arbitrary
matroids. The optimal fractional solution can be obtained by Ellipsoid algorithm: even though the
linear program to describe the independent sets of an arbitrary matroid may use exponentially many
constraints, we can design a separation oracle using an algorithm of Cunningham [12]. What remains is
just the pipage rounding with a general matroid – this is already known to be do-able by Calinescu et
al. [7]. We thank Pasin Manurangsi for communicating to us this method.

C.-C. Huang and F. Sellier 27:3

1.1 Our Contribution

Let us recall some definitions. A uniform matroid of rank k is a matroid where the independent
sets are the sets S of cardinality at most k. A partition matroid is a matroid where we are
given a partition V1, . . . , Vr of the ground set V and bounds k1, . . . , kr such that a set S is
independent if for all 1 ≤ i ≤ r, |S ∩Vi| ≤ ki. A laminar matroid is given as a laminar family
V1, . . . Vr of V , i.e. given Vi ̸= Vj , then either Vi ∩ Vj = ∅, or Vi ⊂ Vj , or Vj ⊂ Vi, along with
bounds k1, . . . , kr. A set S ⊆ V is independent if for all 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki. Finally, a
transveral matroid is given in a family V1, . . . , Vk ⊆ V , where Vis are not necessarily disjoint,
and a set S = {u1, · · · , ut} is independent if and only if for each element ui, there exists a
distinct ϕ(i) so that ui ∈ Vϕ(i). These simple types of matroid have been extensively studied
in a large variety of contexts.

A uniform matroid is a special case of a partition matroid, which is again a special case
of a laminar or a transversal matroid. However, laminar matroids and transversal matroids
are not inclusive of each other [32]. Transversal matroids were introduced in the 60s, by
Edmonds and Fulkerson [13] and by Mirsky and Perfect [30]. They unified many results in
transversal theory and are generally considered an important class of matroids, e.g. see [35].
Laminar matroids receive much attention recently in the community of theoretical computer
science, especially in the context of matroid secretary problem, e.g., see [3, 9, 15, 24, 34].
Our results involve these kinds of matroids.

▶ Theorem 2. For every ε > 0, we can extract an approximate kernel V ′ ⊆ V in polynomial
time so that a (1 − ε)-approximate solution is contained in V ′. The size of the kernel V ′

depends on the type of the given matroid M.
(i) |V ′| ≤ k

ε when M is a partition matroid;
(ii) |V ′| ≤ 2k

ε when M is a laminar matroid;
(iii) |V ′| ≤ k

ε + k(k − 1) when M is a transversal matroid.

Furthermore, by a brute force enumeration, we can find the desired 1− ε approximation
in
(1

ε

)O(k)
nO(1) time for partition and laminar matroids and

(1
ε + k

)O(k)
nO(1) time for

transversal matroids.

In addition, by a straightforward modification of our proofs in Section 2 (see Appendix A),
we can show the following corollary.

▶ Corollary 3. Suppose that we are given a hypergraph G = (V, E) with edge size bounded by
a constant η ≥ 2. We can compute a (1− (η− 1) · ε) approximation using

(1
ε

)O(k)
nO(1) time

for partition and laminar matroids and
(1

ε + k
)O(k)

nO(1) time for transversal matroids.

Put slightly differently, when G is a hypergraph with edge size at most η, we can obtain
1 − ε approximation in

(
η
ε

)O(k)
nO(1) or

(
η
ε + k

)O(k)
nO(1) time, depending on the type of

matroid. To see the interest of this corollary, we recall that recently Manurangsi [27] showed
that if η is unbounded, one cannot obtain an approximation ratio better than 1− 1/e + ε,
assuming GAP-ETH, in FPT time (where the matroid rank k is the parameter). This
result holds even for the simplest uniform matroid. Thus Corollary 3 implies that one can
circumvent this lower bound by introducing another parameter η, even for more general
matroids.

SWAT 2022

27:4 Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and Streaming

Our algorithm is inspired by that of Manurangsi [26] for the case of uniform matroid. So
let us briefly summarize his approach: an approximate kernel2 V ′ is first extracted from V ,
where V ′ is simply made of the k/ε vertices with the largest weighted degrees. Let O be an
optimal solution. Apparently, a vertex of O is either part of the kernel V ′, or its weighted
degree is dominated by all vertices in V ′\O. To recover the optimal value, we can potentially
use the vertices in V ′\O to replace the vertices in O\V ′. However, there is a risk in doing
this: an edge among the vertices in V ′\O can be double-counted, if both of its endpoints are
chosen to replace the vertices in O\V ′. To circumvent this issue, Manurangsi uses a random
sampling argument to show that in expectation such double counting is negligible. Therefore,
by the averaging principle, there exists a (1− ε)-approximate solution in the kernel V ′, which
can be found using brute force.

To generalize the approach of Manurangsi for more general matroids, one has to answer
the quintessential question: how does one guarantee that the sampled vertices, along with
O ∩ V ′, are independent in M? To overcome this difficulty, we introduce a new technique.
We take the union of some number τ of matroids M. Such a union is still a matroid, which
we denote as τM. We then apply a greedy algorithm on τM (based on non-increasing
weighted degrees) to construct an independent set V ′ in τM. We show that such a set V ′

is “robust” (see Definition 4) in the sense that we can sample vertices from V ′ so that they,
along with O ∩ V ′, are always independent and in expectation cover edges of weight at least
1− ε times that of O.

We note that the value of τ automatically gives an upper bound on the kernel size V ′,
which is τk. Theorem 6 shows the required scale of τ , depending on the type of the given
matroid. We leave as an open question whether for matroids more general than considered
in the paper, a larger τ can always yield the kernel.

In the last part of this work, we consider the problem in the semi-streaming model [31].
In that context, the edges in E arrive over time but we have only limited space (for instance,
O(n · polylog(n)) = o(m)) and cannot afford to store all edges in E. In this context we can
also obtain a (1− ε) approximation using O(nk

ε) space in a single pass.3 The idea of using
(parameterized) kernels for streaming algorithms has recently been introduced, for instance
in [11, 29]. We also show that a FPT-streaming algorithm can be derived from our ideas to
get a (1− ε) approximation for a special form of maximization of a coverage function with
bounded frequency (see Theorem 14, Remark 15 and Appendix B for details).

2 Kernelization Framework

In this section, we give a general framework to construct the kernel by a greedy procedure
and show how such a kernel contains a (1− ε)-approximate solution.

▶ Definition 4. Let M = (V, I) be a matroid with weights ω : V → R+. We say V ′ ⊆ V is
t-robust if given any base O ∈ I, there is a bijection from the elements u1, · · · , ut ∈ O\V ′ to
subsets Uu1 , · · · , Uut

⊆ V ′\O so that
(i) the Uui

s are mutually disjoint and |Uui
| = t,

(ii) all elements in Uui
have weights no less than ui,

(iii) by taking an arbitrary element u′
i ∈ Uui

for all i, (V ′ ∩O) ∪ {u′
i}t

i=1 is a base in M.

2 In the rest of the paper, we will just say kernel, dropping the adjective. The interest for this kind of
kernel has risen recently in the community [17, 25].

3 Here we assume that the matroid is given in the form of oracle, in which the algorithm has access freely
– this is a standard assumption in the streaming setting when matroids are involved.

C.-C. Huang and F. Sellier 27:5

We next recall the definition of matroid union.

▶ Definition 5. Suppose that M = (V, I) is a matroid. Then we can define τM = (V, Iτ)
as the union of τ matroids M, as follows: S ∈ Iτ if S can be partitioned into S1 ∪ · · · ∪ Sτ

so that each Si ∈ I.

Recall that the union of matroids is still a matroid and here the rank of τM is at most τ

times the rank of M. e.g. see [33, Chapter 42]. We can now state our main theorem.

▶ Theorem 6. Let M = (V, I) be a matroid with weights ω : V → R+ and rank k. Consider
the following greedy procedure on τM = (V, Iτ) to construct V ′: initially V ′ = ∅. Process
the elements in V by non-increasing weights ω. For each element u, if V ′ + u ∈ Iτ , add u

into V ′, otherwise, ignore it. The final V ′ is t-robust
(i) if M is a partition matroid and τ ≥ t,
(ii) if M is a laminar matroid and τ ≥ 2t,
(iii) if M is a transversal matroid and τ ≥ t + k − 1.

Notice that the rank of the matroid τM gives an upper-bound on the size of V ′. The
next section will give the proof of this theorem for each type of matroid considered. In the
following we show how it can be used to construct the 1− ε approximation.

Let the weight ω : V → R+ be the weighted degrees in the graph G = (V, E), that is,
ω(u) = degw(u). Apply Theorem 6 by setting t = 1

ε . Then V ′ is 1
ε -robust. Note that we

suppose that 1
ε is an integer, otherwise we could take t = ⌈ 1

ε⌉.
Based on V ′, we create a new graph G′ = (V ′, E′), where an original edge e = {u, v} is

retained in E′ if both of its endpoints are in V ′. In case only one endpoint, say u is in V ′,
we add a self-loop to u in E′ to represent this edge.

▶ Lemma 7. Suppose that V ′ is the constructed set that is 1
ε -robust. Then V ′ contains a set

S such that S ∈ I and EG(S) ≥ (1− ε)EG(O) where O denotes an optimal solution of the
problem.

Proof. Let O ∈ I be an optimal solution. We denote Oin = O ∩ V ′, Oout = O\Oin. Then
by 1

ε -robustness, we have mutually disjoint sets Uv ⊆ V ′\O for each v ∈ Oout, each of size
1
ε . We set U = ∪v∈OoutUv. We construct a set S ⊆ V ′ as follows: S is initialized as Oin.
Then from each set Uv, for all v ∈ Oout, pick an element at random and add it into S. By
definition of 1

ε -robustness, S is independent in M.
Next we will show that

E[EG(S)] ≥ (1− ε) · E[EG(O)].

Let U∗ = S\Oin, i.e. those elements that are added into S randomly. First, we have that:

EG(S) = EG(Oin) + EG(U∗)− EG(Oin, U∗).

We bound E[EG(Oin, U∗)] as follows. By construction, P[u ∈ U∗] = ε for all u ∈ U . Then,

E[EG(Oin, U∗)] =
∑
u∈U

∑
v∈Oin

w({u, v}) · P[u ∈ U∗] = ε
∑
u∈U

∑
v∈Oin

w({u, v}) ≤ ε · EG(Oin).

Furthermore, the value E[EG(U∗)] can be rearranged as follows:

E[EG(U∗)] = E

∑
u∈U∗

degw(u)− 1
2

∑
v∈U∗\{u}

w({u, v})

SWAT 2022

27:6 Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and Streaming

=
∑
u∈U

degw(u) · P[u ∈ U]− 1
2

∑
v∈U\{u}

w({u, v}) · P[u ∈ U∗ ∧ v ∈ U∗]

≥
∑
u∈U

degw(u) · ε− 1
2

∑
v∈U\{u}

w({u, v}) · ε2

 ≥ ε(1− ε/2)
(∑

u∈U

degw(u)
)

,

where the first inequality comes from the fact that P[u ∈ U∗∧v ∈ U∗] ≤ P[u ∈ U∗] ·P[v ∈ U∗].
Recall that by robustness, for all u ∈ Oout, the elements of Uu have weighted degrees no

less than that of u. Therefore,

E[EG(U∗)] ≥ ε(1− ε/2)
(∑

u∈Oout

∑
v∈Uu

degw(v)
)
≥ ε(1− ε/2)

(∑
u∈Oout

1
ε
· degw(u)

)
≥ (1− ε/2) · EG(Oout).

As a result, we get:

E[EG(S)] ≥ EG(Oin) + (1− ε/2) · EG(Oout)− ε · EG(Oin) ≥ (1− ε) · EG(O).

By averaging principle, there exists S ⊆ V ′ such that S ∈ I and EG(S) ≥ (1−ε) ·EG(O). ◀

3 Proof of Theorem 6

3.1 Partition Matroids
Consider a partition matroid M = (V, I) defined by a partition V1, . . . , Vr of V and bounds
k1, . . . , kr. Given t ∈ N, we take in each set Vi of the partition the min{|Vi|, t · ki} elements
having the largest weighted degrees. We denote these extracted sets as V ′

i and their union as
V ′. Clearly, this is the same as the greedy algorithm stated in Theorem 6 applied on tM.

To see that V ′ is t-robust, let O ∈ I be a base. We denote Oin = O ∩ V ′, Oout = O\Oin,
Oi = O ∩ Vi, Oin

i = O ∩ V ′
i , Oout

i = Oi\Oin
i , and we set U i ⊆ V ′

i \Oin
i as an arbitrary subset

of cardinality t · |Oout
i |, for 1 ≤ i ≤ r (it is possible as Oi ̸= Oin

i implies that |V ′
i | = t · ki).

We then partition U i into U1
i , . . . , U

|Oout
i |

i , each one of size t. It is easy to verify that the
generated sets {U j

i }i,j satisfy the three conditions stated in Definition 4.

3.2 Laminar Matroids
Recall that a laminar matroid M = (V, I) is given as a laminar family V1, . . . , Vr along with
bounds k1, . . . , kr. Without loss of generality, we can assume that V = V0 with bound k0 = k

(being the rank ofM) is a member in the family. Furthermore, we can also assume that each
vertex v ∈ V by itself is also a member Vi = {v} with bound ki = 1 in this family.

Such a laminar matroid M can be naturally associated with a laminar tree T where
the each tree node Ti = (Vi, ki) corresponds to Vi, and the structure of the tree reflects the
inclusion relationship of the members Vi in the laminar family. In such a tree T0 = (V, k)
corresponds to the root of the tree.

For ease of our study, we will assume that such a tree T is binary (so in total T contains
2n− 1 nodes, with n = |V |). Such an assumption can be easily justified by adding more sets
Vi into the laminar family with the appropriately defined bounds ki.

In the following, the elements of {Ti = (Vi, ki)}0≤i≤2n−2 will be referred as “nodes”,
whereas the elements of V will be referred as “vertices”. We are given t ∈ N. To choose the
vertices that are to be added into the kernel, we employ the following greedy procedure. We

C.-C. Huang and F. Sellier 27:7

process the vertices in non-increasing order with respect to their weighted degrees. At the
beginning, V ′ is empty. When we consider a new vertex v, if for all i such that v ∈ Vi, we
have |V ′ ∩ Vi| < 2t · ki, then v is added to V ′, otherwise v is simply ignored. This procedure
is equivalent to the greedy algorithm described in described in Theorem 6 applied on 2tM.

A node Tj of the tree {Ti = (Vi, ki)}0≤i≤2n−2 is called saturated if |V ′ ∩ Vj | = 2t · kj .
Let O be an arbitrary solution. As in the previous subsection we will use the notations
V ′

i = Vi ∩ V ′, Oin = V ′ ∩O, and Oout = O\V ′. In the following, we say that a vertex or a
set of vertices is “contained” in a tree node Ti if they are part of V ′

i (equivalently, the leaves
corresponding to these elements of V ′ are in the subtree of root Ti).

For every element v ∈ V , there exists a leaf Tiv
in the laminar tree such that Viv

= {v},
and we have a unique path from the root T0 to Tiv

. If a vertex v ∈ O is not in V ′, it
means that some node along the path from T0 to Tiv

was already saturated when v was
processed: the blocking node of v is the deepest saturated node along this path. For each
node Ti, we denote by Bi the set of vertices of O that are blocked by the node Ti, and we
set bi = |Bi|. Then, bi = 0 when Ti is not saturated. Moreover, the Bis are mutually disjoint
and

⋃
Bi = Oout.

Then for each vertex v ∈ Oout, we construct a set Uv of at least t vertices drawn from V ′.
Then an arbitrary subset Uv ⊆ Uv of t vertices is retained. We will argue that the generated
sets Uvs ensure the robustness.

Constructing the sets Uvs for all v ∈ Oout

We want the constructed sets Uvs to satisfy the following three properties.
(i) The sets Uvs are mutually disjoint and are drawn from V ′\Oin.
(ii) For each v ∈ Oout and each u ∈ Uv, degw(u) ≥ degw(v).
(iii) Choosing an arbitrary v ∈ Uv for each v ∈ Oout, the set S = Oin ∪ {v}v∈Oout is

independent in the laminar matroid M.

The formal algorithm for constructing the sets {Uv}v∈Oout is given in Algorithm 1. Here
we give the intuition behind it.

To guarantee Property (i), we first mark all elements in Oin as unusable. Then, each
Uv is chosen among the usable vertices. Once a set Uv is allocated, all its vertices will be
marked as unusable.

To guarantee Property (ii), first recall that each vertex v ∈ Oout has a corresponding
blocking node Ti (and v ∈ Bi). By our greedy procedure to build the kernel V ′, we know that
there exist 2t ·ki vertices u in the set V ′

i , all of whom contained in Ti and degw(u) ≥ degw(v).
What we do is to choose a deepest blocking node Ti and to process one of its vertex v ∈ Bi

(Lines 6-7). As we will show later (Claim 10), such a blocking node must contain at least 2t

usable vertices. We climb down the tree from the blocking node Ti until we reach a node Tj

neither of whose child nodes contains more than t usable vertices (Lines 9-10). Recall that
our tree is binary, as a result, the number of usable vertices contained in Tj is between t and
2t− 2. All these usable vertices constitute a new set Uv and then are marked as unusable.

How to guarantee Property (iii) is the most tricky part of our algorithm. Recall that we
will choose an arbitrary vertex from Uv to construct a solution S stated in (iii). Apparently
we have no control over the choice of the arbitrary vertex from Uv, nonetheless, we need to
ensure that S does not violate any of the rank constraints ki. What we do is to associate a
variable si with each tree node Ti. This variable indicates how many vertices contained in Ti

will certainly be part of S, according to Oin and the sets Uvs that have been constructed so
far. Once si is set to ki, it is a warning that we should not use any more remaining usable
vertices contained in Ti to construct the future sets Uv.

SWAT 2022

27:8 Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and Streaming

Initially, si = |V ′
i ∩ Oin|. Each time that we have decided on a tree node Tj to form

a new set Uv (Lines 9-12), we increase the value of sj from Tj all the way up to the root
(Lines 13-14). If any node Tj has its variable sj = kj , we say such a node is full-booked and
we mark all its (remaining) usable vertices as unusable (Lines 15-16).

Algorithm 1 Algorithm constructing the sets Uv.

1: ∀v ∈ O\V ′, Uv ← ∅
2: ∀1 ≤ i ≤ 2n− 2, si ← |V ′

i ∩Oin|
3: the elements of V ′\Oin are marked as usable
4: the elements of Oin are marked as unusable
5: while there exists a set Bi which is not empty do
6: let Ti be one of the deepest nodes such that Bi ̸= ∅
7: let v ∈ Bi be an arbitrary vertex
8: Bi ← Bi − v

9: while Ti has a child Tj containing at least t usable vertices in V ′
j do

10: i← j

11: set Uv as the set of usable elements in V ′
i

12: mark all the elements of Uv as unusable
13: for all nodes Tj on the path from Ti to the root of the tree do
14: sj ← sj + 1
15: if sj = kj then ▷ in that case, we say that Tj is fully-booked
16: mark all the elements of V ′

j as unusable

We want to show that Algorithm 1 manages to build the sets Uvs of size at least t

satisfying the aforementioned properties.

▷ Claim 8. At any time during the execution of Algorithm 1, for a saturated node Ti that
is not a descendant of a fully-booked node (no node above it is fully-booked), the number of
usable vertices in V ′

i is at least 2t · (ki − si).

Proof. As Ti is saturated, V ′
i contains exactly 2t · ki vertices. The unusable vertices in V ′

i

fall into three categories:
(i) the vertices in V ′

i ∩Oin (see Line 4), but that are not contained in any fully booked
descendent node of Ti,

(ii) the vertices made unusable during the allocation of a set Uv (see Line 12), but that are
not contained in any fully booked descendent node of Ti,

(iii) the vertices that are contained in a fully-booked descendent node of Ti (see Line 16).
The vertices v1, . . . , vl1 in the first category each has a contribution of +1 in the value of si.
Then, we can observe that an allocated set Uv is either entirely contained in a fully-booked
node or has no element at all in any fully-booked node. Let us denote Uv1 , . . . , Uvl2

the
allocated sets contained in Ti that are not contained in any fully-booked node. In addition,
by construction, each set Uvj

contains at most 2t− 2 vertices (otherwise we would be able
to go deeper in the binary tree for the allocation, see Lines 9-10, because at least one child
would contain at least t usable elements). Each set Uvj

has a contribution of +1 in the
value of si. Finally, among the fully-booked nodes in the subtree of root Ti, we consider
the nodes Ti1 , . . . , Til3

that are inclusion-wise maximal (i.e. the roots of the fully-booked
parts of the subtree). A fully-booked subtree of root Tj has to bring a +kj contribution
to si (otherwise it would not be fully-booked, and observe that a set Uv is included in at
most one such fully-booked maximal node), and is making at most 2t · kj vertices of V ′

i

C.-C. Huang and F. Sellier 27:9

unusable (the worst case being that Tj was also a saturated node). We also have the equality
si = l1 + l2 +

∑l3
j=1 kij

. As a result, we have at most l1 + (2t− 2) · l2 +
∑l3

j=1 2t · kij
≤ 2t · si

unusable vertices in V ′
i . ◁

▷ Claim 9. At any time during the execution of the algorithm, for all i ∈ J1, 2n− 2K, we
have ki ≥ si + bi +

∑
Tj below Ti

bj as an invariant.

Proof. As O ∈ I, these inequalities hold at the beginning of Algorithm 1. To see this, note
that si = |Vi ∩ Oin| and bi +

∑
Tj below Ti

bj ≤ |Vi ∩ Oout|. For the induction step, observe
that Line 6 guarantees that the node Ti selected is the only one with a non-zero bi value in
the subtree of root Ti. As a result, when the set Uv is allocated, for the nodes Tj between Ti

and the allocated node, the augmentation by one of the value s is not an issue because these
nodes are chosen to be non-fully-booked, i.e. kj > sj . For the nodes Tj above Ti, the value sj

are increased by one but as bi was decreased by one, the total value sj + bj +
∑

Tj′ below Tj
bj′

remains unchanged. ◁

▷ Claim 10. If Bi ≠ ∅, Ti contains at least 2t usable vertices. Consequently, Algorithm 1
(Lines 6-11) always build the set Uv of size at least t.

Proof. In fact, as Bi ≠ ∅, bi is still non-zero, and by Claim 9 we get ki − si ≥ bi, so V ′
i

contains at least 2t usable vertices because of Claim 8. Then the set Uv can be built as
required, containing at least t elements. ◁

The above claim lower-bounds the size of each Uv. The fact that the constructed Uvs
are mutually disjoint follows from the algorithm (Line 12). Now we want to show that the
Uvs have the desired properties regarding independence and weighted degrees.

▷ Claim 11. At any time during the execution of Algorithm 1, if we build a set S by
taking the elements of Oin and one arbitrary element in each set Uv that has already been
constructed, then S is independent. Moreover, for a node Ti that does not contain only
unusable vertices in V ′

i , any arbitrary choice of elements in the Uvs will lead to the equality
|S ∩ V ′

i | = si.

Proof. We proceed by induction. These properties are clearly satisfied at the beginning of
the algorithm (because then S = Oin). Now suppose that these properties hold at some
time, and then we allocate a new set Uv′ for some v′ ∈ Oout. Let S be made of Oin and an
arbitrary choice for the Uvs that were constructed so far (excluding Uv′). By the induction
hypothesis, S ∈ I. The vertices of Uv′ are supposed to be usable, so the nodes containing
them are not fully-booked and these nodes contain usable vertices. By induction on the
second part of the claim, a usable element in such a node Tj can be selected, as any choice
for the other Uvs will use exactly sj < kj vertices of the laminar constraint of that node.
Therefore any vertex u ∈ Vv′ added to S does not cause any constraint to be violated, and
S ∪ {u} ∈ I. Let Ti be the node used for the allocation at Line 11 of Algorithm 1. All the
nodes in the subtree of root Ti will be subsequently ignored by the algorithm, as all the
nodes inside it are marked as unusable. The values sj of the nodes Tj in that subtree are
not updated by the algorithm, but it is not an issue given that the second part of the claim
does not affect them. The nodes above Ti are updated, and it is true that for any vertex
chosen in Uv′ , that vertex will count in the laminar inequalities for these nodes as a +1.
This concludes the induction. ◁

▷ Claim 12. For all v ∈ O\V ′, for all u ∈ Uv, it holds that degw(u) ≥ degw(v).

SWAT 2022

27:10 Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and Streaming

Proof. By construction, Uv ⊆ V ′
i where Ti is the blocking node of v. As Ti is the blocking

node of v, all the elements in V ′
i have a larger weighted degree than v. ◁

Finally we construct the sets Uvs by choosing arbitrarily t vertices from Uv. By
Claims 10, 11, and 12, they satisfy the properties of robustness in Definition 4.

3.3 Transversal Matroids

Recall that a transversal matroid M = (V, I) can be represented as a bipartite graph
G = (A ∪ V, E) and A = {A1, · · · , Ak}. A subset V ′ ⊆ V is independent in M if and only
if there is a matching where all of V ′ are matched to some subset of A. Let t ∈ N. The
matroid union (t + k − 1)M can be regarded as making the capacity of each vertex Ai in A

increased to t + k − 1 (equivalently, create t + k − 1 copies of each Ai and modify the edge
set E accordingly). Our algorithm is as follows. Again process the vertices in non-increasing
order of their weighted degrees. We start with an empty matching, and we maintain a
matching throughout the execution of the algorithm. For each new vertex v ∈ V , try to find
an augmenting path so that it can be matched. If we cannot find such a path, v is discarded.
At any time during the execution of the algorithm, the current kernel V ′ ⊆ V is simply the
set of vertices in V that are matched in the current matching. We can observe that a vertex
in V ′ cannot be evicted once it belongs to V ′. In the following, we write V ′

i ⊆ V ′ to denote
the vertices in V that are matched to Ai in the current kernel V ′.

First we argue that our procedure is the same as the greedy described in Theorem 6
applied on (t + k − 1)M. We need to show that a vertex v, if discarded, is spanned by
vertices in V ′ that arrived earlier than it. To see this, observe that, at the moment v arrives,
V ′ is independent in (t + k− 1)M. Moreover, as we cannot find an augmenting path when v

is added to V ′, is means that V ′ + v is not independent, i.e. v is spanned by V ′ and this
holds until the end of the algorithm.

Now let us consider the robustness. Let O = {o1, . . . , ok} be an arbitrary base in M.
We can assume that oi is assigned to Ai for all i in the corresponding matching. For an
element oi ∈ O\V ′, when it was discarded, some V ′

i ⊆ V ′ elements (exactly t + k − 1) that
arrived earlier were already assigned to Ai. As no augmenting path could go through Ai

when oi was discarded, the set of elements assigned to Ai would not have changed till the
end: otherwise, that would mean that at some point an augmenting path passed through Ai,
which is not possible as oi was discarded because no augmenting path passing through Ai

was found at that point. As a result the t + k − 1 elements of V ′
i assigned to Ai are all of

weighted degrees larger than that of oi. As |V ′
i ∩O| ≤ |V ′ ∩O| < k there remains at least t

elements of V ′
i that can be used to build a set Uoi

of cardinality t as stated in Definition 4.

4 Steaming Algorithms

In this section, we turn our algorithms into streaming form.
First, we show that it is easy compute a (1 − ε) approximation in two passes, using

O(n + τ2) space (τ depends on the type of matroids involved, as defined in Theorem 6). In
the first pass, we compute the weighted degrees degw(v) of all vertices v to define the kernel
V ′ ⊆ V . This requires O(n) space. In the second pass, we retain a subset of edges E′ ⊆ E,
those both of whose end-points are in V ′. Easily |E′| = O(τ2). Using E′, we can compute
the exact value EG(S) =

∑
v∈S degw(v)−

∑
e∈(S×S)∩E′ w(e) for each feasible independent

set S ⊆ V ′. Then an enumeration of all such sets gives the desired (1− ε) approximation.

C.-C. Huang and F. Sellier 27:11

We now explain how to achieve the same goal in one pass, at the expense of higher space
requirement.

▶ Theorem 13. In the edge arrival steaming model (each edge appearing exactly once in the
stream), one can extract a (1− ε)-approximate solution of the matroid-constrained maximum
vertex cover using O(nk

ε) variables for uniform, partition, laminar, and transversal matroids.

Proof. Let ε > 0. During the streaming phase, we keep track of the weighted degrees of all
the vertices, as well as for each vertex v the set of the 2k

ε edges incident to v that have the
largest weight. We denote the set of memorized edges as E′.

Then, we can choose, depending on the type of matroid, the value τ corresponding to
the right type of matroid (as prescribed in Theorem 6) for the parameter ε

2 and we build
the kernel V ′ that is supposed to contain a (1− ε

2) approximation of the maximum cover.
However, we do not know all the edges between the elements in V ′, as only the 2k

ε heaviest
incident edges are known for each vertex.

We will compute the value of S pretending that the edges in ((S × S) ∩ E)\E′ are not
present. Precisely, for each set S ⊆ V , we define

ẼG(S) =
∑
v∈S

degw(v)−
∑

e∈(S×S)∩E′

w(e) = EG(S) +
∑

e∈((S×S)∩E)\E′

w(e).

Notice that ẼG(S) ≥ EG(S). Let S∗ ⊆ V ′ be the independent set reaching the maximum
ẼG(S∗). This set S∗ will be our final output. We next lower-bound its real value EG(S∗).

Let O denote the original optimal solution (with respect to the entire graph), and S′

denote the optimal vertex cover in the kernel V ′ (also with respect to the entire graph), so
that S′ ⊆ V ′, S′ ∈ I, and EG(S′) ≥ (1− ε

2) · EG(O). Then

ẼG(S∗) ≥ ẼG(S′) ≥ EG(S′) ≥
(

1− ε

2

)
· EG(O).

To compare the real value of EG(S∗) with ẼG(S∗), we just need to compute the total
weight of the edges in ((S∗ × S∗) ∩ E)\E′:

∑
(u,v)∈((S∗×S∗)∩E)\E′

w(u, v) = 1
2
∑

v∈S∗

 ∑
u∈S∗:(u,v)∈E\E′

w(u, v)

≤ 1

2
∑

v∈S∗

k · degw(v) · ε

2k

= ε

4
∑

v∈S∗

degw(v) ≤ ε

2 · ẼG(S∗),

where the first inequality comes from the fact that the edges that are not among the 2k
ε

heaviest edges incident on v must be of weight at most degw(v) · ε
2k . Therefore the real value

EG(S∗) is at least (1− ε
2) · ẼG(S∗) ≥ (1− ε

2)2 · EG(O) ≥ (1− ε) · EG(O). ◀

Next we consider a particular kind of stream of edges, where each edge appears twice:
given an arbitrary order of the vertices, for each vertex, all its incident edges are given in a
row. For this incidence streaming model [5] (sometimes called adjacency list model [29]), the
next theorem shows that we can use much less space with just a single pass.

▶ Theorem 14. In the incidence streaming model, one can extract a (1−ε)-approximate solu-
tion using O((k

ε)2) variables for uniform, partition, laminar, and O((k
ε + k)2) for transversal

matroids.

SWAT 2022

27:12 Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and Streaming

Proof. Let ε > 0. Given the type of the matroid M, choose the corresponding value of τ as
prescribed in Theorem 6. Start with an empty kernel V ′ = ∅. Through the execution of the
algorithm, V ′ will contain the largest independent set in τM with respect to the sum of the
weighted degrees. When we process a vertex v (i.e. its set of incident edges) we can compute
its weighted degree degw(v) and store the edges linking v to elements of V ′. If V ′ + v is not
independent in τM, consider the element with the smallest weighted degree u in the circuit
formed in V ′ + v. Then, set V ′ ← (V ′ + v)− u. If v is added into V ′, we keep in memory all
the edges linking v to other vertices of V ′. When an element is discarded or evicted from
V ′, all its incident edges are deleted. As a result, at any time during the execution of the
algorithm, only O(τ2) edges are stored, so the the overall memory consumption is O(τ2).

In the end, we obtain exactly the approximate kernels described in the previous sections,
and because we know all the values of the weighted degrees of V ′ as well as the weights of the
edges between them we can find the largest vertex cover in that kernel using bruteforce. ◀

▶ Remark 15. This model has an interesting interpretation in the context of coverage function4

maximization in the streaming setting – here the sets arrive over time in such a way that the
values of singletons f({v}), for v ∈ V , are revealed one by one. In case where a coverage
function has bounded frequency larger than 2, we also present in Appendix B a streaming
algorithm.

5 Conclusion and Open Questions

Theorem 6 allows us to generalize the cardinality constraint to some special cases of matroid
constraints, and these ideas could be useful for other kernelization algorithms. Regarding
the bounds of Theorem 6, tight examples can be built to show that the values of τ provided
are the best possible for partition and laminar matroids. For transversal matroids it is less
clear whether the bound for τ can be improved or not. The most important open question is
obviously whether Theorem 6 can be generalized to other types of matroids.

References

1 Alexander A. Ageev and Maxim I. Sviridenko. Approximation algorithms for maximum
coverage and max cut with given sizes of parts. In IPCO 1999, 1999.

2 Per Austrin and Aleksa Stankovic. Global cardinality constraints make approximating some
max-2-csps harder. In APPROX/RANDOM 2019, pages 24:1–24:17, 2019. doi:10.4230/
LIPIcs.APPROX-RANDOM.2019.24.

3 M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online
mechanisms. In SODA, pages 434–443, 2007.

4 Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Georgios Stamoulis. Purely
combinatorial approximation algorithms for maximum k-vertex cover in bipartite graphs.
Discrete Optimization, 27:26–56, 2018.

4 A coverage function f over a ground set {1, . . . , m}, associated with a universe U of weighted elements
and m sets A1, . . . , Am, where Ai ⊆ U for all i, is defined over all S ⊆ {1, . . . , m} so that f(S) is the
sum of the weight of the elements in ∪i∈SAi. The frequency of an element of the universe is the number
of sets Ai it appears in. Here in our problem of maximum vertex cover, the vertices correspond to the
ground set and the edges to the universe U . Note that for a vertex cover the frequency (the maximum
number of sets where an element of the universe appears in) is exactly 2, as an edge has only two
endpoints.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.24
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.24

C.-C. Huang and F. Sellier 27:13

5 Vladimir Braverman, Zaoxing Liu, Tejasvam Singh, N. V. Vinodchandran, and Lin F. Yang.
New bounds for the CLIQUE-GAP problem using graph decomposition theory. Algorithmica,
80(2):652–667, 2018. doi:10.1007/s00453-017-0277-5.

6 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular
set function subject to a matroid constraint (extended abstract). In Proc. 12th IPCO, pages
182–196, 2007. doi:10.1007/978-3-540-72792-7_15.

7 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular
set function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

8 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: Matchings,
matroids and more. In Proc. 17th IPCO, pages 210–221, 2014.

9 S. Chakraborty and O. Lachish. Improved competitive ratio for the matroid secretary prob-
lem. In SODA, pages 1702–1712, 2012.

10 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submodular
function maximization. In Proc. 42nd ICALP, pages 318–330, 2015.

11 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In SODA
2016, pages 1326–1344, 2016. doi:10.1137/1.9781611974331.ch92.

12 William H Cunningham. Testing membership in matroid polyhedra. Journal of Combinatorial
Theory, Series B, 36(2):161–188, 1984.

13 J. Edmonds and D.R. Fulkerson. Transversals and matroid partition. Journal of Research
National Bureau of Standards Section B, 69:147–153, 1965.

14 Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms, 41(2):174–211, 2001.

15 M. Feldman, O. Svensson, and R. Zenklusen. A simple o log log(rank))-competitive al- gorithm
for the matroid secretary problem. In SODA, pages 1189–1201, 2015.

16 Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. Streaming sub-
modular maximization with matroid and matching constraints. CoRR, abs/2107.07183, 2021.
arXiv:2107.07183.

17 Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020. doi:10.3390/a13060146.

18 Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization
subject to a matroid constraint. In Proc. 53nd FOCS, 2012.

19 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of generalized
vertex cover problems. In Algorithms and Data Structures, pages 36–48, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

20 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for
k-cut. In FOCS 2018, pages 113–123. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.
00020.

21 Qiaoming Han, Yinyu Ye, Hantao Zhang, and Jiawei Zhang. On approximation of max-vertex-
cover. Eur. J. Oper. Res., 143(2):342–355, 2002. doi:10.1016/S0377-2217(02)00330-2.

22 Qiaoming Han, Yinyu Ye, and Jiawei Zhang. An improved rounding method and semidefinite
programming relaxation for graph partition. Math. Program., 92(3):509–535, 2002. doi:
10.1007/s101070100288.

23 Dorit S Hochbaum and Anu Pathria. Analysis of the greedy approach in covering problems.
Naval Research Quarterly, 45:615–627, 1998.

24 S. Im and Y. Wang. Secretary problems: laminar matroids and interval scheduling. In SODA,
pages 1265–1274, 2011.

25 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In STOC 2017, pages 224–237. ACM, 2017. doi:10.1145/3055399.3055456.

SWAT 2022

https://doi.org/10.1007/s00453-017-0277-5
https://doi.org/10.1007/978-3-540-72792-7_15
https://doi.org/10.1137/1.9781611974331.ch92
http://arxiv.org/abs/2107.07183
https://doi.org/10.3390/a13060146
https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1016/S0377-2217(02)00330-2
https://doi.org/10.1007/s101070100288
https://doi.org/10.1007/s101070100288
https://doi.org/10.1145/3055399.3055456

27:14 Matroid-Constrained Maximum Vertex Cover: Approximate Kernels and Streaming

26 Pasin Manurangsi. A Note on Max k-Vertex Cover: Faster FPT-AS, Smaller Approximate
Kernel and Improved Approximation. In SOSA 2019, pages 15:1–15:21, 2018.

27 Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum
k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In
SODA, pages 62–81, 2020.

28 Dániel Marx. Parameterized Complexity and Approximation Algorithms. The Computer
Journal, 51(1):60–78, July 2008.

29 Andrew McGregor, David Tench, and Hoa T. Vu. Maximum coverage in the data stream
model: Parameterized and generalized. In ICDT 2021, volume 186, pages 12:1–12:20, 2021.
doi:10.4230/LIPIcs.ICDT.2021.12.

30 L. Mirsky and H. Perfect. Applications of the notion of independence to problems of combin-
atorial analysis. Journal of Combinatorial Theory, 2:327–357, 1965.

31 S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers Inc, January
2005.

32 András Recski. Matroid Theory and its Applications in Electric Network Theory and in Statics.
Springer-Verlag, 1989.

33 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.
34 J. Soto. Matroid secretary problem in the random assignment model. SIAM Journal on

Computing, 42:178–211, 2013.
35 D.J.A Welsh. Transversal theory and matroids. Canadian Journal of Mathematics, 21:1323–

1302, 1969.

A An FPT-AS for Hypergraphs

Suppose that we are given a hypergraph G = (V, E) with edge size bounded by a constant
η ≥ 2. We proceed as in Section 2. First, notice that:

EG(S) = EG(Oin) + EG(U∗)− EG(Oin, U∗).

We bound E[EG(Oin, U∗)] as follows. By construction, P[u ∈ U∗] = ε for all u ∈ U . Then,

E[EG(Oin, U∗)] =
∑

e∈E,e∩Oin ̸=∅

w(e) · 1[e ∩ U∗ ̸= ∅] ≤
∑

e∈E,e∩Oin ̸=∅

w(e) · (η − 1) · ε

= ε · (η − 1) · E[EG(Oin)].

using union bound and the fact that at most η − 1 endpoints can be in U . Furthermore, the
value E[EG(U∗)] can be rearranged as follows:

E[EG(U∗)] = E

∑
u∈U∗

degw(u)−
∑

e∈δ(u)

w(e) · |e ∩ U∗| − 1
|e ∩ U∗|

≥E

∑
u∈U∗

degw(u)−
∑

e∈δ(u)

w(e) · η − 1
η
· 1[e ∩ U∗\{u} ̸= ∅]

≥E

∑
u∈U

degw(u) · 1[u ∈ U∗]−
∑

e∈δ(u)

w(e) · η − 1
η
· 1[u ∈ U∗ ∧ e ∩ U∗\{u} ̸= ∅]

≥E

∑
u∈U

degw(u) · ε− η − 1
η

∑
e∈δ(u)

w(e) · (η − 1) · ε2

https://doi.org/10.4230/LIPIcs.ICDT.2021.12

C.-C. Huang and F. Sellier 27:15

≥ ε · (1− ε · (η − 1))
(∑

u∈U

degw(u)
)

.

Recall that by robustness, for all u ∈ Oout, the elements of Uu have weighted degree no
less than the one of u. Therefore,

E[EG(U∗)] ≥ ε(1− ε · (η − 1))
(∑

u∈Oout

∑
v∈Uu

degw(v)
)

≥ ε(1− ε · (η − 1))
(∑

u∈Oout

1
ε
· degw(u)

)
≥ (1− ε · (η − 1)) · EG(Oout).

As a result, we get:

E[EG(S)] ≥ EG(Oin) + (1− ε · (η − 1)) · EG(Oout)− ε · (η − 1) · EG(Oin)
≥ (1− ε · (η − 1)) · EG(O).

By averaging principle, there exists a set S ⊆ V ′ such that S ∈ I and such that EG(S) ≥
(1− (η − 1) · ε) · EG(O).

B Streaming Algorithm for Hypergraphs

Here we suppose that we are given a hypergraph G = (V, E) with edge size bounded by a
constant η ≥ 2 as an adjacency list stream. Using the idea of Theorem 14 and the result of
Appendix A, one can get in the incidence streaming model a (1− (η − 1) · ε) approximation
using O(τη) memory, where τ depends on the type of matroid, as prescribed in Theorem 6.
In fact, we can maintain through the execution of the algorithm for each subset of at most η

elements S ⊆ V ′ the sum of the weight of the hyper-edges e such that e ∩ V ′ = S (just like
in the proof of Theorem 14 where we keep track of these values for pairs in V ′). For instance,
for a uniform, a partition, or a laminar matroid, we could get a (1− ε) approximation using
O((2η·k

ε)η) variables. This shows that for the special matroids that we studied of rank k,
a weighted coverage function with bounded frequency η can be (1 − ε) approximated in
streaming. This extends a result of [29] to matroids.

SWAT 2022

Non-Uniform k-Center and Greedy Clustering
Tanmay Inamdar #

Department of Informatics, University of Bergen, Norway

Kasturi Varadarajan #

Department of Computer Science, University of Iowa, Iowa City, IA, USA

Abstract
In the Non-Uniform k-Center (NUkC) problem, a generalization of the famous k-center clustering
problem, we want to cover the given set of points in a metric space by finding a placement of balls
with specified radii. In t-NUkC, we assume that the number of distinct radii is equal to t, and we are
allowed to use ki balls of radius ri, for 1 ≤ i ≤ t. This problem was introduced by Chakrabarty et al.
[ACM Trans. Alg. 16(4):46:1-46:19], who showed that a constant approximation for t-NUkC is not
possible if t is unbounded, assuming P ̸= NP. On the other hand, they gave a bicriteria approximation
that violates the number of allowed balls as well as the given radii by a constant factor. They also
conjectured that a constant approximation for t-NUkC should be possible if t is a fixed constant.
Since then, there has been steady progress towards resolving this conjecture – currently, a constant
approximation for 3-NUkC is known via the results of Chakrabarty and Negahbani [IPCO 2021], and
Jia et al. [SOSA 2022]. We push the horizon by giving an O(1)-approximation for the Non-Uniform
k-Center for 4 distinct types of radii. Our result is obtained via a novel combination of tools and
techniques from the k-center literature, which also demonstrates that the different generalizations
of k-center involving non-uniform radii, and multiple coverage constraints (i.e., colorful k-center),
are closely interlinked with each other. We hope that our ideas will contribute towards a deeper
understanding of the t-NUkC problem, eventually bringing us closer to the resolution of the CGK
conjecture.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Rounding techniques

Keywords and phrases k-center, approximation algorithms, non-uniform k-center, clustering

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.28

Related Version Full Version: https://arxiv.org/abs/2111.06362

Funding Tanmay Inamdar : Supported by the European Research Council (ERC) via grant LOPPRE,
reference 819416.
Kasturi Varadarajan: Supported by National Science Foundation (NSF) Award CCF-1615845.

1 Introduction

The k-center problem is one of the most fundamental problems in clustering. The input to
the k-center problem consists of a finite metric space (X, d), where X is a set of n points, and
d : X×X → R+ is the associated distance function satisfying triangle inequality. We are also
given a parameter k, where 1 ≤ k ≤ n. A solution to the k-center problem consists of a set
C ⊆ X of size at most k, and the cost of this solution is maxp∈X d(p, C), i.e., the maximum
distance of a point to its nearest center in C. Alternatively, a solution can be thought of as
a set of k balls of radius maxp∈X d(p, C), centered around points in C, that covers the entire
set of points X. The goal is to find a solution of smallest radius. We say that a solution
C ′ is an α-approximation, if the cost of C ′ is at most α times the optimal radius. Several
2-approximations are known for the k-center problem [10, 9]. A simple reduction from the
Minimum Dominating Set problem shows that the k-center problem is NP-hard. In fact, the
same reduction also shows that it is NP-hard to get a (2− ϵ)-approximation for any ϵ > 0.

© Tanmay Inamdar and Kasturi Varadarajan;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Tanmay.Inamdar@uib.no
https://orcid.org/0000-0002-0184-5932
mailto:kasturi-varadarajan@uiowa.edu
https://doi.org/10.4230/LIPIcs.SWAT.2022.28
https://arxiv.org/abs/2111.06362
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Non-Uniform k-Center and Greedy Clustering

Several generalizations of the vanilla k-center problem have been considered in the
literature, given its fundamental nature in the domain of clustering and approximation
algorithms. One natural generalization is the Robust k-center or k-center with outliers
problem, where we are additionally given a parameter m, and the goal is to find a solution
that covers at least m points of X. Note that the remaining at most n−m points can be
thought of as outliers with respect to the clustering computed. Charikar et al. [7], who
introduced this problem, showed that a simple greedy algorithm gives a 3-approximation for
the problem. Subsequently, the approximation guarantee was improved by [4, 8], who gave a
2-approximation, which is optimal in light of the aforementioned (2− ϵ)-hardness result.

The focus of our paper is the Non-Uniform k-Center (NUkC), which was introduced by
Chakrabarty et al. [4]. A formal definition follows.

▶ Definition 1 (t-NUkC). The input is an instance I = ((X, d), (k1, k2, . . . , kt),
(r1, r1, . . . , rt)), where r1 ≥ r2 ≥ . . . rt ≥ 0, and the ki are positive integers. The goal
is to find sets Ci ⊆ X for 1 ≤ i ≤ t, such that |Ci| ≤ ki, and the union of balls of radius αri

around the centers in Ci, over 1 ≤ i ≤ t, covers the entire set of points X. The objective is
to minimize the value of the dilation factor α.

In the Robust t-NUkC problem, we are required to cover at least m points of X using such a
solution. We note that the special case of (Robust) t-NUkC with t = 1 corresponds to the
(Robust) k-center problem. Chakrabarty et al. [4] gave a bicriteria approximation for t-NUkC
for arbitrary t, i.e., they give a solution containing O(ki) balls of radius O(α∗)ri for 1 ≤ i ≤ t,
where α∗ is the optimal dilation. 1 They also give a (1 +

√
5)-approximation for 2-NUkC.

Furthermore, they conjectured that there exists a polynomial-time O(1)-approximation for
t-NUkC for constant t. Subsequently, Chakrabarty and Negahbani [6] made some progress
by giving a 10-approximation for Robust 2-NUkC. Very recently, Jia et al. [12] showed an
approximate equivalence between (t + 1)-NUkC and Robust t-NUkC, thereby observing that
the previous result of [6] readily implies a 23-approximation for 3-NUkC. We note that the
techniques from Inamdar and Varadarajan [11] implicitly give an O(1)-approximation for
t-NUkC for any t ≥ 1, in kO(k) · nO(1) time, where k =

∑
t kt. That is, one gets an FPT

approximation. Finally, we also note that Bandyapadhyay [2] gave an exact algorithm for
perturbation resilient instances of NUkC in polynomial time.

Another related variant of k-center is the Colorful k-center problem. Here, the set
of points X is partitioned into ℓ color classes, X1 ⊔ . . . ⊔ Xℓ. Each color class Xj has a
coverage requirement mj , and the goal is to find a set of k balls of smallest radius that
satisfy the coverage requirements of all the color classes. Note that this is a generalization
of Robust k-center to multiple types of coverage constraints. Bandyapadhyay et al. [3]
introduced this problem, and gave a pseudo-approximation, i.e., their algorithm returns an
2-approximate solution using at most k + ℓ − 1 centers. Furthermore, they managed to
improve this to a true O(1)-approximation in the Euclidean plane for constant number of
color classes. Subsequently, Jia et al. [13] and Anegg et al. [1] independently gave (true) 3
and 4-approximations respectively for this problem (with constant ℓ) in arbitrary metrics.

1 Chakrabarty et al. [4] use a slightly different, but equivalent, formulation of NUkC: the input contains a
sequence of allowed radii r1 ≥ r2 ≥ · · · ≥ rk, and we are allowed to use one ball of radius αri, for each
i. In this setting, they design an approximation algorithm that returns a solution containing O(1) balls
of radius O(α∗)ri, for each i. When there are only t distinct classes of radii, this is equivalent to the
result as formulated above.

T. Inamdar and K. Varadarajan 28:3

Our Results and Techniques. Our main result is an O(1)-approximation for 4-NUkC. We
obtain this result via a sequence of reductions; some of these reductions are from prior work
while some are developed here and constitute our main contribution. Along the way, we
combine various tools and techniques from the aforementioned literature of Robust, Colorful,
and Non-Uniform versions of k-center.

First, we reduce the 4-NUkC problem to the Robust 3-NUkC problem, following Jia et
al. [12]. Next, we reduce the Robust 3-NUkC to well-separated Robust 3-NUkC, by adapting
the approach of Chakrabarty and Negahbani [6].2 In a well-separated instance, we are given
a set of potential centers for the balls of radius r1, such that the distance between any two
of these centers is at least c · r1, for a parameter c ≥ 2.

To solve Well-Separated Robust 3-NUkC, we give a sequence of reductions, which
constitute the technical core of our paper. First, we show that any instance of Robust
t-NUkC can be transformed to an instance of “Colorful” (t− 1)-NUkC, where we want to
cover certain number of red and blue points using the specified number of balls of t − 1
distinct radii. Thus, this reduction reduces the number of radii classes from t to t− 1 at the
expense of increasing the number of coverage constraints from 1 to 2. In our next reduction,
we show that Colorful (t − 1)-NUkC can be reduced to Colorful (t − 1)-NUkC with an
additional “self-coverage” property, i.e., the radius rt−1 can be assumed to be 0. Just like
the aforementioned reduction from [12], these two reductions are generic, and hold for any
value of t ≥ 2. These reductions crucially appeal to the classical greedy algorithm and its
analysis from Charikar et al. [7], which is a tool that has not been exploited in the NUkC
literature thus far. We believe that these connections between Colorful and Robust versions
of NUkC are interesting in their own right, and may be helpful toward obtaining a true
O(1)-approximation for t-NUkC for any fixed t. Indeed, one possible avenue to this result is
to find suitable generalizations of some of our reductions.

We apply these two new reductions to transform Well-Separated Robust 3-NUkC to
Well-Separated Colorful 2-NUkC, with r2 = 0. The latter problem can be solved in polynomial
time using dynamic programming in a straightforward way – the details can be found in
Section 5. Since each of our reductions preserves the approximation factor up to a constant,
this implies an O(1)-approximation for 4-NUkC.

Our overall algorithm for 4-NUkC is combinatorial, except for the step where we reduce
Robust 3-NUkC to Well-Separated Robust 3-NUkC using the round-or-cut approach of [6].
Thus, we avoid an additional “inner loop” of round-or-cut that is employed in recent work
[6, 12].3

We conclude this section by explaining the bottleneck in employing the techniques used
in this paper to obtain an Ot(1) approximation for t-NUkC. For concreteness, we focus on
5-NUkC. Using the general reductions from prior work and this paper, we can reduce 5-NUkC
to Well-Separated Colorful 3-NUkC, with r3 = 0 (self-coverage at level 3). However, we do
not know how to solve this problem exactly via DP, or even obtain an O(1) approximation.
The difficulty pertains to the balls of radius r2 > 0, which are not constrained in any way. It
is not straightforward to use our techniques to also obtain self-coverage at level 2 (r2 = 0);
doing so would result in a problem that can be solved exactly using DP.

2 In this discussion, “reduction” refers to a polynomial time (possibly Turing) reduction from problem A
to problem B, such that (i) a feasible instance of A yields (possibly polynomially many) instance(s) of
B, and (ii) a constant approximation for B implies a constant approximation for A.

3 A by-product of one of our reductions is a purely combinatorial approximation algorithm for colorful
k-center, in contrast with the LP-based approaches in [3, 1, 13].

SWAT 2022

28:4 Non-Uniform k-Center and Greedy Clustering

2 Definitions, Main Result, and Greedy Clustering

2.1 Problem Definitions

In the following, we set up the basic notation and define the problems we will consider in
the paper. We consider a finite metric space (X, d), where X is a finite set of (usually n)
points, and d is a distance function satisfying triangle inequality. If Y is a subset of X,
then by slightly abusing the notation, we use (Y, d) to denote the metric space where the
distance function d is restricted to the points of Y . Let p ∈ X, Y ⊆ X, and r ≥ 0. Then, we
use d(p, Y) := miny∈Y d(p, y), and denote by B(p, r) the ball of radius r centered at p, i.e.,
B(p, r) := {q ∈ X : d(p, q) ≤ r}. We say that a ball B(p, r) covers a point q iff q ∈ B(p, r);
a set of balls B (resp. a tuple of sets of balls (B1,B2, . . . ,Bt)) covers q if there exists a ball
in B that covers q (resp.

⋃
1≤i≤t Bi that covers q). Analogously, a set of points Y ⊆ X is

covered iff every point in Y is covered. For a function f : S → R+ or f : S → N, and R ⊆ S,
we define f(R) :=

∑
r∈R f(r).

▶ Definition 2 (Decision Version of t-NUkC).
The input is an instance I = ((X, d), (k1, k2, . . . , kt), (r1, r2, . . . , rt)), where r1 ≥ r2 ≥ . . . rt ≥
0, and each ki is a non-negative integer. The goal is to determine whether there exists a
solution (B1,B2, . . . ,Bt), where for each 1 ≤ i ≤ t, Bi is a set with at most ki balls of radius
ri, that covers the entire set of points X. Such a solution is called a feasible solution, and if
the instance I has a feasible solution, then I is said to be feasible.
An algorithm is said to be an α-approximation algorithm (with α ≥ 1), if given a feasible
instance I, it returns a solution (B1,B2, . . . ,Bt), where for each 1 ≤ i ≤ t, Bi is a collection
of at most ki balls of radius αri, such that the solution covers X.

Next, we define the robust version of t-NUkC.

▶ Definition 3 (Decision Version of Robust t-NUkC).
The input is an instance I = ((X, d), (ω, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)). The setup is
the same as in t-NUkC, except for the following: ω : X → Z+ is a weight function, and
1 ≤ m ≤ ω(X) is a parameter. The goal is to determine whether there exists a feasible
solution, i.e., (B1,B2, . . . ,Bt) of appropriate sizes and radii (as defined above), such that the
total weight of the points covered is at least m. An α-approximate solution covers points of
weight at least m while using at most ki balls of radius αri for each 1 ≤ i ≤ t.

We will frequently consider the unweighted version of Robust t-NUkC, i.e., where the weight
of every point in X is unit. Let 1 denote this unit weight function. Now we define the
Colorful t-NUkC problem, which generalizes Robust t-NUkC.

▶ Definition 4 (Decision Version of Colorful t-NUkC).
The input is an instance I = ((X, d), (ωr, ωb, mr, mb), (k1, k2, . . . , kt), (r1, r2, . . . , rt)). The
setup is similar as in Robust t-NUkC, except that we have two weight functions ωr, ωb : X →
Z+ (corresponding to red and blue weight respectively). A feasible solution covers a set of
points with red weight at least mr, and blue weight at least mb. The notion of approximation
is the same as above.

We note that the preceding definition naturally extends to an arbitrary number χ ≥ 2 of
colors (i.e., χ different weight functions over X). However, we will not need that level of
generality in this paper.

T. Inamdar and K. Varadarajan 28:5

2.2 Main Algorithm for 4-NUkC
Let I = ((X, d), (k1, . . . , k4), (r1, . . . , r4)) be the given instance of 4-NUkC, which we assume
is feasible. First, using a reduction from [12] (or a variant described in Section 6), we reduce I
to an instance I ′ = ((X, d), (1, m)(r′

1, r′
2, r′

3), (k1, k2, k3)) of Robust 3-NUkC. The reduction
has the property that I ′ is feasible, and furthermore an O(1)-approximation for I ′ implies
an O(1)-approximation for I.

Next, we peform a Turing reduction from Robust 3-NUkC to Well-Separated Robust
3-NUkC, by adapting a very similar reduction of [6]. In a well-separated instance, we are
given a set of potential centers for the balls of radius r′

1, such that the distance between any
two potential centers is at least 3r′

1. This Turing reduction is described in Sections A and B of
the appendix, and uses the round-or-cut methodology on the instance I ′. At a high level, we
run the ellipsoid algorithm, and each iteration of the ellipsoid algorithm returns a candidate
LP solution such that, (1) it can be rounded to obtain an O(1)-approximate solution for I ′,
or (2) one can obtain polynomially many instances of well-separated Robust 3-NUkC, at
least one of which is feasible, or (3) If none of the obtained instances is feasible, then one
can obtain a hyperplane separating the LP solution from the integer hull of coverages.

Solving a Well-Separated Instance. For the sake of simplicity let J be one of the instances
of Well-Separated Robust 3-NUkC, along with a well-separated set Y that is a candidate set
for the centers of balls of radius r′

1. Furthermore, let us assume that J is feasible. First, the
reduction in Section 3 (Theorem 11), given the instance J , produces O(n) instances J (ℓ)
of Colorful 2-NUkC, such that at least one of the instances is feasible. Then, we apply the
reduction from Section 4 (Theorem 17) on each of these instances to ensure the self-coverage
property, i.e., we obtain an instance J ′(ℓ) of Colorful 2-NUkC with r′′

1 = r′
1 + c2r′

2 + c3r′
3

and, crucially, r′′
2 = 0. Finally, assuming that the resulting instance J ′(ℓ) is feasible, it is

possible to find a feasible solution using straightforward dynamic programming, as described
in Section 5. This dynamic programming only requires that the instance is Well-Separated
w.r.t. a smaller separation factor of 2. We argue in the next paragraph that this property
holds in each of the instances J ′(ℓ).

In the reductions in Sections 3 and Section 4, the solution transformations preserve the
centers for the balls of the largest radius class. In order to show that the set Y of candidate
centers is well-separated w.r.t. the new top level radius r′′

1 , we need to show that 3r′
1 ≥ 2r′′

1 ,
i.e., r′

1 ≥ 2c2r′
2 + 2c3r′

3 ≥ β · r′
2 for some sufficiently large constant β. This assumption is

without loss of generality, since, if two consecutive radii classes in instance J are within a β

factor, it is possible to combine them into a single radius class, at the expense of an O(β)
factor in the approximation guarantee.

Assuming the instance J is feasible, a feasible solution to an instance J ′(ℓ) can be
mapped back to an O(1)-approximate solution to J , and then to I, since each reduction
preserves the approximation guarantee up to an O(1) factor.

▶ Theorem 5. There exists a polynomial time O(1)-approximation algorithm for 4-NUkC.

We have overviewed how the various sections of the paper come together in deriving
Theorem 5. Before proceeding to these sections, we describe a greedy clustering procedure
that we need.

2.3 Greedy Clustering
Assume we are given (i) a metric space (X, d), where X is finite, (ii) a radius r ≥ 0, (iii) an
expansion parameter γ ≥ 1, (iv) a subset Y ⊆ X and a weight function ω : Y → Z+. The
weight ω(y) can be thought of as the multiplicity of y ∈ Y , or how many points are co-located

SWAT 2022

28:6 Non-Uniform k-Center and Greedy Clustering

at y. We describe a greedy clustering procedure, from Charikar et al. [7], that is used to
partition the point set Y into clusters, each of which is contained in a ball of radius γr. This
clustering procedure, together with its properties, is a crucial ingredient of our approach.

Algorithm 1 GreedyClustering(Y, X, r ≥ 0, γ ≥ 1, ω : Y → Z+).

We require that Y ⊆ X

1: Let U ← Y , M ← ∅
2: while U ̸= ∅ do
3: p = arg maxq∈X ω(U ∩B(q, r))
4: C(p) := U ∩B(p, γr); wt(p) := ω(C(p))
5: U ← U \ C(p)
6: M ←M ∪ {p} ▷ We refer to C(p) as a cluster whose center is p

7: end while
8: return (M, {C(p)}p∈M , {wt(p)}p∈M)

In line 3, we only consider q ∈ X such that U ∩ B(q, r) ̸= ∅. Notice that it is possible
that ω(U ∩ B(q, r)) = 0 if ω(y) = 0 for each y ∈ U . Furthermore, notice that we do not
require that q ∈ U for it to be an eligible point in line 3.

We summarize some of the key properties of this algorithm in the following observations.

▶ Observation 6. 1. For any p ∈M , C(p) ⊆ B(p, γr),
2. Point y ∈ Y belongs to the cluster C(p), such that p is the first among all q ∈M satisfying

d(y, q) ≤ γr.
3. The sets {C(p)}p∈M partition Y , which implies that
4.
∑

p∈M wt(p) = ω(Y), where ω(Z) =
∑

z∈Z ω(z) for any Z ⊆ Y .
5. If pi and pj are the points added to M in iterations i ≤ j, then wt(pi) ≥ wt(pj).
6. For any two distinct p, q ∈M , d(p, q) > (γ − 1)r.

Proof. The first five properties are immediate from the description of the algorithm. Now,
we prove the sixth property. Suppose for contradiction that there exist p, q ∈ M with
d(p, q) ≤ (γ − 1)r, and without loss of generality, p was added to M before q. Then, note
that at the end of this iteration, B(q, r) ∩ U = ∅. Therefore, q will subsequently never be a
candidate for being added to M in line 3. ◀

A key property of this greedy clustering, established by Charikar et al. [7], is that for any
k ≥ 1 balls of radius r, the weight of the points in the first k clusters is at least as large as
the weight of the points covered by the k balls.

▶ Lemma 7. Suppose that the parameter γ used in Algorithm 1 is at least 3. Let B be any
collecion of k ≥ 1 balls of radius r, each centered at a point in X. Let M ′ consist of the first
k′ points of M chosen by the algorithm, where k′ = min{k, |M |}. We have

∑
p∈M ′

wt(p) = ω

 ⋃
p∈M ′

C(p)

 ≥ ω

(
Y ∩

⋃
B∈B

B

)
.

The equality follows from the definition of wt(p) and the fact that the clusters partition
Y , as stated in Observation 6.

T. Inamdar and K. Varadarajan 28:7

3 From Robust t-NUkC to Colorful (t − 1)-NUkC

Let I = ((X, d), (ω, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)) be an instance of Robust t-NUkC.
The reduction to Colorful (t− 1)-NUkC consists of two phases. In the first phase, we use
Algorithm 1 to reduce the instance I to an instance I ′ focused on the cluster centers output
by the greedy algorithm. A key property of this reduction is that we may set rt = 0 in the
instance I ′ – each ball at level t is allowed to cover at most one point.

In the second phase, we transform I ′ to O(n) instances of Colorful (t−1)-NUkC. Assuming
there exists a feasible solution for I ′, at least one of the instances I ′′ of Colorful (t − 1)-
NUkC has a feasible solution, and any approximate solution to I ′′ can be used to obtain an
approximate solution to I ′ (and thus to I).

Phase 1. Let I = ((X, d), (ω, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)) be an instance of Robust
t-NUkC. We call the algorithm GreedyClustering(X, X, rt, 3, ω), and obtain a set of
points M with the corresponding clusters C(p) for p ∈M . The greedy algorithm also returns
a weight wt(p) = ω(C(p)) for each p ∈M . Let us number the points of M as pi, where i is
the iteration in which pi was added to the set M by GreedyClustering(X, X, rt, 3, ω).
This gives an ordering σ = ⟨p1, p2, . . . , p|M |⟩ of the points in M . Note that wt(pi) ≥ wt(pj)
for i ≥ j.

We define a weight function λ : X → Z+. Let λ(p) = wt(p) for p ∈M and λ(p) = 0 for
p ∈ X \M . Note that for p ∈ M , λ(p) = wt(p) = ω(C(p)). Thus, for each p ∈ M , we are
moving the weight from points in cluster C(p) to the cluster center p. Clearly, ω(X) = λ(X).

The output of Phase 1 is the instance I ′ =
((X, d), (λ, m), (k1, k2, . . . , kt), (r′

1, r′
2, . . . , r′

t−1, 0)) of Robust t-NUkC, where r′
i = ri + 3rt.

Note that in the instance I ′, we have r′
t = 0, whereas the other radii in I have been increased

by an additive factor of 3rt. The following claim relates instances I and I ′.

▶ Lemma 8. (a) If instance I has a feasible solution, then so does the instance I ′. (b) Given
a solution (B′

i)i∈[t] for I ′ that uses at most ki balls of radius αr′
i for every i ∈ [t], we can obtain

a solution (Bi)i∈[t] for I that uses at most ki balls of radius at most αr′
i+3rt ≤ αri+(3α+3)rt

for 1 ≤ i ≤ t.

Proof. We begin with part (b). For each ball in B(p, r) that is part of the solution (B′
i)i∈[t],

we replace it with the ball B(p, r + 3rt) to obtain a solution (Bi)i∈[t] for I. That is, we
expand each ball by an additive 3rt. If B(p, r) covers q ∈M , then B(p, r + 3rt) covers C(q),
and λ(q) = ω(C(q)). Let M ′ ⊆M denote the points covered by (B′

i)i∈[t]. The weight of the
points covered by (Bi)i∈[t] is at least∑

p∈M ′

ω(C(p)) =
∑

p∈M ′

λ(p) ≥ m.

We now establish (a). Fix a feasible solution (Bi)i∈[t] to I that covers ω-weight at least
m, where Bi is a set of at most ki balls of radius ri, for i ∈ [t]. Let M1 ⊆ M be the set of
points p such that some point in C(p) is covered by a ball in B1,B2, . . . ,Bt−1.

Now let M2 = M \M1 be the set of points p, such that any point in C(p) is either
covered by a ball from Bt, or is an outlier. Let Xi :=

⋃
p∈Mi

C(p) for i = 1, 2. Note that
X = X1 ⊔X2.

Note that in the sequence σ = ⟨p1, p2, . . . , p|M |⟩, the points of M1 and M2 may appear
in an interleaved fashion. Let pi1 , pi2 , . . . , pi|M2| be the subsequence restricted to the points
in M2. In the following lemma, we argue that the first kt points in this subsequence are
sufficient to replace the balls in Bt. Let k′ = min{|Bt|, |M2|} ≤ kt.

SWAT 2022

28:8 Non-Uniform k-Center and Greedy Clustering

▶ Lemma 9. There exists a subset M+
2 ⊆M2 of size at most k′ such that

∑
p∈M+

2
wt(p) ≥

ω
(
X2 ∩

⋃
Ball∈Bt

Ball
)

.

Proof. Let M+
2 = {pi1 , pi2 , . . . , pik′}. That is, M+

2 consists of the first k′ points of M2
picked by the greedy algorithm. Recall that M+

2 ⊆M2, and thus for pij ∈M+
2 , it holds that

C(pij
) ⊆ X2.

Now imagine calling the algorithm GreedyClustering(X2, X, rt, 3, ω). Observe that
in the iteration 1 ≤ j ≤ |M2|, this algorithm will select point pij (as defined above) in Line
3, and the corresponding cluster and its weight will be C(pij

) and wt(pij
) – exactly as in the

execution of GreedyClustering(X, X, rt, 3, ω). That is, the algorithm GreedyCluster-
ing(X2, X, rt, 3, ω) will output M2 and the clusters C(p) for each p ∈M2.

Now, Bt consists of a set of |Bt| balls of radius rt. The lemma now follows from Lemma 7
applied to GreedyClustering(X2, X, rt, 3, ω). ◀

Using Lemma 9, we now construct a solution to instance I ′. Fix index 1 ≤ i ≤ t− 1, and
B′

i denote the set of balls obtained by expanding each ball in Bi by an additive 3rt. Note
that each ball in B′

i has radius r′
i = ri + 3rt. For every point p ∈M+

2 , we add a ball of radius
0 around it and let B′

t be the resulting set of balls. Note that |B′
t| = |M+

2 | ≤ k′ ≤ kt.
By definition, for each point p ∈M1, there is a ball in (Bi)i∈[t−1] that intersects cluster

C(p), whose points are at distance at most 3rt from p. It follows that the balls in (B′
i)i∈[t−1]

cover each point in M1.
Using Lemma 9, the coverage of (B′

i)i∈[t] in instance I ′ is at least

∑
p∈M1

wt(p) +
∑

p∈M+
2

wt(p) ≥ ω(X1) + ω

(
X2 ∩

⋃
Ball∈Bt

Ball
)
≥ m.

The final inequality follows because any point covered by solution (Bi)i∈[t] for I either
belongs to X1 or to X2∩

⋃
Ball∈Bt

Ball. Thus, we have shown that I ′ has a feasible solution. ◀

Phase 2. Now we describe the second phase of the algorithm. We have the instance
I ′ = ((X, d), (λ, m), (k1, k2, . . . , kt), (r′

1, r′
2, . . . , r′

t−1, 0)) of Robust t-NUkC that is output by
Phase 1. Phase 2 takes I ′ as input and generates an instance I(ℓ), for each 0 ≤ ℓ ≤ |X|,
of the Colorful (t − 1)-NUkC problem. Note that the number of generated instances is
|X|+ 1 = O(n). If I ′ is feasible, at least one of these |X|+ 1 instances will be feasible.

Let σ = ⟨p1, p2, . . . , p|X|⟩ be an ordering of the points in X by non-increasing λ. That is,
λ(pi) ≥ λ(pj) for i ≤ j.

Fix an index 0 ≤ ℓ ≤ |X|. We now describe the instance I(ℓ) of colorful (t−1)-NUkC. Let
R = {p1, p2, . . . , pℓ} denote the set of red points, and B = {pℓ+1, pℓ+2, . . . , p|X|} denote the set
of blue points. For each p ∈ B, define its blue weight as ωb(p) := λ(p); for each p ∈ R, define
its blue weight as ωb(p) := 0. Define the blue coverage mb for instance I(ℓ) as mb := m−λ(R).
We define the red weight function ωr in a slightly different manner. For each red point
p ∈ R, let its red weight ωr(p) := 1; for each p ∈ B, let red weight ωr(p) := 0. Let mr :=∑

p∈R ωr(p)−kt = |R|−kt denote the red coverage for instance I(ℓ). Note that ωr is supported
on R and ωb on B. Let I(ℓ) := ((X, d), (ωr, ωb, mr, mb), (k1, k2, . . . , kt−1), (r′

1, r′
2, . . . , r′

t−1))
denote the resulting instance of Colorful (t−1)-NUkC problem. Recall that a solution to this
instance is required to cover red weight that adds up to at least mr, and blue weight that
adds up to at least mb. (In instance I(ℓ), the point sets R and B, the red and blue weights,
and total coverage requirements mr and mb all depend on the index ℓ. This dependence is
not made explicit in the notation, so as to keep it simple.)

T. Inamdar and K. Varadarajan 28:9

We now relate the instance I ′ to the instances I(ℓ), for 0 ≤ ℓ ≤ |X|.

▶ Lemma 10. (a) If the instance I ′ = ((X, d), (λ, m), (k1, k2, . . . , kt), (r′
1, r′

2, . . . , r′
t−1, 0)) is

feasible, then there exists an 0 ≤ ℓ∗ ≤ |X| such that instance I(ℓ∗) is feasible.
(b) Let I(ℓ) = ((X, d), (ωr, ωb, mr, mb), (k1, k2, . . . , kt−1), (r′

1, r′
2, . . . , r′

t−1)) be a generated
instance of Colorful (t− 1)-NuKc, and suppose (B′′

i)i∈[t−1] is a solution to this instance such
that B′′

i contains at most ki balls of radius αr′
i for 1 ≤ i ≤ t−1, and covers red weight at least

mr and blue weight at least mb. Then, we can efficiently obtain a solution to the instance I ′

that uses at most ki balls of radius αr′
i for 1 ≤ i ≤ t− 1, and at most kt balls of radius 0.

Proof. We first show part (b). In instance I(ℓ), the red weight ωr(p) = 1 for each p ∈ R, so
the solution (B′′

i)i∈[t−1] covers at least mr =
∑

p∈R ωr(p)− kt = |R| − kt red points. So the
number of red points that are not covered is at most kt. Construct B′

t by adding a ball of
radius 0 at each uncovered point in R. Thus, |B′

t| ≤ kt.
Let B′

i = B′′
i for each 1 ≤ i ≤ t − 1. Now, we argue that the solution (B′

i)i∈[t] covers
weight at least m in instance I ′. Note that this solution covers all points in R, and a subset
C ⊆ B such that ωb(C) ≥ mb = m− λ(R). Thus the coverage for I ′ is at least

λ(R) + λ(C) = λ(R) + ωb(C) ≥ λ(R) + mb = m.

We now turn to part (a). Fix a feasible solution (B′
i)i∈[t] to I ′. Let M1 ⊆ X denote the

subset consisting of each point covered by a ball in B′
i, for 1 ≤ i ≤ t− 1. Let M2 = X \M1.

Each point in M2 is either an outlier or is covered by a ball in B′
t. Note that in the sequence

σ = ⟨p1, p2, . . . , p|X|⟩, the points of M1 and M2 may appear in an interleaved fashion. Let
pi1 , pi2 , . . . , pi|M2| be the subsequence restricted to the points in M2. Let k′ = min{kt, |M2|},
and let M+

2 = {pi1 , pi2 , . . . , pik′}. A key observation is that λ(M+
2) is at least as large as the

total weight of the points in M2 covered by balls in B′
t. This is because each ball in B′

t has
radius 0 and can cover only one point in M2; and the maximum coverage using such balls is
obtained by placing them at the points in M2 with the highest weights, i.e, M+

2 . Without
loss of generality, we assume that B′

t consists of balls of radius 0 placed at each point in M+
2 .

Now, let the index ℓ∗ := ik′ . We now argue that the instance I(ℓ∗) of colorful (t − 1)-
NUkC is feasible. In particular, we argue that (B′

i)i∈[t−1] is a solution. Consider the set
R = {p1, p2, . . . , pℓ∗} of red points in I(ℓ∗). Each point in R is either in M1 or in M+

2 ,
and is therefore covered by (B′

i)i∈[t]. It follows that (B′
i)i∈[t−1] covers at least |R| − |B′

t| ≥
|R| − |kt| = mr points of R. In other words, the red weight in I(ℓ∗) covered by (B′

i)i∈[t−1] is
at least mr.

Now consider the set B = {pℓ+1, pℓ+2, . . . , p|X|} of blue points in I(ℓ∗). Let C ⊆ B

denote the blue points covered by solution (B′
i)i∈[t]. As (B′

i)i∈[t] covers points with weight at
least m in instance I ′, we have λ(R) + λ(C) ≥ m; thus, λ(C) ≥ m− λ(R) = mb. However,
the balls in B′

t do not cover any point in B. Thus, the balls in (B′
i)i∈[t−1] cover all points in

C. For any p ∈ B, we have λ(p) = ωb(p). It follows that the blue weight in I(ℓ∗) covered by
(B′

i)i∈[t−1] is at least ωb(C) = λ(C) ≥ mb. This concludes the proof of part (a). ◀

Combining Lemmas 8 and 10 from Phases 1 and 2, we obtain the following reduction
from robust t-NUkC to colorful (t− 1)-NUkC.

▶ Theorem 11. There is a polynomial-time algorithm that, given an instance I =
((X, d), (ω, m), (k1, . . . , kt), (r1, . . . , rt)) of Robust t-NUkC, outputs a collection of O(n) in-
stances of Colorful (t − 1)-NUkC with the following properties: (a) If I is feasible, then
at least one of the instances I(ℓ) = ((X, d), (ωr, ωb, mr, mb), (k1, . . . , kt−1), (r′

1, . . . , r′
t−1)) of

Colorful (t − 1)-NUkC is feasible; (b) given an α-approximate solution to some instance
I(ℓ), we can efficiently construct a solution to I that uses at most ki balls of radius at most
αri + (3α + 3)rt.

SWAT 2022

28:10 Non-Uniform k-Center and Greedy Clustering

▶ Remark 12. In part (a), the feasible solution for I(ℓ) that is constructed from the feasible
solution for I has the following useful property: for any Ball of radius r′

i = ri + 3rt in the
feasible solution for I(ℓ), the center of Ball is also the center of some ball of radius ri in the
feasible solution for I.

4 Ensuring Self-Coverage in Colorful 2-NUkC

We assume that we are given as input a Colorful 2-NUkC instance I =
((X, d), (ωr, ωb, mr, mb), (k1, k2), (r1, r2)). Recall that ωr : X → Z+ (resp. ωb : X → Z+)
is the red (resp. blue) weight function. The task in Colorful 2-NUkC is to find a solution
(B1,B2) such that (1) |Bi| ≤ ki for i = 1, 2, and (2) the point set Y ⊆ X covered by the
solution satisfies ωr(Y) ≥ mr and ωb(Y) ≥ mb, (i.e., the solution covers points with total
red weight at least mr, and blue weight at least mb.) In this section, we show that I can be
reduced to an instance of Colorful 2-NUkC with r2 = 0. The fact that each ball of radius r2
can only cover its center in the target instance is what we mean by the term self-coverage.
This reduction actually generalizes to Colorful t-NUkC, but we address the case t = 2 to
keep the notation simpler.

Our reduction proceeds in two phases. In Phase 1, we construct an intermediate instance
where we can ensure blue self-coverage. Then in Phase 2, we modify the intermediate instance
so as to obtain red self-coverage as well.

Phase 1. In this step, we call the greedy clustering algorithm using the blue weight function
ωb. In particular, we call GreedyClustering(X, X, r2, 3, ωb) (See Algorithm 1). This
algorithm returns a set of points M ⊆ X, where every p ∈M has a cluster C(p) and weight
wt(p) such that (1) {C(p)}p∈M is a partition of X; (2) for any p ∈ M , wt(p) = ωb(C(p)),
the blue weight of the cluster, and (3) d(q, p) ≤ 3r2 for any q ∈ C(p). Furthermore, the
greedy algorithm naturally defines an ordering σ = ⟨p1, p2, . . . , p|M |⟩ of M – this is the order
in which the points were added to M .

We define a new weight function λb : X → Z+ as follows: λb(p) := wt(p) if p ∈ M and
λb(p) := 0 if p ∈ X \M . Note that for p ∈M , we have wt(p) = ωb(C(p)). So the new weight
function λb is obtained from ωb by moving weight from each cluster C(p) to its center p.

Phase 1 outputs the intermediate instance I ′ = ((X, d), (ωr, λb, mr, mb), (k1, k2), (r′
1, r′

2))
of Colorful 2-NUkC, where r′

1 = r1 + 6r2 and r′
2 = 5r2. A solution (B′

1,B′
2) for I ′ is said to

be structured if it has the following properties.
1. It is a solution to I ′ viewed as an instance of Colorful 2-NUkC.
2. Let Y ⊆ X, the set of points self-covered by solution (B′

1,B′
2), consist of points p ∈ X

such that either (a) p is covered by B′
1, or (b) p is the center of some ball in B′

2. We
require that λb(Y) ≥ mb.

Thus, a structured solution covers red weight in the usual way; whereas a ball in B′
2 can only

contribute blue coverage for its center. The following lemma relates instances I and I ′.

▶ Lemma 13. (a) If instance I has a feasible solution, then the instance I ′ has a feasible
solution that is also structured. (b) Given a solution (B′

1,B′
2) for I ′ that uses at most ki balls

of radius αr′
i for every i ∈ {1, 2}, we can obtain a solution (B1,B2) for I that uses at most

ki balls of radius αr′
i + 3r2 ≤ αri + (6α + 3)r2 for i ∈ {1, 2}.

Part (b) is straightforward as the red weights are unchanged in going from I to I ′, and
the blue weights are moved by at most 3r2. (Note that we don’t require in part (b) that the
solution to I ′ be structured.)

T. Inamdar and K. Varadarajan 28:11

In the rest of this section, we establish (a). Fix a feasible solution (B1,B2) to I. Thus,
(1) |Bi| ≤ ki for i = 1, 2, and (2) the point set Y ⊆ X covered by the solution satisfies
ωr(Y) ≥ mr and ωb(Y) ≥ mb, (i.e., the solution covers points with total red weight at least
mr, and blue weight at least mb.)

Let M1 ⊆ M be the set of points p such that some point in C(p) is covered by a ball
in B1. Now let M2 = M \M1 be the set of points p such that any point in C(p) is either
covered by a ball from B2, or is an outlier. Let Xi :=

⋃
p∈Mi

C(p) for i = 1, 2. Note that
X = X1 ⊔X2.

We construct a solution (B′
1,B′

2) for instance I ′ as follows. The set B′
1 is obtained by

expanding each ball in B1 by an additive factor of 6r2. Thus, the balls in B′
1 cover X1. As

in the proof of Lemma 8, we construct a subset N ⊆ M2 of size at most |B2|. We let B′
2

consist of the balls of radius r′
2 = 5r2, each centered at a point in N . The set N will have

the following properties:

ωr(X2 ∩
⋃

Ball∈B′
2

Ball) ≥ ωr(X2 ∩
⋃

Ball∈B2

Ball) (1)

∑
p∈N

wt(p) ≥ ωb(X2 ∩
⋃

Ball∈B2

Ball) (2)

It is easy to verify that these two guarantees imply that (B′
1,B′

2) is a structured, feasible
solution to I ′:

The red weight covered by (B′
1,B′

2) is at least

ωr(X1) + ωr(X2 ∩
⋃

Ball∈B′
2

Ball) ≥ ωr(X1) + ωr(X2 ∩
⋃

Ball∈B2

Ball) ≥ mr.

The set M1 ∪N is self-covered by (B′
1,B′

2). We have

λb(M1) + λb(N) = ωb(X1) +
∑
p∈N

wt(p) ≥ ωb(X1) + ωb(X2 ∩
⋃

Ball∈B2

Ball) ≥ mb.

We now describe the construction of N and establish properties (1) and (2). At a high
level, this is similar to what we did for M+

2 in Lemma 8; but it is more involved as we need
to ensure that both properties hold.

Let B̂2 = {Ball ∈ B2 | Ball ∩X2 ̸= ∅}. The set N is obtained via Mapping Procedure,
given in Algorithm 2. In particular, we invoke Mapping Procedure(M2, σ, B̂2, {C(p}p∈M2).
We describe Algorithm 2 at a high level. First, we map every ball in B̂2 to the first (according
to σ) point q in M2 whose cluster C(q) has a non-empty intersection with the ball – this
is the definition of φ. Now, some points q ∈ M2 may get mapped by more than one ball.
Then, we create a “grouping procedure” that creates pairs (Nℓ, Dℓ) as follows. We start from
the first (according to σ) point qi that is mapped by at least one ball. We add qi to Nℓ,
and the balls that were mapped to qi to the set Dℓ. Now, if |φ−1(qi)| > 1, then we aim to
find |φ−1(qi)| − 1 additional points after qi to be added to Nℓ. Furthermore, it is important
in the analysis that these points be consecutive according to σ|M2 . The variable pending
keeps track of how many additional distinct points need to be added to Nℓ to match the
number of distinct balls in Dℓ at the current time. Thus, if |φ−1(qi)| > 1, we add qi+1 to Nℓ

as well. At this stage, it may happen that φ−1(qi+1) ̸= ∅. Then, we add φ−1(qi+1) to Dℓ,
and update the variable pending appropriately. If the variable pending becomes 0, then
|Nℓ| = |Dℓ|, at which point the inner while loop terminates. By construction, the points
added to Nℓ form a contiguous sub-sequence of σ|M2 . We add the pair (Nℓ, Dℓ) to T . At
this point, if there still exists a ball of B̂2 that does not belong to any Dj with j ≤ ℓ, we

SWAT 2022

28:12 Non-Uniform k-Center and Greedy Clustering

Algorithm 2 Mapping Procedure(M̂, σ, B̂, {C(p)}
p∈M̂

).

1: Index the points of M̂ as q1, q2, . . . according to the ordering σ

2: For every Ball ∈ B̂, φ(Ball) := qi, where qi ∈ M̂ is the first point q s.t. Ball ∩ C(q) ̸= ∅
3: ℓ = 0; T ← ∅
4: while there exists a Ball ∈ B̂ that does not belong to any Dj with j ≤ ℓ do
5: ℓ← ℓ + 1
6: qi ∈ M̂ \

⋃ℓ−1
j=1 Nℓ be the first point q with |φ−1(q)| > 0

7: pending ← |φ−1(qi)| − 1
8: Nℓ ← {qi}, Dℓ ← φ−1(qi)
9: while pending > 0 and i + 1 ≤ |M̂ | do

10: i← i + 1
11: pending← pending + |φ−1(qi)| − 1
12: Nℓ ← Nℓ ∪ {qi}, Dℓ ← Dℓ ∪ φ−1(qi)
13: end while
14: Add (Nℓ, Dℓ) to T
15: end while
16: Return T

start the construction of the next pair (Nℓ+1, Dℓ+1). Note that in all but the last iteration
of the outer while loop, it holds that |Nℓ| = |Dℓ|. However, in the last iteration t, the loop
may terminate with |Nt| ≤ |Dt|.

The invocation of Mapping Procedure(M2, σ, B̂2, {C(p}p∈M2) returns T = {(N1, D1),
(N2, D2), . . . , (Nt, Dt)}. In the following observation, we summarize a few key properties of
this collection of pairs.

▶ Observation 14. T = {(N1, D1), (N2, D2), . . . , (Nt, Dt)} satisfies the following properties.
1. For each 1 ≤ ℓ ≤ t, we have ∅ ̸= Nℓ ⊆ M2; Furthermore, the points of Nℓ form

a contiguous subsequence of M2 ordered according to σ. The sets N1, N2, . . . , Nt are
pairwise disjoint.

2. For each 1 ≤ ℓ ≤ t, we have ∅ ̸= Dℓ ⊆ B̂2. The sets D1, . . . , Dt form a partition of B̂2.
3. |Nℓ| = |Dℓ| for ℓ < t, and |Nt| ≤ |Dt|.

Now we prove the following key lemma.

▶ Lemma 15. For any 1 ≤ ℓ ≤ t, the following properties hold.
A. For any ball B(c, r2) ∈ Dℓ, there exists a q ∈ Nℓ such that B(c, r2) ⊆ B(q, 5r2).

B. ωb

X2 ∩
⋃

B(c,r2)∈Dℓ

B(c, r2)

 ≤ ∑
p∈Nℓ

wt(p).

Proof. For any Ball = B(c, r2) ∈ Dℓ, qi = φ(Ball) ∈ Nℓ. By the definition of qi, it
holds that C(qi) ∩ Ball ̸= ∅. Therefore, for any point p ∈ Ball, it holds that d(p, qi) ≤
d(p, c)+d(c, p′)+d(p′, qi) ≤ r2 +r2 +3r2 = 5r2, where p′ ∈ C(qi)∩Ball. This proves property
A.

Let Xℓ := X2 ∩
((⋃

q∈Nℓ
C(q)

)
∪
(⋃

Ball∈Dℓ
Ball

))
. That is, Xℓ denotes the set of those

points in X2 that belong to the clusters of all the points in Nℓ, as well as those in the
balls in Dℓ. Now, imagine calling GreedyClustering(Xℓ, X, r2, 3, ωb). As in the proof of
Lemma 9, the main observation is that the set of clusters computed in the first |Nℓ| iterations
is exactly {C(q)}q∈Nℓ

. Thus, property B in the lemma follows from Lemma 7 applied to
GreedyClustering(Xℓ, X, r2, 3, ωb). ◀

T. Inamdar and K. Varadarajan 28:13

We now set N =
⋃

1≤ℓ≤t Nℓ. Note that

|N | =
∑

ℓ

|Nℓ| ≤
∑

ℓ

|Dℓ| = |B̂2| ≤ |B2|.

Recall that for instance I ′, we set B′
2 = {B(q, 5r2) | q ∈ N}. We now argue that N satisfies

properties (1) and (2).
By Property A of Lemma 15, we have that for any Ball ∈ B2, there is a Ball′ ∈ B′

2 such
that X2∩Ball ⊆ X2∩Ball′. Thus,

(
X2 ∩

⋃
Ball∈B2

Ball
)
⊆
(

X2 ∩
⋃

Ball∈B′
2

Ball
)

, which implies
property (1).

Using Property B of Lemma 15, we can prove property (1) as follows:

∑
p∈N

wt(p) =
∑

ℓ

∑
p∈Nℓ

wt(p) ≥
∑

ℓ

ωb

(
X2 ∩

⋃
Ball∈Dℓ

Ball
)
≥ ωb

(
X2 ∩

⋃
Ball∈B2

Ball
)

,

Phase 2. Phase 1 outputs an instance I ′ = ((X, d), (λr, λb, mr, mb), (k1, k2), (r′
1, r′

2)) of Col-
orful 2-NUkC. In Phase 2, we transform this into an instance I ′′ = ((X, d), (χr, χb, mr, mb),
(k1, k2), (r′′

1 , 0)) of Colorful 2-NUkC where the radius at the second level is 0.
In this step, we call the greedy clustering algorithm (Algorithm 1) using the red weight

function λr. In particular, we will call GreedyClustering(X, X, r′
2, 3, λr). This algorithm

returns a set of points M ⊆ X, where every p ∈M has a cluster C(p) and weight wt(p) such
that (1) {C(p)}p∈M is a partition of X, (2) For any p ∈M , wt(p) = λr(C(p)), the red weight
of the cluster, and (3) d(q, p) ≤ 3r′

2 for any q ∈ C(p). Furthermore, the greedy algorithm
naturally defines an ordering σ = ⟨p1, p2, . . . , p|M |⟩ of M – this is the order in which the
points were added to M .

We define the red weight function χr for I ′′ as follows: χr(p) := λr(C(p)) for p ∈M , and
χr(p) := 0 for p ∈ X \M . We also define ϕ : X →M as follows: ϕ(p) is the first point in M

(according to σ) such that B(p, r′
2) ∩ C(p) ̸= ∅. Note that ϕ(p) exists and d(p, ϕ(p)) ≤ 4r′

2.
We define the blue weight function χb for I ′′ as follows: χb(p) :=

∑
q∈ϕ−1(p) λb(q) for p ∈M ,

and χb(p) := 0 for p ∈ X \M .
Finally, we let r′′

1 = r′
1 + 4r′

2, and obtain the instance I ′′ = ((X, d), (χr, χb, mr, mb),
(k1, k2), (r′′

1 , 0)) of Colorful 2-NUkC. The following lemma relates instances I ′ and I ′′.

▶ Lemma 16. (a) If instance I ′ has a feasible solution that is structured, then the instance
I ′′ has a feasible solution. (b) Given a solution (B′′

1 ,B′′
2) for I ′ that uses at most ki balls of

radius αr′′
i for each i ∈ {1, 2}, we can obtain a solution (B′

1,B′
2) for I ′ that uses at most ki

balls of radius αr′′
i + 4r′

2 ≤ αr′
i + (4α + 4)r′

2 for i ∈ {1, 2}.

Again, part (b) follows from the fact that in constructing I ′′ from I ′, we move weights
by a distance of at most 4r′

2. Note that we do not claim that the solution to I ′ constructed
in part (b) is structured.

In the rest of this section, we establish part (a). Fix a feasible solution (B′
1,B′

2) for I ′

that is also structured. Our construction of a feasible solution for I ′ is analogous to what we
did in Phase 1.

Let M1 ⊆M be the set of points p such that there exists some point x satisfying (i) x is
covered by a ball in B′

1, and (ii) d(x, p) ≤ 4r′
1. Note that M1 includes any p ∈M such C(p)

contains a point covered by a ball in B′
1. Now let M2 = M \M1; note that for p ∈M2, any

point in C(p) is either covered by a ball from B′
2, or is an outlier. Let Xi :=

⋃
p∈Mi

C(p) for
i = 1, 2. Note that X = X1 ⊔X2.

SWAT 2022

28:14 Non-Uniform k-Center and Greedy Clustering

Let B̂′
2 = {Ball ∈ B′

2 | Ball ∩ X2 ̸= ∅}. We invoke Mapping Procedure(M2, σ, B̂′
2,

{C(p}p∈M2) and T = {(N1, D1), (N2, D2), . . . , (Nt, Dt)}. We let N =
⋃

1≤ℓ≤t Nℓ.
As in phase 1, we have that |N | ≤ |B̂′

2| ≤ |B′
2|. The set N also satisfies the following

property, which is the analog of Property 2.∑
p∈N

wt(p) ≥ λr(X2 ∩
⋃

Ball∈B′
2

Ball) (3)

We now construct a solution (B′′
1 ,B′′

2) for I ′′. The set B′′
1 is obtained by expanding each

ball in B′
1 by an additive 4r′

2; each ball in B′′
1 has radius r′′

1 . Note that by definition of M1,
the balls in B′′

1 cover M1. The set B′′
2 is obtained by including in it a ball of radius 0 at each

point in N . Note that |B′′
2 | = |N | ≤ |B′

2|.
We now argue that (B′′

1 ,B′′
2) provides adequate coverage. Red coverage is analogous to

blue coverage in phase 1, using property 3:

χr(M1) + χr(N) = λr(X1) +
∑
p∈N

wt(p) ≥ λr(X1) + λr(X2 ∩
⋃

Ball∈B′
2

Ball) ≥ mr.

For blue coverage, let Y ⊆ X denote the set of points self-covered by the structured,
feasible solution (B′

1,B′
2) with λb(Y) ≥ mb. We argue that for each y ∈ Y , we have

ϕ(y) ∈ M1 ∪ N . If y is covered by a ball in B′
1, then as d(y, ϕ(y)) ≤ 4r′

2, we conclude
that ϕ(y) ∈ M1 using the definition of M1. Otherwise, y is the center of some ball in
B(y, r′

2) ∈ B′
2. Assume ϕ(y) ̸∈M1. Then by the definition of ϕ, ϕ(y) is the first point p ∈M2

such that B(y, r′
2) intersects C(p). But this means ϕ(y) is the same as φ(B(y, r′

2)) computed
in Mapping Procedure(M2, σ, B̂′

2, {C(p}p∈M2). Thus, B(y, r′
2) ∈ Dℓ and ϕ(y) ∈ Nℓ for

some pair (Nℓ, Dℓ) in T . We conclude ϕ(y) ∈ N =
⋃

ℓ Nℓ.
Thus, the blue coverage of (B′′

1 ,B′′
2) is at least

χb(M1) + χb(N) ≥
∑

p∈M1∪N

ϕ−1(p) ≥
∑
y∈Y

λb(y) ≥ mb.

This completes the proof of Lemma 16 and concludes our description of Phase 2. Com-
bining Phase 1 and Phase 2, we conclude with the main result of this section.

▶ Theorem 17. There is a polynomial-time algorithm that transforms a Colorful 2-
NUkC instance I = ((X, d), (ωr, ωb, mr, mb), (k1, k2), (r1, r2)) into an instance I ′′ =
((X, d), (χr, χb, mr, mb), (k1, k2), (r′′

1 , 0)) of Colorful 2-NUkC with r′′
1 = r1 + 26r2, and has

the following properties: (a) If I has a feasible solution, then so does I ′′; (b) Given an
α-approximate solution to I ′′, we can construct, in polynomial time, a c · α-approximate
solution to I, where c > 0 is an absolute constant.

▶ Remark 18. In part (a), the feasible solution (B′′
1 ,B′′

2) to I ′ that is constructed from feasible
solution (B1,B2) to I has the following useful property: for any Ball ∈ B′′

1 , the center of Ball
is also the center of some ball in B′

1.

5 Solving Well-Separated Colorful 2-NUkC

We assume that we are given a well-separated instance I = ((X, d), (ωr, ωb, mr, mb), (k1, k2),
(r1, 0)) of Colorful 2-NUkC. The well-separatedness of the instance comes with the following
additional input and restriction – we are given an additional set Y ⊆ X as an input. The set
Y is well-separated, i.e., for any u, v ∈ Y , d(u, v) > 2r1. The additional restriction is that,
the set of centers of balls of radius r1 must be chosen from the set Y . We sketch how to
solve such an instance optimally in polynomial time using dynamic programming.

T. Inamdar and K. Varadarajan 28:15

Let z := |Y |, and let Y = {y1, y2, . . . , yz}. For 1 ≤ i ≤ z, let Xi := B(yi, r1) ∩X, and let
Xz+1 := X \

(⋃
1≤i≤z Xi

)
. Note that {Xi}1≤i≤z+1 is a partition of X.

For any X ′ ⊆ X and non-negative integers k, nr, nb, let F (X ′, k, nr, nb) be true if there
exists a subset X ′′ ⊆ X ′ of size at most k, and (red, blue) weight at least (nr, nb); and
false otherwise.4 For a particular subset X ′, the value of F (X ′, k, nr, nb) can be found in
polynomial time using dynamic programming, since the values k, nr, nb are at most n.

For (1, 0, 0, 0, 0) ≤ (i, k′
1, k′

2, nr, nb) ≤ (z + 1, k1, k2, mr, mb), let G(i, k′
1, k′

2, nr, nb) be
true if it is possible to obtain (red, blue) coverage of at least (nr, nb) from the set of
points

⋃
1≤j≤i Xj , using at most k′

1 balls of radius r1 and k′
2 balls of radius 0; and false

otherwise. Note that if G(i − 1, k′
1, k′

2, nr, nb) = true, then G(i, k′
1, k′

2, nr, nb) is trivially
true. Otherwise, suppose some points in Xi are covered. We consider two possibilities:
either (A) Xi is covered using a ball of radius r1 (note that for i ≤ z this is possible by
definition; for i = z + 1 we omit this case), and the remaining (red, blue) coverage comes
from

⋃
1≤j≤i−1 Xj , or (B) We use some 1 ≤ t ≤ min{k′

2, |Xi|} balls of radius 0 to achieve the
(red, blue) coverage of (n′

r, n′
b) from within Xi, and the remaining (red, blue) coverage comes

from
⋃

1≤j≤i−1 Xj . Note that in case (B), for a fixed guess of (t, n′
r, n′

b), the subproblem for
Xi corresponds to F (Xi, t, n′

r, n′
b) as defined in the previous paragraph, and can be solved

in polynomial time. It is straightforward to convert this recursive argument to compute
G(z + 1, k1, k2, mr, mb) into a dynamic programming algorithm that also finds a feasible
solution, and it can be implemented in polynomial time. We omit the details.

6 From (t + 1)-NUkC to Robust t-NUkC

In this section, we show an approximate equivalence of t + 1-NUkC and Robust t-NUkC.
Note that Jia et al. [12] recently showed a very similar result. However, our proof is slightly
different from theirs, and we describe it here for the sake of completeness.

▶ Lemma 19.
1. Suppose there exists an α-approximation algorithm for (t + 1)-NUkC. Then, there exists

an α-approximation algorithm for unweighted Robust t-NUkC.
2. Suppose there exists a β-approximation algorithm for unweighted Robust t-NUkC. Then

there exists a 3β + 2-approximation algorithm for (t + 1)-NUkC.

Proof. Note that the first claim is trivial, since an instance of Robust t-NUkC is a special case
of NUkC, as follows. Let I = ((X, d), (1, m), (r1, r2, . . . , rt), (k1, k2, . . . , kt)) be an instance
of unweighted t-Robust-NUkC, where m is the coverage requirement. Then, observe that it is
equivalent to the instance I ′ = ((X, d), (r1, r2, . . . , rt, 0), (k1, k2, . . . , kt, n−m)) of t+1-NUkC.
An α-approximate solution to I ′ immediately gives an α-approximate solution to I. We now
proceed to the second claim.

Consider an instance I = ((X, d), (r1, r2, . . . , rt, rt+1), (k1, k2, . . . , kt, kt+1)) of (t + 1)-
NUkC. Note that we have to cover all points of X in the instance I. First, we compute a
2rt+1-net Y of X. That is compute Y ⊆ X with the following properties: (i) d(u, v) > 2rt+1
for any u, v ∈ Y , and (ii) for any u ∈ X \ Y , there exists a v ∈ Y such that d(u, v) ≤ 2rt+1.
Let φ : X → Y be a mapping that assigns every point in X to its nearest point in Y

(breaking ties arbitrarily). Our reduction constructs the instance I ′ = ((Y, d), (1, |Y | −
kt+1), (k1, k2, . . . , kt), (r′

1, r′
2, . . . , r′

t)) of t-Robust-NUkC with at most kt+1 outliers, where
r′

i = ri + 2rt for 1 ≤ i ≤ t.

4 We use X ′′ has (red, blue) weight at least (nr, nb) as shorthand for ωr(X ′′) ≥ nr and ωb(X ′′) ≥ nb.

SWAT 2022

28:16 Non-Uniform k-Center and Greedy Clustering

We now argue that if I is feasible, then so is I ′. Fix a solution (Bi)i∈[t+1] for the original
instance I, where Bi is a set of at most ki balls of radius ri. Let Y ′ ⊆ Y be the set of points
in Y covered by (Bi)i∈[t], the balls of the t largest radii types. For each ball B(ci, ri) ∈ Bi,
we add B(φ(ci), r′

i) to obtain the set B′
i of balls; recall r′

i = ri + 2rt. Note that the resulting
solution (B′

i)i∈[t] covers the set of points Y ′. Now, let Y ′′ = Y \ Y ′ be the set of points
covered by Bt+1, the balls of radius rt+1. The distance between any two points of Y , and
thus Y ′′, is greater than 2rt+1. Therefore, a ball of radius radius rt+1 covers at most one
point of Y ′′, which implies that |Y ′′| ≤ |Bt+1| ≤ kt+1. Thus (B′

i)i∈[t] is a feasible solution for
instance I ′, with the points in Y ′′ being the set of outliers of size at most kt+1.

We now argue that from a β-approximate solution to I ′, we can efficiently construct a
(3β + 2)-approximate solution to I. Fix a solution (B′

i)i∈[t] for the instance I ′ that covers at
least |Y | − kt+1 points of Y , where B′

i consists of ki balls of radius βr′
i, for 1 ≤ i ≤ t. To

obtain a solution for the original instance I, we proceed as follows. We expand the radius of
every ball in B′

i by an additive factor of 2rt+1 to obtain Bi. Note that the resulting radius for
each ball in Bi is βri + 2βrt+1 + 2rt+1 ≤ (3β + 2) · ri. Note that if a ball in solution (B′

i)i∈[t]
covers y ∈ Y , then the additively expanded version of the ball covers every point x ∈ φ−1(y).
For every outlier point y ∈ Y not covered by (B′

i)i∈[t], we add a ball of radius 2rt+1 centered
at y to Bt+1; this ball covers all points x ∈ φ−1(y). As the number of outliers is at most
kt+1, we have |Bt+1| ≤ kt+1. The resulting solution (Bi)i∈[t+1] covers all the points of X,
and has approximation guarantee 3β + 2. ◀

References
1 Georg Anegg, Haris Angelidakis, Adam Kurpisz, and Rico Zenklusen. A technique for obtaining

true approximations for k-center with covering constraints. In Daniel Bienstock and Giacomo
Zambelli, editors, Integer Programming and Combinatorial Optimization - 21st International
Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceedings, volume 12125 of Lecture
Notes in Computer Science, pages 52–65. Springer, 2020. doi:10.1007/978-3-030-45771-6_5.

2 Sayan Bandyapadhyay. On perturbation resilience of non-uniform k-center. In Jaroslaw Byrka
and Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Con-
ference, volume 176 of LIPIcs, pages 31:1–31:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.31.

3 Sayan Bandyapadhyay, Tanmay Inamdar, Shreyas Pai, and Kasturi R. Varadarajan. A constant
approximation for colorful k-center. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 12:1–12:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.12.

4 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform
k-center problem. ACM Trans. Algorithms, 16(4):46:1–46:19, 2020. doi:10.1145/3392720.

5 Deeparnab Chakrabarty and Maryam Negahbani. Generalized center problems with outliers.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

6 Deeparnab Chakrabarty and Maryam Negahbani. Robust k-center with two types of radii.
In Mohit Singh and David P. Williamson, editors, Integer Programming and Combinatorial
Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-
21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science, pages 268–282.
Springer, 2021. doi:10.1007/978-3-030-73879-2_19.

7 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 642–651. Society for Industrial and Applied Mathematics, 2001.

https://doi.org/10.1007/978-3-030-45771-6_5
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.31
https://doi.org/10.4230/LIPIcs.ESA.2019.12
https://doi.org/10.1145/3392720
https://doi.org/10.1007/978-3-030-73879-2_19

T. Inamdar and K. Varadarajan 28:17

8 David G Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. A lottery model for
center-type problems with outliers. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

9 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

10 Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985.

11 Tanmay Inamdar and Kasturi Varadarajan. Capacitated sum-of-radii clustering: An fpt
approximation. In 28th Annual European Symposium on Algorithms (ESA 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

12 Xinrui Jia, Lars Rohwedder, Kshiteej Sheth, and Ola Svensson. Towards non-uniform k-center
with constant types of radii. In Karl Bringmann and Timothy Chan, editors, 5th Symposium
on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022,
pages 228–237. SIAM, 2022. doi:10.1137/1.9781611977066.16.

13 Xinrui Jia, Kshiteej Sheth, and Ola Svensson. Fair colorful k-center clustering. In Daniel
Bienstock and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimiz-
ation - 21st International Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceed-
ings, volume 12125 of Lecture Notes in Computer Science, pages 209–222. Springer, 2020.
doi:10.1007/978-3-030-45771-6_17.

A Setup for Robust t-NUkC

Let I = ((X, d), (1, m)(k1, . . . , kt), (r1, . . . , rt)) be an instance of Robust t-NUkC. First we
state the natural LP relaxation for I. Recall that the goal is to cover at least m points.∑

v∈X

cov(v) ≥ m∑
u∈X

xi,u ≤ ki ∀1 ≤ i ≤ t

covi(v) =
∑

u∈B(v,ri)

xi,u ∀1 ≤ i ≤ t, ∀v ∈ X

cov(v) = min
{

t∑
i=1

covi(v), 1
}

∀v ∈ X

xi,u ≥ 0 ∀1 ≤ i ≤ t, ∀u ∈ X.

Let F denote the set of all tuples of subsets (S1, . . . , St), where |Si| ≤ ki for 1 ≤ i ≤ t. For
v ∈ X, and 1 ≤ i ≤ t, we say that (S1, . . . , St) ∈ F covers v with radius ri, if d(v, Si) ≤ ri.
Let Fi(v) ⊆ F denote the subset of solutions that cover v with radius ri – where, the sets
Fi(v) of solutions are assumed to be disjoint by including a solution in Fi(v) of the smallest
index i, if it appears in multiple such sets.

If the instance I is feasible, then the integer hull of the coverages, PI
cov as given below,

must be non-empty.

PI
cov :

∑
v∈X

∑
i∈[t]

covi(v) ≥ m

∑
S∈Fi(v)

zS = covi(v) ∀i ∈ [t], ∀v ∈ X

∑
S∈F

zS = 1

zS ≥ 0 ∀S ∈ F

SWAT 2022

https://doi.org/10.1137/1.9781611977066.16
https://doi.org/10.1007/978-3-030-45771-6_17

28:18 Non-Uniform k-Center and Greedy Clustering

Next, we give a few definitions from [6], generalized to arbitrary t ≥ 2, for the sake of
completeness. These definitions are used in the round-or-cut framework that reduces an
instance of Robust t-NUkC to Well-Separated Robust t-NUkC, as described in Section B.

t-Firefighter Problem. The input is a collection of height-t trees, where L1 is the set of roots,
and for any v ∈ Li with i ≥ 1, aj(v) represents the ancestor of v that belongs to Lj , where
1 ≤ j ≤ i (ai(v) = v). Furthermore, let w : Lt → N be a weight function on the leaves. For a
root u ∈ L1, we use Leaf(u) to denote the set of leaves, i.e., nodes in Lt in the tree rooted at u.
Note that the {Leaf(u) : u ∈ L1} partitions Lt. Thus, ((L1, . . . , Lt), (a1, a2, . . . , at), Leaf, w)
completely describes the structure of the tree, where ai(v) :

⋃
i≤j≤t Lj → Li is an ancestor

function as defined above. Now we define the t-FF problem.

▶ Definition 20 (t-FF Problem). Given height-t trees (T = (L1, . . . , Lt), (a1, . . . , at), Leaf, w),
along with budgets (k1, . . . , kt), we say that T = (T1, . . . , Tt), with Ti ⊆ Li is a feasible
solution, if |Ti| ≤ ki for 1 ≤ i ≤ t. Let C(T) = {v ∈ Lt : ai(v) ∈ Ti for some 1 ≤ i ≤ t} be
the set of leaves covered by the solution. Then, the objective is to find a feasible solution
maximizing the weight of the leaves covered. This instance is represented as I = (T =
((L1, . . . , Lt), (a1, . . . , at), Leaf, w), (k1, . . . , kt)),

▶ Definition 21 (The solution y). Given cov, and a collection T of rooted trees, let L1 denote
the set of roots, and let Li, i > 1 denote the set of vertices at j-th level. Furthermore, for any
node v ∈ Li with i > 1, let aj(v) denote the ancestor of v that belongs to Lj , where 1 ≤ j < i.
Then, the solution y is defined as follows.

y(v) =

cov1(v) if v ∈ L1

min
{

covi(v), 1−
∑

j<i covj(aj(v))
}

if v ∈ Li, i > 1

▶ Definition 22 (The Sparse LP).

max
∑

v∈Lt

w(v)Y (v)

∑
u∈L1

yu ≤ k1 − t

∑
u∈Li

yu ≤ ki ∀2 ≤ i ≤ t

Y (v) := yv +
t−1∑
i=1

yai(v) ∀v ∈ Lt

We now describe two subroutines that are used in the Reduction from Robust t-NUkC to
Well-Separated Robust t-NUkC. We use the same notation and convention as in [6]. These
two algorithms (Algorithm 3 and Algorithm 4) are named after Hochbaum, and Shmoys [10];
and Chakrabarty, Goyal, and Krishnaswamy [4], respectively.

We construct the t-FF instance based on the sets Li’s constructed, as follows. Consider
some 1 ≤ i ≤ t−1, and some u ∈ Li. Then, for every v ∈ Childi(u), we make v a child of u in
a tree T . Note that L1 is the set of roots of the trees constructed in this way. Then, we define
Leaf(u) = {v ∈ Lt : v is a leaf in the tree rooted at v }, and let ai : Lt →

⋃
i≤j≤t Lj be the

ancestor function as defined above. Finally, for every u ∈ Lt, let w(u) = |Childt(u)|. Then,
we return the t-FF instance I = (T = ((L1, . . . , Lt), (a1, . . . , at), Leaf, w), (k1, . . . , kt)).

T. Inamdar and K. Varadarajan 28:19

Algorithm 3 HS(Metric space(X, d), r ≥ 0, assignment cov : X → R+).

1: R← 0
2: while U ̸= ∅ do
3: u← arg maxv∈U cov(v)
4: R← R ∪ {u}
5: Child(u)← {v ∈ U : d(u, v) ≤ r}
6: U ← U \ Child(u)
7: end while
8: return R, {Child(u) : u ∈ R}.

Algorithm 4 CGK.

Input: Robust t-NUkC instance I = ((X, d), (ω, m), (r1, . . . , rt), (k1, . . . , kt)),
(α1, . . . , αt), where αi > 0 for 1 ≤ i ≤ t,
cov = (cov1, . . . , covt), where each covi : X → R+

1: for i = t downto 1 do
2: (Li, {Childi(v) : v ∈ Li})← HS((X, d), αiri, cov′

i :=
∑i

j=1 covj)
3: end for
4: Construct and Return a t-FF instance using {Li, Childi}1≤i≤t as described below.

B From Robust t-NUkC to Well-Separated Robust t-NUkC

In this section, we use the round-or-cut framework of [6] to give a Turing reduction from Robust
t-NUkC to (polynomially many instances of) Well-Separated Robust t-NUkC. Furthermore,
c-approximation for a feasible instance of the latter problem will imply an O(c)-approximation
for the original instance of Robust t-NUkC.

Round-or-Cut Framework. Let I = ((X, d), (1, m), (k1, k2, . . . , kt), (r1, r2, . . . , rt)) be the
given instance of Robust t-NUkC (we assume that we are working with unit-weight instance,
where we want to cover at least m points of X). We adopt the round-or-cut framework of [6]
(also [5]) to separate an LP solution from the integer hull of coverages (see Section A in
the appendix for the definitions thereof). Even though [6] discuss this for t = 2, it easily
generalizes to arbitrary t ≥ 2. Thus, we only sketch the high level idea.

Let cov = (cov1, cov2, . . . , covt : ∀v ∈ X) be a candidate solution returned by the ellipsoid
algorithm. First, we check whether cov(X) ≥ m, and report as the separating hyperplane if
this does not hold. Now, we call CGK Algorithm (see Section A) with α1 = 6, and αi = 2
for all 2 ≤ i ≤ t to get a t-FF instance (T = ((L1, . . . , Lt), (a1, . . . , at), Leaf, w), (k1, . . . , kt)).
Here, for any i ∈ [t], any distinct p, q ∈ Li satisfy that d(p, q) > 3ri. Then, we let
{yv : v ∈

⋃
i Li} be the solution as defined in Section A, see Definition 21. Now we check if

covi(Li) ≤ ki for i ∈ [t], and report if any of these t inequalities is not satisfied. Finally, the
algorithm checks the value of y(L1), and branches into the following two cases.

In the first case, if y(L1) ≤ k1 − t, then as argued by [6], it can be shown that a sparse
LP that is related to the t-FF problem (see Definitions 20 and 22) admits an almost-integral
solution. That is, a basic feasible solution to the sparse LP contains at most t strictly fractional
variables. By rounding up all such variables to 1, one can obtain an O(1)-approximation for
the original instance I. Note that here we need the assumption that the ratio between the
values of consecutive radii is at least β – otherwise we can merge the two consecutive radii
classes into a single class.

SWAT 2022

28:20 Non-Uniform k-Center and Greedy Clustering

In the second case, y(L1) > k1 − t. In this case, we use a generalization of an argument
from [6] as follows. We enumerate every subset Q ⊆ X of size at most t− 1, and add a ball
of radius r1 around each point in Q. Let X ′ be the set of points covered by balls of radius
r1 around Q. Then, we modify the weight of the points of X ′ to be 0, and let 1X\X′ be
the resulting weight function. Let I(Q) = ((X, d), (1X\X′ , m− |X ′|), (2r1, r2, . . . , rt), (k1 −
|Q|, k2, . . . , kt)) be the resulting residual instance of Well-Separated t-NUkC, where the well-
separatedness property imposes that the 2r1 centers must be chosen from Y := L1 \Q – note
that the distance between any two distinct points in L1, and thus Y , is at least 6r1 = 3 · 2r1,
i.e., the set Y is well-separated w.r.t. the new radius r1. An argument from [6] implies that
if I is feasible, then either (a) at least one of the well-separated instances I(Q) is feasible for
some Q ⊆ X of size at most t− 1, or (b) the hyperplane y(L1) ≤ k1 − t separates the LP
solution cov from the integer hull of coverages. Furthermore, an argument from [6] implies
that a constant approximation to any of the instances implies a constant approximation to I.

Note that the ellipsoid algorithm terminates in polynomially many iterations, and each
iteration produces at most nt instances of Well-Separated Robust t-NUkC. Thus, we get the
following theorem.

▶ Theorem 23. Suppose there exists an algorithm that, given an instance J of Well-Separated
Robust t-NUkC, in time f(n, t), either finds an α-approximation to J , or correctly determines
that J is not feasible. Then, there exists an algorithm to obtain an c · α-approximation for
any instance of Robust t-NUkC, running in time nO(t) · f(n, t).

Most Classic Problems Remain NP-Hard on
Relative Neighborhood Graphs and Their Relatives
Pascal Kunz #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Till Fluschnik #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Rolf Niedermeier
Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Malte Renken #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Abstract
Proximity graphs have been studied for several decades, motivated by applications in computational
geometry, geography, data mining, and many other fields. However, the computational complexity
of classic graph problems on proximity graphs mostly remained open. We study 3-Colorability,
Dominating Set, Feedback Vertex Set, Hamiltonian Cycle, and Independent Set on the
following classes of proximity graphs: relative neighborhood graphs, Gabriel graphs, and relatively
closest graphs. We prove that all of the aforementioned problems remain NP-hard on these graphs,
except for 3-Colorability and Hamiltonian Cycle on relatively closest graphs, where the
former is trivial and the latter is left open. Moreover, for every NP-hard case we additionally show
that no 2o(n1/4)-time algorithm exists unless the Exponential-Time Hypothesis (ETH) fails, where
n denotes the number of vertices.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Problems, reductions and completeness

Keywords and phrases Proximity Graphs, Relatively Closest Graphs, Gabriel Graphs, 3-Colorability,
Dominating Set, Feedback Vertex Set, Hamiltonian Cycle, Independent Set, Exponential-Time
Hypothesis

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.29

Related Version Full Version: https://arxiv.org/abs/2107.04321 [26]

Funding Pascal Kunz : Supported by DFG Research Training Group 2434 “Facets of Complexity”.
Till Fluschnik: Supported by DFG, projects TORE, NI 369/18, and MATE, NI 369/17.
Malte Renken: Supported by DFG, project MATE, NI 369/17.

Acknowledgements This work is based on the first author’s master’s thesis.
In memory of Rolf Niedermeier, our colleague, friend, and mentor, who sadly passed away before
this paper was published.

1 Introduction

Proximity graphs describe the distance relationships between points in the plane or higher-
dimensional structures. They are mostly studied in computational geometry, yet arise in
numerous fields of science and engineering from geography to pattern recognition [24, 35].
In this paper, we study the computational complexity of classic NP-complete problems
on three specific proximity graphs: relative neighborhood graphs (RNGs) [34], Gabriel
graphs (GGs) [18], and relatively closest graphs (RCGs) [27]. All three are subgraphs of the

© Pascal Kunz, Till Fluschnik, Rolf Niedermeier, and Malte Renken;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 29; pp. 29:1–29:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.kunz.1@tu-berlin.de
https://orcid.org/0000-0002-0787-8428
mailto:till.fluschnik@tu-berlin.de
https://orcid.org/0000-0003-2203-4386
https://orcid.org/0000-0003-1703-1236
mailto:m.renken@tu-berlin.de
https://orcid.org/0000-0002-1450-1901
https://doi.org/10.4230/LIPIcs.SWAT.2022.29
https://arxiv.org/abs/2107.04321
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

(a)

p1

p2

p3

p4

(b) (c) (d)

Figure 1 (a) Set P of four points p1 = (0, 2), p2 = (2, 0), p3 = (2, 3), and p4 = (5, 3/2). (b) RCG
on P . Point p4 is not adjacent with p2, since p3 lies in the region of influence indicated with green
(dashdotted) and red (dashed). (c) RNG on P . Points p2 and p3 are not adjacent since p1 is in their
region of influence indicated with red (dashed) and blue (dotted). (d) GG on P . Points p1 and p4

are not adjacent since p2 is in their region of influence indicated with magenta (dashdotted).

better-known Delaunay triangulation (DT). For DTs, the complexity of the restrictions of
some classic NP-complete graph problems have already been resolved [12, 15] and we extend
this research to these three classes.

RCGs, RNGs, and GGs are examples of empty region graphs [10]. Every pair of points is
associated with a region in the plane, their region of influence, and is connected by an edge
if there is no other point in that region (see Figure 1). In RNGs (RCGs), two points’ region
of influence is the intersection of open (closed) disks centered on each of the points with a
radius equal to their distance. In a GG, two points’ region of influence is a closed disk whose
center is midway between them and whose diameter is their distance.

Motivation. Consider a railway network. It may make sense to build a track directly from
one city to another, if there is no third city in between. If we interpret the area between
two cities as a region of influence, then this makes proximity graphs such as RNGs plausible
models for such networks. One might want to build as few maintenance facilities for the
network as possible such that every track has a facility at one of its endpoints. This is
an instance of the Vertex Cover (VC) problem (closely related to Independent Set
(IS)). While VC is NP-hard on general graphs, one wonders whether it might be easier on
proximity graphs. We will show that the problem remains NP-hard on RCGs, RNGs, and
GGs. For other problems, there are similar application scenarios.

Related Work. Existing combinatorial results on the three graph classes include listing
forbidden subgraphs, examples of graphs contained in each class, and bounds on the edge
density [6, 13, 24, 30, 37]. Much algorithmic research on proximity graphs has focused on
devising algorithms that efficiently compute the proximity graph from a point set (see [23]
and [31] for an overview). On Delaunay triangulations, Hamiltonian Cycle is NP-hard [15],
whereas 3-Colorability is polynomial-time solvable [12]. Cimikowski conjectured 3-
Colorability to be NP-hard on RNGs and GGs [11]. Furthermore, he proposed a heuristic
for coloring GGs and a linear-time algorithm for computing a 4-coloring in RNGs [12], but
the latter has some issues, which we will discuss in Section 3.

Our Contributions. Table 1 summarizes our results. We prove that 3-Colorability (3-
Col), Dominating Set (DS), Feedback Vertex Set (FVS), Hamiltonian Cycle (HC),
and Independent Set (IS) remain NP-hard on RNGs and GGs, in particular confirming
the aforementioned conjecture by Cimikowski [11]. On RCGs, 3-Colorability is trivial, but
we prove that Dominating Set, Feedback Vertex Set, and Independent Set remain
NP-hard. All our NP-hardness results hold true even for graphs of fairly small maximum

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:3

Table 1 Overview of our results. Herein, ∆ denotes the maximum vertex degree.
† No 2o(n1/4)-time algorithm exists unless the ETH fails, where n denotes the number of vertices.

RCGs RNGs GGs

3-Colorability (3-Col) trivial NP-hard†, even if ∆ = 7 (Thm. 3.1)

Dominating Set (DS) NP-hard†, even if ∆ = 4 (Thm. 6.1)

Feedback Vertex Set (FVS) NP-hard†, even if ∆ = 4 (Thm. 4.1)

Hamiltonian Cycle (HC) open NP-hard†, even if ∆ = 4 (Thm. 5.1)

Independent Set (IS) NP-hard†, even if ∆ = 4 (Thm. 6.1)

(a)

v1

v2 v3

v4

e1

e2

e3

e4

(b)

v1 v2 v3 v4
e1

e2

e3
e4

(c) (d)

Figure 2 (a) A graph G with vertex set {v1, . . . , v4}. (b) A 1-page book embedding of G. (c)
and (d) Illustration of our technique, where black rectangles correspond to vertex gadgets, thick
gray lines to edge/connector gadgets, and light gray areas indicate filler gadgets.

degree (7 in the case of 3-Col, and 4 in all other cases, yielding a dichotomy between
polynomial-time solvability and NP-hardness in the case of FVS). We complement each
NP-hardness result with a running-time lower bound of 2o(n1/4) based on the Exponential-
Time Hypothesis, where n is the number of vertices. The fastest known algorithms for these
problems run in time 2O(n1/2) on planar graphs and it remains open whether a running time
between these lower and upper bounds can be achieved on proximity graphs. Many details
and proofs (marked with ⋆) are deferred to the full version of this paper.

Our Technique. In our NP-hardness proofs (see Table 1), we give polynomial-time many-one
reductions from each problem’s restriction to planar graphs with maximum degree 3 or 4.
We proceed as follows (see Figure 2 for an illustration). We exploit the fact that for any
planar graph with maximum degree at most 4, we can compute in polynomial time a 2-page
book embedding [3], a very structured representation of the input graph. Then, we translate
the book embedding’s structure into a grid-like structure. Each reduction uses three types of
gadgets: to represent vertices, to represent edges, and to fill the space between them in order
to prevent the appearance of unwanted edges between the other gadgets.

2 Preliminaries

Let N := {1, 2, 3, . . . } and N0 := {0} ∪ N. We use basic notions from graph theory [14].

Proximity graphs. Let d: R2 × R2 → R denote the Euclidean distance between two points.
The open and closed ball with radius r > 0 and center p ∈ R2 are

Br(p) := {q ∈ R2 | d(p, q) < r} and Br(p) := {q ∈ R2 | d(p, q) ≤ r}.

The Delaunay triangulation of P ⊆ R2 (see, e.g., [4, Ch. 9]) is denoted by DT(P).

SWAT 2022

29:4 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

A template region [10] is a function R :
(R2

2
)

→ 2R2 that assigns a region of the plane,
called the region of influence, to each pair of points in the plane. Given a template
region RC and points p1, p2 ∈ R2, a third point p3 ∈ R2 \ {p1, p2} is a C-blocker for {p1, p2}
if p3 ∈ RC(p1, p2). For a finite set of points P = {p1, . . . , pn} ⊆ R2, the C-graph induced
by P is C(P) := ({v1, . . . , vn}, EC(P)) with

EC(P) := {{vi, vj} | (RC(pi, pj) ∩ P) \ {pi, pj} = ∅ and i ̸= j}.

The class C contains a graph G if there is a finite set of points P ⊆ R2 with C(P) = G.
We are interested in three template regions and the graph classes defined by them:

Relatively closest graphs (RCGs): Defined by

RRCG(p1, p2) := {p3 ∈ R2 | d(p1, p2) ≥ max{d(p1, p3), d(p2, p3)}}
= Bd(p1,p2)(p1) ∩ Bd(p1,p2)(p2).

Relative neighborhood graphs (RNGs): Defined by

RRNG(p1, p2) := {p3 ∈ R2 | d(p1, p2) > max{d(p1, p3), d(p2, p3)}}
= Bd(p1,p2)(p1) ∩ Bd(p1,p2)(p2).

Gabriel graphs (GGs): Defined by

RGG(p1, p2) := {p3 ∈ R2 | d(p1, p2)2 ≥ d(p1, p3)2 + d(p2, p3)2} = Bd(p1,p2)/2(q),

where q is the midpoint between p1 and p2.
A C-embedding of a graph G = (V, E) is a mapping emb: V → R2 such that C(emb(V)) = G.1
Of course, G ∈ C if and only if G admits a C-embedding.

For any finite point set P , it holds that ERCG(P) ⊆ ERNG(P) ⊆ EGG(P) ⊆ DT(P) [13].
RCGs cannot contain K3 as a subgraph and none of the three can contain K4 or K2,3 [13,
30, 37]. Moreover, p3 ∈ RGG(p1, p2) if and only if the angle at p3 formed by the lines to p1
and p2 is at most 90° [30]. Finally, the following lemma will be used to prove that graphs
are in each graph class:

▶ Lemma 2.1 ([30]). Let P be a set of points in the plane and G the RCG, RNG, or GG
induced by P . Then, the straight-line drawing of G induced by P is planar.

Book embeddings. Our NP-hardness proofs use 2-page book embeddings. A k-page book
embedding of a graph G = (V, E) consists of

(i) an edge partition E = E1 ⊎ · · · ⊎ Ek, and
(ii) for every i ∈ {1, . . . , k}, a planar embedding embi of (V, Ei) in R×R≥0, where embi(v) =

embj(v) ∈ R × {0} for every v ∈ V , i, j ∈ {1, . . . , k}.
The following result due to Bekos et al. [3] will play an important role in this work:

▶ Theorem 2.2 ([3]). Every planar graph with maximum degree at most 4 admits a 2-page
book embedding. Such an embedding can be computed in quadratic time.

The following terminology will be useful in our NP-hardness proofs. Consider a graph G =
(V, E) and a 2-page book embedding of G. Let v1, . . . , vn be the vertices of the graph ordered
in such a way that embi(vj) < embi(vj+1) for i ∈ {1, 2} and every j ∈ {1, . . . , n − 1}. We

1 To simplify notation, we write v instead of emb(v) to refer to the point at which vertex v is embedded.

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:5

will say that v1, . . . , vn is the order in which the vertices appear on the spine. Let r ∈ {1, 2}.
We will use Nr(v) := {v′ | {v, v′} ∈ Er} to denote v’s Er-neighborhood and degr(v) := |Nr(v)|
to denote v’s Er-degree. For an edge e = {vi, vj}, i < j, define its length as ℓ(e) := j − i.
The interior of e ∈ Er is

int(e) := {e′ = {vi′ , vj′} ∈ Er | i ≤ i′ < j′ ≤ j, e′ ̸= e}.

The height of e is h(e) := 1 + max{0, h(e′) | e′ ∈ int(e)}. Note that, because the height of
any edge only depends on the height of shorter edges, edge height is well-defined. The length
and height of an edge are both in O(n). The Er-height of a vertex v is

hr(v) := max{0, h(e) | v ∈ e ∈ Er}, where h(e) := 1 + max{0, h(e′) | e′ ∈ int(e)}.

Let hr(G) := max{hr(vi) | i ∈ {1, . . . , n}}. For every vertex vi, we order its incident edges
in Er as follows. If Nr(vi) = {vj1 , . . . , vjk

} with j1 < . . . < jc < i < jc+1 < . . . < jk, then
the order of the edges is {vi, vjc

} < . . . < {vi, vj1} < {vi, vjk
} < . . . < {vi, vjc+1}.

Grid structure. The graphs we build in our reductions will all have a grid-like structure.
With the exception of the reduction for Hamiltonian Cycle, we group their vertices into
(x, y)-corners with (x, y) ∈ Z2 and there will be a corner for every (x, y) within certain
bounds, which depend on the problem in question as well as the size and structure of the
input graph. In the embedding, the vertices forming the (x, y)-corner will be in Br(x, y)
for a suitable r > 0. Some vertices are not part of any corner and are called intermediate
vertices. They are usually located midway between two corners. Each corner can have one or
multiple dedicated right, top, left, and bottom connecting vertices. If a corner consists of
a single vertex, that vertex always simultaneously acts as the right, top, left, and bottom
connecting vertex of that corner. The connecting vertices of a corner are the only ones that
may have neighbors outside of that corner. For any (x, y) ∈ Z2, we say that the vertices in
the (x, y), (x + 1, y), (x, y + 1), and (x + 1, y + 1)-corners along with any intermediate vertices
that are adjacent to vertices in two of the aforementioned corners jointly form a grid face.

Exponential-Time Hypothesis. The Exponential-Time Hypothesis (ETH), introduced by
Impagliazzo and Paturi [22], has become a useful tool to give more precise running-time lower
bounds than the more classical dichotomy between polynomial-time solvable and NP-hard
problems (for an overview, we refer to [28]). This conjecture states:

▶ Hypothesis 2.3 (Exponential-Time Hypothesis [22]). There is some fixed c > 0 such that
3-CNF-Sat is not solvable in 2cn · (n + m)O(1) time, where n and m denote the numbers of
variables and clauses, respectively.

3 3-Colorability

We start with the 3-Colorability problem. A 3-coloring of a graph G = (V, E) is a
function c : V → {1, 2, 3} such that c(u) ̸= c(v) for all {u, v} ∈ E. In the 3-Colorability
problem (3-Col), one is given a graph as input and asked to decide whether it admits a
3-coloring. Every RCG is 3-colorable [13] because RCGs do not contain any 3-cycles and
every planar graph without 3-cycles is 3-colorable by Grötzsch’s theorem [21]. As a result,
3-Col is trivial when restricted to RCGs. Regarding RNGs and GGs, we prove the following.

▶ Theorem 3.1 (⋆). 3-Colorability on RNGs and on GGs is NP-hard, even if the
maximum degree is 7. Moreover, unless the ETH fails, it admits no 2o(n1/4)-time algorithm
where n is the number of vertices.

SWAT 2022

29:6 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

(a) (b) (c)

Figure 3 The construction proving Theorem 3.1 applied to the example graph from Figure 2.
(a) The graph after steps 1–2. (b) The graph after steps 1–3. (c) The final graph.

u1
0

u2
1

u3
1

u1
1

u2
2

u3
2

u1
2

u2
3

u3
3

u1
3

Figure 4 A coloring path of length 3.

This confirms a conjecture by Cimikowski [11]. Our proof is based on a polynomial-time
many-one reduction from the NP-hard [19] 3-Colorability problem on planar graphs with
maximum degree 4. The complete proof is deferred to the full version, but we give the
construction and some intuition concerning its correctness. We give an illustration of the
construction in Figure 3 and the following high-level description: After computing a 2-page
book embedding, we replace each vertex by a “color-preserving” path (Figure 3(a)). We further
replace each original edge by a path enforcing different colors for the respective endpoints
(Figure 3(b)). Finally, we fill the remaining space with a subdivided grid (Figure 3(c)), which
preserves 3-colorability and turns the graph simultaneously into an RNG and a GG.

We will use so-called coloring paths (see Figure 4 for an illustration), which essentially
allows us to copy the color of a vertex. The coloring path of length k from u1

0 to u1
k is the

graph P̃k := (Vk, Ek) with:

Vk := {u1
0} ∪ {u1

i , u2
i , u3

i | i ∈ {1, . . . , k}} and
Ek := {{u1

i−1, u2
i }, {u1

i−1, u3
i }, {u2

i , u3
i }, {u2

i , u1
i }, {u3

i , u1
i } | i ∈ {1, . . . , k}}.

We will call u1
i the i-th center vertex, u2

i the i-th left vertex, and u3
i the i-th right vertex.

▶ Construction 3.2. Let G = (V, E) be an undirected planar graph of maximum degree 4.
We will construct a graph G′ = (V ′, E′) and subsequently show that G′ is both an RNG and
a GG and that G is 3-colorable if and only if G′ is. The vertex set of G′ will mostly consist
of groups of vertices called (x, y)-corners where 2 ≤ x ≤ 2n and −2h2(G) ≤ y ≤ 2h1(G).
Each corner consists of either a single vertex or of a pair of adjacent vertices. Corners can
have dedicated top, left, right, and bottom connecting vertices, some of which may coincide.
For example, if a corner consists of a single vertex, that vertex simultaneously forms all four
connecting vertices. Finally, there will be some intermediate vertices that are not part of any
corner.

We start with G′ := G.

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:7

Step 1: Compute a 2-page book embedding of G. Let v1, . . . , vn be the vertices of G

enumerated in the order in which they appear on the spine, and let {E1, E2} denote the
partition of E.

Step 2: Replace every vertex vi with a coloring path of length h1(vi) + h2(vi). Every edge e

of G incident to vi is now instead attached to the (h2(vi)+h(e))-th center vertex, if e ∈ E1,
or the (h2(vi) − h(e)) if e ∈ E2. For r = 0, . . . , h1(vi) + h2(vi), the r-th center vertex
of that path forms the (2i, 2r − 2h2(vi))-corner. For r = 1, . . . , h1(vi), the r-th left and
right vertices jointly form the (2i, 2r − 1 − 2h2(vi))-corner. The left vertex is the left
connecting vertex of this corner and the right vertex is the right connecting vertex.

Step 3: For every edge e = {vi, vj} ∈ E1, i < j, replace the corresponding edge of G′ with a
coloring path of length ℓ(e). Identify the first vertex of that path with the (2i, 2h(e))-
corner (which consists of a single vertex). Denote the last vertex of that path by w. Add
an edge from w to the (2j, 2h(e))-corner. For r = 1, . . . , ℓ(e) − 1, the r-th center vertex of
that path is the (2i + 2r, 2h(e))-corner. The vertex w, which is the ℓ(e)-th center vertex,
is an intermediate vertex. For r = 1, . . . , ℓ(e), the r-th left and right vertices jointly form
the (2i + 2r − 1, 2h(e))-corner. The left vertex is the top connecting vertex of this corner
and the right vertex is the bottom connecting vertex.

Step 4: For every (x, y) with 2 ≤ x ≤ 2n and 0 ≤ y ≤ 2h1(G), if an (x, y)-corner was not
added in one of the previous two steps, then add a single vertex, which becomes the (x, y)-
corner, to G′. In that case add an edge from the (x, y)-corner to the top connecting
vertex of the (x, y − 1)-corner, to the left connecting vertex of the (x + 1, y)-corner, and
so on. Subdivide each of these edges once, introducing four new intermediate vertices.

Note that Steps 3 and 4 take only E1 into account. These steps must be repeated
analogously for E2, using negative y-coordinates. ⌟

The correctness builds on the following two facts. By replacing each original edge with
a path of coloring paths in Steps 2 and 3, we enforce different colors for the respective
endpoints (see Figure 3(b)). Filling the remaining space with a subdivided grid in Step 4
(see Figure 3(c)) preserves 3-colorability and turns the graph both into an RNG and a GG.

Further remarks. We remark that RNGs and GGs with maximum degree 3 are always
3-colorable. This follows from Brooks’ theorem [9, 29], which states that any graph with
maximum degree ∆ ≥ 3 is ∆-colorable, if it contains no (∆ + 1)-clique. RNGs and GGs
contain no 4-cliques (see Section 2). It remains open whether 3-Col can be solved in
polynomial time on RNGs or GGs with maximum degree between 4 and 6.

By the well-known four color theorem, all planar graphs are 4-colorable. The fastest
known algorithm to compute a 4-coloring of a planar graph has quadratic running time [32].
For RNGs, Cimikowski [12] proposed an algorithm for computing 4-colorings in linear time.
However, this algorithm is based on the claim [37, Lemma 4.2] that the wheel graph W6 cannot
occur as subgraph of an RNG. This claim was disproved by Bose et al. [6]. Cimikowski’s
algorithm additionally implicitly assumes that RNGs are closed under minors, since the
algorithm sometimes merges two adjacent vertices. This can lead to graphs that are not
RNGs. Thus, it remains open whether or not a linear-time algorithm for this task exists.

4 Feedback Vertex Set

We now turn our attention to the Feedback Vertex Set problem. In a graph G = (V, E),
a feedback vertex set is a set X ⊆ V such that G − X is a forest. In the Feedback Vertex
Set problem (FVS), one is given a graph and k ∈ N0 and asked whether the graph contains
a feedback vertex set of size at most k. We prove the following:

SWAT 2022

29:8 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

(x, y + 4ε)

(x− 4ε, y)

Figure 5 Buffer at position (x, y) ∈ R2 with highlighted outer vertices.

(a) (b)

(c)

Figure 6 The (a) (4, 0)-, (b) (3, 1)-, and (c) (2, 2)-vertex gadget with highlighted outlets.

▶ Theorem 4.1 (⋆). Feedback Vertex Set on RCGs, on RNGs, and on GGs is NP-hard,
even if the maximum degree is 4. Moreover, unless the ETH fails, it admits no 2o(n1/4)-time
algorithm where n is the number of vertices.

Our proof is based on a polynomial-time many-one reduction from the NP-complete [33]
Feedback Vertex Set on planar graphs of maximum degree 4. We only give an intuitive
high-level description here, deferring the complete proof to the full version, and illustrate the
resulting graph in Figure 7. We utilize the graph pictured in Figure 5 and call it a “buffer”.
Adding a copy of this graph to an existing graph increases the size of a minimum feedback
vertex set by exactly 4 even if the vertices marked as outer vertices are each connected to
exactly one vertex in the original graph.

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:9

(6
,−

3)

(9
,0
)

(1
2
,−

3)

(6
,9
)

Fi
gu

re
7

T
he

co
ns

tr
uc

tio
n

pr
ov

in
g

T
he

or
em

4.
1

ap
pl

ie
d

to
th

e
gr

ap
h

in
Fi

gu
re

2.
T

he
la

rg
e

bl
ue

ve
rt

ic
es

al
on

g
w

ith
th

e
de

gr
ee

-2
ve

rt
ic

es
be

tw
ee

n
th

em
fo

rm
a

su
bd

iv
is

io
n

of
th

e
or

ig
in

al
gr

ap
h

(w
ith

a
fo

re
st

ad
de

d)
.

T
he

bo
tt

om
ha

lf
co

ns
is

ts
of

fo
ur

ve
rt

ex
ga

dg
et

s,
co

lo
re

d
al

te
rn

at
in

gl
y

or
an

ge
an

d
ye

llo
w

.

SWAT 2022

29:10 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

(a)

u1
0 ũ1

0 ũ3
0 u3

0

u1
3 ũ1

3 ũ3
3 u3

3u2
0

ũ2
0

u2
1

ũ2
1

w3

w1

w2

w4

w5

w6

w7

(b) (c)

Figure 8 The ladder path L4,2 with (a) selected vertex labels and inside/outside edges highlighted
in dark green / light blue; (b) a traversal; (c) a partial/full cover (light blue / dark green).

We compute a 2-page book embedding of the input graph and represent every vertex v in
that graph by a gadget which depends on deg1(v) and deg2(v). The three possible gadgets
for a vertex with degree 4 are pictured in Figure 6. They contain many copies of the buffer
graph. We then represent edges in the input path by long paths between the outlets of the
vertex gadgets that represent the edges’ endpoints. We fill the space between these paths
with copies of the buffer.

The resulting graph has the following structure once all buffers have been deleted (this is
the blue subgraph in Figure 7). Iteratively removing degree-1 vertices from this graph results
in a subdivision of the input graph. This leads to our correctness proof for this reduction, as
FVS is invariant under deletion of degree-1 vertices and under subdivisions.

Note that FVS is polynomial-time solvable on graphs with maximum degree 3 [36].

5 Hamiltonian Cycle

In a graph G = (V, E), a Hamiltonian cycle is a cycle that visits every vertex in V exactly
once. In the Hamiltonian Cycle problem (HC), one is given a graph and asked to decide
whether the graph contains a Hamiltonian cycle. As the proof of the following is more
complex than for previous problems, we will give more details.

▶ Theorem 5.1. Hamiltonian Cycle on RNGs and on GGs is NP-hard, even if the
maximum degree is 4. Moreover, unless the ETH fails, it admits no 2o(n1/4)-time algorithm
where n is the number of vertices.

To prove Theorem 5.1, we give a polynomial-time many-one reduction from the restriction of
Hamiltonian Cycle to 3-regular planar graphs, for which we have the following.

▶ Proposition 5.2 ([20, 28]). Hamiltonian Cycle on 3-regular planar graphs is NP-hard
and, unless the ETH fails, admits no 2o(n1/2)-time algorithm where n is the number of vertices.

The reduction in the proof of Theorem 5.1 consists of two Hamiltonicity-preserving modifica-
tions: gadget expansion (Section 5.1) and face filling (Section 5.2).

5.1 Gadget Expansion
The gadgets that will replace the edges are called ladder paths. For k1, k2 ∈ N, the ladder
path with length (k1, k2) is the graph Lk1,k2 = (V, E), where

V ={u1
i , ũ1

i , u3
i , ũ3

i | i ∈ {0, . . . , k1 − 1}} ∪ {u2
i , ũ2

i | i ∈ {0, . . . , k2 − 1}} ∪ {w1, . . . , w7}.

The edges are given using the example pictured in Figure 8(a) and listed explicitly in the
full version.

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:11

(a) (b)

(a1)
↓ ↑y

(a2)
↓ ↑ x

(b1)
↓ ↑

x

(b2)
↓

↓

y

Figure 9 (a) (3, 0)-vertex gadget and (b) (2, 1)-vertex gadget, with highlighted outlets. (a1), (a2)
and (b1), (b2) show two generic ways a Hamiltonian cycle can pass through each vertex gadget.

The vertices uj
i , ũj

i with j ∈ {1, 2} along with w1 and w2 form the first half of the ladder
path and those with j = 3 along with w4, . . . , w7 form the second half. The vertex w3 is the
transitional vertex. The vertices w1, . . . , w7 form the switch. The vertices u1

0 and ũ1
0 form the

end of the first half, while u3
0 and ũ3

0 form the end of the second half. The edges highlighted
in light blue in Figure 8(a) will be called outside edges, while the edges highlighted in dark
green are inside edges. An edge {uj

i , uj
i+1} or {ũj

i , ũj
i+1} is called even if i is even.

A traversal of a ladder path is a path that begins in either vertex at one end of the ladder
path, terminates in either vertex at the other end, and visits every vertex on the ladder
path and no other vertex. A partial cover of a half of a ladder path is a path that begins in
either vertex in the end of the half, terminates in the other vertex in that end, and visits
every vertex of that half, but no other vertex. A full cover of a half additionally visits the
transitional vertex. Examples of a traversal, a partial cover, and a full cover are pictured in
Figure 8(b) and (c). The main property of ladder paths is that any Hamiltonian cycle must
either contain a traversal, or a full and a half cover of each ladder path.

▶ Lemma 5.3 (⋆). Suppose that the Hamiltonian graph G = (V, E) contains a ladder, that
the only vertices on the ladder path with neighbors outside of the ladder path are on its ends,
and that the vertices on the ends each have no more than one neighbor outside of the ladder
path. Then, any Hamiltonian cycle in G contains either:

a traversal of the ladder path or
a partial cover of one of its halves and a full cover of the other half.

For a ladder path and a Hamiltonian cycle in a graph, we say that the ladder path is traversed
if the Hamiltonian cycle contains a traversal of the ladder path. Otherwise, it is covered.

Next, we discuss the vertex gadgets. Recall that the graph G is assumed to be 3-regular.
We will use four types of vertex gadgets. Each vertex gadget consist of a grid of size 2 × 10,
with the only difference being the position of their three outlets, which are designated vertex
pairs to which the ladder paths representing the edges will be connected. The (3, 0)-vertex
gadget and the (2, 1)-vertex gadget are pictured in Figure 9 with the three outlets highlighted.
The (0, 3)-vertex gadget and the (1, 2)-vertex gadget are obtained from the former two by
mirroring along the horizontal axis. The value (i, j) will be called the type of the gadget.

We will refer to the outlets as top or bottom outlets, as well as the left, middle or right
outlet, with the obvious meaning. The left and right outlets are also called the outer outlets.

We will now define the gadget expansion of a 3-regular graph G, consisting of a graph G′

and a straight-line embedding emb resulting from applying the following steps to G.

▶ Construction 5.4 (Gadget expansion). Start with G′ being the empty graph.
Step 1: Compute a 2-page book embedding of G and let v1, . . . , vn be the vertices of G in

the order in which they appear on the spine, and let {E1, E2} denote the partition of E.

SWAT 2022

29:12 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

Figure 10 Gadget expansion of the graph pictured in Figure 2. This graph is not 3-regular, but
we may assume that there are further edges in E2.

Step 2: For every vertex vi ∈ V add to G′ a (deg1(vi), deg2(vi))-vertex gadget. Position the
vertices of this gadget at (18i + x, y) with x ∈ {0, . . . , 9} and y ∈ {0, 1}, as in Figure 9.

Step 3: For every edge e = {vi, vj} in E1, i < j, add to G′ a ladder path Lk1,k2 connected
to an outlet in vi’s vertex gadget and an outlet in vj ’s vertex gadget as follows. Recall
the ordering of the edges incident to a vertex defined in the preliminaries. If e is the
r-th edge at vi and the s-th edge at vj , then attach said ladder path to the r-th top outlet
from the left of vi’s vertex gadget and to the s-th top outlet from the left of vj ’s vertex
gadget. If only one of these two outlets is an outer outlet, then attach the end of the
first half to that outlet and the end of the second half to the other (middle) outlet. (If
the outlets are both outer or both middle outlets, then it does not matter which end of
the ladder path is connected to which outlet.) This is done by adding two disjoint edges
which connect the two vertices forming an end of the ladder path to the two vertices
forming the corresponding outlet as in Figure 10.
The value of k1 is chosen as k1 := 6h(e) and the value of k2 as follows. Define α to be 0,
4, or 8, if the ladder path is attached to the left, middle, or right outlet of vi’s vertex
gadget, respectively. Define β in the same manner for vj . Set k2 := 18(j − i) − α + β − 5.
Note that k2 ≥ 5 always holds. Finally, we will give the embedding of the ladder path’s
vertices, using the designations introduced in the definition of a ladder path. We only
state the case where the first half is attached to vi, for the other case the coordinates are
to be mirrored at a suitable vertical axis. The positions of the vertices in the first half
are (with Sα

i := 18i + α):

emb(u1
r) := (Sα

i , r + 2), emb(ũ1
r) := (Sα

i + 1, r + 2), r = 0, . . . , k1 − 1,

emb(u2
r) := (Sα

i + 2 + r, k1 + 1), emb(ũ2
r) := (Sα

i + 2 + r, k1), r = 0, . . . , k2 − 1,

emb(w1) := (Sα
i + k2 + 2, k1 + 2/3), emb(w2) := (Sα

i + k2 + 2, k1 + 1/3),
emb(w3) := (Sα

i + k2 + 2.5, k1 + 1/2), emb(w4) := (Sα
i + k2 + 3, k1 + 2/3),

emb(w5) := (Sα
i + k2 + 3, k1 + 1/3), emb(w6) := (Sα

i + k2 + 4, k1 + 1),
emb(w7) := (Sα

i + k2 + 4, k1).

This embedding is illustrated in Figure 8. The positions of the vertices in the second
half are analogous to the first. This step is illustrated in Figure 10.

Step 3 must be repeated for E2 using negative y-coordinates. ⌟

This construction is useful due to the following:

▶ Lemma 5.5 (⋆). Gadget expansion preserves Hamiltonicity.

The proof, which is deferred to the full version, is based on the fact that a Hamiltonian cycle
may pass through vertex gadgets as pictured in Figure 9.

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:13

v1
v2v3v4v5

v6

v7
v8 v9 v10 v11

v12

u1

u2

Figure 11 An example of a permissible cycle addition with a cycle of length 12.

5.2 Face Filling
In order to turn the gadget expansion of a graph into an RNG and GG, we need to add
buffers. The challenge is doing this in a way that preserves Hamiltonicity. We call an
edge e of G permissible if G is not Hamiltonian or if G contains a Hamiltonian cycle that
passes through e.

▶ Lemma 5.6 (⋆). Subdividing a permissible edge preserves Hamiltonicity. Moreover, both
edges resulting from the subdivision are permissible in the resulting graph.

Our main tool for adding buffers to a graph is called permissible cycle addition. Let {u1, u2}
be a permissible edge of G = (V, E). We say that G′ = (V ′, E′) is obtained from G by
attaching a permissible cycle to {u1, u2} if (see Figure 11 for an illustration)

V ′ = V ⊎ {v1, . . . , vk}, k ≥ 4, and v1, . . . , vk induce a cycle in that order, that is,
{vi, vj} ∈ E′ if and only if |i − j| = 1 or {i, j} = {1, k};
E′ ∩

(
V
2
)

= E;
for all i ∈ {2, . . . , k − 1}, if degG′(vi) ≥ 3, then degG′(vi−1) = degG′(vi+1) = 2; and
degG′(v1) = degG′(vk) = 3, and {{v1, u1}, {vk, u2}} ⊆ E′.

Figure 11 pictures an example of such a cycle addition. This modification is useful due to:

▶ Lemma 5.7 (⋆). Permissible cycle addition preserves Hamiltonicity. Moreover, if
v1, . . . , vk is the added cycle, then the edges {vi, vi+1}, 1 ≤ i < k, are all permissible
in the resulting graph.

In order to be able to apply permissible cycle addition to the gadget expansion G′ of a
graph G, we need to know permissible edges of G′. For this, we have the following lemma.

▶ Lemma 5.8 (⋆). Let G be a 3-regular graph, G′ the gadget expansion of G, and L any ladder
path of G′ whose first half is attached to an outer outlet (of a vertex gadget). Then, L contains
two even inside and two even outside edges, all of which are permissible. Furthermore, these
edges can be determined in linear time.

We are set to give the construction in our polynomial-time many-one reduction from HC on
3-regular planar graphs to HC on RNGs or GGs.

▶ Construction 5.9. Let G = (V, E) be a 3-regular planar graph. We will construct an RNG
and GG G′ = (V ′, E′) that is Hamiltonian if and only if G is. We will give the embedding of
the vertices directly in the reduction.

We start with (G′, emb), the gadget expansion of G. We add one buffer for every (x, y) ∈
Z2 where 14 ≤ x ≤ 16n + 10 and −6h2(G) − 2 ≤ y ≤ 6h1(G) + 2 are both even, except
when G′ already contains a vertex v with emb(v) ∈ {(x, y), (x + 1, y)}. The buffer then
consists of a 4-cycle whose vertices are embedded at (x, y), (x + 1, y), (x + 1, y + 1), and
(x, y + 1) and whose edges are then further subdivided. We call it the (x, y)-buffer and refer
to the four (subdivided) edges as its sides. For each side, if G′ previously already contained

SWAT 2022

29:14 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

(a)

(x + 1, y + 1)

(x + 1, y)

(x + 1, y + 1/4)

(x + 1, y + 5/6)

(x + 1, y + 1/2)

(x + 2, y + 4/6)

(b)

(c) (d)

(x + 1, y + 3/4)

Figure 12 Construction of the sides of a cycle (left) with (a) a docking side adjoined to an edge,
(b) a docking side adjoined to a previously existing non-docking side, (c) a non-docking side adjoined
to an edge, and (d) a non-docking side adjoined to an existing side. In each picture, an edge or
previously existing side to adjoin is on the right. The vertices and edges that result from the addition
of the cycle are marked in blue while previously existing vertices and edges are in black.

a (possibly subdivided) edge running parallel to that side at distance 1, then we say that
this side adjoins that (possibly subdivided) edge. For example, the side from (x, y + 1) to
(x + 1, y + 1) would adjoin an existing edge from (x, y + 2) to (x + 1, y + 2). A side may also
adjoin an edge in a switch to which it is not parallel. For example, the side from (x, y + 1)
to (x + 1, y + 1) could adjoin an existing edge from (x, y + 2) to (x + 1, y + 2 + 1/3). Finally,
exactly one of the four sides will be designated as the docking side. The docking side must
adjoin either a side of a previously added buffer or a permissible edge of the gadget expansion.

When adding a buffer, if its sides adjoin existing sides or edges, then we also add edges
connecting the buffer to other vertices and possibly also subdivide the adjoined edges or sides.
There are four cases, depending on whether the newly added side is docking or non-docking
and whether it adjoins a side of another buffer or an edge of the gadget expansion. These
four cases are illustrated in Figure 12. In particular,

the docking side of the added buffer is always subdivided four times and has four edges
connecting it to the side or edge it adjoins (see Figure 12(a) and (b));
a non-docking side adjoining an edge of the gadget expansion is subdivided once and has
two connecting edges (see Figure 12(c));
a non-docking side adjoining another buffer’s side is subdivided thrice and has three
connecting edges (see Figure 12(d));
a (non-docking) side which does not adjoin anything is subdivided once.

Figure 12 explains the positions of the sides’ subdivisions by way of an example for the
right-side case. For the case of the other three sides, the coordinates are obtained by rotating
around (x + 1/2, y + 1/2).

The docking side must adjoin another buffer’s side or a permissible edge. We will now
discuss a strategy to achieve this. First, observe that every position (x, y) at which we intend
to add a buffer lies in a face of (G′, emb) that borders more than four vertices (possibly the
unbounded face). In order to distinguish between such faces and faces within ladder paths,

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:15

we will refer to the former as regions. We will add the buffers region-by-region. Next, note
that once a buffer has been added to a region, then any subsequent buffer in that region can
have its docking side adjoined to a (non-docking) side of another buffer added before it, as all
edges on non-docking sides of a buffer are permissible by Lemma 5.7. (The gadget expansion
is “surrounded” with buffers, so this works for the unbounded face.) Thus, it suffices to show
how to add the first buffer for each region.

To this end, we must examine the structure of the gadget expansion. Let R be any region.
Clearly, R borders some vertex gadget, and thus also a ladder path L attached to an outside
outlet of that vertex gadget. More precisely, R borders either every inside or every outside
edge of L. By construction of the gadget expansion, the first half of L is attached to an
outside outlet of some vertex gadget. Thus, we can find two permissible edges of L that
border R by Lemma 5.8. Because we have two permissible edges to choose from, we can
ensure that we never adjoin the docking sides of two buffers to two “parallel” edges of L (i.e.,
to {uj

i , uj
i+1} and {ũj

i , ũj
i+1}), as every ladder path only borders two regions. ⌟

We will use the following minor technical lemma.

▶ Lemma 5.10 (⋆). Consider a square with corners x0, . . . , x3 ∈ R2 and P ⊆ R2. Let
S0, . . . , S3 be the sides of the square, where xi is incident to Si and Si+1 (all indices are
modulo 4). Let yi := xi−1+xi

2 for each i ∈ {1, 2, 3} and y0 := x3+x0
2 . If P contains x0, . . . , x3

and possibly further points on the boundary of the square, but no points inside or outside of
the square, then RNG(P) = GG(P) = C|P | if either of the following two conditions are met:

(i) y0, . . . , y3 ∈ P or
(ii) there is an I ⊆ {1, 2, 3, 4} such that |I| ≥ 3 and Si ∩ P ⊆ {x0, x1, x2, x3} for each i ∈ I.

We are now prepared to prove the main result of this section.

Proof of Theorem 5.1. The proof builds on Construction 5.9. By Lemma 5.5, gadget expan-
sion preserves Hamiltonicity. Each addition of a cycle involves subdividing a permissible edge
(preserving Hamiltonicity by Lemma 5.6), and then adding a permissible cycle (preserving
Hamiltonicity by Lemma 5.7). It follows that the construction preserves Hamiltonicity.

The construction already describes an embedding of the resulting graph G′. So it only
remains to show that this embedding induces G′ as its RNG and GG. Let

A := {(x, y) ∈ Z2 | 14 ≤ x ≤ 16n + 11, −6h2(G) − 2 ≤ y ≤ 6h1(G) + 3}.

Note that for most (x, y) ∈ A there is a vertex embedded at (x, y). The only exceptions
are positions surrounding switches. For any (x, y) ∈ A we will call the vertices embedded
at (x, y), (x + 1, y), (x, y + 1), and (x + 1, y + 1) along with any vertices embedded on
the line segments between those four points a grid face. There are three classes of grid
faces: grid faces within ladder paths or vertex gadgets, buffers, and grid faces between the
aforementioned ones.

Within ladder paths, only two grid faces, which are shown in Figure 13 (A and B), can
occur. For these, the claim is implied by Lemma 5.10(ii). Within buffers, more variations are
possible (e.g. C and D in Figure 13). Here, the claim is implied by Lemma 5.10(i). All grid
faces between cycles or between cycles and vertex gadgets are pictured in Figure 12. It is
easy to see that all pairs of non-adjacent vertices have GG blockers and no pair of adjacent
vertices has an RNG blocker.

We now consider the area surrounding a switch. This area is pictured in Figure 13. The
vertex e is not a GG blocker for {a, b}, because d(a, b)2 = 1/9 and d(a, e)2 = d(b, e)2 = 5/18.
The vertex marked d is also not a GG blocker for {b, c}, since d(b, c)2 = 16/9, d(b, d)2 = 10/9,
and d(c, d)2 = 2. Other cases are analogous or easy to see. E.g., c and e are not adjacent,
because b is a blocker. Vertices that do not share a grid face are not adjacent by Lemma 2.1.

SWAT 2022

29:16 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

a

b

c

d

e

A

BCD

Figure 13 An excerpt of the graph G′ produced by the reduction: Grid faces in G′: (A) Grid
face within a ladder path or a vertex gadget with no docking side adjoined to its edges. (B) Grid
face within a ladder path or a vertex gadget with a docking side adjoined to one of its edges. (C) +
(D) Grid faces within buffers with the docking side on the right.

If n is the number of vertices in the input graph G, then the graph G′ output by the
construction contains n vertex gadgets each containing O(1) vertices, O(n) ladder paths with
O(n) vertices, and O(n2) cycles with O(1) vertices. It is easy to see that each step in both
constructions can be computed in polynomial time. Along with Proposition 5.2, this implies
that HC is NP-hard on RNGs and on GGs. Moreover, it also implies that HC cannot be
decided by a 2o(n1/4)-time algorithm on RNGs or GGs, unless the ETH fails. ◀

The computational complexity of Hamiltonian Cycle on RCGs and that of HC on RNGs
and GGs with maximum degree 3 is left open.

6 Dominating Set and Independent Set

In a graph G = (V, E), an independent set is a vertex set X ⊆ V such that G[X] is edgeless.
In the Independent Set problem (IS), one is given a graph and k ∈ N0 and asked to
decide whether the graph contains an independent set of size at least k. A dominating
set in G = (V, E) is a vertex set X ⊆ V such that NG[X] = V . In the Dominating Set
problem (DS), one is given a graph and k ∈ N0 and asked to decide whether the graph
contains a dominating set of size at most k. We also studied these two problems and proved:

▶ Theorem 6.1 (⋆). Dominating Set and Independent Set on RCGs, on RNGs, and
on GGs are NP-hard, even if the maximum degree is 4, Moreover, unless the ETH fails,
neither problem admits a 2o(n1/4)-time algorithm where n is the number of vertices.

The proof, which is based on reductions from the corresponding problems on planar graphs
with maximum degree 3, is deferred to the full version. It remains open whether DS or IS
can be solved in polynomial time when restricted to RCGs, RNGs, or GGs with maximum
degree 3.

7 Conclusion

We have shown that problems that are NP-hard on planar graphs typically remain NP-hard
on the three proximity graph classes we study. This suggests that the main tools of algorithm
theory to attack these problems shall be parameterized and approximation algorithms.
IS, DS, and FVS all admit polynomial-time approximation schemes on arbitrary planar

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:17

graphs, [2, 25] including the three types of proximity graphs we considered. FVS is fixed-
parameter tractable on arbitrary graphs [5], while DS and IS are on planar graphs [1, 16]. We
are not aware of any improvements (in terms of running time or approximation guarantees)
to these results that are specific to RCGs, RNGs, or GGs.

It remains an important open question whether or not RCGs, RNGs, or GGs can be
recognized in polynomial time and whether an embedding for a given graph can be computed
in polynomial time [7, 8, 17]. If not, then one might suspect that the graph problems we
have investigated might be easier if one is given an embedding rather than just the graph.
Our reductions, however, prove that this is not the case, since we also give embeddings for
the output graphs, which can easily be computed along with those output graphs.

We showed that FVS is NP-hard on proximity graphs with maximum degree 4, and it
was already known to be polynomial-time solvable on any graph with maximum degree 3.
For the other problems, we did not prove tight bounds on the maximum degree and this
remains open. We proved ETH-based lower bounds of 2o(n1/4) for each of these problems
on RCGs, RNGs, and GGs (with the exceptions of 3-Col and HC on RCGs). On planar
graphs in general, these problems can be solved in time 2O(n1/2) and this running time is
optimal unless the ETH fails [28]. However, it might be possible to solve these problems on
RCGs, RNGs, and GGs with a time bound strictly between 2o(n1/4) and 2O(n1/2).

More generally, we are not aware of any problem that is known to be easier on the three
graph classes we studied than on arbitrary planar graphs (excluding trivial cases like 3-Col
on RCGs). Any such example would be of interest.

We conclude by remarking that most of the studied problems also remain hard on another
canonical class of plane graphs, Delaunay triangulations. As the proofs work differently, we
defer the specifics to subsequent publications.

References
1 Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier. Fixed

parameter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002. doi:10.1007/s00453-001-0116-5.

2 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41(1):153–180, January 1994. doi:10.1145/174644.174650.

3 Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-page
book embeddings of 4-planar graphs. Algorithmica, 75(1):158–185, 2016. doi:10.1007/
s00453-015-0016-8.

4 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry. Springer, 2008. doi:10.1007/978-3-540-77974-2.

5 Hans L. Bodlaender. On disjoint cycles. International Journal of Foundations of Computer
Science, 5(1):59–68, 1994. doi:10.1142/S0129054194000049.

6 Prosenjit Bose, Vida Dujmović, Ferran Hurtado, John Iacono, Stefan Langerman, Henk
Meijer, Vera Sacristán, Maria Saumell, and David R Wood. Proximity graphs: E, δ, ∆, χ

and ω. International Journal of Computational Geometry & Applications, 22(05):439–469,
2012. doi:10.1142/S0218195912500112.

7 Prosenjit Bose, William Lenhart, and Giuseppe Liotta. Characterizing proximity trees.
Algorithmica, 16(1):83–110, 1996. doi:10.1007/BF02086609.

8 Franz Brandenburg, David Eppstein, Michael T. Goodrich, Stephen Kobourov, Giuseppe
Liotta, and Petra Mutzel. Selected open problems in graph drawing. In Proceedings of
the 11th International Symposium on Graph Drawing (GD), pages 515–539, 2004. doi:
10.1007/978-3-540-24595-7_55.

9 Rowland Leonard Brooks. On colouring the nodes of a network. Mathematical Proceedings of
the Cambridge Philosophical Society, 37(2):194–197, 1941. doi:10.1017/S030500410002168X.

SWAT 2022

https://doi.org/10.1007/s00453-001-0116-5
https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1142/S0129054194000049
https://doi.org/10.1142/S0218195912500112
https://doi.org/10.1007/BF02086609
https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.1017/S030500410002168X

29:18 Most Classic Problems Remain NP-Hard on RNGs and their Relatives

10 Jean Cardinal, Sébastien Collette, and Stefan Langerman. Empty region graphs. Computational
Geometry, 42(3):183–195, 2009. doi:10.1016/J.COMGEO.2008.09.003.

11 Robert Cimikowski. Coloring proximity graphs. In Memoranda in Computer and Cognitive
Science: Proceedings of the First Workshop on Proximity Graphs, pages 141–156, 1989.
doi:10.21236/ada237250.

12 Robert Cimikowski. Coloring certain proximity graphs. Computers & Mathematics with
Applications, 20(3):69–82, 1990. doi:10.1016/0898-1221(90)90032-F.

13 Robert J Cimikowski. Properties of some Euclidean proximity graphs. Pattern Recognition
Letters, 13(6):417–423, 1992. doi:10.1016/0167-8655(92)90048-5.

14 Reinhard Diestel. Graph Theory. Springer, 5th edition, 2016. doi:10.1007/
978-3-662-53622-3.

15 Michael B. Dillencourt. Finding Hamiltonian cycles in Delaunay triangulations is NP-complete.
Discrete Applied Mathematics, 64(3):207–217, 1996. doi:10.1016/0166-218X(94)00125-W.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

17 Peter Eades and Sue Whitesides. Nearest neighbour graph realizability is NP-hard. In
Proceedings of the 2nd Latin American Symposium on Theoretical Informatics (LATIN), pages
245–256, 1995. doi:10.1007/3-540-59175-3_93.

18 K. Ruben Gabriel and Robert R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Biology, 18(3):259–278, 1969. doi:10.2307/2412323.

19 M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3):237–267, 1976. doi:10.1016/0304-3975(76)90059-1.

20 M. R. Garey, D. S. Johnson, and R. Tarjan. The planar Hamiltonian circuit problem is
NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976. doi:10.1137/0205049.

21 Branko Grünbaum. Grötzsch’s theorem on 3-colorings. Michigan Mathematical Journal,
10(3):303–310, 1963. doi:10.1307/mmj/1028998916.

22 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

23 J. W. Jaromczyk and M. Kowaluk. A note on relative neighborhood graphs. In Proceedings
of the 3rd Annual Symposium on Computational Geometry (SoCG), pages 233–241, 1987.
doi:10.1145/41958.41983.

24 J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives.
Proceedings of the IEEE, 80(9):1502–1517, 1992. doi:10.1109/5.163414.

25 Jon Kleinberg and Amit Kumar. Wavelength conversion in optical networks. Journal of
Algorithms, 38(1):25–50, 2001. doi:10.1006/jagm.2000.1137.

26 Pascal Kunz, Till Fluschnik, Rolf Niedermeier, and Malte Renken. Most classic problems
remain NP-hard on relative neighborhood graphs and their relatives, 2021. doi:10.48550/
ARXIV.2107.04321.

27 Philip M Lankford. Regionalization: Theory and alternative algorithms. Geographical Analysis,
1(2):196–212, 1969. doi:10.1111/j.1538-4632.1969.tb00615.x.

28 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of EATCS, 105:41–71, 2011. URL: http://bulletin.eatcs.org/
index.php/beatcs/article/view/92.

29 László Lovász. Three short proofs in graph theory. Journal of Combinatorial Theory Series B,
19(3):269–271, 1975. doi:10.1016/0095-8956(75)90089-1.

30 David W. Matula and Robert R. Sokal. Properties of Gabriel graphs relevant to geographic
variation research and the clustering of points in the plane. Geographical Analysis, 12(3):205–
222, 1980. doi:10.1111/j.1538-4632.1980.tb00031.x.

31 Joseph SB Mitchell and Wolfgang Mulzer. Proximity algorithms. In Handbook of Discrete and
Computational Geometry, chapter 32, pages 849–874. Chapman and Hall/CRC, 3rd edition,
2017.

https://doi.org/10.1016/J.COMGEO.2008.09.003
https://doi.org/10.21236/ada237250
https://doi.org/10.1016/0898-1221(90)90032-F
https://doi.org/10.1016/0167-8655(92)90048-5
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/0166-218X(94)00125-W
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-59175-3_93
https://doi.org/10.2307/2412323
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1137/0205049
https://doi.org/10.1307/mmj/1028998916
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/41958.41983
https://doi.org/10.1109/5.163414
https://doi.org/10.1006/jagm.2000.1137
https://doi.org/10.48550/ARXIV.2107.04321
https://doi.org/10.48550/ARXIV.2107.04321
https://doi.org/10.1111/j.1538-4632.1969.tb00615.x
http://bulletin.eatcs.org/index.php/beatcs/article/view/92
http://bulletin.eatcs.org/index.php/beatcs/article/view/92
https://doi.org/10.1016/0095-8956(75)90089-1
https://doi.org/10.1111/j.1538-4632.1980.tb00031.x

P. Kunz, T. Fluschnik, R. Niedermeier, and M. Renken 29:19

32 Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. Efficiently four-coloring
planar graphs. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC), pages 571–575, 1996. doi:10.1145/237814.238005.

33 Ewald Speckenmeyer. Untersuchungen zum Feedback Vertex Set Problem in ungerichteten
Graphen [Investigations into the Feedback Vertex Set problem in Undirected Graphs]. PhD
thesis, Universität Paderborn, 1983.

34 Godfried T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern
Recognition, 12(4):261–268, 1980. doi:10.1016/0031-3203(80)90066-7.

35 Godfried T. Toussaint. Applications of the relative neighbourhood graph. International
Journal of Advances in Computer Science and Its Applications, 4(3):77–85, 2014. URL:
http://journals.theired.org/journals/paper/details/4323.html.

36 Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating independent set
problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete
Mathematics, 72(1-3):355–360, 1988. doi:10.1016/0012-365X(88)90226-9.

37 Roderick B. Urquhart. Some properties of the planar Euclidean relative neighbourhood graph.
Pattern Recognition Letters, 1(5):317–322, 1983. doi:10.1016/0167-8655(83)90070-3.

SWAT 2022

https://doi.org/10.1145/237814.238005
https://doi.org/10.1016/0031-3203(80)90066-7
http://journals.theired.org/journals/paper/details/4323.html
https://doi.org/10.1016/0012-365X(88)90226-9
https://doi.org/10.1016/0167-8655(83)90070-3

A Scalable Work Function Algorithm for the
k-Server Problem
Sharath Raghvendra #

Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

Rachita Sowle #

Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

Abstract
We provide a novel implementation of the classical Work Function Algorithm (WFA) for the k-server
problem. In our implementation, processing a request takes O(n2 + k2) time per request; where
n is the total number of requests and k is the total number of servers. All prior implementations
take Ω(kn2 + k3) time per request. Previous approaches process a request by solving a min-cost
flow problem. Instead, we show that processing a request can be reduced to an execution of the
Dijkstra’s shortest-path algorithm on a carefully computed weighted graph leading to the speed-up.

2012 ACM Subject Classification Theory of computation → K-server algorithms

Keywords and phrases k-server, Work Function Algorithm, Minimum-cost Flow

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.30

Supplementary Material Software (Source Code): https://github.com/RachitaS/ScalableWork
Function_Public; archived at swh:1:dir:892a63bde62da09de7b9fb9b2086263cd9f8980b

Funding Work on this paper was supported by NSF under grant CCF 1909171.

1 Introduction

In several applications such as emergency response, grocery delivery or virtual memory
management, a new request has to be irrevocably assigned to a service provider in real-time.
The k-server problem is a simplified abstraction of this problem. In this paper, we present a
new implementation of the classical Work Function Algorithm for the k-server problem. We
begin by introducing the k-server problem.

Problem Statement. Consider a vertex set V and a weighted complete graph where each
edge (u, v) ∈ V × V has a cost d(u, v). We assume that d(·, ·) is a metric. Given any two
multi-sets A and B of points with A, B ⊆ V and |A| = |B|, we use d(A, B) to denote the
minimum-cost bipartite matching of the points in A to points in B under the distance d(·, ·).
For an integer k > 0, we are given k identical servers and their initial locations, also called
the initial configuration C0 = {s0

1, . . . s0
k} in the metric space. A configuration is simply any

multi-set C ⊂ V , with |C| = k. We use configurations to denote the locations of the k servers.
For any request ri, a configuration C serves ri if the location of ri is contained in the multi-set
C. In other words, a server s ∈ C that is co-located with ri serves ri at zero cost. We are
also given a sequence of n requests R = ⟨r1, . . . , rn⟩ that arrive over time with ri arriving at
time t = i. After ri arrives, we move the servers to a configuration Ci = {si

1, . . . , si
k} that

serves ri. The input to the k-server problem is simply the initial configuration C0 and the
request sequence R.

A valid solution to the problem is any sequence of configurations σ = ⟨C0, C1 . . . , Cn, Cn+1⟩
where ∀1 ≤ i ≤ n, Ci serves request ri. Note that, we set the final configuration Cn+1 to be
the same as Cn unless otherwise specified. Furthermore, we define the points within the final
configuration as anchor nodes. The cost of σ is denoted by w(σ) and w(σ) =

∑n
i=0 d(Ci, Ci+1).

© Sharath Raghvendra and Rachita Sowle;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 30; pp. 30:1–30:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sharathr@vt.edu
mailto:rachita18@vt.edu
https://doi.org/10.4230/LIPIcs.SWAT.2022.30
https://github.com/RachitaS/ScalableWorkFunction_Public
https://github.com/RachitaS/ScalableWorkFunction_Public
https://archive.softwareheritage.org/swh:1:dir:892a63bde62da09de7b9fb9b2086263cd9f8980b;origin=https://github.com/RachitaS/ScalableWorkFunction_Public;visit=swh:1:snp:e22e5295b8ac2da16a2c340cb29dccdec797085a;anchor=swh:1:rev:99080c05cee4d25219be0526b75db4926a09ad19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 A Scalable Work Function Algorithm for the k-Server Problem

The optimal solution, denoted by σ∗
C0,R is a valid solution with the smallest possible cost

when the input is the initial configuration C0 and the request sequence is R. We denote
σ∗

C0,R as σ∗ when the request sequence R and the initial configuration C0 are obvious from
the context. Let Ri be the sequence of first i requests, i.e., Ri = ⟨r1, . . . , ri⟩. We use σ∗

i to
denote σ∗

C0,Ri
. Suppose, in addition to the initial configuration C0 and the request sequence

Ri, the problem also specifies a final configuration C, then σ∗
i (C) denotes the minimum-cost

solution that places the k servers in the initial configuration C0 after which it serves the i

requests, and ends with C as the final configuration.
In the k-server problem, when a request ri arrives, one has to immediately and irrevocably

commit to a configuration Ci that serves request ri. For any algorithm A, let σA = σA,C0,R

be the sequence of configurations that A chooses for an input request sequence R. Then, for
a constant α > 0, we say that A has a competitive ratio of α if there exist another constant
β > 0 such that, over all possible request sequences R, w(σA,C0,R) ≤ αw(σ∗

C0,R) + β.
Next, we describe the work function algorithm for the k-server problem.

Work Function Algorithm. Given a request ri, the work function algorithm chooses a
configuration Ci that serves request ri as follows:

Ci = argmin
C

(w(σ∗
i (C)) + d(Ci−1, C)). (1)

Note that the minimum is over all possible configurations, i.e., every multi-set of size k.
However, work function algorithm can be shown to be a lazy algorithm; see [8, 15], i.e., the
configuration Ci that minimizes (1) is obtained by choosing one server s∗ in Ci−1 to serve
request ri where s∗ is given by

s∗ = argmin
s∈Ci−1,C=Ci−1\{s}∪{ri}

(w(σ∗
i (C)) + d(s, ri)) . (2)

Prior Work. The k-server problem is central to the theory of online algorithms. For a
survey of the problem, see [7]. The problem was first posted by Manasse et al. [11] who
established a lower bound that as long as a metric space has k + 1 points, no deterministic
algorithm can achieve a competitive ratio better than k. They also showed the competitive
ratio of 2 for the 2-server problem. With this as evidence, they conjectured that in fact
there is a k-competitive algorithm for this problem for any metric space. This conjecture is
the celebrated k-server conjecture. Since then, the k-server conjecture has also been shown
to be true for the line metric (1-dimensional Euclidean space) [2] and the tree metric [3].
It was shown that the Work Function Algorithm achieves a competitive ratio of 2k − 1 on
any metric space [8]. There has not been any significant progress on this conjecture since
then. On the other hand, there has been substantial work on the randomized version of the
k-server conjecture; see for instance Bubeck et al. [1] and Lee [10].

The analysis of the WFA in [8] was based on an exponential time dynamic programming
implementation which processes the ith request ri by solving equation (2).

The problem of finding the offline optimal solution for the k-server problem can be
carefully modelled as a minimum-cost flow problem [2] where each edge has a unit capacity.
Every unit of flow corresponds to a path taken by a server. In this flow network, every
request is represented by two nodes connected by an edge of weight −∞. This forces any
minimum-cost flow to visit every request. The optimal solution to this flow network of
2n + k + 2 nodes can be found in O(n2k) time.

S. Raghvendra and R. Sowle 30:3

For the online case, processing the ith request ri requires solving equation (2). Similar to
the offline case, evaluating (2) explicitly can be modelled as computing k distinct minimum-
cost flow values, each of which can take Θ((i + k)2k) time [2]. This observation leads to
an O((i + k)2k2) time algorithm for the WFA [16]. Using clever observations, evaluation
of (2) can be reduced to computation of a single minimum-cost flow which takes O(k(i + k)2)
time [15].

Rudec and Manger [17] presented an alternative approach for computing an offline solution
to the k-server problem. Instead of creating a flow network with edges of −∞ cost, they
define a graph in the original metric space and define the notion of regular flow to be any
flow in which each request is served by at least one server. One can move from any regular
flow to another one using the so-called up-down cycles. Upon adding a new request, they
show that finding the minimum-cost regular flow can be done by finding the most negative
up-down cycle which they accomplish by conducting an exhaustive search. They argue that
there is empirical benefit to this approach despite the worst-case execution time of this
algorithm being slower than that of [15]. They also extend this approach to the work function
algorithm.

Our Results and Approach. In this paper, we present a new implementation of the classical
work function algorithm. Similar to Rudec and Manger [17], after processing each request,
we maintain a valid solution that serves all the requests seen so far. Moreover, our algorithm
processes the ith request by executing a single Dijkstra’s shortest path search on a weighted
graph in O((i + k)2) time which is faster than previous methods that take Ω(k(i + k)2)
time [15, 17].

For every server s ∈ Ci−1, and C = Ci−1 \ {s} ∪ {ri}, our algorithm computes (2)
explicitly and then computes the minimum across all k choices of s. We show that the
symmetric difference between σ = σ∗

i−1(Ci−1) and σ′ = σ∗
i (C) is a trail1 T whose edges

alternate between those in σ and σ′. We refer to this as an augmenting trail and define its
net-cost to be w(σ′)−w(σ). In order to find w(σ′), we simply have to identify the minimum
net-cost augmenting trail that starts at ri and ends at s. Our augmenting trails can be
seen as a variant of the up-down cycles maintained by Rudec and Manger [17]. However,
instead of conducting an exhaustive search, we describe an efficient algorithm (similar to the
Kuhn-Munkres algorithm [9]) to find this minimum net-cost augmenting trail.

Using a graph search algorithm to find a minimum net-cost augmenting trail in the
residual graph can be difficult since these algorithms find simple paths and not trails. In
order to assist in the search of an augmenting trail, we define a weighted graph which we refer
to as the alternating graph. Any augmenting trail in the residual graph maps to a directed
path in the alternating graph and every directed path in the alternating graph corresponds
to an alternating trail in the residual graph (See Lemma 2 and Figure 1).

Critically, we also store a set of weights on the vertices of the alternating graph. These
weights satisfy a set of feasibility constraints, one for each edge in the alternating graph.
Vertex weights have been used to speed-up computation for a shortest path in a graph with
negative edge weights, for instance, in Johnson’s algorithm [4]. These weights allow us to
reduce the problem of finding minimum net-cost augmenting trail from ri to every server
s ∈ Ci−1 to a single execution of Dijkstra’s search procedure. Consequently, one can find the
optimal choice in (2) in O((i + k)2) time. After the optimal choice is identified, we augment
the solution to serve request ri. This may create many new edges, delete existing edges and

1 Recollect that a trail is a (possibly non-simple) path that does not repeat edges.

SWAT 2022

30:4 A Scalable Work Function Algorithm for the k-Server Problem

also change the cost of some edges in the alternating graph. Somewhat surprisingly, despite
the many updates to the alternating graph, we show that the vertex weights maintained by
our algorithm continue to satisfy the feasibility constraints for all edges.

Significance of our Result. Minimum net-cost paths have been central to the design
of algorithms for the closely related online minimum metric bipartite matching (OMBM)
problem [6, 5, 13]. Unlike in the k-server problem where a server can serve any number
of requests, in the OMBM problem, a server can serve no more than one request. Recent
analysis of algorithms for the OMBM rely on the behavior of the vertex weights (also called
dual weights) maintained while computing the minimum net-cost paths [12, 14]. Similarly,
we hope that our formulation of the WFA as computing a minimum net-cost augmenting
trail as well as the use of vertex weights can shed light into the dynamics of the WFA leading
to an improved analysis.

2 Preliminaries

Recollect that a valid solution is provided by a sequence of configurations σ = ⟨C0, C1, . . . , Cn,

Cn+1⟩. However, lazy valid solutions can also be represented as a set of k paths {Γ1, . . . , Γk}
taken by each of the k servers. More precisely, for any 1 ≤ i ≤ n and 1 ≤ j ≤ k, these paths
satisfy the following properties:
(P1) For each server sj , its path Γj starts at the location of sj in the initial configuration.

After the first vertex, Γj consists of a sequence of requests served by sj in increasing
order of their arrival time. Finally, the last vertex of Γj is the location of sj in the final
configuration.

(P2) Every request in Ri participates in exactly one of the k paths.
Furthermore, it can be shown that any set of paths {Γ1, . . . , Γk} that satisfies (P1) and (P2)
will be a valid solution .

The work function algorithm is a lazy algorithm. Therefore, we can represent the solution
it produces as k paths satisfying (P1) and (P2). Next, we introduce the notations that are
needed to describe an efficient implementation of the work function algorithm.

Notations. Throughout the rest of the paper, we consider directed graphs. We assume that
any edge (u, v) is directed from u to v unless otherwise stated. Let σi be a valid solution
to the first i requests of the k-server problem. Let {Γ1, Γ2, . . . , Γk} be the set of k paths
satisfying (P1) and (P2). For 1 ≤ j ≤ k, and for any vertex v on a path Γj where v is not an
anchor node, let f(v) denote the location of the next vertex on the path. Similarly, for any
vertex v on a path Γj where v is not a location in the initial configuration, let p(v) denote
the vertex that precedes v in the path Γj . In our algorithm, for any given valid solution σi,
we create a directed graph Gi called the residual graph as follows. The vertex set Vi of Gi

contains all vertices participating in any of the k paths, i.e., Vi =
⋃k

l=1

(⋃
v∈Γl

v
)

. There
are two types of edges in the edge set Ei of Gi

Forward edges: For each of the k paths and any vertex v ∈ V where v is not an anchor
node, we add a directed edge from v to f(v) denoting that the server at v moves to f(v).
Backward edges: For every request rj , we add a backward edge to rj′ provided j′ < j and
j ̸= f(j′). This edge is directed from rj to rj′ . We also add a backward edge directed
from rj to the k vertices of the initial configuration.

S. Raghvendra and R. Sowle 30:5

We refer to the residual graph with respect to σi as Gi. The k paths {Γ1, . . . , Γk} are
represented as k directed paths consisting of all the forward edges in Gi. The backward
edges, on the other hand, are not in the solution.

The set of all forward edges of a residual graph Gi corresponds to a valid solution if and
only if
(Q1) The forward edges are directed from an earlier request to a later request, and,
(Q2) Every request r has exactly one incoming forward edge and one outgoing forward

edge, every vertex from the initial configuration has one outgoing forward edge and every
anchor node has one incoming forward edge.

One can prove this by showing their equivalence to (P1) and (P2) . Next, we define alternating
and augmenting trails that play a critical role in processing a request.

Alternating Trails. Recollect that, in graph theory, a trail T is a path that is not necessarily
a simple path but it does not repeat edges. We define an alternating trail T in Gi as a
directed trail that alternates between forward and backward edges and ends at an anchor
node.

When a new request ri+1 arrives, we include the request ri+1 and extend the residual
graph to create an extended graph G0

i+1 from Gi as follows. The new vertex set Vi+1 is
Vi ∪ {ri+1}. The edges incident on ri+1 are as follows: for each vertex v ∈ Vi, if v is not an
anchor node, we add a backward edge directed from ri+1 to v. Figure 1(a) shows an example
of an extended graph where ri+1 = r6 with i1, i2, i3, i4 being the nodes in initial configuration
and a1, a2, a3, a4 are the anchor nodes. Any alternating trail T in the extended graph G0

i+1
that starts at ri+1 is an augmenting trail. Every edge going out of ri+1 in the extended
graph G0

i+1 is a backward edge. Therefore, an augmenting trail T starts with a backward
edge and ends at an anchor node. For example, in Figure 1(a), ⟨r6, i1, r2, i2, r3, r2, r4, r1, a3⟩
is an augmenting trail.

Alternating Graph. Finding augmenting trails can be tricky. Typical graph search al-
gorithms only find paths and not trails. In order to assist us in finding an augmenting trail
efficiently, we define a different directed graph called the alternating graph for G0

i+1 and
denote it by G0

i+1(V0
i+1, E0

i+1). Every directed simple path in this alternating graph G0
i+1

maps to a unique alternating trail in G0
i+1 and every augmenting trail T in G0

i+1 maps to a
unique simple path in the alternating graph G0

i+1 which we refer to as the augmenting path
(Lemma 2).

Thus, finding augmenting trails in G0
i+1 reduces to finding augmenting paths in G0

i+1
which can be done via graph search algorithms. We describe the alternating graph next.
The vertex set V0

i+1 of the alternating graph is the same as that of G0
i+1, i.e., V0

i+1 = Vi+1.
The edge set of the alternating graph, E0

i+1, is defined as follows. For every vertex v, if v

has a backward edge to a node v′, then we add a directed edge from v to f(v′) in E0
i+1.

Figure 1(a) is an extended graph and Figure 1(b) is its alternating graph. For any directed
edge (v, f(v′)) in G0

i+1, denoted by Proj(v, f(v′)) is the backward edge (v, v′) concatenated
with the forward edge (v′, f(v′)), i.e., Proj(v, f(v′)) = ⟨(v, v′), (v′, f(v′))⟩. For example, the
projection of an edge (r3, r4) (Figure 1(b)) in the alternating graph consists of the edges
⟨(r3, r2), (r2, r4)⟩ (Figure 1(a)) of the residual graph. For any path P in the alternating
graph, its projection is simply the concatenation of the projection of the individual edges.
The highlighted augmenting path ⟨r6, r2, r3, r4, a3⟩ (Figure 1(b)) when projected gives the
highlighted augmenting trail ⟨r6, i1, r2, i2, r3, r2, r4, r1, a3⟩ (Figure 1(a)). The construction
of alternating graph and the definition of projection will also extend to the residual graph
Gi+1 in a straight-forward way. The alternating graph for Gi+1 will be referred to as
Gi+1(Vi+1, Ei+1).

SWAT 2022

30:6 A Scalable Work Function Algorithm for the k-Server Problem

Figure 1 Example of an (a) Extended graph G0
6 and (b) its alternating graph G0

6 .

▶ Lemma 1. For any two edges (u, v) and (u′, v′) in G0
i , their projections are edge-disjoint

if and only if the head of both of the edges are distinct, i.e., v ̸= v′.

Proof. The projection of (u, v) is ⟨(u, p(v)), (p(v), v)⟩ and the projection of (u′, v′) is
⟨(u′, p(v′)), (p(v′), v′)⟩. Note that for every vertex s, there is a unique previous vertex
p(s). Therefore, if these projections are edge-disjoint and (p(v), v) and (p(v′), v′) are distinct
edges, then v and v′ must be distinct points, i.e., v ≠ v′. If v ̸= v′, then p(v) ̸= p(v′).
Therefore, the forward edges (p(v), v) and (p(v′), v′) are two vertex-disjoint edges implying
that the projections of (u, v) and (u′, v′) are edge-disjoint. ◀

▶ Lemma 2. For every directed simple path P in the alternating graph G0
i that ends at an

anchor node, its projection T = Proj(P) is an alternating trail. Furthermore, for every
alternating trail T in G0

i where the first edge of T is a backward edge, there is a directed
simple path P in G0

i such that Proj(P) = T .

Proof. The in-degree of any vertex on a simple directed path is at most one. Therefore, for
any two edges (u, v) and (u′, v′) on a simple directed path P , v ̸= v′. From Lemma 1, the
projections of (u, v) and (u′, v′) are edge-disjoint. Therefore, the projection T of P which is
simply the concatenation of projections of all the edges of P will be a path that does not
repeat any edges, i.e., T is a trail. By construction, T starts with a backward edge, alternates
between backward and forward edges, and ends at an anchor node, i.e., T is an alternating
trail.

For any alternating trail T in G0
i , let the backward edges be (u1, v1), (u2, v2), . . . , (uj , vj)

in the order in which they appear on the trail. Similarly let the forward edges be
(v1, f(v1)), (v2, f(v2)), . . . , (vj , f(vj)), i.e., T = ⟨(u1, v1), (v1, f(v1)), (u2, v2), (v2, f(v2),
. . . , (uj , vj), (vj , f(vj))⟩. By our assumption, the first edge of the alternating trail (u1, v1)
must be a backward edge, and, f(vj) must be an anchor node and for 1 ≤ t < j, f(vt) = ut+1.
For each 1 ≤ t ≤ j, the pair of edges (ut, vt)(vt, f(vt)) is represented by a unique directed
edge (ut, f(vt)) in G0

i . We can therefore lift T to a path P in G0
i by simply replacing

successive pairs (ut, vt)(vt, f(vt)) with (ut, f(vt)). The resulting sequence of edges is P =
⟨(u1, f(v1)), (u2, f(v2)), . . . , (uj , f(vj))⟩. Since for 1 ≤ t < j, f(vt) = ut+1, P is precisely
the directed path ⟨u1, u2, . . . , uj , f(vj)⟩. Furthermore, since T is a trail and does not repeat
any edges, for any two edges (u, v) and (u′, v′) in P its projections will be edge-disjoint.
Therefore, from Lemma 1, v ̸= v′ and so, P is a simple path. ◀

Augmentation. Consider any augmenting trail T in the extended graph G0
i+1 that starts

at ri+1 and ends at an anchor node a. We augment a valid solution σi (represented by
the extended graph G0

i+1) along an augmenting trail T to produce a solution σi+1 and the
residual graph Gi+1 as follows:

S. Raghvendra and R. Sowle 30:7

To obtain the residual graph Gi+1 from the extended graph G0
i+1, we can simply reverse

the direction of all the edges on the augmenting trail T and relabel the forward edges as
backward and all backward edges as forward. Finally, we remove the incoming forward
edge to the anchor node a and add a new forward edge from ri+1 to the anchor node a

and update the location of a to that of ri+1.

Equivalently, one can consider modifying the k paths {Γ1, Γ2, . . . , Γk} of σi by removing all
forward edges of T and adding all backward edges of T to obtain the k paths {Γ′

1, Γ′
2, . . . , Γ′

k}
of σi+1. It can be shown that the solution σi+1 is a valid solution that also serves request
ri+1 . One can also generalize the augment operation for alternating trails and cycles. We
refer to this generalized operation as the flip operation and use it in Section 4.2. .

We define the net-cost of an augmenting trail T to be

Φ(T) =
∑

(u,v) is backward

d(u, v)−
∑

(u,v) is forward

d(u, v).

Note that the net-cost of an augmenting trail T with respect to σi is the change in the cost due
to augmenting σi along T . Therefore, one can express net-cost as Φ(T) = w(σi+1)− w(σi).

For any edge (u, v) in the alternating graph, we set its cost c(u, v) = d(u, p(v))−d(p(v), v)
and for any simple path P , let c(P) =

∑
(u,v)∈P c(u, v) denote its net-cost. Note that the

cost of any edge in the alternating graph can be negative. For any simple augmenting path
P in the alternating graph G0

i+1, its net-cost c(P) is simply the net-cost of its projection
Φ(Proj(P)).

▶ Lemma 3. The net-cost of an augmenting path P in the alternating graph is equal to the
net-cost of its projection.

Proof. Given an augmenting path P in the alternating graph let the augmenting trail P ′

be its projection. Note that the set B = {(a, p(b)) | (a, b) ∈ P} is the set of all backward
edges of P ′. Similarly, the set F = {(p(b), b) | (a, b) ∈ P} is the set of all forward edges
of P ′. Therefore, the net-cost of P is

∑
(a,b)∈P c(a, b) =

∑
(a,b)∈P (d(a, p(b))− d(p(b), b)) =∑

(u,v)∈B d(u, v)−
∑

(u,v)∈F d(u, v) = Φ(P ′). ◀

Let y(·) be a weight associated with every vertex of the alternating graph. We say that any
valid solution σi and the weight function y(·) is feasible if for any edge (a, b) directed from a

to b

y(a)− y(b) ≤ c(a, b). (3)

We say that any edge satisfying this inequality is feasible. We define slack of any edge (a, b)
directed from a to b to be c(a, b) + y(b)− y(a) and denote it by s(a, b). Given these notations,
we are ready to describe our algorithm.

3 The Algorithm

After processing i requests, our algorithm will maintain a feasible valid solution σ = σi.
We refer to this as the offline solution. Initially, the weight y(v) for every vertex v ∈ C0 is
set to 0 and the offline solution σ is empty. For i ≥ 0, using the alternating graph G0

i+1,
our algorithm will identify an appropriate augmenting trail T in the extended graph G0

i+1.
Recollect that T ends at an anchor node a. The algorithm then moves the server located at

SWAT 2022

30:8 A Scalable Work Function Algorithm for the k-Server Problem

a and that served request p(a) to serve request ri+1. The offline solution σ is updated by
augmenting σi along T leading to a valid solution σ = σi+1. The algorithm consists of four
steps2:
(1) Augmenting path search: Let G′ be identical to this alternating graph G0

i+1 except the
cost of any edge (a, b) is replaced by its slack s(a, b). Note that G′ is a graph with only
non negative edge-costs. The algorithm executes Dijkstra’s algorithm on G′ with ri+1
as the source. Dijkstra’s algorithm returns the shortest path from ri+1 to every other
vertex in V0

i+1. Let, for any vertex v ∈ V0
i+1, ℓv be its shortest path cost as returned by

Dijkstra’s algorithm from the source ri+1.
(2) Determine net-cost: Next, we compute the minimum net-cost augmenting path from ri+1

to each of the k anchor nodes {a1, . . . , ak}. For any anchor node aj ∈ {a1, . . . , ak}, we
set the minimum net-cost to be Φj = ℓaj − y(aj) and the path Pj corresponding to this
net-cost is the shortest path from ri+1 to aj in G′ as returned by Dijkstra’s algorithm
(Step 1).

(3) Choose server: Let am = arg minaj∈{a1,...,ak}(d(aj , ri+1) + Φj) and let s be the server
located at am with p(am) as its last served request. We assign s to serve request ri+1.

(4) Update offline solution: We update the offline solution as follows: (a) For any vertex
v ∈ Vi+1, if ℓv < ℓam , we set its weight y(v) ← y(v) + ℓam − ℓv. (b) After updating
the weights, we augment σi along Pam

to obtain σ = σi+1 and update the edges of the
alternating graph to reflect the new solution σ. We also set y(am)← 0.

Our algorithm maintains the following two invariants at all times:
(I1): The offline solution σ along with the weights y(·) is a valid and feasible solution, and,
(I2): Let Ci be the final configuration of σi. Then, σi = σ∗

i (Ci). Furthermore, for every
anchor node aj ∈ {a1, . . . , ak}, let Ci+1

j = Ci \ {aj}∪{ri+1}. Then Φj = w(σ∗
i+1(Ci+1

j))−
w(σ∗

i (Ci)).
The proofs of these invariants are given in Section 4. Note that, after each request is processed
the set of edges in the alternating graph can change substantially. Despite this, our weight
updates guarantee that every newly added edge in the alternating graph continues to be
feasible (Section 4.1).

Efficiency. Note that the |Vi+1| = i + 1 + 2k and |Ei+1| = O((i + k)2). The extended
graph and alternating graphs also have identical bounds. Step 1 of the algorithm requires
computation of G′ and an execution of Dijkstra’s algorithm on G′ which takes O((i + k)2))
time. Step 2 of the algorithm requires constant time computation for each of the anchor
nodes and therefore takes O(k) time. The paths Pj computed in Step 2 is can be compactly
represented using the shortest path tree that is returned by Dijkstra’s algorithm. Therefore,
computing Pj does not require any additional time. Choosing the server in Step 3 can be
performed by simply accessing the cost between the ri+1 and each of the k servers and
computing the one that minimizes Φj + d(aj , ri+1). Step 3, therefore, takes only O(k) time.
Step 4(a) requires us to update the weight at each vertex which can be done in O(i + k)
time. Step 4(b) requires augmenting and updating the residual and alternating graphs each
of which can be performed in O((i + k)2). Therefore, the time taken to process each request
is dominated by O(i2 + k2) = O(n2).

Next, assuming the invariants hold, we will show that the algorithm picks the same server
as the Work Function Algorithm.

2 An implementation of this algorithm is available here: https://github.com/RachitaS/
ScalableWorkFunction_Public

https://github.com/RachitaS/ScalableWorkFunction_Public
https://github.com/RachitaS/ScalableWorkFunction_Public

S. Raghvendra and R. Sowle 30:9

Correctness: The following lemma establishes a link between the net-cost of an augmenting
path and the sum of the slacks along its edges.

▶ Lemma 4. Suppose σi and the weights y(·) form a feasible solution. For any augmenting
path P in the alternating graph that starts at ri+1 and ends at an anchor node a, its net-cost
is

Φ(P) = y(ri+1)− y(a) +
∑

(u,v)∈P

s(u, v). (4)

Proof. Every vertex v′ ∈ P with the exception of the first vertex ri+1 and the last vertex a

will have an incoming edge (u′, v′) and an outgoing edge (v′, w′) in P . The weight of v′, y(v′)
is added with respect to (v′, w′) and subtracted with respect to the edge (u′, v′) and therefore,
the net-contribution of v′ to Equation (4) is zero. The first vertex ri+1 participates in the
first edge of P and contributes +y(ri+1) to Equation (4). The last vertex a participates only
in the last edge and contributes −y(a) to Equation (4). ◀

From Invariant (I1), Equation 4 and since y(ri+1) = 0, the minimum net-cost path Pj from
ri+1 to some anchor node aj in the alternating graph G0

i+1 is also the augmenting path that
minimizes the sum of slacks along its edges. From invariant (I1) all slacks are non-negative
and so, Pj will be the augmenting path returned by the execution of Dijkstra’s algorithm in
Step 1 of the algorithm. Furthermore, ℓaj

=
∑

(u,v)∈Pj
s(u, v). Therefore, from Equation 4,

we conclude that Φj = Φ(Pj) = ℓaj − y(aj). Therefore, Step 2 of the algorithm will correctly
compute the minimum net-cost augmenting path to every anchor node aj ∈ {a1, . . . , ak}.

Step 3 of the algorithm selects the server located at the anchor node am =
argminaj∈{a1,...,ak}
(d(aj , ri+1)+Φj). Let Xj = Ci+1

j = Ci \{aj}∪{ri+1}. By Invariant (I2), (d(aj , ri+1)+Φj) =
d(aj , ri+1) + w(σ∗

i+1(Xj))− w(σ∗
i (Ci)) and, argminaj∈{a1,...,ak}(d(aj , ri+1) + Φj) is

= argmin
j∈{1,...k}

(d(aj , ri+1) + w(σ∗
i+1(Xj))− w(σ∗

i (Ci)))

= argmin
j∈{1,...,k}

(d(aj , ri+1) + w(σ∗
i+1(Xj)).

The last equality follows from the fact that w(σ∗
i (Ci)) is the same for every choice of j.

Thus, we choose the same server as required by the work function algorithm.

4 Proof of Invariants

4.1 Proof of Invariant (I1)
Recall the definition of feasibility. Any valid solution σi with the weight function y(·)
associated with each vertex of its alternating graph is feasible if for every edge (a, b) directed
from a to b in its alternation graph satisfies the following equation.

y(a)− y(b) ≤ c(a, b). (5)

Furthermore, any edge satisfying the above inequality is feasible.
We prove a slightly stronger version of Invariant (I1)

SWAT 2022

30:10 A Scalable Work Function Algorithm for the k-Server Problem

(I1): The offline solution σ along with the weights y(·) maintained by the algorithm is a
valid and feasible solution. Furthermore, for any forward edge (u, v) in the residual graph
of σ,

y(v) ≥ d(u, v). (6)

We can prove this invariant by induction. At time t = 0, we have the servers in the initial
configuration. The vertex set of the initial residual graph G0 only contains the vertices for
the initial configuration and the anchor nodes. The edge set of the initial residual graph
G0 contains only forward edges directed from each server in the initial configuration to its
anchor node. Since there are no backward edges in G0, the alternating graph G0 does not
have edges. Therefore, σ0 and the vertex weights y(·) are trivially feasible.

Let the solution σi after serving i requests be a valid and feasible solution and let y(·) at
the end of processing request ri satisfy (6). Given this, we will now prove that the solution
σi+1 is valid and feasible and the updated vertex weight satisfies (6). Note that each new
request arrives with a default weight 0. Given a valid feasible solution σi along with the
vertex weight function y(·), the algorithm first constructs the extended graph G0

i+1. Lemma 6
shows that the corresponding alternating graph G0

i+1 with weight function y(·) continues to
be feasible. Steps 1, 2 and 3 do not modify σi or the vertex weights. Therefore, σi continues
to remain valid and feasible till the end of Step 3.

In Step 4(a) of the algorithm, the weights on the vertices of G0
i+1 are updated. Let

y(·) be the weights prior to executing step 4(a) and let y′(·) be the weights after executing
step 4(a). Lemma 8 proves that G0

i+1 along with the updated vertex weights y′(·) remain
feasible. In Step 4(b), the algorithm augments the solution σi along the augmenting trail T

(as determined in Step 3) leading to σi+1. Lemma 10 shows that the solution σi+1 remains
valid and feasible. Finally, in Lemma 11, we argue that the vertex weights at the end of Step
4(b) satisfies (6).

▶ Lemma 5. Suppose P is the augmenting path from ri+1 to the anchor node am chosen
in step 3 of the algorithm, then the slack s(u, v) on every edge (u, v) of P after the vertex
weight update in step 4(a) is zero.

Proof. Let y(·) be the vertex weight prior to Step 4(a) and y′(·) be the vertex weight after
Step 4(a). By our choice in Step 3, P is the shortest path computed by Dijkstra’s algorithm
from ri+1 to am in G′. Since ℓam

is the cost of P in G′, every vertex v ∈ P has a shortest
path cost at most ℓam

, i.e., ℓv ≤ ℓam
. Furthermore, by the optimal sub-structure property

of shortest paths, for any edge (u, v) ∈ P , ℓv − ℓu = s(u, v) = c(u, v) + y(v) − y(u) or
ℓv − ℓu = c(u, v) + y(v)− y(u).

c(u, v) + (y(v)− ℓv)− (y(u)− ℓu) = 0,

c(u, v) + (y(v)− ℓv + ℓam
)− (y(u)− ℓu + ℓam

) = 0,

c(u, v) + y′(v)− y′(u) = 0.

The second to last equality is obtained by simply adding and subtracting ℓam
to the LHS.

The last equality follows from the fact that ℓv ≤ ℓam
and ℓu ≤ ℓam

and the update of the
vertex weights defined in Step 4(a). ◀

▶ Lemma 6. Given a valid feasible solution σi, all the edges of the alternating graph G0
i+1

are feasible.

S. Raghvendra and R. Sowle 30:11

Proof. From the inductive hypothesis, σi is a feasible solution i.e. the edges of Gi satisfy (5),
and, the weights y(·) satisfies (6). The extended graph G0

i+1 is created by the addition of
ri+1 to the vertex set of Gi in the vertex set. Furthermore, for every j ≤ i a backward
edge is added from ri+1 to rj and an edge (ri+1, f(rj)) is added to G0

i+1. We show that for
every such edge, (ri+1, f(rj)) ∈ G0

i+1, the feasibility condition (5) holds. The cost of the edge
(ri+1, f(rj)) is

c(ri+1, f(rj)) = d(ri+1, rj))− d(rj , f(rj)) (7)
≥ −d(rj , f(rj)). (8)

Note that the vertex weight of ri+1, y(ri+1) is set to 0. By the inductive hypothesis,
−y(f(rj)) ≤ −d(rj , f(rj)). Adding y(ri+1) to the LHS and 0 to the RHS, we get y(ri+1)−
y(f(rj)) ≤ −d(rj , f(rj)) or y(ri+1)− y(f(rj)) ≤ c(ri+1, f(rj)). The last inequality follows
from 8. This implies that the edge (ri+1, v) satisfies (5). ◀

Feasibility after Step 4(b). Step 4(b) in the algorithm augments the solution along an
augmenting trail T . In doing so, the alternating graph G0

i+1 is updated to Gi+1. The edges
Ei+1 of Gi+1 may include several new edges that were not in G0

i+1. Furthermore, there may
be edges whose costs c(·, ·) change due to augmentation. We classify all such edges in the
alternating graph Gi+1 as affected edges. The following two lemmas establishes important
properties of the affected edges.

▶ Lemma 7. Let P be the augmenting path from ri+1 to an anchor node am in the alternating
graph G0

i+1 that is computed in Step 3 of our algorithm. Given any affected edge (u, v) in
Gi+1, let ⟨(u, x), (x, v)⟩ be its projection. Then, v ̸= am and (v, x) is a backward edge on the
augmenting trail Proj(P).

Proof. Let P be the augmenting path from ri+1 to an anchor node am in the alternating
graph G0

i+1 that is computed in Step 3 of our algorithm. And let T be the augmenting trail
in G0

i+1 such that T = Proj(P).
First we will prove that given any affected edge (u, v) in Gi+1, v ̸= am. After augmentation

along T , we add the forward edge (ri+1, am). Since all backward edges are directed from a
later request to an earlier request and since ri+1 is the latest request in the residual graph
Gi+1, there are no in-coming backward edges to ri+1. Therefore, by its description, there
will not be any incoming edges to am in the alternating graph Gi+1 and so v ̸= am.

Since (u, v) is an affected edge, at least one of the edges in its projection ⟨(u, x), (x, v)⟩
is newly introduced by the augment operation. We claim that the forward edge (x, v) was
added by the augment operation in Step 4(b) of the algorithm. Suppose, for the sake
of contradiction, (x, v) was not added in Step 4(b), i.e., (x, v) is a forward edge in G0

i+1.
Therefore, (u, x) must be the backward edge that was newly added by the augment operation.
We can conclude that the augmenting trail T contains the forward edge (x, u), implying (x, u)
is a forward edge in G0

i+1. Note that (x, u) and (x, v) are both forward edges in G0
i+1 which

contradicts the fact that σi is a valid solution. Therefore, we conclude that the forward edge
(x, v) was introduced by the augment operation in Step 4(b), i.e., (v, x) is a backward edge
in the augmenting trail T . ◀

▶ Lemma 8. The edges of the alternating graph G0
i+1 remains feasible after the vertex weight

update in step 4(a).

SWAT 2022

30:12 A Scalable Work Function Algorithm for the k-Server Problem

Proof. The alternating graph G0
i+1 before the execution of Step 4(a) is feasible. Let y(·)

(resp. y′(·)) denote the vertex weights before (resp. after) the weight update of step 4(a).
For each edge (u, v) ∈ G0

i+1, let s(u, v) (resp. s′(u, v)) represent the slack on (u, v) before
(resp. after) weight update in step 4(a). Let (u, v) be any directed edge in G0

i+1. Note that
every edge in G0

i+1 along with the weights y(·) satisfies (3) and so the slack s(u, v) ≥ 0. Let
am be the anchor node chosen by algorithm in Step 3 and for any vertex w ∈ G0

i+1, recollect
that ℓw is the shortest path cost returned by Dijkstra’s algorithm in Step 1 of the algorithm.
For the edge (u, v), there are four possibilities after step 4(a):
Case (i) ℓu ≥ ℓam

and ℓv ≥ ℓam
. In this case, Step 4(a) will not update the vertex weights

for u and v. So, y′(u) = y(u), y′(v) = y(v), and s′(u, v) = s(u, v). Therefore, (u, v)
remains feasible with respect to y′(·).

Case (ii) ℓv < ℓam
and ℓu ≥ ℓam

. In this case, Step 4(a) will update the vertex weights to
y′(v) = y(v) + (ℓam − ℓv) > y(v) and y′(u) = y(u). Furthermore, from feasibility of (u, v)
with respect to y(·), we have s(u, v) ≥ 0. Therefore, s′(u, v) = c(u, v)− y′(u) + y′(v) ≥
c(u, v)− y(u)− y(v) ≥ 0 implying that (u, v) remains feasible with respect to the updated
vertex weight y′(·).

Case (iii) ℓu < ℓam
and ℓv ≥ ℓam

. In this case, Step 4(a) updates the vertex weight to
y′(u) = y(u) + (ℓam

− ℓu) and y′(v) = y(v). From the property of shortest path distances,
the shortest path distance from ri+1 to v is bounded by the shortest path distance from
ri+1 to u and the slack of the edge from (u, v), i.e., ℓv − ℓu ≤ s(u, v). Using the definition
of slack we get,

ℓv − ℓu ≤ c(u, v)− y(u) + y(v),
(ℓam − ℓu)− (ℓam − ℓv) ≤ c(u, v)− y(u) + y(v),

[(ℓam
− ℓu) + y(u)−

((ℓam
− ℓv) + y(v))] ≤ c(u, v),

y′(u)− ((ℓam
− ℓv) + y′(v)) ≤ c(u, v)

The last inequality follows from the fact that y′(u) = (ℓam − ℓu) + y(u). Furthermore,
since ℓam

< ℓv, we get y′(u)− y′(v) ≤ c(u, v), i.e., the edge (u, v) remains feasible.
Case (iv) ℓu < ℓam and ℓv < ℓam . In this case, Step 4(a) sets y′(u) = y(u) + (ℓam − ℓu) and

y′(v) = y(v)+(ℓam
−ℓv). Again, the shortest path from ri+1 to v is of cost bounded by the

shortest path from ri+1 to u and the slack on the edge (u, v). Therefore, ℓv ≤ ℓu + s(u, v)
i.e. ℓv − ℓu ≤ s(u, v). Using the definition of slack we get

ℓv − ℓu ≤ c(u, v)− y(u) + y(v),
(ℓam − ℓu)− (ℓam − ℓv) ≤ c(u, v)− y(u) + y(v),

[(ℓam − ℓu) + y(u)−
((ℓam

− ℓv) + y(v))] ≤ c(u, v),
y′(u)− y′(v) ≤ c(u, v).

implying (u, v) is feasible with respect to y′(·). ◀

▶ Lemma 9. Let P be the augmenting path computed in Step 3 that goes from request ri+1
to an anchor node am in the alternating graph G0

i+1. For any vertex v on the path P where
v ≠ am, let n(v) denote the vertex that succeeds v on P . Given any affected edge (u, v) in
Gi+1, let ⟨(u, x), (x, v)⟩ be its projection. Then,

(i) Either the edge (v, u) is on the augmenting path P with Proj(v, u) = ⟨(v, x), (x, u)⟩, or
(ii) There is an edge (u, n(v)) in G0

i+1 with its projection Proj(u, n(v)) = ⟨(u, x), (x, n(v))⟩.

S. Raghvendra and R. Sowle 30:13

(I) Demonstrating Case(a): (u, v) is an affected edge with projection ⟨(u, x), (x, v)⟩ such that (x, u) was a
forward edge prior to augmentation.
(a) Affected edge (u, v) ∈ Gi+1. (b) Projection of the affected edge (u, v), Proj(u, v) = ⟨(u, x), (x, v)⟩. (c)
Alternating graph edge (v, u) ∈ G0

i+1 before augmentation. (d) Projection of the edge (v, u), Proj(v, u) =
⟨(v, x), (x, u)⟩ before augmentation.

(II) Demonstrating Case(b): (u, v) is an affected edge with projection ⟨(u, x), (x, v)⟩ such that (u, x) was
a backward edge prior to augmentation as well.
(a) Affected edge (u, v) ∈ Gi+1. (b) Projection of the affected edge (u, v) ∈ Gi+1, ⟨(u, x), (x, v)⟩. (c)
Alternating graph edges of G0

i+1 before augmentation where (v, n(v)) ∈ P and (u, n(v)) ∈ G0
i+1 (d)

Projection of the edge (u, n(v)) ∈ G0
i+1, ⟨(u, x), (x, n(v))⟩ before augmentation.

Figure 2

Proof. From Lemma 7, we know that (v, x) is a backward edge in the augmenting trail T .
There are two possibilities for the edge (u, x): (a) (u, x) was also added as a backward edge
by the augment process, or (b) (u, x) was also an edge in the extended graph G0

i+1.
For case (a), the edge (x, u) was a forward edge prior to augmentation. Since both the

backward edge (v, x) and the forward edge (x, u) are in the augmenting trail T , we will have
an edge (v, u) in the augmenting path P , implying (i). An instance of this case is shown in
Figure 2I where directed edge (u, v) is the affected edge.

In case (b), (u, x) is also a backward edge in G0
i+1 (Figure 2II(b)). Since (v, x) is a

backward edge in T , the projection of the edge (v, n(v)) will contain the backward edge
(v, x) followed by the forward edge (x, n(v)). Since (u, x) is a backward edge and (x, n(v))
is a forward edge in G0

i+1, we will have an edge (u, n(v)) in the alternating graph G0
i+1.

An example of this case is demonstrated in Figure 2II where the directed edge (u, v) in
Figure 2II(a) is the affected edge. Figure 2II(b) shows the projection of (u, v). Figure 2II(c)
shows the scenario before augmentation where (v, u) ∈ G0

i+1 and Figure 2II(d) shows (v, u)’s
projection in G0

i+1. ◀

▶ Lemma 10. σi+1 is a valid and feasible solution after the Augment operation in Step 4(b).

Proof. Let P be the augmenting path from ri+1 to the anchor node chosen in Step 3. To
prove that σi+1 is a feasible solution after Step 4(b), we need to show that the edges of
alternating graph Gi+1 that are affected by the augment operation along the path P continue
to be feasible and satisfy (5).

Let c(·, ·) be the cost function of edges in the alternating graph G0
i+1, i.e., prior to

augmentation and let c′(·, ·) be the cost function of edges in the alternating graph Gi+1, i.e.,
after augmentation. From Lemma 9, one of the following cases is true.

SWAT 2022

30:14 A Scalable Work Function Algorithm for the k-Server Problem

(i) Edge (v, u) is on the augmenting path P with Proj(v, u) = ⟨(v, x), (x, u)⟩, or
(ii) There is an edge (u, n(v)) in G0

i+1 with its projection Proj(u, n(v)) = ⟨(u, x), (x, n(v))⟩.
We will consider both these cases separately.
Case (i): For the edge (v, u), c(v, u) = d(v, x)− d(x, u). After augmentation, Proj(u, v) =
⟨(u, x), (x, v)⟩ and the cost of the affected edge (u, v) ∈ Gi+1 is c′(u, v) = d(u, x)−d(x, v) =
−c(v, u). From Lemma 5, after Step 4(a), the slack on every edge of the augmenting path
P , including (v, u) ∈ P is 0 i.e. s(v, u) = (c(v, u) + y(u)− y(v)) = 0. The slack on the
affected edge (u, v) ∈ Gi+1 can be calculated as,

s(u, v) = c′(u, v)− y(u) + y(v)
= −(c(v, u) + y(u)− y(v))
= 0.

Hence, the affected edge (u, v) ∈ Gi+1 is feasible.
Case (ii): There is an edge (u, n(v)) in G0

i+1 and Proj(u, n(v)) = ⟨(u, x), (x, n(v))⟩. From
Lemma 5, after Step 4(a), every edge on P including (v, n(v)) ∈ P has a slack of 0. Hence,
y(v)− y(n(v)) = c(v, n(v)) = d(v, x)− d(x, n(v)), or

y(n(v)) = y(v) + d(x, n(v))− d(v, x). (9)

Since (u, n(v)) is an edge in G0
i+1, it is a feasible edge after the step 4(a) (Lemma 8) and

we get y(u)− y(n(v)) ≤ c(u, n(v)). Substituting c(u, n(v)) as d(u, x)− d(x, n(v)), we get
y(u)− y(n(v)) ≤ d(u, x)− d(x, n(v)). From equation (9), we can rewrite this inequality
as

y(u)− y(v)− d(x, n(v)) + d(v, x) ≤ d(u, x)− d(x, n(v)),
y(u)− y(v) ≤ d(u, x)− d(x, v),
y(u)− y(v) ≤ c′(u, v),

implying that the affected edge (u, v) is a feasible edge.

Next, we show that σi+1 is a valid solution after Step 4(b). To show that σi+1 remains a
valid solution, we need to show that the forward edges of Gi+1 satisfies (Q1) and (Q2). By
construction, every backward edge is directed from a later request to an earlier one. During
augmentation, for every backward edge on the augmenting trail, we reverse its direction and
label it as a forward edge. Therefore, every newly introduced forward edge is from an earlier
request to a later one implying (Q1).

Next, we will show (Q2)
The first vertex of P is ri+1. Let a be the anchor node at the end of P . Consider any

edge (u, v) of the simple directed path P . Note that its projection is ⟨(u, p(v)), (p(v), v)⟩
where (u, p(v)) is a backward edge and (p(v), v) is a forward edge. Due to augmentation,
this projection is modified as follows: (v, p(v)) becomes a backward edge and (p(v), u) is now
a forward edge. We abuse notation and refer to the modifications made by augmentation
along the projection of (u, v) as augmentation along the edge (u, v).

Augmentation along (u, v) modifies the outgoing forward edge from p(v). It also removes
the incoming forward edge to v and adds an incoming forward edge to u. Therefore,
augmentation along (u, v) does not change the number of forward edges coming in and going
out of p(v), i.e., p(v) continues to satisfy (Q2). However, it increases the number of forward
edges coming into u by 1 and reduces the number of incoming forward edges incident on v

by 1.
Every vertex v′ along P , except for the first and the last vertex, i.e., v′ ̸∈ {ri+1, a}, will

be the tail for some edge (u′, v′) ∈ P and the head for some edge (v′, w′) ∈ P . Augmentation
along (u′, v′) will reduce the incoming forward edge on v′ by one. On the other hand,

S. Raghvendra and R. Sowle 30:15

augmenting along (v′, w′) will increase the incoming forward edge on v′ by one. As a result
the incoming and outgoing forward edges incident on v′ remain unchanged. Therefore, for
every vertex except ri+1 and a, we can conclude that (Q2) holds.

The first vertex ri+1 is the tail of the first edge in P , augmentation will result in a new
incoming forward edge in Gi+1. Finally, the last vertex a ∈ P is the head of the last edge.
Therefore, augmentation causes removal of the only incoming forward edge to a. Instead, we
add a forward edge from ri+1 to a. This guarantees that ri+1 contains exactly one incoming
forward edge and one outgoing forward edge satisfying (Q2). Furthermore, the anchor node
a will have exactly one incoming forward edge satisfying (Q2). ◀

Finally, we will show that the updated vertex weights satisfy (6).

▶ Lemma 11. Consider any solution σi maintained by the algorithm with residual graph Gi,
for any forward edge (u, v) in the residual graph,

y(v) ≥ d(u, v). (10)

4.2 Proof of Invariant (I2)
Before we present the proof for (I2), we would like to remind the reader of the following
discussion.

From Invariant (I1), Equation (4) and since y(ri+1) = 0, the minimum net-cost path
Pj from ri+1 to some anchor node aj in the alternating graph G0

i+1 is also the augmenting
path that minimizes the sum of slacks along its edges. From invariant (I1) all slacks are
non-negative and so, Pj will be the augmenting path returned by the execution of Dijkstra’s
algorithm in Step 1 of the algorithm. Furthermore, ℓaj =

∑
(u,v)∈Pj

s(u, v). Therefore,
from Equation (4), we conclude that Φj = Φ(Pj) = ℓaj

− y(aj). Therefore, Step 2 of the
algorithm will correctly compute the minimum net-cost augmenting path to every anchor
node aj ∈ {a1, . . . , ak}.

Invariant (I2). Let Ci be the final configuration of σi. Then, σi = σ∗
i (Ci). Furthermore, for

every anchor node aj ∈ {a1, . . . , ak}, let Ci+1
j = Ci\{aj}∪{ri+1}. Then Φj = w(σ∗

i+1(Ci+1
j))−

w(σ∗
i (Ci)).

Proof. Prior to processing any request, all the servers are in their initial configuration
and σ0 with zero cost is indeed the optimal solution. Assume that, after processing i

requests, σi = σ∗
i (Ci). We will use this to show that Φj = w(σ∗

i+1(Ci+1
j))− w(σ∗

i (Ci)) and
σi+1 = σ∗

i+1(Ci+1).
Consider σj

i+1 = σ∗
i+1(Ci+1

j) to be the smallest cost solution that serves i + 1 requests
and ends in Ci+1

j . If there are many minimum-cost solutions, we set σj
i+1 to be the one that

has the fewest edges in the symmetric difference with σi = σ∗
i (Ci). Consider the symmetric

difference of the edges of σi and σj
i+1. Since their final configurations Ci and Ci+1

j differ in only
the locations of aj and ri+1, the symmetric difference will include exactly one augmenting
trail from ri+1 to aj and possibly a set C of alternating cycles.

First, we show that C is an empty set. For the sake of contradiction, assume C is not
empty. Let C be an alternating cycle with respect to G0

i+1 (extended graph for solution σi) in
the symmetric difference. The net-cost of C cannot be zero, since otherwise applying the flip
operation on the cycle C in Gσ′ will lead to another valid solution σ′′ whose cost is identical
to that of σj

i+1 and the final configuration is Ci+1
j . However, the flip operation will reduce

SWAT 2022

30:16 A Scalable Work Function Algorithm for the k-Server Problem

the size of the symmetric difference and so, σj
i+1 has more edges that σ′′ in the symmetric

difference with σi. This contradicts our assumption that σj
i+1 is the minimum-cost valid

solution that ends in configuration Ci+1
j and has the smallest symmetric difference with σi.

Similarly, the net-cost Φ(C) cannot be negative, since otherwise applying the flip operation
along the cycle C on G0

i+1 will lead to another valid solution that ends in Ci and has a
smaller cost than σi . This contradicts the fact that σi = σ∗

i (Ci) is a minimum-cost solution.
If the net-cost Φ(C) with respect to G0

i+1 is positive, i.e., Φ(C) > 0, then let C ′ be the
alternating cycle corresponding to C in Gσj

i+1
(the residual graph with respect to σj

i+1).
From Corollary 13 presented in Section 4.3, it follows that the net-cost Φ(C ′) = −Φ(C) < 0.
Again, applying the flip operation along the cycle C ′ in Gσj

i+1
will lead to a valid solution

whose cost is smaller than σj
i+1 contradicting the fact that σj

i+1 is the smallest cost solution.
From the above discussion, it follows that the symmetric difference of σi and σj

i+1 is an
augmenting trail T ′. We claim that T ′ is in fact the minimum net-cost augmenting trail that
starts at ri+1 and ends at aj . For the sake of contradiction, suppose T ′ is not the minimum
net-cost augmenting trail and Φ(T ′) > Φj . Let T be some minimum net-cost augmenting
trail in G0

i+1 that starts at ri+1 and ends at an anchor node aj . Note that Φj = Φ(T). Let
σj

i+1 be the valid solution obtained by augmenting σi along T in the extended graph G0
i+1.

The final configuration of σj
i+1 is Cj

i+1 . Then, by its definition,

w(σj
i+1)− w(σi) > w(σj

i+1)− w(σi),
w(σj

i+1) > w(σj
i+1),

contradicting the fact that σj
i+1 is a minimum cost solution to serve i + 1 requests and

end in configuration Cj
i+1. Thus the net-cost of the augmenting trail T ′ in the symmetric

difference of σi and σj
i+1 is Φj . From the definition of net-cost, Φj = w(σj

i+1) − w(σi) =
w(σ∗

i+1(Ci+1
j))− w(σ∗

i (Ci)).
Our algorithm chooses the minimum net-cost path from ri+1 to am and augments the

valid solution along this path. As a result, the cost of the solution σi+1 increases precisely by
w(σ∗

i+1(Ci+1
m))− w(σ∗

i (Ci)) and the new valid solution will end in configuration Ci+1
m = Ci+1

and have a cost equal to w(σ∗
i+1(Ci+1)) proving invariant (I2). ◀

4.3 Symmetric Difference of Valid Solutions
Next, we introduce properties of the symmetric difference of two valid solutions. These
properties are used in the proof of invariant (I2).

Let σ and σ′ be two valid solutions where σ serves the first i requests and σ′ serves the
first i + 1 requests. Let G0

σ be the extended graph with respect to σ and Gσ′ be the residual
graph with respect to σ′. We show that the edges in the symmetric difference of σ and σ′ can
be decomposed into a edge-disjoint set of alternating trails, augmenting trail and alternating
cycles.

Let C and C′ be the final configurations of σ and σ′. Let X denote the edges in the
symmetric difference of σ and σ′. For any edge in X, there is a corresponding directed
edge in G0

σ. We assign the same direction for edge in X. Therefore, by construction, the
edges of X ∩ σ will be forward edges and the edges of X ∩ σ′ will be backward edges in
G0

σ. Figures 3(a), (b) and (c) highlight the edges of σ, σ′ and (X ∩G0
σ) respectively. For

each vertex v ∈ Vi, suppose v is not an anchor node (resp. if v is not a vertex in the initial
configuration), let f(v) (resp. p(v)) denote the vertex that appears after (resp. before) v in
σ. Similarly, for all v ∈ Vi+1, where v is not a vertex from the initial configuration (resp. not

S. Raghvendra and R. Sowle 30:17

an anchor node), let p′(v) (resp. f ′(v)) denote the vertex that appears before (resp. after)
v in Gσ′ . Let {a1, . . . , ak} denote the anchor nodes of G0

σ and {a′
1, a′

2, . . . , a′
k} denote the

anchor nodes of Gσ′ . Let v′
j = p′(a′

j) in Gσ′ and vj = p(aj) in G0
σ. Let Y = {v1, . . . , vk} and

let Y ′ = {v′
1, . . . , v′

k}. We use these notations throughout this section.
Next, consider any edge (u, v) ∈ X. Suppose (u, v) is a forward edge and v ̸∈ {a1, . . . , ak}.

Since (u, v) is in the symmetric difference and since v is not an anchor node, there is a
different in-coming forward edge to v, namely (u′, v) in Gσ′ with u ̸= u′. The backward
edge (v, u′) will be in X and we denote the edge (v, u′) as next(u, v) in G0

σ. For example, in
Figure 3(c), the backward edge (r9, r8) is next(r6, r9). For the forward edge (u, v) ∈ X, there
is a different out-going forward edge (u, v′) in Gσ′ . This edge appears as the backward edge
(v′, u) in X provided v′ ̸∈ {a′

1, a′
2, . . . , a′

k}. Therefore, we define the backward edge (v′, u) to
be the prev(u, v) in X. For example, in Figure 3(c), (r3, r1) = prev(r1, r7).

Finally, we define next(u, v) and prev(u, v) for the case where (u, v) is a backward edge
in X. Since (u, v) is in the symmetric difference, the edge (v, u) is an out-going forward
edge from v in Gσ′ . Since (u, v) is in the symmetric difference, there is a different out-going
forward edge from v, namely (v, v′) ∈ X with v′ ̸= u. We denote the forward edge (v, v′)
as next(u, v) in G0

σ. For instance, in Figure 3(c), (r1, r7) = next(r3, r1). Similarly, for the
backward edge (u, v) ∈ X, if u ̸= ri+1, there is a different in-coming forward edge to u (v′, u)
in Gσ. This edge appears as a forward edge (v′, u) in X. Therefore, we define the forward
edge (v′, u) to be the prev(u, v) in X. For instance, in Figure 3(c), (r3, r5) = prev(r5, i4).

Thus, every edge in X have a unique next(·, ·) edge except those that are directed towards
an anchor nodes {a1, . . . , ak}. Edges directed towards the anchor nodes {a1, . . . , ak} do not
have any next(·, ·) edge.

Similarly, every edge in X has a unique prev(·, ·), except the edges going out of
{v′

1, v′
2, . . . , v′

k}. Edges going out of {v′
1, v′

2, . . . , v′
k} do not have any previous edge.

Decomposing X into augmenting trail, alternating trails and cycles. Consider any vertex
in v ∈ Y ∩ Y ′. The forward edge (v, a) is in X. However, since v ∈ Y ′, the prev(v, a) does
not exist. Similarly, since a ∈ {a1, . . . , ak}, next(v, a) does not exist. So, we create a trivial
alternating trail with one edge (v, a).

For every vertex v ∈ Y ′ \ Y , let (v, v′) be the outgoing edge in X. We initialize T to be
(v, v′) We construct an alternating trail incrementally by concatenating the last edge (u, v)
of T with next(u, v). This construction stops when we reach some edge (u′, a) for which
next(u′, a) is not defined. Suppose the vertex v ̸= ri+1, then this trail starts with a forward
edge and ends at an anchor node. On the other hand, suppose v = ri+1, this trail is an
augmenting trail that starts with a backward edge and ends at an anchor node. Any edge
(u, v) of X that did not participate in the alternating and augmenting trails have a well
defined next(u, v). Therefore, we can construct an alternating cycle that contains (u, v) by
repeatedly concatenating the last added edge (u′, v′) with its next(u′, v′). The construction
stops when next(u′, v′) = (u, v) and we get an alternating cycle. Figure 3(c) illustrates an
example such decomposition. Vertex r10 and r5 are in Y ∩ Y ′, so ⟨r10, a1⟩ and ⟨r5, a3⟩ are
trivial trails. Vertex r6 and r3 are in Y ′ \ Y and therefore we have two alternating trails
⟨r6, r9, r8, a2⟩ and ⟨r3, r5, i4, r4, i3, r3, r1, r7, r4, a4⟩. The vertex r11 is ri+1, therefore we have
an augmenting trail ⟨r11, r9, r10, r7, a5⟩. All the remaining edges form an alternating cycle
⟨r2, r6, i1, r2, i2, r8, r2⟩.

Note that the construction described above also extends to the residual graph Gσ′ and
we obtain the following lemma.

SWAT 2022

30:18 A Scalable Work Function Algorithm for the k-Server Problem

Figure 3 (a) Forward edges of G0
σ, representing σ, (b) Forward edges of Gσ′ , represent-

ing σ′, (c) Edges in the symmetric difference of σ and σ′. Edges of σ are shown as forward
edges in Gσ (red edges), and edges of σ′ are shown as the backward edges in Gσ (dashed blue
edges). This graph has an augmenting trail ⟨r11, r9, r10, r7, a5⟩, two alternating trails ⟨r6, r9, r8, a2⟩,
⟨r3, r5, i4, r4, i3, r3, r1, r7, r4, a4⟩ and one directed alternating cycle ⟨r2, r6, i1, r2, i2, r8, r2⟩.

▶ Lemma 12. The edges of symmetric difference X of two valid solutions σ and σ′ in G0
σ

can be decomposed into (a) one augmenting trail A, (b) a set T of |Y ′ \ Y | − 1 non-trivial
alternating trails that start with a forward edge, (c) a set T′ of |Y ′∩Y | trivial alternating trails
and (d) a set C of alternating cycles. Similarly, the edges of X in Gσ′ can be decomposed into
alternating trails and cycles each of which are obtained by simply applying the flip operation
to the trails and cycles in A, T, T′ and C

▶ Corollary 13. Given the set X of edges in the symmetric difference, consider the decom-
position of X into {A} ∪ T ∪ C in G0

σ as described in Lemma 12. Then the edges of X in
Gσ′ can be decomposed into alternating trails such that for each alternating trail (resp. cycle)
T ∈ {A} ∪ T ∪ C, there is an alternating trail T ′ (resp. cycle) induced by the edges of X in
Gσ′ such that T ′ is obtained by applying the flip operation on T and Φ(T) = −Φ(T ′).

5 Missing Proofs

Proof of Lemma 11. The initial solution σ0 is a trivially valid solution and the only edges
in the residual graph are forward edges that go from a vertex in the initial configuration
to an anchor node. For any such forward edge (u, v), v is an anchor node with y(v) = 0.
The cost d(u, v) is also 0 since the anchor node v and the vertex u share the same location.
Therefore, inequality (10) holds.

Let us assume that the inequality (10) holds after request ri is processed by our algorithm.
To complete the proof, we will show that the inequality will continue to be satisfied after
request ri+1 is processed. To do so, we will show that the any of the changes made by the
algorithm will not violate inequality (10).

At the start of the algorithm, we add ri+1 to Gi to create G0
i+1. Since all the edges

incident on ri+1 in G0
i+1 are backward edges, all forward edges will continue to satisfy

inequality (10). Steps 1, 2 and 3 do not alter the weights y(·) or the alternating graph.
Therefore, the inequality (10) continues to hold for every forward edge during these three
steps. In Step 4(a), we modify the vertex weights for every vertex v with ℓv < ℓ. Consider
any such vertex and let (u, v) be the in-coming forward edge to v. Recollect that y(v) is

S. Raghvendra and R. Sowle 30:19

the weight prior to the execution of Step 4(a) and y′(v) is the weight after Step 4(a). Since
inequality (10) is true prior to execution of Step 4(a), we have y(v) ≥ d(u, v). In Step 4(a),
the weight is updated to y′(v)← y(v)− ℓv + ℓ provided ℓv < ℓ. Since ℓv < ℓ, it follows that
y′(v) ≥ y(v) ≥ d(u, v) and inequality (10) continues to hold.

Next, we show that the inequality (10) continues to hold after Step 4(b). In Step 4(b), we
apply the augment operation along an augmenting trail T (computed in Step 3). Recollect
that the first vertex of T is ri+1 and the last vertex of T is an anchor node a. Note that
the weights of every vertex, except the anchor node a remains unchanged. However, for
any v along the alternating trail T , its incoming forward edge may change. As a result of
augmentation along T , every backward edge (v2, v1) in T changes to a forward edge (v1, v2).
Let P be the augmenting path in the alternating graph G0

i+1 such that trail T = Proj(P).
Let (v2, v1) be a backward edge in T . Let (v2, w) be the edge in P such that Proj(v2, w)
contains the backward edge (v2, v1), i.e., Proj(v2, w) = ⟨(v2, v1), (v1, w)⟩. By definition of
slack,

s(v2, w) = c(v2, w)− y(v2) + y(w)
= d(v2, v1)− d(v1, w)− y(v2) + y(w).

Since (v2, w) ∈ P , at the end of Step 4(a), the slack s(v2, w) becomes 0 (Lemma 5). Therefore,
we have (d(v2, v1)− d(v1, w))− y′(v2) + y′(w) = 0 which can be rearranged as

y′(v2) = d(v2, v1)− d(v1, w) + y′(w). (11)

Since, (v1, w) is a forward edge in T , after Step 4(a), we have y′(w) ≥ d(v1, w). Substituting
this in 11, we get

y′(v2) ≥ d(v1, v2). (12)

After augmentation, the backward edge (v2, v1) ∈ Proj(v2, w) changes to a forward edge
(v1, v2) ∈ Gi+1. Hence, inequality (11) implies inequality (10) continues to hold. Therefore,
inequality (10) continues to hold after the augment operation in Step 4(b).

Finally, step 4(b) also adds a forward edge from ri+1 to am and modifies the vertex
weight of the anchor node am to 0. Since the cost of this forward edge d(ri+1, am) is 0,
inequality (10) holds for the vertex am. This concludes the argument that inequality (10)
holds after Step 4(b). ◀

References
1 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.

k-server via multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 3–16.
ACM, 2018. doi:10.1145/3188745.3188798.

2 Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New results on
server problems. SIAM J. Discret. Math., 4(2):172–181, 1991. doi:10.1137/0404017.

3 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

4 Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM,
24(1):1–13, 1977. doi:10.1145/321992.321993.

5 B. Kalyanasundaram and K. Pruhs. Online weighted matching. Journal of Algorithms,
14(3):478–488, 1993. doi:10.1006/jagm.1993.1026.

SWAT 2022

https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1137/0404017
https://doi.org/10.1137/0220008
https://doi.org/10.1145/321992.321993
https://doi.org/10.1006/jagm.1993.1026

30:20 A Scalable Work Function Algorithm for the k-Server Problem

6 Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for weighted
bipartite matching and stable marriages. Theor. Comput. Sci., 127(2):255–267, 1994. doi:
10.1016/0304-3975(94)90042-6.

7 Elias Koutsoupias. The k-server problem. Comput. Sci. Rev., 3(2):105–118, 2009. doi:
10.1016/j.cosrev.2009.04.002.

8 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

9 Harold W. Kuhn. The hungarian method for the assignment problem. In Michael Jünger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard
Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming
1958-2008 - From the Early Years to the State-of-the-Art, pages 29–47. Springer, 2010. doi:
10.1007/978-3-540-68279-0_2.

10 James R. Lee. Fusible hsts and the randomized k-server conjecture. In Mikkel Thorup, editor,
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 438–449. IEEE Computer Society, 2018. doi:10.1109/FOCS.
2018.00049.

11 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for
server problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.

12 Krati Nayyar and Sharath Raghvendra. An input sensitive online algorithm for the metric
bipartite matching problem. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 505–515. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.53.

13 Sharath Raghvendra. A robust and optimal online algorithm for minimum metric bipartite
matching. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages
18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
APPROX-RANDOM.2016.18.

14 Sharath Raghvendra. Optimal analysis of an online algorithm for the bipartite matching
problem on a line. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International
Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary,
volume 99 of LIPIcs, pages 67:1–67:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.SoCG.2018.67.

15 Tomislav Rudec, Alfonzo Baumgartner, and Robert Manger. A fast work function algorithm
for solving the k-server problem. Central Eur. J. Oper. Res., 21(1):187–205, 2013. doi:
10.1007/s10100-011-0222-7.

16 Tomislav Rudec, Alfonzo Baumgartner, and Robert Manger. A fast work function algorithm
for solving the k-server problem. Central European Journal of Operations Research, 21:187–205,
2013.

17 Tomislav Rudec and Robert Manger. A new approach to solve the k-server problem based
on network flows and flow cost reduction. Comput. Oper. Res., 40(4):1004–1013, 2013.
doi:10.1016/j.cor.2012.11.006.

https://doi.org/10.1016/0304-3975(94)90042-6
https://doi.org/10.1016/0304-3975(94)90042-6
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1145/210118.210128
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1109/FOCS.2017.53
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.18
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.18
https://doi.org/10.4230/LIPIcs.SoCG.2018.67
https://doi.org/10.1007/s10100-011-0222-7
https://doi.org/10.1007/s10100-011-0222-7
https://doi.org/10.1016/j.cor.2012.11.006

Erdős–Selfridge Theorem for Nonmonotone CNFs
Md Lutfar Rahman #

Amazon, Seattle, WA, USA

Thomas Watson #

University of Memphis, TN, USA

Abstract
In an influential paper, Erdős and Selfridge introduced the Maker-Breaker game played on a
hypergraph, or equivalently, on a monotone CNF. The players take turns assigning values to
variables of their choosing, and Breaker’s goal is to satisfy the CNF, while Maker’s goal is to falsify
it. The Erdős–Selfridge Theorem says that the least number of clauses in any monotone CNF with
k literals per clause where Maker has a winning strategy is Θp2k

q.
We study the analogous question when the CNF is not necessarily monotone. We prove

bounds of Θp
?

2 k
q when Maker plays last, and Ωp1.5k

q and Oprk
q when Breaker plays last, where

r “ p1 `
?

5q{2 « 1.618 is the golden ratio.

2012 ACM Subject Classification Mathematics of computing Ñ Discrete mathematics

Keywords and phrases Game, nonmonotone, CNFs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.31

Funding This work was supported by NSF grants CCF-1657377 and CCF-1942742.

Acknowledgements We thank anonymous reviewers for their comments.

1 Introduction

In 1973, Erdős and Selfridge published a paper [3] with several fundamental contributions,
including:

Being widely regarded as the genesis of the method of conditional expectations. The
subsequent impact of this method on theoretical computer science needs no explanation.
Introducing the so-called Maker-Breaker game, variants of which have since been studied
in numerous papers in the combinatorics literature.

We revisit that seminal work and steer it in a new direction. The main theorem from [3]
can be phrased in terms of CNFs (conjunctive normal form boolean formulas) that are
monotone (they contain only positive literals). We investigate what happens for general
CNFs, which may contain negative literals. We feel that the influence of Erdős–Selfridge and
the pervasiveness of CNFs in theoretical computer science justify this question as inherently
worthy of attention. Our pursuit of the answer uncovers new techniques and invites the
development of further techniques to achieve a full resolution in the future.

In the Maker-Breaker game played on a monotone CNF, the eponymous players take
turns assigning boolean values to variables of their choosing. Breaker wins if the CNF
gets satisfied, and Maker wins otherwise; there are no draws. Since the CNF is monotone,
Breaker might as well assign 1 to every variable she picks, and Maker might as well assign
0 to every variable he picks. In the generalization to nonmonotone CNFs, each player can
pick which remaining variable and which bit to assign it during their turn. To distinguish
this general game, we rename Breaker as T (for “true”) and Maker as F (for “false”). The
computational complexity of deciding which player has a winning strategy has been studied
in [10, 11, 2, 5, 6, 1, 7, 8, 9].

© Md Lutfar Rahman and Thomas Watson;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 31; pp. 31:1–31:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lutfar@amazon.com
mailto:Thomas.Watson@memphis.edu
https://doi.org/10.4230/LIPIcs.SWAT.2022.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Erdős–Selfridge Theorem for Nonmonotone CNFs

A CNF is k-uniform when every clause has exactly k literals (corresponding to k distinct
variables). The Erdős–Selfridge Theorem answers an extremal question: How few clauses can
there be in a k-uniform monotone CNF that Maker can win? It depends a little on which
player gets the opening move: 2k if Breaker plays first, and 2k´1 if Maker plays first. The
identity of the player with the final move doesn’t affect the answer for monotone CNFs. In
contrast, “who gets the last laugh” matters a lot for general CNFs:

▶ Theorem 1 (informal). If F plays last, then the least number of clauses in any k-uniform
CNF where F has a winning strategy is Θp

?
2 kq.

▶ Theorem 2 (informal). If T plays last, then the least number of clauses in any k-uniform
CNF where F has a winning strategy is Ωp1.5kq and Oprkq where r “ p1 `

?
5q{2 « 1.618.

The most involved proof is the Ωp1.5kq lower bound in Theorem 2. We conjecture the
correct bound is Θprkq.

2 Results

In the unordered CNF game, there is a CNF φ and a set of variables X containing all variables
that appear in φ and possibly more. The players T and F alternate turns; each turn consists
of picking an unassigned variable from X and picking a value 0 or 1 to assign it.1 The game
ends when all variables are assigned; T wins if φ is satisfied (every clause has a true literal),
and F wins if φ is unsatisfied (some clause has all false literals). There are four possible
patterns according to “who goes first” and “who goes last.” If the same player has the first
and last moves, then |X| is odd, and if different players have the first and last moves, then
|X| is even.

▶ Definition 3. For k ě 0 and a, b P tT,Fu, we let Mk,a¨¨¨b be the minimum number of
clauses in φ, over all unordered CNF game instances pφ,Xq where φ is k-uniform and F has
a winning strategy when player a has the first move and player b has the last move.

▶ Theorem 1 (formal). Mk,T¨¨¨F “
?

2 k for even k, and 1.5
?

2 k´1 ďMk,T¨¨¨F ď
?

2 k`1 for
odd k.

Let Fibk denote the kth Fibonacci number. It is well-known that Fibk “ Θprkq where
r “ p1 `

?
5q{2 « 1.618.

▶ Theorem 2 (formal). 1.5k ďMk,T¨¨¨T ď Fibk`2 for all k.

▶ Observation 3. Mk,F¨¨¨b “Mk´1,T¨¨¨b for all k ě 1 and b P tT,Fu.

Proof. Mk,F¨¨¨b ďMk´1,T¨¨¨b: Suppose F wins pφ,Xq when T moves first, where φ is pk´ 1q-
uniform. Then F wins pφ1, X Y tx0uq when F moves first, where x0 is a fresh variable (not
already in X) and φ1 is the same as φ but with x0 added to each clause. F’s winning strategy
is to play x0 “ 0 first and then use the winning strategy for pφ,Xq. Note that φ1 is k-uniform
and has the same number of clauses as φ.

Mk´1,T¨¨¨b ďMk,F¨¨¨b: Suppose F wins pφ,Xq when F moves first, where φ is k-uniform.
Say the opening move in F’s winning strategy is ℓi “ 1, where ℓi P txi, xiu is some literal.
Obtain φ1 from φ by removing each clause containing ℓi, removing ℓi from each clause

1 This game is called “unordered” to contrast it with the related TQBF game, in which the variables
must be played in a prescribed order.

M. L. Rahman and T. Watson 31:3

containing ℓi, and removing an arbitrary literal from each clause containing neither ℓi nor ℓi.
Then F wins pφ1, X ´ txiuq when T moves first, and φ1 is pk ´ 1q-uniform and has at most
as many clauses as φ. ◀

▶ Corollary 4.
Mk,F¨¨¨F “

?
2 k´1 for odd k, and 1.5

?
2 k´2 ďMk,F¨¨¨F ď

?
2 k for even k.

1.5k´1 ďMk,F¨¨¨T ď Fibk`1 for all k.
(Observation 3 requires k ě 1, but the bounds in Corollary 4 also hold for k “ 0 since
M0,a¨¨¨b “ 1: F wins a CNF with an empty clause, and T wins a CNF with no clauses.)

3 Upper bounds

In this section, we prove the upper bounds of Theorem 1 and Theorem 2 by giving examples
of game instances with few clauses where F wins. In [3], Erdős and Selfridge proved the
upper bound for the Maker-Breaker game by showing a k-uniform monotone CNF with 2k

clauses where Maker (F) wins. The basic idea is that F can win on the following formula,
which is not a CNF:

px1 ^ x2q _ px3 ^ x4q _ ¨ ¨ ¨ _ px2k´1 ^ x2kq

Whenever T plays a variable, F responds by assigning 0 to the paired variable. By the
distributive law, this expands to a k-uniform monotone CNF with 2k clauses. We study
nonmonotone CNFs, which may have both positive and negative literals.

3.1 F plays last
▶ Lemma 5. Mk,T¨¨¨F ď

?
2 k for even k.

Proof. F can win on the following formula, which is not a CNF, with variables Xk “

tx1, . . . , xku.

px1 ‘ x2q _ px3 ‘ x4q _ ¨ ¨ ¨ _ pxk´1 ‘ xkq

Whenever T plays a variable, F responds by playing the paired variable to make them
equal. To convert this formula to an equivalent CNF, first replace each pxi ‘ xi`1q with
pxi _ xi`1q ^ pxi _ xi`1q. Then by the distributive law, this expands to a k-uniform CNF
φk where one clause is

ppx1 _ x2q _ px3 _ x4q _ ¨ ¨ ¨ _ pxk´1 _ xkqq

and for i P t1, 3, 5, . . . , k´1u, each clause contains either pxi_xi`1q or pxi_xi`1q. Therefore
φk has 2k{2 “

?
2 k clauses: one clause for each S Ď t1, 3, 5, . . . , k´1u. F wins in pφk, Xkq. ◀

▶ Lemma 6. Mk,T¨¨¨F ď
?

2 k`1 for odd k.

Proof. Suppose φk´1 is the pk ´ 1q-uniform CNF with
?

2 k´1 clauses from Lemma 5 (since
k ´ 1 is even). We take two copies of φk´1, and put a new variable xk in each clause of one
copy, and a new variable xk`1 in each clause of the other copy. Call this φk. Formally:

φk “
ľ

CPφk´1

pC _ xkq ^ pC _ xk`1q

Xk “ tx1, x2, . . . , xk`1u

SWAT 2022

31:4 Erdős–Selfridge Theorem for Nonmonotone CNFs

We argue F wins in pφk, Xkq. If T plays xk or xk`1, F responds by assigning 0 to the other
one. For other variables, F follows his winning strategy for pφk´1, Xk´1q from Lemma 5.
Since φk´1 is a pk ´ 1q-uniform CNF with

?
2 k´1 clauses, φk is a k-uniform CNF with

2
?

2 k´1 “
?

2 k`1 clauses. ◀

3.2 T plays last
Before proving Lemma 7 we draw an intuition. We already know that F wins on

px1 ^ x2q _ px3 ^ x4q _ ¨ ¨ ¨ _ px2k´1 ^ x2kq.

Now replace each pxi ^ xi`1q with pxi ^ pxi _ xi`1qq, which is equivalent. This does not
change the function expressed by the formula, so F still wins this T ¨ ¨ ¨F game. To turn it
into a T ¨ ¨ ¨T game, we can introduce a dummy variable x0. Since the game is equivalent to
a monotone game, neither player has any incentive to play x0, so F still wins this T ¨ ¨ ¨T
game [4, Proposition 2.1.6].

If we convert it to a CNF, then by the distributive law it will again have 2k clauses. But
this CNF is not uniform – each clause has at least k literals and at most 2k literals. We
can do a similar construction that balances the CNF to make it uniform. This intuitively
suggests that

?
2 k ăMk,T¨¨¨T ă 2k.

▶ Lemma 7. Mk,T¨¨¨T ď Fibk`2.

Proof. For every k P t0, 1, 2, . . .u we recursively define a k-uniform CNF φk on variables Xk,
where Xk “ tx0, x1, . . . , x2k´2u if k ą 0, and X0 “ tx0u (these φk, Xk are different than in
Subsection 3.1):

k “ 0: φ0 “ pq

k “ 1: φ1 “ px0q ^ px0q

k ą 1: φk “
Ź

CPφk´1

pC _ x2k´3q ^
Ź

CPφk´2

pC _ x2k´3 _ x2k´2q

Now we argue F wins in pφk, Xkq. F’s strategy is to assign 0 to at least one variable from
each pair tx1, x2u, tx3, x4u, tx5, x6u, . . . , tx2k´3, x2k´2u. Whenever T plays from a pair, F
responds by assigning 0 to the other variable. After T plays x0, F picks a fresh pair txi, xi`1u

where i is odd and assigns one of them 0, then “chases” T until T plays the other from
txi, xi`1u. Here the “chase” means whenever T plays from a fresh pair, F responds by
assigning 0 to the other variable in that pair. After T returns to txi, xi`1u, then F picks
another fresh pair to start another chase, and so on in phases. We prove by induction on k

that this strategy ensures φk is unsatisfied:
k “ 0: φ0 is obviously unsatisfied.
k “ 1: φ1 is obviously unsatisfied.
k ą 1: By induction, both φk´1 and φk´2 are unsatisfied. Now φk is unsatisfied since:
By F’s strategy, at least one of tx2k´3, x2k´2u is assigned 0. If x2k´3 “ 0 then one of the
clauses of φk that came from φk´1 is unsatisfied. If x2k´3 “ 1 and x2k´2 “ 0 then one of
the clauses of φk that came from φk´2 is unsatisfied.

Letting |φk| represent the number of clauses in φk, we argue |φk| “ Fibk`2 by induction on
k:

k “ 0: |φ0| “ 1 “ Fib2.
k “ 1: |φ1| “ 2 “ Fib3.
k ą 1: By induction, |φk´1| “ Fibk`1 and |φk´2| “ Fibk. So

|φk| “ |φk´1| ` |φk´2| “ Fibk`1 ` Fibk “ Fibk`2.

Therefore Mk,T¨¨¨T ď Fibk`2. ◀

M. L. Rahman and T. Watson 31:5

4 Lower bounds

4.1 Notation
In the proofs, we will define a potential value ppCq for each clause C. The value of
ppCq depends on the context. If φ is a CNF (any set of clauses), then the potential
of φ is ppφq “

ř

CPφ ppCq. The potential of a literal ℓi with respect to φ is defined as
ppφ, ℓiq “ pptC P φ : ℓi P Cuq. When we have a particular φ in mind, we can abbreviate
ppφ, ℓiq as ppℓiq.

Suppose φ is a CNF and ℓi, ℓj are two literals. We define the potentials of different sets
of clauses based on which of ℓi, ℓj , and their complements exist in the clause. For example,
apφ, ℓi, ℓjq is the sum of the potentials of clauses in φ that contain both ℓi, ℓj .

ℓj ℓj neither ℓj nor ℓj

ℓi a b c

ℓi d e f

neither ℓi nor ℓi g h

apφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

bpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

cpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj R C and ℓj R Cuq

dpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

epφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj P Cuq

fpφ, ℓi, ℓjq “ pptC P φ : ℓi P C and ℓj R C and ℓj R Cuq

gpφ, ℓi, ℓjq “ pptC P φ : ℓi R C and ℓi R C and ℓj P Cuq

hpφ, ℓi, ℓjq “ pptC P φ : ℓi R C and ℓi R C and ℓj P Cuq

We can abbreviate these quantities as a, b, c, d, e, f, g, h in contexts where we have particular
φ, ℓi, ℓj in mind. Also the following relations hold:

ppℓiq “ a` b` c

ppℓiq “ d` e` f

ppℓjq “ a` d` g

ppℓjq “ b` e` h

When we assign ℓi “ 1 (i.e., assign xi “ 1 if ℓi is xi, or assign xi “ 0 if ℓi is xi), φ
becomes the residual CNF denoted φrℓi “ 1s where all clauses containing ℓi get removed,
and the literal ℓi gets removed from remaining clauses.

4.2 F plays last
▶ Lemma 8. Mk,T¨¨¨F ě

?
2 k for even k.

Proof. Consider any T ¨ ¨ ¨F game instance pφ,Xq where φ is a k-uniform CNF with ă
?

2 k

clauses and |X| is even. We show T has a winning strategy. In this proof, we use ppCq “
1{
?

2 |C|. A round consists of a T move followed by an F move.

SWAT 2022

31:6 Erdős–Selfridge Theorem for Nonmonotone CNFs

▷ Claim 9. In every round, there exists a move for T such that for every response by F, we
have ppψq ě ppψ1q where ψ is the residual CNF before the round and ψ1 is the residual CNF
after the round.

At the beginning we have ppCq “ 1{
?

2 k for each clause C P φ, so ppφq ă
?

2 k{
?

2 k “ 1.
By Claim 9, T has a strategy guaranteeing that ppψq ď ppφq ă 1 where ψ is the residual
CNF after all variables have been played. If this final ψ contained a clause, the clause would
be empty and have potential 1{

?
2 0 “ 1, which would imply ppψq ě 1. Thus the final ψ

must have no clauses, which means φ got satisfied and T won. This concludes the proof of
Lemma 8, except for the proof of Claim 9. ◀

Proof of Claim 9. Let ψ be the residual CNF at the beginning of a round. T picks a literal
ℓi maximizing ppψ, ℓiq and plays ℓi “ 1.2 Suppose F responds by playing ℓj “ 1, and let ψ1

be the residual CNF after F’s move. Letting the a, b, c, d, e, f, g, h notation be with respect
to ψ, ℓi, ℓj , we have

ppψq ´ ppψ1q “ a` b` c` d` g ´
`

e` p
?

2 ´ 1qpf ` hq
˘

because:
Clauses from the a, b, c, d, g groups are satisfied and removed (since they contain ℓi “ 1
or ℓj “ 1 or both), so their potential gets multiplied by 0.
Clauses from the e group each shrink by two literals (since they contain ℓi “ 0 and
ℓj “ 0), so their potential gets multiplied by

?
2 ¨

?
2 “ 2.

Clauses from the f, h groups each shrink by one literal, so their potential gets multiplied
by

?
2.

By the choice of ℓi, we have ppℓiq ě ppℓiq and ppℓiq ě ppℓjq with respect to ψ, in other words,
a` b` c ě d` e` f and a` b` c ě b` e` h. Thus ppψq ě ppψ1q because

a` b` c` d` g ě a` b` c ě 1
2 pd` e` fq ` 1

2 pb` e` hq ě e` 1
2 pf ` hq

ě e` p
?

2 ´ 1qpf ` hq.

◁

Note: It did not matter whether k is even or odd! Lemma 8 is true for any k. Lemma 10
actually uses oddness of k. The main idea is to exploit the slack 1{2 ě

?
2´ 1 that appeared

at the end of the proof of Claim 9.

▶ Lemma 10. Mk,T¨¨¨F ě 1.5
?

2 k´1 for odd k.

Proof. Consider any T ¨ ¨ ¨F game instance pφ,Xq where φ is a k-uniform CNF with ă

1.5
?

2 k´1 clauses and |X| is even. We show T has a winning strategy. In this proof, we use

ppCq “

#

1{
?

2 |C| if |C| is even.
1{1.5

?
2 |C|´1 if |C| is odd.

▷ Claim 11. In every round, there exists a move for T such that for every response by F,
we have ppψq ě ppψ1q where ψ is the residual CNF before the round and ψ1 is the residual
CNF after the round.

2 It is perhaps counterintuitive that T’s strategy ignores the effect of clauses that contain ℓi, which increase
in potential after playing ℓi “ 1. A more intuitive strategy would be to pick a literal ℓi maximizing
ppψ, ℓiq ´ p

?
2 ´ 1qppψ, ℓiq, which is the overall decrease in potential from playing ℓi “ 1; this strategy

also works but is trickier to analyze.

M. L. Rahman and T. Watson 31:7

At the beginning we have ppCq “ 1{1.5
?

2 k´1 for each clause C P φ (since |C| “ k, which
is odd), so ppφq ă 1.5

?
2 k´1{1.5

?
2 k´1 “ 1. By Claim 11, T has a strategy guaranteeing

that ppψq ď ppφq ă 1 where ψ is the residual CNF after all variables have been played. If
this final ψ contained a clause, the clause would be empty and have potential 1{

?
2 0 “ 1

(since 0 is even), which would imply ppψq ě 1. Thus the final ψ must have no clauses, which
means φ got satisfied and T won. This concludes the proof of Lemma 10, except for the
proof of Claim 11. ◀

Proof of Claim 11. Let ψ be the residual CNF at the beginning of a round. T picks a literal
ℓi maximizing ppψ, ℓiq and plays ℓi “ 1. Suppose F responds by playing ℓj “ 1, and let ψ1

be the residual CNF after F’s move. Letting the a, b, c, d, e, f, g, h notation be with respect
to ψ, ℓi, ℓj , we have

ppψq ´ ppψ1q ě a` b` c` d` g ´
`

e` 1
2 pf ` hq

˘

because:
Clauses from the a, b, c, d, g groups are satisfied and removed (since they contain ℓi “ 1
or ℓj “ 1 or both), so their potential gets multiplied by 0.
Clauses from the e group each shrink by two literals (since they contain ℓi “ 0 and
ℓj “ 0). Here odd-width clauses remain odd and even-width clauses remain even, so their
potential gets multiplied by

?
2 ¨

?
2 “ 2.

Clauses from the f, h groups each shrink by one literal. There are two cases for a clause
C in these groups:

|C| is even, so ppCq “ 1{
?

2 |C|. After C being shrunk by 1, the new clause C 1 has
potential ppC 1q “ 1{1.5

?
2 |C1

|´1 “ 1{1.5
?

2 |C|´2. So the potential of an even-width
clause gets multiplied by ppC 1q{ppCq “ 4{3.
|C| is odd, so ppCq “ 1{1.5

?
2 |C|´1. After C being shrunk by 1, the new clause C 1 has

potential ppC 1q “ 1{
?

2 |C1
| “ 1{

?
2 |C|´1. So the potential of an odd-width clause gets

multiplied by ppC 1q{ppCq “ 3{2.
So their potential gets multiplied by ď 3{2 (since 4{3 ď 3{2).

By the choice of ℓi, we have ppℓiq ě ppℓiq and ppℓiq ě ppℓjq with respect to ψ, in other words,
a` b` c ě d` e` f and a` b` c ě b` e` h. Thus ppψq ě ppψ1q because

a` b` c` d` g ě a` b` c ě 1
2 pd` e` fq ` 1

2 pb` e` hq ě e` 1
2 pf ` hq. ◁

4.3 T plays last
▶ Lemma 12. Mk,T¨¨¨T ě 1.5 k.

Proof. Consider any T ¨ ¨ ¨T game instance pφ,Xq where φ is a k-uniform CNF with ă 1.5k

clauses and |X| is odd. We show T has a winning strategy. In this proof, we use ppCq “
1{1.5|C|.

For intuition, how can T take advantage of having the last move? She will look out
for certain pairs of literals to “set aside” and wait for F to assign one of them, and then
respond by assigning the other one the opposite value. We call such a pair “zugzwang,”
which means a situation where F’s obligation to make a move is a disadvantage for F. Upon
finding such a pair, T anticipates that certain clauses will get satisfied later, but other
clauses containing those literals might shrink when the zugzwang pair eventually gets played.
Thus T can update the CNF to pretend those events have already transpired. The normal
gameplay of TF rounds (T plays, then F plays) will sometimes get interrupted by FT rounds

SWAT 2022

31:8 Erdős–Selfridge Theorem for Nonmonotone CNFs

of playing previously-designated zugzwang pairs. We define the zugzwang condition so that
T’s modifications won’t increase the potential of the CNF (which is no longer simply a
residual version of φ). When there are no remaining zugzwang pairs to set aside, we can
exploit this fact – together with T’s choice of “best” literal for her normal move – to analyze
the potential change in a TF round. This allows the proof to handle a smaller potential
function and hence more initial clauses, compared to when F had the last move.

We describe T’s winning strategy in pφ,Xq as Algorithm 1. In the first line, the algorithm
declares and initializes ψ, Y, ζ, Z, which are accessed globally. Here ψ is a CNF (initially the
same as φ), and ζ is a set (conjunction) of constraints of the form pℓi ‘ ℓjq. We consider
pℓi ‘ ℓjq, pℓj ‘ ℓiq, pℓi ‘ ℓjq, pℓj ‘ ℓiq to be the same constraint as each other. The algorithm
maintains the following three invariants:
(1) Y and Z are disjoint subsets of X, and Y Y Z is the set of unplayed variables, and Y

contains all variables that appear in ψ, and Z is exactly the set of variables that appear
in ζ, and |Z| is even.

(2) For every assignment to Y Y Z, if ψ and ζ are satisfied, then φ is also satisfied by the
same assignment together with the assignment played by T and F so far to the other
variables of X.

(3) ppψq ă 1.
Now we argue how these invariants are maintained at the end of the outer loop in Algorithm 1.
Invariant (1) is straightforward to see.

▷ Claim 13. Invariant p2q is maintained.

Proof. Invariant (2) trivially holds at the beginning.
Each iteration of the first inner loop maintains (2): Say ψ and ζ are at the beginning

of the iteration, and ψ1 and ζ 1 denote the formulas after the iteration. Assume (2) holds
for ψ and ζ. To see that (2) holds for ψ1 and ζ 1, consider any assignment to the unplayed
variables. We will argue that if ψ1 and ζ 1 are satisfied, then ψ and ζ are satisfied, which
implies (by assumption) that φ is satisfied. So suppose ψ1 and ζ 1 are satisfied. Then ψ is
satisfied because each clause containing ℓi _ ℓj or containing ℓi _ ℓj is satisfied due to pℓi ‘ ℓjq

being satisfied in ζ 1, and each other clause is satisfied since it contains the corresponding
clause in ψ1 which is satisfied. Also, ζ is satisfied since each of its constraints is also in ζ 1

which is satisfied.
It is immediate that T’s and F’s “normal” moves in the outer loop maintain (2), because

of the way we update ψ and Y .
Each iteration of the second inner loop maintains (2): If an assignment satisfies ψ1 and ζ 1

(after the iteration) then it also satisfies ψ and ζ (at the beginning of the iteration) since T’s
move satisfies pℓk ‘ ℓmq – and therefore the assignment satisfies φ. ◁

▷ Claim 14. Invariant p3q is maintained.

Proof. Invariant (3) holds at the beginning by the assumption that φ has ă 1.5k clauses
(and each clause has potential 1{1.5k).

The first inner loop maintains (3) by the following proposition, which we prove later.

▶ Proposition 15. If FindZugzwang() returns pℓi, ℓjq, then ppψq ě ppψ1q where ψ and ψ1

are the CNFs before and after the execution of TfoundZugzwang().

The second inner loop does not affect (3). In each outer iteration except the last, T’s
and F’s moves from Y maintain (3) by the following proposition, which we prove later.

M. L. Rahman and T. Watson 31:9

Algorithm 1 T’s winning strategy in pφ,Xq.

initialize ψ Ð φ; Y Ð X; ζ Ð tu; Z Ð tu

while game is not over do
while FindZugzwang() returns a pair (ℓi, ℓj) do

TfoundZugzwang(ℓi, ℓj)

TplayNormal()
while F picks xk P Z and ℓk P txk, xku and assigns ℓk “ 1 do

TplayZugzwang(ℓk)

if |Y Y Z| “ 0 then halt
FplayNormal()

subroutine FindZugzwang():
if there exist distinct xi, xj P Y and ℓi P txi, xiu and ℓj P txj , xju such that (with
respect to ψ, ℓi, ℓj): a` e ě 5

4 pb` dq ` 1
2 pc` f ` g ` hq then return pℓi, ℓjq

return NULL

subroutine TfoundZugzwang(ℓi, ℓj):
/* T modifies ψ with the intention to make ℓi ‰ ℓj by waiting for F to touch
txi, xju */
ζ Ð ζ Y tpℓi ‘ ℓjqu; Z Ð Z Y txi, xju; Y Ð Y ´ txi, xju

remove from ψ every clause containing ℓi _ ℓj or containing ℓi _ ℓj

remove ℓi, ℓi, ℓj , ℓj from all other clauses of ψ

subroutine TplayZugzwang(ℓk):
/* T makes ℓm ‰ ℓk */
T picks xm P Z and ℓm P txm, xmu such that pℓk ‘ ℓmq P ζ and assigns ℓm “ 0
ζ Ð ζ ´ tpℓk ‘ ℓmqu; Z Ð Z ´ txk, xmu

subroutine TplayNormal():
T picks xi P Y and ℓi P txi, xiu maximizing ppψ, ℓiq ´ ppψ, ℓiq and assigns ℓi “ 1
ψ Ð ψrℓi “ 1s; Y Ð Y ´ txiu

subroutine FplayNormal():
F picks xj P Y and ℓj P txj , xju and assigns ℓj “ 1
ψ Ð ψrℓj “ 1s; Y Ð Y ´ txju;

SWAT 2022

31:10 Erdős–Selfridge Theorem for Nonmonotone CNFs

▶ Proposition 16. If FindZugzwang() returns NULL, then ppψq ě ppψ1q where ψ is the
CNF before TplayNormal() and ψ1 is the CNF after FplayNormal().

This concludes the proof of Claim 14. ◁

Now we argue why T wins in the last outer iteration. Right before TplayNormal(), |Y |

must be odd by invariant (1), because an even number of variables have been played so far
(since T has the first move) and |X| is odd (since T also has the last move) and |Z| is even.
Thus, T always has an available move in TplayNormal() since |Y | ą 0 at this point. When
T is about to play the last variable xi P Y (possibly followed by some Z moves in the second
inner loop), all remaining clauses in ψ have width ď 1. There cannot be an empty clause
in ψ, because then ppψq would be ě 1{1.50 “ 1, contradicting invariant (3). There cannot
be more than one clause in ψ, because then ppψq would be ě 2{1.51 ě 1. Thus ψ is either
empty (already satisfied) or just pxiq or just pxiq, which T satisfies in one move.

At termination, Y and Z are empty, and ψ and ζ are empty and thus satisfied. By
invariant (2), this means φ is satisfied by the gameplay, so T wins.

This concludes the proof of Lemma 12 except Proposition 15 and Proposition 16. ◀

Proof of Proposition 15. Since FindZugzwang() returns pℓi, ℓjq, the following holds with
respect to ψ, ℓi, ℓj :

a` e ě 5
4 pb` dq ` 1

2 pc` f ` g ` hq (♠)

We also have

ppψq ´ ppψ1q “ a` e´
` 5

4 pb` dq ` 1
2 pc` f ` g ` hq

˘

because:
Clauses from the a, e groups are removed (since they contain ℓi _ ℓj or ℓi _ ℓj), so their
potential gets multiplied by 0. (Intuitively, T considers these clauses satisfied in advance
since she will satisfy pℓi ‘ ℓjq later.)
Clauses from the b, d groups each shrink by two literals (since they contain two of
ℓi, ℓi, ℓj , ℓj which are removed), so their potential gets multiplied by 1.5 ¨1.5 “ 9{4. (Some
of these four literals will eventually get assigned 1, but since T cannot predict which ones,
she pessimistically assumes they are all 0.)
Clauses from the c, f, g, h groups each shrink by one literal (since they contain one of
ℓi, ℓi, ℓj , ℓj which are removed), so their potential gets multiplied by 1.5 “ 3{2.

Since (♠) holds, ppψq ě ppψ1q. ◀

Proof of Proposition 16. In TplayNormal(), T picks the literal ℓi maximizing ppψ, ℓiq ´

ppψ, ℓiq and plays ℓi “ 1.3 In FplayNormal(), F plays ℓj “ 1. With respect to ψ, ℓi, ℓj we
have

ppψq ´ ppψ1q “ a` b` c` d` g ´
` 5

4e`
1
2 pf ` hq

˘

because:
Clauses from the a, b, c, d, g groups are satisfied and removed (since they contain ℓi “ 1
or ℓj “ 1 or both), so their potential gets multiplied by 0.

3 Some other strategies would also work here, but this one is the simplest to analyze.

M. L. Rahman and T. Watson 31:11

Clauses from the e group each shrink by two literals (since they contain ℓi “ 0 and
ℓj “ 0), so their potential gets multiplied by 1.5 ¨ 1.5 “ 9{4.
Clauses from the f, h groups each shrink by one literal, so their potential gets multiplied
by 1.5 “ 3{2.

By the choice of ℓi (i.e., maximizing ppℓiq ´ ppℓiq), we have:

ppℓiq ´ ppℓiq ě ppℓjq ´ ppℓjq

ùñ a` b` c´ d´ e´ f ě b` e` h´ a´ d´ g

ùñ 2a` 0b` 1c` 0d´ 2e´ 1f ` 1g ´ 1h ě 0 (♣)

Since FindZugzwang() returns NULL, (♠) does not hold in ψ. Thus the following holds:

pa` eq ă 5
4 pb` dq ` 1

2 pc` f ` g ` hq

ùñ ´1a` 5
4b`

1
2c`

5
4d´ 1e` 1

2f ` 1
2g `

1
2h ą 0 (♦)

Thus ppψq ě ppψ1q because the linear combination 9
16 p♣q ` 1

8 p♦q implies:
9

16
`

2a` 0b` 1c` 0d´ 2e´ 1f ` 1g ´ 1h
˘

`

1
8
`

´1a` 5
4b`

1
2c`

5
4d´ 1e` 1

2f ` 1
2g `

1
2h

˘

ą 0
ùñ 1a` 5

32b`
5
8c`

5
32d´

5
4e´

1
2f ` 5

8g ´
1
2h ą 0

ùñ 1a` 1b` 1c` 1d´ 5
4e´

1
2f ` 1g ´ 1

2h ą 0
ùñ a` b` c` d` g ´

` 5
4e`

1
2 pf ` hq

˘

ą 0 ◀

References
1 Lauri Ahlroth and Pekka Orponen. Unordered constraint satisfaction games. In Proceedings of

the 37th International Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 64–75. Springer, 2012.

2 Jesper Byskov. Maker-Maker and Maker-Breaker games are PSPACE-complete. Technical
Report RS-04-14, BRICS, Department of Computer Science, Aarhus University, 2004.

3 Paul Erdős and John Selfridge. On a combinatorial game. Journal of Combinatorial Theory,
Series A, 14(3), 1973.

4 Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Positional Games.
Springer, 2014.

5 Martin Kutz. The Angel Problem, Positional Games, and Digraph Roots. PhD thesis, Freie
Universität Berlin, 2004. Chapter 2: Weak Positional Games.

6 Martin Kutz. Weak positional games on hypergraphs of rank three. In Proceedings of the 3rd
European Conference on Combinatorics, Graph Theory, and Applications (EuroComb), pages
31–36. Discrete Mathematics & Theoretical Computer Science, 2005.

7 Md Lutfar Rahman and Thomas Watson. Complexity of unordered CNF games. ACM
Transactions on Computation Theory, 12(3):18:1–18:18, 2020.

8 Md Lutfar Rahman and Thomas Watson. Tractable unordered 3-CNF games. In Proceedings
of the 14th Latin American Theoretical Informatics Symposium (LATIN), pages 360–372.
Springer, 2020.

9 Md Lutfar Rahman and Thomas Watson. 6-uniform Maker-Breaker game is PSPACE-complete.
In Proceedings of the 38th International Symposium on Theoretical Aspects of Computer Science
(STACS), pages 57:1–57:15. Schloss Dagstuhl, 2021.

10 Thomas Schaefer. Complexity of decision problems based on finite two-person perfect-
information games. In Proceedings of the 8th Symposium on Theory of Computing (STOC),
pages 41–49. ACM, 1976.

11 Thomas Schaefer. On the complexity of some two-person perfect-information games. Journal
of Computer and System Sciences, 16(2):185–225, 1978.

SWAT 2022

Unit-Disk Range Searching and Applications
Haitao Wang #

Department of Computer Science, Utah State University, Logan, UT, USA

Abstract
Given a set P of n points in the plane, we consider the problem of computing the number of points of
P in a query unit disk (i.e., all query disks have the same radius). We show that the main techniques
for simplex range searching can be adapted to this problem. For example, by adapting Matoušek’s
results, we can build a data structure of O(n) space so that each query can be answered in O(

√
n)

time; alternatively, we can build a data structure of O(n2/ log2 n) space with O(log n) query time.
Our techniques lead to improvements for several other classical problems in computational geometry.
1. Given a set of n unit disks and a set of n points in the plane, the batched unit-disk range counting

problem is to compute for each disk the number of points in it. Previous work [Katz and Sharir,
1997] solved the problem in O(n4/3 log n) time. We give a new algorithm of O(n4/3) time, which
is optimal as it matches an Ω(n4/3)-time lower bound. For small χ, where χ is the number of
pairs of unit disks that intersect, we further improve the algorithm to O(n2/3χ1/3 + n1+δ) time,
for any δ > 0.

2. The above result immediately leads to an O(n4/3) time optimal algorithm for counting the
intersecting pairs of circles for a set of n unit circles in the plane. The previous best algorithms
solve the problem in O(n4/3 log n) deterministic time [Katz and Sharir, 1997] or in O(n4/3 log2/3 n)
expected time by a randomized algorithm [Agarwal, Pellegrini, and Sharir, 1993].

3. Given a set P of n points in the plane and an integer k, the distance selection problem is to
find the k-th smallest distance among all pairwise distances of P . The problem can be solved
in O(n4/3 log2 n) deterministic time [Katz and Sharir, 1997] or in O(n log n + n2/3k1/3 log5/3 n)
expected time by a randomized algorithm [Chan, 2001]. Our new randomized algorithm runs in
O(n log n + n2/3k1/3 log n) expected time.

4. Given a set P of n points in the plane, the discrete 2-center problem is to compute two smallest
congruent disks whose centers are in P and whose union covers P . An O(n4/3 log5 n)-time
algorithm was known [Agarwal, Sharir, and Welzl, 1998]. Our techniques yield a deterministic
algorithm of O(n4/3 log10/3 n · (log log n)O(1)) time and a randomized algorithm of O(n4/3 log3 n ·
(log log n)1/3) expected time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Unit disks, disk range searching, batched range searching, distance selection,
discrete 2-center, arrangements, cuttings

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.32

Related Version Full Version: https://arxiv.org/abs/2204.08992

Funding This research was supported in part by NSF under Grant CCF-2005323.

1 Introduction

We consider unit-disk range counting queries. Given a set P of n points in the plane, the
problem is to build a data structure so that the number of points of P in D can be computed
efficiently for any query unit disk D (i.e., all query disks have the same known radius).

Our problem is a special case of the general disk range searching problem in which each
query disk may have an arbitrary radius. Although we are not aware of any previous work
particulary for our special case, the general problem has been studied before [4, 5, 19, 29,32].
First of all, it is well-known that the lifting method can reduce the disk range searching

© Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haitao.wang@usu.edu
https://orcid.org/0000-0001-8134-7409
https://doi.org/10.4230/LIPIcs.SWAT.2022.32
https://arxiv.org/abs/2204.08992
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Unit-Disk Range Searching and Applications

in the d-dimensional space to half-space range searching in (d + 1)-dimensional space; see,
e.g., [20,32]. For example, using Matoušek’s results in 3D [27], with O(n) space, each disk
query in the plane can be answered in O(n2/3) time. Using the randomized results for
general semialgebraic range searching [5, 29], one can build a data structure of O(n) space
in O(n1+δ) expected time that can answer each disk query in O(

√
n logO(1) n) time, where

(and throughout the paper) δ denotes any small positive constant. For deterministic results,
Agarwal and Matoušek’s techniques [4] can build a data structure of O(n) space in O(n log n)
time, and each query can be answered in O(n1/2+δ) time.

A related problem is to report all points of P in a query disk. If all query disks are unit
disks, the problem is known as fixed-radius neighbor problem in the literature [9, 14,17,18].
Chazelle and Edelsbrunner [18] gave an optimal solution (in terms of space and query time):
they constructed a data structure of O(n) space that can answer each query in O(log n + k)
time, where k is the output size; their data structure can be constructed in O(n2) time. By
a standard lifting transformation that reduces the problem to the halfspace range reporting
queries in 3D, Chan and Tsakalidis [12] constructed a data structure of O(n) space in
O(n log n) time that can answer each query in O(log n + k) time; the result also applies
to the general case where the query disks may have arbitrary radii. Refer to [1, 2, 28] for
excellent surveys on range searching.

In this paper, we focus on unit-disk counting queries. By taking advantage of the property
that all query disks have the same known radius, we manage to adapt the techniques for
simplex range searching to our problem. We show that literally all main results for simplex
range searching can be adapted to our problem with asymptotically the same performance.
For example, by adapting Matoušek’s result in [26], we build a data structure of O(n) space
in O(n log n) time and each query can be answered in O(

√
n logO(1) n) time. By adapting

Matoušek’s result in [27], we build a data structure of O(n) space in O(n1+δ) time and each
query can be answered in O(

√
n) time. By adapting Chan’s randomized result in [11], we

build a data structure of O(n) space in O(n log n) expected time and each query can be
answered in O(

√
n) time with high probability.

In addition, we obtain the following trade-off: After O(nr) space and O(nr(n/r)δ) time
preprocessing, each query can be answered in O(

√
n/r) time, for any 1 ≤ r ≤ n/ log2 n. In

particularly, setting r = n/ log2 n, we can achieve O(log n) query time, using O(n2/ log2 n)
space and O(n2/ log2−δ n) preprocessing time. To the best of our knowledge, the only previous
work we are aware of with O(log n) time queries for the disk range searching problem is a
result in [24],1 which can answer each general disk query in O(log n) time with O(n2 log n)
space and preprocessing time.

Probably more interestingly to some extent, our techniques can be used to derive improved
algorithms for several classical problems, as follows. Our results are the first progress since
the previous best algorithms for these problems were proposed over two decades ago.

Batched unit-disk range counting. Let P be a set of n points and D be a set of m

(possibly overlapping) congruent disks in the plane. The problem is to compute for all disks
D ∈ D the number of points of P in D. The algorithm of Katz and Sharir [24] solves the
problem in O((m2/3n2/3 + m + n) log n) time. By using our techniques for unit-disk range
searching and adapting a recent result of Chan and Zheng [13], we obtain a new algorithm
of O(n2/3m2/3 + m log n + n log m) time. We further improve the algorithm so that the
complexities are sensitive to χ, the number of pairs of disks of D that intersect. The runtime
of the algorithm is O(n2/3χ1/3 + m1+δ + n log n).

1 See Theorem 3.1 [24]. The authors noted in their paper that the result was due to Pankaj K. Agarwal.

H. Wang 32:3

On the negative side, Erickson [21] proved a lower bound of Ω(n2/3m2/3+m log n+n log m)
time for the problem in a so-called partition algorithm model, even if each disk is a half-plane
(note that a half-plane can be considered as a special unit disk of infinite radius). Therefore,
our algorithm is optimal under Erickson’s model.

Counting intersections of congruent circles. As discussed in [24], the following problem
can be immediately solved using batched unit-disk range counting: Given a set of n congruent
circles of radius r in the plane, compute the number of intersecting pairs. To do so, define
P as the set of the centers of circles and define D as the set of congruent disks centered at
points of P with radius 2r. Then apply the batched unit-disk range counting algorithm on
P and D. The algorithm runs in O(n4/3) time, matching an Ω(n4/3)-time lower bound [21].
To the best of our knowledge, the previous best results for this problem are a deterministic
algorithm of O(n4/3 log n) time [24] and a randomized algorithm of O(n4/3 log2/3 n) expected
time [3]. Agarwal, Pellegrini, and Sharir [6] also studied the problem for circles of different
radii and gave an O(n3/2+δ) time deterministic algorithm.

Distance selection. Let P be a set of n points in the plane. Given an integer k in the range
[1, n(n − 1)/2], the problem is to find the k-th smallest distance among all pairwise distances
of P ; let λ∗ denote the k-th smallest distance. Given a value λ, the decision problem is to
decide whether λ ≥ λ∗. We refer to the original problem as the optimization problem.

Chazelle [15] gave the first subquadratic algorithm of O(n9/5 log4/5 n) time. Agarwal,
Aronov, Sharir, and Suri [3] presented randomized algorithms that solve the decision and
optimization problems in O(n4/3 log2/3 n) and O(n4/3 log8/3 n) expected time, respectively.
Goodrich [22] later gave a deterministic algorithm of O(n4/3 log8/3 n) time for the optimization
problem. Katz and Sharir [24] proposed a deterministic algorithm of O(n4/3 log n) time
for the decision problem and used it to solve the optimization problem in O(n4/3 log2 n)
deterministic time. Using the decision algorithm of [3], Chan’s randomized technique [10]
solved the optimization problem in O(n log n + n2/3k1/3 log5/3 n) expected time.

Our algorithm for the batched unit-disk range counting problem can be used to solve the
decision problem in O(n4/3) time. Combining it with the randomized technique of Chan [10],
the optimization problem can now be solved in O(n log n + n2/3k1/3 log n) expected time.

Discrete 2-center. Let P be a set of n points in the plane. The discrete 2-center problem is to
find two smallest congruent disks whose centers are in P and whose union covers P . Agarwal,
Sharir, and Welzl [8] gave an O(n4/3 log5 n)-time algorithm. Using our techniques for unit-
disk range searching, we reduce the time of their algorithm to O(n4/3 log10/3 n(log log n)O(1))
deterministic time or to O(n4/3 log3 n(log log n)1/3) expected time by a randomized algorithm.

In the following, we present our algorithms for unit-disk range searching in Section 2.
The other problems are discussed in Section 3. Section 4 concludes the paper. Due to the
space limit, many proofs are omitted but can be found in the full paper.

2 Unit-disk range searching

In this section, we present our algorithms for the unit-disk range searching problem. Our
goal is to show that the main techniques for simplex range searching can be used to solve our
problem. In particular, we show that, after overcoming many difficulties, the techniques of
Matoušek in [26] and [27] as well as the results of Chan [11] can be adapted to our problem
with asymptotically the same performance.

SWAT 2022

32:4 Unit-Disk Range Searching and Applications

We assume that the radius of unit disks is 1. In the rest of this section, unless otherwise
stated, a disk refers to a unit disk. We begin with an overview of our approach.

An overview. We roughly (but not precisely) discuss the main idea. We first implicitly
build a grid G of side length 1/

√
2 such that any query disk D only intersects O(1) cells of G.

This means that it suffices to build a data structure for the subset P (C ′) of the points of P

in each individual cell C ′ of G with respect to query disks whose centers are in another cell
C that is close to C ′. A helpful property for processing P (C ′) with respect to C is that for
any two disks with centers in C, their boundary portions in C ′ cross each other at most once.
More importantly, we can define a duality relationship between points in C and disk arcs in
C ′ (and vice versa): a point p in C is dual to the arc of the boundary of Dp in C ′, where Dp

is the disk centered at p. This duality helps to obtain a Test Set Lemma that is crucial to
the algorithms in [11,26,27]. With these properties and some additional observations, we
show that the algorithm for computing cuttings for hyperplanes [16] can be adapted to the
disk arcs in C ′. With the cutting algorithms and the Test Set Lemma, we show that the
techniques in [11, 26,27] can be adapted to unit-disk range searching for the points of P (C ′)
with respect to the query disks centered in C.

The rest of this section is organized as follows. In Section 2.1, we reduce the problem to
problems with respect to pairs of cells (C, C ′). Section 2.2 introduces some basic concepts
and observations that are fundamental to our approach. We adapt the cutting algorithm of
Chazelle [16] to our problem in Section 2.3. Section 2.4 proves the Test Set Lemma. In the
subsequent subsections, we adapt the algorithms of [11, 26, 27], whose query times are all
Ω(

√
n) with O(n) space. Section 2.8 presents the trade-offs between the preprocessing and

the query time. Section 2.9 finally summarizes all results.

2.1 Reducing the problem to pairs of grid cells
For each point p in the plane, we use x(p) and y(p) to denote its x- and y-coordinates,
respectively, and we use Dp to denote the disk centered at p. For any region A in the plane,
we use P (A) to denote the subset of points of P in A, i.e., P (A) = P ∩ A.

We will compute a set C of O(n) pairwise-disjoint square cells in the plane with the
following properties. (1) Each cell has side length 1/

√
2. (2) Every two cells are separated

by an axis-parallel line. (3) For a disk Dp with center p, if p is not in any cell of C, then
Dp ∩ P = ∅. (4) Each cell C of C is associated with a subset N(C) of O(1) cells of C, such
that for any disk D with center in C, every point of P ∩ D is in one of the cells of N(C). (5)
Each cell C ′ of C is in N(C) for a constant number of cells C ∈ C. The following is a key
lemma for reducing the problem to pairs of square cells. The proof is in the full paper.

▶ Lemma 1.
1. The set C with the above properties, along with the subsets P (C) and N(C) for all cells

C ∈ C, can be computed in O(n log n) time and O(n) space.
2. With O(n log n) time and O(n) space preprocessing, given any disk with center p, we can

determine whether p is in a cell C of C, and if yes, return the set N(C) in O(log n) time.

With Lemma 1 in hand, to solve the unit disk range searching problem, for each cell
C ∈ C and each cell C ′ ∈ N(C), we will preprocess the points of P (C ′) with respect to the
query disks whose centers are in C. Suppose the preprocessing time (resp. space) for each
such pair (C, C ′) is f(m) = Ω(m), where m = |P (C ′)|. Then, by the property (5) of C, the
total preprocessing time (resp., space) for all such pairs (C, C ′) is f(n). In the following, we
will describe our preprocessing algorithm for (C, C ′). Since N(C) ⊂ C and the points of P

in each cell of C are already known by Lemma 1, P (C ′) is available to us. To simplify the

H. Wang 32:5

C ′

a b

h(a, b)

Figure 1 Illustrating C′,
which is the grey region.

C ′

p1

p2

q1

q2

Figure 2 Illustrating an upper
arc pseudo-trapezoid in C′.

C

Figure 3 Illustrating C, which
is the grey region.

notation, we assume that all points of P are in C ′, i.e., P (C ′) = P . Note that if C = C ′,
then the problem is trivial because any disk centered in C ′ covers the entire cell. We thus
assume C ̸= C ′. Due to the property (2) of C, without loss of generality, in the following we
assume that C and C ′ are separated by a horizontal line such that C is below the line.

2.2 Basic concepts and observations
We use ab to denote the line segment connecting two points a and b,. For any compact region
A in the plane, let ∂A denote the boundary of A, e.g., if A is a disk, then ∂A is a circle.

Consider a disk D whose center is in C. As the side length of C ′ is 1/
√

2, ∂D ∩ C ′ may
contain up to two arcs of the circle ∂D. For this reason, we enlarge C ′ to a region C ′ so that
∂D ∩ C ′ contains at most one arc. The region C ′ is defined as follows (e.g., see Fig. 1).

Let a and b be the two vertices of C ′ on its top edge. Let Dab be the disk whose center is
below ab and whose boundary contains both a and b. Let h(a, b) be the arc of ∂Dab above
ab and connecting a and b. Define C ′ to be the region bounded by h(a, b), and the three
edges of C ′ other than ab. As the side length of C ′ is 1/

√
2, for any disk D whose center is

in C, ∂D ∩ C ′ is either ∅ or a single arc of ∂D (which is on the upper half-circle of ∂D). Let
eb denote the bottom edge of C ′.

Consider a disk D. An arc h on the upper half-circle of ∂D (i.e., the half-circle above the
horizontal line through its center) is called an upper disk arc (or upper arc for short); lower
arcs are defined symmetrically. Note that an upper arc is x-monotone, i.e., each vertical
line intersects it at a single point if not empty. If h is an arc of a disk D, then we say that
D is the underlying disk of h and the center of D is also called the center of h. An arc h

in C ′ is called a spanning arc if both endpoints of h are on ∂C ′. As we are mainly dealing
with upper arcs of C ′ whose centers are in C, in the following unless otherwise stated, an
upper arc always refers to one whose center is in C. The following is an easy but crucial
observation that makes it possible to adapt many techniques for dealing with lines in the
plane to spanning upper arcs of C ′.

▶ Observation 2. Suppose h is an upper arc in C ′, and e is a vertical line segment or an
upper arc in C ′. Then, h and e can intersect each other at most once.

Proof. If e is a vertical segment, since h is x-monotone, h and e can intersect each other at
most once. If e is an upper arc, since both e and h are upper arcs of disks whose centers are
in C and they are both in C ′, they can intersect each other at most once. ◀

Pseudo-trapezoids. Let h(p1, p2) be an upper arc with p1 and p2 as its left and right
endpoints, respectively. Define h(q1, q2) similarly, such that x(p1) = x(q1) and x(p2) = x(q2).
Assume that h(p1, p2) and h(q1, q2) do not cross each other and h(p1, p2) is above h(q1, q2).
The region σ bounded by the two arcs and the two vertical lines p1q1 and p2q2 is called an
upper-arc pseudo-trapezoid (e.g., see Fig. 2). We call p1q1 and p2q2 the two vertical sides of

SWAT 2022

32:6 Unit-Disk Range Searching and Applications

σ, and call h(q1, q1) and h(p1, p2) the top arc and bottom arc of σ, respectively. The region σ

is also considered as an upper-arc pseudo-trapezoid if the bottom arc h(q1, q2) is replaced by
a line segment q1q2 on eb (for simplicity, we still refer to q1q2 as the bottom-arc of σ). In
this way, C ′ itself is an upper-arc pseudo-trapezoid. Note that for any pseudo-trapezoid σ in
C ′ and a disk D centered in C, ∂D ∩ σ is either empty or an upper arc.

The counterparts of C (with respect to C′). The above definitions in C ′ (with respect to
C) have counterparts in C (with respect to C ′) with similar properties. First, we define C in
a symmetric way as C ′, i.e., a lower arc connecting the two bottom vertices of C ′ is used to
bound ∂C; e.g., see Fig. 3. Also, we define lower-arc pseudo-trapezoids and spanning lower
arcs similarly, and unless otherwise stated, a lower arc in C refer to one whose center is in
C ′. In the following, unless otherwise stated, properties, algorithms, and observations for the
concepts of C ′ with respect to C also hold for their counterparts of C with respect to C ′.

Duality. We define a duality relationship between upper arcs in C ′ and points in C. For
an upper arc h in C ′, we consider its center as its dual point in C. For a point q ∈ C, we
consider the upper arc ∂Dq ∩ C ′ as its dual arc in C ′ if it is not empty. Similarly, we define
duality relationship between lower arcs in C and points in C ′. Note that if the boundary
of a disk centered at a point p ∈ P does not intersect C, then the point p can be ignored
from P in our preprocessing because among all disks centered in C one disk contains p if
and only if all other disks contain p. Henceforth, without loss of generality, we assume that
∂Dp intersects C for all points p ∈ P , implying that every point of P is dual to a lower arc
in C. Note that our duality is similar in spirit to the duality introduced by Agarwal and
Sharir [7] between points and pseudo-lines.

2.3 Computing hierarchical cuttings for disk arcs
Let H be a set of n spanning upper arcs in C ′. For a compact region A of C ′, we use HA to
denote the set of arcs of H that intersect the relative interior of A. By adapting its definition
for hyperplanes, e.g., [16,27], a cutting for H is a collection Ξ of closed cells (each of which is
an upper-arc pseudo-trapezoid) with disjoint interiors, which together cover the entire C ′.
The size of Ξ is the number of cells in Ξ. For a parameter 1 ≤ r ≤ n, a (1/r)-cutting for H

is a cutting Ξ satisfying |Hσ| ≤ n/r for every cell σ ∈ Ξ.
We will adapt the algorithm of Chazelle [16] to computing a (1/r)-cutting of size O(r2)

for H. It is actually a sequence of hierarchical cuttings. Specifically, we say that a cutting
Ξ′ c-refines a cutting Ξ if every cell of Ξ′ is contained in a single cell of Ξ and every cell
of Ξ contains at most c cells of Ξ′. Let Ξ0, Ξ1, . . . , Ξk be a sequence of cuttings such that
Ξ0 consists of the single cell C ′ (recall that C ′ itself is an upper arc pseudo-trapezoid), and
every Ξi is a (1/ρi)-cutting of size O(ρ2i) which c-refines Ξi−1, for two constants ρ and c.
In order to make Ξk a (1/r)-cutting, we set k = ⌈logρ r⌉. The above sequence of cuttings is
called a hierarchical (1/r)-cutting of H. If a cell σ ∈ Ξj−1 contains a cell σ′ ∈ Ξj , we say
that σ is the parent of σ′ and σ′ is a child of σ. Hence, one could view Ξ as a tree structure
with Ξ0 as the root.

We have the following theorem.

▶ Theorem 3 (The Cutting Theorem). Let χ denote the number of intersections of the arcs
of H. For any r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for H (together with the sets
Hσ for every cell σ of Ξi for all 0 ≤ i ≤ k) can be computed in O(nr) time; more specifically,
the size of the cutting is bounded by O(r1+δ +χ ·r2/n2) and the running time of the algorithm
is bounded by O(nrδ + χ · r/n).

H. Wang 32:7

▶ Remark. For a set of lower arcs in C, we can define cuttings similarly with lower-arc
pseudo-trapezoids as cells; the same result as Theorem 3 also holds for computing lower-arc
cuttings. Also note that the algorithm is optimal if the subsets Hσ’s need to be computed.

To prove Theorem 3, we adapt Chazelle’s algorithm for computing cuttings for hyper-
planes [16]. It was stated in [7] that Chazelle’s algorithm can be extended to compute such
a cutting of size O(r1+δ + χ · r2/n2) in O(n1+δ + χ · r/n) time. However, no details were
provided in [7]. For completeness and also for helping the reader to better understand our
cutting, we present the algorithm details in the full paper, where we actually give a more
general algorithm that also works for other curves in the plane (e.g., circles or circular arcs
of different radii, pseudo-lines, line segments, etc.). Note that our result reduces the factor
n1+δ in the above time complexity of [7] to nrδ.

The weighted case. To adapt the simplex range searching algorithms in [11, 26, 27], we
will need to compute cuttings for a weighted set H of spanning upper arcs in C ′, where each
arc h ∈ H has a nonnegative weight w(h). The hierarchical (1/r)-cutting can be naturally
generalized to the weighted case (i.e., the interior of each pseudo-trapezoid in a (1/r)-cutting
can be intersected by upper arcs of H of total weight at most w(H)/r, where w(H) is the
total weight of all arcs of H). By a method in [25], any algorithm computing a hierarchical
(1/r)-cutting for a set of hyperplanes can be converted to the weighted case with only a
constant factor overhead. We can use the same technique to extend any algorithm computing
a hierarchical (1/r)-cutting for a set of upper arcs to the weighted case.

2.4 Test Set Lemma
A critical component in all simplex range searching algorithms in [11, 26, 27] is a Test Set
Lemma. Using the duality, we obtain a similar result for our problem in the following lemma,
whose proof is in the full paper. For any pseudo-trapezoid σ in C ′, we say that an upper arc
h crosses σ if h intersects the interior of σ.

▶ Lemma 4 (Test Set Lemma). For any parameter r ≤ n, there exists a set Q of at most
r spanning upper arcs in C ′, such that for any collection Π of interior-disjoint upper-arc
pseudo-trapezoids in C ′ satisfying that each pseudo-trapezoid contains at least n/(c · r) points
of P for some constant c > 0, the following holds: if κ is the maximum number of pseudo-
trapezoids of Π crossed by any upper arc of Q, then the maximum number of pseudo-trapezoids
of Π crossed by any upper arc in C ′ is at most O(κ +

√
r).

With our Cutting Theorem and the Test Set Lemma, we proceed to adapt the simplex
range searching algorithms in [11,26,27] to our problem in the following subsections.

2.5 A data structure based on pseudo-trapezoidal partitions
We first extend the simplicial partition for hyperplanes in [26] to our problem, which we
rename pseudo-trapezoidal partition. A pseudo-trapezoidal partition for P is a collection
Π = {(P1, σ1), . . . , (Pm, σm)}, where the Pi’s are pairwise disjoint subsets forming a partition
of P , and each σi is a relatively open upper-arc pseudo-trapezoid in C ′ containing all points of
Pi. The pseudo-trapezoidal partition we will compute has the following additional property:
max1≤i≤m |Pi| < 2 · min1≤i≤m |Pi|, i.e., all subsets have roughly the same size. Note that the
trapezoids σi’s may overlap. The subsets Pi’s are called classes of Π.

For any upper arc h in C ′, we define its crossing number with respect to Π as the
number of pseudo-trapezoids of Π crossed by h. The crossing number of Π is defined as the
maximum crossing numbers of all upper arcs h in C ′. The following Theorem 5 corresponds

SWAT 2022

32:8 Unit-Disk Range Searching and Applications

to Theorem 3.1 [26]. Its proof, which is in the full paper, is similar to Theorem 3.1 in [26],
with our Test Set Lemma and our Cutting Theorem. Note that similar result as the theorem
is already known for pseudo-lines with respect to points [7].

▶ Theorem 5 (Partition Theorem). Let s be an integer 2 ≤ s < n and r = n/s. There exists
a pseudo-trapezoidal partition Π for P , whose classes Pi satisfy s ≤ |Pi| < 2s, and whose
crossing number is O(

√
r).

Lemma 6, which corresponds to Theorem 4.7(i) [26], computes a pseudo-trapezoidal
partition and will be used in the algorithm for Theorem 7. The proof is in the full paper.

▶ Lemma 6. For any fixed δ > 0, if s ≥ nδ, then a pseudo-trapezoidal partition as in the
Partition Theorem (whose classes |Pi| satisfy s ≤ |Pi| < 2s and whose crossing number is
O(

√
r)) can be constructed in O(n log r) time, where r = n/s.

Using Lemma 6, we can obtain the following theorem, whose proof is in the full paper.

▶ Theorem 7. A data structure of O(n) space can be built in O(n log n) time, so that given
a disk D centered in C, the number of points of P in D can be computed in O(

√
n(log n)O(1))

time.

▶ Remark. It is easy to modify the algorithm to answer the outside-disk queries: compute
the number of points of P outside any query disk, with asymptotically the same complexities.
This is also the case for other data structures given later, e.g., Theorems 8, 9, 10.

2.6 A data structure based on hierarchical cuttings
Using our Cutting Theorem and the Test Set Lemma, we can adapt the techniques of
Matoušek [27] to our problem. We have the following theorem, whose proof is in the full
paper.

▶ Theorem 8. We can build an O(n) space data structure for P in O(n1+δ) time for any
small constant δ > 0, such that given any disk D whose center is in C, the number of points
of P in D can be computed in O(

√
n) time.

2.7 A randomized result
We have the following theorem by adapting the randomized result of Chan [11].

▶ Theorem 9. We can build an O(n) space data structure for P in O(n log n) expected time
by a randomized algorithm, such that given any disk D whose center is in C, the number of
points of P in D can be computed in O(

√
n) time with high probability.

The data structure is a partition tree, denoted by T , obtained by recursively subdividing
C ′ into cells each of which is an upper-arc pseudo-trapezoid. Each node v of T corresponds
to a cell, denoted by σv. If v is the root, then σv is C ′. If v is not a leaf, then v has O(1)
children whose cells form a disjoint partition of σv. Define Pv = P ∩ σv. The set Pv is not
explicitly stored at v unless v is a leaf, in which case |Pv| = O(1). The cardinality |Pv| is
stored at v. The height of T is O(log n). If κ is the maximum number of pseudo-trapezoids
of T that are crossed by any upper arc in C ′, then κ = O(

√
n) holds with high probability.

The partition tree T can be built by a randomized algorithm of O(n log n) expected time.
The space of T is O(n). More details for Theorem 9 are in the full paper.

H. Wang 32:9

2.8 Trade-offs
Using cuttings and the results of Theorems 8 and 9, we can obtain the following trade-offs
between preprocessing and query time by standard techniques [2,27]. The proof is in the full
paper.

▶ Theorem 10.
1. We can build an O(nr) space data structure for P in O(nr(n/r)δ) time, such that given

any query disk D whose center is in C, the number of points of P in D can be computed
in O(

√
n/r) time, for any 1 ≤ r ≤ n/ log2 n.

2. We can build an O(nr) space data structure for P in O(nr log(n/r)) expected time, such
that given any query disk D whose center is in C, the number of points of P in D can be
computed in O(

√
n/r) time with high probability, for any 1 ≤ r ≤ n/ log2 n.

In particular, for the large space case, i.e., r = n/ log2 n, we can obtain the following
corollary by Theorem 10(1) (a randomized result with slightly better preprocessing time can
also be obtained by Theorem 10(2)).

▶ Corollary 11. We can build an O(n2/ log2 n) space data structure for P in O(n2/ log2−δ n)
time, such that given any query disk D whose center is in C, the number of points of P in D

can be computed in O(log n) time.

2.9 Wrapping things up
All above results on P are for a pair of cells (C, C ′) such that all points of P are in C ′ and
centers of query disks are in C. Combining the above results with Lemma 1, we can obtain
our results for the general case where points of P and query disk centers can be anywhere in
the plane. The proof of Corollary 12 summarizes the overall algorithm.

▶ Corollary 12. We have the following results for the unit-disk range counting problem.
1. An O(n) space data structure can be built in O(n log n) time, with O(

√
n(log n)O(1)) query

time.
2. An O(n) space data structure can be built in O(n1+δ) time for any small constant δ > 0,

with O(
√

n) query time.
3. An O(n) space data structure can be built in O(n log n) expected time by a randomized

algorithm, with O(
√

n) query time with high probability.
4. An O(n2/ log2 n) space data structure can be built in O(n2/ log2−δ n) time, with O(log n)

query time.
5. An O(nr) space data structure can be built in O(nr(n/r)δ) time, with O(

√
n/r) query

time, for any 1 ≤ r ≤ n/ log2 n.
6. An O(nr) space data structure can be built in O(nr log(n/r)) expected time by a randomized

algorithm, with O(
√

n/r) query time with high probability, for any 1 ≤ r ≤ n/ log2 n.

Proof. In the preprocessing, we compute the information and data structure in Lemma 1,
which takes O(n log n) time and O(n) space. For each pair of cells (C, C ′) with C ∈ C and
C ′ ∈ N(C), we construct the data structure on P (C ′), i.e., P ∩ C ′, with respect to query
disks centered in C, e.g., those in Theorems 7, 8, 9, and 10. As discussed before, due to
property (5) of C, the total preprocessing time and space is the same as those in the above
theorems. Given a query disk D with center q, by Lemma 1(2), we determine whether q is in
a cell C of C in O(log n) time. If no, then D ∩ P = ∅ and thus we simply return 0. Otherwise,
the data structure returns N(C). Then, for each C ′ ∈ N(C), we use the data structure
constructed for (C, C ′) to compute |P (C ′) ∩ D|. We return |P ∩ D| =

∑
C′∈N(C) |P (C ′) ∩ D|.

As |N(C)| = O(1), the total query time is as stated in the above theorems. ◀

SWAT 2022

32:10 Unit-Disk Range Searching and Applications

▶ Remark. As in [11,26,27], all above results can be extended to the weighted case (or the
more general semigroup model) where each point of P has a weight.

3 Applications

In this section, we show that our techniques for the disk range searching problem can be used
to solve several other problems. More specifically, our techniques yield improved results for
three classical problems: batched range counting, distance selection, and discrete 2-center.

3.1 Batched unit-disk range counting
Let P be a set of n points and D be a set of m (possibly overlapping) unit disks in the plane.
The batched unit-disk range counting problem (also referred to as offline range searching in
the literature) is to compute for each disk D ∈ D the number of points of P in D.

Let Q denote the set of centers of the disks of D. For each point q ∈ Q, we use Dq to
denote the unit disk centered at q.

We first apply Lemma 1 on P . For each point q ∈ Q, by Lemma 1(2), we first determine
whether q is in a cell C of C. If no, then Dq does not contain any point of P and thus it can
be ignored for the problem; without loss of generality, we assume that this case does not
happen to any disk of D. Otherwise, let C be the cell of C that contains q. By Lemma 1(2),
we further find the set N(C) of C. In this way, in O((n + m) log n) time, we can compute
Q(C) for each cell C of C, where Q(C) is the subset of points of Q in C. Define D(C) as the
set of disks of D whose centers are in Q(C). Let P (C) = P ∩ C.

In what follows, we will consider the problem for P (C ′) and D(C) for each pair (C, C ′)
of cells with C ∈ C and C ′ ∈ N(C). Combining the results for all such pairs leads to the
result for P and D (the details on this will be discussed later). To simplify the notation, we
assume that P (C ′) = P and D(C) = D (thus Q(C) = Q). Hence, our goal is to compute
|P ∩ D| for all disks D ∈ D.

If C = C ′, then all points of P are in D for each disk D ∈ D and thus the problem is
trivial. Below we assume C ̸= C ′. Without loss of generality, we assume that C ′ and C are
separated by a horizontal line and C ′ is above the line. We assume that each point of P

defines a lower arc in C since otherwise the point can be ignored. We also assume that the
boundary of each disk of D intersects C

′, i.e., each point q of Q is dual to an upper arc hq in
C ′, since otherwise the disk can be ignored. Observe that a point p is in Dq if and only if p

is below the upper arc hq (we say that p is below hq if p is below the upper half boundary of
Dq), for any p ∈ P and q ∈ Q. Hence, the problem is equivalent to computing the number of
points of P below each upper arc of H, where H = {hq | q ∈ Q}.

Given a set of n points and a set of m lines in the plane, Chan and Zheng [13] recently
gave an O(m2/3n2/3 + n log m + m log n) time algorithm to compute the number of points
below each line (alternatively, compute the number of points inside the lower half-plane
bounded by each line). We can easily adapt their algorithm to solve our problem. Indeed,
the main techniques of Chan and Zheng’s algorithm we need to adapt to our problem are the
hierarchical cuttings and duality. Using our Cutting Theorem and our definition of duality,
we can apply the same technique and solve our problem in O(m2/3n2/3 + n log m + m log n)
time, with n = |P | and m = |H| = |D|. Thus we have the following theorem; the proof is in
the full paper.

▶ Theorem 13. We can compute, for all disks D ∈ D, the number of points of P in D in
O(m2/3n2/3 + n log m + m log n), with n = |P | and m = |D|.

H. Wang 32:11

Let χ denote the number of intersections of the arcs of H, and thus χ = O(m2). Using
our Cutting Theorem and Theorem 13, we further improve the algorithm for small χ.

▶ Theorem 14. We can compute, for all disks D ∈ D, the number of points of P in D in
O(n2/3χ1/3 + m1+δ + n log n) time, with n = |P | and m = |D|.

Proof. We start with computing a hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H, where r =
min{m/8, (m2/χ)1/(1−δ)} and δ refers to the parameter in the Cutting Theorem. By our
Cutting Theorem, the size of the cutting, denoted by K, is bounded by O(rδ + χ · r2/m2)
and the time for computing the cutting is O(mrδ + χ · r/m). Since the parameter r depends
on χ, which is not available to us, we can overcome the issue by using the standard trick
of doubling. More specifically, initially we set χ to a constant. Then we run the algorithm
until it exceeds the running time specified based on the guessed value of χ. Next, we double
the value χ and run the algorithm again. We repeat this process until when the algorithm
finishes before it reaches the specified running time for a certain value of χ. In this way, we
run the cutting construction algorithm at most O(log χ) time. Therefore, the total time for
constructing the desired cutting is O((mrδ + χ · r/m) log χ).

Next, we reduce the problem into O(K) subproblems and then solve each subproblem by
Theorem 13, which will lead to the theorem.

For each point p ∈ P , we find the cell σ of Ξi that contains p and we store p in a canonical
subset P (σ) of P (which is initially ∅), for all 0 ≤ i ≤ k, i.e., P (σ) = P ∩ σ; in fact, we only
need to store the cardinality of P (σ). For ease of exposition, we assume that no point of P

lies on the boundary of any cell of Ξi for any i.
For each disk D ∈ D, our goal is to compute the number of points of P in D, denoted by

nD. We process D as follows. We initialize nD = 0. Let h be the upper arc of H defined by
D, i.e., h = ∂D ∩ C ′. Starting from Ξ0 = C ′. Suppose σ is a cell of Ξi crossed by h (initially,
i = 0 and σ is C ′) and i < k. For each child cell σ′ of σ in Ξi+1, if σ′ is contained in D, then
we increase nD by |P (σ′)| because all points of P (σ′) are contained in D. Otherwise, if h

crosses σ′, then we proceed on σ′. In this way, the points of P ∩ D not counted in nD are
those contained in cells σ ∈ Ξk that are crossed by h. To count those points, we perform
further processing as follows.

For each cell σ in Ξk, if |Pσ| > n/K, then we arbitrarily partition P (σ) into subsets of
size between n/(2K) and n/K, called standard subsets of P (σ). As Ξk has O(K) cells and
|P | = n, the number of standard subsets of all cells of Ξk is O(K). Denote by Dσ the subset
of disks of D whose boundaries cross σ. Our problem is to compute for all disks D ∈ Dσ the
number of points of P (σ) contained in D, for all cells σ ∈ Ξk. To this end, for each cell σ of
Ξk, for each standard subset P ′(σ) of P (σ), we solve the batched unit-disk range counting
problem on the point set P ′(σ) and the disk set Dσ by Theorem 13. Note that |Dσ| ≤ m/r.
As Ξk has O(K) cells, we obtain O(K) subproblems of size (n/K, m/r) each. As discussed
above, solving these subproblems also solves our original problem. It remains to analyze the
time complexity of the algorithm, which can be found in the full paper. ◀

The general problem. The above results are for the case where points of P are in the square
cell C ′ while centers of D are all in C. For solving the general problem where both P and D
can be anywhere in the plane, as discussed before, we reduce the problem to the above case by
Lemma 1. The properties of the set C guarantee that the complexities for the general problem
are asymptotically the same as those in Theorem 13. To see this, we consider all pairs (C, C ′)
with C ∈ C and C ′ ∈ N(C). For the i-th pair (C, C ′), let ni = |P (C ′)| and mi = |D(C)|.
Then, solving the problem for the i-th pair (C, C ′) takes O(n2/3

i m
2/3
i + mi log ni + ni log mi)

SWAT 2022

32:12 Unit-Disk Range Searching and Applications

time by Theorem 13. Due to the properties (4) and (5) of C,
∑

i ni = O(n) and
∑

i mi = O(m).
Therefore, by Hölder’s Inequality,

∑
i n

2/3
i m

2/3
i ≤ n1/3 ·

∑
i n

1/3
i m

2/3
i ≤ n2/3m2/3, and thus

the total time for solving the problem for all pairs of cells is O(n2/3m2/3 + m log n + n log m).
Similarly, the complexity of Theorem 14 also holds for the general problem, with χ as the
number of pairs of disks of D that intersect.

Computing incidences between points and circles. It is easy to modify the algorithm
to solve the following problem: Given n points and m unit circles in the plane, computing
(either counting or reporting) the incidences between points and unit circles. The runtime
is O(n2/3m2/3 + m log n + n log m) or O(n2/3χ1/3 + m1+δ + n log n), where χ is the number
of intersecting pairs of the unit circles. Although the details were not given, Agarwal and
Sharir [7] already mentioned that an n2/3m2/32O(log∗(n+m)) + O((m + n) log(m + n)) time
algorithm can be obtained by adapting Matoušek’s technique [27]. (The same problem for
circles of arbitrary radii is considered in [7]. Refer to [30] for many other incidence problems.)
Our result further leads to an O(n4/3)-time algorithm for the unit-distance detection problem:
Given n points in the plane, is there a pair of points at unit distance? Erickson [21] gave a
lower bound of Ω(n4/3) time for the problem in his partition algorithm model.

3.2 The distance selection problem
Given a set P of n points in the plane and an integer k in the range [0, n(n − 1)/2], the
distance selection problem is to compute the k-th smallest distance among the distances of
all pairs of points of P . Let λ∗ denote the k-th smallest distance to be computed. Given a
value λ, the decision problem is to decide whether λ ≥ λ∗. Using our batched range counting
algorithm, we can easily obtain the following lemma.

▶ Lemma 15. Given a value λ, whether λ ≥ λ∗ can be decided in O(n4/3) time.

Proof. We can use our algorithm for the batched unit-disk range counting problem. Indeed,
let D be the set of congruent disks centered at the points of P with radius λ. By Theorem 13,
we can compute in O(n4/3) time the cardinality |Π|, where Π is the set of all disk-point
incidences (D, p), where D ∈ D, p ∈ P , and D contains p. Observe that for each pair of
points (pi, pj) of P whose distance is at most λ, it introduces two pairs in Π. Also, each point
pi introduces one pair in Π because pi is contained in the disk of D centered at pi. Hence,
the number of pairs of points of P whose distances are at most λ is equal to (|Π| − n)/2.
Clearly, λ ≥ λ∗ if and only if (|Π| − n)/2 ≥ k. ◀

Plugging Lemma 15 into a randomized algorithm of Chan [10] (i.e., Theorem 5 [10]), λ∗

can be computed in O(n log n + n2/3k1/3 log n) expected time.

3.3 The discrete 2-center problem
Let P be a set of n points in the plane. The discrete 2-center problem is to find two smallest
congruent disks whose centers are in P and whose union covers P . Let λ∗ be the radius of
the disks in an optimal solution. Given λ, the decision problem is to decide whether λ ≥ λ∗.

Agarwal, Sharir, and Welzl [8] gave an O(n4/3 log5 n) time algorithm by solving the
decision problem first. A key subproblem in their decision algorithm [8] is: Preprocess P to
compute a collection P of canonical subsets of P , {P1, P2, . . .}, so that given a query point p

in the plane, the set Pp of points of P outside the unit disk centered at p can be represented
as the union of a sub-collection Pp of canonical subsets and Pp can be found efficiently (it
suffices to give the “names” of the canonical subsets of Pp). Note that here the radius of
unit disks is λ.

H. Wang 32:13

Roughly speaking, suppose we can solve the above key subproblem with preprocessing
time T such that

∑
Pi∈P |Pi| = M and |Pp| for any query point p is bounded by O(τ) (and

|Pp| can be found in O(τ) time); then the algorithm of [8] can solve the decision problem
in O(T + M log n + τ · n log3 n) time. The optimal radius λ∗ can thus be found by binary
search on all pairwise distances of P (in each iteration, find the k-th smallest distance using
a distance selection algorithm); the total time is O((T1 + T2) log n), where T1 is the time of
the distance selection algorithm and T2 is the time of the decision algorithm.

Note that the logarithmic factor of M log n in the above running time of the decision
algorithm of [8] is due to that for each canonical subset Pi ∈ P, we need to compute the
common intersection of all unit disks centered at the points of Pi, which takes O(|Pi| log n)
time [23]. However, if all points of Pi are sorted (e.g., by x-coordinate or y-coordinate),
then the common intersection can be computed in O(|Pi|) time [31]. Therefore, if we can
guarantee that all canonical subsets are sorted, then the runtime of the decision algorithm
of [8] can be bounded by O(T + M + τ · n log3 n).

Using our techniques for unit-disk range searching, we present new solutions to the
above key subproblem. We show that after T = O(n4/3 log2 n(log log n)1/3) expected time
preprocessing by a randomized algorithm, we can compute M = O(n4/3 log2 n/(log log n)2/3)
sorted canonical subsets of P so that τ = O(n1/3(log log n)1/3/ log n) holds with high prob-
ability. Consequently, the decision problem can be solved in O(n4/3 log2 n(log log n)1/3)
expected time, and thus λ∗ can be computed in O(n4/3 log3 n(log log n)1/3) expected time if
we use the O(n4/3 log2 n) time distance selection algorithm in [24]. We also have another
slightly slower deterministic result. After T = O(n4/3 log7/3 n(log log n)1/3) time prepro-
cessing algorithm, we can compute M = O(n4/3 log7/3 n/(log log n)2/3) sorted canonical
subsets of P so that τ = O(n1/3(log log n)O(1)/ log2/3 n). Consequently, the decision prob-
lem can be solved in O(n4/3 log7/3 n(log log n)O(1)) time, and thus λ∗ can be computed in
O(n4/3 log10/3 n(log log n)O(1)) time.
▶ Remark. It is straightforward to modify our algorithms to achieve the same results for the
following inside-disk problem: represent the subset of points of P inside D as a collection of
pairwise-disjoint canonical sets for any query disk D.

In what follows, we present our solutions to the above subproblem. We apply Lemma 1
on the set P to compute the set C of square cells. As before, we first reduce the problem
to the same problem with respect to pairs of cells (C, C ′) of C, by using Lemma 1 as well
as the following lemma (whose proof is in the full paper, by modifying of the algorithm for
Lemma 1); then we will solve the problem using our techniques for disk range searching.

▶ Lemma 16. We can compute in O(n log n) time a collection of O(n) sorted canonical
subsets of P whose total size is O(n log n), such that for any cell C of C, there are O(log n)
pairwise-disjoint canonical subsets whose union consists of the points of P that are not in
the cells of N(C), and we can find those canonical subsets in O(log n) time.

Let Dp be the unit disk centered at a point p in the plane. If p is not in any cell of C,
then Dp ∩ P = ∅ and thus we can return the entire set P as a canonical subset. Henceforth,
we only consider the case where p is in a cell C of C. According to Lemma 16, it suffices to
find canonical subsets to cover all points of P ∩ C ′ not in Dp for all cells C ′ ∈ N(C). As
|N(C)| = O(1), it suffices to consider one such cell C ′ ∈ N(C). Hence, as before, the problem
reduces to a pair of square cells (C, C ′) of C with C ′ ∈ N(C). If C ′ = C, then we know that
all points of P ∩ C ′ are in Dp. Hence, we assume that C ′ ≠ C. Without loss of generality,
we assume that C ′ and C are separated by a horizontal line and C is below the line. The
problem is to process all points of P ∩ C ′, such that given any query disk Dp whose center p

is in C, we can find a collection of disjoint canonical subsets whose union is the set of points
of P ∩ C ′ not in Dp. To simplify the notation, we assume that all n points of P are in C ′.

SWAT 2022

32:14 Unit-Disk Range Searching and Applications

Our data structure combines some techniques for the disk range searching problem. As
remarked before, all our results on disk range searching with respect to (C, C ′) can be applied
to find the number of points of P outside any query disk D whose center is in C (indeed,
the disk D defines a spanning upper arc h in C ′, and points in D lie on one side of h while
points outside D lie on the other side of h). Hence, our main idea is to examine our disk
range searching data structures and define canonical subsets of P in these data structures.
For each query disk D, we apply the query algorithm on D, which will produce a collection
of canonical subsects. The crux is to carefully design the disk range searching data structure
(e.g., by setting parameters to some appropriate values) so that the following are as small as
possible (tradeoffs are needed): the preprocessing time, the total size of all canonical subsets
of the data structure, which is M , and the total number of canonical subsets for each query
disk D, which is τ . In the following, whenever we say “apply our query algorithm on D”, we
mean “finding points outside D”. We will present two results, a randomized result based on
Chan’s partition trees [11] and a slightly slower deterministic result.

3.3.1 The randomized result
Our data structure has three levels. We will present them from the lowest level to the highest
one. We start with the lowest level in the following lemma, which relies on the partition tree
T built in Theorem 9. The proof is in the full paper. For any disk D, we use P \ D to refer
to the subset of the points of P not in D.

▶ Lemma 17. We can compute in O(n log n) expected time a data structure with O(n) sorted
canonical subsets of P whose total size is O(n log n), so that for any disk D whose center is
in C, we can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \ D,
where κ = O(

√
n) holds with high probability.

In the next lemma we add the second level to the data structure of Lemma 17. The proof
is in the full paper.

▶ Lemma 18. We can compute in O(n2 log log n/ log2 n) expected time a data structure
with O(n2/ log2 n) sorted canonical subsets of P whose total size is O(n2 log log n/ log2 n),
so that for any disk D whose center is in C, we can find in O(κ) time O(κ) pairwise-disjoint
canonical sets whose union is P \ D, where κ = O(log n) holds with high probability.

We finally add the top-level data structure in Lemma 19, whose proof is in the full paper.

▶ Lemma 19. For any r < n/ logω(1) n, we can compute in O(n log n + nr log log r/ log2 r)
expected time a data structure with O(nr/ log2 r) sorted canonical subsets of P whose total
size is O(n log(n/r) + nr log log r/ log2 r), so that for any disk D whose center is in C, we
can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \ D, where
κ = O(

√
n/r log r) holds with high probability.

By setting r = n1/3 log4 n/(log log n)2/3 in Lemma 19, we can obtain the following result.

▶ Corollary 20. We can compute in O(n4/3 log2 n(log log n)1/3) expected time by a randomized
algorithm a data structure with O(n4/3 log2 n/(log log n)2/3) sorted canonical subsets of P

whose total size is O(n4/3 log2 n(log log n)1/3), so that for any disk D whose center is in C,
we can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \ D, where
κ = O(n1/3(log log n)1/3/ log n) holds with high probability.

H. Wang 32:15

As discussed before, plugging our above result in the algorithm of [8], we can solve the
decision version of the discrete 2-center problem in O(n4/3 log2 n(log log n)1/3) expected time.
Using the decision algorithm and the O(n4/3 log2 n)-time distance selection algorithm in [24],
the discrete 2-center problem can be solved in O(n4/3 log3 n(log log n)1/3) expected time.

▶ Theorem 21. Given a set P of n points in the plane, the discrete 2-center problem can be
solved in O(n4/3 log3 n(log log n)1/3) expected time by a randomized algorithm.

3.3.2 The deterministic result

The deterministic result also has three levels, which correspond to Lemmas 17, 18, and 19,
respectively, but instead uses deterministic techniques. More specifically, we use the partition
tree of Theorem 7 to obtain the lowest level data structure; the second level follows the
same algorithm as Lemma 18 with the deterministic lowest level structure; the top level
structure makes use of a partial half-space decomposition scheme of [27]. The next three
lemmas present the three data structures, respectively, with their proofs in the full paper.

▶ Lemma 22. We can compute in O(n log n) time a data structure with O(n) sorted canonical
subsets of P whose total size is O(n log log n), so that for any disk D whose center is in
C, we can find in O(

√
n(log n)O(1)) time O(

√
n(log n)O(1)) pairwise-disjoint canonical sets

whose union is P \ D.

▶ Lemma 23. We can compute in O(n2 · log log n/ log2 n) time a data structure with
O(n2/ log2 n) sorted canonical subsets of P whose total size is O(n2 log log log n/ log2 n),
so that for any disk D whose center is in C, we can find in O(log n(log log n)O(1)) time
O(log n(log log n)O(1)) pairwise-disjoint canonical sets whose union is P \ D.

▶ Lemma 24. For any r ≤ n, we can compute in O(n
√

r + n log n + r2 + (n2/r) · log r ·
log log(n/r)/ log2(n/r)) time a data structure with O(r log r + (n2/r) log r/ log2(n/r)) sorted
canonical subsets of P whose total size is O(n log2 r +(n2/r) log r log log log(n/r)/ log2(n/r)),
so that for any disk D whose center is in C, we can find in O(

√
r log(n/r)(log log(n/r))O(1))

time O(
√

r log(n/r)(log log(n/r))O(1)) pairwise-disjoint canonical sets whose union is P \ D.

By setting r = n2/3(log log n)2/3/ log10/3 n in the preceding lemma, we obtain the following
result.

▶ Corollary 25. We can compute in O(n4/3 log7/3 n(log log n)1/3) time a data structure with a
total of O(n4/3 log7/3 n/(log log n)2/3) sorted canonical subsets of P whose total size is upper-
bounded by O(n4/3 log7/3 n log log log n/(log log n)2/3), so that for any disk D whose center
is in C, we can find in O(n1/3(log log n)O(1)/ log2/3 n) time O(n1/3(log log n)O(1)/ log2/3 n)
pairwise-disjoint canonical sets whose union is P \ D.

According to our discussion before, plugging our above result in the algorithm of [8], we can
solve the decision version of the discrete 2-center problem in O(n4/3 log7/3 n(log log n)O(1))
time. Using the decision algorithm and the O(n4/3 log2 n)-time distance selection algorithm
in [24], the discrete 2-center problem can be solved in O(n4/3 log10/3 n(log log n)O(1)) time.

▶ Theorem 26. Given a set P of n points in the plane, the discrete 2-center problem can be
solved in O(n4/3 log10/3 n(log log n)O(1)) time.

SWAT 2022

32:16 Unit-Disk Range Searching and Applications

4 Concluding remarks

Our techniques are likely to find other applications. Generally speaking, our techniques
may be useful for solving problems involving a set of congruent disks in the plane. Our
paper demonstrates that well-studied techniques for arrangements of lines may be adapted
to solving problems involving arrangements of congruent disks. The general idea is to first
reduce the problem to the same problem with respect to a pair of square cells using an
algorithm like Lemma 1. Then, to tackle the problem on a pair of square cells (C, C ′), we
need to deal with an arrangement of spanning upper arcs in C ′ such that the centers of
the underlying disks of these arcs are all in C. The properties of spanning upper arcs (e.g.,
Observation 2), along with the duality between the upper arcs in C ′ and the points in C,
make an upper-arc arrangement “resemble” a line arrangement so that many algorithms and
techniques on line arrangements may be easily adapted to the upper-arc arrangements.

References
1 Pankaj K. Agarwal. Range searching. In Handbook of Discrete and Computational Geometry,

Csaba D. Tóth, Joseph O’Rourke, and Jacob E. Goodman (eds.), pages 1057–1092. CRC
Press, 3rd edition, 2017.

2 Pankaj K. Agarwal. Simplex range searching and its variants: a review. In A Journey Through
Discrete Mathematics, pages 1–30. Springer, 2017.

3 Pankaj K. Agarwal, Boris Aronov, Micha Sharir, and Subhash Suri. Selecting distances in the
plane. Algorithmica, 9:495–514, 1993.

4 Pankaj K. Agarwal and Jiří Matoušek. On range searching with semialgebraic sets. Discrete
and Computational Geometry, 11:393–418, 1994.

5 Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic
sets. II. SIAM Journal on Computing, 42:2039–2062, 2013.

6 Pankaj K. Agarwal, Marco Pellegrini, and Micha Sharir. Counting circular arc intersections.
SIAM Journal on Computing, 22:778–793, 1993.

7 Pankaj K. Agarwal and Micha Sharir. Pseudoline arrangements: Duality, algorithms, and
applications. SIAM Journal on Computing, 34:526–552, 2005.

8 Pankaj K. Agarwal, Micha Sharir, and Emo Welzl. The discrete 2-center problem. Discrete
and Computational Geometry, 20:287–305, 1998.

9 Jon L. Bentley and Hermann A. Maurer. A note on Euclidean near neighbor searching in the
plane. Information Processing Letters, 8:133–136, 1979.

10 Timothy M. Chan. On enumerating and selecting distances. International Journal of Compu-
tational Geometry and Application, 11:291–304, 2001.

11 Timothy M. Chan. Optimal partition trees. Discrete and Computational Geometry, 47:661–690,
2012.

12 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and
3-d shallow cuttings. Discrete and Computational Geometry, 56:866–881, 2016.

13 Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional
cascading, and decision trees. In Proceedings of the 33rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 190–210, 2022.

14 Bernard Chazelle. An improved algorithm for the fixed-radius neighbor problem. Information
Processing Letters, 16:193–198, 1983.

15 Bernard Chazelle. New techniques for computing order statistics in Euclidean space. In
Proceedings of the 1st Annual Symposium on Computational Geometry (SoCG), pages 125–134,
1985.

16 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Computational
Geometry, 9(2):145–158, 1993.

H. Wang 32:17

17 Bernard Chazelle, Richard Cole, Franco P. Preparata, and Chee-Keng Yap. New upper bounds
for neighbor searching. Information and Control, 68:105–124, 1986.

18 Bernard Chazelle and Herbert Edelsbrunner. Optimal solutions for a class of point retrieval
problems. Journal of Symbolic Computation, 1:47–56, 1985.

19 Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite VC-
dimension. Discrete and Computational Geometry, 4(5):467–489, 1989.

20 Herbert Edelsbrunner. Algorithmis in Combinatorial Geometry. Heidelberg, 1987.
21 Jeff Erickson. New lower bounds for Hopcroft’s problem. Discrete and Computational Geometry,

16:389–418, 1996.
22 Michael T. Goodrich. Geometric partitioning made easier, even in parallel. In Proceedings of

the 9th Annual Symposium on Computational Geometry (SoCG), pages 73–82, 1993.
23 John Hershberger and Subhash Suri. Finding tailored partitions. Journal of Algorithms,

3:431–463, 1991.
24 Matthew J. Katz and Micha Sharir. An expander-based approach to geometric optimization.

SIAM Journal on Computing, 26(5):1384–1408, 1997.
25 Jiří Matoušek. Cutting hyperplane arrangement. Discrete and Computational Geometry,

6:385–406, 1991.
26 Jiří Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8(3):315–334,

1992.
27 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Computational

Geometry, 10(1):157–182, 1993.
28 Jiří Matoušek. Geometric range searching. ACM Computing Survey, 26:421–461, 1994.
29 Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range

searching. Discrete and Computational Geometry, 54:22–41, 2015.
30 Micha Sharir. Computational geometry column 65. SIGACT News, 48:68–85, 2017.
31 Haitao Wang. On the planar two-center problem and circular hulls. In Proceedings of the 36th

International Symposium on Computational Geometry (SoCG), pages 68:1–68:14, 2020.
32 Frances F. Yao. A 3-space partition and its applications. In Proceedings of the 15th Annual

ACM Symposium on Theory of Computing (STOC), pages 258–263, 1983.

SWAT 2022

Space-Efficient Data Structure for Posets with
Applications
Tatsuya Yanagita #

The University of Tokyo, Japan

Sankardeep Chakraborty #

The University of Tokyo, Japan

Kunihiko Sadakane #

The University of Tokyo, Japan

Srinivasa Rao Satti #

Norwegian University of Science and Technology, Trondheim, Norway

Abstract
Space efficient data structures for partial ordered sets or posets are well-researched field. It is known
that a poset with n elements can be represented in n2/4 + o(n2) bits [30] and can also be represented
in (1 + ϵ)n log n + 2nk + o(nk) bits [19] where k is width of the poset. In this paper, we make
the latter data structure occupy 2n(k − 1) + o(nk) bits by considering topological labeling on the
elements of posets. Also considering the topological labeling, we propose a new data structure that
calculates queries on transitive reduction graphs of posets faster though queries on transitive closure
graphs are computed slower. Moreover, we propose an alternative data structure for topological
labeled posets that calculates both of the queries faster though it uses 3nk − 2n + o(nk) bits of
space. Additionally, we discuss the advantage of these data structures from the perspective of an
application for BlockDAG, which is a more scalable version of Blockchain.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Succinct Data Structures, Posets, Blockchain

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.33

1 Introduction

We consider space-efficient data structures for partially ordered sets (posets). Such data
structures have been studied earlier. For arbitrary posets, Munro and Nicholson [30] proposed
a data structure whose space complexity is n2/4 + o(n2) bits, and this matches the lower
bound n2/4 + 3n/2 + O(log n) which is found by Kleitman and Rothschild [29]. When
the poset has Dilworth’s width [16] k1, Daskalakis et al. [15] showed that posets can be
represented in O(nk) words where n is the number of elements of the poset. Using their idea,
Farzan and Fischer [19] developed a data structure for posets with (1+ ϵ)n log n+2nk +o(nk)
bits, for any positive constant ϵ ≤ 1. It is known that

n!
k! 4n(k−1)n−24k(k−1) ≤ Nk(n) ≤ n! 4n(k−1)n− (k−1)(k−2)

2 k
k(k−1)

2

when Nk(n) is the number of posets on n elements with width k [10]. Hence, the information
theoretic lower bound is n log n + 2n(k − 1)−Θ(k2 log n) bits. Thus the data structure of
Farzan and Fischer is succinct if k = o(

√
n) and ϵ = o(1).

There are a lot of other related works. It is well-known as Birkhoff’s representation
theorem that posets have one-to-one correspondence with distributive lattices [8]. There is a
data structure for distributive lattices [32] whose size is close to the lower bound given by

1 Hereafter we denote Dilworth’s width by just width.
© Tatsuya Yanagita, Sankardeep Chakraborty, Kunihiko Sadakane, and Srinivasa Rao Satti;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hemogurobin7-11@g.ecc.u-tokyo.ac.jp
mailto:sankardeep.chakraborty@gmail.com
mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
mailto:srinivasa.r.satti@ntnu.no
https://orcid.org/0000-0003-0636-9880
https://doi.org/10.4230/LIPIcs.SWAT.2022.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Space-Efficient Data Structure for Posets

Table 1 Comparison of data structures for posets. The data structure in Section 2.5 is the
original version of Farzan and Fischer’s data structure [19] and the one in Section 3.2 is a modified
version of that. GC is a transitive closure graph of a poset and GR is a transitive reduction graph of
it. Here o(nk) denotes n · o(k) + o(n) · k, and t denotes the size of the output of a query.

Section 2.5 Section 3.2 Section 3.3 Section 3.4

Labeling General Topological Topological Topological

Space [bits] (1 + ϵ)n log n

+2n(k − 1) + o(nk) 2n(k − 1) + o(nk) 2nk + o(nk) 3nk − 2n + o(nk)

adjGC
(u, v) O(1/ϵ) O(log log k) O(k2) O(log log k)

succGC (v) O(1/ϵ + k + t) O(k + t) O(k2 + t) O(k + t)
predGC

(v) O(1/ϵ + k + t) O(k + t) O(k2 + t) O(k + t)
adjGR

(u, v) O(1/ϵ + k) O(k) O(log log k) O(log log k)
succGR (v) O(1/ϵ + k2) O(k2) O(k) O(log log k + t)
predGR

(v) O(1/ϵ + k2) O(k2) O(k) O(k)

Erne, Heitzig and Reinhold [18]. There are also succinct/compact data structures which can
represent arbitrary binary relations [6,7], interval graphs, chordal graphs and finally arbitrary
graphs among many others [1, 2, 12,13, 20,33]. Recently, a new parameter called twin-width,
which can be defined on posets, graphs and more generally matrices, was introduced by
Bonnet et al. [9] and it is shown that the twin-width of posets is linear in their Dilworth’s
width [5]. A compact data structure for matrices with fixed twin-width was proposed [36].

1.1 Main Results
We denote by n the number of elements in a poset and its width by k. We first show that by
considering not generally labeled posets but topologically labeled posets, the space complexity
of Farzan and Fischer’s data structure can be reduced to 2n(k− 1) + o(nk) bits (Section 3.2).
This is succinct for non-constant k = o(n

log n) (see Section 3.1). Also, we propose two
alternative data structures to store topologically labeled posets. Our first data structure can
support queries on transitive reduction graphs (defined in Section 2.2) faster than their data
structure though queries on transitive closure graphs are slower (Section 3.3). The other
data structure can support the queries on both the transitive reduction and transitive closure
graphs faster though the space increases to 3nk − 2n + o(nk) bits (Section 3.4).

Table 1 shows the comparison of time complexity of queries among the modified version of
Farzan and Fischer’s data structure in Section 3.2, the proposed data structure in Section 3.3
and another one in Section 3.4.

Our other contributions are to compress some of these data structures into less space
(Section 3.5) and to make these data structures dynamic (Appendix B). The dynamic versions
support the operation of adding an element to the poset.

1.2 Application
Blockchain is a technology for a public ledger of cryptocurrencies like Bitcoin, and was
proposed by Satoshi Nakamoto in 2009 [34]. In Blockchain, blocks storing the data of
transactions are linked in a chain, which has a scalability problem. In order to solve this
problem, some protocols called BlockDAG are proposed in which the blocks are connected
in a directed acyclic graph (DAG) instead of a chain. Typical BlockDAG protocols are
PHANTOM and GHOSTDAG [37].

T. Yanagita, S. Chakraborty, K. Sadakane, and S. R. Satti 33:3

Let G = (V, E) be a DAG where V = {1, 2, . . . , n}, E ⊆ V × V . The DAG class of
BlockDAG satisfies the conditions below:
1. ∀(u, v) ∈ E, v < u;
2. Only one sink (i.e., a vertex with no outgoing edges); and
3. If (u, v1), (u, v2) ∈ E, then there is no path from v1 to v2.

In Condition 1, < is the standard total order on V , i.e. 1 < 2 < . . . < n. We call DAGs
that satisfy Condition 1 as topologically labeled DAGs. Conditions 1 and 2 imply that the
node labeled 1 is the sink and the DAG is connected. DAGs which satisfy Condition 3 are
called transitive reduction graphs [3]. If we remove the sink from G, then the DAG class has
one-to-one correspondence to posets labeled by a topological order.

For a Blockchain, its corresponding graph is a chain (path), which has width 1. For a
BlockDAG, it is expected that the graph has small width k. It is therefore worth giving a
space-efficient representation for graphs with small width.

2 Preliminaries

2.1 Chain Decomposition
A partially ordered set or a poset is a set with a binary relation which is reflexive, antisymmetric
and transitive. We denote a poset by P = (V,⪯) where V = {1, 2, . . . , n} and ⪯ is the
relation. For any a, b, c ∈ V , the following holds:

reflexivity: a ⪯ a,
antisymmetry: if a ⪯ b and b ⪯ a, then a = b,
transitivity: if a ⪯ b and b ⪯ c, then a ⪯ c.

When u ⪯ v and u ̸= v, we denote it by u ≺ v. We say that a poset is topologically labeled if
u ⪯ v ⇒ u ≤ v for any u, v ∈ V where ≤ is the standard total order on V . In 1950, Dilworth
showed the duality between chains and antichains of posets [16].

▶ Definition 1 (Antichain). A ⊆ V is an antichain of P if any two elements in A are
unordered on P.

▶ Definition 2 (Chain). C ⊆ V is a chain of P if C is totally ordered on P.

▶ Definition 3 (Chain Decomposition). A set of disjoint sets {Cp}k′−1
p=0 is a chain decomposition

of P if Cp is a chain of P for all p ∈ {0, 1, . . . , k′ − 1} and
⋃k′−1

p=0 Cp = V .

▶ Theorem 4 (Dilworth’s Theorem [16]). The maximum size of an antichain is equal to the
minimum number of chains in any chain decomposition.

The maximum size of antichain is called Dilworth’s width or simply width and we denote
it by k. Fulkerson found that Dilworth’s theorem is equivalent to König’s theorem and
the minimal chain decomposition can be obtained by solving a maximum matching on
a bipartite graph [23]. It can be solved in O(n2.5) time by using Hopcroft and Karp’s
algorithm [27]. The time complexity to calculate the minimal chain decomposition can be
reduced to O(kn2) [14, 15].

2.2 Transitive Closure Graphs vs. Transitive Reduction Graphs
Transitive closure and transitive reduction are well-researched topics since 1970s. Given a
poset P, we define its transitive closure graph and transitive reduction graph as follows.

SWAT 2022

33:4 Space-Efficient Data Structure for Posets

▶ Definition 5 (Transitive Closure Graph). A transitive closure graph of P is a DAG GC =
(V, EC) where EC = {(u, v) ∈ V × V ; v ≺ u}.

▶ Definition 6 (Transitive Edge). A transitive edge of a DAG G = (V, E) is an edge (u, v) ∈ E

such that there exists a path from u to v other than the path going through the edge (u, v).

▶ Definition 7 (Transitive Reduction Graph). A transitive reduction graph of P is a DAG
GR = (V, ER) where ER is a set such that all the transitive edges are removed from EC .

Aho, Garey and Ullman generalized the transitive reduction to binary relations [3]. If
the binary relation is antisymmetric, the transitive reduction graph is unique. Thus, the
transitive reduction graph of a poset is unique. They also proved that both directions of
the conversions between a transitive closure graph and a transitive reduction graph have
algorithms of same time complexity.

The conversions between a transitive reduction graph and a transitive closure graph can
be obtained in O(n2.37286) time by using boolean matrix multiplication algorithm [4, 21].
They can also be calculated in O(nmR + mC) time [25] where mR = |ER| and mC = |EC |,
and this time complexity is O(kn2) since mR ≤ kn and mC ≤ n(n− 1)/2.

Definition 7 is essentially equivalent to Condition 3 of the definition of BlockDAG in
Section 1.2. The transitive reduction graphs are essentially same as Hasse diagrams of posets.
A poset can be represented either by its transitive closure graph or its transitive reduction
graphs.

2.3 Queries on Posets
In this section, we introduce the queries that are supported by our data structures for posets,
or transitive closure/reduction graphs. We consider the following six queries:

adjGC
(u, v) · · · return 1 if (u, v) ∈ EC and otherwise 0;

succGC
(v) · · · return the set {u ∈ V ; (v, u) ∈ EC};

predGC
(v) · · · return the set {u ∈ V ; (u, v) ∈ EC};

adjGR
(u, v) · · · return 1 if (u, v) ∈ ER and otherwise 0;

succGR
(v) · · · return the set {u ∈ V ; (v, u) ∈ ER};

predGR
(v) · · · return the set {u ∈ V ; (u, v) ∈ ER}.

In particular, adjGR
(u, v) = 1 ⇒ adjGC

(u, v) = 1 holds for all u, v ∈ V and succGR
(v) ⊆

succGC
(v) and predGR

(v) ⊆ predGC
(v) also hold for any v ∈ V .

We also define some terminologies and utility functions. Given a chain decomposition of
a poset, node index is the label of a node and chain index of a node is the pair (p, i) such
that the node is the i-th node of chain p. We often specify a node not only by its node index
but also by its chain index. Function node_index(p, i) converts the chain index (p, i) into its
node index. On the other hand, function chain_index(v) converts the node index v into its
chain index. The lower bound in chain q of a node (p, i) is the node (q, j) such that j is the
maximum value which satisfies (q, j) ≺ (p, i) and we denote it by lbq(p, i). To the contrary,
the upper bound in chain q of a node (p, i) is the node (q, j) such that j is the minimum
value which satisfies (p, i) ≺ (q, j) and we denote it by ubq(p, i). When v is the node index
of (p, i), we define lbq(v) = lbq(p, i) and ubq(v) = ubq(p, i).

2.4 Succinct Data Structures
In this paper, we discuss data structures in the word-RAM model [22], which supports
reading, writing, arithmetic operations and bitwise operations on a word of w = Ω(log N)
bits in constant time, where N is the size of data. We make use of some of the basic succinct
data structures such as bitvector, string and permutation.

T. Yanagita, S. Chakraborty, K. Sadakane, and S. R. Satti 33:5

A bitvector data structure stores a sequence N bits, B[1 . . . N] and supports random
access and rank/select queries described below:

B[i] · · · return i-th element;
rankc(B, i) · · · return the number of j ∈ {1, 2, . . . , min{i, n}} such that B[j] = c;
selectc(B, i) · · · return inf{j ∈ N; rankc(B, j) ≥ i}.

Note that selectc(B, i) returns ∞ when i is greater than the number of c’s in B. All of these
queries can be supported in constant time using a data structure whose space complexity is
N + o(N) bits [28]. It can also be compressed into log

(
N
M

)
+ o(N) bits [11,35] when M is

the number of 1s in the bitvector.
String S[1 . . . N] is a generalisation of the bitvector into a sequence of characters from the

alphabet {0, 1, . . . , L− 1} instead of bits in {0, 1}. A succinct string data structure supports
random access and rank/select queries for each c ∈ {0, 1, . . . , L − 1}. Random access and
rank queries can be calculated in O(log log L) time and select query can be computed in
O(1) time, and the data structure can be stored in N log L + o(N log L) bits of space [24].
Moreover, the wavelet tree [26] data structure can be used to support all three operations in
O(log L) time.

A permutation data structure represents a bijection π : {1, 2, . . . , N} → {1, 2, . . . , N}
and supports the queries π(i) and π−1(i) for all i = 1, 2, . . . , N . The permutation data
structure of Munro et al. [31] supports π(i) in constant time and π−1(i) in O(1/ϵ) time using
(1 + ϵ)N log N + N + o(N) bits, for any parameter 0 < ϵ ≤ 1.

2.5 Farzan and Fischer’s Data Structure [19]
Let P be a poset on n elements with Dilworth’s width k, and let {Cp}p∈Σ be one of the
minimal chain decompositions of P where Σ = {0, 1, . . . , k − 1}. Farzan and Fischer’s data
structure consists of a permutation π, a bitvector B and bitvectors Dpq for each p, q ∈ Σ such
that p ̸= q. The permutation π is the bijection of V → V and it uses (1 + ϵ)n log n + n + o(n)
bits of space for any ϵ ∈ (0, 1]. The length of the bitvector B is n and that of Dpq is |Cp|+|Cq|
for each p, q ∈ Σ, p ̸= q. We store auxiliary structures to support rank and select queries on
each of the bit vectors (B and Dpq, for each p, q ∈ Σ, p ̸= q). Thus the space complexity of
the whole data structure is

(1+ϵ)n log n+n+o(n)+

n +
∑

p,q∈Σ, p ̸=q

(|Cp|+|Cq|)

 (1+o(1)) = (1+ϵ)n log n+2nk+o(nk)

bits.
Permutation π and bitvector B represent the correspondence between node indices and

chain indices. We construct π so that π−1(v) = i+
∑

q<p|Cq| for each v ∈ V where (p, i) is the
chain index of v. In other words, π reorders the nodes from the lexicographical order of chain
indices to the order of node indices. Also, we construct B in such a way that B[j] = 1 if and
only if there exists p ∈ Σ which satisfies j =

∑
q≤p|Cq|; B essentially represents the length

of the individual chains in the decomposition (note that one can store B in a compressed
form, but this would not change the overall space complexity). Then, node_index(v) and
chain_index(p, i) are implemented as Algorithms 1 and 2 respectively. The time complexity
of node_index(v) is O(1) and that of chain_index(v) is O(1/ϵ).

For each p, q ∈ Σ, p ̸= q, Dpq is constructed as Dpq = 0δ0
pq 1 0δ1

pq 1 . . . 0δ
|Cp|−1
pq 1 0δ

|Cp|
pq where

δi
pq is an increase of the number of edges on GC from node (p, i + 1) to nodes in chain

q as compared with node (p, i). We consider that there is no outgoing edge from node
(p, 0) and any node can be reached from node (p, |Cp|+1). In particular,

∑
i<i′ δi

pq = |{j ∈

SWAT 2022

33:6 Space-Efficient Data Structure for Posets

Algorithm 1 convert chain index to node index.

1: procedure node_index(p, i)
2: a := i + select1(B, p)
3: return π(a)

Algorithm 2 convert node index to chain index.

1: procedure chain_index(v)
2: a := π−1(v)
3: p := rank1(B, a− 1)
4: return (p, a− select1(B, p))

J ; (q, j) ≺ (p, i′)}| for all i′ ∈ {0, 1, . . . , |Cp|+1} where J = {1, 2, . . . , |Cq|}. By using Dpq,
we can obtain the lower bound and the upper bound in chain q of node (p, i) in constant
time with Algorithm 3 and 4. An edge from node (p, i) to node (q, j) is a transitive edge
when j < lower_bound(p, i, q) because there exists a path which goes over lbq(p, i). Node
(p, i) does not have a path to node (q, j) when j > lower_bound(p, i, q) since if there is such
a path, lbq(p, i) ≺ (q, j) ≺ (p, i) and it contradicts the definition of lower bound.

Algorithm 3 return j if (q, j) is the largest node reachable from (p, i).

1: procedure lower_bound(p, i, q)
2: if p = q then return i− 1
3: else return select1(Dpq, i)− i

Then, we can implement the algorithms for the six queries mentioned in Section 2.3 as
follows. First, adjGC

(u, v) = 1 if and only if lbq(u) ⪯ v for such q that v ∈ Cq. Hence, all
we have to do in order to compute adjGC

(u, v) is to check j ≤ lower_bound(p, i, q) when
(p, i) is the chain index of u and (q, j) is that of v. The bottleneck of the computation is the
conversions to chain indices and the time complexity of adjGC

(u, v) is O(1/ϵ). Also, succGC
(v)

(respectivly, predGC
(v)) can be calculated by collecting all the nodes less (respectively, greater)

than or equal to lbp(v) (respectively, ubp(v)) for all p ∈ Σ. The time complexities of succGC
(v)

and predGC
(v) are both O(1/ϵ + k + t) where t is the size of the output.

To compute adjGR
(u, v), we need to check that there is no path from u to v other than the

direct edge (u, v). If there exists p ∈ Σ such that ubp(v) ⪯ lbp(u), there exists a non-direct
path which goes through ubp(v) since v ≺ ubp(v) ⪯ lbp(u) ≺ u. Thus, adjGR

(u, v) = 1 if and
only if adjGC

(u, v) = 1 and lbp(u) ≺ ubp(v) for all p ∈ Σ. Checking lbp(u) ≺ ubp(v) for all
p ∈ Σ costs O(1/ϵ+k) time and therefore the time complexity of adjGR

(u, v) is also O(1/ϵ+k).
It can be easily observed that succGR

(v) = {u ∈ L(v); adjGR
(v, u) = 1} and predGR

(v) =
{u ∈ U(v); adjGR

(u, v) = 1} where L(v) = {lbp(v); p ∈ Σ} and U(v) = {ubp(v); p ∈ Σ}.
Hence, the time complexities of succGR

(v) and predGR
(v) are both O(1/ϵ + k2).

3 Improved Data Structures

3.1 Lower Bound on Space
Let Zk(n) be the number of topologically labeled posets and Xk(n) be the number of
unlabeled posets. As written in Section 1, the number of generally labeled posets Nk(n)
satisfies

Nk(n) ≥ n!
k! 4n(k−1)n−24k(k−1).

T. Yanagita, S. Chakraborty, K. Sadakane, and S. R. Satti 33:7

Algorithm 4 return j if (q, j) is the smallest node reachable to (p, i).

1: procedure upper_bound(p, i, q)
2: if p = q then return i + 1
3: else return select0(Dqp, i)− i + 1

Each unlabeled posets has at most n! distinct labeling, therefore n! ·Xk(n) ≥ Nk(n) holds.
It is clear that Zk(n) ≥ Xk(n) and the information-theoretic lower bound on the number of
topologically labeled posets is

log Zk(n) ≥ 2n(k − 1)−Θ(k2 log n)

bits. Thus, it is possible to compress posets into space which is linear in n with fixed k when
the posets are topologically labeled.

3.2 Modified Farzan and Fischer’s Data Structure

In this section, we adapt Farzan and Fischer’s data structure in Section 2.5 for topologically
labeled posets and make its space close to the lower bound in Section 3.1. In order to do
so, we replace the permutation π and the bitvector B with a string S. Eventually, this data
structure consists of the string S and the bitvectors Dpq (p, q ∈ Σ, p ̸= q).

The length of S is n, its alphabet is Σ and S[v] = p if v ∈ Cp. String S plays the role
of storing information of the correspondence between node indices and chain indices, as
well as π and B in Section 2.5 do. By using S, node_index(p, i) and chain_index(v) can
be calculated by Algorithms 5 and 6, respectively. Since selectp takes O(1) time and rankp

takes O(log log k) time, node_index(p, i) can be supported in O(1) time and chain_index(v)
in O(log log k) time.

Algorithm 5 convert chain index to node index.

1: procedure node_index(p, i)
2: return selectp(S, i)

Algorithm 6 convert node index to chain index.

1: procedure chain_index(v)
2: p := S[v]
3: return (p, rankp(S, v))

Then, adjGC
(u, v) can be computed in O(log log k) time, succGC

(v) and predGC
(v) in

O(k + t) time where t is the size of output, adjGR
(u, v) in O(k) time, and succGR

(v) and
predGR

(v) in O(k2) time. Also, the total space of the data structure isn log k +
∑

p,q∈Σ, p ̸=q

(|Cp|+|Cq|)

 (1 + o(1)) = 2n(k − 1) + o(nk)

bits. For non-constant k = o(n
log n), this data structure is succinct since Θ(k2 log n) = o(nk).

SWAT 2022

33:8 Space-Efficient Data Structure for Posets

Figure 1 Example of a poset and its encoding.

3.3 Proposed Data Structure
The data structure in Section 3.2 can perform queries on GC fast, whereas it is slow to do
queries on GR. However, when we have to run some BFS/DFS-based algorithm, such as
algorithms to solve a shortest path problem on GR or a longest path problem, it is required
to do such queries on GR faster. For this reason, we propose a new data structure which can
support queries on GR faster.

Our data structure consists of a string S and bitvectors Ipq, Opq (p, q ∈ Σ). The string
S is same as the one in Section 3.2. The lengths of Ipq and Opq are both equal to |Cp|.
Therefore, the total space of our data structure is(

n log k + 2k ·
k−1∑
p=0
|Cp|

)
(1 + o(1)) = 2nk + o(nk)

bits. Ipq[i] = 1 when node (p, i) has an incoming edge from some node of chain q and
otherwise Ipq[i] = 0. Similarly, Opq[i] = 1 when node (p, i) has an outgoing edge to some
node of chain q and otherwise Opq[i] = 0. In Figure 1, the left graph is an example of a
transitive reduction graph of a poset with n = 15 and k = 3 and its encoding is shown in the
right side.

If there exists an edge (u, v) ∈ ER such that u ∈ Cp and v ∈ Cq, there is no edge
(u′, v′) ∈ ER \ {(u, v)} which satisfies u′ ∈ Cp, v′ ∈ Cq and u ⪯ u′, v ⪰ v′. This is because
when there exists such an edge (u′, v′), then u ⪯ u′ ≺ v′ ⪯ v and (u, v) becomes a transitive
edge since (u, v) ̸= (u′, v′). Therefore, the incoming edge corresponding to the i-th 1 of Ipq is
the same as the outgoing edge corresponding to the i-th 1 of Oqp.

Let ER(K) = {(u, v) ∈ ER; u ∈ Ci, v ∈ Cj , i, j ∈ K} for each K ⊆ Σ. We define
functions called nearest_dst(p, i, q) and nearest_src(p, i, q) which return the second element
of chain index of the nearest node in chain q reachable from (respectively, reachable to)
the node (p, i) through the edges in ER({p, q}). If there is no such node, then it returns 0
(respectively, ∞). These can be calculated by Algorithms 7 and 8 in constant time.

Algorithm 7 return the nearest destination in chain q from the node (p, i).

1: procedure nearest_dst(p, i, q)
2: return select1(Iqp, rank1(Opq, i))

Algorithm 8 return the nearest source in chain q to the node (p, i).

1: procedure nearest_src(p, i, q)
2: return select1(Oqp, rank1(Ipq, i− 1) + 1)

T. Yanagita, S. Chakraborty, K. Sadakane, and S. R. Satti 33:9

Other utility functions we defined are lower_bounds(v) and upper_bounds(v). These
functions return an array of length k which stores the node indices of lbp(v) (respectively,
ubp(v)) for each p ∈ Σ. If there is no such node, then it stores 0 (respectively, ∞). The
algorithms of lower_bounds(v) and upper_bounds(v) are shown in Algorithm 9 and 10.
These algorithms use the data structures known as priority queue. priority_queue≤ and
priority_queue≥ support push(p, i) to push a new node (p, i), pop() to pop out the node
of the largest (respectively, smallest) node index, top() to access the node of the largest
(respectively, smallest) node index and update(p, i) to update the node (p, ∗) in the priority
queue to (p, i) if the node index of (p, i) is larger (respectively, smaller) than that of (p, ∗).
Incidentally, we regard the node index of (∗, 0) as 0 and that of (∗,∞) as∞. Remind that the
conversion from chain index to node index can be done in constant time, therefore comparing
nodes by node index does not affect the time complexities. In this paper, we use Relaxed
Heap [17] which supports push(p, i), top(p, i), and update(p, i) in O(1) time and pop(p, i) in
O(log N) time where N is the number of elements in the priority queue.

Algorithm 9 return the largest nodes reachable from v in each chain.

1: procedure lower_bounds(v)
2: array R[0 . . . k − 1] := {0, . . . , 0}
3: priority_queue≤ Q := {(0, 0), (1, 0), . . . , (k − 1, 0)}
4: (p0, i0) := chain_index(v)
5: Q.update(p0, i0)
6: while Q ̸= ∅ do
7: (p, i) := Q.top()
8: Q.pop()
9: if i = 0 then break

10: R[p]← node_index(p, i)
11: for q = 0, 1, . . . , k − 1 do
12: if R[q] ̸= 0 then continue
13: j := nearest_dst(p, i, q)
14: Q.update(q, j)
15: R[p0]← node_index(p0, i0 − 1)
16: return R

In Algorithms 9 and 10, the while loop iterates at most k times because priority queue
Q has k elements before the while loop and the elements are popped one by one in each
iteration. The bottleneck of lower_bounds(v) and upper_bounds(v) is the for loop. The
statements in it run at most k2 times and the time complexity of the whole algorithm is
O(k2).

The correctness of Algorithm 9 can be shown as follows. Trivially, each element of R

is updated in line 10 at most once before reaching line 15. Let K ⊆ Σ be a set of the
indices such that the elements of R corresponding to them have been already updated and
K̄ = Σ \K. In the while loop, assume that R[p′] correctly stores the largest node v′ in chain
p′ such that v′ ⪯ v when p′ ∈ K. Let u be the node index of the node (p, i) declared in line 7.
If i = 0, it means that the nodes in Cp cannot be reached from v and the nodes in

⋃
p′∈K̄ Cp′

cannot be either because Q = {(p′, 0); p′ ∈ K̄} holds since the node indices of all the nodes
in Q are not larger than the node index of (p, 0). Otherwise, it is easy to observe that node
u is the largest destination reachable from v through the edges in ER(K ∪ {p}). If there
exists a node w ∈

⋃
p′∈K̄\{p} Cp′ such that u ≺ w ≺ v, then for some p′ ∈ K̄ \ {p}, there

SWAT 2022

33:10 Space-Efficient Data Structure for Posets

Algorithm 10 return the smallest nodes reachable to v in each chain.

1: procedure upper_bounds(v)
2: array R[0 . . . k − 1] := {∞, . . . ,∞}
3: priority_queue≥ Q := {(0,∞), (1,∞), . . . , (k − 1,∞)}
4: (p0, i0) := chain_index(v)
5: Q.update(p0, i0)
6: while Q ̸= ∅ do
7: (p, i) := Q.top()
8: Q.pop()
9: if i =∞ then break

10: R[p]← node_index(p, i)
11: for q = 0, 1, . . . , k − 1 do
12: if R[q] ̸=∞ then continue
13: j := nearest_src(p, i, q)
14: Q.update(q, j)
15: R[p0]← node_index(p0, i0 + 1)
16: return R

exists at least one node w′ ∈ Cp′ such that u ≺ w′ and w′ can be reached from v through the
edges in ER(K ∪ {p′}), and there also exists a node w′′ ∈ Cp′ which satisfies w′′ ∈ Q and
w′ ⪯ w′′. However, u < w′′ if u ≺ w′′ and it contradicts with the features of priority queue
Q. Therefore, node u is also the largest destination reachable from v through any edges in
ER. Hence, even if we update the value of R[p] into u and K into K ∪ {u}, it does not go
against the assumption, and recursively, it can be confirmed that R[p] ⪯ v holds for each
p ∈ Σ just before line 15. Finally, R[p0] is modified in line 15 not to be equal to v itself, and
then we obtain the correct answer. The correctness of Algorithm 10 can be proved in the
same way.

Using these utility functions, we can perform the six queries shown in Section 2.3. Each
algorithm of the queries are given in Algorithms 11, 12, 13, 14, 15 and 16. adjGC

(u, v) can
be calculated in O(k2), succGC

(v) and predGC
(v) in O(k2 + t) where t is the size of output,

adjGR
(u, v) in O(1) and succGR

(v) and predGR
(v) in O(k).

Note that Ipp and Opp (p ∈ Σ) is not necessary to reconstruct the poset because
Ipp[i] = 1 if and only if lbq(p, i + 1) ≺ ubq(p, i) for all q ∈ Σ and Opp[i] = 1 if and only if
lbq(p, i) ≺ ubq(p, i− 1) for all q ∈ Σ. Remind that lower_bounds(v) and upper_bounds(v)
can be obtained without using Ipp and Opp (p ∈ Σ) since the arguments never be p = q in
line 13 of Algorithm 9 and 10. The total space of Ipp and Opp (p ∈ Σ) is(

2 ·
k−1∑
p=0
|Cp|

)
(1 + o(1)) = 2n + o(n)

bits. Thus, when we do not store them, the space of the data structure becomes 2n(k −
1) + o(nk) bits and this is close to the information theoretical lower bound in Section 3.1.
However, the space with Ipp and Opp (p ∈ Σ) is also asymptotically the same because

2nk + o(nk) = 2n(k − 1) + 2n + o(nk) = 2n(k − 1) + o(nk).

Therefore, we store them for the sake of fast response to the queries.

T. Yanagita, S. Chakraborty, K. Sadakane, and S. R. Satti 33:11

3.4 Faster Index
We also propose another data structure which is efficient to compute all six queries at the
extra expense of space. The idea of this data structure is based on the modified version of
Farzan and Fischer’s data structure in Section 3.2. This data structure consists of three
components: string S, bitvectors Dpq (p, q ∈ Σ, p ̸= q) and bitvectors Tv (v ∈ V).

The string S and the bitvectors Dpq is same as the one in Section 3.3. The bitvectors
Tv has length k for each v ∈ V and represents whether node v has a non-transitive edge to
each chain or not. If one of the edges on GC from node v to the node in chain p is not a
transitive edge, then Tv[p] = 1.

The string S requires n log k + o(n log k) bits, the bitvector Dpq does |Cp|+|Cq|+o(|Cp|
+ |Cq|) bits for each p, q ∈ Σ, p ̸= q and the bitvector Tv does k + o(k) bits for each v ∈ V .
Thus, the total space of the data structure isn log k +

∑
p,q∈Σ, p ̸=q

(|Cp|+|Cq|) +
∑
v∈V

k

 (1 + o(1)) = 3nk − 2n + o(nk)

bits.
On this data structure, node_index(p, i) and chain_index(v) can be done by Algorithm 5

and 6. Also, adjGC
(u, v), succGC

(v) and predGC
(v) can be computed in the same way as

mentioned in Section 3.2.
adjGR

(u, v), succGR
(v) and predGR

(v) can be calculated by the following ways. The edge
from (p, i) to lbq(p, i) is a non-transitive edge when Tv[q] = 1 where v is the node index
of (p, i). Thus, adjGR

(u, v) returns 1 if and only if lower_bound(p, i, q) = j and Tu[q] = 1
where (p, i) is a chain index of u and (q, j) is that of v. The bottleneck of adjGR

(u, v) is the
conversions from node indices to chain indices and adjGR

(u, v) can be obtained in O(log log k)
time. succGR

(v) can be computed by the process that collects the node index of lbq(p, i)
for all q ∈ Σ such that Tv[q] = 1 where (p, i) is a chain index of v. When we only iterate q

which satisfies the condition Tv[q] = 1 by using select query on Tv, the time complexity is
O(log log k + t) where t is the size of output. predGR

(v) can be computed in O(k) time by
the process that checks whether node ubq(p, i) is adjacent to node v on GR for each q ∈ Σ
where (p, i) is a chain index of v.

3.5 Higher Order Compression
First, we consider the data structure in Section 3.3. Let mpq be the number of 1s in bitvector
Ipq for each p, q ∈ Σ. It is obvious that mpq is also the number of 1s in bitvector Oqp for
each p, q ∈ Σ and

∑
p,q∈Σ mpq = mR. When we use the compressed bitvectors for each Ipq

and Opq, the space complexity of the whole data structure becomes

n log k + 2 ·
∑

p,q∈Σ
log
(
|Cp|
mpq

)
+ o(nk) ≤ 2 log

(
nk

mR

)
+ o(nk)

bits.
The data structure in Section 3.4 can also be compressed. Let m′

v be the number of 1s
in bitvectors Tv for each v ∈ V . Then,

∑
v∈V m′

v = mR. The space complexity of the data
structure becomes

n log k +
∑

p,q∈Σ, p ̸=q

(|Cp|+|Cq|) +
∑
v∈V

log
(

k

m′
v

)
+ o(nk) ≤ log

(
nk

mR

)
+ 2n(k − 1) + o(nk)

bits if we use compressed bitvectors for each Tv.

SWAT 2022

33:12 Space-Efficient Data Structure for Posets

4 Conclusions

On the DAGs of BlockDAG, the growth of the width is much less likely than the depth,
which is the longest path of the DAG. Thus, the space to store them can be almost linear in
the number of elements with the data structures we consider in Section 3. This is one of
the advantages that the other existing data structures do not have. Also, we provide the
trade-off among time of the queries on GC , time on GR and space.

There remain some open problems such as:
Can adding operation in the dynamic data structure be faster?
Can the time of construction of these data structures be reduced by calculating the chain
decomposition approximately?

It would be also interesting to consider other queries.

References
1 H. Acan, S. Chakraborty, S. Jo, K. Nakashima, K. Sadakane, and S. R. Satti. Succinct

representations of intersection graphs on a circle. In 31st Data Compression Conference, DCC
2021, Snowbird, UT, USA, March 23-26, 2021, pages 123–132. IEEE, 2021.

2 H. Acan, S. Chakraborty, S. Jo, and S. R. Satti. Succinct data structures for families of
interval graphs. In Algorithms and Data Structures - 16th International Symposium, WADS
2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, volume 11646 of Lecture Notes
in Computer Science, pages 1–13. Springer, 2019.

3 A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed graph.
SIAM Journal on Computing, 1(2):131–137, 1972.

4 J. Alman and V. V. Williams. A refined laser method and faster matrix multiplication.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
522–539. ACM-SIAM, 2021.

5 J. Balabán and P. Hliněný. Twin-width is linear in the poset width. In 16th International
Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 6:1–6:13, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

6 J. Barbay, F. Claude, and G. Navarro. Compact binary relation representations with rich
functionality. Information and Computation, 232:19–37, 2013.

7 J. Barbay, M. He, J. I. Munro, and S. R. Satti. Succinct indexes for strings, binary relations
and multilabeled trees. ACM Transactions on Algorithms, 7(4), 2011.

8 Garrett Birkhoff. On the structure of abstract algebras. Mathematical Proceedings of the
Cambridge Philosophical Society, 31(4):433–454, 1935.

9 É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width I: Tractable FO model
checking. Journal of the ACM, 69(1), 2021.

10 G. Brightwell and S. Goodall. The number of partial orders of fixed width. Order, 13(4):315–337,
1996.

11 A. Brodnik and J. I. Munro. Membership in constant time and almost-minimum space. SIAM
Journal on Computing, 28(5):1627–1640, 1999.

12 S. Chakraborty, S. Jo, K. Sadakane, and S. R. Satti. Succinct data structures for series-parallel,
block-cactus and 3-leaf power graphs. In Combinatorial Optimization and Applications - 15th
International Conference, COCOA 2021, Tianjin, China, December 17-19, 2021, Proceedings,
volume 13135 of Lecture Notes in Computer Science, pages 416–430. Springer, 2021.

13 S. Chakraborty, S. Jo, K. Sadakane, and S. R. Satti. Succinct data structures for small
clique-width graphs. In 31st Data Compression Conference, DCC 2021, Snowbird, UT, USA,
March 23-26, 2021, pages 133–142. IEEE, 2021.

14 Y. Chen and Y. Chen. On the DAG decomposition. British Journal of Mathematics &
Computer Science, 10:1–27, 2015.

T. Yanagita, S. Chakraborty, K. Sadakane, and S. R. Satti 33:13

15 C. Daskalakis, R. M. Karp, E. Mossel, S. J. Riesenfeld, and E. Verbin. Sorting and selection
in posets. SIAM Journal on Computing, 40(3):597–622, 2011.

16 R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51(1):161–166, 1950.

17 J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: An alternative
to Fibonacci heaps with applications to parallel computation. Communications of the ACM,
31(11):1343–1354, 1988.

18 M. Erné, J. Heitzig, and J. Reinhold. On the number of distributive lattices. The Electronic
Journal of Combinatorics, 9, 2002.

19 A. Farzan and J. Fischer. Compact representation of posets. In Proceedings of the 22nd
International Conference on Algorithms and Computation (ISAAC), pages 302–311, Berlin,
Heidelberg, 2011. Springer-Verlag.

20 A. Farzan and J. I. Munro. Succinct encoding of arbitrary graphs. Theoretical Computer
Science, 513:38–52, 2013.

21 M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and transitive closure. In 12th
Annual Symposium on Switching and Automata Theory (swat 1971), pages 129–131, 1971.

22 M. L. Fredman and D. E. Willard. Blasting through the information theoretic barrier with
fusion trees. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing (STOC), pages 1–7, New York, NY, USA, 1990.

23 D. R. Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets.
Proceedings of the American Mathematical Society, 7(4), 1956.

24 A. Golynski, J. I. Munro, and S. R. Satti. Rank/select operations on large alphabets: A
tool for text indexing. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithm (SODA), pages 368–373, USA, 2006. Society for Industrial and Applied
Mathematics.

25 A. Goralčíková and V. Koubek. A reduct-and-closure algorithm for graphs. In Mathematical
Foundations of Computer Science 1979, pages 301–307, Berlin, Heidelberg, 1979. Springer
Berlin Heidelberg.

26 R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 841–850, USA, 2003. Society for Industrial and Applied Mathematics.

27 J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

28 G. J. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon University,
USA, 1988. AAI8918056.

29 D. J. Kleitman and B. L. Rothschild. Asymptotic enumeration of partial orders on a finite set.
Transactions of the American Mathematical Society, 205:205–220, 1975.

30 J. I. Munro and P. K. Nicholson. Succinct posets. Algorithmica, 76(2):445–473, 2016.
31 J. I. Munro, R. Raman, V. Raman, and S. R. Satti. Succinct representations of permutations

and functions. Theoretical Computer Science, 438:74–88, 2012.
32 J. I. Munro and C. Sinnamon. Time and space efficient representations of distributive lattices.

In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 550–567. ACM-SIAM, 2018.

33 J. I. Munro and K. Wu. Succinct data structures for chordal graphs. In 29th International
Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan, volume 123 of LIPIcs, pages 67:1–67:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

34 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at
https://metzdowd.com, 2009. URL: https://bitcoin.org/bitcoin.pdf.

35 R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM Journal on
Computing, 31(2):353–363, 2001.

SWAT 2022

https://bitcoin.org/bitcoin.pdf

33:14 Space-Efficient Data Structure for Posets

36 M. Pilipczuk, M. Sokołowski, and A. Zych-Pawlewicz. Compact representation for matrices of
bounded twin-width. In 39th International Symposium on Theoretical Aspects of Computer
Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 52:1–52:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

37 Y. Sompolinsky, S. Wyborski, and A. Zohar. Phantom ghostdag: A scalable generalization
of Nakamoto consensus: September 2, 2021. In Proceedings of the 3rd ACM Conference on
Advances in Financial Technologies, pages 57–70, New York, NY, USA, 2021.

A Pseudo Codes

Algorithm 11 whether (u, v) ∈ EC .

1: procedure adjGC
(u, v)

2: R := lower_bounds(v)
3: (p, ignore) := chain_index(u)
4: if u ≤ R[p] then return 1
5: else return 0

Algorithm 12 return out-neighbors of node v on GC .

1: procedure succGC
(v)

2: T := ∅
3: R := lower_bounds(v)
4: for p = 0, 1, . . . , k − 1 do
5: c := rankp(S, R[p])
6: for i = 1, 2, . . . , c do
7: u := node_index(p, i)
8: T ← T ∪ {u}
9: return T

Algorithm 13 return in-neighbors of node v on GC .

1: procedure predGC
(v)

2: T := ∅
3: R := upper_bounds(v)
4: for p = 0, 1, . . . , k − 1 do
5: c := rankp(S, R[p])
6: d := rankp(S, n)
7: for i = c, c + 1, . . . , d do
8: u := node_index(p, i)
9: T ← T ∪ {u}

10: return T

T. Yanagita, S. Chakraborty, K. Sadakane, and S. R. Satti 33:15

Algorithm 14 whether (u, v) ∈ ER.

1: procedure adjGR
(u, v)

2: (p, i) := chain_index(u)
3: (q, j) := chain_index(v)
4: if u ̸= v and Opq[i] = Iqp[j] = 1 and rank1(Opq, i) = rank1(Iqp, j) then
5: return 1
6: else
7: return 0

Algorithm 15 return out-neighbors of node v on GR.

1: procedure succGR
(v)

2: T := ∅
3: (p, i) := chain_index(v)
4: for q = 0, 1, . . . , k − 1 do
5: if Opq[i] = 1 then
6: u := node_index(q, nearest_dst(p, i, q))
7: T ← T ∪ {u}
8: return T

B Dynamic Data Structures

In BlockDAG application, the required operation to modify posets is only adding to the
transitive reduction graph a node with some non-transitive edges outgoing from the new
node. There is an algorithm called peeling introduced by Daskalakis et al. [15]. Given a
poset and its chain decomposition of size k′ ≤ 2k as inputs, this algorithm reduces the size
of the chain decomposition to k one by one in each iteration and returns the minimal chain
decomposition. What we have to do in order to realize the adding operation is that add the
new node to a new chain, run the iteration of peeling algorithm once to obtain the minimal
chain decomposition and modify the data structure.

According to their paper, lookup tables of lbp(v) and ubp(v) for each v ∈ V and p ∈ Σ is
required to call peeling algorithm. They named the tables chainmerge. Chainmerge can be
constructed in O(nk) time for the data structure in Sections 3.2 and 3.4 and O(nk2) time
for the data structure in Section 3.3. One iteration of peeling algorithm takes O(nk) time.
Even if we create new strings and bitvectors of the whole data structure, it requires at most
O(nk) time when the minimal chain decomposition is given. Therefore, the time complexity
of modifying the data structure is absorbed into that of the iteration of peeling algorithm.

Algorithm 16 return in-neighbors of node v on GR.

1: procedure predGR
(v)

2: T := ∅
3: (p, i) := chain_index(v)
4: for q = 0, 1, . . . , k − 1 do
5: if Ipq[i] = 1 then
6: u := node_index(q, nearest_src(p, i, q))
7: T ← T ∪ {u}
8: return T

SWAT 2022

33:16 Space-Efficient Data Structure for Posets

Algorithm 17 add to the data structure D a node with edges (n + 1, u) for each u ∈ U .

1: procedure add(D, U)
2: C := {Cp}k−1

p=0
3: Ck := {n + 1}
4: C ← C ∪ Ck

5: array LB[1 . . . n + 1][0 . . . k], UB[1 . . . n + 1][0 . . . k]
6: for v = 1, 2, . . . , n do
7: for p = 0, 1, . . . , k − 1 do
8: LB[v][p]← lbp(v)
9: UB[v][p]← ubp(v)

10: for p = 0, 1, . . . k − 1 do
11: LB[n + 1][p]← max({LB[u][p]; u ∈ U} ∪ (U ∩ Cp))
12: UB[n + 1][p]← (p,∞)
13: for v = 1, 2, . . . n do
14: LB[v][k]← (k, 0)
15: (p, i) := chain_index(v)
16: if (p, i) ≺ LB[n + 1][p] then UB[v][k]← (k, 1)
17: else UB[v][k]← (k,∞)
18: LB[n + 1][k]← (k, 0)
19: UB[n + 1][k]← (k,∞)
20: run a peeling iteration on LB, UB and C and get a minimal chain decomposition C ′

21: construct a new data structure D′ by D and C ′

22: replace D by D′

On the data structure of Section 3.2 or Section 3.4, the time complexity of adding nodes is
O(nk) per one node. Consider that adding n elements to an empty poset one by one with
this adding algorithm. Then, it costs O(n2k) time. This matches the time complexity to
construct the data structure of the poset with n elements, which is O(n2k) time and is mainly
spent by the chain decomposition and conversions between GR and GC when its minimal
chain decomposition is not given. Algorithm 17 shows the detail of the adding operation.
We construct the tables of chainmerge LB and UB from line 5 to line 19.

	p000-Frontmatter
	Preface

	p001-Bar-Noy
	1 Introduction
	1.1 Background and Motivation
	1.2 Results
	1.3 Related Work

	2 Preliminaries
	2.1 Degree Sequences of Graphs and Multigraphs
	2.2 Degree Sequences of Bipartite Graphs and Multigraphs
	2.3 Havel-Hakimi Algorithm for Bipartite Graphs

	3 Small Instances
	3.1 Output-Sensitive Algorithms: Small Number of Partitions
	3.2 Small Maximum Degree

	4 Realizations based on the Equal or High-Low partitions
	4.1 Realizations using the High-Low partition
	4.2 Realizations using the Equal partition

	5 Examples

	p002-Gasieniec
	p003-Thorup
	p004-A.Akitaya
	1 Introduction
	2 Hardness of optimal reconfiguration
	3 Input-sensitive in-place algorithm
	3.1 Gathering
	3.2 Compacting
	3.3 Transforming xy-monotone configurations
	3.4 Light configurations

	4 Experiments
	5 Conclusion

	p005-Adjiashvili
	1 Introduction
	1.1 Results
	1.2 Related Work
	1.3 Notation
	1.4 Organization

	2 Fault-Tolerant Paths
	2.1 Exact Algorithms
	2.2 Integrality Gap and Approximation Algorithms
	2.3 Approximation Hardness

	3 Fault-Tolerant Flows
	3.1 Approximation Hardness of FTF
	3.2 Approximation Algorithms
	3.3 Relation to a Problem of Open Complexity

	4 Conclusions and Future Work

	p006-Agarwal
	1 Introduction
	2 Hierarchical Partition and the Distance Function
	2.1 Hierarchical Partitioning
	2.2 Euclidean Distance Approximation

	3 Preliminaries
	4 Overview of the Algorithm
	4.1 Analysis of the algorithm

	5 Algorithm Details
	5.1 Clustering points
	5.2 Compressed residual graph
	5.3 Compressed Feasibility
	5.4 Details of the Procedures
	5.4.1 Build procedure
	5.4.2 HungarianSearch procedure
	5.4.3 Augment procedure

	A Preprocessing Step
	B Missing Proofs
	C Details of the Sync procedure

	p007-Ameer
	1 Introduction
	2 Preliminaries
	2.1 The Characterization of [9]

	3 A New Characterization of Pseudo-Polygon VGs
	4 Recognition and Reconstruction Algorithms

	p008-Angelini
	1 Introduction
	2 Preliminaries
	3 Basic Properties of Map Graphs and Their Witnesses
	4 Embedding Sketches
	5 Algorithmic Framework
	6 Open Problems

	p009-Antoniadis
	1 Introduction
	1.1 Related Work
	1.1.1 Online Energy-Efficient Scheduling
	1.1.2 Further Results on Learning Augmented Algorithms

	2 Preliminaries
	3 General Case
	4 All Jobs Have a Common Deadline
	4.1 Algorithm CommonDeadlineScheduleWithPredictions (CDSwP)

	5 Discussion on Confidence Parameters lambda and mu
	6 Conclusion
	A Calculating the y_i^t's
	B Missing Plots of Section 5

	p010-Antoniadis
	1 Introduction
	2 Inapproximability in 3 dimensions
	2.1 The construction
	2.2 Putting things together

	3 No (2-e)-approximation Algorithm
	3.1 Reduction: Vertex Cover to TSP with Line Neighborhoods

	4 A Quasipolynomial-Time Approximation Algorithm
	4.1 Chalermsook et al.'s Framework
	4.2 Arora's Algorithm
	4.3 Approximating TSPN using the framework by Chalermsook et al.

	5 Conclusion
	A Theorem 3.1 from [23]
	B Details of Section 4
	B.1 Arora's Algorithm
	B.1.1 Perturbation
	B.1.2 Construction of a shifted quadtree
	B.1.3 Dynamic Program

	B.2 Approximating TSPN using the framework by Chalermsook et al.
	B.2.1 Formulating discrete TSPN as an instance of STGST
	B.2.2 Obtaining an O(log2 n)-approximation

	p011-Aronov
	1 Introduction
	2 Multiplicatively weighted Euclidean nearest neighbors
	3 Other norms
	4 Higher dimensions
	5 Dynamic SINR queries: An application
	6 Dynamic approximate halfplane counting
	7 Discussion and open problems

	p012-Bannach
	1 Introduction
	2 Preliminaries
	3 Lower Bounds for MaxSAT and AbsSAT Based Optimization
	3.1 From Disjunctive Normal Form to Conjunctive Normal Form
	3.2 Finding an Assignment with a Certain Weight

	4 Satisfiability Based Optimization with Absolute Value Function
	4.1 A Polynomial Kernel for Unbalanced Subgraph
	4.2 From Disjunctive Normal Form to Conjunctive Normal Form

	5 Application: Absolute Integer Optimization
	6 Conclusion and Outlook

	p013-Bazgan
	1 Introduction
	2 Preliminaries
	3 Dense Bipartite Graphs
	4 Cubic Graphs
	5 Dense Graphs
	6 Conclusion

	p014-Berendsohn
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Queries in binary search trees
	2.2 Search trees on graphs
	2.3 Projections of STGs

	3 Search trees on caterpillars
	3.1 Special STGs

	4 Upper bound
	5 Lower bound
	5.1 Wilber's first lower bound for binary search trees
	5.2 Wilber's lower bound for rotation distance

	6 Conclusion

	p015-DeBerg
	1 Introduction
	2 Maintaining an optimal solution in R^1
	2.1 The structure of an optimal solution
	2.2 An efficient update algorithm

	3 A stable approximation scheme in R^1
	4 1-Stable, 2-Stable, and 3-Stable Algorithms in R^1
	5 The problem in S^1
	5.1 The structure of an optimal solution in S^1
	5.2 Non-existence of a SAS in S^1

	6 The 2-dimensional problem
	7 Concluding remarks

	p016-Bergold
	1 Introduction
	2 Well-separation and transversals
	3 Hyperplane Transversals in High Dimensions
	3.1 Finite Case
	3.1.1 Singleton sets
	3.1.2 Sets of at most two points
	3.1.3 A second reduction

	3.2 Line segments

	4 Parametrized complexity
	4.1 An FPT algorithm for d sets
	4.2 A W[1]-hardness proof

	5 Conclusion and Open Problems

	p017-Bertschinger
	1 Introduction
	2 Monotone Clearings
	2.1 The n x n Grid
	2.2 Graphs with no Monotone Clearing

	3 Transforming between Different Types of Clearings
	3.1 Monotone Clearings
	3.2 Polite and Non-Stacked Clearings

	4 Clearable Subgraphs
	5 Conclusion

	p018-Bille
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Outline

	2 The Ultra-Wide Word RAM Model
	2.1 Instructions and Componentwise Operations
	2.2 Memory Access

	3 Computing Multiply-Shift in Parallel
	4 The w-Parallel Dictionary
	4.1 Dynamic Perfect Hashing
	4.2 Parallel Queries
	4.3 Satellite Data

	5 The xtra-fast Trie
	5.1 Data Structure
	5.2 Predecessor Queries
	5.3 Insertions
	5.4 Deletions
	5.5 Reducing to Linear Space and Supporting w-bit Keys

	6 Conclusion and Open Problems

	p019-Bose
	p020-Boyar
	1 Introduction
	1.1 Previous Work
	1.2 Preliminaries
	1.3 Our Results

	2 The Adaptive Threshold Algorithm
	3 Accurate Predictions
	3.1 Positive Result
	3.2 Negative Result

	4 Untrusted Predictions
	4.1 Semi-Trusted Predictions
	4.2 Untrusted Predictions
	4.2.1 Positive Result
	4.2.2 Negative Result

	p021-Cleve
	1 Introduction
	2 Existence of NN-Decompositions on Special Points
	2.1 The Plane Case
	2.2 The non-plane case

	3 Conflict Graphs and Related Graph Classes
	4 Separators of conflict graphs and chromatic number
	5 Conclusion and open problems

	p022-Dvorak
	1 Introduction
	1.1 Bounded expansion
	1.2 Related work
	1.3 Proof outline

	2 The quantifier elimination result and its applications
	3 Deciding first-order properties in time exponential in treewidth

	p023-Elkin
	1 Introduction
	1.1 Centralized Setting
	1.2 Parallel Setting
	1.3 Hopsets, Spanners and Emulators
	1.4 Technical Overview
	1.5 Organization

	2 Construction
	3 Near-Additive Emulators for Weighted Graph
	4 Near-Additive Spanners for Weighted Graphs
	5 Efficient Implementation
	6 Almost Shortest Paths in Weighted Graphs
	6.1 PRAM Shortest Paths and Distance Oracles

	A A (3+epsilon,beta)-Hopset
	B A (3 + epsilon,beta* W)-Emulator
	C Full proof of Lemma 1
	D Proofs of Theorems 6,7
	D.1 Size analysis
	D.2 Proof of Theorem 6
	D.3 Proof of Theorem 7

	p024-Fioravantes
	1 Introduction
	2 Preliminaries
	3 (Classic) complexity
	3.1 NP-Hard Cases

	4 (In)approximability
	5 Parameterised complexity
	5.1 W-Hardness

	6 Conclusion
	A Omitted proofs
	A.1 Proof of Theorem 13
	A.2 Proof of Theorem 14

	p025-Gan
	1 Introduction
	1.1 Our contributions
	1.2 Applications of UnboundedNoisy

	2 Related Work
	3 Bounded Search with Noisy Information
	3.1 Preliminary: A Graph-based Noisy Search Algorithm
	3.2 Our Two-Stage Noisy Search Algorithm
	3.3 Proof of Corollary 3

	4 Unbounded Search Without Noise
	5 Unbounded Noisy Search
	5.1 An Existing Algorithm
	5.2 Algorithm NoSU

	6 The Lower Bound
	7 Conclusion

	p026-Gibson-Lopez
	1 Introduction
	1.1 Consistent Digital Line Segments
	1.2 Weak Consistent Digital Rays
	1.3 Our Contribution
	1.4 Organization of the Paper

	2 Upper Bound
	2.1 Preliminaries
	2.2 The Construction

	3 Lower Bound
	3.1 Trivial Lower Bounds
	3.2 Tight Lower Bound Preliminaries
	3.3 Tight Lower Bound Proof Sketch
	3.4 Formal Proof

	A Proof of Lemma 5

	p027-Huang
	1 Introduction
	1.1 Our Contribution

	2 Kernelization Framework
	3 Proof of Theorem 6
	3.1 Partition Matroids
	3.2 Laminar Matroids
	3.3 Transversal Matroids

	4 Steaming Algorithms
	5 Conclusion and Open Questions
	A An FPT-AS for Hypergraphs
	B Streaming Algorithm for Hypergraphs

	p028-Inamdar
	1 Introduction
	2 Definitions, Main Result, and Greedy Clustering
	2.1 Problem Definitions
	2.2 Main Algorithm for 4-NUkC
	2.3 Greedy Clustering

	3 From Robust t-NUkC to Colorful (t-1)-NUkC
	4 Ensuring Self-Coverage in Colorful 2-NUkC
	5 Solving Well-Separated Colorful 2-NUkC
	6 From (t+1)-NUkC to Robust t-NUkC
	A Setup for Robust t-NUkC
	B From Robust t-NUkC to Well-Separated Robust t-NUkC

	p029-Kunz
	1 Introduction
	2 Preliminaries
	3 3-Colorability
	4 Feedback Vertex Set
	5 Hamiltonian Cycle
	5.1 Gadget Expansion
	5.2 Face Filling

	6 Dominating Set and Independent Set
	7 Conclusion

	p030-Raghvendra
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Proof of Invariants
	4.1 Proof of Invariant (I1)
	4.2 Proof of Invariant (I2)
	4.3 Symmetric Difference of Valid Solutions

	5 Missing Proofs

	p031-Rahman
	1 Introduction
	2 Results
	3 Upper bounds
	3.1 F plays last
	3.2 T plays last

	4 Lower bounds
	4.1 Notation
	4.2 F plays last
	4.3 T plays last

	p032-Wang
	1 Introduction
	2 Unit-disk range searching
	2.1 Reducing the problem to pairs of grid cells
	2.2 Basic concepts and observations
	2.3 Computing hierarchical cuttings for disk arcs
	2.4 Test Set Lemma
	2.5 A data structure based on pseudo-trapezoidal partitions
	2.6 A data structure based on hierarchical cuttings
	2.7 A randomized result
	2.8 Trade-offs
	2.9 Wrapping things up

	3 Applications
	3.1 Batched unit-disk range counting
	3.2 The distance selection problem
	3.3 The discrete 2-center problem
	3.3.1 The randomized result
	3.3.2 The deterministic result

	4 Concluding remarks

	p033-Yanagita
	1 Introduction
	1.1 Main Results
	1.2 Application

	2 Preliminaries
	2.1 Chain Decomposition
	2.2 Transitive Closure Graphs vs. Transitive Reduction Graphs
	2.3 Queries on Posets
	2.4 Succinct Data Structures
	2.5 Farzan and Fischer's Data Structure [19]

	3 Improved Data Structures
	3.1 Lower Bound on Space
	3.2 Modified Farzan and Fischer's Data Structure
	3.3 Proposed Data Structure
	3.4 Faster Index
	3.5 Higher Order Compression

	4 Conclusions
	A Pseudo Codes
	B Dynamic Data Structures

