
Recognizing Map Graphs of Bounded Treewidth
Patrizio Angelini #

Department of Mathematics, Natural, and Applied Sciences, John Cabot University, Rome, Italy

Michael A. Bekos #

Department of Mathematics, University of Ioannina, Greece

Giordano Da Lozzo #

Department of Engineering, Roma Tre University, Rome, Italy

Martin Gronemann #

Algorithms and Complexity Group, Technische Universität Wien, Austria

Fabrizio Montecchiani #

Department of Engineering, University of Perugia, Italy

Alessandra Tappini #

Department of Engineering, University of Perugia, Italy

Abstract

A map graph is one admitting a representation in which vertices are nations on a spherical map and
edges are shared curve segments or points between nations. We present an explicit fixed-parameter
tractable algorithm for recognizing map graphs parameterized by treewidth. The algorithm has
time complexity that is linear in the size of the graph and, if the input is a yes-instance, it reports a
certificate in the form of a so-called witness. Furthermore, this result is developed within a more
general algorithmic framework that allows to test, for any k, if the input graph admits a k-map
(where at most k nations meet at a common point) or a hole-free k-map (where each point is covered
by at least one nation). We point out that, although bounding the treewidth of the input graph also
bounds the size of its largest clique, the latter alone does not seem to be a strong enough structural
limitation to obtain an efficient time complexity. In fact, while the largest clique in a k-map graph
is ⌊3k/2⌋, the recognition of k-map graphs is still open for any fixed k ≥ 5.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathe-
matics of computing → Graph algorithms

Keywords and phrases Map graphs, Recognition, Parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.8

Funding Michael A. Bekos: Partially supported by DFG grant KA812/18-1.
Giordano Da Lozzo: Partially supported by MSCA-RISE project “CONNECT”, N◦ 734922, and by
MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”.
Fabrizio Montecchiani: Partially supported by MIUR, grant 20174LF3T8 “AHeAD: efficient Algo-
rithms for HArnessing networked Data”, and by Dipartimento di Ingegneria, University of Perugia,
grants RICBA20ED and RICBA21LG.
Alessandra Tappini: Partially supported by MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms
for HArnessing networked Data”, and by Dipartimento di Ingegneria, University of Perugia, grants
RICBA20ED and RICBA21LG.

Acknowledgements We thank the anonymous reviewers of a previous version of this paper for
pointing out that the map recognition problem admits an MSO2 formulation.

© Patrizio Angelini, Michael A. Bekos, Giordano Da Lozzo, Martin Gronemann, Fabrizio Montecchiani,
and Alessandra Tappini;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pangelini@johncabot.edu
https://orcid.org/0000-0002-7602-1524
mailto:bekos@uoi.gr
https://orcid.org/0000-0002-3414-7444
mailto:giordano.dalozzo@uniroma3.it
https://orcid.org/0000-0003-2396-5174
mailto:mgronemann@ac.tuwien.ac.at
https://orcid.org/0000-0003-2565-090X
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0002-0543-8912
mailto:alessandra.tappini@unipg.it
https://orcid.org/0000-0001-9192-2067
https://doi.org/10.4230/LIPIcs.SWAT.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Recognizing Map Graphs of Bounded Treewidth

1 Introduction

Planarity is one of the most influential concepts in Graph Theory. Inspired by topological
inference problems and by intersection graphs of planar curves, in 1998, Chen, Grigni and
Papadimitriou [8] suggested the study of map graphs as a generalized notion of planarity. A
map of a graph G is a function M that assigns each vertex v of G to a region M(v) on the
sphere homeomorphic to a closed disk such that no two regions share an interior point, and
any two distinct vertices v and w are adjacent in G if and only if the boundaries of M(v)
and M(w) share at least one point. For each vertex v of G, the region M(v) is called the
nation of v. A connected open region of the sphere that is not covered by nations is a hole.
A graph that admits a map is a map graph, whereas a graph that admits a map without
holes is a hole-free map graph; Figs. 1a and 1b show a graph and a map of it, respectively.
Map graphs generalize planar graphs by allowing local non-planarity at points where more
than three nations meet. In fact, the planar graphs are exactly those graphs having a map
in which at most three nations share a boundary point [8, 19].

Besides their theoretical interest, the study of map graphs is motivated by applications
in graph drawing, circuit board design, and topological inference problems [1, 4, 5, 11]. Map
graphs are also useful to design parameterized and approximation algorithms for several
optimization problems that are NP-hard on general graphs [6, 16, 21, 22, 23].

A natural and central algorithmic question regards the existence of efficient algorithms
for recognizing map graphs. Towards an answer to this question, Chen et al. [8, 9] first gave
a purely combinatorial characterization of map graphs: A graph is a map graph if and only if
it admits a witness, formally defined as follows; see Fig. 1c. A witness of a graph G = (V, E)
is a bipartite planar graph W = (V ∪ I, A) with A ⊆ V × I and such that W 2[V] = G, where
the graph W 2[V] is the half-square of W , that is, the graph on the vertex set V in which two
vertices are adjacent if and only if their distance in W is 2. Here, the vertices in I are meant
to represent the adjacencies among nations. Since W can always be chosen to have linear
size in the number of vertices of G [9], the problem of recognizing map graphs is in NP. In
1998, Thorup [31] proposed a polynomial-time algorithm to recognize map graphs. However,
the extended abstract by Thorup does not contain a complete proof of the result and, to the
best of our knowledge, a full version has not appeared yet. Moreover, the proposed algorithm
has two drawbacks. First, the time complexity is not specified explicitly (the exponent of the
polynomial bounding the time complexity is estimated to be about 120 [10]; see also [5, 28]).
Second, it does not report a certificate in the positive case; a natural one would be a witness.

Hence, the problem of finding a simple and efficient recognition algorithm for map graphs
remains open. In the last years, several authors focused on graphs admitting restricted types
of maps. Aside from the already defined hole-free maps, another notable example consists
of the k-maps, in which at most k nations meet at a common point; observe that, when
k ≥ n − 1, map graphs and k-map graphs trivially coincide. For instance, Chen studied the
density of k-map graphs [7], while in a recent milestone paper on linear layouts Dujmović et
al. [20] proved that the queue number of k-map graphs is cubic in k. Note that the algorithm
by Thorup [31] cannot be directly used to recognize k-map graphs (unless k ≥ n − 1). Chen
et al. [10] focused on hole-free 4-map graphs and gave a cubic-time recognition algorithm for
this graph family. Later, Brandenburg [5] gave a cubic-time recognition algorithm for general
(i.e., not necessarily hole-free) 4-map graphs, by exploiting an alternative characterization of
these graphs closely related to maximal 1-planarity. Notably, a polynomial-time recognition
algorithm for the family of (general or hole-free) k-map graphs with k > 4 is still missing. In
particular, for k > 4, the only result we are aware of is a characterization of 5-map graphs in

P. Angelini et al. 8:3

(a) A graph G. (b) A map M of G. (c) A witness W of G.

Figure 1 (a) A graph G, (b) a map of G - the striped region is a hole, and (c) a witness of G.

terms of forbidden crossing patterns [4]. A different approach for the original problem is the
one by Mnich, Rutter, and Schmidt [28], who proposed a linear-time algorithm to recognize
the map graphs with an outerplanar witness, which also reports a certificate witness, if any.

We remark that the size of the largest clique in a k-map graph is ⌊3k/2⌋ (see, e.g., [9]),
thus bounding the size of the largest clique does not seem to be a strong enough structural
limitation of the input to obtain an efficient time complexity. Despite the notable amount of
work, no prior research focuses on further structural parameters of the input graph to design
efficient recognition algorithms. In this paper, we address precisely this challenge.

Our contribution. Our main result is a novel algorithmic framework that can be used to
recognize map graphs, as well as variants thereof; in particular, hole-free k-map graphs and
k-map graphs. Recall that, by setting k = n−1, our algorithm also recognizes (hole-free) map
graphs. In fact, we can also compute the minimum value of k within the same asymptotic
running time. The proposed algorithm is parameterized by the treewidth [18, 29] of the
n-vertex input graph G and its time complexity has a linear dependency in n, while it does
not depend on the natural parameter k. Notably, for graphs of bounded treewidth, our
algorithm improves over the existing literature [5, 10, 31] in three ways: it solves the problem
for any fixed k, it can deal with both scenarios where holes are or are not allowed in the
sought map, and it exhibits an asymptotically optimal running time in the input size. The
following theorem summarizes our main contribution.

▶ Theorem 1. Given an n-vertex graph G and a tree-decomposition of G of width t, there
is a O(tO(t) · n)-time algorithm that computes the minimum k, if any, such that G admits
a (hole-free) k-map. In the positive case, the algorithm returns a certificate in the form of
a witness of G within the same time complexity.

We remark that the problem of recognizing map graphs can be expressed by using MSO2 logic.
Thus the main positive result behind Theorem 1 can be alternatively achieved by Courcelle’s
theorem [13]. However, with this approach, the dependency of the time complexity on the
treewidth is notoriously very high. As a matter of fact, Courcelle’s theorem is generally used
as a classification tool, while the design of an explicit ad-hoc algorithm remains a challenging
and valuable task [15].

To prove Theorem 1, we first solve the decision version of the problem. For a fixed k,
we use a dynamic-programming approach, which can deal with different constraints on the
desired witness. While we exploit such flexibility to check whether at most k nations intersect
at any point and whether holes can be avoided, other constraints could be plugged into the
framework such as, for example, the outerplanarity of the witness (as in [28]). In view of
this versatility, future applications of our tools may be expected.

SWAT 2022

8:4 Recognizing Map Graphs of Bounded Treewidth

Proof strategy. We exploit the characterization in [9] and test for the existence of a suitable
witness of the input graph. The crux of our technique is in the computation of suitable records
that represent equivalent witnesses and contain only vertices of a tree-decomposition bag.
Each such record must carry enough information, in terms of embedding, so to allow testing
whether it can be extended with a new vertex or merged with another witness. Moreover, we
need to check whether any such witness yields a k-map and, if required, a hole-free one. To
deal with the latter property, we provide a strengthening of the characterization in [9], which
we believe to be of independent interest, that translates into maintaining suitable counters
on the edges of our records. Additional checks on the desired witness can be plugged in the
presented algorithmic framework, provided that the records store enough information. One
of the main difficulties is hence “sketching” irrelevant parts of the embedded graph without
sacrificing too much information. (A similar challenge is faced in the context of different
planarity and beyond-planarity problems [17, 25, 27].) Also, when creating such sketches,
multiple copies (potentially linearly many) of the same edge may appear, which we need
to simplify to keep our records small. The formalization of such records then allows us to
exploit a dynamic-programming approach on a tree-decomposition.

Paper structure. Section 2 contains preliminary definitions. Section 3 illustrates basic
properties of map graphs that will be used throughout the paper. Section 4 introduces the
concept of “sketching” an embedding of a witness, the key ingredient of the algorithmic
framework, which we present in Section 5. Section 6 contains open problems raised by our
work. The proofs of the statements marked as ⋆ have been omitted.

2 Preliminaries

We only consider finite, undirected, and simple graphs, although some procedures may
produce non-simple graphs. In such a case the presence of self-loops or multiple edges will
be clearly indicated. Let G = (V, E) be a graph; for a vertex v ∈ V , we denote by N(v) the
set of neighbors of v in G, and by deg(v) the degree of v, i.e., the cardinality of N(v).

Embeddings. A topological embedding of a graph G on the sphere Σ is a representation
of G on Σ in which each vertex of G is associated with a point and each edge of G with
a simple arc between its two endpoints in such a way that any two arcs intersect only at
common endpoints. A topological embedding of G subdivides the sphere into topologically
connected regions, called faces. If G is connected, the boundary of a face f is a closed walk,
that is, a circular list of alternating vertices and edges; otherwise, the boundary of f is a set
of closed walks. Note that a cut-vertex of G may appear multiple times in any such walk.
A topological embedding of G uniquely defines a rotation system, that is, a cyclic order of
the edges around each vertex. If G is connected, the boundary defining each face can be
reconstructed from a rotation system; otherwise, to reconstruct the boundary of every face f ,
we also need to know which connected components are incident to f . We call the incidence
relationship between closed walks of different components and faces the position system of
G. A combinatorial embedding of G is an equivalence class of topological embeddings that
define the same rotation and position systems. An embedded graph G is a graph along with a
combinatorial embedding. A pair of parallel edges e and e′ of G with end-vertices v and w is
homotopic if there is a face of G whose boundary consists of a single closed walk ⟨v, e, w, e′⟩.

P. Angelini et al. 8:5

Tree-decompositions. Let (X , T) be a pair such that X = {X1, X2, . . . , Xℓ} is a collection
of subsets of vertices of a graph G, called bags, and T is a tree whose nodes are in one-to-one
correspondence with the elements of X . When this creates no ambiguity, Xi will denote
both a bag of X and the node of T whose corresponding bag is Xi. The pair (X , T) is a
tree-decomposition of G if: (i) for every edge (u, v) of G, there exists a bag Xi that contains
both u and v, and (ii) for every vertex v of G, the set of nodes of T whose bags contain v

induces a non-empty (connected) subtree of T .
The width of (X , T) is maxℓ

i=1 |Xi| − 1, while the treewidth of G is the minimum width
over all tree-decompositions of G. For an n-vertex graph of treewidth t, a tree-decomposition
of width t can be found in FPT time [2].

▶ Definition 2. A tree-decomposition (X , T) of a graph G is called nice if T is a rooted tree
with the following properties [3].
(P.1) Every node of T has at most two children.
(P.2) If a node Xi of T has two children whose bags are Xj and Xj′ , then Xi = Xj = Xj′ .

In this case, Xi is a join bag.
(P.3) If a node Xi of T has only one child Xj, then Xi ̸= Xj and there exists a vertex

v ∈ G such that either Xi = Xj ∪ {v} or Xi ∪ {v} = Xj. In the former case Xi is an
introduce bag, while in the latter case Xi is a forget bag.

(P.4) If a node Xi is a leaf of T , then Xi contains exactly one vertex, and Xi is a leaf bag.

Note that, given a tree-decomposition of width t, a nice tree-decomposition can be
computed in O(t · n) time (see, e.g., [26]).

3 Basic Properties of Map Graphs and Their Witnesses

The following statements (in a weaker or different form) have already been discussed in the
work by Chen et al. [9] and their proofs are omitted here.

Let G = (V, E) be a map graph and let W = (V ∪ I, A) be a witness of G, i.e., W is a
planar bipartite graph such that W 2[V] = G. A vertex u ∈ I is an intersection vertex of W ,
while a vertex v ∈ V is a real vertex of W . Also, we let nV = |V |, nI = |I|, and n = nV + nI .

▶ Property 3. A graph is a k-map graph if and only if it admits a witness such that the
maximum degree of every intersection vertex is k.

▶ Property 4. A graph G admits a map if and only if each of its biconnected components
admits a map. Also, if G admits a hole-free map, then G is biconnected.

u u′

(a)

u1 u2

v

w

(b)

Figure 2 (a) Inessential intersection vertices, and (b) a twin-pair.

Let W = (V ∪I, A) be an embedded witness (i.e., with a prescribed combinatorial embedding).
An intersection vertex u ∈ I is inessential if deg(u) = 2 and there exists u′ ∈ I such that
N(u) ⊂ N(u′); see Fig. 2a. Furthermore, a pair of intersection vertices u1, u2 ∈ I is a
twin-pair if N(u1) = N(u2) = {v, w}, for some v, w ∈ V , and W contains a face whose

SWAT 2022

8:6 Recognizing Map Graphs of Bounded Treewidth

boundary consists of a single closed walk with exactly four edges with end-vertices v, u1, w, u2;
see Fig. 2b. Note that removing an inessential vertex or one vertex of a twin-pair from
W does not modify W 2[V].

▶ Definition 5. An embedded witness of a map graph is compact if it contains neither
inessential intersection vertices nor twin-pairs.

We remark that a compact witness is not necessarily minimal, i.e., it may contain
intersection vertices of degree greater than 2 whose removal does not modify its half-square;
see also [9]. However, in our setting, removing further information from a witness would
have an impact on the proof of Theorem 7 and on the recognition algorithm (Section 5).

The next lemma shows that focusing on compact witnesses is not restrictive.

▶ Lemma 6 (⋆). A graph G = (V, E) is a map graph if and only if it admits a compact
witness. Also, G is a k-map graph if and only if it admits a compact witness whose intersection
vertices have degree at most k.

In [9], it is observed (without a formal argument) that a map graph is hole-free if and only if
it admits a witness whose faces have 4 or 6 edges each. The next characterization improves
over this observation and hence can be of independent interest. A connected embedded graph
is a quadrangulation if each face boundary consists of a single closed walk with 4 edges.

▶ Theorem 7 (⋆). A graph is a hole-free map graph if and only if it admits a compact witness
that is a biconnected quadrangulation.

▶ Lemma 8 (⋆). A (hole-free) map graph G admits a compact witness with n ≤ 6nV − 10
(respectively, n ≤ 3nV − 4) vertices.

Based on Lemma 8, we can make the following remark.

▶ Remark 9. Without loss of generality, we assume in the following that any compact witness
W of G has n ≤ 3nV − 4 vertices if G is hole-free, or n ≤ 6nV − 10 vertices otherwise.

4 Embedding Sketches

Let G be an input graph. Property 4 allows us to assume that G is biconnected, and thus
every witness of G, if any, is connected. Also, by Lemma 6, it suffices to consider compact
witnesses.

Let (X , T) be a nice tree-decomposition of G of width t = ω − 1, i.e., each bag contains
at most ω vertices. Given a bag X ∈ X , we denote by TX the subtree of T rooted at X,
and by GX = (VX , EX) the subgraph of G induced by all the vertices in all bags of TX . Let
WX = (VX ∪ IX , AX) be a compact witness of GX (in particular, W 2

X [VX] = GX). Note
that, although G is connected, GX may have multiple connected components. However, since
G is connected, each connected component of GX must contain at least one vertex of X.
Moreover, for each connected component C of GX , there is a connected component C ′ of
WX such that C ′ is a witness of C. A vertex of WX is an anchor vertex if it is either a
real vertex of X or an intersection vertex whose neighbors in WX all belong to X. Observe
that if an intersection vertex u has a neighbor v in VX \ X, then no real vertex in V \ VX is
adjacent to v, and therefore there is no way to add further edges to u without creating a
false adjacency involving v.

P. Angelini et al. 8:7

v

(a) S(W, X ′)

v

(b) S(W, X), X ∪ {v} = X ′

Figure 3 (a) A sketch S(W, X ′) computed from the witness W of Fig. 1 with respect to a bag
X ′ (VX′ = V). The anchor vertices of X ′ are opaque, while the non-anchor vertices are faded. The
active boundaries are red and the background of the active faces is light red. (b) A sketch S(W, X),
where X ∪ {v} = X ′ computed from S(W, X ′) by applying the deletion operation (Section 5).

We will exploit anchor vertices to reduce the size of WX from O(|VX |) to O(ω), by
“sketching” parts of the embedding that are not relevant1. The idea of sketching an embedded
graph is inspired by a previous work about orthogonal planarity [17]; applying such idea to
our problem requires the development of several new tools and concepts, described in the
remainder of this section (and partly in Section 2). A face f of WX is active either if its
boundary contains only one vertex v (which implies WX = ({v}, ∅)) and v is an anchor vertex,
or if its boundary contains more vertices among which there are at least two anchor vertices;
refer to Fig. 3a. The active boundary of f (red in Fig. 3a) is obtained by shortcutting all
non-anchor vertices of f , where the shortcut operation is defined as follows. For a closed walk
π and a vertex v in π, shortcutting v consists of removing each occurrence of v (if more than
one), together with the edge (u, v) that precedes it in π, and the edge (v, u′) that follows it
in π, and of adding the edge (u, u′) between u and u′ in π. Fig. 4 illustrates a single face f

v1

u2 v3

v4

v2
u1

u3

u4
u5 v5

v6 v7

u7

u6

v8

Figure 4 An active boundary (red) made of three closed walks (edges are omitted):
⟨v1, v2, u2, v3, u3, v4, v1⟩, ⟨u6, v6, u7, v7⟩, ⟨v8⟩; vertices u1, u3, u4, v5, u5 have been shortcut.

and the corresponding active boundary. The embedding sketch (for short the sketch) of WX

with respect to X is the embedded graph S(WX , X) formed by all the vertices and edges that
belong to the active boundaries of WX . For each active boundary Bf of an active face f

of WX , S(WX , X) has an active face f∗ (light red in Figs. 3a and 4). Note that S(WX , X)
also has faces that are not active (white in Figs. 3a and 4). Also, the position system of

1 In the database and data engineering fields, sketching algorithms form a powerful toolkit to compress
data in a way that supports answering various queries [12]. Our idea of sketching has some similarities
with this concept but serves a different purpose.

SWAT 2022

8:8 Recognizing Map Graphs of Bounded Treewidth

H1 H2 H5.

v

w

(a) Ŵ

H1 H2 H5
. . .

v

w

(b) W

Figure 5 Illustrations for the proof of Lemma 10. Modifying the rotation system of Ŵ such that
each Hi lies in B1 and all other non-extensible active boundaries become empty.

WX yields a position system for S(WX , X), since if two closed walks of distinct components
of WX were incident to the same active face f , then the two corresponding closed walks of
S(WX , X) are also incident to the same active face f∗. However, S(WX , X) may not be
bipartite any longer (as in Fig. 4) and it may contain multiple edges (but no self-loops). It is
worth noting that the embedding sketch of WX can be defined with respect to any bag X ′

as long as VX′ = VX (see Fig. 3a).
We now further refine S(WX , X) to avoid active boundaries that are not useful for our

purposes. Namely, an active boundary is non-extensible if it consists of two homotopic
parallel edges. Given a witness W of G, the restriction of W to GX is the compact
witness W [GX] of GX obtained from W by removing all the real vertices not in GX , all
the intersection vertices that are isolated (due to the removal of some real vertices) or
inessential, as well as a vertex for each twin-pair until the graph contains none of them.
The next lemmas allow us to bound the size of a sketch.

▶ Lemma 10. If G is a map graph, then it admits a compact witness W with the following
property. If S(W [GX], X) contains h > 1 non-extensible active boundaries that share the same
pair of end-vertices, then the vertices of W lie in at most one of these h active boundaries.

Proof. Refer to Fig. 5. Let Ŵ be a compact witness of G, and suppose S(Ŵ [GX], X) contains
h > 1 non-extensible active boundaries B1, B2, . . . , Bh with common end-vertices v, w. Let
Hi be the subgraph of W that lies inside Bi (if any), for 1 ≤ i ≤ h. Since each Bi consists of
two parallel edges, v and w separate Hi and S(W [GX], X) \ Hi. We obtain a new compact
witness W of G by modifying the rotation system of Ŵ so that each Hi lies inside B1. ◀

▶ Remark 11. By Lemma 10, we assume in the following that for any compact witness W

of G such that, for some X ∈ X , the sketch S(W [GX], X) contains h > 1 non-extensible
active boundaries, the vertices of W lie in at most one of such active boundaries. Therefore,
in S(W [GX], X), we keep only one of the corresponding h pairs of homotopic parallel edges.

▶ Lemma 12. A sketch S(WX , X) contains O(ω) vertices and edges.

Proof. With a similar argument as in the proof of Lemma 8 we can show that, in WX , each
real vertex in X is adjacent to O(ω) intersection vertices that are anchor vertices. Therefore,
S(WX , X) contains O(ω) vertices in total. Concerning the number of edges, since S(WX , X)
is embedded on the sphere, it contains O(ω) edges such that each pair of edges is either
non-parallel or non-homotopic parallel. In addition, since each of these edges participates in
at most one homotopic pair by Remark 11, it follows that S(WX , X) contains O(ω) edges. ◀

We now exploit the concept of sketch to define an equivalence relation among witnesses.

P. Angelini et al. 8:9

▶ Definition 13. Two compact witnesses WX and W ′
X of GX are X-equivalent if they have

the same sketch with respect to X, i.e., S(WX , X) = S(W ′
X , X).

The next lemma deals with the size of the quotient of such a relation.

▶ Lemma 14. The X-equivalence relation yields ωO(ω) classes for the compact witnesses of
GX .

Proof. Let n1 be the number of possible (abstract) graphs that can be obtained from the
real vertices of X and all possible sets of intersection vertices. For each such graph, let n2 be
the maximum number of possible rotation and position systems that it can have. It follows
that the number of X-equivalent classes is upper bounded by the product of n1 and n2.

Given the set X of real vertices and a compact witness WX of GX , any sketch S(WX , X)
contains O(ω) intersection vertices, as otherwise WX would contain inessential intersection
vertices or twin-pairs. Since each intersection vertex is adjacent to a set of at most ω

real vertices, we can bound the number nint of possible sets of intersection vertices by
a ·

∑ω
i=2

(
ω
i

)
< a · 2ω, where a is the maximum number of intersection vertices in any sketch

that have the same set of neighbors. Since a ∈ O(ω), we have that nint ∈ 2O(ω). Let IX be
one of the nint possible sets of intersection vertices. The number nabs of distinct abstract
graphs with vertex set X ∪IX can be upper bounded by the number of possible neighborhoods
of a real vertex combined for all real vertices, that is

nabs ≤
∏

v∈X

ωdeg(v) = ω
∑

v∈X
deg(v) ≤ ωO(ω)

holds, which yields n1 ≤ nint · nabs ∈ ωO(ω).
For a fixed graph S, the number of possible rotation systems nrot is upper bounded by

the number of possible permutations of edges around each vertex. Thus we have

nrot ≤
∏
v∈S

deg(v)! <
∏
v∈S

deg(v)deg(v) ≤ ω
O

(∑
v∈S

deg(v)
)

≤ ωO(ω).

Each rotation system of S fixes the closed walk of each face of each connected component
of S. Since S contains, over all its connected components, at most ω closed walks (at most
one for each real vertex in X) and hence at most ω faces, for the number npos of possible
position systems it holds npos ≤ ωω. Therefore we have n2 ≤ nrot · npos ∈ ωO(ω), which
yields n1 · n2 ∈ ωO(ω), as desired. ◀

5 Algorithmic Framework

Let G = (V, E) be an input graph, let k be an integer, and let (X , T) be a nice tree-
decomposition of G of width t = ω − 1. We present an algorithmic framework to test whether
G is a k-map graph or a hole-free k-map graph. Namely, we traverse T bottom-up and equip
each bag X ∈ X with a suitably defined set of sketches, called record RX . The framework
can be tailored by imposing different properties for the records. The next three properties
are rather general; the first two are useful to prove the correctness of our approach, as shown
in Theorem 22, whereas the third property comes into play when dealing with the efficiency
of the approach, and in particular in Lemma 16.

▶ Definition 15. The record RX is valid if the following properties hold:
F1 For every compact witness WX of GX , RX contains its sketch S(WX , X).
F2 For every entry r ∈ RX , there is a compact witness WX of GX such that r = S(WX , X).
F3 RX contains no duplicates.

SWAT 2022

8:10 Recognizing Map Graphs of Bounded Treewidth

▶ Lemma 16. For every X ∈ X , if RX is valid, it contains ωO(ω) entries, each of size O(ω).

Proof. By F1–F3, the entries of RX are all and only the possible sketches of WX and are all
distinct. Hence, |RX | ∈ ωO(ω) by Lemma 14. Each sketch has size O(ω) by Lemma 12. ◀

We now describe the additional properties that we incorporate in the framework. In order
to verify that G admits a k-map we exploit Property 3, which translates into verifying that,
for each sketch, the degree of any intersection vertex is at most k.

▶ Definition 17. A record RX is k-map valid if it is valid and it contains a non-empty
subset R∗

X ⊆ RX , called subrecord, for which the following additional property holds:
F4 For every entry r ∈ RX , it holds r ∈ R∗

X if and only if r contains no intersection vertex
u with deg(u) > k.

It is worth observing that, since an intersection vertex of degree k implies the existence of a
clique of size k in the input graph G, property F4 is trivially verified when k ≥ ω. On the
other hand, the size of the largest clique of a k-map graph is ⌊3k/2⌋ (see, e.g., [9]).

To check whether G has a hole-free k-map, we exploit Theorem 7. Namely, consider a
sketch S(WX , X) and an active boundary Bf of S(WX , X). Let f be the active face of WX

corresponding to Bf . Note that any edge e that is part of Bf represents a subsequence πe of a
closed walk π in the boundary of f . Therefore, to control the number of edges on the boundary
of each face of WX , for every edge e that is part of an active boundary of S(WX , X) we also
store a counter c(e) ≥ 1 , which represents the number of edges in πe. If there is an edge e

such that c(e) > 4, then G does not admit a compact witness W that is a quadrangulation
and such that WX = W [GX]; hence we can avoid storing counters greater than 4. Moreover,
for any face f of a compact witness W of G, we know there exist two bags X̂ ′ and X̂ in T

such that X̂ ′ is the child of X̂, X̂ is a forget bag, the active boundary representing f in X̂ ′

has more than one anchor vertex, while the one in X̂ has only one anchor vertex (and hence
is not part of S(WX̂ , X̂)). We call such an active boundary complete in X̂ ′, as it will not be
modified anymore by the algorithm. As such, for each complete active boundary, the sum of
the counters of its edges in S(WX̂′ , X̂ ′) must be exactly 4, otherwise G does not admit a
compact witness W that is a biconnected quadrangulation such that WX̂ = W [GX̂].

▶ Definition 18. A record RX is hole-free valid if it is valid and it contains a non-empty
subset R◦

X ⊆ RX , called subrecord, for which the following additional property holds:
F5 For every entry r ∈ RX , it holds r ∈ R◦

X if and only if r contains no intersection vertex u

with deg(u) > k and each complete active boundary of r (if any) is such that its edge
counters sum up to 4.

Each leaf bag contains only one vertex v, thus its record consists of one sketch with only
one active face whose active boundary is ⟨v⟩. Such a record can be computed in O(1) time
and it is trivially valid. Also, it is hole-free (and hence k-map) valid, as its unique active
boundary is not complete. The next three operations are performed on a non-leaf bag X of
T , based on the type of X, to compute a k-map or hole-free valid record RX , if any.

Deletion operation. Let X be a forget bag whose child X ′ in T has a k-map (hole-free)
valid record RX′ . Let v be the vertex forgotten by X. We generate RX from RX′ as follows.

For a fixed sketch S(WX′ , X ′) of RX′ , let NI(v) ⊆ N(v) be the set of intersection vertices
adjacent to v in S(WX′ , X ′). Since v is forgotten by X, all its neighbors have already been
processed, thus no vertex in NI(v) can connect vertices that will be introduced by bags
visited after X. Therefore, for every vertex y ∈ NI(v) ∪ {v} and for every sketch S(WX′ , X ′)

P. Angelini et al. 8:11

u1

u2

u3

u4

(a) S(WX′ , X ′)

u2

u4

v

u1 u3

(b)

u2

u4
v

u1 u3

(c)

u2

u4
v

u1 u3

(d) S(WX , X)

Figure 6 Illustration for the addition of vertex v. (a) Details of a face of S(WX′ , X ′) that
contains all the neighbors of v. (b–c) Two distinct embedded graphs computed from S(WX′ , X ′)
by introducing vertex v in different ways (as described in the proof of Lemma 20). (d) The sketch
S(WX , X) obtained by replacing the active boundary of the red face with the new active boundaries
corresponding to the three newly created active faces in (c).

of RX′ , we apply a deletion operation, which consists of updating each active boundary Bf

of S(WX′ , X ′) containing y; see Fig. 3b. Namely, let Bf be one of these active boundaries,
we distinguish two cases based on whether Bf contains only y or it contains further vertices.
Let πy be the closed walk of Bf that contains all occurrences of y (there might be more
than one). If Bf contains only y, we remove πy (and hence the whole active boundary Bf)
from S(WX′ , X ′). If Bf contains further vertices, we shortcut every occurrence of y in πy.
Also for each edge e introduced to shortcut y such that e replaces edges e1 and e2 of πy, we
set c(e) = c(e1) + c(e2). Observe that, if y has only one neighbor u in πy, this procedure
creates a self-loop at u, which we remove. If this procedure generates more than one pair of
homotopic parallel edges with the same pair of end-vertices, then we keep only one such pair.
Once all active boundaries have been updated, the resulting embedded graph is stored in RX .
After each sketch of RX′ has been processed, we might have produced the same embedded
graph for RX from two distinct sketches of RX′ ; in this case we keep only one copy.

Addition operation. Let X be an introduce bag whose child X ′ in T has a k-map (hole-free)
valid record RX′ . Let v be the vertex introduced by X and NX(v) ⊆ N(v) be the set of
vertices that are neighbors of v and belong to X. We generate RX from RX′ with the
following addition operation. For each sketch S(WX′ , X ′) of RX′ , the high-level idea is to
exhaustively generate all possible embedded graphs that can be obtained by introducing v in
S(WX′ , X ′). We distinguish two cases.

Case 1. NX(v) = ∅. For each active boundary Bf of S(WX′ , X ′), we generate a new
embedded graph by adding the closed walk ⟨v⟩ to Bf .

Case 2. NX(v) ̸= ∅. We look for a face f∗ of S(WX′ , X ′) that contains all the vertices of
NX(v) on its active boundary Bf (which may consist of multiple closed walks). If such a face
does not exist, we discard S(WX′ , X ′). Else, for each such face, we generate a set of entries
Ef∗ as follows. Intuitively, we will insert v inside f∗ and generate one entry of Ef∗ for each
possible way in which v can be connected to its neighbors. Namely, we can connect v to its
neighbors by means of different intersection vertices and by realizing different permutations
of the edges around v and around those neighbors that appear multiple times along some
closed walk of Bf ; refer to Fig. 6 for an illustration. Concerning the intersection vertices, we
can use those that already belong to Bf and are adjacent only to vertices in NX(v), as well
as we can create new ones. We note that since v has at most ω − 1 neighbors in NX(v), there
are

∑ω−1
i=1

(
ω−1

i

)
= 2ω−1 possible combinations of intersection vertices (see also the proof of

SWAT 2022

8:12 Recognizing Map Graphs of Bounded Treewidth

Lemma 14). This is done avoiding inessential intersection vertices and twin-pairs. For each
choice of intersection vertices, since the degree of a vertex is O(ω), there are ωO(ω) distinct
rotation systems to consider. Additionally, if Bf consists of multiple closed walks, we shall
consider all possible permutations of the edges around v that do not cause edge crossings
(i.e., any edge permutation in which there are no four edges e1, e2, e3, e4 in this order around
v, such that e1, e3 connect v to the vertices of a closed walk π and e2, e4 connect v to the
vertices of a closed walk π′ with π ̸= π′), and we consider each of them independently as a
new embedded graph. Based on the fixed intersection vertices and rotation system, if the
insertion of v does not split f∗ into multiple faces, we can suitably update Bf , otherwise we
can generate the new active boundaries that appear in place of Bf ; see in particular Fig. 6d.
Also, for each newly introduced edge e in a closed walk, we set c(e) = 1.

Merge operation. Let X be a join bag whose children X1 and X2 in T have k-map (hole-
free) valid records RX1 and RX2 , respectively. We generate RX from RX1 and RX2 . Since
X is a join bag, X, X1, and X2 contain the same vertices, whereas GX1 and GX2 only
share the vertices in X. Consider any pair of sketches S(WX1 , X) of RX1 and S(WX2 , X)
of RX2 . Such sketches share the same set of real vertices, whereas they may have different
sets of intersection vertices and different combinatorial embeddings. At high-level, we aim at
combining S(WX1 , X) and S(WX2 , X) in all possible ways, provided that the original rotation
and position systems of each sketch are preserved and that we never insert a subgraph of
one sketch into a non-active face of the other. In practice, we apply the merge operation,
consisting of the next steps.

(S.1) We compute all possible unions of the two abstract graphs underlying the two
sketches. Namely, let IX1 and IX2 be the sets of intersection vertices of S(WX1 , X)
and S(WX2 , X), respectively. We identify each pair of real vertices the two sketches
share, and we consider all possible abstract graphs whose set of intersection vertices
IX is such that: (a) IX ⊆ IX1 ∪ IX2 ; (b) for each intersection vertex of IX1 there is an
intersection vertex in IX with the same set of neighbors, and the same holds for IX2 .

(S.2) For each generated graph S∗, we compute all combinatorial embeddings, i.e., all possible
rotation and position systems yielding a topological embedding on the sphere of S∗. If
no such combinatorial embeddings exist, we discard S∗, else we go to the next step.

(S.3) We generate all possible one-to-one mappings ϕ1 between intersection vertices of S∗ and
of S(WX1 , X), and all possible one-to-one mappings ϕ2 between intersection vertices
of S∗ and of S(WX2 , X).

(S.4) We check, for each pair ϕ1, ϕ2, that the restriction of the resulting embedded graph on
the real vertices, intersection vertices (up to the mapping defined by ϕ1 and ϕ2) and
edges of each of the two sketches preserves the corresponding rotation and position
systems. If so, we go to the next step; otherwise, we discard the candidate solution.

(S.5) Since the previous step guaranteed that the active boundaries of each sketch are
preserved when looking at the corresponding restriction, we can verify that there is no
subgraph of one sketch inside a non-active face of the other.

(S.6) We suitably update the active boundaries of the resulting embedded graph and we add
it to RX . More precisely, the boundary of a face is active if it does not correspond to
a non-active boundary in any of the two sketches and it contains either exactly one
anchor vertex or at least two anchor vertices.

(S.7) We remove inessential intersection vertices and iteratively one intersection vertex for
each twin-pair, until there are no twin-pairs.

(S.8) Once all pairs of sketches have been processed, we remove possible duplicates.

P. Angelini et al. 8:13

This concludes the description of the main algorithmic steps for proving Theorem 1. Next,
we provide lemmas to establish the correctness and the time complexity of these steps.

▶ Lemma 19. Let X be a forget bag whose child X ′ in T has a k-map (resp. hole-free) valid
record RX′ . The algorithm either rejects the instance or computes a k-map (resp. hole-free)
valid record RX of X in ωO(ω) time.

Proof. Let v be the vertex forgotten by X. We prove that the record RX generated by
applying the deletion operation is valid, given that RX′ is valid. In particular, since we
removed possible duplicates, F3 holds and it remains to argue about F1 and F2. To this
aim, since X is a forget bag, note that GX = GX′ . Hence any compact witness WX′ of GX′

is also a compact witness of GX . Moreover, since RX′ is valid, it follows by F1 that RX′

contains a sketch S(WX′ , X ′) for every compact witness WX′ . Now since X ′ = X ∪ {v}, the
sketch of WX′ with respect to X, namely S(WX′ , X), coincides with the one obtained by
applying the deletion operation to S(WX′ , X ′). Thus F1 holds for X. Similarly, since RX′ is
valid, it follows by F2 that every entry of RX′ is the sketch S(WX′ , X ′) of a compact witness
WX′ of GX′ . Again since X ′ = X ∪ {v}, the entry of RX obtained by applying the deletion
operation to S(WX′ , X ′) corresponds to the sketch S(WX′ , X). Thus F2 holds for X and
consequently RX is valid, as claimed. Suppose now that RX′ is k-map valid, i.e, R∗

X′ ̸= ∅.
We show how to check whether a sketch of RX belongs to R∗

X . Since the deletion operation
does not modify the degree of any intersection vertex, the subrecord R∗

X contains all sketches
of RX generated from sketches in R∗

X′ . Based on this observation, we can check whether
R∗

X = ∅ or not. In the former case the algorithm rejects the instance, in the latter case
RX is k-map valid. Suppose that RX′ is hole-free valid, i.e., R◦

X′ ̸= ∅. Again the subrecord
R◦

X contains all sketches of RX that have been generated from sketches in R◦
X′ and that

contain no active boundary whose edge counters sum up to 4. To decide whether an active
boundary is complete, it suffices to check whether the parent of X is a forget bag such that
the shortcuttings due to the removal of the forgotten vertex make that active boundary a
self-loop. If any complete active boundary does not meet this condition, the corresponding
sketch does not belong R◦

X . As before if R◦
X = ∅ the algorithm rejects the instance, otherwise

RX is hole-free valid.
By Lemma 16, RX′ contains ωO(ω) entries, each of size O(ω). Updating each of them

takes O(ω) time. Also, RX contains at most as many entries as RX′ . It follows that removing
duplicates can be naively done in (ωO(ω))2 ∈ ωO(ω) time. For the sake of efficiency, if we
interpret each rotation and position system together as a number with Õ(ω2) bits, then
removing duplicates can be done in Õ(ω2) · ωO(ω) ∈ ωO(ω) time by using radix sort (we omit
the details as the asymptotic running time would be the same). We have seen that condition
F4 is always verified. Checking condition F5 requires scanning each active boundary in RX

and decide whether it is complete or not, and if so to verify whether it will become a self-loop
when visiting the parent of X. This can be done in O(ω) time for each of the O(ω) active
boundaries of each of the ωO(ω) sketches, and thus in ωO(ω) time overall. Thus RX and its
subrecords can be computed in ωO(ω) time, as desired. ◀

▶ Lemma 20. Let X be an introduce bag whose child X ′ in T has a k-map (resp. hole-free)
valid record RX′ . The algorithm either rejects the instance or computes a k-map (resp.
hole-free) valid record RX of X in ωO(ω) time.

Proof. Let v be the vertex introduced by X. We prove that the record RX generated by
applying the addition operation is valid, given that RX′ is valid. Regarding F1, let WX′

and WX be a witness of GX′ and GX , respectively, such that WX [GX′] = WX′ . Since F1

SWAT 2022

8:14 Recognizing Map Graphs of Bounded Treewidth

holds for RX′ , we know that S(WX′ , X ′) ∈ RX′ . Observe that the only difference between
WX and WX′ lies in the presence of vertex v and of a (possibly empty) set Iv of intersection
vertices adjacent to v.

If NX(v) = ∅, then v forms a trivial closed walk that might be added in any face of WX′

that either consists of exactly one anchor vertex or contains at least two anchor vertices
(among possibly other non-anchor vertices). We recall that an active face satisfying the
mentioned properties corresponds to an active boundary of the witness’ sketch. Also, adding
the closed walk to a face that contains more than one vertex, but at most one anchor vertex,
on its boundary would imply that the resulting witness cannot be augmented to a witness
of G, since G is biconnected. Since Case 1 places v in all possible active boundaries of
S(WX′ , X ′), we can conclude that S(WX , X) belongs to RX .

On the other hand, if NX(v) ̸= ∅, then all v’s neighbors belong to a common boundary of
some face f of WX′ , as otherwise the rotation system of WX would not be compatible with
a topological embedding (in particular, some edges would cross each other). Hence all v’s
neighbors are part of the same active boundary Bf of S(WX′ , X ′). Since Case 2 exhaustively
considers all ways in which v can be inserted into Bf , avoiding inessential intersection vertices
and twin-pairs (which cannot belong to WX since it is compact), we can again conclude that
S(WX , X) belongs to RX . Consequently F1 holds for RX .

About F2, it suffices to prove that each entry generated by the addition operation is
indeed a sketch of some compact witness of GX with respect to X. Since F2 holds for RX′ ,
the addition operation starts from a sketch S(WX′ , X ′) and it generates new entries in which
there are neither inessential intersection vertices nor twin-pairs; therefore, such entries are
indeed sketches of compact witnesses, as desired.

Concerning F3, if RX contained two entries r1, r2 that are the same (up to a homeomor-
phism of the sphere), then r1 and r2 would have been originated by the same sketch r of RX′ ,
as otherwise either r1 and r2 would not be the same or F3 would not hold for RX′ . On the
other hand, since the addition operation inserts v in different ways but without repetitions,
it cannot generate two entries that are the same starting from a single entry of RX′ . Thus
F3 holds for RX .

If RX′ is k-map valid, we know that R∗
X contains those sketches of R∗

X′ for which the
addition operation did not introduce intersection vertices of degree larger than k. Based on
this observation, we can check whether R∗

X = ∅ or not. In the former case the algorithm
rejects the instance, in the latter case RX is k-map valid. The case when RX′ is hole-free
valid can be proved analogously as in the proof of Lemma 19.

Finally, each single entry constructed by the addition operation can be computed in O(ω)
time and RX contains ωO(ω) entries by Lemma 16. Also, condition F4 can be easily verified
in O(ω) time, for each of the ωO(ω) sketches of RX . Checking condition F5 requires scanning
each active boundary in RX and decide whether it is complete or not. This can be done in
O(ω) time, for each of the O(ω) active boundaries of each of the ωO(ω) sketches, and thus in
ωO(ω) time overall. Thus RX and its subrecords can be computed in ωO(ω) time. ◀

The proof of the next lemma exploits the merge operation.

▶ Lemma 21. Let X be a join bag whose children X1 and X2 in T both have k-map (resp.
hole-free) valid records RX1 and RX2 . The algorithm either rejects the instance or computes
a k-map (resp. hole-free) valid record RX of X in ωO(ω) time.

Proof. We prove that the record RX generated by applying the merge operation is valid, given
that RX1 and RX2 are valid. Consider any compact witness WX of GX and its restrictions
WX [GX1] and WX [GX2] to GX1 and GX2 , respectively. By definition of restriction, there must

P. Angelini et al. 8:15

exist a mapping of the intersection vertices of WX to the intersection vertices of WX [GX1] such
that when looking at the restriction of WX to the real and intersection vertices of WX [GX1]
(up to the above mentioned mapping), the rotation and position systems of WX [GX1] are
preserved. The same property must hold for WX [GX2]. These properties clearly carry over
to the corresponding sketches S(WX , X), S(WX [GX1], X), and S(WX [GX2], X). Since RX1

and RX2 are valid, they contain S(WX [GX1], X) and S(WX [GX2], X), respectively. Hence,
Steps S.1–S.4 guarantee that the aforementioned mapping is considered and that all the
above properties hold on the candidate solutions given by the combination of S(WX [GX1], X)
and S(WX [GX2], X). Moreover, any subgraph of WX that belongs to WX [GX1] but not
to WX [GX2], except for the shared vertices of X, must lie in an active face of WX [GX2]
(and vice-versa); if this is not the case, then WX would not be augmentable to a witness
of G, since G is biconnected. This property translates into verifying that any subgraph of
S(WX [GX1], X) lies in an active face of S(WX [GX2], X) (and vice-versa). This is achieved
in Step S.5. Step S.6 suitably updates the active boundaries so that a boundary is active
only if it represents a face of WX that either consists of exactly one anchor vertex or
contains at least two anchor vertices, as by definition of active boundary. Step S.7 removes
inessential intersection vertices and twin-pairs, which is a safe operation because WX is
compact. Therefore we can conclude that S(WX , X) belongs to RX , and thus F1 holds for
RX . Concerning F2, any entry S in RX generated by the merge operation, starting from
entries S(WX1 , X) ∈ RX1 and S(WX2 , X) ∈ RX2 , defines a way to combine the combinatorial
embeddings of S(WX1 , X) and S(WX2 , X) at common real vertices and at possibly common
(based on some mappings ϕ1 and ϕ2) intersection vertices. Such information can be used to
combine in the same way the corresponding witnesses WX1 and WX2 , which exist because
F2 holds for RX1 and RX2 , respectively. On the other hand, such combination yields a
compact witness WX of GX with respect to X, whose sketch is S, as desired. Thus F2 holds
for RX . In Step S.8 we remove possible duplicates, hence F3 holds by construction for RX .
Therefore RX is valid. Since the merge operation does not increase the degree of intersection
vertices, and since RX1 and RX2 are k-map valid, the subrecord R∗

X contains all sketches of
RX generated from sketches in R∗

X1
and R∗

X2
. If R∗

X = ∅, the algorithm rejects the instance,
otherwise RX is k-map valid. If RX1 and RX2 are hole-free valid, R◦

X contains all sketches of
RX that are generated from sketches in R◦

X1
and R◦

X2
and whose complete active boundaries

are such that the edge counters sum up to 4. If R◦
X = ∅, the algorithm rejects the instance,

otherwise RX is hole-free valid.
Concerning the time complexity, we process each pair of sketches, one in RX1 and one in

RX2 , and since both RX1 and RX2 are valid, we have ωO(ω) such pairs. Each of Steps S.1,
S.2, and S.3 generates ωO(ω) new entries, and each entry is computed in O(ω) time. The
remaining steps all run in O(ω) time for each processed entry. Condition F4 can be easily
verified in O(ω) time, for each of the ωO(ω) sketches of RX . Furthermore, verifying condition
F5 requires scanning the active boundaries of each entry in RX and deciding whether it is
complete or not. This can also be done in O(ω) time for each of the O(ω) active boundaries
of each of the ωO(ω) sketches, and thus in ωO(ω) time overall. Consequently, RX and its
subrecords can be computed in ωO(ω) time. ◀

Lemmas 19–21 imply the next theorem, which summarizes the correctness of the approach.

▶ Theorem 22. Let G be a graph in input to the algorithm, along with a nice tree-
decomposition (T, X) of G and an integer k > 0. Graph G is a k-map graph, respectively a
hole-free k-map graph, if and only if the algorithm reaches the root ρ of T and the record Rρ

is k-map valid, respectively hole-free valid.

SWAT 2022

8:16 Recognizing Map Graphs of Bounded Treewidth

We are finally ready to prove Theorem 1. We recall that if k ≥ n− 1, recognizing n-vertex
(resp. hole-free) k-map graphs coincides with recognizing general n-vertex (resp. hole-free)
map graphs.

Proof of Theorem 1. We first discuss the decision version of the problem for a fixed k > 0.
Namely, the algorithm described below is used in a binary search to find the optimal value
of k. Recall that t is the width of the tree decomposition (i.e., ω = t + 1). Note that, if G is
a positive instance, then k varies in the range [1, t + 1], since the size of the largest clique of
G is at most t + 1. Thus the algorithm is executed O(log t) times, which however does not
affect the asymptotic running time.

If G is not biconnected, by Property 4, it is not hole-free, and it is k-map if and only if
all its biconnected components are k-map. Hence we run our algorithm on each biconnected
component independently. Theorem 22 implies the correctness of the algorithm (which
assumes the input graph to be biconnected).

For the time complexity, suppose that G has h ≥ 1 biconnected components and let ni

be the size of the i-th component Ci, for each i ≤ h. Decomposing G into its biconnected
components takes O(n + m) time [30], where m is the number of edges of G and, since G has
treewidth t, it holds m ∈ O(n · t2). Given a tree-decomposition of G with O(n) nodes and
width t, we can easily derive a tree-decomposition (Ti, Xi) for each Ci in overall O(n) time,
such that each Ti has O(ni) nodes and width at most t. Then we can apply the algorithm
in [3] to obtain, in O(ni)-time, a nice tree-decomposition of Ci with O(ni) nodes without
increasing the original width. Since each bag is processed in tO(t) time by Lemmas 19–21,
the algorithm runs in tO(t) · ni time for each Ci. Since

∑h
i=1 ni ∈ O(n), decomposing the

graph and applying the algorithm to all its biconnected components takes tO(t) · n time.
To reconstruct a witness of a yes-instance, we store additional pointers for each record (a

common practice in dynamic programming). Namely, for each sketch S of a record RX of
a bag X, we store a pointer to the sketch of the child bag X ′ that generated S, if X is an
introduce or forget bag, and we store two pointers to the two sketches of the children bags X1
and X2 that generated S, if X is a join bag. With these pointers at hand, we can apply a top-
down traversal of T , starting at any sketch of the non-empty subrecord of ρ, and reconstruct
the corresponding witness W by incrementally combining the retrieved sketches, except at
forget bags (the only points in which we lose information). Suppose first that G is a k-map
graph but not hole-free. If G is not biconnected, a witness W ∗ of G is obtained by merging
the witnesses of its biconnected components. Note that distinct witnesses corresponding to
distinct biconnected components of G can only share real vertices. Thus, each intersection
vertex of W ∗ has degree at most k and W ∗ is a certificate by Property 3. Suppose now
that G is a hole-free k-map graph. Then G is biconnected and the resulting witness is a
biconnected quadrangulation whose intersection vertices have degree at most k, a certificate
by Theorem 7. ◀

6 Open Problems

Recognizing general map graphs efficiently remains a major algorithmic challenge. To restrict
the complexity of the input, further parameters of interest might be the cluster vertex
deletion number [24] and the clique-width [14] of the input graph, as well as the treewidth
of the putative witness [28]. Another interesting line of research would be generalizing our
framework to recognize (g, k)-map graphs, i.e., those graphs that admit a k-map on a surface
of genus g (see, e.g., [19]).

P. Angelini et al. 8:17

References
1 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-

nani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms Appl.,
21(4):731–755, 2017.

2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

3 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996. doi:10.1006/jagm.1996.0049.

4 Franz J. Brandenburg. Characterizing 5-map graphs by 2-fan-crossing graphs. Discret. Appl.
Math., 268:10–20, 2019.

5 Franz J. Brandenburg. Characterizing and recognizing 4-map graphs. Algorithmica, 81(5):1818–
1843, 2019.

6 Zhi-Zhong Chen. Approximation algorithms for independent sets in map graphs. J. Algorithms,
41(1):20–40, 2001.

7 Zhi-Zhong Chen. New bounds on the edge number of a k-map graph. J. Graph Theory,
55(4):267–290, 2007. doi:10.1002/jgt.20237.

8 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Planar map graphs. In
STOC, pages 514–523. ACM, 1998.

9 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map graphs. J. ACM,
49(2):127–138, 2002.

10 Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Recognizing hole-free
4-map graphs in cubic time. Algorithmica, 45(2):227–262, 2006.

11 Zhi-Zhong Chen, Xin He, and Ming-Yang Kao. Nonplanar topological inference and political-
map graphs. In SODA, pages 195–204. ACM/SIAM, 1999.

12 Graham Cormode. Data sketching. ACM Queue, 15(2):60, 2017.
13 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.

Inf. Comput., 85(1):12–75, 1990.
14 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph

grammars. J. Comput. Syst. Sci., 46(2):218–270, 1993.
15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
16 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.

Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, 2005.

17 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing
of bounded treewidth graphs. J. Comput. Syst. Sci., 125:129–148, 2022.

18 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

19 Vida Dujmovic, David Eppstein, and David R. Wood. Structure of graphs with locally
restricted crossings. SIAM J. Discret. Math., 31(2):805–824, 2017. doi:10.1137/16M1062879.

20 Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R.
Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020. URL:
https://dl.acm.org/doi/10.1145/3385731, doi:10.1145/3385731.

21 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:
Approximation, kernelization and optimal FPT algorithms. In FOCS, pages 470–479. IEEE,
2012.

22 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Decomposition of map graphs with applications. In ICALP, volume 132 of LIPIcs, pages
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

23 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In SODA, pages 1563–1575. SIAM, 2012.

SWAT 2022

https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1002/jgt.20237
https://doi.org/10.1137/16M1062879
https://dl.acm.org/doi/10.1145/3385731
https://doi.org/10.1145/3385731

8:18 Recognizing Map Graphs of Bounded Treewidth

24 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196–217, 2010.

25 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In SODA, pages 1802–1811. SIAM, 2014.

26 Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer,
1994.

27 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81(9):3655–3691, 2019.

28 Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt. Linear-time recognition of map graphs
with outerplanar witness. Discret. Optim., 28:63–77, 2018.

29 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

30 Robert Endre Tarjan and Uzi Vishkin. Finding biconnected components and computing tree
functions in logarithmic parallel time (extended summary). In FOCS, pages 12–20. IEEE,
1984. doi:10.1109/SFCS.1984.715896.

31 Mikkel Thorup. Map graphs in polynomial time. In FOCS, pages 396–405. IEEE, 1998.

https://doi.org/10.1109/SFCS.1984.715896

	1 Introduction
	2 Preliminaries
	3 Basic Properties of Map Graphs and Their Witnesses
	4 Embedding Sketches
	5 Algorithmic Framework
	6 Open Problems

