
Nearest-Neighbor Decompositions of Drawings∗

Jonas Cleve #

Institut für Informatik, Freie Universität Berlin, Germany

Nicolas Grelier #

Department of Computer Science, ETH Zürich, Switzerland

Kristin Knorr #

Institut für Informatik, Freie Universität Berlin, Germany

Maarten Löffler #

Utrecht University, The Netherlands

Wolfgang Mulzer #

Institut für Informatik, Freie Universität Berlin, Germany

Daniel Perz #

Technische Universität Graz, Austria

Abstract
Let D be a set of straight-line segments in the plane, potentially crossing, and let c be a positive
integer. We denote by P the union of the endpoints of the straight-line segments of D and of the
intersection points between pairs of segments. We say that D has a nearest-neighbor decomposition
into c parts if we can partition P into c point sets P1, . . . , Pc such that D is the union of the nearest
neighbor graphs on P1, . . . , Pc. We show that it is NP-complete to decide whether D can be drawn
as the union of c ≥ 3 nearest-neighbor graphs, even when no two segments cross. We show that for
c = 2, it is NP-complete in the general setting and polynomial-time solvable when no two segments
cross. We show the existence of an O(log n)-approximation algorithm running in subexponential
time for partitioning D into a minimum number of nearest-neighbor graphs.

As a main tool in our analysis, we establish the notion of the conflict graph for a drawing D.
The vertices of the conflict graph are the connected components of D, with the assumption that each
connected component is the nearest neighbor graph of its vertices, and there is an edge between
two components U and V if and only if the nearest neighbor graph of U ∪ V contains an edge
between a vertex in U and a vertex in V . We show that string graphs are conflict graphs of certain
planar drawings. For planar graphs and complete k-partite graphs, we give additional, more efficient
constructions. We furthermore show that there are subdivisions of non-planar graphs that are not
conflict graphs. Lastly, we show a separator lemma for conflict graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases nearest-neighbors, decompositions, drawing

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.21

Funding Jonas Cleve: Supported in part by ERC StG 757609.
Nicolas Grelier : Supported by the Swiss National Science Foundation within the collaborative DACH
project Arrangements and Drawings as SNSF Project 200021E-171681.
Kristin Knorr : Supported by the German Science Foundation within the research training group
“Facets of Complexity” (GRK 2434).
Wolfgang Mulzer : Supported in part by ERC StG 757609 and by the German Research Foundation
within the collaborative DACH project Arrangements and Drawings as DFG Project MU 3501/3-1.
Daniel Perz: Partially supported by FWF within the collaborative DACH project Arrangements
and Drawings as FWF project I 3340-N35.

∗ This research was started at the 4th DACH Workshop on Arrangements and Drawings, February 24–28,
2020, in Malchow, Germany. We thank all participants of the workshops for valuable discussions and
for creating a conducive research atmosphere.

© Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolfgang Mulzer, and Daniel Perz;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonascleve@inf.fu-berlin.de
https://orcid.org/0000-0001-8480-1726
mailto:nicolas.grelier@inf.ethz.ch
mailto:knorrkri@inf.fu-berlin.de
https://orcid.org/0000-0003-4239-424X
mailto:m.loffler@uu.nl
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
mailto:daperz@ist.tugraz.at
https://orcid.org/0000-0002-6557-2355
https://doi.org/10.4230/LIPIcs.SWAT.2022.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Nearest-Neighbor Decompositions of Drawings

1 Introduction

Let P ⊂ R2 be a finite planar point set, and let C be a finite set of colors. A coloring is a
function σ : P → C that assigns a color to each point in P . For any color c ∈ C, we write
Pc = {p ∈ P | σ(p) = c} for the points in P that were colored with c.

In the following, we assume all pairwise distances in P are distinct. The nearest-neighbor
graph for a color c ∈ C, NNc, is the embedded graph with vertex set Pc and a straight-line
edge between p, q ∈ Pc if and only if p is the nearest neighbor of q among all points in Pc, or
vice versa.1 We will consider NNc both as a combinatorial graph, consisting of vertices and
edges, and as a subset of the plane, consisting of the points in Pc and the line segments that
represent the edges. We write NN =

⋃
c∈C NNc for the union of the nearest-neighbor graphs of

all colors. Again, we consider NN both as a graph and as a set.

(a) (b) (c)

Figure 1 (a) A drawing. (b) A 3-colored point set. (c) The nearest-neighbor graphs.

We are interested in the following problem: suppose we are given a drawing D, i.e., a
set of straight-line segments in the plane such that if two segments intersect, then their
intersection is a point and the two segments are not parallel. Under this assumption, by
considering a drawing as a set of points Q in the plane, the input segments of D are the
inclusion maximal segments in Q. The special points of D are the endpoints of the segments
in D and the intersection points between pairs of segments in D. We denote the set of special
points by P . We require that the pairwise distances between the special points of D are all
distinct. Our general task is to find a set of colors C and a color assignment σ, such that
the union NN of the nearest-neighbor graphs for P and C equals D, interpreted as subsets of
the plane. We call NN an NN-decomposition of D with vertex set P , where NN stands for
Nearest-Neighbor and we call |C| the color-number of NN : see Figure 1.

Figure 2 The possible violations that make a drawing non-plane.

A drawing D is called plane if its segments meet only at their endpoints, i.e., no segment
of D contains a special point in its relative interior; see Figure 2 for an illustration where the
bold edges contain an endpoint or crossing point (marked with a square) in their interior
which is not allowed by the definition.

Let C be a connected component in a plane drawing D, and let p be a special point in C.
We denote by a(p) the special point in C \ {p} that is closest to p (with distance d). Let b(p)
be the set of special points in D whose distance to p is strictly less than d. By definition,

1 Our notion of nearest-neighbor graph is undirected, but a directed version also exists.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:3

b(p) ⊂ D \ C. Let C1 and C2 be two distinct connected components. We say that C1 and C2
are conflicting if there is a special point p ∈ C1 such that b(p) ∩ C2 ̸= ∅, or vice-versa. We
denote by V = {Ci}1≤i≤n the connected components of D. We define E as the set of pairs
{Ci, Cj} where Ci and Cj are conflicting. We say that the graph G := (V, E) is the conflict
graph of D. We call the connected component C NN-representable if C is the nearest-neighbor
graph of its special points. An abstract graph is a conflict graph if it is the conflict graph of
some plane drawing.

Related work. The nearest-neighbor graph of a planar point set P is well understood [1, 10].
It is a subgraph of the relative neighborhood graph of P [7, 10], which in turn is a subgraph of
the Delaunay triangulation. The problem of recognizing whether a given abstract graph can
be realized as a nearest-neighbor graph of a planar point set is open and we conjecture it to
be hard. In contrast, testing whether a given embedded graph is a (single) nearest-neighbor
graph is easy, as it suffices to test if each vertex is indeed conencted to its closest point.

Our problem also has applications in automated content generation for puzzle games:
van Kapel introduces a version of connect-the-dots puzzles where the task is to connect dots
based on colors rather than numbers [12]. In this puzzle, points may have multiple colors;
see Figure 3. Van Kapel implemented a heuristic approach for generating such puzzles. The
heuristic works well for small instances, but for larger instances, it generates too many colors
to be practical [9].

(a) (b) (c)

Figure 3 (a) Multi-colored points with 5 colors: blue, red, green, yellow, and orange: (b) the
orange nearest-neighbor graph. (c) The union of all nearest-neighbor graphs. Figure taken from [9].

Our Results. First, we consider the problem of testing whether a given drawing D can
be decomposed into c nearest-neighbor graphs. We show that under the assumption that
the drawing is plane, meaning that segments in D may only meet at their endpoints, this
problem is in P for c ≤ 2, and NP-complete for c ≥ 3. If we allow the segments of D to cross
the problem is already NP-complete for c = 2.

Inspired by our algorithms, we also introduce the new graph class of conflict graphs of
drawings. We show that string graphs are conflict graphs and give additional, more efficient
constructions in terms of size complexity for planar graphs and complete k-partite graphs.
On the other hand, subdivisions of non-planar graphs are not conflict graphs.

We show a separator lemma for conflict graphs, which allows us to provide an algorithm
for computing a maximum independent set in conflict graphs in subexponential time. Using
it as a subroutine, we obtain an O(log n)-approximation algorithm for coloring conflict graphs
that runs in subexponential time. This problem is of importance to us because we show that
coloring conflict graphs is equivalent to partitioning a plane drawing into nearest-neighbor
graphs.

SWAT 2022

21:4 Nearest-Neighbor Decompositions of Drawings

2 Existence of NN-Decompositions on Special Points

2.1 The Plane Case
Let D be a straight-line drawing. If s is a line segment with s ⊂ D such that s is not a segment
of D, we say that s is covered by D. Recall that the vertex set of the NN-decomposition
consists of the special points in D. We investigate the question under which circumstances it
is possible to find such a NN-decomposition of D.

▶ Lemma 2.1. Let D be a plane drawing. Suppose there is a NN-decomposition NN of D,
and let σ be the underlying coloring of NN . Then, for any connected component C of D, the
coloring σ assigns the same color to all special points in C.

Proof. Suppose D has a connected component C in which σ assigns two distinct colors. Then,
C has a segment s = uv between two special points u and v such that σ(u) ̸= σ(v). However,
the line segment uv must be covered by NN , and thus, there exists a segment t in NN that
contains u, v, and another special point of D (since the segments in NN are derived from
nearest-neighbor relations between points of the same color). By our assumption that D
is a plane drawing, the segment t is not in D, so NN is not an NN-decomposition of D, a
contradiction. ◀

▶ Theorem 2.2. Let C be a set of colors with |C| ≤ 2. There is a polynomial-time algorithm
for the following task: given a plane drawing D, is there a NN-decomposition of D with color
set C?

Proof. Let D be a plane drawing. If there is a decomposition of D with color set C, then,
by Lemma 2.1, every connected component is colored with a single color of C, i.e., every
connected component of D is NN-representable. The latter necessary condition can be
checked in polynomial time, as we only need to compute the nearest-neighbor graph of the
special vertices in each component. If there is a connected component where this is not the
case, the algorithm answers that there is no solution.

Otherwise, we construct the conflict graph G of D, and we check if G can be colored with
C. This takes polynomial time since |C| ≤ 2 (for |C| = 2, check whether G is bipartite, for
|C| = 1, check that G has no edges). Now, if G is C-colorable, we give all special points
in a component C the color assigned to the corresponding vertex in G. Since all connected
components are NN-representable, this is also a NN-decomposition of D with C. On the
other hand, if D has a NN-decomposition with color set C, then G must be C-colorable, by
definition of G. ◀

▶ Theorem 2.3. Let C be a set of colors with |C| ≥ 3. The following task is NP-complete:
given a plane drawing D, is there a NN-decomposition of D with color set C?

Proof. Gräf, Stumpf, and Weißenfels [6] showed how to reduce k-colorability to k-colorability
of unit disk graphs. Our proof is inspired by theirs. Let k = |C|. We show the NP-hardness of
coloring the special points of D with k ≥ 3 colors by means of a reduction from k-colorability.
We make use of four types of gadgets: k-wires, k-chains, k-clones, and k-crossings. They
are depicted in Figures 4–7, together with their conflict graphs. The symbol consisting of a
number x in a circle denotes a clique of size x. A vertex v connected to such a symbol means
that there is an edge between v and all the vertices of the clique. These conflict graphs are
exactly the gadgets defined by Gräf, Stumpf, and Weißenfels. Note that each connected
component in these gadgets is NN-representable. The gadgets shown are for k = 5.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:5

k − 1 k − 1 k − 1 k − 1

Figure 4 A 5-wire of length 5 and the conflict graph of a k-wire of length 5. The symbol consisting
of a number x in a circle denotes a clique of size x.

k − 1 k − 1 k − 1 k − 1

Figure 5 A 5-chain of length 5 and the conflict graph of a k-chain of length 5.

k − 1 k − 1 k − 1 k − 1

Figure 6 A 5-clone of length 4 and and the conflict graph of a k-clone of length 4.

k − 2 k − 2

k − 2 k − 2

k − 2

Figure 7 The 5-crossing gadget and the conflict graph of the k-crossing gadget.

In Figures 4–6, there are several sets of four segments that are very close and nearly
vertical. For other values of k, the gadgets are analogous, but with k − 1 almost vertical
segments instead of four. Similarly, in Figure 7, there are five sets consisting of three close
segments. For other values of k, there are five sets of k − 2 segments. In Figures 4 and 5,
k-wires and k-chains are drawn as if they were on a line, but they may also bend with a right
angle. Note that in Figures 4–7 some vertices are specially marked with larger empty circles.
These vertices will be called extreme vertices.

In Figure 7, there seem to be points lying on a segment between two other points. Actually,
these points are shifted by a sufficiently small ε > 0, to ensure that the resulting drawing is
plane.

The main property of a k-wire is that in any coloring with k colors of its conflict graph,
the extreme vertices are assigned the same color. In contrast, in a k-chain, the extreme
vertices are assigned different colors. In a k-clone of length ℓ, there are ℓ extreme vertices.
In any coloring with colors from C, all extreme vertices have the same color. Finally, for
the k-crossing, opposite extreme vertices must have the same color; a pair of consecutive
extreme vertices (e.g., top and left extreme vertices) may or may not be assigned the same
color, as shown in [5].

SWAT 2022

21:6 Nearest-Neighbor Decompositions of Drawings

v1

v2 v4

v3
clone clone

v1 v2 v4

clone clone

v2 v3

+

+ +

+
+ = crossing gadget

= wire
= end of chain

Figure 8 A graph with four vertices (left). Converting it to an NN-graph (right).

Now we follow the proof of Gräf, Stumpf, and Weißenfels. Suppose we are given a graph
G = (V, E). We describe a drawing D whose conflict graph can be colored with color set C if
and only if the vertices of G can be colored with C. Refer to Figure 8. For each vertex v of
degree δ in G, we draw a k-clone of size δ. The clones are drawn so that they are arranged
on a horizontal line and such that their upper points have the same y-coordinate. Then, for
each edge {u, v} ∈ E, we draw it on the plane as two vertical segments, each incident to
one k-clone, and one horizontal segment that connects the two upper points of the vertical
segments. We do that such that for any pair of edges, their horizontal segments have distinct
y-coordinates. Then we replace each crossing between a pair of edges by a k-crossing. Finally,
let us consider one edge {u, v} ∈ E, and let us orient it arbitrarily, say toward v. We replace
each part of the edge between two k-crossings by k-wires of sufficient length. If there are no
crossings, we replace the edge by a k-chain. Otherwise, the part of the edge between u and
the first k-crossing is replaced by a k-wire, and the part between the last k-crossing and v

is replaced by a chain. As the points of distinct gadgets are sufficiently remote (except for
pairs of gadgets that are connected on purpose), the conflict graph of this drawing is the
union of the conflict graphs of the individual gadgets.

It is possible to find positions with a polynomial number of bits such that all pairwise
distances are distinct but at the same time the positions are sufficiently close to the prescribed
positions. This concludes the reduction.

It is straightforward to see that the problem is in NP with the certificate being a coloring
of the vertices. For each point we can easily find its closest point with the same color (we
compare squared distances to avoid taking square roots) and add the edges to the resulting
graph. We can then compare the edges with the segments of the original drawing. ◀

2.2 The non-plane case
We show that if drawings are not required to be plane, the problem is hard for two colors.

▶ Theorem 2.4. Let C be a set of colors with |C| = 2. The following problem is NP-complete:
given a drawing D, is there a NN-decomposition of D with color set C?

Proof. We reduce from Not-All-Equal 3SAT (NAE-3SAT), where each clause has three
variables and is satisfied if not all variables are equal. Let Φ be an NAE-3SAT formula with
variable set X and clause set Y . Let GΦ be the associated bipartite graph with vertex set
X ∪ Y , where two vertices x and y are adjacent if and only if x is a variable that appears in
clause y. We draw GΦ as follows: clauses are represented by vertical segments on the y-axis
of length 3. Variables of degree δ are represented as horizontal segments on the x-axis of

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:7

clone
x1 x2 x3 x4 x5

+

+

+

+

c1

c2

c3

clone clone

+

clau
se

clau
se

clau
se

+

= wire

+ = crossing gadget

= end of chain

Figure 9 Structure of the conversion of the NAE-3SAT formula with clauses c1 = (x1, x2, ¬x3),
c2 = (¬x1, x3, ¬x4), and c3 = (x2, x3, x5) into a 2-color NN graph.

(a) (b) (c)

Figure 10 A clause gadget with (a) a valid assignment, (b)–(c) two invalid assignments. The
dashed circles indicate distance to the nearest neighbor.

length δ. Each edge {x, y} is drawn as the union of one vertical and one horizontal segment.
The vertical segment is incident to the variable gadget for x. The horizontal segment is
incident to a clause gadget for y. See Figure 9 for an example.

We use some gadgets from the proof of Theorem 2.3. We replace each variable by a
2-clone of length δ. We replace each clause by the gadget in Figure 10a (see Figure 10b-c
for assignments where all literals have the same color). In Figure 10a, there seem to be
points lying on a segment between two other points. Actually, these points are shifted by
a sufficiently small ε > 0, to ensure that the resulting drawing is plane. We replace each
crossing by the gadget in Figure 11. In Figure 11, some points have been colored. Note
that this does not correspond to an assignment of truth values, but is supposed to provide

1− ε

1

1 + ε

1

> 1

> 1

Figure 11 A non-plane crossing gadget.

SWAT 2022

21:8 Nearest-Neighbor Decompositions of Drawings

(a) (b)

Figure 12 Two valid assignments of the non-plane crossing gadget. (a) All extreme segments
have the same color. (b) Opposite segments have the same color.

visual information for the reader. The distance between a green point and a blue point is
1 − ε, for a sufficiently small ε > 0. The distance between a blue point and the red point is
1. The distance between the red point and an orange point is 1 + ε. The blue point on the
left and the orange point on the right are finally shifted by a suitable η > 0 with η ≪ ε, so
that no two points are at the same distance from the red point. The points in the clause
gadget that are on the vertical connected component on the left side are arranged so that
this connected component is NN-representable. Finally, each part of an edge between two
gadgets is replaced by a 2-wire of suitable length. We have thus obtained a drawing D.

We claim that Φ is satisfiable if and only if there exists a special-point NN-decomposition
of D with two colors. First, notice a clause gadget has a special-point NN-decomposition
if and only if two of the horizontal segments on the right side are assigned different colors.
Indeed, we show in Figure 10b-c that if all literals have the same color, then the corresponding
NN-graph is not the one that is required, the one shown in Figure 10a. It remains to show that
if not all literals have the same color, then we obtain the correct NN-graph. By symmetry,
if the top and bottom literals do not have the same color, then we are in the situation of
Figure 10a. If the top and bottom literals have the same color, say red, then we keep the
color of the remaining points of the clause gadget as in Figure 10a. Let us denote by p the
point of the clause gadget incident to the middle literal. By assumption, p is blue. Let us
denote by q the top right vertex of the clause gadget, which is also colored in blue. Therefore
the closest neighbor of q which is also blue is p. Likewise, in the NN-graph, the closest
neighbor colored in blue of the bottom right vertex is p. This shows that in this situation,
the NN-graph is the same as in Figure 10a.

In the non-plane crossing gadget opposite segments are assigned the same color. All of
them may be assigned the same color, as in Figure 12a, or consecutive segments might be
assigned different colors, as in Figure 12b. Therefore, by associating the colors of C with
truth values, D has a special-point NN-decomposition if and only if Φ is satisfiable.

That the problem is in NP can be seen the same way as in the proof for Theorem 2.3. ◀

3 Conflict Graphs and Related Graph Classes

We show in Theorem 2.3 that k-coloring of conflict graphs is NP-complete, for any fixed
k ≥ 3. To put this result into context, we will show that there exist graphs that are not
conflict graphs. Moreover, we will prove the inclusion of some well-known graph classes in
the class of conflict graphs. The aim is to characterise the class of conflict graphs, as it gives
some information about what kind of running time we can expect for the vertex coloring
algorithms on conflict graphs.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:9

Let G be a graph, and let us denote by G′ the graph obtained from G by subdividing each
edge of G once (i.e., for each edge e = {u, v} in G, we add a vertex in G′ whose neighbors
are exactly u and v). In this section we will show that G′ is a conflict graph if and only if
G is planar. Sinden [11] showed the same statement for G′ being a string graph, i.e., an
intersection graph of continuous curves in the plane.

First, let us recall Sinden’s proof for string graphs. Let G be a graph, and let G′ be
obtained from G as described above. Assume that G′ is a string graph, and consider a
representation R of G′ as a string graph. Contract to a point each curve in R that corresponds
to a vertex in G and extend the curves corresponding to the edges in G. In the process, one
can maintain the property that the curves corresponding to the edges in G intersect only two
other curves, which are now reduced to single points. Observe that the resulting drawing is
a plane embedding of G. We adapt this method for conflict graphs.

Let G be a graph, and let G′ be the edge-subdivision of G. Suppose that G′ is a conflict
graph, and let R be a representation of G′ as a conflict graph. We still would like to contract
each connected component of R that corresponds to a vertex in G to a single point. However,
now it is not clear that we can extend the connected components corresponding to edges in G

such that they only intersect two other connected components (now reduced to points). This
is illustrated in Figure 13. The connected components in blue correspond to the vertices in G,
those in red correspond to the edges in G. The dashed segments show a conflict between two
connected components. Inside the green square, we have a connected component blocking
another one. We therefore want to reroute the connected component so that there is no
intersection. To show how we do it, we first need the following lemmas.

1

2

3

4

5

1 2

3 5

4

Figure 13 A representation of the subdivision of G (G is shown on the right side) as a conflict
graph. The connected components in blue correspond to vertices in G, the ones in red correspond to
edges in G. The dashed segments show a conflict between two connected components. In the green
zone, a conflict overlaps with a connected component.

Let D be a plane drawing. Let GD be its conflict graph. Let D1, D2 be a pair of connected
components that are conflicting. Let us consider two points p and q that certify this conflict
(for instance, assume without loss of generality p ∈ D1, q ∈ D2, q ∈ b(p)). We denote by s

the segment with endpoints p and q.

▶ Lemma 3.1. If a connected component intersects the line segment s, then this connected
component is conflicting with D1 or D2.

Proof. The proof is illustrated in Figure 14. Let us denote by s′ a segment in a component
D3 which intersects s. Let us assume that D3 is not conflicting with D1, and let us show that
it is conflicting with D2. Let us consider the circle Cp centered at p going through a(p), the
closest point to p among the ones that are in the same connected component. By assumption,

SWAT 2022

21:10 Nearest-Neighbor Decompositions of Drawings

D1

D2
s

Cp
D

s′

p

q
a(p)

p′

q′

Figure 14 Illustration of Lemma 3.1. The disk D contains q.

the endpoints of s′, denoted by p′ and q′, are not inside Cp. In contrast, q is inside Cp. We
consider the disk D with diameter s′. To show that D3 is conflicting with D2, it is sufficient
to show that q is contained in D, for then we have q ∈ b(p′) or q ∈ b(q′). We know that s′

intersects Cp twice. By assumption, p is not contained in D. As two circles can intersect at
most twice, D contains all of Cp on at least one side of s′. Therefore, D contains q. ◀

Let us consider another pair of conflicting components, denoted by D3 and D4. Let
u ∈ D3 and v ∈ D4 be two points that certify this conflict. Let us assume without loss of
generality v ∈ b(u). We denote by s′ the segment with endpoints u and v.

▶ Lemma 3.2. Assume that u and v are not in b(p). If the segments s and s′ intersect, then
p or q is in b(u). In particular, at least one of D3 and D4 is conflicting with D1 or D2.

Proof. The situation is similar to the one of Lemma 3.1. By assumption, the segment s′

intersects twice the circle Cp centered at p with radius a(p). Therefore the proof of Lemma 3.1
can be applied in this situation, too. ◀

We are now ready to prove the theorem. As we are considering conflict graphs, there
might be obstacles when we try to follow Sinden’s proof that were not there with string
graphs. We use the two lemmas above to reroute these obstacles.

▶ Theorem 3.3. Let G be a graph and let G′ denote the subdivision of G. If G′ is a conflict
graph then G is planar.

Proof. Let us assume we have a representation of G′ as a conflict graph. We denote by V

the vertices in G′ corresponding to vertices in G and by E the vertices in G′ corresponding
to edges in G. For each vertex v ∈ V , we pick an arbitrary point pv on the connected
component that represents v in the conflict representation. We are going to reduce all
connected components v to their corresponding point pv. Let e ∈ E be the vertex in G′

corresponding to the edge {w, x} in G. We want to extend e to a curve that contains vx

and vw at each endpoint. We want to do that for all vertices in E, such that no two curves
intersect, except maybe at endpoints. Therefore, we would obtain a plane representation
of G.

Let us first consider all connected components in the representation as a conflict graph,
before reducing some of them to points, and extending the rest to curves. For each pair of
connected components (D1, D2) that are conflicting, we find two points p and q that certify
it, meaning that p is in b(q) or vice versa. We now draw the segment with endpoint p and
q, for each such pair of conflicting components. We denote by S the set of segments we
have obtained. Let us consider a connected component D corresponding to a vertex in E,

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:11

that intersects with some segments in S. For one of these segments it intersects, say s, we
name its endpoints p and q. Without loss of generality, we assume p ∈ D1 and q ∈ D2.
By Lemma 3.1, D is conflicting with D1 or D2. By assumption, D1 and D2 are conflicting.
Therefore one of them, say D1, corresponds to a vertex in V , and the other corresponds to
a vertex in E. By definition of G′, no two vertices in E are connected by an edge. This
implies that D is conflicting with D1. This shows that when we want to extend a connected
component e to a curve that contains vx and vw at each endpoint (see the notation above),
we might be blocked by other curves, but these curves have to also contain vx or vw at an
endpoint. This is the situation depicted in Figure 13. Here we simply have to reroute the
edge going from vertex 1 to 3.

One issue that might still occur is that when trying to extend a connected component
into a curve, we are not blocked by another connected component, but by the extension into
a curve of a connected component. Namely, how do we do the rerouting when two segments
in S intersect? Let s and s′ be those two segments. By construction, s is a segment between
two connected components D1 and D2. Without loss of generality, we can assume that D1
corresponds to a vertex in V and D2 to a vertex in E. Likewise, s′ is a segment between
two connected components D3 and D4 , with D3 corresponding to a vertex in V and D4 to
a vertex in E. Now we use Lemma 3.2, which states that one connected component from
each pair are conflicting. By construction, this pair is (D1, D4) or (D2, D3). This shows
that we are in the same situation as in the paragraph above. Thus it is possible to reduce
each connected component corresponding to a vertex in V to a point, and then extend
the connected components from E into curves. By doing that, we obtain a plane drawing
of G. ◀

Theorem 3.3 and its analogy to the proof for string graphs in [11] may suggest that the
class of conflict graph is equal to the class of string graphs. We show that, indeed, the string
graphs are contained in the conflict graphs, but conjecture that the opposite is not true.

▶ Theorem 3.4. All string graphs are conflict graphs.

Proof. Let G be a string graph. We start by embedding G as a set of n strings (curves)
in the plane. We may assume the strings are non-self-intersecting, but they could intersect
other strings multiple times. For ease of exposition, we further assume that all curves are
orthogonal polylines aligned to a unit grid. The proof steps are illustrated in Figure 15.

Fix a resolution r0 = 1
2 such that if we place points on each string at distance r0 from

each other, then these points will always be closer to each other than to points on other
strings, except near crossings. Pick an arbitrary string s0. Consider the “tunnel” of width r0
around s0; by construction the other strings cross this tube in consecutive proper crossings.
Consider the ordered list c1, c2, ..., ck of crossings of s0 with other strings (note that k could
be independent of n).

Set r1 = r0/10k. We increase the resolution of all strings except s0 to r1. Now we reroute
all other strings inside the tube of s0 so that they keep distance r1 from each other and from
the tube boundary, but such that the crossings with s0 are close to the start point of s0;
specifically, crossing ci should be at distance 2ir1 from the start point of s0. Note that this
rerouting is always possible.

Now, we shorten s0 by deleting the first r0 length of it. After this, s0 does not intersect
any other strings, but if we keep the resolution of s0 at r0, it will have a conflict with exactly
those strings that it originally intersected. Since the resolutions of the remaining strings
were increased, they do not have any conflicts except near crossings with each other.

SWAT 2022

21:12 Nearest-Neighbor Decompositions of Drawings

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15 Illustration of the proof of Theorem 3.4. (a) A string representation with 3 strings.
(b) The tunnel around the red string. (c) Rerouting the blue and green strings inside the red tunnel.
Note that the blue string crosses the red string twice. (d) The final set of strings after one iteration
of the algorithm. The red string no longer intersects any other strings. (e-h) The second (and last)
iteration of the algorithm.

We recursively apply this strategy: pick an arbitrary remaining string si, keep its resolution
at ri, determine its crossings and a finer resolution ri+1, reroute all strings, and shorten si.
In the end, we will have n strings s0, . . . , sn−1 at increasingly fine resolutions r0, . . . , rn−1
whose conflict graph is exactly the original string graph. ◀

Note that the resolution (and hence the size of the components) has a superexponential
growth. Hence, this does not give us a polynomial-time reduction, and thus we cannot
conclude that coloring embedded conflict graphs is NP-hard from the fact that coloring
embedded string graphs is NP-hard.

However, the following lemmas show that both planar graphs as well as complete k-partite
graphs are conflict graphs and the proof gives a polynomial-time reduction (for a fixed k in
the latter case). Note that Lemma 3.5 gives us an alternative proof that coloring embedded
conflict graphs is NP-hard.

▶ Lemma 3.5. Every planar graph with n vertices is a conflict graph of a set of components
of complexity polynomial in n.

Proof. Given a plane straight-line drawing D of a planar graph G (obtained by Fáry’s
theorem [2]) such that no two points are on a common vertical or horizontal line. We
construct a drawing D′ such that its conflict graph is G. The rough idea is to replace every
vertex by the gadget in Figure 16, and replace each edge by two edges which enforce a
conflict.

The gadget’s drawing H (Figure 16) depends on the number of vertices n of G. We
construct a horizontal line with 4n − 3 points with small distance ℓ. To every odd vertex we
add vertical lines, starting with 4 additional vertices on the left and right end, increasing by 4
vertices every step towards the center (with same distance ℓ). The topmost and bottommost
vertex of these lines are denoted by ak and bk respectively, from left to right.

We replace every vertex vi in D with a copy of H, called Vi. Let ai,j and bi,j denote
aj and bj of Vi respectively. Consider an edge {vi, vj} of D. Without loss of generality
assume vj is above and to the left of vi (the other cases are symmetric). We consider all
vertices in this quadrant of vi in clockwise order and assume that vj is the x-th such vertex.
Accordingly, assume vi is the y-th vertex in clockwise order below and to the right of vj .

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:13

a1

a2

b1

b2

a7

b7

Figure 16 Every vertex is replaced by this gadget. Here for |V | = 4.

We draw the edge (ai,x, bj,2n−y) and replace it by a path P of segments of length ℓ from
bj,2n−y to a point p with 0 < d(p, ai,x) < ℓ. The points p and ai,x enforce the conflict between
Vi and Vj and hence the edge {vi, vj} in G.

The conflict graph of D′ obviously contains all the edges of G. It remains to show, that
no additional edges are introduced by showing that any introduced path P only conflicts
with the corresponding component Vi. Assume that the distance between every edge e and
every vertex not incident to e is at least d. If ℓ is chosen small enough then the distance of
P to every gadget Vk except Vi and Vj is larger than ℓ.

Assume Q is a path that conflicts with P . If Q does neither start at Vi nor at Vj , then
Q cannot conflict with P since the distance between two independent edges is at least d.
If Q starts at Vj we have two cases. If Q is below P , then the slope of Q is less than the
slope of P . If Q is above P , then the slope of Q is greater than the slope of P . In both
cases the smallest distance is between the starting points of P and Q which is at least 2ℓ by
construction. Hence, there does not exist such a further conflict. ◀

▶ Lemma 3.6. Every complete k-partite graph with n vertices is a conflict graph of a set of
components of complexity polynomial in n.

Proof. Given a complete k-partite graph where each set with index i has ni vertices. We
will construct a graph with a drawing D such that G is the conflict graph of D, i.e., each set
i will consist of ni components which are not in conflict with each other but with all other
components from the other sets.

For each group i the drawing needs two properties: the components’ resolution ri and the
components’ minimum distance to each other di. The idea of the construction is that di > ri

for all i but rj > di for all j > i so that components in the same set do not conflict but all
components in a set j conflict with all other components i < j (and thus also with all i > j).

We start with n1 parallel components where r1 = 1 and d1 = 2r1 = 2, see Figure 17
(left). For all following sets 1 < i ≤ k we set ri = 3

2 ni−1di−1 = 3ni−1ri−1 and di = 2ri =
3ni−1di−1 = 6ni−1ri−1. We place the components from the ith set orthogonal to the (i−1)th,
starting at the opposite corner of a square of size ni−1di−1 × ni−1di−1, as seen in Figure 17
(right). We finally route the (i − 1)th set between the last two components of the ith set
with distance di−1 to the last component. This requires that ri and di are multiples of ri−1
and that di is a multiple of di−1 which in ensured by our choices for ri and di.

A depiction of the resulting drawing for n1 = 4, n2 = 3, and n3 = 3 can be found in
Figure 18. From the construction it is immediate that a component is not in conflict with a
component of the same group but with all other components. Hence the initial graph G is a
conflict graph of our constructed drawing D. ◀

SWAT 2022

21:14 Nearest-Neighbor Decompositions of Drawings

...

d1

r1 }n1

d2

r1
n1d1 × n1d1

Figure 17 Left: The drawing for the first set. Right: The drawing for the third set with rerouted
first set.

n2d2 × n2d2

Figure 18 A conflict graph representation of the complete 3-partite graph K4,3,3.

4 Separators of conflict graphs and chromatic number

Let us recall the motivation for our problem. Starting from a drawing D, we want to color
the vertices of that drawing such that the nearest-neighbor graph on those colored vertices
is the drawing D. If the drawing is plane, we have shown that this problem boils down to
coloring a conflict graph, where one vertex corresponds to a connected component of the
drawing. We have shown in Theorem 2.3 that this problem is NP-hard, even for 3-coloring
plane drawings. In this section, we show the following theorem:

▶ Theorem 4.1. There exist an exact algorithm for maximum independent set, and an
O(log n)-approximation algorithm for vertex coloring in conflict graphs with n vertices,
running in 2n4/5 polylog n-time.

The exact algorithm for maximum independent set is used as a subroutine to obtain the
O(log n)-approximation algorithm for coloring conflict graphs in subexponential time, where
n denotes the number of vertices in the conflict graph. Indeed, coloring vertices can be seen
as a covering problem, where there is a hyperedge for a set of vertices if and only if those are
independent. As we have an exact algorithm for maximum independent set, we can use the
greedy algorithm for covering to obtain the O(log n) approximation.

In [4], Fox and Pach present an algorithm running in 2n4/5 polylog n-time for maximum
independent set in string graphs. The input is an abstract graph, and it outputs a maximum
independent set or a certificate that the input graph is not a string graph. As they observe,

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 21:15

the only property they use is the following separator lemma: Every string graph with m edges
and maximum degree ∆ contains a separator of order at most c∆m1/2 log m [4]. A separator
in a graph G = (V, E) with n vertices is a subset V0 ⊂ V such that there is partition of V

into three sets V = V0 ∪V1 ∪V2, with |V1| ≤ 2n/3 and |V2| ≤ 2n/3, such that there is no edge
between a vertex in V1 and a vertex in V2. We show that this lemma also holds for conflict
graphs, which immediately implies that the algorithm by Fox and Pach also applies to our
setting. The lemma was actually proven in another paper by the same authors, denoted there
as Theorem 2.5 [3]. The proof uses several lemmas, but the assumption that the considered
graph is a string graph appears only once. As defined in [3], the pair-crossing number pcr(G)
of a graph G is the minimum number of pairs of edges that intersect in a drawing of G. Fox
and Pach showed that if G is a string graph, then pcr(G) is at most the number of paths
of length 2 or 3 in G, where the length of a path is the number of its edges. Following the
proof of their Theorem 2.5 [3], it is sufficient for us to show the following:

▶ Lemma 4.2. If G is a conflict graph, then pcr(G) is at most the number of paths of length
2 or 3 in G.

Proof. We use a similar notation to [3]. Let us consider a representation of a conflict graph.
For each pair of conflicting connected components Di and Dj , we consider two points p ∈ Di

and q ∈ Dj , such that q ∈ b(p). We now consider the drawing D consisting of the union of the
connected components and the line segments with endpoints p, q, for each pair of conflicting
connected components. If three or more line segments intersect at the same point, we shift
slightly the relative interior of one so that this is not the case anymore. It is not an issue that
those are not segments anymore, we only want them to be Jordan curves. For simplicity, we
keep referring to them as line segments with endpoints p, q. For each connected component
Di, we consider an arbitrary point pi on Di. Let x = {Di, Dj} denote a pair of conflicting
connected components. We denote by α(x) a curve that starts at pi, goes along Di until it
reaches the line segment between Di and Dj that we have added to the drawing, follows this
line segment until it reaches Dj , and finally goes along Dj until it reaches pj . Observe that
this gives us a drawing of G in the plane. Suppose that two edges α(x) and α(y) in this
drawing intersect. We claim that they determine a unique path of length 2 or 3 in G.

First if x and y share a connected component Di, then they determine a path of length 2
where Di is the middle vertex. Now let us assume without loss of generality that x = {D1, D2}
and y = {D3, D4}. If the curves α(x) and α(y) intersect inside one of the connected
components, say D3, then we can apply Lemma 3.1 to infer that D3 is in conflict with one of
the components in x, say D1. If α(x) and α(y) intersect outside of a connected component
(i.e., the line segment between D1 and D2 intersects the line segment between D3 and D4)
we can similarly apply Lemma 3.2 to show that one component from y, say D3, is in conflict
with one component in x, say D1. In both cases the vertices D2, D1, D3, D4 form a path
of length 3. We have shown that a pair of edges that intersect in the drawing determine a
unique path of length 2 or 3 in G. ◀

Lemma 4.2 is sufficient to show that conflict graphs with m edges and maximum degree ∆
contain a separator of order at most c∆m1/2 log m, as shown by Fox and Pach [3]. Following
their notation, the bisection width b(G) of a graph is the least integer such that there is a
partition V = V1 ∪ V2 with |V1|, |V2| ≤ 2|V |/3 and the number of edges between V1 and V2
is b(G). As shown by Kolman and Matoušek [8], we have for every graph G on n vertices
b(G) ≤ c log(n)(

√
pcr(G)+

√
ssqd(G)) where c is a constant and ssqd(G) is twice the number

of paths of length 1 or 2 in G. By denoting by p the number of paths of length at most 3
in G, we derive from Lemma 4.2 that if G is a conflict graph, then b(G) = O(p1/2 log n). A
simple argument proven by Fox and Pach states that p is at most m∆2 for a graph with m

edges and maximum degree ∆ [3], which concludes the proof.

SWAT 2022

21:16 Nearest-Neighbor Decompositions of Drawings

5 Conclusion and open problems

In this work we studied the decomposition of a drawing into nearest-neighbor graphs. First,
we studied the decision problem, whether for a given natural number k ≥ 2 it is possible
to decompose a drawing into k nearest-neighbor graphs. If we allow that segments of the
drawing cross the problem is NP-complete. If we assume that the segments only meet
at endpoints, it is NP-complete for k ≥ 3 and polynomial-time solvable for k = 2. We
provided an O(log n)-approximation algorithm running in subexponential time for coloring
plane drawings with a minimum number of colors, which we showed to be equivalent to
partitioning a plane drawing into a minimum number of nearest-neighbor graph. It would be
interesting to find better approximation algorithms, with respect to the approximation ratio
or the running time. Also, it would be interesting to study other variants of this problem;
specifically, where points can have multiple colors.

We introduced so called conflict graphs and showed that not every graph is a conflict
graph, but every string graph is a conflict graph. It is an open problem, whether there is a
conflict graph, which is not a string graph. Further it would be interesting to know relations
between other graph classes and conflict graphs.

References
1 D. Eppstein, M.S. Paterson, and F.F. Yao. On nearest-neighbor graphs. Discrete Comput

Geom, 17:263–282, 1997. doi:10.1007/PL00009293.
2 István Fáry. On straight-line representation of planar graphs. Acta scientiarum mathemati-

carum, 11(229-233):2, 1948.
3 Jacob Fox and János Pach. A separator theorem for string graphs and its applications.

Combinatorics, Probability and Computing, 19(3):371–390, 2010.
4 Jacob Fox and János Pach. Computing the independence number of intersection graphs. In

Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms, pages
1161–1165. SIAM, 2011.

5 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1:237–267, 1976. doi:10/dwvqpj.

6 Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs. Algorith-
mica, 20(3):277–293, 1998.

7 J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their relatives. Proc.
of the IEEE, 80(9):1502–1517, 1992.

8 Petr Kolman and Jiřı Matoušek. Crossing number, pair-crossing number, and expansion.
Journal of Combinatorial Theory, Series B, 92(1):99–113, 2004.

9 Maarten Löffler, Mira Kaiser, Tim van Kapel, Gerwin Klappe, Marc van Kreveld, and Frank
Staals. The connect-the-dots family of puzzles: Design and automatic generation. ACM
Transactions on Graphics, 33(4):72, 2014. doi:10.1145/2601097.2601224.

10 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

11 F. W. Sinden. Topology of thin film RC circuits. The Bell System Technical Journal,
45(9):1639–1662, 1966. doi:10.1002/j.1538-7305.1966.tb01713.x.

12 Tim van Kapel. Connect the closest dot puzzles. Master’s thesis, Utrecht University, 2014.
URL: http://dspace.library.uu.nl/handle/1874/296600.

https://doi.org/10.1007/PL00009293
https://doi.org/10/dwvqpj
https://doi.org/10.1145/2601097.2601224
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://doi.org/10.1002/j.1538-7305.1966.tb01713.x
http://dspace.library.uu.nl/handle/1874/296600

	1 Introduction
	2 Existence of NN-Decompositions on Special Points
	2.1 The Plane Case
	2.2 The non-plane case

	3 Conflict Graphs and Related Graph Classes
	4 Separators of conflict graphs and chromatic number
	5 Conclusion and open problems

