Stay Safe Under Panic: Affine Rust Programming
with Multiparty Session Types (Artifact)

Nicolas Lagaillardie =

Department of Computing, Imperial College London, UK

Rumyana Neykova &

Department of Computer Science, Brunel University London, UK

Nobuko Yoshida &

Department of Computing, Imperial College London, UK

— Abstract

This artifact contains a version of MultiCrusty,
a Rust library designed for writing and checking
communication protocols following the Affine Mul-
tiparty Session Types theory introduced in our
ECOOP’22 paper. MultiCrusty can work, and
should be used, with Scribble [2] and kMC [1]: with

within MultiCrusty, this approach is qualified as
top-down; while the latter tool allows to check local
Rust types written by users, this approach is quali-
fied as bottom-up. Our artifact contains those three
tools, their respective source files, as well as the
different examples and benchmarks introduced in

the former tool, users can write correct global proto-
cols and project them onto local Rust types defined

our paper, all together within a Docker image.

2012 ACM Subject Classification Software and its engineering — Software usability; Software and its
engineering — Concurrent programming languages; Theory of computation — Process calculi
Keywords and phrases Rust language, affine multiparty session types, failures, cancellation

Digital Object Identifier 10.4230/DARTS.8.2.9

Funding The work is supported by EPSRC EP/T006544/1, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/1, EP/N028201/1, EP/T014709/1 and EP/V000462/1, and NCSS/EPSRC
VeTSS.

Acknowledgements We thank the ECOOP reviewers for their insightful comments and suggestions.

Related Article Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida, “Stay Safe Under Panic:
Affine Rust Programming with Multiparty Session Types”, in 36th European Conference on Object-
Oriented Programming (ECOOP 2022), LIPIcs, Vol. 222, pp. 4:1-4:29, 2022.
https://doi.org/10.4230/LIPIcs.ECO0OP.2022.4

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6-10, 2022, Berlin, Germany

Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The purpose of this document is to describe in detail the steps required to assess the artifact
associated with our paper. We claim our artifact to be functional, reusable and available as
followed:

1. Functionality: MultiCrusty can be used for safe communication programming in Rust. In
particular, you should be able to verify three claims from the paper:

use MultiCrusty to write and verify affine protocols using MPST and Scribble as explained
in Section 2 in the paper, i.e top-down approach. Check the claim by: following Part II:
Step 1.1 (§ Instructions);

© Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida;
Bv licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 9, pp. 9:1-9:16
\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl Publishing, Germany



mailto:n.lagaillardie19@imperial.ac.uk
https://orcid.org/0000-0002-6431-4100
mailto:rumyana.neykova@brunel.ac.uk
https://orcid.org/0000-0002-2755-7728
mailto:n.yoshida@imperial.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/DARTS.8.2.9
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

9:2

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

use MultiCrusty to write and verify affine protocols using MPST and kMC, i.e bottom-up
approach, as explained in Section 2 in the paper. Check the claim by: following Part II:
Step 1.2 (§ Instructions);
observe detected errors due to incompatible types, as explained in Section 2 (line 221-225)
in the paper. Check the claim by: following Part II: Step 1.3 (§ Instructions).
2. Functionality: Reproduce the benchmarks in Section 5 (i.e., Table 2 and Figure 9):
1 claim on expressiveness (Section 5.2 in the paper): examples in Table 2 can be expressed
using MultiCrusty;
Check the claim by: Table 2 can be reproduced following the instructions in Part II:
Step 2 (§ Instructions);
2 claim on compile-time performance (line 886-892):
the more participants there are, the higher is the compilation time for MPST;
3 claim on run-time performance (line 880-885):
MultiCrusty is faster than the BC implementation when there is a large number of
interactions and participants (full-mesh protocol)
the worst-case scenario for MultiCrusty is protocols with many participants but no
causalities between them which results in a slowdown when compared with BC. (ring
protocol);
AMPST has a negligible overhead in comparison to MPST;
Check claims 2.1 and 2.2 by: Figure 9 can be reproduced following the instructions in
Part II: Step 3 (§ Instructions).
3. Reusability: The MultiCrusty tool can be used to verify your own communication protocols
and programs, follow the instructions in Part IIT (§ Instructions).

4. Availability: We agree our artifact to be published under a Creative Commons license on
DARTS.

Note on performance. The benchmark data in the paper was generated using a 32-cores AMD
OpteronTM Processor 6282 SE machine (the tool makes heavy use of multicore, when available)
with a quota of more than 100.000 files and 100 GB of HDD. In particular, measurements in
the paper are taken using AMD Opteron Processor 6282 SE @ 1.30 GHz x 32, 128 GiB memory,
100 GB of HDD, OS: ubuntu 20.04 LTS (64-bit), Rustup: 1.24.3, Rust cargo compiler: 1.56.0
Depending on your test machine, the absolute values of the measurements produced in Part II:
Step 2 and Step 3 will differ from the paper. Nevertheless, the claims stated in the paper should
be preserved.

2 Content

The artifact is submitted as a Docker image. It contains:

the directory mpst_rust_github — a directory containing the source code of the MultiCrusty

tool;
mpst_rust_github/examples — contains many examples implemented using MultiCrusty;
including all examples reported in Figure 9 and Table 2 in the paper;
mpst_rust_github/scripts — the scripts for reproducing the results;
mpst_rust_github/benches — the examples for Figure 9.

the directory scribble-java that contains the Scribble source code for generating Rust types

from Scribble protocols;

the directory kmc that contains the external kMC tool used to verify that MultiCrusty types

written in Rust are compatible.



N. Lagaillardie, R. Neykova, and N. Yoshida

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://www.dropbox.com/s/qvl7wijo9n7tcgn/artifact.tar.gz7d1=0.

4 Tested platforms

This artifact has been tested on Windows, Ubuntu and Mac machines, with at least 16 GB of
RAM and 50 GB of disk space. The library itself is lightweight but the examples and benchmarks
pose that requirement. The users must also enable localhost access (note that it should be enabled
by default unless you disabled it beforehand).

5 License

The artifact is available under a Creative Commons license on DARTS.

6 MDb5 sum of the artifact

6¢3c0a2f32ceeb584d068af7590a820f6

7 Size of the artifact

2.1GiB

A Instructions

Hereafter are all the instructions to use and test the artifact.

A.1 Getting started

For the ECOOP’22 artifact evaluation, please use the docker image provided:

0. Install Docker and open the terminal and configure docker setting. Important: By Default
docker is limited to use only 2GB-4GB RAM, open docker settings and increase the RAM
usage to 16GB. See instructions for MacOS and Windows;

1. download the artifact file (assume the filename is artifact.tar.gz);

2. unzip the artifact file:

gunzip artifact.tar.gz

3. you should see the tar file artifact.tar after the previous operation;
4. load the docker image:

docker load < artifact.tar
5. you should see at the end of the output after previous operation:
Loaded image: MultiCrusty:latest

6. run the docker container:

9:3

DARTS


https://www.dropbox.com/s/qvl7wijo9n7tcgn/artifact.tar.gz?dl=0
https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/mac/
https://docs.docker.com/desktop/windows/

9:4

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

docker run -it —-rm MultiCrusty:latest

Note: You may need to run the above command with sudo.

1. The Docker image comes with an installation of vim and neovim for editing. If you wish to
install additional software for editing or other purposes, you may obtain sudo access with the
password MultiCrusty;

2. thereafter, we assume that you are in the mpst_rust_github directory of the docker file.

A.2 Part I: Quick Start

1. run the tests to make sure MultiCrusty is installed and configured correctly:
cargo test --tests --all-features --workspace # Test all tests
The above command may take up to 15 min.
2. run the examples from Table 2:
cargo test --examples --all-features --workspace # Test all exzamples
The above command may take up to 15 min.
3. run the benchmarks from Figure 9:
cargo test --benches --all-features --workspace # Test all benchmarks

The above command may take up to 15 min. If your command results in an error (error: could
not compile mpstthree; signal: 9, SIGKILL: kill), this indicated that you do not have a sufficient
amount of RAM. Make sure that your docker is configured correctly, i.e open docker settings and
increase the RAM usage to 16GB. See instructions for MacOS and Windows.

Note: The commands from steps 1-3 can be run altogether with:

cargo test --all-targets --all-features --workspace
# Test everything in the library

A.3 Part Il: Step by Step instructions

A.3.1 STEP 1: Run the main example (VideoStream) of the paper (Section
2)

In order to run our main example, follow the different steps:
1. check and run the running example from the paper using the top-down approach:
execute the following command:

./scripts/top_down.sh

2. check and run the running example from the paper using the bottom-up approach:
execute the following command:

./scripts/bottom_up.sh

3. edit the program and observe the reported errors.


https://docs.docker.com/desktop/mac/
https://docs.docker.com/desktop/windows/

N. Lagaillardie, R. Neykova, and N. Yoshida

Next, we highlight how concurrency errors are ruled out by MultiCrusty (i.e., the ultimate
practical purpose of MultiCrusty). After each modification, compile the program with cargo run
--example=video_stream_generated --features="baking_checking" and observe the repor-
ted error.

open the file video_stream_ generated.rs in the examples/ folder, containing the VideoStream
program, with your favourite text editor.

Suggested modifications:

swap lines 104 and 105 (this can lead to a deadlock);

use another communication primitive, replace let (video, s) = s.recv()?; on line 106
with let s = s.send(0)7; — compilation errors because type mismatch;

keep the changes from the previous modification and in addition modify the types at line 17,
corresponding to line 106, from Recv to Send — mismatch because of duality.

A.3.2 STEP 2: Running the examples from Table 2

The purpose of these examples is to demonstrate how the tool works on existing examples from
the literature.

The examples in this table are located in the folder examples/.

The data for these benchmarks can be re-generated using the following script:

./scripts/examples_literature.sh
# Will take up to one hour, progress ts displayed in the terminal

FEach command is run 10 times on each example and the columns display the means in ms.

Results are outputted in the file results/benchmarks_main_from_literature_0.csv where
we give in brackets the corresponding names from Table 2 in the paper:

column 1: file name (Example/Endpoint);

column 2: check time in microseconds, the result of cargo check (Check);

column 3: build time in microseconds, the result of cargo build (Comp.);

column 4: build —release time in microseconds, the result of cargo build --release

(Rel.);

column 5: run time in nanoseconds, the result of running cargo bench (Exec time).

A.3.3 STEP 3: Running benchmarks from Figure 9 (ping-pong, mesh and
ring protocols)

The purpose of this set of benchmarks is to demonstrate the scalability of the tool on large
examples.

A.3.3.1 Option 1: Running a small benchmark set

You can run a small set of the benchmarks since the full benchmark set can take about 24 hours.
We have prepared a lighter version that should complete in about three hours. The difference is
that ping_pong protocols are run up to 50 loops (and not 500), and mesh and ring protocols are
up to five participants (and not ten). Each benchmark has a significance of 0.1 and a sample size
of 100 in this configuration: each protocol is run 100 times.

These modifications are enough to start observing the performance trends (refer to claims
about functionality at the beginning of this document).

To run the lighter benchmark:

9:5

DARTS


examples/video_stream_generated.rs

9:6

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

./scripts/lightweight_library.sh # Set up
then by running the command line:

./scripts/ping_pong_mesh_ring_light.sh # This will take up to 3 hours

Results. After running the above scripts, the graphs are saved in the results/ folder in the file
graphs_0.pdf, alongside the raw data for the graphs (.csv files).

To open the graphs_0.pdf file, copy the results/ folder to a local directory on your machine.

For detailed instructions on how to copy a docker folder to a local folder check here.

In short, open a terminal, type docker ps to check the name of the running docker container
for MultiCrusty:latest. The command should return the id of the container, let assume it is
c4a9485b3222. Then given that “Documents/Docker” is a local directory in your system, execute
the command:

docker cp c4a9485b3222:"home/MultiCrusty/mpst_rust_github/results"\
"Documents/Docker"

The above will copy the results folder from the docker container to your directory Document-
s/Docker. Open the file graphs 0.pdf, it will contain 5 graphs that correspond to the graphs
displayed in Figure 9.

Details on the content of the raw .csv files data (optional reading).

The ping_pong_mesh_ring_light.sh and ping_pong_mesh_ring_ full.sh scripts generate
3 files: ping_ping_0.csv, mesh_0.csv and ring_0.csv in the folder results/.

The structure of the ping_ping_0.csv file is as follows:

column 1: the type of implementation (AMPST, MPST, binary or crossbeam);
column 2: number of loops;

column 3: average running time (in nanosecond);

column 4: average compilation time (in microseconds).

il S

The structure of the mesh_0.csv and ring_0.csv files are as follows:
column 1: the type of implementation (AMPST, MPST, binary or crossbeam);
column 2: number of participants;

column 3: average running time (in nanosecond);

PnN=

column 4: average compilation time (in microseconds).

Be aware that the scripts add additional *.csv files on top of the existing ones.

A.3.3.2 Option 2: Running the entire benchmark set (at least 24 hours)

To run the same set of benchmarks as in the paper, i.e ping-pong for up to 500 iterations and ring
and mesh for 10 participants, execute the following commands:

./scripts/full_library.sh # set up
Then you can run the script:
./scripts/ping_pong_mesh_ring_full.sh # This will take more than 2/ hours

Fach benchmark has a significance of 0.1 and a sample size of 10000 in this configuration.

Note: we have executed this script on a high-performance computing server, and running the
whole script took over 24 hours. Progress is shown while running each benchmark.

You can also run one of the following scripts to retrieve results for only one kind of protocol:


https://support.sitecore.com/kb?id=kb_article_view&sysparm_article=KB0383441

N. Lagaillardie, R. Neykova, and N. Yoshida

./scripts/ping_pong.sh # For ping-pong protocols

##

./scripts/mesh_full.sh # For mesh protocols with full_library.sh
./scripts/ring_full.sh # For ring protocols with full_library.sh

##

./scripts/mesh_light.sh # For mesh protocols with lightweight_library.sh
./scripts/ring_light.sh # For ring protocols with lightweight_library.sh

A.4 Part lll: A walkthrough tutorial on checking your own protocols with
MultiCrusty

You can write your own examples using (1) generated types from Scribble (top-down approach) or
(2) your own types written with MultiCrusty and then check them using the kMC tool (bottom-up
approach).

A.4.1 3.1 Top-down: Generating Types from Scribble

In the top-down approach, protocols written in the protocol description language Scribble are
used for generating MultiCrusty types.

You can use our implementation of a simple recursive protocol that forwards (adds) a number
between three participants. The protocol is provided in the Scribble repository as a start. The
protocol is located in scribble-java/scribble-demos/scrib/fib/src/fib/Fib.scr

Follow the steps to implement a simple adder example with Scribble and MultiCrusty:

1] Generate Rust Types from Scribble:

./scripts/top_down_adder.sh

In the above example, we move into the scribble-java folder and run the Scribble
API for Rust on the Adder protocol written with Scribble. This command outputs the
file adder_generated.rs at the root of the scribble-java directory. Then it moves the
file adder_generated.rs from the scribble-java folder to the examples subfolder of the
mpst_rust_github folder containing MultiCrusty and auto-format the file with cargo fmt.

Now, you can open the examples/adder_generated.rs file using your preferred editor program
before testing the protocol directly with MultiCrusty.

—  From this point, we assume that you will remain in the MultiCrusty repository (the
mpst_rust_github folder).

2] Compile the Rust types:

cargo run --example=adder_generated --features="baking"

This command contains four parts:

cargo which calls the Rust compiler;

run for compiling and running one or more Rust files;
--example=adder_generated for running the specific; ezample adder_generated;

all S

You will have an error and several warnings when running the previous command. This is
because the Scribble API only generates Rust types and the Rust compiler needs at least a main
function.

Hereafter, we provide the code for the processes that implement the generated types.

3] Implement the endpoint programs for role A, B and C:

—--features="baking" for compiling only specific parts of MultiCrusty used for the example.

9:7

DARTS


scribble-java/scribble-demos/scrib/fib/src/fib/Fib.scr

9:8 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

i

fn endpoint_a(s: EndpointA48) -> Result<(), Box<dyn Error>> {
let (_, 8) = s.recv()7?;
offer_mpst! (s, {

BranchesOAtoC: :Add(s) => {
recurs_a(s)

3,

BranchesOAtoC: :Bye(s) => {
let (_,s) = s.recv()?;
s.close()

3,

1))
}

fn recurs_a(s: EndpointA23) -> Result<(), Box<dyn Error>> {
let (_, s) = s.recv()7?;
offer_mpst! (s, {

BranchesOAtoC: :Add(s) => {
recurs_a(s)

},

BranchesOAtoC: :Bye(s) => {
let (_,s) = s.recv()7;
s.close()

},

1))
}

Vi

fn endpoint_b(s: EndpointB50) -> Result<(), Box<dyn Error>> {
offer_mpst! (s, {

BranchesOBtoC: :Add(s) => {
let (_,s) = s.recv()?;
let s = s.send(0)7;
endpoint_b(s)

3,

BranchesOBtoC: :Bye(s) => {
let (_,s) = s.recv()?;
let s = s.send(())7;
s.close()

},

B
}

Yiiiiiiziese

fn endpoint_c(s: EndpointC13) -> Result<(), Box<dyn Error>> {



N. Lagaillardie, R. Neykova, and N. Yoshida 9:9

let s = s.send(0)7;
recurs_c(s, 5)

fn recurs_c(s: EndpointC10, loops: 132) -> Result<(), Box<dyn Error>> {
if loops <= 0 {
let s: EndpointC7 = choose_mpst_c_to_all!(
s, BranchesOAtoC::Add, BranchesOBtoC: :Add) ;
let s = s.send(0)7;

recurs_c(s, loops - 1)
} else {
let s: EndpointC9 = choose_mpst_c_to_all!(
s, BranchesOAtoC: :Bye, BranchesOBtoC::Bye);
let s = s.send(())7;

s.close()

aiiiziise

fn main() {
let (thread_a, thread_b, thread_c) = fork_mpst(endpoint_a, endpoint_b, endpoint_c);

assert! (thread_a.join() .is_ok());
assert! (thread_b.join().is_ok());
assert! (thread_c.join().is_ok());

There are four different parts: the first three ones are for representing the different roles, A, B
and C, involved in the protocol and the last one (the main function) runs all processes together.
In the first three parts, we are using the primitives described in Table 1 of the paper:
send (p) for sending a payload p;
recv() for receiving a payload;
offer_mpst! for receiving a choice;

PobdbH=

choose_mpst_c_to_all! for sending a choice.

The main function uses fork_mpst to fork the different threads.
All those primitives are generated using the macro bundle_impl_with_enum_and_cancel!.
Now, if you run again the file, it should run correctly:

cargo run --example=adder_generated --features="baking"

A.4.2 3.2 Bottom-up: Write the types in Rust and check them with the
kmc tool

Adder example with kMC. We show how to use the bottom-up approach. The first step in the
bottom-up approach to write the Rust types for the meshed channels. We will use the Adder

DARTS



9:10 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

example from above, since we already have the types, and we will only demonstrate here how to
check them using the external kMC tool.

MultiCrusty uses the macro checker_concat! on the types to rewrite Rust types to commu-
nicating finite state machines (CFSM) that the kMC checks.

This macro also returns the CFSM (visual) representation for each type using the dot format.

Now, that you have a better idea of the interactions between those two tools, we will check the
types in the adder_generated example are correct using our macro checker_concat!.

For this purpose, append the following lines to the adder_generated.rs file:

Yiiiiiiiiiise

fn checking() {
let (graphs, kmc) = mpstthree::checker_ concat!(

"adder_checking",

EndpointA48,

EndpointC13,

EndpointB50

=>

[
EndpointC7,
BranchesOAtoC, Add,
BranchesOBtoC, Add,

1,
L
EndpointC9,
BranchesOAtoC, Bye,
BranchesOBtoC, Bye,
]
)
.unwrap() ;

println! ("graph A: {:7}", petgraph::dot::Dot: :new(&graphs["RoleA"]));
printin! ("\n/////////////////////////\n");

println! ("graph B: {:7}", petgraph::dot::Dot: :new(&graphs["RoleB"]));
printin!("\n/////////////////////////\n");

println! ("graph C: {:7}", petgraph::dot::Dot: :new(&graphs["RoleC"]));
printin! ("\n/////////////////////////\n");

println! ("min kMC: {:7}", kmc);

and update the main() function by including checking(); in it:

fn main() {
checking() ;

let (thread_a, thread_b, thread_c) =
fork_mpst(endpoint_a, endpoint_b, endpoint_c);

assert! (thread_a.join() .is_ok());



N. Lagaillardie, R. Neykova, and N. Yoshida

assert! (thread_b.join().is_ok());
assert! (thread_c.join().is_ok());

Now, if you run again the file, it should run correctly:
cargo run --example=adder_generated --features="baking_checking"

Notice the different features used for compiling the example: baking checking instead of
baking.

If you are unsure about either of the above steps, the Rust code is available in the adder.rs
file located in the examples/ folder.

__Optional: If you want more practice writing types and programs using MultiCrusty, and
kMC, check the additional examples section at the end of the document: A simple example with
MultiCrusty and kMC in the Additional Information section.

A.5 ADDITIONAL INFORMATION

Benchmark setup in the paper. All set-up and benchmarks were performed on the following

machine:

= AMD OpteronTM Processor 6282 SE @ 1.30 GHz x 32, 128 GiB memory, 100 GB of HDD,
OS: ubuntu 20.04 LTS (64-bit), Rustup: 1.24.3, Rust cargo compiler: 1.56.0.

The original benchmarks were generated using:
= compile and run: cargo bench --all-targets --all-features --workspace

Generating documentation for MultiCrusty. The documentation of MultiCrusty can be
generated with the command cargo doc --all-features.

The generated documentation will be accessible in the file target/doc/mpstthree/index.html.

The source code is included in the root directory.

Rust commands on build, test, compile. Here is a general description of all commands you can
run to check, build and test.

cd mpst_rust_github # Move to MultiCrusty's repository

cargo check --all-features --1ib --workspace # Check only this package's library
cargo check --all-features --bins --workspace # Check all binaries

cargo check --all-features --examples --workspace # Check all examples

cargo check --all-features --tests —--workspace # Check all tests

cargo check --all-features --benches --workspace # Check all benchmarks

cargo build --all-features --1lib --workspace # Build only this package's library
cargo build --all-features --bins —--workspace # Build all binaries

cargo build --all-features --examples --workspace # Butld all examples

cargo build --all-features --tests —-workspace # Build all tests

cargo build --all-features --benches --workspace # Build all benchmarks

cargo test --all-features --1ib --workspace # Test only this package's library
cargo test --all-features --bins --workspace # Test all binaries

cargo test --all-features --examples --workspace # Test all examples

cargo test --all-features --tests —--workspace # Test all tests

cargo test --all-features --benches --workspace # Test all benchmarks

9:11

DARTS



9:12

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

Scribble commands. Assuming you know how to write Scribble protocols, put your own in the
folder ../scribble-java/scribble-demos/scrib/fib/ and use:

# Move to the correct repository
cd scribble-java/
# Run Scribble on the global protocol to project it onto local Rust types
./scribble-dist/target/scribblec.sh -ip scribble-demos/scrib/fib/src
-d scribble-demos/scrib/fib/src
scribble-demos/scrib/fib/src/fib/[input file without extension].scr
-rustapi [name of the protocol] [output file without extension]
# Move back to the previous repository
cd ..
# Move the generated file to the example folder
mv scribble-java/[input file without extension].rs
mpst_rust_github/examples/[output file without extension].rs
# Move to the mpst_rust_github/ repository
cd mpst_rust_github/

A simple example with MultiCrusty and kMC.
Need help? This example is implemented in examples/basic.rs, hence you can use the file as
a reference implementation.

1] Import the necessary macros from the MultiCrusty library:

// The basic types

use mpstthree::binary::struct_trait::{end::End, recv::Recv, send::Send};
// The macro for gemerating the rToles and the MeshedChannels
use mpstthree: :baker;

// Optional: used only for protocols with choice/offer

use mpstthree::role::broadcast::RoleBroadcast;

// The final type for the stacks and the names of the roles
use mpstthree::role::end::RoleEnd;

// Used for checking the protocol

use mpstthree::checker_concat;

// Used for functions output

use std::error: :Error;

2] Create the roles and the MeshedChannels data structure:

// generates meshed channels for 3 roles
bundle_impl_with_enum_and_cancel!( MeshedChannels, A, B);

The new generated types will be MeshedChannels and RoleX where X is the provided name in
the macro inputs.

3] Write the MeshedChannels types:

A good practice is to write the simplest types first, and concatenate them into MeshedChannels.
That is why we first write down the types used for representing the roles:

// Payload types
struct Request;
struct Response;
struct Stop;



N. Lagaillardie, R. Neykova, and N. Yoshida 9:13

// Names
type NameA = RoleA<RoleEnd>;
type NameB = RoleB<RoleEnd>;

Then we write each binary type:

// Binary types for A

// Recv a Request then Send a choice

type StartA0 = Recv<Request, Send<BranchingOfromAtoB, End>>;
// Stack for recv then sending a choice

type OrderingAO = RoleB<RoleBroadcast>;

// Send a choice

type LoopAO = Send<BranchingOfromAtoB, End>;
// Stack for sending a chotice

type OrderingloopAO = RoleBroadcast;

// Recv Response then send a choice

type MoreAl = Recv<Response, Send<BranchingOfromAtoB, End>>;
// Stack for the previous binary type

type OrderingMoreAl = RoleB<RoleBroadcast>;

// Recv Stop

type DoneAl = Recv<Stop, End>;

// Stack for the previous binary type
type OrderingDoneAl = RoleB<RoleEnd>;

// Binary types for B

// Send a Request then Recv a choice

type StartBO = Send<Request, Recv<BranchingOfromAtoB, End>>;
// Stack for send then receiving a choice from A

type OrderingBO = RoleA<RoleA<RoleEnd>>;

// Recv a choice

type LoopBO = Recv<BranchingOfromAtoB, End>;
// Stack for recv a choice

type OrderingloopBO = RoleA<RoleEnd>;

// Recv Request then Send Response then receive a choice
type MoreBl = Send<Response, Recv<BranchingOfromAtoB, End>>;
// Stack for the previous binary type

type OrderingMoreBl = RoleA<RoleA<RoleEnd>>;

// Send Stop

type DoneBl = Send<Stop, End>;

// Stack for the previous binary type
type OrderingDoneBl = RoleA<RoleEnd>;

// Sum type containing the different paths of the choice

DARTS



9:14

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

enum BranchingOfromAtoB {
More (MeshedChannels<MoreBl, OrderingMoreBl, NameB>),
Done (MeshedChannels<DoneB1, OrderingDoneB1, NameB>),

This protocol is recursive as you may have noticed with MoreB1 both inside the enum type
BranchingOfromAtoB and containing Recv<BranchingOfromAtoB, End>. The two paths are More
and Done.

We are now going to concatenate the previous types into MeshedChannels:

// Creating the endpoints
// A
type EndpointAMore

MeshedChannels<MoreAl, OrderingMoreAl, NameA>;
MeshedChannels<DoneAl, OrderingDoneAl, NameA>;
type EndpointALoop = MeshedChannels<LoopAO, OrderingloopAO, NameA>;
type EndpointA = MeshedChannels<StartAO, OrderingAO, NameA>;

type EndpointADone

// B
type EndpointBLoop = MeshedChannels<LoopBO, OrderingloopBO, NameB>;
type EndpointB = MeshedChannels<StartBO, OrderingBO, NameB>;

4] Check that the types are correct:

We can check that the written types are compatible using the checker_concat! macro which
translates the types to Communicating Finite State machines (CFSM) and uses the kMC tool to
check for compatibility. Note that, in practice, since this is a binary protocol, we do not need to
invoke the kMC tool, since the duality between the types is enough to guarantee correctness.

fn main() {
let (_, kmc) = checker_concat!(
"basic",
EndpointA,
EndpointB
=>

EndpointAMore,
BranchingOfromAtoB, More,
EndpointADone,

BranchingOfromAtoB, Done,

)

.unwrap(Q) ;
println! ("min kMC: {:7}", kmc);
// let (thread_a, thread_b) = fork_mpst(endpoint_a, endpoint_b);

// assert!(thread_a.join().is_ok());
// assert!(thread_b.join().is_ok());



N. Lagaillardie, R. Neykova, and N. Yoshida

Run the checker concat! macro to check if the types are correct:
cargo run --example=my_basic --features="baking_checking"

After running the command above, the terminal should display the output from the kMC tool,
which is the minimal k for this protocol. It is 1 for the protocol, as expected.

5] Implement the endpoint processes for A, B by adding the following code after the main
function:

fn endpoint_a(s: EndpointA) -> Result<(), Box<dyn Error>> {
let (_, 8) = s.recv()7;
recurs_a(s, 5)

fn recurs_a(s: EndpointALoop, loops: i32) -> Result<(), Box<dyn Error>> {
if loops > 0 {
let s: EndpointAMore = choose mpst_a_to_all!(s, BranchingOfromAtoB::More);

let (_, s8) = s.recv()7;
recurs_a(s, loops - 1)
} else {
let s: EndpointADone = choose _mpst_a_to_all!(
s, BranchingOfromAtoB: :Done) ;

let (_, s) = s.recv()7;
s.close()

fn endpoint_b(s: EndpointB) -> Result<(), Box<dyn Error>> {
let s = s.send(Request {})7;
recurs_b(s)

fn recurs_b(s: EndpointBLoop) -> Result<(), Box<dyn Error>> {
offer_mpst! (s, {

BranchingOfromAtoB: :More(s) => {
let s = s.send(Response {})7;
recurs_b(s)

+,

BranchingOfromAtoB: :Done(s)
let s = s.send(Stop {})7;
s.close()

> A

s
B

Finally, uncomment the last three lines in the main function by removing the // at the
beginning of each line.
6] Run the example again:

cargo run --example=my_basic --features="baking_checking"

9:15

DARTS



9:16

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

— References

1

Julien Lange and Nobuko Yoshida. Verifying Asyn-
chronous Interactions via Communicating Session
Automata. In Isil Dillig and Serdar Tasiran, editors,
Computer Aided Verification - 31st International
Conference, CAV 2019, volume 11561 of Lecture
Notes in. Computer Science, pages 97-117, Cham,
2019. Springer. doi:10.1007/978-3-030-25540-
4_6.

Nobuko Yoshida, Raymond Hu, Rumyana Neykova,
and Nicholas Ng. The Scribble Protocol Language.
In Martin Abadi and Alberto Lluch Lafuente, ed-
itors, Trustworthy Global Computing, pages 22—
41, Cham, 2014. Springer International Publishing.
doi:10.1007/978-3-319-05119-2_3.


https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-319-05119-2_3

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Instructions
	A.1 Getting started
	A.2 Part I: Quick Start
	A.3 Part II: Step by Step instructions
	A.3.1 STEP 1: Run the main example (VideoStream) of the paper (Section 2)
	A.3.2 STEP 2: Running the examples from Table 2 
	A.3.3 STEP 3: Running benchmarks from Figure 9 (ping-pong, mesh and ring protocols) 

	A.4 Part III: A walkthrough tutorial on checking your own protocols with MultiCrusty 
	A.4.1 3.1 Top-down: Generating Types from Scribble
	A.4.2 3.2 Bottom-up: Write the types in Rust and check them with the kmc tool

	A.5 ADDITIONAL INFORMATION


