Global Type Inference for Featherweight Generic Java
— Prototype Implementation (Artifact)

Andreas Stadelmeier &
Duale Hochschule Baden-Wiirttemberg Stuttgart, Campus Horb, Germany

Martin Pliimicke &
Duale Hochschule Baden-Wiirttemberg Stuttgart, Campus Horb, Germany

Peter Thiemann &
Institut fir Informatik, Universitat Freiburg, Germany

— Abstract

We implemented a prototype of the type inference ~ GT) program. Inserting those types generates a
algorithm described in the paper “Global Type valid GFJ program. We demonstrate this with a
Inference for Featherweight Generic Java”. Our prototype implementation. The prototype is a web

type inference algorithm for Featherweight Generic application which accepts GFJ-GT programs as
Java (GFJ) is able to calculate the missing types input and shows the respective GFJ program after
in a Typeless Featherweight Generic Java (FGJ- the type inference.

2012 ACM Subject Classification Software and its engineering — Language features
Keywords and phrases type inference, Java, subtyping, generics
Digital Object Identifier 10.4230/DARTS.8.2.18

Related Article Andreas Stadelmeier, Martin Pliimicke, and Peter Thiemann, “Global Type Inference for
Featherweight Generic Java”, in 36th European Conference on Object-Oriented Programming (ECOOP
2022), LIPIcs, Vol. 222, pp. 28:1-28:27, 2022.

https://doi.org/10.4230/LIPIcs.ECOOP.2022.28

Related Conference 36th European Conference on Object-Oriented Programming (ECOOP 2022), June
6-10, 2022, Berlin, Germany

Evaluation Policy The artifact has been evaluated as described in the ECOOP 2022 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact is a prototype implementation of the type inference algorithm presented in the
corresponding paper. The idea of this prototype is to showcase our type inference algorithm for
featherweight generic java. It can be used to get a feeling of what the type inference algorithm is
capable of. All of the examples presented in the paper can also be verified with this implementation.
Also see the inputs in appendix C.

Our prototype also demonstrates a way to implement the nondeterministic parts of the type
inference algorithm.The part in question is the selection of the correct typing described in chapter
4. We did not implement this by adding backtracking, as supposed by the paper. Our prototype
implementation resolves this by internally keeping all possible types for the same method when
processing multiple classes (see appendix B).

2 Content

The artifact package includes:

Scala source code as a sbt-project
© Andreas Stadelmeier, Martin Pliimicke, and Peter Thiemann;

licensed under Creative Commons License CC-BY 4.0
Dagstuhl Artifacts Series, Vol. 8, Issue 2, Artifact No. 18, pp. 18:1-18:4

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,

Dagstuhl Publishing, Germany

mailto:a.stadelmeier@hb.dhbw-stuttgart.de
mailto:pl@dhbw.de
mailto:thiemann@informatik.uni-freiburg.de
https://doi.org/10.4230/DARTS.8.2.18
https://doi.org/10.4230/LIPIcs.ECOOP.2022.28
https://doi.org/10.5281/zenodo.6553744
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.8.2.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

18:2

Global Type Inference for Featherweight Generic Java (Artifact)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github.com/JanUlrich/FeatherweightTypeInference.

4 Tested platforms

The web application should run in any up-to-date web browser with javascript support. We
succesfully tested it with Firefox and Google Chrome.

5 License

The artifact is available under MIT license.

6 MD5 sum of the artifact

321b5b2c4ba5318¢25dc9dd1fbeab6i7

7 Size of the artifact

60.0 KiB

A Documentation

A.1 Running the web application

The web application can be started by opening index.html in a web browser. It is also possible
to access the web application under the following link:
https://janulrich.github.io/FeatherweightTypeInference/index.html

A.2 Building

The project is a standard scala sbt project. If you are familiar with scala you can compile the
project to javascript by running fullLinkJS in the sbt console. See the documentation on scala.js:
https://www.scala-js.org/doc/tutorial/basic/index.html

Compile the project with sbt fullLinkJS. This will generate a javascript file in
./target/scala-2.13/fj-typeinference-opt/, which is referenced by index.html.

A.3 Howto Use

Just enter a proper FGJ-TI program on the left side and see the type infered result on the right
side. The implementation is currently in a prototype state. It only works if you supply a valid
input. The input has to be according to the syntax given in figure 6 of our paper and satisfy
the type rules given in figure 8-10. If a incorrect input is given the right side will either show no
result at all or a short error message. It also is possible that the algorithm fails with an uncaught
exception. This exception is only displayed in the error console of your browser and will not be
shown in the web application.

https://github.com/JanUlrich/FeatherweightTypeInference
https://janulrich.github.io/FeatherweightTypeInference/index.html
https://www.scala-js.org/doc/tutorial/basic/index.html

A. Stadelmeier, M. Pliimicke, and P. Thiemann 18:3

Hints:
Every class has to have an extends clause

class Example extends Object ... for example
Every generic variable has to have an extends clause as well
class Example<A extends Object> extends Object
The classes are inferred in the order given in the input

the first class can only access its own methods
the subsequent classes can also access the methods of their predecessors

see Example inputs below

B Differences to the algorithm described in our paper

The algorithm described in our paper is nondeterministic. The function described in chapter 4
selects only one of the solutions from the Unify function. Our prototype implementation internally
computes every possible solution. It refines the solutions by filtering out unnecessary and duplicate
solutions and then will show every solution by overloading the input methods.

For example the input:

class Example<A extends Object> extends Object{
A f;
m(){ return new Example(this);}

will generate two solutions for the method m:

class Example<A extends Object> extends Object{
A f;
Example<0Object> m() {
return new Example(this);

}
Example <Example<A>> m() {
return new Example (this);

}

C Example inputs

class Function<B extends Object, A extends Object> extends Object{
A a;

A apply(B p){
return this.a;

}
}
class Box <S extends Object> extends Object {
S val;
map (£) {
return new Box(f.apply(this.val)) ;
}
}

DARTS

18:4 Global Type Inference for Featherweight Generic Java (Artifact)

class True extends Object{

class False extends Object{

class Nandl extends Object{

False nand(True a, True b){ return new False(); }
}

class Nand2 extends Object{

True nand(False a, True b){ return new True(); }

}

class Nand3 extends Object{

True nand(True a, False b){ return new True(); }

}

class Nand4 extends Object{

True nand(False a, False b){ return new True(); }

}

class SATExample extends Object{
True f;

sat(vl, v2, v3, ol, o02){
return ol.nand(vl, o2.nand(v2, v3));

}

forceSATtoTrue(vl, v2, v3, ol, o02){

return new SATExample(this.sat(vl, v2, v3, ol, 02));
}
}

class Identity extends Objectq
id(a){
return a;
}
}

class List<A extends Object> extends Object{
A head;
List<A> tail;
add (a){
return new List(a, this);
}
get O{
return this.head;
}
}

class PrincipleType extends Object {
function(a){
return a.add(this).get();
}
}

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Documentation
	A.1 Running the web application
	A.2 Building
	A.3 Howto Use

	B Differences to the algorithm described in our paper
	C Example inputs

